
www.allitebooks.com

http://
http://www.allitebooks.org

 i

Pro Android Apps
Performance
Optimization

■ ■ ■

Hervé Guihot

www.allitebooks.com

http://
http://www.allitebooks.org

Pro Android Apps Performance Optimization

Copyright © 2012 by Hervé Guihot

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3999-4

ISBN-13 (electronic): 978-1-4302-4000-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and
shared by Google and used according to terms described in the Creative Commons 3.0
Attribution License. Android and all Android and Google-based marks are trademarks or
registered trademarks of Google, Inc., in the U.S. and other countries. Apress Media, L.L.C. is not
affiliated with Google, Inc., and this book was written without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: James Markham
Technical Reviewer: Charles Cruz, Shane Kirk, Eric Neff
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editor: Jill Steinberg
Compositor: MacPS, LLC
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

Any source code or other supplementary materials referenced by the author in this text is
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to http://www.apress.com/source-code/.

www.allitebooks.com

http://
http://www.allitebooks.org

iii

Contents at a Glance

Contents ... iv

About the Author .. viii

About the Technical Reviewers ... ix

Acknowledgments .. x

Introduction ... xi

■Chapter 1: Optimizing Java Code .. 1�

■Chapter 2: Getting Started With the NDK ... 33�

■Chapter 3: Advanced NDK .. 73�

■Chapter 4: Using Memory Efficiently ... 109�

■Chapter 5: Multithreading and Synchronization ... 133�

■Chapter 6: Benchmarking And Profiling .. 163�

■Chapter 7: Maximizing Battery Life ... 177�

■Chapter 8: Graphics ... 207�

■Chapter 9: RenderScript .. 231�

Index ... 265

www.allitebooks.com

http://
http://www.allitebooks.org

iv

Contents

Contents at a Glance .. iii�
About the Author .. viii�
About the Technical Reviewers ... ix�

Acknowledgments .. x�

Introduction ... xi�

■Chapter 1: Optimizing Java Code .. 1�

How Android Executes Your Code ... 2�

Optimizing Fibonacci .. 4�

From Recursive To Iterative ... 5�

BigInteger .. 6�

Caching Results .. 11�

android.util.LruCache<K, V> .. 12�

API Levels ... 13�

Fragmentation .. 16�

Data Structures ... 17�

Responsiveness .. 20�

Lazy initializations ... 22�

StrictMode ... 23�

SQLite ... 25�

SQLite Statements ... 25�

Transactions .. 28�

Queries ... 30�

Summary .. 31�

■Chapter 2: Getting Started With the NDK ... 33�

What Is In the NDK? .. 34�

Mixing Java and C/C++ Code ... 37�

Declaring the Native Method ... 37�

Implementing the JNI Glue Layer ... 38�

Creating the Makefiles ... 40�

Implementing the Native Function ... 41�

Compiling the Native Library .. 43�

Loading the Native Library ... 43�

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS

v

Application.mk .. 44�

Optimizing For (Almost) All Devices ... 46�

Supporting All Devices ... 47�

Android.mk ... 50�

Performance Improvements With C/C++ .. 53�

More About JNI .. 57�

Native Activity ... 62�

Building the Missing Library .. 64�

Alternative .. 70�

Summary .. 71�

■Chapter 3: Advanced NDK .. 73�

Assembly .. 73�

Greatest Common Divisor .. 74�

Color Conversion .. 79�

Parallel Computation of Average ... 82�

ARM Instructions .. 87�

ARM NEON ... 96�

CPU Features ... 97�

C Extensions ... 98�

Built-in Functions ... 99�

Vector Instructions ... 99�

Tips ... 103�

Inlining Functions ... 104�

Unrolling Loops .. 104�

Preloading Memory .. 105�

LDM/STM Instead Of LDR/STD ... 106�

Summary .. 107�

■Chapter 4: Using Memory Efficiently ... 109�

A Word On Memory ... 109�

Data Types .. 111�

Comparing Values .. 113�

Other Algorithms .. 115�

Sorting Arrays .. 116�

Defining Your Own Classes .. 117�

Accessing Memory .. 118�

The Cache’s Line Size .. 119�

Laying Out Your Data .. 120�

Garbage Collection .. 125�

Memory Leaks ... 125�

References ... 127�

APIs ... 131�

Low Memory ... 131�

Summary .. 132�

■Chapter 5: Multithreading and Synchronization ... 133�

Threads ... 134�

AsyncTask ... 137�

Handlers and Loopers ... 140�

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS

vi

Handlers ... 140�

Loopers .. 142�

Data Types .. 143�

Synchronized, Volatile, Memory Model .. 143�

Concurrency .. 147�

Multicore ... 148�

Modifying Algorithm For Multicore .. 149�

Using Concurrent Cache .. 152�

Activity Lifecycle ... 154�

Passing Information ... 156�

Remembering State ... 158�

Summary .. 161�

■Chapter 6: Benchmarking And Profiling .. 163�

Measuring Time .. 163�

System.nanoTime() .. 164�

Debug.threadCpuTimeNanos() ... 165�

Tracing .. 167�

Debug.startMethodTracing() .. 167�

Using the Traceview Tool ... 168�

Traceview in DDMS .. 170�

Native Tracing .. 172�

Logging ... 174�

Summary .. 176�

■Chapter 7: Maximizing Battery Life ... 177�

Batteries ... 177�

Measuring Battery Usage ... 180�

Disabling Broadcast Receivers ... 183�

Disabling and Enabling the Broadcast Receiver .. 186�

Networking ... 187�

Background Data ... 188�

Data Transfer ... 189�

Location .. 191�

Unregistering a Listener .. 193�

Frequency of Updates .. 193�

Multiple Providers .. 194�

Filtering Providers .. 196�

Last Known Location .. 198�

Sensors ... 199�

Graphics .. 200�

Alarms ... 201�

Scheduling Alarms ... 203�

WakeLocks .. 204�

Preventing Issues ... 205�

Summary .. 206�

■Chapter 8: Graphics ... 207�

Optimizing Layouts ... 207�

RelativeLayout ... 209�

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS

vii

Merging Layouts .. 213�

Reusing Layouts ... 214�

View Stubs ... 215�

Layout Tools .. 217�

Hierarchy Viewer .. 218�

layoutopt .. 218�

OpenGL ES .. 218�

Extensions .. 219�

Texture Compression ... 221�

Mipmaps .. 226�

Multiple APKs ... 228�

Shaders .. 228�

Scene Complexity .. 229�

Culling .. 229�

Render Mode .. 229�

Power Consumption ... 229�

Summary .. 230�

■Chapter 9: RenderScript .. 231�

Overview ... 231�

Hello World .. 233�

Hello Rendering .. 236�

Creating a Rendering Script ... 237�

Creating a RenderScriptGL Context ... 238�

Extending RSSurfaceView .. 239�

Setting the Content View ... 239�

Adding Variables to Script .. 240�

HelloCompute .. 243�

Allocations ... 244�

rsForEach ... 245�

Performance .. 248�

Native RenderScript APIs .. 249�

rs_types.rsh ... 250�

rs_core.rsh ... 253�

rs_cl.rsh ... 255�

rs_math.rsh ... 259�

rs_graphics.rsh .. 260�

rs_time.rsh .. 261�

rs_atomic.rsh ... 262�

RenderScript vs. NDK .. 263
Summary .. 263�

Index ... 265

www.allitebooks.com

http://
http://www.allitebooks.org

viii

About the Author

Hervé Guihot started learning about computers more than 20 years ago with
an Amstrad CPC464. Although the CPC464 is most likely the reason why he still
appreciates green-screened devices (ask him about his phone), Hervé started
working with Android as it became a popular platform for application
development. It was also was the only platform that combined two of his main
passions: software and pastries. After many years working in the world of
interactive and digital television, he is focused on bringing Android to more
devices to encourage more developers to leverage the power of Android and
more people to have access to the technology. Hervé is currently a software
engineering manager in MediaTek (www.mediatek.com), a leading fabless

semiconductor company for wireless communications and digital multimedia solutions. He
holds an engineering degree from the Institut de Formation Supérieure en Informatique et
Télécommunication in Rennes, Brittany, and you can sometimes find him waiting in line for an
éclair on 18th and Guerrero.

www.allitebooks.com

http://
http://www.allitebooks.org

ix

About the Technical Reviewers

Charles Cruz is a mobile application developer for the Android, iOS, and
Windows Phone platforms. He graduated from Stanford University with B.S.
and M.S. degrees in Engineering. He lives in Southern California and, when
not doing technical things, plays lead guitar in an original metal band
(www.taintedsociety.com) and a classic rock tribute band. Charles can be
reached at cruzcj@soundandcodecreations.com and @CodingNPicking on
Twitter.

Shane Kirk earned his B.S. in Computer Science from the University of
Kentucky in 2000. He’s currently a software engineer for DeLorme, a mapping
and GPS technology company based in Yarmouth, Maine, where he spends his
days writing C++ and Java code for mobile and desktop applications. When
Shane isn’t coding, you’ll usually find him making lots of noise with his guitar
or lost in the pages of a good book.

Eric Neff is an experienced technical architect with more than 14 years of
overall experience in as a technical architect and senior software developer. He
is an expert in full life-cycle application development, middle-ware, and n-tier
application development, with specific expertise in Microsoft .NET application
development. He specializes in object-oriented analysis and design in systems
development with a focus on the scheduling of service personal or
manufactured items and was instrumental in the design and implementation
of data relation schemas for the lexicography industry. Eric was recently
promoted to Director of Mobile Innovations at Kiefer Consulting, Inc, putting
into practice several years of hobbyist development in the mobile space on

iPhone, Android, and Windows Mobile. Eric is active in the local development community
through his participation in the Sacramento Google Technology Group and as a board member of
the Sacramento Dot Net User Group. He has given presentations on mobile web technologies,
mobile development, and ASP.NET techniques.

www.allitebooks.com

http://
http://www.allitebooks.org

x

Acknowledgments

I thank the team at Apress who made this book possible: Steve Anglin, Corbin Collins, Jim
Markham, and Jill Steinberg. Working with all of them was a real pleasure and I can with
confidence recommend them to any author.

I also want to thank the tech reviewers: Charles Cruz, Shane Kirk, and Eric Neff. They
provided invaluable feedback, often catching mistakes I would not have seen even after dozens of
readings.

To all my friends whom I did not get to see as often as I would have liked while I was working
on this book, I give my thanks too: Marcely, Mathieu, Marilen, Maurice, Katie, Maggie, Jean-René,
Ruby, Greg, Aline, Amy, and Gilles, I promise I will make up for the lost time. Last but not least, I
owe a lot to three people: Eddy Derick, Fabrice Bernard, and Jean-Louis Gassée. Sometimes all it
takes is an injured toe and a broken suitcase.

http://

xi

Introduction

Android quickly became almost ubiquitous. With the world transitioning from feature phones to
smartphones, and then discovering that tablets are, after all, devices we can hardly live without,
application developers today have a choice between mostly two platforms: Android and iOS.
Android lowered, some may even say broke, the barrier of entry for application developers,
because all you need to write Android applications is a computer (and of course some
programming knowledge). Tools are free, and almost anyone can now write applications
reaching millions of customers. With Android now spreading to a variety of devices, from tablets
to televisions, it is important to make sure your applications can not only run well on all these
devices but also run better than competing applications. After all, the barrier of entry was lowered
for all application developers and you will in many cases find yourself competing for a slice of the
ever-growing Android applications market. Whether you write applications to make a living,
achieve stardom, or simply make the world a better place, performance will be one of the their
key elements.

This book assumes you already have some familiarity with Android application development
but want to go one step further and explore what can make your applications run faster. Although
the Android tools and online documentation make it easy to create applications, performance
optimization is sometimes more of an art than a science and is not documented as thoroughly. I
wrote Pro Android Apps Performance Optimization to help you find easy ways to achieve good
performance on virtually all Android devices, whether you are trying to optimize an existing
application or are writing an application from scratch. Android allows developers to use Java,
C/C++, and even assembly languages, and you can implement performance optimizations in
many different ways, from taking advantage of the CPU features to simply using a different
language more tailored to a specific problem.

Chapter 1 focuses on optimizing your Java code. Your first applications will most likely
exclusively use the Java language, and we will see that algorithms themselves are more important
than their implementation. You will also learn how to take advantage of simple techniques such
as caching and minimizing memory allocations to greatly optimize your applications. In
addition, you will learn how to keep your applications responsive, a very important performance
indicator, and how to use databases efficiently.

Chapter 2 takes you one step further (or lower, depending on who you talk to) and introduces
the Android NDK. Even though the Java code can be compiled to native code since Android 2.2,
using C code to implement certain routines can yield better results. The NDK can also allow you
to easily port existing code to Android without having to rewrite everything in Java.

Chapter 3 takes you to the abyss of assembly language. Albeit rarely used by most application
developers, assembly language allows you to take advantage of every platform's specific
instruction set and can be a great way to optimize your applications, though at the cost of
increased complexity and maintenance. Though assembly code is typically limited to certain
parts of an application, its benefits should not be ignored as tremendous results can be achieved
thanks to carefully targeted optimizations.

Chapter 4 shows you how using less memory can improve performance. In addition to
learning simple ways to use less memory in your code, you will learn how memory allocations
and memory accesses have a direct impact on performance because of how CPUs are designed.

http://

■ INTRODUCTION

xii

Chapter 5 teaches you how to use multi-threading in your Android applications in order to
keep applications responsive and improve performance as more and more Android devices can
run multiple threads simultaneously.

Chapter 6 shows you the basics of measuring your applications' performance. In addition to
learning how to use the APIs to measure time, you will also learn how to use some of the Android
tools to have a better view of where time is spent in your applications.

Chapter 7 teaches you how to make sure your applications use power rationally. As many
Android devices are battery-powered, conserving energy is extremely important because an
application that empties the battery quickly will be uninstalled quickly. This chapter shows you
how to minimize power consumption without sacrificing the very things that make Android
applications special.

Chapter 8 introduces some basic techniques to optimize your applications' layouts and
optimize OpenGL rendering.

Chapter 9 is about RenderScript, a relatively new Android component introduced in
Honeycomb. RenderScript is all about performance and has already evolved quite a bit since its
first release. In this chapter you learn how to use RenderScript in your applications and also learn
about the many APIs RenderScript defines.

I hope you enjoy this book and find many helpful tips in it. As you will find out, many
techniques are not Android specific, and you will be able to re-use a lot of them on other
platforms, for example iOS. Personally, I have a sweet tooth for assembly language and I hope the
proliferation of the Android platform and support for assembly language in the Android NDK will
entice many developers, if only to learn a new skill. However, I do want to emphasize that good
design and good algorithms will often already take care of all performance optimizations you
need. Good luck, and I am looking forward to your Android applications!

http://

1

 Chapter

Optimizing Java Code
Many Android application developers have a good practical knowledge of the Java
language from previous experience. Since its debut in 1995, Java has become a very
popular programming language. While some surveys show that Java lost its luster trying
to compete with other languages like Objective-C or C#, some of these same surveys
rank Java as the number 1 language popularity-wise. Naturally, with mobile devices
outselling personal computers and the success of the Android platform (700,000
activations per day in December 2011) Java is becoming more relevant in today’s
market than ever before.

Developing applications for mobile devices can be quite different from developing
applications for personal computers. Today’s portable devices can be quite powerful,
but in terms of performance, they lag behind personal computers. For example, some
benchmarks show a quad-core Intel Core i7 processor running about 20 times faster
than the dual-core Nvidia Tegra 2 that is found in the Samsung Galaxy Tab 10.1.

NOTE: Benchmark results are to be taken with a grain of salt since they often measure only part

of a system and do not necessarily represent a typical use-case.

This chapter shows you how to make sure your Java applications perform well on
Android devices, whether they run the latest Android release or not. First, we take a look
at how Android executes your code. Then, we review several techniques to optimize the
implementation of a famous mathematical series, including how to take advantage of the
latest APIs Android offers. Finally, we review a few techniques to improve your
application’s responsiveness and to use databases more efficiently.

Before you jump in, you should realize code optimization is not the first priority in your
application development. Delivering a good user experience and focusing on code
maintainability should be among your top priorities. In fact, code optimization should be
one of your last priorities, and may not even be part of the process altogether. However,
good practices can help you reach an acceptable level of performance without having
you go back to your code, asking yourself “what did I do wrong?” and having to spend
additional resources to fix it.

1

H. Guihot, Pro Android App
© Hervé Guihot 2012

s Performance Optimization

http://

CHAPTER 1: Optimizing Java Code 2

How Android Executes Your Code
While Android developers use Java, the Android platform does not include a Java Virtual
Machine (VM) for executing code. Instead, applications are compiled into Dalvik
bytecode, and Android uses its Dalvik VM to execute it. The Java code is still compiled
into Java bytecode, but this Java bytecode is then compiled into Dalvik bytecode by the
dex compiler, dx (an SDK tool). Ultimately, your application will contain only the Dalvik
bytecode, not the Java bytecode.

For example, an implementation of a method that computes the nth term of the
Fibonacci series is shown in Listing 1–1 together with the class definition. The Fibonacci
series is defined as follows:

F0 = 0
F1 = 1
Fn = Fn-2 + Fn-1 for n greater than 1

Listing 1–1. Naïve Recursive Implementation of Fibonacci Series

public class Fibonacci {
 public static long computeRecursively (int n)
 {
 if (n > 1) return computeRecursively(n-2) + computeRecursively(n-1);
 return n;
 }
}

NOTE: A trivial optimization was done by returning n when n equals 0 or 1 instead of adding

another “if” statement to check whether n equals 0 or 1.

An Android application is referred to as an APK since applications are compiled into a
file with the apk extension (for example, APress.apk), which is simply an archive file. One
of the files in the archive is classes.dex, which contains the application’s bytecode. The
Android toolchain provides a tool, dexdump, which can convert the binary form of the
code (contained in the APK’s classes.dex file) into human-readable format.

TIP: Because an apk file is simply a ZIP archive, you can use common archive tools such as

WinZip or 7-Zip to inspect the content of an apk file..

Listing 1–2 shows the matching Dalvik bytecode.

Listing 1–2. Human-Readable Dalvik Bytecode of Fibonacci.computeRecursively

002548: |[002548] com.apress.proandroid.Fibonacci.computeRecursively:(I)J
002558: 1212 |0000: const/4 v2, #int 1 // #1
00255a: 3724 1100 |0001: if-le v4, v2, 0012 // +0011
00255e: 1220 |0003: const/4 v0, #int 2 // #2
002560: 9100 0400 |0004: sub-int v0, v4, v0

http://

CHAPTER 1: Optimizing Java Code 3

002564: 7110 3d00 0000 |0006: invoke-static {v0},
 Lcom/apress/proandroid/Fibonacci;.computeRecursively:(I)J
00256a: 0b00 |0009: move-result-wide v0
00256c: 9102 0402 |000a: sub-int v2, v4, v2
002570: 7110 3d00 0200 |000c: invoke-static {v2},
 Lcom/apress/proandroid/Fibonacci;.computeRecursively:(I)J
002576: 0b02 |000f: move-result-wide v2
002578: bb20 |0010: add-long/2addr v0, v2
00257a: 1000 |0011: return-wide v0
00257c: 8140 |0012: int-to-long v0, v4
00257e: 28fe |0013: goto 0011 // -0002

The first number on each line specifies the absolute position of the code within the file.
Except on the very first line (which shows the method name), it is then followed by one
or more 16-bit bytecode units, followed by the position of the code within the method
itself (relative position, or label), the opcode mnemonic and finally the opcode’s
parameter(s). For example, the two bytecode units 3724 1100 at address 0x00255a
translate to “if-le v4, v2, 0012 // +0011”, which basically means “if content of virtual
register v4 is less than or equal to content of virtual register v2 then go to label 0x0012
by skipping 17 bytecode units” (1710 equals 1116). The term “virtual register” refers to the
fact that these are not actual hardware registers but instead the registers used by the
Dalvik virtual machine.

Typically, you would not need to look at your application’s bytecode. This is especially
true with Android 2.2 (codename Froyo) and later versions since a Just-In-Time (JIT)
compiler was introduced in Android 2.2. The Dalvik JIT compiler compiles the Dalvik
bytecode into native code, which can execute significantly faster. A JIT compiler
(sometimes referred to simply as a JIT) improves performance dramatically because:

� Native code is directly executed by the CPU without having to be
interpreted by a virtual machine.

� Native code can be optimized for a specific architecture.

Benchmarks done by Google showed code executes 2 to 5 times faster with
Android 2.2 than Android 2.1. While the results may vary depending on what
your code does, you can expect a significant increase in speed when using
Android 2.2 and later versions.

The absence of a JIT compiler in Android 2.1 and earlier versions may affect
your optimization strategy significantly. If you intend to target devices running
Android 1.5 (codename Cupcake), 1.6 (codename Donut), or 2.1 (codename
Éclair), most likely you will need to review more carefully what you want or
need to provide in your application. Moreover, devices running these earlier
Android versions are older devices, which are less powerful than newer ones.
While the market share of Android 2.1 and earlier devices is shrinking, they still
represent about 12% as of December 2011). Possible strategies are:

� Don’t optimize at all. Your application could be quite slow on these
older devices.

http://

CHAPTER 1: Optimizing Java Code 4

� Require minimum API level 8 in your application, which can then be
installed only on Android 2.2 or later versions.

� Optimize for older devices to offer a good user experience even
when no JIT compiler is present. This could mean disabling features
that are too CPU-heavy.

TIP: Use android:vmSafeMode in your application’s manifest to enable or disable the JIT
compiler. It is enabled by default (if it is available on the platform). This attribute was introduced

in Android 2.2.

Now it is time to run the code on an actual platform and see how it performs. If you are
familiar with recursion and the Fibonacci series, you might guess that it is going to be
slow. And you would be right. On a Samsung Galaxy Tab 10.1, computing the thirtieth
Fibonacci number takes about 370 milliseconds. With the JIT compiler disabled, it takes
about 440 milliseconds. If you decide to include that function in a Calculator application,
users will become frustrated because the results cannot be computed “immediately.”
From a user’s point of view, results appear instantaneous if they can be computed in
100 milliseconds or less. Such a response time guarantees a very good user experience,
so this is what we are going to target.

Optimizing Fibonacci
The first optimization we are going to perform eliminates a method call, as
shown in Listing 1–3. As this implementation is recursive, removing a single
call in the method dramatically reduces the total number of calls. For example,
computeRecursively(30) generated 2,692,537 calls while
computeRecursivelyWithLoop(30) generated “only” 1,346,269. However, the
performance of this method is still not acceptable considering the response-
time criteria defined above, 100 milliseconds or less, as
computeRecursivelyWithLoop(30) takes about 270 milliseconds to complete.

Listing 1–3. Optimized Recursive Implementation of Fibonacci Series

public class Fibonacci {
 public static long computeRecursivelyWithLoop (int n)
 {
 if (n > 1) {
 long result = 1;
 do {
 result += computeRecursivelyWithLoop(n-2);
 n--;
 } while (n > 1);
 return result;
 }
 return n;
 }
}

http://

CHAPTER 1: Optimizing Java Code 5

NOTE: This is not a true tail-recursion optimization.

From Recursive To Iterative
For the second optimization, we switch from a recursive implementation to an iterative
one. Recursive algorithms often have a bad reputation with developers, especially on
embedded systems without much memory, because they tend to consume a lot of stack
space and, as we just saw, can generate too many method calls. Even when
performance is acceptable, a recursive algorithm can cause a stack overflow and crash
an application. An iterative implementation is therefore often preferred whenever
possible. Listing 1–4 shows what is considered a textbook iterative implementation of
the Fibonacci series.

Listing 1–4. Iterative Implementation of Fibonacci Series

public class Fibonacci {
 public static long computeIteratively (int n)
 {
 if (n > 1) {
 long a = 0, b = 1;
 do {
 long tmp = b;
 b += a;
 a = tmp;
 } while (--n > 1);
 return b;
 }
 return n;
 }
}

Because the nth term of the Fibonacci series is simply the sum of the two previous
terms, a simple loop can do the job. Compared to the recursive algorithms, the
complexity of this iterative algorithm is also greatly reduced because it is linear.
Consequently, its performance is also much better, and computeIteratively(30) takes
less than 1 millisecond to complete. Because of its linear nature, you can use such an
algorithm to compute terms beyond the 30th. For example, computeIteratively(50000)
takes only 2 milliseconds to return a result and, by extrapolation, you could guess
computeIteratively(500000) would take between 20 and 30 milliseconds to complete.

While such performance is more than acceptable, it is possible to to achieve even faster
results with a slightly modified version of the same algorithm, as showed in Listing 1–5.
This new version computes two terms per iteration, and the total number of iterations is
halved. Because the number of iterations in the original iterative algorithm could be odd,
the initial values for a and b are modified accordingly: the series starts with a=0 and b=1
when n is odd, and it starts with a=1 and b=1 (Fib(2)=1) when n is even.

http://

CHAPTER 1: Optimizing Java Code 6

Listing 1–5. Modified Iterative Implementation of Fibonacci Series

public class Fibonacci {
 public static long computeIterativelyFaster (int n)
 {
 if (n > 1) {
 long a, b = 1;
 n--;
 a = n & 1;
 n /= 2;
 while (n-- > 0) {
 a += b;
 b += a;
 }
 return b;
 }
 return n;
 }
}

Results show this modified iterative version is about twice as fast as the original one.

While these iterative implementations are fast, they do have one major problem: they
don’t return correct results. The issue lies with the return value being stored in a long
value, which is 64-bit. The largest Fibonacci number that can fit in a signed 64-bit value
is 7,540,113,804,746,346,429 or, in other words, the 92nd Fibonacci number. While the
methods will still return without crashing the application for values of n greater than 92,
the results will be incorrect because of an overflow: the 93rd Fibonacci number would be
negative! The recursive implementations actually have the same limitation, but one
would have to be quite patient to eventually find out.

NOTE: Java specifies the size of all primitive types (except boolean): long is 64-bit, int is 32-bit,

and short is 16-bit. All integer types are signed.

BigInteger
Java offers just the right class to fix this overflow problem: java.math.BigInteger. A
BigInteger object can hold a signed integer of arbitrary size and the class defines all the
basic math operations (in addition to some not-so-basic ones). Listing 1–6 shows the
BigInteger version of computeIterativelyFaster.

TIP: The java.math package also defines BigDecimal in addition to BigInteger, while
java.lang.Math provides math constant and operations. If your application does not need

double precision, use Android’s FloatMath instead of Math for performance (although gains

may vary depending on platform).

http://

CHAPTER 1: Optimizing Java Code 7

Listing 1–6. BigInteger Version of Fibonacci.computeIterativelyFaster

public class Fibonacci {
 public static BigInteger computeIterativelyFasterUsingBigInteger (int n)
 {
 if (n > 1) {
 BigInteger a, b = BigInteger.ONE;
 n--;
 a = BigInteger.valueOf(n & 1);
 n /= 2;
 while (n-- > 0) {
 a = a.add(b);
 b = b.add(a);
 }
 return b;
 }
 return (n == 0) ? BigInteger.ZERO : BigInteger.ONE;
 }
}

That implementation guarantees correctness as overflows can no longer occur.
However, it is not without problems because, again, it is quite slow: a call to
computeIterativelyFasterUsingBigInteger(50000) takes about 1.3 seconds to
complete. The lackluster performance can be explained by three things:

� BigInteger is immutable.

� BigInteger is implemented using BigInt and native code.

� The larger the numbers, the longer it takes to add them together.

Since BigInteger is immutable, we have to write “a = a.add(b)” instead of simply
“a.add(b)”. Many would assume “a.add(b)” is the equivalent of “a += b” and many would
be wrong: it is actually the equivalent of “a + b”. Therefore, we have to write “a =
a.add(b)” to assign the result. That small detail is extremely significant as “a.add(b)”
creates a new BigInteger object that holds the result of the addition.

Because of BigInteger’s current internal implementation, an additional BigInt object is
created for every BigInteger object that is allocated. This results in twice as many
objects being allocated during the execution of
computeIterativelyFasterUsingBigInteger: about 100,000 objects are created when
calling computeIterativelyFasterUsingBigInteger (50000) (and all of them but one will
become available for garbage collection almost immediately). Also, BigInt is
implemented using native code and calling native code from Java (using JNI) has a
certain overhead.

The third reason is that very large numbers do not fit in a single, long 64-bit value. For
example, the 50,000th Fibonacci number is 34,7111–bit long.

NOTE: BigInteger’s internal implementation (BigInteger.java) may change in future

Android releases. In fact, internal implementation of any class can change.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1: Optimizing Java Code 8

For performance reasons, memory allocations should be avoided whenever possible in
critical paths of the code. Unfortunately, there are some cases where allocations are
needed, for example when working with immutable objects like BigInteger. The next
optimization focuses on reducing the number of allocations by switching to a different
algorithm. Based on the Fibonacci Q-matrix, we have the following:

F2n-1 = Fn
2 + Fn-1

2

F2n = (2Fn-1 + Fn) * Fn

This can be implemented using BigInteger again (to guarantee correct results), as
shown in Listing 1–7.

Listing 1–7. Faster Recursive Implementation of Fibonacci Series Using BigInteger

public class Fibonacci {
 public static BigInteger computeRecursivelyFasterUsingBigInteger (int n)
 {
 if (n > 1) {
 int m = (n / 2) + (n & 1); // not obvious at first – wouldn’t it be great to
have a better comment here?
 BigInteger fM = computeRecursivelyFasterUsingBigInteger(m);
 BigInteger fM_1 = computeRecursivelyFasterUsingBigInteger(m - 1);
 if ((n & 1) == 1) {
 // F(m)^2 + F(m-1)^2
 return fM.pow(2).add(fM_1.pow(2)); // three BigInteger objects created
 } else {
 // (2*F(m-1) + F(m)) * F(m)
 return fM_1.shiftLeft(1).add(fM).multiply(fM); // three BigInteger
objects created
 }
 }
 return (n == 0) ? BigInteger.ZERO : BigInteger.ONE; // no BigInteger object
created
 }

 public static long computeRecursivelyFasterUsingBigIntegerAllocations(int n)
 {
 long allocations = 0;
 if (n > 1) {
 int m = (n / 2) + (n & 1);
 allocations += computeRecursivelyFasterUsingBigIntegerAllocations(m);
 allocations += computeRecursivelyFasterUsingBigIntegerAllocations(m - 1);

 // 3 more BigInteger objects allocated
 allocations += 3;
 }
 return allocations; // approximate number of BigInteger objects allocated when
computeRecursivelyFasterUsingBigInteger(n) is called
 }
}

A call to computeRecursivelyFasterUsingBigInteger(50000) returns in about 1.6
seconds. This shows this latest implementation is actually slower than the fastest
iterative implementation we have so far. Again, the number of allocations is the culprit as

http://

CHAPTER 1: Optimizing Java Code 9

around 200,000 objects were allocated (and almost immediately marked as eligible for
garbage collection).

NOTE: The actual number of allocations is less than what

computeRecursivelyFasterUsingBigIntegerAllocations would return. Because
BigInteger’s implementation uses preallocated objects such as BigInteger.ZERO,
BigInteger.ONE, or BigInteger.TEN, there may be no need to allocate a new object for

some operations. You would have to look at Android’s BigInteger implementation to know

exactly how many objects are allocated.

This implementation is slower, but it is a step in the right direction nonetheless. The
main thing to notice is that even though we need to use BigInteger to guarantee
correctness, we don’t have to use BigInteger for every value of n. Since we know the
primitive type long can hold results for n less than or equal to 92, we can slightly
modify the recursive implementation to mix BigInteger and primitive type, as shown in
Listing 1–8.

Listing 1–8. Faster Recursive Implementation of Fibonacci Series Using BigInteger and long Primitive Type

public class Fibonacci {
 public static BigInteger computeRecursivelyFasterUsingBigIntegerAndPrimitive(int n)
 {
 if (n > 92) {
 int m = (n / 2) + (n & 1);
 BigInteger fM = computeRecursivelyFasterUsingBigIntegerAndPrimitive(m);
 BigInteger fM_1 = computeRecursivelyFasterUsingBigIntegerAndPrimitive(m -
1);
 if ((n & 1) == 1) {
 return fM.pow(2).add(fM_1.pow(2));
 } else {
 return fM_1.shiftLeft(1).add(fM).multiply(fM); // shiftLeft(1) to
multiply by 2
 }
 }
 return BigInteger.valueOf(computeIterativelyFaster(n));
 }

 private static long computeIterativelyFaster(int n)
 {
 // see Listing 1–5 for implementation
 }
}

A call to computeRecursivelyFasterUsingBigIntegerAndPrimitive(50000) returns in
about 73 milliseconds and results in about 11,000 objects being allocated: a small
modification in the algorithm yields results about 20 times faster and about 20 times fewer
objects being allocated. Quite impressive! It is possible to improve the performance even
further by reducing the number of allocations, as shown in Listing 1–9. Precomputed
results can be quickly generated when the Fibonacci class is first loaded, and these
results can later be used directly.

http://

CHAPTER 1: Optimizing Java Code 10

Listing 1–9. Faster Recursive Implementation of Fibonacci Series Using BigInteger and Precomputed Results

public class Fibonacci {
 static final int PRECOMPUTED_SIZE= 512;
 static BigInteger PRECOMPUTED[] = new BigInteger[PRECOMPUTED_SIZE];

 static {
 PRECOMPUTED[0] = BigInteger.ZERO;
 PRECOMPUTED[1] = BigInteger.ONE;
 for (int i = 2; i < PRECOMPUTED_SIZE; i++) {
 PRECOMPUTED[i] = PRECOMPUTED[i-1].add(PRECOMPUTED[i-2]);
 }
 }

 public static BigInteger computeRecursivelyFasterUsingBigIntegerAndTable(int n)
 {
 if (n > PRECOMPUTED_SIZE - 1) {
 int m = (n / 2) + (n & 1);
 BigInteger fM = computeRecursivelyFasterUsingBigIntegerAndTable (m);
 BigInteger fM_1 = computeRecursivelyFasterUsingBigIntegerAndTable (m - 1);
 if ((n & 1) == 1) {
 return fM.pow(2).add(fM_1.pow(2));
 } else {
 return fM_1.shiftLeft(1).add(fM).multiply(fM);
 }
 }
 return PRECOMPUTED[n];
 }
}

The performance of this implementation depends on PRECOMPUTED_SIZE: the bigger, the
faster. However, memory usage may become an issue since many BigInteger objects
will be created and remain in memory for as long as the Fibonacci class is loaded. It is
possible to merge the implementations shown in Listing 1–8 and Listing 1–9, and use a
combination of precomputed results and computations with primitive types. For
example, terms 0 to 92 could be computed using computeIterativelyFaster, terms 93
to 127 using precomputed results and any other term using recursion. As a developer,
you are responsible for choosing the best implementation, which may not always be the
fastest. Your choice will be based on various factors, including:

� What devices and Android versions your application target

� Your resources (people and time)

As you may have already noticed, optimizations tend to make the source code harder to
read, understand, and maintain, sometimes to such an extent that you would not
recognize your own code weeks or months later. For this reason, it is important to
carefully think about what optimizations you really need and how they will affect your
application development, both in the short term and in the long term. It is always
recommended you first implement a working solution before you think of optimizing it
(and make sure you save a copy of the working solution). After all, you may realize
optimizations are not needed at all, which could save you a lot of time. Also, make sure
you include comments in your code for everything that is not obvious to a person with
ordinary skill in the art. Your coworkers will thank you, and you may give yourself a pat

http://

CHAPTER 1: Optimizing Java Code 11

on the back as well when you stumble on some of your old code. My poor comment in
Listing 1–7 is proof.

NOTE: All implementations disregard the fact that n could be negative. This was done

intentionally to make a point, but your code, at least in all public APIs, should throw an

IllegalArgumentException whenever appropriate.

Caching Results
When computations are expensive, it may be a good idea to remember past results to
make future requests faster. Using a cache is quite simple as it typically translates to the
pseudo-code shown in Listing 1–10.

Listing 1–10. Using a Cache

 result = cache.get(n); // input parameter n used as key
 if (result == null) {
 // result was not in the cache so we compute it and add it
 result = computeResult(n);
 cache.put(n, result); // n is the key, result is the value
 }
 return result;

The faster recursive algorithm to compute Fibonacci terms yields many duplicate
calculations and could greatly benefit from memoization. For example, computing the
50,000th term requires computing the 25,000th and 24,999th terms. Computing the
25,000th term requires computing the 12,500th and 12,499th terms, while computing the
24,999th term requires computing… the same 12,500th and 12,499th terms again! Listing
1–11 shows a better implementation using a cache.

If you are familiar with Java, you may be tempted to use a HashMap as your cache, and it
would work just fine. However, Android defines SparseArray, a class that is intended to
be more efficient than HashMap when the key is an integer value: HashMap would require
the key to be of type java.lang.Integer, while SparseArray uses the primitive type int
for keys. Using HashMap would therefore trigger the creation of many Integer objects for
the keys, which SparseArray simply avoids.

Listing 1–11. Faster Recursive Implementation Using BigInteger, long Primitive TypeAnd Cache

public class Fibonacci {
 public static BigInteger computeRecursivelyWithCache (int n)
 {
 SparseArray<BigInteger> cache = new SparseArray<BigInteger>();
 return computeRecursivelyWithCache(n, cache);
 }

 private static BigInteger computeRecursivelyWithCache (int n,
SparseArray<BigInteger> cache)
 {
 if (n > 92) {
 BigInteger fN = cache.get(n);

http://

CHAPTER 1: Optimizing Java Code 12

 if (fN == null) {
 int m = (n / 2) + (n & 1);
 BigInteger fM = computeRecursivelyWithCache(m, cache);
 BigInteger fM_1 = computeRecursivelyWithCache(m – 1, cache);
 if ((n & 1) == 1) {
 fN = fM.pow(2).add(fM_1.pow(2));
 } else {
 fN = fM_1.shiftLeft(1).add(fM).multiply(fM);
 }
 cache.put(n, fN);
 }
 return fN;
 }
 return BigInteger.valueOf(iterativeFaster(n));
 }

 private static long iterativeFaster (int n) { /* see Listing 1–5 for implementation
*/ }
}

Measurements showed computeRecursivelyWithCache(50000) takes about 20
milliseconds to complete, or about 50 fewer milliseconds than a call to
computeRecursivelyFasterUsingBigIntegerAndPrimitive(50000). Obviously, the
difference is exacerbated as n grows: when n equals 200,000 the two methods
complete in 50 and 330 milliseconds respectively.

Because many fewer BigInteger objects are allocated, the fact that BigInteger is
immutable is not as big of a problem when using the cache. However, remember that
three BigInteger objects are still created (two of them being very short-lived) when fN is
computed, so using mutable big integers would still improve performance.

Even though using HashMap instead of SparseArray may be a little slower, it would have
the benefit of making the code Android-independent, that is, you could use the exact
same code in a non-Android environment (without SparseArray).

NOTE: Android defines multiple types of sparse arrays: SparseArray (to map integers to
objects), SparseBooleanArray (to map integers to booleans), and SparseIntArray (to map

integers to integers).

android.util.LruCache<K, V>
Another class worth mentioning is android.util.LruCache<K, V>, introduced in Android
3.1 (codename Honeycomb MR1), which makes it easy to define the maximum size of
the cache when it is allocated. Optionally, you can also override the sizeOf() method to
change how the size of each cache entry is computed. Because it is only available in
Android 3.1 and later, you may still end up having to use a different class to implement a
cache in your own application if you target Android revisions older than 3.1. This is a
very likely scenario considering Android 3.1 as of today represents only a very small
portion of the Android devices in use. An alternative solution is to extend

http://

CHAPTER 1: Optimizing Java Code 13

java.util.LinkedHashMap and override removeEldestEntry. An LRU cache (for Least
Recently Used) discards the least recently used items first. In some applications, you
may need exactly the opposite, that is, a cache that discards the most recently used
items first. Android does not define such an MruCache class for now, which is not
surprising considering MRU caches are not as commonly used.

Of course, a cache can be used to store information other than computations. A
common use of a cache is to store downloaded data such as pictures and still maintain
tight control over how much memory is consumed. For example, override LruCache’s
sizeOf method to limit the size of the cache based on a criterion other than simply the
number of entries in the cache. While we briefly discussed the LRU and MRU strategies,
you may want to use different replacement strategies for your own cache to maximize
cache hits. For example, your cache could first discard the items that are not costly to
recreate, or simply randomly discard items. Follow a pragmatic approach and design
your cache accordingly. A simple replacement strategy such as LRU can yield great
results and allow you to focus your resources on other, more important problems.

We’ve looked at several different techniques to optimize the computation of Fibonacci
numbers. While each technique has its merits, no one implementation is optimal. Often
the best results are achieved by combining multiple various techniques instead of relying
on only one of them. For example, an even faster implementation would use
precomputations, a cache mechanism, and maybe even slightly different formulas. (Hint:
what happens when n is a multiple of 4?) What would it take to compute FInteger.MAX_VALUE
in less than 100 milliseconds?

API Levels
The LruCache class mentioned above is a good example of why you need to know what
API level you are going to target. A new version of Android is released approximately
every six months, with new APIs only available from that release. Any attempt to call an
API that does not exist results in a crash, bringing not only frustration for the user but
also shame to the developer. For example, calling Log.wtf(TAG, “Really?”) on an Android
1.5 device crashes the application, as Log.wtf was introduced in Android 2.2 (API level
8). What a terrible failure indeed that would be. Table 1–1 shows the performance
improvements made in the various Android versions.

http://

CHAPTER 1: Optimizing Java Code 14

Table 1–1. Android Versions

API level Version Name Significant performance improvements

1 1.0 Base

2 1.1 Base 1.1

3 1.5 Cupcake Camera start-up time, image capture time, faster
acquisition of GPS location, NDK support

4 1.6 Donut

5 2.0 Éclair Graphics

6 2.0.1 Éclair 0.1

7 2.1 Éclair MR1

8 2.2 Froyo V8 Javascript engine (browser), JIT compiler, memory
management

9 2.3.0

2.3.1

2.3.2

Gingerbread Concurrent garbage collector, event distribution,
better OpenGL drivers

10 2.3.3

2.3.4

Gingerbread MR1

11 3.0 Honeycomb Renderscript, animations, hardware-accelerated 2D
graphics, multicore support

12 3.1 Honeycomb MR1 LruCache, partial invalidates in hardware-accelerated
views, new Bitmap.setHasAlpha() API

13 3.2 Honeycomb MR2

14 4.0 Ice Cream Sandwich Media effects (transformation filters), hardware-
accelerated 2D graphics (required)

However, your decision to support a certain target should normally not be based on
which API you want to use, but instead on what market you are trying to reach. For
example, if your target is primarily tablets and not cell phones, then you could target
Honeycomb. By doing so, you would limit your application’s audience to a small subset
of Android devices, because Honeycomb represents only about 2.4% as of December
2011, and not all tablets support Honeycomb. (For example, Barnes & Noble’s Nook

http://

CHAPTER 1: Optimizing Java Code 15

uses Android 2.2 while Amazon’s Kindle Fire uses Android 2.3.) Therefore, supporting
older Android versions could still make sense.

The Android team understood that problem when they released the Android
Compatibility package, which is available through the SDK Updater. This package
contains a static library with some of the new APIs introduced in Android 3.0, namely the
fragment APIs. Unfortunately, this compatibility package contains only the fragment
APIs and does not address the other APIs that were added in Honeycomb. Such a
compatibility package is the exception, not the rule. Normally, an API introduced at a
specific API level is not available at lower levels, and it is the developer’s responsibility
to choose APIs carefully.

To get the API level of the Android platform, you can use Build.VERSION.SDK_INT.
Ironically, this field was introduced in Android 1.6 (API level 4), so trying to retrieve the
version this way would also result in a crash on Android 1.5 or earlier. Another option is
to use Build.VERSION.SDK, which has been present since API level 1. However, this
field is now deprecated, and the version strings are not documented (although it would
be pretty easy to understand how they have been created).

TIP: Use reflection to check whether the SDK_INT field exists (that is, if the platform is

Android 1.6 or later). See Class.forName(“android.os.Build$VERSION”).getField(“SDK”).

Your application’s manifest file should use the <uses-sdk> element to specify two
important things:

� The minimum API level required for the application to run
(android:minSdkVersion)

� The API level the application targets (android:targetSdkVersion)

It is also possible to specify the maximum API level (android:maxSdkVersion), but using
this attribute is not recommended. Specifying maxSdkVersion could even lead to
applications being uninstalled automatically after Android updates. The target API level
is the level at which your application has been explicitly tested.

By default, the minimum API level is set to 1 (meaning the application is compatible with all
Android versions). Specifying an API level greater than 1 prevents the application from being
installed on older devices. For example, android:minSdkVersion=”4” guarantees
Build.VERSION.SDK_INT can be used without risking any crash. The minimum API level
does not have to be the highest API level you are using in your application as long as you
make sure you call only a certain API when the API actually exists, as shown in Listing 1–12.

Listing 1–12. Calling a SparseArray Method Introduced in Honeycomb (API Level 11)

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 sparseArray.removeAt(1); // API level 11 and above
 } else {
 int key = sparseArray.keyAt(1); // default implementation is slower
 sparseArray.remove(key);
 }

http://

CHAPTER 1: Optimizing Java Code 16

This kind of code is more frequent when trying to get the best performance out of your
Android platform since you want to use the best API for the job while you still want your
application to be able to run on an older device (possibly using slower APIs).

Android also uses these attributes for other things, including determining whether the
application should run in screen compatibility mode. Your application runs in screen
compatibility mode if minSdkVersion is set to 3 or lower, and targetSdkVersion is not set
to 4 or higher. This would prevent your application from displaying in full screen on a
tablet, for example, making it much harder to use. Tablets have become very popular
only recently, and many applications have not been updated yet, so it is not uncommon
to find applications that do not display properly on a big screen.

NOTE: Android Market uses the minSdkVersion and maxSdkVersion attributes to filter
applications available for download on a particular device. Other attributes are used for filtering
as well. Also, Android defines two versions of screen compatibility mode, and their behaviors

differ. Refer to “Supporting Multiple Screens” on http://d.android.com/guide for a

complete description.

Instead of checking the version number, as shown in Listing 1–12, you can use reflection
to find out whether a particular method exists on the platform. While this is a cleaner and
safer implementation, reflection can make your code slower; therefore you should try to
avoid using reflection where performance is critical. One possible approach is to call
Class.forName() and Class.getMethod()to find out if a certain method exists in the
static initialization block, and then only call Method.invoke() where performance is
important.

Fragmentation
The high number of Android versions, 14 API levels so far, makes your target market
quite fragmented, possibly leading to more and more code like the one in Listing 1–12.
However, in practice, a few Android versions represent the majority of all the devices. As
of December 2011, Android 2.x versions represent more than 95% of the devices
connecting to Android Market. Even though Android 1.6 and earlier devices are still in
operation, today it is quite reasonable not to spend additional resources to optimize for
these platforms.

The number of available devices running Android is even greater, with currently close to
200 phones listed on www.google.com/phone, including 80 in the United States alone.
While the listed devices are all phones or tablets, they still differ in many ways: screen
resolutions, presence of physical keyboard, hardware-accelerated graphics, processors.
Supporting the various configurations, or even only a subset, makes application
development more challenging. Therefore it is important to have a good knowledge of
the market you are targeting in order to focus your efforts on important features and
optimizations.

http://

CHAPTER 1: Optimizing Java Code 17

NOTE: Not all existing Android devices are listed on www.google.com/phone as some

countries are not listed yet, for example India and its dual-SIM Spice MI270 running Android 2.2.

Google TV devices (first released in 2010 by Logitech and Sony in the United States) are
technically not so different from phones or tablets. However, the way people interact
with these devices differs. When supporting these TV devices, one of your main
challenges will be to understand how your application could be used on a TV. For
example, applications can provide a more social experience on a TV: a game could offer
a simultaneous multiplayer mode, a feature that would not make much sense on a
phone.

Data Structures
As the various Fibonacci implementations demonstrated, good algorithms and good
data structures are keys to a fast application. Android and Java define many data
structures you should have good knowledge of to be able to quickly select the right
ones for the right job. Consider choosing the appropriate data structures one of your
highest priorities.

The most common data structures from the java.util package are shown in Figure 1.1.

To those data structures Android adds a few of its own, usually to solve or improve
performance of common problems.

� LruCache

� SparseArray

� SparseBooleanArray

� SparseIntArray

� Pair

NOTE: Java also defines the Arrays and Collections classes. These two classes contain only
static methods, which operate on arrays and collections respectively. For example, use
Arrays.sort to sort an array and Arrays.binarySearch to search for a value in a sorted

array.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1: Optimizing Java Code 18

Figure 1–1. Data structures in the java.util package

While one of the Fibonacci implementations used a cache internally (based on a sparse
array), that cache was only temporary and was becoming eligible for garbage collection
immediately after the end result was computed. It is possible to also use an LruCache to
save end results, as shown in Listing 1–13.

Listing 1–13. Using an LruCache to Remember Fibonacci Terms

 int maxSize = 4 * 8 * 1024 * 1024; // 32 megabits
 LruCache<Integer, BigInteger> cache = new LruCache<Integer, BigInteger> (maxSize) {
 protected int sizeOf (Integer key, BigInteger value) {
 return value.bitLength(); // close approximation of object’s size, in bits
 }
 };
 …
 int n = 100;
 BigInteger fN = cache.get(n);
 if (fN == null) {
 fN = Fibonacci. computeRecursivelyWithCache(n);
 cache.put(n, fN);
 }

Whenever you need to select a data structure to solve a problem, you should be able to
narrow down your choice to only a few classes since each class is usually optimized for

AbstractCollection
 AbstractList
 AbstractSequentialList
 LinkedList
 ArrayList
 Vector
 Stack
 AbstractQueue
 PriorityQueue
 AbstractSet
 EnumSet
 HashSet
 LinkedHashSet
 TreeSet
 ArrayDeque
AbstractMap
 EnumMap
 HashMap
 LinkedHashMap
 IdentityHashMap
 TreeMap
 WeakHashMap
BitSet
Dictionary
 Hashtable
 Properties

Coll
ec

tio
n

Deq
ue

Lis
t

Map Nav
iga

ble
Map

Nav
iga

ble
Set

Que
ue

Ran
do

mAcc
es

s

Set Sort
ed

Map

Sort
ed

Set

´

´
´
´
´

´

´
´
´
´

´

´
´
´
´
´
´
´
´
´
´
´
´
´
´
´

´

´

´ ´

´

´

´
´

´
´
´
´
´
´

´
´
´
´
´
´
´

http://

CHAPTER 1: Optimizing Java Code 19

a specific purpose or provides a specific service. For example, choose ArrayList over
Vector if you don’t need the operations to be synchronized. Of course, you may always
create your own data structure class, either from scratch (extending Object) or
extending an existing one.

NOTE: Can you explain why LruCache is not a good choice for computeRecursivelyWithCache’s

internal cache as seen in Listing 1–11?

If you use one of the data structures that rely on hashing (e.g. HashMap) and the keys
are of a type you created, make sure you override the equal and hashCode methods. A
poor implementation of hashCode can easily nullify the benefits of using hashing.

TIP: Refer to http://d.android.com/reference/java/lang/Object.html for a good

example of an implementation of hashCode().

Even though it is often not natural for many embedded application developers, don’t
hesitate to consider converting one data structure into another in various parts of your
application: in some cases, the performance increase can easily outweigh the
conversion overhead as better algorithms can be applied. A common example is the
conversion of a collection to an array, possibly sorted. Such a conversion would
obviously require memory as a new object needs to be created. On memory-constrained
devices, such allocation may not always be possible, resulting in an OutOfMemoryError
exception. The Java Language Specification says two things:

� The class Error and its subclasses are exceptions from which
ordinary programs are not ordinarily expected to recover.

� Sophisticated programs may wish to catch and attempt to recover
from Error exceptions.

If your memory allocation is only part of an optimization and you, as a sophisticated
application developer, can provide a fallback mechanism (for example, an algorithm,
albeit slower, using the original data structure) then catching the OutOfMemoryError
exception can make sense as it allows you to target more devices. Such optional
optimizations make your code harder to maintain but give you a greater reach.

NOTE: Counterintuitively, not all exceptions are subclasses of Exception. All exceptions are

subclasses of Throwable (from which Exception and Error are the only direct subclasses).

In general, you should have very good knowledge of the java.util and android.util
packages since they are the toolbox virtually all components rely on. Whenever a new
Android version is released, you should pay special attention to the modifications in
these packages (added classes, changed classes) and refer to the API Differences

http://

CHAPTER 1: Optimizing Java Code 20

Report on http://d.android.com/sdk. More data structures are discussed in
java.util.concurrent, and they will be covered in Chapter 5.

Responsiveness
Performance is not only about raw speed. Your application will be perceived as being
fast as long as it appears fast to the user, and to appear fast your application must be
responsive. As an example, to appear faster, your application can defer allocations until
objects are needed, a technique known as lazy initialization, and during the development
process you most likely want to detect when slow code is executed in performance-
sensitive calls.

The following classes are the cornerstones of most Android Java applications:

� Application

� Activity

� Service

� ContentProvider

� BroadcastReceiver

� Fragment (Android 3.0 and above)

� View

Of particular interest in these classes are all the onSomething() methods that are called
from the main thread, such as onStart() and onFocusChanged(). The main thread, also
referred to as the UI thread, is basically the thread your application runs in. It is possible,
though not recommended, to run all your code in the main thread. The main thread is
where, among other things:

� Key events are received (for example, View.onKeyDown() and
Activity.onKeyLongPress()).

� Views are drawn (View.onDraw()).

� Lifecycle events occur (for example, Activity.onCreate()).

NOTE: Many methods are called from the main thread by design. When you override a method,

verify how it will be called. The Android documentation does not always specify whether a

method is called from the main thread.

In general, the main thread keeps receiving notifications of what is happening, whether
the events are generated from the system itself or from the user. Your application has
only one main thread, and all events are therefore processed sequentially. That being
said, it becomes easy now to see why responsiveness could be negatively affected: the
first event in the queue has to be processed before the subsequent events can be

http://

CHAPTER 1: Optimizing Java Code 21

handled, one at a time. If the processing of an event takes too long to complete, then
other events have to wait longer for their turn.

An easy example would be to call computeRecursivelyWithCache from the main thread.
While it is reasonably fast for low values of n, it is becoming increasingly slower as n
grows. For very large values of n you would most certainly be confronted with Android’s
infamous Application Not Responding (ANR) dialog. This dialog appears when Android
detects your application is unresponsive, that is when Android detects an input event
has not been processed within 5 seconds or a BroadcastReceiver hasn’t finished
executing within 10 seconds. When this happens, the user is given the option to simply
wait or to “force close” the application (which could be the first step leading to your
application being uninstalled).

It is important for you to optimize the startup sequence of all the activities, which
consists of the following calls:

� onCreate

� onStart

� onResume

Of course, this sequence occurs when an activity is created, which may
actually be more often than you think. When a configuration change occurs,
your current activity is destroyed and a new instance is created, resulting in
the following sequence of calls:

� onPause

� onStop

� onDestroy

� onCreate

� onStart

� onResume

The faster this sequence completes, the faster the user will be able to use your
application again. One of the most common configuration changes is the
orientation change, which signifies the device has been rotated.

NOTE: Your application can specify which configuration changes each of its activities wants to

handle itself with the activity element’s android:configChanges attribute in its manifest. This

would result in onConfigurationChanged() being called instead of having the activity destroyed.

Your activities’ onCreate() methods will most likely contain a call to setContentView or
any other method responsible for inflating resources. Because inflating resources is a
relatively expensive operation, you can make the inflation faster by reducing the
complexity of your layouts (the XML files that define what your application looks like).
Steps to simplify the complexity of your layouts include:

http://

CHAPTER 1: Optimizing Java Code 22

� Use RelativeLayout instead of nested LinearLayouts to keep layouts
as “flat” as possible. In addition to reducing the number of objects
allocated, it will also make processing of events faster.

� Use ViewStub to defer creation of objects (see the section on lazy
initialization).

NOTE: Pay special attention to your layouts in ListView as there could be many items in the list.

Use the SDK’s layoutopt tool to analyze your layouts.

The basic rule is to keep anything that is done in the main thread as fast as possible in
order to keep the application responsive. However, this often translates to doing as little
as possible in the main thread. In most cases, you can achieve responsiveness simply
by moving operations to another thread or deferring operations, two techniques that
typically do not result in code that is much harder to maintain. Before moving a task to
another thread, make sure you understand why the task is too slow. If this is due to a
bad algorithm or bad implementation, you should fix it since moving the task to another
thread would merely be like sweeping dust under a carpet.

Lazy initializations
Procrastination does have its merits after all. A common practice is to perform all
initializations in a component’s onCreate() method. While this would work, it means
onCreate() takes longer to return. This is particularly important in your application’s
activities: since onStart() won’t be called until after onCreate() returns (and similarly
onResume() won’t be called until after onStart() returns), any delay will cause the
application to take longer to start, and the user may end up frustrated.

For example, Android uses the lazy initialization concept with android.view.ViewStub,
which is used to lazily inflate resources at runtime. When the view stub is made visible, it is
replaced by the matching inflated resources and becomes eligible for garbage collection.

Since memory allocations take time, waiting until an object is really needed to allocate it
can be a good option. The benefits of lazily allocating an object are clear when an object
is unlikely to be needed at all. An example of lazy initialization is shown in Listing 1–14,
which is based on Listing 1–13. To avoid always having to check whether the object is
null, consider the factory method pattern.

Listing 1–14. Lazily Allocating the Cache

 int n = 100;
 if (cache == null) {
 // createCache allocates the cache object, and may be called from many places
 cache = createCache();
 }
 BigInteger fN = cache.get(n);
 if (fN == null) {
 fN = Fibonacci. computeRecursivelyWithCache(n);
 cache.put(n, fN);
 }

http://

CHAPTER 1: Optimizing Java Code 23

Refer to Chapter 8 to learn how to use and android.view.ViewStub in an XML layout and
how to lazily inflate a resource.

StrictMode
You should always assume the following two things when writing your application:

� The network is slow (and the server you are trying to connect to may
not even be responding).

� File system access is slow.

As a consequence, you should always try not to perform any network or file system
access in your application’s main thread as slow operations may affect responsiveness.
While your development environment may never experience any network issue or any
file system performance problem, your users may not be as lucky as you are.

NOTE: SD cards do not all have the same “speed”. If your application depends heavily on the
performance of external storage then you should make sure you test your application with

various SD cards from different manufacturers.

Android provides a utility to help you detect such defects in your application. StrictMode
is a tool that does its best to detect bad behavior. Typically, you would enable
StrictMode when your application is starting, i.e when its onCreate() method is called,
as shown in Listing 1–15.

Listing 1–15. Enabling StrictMode in Your Application

public class MyApplication extends Application {
 @Override
 public void onCreate ()
 {
 super.onCreate();

 StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
 .detectCustomSlowCalls() // API level 11, to use with StrictMode.noteSlowCode
 .detectDiskReads()
 .detectDiskWrites()
 .detectNetwork()
 .penaltyLog()
 .penaltyFlashScreen() // API level 11
 .build());

 // not really performance-related, but if you use StrictMode you might as well
define a VM policy too
 StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder()
 .detectLeakedSqlLiteObjects()
 .detectLeakedClosableObjects() // API level 11
 .setClassInstanceLimit(Class.forName(“com.apress.proandroid.SomeClass”), 100) //
API level 11
 .penaltyLog()
 .build());

http://

CHAPTER 1: Optimizing Java Code 24

 }
}

StrictMode was introduced in Android 2.3, with more features added in Android 3.0, so
you should make sure you target the correct Android version and make sure your code
is executed only on the appropriate platforms, as shown in Listing 1–12.

Noteworthy methods introduced in Android 3.0 include detectCustomSlowCall() and
noteSlowCall(), both being used to detect slow, or potentially slow, code in your
application. Listing 1–16 shows how to mark your code as potentially slow code.

Listing 1–16. Marking Your Own Code as Potentially Slow

public class Fibonacci {
 public static BigInteger computeRecursivelyWithCache(int n)
 {
 StrictMode.noteSlowCall(“computeRecursivelyWithCache”); // message can be
anything
 SparseArray<BigInteger> cache = new SparseArray<BigInteger>();
 return computeRecursivelyWithCache(n, cache);
 }
 …
}

A call to computeRecursivelyWithCache from the main thread that takes too long to
execute would result in the following log if the StrictMode Thread policy is configured to
detect slow calls:

StrictMode policy violation; ~duration=21121 ms:
android.os.StrictMode$StrictModeCustomViolation: policy=31 violation=8 msg=
computeRecursivelyWithCache

Android provides some helper methods to make it easier to allow disk reads and writes
from the main thread temporarily, as shown in Listing 1–17.

Listing 1–17. Modifying the Thread Policy to Temporarily Allow Disk Reads

 StrictMode.ThreadPolicy oldPolicy = StrictMode.allowThreadDiskReads();
 // read something from disk
 StrictMode.setThreadPolicy(oldPolicy);

There is no method for temporarily allowing network access, but there is really no reason
to allow such access even temporarily in the main thread as there is no reasonable way
to know whether the access will be fast. One could argue there is also no reasonable
way to know the disk access will be fast, but that’s another debate.

NOTE: Enable StrictMode only during development, and remember to disable it when you deploy
your application. This is always true, but even more true if you build the policies using the

detectAll() methods as future versions of Android may detect more bad behaviors.

http://

CHAPTER 1: Optimizing Java Code 25

SQLite
Most applications won’t be heavy users of SQLite, and therefore you very likely won’t
have to worry too much about performance when dealing with databases. However, you
need to know about a few concepts in case you ever need to optimize your SQLite-
related code in your Android application:

� SQLite statements

� Transactions

� Queries

NOTE: This section is not intended to be a complete guide to SQLite but instead provides you
with a few pointers to make sure you use databases efficiently. For a complete guide, refer to

www.sqlite.org and the Android online documentation.

The optimizations covered in this section do not make the code harder to read and
maintain, so you should make a habit of applying them.

SQLite Statements
At the origin, SQL statements are simple strings, for example:

� CREATE TABLE cheese (name TEXT, origin TEXT)

� INSERT INTO cheese VALUES (‘Roquefort’, ‘Roquefort-sur-
Soulzon’)

The first statement would create a table named “cheese” with two columns named
“name” and “origin”. The second statement would insert a new row in the table.
Because they are simply strings, the statements have to be interpreted, or compiled,
before they can be executed. The compilation of the statements is performed internally
when you call for example SQLiteDatabase.execSQL, as shown in Listing 1–18.

Listing 1–18. Executing Simple SQLite Statements

 SQLiteDatabase db = SQLiteDatabase.create(null); // memory-backed database
 db.execSQL(“CREATE TABLE cheese (name TEXT, origin TEXT)”);
 db.execSQL(“INSERT INTO cheese VALUES (‘Roquefort’, ‘Roquefort-sur-Soulzon’)”);
 db.close(); // remember to close database when you’re done with it

 NOTE: Many SQLite-related methods can throw exceptions.

As it turns out, executing SQLite statements can take quite some time. In addition to the
compilation, the statements themselves may need to be created. Because String is also
immutable, this could lead to the same performance issue we had with the high number

http://

CHAPTER 1: Optimizing Java Code 26

of BigInteger objects being allocated in computeRecursivelyFasterUsingBigInteger.
We are now going to focus on the performance of the insert statement. After all, a table
should be created only once, but many rows could be added, modified, or deleted.

If we want to build a comprehensive database of cheeses (who wouldn’t?), we would
end up with many insert statements, as shown in Listing 1–19. For every insert
statement, a String would be created and execSQL would be called, the parsing of the
SQL statement being done internally for every cheese added to the database.

Listing 1–19. Building a Comprehensive Cheeses Database

public class Cheeses {
 private static final String[] sCheeseNames = {
 “Abbaye de Belloc”,
 “Abbaye du Mont des Cats”,
 …
 “Vieux Boulogne”
 };
 private static final String[] sCheeseOrigins = {
 “Notre-Dame de Belloc”,
 “Mont des Cats”,
 …
 “Boulogne-sur-Mer”
 };
 private final SQLiteDatabase db;
 public Cheeses () {
 db = SQLiteDatabase.create(null); // memory-backed database
 db.execSQL(“CREATE TABLE cheese (name TEXT, origin TEXT)”);
 }
 public void populateWithStringPlus () {
 int i = 0;
 for (String name : sCheeseNames) {
 String origin = sCheeseOrigins[i++];
 String sql = “INSERT INTO cheese VALUES(\”” + name + ”\”,\”” + origin +
”\”)”;
 db.execSQL(sql);
 }
 }
}

Adding 650 cheeses to the memory-backed database took 393 milliseconds on a
Galaxy Tab 10.1, or 0.6 microsecond per row.

An obvious improvement is to make the creation of the sql string, the statement to
execute, faster. Using the + operator to concatenate strings is not the most efficient
method in this case, and it is possible to improve performance by either using a
StringBuilder object or calling String.format. The two new methods are shown in
Listing 1–20. As they simply optimize the building of the string to pass to execSQL,
these two optimizations are not SQL-related per se.

Listing 1–20. Faster Ways to Create the SQL Statement Strings

 public void populateWithStringFormat () {
 int i = 0;
 for (String name : sCheeseNames) {
 String origin = sCheeseOrigins[i++];

http://

CHAPTER 1: Optimizing Java Code 27

 String sql = String.format(“INSERT INTO cheese VALUES(\”%s\”,\”%s\”)”, name,
origin);
 db.execSQL(sql);
 }
 }

 public void populateWithStringBuilder () {
 StringBuilder builder = new StringBuilder();
 builder.append(“INSERT INTO cheese VALUES(\””);
 int resetLength = builder.length();
 int i = 0;
 for (String name : sCheeseNames) {
 String origin = sCheeseOrigins[i++];
 builder.setLength(resetLength); // reset position
 builder.append(name).append(“\”,\””).append(origin).append(“\”)”); // chain
calls
 db.execSQL(builder.toString());
 }
 }

The String.format version took 436 milliseconds to add the same number of cheeses,
while the StringBuilder version returned in only 371 milliseconds. The String.format
version is therefore slower than the original one, while the StringBuilder version is only
marginally faster.

Even though these three methods differ in the way they create Strings, they all have in
common the fact that they call execSQL, which still has to do the actual compilation
(parsing) of the statement. Because all the statements are very similar (they only differ by
the name and origin of the cheese), we can use compileStatement to compile the
statement only once, outside the loop. This implementation is shown in Listing 1–21.

Listing 1–21. Compilation of SQLite Statement

 public void populateWithCompileStatement () {
 SQLiteStatement stmt = db.compileStatement(“INSERT INTO cheese VALUES(?,?)”);
 int i = 0;
 for (String name : sCheeseNames) {
 String origin = sCheeseOrigins[i++];
 stmt.clearBindings();
 stmt.bindString(1, name); // replace first question mark with name
 stmt. bindString(2, origin); // replace second question mark with origin
 stmt.executeInsert();
 }
 }

Because the compilation of the statement is done only once instead of 650 times and
because the binding of the values is a more lightweight operation than the compilation,
the performance of this method is significantly faster as it builds the database in only
268 milliseconds. It also has the advantage of making the code easier to read.

Android also provides additional APIs to insert values in a database using a
ContentValues object, which basically contains the binding information between column
names and values. The implementation, shown in Listing 1–22, is actually very close to
populateWithCompileStatement, and the “INSERT INTO cheese VALUES” string does not
even appear as this part of the insert statement is implied by the call to db.insert().

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1: Optimizing Java Code 28

However, the performance of this implementation is below what we achieved with
populateWithCompileStatement since it takes 352 milliseconds to complete.

Listing 1–22. Populating the Database Using ContentValues

 public void populateWithContentValues () {
 ContentValues values = new ContentValues();
 int i = 0;
 for (String name : sCheeseNames) {
 String origin = sCheeseOrigins[i++];
 values.clear();
 values.put(“name”, name);
 values.put(“origin”, origin);
 db.insert(“cheese”, null, values);
 }
 }

The fastest implementation is also the most flexible one as it allows more options in the
statement. For example, you could use “INSERT OR FAIL” or “INSERT OR IGNORE”
instead of simply “INSERT”.

NOTE: Many changes were made in Android 3.0’s android.database and android.database.sqlite
packages. For instance, the managedQuery, startManagingCursor, and
stopManagingCursor methods in the Activity class are all deprecated in favor of

CursorLoader.

Android also defines a few classes that can improve performance. For example, you can
use DatabaseUtils.InsertHelper to insert multiple rows in a database while compiling
the SQL insert statement only once. It is currently implemented the same way we
implemented populateWithCompileStatement although it does not offer the same
flexibility as far as options are concerned (for example, FAIL or ROLLBACK).

Not necessarily related to performance, you may also use the static methods in the
DatabaseUtils class to simplify your implementation.

Transactions
The examples above did not explicitly create any transaction, however one was
automatically created for every insertion and committed immediately after each
insertion. Creating a transaction explicitly allows for two basic things:

� Atomic commit

� Better performance

The first feature is important but not from a performance point of view. Atomic commit
means either all or none of the modifications to the database occur. A transaction
cannot be only partially committed. In our example, we can consider the insertion of all
650 cheeses as one transaction. Either we succeed at building the complete list of

http://

CHAPTER 1: Optimizing Java Code 29

cheeses or we don’t, but we are not interested in a partial list. The implementation is
shown in Listing 1–23.

Listing 1–23. Insertion of All Cheeses in a Single Transaction

 public void populateWithCompileStatementOneTransaction () {
 try {
 db.beginTransaction();
 SQLiteStatement stmt = db.compileStatement(“INSERT INTO cheese
VALUES(?,?)”);
 int i = 0;
 for (String name : sCheeseNames) {
 String origin = sCheeseOrigins[i++];
 stmt.clearBindings();
 stmt.bindString(1, name); // replace first question mark with name
 stmt. bindString(2, origin); // replace second question mark with origin
 stmt.executeInsert();
 }
 db.setTransactionSuccessful(); // remove that call and none of the changes
will be committed!
 } catch (Exception e) {
 // handle exception here
 } finally {
 db.endTransaction(); // this must be in the finally block
 }
 }

This new implementation took 166 milliseconds to complete. While this is quite an
improvement (about 100 milliseconds faster), one could argue both implementations
were probably acceptable for most applications as it is quite unusual to insert so many
rows so quickly. Indeed, most applications would typically access rows only once in a
while, possibly as a response to some user action. The most important point is that the
database was memory-backed and not saved to persistent storage (SD card or internal
Flash memory). When working with databases, a lot of time is spent on accessing
persistent storage (read/write), which is much slower than accessing volatile memory.
By creating the database in internal persistent storage, we can verify the effect of having
a single transaction. The creation of the database in persistent storage is shown in
Listing 1–24.

Listing 1–24. Creation of Database On Storage

 public Cheeses (String path) {
 // path could have been created with getDatabasePath(“fromage.db”)

 // you could also make sure the path exists with a call to mkdirs
 // File file = new File(path);
 // File parent = new File(file.getParent());
 // parent.mkdirs();

 db = SQLiteDatabase.openOrCreateDatabase(path, null);
 db.execSQL(“CREATE TABLE cheese (name TEXT, origin TEXT)”);
 }

When the database is on storage and not in memory, the call to
populateWithCompileStatement takes almost 34 seconds to complete (52 milliseconds
per row), while the call to populateWithCompileStatementOneTransaction takes less than

http://

CHAPTER 1: Optimizing Java Code 30

200 milliseconds. Needless to say, the one-transaction approach is a much better
solution to our problem. These figures obviously depend on the type of storage being
used. Storing the database on an external SD card would make it even slower and
therefore would make the one-transaction approach even more appealing.

NOTE: Make sure the parent directory exists when you create a database on storage. See
Context.getDatabasePath and File.mkdirs for more information. For convenience, use

SQLiteOpenHelper instead of creating databases manually.

Queries
The way to make queries faster is to also limit the access to the database, especially on
storage. A database query simply returns a Cursor object, which can then be used to
iterate through the results. Listing 1–25 shows two methods to iterate through all the
rows. The first method creates a cursor that gets both columns in the database whereas
the second method’s cursor retrieves only the first column.

Listing 1–25. Iterating Through All the Rows

 public void iterateBothColumns () {
 Cursor c = db.query(“cheese”, null, null, null, null, null, null);
 if (c.moveToFirst()) {
 do {
 } while (c.moveToNext());
 }
 c.close(); // remember to close cursor when you are done (or else expect an
exception at some point)
 }

 public void iterateFirstColumn () {
 Cursor c = db.query(“cheese”, new String[]{“name”}, null, null, null, null,
null); // only difference
 if (c.moveToFirst()) {
 do {
 } while (c.moveToNext());
 }
 c.close();
 }

As expected, because it does not have to read data from the second column at all, the
second method is faster: 23 milliseconds vs. 61 milliseconds (when using multiple
transactions). Iterating through all the rows is even faster when all the rows are added as
one transaction: 11 milliseconds for iterateBothColumns vs. 7 milliseconds for
iterateFirstColumn. As you can see, you should only read the data you care about.
Choosing the right parameters in calls to query can make a substantial difference in
performance. You can reduce the database access even more if you only need up to a
certain number of rows, and specify the limit parameter in the call to query.

http://

CHAPTER 1: Optimizing Java Code 31

TIP: Consider using the FTS (full-text search) extension to SQLite for more advanced search

features (using indexing). Refer to www.sqlite.org/fts3.html for more information.

Summary
Years ago, Java had a bad reputation for performance, but today this is no longer true.
The Dalvik virtual machine, including its Just-In-Time compiler, improves with every new
release of Android. Your code can be compiled into native code that takes advantage of
the latest CPU architectures without you having to recompile anything. While
implementation is important, your highest priority should be to carefully select data
structures and algorithms. Good algorithms can be pretty forgiving and perform quite
well even without you optimizing anything. On the other hand, a bad algorithm almost
always gives poor results, no matter how hard you work on its implementation.

Finally, never sacrifice responsiveness. It may make your application development a little
bit more difficult, but the success of your application depends on it.

http://

33

 Chapter

Getting Started With the
NDK
The Android Native Development Kit (NDK) is a companion to the SDK and is what you
use when you want part or all of your Android application to use native code. While
bytecode needs to be interpreted by a virtual machine, native code can be directly
executed by the device’s processor without any intermediate step, making execution
faster, and sometimes much faster. The Dalvik Just-In-Time (JIT) compiler is compiling
the bytecode into native code, making your applications faster by having to interpret the
code less often (and ideally, only once) since it will use the native code it generated
whenever it is available. When you use the NDK, the compilation into native code occurs
on your development environment and not on the Android device. You may be
wondering why you would need to worry about the NDK since the Dalvik JIT compiler
can generate native code dynamically and therefore you could write your application in
Java using the SDK. This chapter covers the reasons why you may need to use the NDK
and the various ways to use it.

There are essentially two ways to use native code and the NDK:

� You can write one part of your application in Java and the other part
in C/C++.

� You can write the whole application in C/C++.

NOTE: NDK support was added in Android 1.5. Today very few devices run Android versions
older than 1.5, and it is therefore safe to use the NDK to write part of your application in C/C++.

However, writing your entire application in C/C++ requires Android 2.3 or later.

This chapter starts by showing you what the NDK is made of. Then, we will take a look
at how to mix C/C++ code with Java code in an Android application, and how to make
sure the code is optimized for all platforms you want to target. Finally, we’ll delve into a
new class, NativeActivity, introduced in Android 2.3 that allows you to write your whole

2

H. Guihot, Pro Android App
© Hervé Guihot 2012

s Performance Optimization

http://

CHAPTER 2: Getting Started With the NDK 34

application in C/C++, and we’ll show you a simple example of using sensors in your
C/C++ code.

What Is In the NDK?
The NDK is a set of tools you use to develop native code for your application. Everything
is in a single directory, which you download as an archive file from
http://d.android.com/sdk/ndk. For example, the Windows version of the NDK revision
6b contains these directories:

� build

� docs

� platforms

� samples

� sources

� tests

� toolchains

A few files are also located at the root of the NDK directory:

� documentation.html

� GNUmakefile

� ndk-build

� ndk-gdb

� ndk-stack

� README.txt

� RELEASE.txt

The NDK documentation is nowhere near as thorough as the SDK on
http://d.android.com, so start by opening documentation.html with your favorite web
browser. The README text file is also begging you so go ahead and oblige.

The NDK is a collection of six components:

� Documentation

� Header files

� C/C++ files

� Precompiled libraries

� Tools to compile, link, analyze, and debug your code

� Sample applications

http://

CHAPTER 2: Getting Started With the NDK 35

Native code is, by definition, specific to a certain architecture. For example, an Intel CPU
would not understand ARM instructions, and vice versa. Therefore, the NDK includes
precompiled libraries for multiple platforms as well as different versions of tools. NDK
revision 7 supports three Application Binary Interfaces (ABIs):

� armeabi

� armeabi-v7a

� x86

NOTE: The NDK does not support the ARMv6 ABI.

Most of you are already familiar with the x86 name as it refers to the Intel architecture, a
name that is practically ubiquitous. The armeabi and armeabi-v7a names may not sound
familiar, but you can find ARM-based chips in many products, from washing machines
to DVD players, so chances are you used an ARM-based device long before you even
heard of Android. Close to 2 billion ARM-based chips were shipped in the second
quarter of 2011 alone: 1.1 billion in mobile phones and tablets, and 0.8 billion in other
consumer and embedded devices.

The term “armeabi” stands for ARM Embedded Application Binary Interface, while v5
and v7a refer to two different architectures. ARM architectures started with v1, and the
latest one is v7. Each architecture is used by a family of processor cores, with v5 being
used by some ARM7, ARM9, and ARM10 cores, and v7 by the Cortex family. The Cortex
series includes A5, A8, A9, and soon A15, with the majority of today’s smartphones and
tablets using A8 and A9 cores.

The Android NDK does not support the ARMv6 architecture, which is used by the
ARM11 family of processor cores, even though some Android devices use ARM11-
based chipsets. Table 2–1 shows a list of Android devices.

Table 2–1. Some Android Devices and Their Architectures

Device Manufacturer CPU Processor family

Blade ZTE Qualcomm MSM7227 ARM11

LePhone Lenovo Qualcomm Snapdragon Based on Cortex A8

Nexus S Samsung Samsung Hummingbird Cortex A8

Xoom Motorola Nvidia Tegra 2 Cortex A9 (dual core)

Galaxy Tab (7’’) Samsung Samsung Hummingbird Cortex A8

Galaxy Tab 10.1 Samsung Nvidia Tegra 2 Cortex A9 (dual core)

Revue (set-top box) Logitech CE4150 (Sodaville) Intel Atom

NSZ-GT1 (Blu-ray player) Sony CE4170 (Sodaville) Intel Atom

http://

CHAPTER 2: Getting Started With the NDK 36

While MIPS Technologies announced that a MIPS-based smartphone running Android 2.2
passed the Android CTS back in June 2011, the Android NDK still does not support the
MIPS ABI. As of today, ARM is still the dominant architecture in Android devices.

NOTE: All Google TV devices released in 2010 (Logitech set-top box, Sony TVs, and Blu-ray
player) are based on the Intel CE4100. However, the Google TV platform currently does not

support the NDK.

As the NDK is frequently updated, you should always try to use the latest revision. New
revisions may improve performance, for example by providing better compilers or more
optimized precompiled libraries. New revisions can also fix bugs from previous revisions.
When publishing an update to your application, consider rebuilding your C/C++ code
with the latest NDK even if you modified only the Java part of your application. However,
make sure you always run tests on the C/C++ code! Table 2–2 shows the NDK revisions.

Table 2–2. Android NDK Revisions

Revision Date Features

1 June 2009 Android 1.5 NDK, Release 1

Supports ARMv5TE instructions

GCC 4.2.1

2 September
2009

Android 1.6 NDK, Release 1

Adds OpenGL ES 1.1 native library support

3 March 2010 Adds OpenGL ES 2.0 native library support

GCC 4.4.0

4b June 2010 Simplifies build system with ndk-build tool

Simplifies debugging with ndk-gdb tool

Adds supports for armeabi-v7a (Thumb-2, VFP, NEON Advanced SIMD)

Adds API for accessing pixel buffers of Bitmap objects from native code

5c June 2011 Many more native APIs (really, many!)

Adds support for prebuilt libraries

GCC 4.4.3

Fixes issues from revisions 5 (December 2010) and 5b (January 2011).

http://

CHAPTER 2: Getting Started With the NDK 37

Revision Date Features

6b August 2011 Adds support for x86 ABI

New ndk-stack tool for debugging

Fixes issues from revision 6 (July 2011).

7 November
2011

Native multimedia APIs based on OpenMAX AL 1.0.1

Native audio APIs based on OpenSL 1.0.1

New C++ runtimes (gabi++ and gnustl_shared)

Support for RTTI in STLport

Mixing Java and C/C++ Code
Calling a C/C++ function from Java is actually quite easy but requires several steps:

1. The native method must be declared in your Java code.

2. The Java Native Interface (JNI) glue layer needs to be implemented.

3. Android makefiles have to be created.

4. The native method must be implemented in C/C++.

5. The native library must be compiled.

6. The native library must be loaded.

It really is easy in its own twisted way. We will go through each one of these steps, and
by the end of this section, you will know the basics of mixing Java and C/C++. We will
discuss the more intricate details of the Android makefiles, which allow you to optimize
your code even more, in later sections. Since the Android NDK exists for Linux, MacOS
X, and Windows (with Cygwin, or without when using NDK revision 7), the specific steps
may vary slightly although the overall operations will remain the same. The following
steps assume an Android project is already created and you now want to add native
code to it.

Declaring the Native Method
The first step is shown in Listing 2–1 and is rather trivial.

Listing 2–1. Declaration of the Native Method in Fibonacci.java

public class Fibonacci {
 public static native long recursiveNative (int n); // note the ‘native’ keyword
}

The native method is simply declared with the native keyword, and no implementation
is provided in Java. The method shown above is public, but native methods can be
public, protected, private, or package-private, just like any other Java method. Similarly,

http://

CHAPTER 2: Getting Started With the NDK 38

native methods don’t have to be static methods, and don’t have to use primitive types
only. From the caller’s point of view, a native method is just like any other method. Once
it is declared, you can start adding calls to this method in your Java code, and
everything will compile just fine. However, if your application runs and calls
Fibonacci.recursiveNative, it will crash with an UnsatisfiedLinkError exception. This
is expected because you really haven’t done much so far other than declare a function,
and the actual implementation of the function does not exist yet.

Once your native method is declared, you can start writing the JNI glue layer.

Implementing the JNI Glue Layer
Java uses the JNI framework to call methods from libraries written in C/C++. The Java
Development Kit (JDK) on your development platform can help you with building the JNI
glue layer. First, you need a header file that defines the function you are going to
implement. You don’t have to write this header file yourself as you can (and should) use
the JDK’s javah tool for that.

In a terminal, simply change directories to your application directory, and call javah to
create the header file you need. You create this header file in your application’s jni
directory. Since the jni directory does not exist initially, you have to create it explicitly
before you create the header file. Assuming your project is saved in
~/workspace/MyFibonacciApp, the commands to execute are:

cd ~/workspace/MyFibonacciApp
mkdir jni
javah –classpath bin –jni –d jni com.apress.proandroid.Fibonacci

NOTE: You have to provide the fully qualified name of the class. If javah returns a “Class
com.apress.proandroid.Fibonacci not found” error, make sure you specified the right directory
with –classpath, and the fully qualified name is correct. The –d option is to specify where the
header file should be created. Since javah will need to use Fibonacci.class, make sure

your Java application has been compiled before you execute the command.

You should now have a header file only a mother could love called
com_apress_proandroid_Fibonacci.h in ~/workspace/MyFibonacciApp/jni, as shown in
Listing 2–2. You shouldn’t have to modify this file directly. If you need a new version of
the file (for example, if you decide to rename the native method in your Java file or add a
new one), you can use javah to create it.

Listing 2–2. JNI Header File

/* DO NOT EDIT THIS FILE – it is machine generated */
#include <jni.h>
/* Header for class com_apress_proandroid_Fibonacci */

#ifndef _Included_com_apress_proandroid_Fibonacci
#define _Included_com_apress_proandroid_Fibonacci
#ifdef __cplusplus

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2: Getting Started With the NDK 39

extern “C” {
#endif
/*
 * Class: com_apress_proandroid_Fibonacci
 * Method: recursiveNative
 * Signature: (I)J
 */
JNIEXPORT jlong JNICALL
Java_com_apress_proandroid_Fibonacci_recursiveNative
 (JNIEnv *, jclass, jint);

#ifdef __cplusplus
}
#endif
#enddif

A C header file alone won’t do you any good though. You now need the implementation
of the Java_com_apress_proandroid_Fibonacci_recursiveNative function in a file you
will create, com_apress_proandroid_Fibonacci.c, as shown in Listing 2–3.

Listing 2–3. JNI C Source File

#include “com_apress_proandroid_Fibonacci.h”

/*
 * Class: com_apress_proandroid_Fibonacci
 * Method: recursiveNative
 * Signature: (I)J
 */
jlong JNICALL
Java_com_apress_proandroid_Fibonacci_recursiveNative
 (JNIEnv *env, jclass clazz, jint n)
{
 return 0; // just a stub for now, let’s return 0
}

All functions in the JNI layer have something in common: their first argument is always of
type JNIEnv* (pointer to a JNIEnv object). The JNIEnv object is the JNI environment itself
that you use to interact with the virtual machine (should you need to). The second
argument is of type jclass when the method is declared as static, or jobject when it is
not.

TIP: Try javah with the –stubs option to generate the C file (javah –classpath bin –
stubs com_apress_proandroid_Fibonacci –d jni). It may work if you are using an old
JDK, although it is likely you’ll get this error message: “Error: JNI does not require stubs, please

refer to the JNI documentation”.

http://

CHAPTER 2: Getting Started With the NDK 40

Creating the Makefiles
At that point, you most certainly could compile this C++ file into a library using the
NDK’s GCC compiler, but the NDK provides a tool, ndk-build, that can do that for you.
To know what to do, the ndk-build tool uses two files that you create:

� Application.mk (optional)

� Android.mk

You should create both files in the application’s jni directory (where the JNI header and
source files are already located). As a source of inspiration when creating these two
files, simply refer to existing projects that already define these files. The NDK contains
examples of applications using native code in the samples directory, hello-jni being
the simplest one. Since Application.mk is an optional file, you won’t find it in every single
sample. You should start by using very simple Application.mk and Android.mk files to
build your application as fast as possible without worrying about performance for now.
Even though Application.mk is optional and you can do without it, a very basic version of
the file is shown in Listing 2–4.

Listing 2–4. Basic Application.mk File Specifying One ABI

APP_ABI := armeabi-v7a

This Application.mk specifies only one version of the library should be built, and this
version should target the Cortex family of processors. If no Application.mk is provided, a
single library targeting the armeabi ABI (ARMv5) will be built, which would be equivalent
to defining an Application.mk file, as shown in Listing 2–5.

Listing 2–5. Application.mk File Specifying armeabi As Only ABI

APP_ABI := armeabi

Android.mk in its simplest form is a tad more verbose as its syntax is dictated, in part,
by the tools that will be used to eventually compile the library. Listing 2–6 shows a basic
version of Android.mk.

Listing 2–6. Basic Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := fibonacci

LOCAL_SRC_FILES := com_apress_proandroid_Fibonacci.c

include $(BUILD_SHARED_LIBRARY)

The file must start with the definition of the local path, where Android.mk is located. The
Android NDK provides several macros you can use in your makefiles, and here we use
the my-dir macro, which returns the path of the last included makefile. In our case, the

http://

CHAPTER 2: Getting Started With the NDK 41

last included makefile is simply Android.mk in ~/workspace/MyFibonacciApp/jni, and
therefore LOCAL_PATH will be set to ~/workspace/MyFibonacciApp.

The second line is simply to clear all the LOCAL_XXX variables, except LOCAL_PATH. If you
forget that line, the variables could be defined incorrectly. You want your build to start in
a predictable state, and therefore you should never forget to include that line in
Android.mk before you define a module.

LOCAL_MODULE simply defines the name of a module, which will be used to generate the
name of the library. For example, if LOCAL_MODULE is set to fibonacci, then the shared
library will be libfibonacci.so. LOCAL_SRC_FILES then lists all the files to be compiled, in
this case only com_apress_proandroid_Fibonacci.c (the JNI glue layer) as we haven’t
implemented the actual Fibonacci function yet. Whenever you add a new file, always
remember to add it to LOCAL_SRC_FILES or it won’t be compiled into the library.

Finally, when all the variables are defined, you need to include the file that contains the
rule to actually build the library. In this case, we want to build a shared library, and
therefore we include $(BUILD_SHARED_LIBRARY).

While this may seem convoluted, at first you will only need to worry about defining
LOCAL_MODULE and LOCAL_SRC_FILES as the rest of the file is pretty much boilerplate.

For more information about these makefiles, refer to the Application.mk and Android.mk
sections of this chapter.

Implementing the Native Function
Now that the makefiles are defined, we need to complete the C implementation by
creating fibonacci.c, as shown in Listing 2–7, and calling the newly implemented
function from the glue layer, as shown in Listing 2–8. Because the function implemented
in fibonacci.c needs to be declared before it can be called, a new header file is also
created, as shown in Listing 2–9. You will also need to add fibonacci.c to the list of files
to compile in Android.mk.

Listing 2–7. Implementation of the New Function in fibonacci.c

#include “fibonacci.h”

uint64_t recursive (unsigned int n)
{
 if (n > 1) return recursive(n-2) + recursive(n-1);
 return n;
}

Listing 2–8. Calling the Function From the Glue Layer

#include “com_apress_proandroid_Fibonacci.h”
#include “fibonacci.h”

/*
 * Class: com_apress_proandroid_Fibonacci
 * Method: recursiveNative
 * Signature: (I)J
 */

http://

CHAPTER 2: Getting Started With the NDK 42

jlong JNICALL
Java_com_apress_proandroid_Fibonacci_recursiveNative
 (JNIEnv *env, jclass clazz, jint n)
{
 return recursive(n);
}

Listing 2–9. Header File fibonacci.h

#ifndef _FIBONACCI_H_
#define _FIBONACCI_H_

#include <stdint.h>

extern uint64_t recursive (unsigned int n);

#endif

NOTE: Make sure you use the right types in your C/C++ code as jlong is 64-bit. Use well-

defined types such as uint64_t or int32_t when size matters.

Some may argue that using multiple files creates unnecessary complexity, and
everything could be implemented in the glue layer, that is, in a single file instead of three
or four (fibonacci.h, fibonacci.c, com_apress_proandroid_Fibonacci.c, and possibly
even com_apress_proandroid_Fibonacci.h). While this is technically feasible, as shown
in Listing 2–10, it is not recommended. Doing this would tightly couple the glue layer
with the implementation of the native function, making it harder to reuse the code in a
non-Java application. For example, you may want to reuse the same header and C/C++
files in an iOS application. Keep the glue layer JNI-specific, and JNI-specific only.

While you may also be tempted to remove the inclusion of the JNI header file, keeping it
as it guarantees your functions are consistent with what is defined in the Java layer
(assuming you remember to recreate the header file with the javah tool whenever there
is a relevant change in Java).

Listing 2–10. All Three Files Combined Into One

#include “com_apress_proandroid_Fibonacci.h”
#include <stdint.h>

static uint64_t recursive (unsigned int n)
{
 if (n > 1) return recursive(n-2) + recursive(n-1);
 return n;
}

/*
 * Class: com_apress_proandroid_Fibonacci
 * Method: recursiveNative
 * Signature: (I)J
 */
jlong JNICALL
Java_com_apress_proandroid_Fibonacci_recursiveNative
 (JNIEnv *env, jclass clazz, jint n)

http://

CHAPTER 2: Getting Started With the NDK 43

{
 return recursive(n);
}

Compiling the Native Library
Now that the C implementation is complete, we can finally build the shared library by
calling ndk-build from the application’s jni directory.

TIP: Modify your PATH environment variable to include the NDK directory so you can call ndk-

build and other scripts easily without having to specify the command’s full path.

The result is a shared library called libfibonacci.so in the lib/armeabi directory. You
may have to refresh the project in Eclipse to show the newly created libraries. If you
compile and run the application, and the application calls Fibonacci.recursiveNative, it
will again crash with an UnsatisfiedLinkError exception. This is a typical error as many
developers simply forget to explicitly load the shared library from the Java code: the
virtual machine is not clairvoyant yet and needs to be told what library to load. This is
achieved by a call to System.loadLibrary(), as shown in Listing 2–11.

Listing 2–11. Loading the Library in Static Initialization Block

public class Fibonacci {
 static {
 System.loadLibrary(“fibonacci”); // to load libfibonacci.so
 }

 public static native long recursiveNative (int n);
}

Loading the Native Library
Calling System.loadLibrary from within a static initialization block is the easiest way to
load a library. The code in such a block is executed when the virtual machine loads the
class and before any method is called. A potential, albeit quite uncommon, performance
issue is if you have several methods in your class, and not all of them require everything
to be initialized (for example, shared libraries loaded). In other words, the static
initialization block can add significant overhead that you would want to avoid for certain
functions, as shown in Listing 2–12.

Listing 2–12. Loading the Library in the Static Initialization Block

public class Fibonacci {
 static {
 System.loadLibrary(“fibonacci”); // to load libfibonacci.so
 // do more time-consuming things here, which would delay the execution of
superFast
 }

http://

CHAPTER 2: Getting Started With the NDK 44

 public static native long recursiveNative (int n);

 public long superFast (int n) {
 return 42;
 }
}

NOTE: The time it takes to load a library also depends on the library itself (its size and number of

methods, for example).

So far, we have seen the basics of mixing Java and C/C++. While native code can
improve performance, the difference is in part due to how the C/C++ code is compiled.
In fact, many compilation options exist, and the result may vary greatly depending on
which options are used.

The following two sections tell you more about the options you can define in the
Application.mk and Android.mk makefiles, which until now were very basic.

Application.mk
The Application.mk file shown in Listing 2–4 is one of the simplest of its kind. However,
this file can specify quite a few more things, and you may need to define many of them
in your application. Table 2–3 shows the different variables you can define in
Application.mk.

Table 2–3. Variables in Application.mk

Variable Meaning

APP_PROJECT_PATH Project path

APP_MODULES List of modules to compile

APP_OPTIM Defined as “release” or “debug”

APP_CFLAGS Compiler flags for C and C++ files

APP_CXXFLAGS Obsolete, use APP_CPPFLAGS instead

APP_CPPFLAGS Compiler flags for C++ files only

APP_BUILD_SCRIPT To use a build script other than jni/Android.mk

APP_ABI List of ABIs to compile code for

APP_STL The C++ Standard Library to use, defined as “system,”
“stlport_static,” “stlport_shared,” or “gnustl_static”

STLPORT_FORCE_REBUILD To build the STLport library from scratch instead of using the
precompiled one, set to true

http://

CHAPTER 2: Getting Started With the NDK 45

You will focus on these variables when fine-tuning your application for performance:

� APP_OPTIM

� APP_CFLAGS

� APP_CPPFLAGS

� APP_STL

� APP_ABI

APP_OPTIM is optional and can be set to either “release” or “debug.” If it is not defined, it
will be automatically set based on whether your application is debuggable
(android:debuggable set to true in the application’s manifest): if the application is
debuggable, then APP_OPTIM would be set to “debug”; otherwise, it would be set to
“release.” Since it makes sense to build libraries in debug mode when you want to
debug your application, the default behavior should be deemed acceptable for most
cases, and therefore most of the time you would not need or want to explicitly define
APP_OPTIM in your Application.mk.

APP_CFLAGS (C/C++) and APP_CPPFLAGS (C++ only) define the flags passed to the
compiler. They don’t necessarily specify flags to optimize the code as they could simply
be used to include a path to follow to find include files (for example, APP_CFLAGS += -
I$(LOCAL_PATH)/myincludefiles). Refer to the gcc documentation for an exhaustive list
of flags. The most typical performance-related flags would be the –Ox series, where x
specifies the optimization level, from 0 for no optimization to 3, or –Os. However, in
most cases, simply defining APP_OPTIM to release, or not defining APP_OPTIM at all should
be sufficient as it will choose an optimization level for you, which should produce
acceptable results.

APP_STL is used to specify which standard library the application should use. For
example, four possible values are defined in NDK revision 6:

� system

� stlport_static

� stlport_shared

� gnustl_static

Each library has its pros and cons. For example:

� Only gnustl_static supports C++ exceptions and Run-Time Type
Information (RTTI). Support for RTTI in STLport library was added in
NDK r7.

� Use stlport_shared if multiple shared native libraries use the C++
library. (Remember to load the library explicitly with a call to
System.loadLibrary(“stlport_shared”).)

� Use stlport_static if you have only one shared native library in
your application (to avoid loading the library dynamically).

http://

CHAPTER 2: Getting Started With the NDK 46

You can enable C++ exceptions and RTTI by adding –fexceptions and –frtti to
APP_CPPFLAGS respectively.

Optimizing For (Almost) All Devices
If the performance of your application depends heavily on the performance of the C++
library, test your application with different libraries and choose the best one. The choice
may not be solely based on performance though, as you have to consider other
parameters too, such as the final size of your application or the features you need from
the C++ library (for example, RTTI).

The library we compiled above (libfibonacci.so) was built for the armeabi ABI. Two
issues now surface:

� While the native code is compatible with the armeabi-v7a ABI, it is
not optimized for the Cortex family of processors.

� The native code is not compatible with the x86 ABI.

The Cortex family of processors is more powerful than the processors based on the
older ARMv5 architecture. One of the reasons it is more powerful is because new
instructions were defined in the ARMv7 architecture, which a library built for ARMv5 will
not even use. As the compiler was targeting the armeabi ABI, it made sure it would not
use any instruction that an ARMv5-based processor would not understand. Even though
your library would be compatible with a Cortex-based device, it would not fully take
advantage of the CPU and therefore would not realize its full performance potential.

NOTE: There are many reasons why the ARMv7 architecture is more powerful than ARMv5, and
the instruction set is only one of them. Visit the ARM website (http://www.arm.com) for more

information about their various architectures.

The second issue is even more serious as a library built for an ARM ABI simply could not
be used on an x86-based device. If the native code is mandatory for the application to
function, then your application won’t work on any Intel-based Android device. In our
case, System.loadLibrary(“fibonacci”) would fail with an UnsatisfiedLinkError
exception, meaning the library could not be loaded.

These two issues can easily be fixed though, as APP_ABI can be defined as a list of
ABIs to compile native code for, as shown in Listing 2–12. By specifying multiple ABIs,
you can guarantee the native code will not only be generated for all these architectures,
but also optimized for each one of them.

Listing 2–12. Application.mk Specifying Three ABIs

APP_ABI := armeabi armeabi-v7a x86

After recompiling your application with this new Application.mk, the lib directory will
contain three sub-directories. In addition to armeabi, it will contain two new sub-
directories named armeabi-v7a and x86. As you will have easily guessed, the two new

http://

CHAPTER 2: Getting Started With the NDK 47

directories refer to the two new ABIs the application now supports. Each of these three
directories contains a file called libfibonacci.so.

TIP: Use ndk-build –B V=1 after you edit Application.mk or Android.mk to force a rebuild of

your libraries and display the build commands. This way you can always verify your changes

have the desired effect on the build process.

The application file is much bigger now because it contains three instances of the
“same” library, each targeting a different ABI. The Android package manager will
determine which one of these libraries to install when the application is installed on the
device. The Android system defines a primary ABI and, optionally, a secondary ABI. The
primary ABI is the preferred ABI, that is, the package manager will first install libraries
that target the primary ABI. If a secondary ABI is defined, it will then install the libraries
that target the secondary ABI and for which there is no equivalent library targeting the
primary ABI. For example, a Cortex-based Android device should define the primary ABI
as armeabi-v7a and the secondary ABI as armeabi. Table 2–4 shows the primary and
secondary ABIs for all devices.

Table 2–4. Primary and Secondary ABIs

Android system Primary ABI Secondary ABI

ARMv5-based armeabi not defined

ARMv7-based armeabi-v7a armeabi

x86-based x86 not defined

The secondary ABI provides a means for newer Android devices to maintain
compatibility with older applications as the ARMv7 ABI is fully backward compatible
with ARMv5.

NOTE: An Android system may define more than primary and secondary ABIs in the future, for
example if ARM designs a new ARMv8 architecture that is backward compatible with ARMv7 and

ARMv5.

Supporting All Devices
An issue remains though. Despite the fact that the application now supports all the ABIs
supported by the NDK, Android can (and most certainly will) be ported onto new
architectures. For example, we mentioned a MIPS cellphone earlier. While Java’s
premise is “write once, run everywhere” (the bytecode is target-agnostic, and one does
not need to recompile the code to support new platforms), native code is target-specific,

http://

CHAPTER 2: Getting Started With the NDK 48

and none of the three libraries we generated would be compatible with a MIPS-based
Android system. There are two ways to solve this problem:

� You can compile the new library and publish an update to your
application as soon as an NDK supports a new ABI.

� You can provide a default Java implementation to be used when the
package manager fails to install the native code.

The first solution is rather trivial as it only involves installing the new NDK, modifying
your application’s Application.mk, recompiling your application, and publishing the
update (for example, on Android Market). However, the official Android NDK may not
always support all ABIs Android has already been ported on or will be ported on. As a
consequence, it is recommended you also implement the second solution; in other
words, a Java implementation should also be provided.

NOTE: MIPS Technologies provides a separate NDK, which allows you to build libraries for the

MIPS ABI. Visit http://developer.mips.com/android for more information.

Listing 2–13 shows how a default Java implementation can be provided when loading
the library fails.

Listing 2–13. Providing a Default Java Implementation

public class Fibonacci {
 private static final boolean useNative;
 static {
 boolean success;
 try {
 System.loadLibrary(“fibonacci”); // to load libfibonacci.so
 success = true;
 } catch (Throwable e) {
 success = false;
 }
 useNative = success;
 }

 public static long recursive (int n) {
 if (useNative) return recursiveNative(n);
 return recursiveJava(n);
 }

 private static long recursiveJava (int n) {
 if (n > 1) return recursiveJava(n-2) + recursiveJava(n-1);
 return n;
 }

 private static native long recursiveNative (int n);
}

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2: Getting Started With the NDK 49

An alternative design is to use the Strategy pattern:

� Define a strategy interface.

� Define two classes that both implement the interface (one using
native code, the other one using only Java).

� Instantiate the right class based on the result of
System.loadLibrary().

Listing 2–14 shows an implementation of this alternative design.

Listing 2–14. Providing a Default Java Implementation Using the Strategy Pattern

// FibonacciInterface.java

public interface FibonacciInterface {
 public long recursive (int n);
}

// Fibonacci.java

public final class FibonacciJava implements FibonacciInterface {
 public long recursive(int n) {
 if (n > 1) return recursive(n-2)+recursive(n-1);
 return n;
 }
}

// FibonacciNative.java

public final class FibonacciNative implements FibonacciInterface {
 static {
 System.loadLibrary("fibonacci");
 }

 public native long recursive (int n);
}

// Fibonacci.java

public class Fibonacci {
 private static final FibonacciInterface fibStrategy;
 static {
 FibonacciInterface fib;
 try {
 fib = new FibonacciNative();
 } catch (Throwable e) {
 fib = new FibonacciJava();
 }
 fibStrategy = fib;
 }

 public static long recursive (int n) {
 return fibStrategy.recursive(n);
 }
}

http://

CHAPTER 2: Getting Started With the NDK 50

NOTE: Since the native function is now declared in FibonacciNative.java instead of
Fibonacci.java, you will have to create the native library again, this time using
com_apress_proandroid_FibonacciNative.c and

com_apress_proandroid_FibonacciNative.h.
(Java_com_apress_proandroid_FibonacciNative_recursiveNative would be the
name of the function called from Java.) Using the previous library would trigger an

UnsatisfiedLinkError exception.

While there are minor differences between the two implementations as far as
performance is concerned, they are irrelevant enough to be safely ignored:

� The first implementation requires a test every single time the
recursive() method is called.

� The second implementation requires an object allocation in the
static initialization block and a call to a virtual function when
recursive() is called.

From a design point of view though, it is recommended you use the Strategy pattern:

� You only have to select the right strategy once, and you don’t take
the risk of forgetting an “if (useNative)” test.

� You can easily change strategy by modifying only a couple of lines
of code.

� You keep strategies in different files, making maintenance easier.

� Adding a method to the strategy interface forces you to implement
the methods in all implementations.

As you can see, configuring Application.mk is not necessarily a trivial task. However, you
will quickly realize that you are using the same parameters most of the time for all your
applications, and simply copying one of your existing Application.mk to your new
application will often do the trick.

Android.mk
While Application.mk allows you to specify variables common to your whole application,
Android.mk is used to specify what modules you want to build and how to build them,
all of this in excruciating detail. Table 2–5 lists the available variables in NDK revision 6.

http://

CHAPTER 2: Getting Started With the NDK 51

Table 2–5. Variables You Can Define in Android.mk

Variable Meaning

LOCAL_PATH Path of Android.mk, can be set to $(call my-dir)

LOCAL_MODULE Name of the module

LOCAL_MODULE_FILENAME Redefinition of library name (optional)

LOCAL_SRC_FILES Files to compile in module

LOCAL_CPP_EXTENSION Redefinition of file extension of C++ source files
(default is .cpp)

LOCAL_C_INCLUDES List of paths to append to the include search path

LOCAL_CFLAGS Compiler flags for C and C++ files

LOCAL_CXXFLAGS Obsolete, use LOCAL_CPPFLAGS instead

LOCAL_CPPFLAGS Compiler flags for C++ files only

LOCAL_STATIC_LIBRARIES List of static libraries to link to module

LOCAL_SHARED_LIBRARIES List of shared libraries the module depends on at
runtime

LOCAL_WHOLE_STATIC_LIBRARIES Similar to LOCAL_STATIC_LIBRARIES, but uses the --
whole-archive flag

LOCAL_LDLIBS List of additional linker flags (for example, –lGLESv2 to
link with the OpenGL ES 2.0 library)

LOCAL_ALLOW_UNDEFINED_SYMBOLS Allow undefined symbols by setting this variable to
true (default is false)

LOCAL_ARM_MODE The mode (ARM or Thumb) the binaries will be
compiled in

LOCAL_ARM_NEON Allow the use of NEON Advanced SIMD
instructions/intrinsics

LOCAL_DISABLE_NO_EXECUTE Disable NX bit (default is false, that is NX enabled)

LOCAL_EXPORT_CFLAGS

LOCAL_EXPORT_CPPFLAGS

LOCAL_EXPORT_C_INCLUDES

LOCAL_EXPORT_LDLIBS

Used to export the variables to modules depending on
this module (that is, list the module in
LOCAL_STATIC_LIBRARY or
LOCAL_SHARED_LIBRARY)

LOCAL_FILTER_ASM Allow a shell command to be executed on assembly files

http://

CHAPTER 2: Getting Started With the NDK 52

Once again, we are going to focus on the few variables that have an impact on
performance:

� LOCAL_CFLAGS

� LOCAL_CPPFLAGS

� LOCAL_ARM_MODE

� LOCAL_ARM_NEON

� LOCAL_DISABLE_NO_EXECUTE

LOCAL_CFLAGS and LOCAL_CPPFLAGS are similar to APP_CFLAGS and APP_CPPFLAGS, but apply
only to the current module, whereas the flags defined in Application.mk are for all the
modules. It is recommended you actually don’t set optimization levels in Android.mk but
instead rely on APP_OPTIM in Application.mk.

LOCAL_ARM_MODE can be used to force the binaries to be generated in ARM mode, that is,
using 32–bit instructions. While code density may suffer compared to Thumb mode (16-
bit instructions), performance may improve as ARM code tends to be faster than Thumb
code. For example, Android’s own Skia library is explicitly compiled in ARM mode.
Obviously, this only applies to ARM ABIs, that is, armeabi and armeabi-v7a. If you want
to compile only specific files using ARM mode, you can list them in LOCAL_SRC_FILES
with the .arm suffix, for example, file.c.arm instead of file.c.

LOCAL_ARM_NEON specifies whether you can use Advanced SIMD instruction or intrinsics
in your code, and whether the compiler can generate NEON instructions in the native
code. While the performance can be dramatically improved with NEON instructions,
NEON was only introduced in the ARMv7 architecture and is an optional component.
Consequently, NEON is not available on all devices. For example, the Samsung Galaxy
Tab 10.1 does not support NEON but the Samsung Nexus S does. Like LOCAL_ARM_MODE,
support for NEON can be for individual files, and the .neon suffix is used. Chapter 3
covers the NEON extension and provides sample code.

TIP: You can combine the .arm and .neon suffixes in LOCAL_SRC_FILES, for example,
file.c.arm.neon. If both suffixes are used, make sure .arm is used first or else it won’t

compile.

The LOCAL_DISABLE_NO_EXECUTE does not have any impact on performance in itself.
However, expert developers may be interested in disabling the NX bit when code is
generated dynamically (most likely to achieve much better performance). This is not a
common thing to do, and you probably won’t ever have to specify that flag in your
Android.mk as the NX bit is enabled by default. Disabling the NX bit is also considered a
security risk.

Android.mk can specify multiple modules, and each module can use different flags and
different source files. Listing 2–15 shows such an Android.mk file, compiling two
modules with different flags for each.

http://

CHAPTER 2: Getting Started With the NDK 53

Listing 2–15. Two Modules Specified In Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)
LOCAL_MODULE := fibonacci
LOCAL_ARM_MODE := thumb
LOCAL_SRC_FILES := com_apress_proandroid_Fibonacci.c fibonacci.c
include $(BUILD_SHARED_LIBRARY)

include $(CLEAR_VARS)
LOCAL_MODULE := fibonarmcci
LOCAL_ARM_MODE := arm
LOCAL_SRC_FILES := com_apress_proandroid_Fibonacci.c fibonacci.c
include $(BUILD_SHARED_LIBRARY)

Like Application.mk, Android.mk can be configured in many ways. Choosing the right
values for variables in these two files can be the key to achieving good performance
without having recourse to more advanced and complicated optimizations. With the
NDK always evolving, you should refer to the latest online documentation as new
variables can be added in new releases while others may become deprecated. When a
new NDK is released, it is recommended you recompile your application and publish an
update, especially when the new release comes with a new compiler.

NOTE: Test your application again after you have recompiled it with a different tool chain (that

is, the new SDK or NDK).

Performance Improvements With C/C++
Now that you know how to combine Java and C/C++ code, you may think that C/C++ is
always preferred over Java to achieve best performance. This is not true, and native
code is not the answer to all your performance problems. Actually, you may sometimes
experience a performance degradation when calling native code. While this may sound
surprising, it really shouldn’t as switching from Java space to native space is not without
any cost. The Dalvik JIT compiler will also produce native code, which may be
equivalent to or possibly even better than your own native code.

Let’s consider the Fibonacci.computeIterativelyFaster() method from Chapter 1 and
its C implementation, as shown in Listing 2–16.

Listing 2–16. Iterative C Implementation of Fibonacci Series

 uint64_t computeIterativelyFaster (unsigned int n)
 {
 if (n > 1) {
 uint64_t a, b = 1;
 n--;
 a = n & 1;
 n /= 2;
 while (n-- > 0) {
 a += b;

http://

CHAPTER 2: Getting Started With the NDK 54

 b += a;
 }
 return b;
 }
 return n;
 }
}

As you can see, the C implementation is very similar to the Java implementation, except
for the use of unsigned types. You can also observe the Dalvik bytecode shown in
Listing 2–17 looks similar to the ARM native code shown in Listing 2–18, generated with
the NDK’s objdump tool. Among other things, the objdump NDK tool allows you to
disassemble a binary file (object file, library, or executable) and display the assembler
mnemonics. This tool is very much like dexdump, which basically performs the same
operations but on .dex files (for example, an application’s classes.dex file).

NOTE: Use objdump’s –d option to disassemble a file, for example, objdump –d
libfibonacci.so. Execute objdump without any option or parameter to see the list of all

supported options. The NDK comes with different versions of objdump: one for the ARM ABIs

and one for the x86 ABI.

Listing 2–17. Dalvik Bytecode of Fibonacci.iterativeFaster

0008e8: |[0008e8] com.apress.proandroid.Fibonacci.iterativeFaster:(I)J
0008f8: 1215 |0000: const/4 v5, #int 1 // #1
0008fa: 3758 1600 |0001: if-le v8, v5, 0017 // +0016
0008fe: 1602 0100 |0003: const-wide/16 v2, #int 1 // #1
000902: d808 08ff |0005: add-int/lit8 v8, v8, #int -1 // #ff
000906: dd05 0801 |0007: and-int/lit8 v5, v8, #int 1 // #01
00090a: 8150 |0009: int-to-long v0, v5
00090c: db08 0802 |000a: div-int/lit8 v8, v8, #int 2 // #02
000910: 0184 |000c: move v4, v8
000912: d808 04ff |000d: add-int/lit8 v8, v4, #int -1 // #ff
000916: 3c04 0400 |000f: if-gtz v4, 0013 // +0004
00091a: 0425 |0011: move-wide v5, v2
00091c: 1005 |0012: return-wide v5
00091e: bb20 |0013: add-long/2addr v0, v2
000920: bb02 |0014: add-long/2addr v2, v0
000922: 0184 |0015: move v4, v8
000924: 28f7 |0016: goto 000d // -0009
000926: 8185 |0017: int-to-long v5, v8
000928: 28fa |0018: goto 0012 // -0006

Listing 2–18. ARM Assembly Code of C Implementation of iterativeFaster

00000410 <iterativeFaster>:
 410: e3500001 cmp r0, #1 ; 0x1
 414: e92d0030 push {r4, r5}
 418: 91a02000 movls r2, r0
 41c: 93a03000 movls r3, #0 ; 0x0
 420: 9a00000e bls 460 <iterativeFaster+0x50>
 424: e2400001 sub r0, r0, #1 ; 0x1
 428: e1b010a0 lsrs r1, r0, #1
 42c: 03a02001 moveq r2, #1 ; 0x1

http://

CHAPTER 2: Getting Started With the NDK 55

 430: 03a03000 moveq r3, #0 ; 0x0
 434: 0a000009 beq 460 <iterativeFaster+0x50>
 438: e3a02001 mov r2, #1 ; 0x1
 43c: e3a03000 mov r3, #0 ; 0x0
 440: e0024000 and r4, r2, r0
 444: e3a05000 mov r5, #0 ; 0x0
 448: e0944002 adds r4, r4, r2
 44c: e0a55003 adc r5, r5, r3
 450: e0922004 adds r2, r2, r4
 454: e0a33005 adc r3, r3, r5
 458: e2511001 subs r1, r1, #1 ; 0x1
 45c: 1afffff9 bne 448 <iterativeFaster+0x38>
 460: e1a01003 mov r1, r3
 464: e1a00002 mov r0, r2
 468: e8bd0030 pop {r4, r5}
 46c: e12fff1e bx lr

 NOTE: Refer to http://infocenter.arm.com for a complete documentation of the ARM

instruction set.

The assembly code is what is going to be executed by the CPU. Since the Dalvik
bytecode looks a lot like the assembly code (even though the assembly code is more
compact), one could infer that the native code the Dalvik Just-In-Time compiler will
generate should be pretty close to the native code shown in Listing 2–18. Also, if the
bytecode were significantly different from the assembly code, the Dalvik JIT compiler
may still generate native code very similar to the assembly code the NDK generated.

Now, to be able to compare these methods, we need to run some tests. Actual
performance evaluation needs empirical evidence, and we are going to test and
compare four items:

� Java implementation without JIT compiler

� Java implementation with JIT compiler

� Native implementation (debug)

� Native implementation (release)

The test skeleton (found in Fibonacci.java) is shown in Listing 2–19, and results are
shown in Figure 2–1 and Figure 2–2.

Listing 2–19. Test Skeleton

 static {
 System.loadLibrary(“fibonacci_release”); // we use two libraries
 System.loadLibrary(“fibonacci_debug”);
 }

 private static final int ITERATIONS = 1000000;

 private static long testFibonacci (int n)
 {
 long time = System.currentTimeMillis();

http://

CHAPTER 2: Getting Started With the NDK 56

 for (int i = 0; i < ITERATIONS; i++) {
 // call iterativeFaster(n), iterativeFasterNativeRelease(n) or
interativeFasterNativeDebug(n)
 callFibonacciFunctionHere(n);
 }
 time = System.currentTimeMillis() - time;
 Log.i(“testFibonacci”, String.valueOf(n) + “ >> Total time: ” + time + “
milliseconds”);
 }

 private static void testFibonacci ()
 {
 for (int i = 0; i < 92; i++) {
 testFibonacci(i);
 }
 }

 private static native long iterativeFasterNativeRelease (int n);

 private static native long iterativeFasterNativeDebug (int n);

Figure 2–1 shows the duration of the test in milliseconds for each of the four
implementations listed above. Figure 2–2 shows the relative performance of the four
implementations with the baseline being the Java implementation with JIT compiler
enabled.

Figure 2–1. The performance of different implementations of iterativeFaster()

http://

CHAPTER 2: Getting Started With the NDK 57

Figure 2–2. The performance of different implementations of iterativeFaster() relative to a JIT-enabled Java
implementation

We can draw a few conclusions:

� The Dalvik JIT compiler can increase performance significantly. (The
JIT-enabled version is 3 to 6 times faster than JIT-disabled version.)

� The native implementation is not always faster than the JIT-enabled
Java version.

� The more time spent in the native space, the more diluted the
Java/native transition cost is.

Google’s own tests showed the Dalvik JIT compiler could improve performance by a
factor of 5 with CPU-intensive code, and our own results here confirm that. The
performance gain will depend on the code though, so you should not always assume
such a ratio. This is important to measure if you still target older devices running a JIT-
less version of Android (Android 2.1 or earlier). In some cases, using native code is the
only option to provide an acceptable user experience on older devices.

More About JNI
The JNI glue layer we used was extremely simple as all it did was to call another C
function. Unfortunately, it won’t be as easy all the time as things get more complicated
when non-primitive types are used and when the native code needs to access fields or

http://

CHAPTER 2: Getting Started With the NDK 58

methods from the Java object or class. On the plus side, everything you do in the JNI
glue layer will be quite mechanical.

Strings
Working with strings in both Java and C/C++ can often lead to performance problems.
Java’s String uses 16-bit Unicode characters (UTF-16) while many C/C++ functions
simply use char* to refer to strings (that is, strings in C/C++ are most of the time ASCII
or UTF-8). Nostalgic developers may even use the EBCDIC encoding for obfuscation
purposes. That being said, Java strings have to be converted to C/C++ strings before
they can be used. A simple example is shown in Listing 2–20.

Listing 2–20. Java Native Method Using String and JNI Glue Layer

// Java (in Myclass.java)
public class MyClass {
 public static native void doSomethingWithString (String s);
}

// JNI glue layer (in C file)
void JNICALL
Java_com_apress_proandroid_MyClass_doSomethingWithString
 (JNIEnv *env, jclass clazz, jstring s)
{
 const char* str = (*env)->GetStringUTFChars(env, s, NULL);
 if (str != NULL) {
 // do something with str string here

 // remember to release the string to avoid memory leaks galore
 (*env)->ReleaseStringUTFChars(env, s, str);
 }
}

The JNI offers multiple methods to work with strings, and they all pretty much work the
same way:

� The Java String must be converted to a C/C++ string.

� C/C++ string must be released.

Table 2–6 shows the various string get/release methods the JNI provides, together with
a short description.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2: Getting Started With the NDK 59

Table 2–6. JNI Get/Release String Methods

Get Release Description

GetStringChars ReleaseStringChars Gets a pointer to a UTF-16 string (may
require memory allocation)

GetStringUTFChars ReleaseStringUTFChars Gets a pointer to a UTF-8 string (may
require memory allocation)

GetStringCritical ReleaseStringCritical Gets a pointer to a UTF-16 string (may
require memory allocation, restrictions on
what you can do between calls to
GetStringCritical and ReleaseStringCritical)

GetStringRegion n/a Copies part of a string to a pre-allocated
buffer (UTF-16 format, no memory
allocation)

GetStringUTFRegion n/a Copies part of a string to a pre-allocated
buffer (UTF-8 format, no memory allocation)

Since memory allocations are never free, you should favor the GetStringRegion and
GetStringUTFRegion in your code whenever possible. By doing so, you:

� Avoid possible memory allocations.

� Copy only the part of the String you need in a pre-allocated buffer
(possibly in the stack).

� Avoid having to release the string, and avoid forgetting about
releasing the string.

NOTE: Refer to the online JNI documentation and the NDK’s jni.h header file for more

information about other String functions.

Accessing Fields or Methods
You can access fields and methods from Java objects or classes from within the JNI
glue layer, however it is not as simple as accessing a field or calling a function of a C++
object or class. Fields and methods of Java objects or classes are accessed by id. To
access a field or call a method, you need to:

� Get the id of this field or method.

� Use a JNI function to set/get the field or call the method.

An example is shown in Listing 2–21.

http://

CHAPTER 2: Getting Started With the NDK 60

Listing 2–21. Modifying a Field and Calling a Method From the JNI Glue Layer

// Java (in MyClass.java)

public class MyClass {
 static {
 System.loadLibrary(“mylib”);
 }

 public static int someInteger = 0;

 public static native void sayHelloToJNI();

 public static void helloFromJNI() {
 Log.i(“MyClass”, “Greetings! someInteger=” + someInteger);
 }
}

// JNI glue layer (in C file)

void JNICALL
Java_com_apress_proandroid_MyClass_sayHelloToJNI
 (JNIEnv *env, jclass clazz)
{
 // we get the ids for the someInteger field and helloFromJNI method
 jfieldID someIntegerId = (*env)->GetStaticFieldID(env, clazz, “someInteger”, “I”);
 jfieldID helloFromJNIId = (*env)->GetStaticMethodID(env, clazz, “helloFromJNI”,
“()V”);

 // we increment someInteger
 jint value = (*env)->GetStaticIntField(env, clazz, someIntegerId);
 (*env)->SetStaticIntField(env, clazz, value + 1);

 // we call helloFromJNI
 (*env)->CallStaticVoidMethod(env, clazz, helloFromJNIId);
}

For performance reasons, you don’t want to retrieve the field or method ids every single
time you need to access a field or call a method. The field and method ids are set when
the class is loaded by the virtual machine and are valid only as long as the class is still
loaded. If the class is unloaded by the virtual machine and reloaded again, the new ids
may be different from the old ones. That being said, an efficient approach is to retrieve
the ids when the class is loaded, that is, in the static initialization block, as shown in
Listing 2–22.

Listing 2–22. Retrieving Field/Method Ids Only Once

// Java (in MyClass.java)

public class MyClass {
 static {
 System.loadLibrary(“mylib”);
 getIds(); // we get the ids only once when the class is loaded
 }

 public static int someInteger = 0;

http://

CHAPTER 2: Getting Started With the NDK 61

 public static native void sayHelloToJNI();

 public static void helloFromJNI() {
 Log.i(“MyClass”, “Greetings! someInteger=” + someInteger);
 }

 private static native void getIds();
}

// JNI glue layer (in C file)

static jfieldID someIntegerId;
static jfieldID helloFromJNIId;

void JNICALL
Java_com_apress_proandroid_MyClass_sayHelloToJNI
 (JNIEnv *env, jclass clazz)
{
 // we do not need to get the ids here anymore

 // we increment someInteger
 jint value = (*env)->GetStaticIntField(env, clazz, someIntegerId);
 (*env)->SetStaticIntField(env, clazz, value + 1);

 // we call helloFromJNI
 (*env)->CallStaticVoidMethod(env, clazz, helloFromJNIId);
}

void JNICALL
Java_com_apress_proandroid_MyClass_getIds
 (JNIEnv *env, jclass clazz)
{
 // we get the ids for the someInteger field and helloFromJNI method
 someIntegerId = (*env)->GetStaticFieldID(env, clazz, “someInteger”, “I”);
 helloFromJNIId = (*env)->GetStaticMethodID(env, clazz, “helloFromJNI”, “()V”);
}

The JNI defines tons of functions you can use to access fields and call methods. For
example, accessing an integer field and accessing a Boolean field are two operations
that are done with two different functions. Similarly, different functions are defined to call
a static method and a non-static method.

NOTE: Refer to the online JNI documentation and the NDK’s jni.h header file for a complete list

of functions you can use.

Android defines its own set of functions and data structures to access the most
common classes used in native code. For example, the APIs defined in android/bitmap.h
(introduced in NDK release 4b) allow access to the pixel buffers of bitmap objects:

� AndroidBitmap_getInfo

� AndroidBitmap_lockPixels

� AndroidBitmap_unlockPixels

http://

CHAPTER 2: Getting Started With the NDK 62

NDK revision 5 introduced many new APIs application developers can use from native
code to access parts of the Android Java framework, without relying on JNI
idiosyncrasies (JNIEnv, jclass, jobject, for example).

Native Activity
So far, we have seen how to mix Java and C/C++ in a single application. Android 2.3
goes one step further and defines the NativeActivity class, which allows you to write
the whole application in C/C++ but does not force you to, as you still have access to the
whole Android Java framework through JNI.

NOTE: You do not have to use NativeActivity for all activities in your application. For
example, you could write an application with two activities: one NativeActivity and one

ListActivity.

If you prefer to read source files or header files in lieu of more formal documentation,
you are in for a treat. In fact, most of the documentation is contained in the header files,
which you can find in the NDK’s platforms/android-9/arch-arm/usr/include/android
directory. The list of header files is shown in Table 2–7.

Table 2–7. Header Files That Native Activities Will Use

Header file Content

api-level.h Definition of __ANDROID_API__

asset_manager.h Asset Manager APIs

asset_manager_jni.h API to convert Java object (AssetManager) to native object

bitmap.h Bitmap APIs

configuration.h Configuration APIs

input.h Input APIs (devices, keys, gestures, etc)

keycodes.h Definition of all key codes (e.g. AKEYCODE_SEARCH)

log.h Log APIs

looper.h Convenience APIs to handle events

native_activity.h Where many things start

native_window.h Window APIs

http://

CHAPTER 2: Getting Started With the NDK 63

Header file Content

native_window_jni.h API to convert Java object (Surface) to native object

obb Opaque Binary Blob APIs (see Java’s StorageManager)

rect Definition of ARect type

sensor Sensor APIs (accelerometer, gyroscope, etc)

storage_manager.h Storage Manager APIs

window.h Window flags (see Java’s WindowManager.LayoutParams)

Creating a native activity is quite simple. The first step is to define your application’s
manifest file to let Android know you are going to use a native activity. For that you need
to specify two things in your application’s AndroidManifest.xml for each native activity:

� The class to instantiate

� The library to load and its entry point

The first item is actually no different from other non-native activities. When your activity
is created, Android needs to instantiate the right class, and this is what android:name is
for inside the <activity> tag. In most cases there is no need for your application to
extend the NativeActivity class, so you will almost always use
android.app.NativeActivity as the class to instantiate. Nothing prevents you from
instantiating a class of your creation that extends NativeActivity though.

The second item is for Android to know what library contains your activity’s native code
so that it can be loaded automatically when the activity is created. That piece of
information is given to Android as metadata as a name/value pair: the name has to be
set to android.app.lib_name, and the value specifies the name of the library without the
lib prefix or .so suffix. Optionally, you can also specify the library’s entry point as
name/value metadata, the name being set to android.app.func_name, and the value to
the function name. By default, the function name is set to ANativeActivity_onCreate.

An example of a manifest file is shown in Listing 2–23. The minimum SDK version is set
to 9 as NativeActivity was introduced in Android 2.3, and the activity’s native code is
in libmyapp.so.

Listing 2–23. The Native Application’s AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.apress.proandroid"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="9" />

 <application android:icon="@drawable/icon"
 android:label="@string/app_name"

http://

CHAPTER 2: Getting Started With the NDK 64

 android:hasCode="false">
 <activity android:name="android.app.NativeActivity"
 android:label="@string/app_name">
 <meta-data android:name="android.app.lib_name"
 android:value="myapp" />
 <meta-data android:name="android.app.func_name"
 android:value="ANativeActivity_onCreate" />
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

NOTE: Optionally, if your application does not contain any Java code, you can set

android:hasCode to false in the <application> tag.

Launching this application now would result in a runtime error as the libmyapp.so does
not exist yet. Consequently, the next step is to build this missing library. This is done as
usual using the NDK’s ndk-build tool.

Building the Missing Library
You have to define your Application.mk file as well as your Android.mk file. When using
native activities, the difference lies in Android.mk, as shown in Listing 2–24. You also
need a file that contains the actual implementation of the application, myapp.c (shown in
Listing 2–25).

Listing 2–24. The Native Application’s Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := myapp
LOCAL_SRC_FILES := myapp.c
LOCAL_LDLIBS := -llog -landroid
LOCAL_STATIC_LIBRARIES := android_native_app_glue

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)

The differences between this Android.mk and the one we previously used are:

� The shared libraries to link with

� The static library to link with

Since your native activity is going to use the Android native application APIs, you need
to add –landroid to LOCAL_LDLIBS. You may need to link with more libraries depending

http://

CHAPTER 2: Getting Started With the NDK 65

on what you are going to use. For example, –llog is for linking with the logging library to
allow you to use the logcat debugging facility.

The Android NDK provides a simpler way to create a native application, which is
implemented in the NDK’s native_app_glue module. To use this module you need to not
only add it to LOCAL_STATIC_LIBRARIES, but also import it into your project by using the
import-module function macro, as indicated by the last line in Listing 2–24.

NOTE: The native_app_glue module is implemented in the NDK, and the source code is

located in the android-ndk-r7/sources/android/native_app_glue directory. You are
free to modify the implementation and compile your application using your own modified version

as the library is linked statically.

Listing 2–25 shows an example of an application, implemented in a single file myapp.c,
which listens to the following events:

� Application events (similar to methods like onStart in Java)

� Input events (key, motion)

� Accelerometer

� Gyroscope (callback-based)

This application does not do anything meaningful other than enabling sensors and
showing you how to process sensor events. In this particular case, the sensor values are
displayed with a call to __android_log_print. Use this application as the skeleton for
your own needs.

Listing 2–25. Implementation of myapp.c

#include <android_native_app_glue.h>
#include <android/sensor.h>
#include <android/log.h>

#define TAG "myapp"

typedef struct {
 // accelerometer
 const ASensor* accelerometer_sensor;
 ASensorEventQueue* accelerometer_event_queue;
 // gyroscope
 const ASensor* gyroscope_sensor;
 ASensorEventQueue* gyroscope_event_queue;
} my_user_data_t;

static int32_t on_key_event (struct android_app* app, AInputEvent* event)
{
 // use AKeyEvent_xxx APIs
 return 0; // or 1 if you have handled the event
}

static int32_t on_motion_event (struct android_app* app, AInputEvent* event)

http://

CHAPTER 2: Getting Started With the NDK 66

{
 // use AMotionEvent_xxx APIs
 return 0; // or 1 if you have handled the event
}

// this simply checks the event type and calls the appropriate function
static int32_t on_input_event (struct android_app* app, AInputEvent* event)
{
 int32_t type = AInputEvent_getType(event);
 int32_t handled = 0;

 switch (type) {
 case AINPUT_EVENT_TYPE_KEY:
 handled = on_key_event(app, event);
 break;

 case AINPUT_EVENT_TYPE_MOTION:
 handled = on_motion_event(app, event);
 break;
 }

 return handled;
}

// some functions not yet implemented
static void on_input_changed (struct android_app* app) {}
static void on_init_window (struct android_app* app) {}
static void on_term_window (struct android_app* app) {}
static void on_window_resized (struct android_app* app) {}
static void on_window_redraw_needed (struct android_app* app) {}
static void on_content_rect_changed (struct android_app* app) {}

// we enable the sensors here
static void on_gained_focus (struct android_app* app)
{
 my_user_data_t* user_data = app->userData;
 if (user_data->accelerometer_sensor != NULL) {
 ASensorEventQueue_enableSensor(
 user_data->accelerometer_event_queue,
 user_data->accelerometer_sensor);
 ASensorEventQueue_setEventRate(
 user_data->accelerometer_event_queue,
 user_data->accelerometer_sensor, 1000000L/60);
 }
 if (user_data->gyroscope_sensor != NULL) {
 ASensorEventQueue_enableSensor(
 user_data->gyroscope_event_queue,
 user_data->gyroscope_sensor);
 ASensorEventQueue_setEventRate(
 user_data->gyroscope_event_queue,
 user_data->gyroscope_sensor, 1000000L/60);
 }
}

// we disable the sensors when focus is lost
static void on_lost_focus (struct android_app* app)
{

http://

CHAPTER 2: Getting Started With the NDK 67

 my_user_data_t* user_data = app->userData;
 if (user_data->accelerometer_sensor != NULL) {
 ASensorEventQueue_disableSensor(
 user_data->accelerometer_event_queue,
 user_data->accelerometer_sensor);
 }
 if (user_data->gyroscope_sensor != NULL) {
 ASensorEventQueue_disableSensor(
 user_data->gyroscope_event_queue,
 user_data->gyroscope_sensor);
 }
}

// more functions to implement here…
static void on_config_changed (struct android_app* app) {}
static void on_low_memory (struct android_app* app) {}
static void on_start (struct android_app* app) {}
static void on_resume (struct android_app* app) {}
static void on_save_state (struct android_app* app) {}
static void on_pause (struct android_app* app) {}
static void on_stop (struct android_app* app) {}
static void on_destroy (struct android_app* app) {}

// this simply checks the command and calls the right function
static void on_app_command (struct android_app* app, int32_t cmd) {
 switch (cmd) {
 case APP_CMD_INPUT_CHANGED:
 on_input_changed(app);
 break;

 case APP_CMD_INIT_WINDOW:
 on_init_window(app);
 break;

 case APP_CMD_TERM_WINDOW:
 on_term_window(app);
 break;

 case APP_CMD_WINDOW_RESIZED:
 on_window_resized(app);
 break;

 case APP_CMD_WINDOW_REDRAW_NEEDED:
 on_window_redraw_needed(app);
 break;

 case APP_CMD_CONTENT_RECT_CHANGED:
 on_content_rect_changed(app);
 break;

 case APP_CMD_GAINED_FOCUS:
 on_gained_focus(app);
 break;

 case APP_CMD_LOST_FOCUS:
 on_lost_focus(app);
 break;

http://

CHAPTER 2: Getting Started With the NDK 68

 case APP_CMD_CONFIG_CHANGED:
 on_config_changed(app);
 break;

 case APP_CMD_LOW_MEMORY:
 on_low_memory(app);
 break;

 case APP_CMD_START:
 on_start(app);
 break;

 case APP_CMD_RESUME:
 on_resume(app);
 break;

 case APP_CMD_SAVE_STATE:
 on_save_state(app);
 break;

 case APP_CMD_PAUSE:
 on_pause(app);
 break;

 case APP_CMD_STOP:
 on_stop(app);
 break;

 case APP_CMD_DESTROY:
 on_destroy(app);
 break;
 }
}

// user-defined looper ids
#define LOOPER_ID_USER_ACCELEROMETER (LOOPER_ID_USER + 0)
#define LOOPER_ID_USER_GYROSCOPE (LOOPER_ID_USER + 1)

// we’ll be able to retrieve up to 8 events at a time
#define NB_SENSOR_EVENTS 8

static int gyroscope_callback (int fd, int events, void* data)
{
 // not really a good idea to log anything here as you may get more than you wished
for…
 __android_log_write(ANDROID_LOG_INFO, TAG, "gyroscope_callback");
 return 1;
}

static void list_all_sensors (ASensorManager* sm)
{
 ASensorList list;
 int i, n;
 n = ASensorManager_getSensorList(sm, & list);
 for (i = 0; i < n; i++) {
 const ASensor* sensor = list[i];

http://

CHAPTER 2: Getting Started With the NDK 69

 const char* name = ASensor_getName(sensor);
 const char* vendor = ASensor_getVendor(sensor);
 int type = ASensor_getType(sensor);
 int min_delay = ASensor_getMinDelay(sensor);
 float resolution = ASensor_getResolution(sensor);

 __android_log_print(
 ANDROID_LOG_INFO, TAG, "%s (%s) %d %d %f",name, vendor, type, min_delay,
resolution);
 }
}

// where things start…
void android_main (struct android_app* state)
{
 my_user_data_t user_data;
 ASensorManager* sm = ASensorManager_getInstance();

 app_dummy(); // don't forget that call

 // we simply list all the sensors on the device
 list_all_sensors(sm);

 state->userData = & user_data;
 state->onAppCmd = on_app_command;
 state->onInputEvent = on_input_event;

 // accelerometer
 user_data.accelerometer_sensor =
 ASensorManager_getDefaultSensor(sm, ASENSOR_TYPE_ACCELEROMETER);
 user_data.accelerometer_event_queue = ASensorManager_createEventQueue(
 sm, state->looper, LOOPER_ID_USER_ACCELEROMETER, NULL, NULL);

 // gyroscope (callback-based)
 user_data.gyroscope_sensor =
 ASensorManager_getDefaultSensor(sm, ASENSOR_TYPE_GYROSCOPE);
 user_data.gyroscope_event_queue = ASensorManager_createEventQueue(
 sm, state->looper, LOOPER_ID_USER_GYROSCOPE, gyroscope_callback, NULL);

 while (1) {
 int ident;
 int events;
 struct android_poll_source* source;

 while ((ident = ALooper_pollAll(-1, NULL, &events, (void**)&source)) >= 0) {

 // “standard” events first
 if ((ident == LOOPER_ID_MAIN) || (ident == LOOPER_ID_INPUT)) {
 // source should not be NULL but we check anyway
 if (source != NULL) {
 // this will call on_app_command or on_input_event
 source->process(source->app, source);
 }
 }

 // accelerometer events
 if (ident == LOOPER_ID_USER_ACCELEROMETER) {

http://

CHAPTER 2: Getting Started With the NDK 70

 ASensorEvent sensor_events[NB_SENSOR_EVENTS];
 int i, n;
 while ((n = ASensorEventQueue_getEvents(
 user_data.accelerometer_event_queue, sensor_events,
NB_SENSOR_EVENTS)) > 0) {

 for (i = 0; i < n; i++) {
 ASensorVector* vector = & sensor_events[i].vector;
 __android_log_print(
 ANDROID_LOG_INFO, TAG,
 "%d accelerometer x=%f y=%f z=%f", i, vector->x, vector->y,
vector->z);
 }
 }
 }

 // process other events here

 // don’t forget to check whether it’s time to return
 if (state->destroyRequested != 0) {
 ASensorManager_destroyEventQueue(sm,
user_data.accelerometer_event_queue);
 ASensorManager_destroyEventQueue(sm, user_data.gyroscope_event_queue);
 return;
 }
 }

 // do your rendering here when all the events have been processed
 }
}

Alternative
Another way to create a native application is to implement your native version of
onCreate in which you not only initialize your application but also define all your other
callbacks (that is, the equivalent of onStart, onResume, to name just a few). This is
exactly what the native_app_glue module implements for you to simplify your own
development. Also, the native_app_glue module guarantees certain events are handled
in a separate thread, allowing your application to remain responsive. Should you decide
to define your own onCreate implementation, you would not need to link with the
native_app_glue library, and instead of implementing android_main, you would
implement ANativeActivity_onCreate, as shown in Listing 2.26.

Listing 2–26. Implementation of ANativeActivity_onCreate

#include <android/native_activity.h>

void ANativeActivity_onCreate (ANativeActivity* activity, void* savedState, size_t
savedStateSize)
{
 // set all callbacks here
 activity->callbacks->onStart = my_on_start;
 activity->callbacks->onResume = my_on_resume;
 …

http://

CHAPTER 2: Getting Started With the NDK 71

 // set activity->instance to some instance-specific data
 activity->instance = my_own_instance; // similar to userData

 // no event loop here, it simply returns and NativeActivity will then call the
callbacks you defined
}

While this may appear simpler, it becomes more complicated when you start listening to
some other events (such as sensors) and draw things on the screen.

TIP: Do not change the name of the library’s entry point in your manifest file if you are using the

native_app_glue module as it implements ANativeActivity_onCreate.

The new NativeActivity class in itself does not improve performance. It is simply a
mechanism to make native application development easier. In fact, you could implement
that same mechanism in your own application to write native applications on older
Android versions. Despite the fact that your application is, or can be, fully written in
C/C++, it still runs in the Dalvik virtual machine, and it still relies on the NativeActivity
Java class.

Summary
We have seen how the use of native code can improve performance. Even though
carefully crafted native code rarely results in a degradation of performance, performance
is not the only reason why you should use the NDK. The following are all good reasons
why you should use it:

� You want to reuse existing code instead of having to rewrite
everything in Java.

� You want to write new code to use on other platforms that don’t
support Java.

� You want to target older Android devices that do not have a Just-In-
Time compiler (Android 2.1 and earlier), and native code is the only
way to offer a good user experience.

� Using native code in your application makes the user experience
better, even on Android devices with a JIT compiler.

The first two reasons are so important you may actually be willing to sacrifice
performance in some cases (although make sure the user experience does not suffer, or
at least does not suffer beyond an acceptable threshold). Like many developers, your
resources are limited, yet you want to reach as many people as possible with your
applications. Limiting yourself to a single platform won’t maximize your investments.

http://

73

 Chapter

Advanced NDK
Chapter 2 showed you how to set up a project using the Android NDK and how you
could use C or C++ code in your Android application. In many cases, this is as far as
you will need to go. However, there may be times when digging a little deeper is
required to find what can be optimized even more.

In this chapter, you will get your hands dirty and learn how you can use a low-level
language to take advantage of all the bells and whistles the CPU has to offer, which may
not be possible to use from plain C or C++ code. The first part of the chapter shows you
several examples of how you can optimize functions using the assembly language and
gives you an overview of the ARM instruction set. The second part covers some of the C
extensions the GCC compiler supports that you can take advantage of to improve your
application’s performance. Finally, the chapter concludes with a few very simple tips for
optimizing code relatively quickly.

While the latest Android NDK supports the armeabi, armeabi-v7a, and x86 ABIs, this
chapter will focus on the first two as Android is mostly deployed on ARM-based
devices. If you plan on writing assembly code, then ARM should be your first target.
While the first Google TV devices were Intel-based, Google TV does not yet support the
NDK.

Assembly
The NDK allows you to use C and C++ in your Android applications. Chapter 2 showed
you what native code would look like after the C or C++ code is compiled and how you
could use objdump –d to disassemble a file (object file or library). For example, the ARM
assembly code of computeIterativelyFaster is shown again in Listing 3–1.

Listing 3–1. ARM Assembly Code of C Implementation of computeIterativelyFaster

00000410 < computeIterativelyFaster>:
 410: e3500001 cmp r0, #1 ; 0x1
 414: e92d0030 push {r4, r5}
 418: 91a02000 movls r2, r0
 41c: 93a03000 movls r3, #0 ; 0x0
 420: 9a00000e bls 460 <computeIterativelyFaster+0x50>

3

H. Guihot, Pro Android App
© Hervé Guihot 2012

s Performance Optimization

http://

CHAPTER 3: Advanced NDK 74

 424: e2400001 sub r0, r0, #1 ; 0x1
 428: e1b010a0 lsrs r1, r0, #1
 42c: 03a02001 moveq r2, #1 ; 0x1
 430: 03a03000 moveq r3, #0 ; 0x0
 434: 0a000009 beq 460 < computeIterativelyFaster+0x50>
 438: e3a02001 mov r2, #1 ; 0x1
 43c: e3a03000 mov r3, #0 ; 0x0
 440: e0024000 and r4, r2, r0
 444: e3a05000 mov r5, #0 ; 0x0
 448: e0944002 adds r4, r4, r2
 44c: e0a55003 adc r5, r5, r3
 450: e0922004 adds r2, r2, r4
 454: e0a33005 adc r3, r3, r5
 458: e2511001 subs r1, r1, #1 ; 0x1
 45c: 1afffff9 bne 448 < computeIterativelyFaster+0x38>
 460: e1a01003 mov r1, r3
 464: e1a00002 mov r0, r2
 468: e8bd0030 pop {r4, r5}
 46c: e12fff1e bx lr

In addition to allowing you to use C or C++ in your application, the Android NDK also
lets you to write assembly code directly. Strictly speaking, such a feature is not NDK-
specific as assembly code is supported by the GCC compiler, which is used by the
Android NDK. Consequently, almost everything you learn in this chapter can also be
applied to other projects of yours, for example in applications targeting iOS devices like
the iPhone.

As you can see, assembly code can be quite difficult to read, let alone write. However,
being able to understand assembly code will allow you to more easily identify
bottlenecks and therefore more easily optimize your applications. It will also give you
bragging rights.

To familiarize yourself with assembly, we will look at three simple examples:

� Computation of the greatest common divisor

� Conversion from one color format to another

� Parallel computation of average of 8-bit values

These examples are simple enough to understand for developers who are new to
assembly, yet they exhibit important principles of assembly optimization. Because these
examples introduce you to only a subset of the available instructions, a more complete
introduction to the ARM instruction set will follow as well as a brief introduction to the
überpowerful ARM SIMD instructions. Finally, you will learn how to dynamically check
what CPU features are available, a mandatory step in your applications that target
features not available on all devices.

Greatest Common Divisor
The greatest common divisor (gcd) of two non-zero integers is the largest positive
integer that divides both numbers. For example, the greatest common divisor of 10 and

http://

CHAPTER 3: Advanced NDK 75

55 is 5. An implementation of a function that computes the greatest common divisor of
two integers is shown in Listing 3–2.

Listing 3–2. Greatest Common Divisor Simple Implementation

unsigned int gcd (unsigned int a, unsigned int b)
{
 // a and b must be different from zero (else, hello infinite loop!)

 while (a != b) {
 if (a > b) {
 a -= b;
 } else {
 b -= a;
 }
 }

 return a;
}

If you define APP_ABI in your Application.mk file such that x86, armeabi, and armeabi-v7
architectures are supported in your application, then you will have three different
libraries. Disassembling each library will result in three different pieces of assembly
code. However, since you have the option to compile in either ARM or Thumb mode
with the armeabi and armeabi-v7a ABIs, there are actually a total of five pieces of code
you can review.

TIP: Instead of specifying each individual ABI you want to compile a library for, you can define
APP_ABI as “all” (APP_ABI := all) starting with NDK r7. When a new ABI is supported by the

NDK you will only have to execute ndk-build without having to modify Application.mk.

Listing 3–3 shows the resulting x86 assembly code while Listing 3–4 and Listing 3–5
show the ARMv5 and ARMv7 assembly code respectively. Because different versions of
compilers can output different code, the code you will observe may be slightly different
than the that shown here. The generated code will also depend on the optimization level
and other options you may have defined.

Listing 3–3. x86 Assembly Code

00000000 <gcd>:
 0: 8b 54 24 04 mov 0x4(%esp),%edx
 4: 8b 44 24 08 mov 0x8(%esp),%eax
 8: 39 c2 cmp %eax,%edx
 a: 75 0a jne 16 <gcd+0x16>
 c: eb 12 jmp 20 <gcd+0x20>
 e: 66 90 xchg %ax,%ax
 10: 29 c2 sub %eax,%edx
 12: 39 d0 cmp %edx,%eax
 14: 74 0a je 20 <gcd+0x20>
 16: 39 d0 cmp %edx,%eax
 18: 72 f6 jb 10 <gcd+0x10>
 1a: 29 d0 sub %edx,%eax
 1c: 39 d0 cmp %edx,%eax

http://

CHAPTER 3: Advanced NDK 76

 1e: 75 f6 jne 16 <gcd+0x16>
 20: f3 c3 repz ret

If you are familiar with the x86 mnemonics, you can see that this code makes heavy use
of the jump instructions (jne, jmp, je, jb). Also, while most instructions are 16-bit (for
example, “f3 c3”), some are 32-bit.

NOTE: Make sure you use the right version of objdump to disassemble object files and libraries.

For example, using the ARM version of objdump to attempt to disassemble an x86 object file will
result in the following message:

 arm-linux-androideabi-objdump: Can't disassemble for architecture

UNKNOWN!

Listing 3–4. ARMv5 Assembly Code (ARM Mode)

00000000 <gcd>:
 0: e1500001 cmp r0, r1
 4: e1a03000 mov r3, r0
 8: 0a000004 beq 20 <gcd+0x20>
 c: e1510003 cmp r1, r3
 10: 30613003 rsbcc r3, r1, r3
 14: 20631001 rsbcs r1, r3, r1
 18: e1510003 cmp r1, r3
 1c: 1afffffa bne c <gcd+0xc>
 20: e1a00001 mov r0, r1
 24: e12fff1e bx lr

Listing 3–5. ARMv7a Assembly Code (ARM Mode)

00000000 <gcd>:
 0: e1500001 cmp r0, r1
 4: e1a03000 mov r3, r0
 8: 0a000004 beq 20 <gcd+0x20>
 c: e1510003 cmp r1, r3
 10: 30613003 rsbcc r3, r1, r3
 14: 20631001 rsbcs r1, r3, r1
 18: e1510003 cmp r1, r3
 1c: 1afffffa bne c <gcd+0xc>
 20: e1a00001 mov r0, r1
 24: e12fff1e bx lr

As it turns out, the GCC compiler generates the same code for the armeabi and
armeabi-v7a ABIs when the code shown in Listing 3–2 is compiled in ARM mode. This
won’t always be the case though as the compiler usually takes advantage of new
instructions defined in newer ABIs.

Because you could decide to compile the code in Thumb mode instead of ARM mode,
let’s also review the code that would be generated in Thumb mode. Listing 3–6 shows
the ARMv5 assembly code (armeabi ABI in Application.mk) while Listing 3–7 shows the
ARMv7 assembly code (armeabi-v7a ABI in Application.mk).

http://

CHAPTER 3: Advanced NDK 77

Listing 3–6. ARMv5 Assembly Code (Thumb Mode)

00000000 <gcd>:
 0: 1c03 adds r3, r0, #0
 2: 428b cmp r3, r1
 4: d004 beq.n 10 <gcd+0x10>
 6: 4299 cmp r1, r3
 8: d204 bcs.n 14 <gcd+0x14>
 a: 1a5b subs r3, r3, r1
 c: 428b cmp r3, r1
 e: d1fa bne.n 6 <gcd+0x6>
 10: 1c08 adds r0, r1, #0
 12: 4770 bx lr
 14: 1ac9 subs r1, r1, r3
 16: e7f4 b.n 2 <gcd+0x2>

All instructions in Listing 3–6 are 16-bit (that is, “e7f4,” the last instruction of the listing)
and the twelve instructions therefore require 24 bytes of space.

Listing 3–7. ARMv7 Assembly Code (Thumb Mode)

00000000 <gcd>:
 0: 4288 cmp r0, r1
 2: 4603 mov r3, r0
 4: d007 beq.n 16 <gcd+0x16>
 6: 4299 cmp r1, r3
 8: bf34 ite cc
 a: ebc1 0303 rsbcc r3, r1, r3
 e: ebc3 0101 rsbcs r1, r3, r1
 12: 4299 cmp r1, r3
 14: d1f7 bne.n 6 <gcd+0x6>
 16: 4608 mov r0, r1
 18: 4770 bx lr
 1a: bf00 nop

This time, the two listings are different. While the ARMv5 architecture uses the Thumb
instruction set (all 16-bit instructions), the ARMv7 architecture supports the Thumb2
instruction set and instructions can be 16- or 32-bit.

As a matter of fact, Listing 3–7 looks a lot like Listing 3–5. The main difference is with the
use of the ite (if-then-else) instruction in Listing 3–7, and the fact that the ARM code is
40-byte long while the Thumb2 code is only 28-byte long.

NOTE: Even though the ARM architecture is the dominant one, being able to read x86 assembly

code cannot hurt.

Usually, the GCC compiler does a pretty good job and you won’t have to worry too
much about the generated code. However, if a piece of code you wrote in C or C++
turns out to be one of the bottlenecks of your application, you should carefully review
the assembly code the compiler generated and determine whether you could do better
by writing the assembly code yourself. Very often the compiler will generate high-quality
code and you won’t be able to do better. That being said, there are cases where, armed

http://

CHAPTER 3: Advanced NDK 78

with both an intimate knowledge of the instruction set and a slight taste for suffering,
you can achieve better results than the compiler.

NOTE: Consider modifying the C/C++ code to achieve better performance as it is often much

easier than writing assembly code.

The gcd function can indeed be implemented differently, resulting in code not only faster
but also more compact, as shown in Listing 3–8.

Listing 3–8. Hand-crafted Assembly Code

.global gcd_asm

.func gcd_asm

gcd_asm:
 cmp r0, r1
 subgt r0, r0, r1
 sublt r1, r1, r0
 bne gcd_asm
 bx lr
.endfunc
.end

Not including the final instruction to return from the function, the core of the algorithm is
implemented in only four instructions. Measurements also showed this implementation
as being faster. Note the single call to the CMP instruction in Listing 3–8 compared with
the two calls in Listing 3–7.

This code can be copied in a file called gcd_asm.S and added to the list of files to
compile in Android.mk. Because this file is using ARM instructions, it obviously won’t
compile if the target ABI is x86. Consequently, your Android.mk file should make sure
the file is only part of the list of files to compile when it is compatible with the ABI.
Listing 3–9 shows how to modify Android.mk accordingly.

Listing 3–9. Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)
LOCAL_MODULE := chapter3
LOCAL_SRC_FILES := gcd.c

ifeq ($(TARGET_ARCH_ABI),armeabi)
LOCAL_SRC_FILES += gcd_asm.S
endif

ifeq ($(TARGET_ARCH_ABI),armeabi-v7a)
LOCAL_SRC_FILES += gcd_asm.S
endif

include $(BUILD_SHARED_LIBRARY)

http://

CHAPTER 3: Advanced NDK 79

Because gcd_asm.S is already written using assembly code, the resulting object file
should look extremely similar to the source file. Listing 3–10 shows the disassembled
code and indeed, the disassembled code is virtually identical to the source.

Listing 3–10. Disassembled gcd_asm Code

00000000 <gcd_asm>:
 0: e1500001 cmp r0, r1
 4: c0400001 subgt r0, r0, r1
 8: b0411000 sublt r1, r1, r0
 c: 1afffffb bne 0 <gcd_asm>
 10: e12fff1e bx lr

NOTE: The assembler may in some cases substitute some instructions for others so you may

still observe slight differences between the code you wrote and the disassembled code.

By simplifying the assembly code, we achieved better results without dramatically
making maintenance more complicated.

Color Conversion
A common operation in graphics routines is to convert a color from one format to
another. For example, a 32-bit value representing a color with four 8-bit channels (alpha,
red, green, and blue) could be converted to a 16-bit value representing a color with three
channels (5 bits for red, 6 bits for green, 5 bits for blue, no alpha). The two formats
would typically be referred to as ARGB8888 and RGB565 respectively.

Listing 3–11 shows a trivial implementation of such a conversion.

Listing 3–11. Implementation of Color Conversion Function

unsigned int argb888_to_rgb565 (unsigned int color)
{
 /*
 input: aaaaaaaarrrrrrrrggggggggbbbbbbbb
 output: 0000000000000000rrrrrggggggbbbbb
 */

 return
 /* red */ ((color >> 8) & 0xF800) |
 /* green */ ((color >> 5) & 0x07E0) |
 /* blue */ ((color >> 3) & 0x001F);
}

Once again, five pieces of assembly code can be analyzed. Listing 3–12 shows the x86
assembly code, Listing 3–13 shows the ARMv5 assembly code in ARM mode, Listing 3–
14 shows the ARMv7 assembly code in ARM mode, Listing 3–15 shows the ARMv5
assembly code in Thumb mode, and finally Listing 3–16 shows the ARMv7 assembly
code in Thumb mode.

http://

CHAPTER 3: Advanced NDK 80

Listing 3–12. x86 Assembly Code

00000000 <argb8888_to_rgb565>:
 0: 8b 54 24 04 mov 0x4(%esp),%edx
 4: 89 d0 mov %edx,%eax
 6: 89 d1 mov %edx,%ecx
 8: c1 e8 05 shr $0x5,%eax
 b: c1 e9 08 shr $0x8,%ecx
 e: 25 e0 07 00 00 and $0x7e0,%eax
 13: 81 e1 00 f8 00 00 and $0xf800,%ecx
 19: c1 ea 03 shr $0x3,%edx
 1c: 09 c8 or %ecx,%eax
 1e: 83 e2 1f and $0x1f,%edx
 21: 09 d0 or %edx,%eax
 23: c3 ret

Listing 3–13. ARMv5 Assembly Code (ARM Mode)

00000000 <argb8888_to_rgb565>:
 0: e1a022a0 lsr r2, r0, #5
 4: e1a03420 lsr r3, r0, #8
 8: e2022e7e and r2, r2, #2016 ; 0x7e0
 c: e2033b3e and r3, r3, #63488 ; 0xf800
 10: e1a00c00 lsl r0, r0, #24
 14: e1823003 orr r3, r2, r3
 18: e1830da0 orr r0, r3, r0, lsr #27
 1c: e12fff1e bx lr

Listing 3–14. ARMv7 Assembly Code (ARM Mode)

00000000 <argb8888_to_rgb565>:
 0: e7e431d0 ubfx r3, r0, #3, #5
 4: e1a022a0 lsr r2, r0, #5
 8: e1a00420 lsr r0, r0, #8
 c: e2022e7e and r2, r2, #2016 ; 0x7e0
 10: e2000b3e and r0, r0, #63488 ; 0xf800
 14: e1820000 orr r0, r2, r0
 18: e1800003 orr r0, r0, r3
 1c: e12fff1e bx lr

Listing 3–15. ARMv5 Assembly Code (Thumb Mode)

00000000 <argb8888_to_rgb565>:
 0: 23fc movs r3, #252
 2: 0941 lsrs r1, r0, #5
 4: 00db lsls r3, r3, #3
 6: 4019 ands r1, r3
 8: 23f8 movs r3, #248
 a: 0a02 lsrs r2, r0, #8
 c: 021b lsls r3, r3, #8
 e: 401a ands r2, r3
 10: 1c0b adds r3, r1, #0
 12: 4313 orrs r3, r2
 14: 0600 lsls r0, r0, #24
 16: 0ec2 lsrs r2, r0, #27
 18: 1c18 adds r0, r3, #0
 1a: 4310 orrs r0, r2
 1c: 4770 bx lr
 1e: 46c0 nop (mov r8, r8)

http://

CHAPTER 3: Advanced NDK 81

Listing 3–16. ARMv7 Assembly Code (Thumb Mode)

00000000 <argb888_to_rgb565>:
 0: 0942 lsrs r2, r0, #5
 2: 0a03 lsrs r3, r0, #8
 4: f402 62fc and.w r2, r2, #2016 ; 0x7e0
 8: f403 4378 and.w r3, r3, #63488 ; 0xf800
 c: 4313 orrs r3, r2
 e: f3c0 00c4 ubfx r0, r0, #3, #5
 12: 4318 orrs r0, r3
 14: 4770 bx lr
 16: bf00 nop

Simply looking at how many instructions are generated, the ARMv5 code in Thumb
mode seems to be the least efficient. That being said, counting the number of
instructions is not an accurate way of determining how fast or how slow a piece of code
is going to be. To get a closer estimate of the duration, one would have to count how
many cycles each instruction will need to complete. For example, the “orr r3, r2”
instruction needs only one cycle to execute. Today’s CPUs make it quite hard to
compute how many cycles will ultimately be needed as they can execute several
instructions per cycle and in some cases even execute instructions out of order to
maximize throughput.

NOTE: For example, refer to the Cortex-A9 Technical Reference Manual to learn more about the

cycle timings of instructions.

Now, it is possible to write a slightly different version of the same conversion function
using the UBFX and BFI instructions, as shown in Listing 3–17.

Listing 3–17. Hand-crafted Assembly Code

.global argb8888_ro_rgb565_asm

.func argb8888_ro_rgb565_asm

argb8888_ro_rgb565_asm:
 // r0=aaaaaaaarrrrrrrrggggggggbbbbbbbb
 // r1=undefined (scratch register)

 ubfx r1, r0, #3, #5

 // r1=000000000000000000000000000bbbbb

 lsr r0, r0, #10

 // r0=0000000000aaaaaaaarrrrrrrrgggggg

 bfi r1, r0, #5, #6

 // r1=000000000000000000000ggggggbbbbb

 lsr r0, r0, #9

 // r0=0000000000000000000aaaaaaaarrrrr

http://

CHAPTER 3: Advanced NDK 82

 bfi r1, r0, #11, #5

 // r1=0000000000000000rrrrrggggggbbbbb

 mov r0, r1

 // r0=0000000000000000rrrrrggggggbbbbb

 bx lr
.endfunc
.end

Since this code uses the UBFX and BFI instructions (both introduced in the ARMv6T2
architecture), it won’t compile for the armeabi ABI (ARMv5). Obviously it won’t compile
for the x86 ABI either.

Similar to what was shown in Listing 3–9, your Android.mk should make sure the file is
only compiled with the right ABI. Listing 3–18 shows the addition of the rgb.c and
rgb_asm.S files to the build.

Listing 3–18. Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)
LOCAL_MODULE := chapter3
LOCAL_SRC_FILES := gcd.c rgb.c

ifeq ($(TARGET_ARCH_ABI),armeabi)
LOCAL_SRC_FILES += gcd_asm.S
endif

ifeq ($(TARGET_ARCH_ABI),armeabi-v7a)
LOCAL_SRC_FILES += gcd_asm.S rgb_asm.S
endif

include $(BUILD_SHARED_LIBRARY)

If you add rgb_asm.S to the list of files to compile with the armeabi ABI, you will then get
the following errors:

Error: selected processor does not support `ubfx r1,r0,#3,#5'
Error: selected processor does not support `bfi r1,r0,#5,#6'
Error: selected processor does not support `bfi r1,r0,#11,#5'

Parallel Computation of Average
In this example, we want to treat each 32-bit value as four independent 8-bit values and
compute the byte-wise average between two such values. For example, the average of
0x10FF3040 and 0x50FF7000 would be 0x30FF5020 (average of 0x10 and 0x50 is 0x30,
average of 0xFF and 0xFF is 0xFF).

An implementation of such function is shown in Listing 3–19.

http://

CHAPTER 3: Advanced NDK 83

Listing 3–19. Implementation of Parallel Average Function

unsigned int avg8 (unsigned int a, unsigned int b)
{
 return
 ((a >> 1) & 0x7F7F7F7F) +
 ((b >> 1) & 0x7F7F7F7F) +
 (a & b & 0x01010101);
}

Like with the two previous examples, five pieces of assembly code are shown in Listings
3–20 to 3–24.

Listing 3–20. x86 Assembly Code

00000000 <avg8>:
 0: 8b 54 24 04 mov 0x4(%esp),%edx
 4: 8b 44 24 08 mov 0x8(%esp),%eax
 8: 89 d1 mov %edx,%ecx
 a: 81 e1 01 01 01 01 and $0x1010101,%ecx
 10: d1 ea shr %edx
 12: 21 c1 and %eax,%ecx
 14: 81 e2 7f 7f 7f 7f and $0x7f7f7f7f,%edx
 1a: d1 e8 shr %eax
 1c: 8d 14 11 lea (%ecx,%edx,1),%edx
 1f: 25 7f 7f 7f 7f and $0x7f7f7f7f,%eax
 24: 8d 04 02 lea (%edx,%eax,1),%eax
 27: c3 ret

Listing 3–21. ARMv5 Assembly Code (ARM mode)

00000000 <avg8>:
 0: e59f301c ldr r3, [pc, #28] ; 24 <avg8+0x24>
 4: e59f201c ldr r2, [pc, #28] ; 28 <avg8+0x28>
 8: e0003003 and r3, r0, r3
 c: e0033001 and r3, r3, r1
 10: e00200a0 and r0, r2, r0, lsr #1
 14: e0830000 add r0, r3, r0
 18: e00220a1 and r2, r2, r1, lsr #1
 1c: e0800002 add r0, r0, r2
 20: e12fff1e bx lr
 24: 01010101 .word 0x01010101
 28: 7f7f7f7f .word 0x7f7f7f7f

Because the ARMv5 MOV instruction cannot simply copy the value to the register, an
LDR instruction is used instead to copy 0x01010101 to register r3. Similarly, an LDR
instruction is used to copy 0x7f7f7f7f to r2.

Listing 3–22. ARMv7 Assembly Code (ARM Mode)

00000000 <avg8>:
 0: e3003101 movw r3, #257 ; 0x101
 4: e3072f7f movw r2, #32639 ; 0x7f7f
 8: e3403101 movt r3, #257 ; 0x101
 c: e3472f7f movt r2, #32639 ; 0x7f7f
 10: e0003003 and r3, r0, r3
 14: e00200a0 and r0, r2, r0, lsr #1
 18: e0033001 and r3, r3, r1
 1c: e00220a1 and r2, r2, r1, lsr #1
 20: e0830000 add r0, r3, r0

http://

CHAPTER 3: Advanced NDK 84

 24: e0800002 add r0, r0, r2
 28: e12fff1e bx lr

Instead of using an LDR instruction to copy 0x01010101 to r3, the ARMv7 code uses
two MOV instructions: the first one, MOVW, is to copy a 16-bit value (0x0101) to the
bottom 16 bits of r3 while the second one, MOVT, is to copy 0x0101 to the top 16 bits of
r3. After these two instructions, r3 will indeed contain the 0x01010101 value. The rest of
the assembly code looks like the ARMv5 assembly code.

Listing 3–23. ARMv5 Assembly Code (Thumb Mode)

00000000 <avg8>:
 0: b510 push {r4, lr}
 2: 4c05 ldr r4, [pc, #20] (18 <avg8+0x18>)
 4: 4b05 ldr r3, [pc, #20] (1c <avg8+0x1c>)
 6: 4004 ands r4, r0
 8: 0840 lsrs r0, r0, #1
 a: 4018 ands r0, r3
 c: 400c ands r4, r1
 e: 1822 adds r2, r4, r0
 10: 0848 lsrs r0, r1, #1
 12: 4003 ands r3, r0
 14: 18d0 adds r0, r2, r3
 16: bd10 pop {r4, pc}
 18: 01010101 .word 0x01010101
 1c: 7f7f7f7f .word 0x7f7f7f7f

Since this code makes use of the r4 register, it needs to be saved onto the stack and
later restored

Listing 3–24. ARMv7 Assembly Code (Thumb Mode)

00000000 <avg8>:
 0: f000 3301 and.w r3, r0, #16843009 ; 0x1010101
 4: 0840 lsrs r0, r0, #1
 6: 400b ands r3, r1
 8: f000 307f and.w r0, r0, #2139062143 ; 0x7f7f7f7f
 c: 0849 lsrs r1, r1, #1
 e: 1818 adds r0, r3, r0
 10: f001 317f and.w r1, r1, #2139062143 ; 0x7f7f7f7f
 14: 1840 adds r0, r0, r1
 16: 4770 bx lr

The Thumb2 assembly code is more compact as only one instruction is needed to copy
0x01010101 and 0x7f7f7f7f to r3 and r0.

Before deciding to write optimized assembly code, you may stop and think a little bit
about how the C code itself could be optimized. After a little bit of thinking, you may end
up with the code shown in Listing 3–25.

Listing 3–25. Faster Implementation of Parallel Average Function

unsigned int avg8_faster (unsigned int a, unsigned int b)
{
 return (((a ^ b) & 0xFEFEFEFE) >> 1) + (a & b);
}

http://

CHAPTER 3: Advanced NDK 85

The C code is more compact that the first version and would appear to be faster. The
first version used two >>, four &, and two + operations (total of eight “basic” operations)
while the new version uses only five “basic” operations. Intuitively, the second
implementation should be faster. And it is indeed.

Listing 3–26 shows the ARMv7 Thumb resulting assembly code.

Listing 3–26. ARMv7 Assembly Code (Thumb Mode)

00000000 <avg8_faster>:
 0: ea81 0300 eor.w r3, r1, r0
 4: 4001 ands r1, r0
 6: f003 33fe and.w r3, r3, #4278124286 ; 0xfefefefe
 a: eb01 0053 add.w r0, r1, r3, lsr #1
 e: 4770 bx lr

This faster implementation results in faster and more compact code (not including the
instruction to return from the function, four instructions instead of eight).

While this may sound terrific, a closer look at the ARM instruction set reveals the
UHADD8 instruction, which would perform an unsigned byte-wise addition, halving the
results. This happens to be exactly what we want to compute. Consequently, an even
faster implementation can easily be implemented and is shown in Listing 3–27.

Listing 3–27. Hand-crafted Assembly Code

.global avg8_asm

.func avg8_asm

avg8_asm:
 uhadd8 r0, r0, r1
 bx lr
.endfunc
.end

Other “parallel instructions” exist. For example, UHADD16 would be like UHADD8 but
instead of performing byte-wise additions it would perform halfword-wise additions.
These instructions can improve performance significantly but because compilers have a
hard time generating code that uses them, you will often find yourself having to write the
assembly code manually in order to take advantage of them.

NOTE: Parallel instructions were introduced in the ARMv6 architecture so you won’t be able to

use them when compiling for the armeabi ABI (ARMv5).

Writing whole functions using assembly code can quickly become tedious. In many
cases, only parts of a routine would benefit from using assembly code while the rest can
be written in C or C++. The GCC compiler lets you mix assembly with C/C++, as shown
in Listing 3–28.

http://

CHAPTER 3: Advanced NDK 86

Listing 3–28. Assembly Code Mixed With C Code

unsigned int avg8_fastest (unsigned int a, unsigned int b)
{
#if defined(__ARM_ARCH_7A__)
 unsigned int avg;

 asm("uhadd8 %[average], %[val1], %[val2]"
 : [average] "=r" (avg)
 : [val1] "r" (a), [val2] "r" (b));

 return avg;
#else
 return (((a ^ b) & 0xFEFEFEFE) >> 1) + (a & b); // default generic implementation
#endif
}

NOTE: Visit http://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html for more
information about extended asm and
http://gcc.gnu.org/onlinedocs/gcc/Constraints.html for details about the

constraints. A single asm() statement can include multiple instructions.

The updated Android.mk is shown in Listing 3–29.

Listing 3–29. Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)
LOCAL_MODULE := chapter3
LOCAL_SRC_FILES := gcd.c rgb.c avg8.c

ifeq ($(TARGET_ARCH_ABI),armeabi)
LOCAL_SRC_FILES += gcd_asm.S
endif

ifeq ($(TARGET_ARCH_ABI),armeabi-v7a)
LOCAL_SRC_FILES += gcd_asm.S rgb_asm.S avg8_asm.S
endif

include $(BUILD_SHARED_LIBRARY)

This example shows that sometimes, good knowledge of the instruction set is needed to
achieve the best performance. Since Android devices are mostly based on ARM
architectures, you should focus your attention on the ARM instruction set. The ARM
documentation available on the ARM website (infocenter.arm.com) is of great quality so
make sure you use it.

http://

CHAPTER 3: Advanced NDK 87

ARM Instructions
ARM instructions are plentiful. While the goal is not to document in great detail what
each one does, Table 3–1 shows the list of available ARM instructions, each one with a
brief description.

As you become familiar with them, you will learn that some of them are used much more
often than others, albeit the more obscure ones are often the ones that can dramatically
improve performance. For example, the ADD and MOV are practically ubiquitous while
the SETEND instruction is not going to be used very often (yet it is a great instruction
when you need to access data of different endianness).

NOTE: For detailed information about these instructions, refer to the ARM Compiler Toolchain

Assembler Reference document available at http://infocenter.arm.com.

Table 3–1. ARM Instructions

Mnemonic Description

ADC Add with carry

ADD Add

ADR Generate PC- or register-relative address

ADRL (pseudo-instruction) Generate PC- or register-relative address

AND Logical AND

ASR Arithmetic Shift Right

B Branch

BFC Bit Field Clear

BFI Bit Field Insert

BIC Bit Clear

BKPT Breakpoint

BL Branch with Link

BLX Branch with Link, change instruction set

BX Branch, change instruction set

http://

CHAPTER 3: Advanced NDK 88

Mnemonic Description

BXJ Branch, change to Jazelle

CBZ Compare and Branch if Zero

CBNZ Compare and Branch if Not Zero

CDP Coprocessor Data Processing

CDP2 Coprocessor Data Processing

CHKA Check Array

CLREX Clear Exclusive

CLZ Count Leading Zeros

CMN Compare Negative

CMP Compare

CPS Change Processor State

DBG Debug Hint

DMB Data Memory Barrier

DSB Data Synchronization Barrier

ENTERX Change state to ThumbEE

EOR Exclusive OR

HB Handler Branch

HBL Handler Branch

HBLP Handler Branch

HBP Handler Branch

ISB Instruction Synchronization Barrier

IT If-Then

LDC Load Coprocessor

http://

CHAPTER 3: Advanced NDK 89

Mnemonic Description

LDC2 Load Coprocessor

LDM Load Multiple registers

LDR Load Register

LDR (pseudo-instruction) Load Register

LDRB Load Register with Byte

LDRBT Load Register with Byte, user mode

LDRD Load Registers with two words

LDREX Load Register, Exclusive

LDREXB Load Register with Byte, Exclusive

LDREXD Load Registers with two words, Exclusive

LDREXH Load Registers with Halfword, Exclusive

LDRH Load Register with Halfword

LDRHT Load Register with Halfword, user mode

LDRSB Load Register with Signed Byte

LDRSBT Load Register with Signed Byte, user mode

LDRSH Load Register with Signed Halfword

LDRT Load Register, user mode

LEAVEX Exit ThumbEE state

LSL Logical Shift Left

LSR Logical Shift Right

MAR Move from Registers to 40-bit Accumulator

MCR Move from Register to Coprocessor

MCR2 Move from Register to Coprocessor

http://

CHAPTER 3: Advanced NDK 90

Mnemonic Description

MCRR Move from Registers to Coprocessor

MCRR2 Move from Registers to Coprocessor

MIA Multiply with Internal Accumulate

MIAPH Multiply with Internal Accumulate, Packed Halfwords

MIAxy Multiply with Internal Accumulate, Halfwords

MLA Multiply and Accumulate

MLS Multiply and Subtract

MOV Move

MOVT Move Top

MOV32 (pseudo) Move 32-bit value to register

MRA Move from 40-bit Accumulators to Registers

MRC Move from Coprocessor to Register

MRC2 Move from Coprocessor to Register

MRRC Move from Coprocessor to Registers

MRRC2 Move from Coprocessor to Registers

MRS Move from PSR to Register

MRS Move from system Coprocessor to Register

MSR Move from Register to PSR

MSR Move from Register to system Coprocessor

MUL Multiply

MVN Move Not

NOP No Operation

ORN Logical OR NOT

http://

CHAPTER 3: Advanced NDK 91

Mnemonic Description

ORR Logical OR

PKHBT Pack Halfwords (Bottom + Top)

PKHTB Pack Halfwords (Top + Bottom)

PLD Preload Data

PLDW Preload Data with intent to Write

PLI Preload Instructions

POP Pop registers from stack

PUSH Push registers to stack

QADD Signed Add, Saturate

QADD8 Parallel Signed Add (4 x 8-bit), Saturate

QADD16 Parallel Signed Add (2 x 16-bit), Saturate

QASX Exchange Halfwords, Signed Add and Subtract, Saturate

QDADD Signed Double and Add, Saturate

QDSUB Signed Double and Subtract, Saturate

QSAX Exchange Halfwords, Signed Subtract and Add, Saturate

QSUB Signed Subtract, Saturate

QSUB8 Parallel Signed Subtract (4 x 8-bit), Saturate

QSUB16 Parallel Signed Subtract (2 x 16-bit), Saturate

RBIT Reverse Bits

REV Reverse bytes (change endianness)

REV16 Reverse bytes in halfwords

REVSH Reverse bytes in bottom halfword and sign extend

RFE Return From Exception

http://

CHAPTER 3: Advanced NDK 92

Mnemonic Description

ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

RSC Reverse Subtract with Carry

SADD8 Parallel Signed Add (4 x 8-bit)

SADD16 Parallel Signed Add (2 x 16-bit)

SASX Exchange Halfwords, Signed Add and Subtract

SBC Subtract with Carry

SBFX Signed Bit Field Extract

SDIV Signed Divide

SEL Select bytes

SETEND Set Endianness for memory access

SEV Set Event

SHADD8 Signed Add (4 x 8-bit), halving the results

SHADD16 Signed Add (2 x 16-bit), halving the results

SHASX Exchange Halfwords, Signed Add and Subtract, halving the results

SHSAX Exchange Halfwords, Signed Subtract and Add, halving the results

SHSUB8 Signed Subtract (4 x 8-bit), halving the results

SHSUB16 Signed Subtract (2 x 16-bit), halving the results

SMC Secure Monitor Call

SMLAxy Signed Multiply with Accumulate

SMLAD Dual Signed Multiply Accumulate

SMLAL Signed Multiply Accumulate

http://

CHAPTER 3: Advanced NDK 93

Mnemonic Description

SMLALxy Signed Multiply Accumulate

SMLALD Dual Signed Multiply Accumulate Long

SMLAWy Signed Multiply with Accumulate

SMLSD Dual Signed Multiply Subtract Accumulate

SMLSLD Dual Signed Multiply Subtract Accumulate Long

SMMLA Signed top word Multiply with Accumulate

SMMLS Signed top word Multiply with Subtract

SMMUL Signed top word Multiply

SMUAD Dual Signed Multiply and Add

SMULxy Signed Multiply

SMULL Signed Multiply

SMULWy Signed Multiply

SMUSD Dual Signed Multiply and Subtract

SRS Store Return State

SSAT Signed Saturate

SSAT16 Signed Saturate, parallel halfwords

SSAX Exchange Halfwords, Signed Subtract and Add

SSUB8 Signed Byte-wise subtraction

SSUB16 Signed Halfword-wise subtraction

STC Store Coprocessor

STC2 Store Coprocessor

STM Store Multiple Registers (see LDM)

STR Store Register (see LDR)

http://

CHAPTER 3: Advanced NDK 94

Mnemonic Description

STRB Store Register with byte

STRBT Store Register with byte, user mode

STRD Store Registers with two words

STREX Store Register, Exclusive (see LDREX)

STREXB Store Register with Byte, Exclusive

STREXD Store Register with two words, Exclusive

STREXH Store Register with Halfword, Exclusive

STRH Store Register with Halfword

STRHT Store Register with Halfword, user mode

STRT Store Register, user mode

SUB Subtract

SUBS Exception Return, no stack

SVC Supervisor Call

SWP Swap Registers and Memory (deprecated in v6)

SWPB Swap Registers and Memory (deprecated in v6)

SXTAB Sign Extend Byte and Add

SXTAB16 Sign Extend two 8-bit values to two 16-bit values and Add

SXTAH Sign Extend Halfword and Add

SXTB Sign Extend Byte

SXTB16 Sign Extend two 8-bit values to two 16-bit values

SXTH Sign Extend Halfword

SYS Execute system coprocessor instruction

TBB Table Branch Byte

http://

CHAPTER 3: Advanced NDK 95

Mnemonic Description

TBH Table Branch Halfword

TEQ Test Equivalence

TST Test

UADD8 Parallel Unsigned Add (4 x 8-bit)

UADD16 Parallel Unsigned Add (2 x 16-bit)

UASX Exchange Halfwords, Unsigned Add and Subtract

UBFX Unsigned Bit Field Extract

UDIV Unsigned Divide

UHADD8 Unsigned Add (4 x 8-bit), halving the results

UHADD16 Unsigned Add (2 x 16-bit), halving the results

UHASX Exchange Halfwords, Unsigned Add and Subtract, halving the results

UHSAX Exchange Halfwords, Unsigned Subtract and Add, halving the results

UHSUB8 Unsigned Subtract (4 x 8-bit), halving the results

UHSUB16 Unsigned Subtract (2 x 16-bit), halving the results

USAD8 Unsigned Sum of Absolute Difference

USADA8 Accumulate Unsigned Sum of Absolute Difference

USAT Unsigned Saturate

USAT16 Unsigned Saturate, parallel halfwords

USAX Exchange Halfwords, Unsigned Subtract and Add

USUB8 Unsigned Byte-wise subtraction

USUB16 Unsigned Halfword-wise subtraction

UXTB Zero Extend Byte

UXTB16 Zero Extend two 8-bit values to two 16-bit values

http://

CHAPTER 3: Advanced NDK 96

Mnemonic Description

UXTH Zero Extend, Halfword

WFE Wait For Event

WFI Wait For Interrupt

YIELD Yield

ARM NEON
NEON is a 128-bit SIMD (Single Instruction, Multiple Data) extension to the Cortex A
family of processors. If you understood what the UHADD8 instruction was doing in
Listing 3–27, then you will easily understand NEON.

NEON registers are seen as vectors. For example, a 128-bit NEON register can be seen
as four 32-bit integers, eight 16-bit integers, or even sixteen 8-bit integers (the same
way the UHADD8 instruction interprets a 32-bit register as four 8-bit values). A NEON
instruction would then perform the same operation on all elements.

NEON has several important features:

� Single instruction can perform multiple operations (after all, this is
the essence of SIMD instructions)

� Independent registers

� Independent pipeline

Many NEON instructions will look similar to ARM instructions. For example, the VADD
instruction will add corresponding elements in two vectors, which is similar to what the
ADD instruction does (although the ADD instruction simply adds two 32-bit registers and
does not treat them as vectors). All NEON instructions start with the letter V, so
identifying them is easy.

There are basically two ways to use NEON in your code:

� You can use NEON instructions in hand-written assembly code.

� You can use NEON intrinsics defined in arm-neon.h, a header file
provided in the NDK.

The NDK provides sample code for NEON (hello-neon), so you should first review this
code. While using NEON can greatly increase performance, it may also require you to
modify your algorithms a bit to fully take advantage of vectorization.

To use NEON instructions, make sure you add the .neon suffix to the file name in
Android.mk’s LOCAL_SRC_FILES. If all files need to be compiled with NEON support,
you can set LOCAL_ARM_NEON to true in Android.mk.

http://

CHAPTER 3: Advanced NDK 97

A great way to learn about NEON is to look at the Android source code itself. For
example, SkBlitRow_opts_arm.cpp (in the external/skia/src/opts directory) contains
several routines using NEON instructions, using asm() or intrinsics. In the same directory
you will also find SkBlitRow_opts_SSE2.cpp, which contains optimized routines using x86
SIMD instructions. The Skia source code is also available online at
http://code.google.com/p/skia.

CPU Features
As you have seen already, not all CPUs are the same. Even within the same family of
processors (for example, ARM Cortex family), not all processors support the same
features as some are optional. For example, not all ARMv7 processors support the
NEON extension or the VFP extension. For this reason, Android provides functions to
help you query what kind of platform the code is running on. These functions are defined
in cpu-features.h, a header file provided in the NDK, and Listing 3–30 shows you how to
use these functions to determine whether a generic function should be used or one that
takes advantage of the NEON instruction set.

Listing 3–30. Checking CPU Features

#include <cpu-features.h>

static inline int has_features(uint64_t features, uint64_t mask)
{
 return ((features & mask) == mask);
}

static void (*my_function)(int* dst, const int* src, int size); // function pointer

extern void neon_function(int* dst, const int* src, int size); // defined in some other
file
extern void default_function(int* dst, const int* src, int size);

int init () {
 AndroidCpuFamily cpu = android_getCpuFamily();

 uint64_t features = android_getCpuFeatures();

 int count = android_getCpuCount(); // ignore here

 if (cpu == ANDROID_CPU_FAMILY_ARM) {
 if (has_features(features,
 ANDROID_CPU_ARM_FEATURE_ARMv7|
 ANDROID_CPU_ARM_FEATURE_NEON))
 {
 my_function = neon_function;
 }
 else
 {
 // use default functions here
 my_function = default_function; // generic function
 }
 }
 else

http://

CHAPTER 3: Advanced NDK 98

 {
 my_function = default_function; // generic function
 }
}

void call_function(int* dst, const int* src, int size)
{
 // we assume init() was called earlier to set the my_function pointer

 my_function(dst, src, size);
}

To use the CPU features functions, you will have to do two things in your Android.mk:

� Add “cpufeatures” to the list of static libraries to link with
(LOCAL_STATIC_LIBRARIES := cpufeatures).

� Import the android/cpufeatures module by adding $(call import-
module,android/cpufeatures) at the end of Android.mk.

Typically, probing the capabilities of the platform will be one of the first tasks you will
have to perform in order to use the best possible functions.

If your code depends on the presence of the VFP extension, you may have to check also
whether NEON is supported. The ANDROID_CPU_ARM_FEATURE_VFPv3 flag is for the
minimum profile of the extension with sixteen 64-bit floating-point registers (D0 to D15).
If NEON is supported, then thirty-two 64-bit floating-point registers are available (D0 to
D31). Registers are shared between NEON and VFP and registers are aliased:

� Q0 (128-bit) is an alias for D0 and D1 (both 64-bit).

� D0 is an alias for S0 and S1 (S registers are single-precision 32-bit
registers).

The fact that registers are shared and aliased is a very important detail, so make sure
you use registers carefully when hand-writing assembly code.

NOTE: Refer to the NDK’s documentation and more particularly to CPU-FEATURES.html for

more information about the APIs.

C Extensions
The Android NDK comes with the GCC compiler (version 4.4.3 in release 7 of the NDK).
As a consequence, you are able to use the C extensions the GNU Compiler Collection
supports. Among the ones that are particularly interesting, as far as performance is
concerned, are:

� Built-in functions

� Vector instructions

http://

CHAPTER 3: Advanced NDK 99

NOTE: Visit http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html for an

exhaustive list of the GCC C extensions.

Built-in Functions
Built-in functions, sometimes referred to as intrinsics, are functions handled in a special
manner by the compiler. Built-in functions are often used to allow for some constructs
the language does not support, and are often inlined, that is, the compiler replaces the
call with a series of instructions specific to the target and typically optimized. For
example, a call to the __builtin_clz() function would result in a CLZ instruction being
generated (if the code is compiled for ARM and the CLZ instruction is available). When
no optimized version of the built-in function exists, or when optimizations are turned off,
the compiler simply makes a call to a function containing a generic implementation.

For example, GCC supports the following built-in functions:

� __builtin_return_address

� __builtin_frame_address

� __builtin_expect

� __builtin_assume_aligned

� __builtin_prefetch

� __builtin_ffs

� __builtin_clz

� __builtin_ctz

� __builtin_clrsb

� __builtin_popcount

� __builtin_parity

� __builtin_bswap32

� __builtin_bswap64

Using built-in functions allows you to keep your code more generic while still taking
advantage of optimizations available on some platforms.

Vector Instructions
Vector instructions are not really common in C code. However, with more and more
CPUs supporting SIMD instructions, using vectors in your algorithms can accelerate
your code quite significantly.

http://

CHAPTER 3: Advanced NDK 100

Listing 3–31 shows how you can define your own vector type using the vector_size
variable attribute and how you can add two vectors.

Listing 3–31. Vectors

typedef int v4int __attribute__ ((vector_size (16))); // vector of four 4 integers (16
bytes)

void add_buffers_vectorized (int* dst, const int* src, int size)
{
 v4int* dstv4int = (v4int*) dst;
 const v4int* srcv4int = (v4int*) src;
 int i;

 for (i = 0; i < size/4; i++) {
 *dstv4int++ += *srcv4int++;
 }

 // leftovers
 if (size & 0x3) {
 dst = (int*) dstv4int;
 src = (int*) srcv4int;

 switch (size & 0x3) {
 case 3: *dst++ += *src++;
 case 2: *dst++ += *src++;
 case 1:
 default: *dst += *src;
 }
 }
}

// simple implementation
void add_buffers (int* dst, const int* src, int size)
{
 while (size--) {
 *dst++ += *src++;
 }
}

How this code will be compiled depends on whether the target supports SIMD
instructions and whether the compiler is told to use these instructions. To tell the
compiler to use NEON instructions, simply add the .neon suffix to the file name in
Android.mk’s LOCAL_SRC_FILES. Alternatively, you can define LOCAL_ARM_NEON to
true if all files need to be compiled with NEON support.

Listing 3–32 shows the resulting assembly code when the compiler does not use ARM
SIMD instructions (NEON) whereas Listing 3–33 shows the use of the NEON
instructions. (The add_buffers function is compiled the same way and is not shown in
the second listing.) The loop is shown in bold in both listings.

Listing 3–32. Without NEON Instructions

00000000 <add_buffers_vectorized>:
 0: e92d 0ff0 stmdb sp!, {r4, r5, r6, r7, r8, r9, sl, fp}
 4: f102 0803 add.w r8, r2, #3 ; 0x3
 8: ea18 0822 ands.w r8, r8, r2, asr #32

http://

CHAPTER 3: Advanced NDK 101

 c: bf38 it cc
 e: 4690 movcc r8, r2
 10: b08e sub sp, #56
 12: 4607 mov r7, r0
 14: 468c mov ip, r1
 16: ea4f 08a8 mov.w r8, r8, asr #2
 1a: 9201 str r2, [sp, #4]
 1c: f1b8 0f00 cmp.w r8, #0 ; 0x0
 20: 4603 mov r3, r0
 22: 460e mov r6, r1
 24: dd2c ble.n 80 <add_buffers_vectorized+0x80>
 26: 2500 movs r5, #0
 28: f10d 0928 add.w r9, sp, #40 ; 0x28
 2c: 462e mov r6, r5
 2e: f10d 0a18 add.w sl, sp, #24 ; 0x18
 32: f10d 0b08 add.w fp, sp, #8 ; 0x8
 36: 197c adds r4, r7, r5
 38: 3601 adds r6, #1
 3a: e894 000f ldmia.w r4, {r0, r1, r2, r3}
 3e: e889 000f stmia.w r9, {r0, r1, r2, r3}
 42: eb0c 0305 add.w r3, ip, r5
 46: 3510 adds r5, #16
 48: 4546 cmp r6, r8
 4a: cb0f ldmia r3!, {r0, r1, r2, r3}
 4c: e88a 000f stmia.w sl, {r0, r1, r2, r3}
 50: 9b0a ldr r3, [sp, #40]
 52: 9a06 ldr r2, [sp, #24]
 54: 4413 add r3, r2
 56: 9a07 ldr r2, [sp, #28]
 58: 9302 str r3, [sp, #8]
 5a: 9b0b ldr r3, [sp, #44]
 5c: 4413 add r3, r2
 5e: 9a08 ldr r2, [sp, #32]
 60: 9303 str r3, [sp, #12]
 62: 9b0c ldr r3, [sp, #48]
 64: 4413 add r3, r2
 66: 9a09 ldr r2, [sp, #36]
 68: 9304 str r3, [sp, #16]
 6a: 9b0d ldr r3, [sp, #52]
 6c: 4413 add r3, r2
 6e: 9305 str r3, [sp, #20]
 70: e89b 000f ldmia.w fp, {r0, r1, r2, r3}
 74: e884 000f stmia.w r4, {r0, r1, r2, r3}
 78: d1dd bne.n 36 <add_buffers_vectorized+0x36>
 7a: 0136 lsls r6, r6, #4
 7c: 19bb adds r3, r7, r6
 7e: 4466 add r6, ip
 80: 9901 ldr r1, [sp, #4]
 82: f011 0203 ands.w r2, r1, #3 ; 0x3
 86: d007 beq.n 98 <add_buffers_vectorized+0x98>
 88: 2a02 cmp r2, #2
 8a: d00f beq.n ac <add_buffers_vectorized+0xac>
 8c: 2a03 cmp r2, #3
 8e: d007 beq.n a0 <add_buffers_vectorized+0xa0>
 90: 6819 ldr r1, [r3, #0]
 92: 6832 ldr r2, [r6, #0]

http://

CHAPTER 3: Advanced NDK 102

 94: 188a adds r2, r1, r2
 96: 601a str r2, [r3, #0]
 98: b00e add sp, #56
 9a: e8bd 0ff0 ldmia.w sp!, {r4, r5, r6, r7, r8, r9, sl, fp}
 9e: 4770 bx lr
 a0: 6819 ldr r1, [r3, #0]
 a2: f856 2b04 ldr.w r2, [r6], #4
 a6: 188a adds r2, r1, r2
 a8: f843 2b04 str.w r2, [r3], #4
 ac: 6819 ldr r1, [r3, #0]
 ae: f856 2b04 ldr.w r2, [r6], #4
 b2: 188a adds r2, r1, r2
 b4: f843 2b04 str.w r2, [r3], #4
 b8: e7ea b.n 90 <add_buffers_vectorized+0x90>
 ba: bf00 nop

00000000 <add_buffers>:
 0: b470 push {r4, r5, r6}
 2: b14a cbz r2, 18 <add_buffers+0x18>
 4: 2300 movs r3, #0
 6: 461c mov r4, r3
 8: 58c6 ldr r6, [r0, r3]
 a: 3401 adds r4, #1
 c: 58cd ldr r5, [r1, r3]
 e: 1975 adds r5, r6, r5
 10: 50c5 str r5, [r0, r3]
 12: 3304 adds r3, #4
 14: 4294 cmp r4, r2
 16: d1f7 bne.n 8 <add_buffers+0x8>
 18: bc70 pop {r4, r5, r6}
 1a: 4770 bx lr

Listing 3–33. With NEON Instructions

00000000 <add_buffers_vectorized>:
 0: b470 push {r4, r5, r6}
 2: 1cd6 adds r6, r2, #3
 4: ea16 0622 ands.w r6, r6, r2, asr #32
 8: bf38 it cc
 a: 4616 movcc r6, r2
 c: 4604 mov r4, r0
 e: 460b mov r3, r1
 10: 10b6 asrs r6, r6, #2
 12: 2e00 cmp r6, #0
 14: dd0f ble.n 36 <add_buffers_vectorized+0x36>
 16: 460d mov r5, r1
 18: 2300 movs r3, #0
 1a: 3301 adds r3, #1
 1c: ecd4 2b04 vldmia r4, {d18-d19}
 20: ecf5 0b04 vldmia r5!, {d16-d17}
 24: 42b3 cmp r3, r6
 26: ef62 08e0 vadd.i32 q8, q9, q8
 2a: ece4 0b04 vstmia r4!, {d16-d17}
 2e: d1f4 bne.n 1a <add_buffers_vectorized+0x1a>
 30: 011b lsls r3, r3, #4
 32: 18c4 adds r4, r0, r3
 34: 18cb adds r3, r1, r3
 36: f012 0203 ands.w r2, r2, #3 ; 0x3

http://

CHAPTER 3: Advanced NDK 103

 3a: d008 beq.n 4e <add_buffers_vectorized+0x4e>
 3c: 2a02 cmp r2, #2
 3e: 4621 mov r1, r4
 40: d00d beq.n 5e <add_buffers_vectorized+0x5e>
 42: 2a03 cmp r2, #3
 44: d005 beq.n 52 <add_buffers_vectorized+0x52>
 46: 680a ldr r2, [r1, #0]
 48: 681b ldr r3, [r3, #0]
 4a: 18d3 adds r3, r2, r3
 4c: 600b str r3, [r1, #0]
 4e: bc70 pop {r4, r5, r6}
 50: 4770 bx lr
 52: 6820 ldr r0, [r4, #0]
 54: f853 2b04 ldr.w r2, [r3], #4
 58: 1882 adds r2, r0, r2
 5a: f841 2b04 str.w r2, [r1], #4
 5e: 6808 ldr r0, [r1, #0]
 60: f853 2b04 ldr.w r2, [r3], #4
 64: 1882 adds r2, r0, r2
 66: f841 2b04 str.w r2, [r1], #4
 6a: e7ec b.n 46 <add_buffers_vectorized+0x46>

You can quickly see that the loop was compiled in far fewer instructions when NEON
instructions are used. As a matter of fact, the vldmia instruction loads four integers from
memory, the vadd.i32 instruction performs four additions, and the vstmia instruction
stores four integers in memory. This results in more compact and more efficient code.

Using vectors is a double-edged sword though:

� They allow you to use SIMD instructions when available while still
maintaining a generic code that can compile for any ABI, regardless
of its support for SIMD instructions. (The code in Listing 3–31
compiles just fine for the x86 ABI as it is not NEON-specific.)

� They can result in low-performing code when the target does not
support SIMD instructions. (The add_buffers function is far simpler
than its “vectorized” equivalent and results in simpler assembly
code: see how many times data is read from and written to the
stack in add_buffers_vectorized when SIMD instructions are not
used.)

NOTE: Visit http://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html for

more information about vectors.

Tips
The following are a few things you can do in your code relatively easily to achieve better
performance.

http://

CHAPTER 3: Advanced NDK 104

Inlining Functions
Because function calls can be expensive operations, inlining functions (that is, the
process of replacing the function call with the body of the function itself) can make your
code run faster. Making a function inlined is simply a matter of adding the “inline”
keyword as part of its definition. An example of inline function is showed in Listing 3–30.

You should use this feature carefully though as it can result in bloated code, negating
the advantages of the instruction cache. Typically, inlining works better for small
functions, where the overhead of the call itself is significant.

NOTE: Alternatively, use macros.

Unrolling Loops
A classic way to optimize loops is to unroll them, sometimes partially. Results will vary
and you should experiment in order to measure gains, if any. Make sure the body of the
loop does not become too big though as this could have a negative impact on the
instruction cache.

Listing 3–34 shows a trivial example of loop unrolling.

Listing 3–34. Unrolling

void add_buffers_unrolled (int* dst, const int* src, int size)
{
 int i;

 for (i = 0; i < size/4; i++) {
 *dst++ += *src++;
 *dst++ += *src++;
 *dst++ += *src++;
 *dst++ += *src++;
 // GCC not really good at that though... No LDM/STM generated
 }

 // leftovers
 if (size & 0x3) {
 switch (size & 0x3) {
 case 3: *dst++ += *src++;
 case 2: *dst++ += *src++;
 case 1:
 default: *dst += *src;
 }
 }
}

http://

CHAPTER 3: Advanced NDK 105

Preloading Memory
When you know with a certain degree of confidence that specific data will be accessed
or specific instructions will be executed, you can preload (or prefetch) this data or these
instructions before they are used.

Because moving data from external memory to the cache takes time, giving enough time
to transfer the data from external memory to the cache can result in better performance
as this may cause a cache hit when the instructions (or data) are finally accessed.

To preload data, you can use:

� GCC’s __builtin_prefetch()

� PLD and PLDW ARM instructions in assembly code

You can also use the PLI ARM instruction (ARMv7 and above) to preload instructions.

Some CPUs automatically preload memory, so you may not always observe any gain.
However, since you have a better knowledge of how your code accesses data,
preloading data can still yield great results.

TIP: You can use the PLI ARM instruction (ARMv7 and above) to preload instructions.

Listing 3–35 shows how you can take advantage of the preloading built-in function.

Listing 3–35. Preloading Memory

void add_buffers_unrolled_prefetch (int* dst, const int* src, int size)
{
 int i;

 for (i = 0; i < size/8; i++) {
 __builtin_prefetch(dst + 8, 1, 0); // prepare to write
 __builtin_prefetch(src + 8, 0, 0); // prepare to read

 *dst++ += *src++;
 *dst++ += *src++;
 *dst++ += *src++;
 *dst++ += *src++;
 *dst++ += *src++;
 *dst++ += *src++;
 *dst++ += *src++;
 *dst++ += *src++;
 }

 // leftovers
 for (i = 0; i < (size & 0x7); i++) {
 *dst++ += *src++;
 }
}

http://

CHAPTER 3: Advanced NDK 106

You should be careful about preloading memory though as it may in some cases
degrade the performance. Anything you decide to move into the cache will cause other
things to be removed from the cache, possibly impacting performance negatively. Make
sure that what you preload is very likely to be needed by your code or else you will
simply pollute the cache with useless data.

NOTE: While ARM supports the PLD, PLDW, and PLI instructions, x86 supports the PREFETCHT0,
PREFETCHT1, PREFETCHT2, and PREFETCHNTA instructions. Refer to the ARM and x86
documentations for more information. Change the last parameter of __builtin_prefetch()

and compile for x86 to see which instructions will be used.

LDM/STM Instead Of LDR/STD
Loading multiple registers with a single LDM instruction is faster than loading registers
using multiple LDR instructions. Similarly, storing multiple registers with a single STM
instruction is faster than using multiple STR instructions.

While the compiler is often capable of generating such instructions (even when memory
accesses are somewhat scattered in your code), you should try to help the compiler as
much as possible by writing code that can more easily be optimized by the compiler. For
example, the code in Listing 3–36 shows a pattern the compiler should quite easily
recognize and generate LDM and STM instructions for (assuming an ARM ABI). Ideally,
access to memory should be grouped together whenever possible so that the compiler
can generate better code.

Listing 3–36. Pattern to Generate LDM And STM

 unsigned int a, b, c, d;

 // assuming src and dst are pointers to int

 // read source values
 a = *src++;
 b = *src++;
 c = *src++;
 d = *src++;

 // do something here with a, b, c and d

 // write values to dst buffer
 *dst++ = a;
 *dst++ = b;
 *dst++ = c;
 *dst++ = d;

NOTE: Unrolling loops and inlining functions can also help the compiler generate LDM or STM

instructions more easily.

http://

CHAPTER 3: Advanced NDK 107

Unfortunately, the GCC compiler does not always do a great job at generating LDM and
STM instructions. Review the generated assembly code and write the assembly code
yourself if you think performance would improve significantly with the use of the LDM
and STM instructions.

Summary
Dennis Ritchie, the father of the C language, said C has the power of assembly language
and the convenience of… assembly language. In this chapter you saw that in some
cases you may have to use assembly language to achieve the desired results. Although
assembly is a very powerful language that provides an unobfuscated view of the
machine capabilities, it can make maintenance significantly more difficult as by definition
assembly language targets a specific architecture. However, assembly code or built-in
functions would typically be found in very small portions of your application, where
performance is critical, and therefore maintenance should remain relatively easy. If you
carefully select which part of your application should be written in Java, which part
should be written in C, and which part should be written in assembly, you can make sure
your application’s performance is astonishing and impresses your users.

http://

109

 Chapter

Using Memory Efficiently
Applications spend a significant part of their time dealing with data in memory. While
many developers are aware of the need to try to use as little memory as possible on
devices like phones or tablets, not all realize the impact of memory usage on
performance. In this chapter, you will learn how choosing the right data type and how
arranging your data in memory can boost your application’s performance. Also, we will
review a basic yet often overlooked feature of Java: memory management using
garbage collection and references.

A Word On Memory
No matter how much an application is given, it could always ask for more.

There are two big differences between an Android device, like a phone or tablet, and a
traditional computer:

� The amount of physical memory

� The ability to do virtual memory swapping

Typically, today’s computers come installed with several gigabytes of RAM (few come
installed with only 1GB or less), however Android devices often have a maximum of
512MB of RAM. To add insult to injury, computers use swapping, which Android devices
don’t have, to give the system and applications the illusion of more memory. For
example, an application could still address up to 4GB of memory even with a system
that has only 256MB of RAM. Your Android application simply does not have this luxury,
and therefore you have to be more careful about how much memory your application
uses.

NOTE: You can find applications on Android Market that enable swapping, but they require root

access and a different Linux kernel. Assume the Android devices your applications will be

running on do not have swapping capabilities.

4

H. Guihot, Pro Android App
© Hervé Guihot 2012

s Performance Optimization

http://

CHAPTER 4: Using Memory Efficiently 110

The Java language defines the size of most primitive types, as shown in Table 4–1,
together with their matching native types. If you are primarily familiar with C/C++ code,
then you need to pay extra attention to two things:

� Java’s char is 16-bit (UTF-16).

� Java’s long is 64–bit (while C long is usually 32-bit and C long long
is usually 64–bit).

Table 4–1. Java Primitive Types

Java primitive type Native type Size

boolean jboolean 8 bits (VM dependent)

byte jbyte 8 bits

char jchar 16 bits

short jshort 16 bits

int jint 32 bits

long jlong 64 bits

float jfloat 32 bits

double jdouble 64 bits

A good rule of thumb is to use as little memory as possible, which is just common sense
as your Android device and applications have a limited amount of memory. But in
addition to reducing the risk of an OutOfMemoryError exception, using less memory can
also increase performance.

Performance depends mostly on three things:

� How the CPU can manipulate a certain data type

� How much space is needed to store data and instructions

� How data is laid out in memory

We will cover each one of these items, looking at both native code and Java code,
measuring execution times, and comparing several implementations of simple
algorithms to improve performance.

http://

CHAPTER 4: Using Memory Efficiently 111

Data Types
You already got an aperçu of the first point, how the CPU can manipulate a certain data
type, in Chapter 2 with the native code version of computeIterativelyFaster(), which
used two add instructions to add two 64–bit integers, as shown in Listing 4–1.

Listing 4–1. Adding Two 64–bit Integers

 448: e0944002 adds r4, r4, r2
 44c: e0a55003 adc r5, r5, r3

Because the ARM registers are 32-bit wide, two instructions are needed to add two 64–
bit integers; the lowest 32-bit integers are stored in one register (r4), and the highest 32-
bit are stored in another register (r5). Adding two 32-bit values would require a single
instruction.

Let’s now consider the trivial C function, shown in Listing 4–2, which simply returns the
sum of two 32-bit values passed as parameters.

Listing 4–2. Sum of Two Values

int32_t add_32_32 (int32_t value1, int32_t value2)
{
 return value1 + value2;
}

The assembly code for this function is shown in Listing 4–3.

Listing 4–3. Assembly Code

000016c8 <add_32_32>:
 16c8: e0810000 add r0, r1, r0
 16cc: e12fff1e bx lr

As expected, only one instruction is needed to add the two values (and bx lr is the
equivalent of return). We can now create new functions that are very much like
add_32_32, but with different types for value1 and value2. For example, add_16_16 adds
two int16_t values, as shown in Listing 4–4, and add_16_32 adds an int16_t value and
an int32_t value, as shown in Listing 4–5.

Listing 4–4. add_16_16’s C and Assembly

int16_t add_16_16 (int16_t value1, int16_t value2)
{
 return value1 + value2;
}

000016d0 <add_16_16>:
 16d0: e0810000 add r0, r1, r0
 16d4: e6bf0070 sxth r0, r0
 16d8: e12fff1e bx lr

Listing 4–5. add_16_32’s C And Assembly

int32_t add_16_32 (int16_t value1, int32_t value2)
{
 return value1 + value2;

http://

CHAPTER 4: Using Memory Efficiently 112

}

000016dc <add_16_32>:
 16dc: e0810000 add r0, r1, r0
 16e0: e12fff1e bx lr

You can see that adding two 16- values required an additional instruction in order to
convert the result from 16-bit to 32-bit.

Listing 4–6 shows five more functions, repeating basically the same algorithm but for
different data types.

Listing 4–6. More Assembly Code

000016e4 <add_32_64>:
 16e4: e0922000 adds r2, r2, r0
 16e8: e0a33fc0 adc r3, r3, r0, asr #31
 16ec: e1a00002 mov r0, r2
 16f0: e1a01003 mov r1, r3
 16f4: e12fff1e bx lr

000016f8 <add_32_float>:
 16f8: ee070a10 fmsr s14, r0
 16fc: eef87ac7 fsitos s15, s14
 1700: ee071a10 fmsr s14, r1
 1704: ee777a87 fadds s15, s15, s14
 1708: eefd7ae7 ftosizs s15, s15
 170c: ee170a90 fmrs r0, s15
 1710: e12fff1e bx lr

00001714 <add_float_float>:
 1714: ee070a10 fmsr s14, r0
 1718: ee071a90 fmsr s15, r1
 171c: ee377a27 fadds s14, s14, s15
 1720: ee170a10 fmrs r0, s14
 1724: e12fff1e bx lr

00001728 <add_double_double>:
 1728: ec410b16 vmov d6, r0, r1
 172c: ec432b17 vmov d7, r2, r3
 1730: ee366b07 faddd d6, d6, d7
 1734: ec510b16 vmov r0, r1, d6
 1738: e12fff1e bx lr

0000173c <add_float_double>:
 173c: ee060a10 fmsr s12, r0
 1740: eeb77ac6 fcvtds d7, s12
 1744: ec432b16 vmov d6, r2, r3
 1748: ee376b06 faddd d6, d7, d6
 174c: ec510b16 vmov r0, r1, d6
 1750: e12fff1e bx lr

http://

CHAPTER 4: Using Memory Efficiently 113

NOTE: The generated native code may differ from what is shown here as a lot depends on the
context of the addition. (Code that is inline may look different as the compiler may reorder

instructions or change the register allocation.)

As you can see, using a smaller type is not always beneficial to performance as it may
actually require more instructions, as demonstrated in Listing 4–4. Besides, if add_16_16
were called with two 32-bit values as parameters, these two values would first have to
be converted to 16-bit values before the actual call, as shown in Listing 4–7. Once
again, the sxth instruction is used to convert the 32-bit values into 16-bit values by
performing a “sign extend” operation.

Listing 4–7. Calling add_16_16 With Two 32-Bit Values

00001754 <add_16_16_from_32_32>:
 1754: e6bf0070 sxth r0, r0
 1758: e6bf1071 sxth r1, r1
 175c: eaffffdb b 16d0 <add_16_16>

Comparing Values
Let’s now consider another basic function, which takes two parameters and returns 0 or
1 depending on whether the first parameter is greater than the second one, as shown in
Listing 4–8.

Listing 4–8. Comparing Two Values

int32_t cmp_32_32 (int32_t value1, int32_t value2)
{
 return (value1 > value2) ? 1 : 0;
}

Again, we can see the assembly code for this function and its variants in Listing 4–9.

Listing 4–9. Comparing Two Values In Assembly

00001760 <cmp_32_32>:
 1760: e1500001 cmp r0, r1
 1764: d3a00000 movle r0, #0 ; 0x0
 1768: c3a00001 movgt r0, #1 ; 0x1
 176c: e12fff1e bx lr

00001770 <cmp_16_16>:
 1770: e1500001 cmp r0, r1
 1774: d3a00000 movle r0, #0 ; 0x0
 1778: c3a00001 movgt r0, #1 ; 0x1
 177c: e12fff1e bx lr

00001780 <cmp_16_32>:
 1780: e1500001 cmp r0, r1
 1784: d3a00000 movle r0, #0 ; 0x0
 1788: c3a00001 movgt r0, #1 ; 0x1
 178c: e12fff1e bx lr

http://

CHAPTER 4: Using Memory Efficiently 114

00001790 <cmp_32_64>:
 1790: e92d0030 push {r4, r5}
 1794: e1a04000 mov r4, r0
 1798: e1a05fc4 asr r5, r4, #31
 179c: e1550003 cmp r5, r3
 17a0: e3a00000 mov r0, #0 ; 0x0
 17a4: ca000004 bgt 17bc <cmp_32_64+0x2c>
 17a8: 0a000001 beq 17b4 <cmp_32_64+0x24>
 17ac: e8bd0030 pop {r4, r5}
 17b0: e12fff1e bx lr
 17b4: e1540002 cmp r4, r2
 17b8: 9afffffb bls 17ac <cmp_32_64+0x1c>
 17bc: e3a00001 mov r0, #1 ; 0x1
 17c0: eafffff9 b 17ac <cmp_32_64+0x1c>

000017c4 <cmp_32_float>:
 17c4: ee070a10 fmsr s14, r0
 17c8: eef87ac7 fsitos s15, s14
 17cc: ee071a10 fmsr s14, r1
 17d0: eef47ac7 fcmpes s15, s14
 17d4: eef1fa10 fmstat
 17d8: d3a00000 movle r0, #0 ; 0x0
 17dc: c3a00001 movgt r0, #1 ; 0x1
 17e0: e12fff1e bx lr

000017e4 <cmp_float_float>:
 17e4: ee070a10 fmsr s14, r0
 17e8: ee071a90 fmsr s15, r1
 17ec: eeb47ae7 fcmpes s14, s15
 17f0: eef1fa10 fmstat
 17f4: d3a00000 movle r0, #0 ; 0x0
 17f8: c3a00001 movgt r0, #1 ; 0x1
 17fc: e12fff1e bx lr

00001800 <cmp_double_double>:
 1800: ee060a10 fmsr s12, r0
 1804: eeb77ac6 fcvtds d7, s12
 1808: ec432b16 vmov d6, r2, r3
 180c: eeb47bc6 fcmped d7, d6
 1810: eef1fa10 fmstat
 1814: d3a00000 movle r0, #0 ; 0x0
 1818: c3a00001 movgt r0, #1 ; 0x1
 181c: e12fff1e bx lr

00001820 <cmp_float_double>:
 1820: ee060a10 fmsr s12, r0
 1824: eeb77ac6 fcvtds d7, s12
 1828: ec432b16 vmov d6, r2, r3
 182c: eeb47bc6 fcmped d7, d6
 1830: eef1fa10 fmstat
 1834: d3a00000 movle r0, #0 ; 0x0
 1838: c3a00001 movgt r0, #1 ; 0x1
 183c: e12fff1e bx lr
 1840: e3a00001 mov r0, #1 ; 0x1
 1844: e12fff1e bx lr

http://

CHAPTER 4: Using Memory Efficiently 115

Using the long type appears to be slower than using the short and int types because of
the higher number of instructions having to be executed. Similarly, using the double type
and mixing float and double seems to be slower than using the float type alone.

NOTE: The number of instructions alone is not enough to determine whether code will be slower
or not. Because not all instructions take the same amount of time to complete, and because of

the complex nature of today’s CPUs, one cannot simply count the number of instructions to know

how much time a certain operation will take.

Other Algorithms
Now that we have seen what difference data types can make on the generated code, it
is time to see how slightly more sophisticated algorithms perform when dealing with
more significant amounts of data.

Listing 4–10 shows three simple methods: one that sorts an array by simply calling the
static Arrays.sort() method, one that finds the minimum value in an array, and one that
adds all the elements in an array.

Listing 4–10. Sorting, Finding, and Summing in Java

private static void sort (int array[]) {
 Arrays.sort(array);
}

private static int findMin (int array[]) {
 int min = Integer.MAX_VALUE;
 for (int e : array) {
 if (e < min) min = e;
 }
 return min;
}

private static int addAll (int array[]) {
 int sum = 0;
 for (int e : array) {
 sum += e; // this could overflow but we’ll ignore that
 }
 return sum;
}

Table 4–2 shows how many milliseconds each of these functions took to complete when
given an array of one million random elements. In addition to these, the results for the
variants of these methods (using short, long, float, and double types) are also shown.
Refer to Chapter 6 for more information on how to measure execution times.

http://

CHAPTER 4: Using Memory Efficiently 116

Table 4–2. Execution Times With 1,000,000-Element Array

Java primitive type sort findMin addAll

short 93 27 25

int 753 31 30

long 1,240 57 54

float 1,080 41 33

double 1,358 58 55

We can make a couple of comments on these results:

� Sorting the short array is much faster than sorting any of the other
arrays.

� Working with 64–bit types (long or double) is slower than working
with 32-bit types.

Sorting Arrays
Sorting an array of 16-bit values can be much faster than sorting an array of 32- or 64–
bit values simply because it is using a different algorithm. While the int and long arrays
are sorted using some version of Quicksort algorithm, the short array was sorted using
counting sort, which sorts in linear time. Using the short type in that case is killing two
birds with one stone: less memory is consumed (2 megabytes instead of 4 for the array
of int values, and 8 megabytes for the array of long values) and performance is
improved.

NOTE: Many wrongly believe Quicksort is always the most efficient sorting algorithm. You can

refer to Arrays.java in the Android source code to see how each type of array is sorted.

A less common solution is to use multiple arrays to store your data. For example, if your
application needs to store many integers all in the range 0 to 100,000, then you may be
tempted to allocate an array of 32-bit values for storage as the short type can be used
only to store values from -32,768 to 32,767. Depending on how values are distributed,
you may end up with many values equal to or less than 32,767. In such an event, it may
be beneficial to use two arrays: one for all the values between 0 and 32,767 (that is, an
array of short values), and one for all values greater than 32,767 (an array of int values).
While this most likely would result in a greater complexity, the memory savings and
potential performance increase may make that solution worthwhile, and perhaps even
allow you to optimize the implementation of certain methods. For example, a method
that finds the maximum element may only have to go through the array of int values.
(Only if the array of int values is empty would it go through the array of short values.)

http://

CHAPTER 4: Using Memory Efficiently 117

One of the types that was not shown in Listing 4–9 and Table 4–2 is the boolean type. In
fact, sorting an array of boolean values makes little sense. However, there may be
occasions where you need to store a rather large number of boolean values and refer to
them by index. For that purpose, you could simply create an array. While this would
work, this would result in many bits being wasted as 8 bits would be allocated for each
entry in the array when actually a boolean value can only be true or false. In other words,
only one bit is needed to represent a boolean value. For that purpose, the BitSet class
was defined: it allows you to store boolean values in an array (and allows you to refer to
them by index) while at the same time using the minimum amount of memory for that
array (one bit per entry). If you look at the public methods of the BitSet class and its
implementation in BitSet.java, you may notice a few things that deserve your attention:

� BitSet’s backend is an array of long values. You may achieve better
performance using an array of int values. (Tests showed a gain of
about 10% when switching to an int array.)

� Some notes in the code indicate some things should be changed for
better performance (for example, see the comment starting with
FIXME).

� You may not need all the features from that class.

For all these reasons, it would be acceptable for you to implement your own class,
possibly based on BitSet.java to improve performance.

Defining Your Own Classes
Listing 4–11 shows a very simple implementation that would be acceptable if the array
does not need to grow after the creation of the object, and if the only operations you
need to perform are to set and get the value of a certain bit in the array, for example as
you implement your own Bloom filter. When using this simple implementation versus
BitSet, tests showed performance improved by about 50%. We achieved even better
performance by using a simple array instead of the SimpleBitSet class: using an array
alone was about 50% faster than using a SimpleBitSet object (that is, using an array
was 4 times faster than using a BitSet object). This practice actually goes against the
encapsulation principle of object-oriented design and languages, so you should do this
with care.

Listing 4–11. Defining Your Own BitSet-like Class

public class SimpleBitSet {
 private static final int SIZEOF_INT = 32;
 private static final int OFFSET_MASK = SIZEOF_INT - 1; // 0x1F

 private int[] bits;

 SimpleBitSet(int nBits) {
 bits = new int[(nBits + SIZEOF_INT - 1) / SIZEOF_INT];
 }

 void set(int index, boolean value) {

http://

CHAPTER 4: Using Memory Efficiently 118

 int i = index / SIZEOF_INT;
 int o = index & OFFSET_MASK;
 if (value) {
 bits[i] |= 1 << o; // set bit to 1
 } else {
 bits[i] &= ~(1 << o); // set bit to 0
 }
 }

 boolean get(int index) {
 int i = index / SIZEOF_INT;
 int o = index & OFFSET_MASK;
 return 0 != (bits[i] & (1 << o));
 }
}

Alternatively, if most bits are set to the same value, you may want to use a
SparseBooleanArray to save memory (possibly at the cost of performance). Once again,
you could use the Strategy pattern discussed in Chapter 2 to easily select one
implementation or the other.

All in all, these examples and techniques can be summarized as follows:

� When dealing with large amounts of data, use the smallest type
possible that meets your requirements. For example, choose an
array of short values over an array of int values, for both
performance and memory consumption reasons. Use float instead
of double if you don’t need the extra precision (and use FloatMath
class if needed).

� Avoid conversions from one type to another. Try to be consistent
and use a single type in your computations, if possible.

� Reinvent the wheel if necessary to achieve better performance, but
do it with care.

Of course, these rules are not set in stone. For example, you may find yourself in a
situation where converting from one type to another could actually give better
performance, despite the conversion overhead. Be pragmatic and fix a problem only
when you determine there is a one.

More often than not, using less memory is a good rule to follow. In addition to simply
leaving more memory available for other tasks, using less memory can improve
performance as CPUs use caches to quickly access data or instructions.

Accessing Memory
As we saw earlier, manipulating larger types can be more costly because of the higher
number of instructions involved. Intuitively, more instructions often result in lower
performance simply because of the extra work the CPU has to perform to execute them.
In addition to that, code and data both reside in memory, and accessing memory itself
has a cost.

http://

CHAPTER 4: Using Memory Efficiently 119

Because accessing memory is a costly operation, a CPU caches the memory that was
recently accessed, whether it was memory that was read from or memory that was
written to. In fact, a CPU typically uses two caches organized in a hierarchy:

� Level 1 cache (L1)

� Level 2 cache (L2)

The L1 cache is the faster but also the smaller of the two. For example, the L1 cache
could be 64 kilobytes (32 kilobytes for data cache, and 32 kilobytes for instruction
cache) whereas an L2 cache could be 512 kilobytes.

NOTE: Some processors may also have a Level 3 cache, typically several megabytes in size, but

you won’t find that on embedded devices yet.

When data or instructions cannot be found in a cache, a cache miss occurs. This is
when data or instructions need to be fetched from main memory. There are several
kinds of cache misses:

� Read miss in instruction cache

� Read miss in data cache

� Write miss

The first type of cache miss is the most critical, as the CPU has to wait until the
instruction is read from memory before it can be executed. The second type of cache
miss can be as critical as the first type, although the CPU may still be able to execute
other instructions that do not depend on the data being fetched. This effectively results
in an out-of-order execution of the instructions. The last type of cache miss is much less
critical, as the CPU can typically continue executing instructions. You will have little
control over write misses, but you should not worry about it much. Your focus should be
on the first two types, which are the kinds of cache misses you want to avoid.

The Cache’s Line Size
Besides its total size, another important property of a cache is its line size. Each entry in
the cache is a line, which contains several bytes. For example, a cache line on a Cortex
A8 L1 cache is 64 bytes (16 words). The idea behind the cache and cache line is the
principle of locality: if your application reads from or writes to a certain address, it is
likely to read from or write to the same address, or a close-enough address in the near
future. For example, this behavior was obvious in the implementation of the findMin()
and addAll() methods in Listing 4–9.

There is no easy way for your application to know the size of a cache and the size of a
cache line. However, knowing the caches exist and having some knowledge about how
caches work can help you write better code and achieve better performance. The
following tips can help you take advantage of the cache without having to recourse to

http://

CHAPTER 4: Using Memory Efficiently 120

low-level optimization, as shown in Chapter 3 with the PLD and PLI assembly
instructions. To reduce the number of cache read misses from the instruction cache:

� Compile your native libraries in Thumb mode. There is no guarantee
this will make your code faster though as Thumb code can be
slower than ARM code (because more instructions may have to be
executed). Refer to Chapter 2 for more information on how to
compile libraries in Thumb mode.

� Keep your code relatively dense. While there is no guarantee dense
Java code will ultimately result in dense native code, this is still quite
often a true assumption.

To reduce the number of cache read misses from the data cache:

� Again, use the smallest type possible when storing a large amount
of data in arrays.

� Choose sequential access over random access. This maximizes the
reuse of data already in the cache, and can prevent data from being
removed from the cache only to be loaded in the cache again later.

NOTE: Modern CPUs are capable of prefetching memory automatically to avoid, or at least limit,

cache misses.

As usual, apply these tips on performance-critical sections of your application, which
usually is only a small part of your code. On the one hand, compiling in Thumb mode is
an easy optimization that does not really increase your maintenance effort. On the other
hand, writing dense code may make things more complicated in the long run. There is
no one-size-fits-all optimization, and you will have the responsibility of balancing the
multiple options you have.

While you don’t necessarily have control over what goes into the cache, how you
structure and use your data can have an impact on what ends up being in the cache,
and therefore can impact performance. In some cases, you may be able to arrange your
data in a specific manner to maximize cache hits, albeit possibly creating greater
complexity and maintenance cost.

Laying Out Your Data
Once again, the principle of encapsulation will be broken. Let’s assume your
application needs to store records of some sort, and each record contains two fields:
an id and a value. A very object-oriented approach is to define a Record class, as
shown in Listing 4–12.

http://

CHAPTER 4: Using Memory Efficiently 121

Listing 4–12. Record Class

public class Record {
 private final short id;
 private final short value;
 // and possibly more

 public Record(short id, short value) {
 this.id = id;
 this.value = value;
 }

 public final short getId() {
 return id;
 }

 public final short getValue() {
 return value;
 }

 public void doSomething() {
 // do something here
 }
}

Now that the Record class is defined, your application could simply allocate an array,
save the records in that array, and provide additional methods, as shown in Listing 4–13.

Listing 4–13. Saving Records

public class MyRecords {
 private Record[] records;
 int nbRecords;

 public MyRecords (int size) {
 records = new Record[size];
 }

 public int addRecord (short id, short value) {
 int index;
 if (nbRecords < records.length) {
 index = nbRecords;
 records[nbRecords] = new Record(id, value);
 nbRecords++;
 } else {
 index = -1;
 }
 return index;
 }

 public void deleteRecord (int index) {
 if (index < 0) {
 // throw exception here – invalid argument
 }
 if (index < nbRecords) {
 nbRecords--;
 records[index] = records[nbRecords];
 records[nbRecords] = null; // don’t forget to delete reference

http://

CHAPTER 4: Using Memory Efficiently 122

 }
 }

 public int sumValues (int id) {
 int sum = 0;
 for (int i = 0; i < nbRecords; i++) {
 Record r = records[i];
 if (r.getId() == id) {
 sum += r.getValue();
 }
 }
 return sum;
 }

 public void doSomethingWithAllRecords () {
 for (int i = 0; i < nbRecords; i++) {
 records[i].doSomething();
 }
 }
}

All of this would work and would result in a pretty clean design. However, there are
drawbacks that may not be visible until you actually run the code:

� A new object is created every single time a record is added to the
array. While each object is lightweight, memory allocations are still
somewhat costly and could be avoided.

� Calls to getId() and getValue() could be avoided if id and value
were public.

If you are allowed to modify the Record class, making id and value public is obviously
trivial. The implementation of sumValues() would then be slightly modified, as shown in
Listing 4–14.

Listing 4–14. Modified sumValues()

 public int sumValues (int id) {
 int sum = 0;
 for (Record r : records) {
 if (r.id == id) {
 sum += r.value;
 }
 }
 return sum;
 }

However, this alone does not reduce the number of allocations at all; record objects still
need to be created as records are added to the array.

NOTE: You could avoid allocations easily in C/C++, but in Java all objects are actually

references and have to be created with the new operator.

http://

CHAPTER 4: Using Memory Efficiently 123

Since all objects are allocated in the heap, and you can only store references to objects
in the array, you can modify the MyRecords class to use an array of short values to
remove the allocations. The modified class is shown in Listing 4–15.

Listing 4–15. Modified MyRecords Class Using a Short Array

public class MyRecords {
 private short[] records;
 int nbRecords;

 public MyRecords (int size) {
 records = new short[size * 2];
 }

 public int addRecord (short id, short value) {
 int index;
 if (nbRecords < records.length) {
 index = nbRecords;
 records[nbRecords * 2] = id;
 records[nbRecords * 2 + 1] = value;
 nbRecords++;
 } else {
 index = -1;
 }
 return index;
 }

 public void deleteRecord (int index) {
 if (index < 0) {
 // throw exception here – invalid argument
 }
 if (index < nbRecords) {
 nbRecords--;
 records[index * 2] = records[nbRecords * 2];
 records[index * 2 + 1] = records[nbRecords * 2 + 1];
 }
 }

 public int sumValues (int id) {
 int sum = 0;
 for (int i = 0; i < nbRecords; i++) {
 if (records[i * 2] == id) {
 sum += records[i * 2 + 1];
 }
 }
 return sum;
 }

 public void doSomethingWithAllRecords () {
 Record r = new Record(0, 0);
 for (int i = 0; i < nbRecords; i++) {
 r.id = records[i * 2];
 r.value = records[i * 2 + 1];
 r.doSomething();
 }
 }
}

http://

CHAPTER 4: Using Memory Efficiently 124

Let’s imagine that, later on, you find out these things about how the MyRecords class is
used:

� sumValues() is called much more often than
doSomethingWillAllRecords().

� Only a few records in the array share the same id.

In other words, that would tell you the id field is read much more often than the value
field. Given this additional piece of information, you could come up with the following
solution to improve performance: using two arrays instead of one, to keep all the ids
close together, maximizes cache hits when sequentially going through the array of ids in
sumValues(). The first array contains only record ids, while the second array contains
only record values. Consequently, more record ids are found in the cache when
sumValues() runs as twice as many record ids would be stored in a single cache line.

The new implementation of MyRecords is shown in Listing 4–16.

Listing 4–16. Modified MyRecords Class Using Two Arrays

public class MyRecords {
 private short[] recordIds; // first array only for ids
 private short[] recordValues; // second array only for values
 int nbRecords;

 public MyRecords (int size) {
 recordIds = new short[size];
 recordValues = new short[size];
 }

 public int addRecord (short id, short value) {
 int index;
 if (nbRecords < recordIds.length) {
 index = nbRecords;
 recordIds[nbRecords] = id;
 recordValues[nbRecords] = value;
 nbRecords++;
 } else {
 index = -1;
 }
 return index;
 }

 public void deleteRecord (int index) {
 if (index < 0) {
 // throw exception here – invalid argument
 }
 if (index < nbRecords) {
 nbRecords--;
 recordIds[index] = recordIds[nbRecords];
 recordValues[index] = recordValues[nbRecords];
 }
 }

 public int sumValues (int id) {
 int sum = 0;
 for (int i = 0; i < nbRecords; i++) {

http://

CHAPTER 4: Using Memory Efficiently 125

 if (recordIds[i] == id) {
 sum += recordValues[i]; // we only read the value if the id matches
 }
 }
 return sum;
 }

 public void doSomethingWithAllRecords () {
 Record r = new Record(0, 0);
 for (int i = 0; i < nbRecords; i++) {
 r.id = recordIds[i];
 r.value = recordValues[i];
 r.doSomething();
 }
 }
}

You may not always be able to apply this kind of optimization though. For example, the
listing above assumes doSomething() does not modify the Record object and assumes
MyRecords does not provide any method to retrieve Record objects from the array. If
these assumptions ever become false, then the implementations in Listings 4–15 and 4–
16 would no longer be equivalent to the one in Listing 4–13.

Keep in mind that you may not be able to optimize your code properly until you find out
how your code is used. Again, follow a pragmatic approach: don’t start optimizing until
you know what problem you are trying to solve, as optimizing one usage pattern may
negatively impact other patterns.

Garbage Collection
One of the great benefits of Java is garbage collection. The garbage collector frees (or
reclaims) memory as objects are no longer in use. For example, the Record object
allocated in doSomethingWithAllRecords() in Listing 4–15 is made eligible for garbage
collection when the method returns, as a reference to that object no longer exists. There
are two very important things to note:

� Memory leaks can still exist.

� Use the garbage collector to help you manage memory as it does
more than just freeing memory not in used anymore.

Memory Leaks
As memory can be reclaimed only when an object is no longer referenced, a memory
leak can occur when a reference to an object is kept around. A typical example from the
Android documentation is when the whole Activity object is leaked as the screen turns
(for example, from portrait to landscape orientation). This particular example is easy to
reproduce and is quite serious as an Activity object uses quite a bit of memory (and
often contains references to even more objects). There is no easy solution to avoiding
memory leaks, however Android provides you with tools and APIs to help you.

http://

CHAPTER 4: Using Memory Efficiently 126

The DDMS perspective in Eclipse lets you track memory usage and memory allocation
with the Heap and Allocation Tracker, respectively. Once again, these tools are not
going to tell you where the memory leak is (if there is any), but you can use them to
analyze your application’s memory usage and hopefully find out if your application has
leaks.

TIP: Use the Eclipse Memory Analyzer to even better analyze your memory usage. You can

download it from http://www.eclipse.org/mat.

Android 2.3 defines the StrictMode class, which can be of great help to detect potential
memory leaks. While StrictMode’s virtual machine policy in Android 2.3 lets you detect
only when SQLite objects (such as cursors) are not closed, StrictMode’s VM policy in
Android 3.0 and above also lets you detect these potential leaks:

� Activity leaks

� Leaks of other objects

� Leaks when objects are not closed (see Android documentation for
complete list of classes implementing the Closeable interface)

NOTE: The StrictMode class was introduced in Android 2.3 (API level 9), but additional
functionalities were added in Android 3.0 (API level 11) in both the VM policy and thread policy.
For example, Honeycomb’s StrictMode’s thread policy supports flashing the screen when a

violation is detected.

Listing 4–17 shows how to use the StrictMode class to detect memory leaks in your
application. You should enable this feature only during development and testing, and
disable it as you release your application into the wild.

Listing 4–17. Using StrictMode

public class MyApplication extends Application {

 @Override
 public void onCreate() {
 super.onCreate();

 StrictMode.VmPolicy.Builder builder = new StrictMode.VmPolicy.Builder();
 builder.detectLeakedSqlLiteObjects();
 if (VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 builder.detectActivityLeaks().detectLeakedClosableObjects();
 }
 // or you could simply call builder.detectAll()

 // penalty
 builder.penaltyLog(); // other penalties exist (e.g. penaltyDeath()) and can be
combined

 StrictMode.VmPolicy vmp = builder.build();

http://

CHAPTER 4: Using Memory Efficiently 127

 StrictMode.setVmPolicy(vmp);
 }
}

In that particular instance, StrictMode detects a violation when a closeable object
(SQLite object or other) is not closed, and will only log the violation. To verify the
behavior, you can simply query a database and purposely forget to close the returned
cursor, for example by modifying the code shown in Listing 1-25 in Chapter 1.

As the StrictMode class evolves, it is recommended you simply use detectAll(), which
allows you to test your application with future Android releases while taking advantage
of the new functionalities the StrictMode class supports.

References
While freeing memory is an important feature of the garbage collector, it does more than
that as it is a complete memory management system. Everybody writing Java code has
heard about references and how an object can be referenced or not. However, too few
seem to know about the multiple types of references. In fact, Java defines four types of
references:

� Strong

� Soft

� Weak

� Phantom

Strong References
Strong references are the references Java developers are the most familiar with.
Creating such a reference is trivial and is done all the time in Java, as shown in Listing
4–18. In fact, they are the references your application should use most of the time. Two
strong references are created, one to an Integer object and one to a BigInteger object.

Listing 4–18. Strong References

 public void printTwoStrings (int n) {
 BigInteger bi = BigInteger.valueOf(n); // strong reference
 Integer i = new Integer(n); // strong reference

 System.out.println(i.toString());
 i = null; // Integer object freshly created is now eligible for garbage
collection

 System.out.println(bi.toString());
 bi = null; // BigInteger object may not be eligible for garbage collection here!
 }

The important thing to notice here is that while setting i to null does make the Integer
object eligible for garbage collection, setting bi to null may not. Because the
BigInteger.valueOf() method may return a preallocated object (for example,

http://

CHAPTER 4: Using Memory Efficiently 128

BigInteger.ZERO), setting bi to null merely removes one strong reference to the
BigInteger object, but more strong references to that same object may still exist. Two
more strong references are created in that method, and they may not be as obvious as
the other ones: the calls to i.toString() and bi.toString() each create a strong
reference to a String object.

NOTE: Strictly speaking, you would have to know the implementation of the Integer constructor
to make sure no strong reference to the new Integer object is created anywhere else and
therefore make sure that setting i to null does indeed make the object eligible for garbage

collection.

As discussed earlier, keeping strong references to objects around can cause memory
leaks. We’ve probably used the term “strong reference” too many times, so it is time to
say that Java does not really define such a term or class. Strong references are “normal”
references, simply referred to (pun intended) as references.

Soft, Weak, and Phantom References
Soft and weak references are similar in nature, as they are references that are not strong
enough to keep an object from being deleted (or reclaimed). They differ in how
aggressively the garbage collector will try to reclaim the object they have a reference to.

An object that is softly reachable, that is, for which there exists a soft reference but no
strong reference, is likely to be left alone by the garbage collector when the collection
occurs but there is still enough memory to hold the object. However, if the garbage
collector determines it needs to reclaim more memory, then it is free to reclaim the softly
reachable object’s memory. This type of reference is the perfect candidate for a cache
that can automatically remove its entries.

TIP: When using a cache, make sure you understand what type of reference it uses. For

example, Android’s LruCache uses strong references.

Weakly reachable objects, that is, objects for which there exists a weak reference but no
strong or soft reference, may be reclaimed as soon as the next collection happens. In
other words, the garbage collector will more aggressively reclaim the memory of weakly
reachable objects. This type of reference is the perfect candidate for mappings that can
be removed automatically as keys are no longer referenced. Use the WeakHashMap class
for this purpose.

NOTE: How aggressive the garbage collector is depends on the actual implementation.

Phantom references are the weakest of the references and are rarely used. They can be
useful if your application needs to know when an object is being garbage collected and

http://

CHAPTER 4: Using Memory Efficiently 129

you need to perform some clean-up at that time. To be truly useful, phantom references
should be registered with a reference queue.

Soft, weak, and phantom references are actually objects themselves and offer a level of
indirection to any other object. For example, you could create a phantom reference to a
soft reference to a weak reference. In practice though, you will almost always create
soft, weak, or phantom references to “strong” references. Listing 4–19 shows an
example of soft and weak references being created, each associated with a different
reference queue.

Listing 4–19. References and Reference Queues

 private Integer strongRef;
 private SoftReference<Integer> softRef;
 private WeakReference<Integer> weakRef;
 private ReferenceQueue<Integer> softRefQueue = new ReferenceQueue<Integer>();
 private ReferenceQueue<Integer> weakRefQueue = new ReferenceQueue<Integer>();

 public void reset () {
 strongRef = new Integer(1);
 softRef = new SoftReference<Integer>(strongRef, softRefQueue);
 weakRef = new WeakReference<Integer>(strongRef, weakRefQueue);
 }

 public void clearStrong () {
 strongRef = null; // no more strong reference, but weak and soft references may
still exist
 }

 public void clearSoft () {
 softRef = null; // no more soft reference, but strong and weak references may
still exist
 }

 public void clearWeak () {
 weakRef = null; // no more weak reference, but strong and soft references may
still exist
 }

 public void pollAndPrint () {
 Reference<? extends Integer> r;
 if ((r = softRefQueue.poll()) != null) {
 do {
 Log.i(TAG, "Soft reference: " + r);
 } while ((r = softRefQueue.poll()) != null);
 } else {
 Log.i(TAG, "Soft reference queue empty");
 }
 if ((r = weakRefQueue.poll()) != null) {
 do {
 Log.i(TAG, "Weak reference: " + r);
 } while ((r = weakRefQueue.poll()) != null);
 } else {
 Log.i(TAG, "Weak reference queue empty");
 }
 }

http://

CHAPTER 4: Using Memory Efficiently 130

 public void gc() {
 System.gc();
 }

Experiment with this code to see when references are enqueued and how this can affect
your application. To take full advantage of the garbage collector’s memory management
abilities, it is important to understand references. You should not try to implement a
similar memory management system when working with caches or maps. Most of the
things you would want to achieve may be left to the garbage collector with a careful use
of references.

Garbage Collection
Garbage collection can occur at various times, and you have little control over when it is
happening. You may be able to give some hint to Android by calling System.gc(), but
ultimately the Dalvik virtual machine gets to decide when garbage collection actually
occurs. There are five situations that prompt garbage collection to occur, and I’ll refer to
them by their log messages, which you can see when using logcat.

� GC_FOR_MALLOC: Occurs when the heap is too full to allocate
memory, and memory must be reclaimed before the allocation can
proceed

� GC_CONCURRENT: Occurs when a (possibly partial) collection
kicks in, usually as there are enough objects to reclaim

� GC_EXPLICIT: Can occur when you call System.gc() to explicitly
request a garbage collection

� GC_EXTERNAL_ALLOC: Does not occur anymore on Honeycomb
or later (as everything is allocated in the heap)

� GC_HPROF_DUMP_HEAP: Occurs when you create an HPROF file

Listing 4–20 shows some log messages from the garbage collector.

Listing 4–20. Garbage Collection Messages

GC_CONCURRENT freed 103K, 69% free 320K/1024K, external 0K/0K, paused 1ms+1ms
GC_EXPLICIT freed 2K, 55% free 2532K/5511K, external 1625K/2137K, paused 55ms

As garbage collection takes time, reducing the number of objects you allocate and then
release can improve performance. This is especially true in Android 2.2 and earlier
versions because garbage collection occurred in the application’s main thread and
could cause pretty serious issues with responsiveness and performance. For example,
some frames in a real-time game could be dropped because too much time was spent
doing garbage collection. Things got better with Android 2.3, with most of the garbage
collection work relocated to a separate thread. As garbage collection occurs, the main
thread is still affected a little bit (a pause of 5 milliseconds or less), but much less than in
previous versions of Android. It is not uncommon for a complete garbage collection to
take over 50 milliseconds. For reference, a 30 frames-per-second game would need

http://

CHAPTER 4: Using Memory Efficiently 131

about 33 milliseconds to render and display each frame, so it is easy to see why
garbage collection on pre-Android 2.3 systems could cause problems.

APIs
Android defines several APIs you can use to learn about how much memory is available
on the system and how much is being used:

� ActivityManager’s getMemoryInfo()

� ActivityManager’s getMemoryClass()

� ActivityManager’s getLargeMemoryClass()

� Debug’s dumpHprofData()

� Debug’s getMemoryInfo()

� Debug’s getNativeHeapAllocatedSize()

� Debug’s getNativeHeapSize()

TIP: Set android:largeHeap to true in your application’s manifest file to use a large heap.
This attribute was introduced in Android 3.0. Note that there is no guarantee the large heap is
any larger than the regular heap. You should try hard to prevent your application from having to

depend on this setting.

Listing 4–21 shows how to use the two getMemoryInfo() methods.

Listing 4–21. Calling getMemoryInfo()

 ActivityManager am = (ActivityManager) getSystemService(Context.ACTIVITY_SERVICE);

 ActivityManager.MemoryInfo memInfo = new ActivityManager.MemoryInfo();
 am.getMemoryInfo(memInfo);
 // use information from memInfo here...

 Debug.MemoryInfo debugMemInfo = new Debug.MemoryInfo();
 Debug.getMemoryInfo(debugMemInfo);
 // use information from debugMemInfo here...

Low Memory
Your application is not alone. It has to share resources with many other applications and
also the system as a whole. Consequently, there may be times when there is not enough
memory for everyone and in this case, Android will ask applications and applications’
components (such as activities or fragments) to tighten their belts.

The ComponentCallbacks interface defines the onLowMemory() API, which is common to
all application components. When it is called, a component is basically asked to release

http://

CHAPTER 4: Using Memory Efficiently 132

objects it does not really need. Typically, your implementation of onLowMemory() would
release:

� Caches or cache entries (for example, LruCache as it uses strong
references)

� Bitmap objects that can be generated again on demand

� Layout objects that are not visible

� Database objects

You should be careful about deleting objects that are costly to recreate. However, not
releasing enough memory may cause Android to be more aggressive and start killing
processes, possibly even your own application. If your application is killed, then it will
have to start from scratch again the next time the user wants to use it. Consequently,
your application should play nice and release as many resources as it can, because it
should benefit not only other applications but also your own. Using lazy initializations in
your code is a good habit; it allows you to implement onLowMemory() later without having
to modify the rest of your code significantly.

Summary
On embedded devices, memory is a scarce resource. Even though today’s cellular
phones and tablets have more and more memory, these devices also run more and
more complex systems and applications. Using memory effectively not only allows your
application to run on older devices with less memory but also to run faster. Remember,
if you give your application memory, it will ask for more.

http://

133

 Chapter

Multithreading and
Synchronization
Chapter 1 introduced the concept of the main thread, or UI thread, in which most events
are handled. Even though you are not prevented from executing all your code from
within the main thread, your application typically uses more than one thread. As a matter
of fact, several threads are created and run as part of your application even if you don’t
create new threads yourself. For example, Eclipse’s DDMS perspective shows these
threads when an application runs on an Android 3.1-based Galaxy Tab 10.1:

� main

� HeapWorker

� GC (Garbage Collector)

� Signal Catcher

� JDWP (Java Debug Wire Protocol)

� Compiler

� Binder Thread #1

� Binder Thread #2

So far, we’ve discussed only the first one in the list, the main thread, so you probably
were not expecting these extra seven. The good news is that you don’t have to worry
about these other threads, which exist mostly for housekeeping; besides, you don’t have
much control over what they actually do. Your focus should be on the main thread and
on not performing any long operation within that thread, to keep your application
responsive.

The particular housekeeping threads Android spawns depends on which Android
version an application is running on. For example, Android 2.1 generates six threads (as
opposed to the eight listed above) because garbage collection takes place in a separate

5

H. Guihot, Pro Android App
© Hervé Guihot 2012

s Performance Optimization

http://

CHAPTER 5: Multithreading and Synchronization 134

thread only in Android 2.3 and above, and the Just-In-Time compiler was not introduced
until Android 2.2.

In this chapter you learn how to create your own threads, how to communicate between
them, how objects can safely be shared between threads, and how, in general, you can
tailor your code to take full advantage of your device’s multithreading capabilities. We
also review common pitfalls to avoid when working with threads in an Android
application.

Threads
A Thread object, that is, an instance of the Thread class defined by Java, is a unit of
execution with its own call stack. Applications can create additional threads easily, as
shown in Listing 5–1. Of course, your application is free to create additional threads to
perform some operations outside of the main thread; very often you will have to do
exactly that to keep your application responsive.

Listing 5–1. Creating Two Threads

 // the run() method can simply be overridden…
 Thread thread1 = new Thread("cheese1") {
 @Override
 public void run() {
 Log.i(”thread1”, "I like Munster");
 }
 };

 // …or a Runnable object can be passed to the Thread constructor
 Thread thread2 = new Thread(new Runnable() {
 public void run() {
 Log.i(”thread2”, "I like Roquefort");
 }
 }, "cheese2");

 // remember to call start() or else the threads won’t be spawned and nothing will
happen
 thread1.start();
 thread2.start();

Executing that code may actually give different results. Because each thread is a
separate unit of execution, and both threads have the same default priority, there is no
guarantee “I like Munster” will be displayed before “I like Roquefort,” even though
thread1 is started first. The actual result depends on the scheduling, which is
implementation-dependent.

NOTE: A typical mistake is to call the run() method instead of start(). This causes the
run() method from the Thread object (and the Runnable object if applicable) to be called

from the current thread. In other words, no new thread would be generated.

http://

CHAPTER 5: Multithreading and Synchronization 135

The two threads above were simply started, with no expectation of a result transmitted
back to the thread that spawned them. While this is sometimes the desired effect, often
you want to get some sort of result from what is being executed in different threads. For
example, your application may want to compute a Fibonacci number in a separate
thread, to keep the application responsive, but would want to update the user interface
with the result of the computation. This scenario is shown in Listing 5–2, where
mTextView is a reference to a TextView widget in your layout and onClick is the method
called when the user clicks on a button, or a view in general (see the android:onClick
attribute in XML layout).

Listing 5–2. Worker Thread to Compute Fibonacci Number

public void onClick (View v) {
 new Thread(new Runnable() {
 public void run() {
 // note the ‘final’ keyword here (try removing it and see what happens)
 final BigInteger f =
Fibonacci.recursiveFasterPrimitiveAndBigInteger(100000);
 mTextView.post(new Runnable() {
 public void run() {
 mTextView.setText(f.toString());
 }
 });
 }
 }, “fibonacci”).start();
}

While this would work just fine, it is also quite convoluted and makes your code harder
to read and maintain. You may be tempted to simplify the code from Listing 5–2 and
replace it with the code shown in Listing 5–3. Unfortunately, this would be a bad idea as
this would simply throw a CalledFromWrongThreadException exception, the reason being
that the Android UI toolkit can be called only from the UI thread. The exception’s
description says “only the original thread that created a view hierarchy can touch its
views.” It is therefore mandatory for the application to make sure TextView.setText() is
called from the UI thread, for example by posting a Runnable object to the UI thread.

Listing 5–3. Invalid Call From Non-UI Thread

public void onClick (View v) {
 new Thread(new Runnable() {
 public void run() {
 BigInteger f = Fibonacci.recursiveFasterPrimitiveAndBigInteger(100000);
 mTextView.setText(f.toString()); // will throw an exception
 }
 }, “fibonacci”).start();
}

TIP: To facilitate debugging, it is good practice to name the threads you spawn. If no name is
specified, a new name will be generated. You can get the name of a thread by calling

Thread.getName().

http://

CHAPTER 5: Multithreading and Synchronization 136

Each thread, regardless of how it was created, has a priority. The scheduler uses the
priority to decide which thread to schedule for execution, that is, which thread gets to
use the CPU. You can change the priority of a thread by calling Thread.setPriority(),
as shown in Listing 5–4.

Listing 5–4. Setting a Thread’s Priority

 Thread thread = new Thread("thread name") {
 @Override
 public void run() {
 // do something here
 }
 };
 thread.setPriority(Thread.MAX_PRIORITY); // highest priority (higher than UI thread)
 thread.start();

If the priority is not specified, the default priority is used. The Thread class defines three
constants:

� MIN_PRIORITY (1)

� NORM_PRIORITY (5) – the default priority

� MAX_PRIORITY (10)

If your application attempts to set a thread’s priority to some out-of-range value, that is,
less than 1 or greater than 10, then an IllegalArgumentException exception will be
thrown.

Android provides another way to set a thread’s priority, based on Linux priorities, with
the Process.setThreadPriority APIs in the android.os package. The following eight
priorities are defined:

� THREAD_PRIORITY_AUDIO (-16)

� THREAD_PRIORITY_BACKGROUND (10)

� THREAD_PRIORITY_DEFAULT (0)

� THREAD_PRIORITY_DISPLAY (-4)

� THREAD_PRIORITY_FOREGROUND (-2)

� THREAD_PRIORITY_LOWEST (19)

� THREAD_PRIORITY_URGENT_AUDIO (-19)

� THREAD_PRIORITY_URGENT_DISPLAY (-8)

You can also use the Process.THREAD_PRIORITY_LESS_FAVORABLE (+1) and
Process.THREAD_PRIORITY_MORE_FAVORABLE as increments (-1). For example to set a
thread’s priority to a slightly higher priority than default, you could set the priority to
(THREAD_PRIORITY_DEFAULT + THREAD_PRIORITY_MORE_FAVORABLE).

http://

CHAPTER 5: Multithreading and Synchronization 137

TIP: Use THREAD_PRIORITY_LESS_FAVORABLE and THREAD_PRIORITY_MORE_FAVORABLE
instead of +1 and -1 so you won’t have to remember whether a higher number means lower of
higher priority. Also, avoid mixing calls to Thread.setPriority and Process.setThreadPriority as this

could make your code confusing. Note that Linux priorities go from -20 (highest) to 19 (lowest)

whereas Thread priorities go from 1 (lowest) to 10 (highest).

Be very careful when you decide to change the priority of your threads. Increasing the
priority of one thread may result in a faster execution of this particular thread but may
negatively impact the other threads, which may not get access to the CPU resource as
quickly as they should, therefore disrupting the user experience as a whole. Consider
implementing a priority aging algorithm if it makes sense for your application.

Even though creating a thread to perform a background task is trivial in Android, as
demonstrated in Listing 5–1, updating the user interface can be quite tedious: it requires
posting the result back to the main thread because calling any View method must be
done from the UI thread.

AsyncTask
Very often, your application has to deal with the sequence that was shown in Listing 5–2:

� Event is received in UI thread

� Operation is to be executed in non-UI thread in response to event

� UI needs to be updated with result of operation

To simplify this common pattern, Android defines the AsyncTask class in Android 1.5 and
above. The AsyncTask class allows your application to easily perform a background
operation and publish the result in the UI thread. Threads, Runnables, and other related
objects are hidden from you for simplicity. Listing 5–5 shows how you would implement
the sequence from Listing 5–2 using the AsyncTask class.

Listing 5–5. Using AsyncTask

public void onClick (View v) {
 // AsyncTask<Params, Progress, Result> anonymous class
 new AsyncTask<Integer, Void, BigInteger>() {
 @Override
 protected BigInteger doInBackground(Integer... params) {
 return Fibonacci.recursiveFasterPrimitiveAndBigInteger(params[0]);
 }

 @Override
 protected void onPostExecute(BigInteger result) {
 mTextView.setText(result.toString());
 }
 }.execute(100000);
}

http://

CHAPTER 5: Multithreading and Synchronization 138

Since doInBackground() is an abstract method, it has to be implemented. While you
don’t have to override onPostExecute(), it is likely you will since one of the main
purposes of AsyncTask is to let you publish the result to the UI thread. The following
AsyncTask protected methods are all called from the UI thread:

� onPreExecute()

� onProgressUpdate(Progress… values)

� onPostExecute(Result result)

� onCancelled()

� onCancelled(Result result) (API introduced in Android 3.0)

The onProgressUpdate() method is called when publishProgress() is called from within
doInBackground(). This method allows you to do things like update the UI as the
background operations are progressing. A typical example would be to update a
progress bar as a file is being downloaded in the background. Listing 5–6 shows how
multiple files can be downloaded.

Listing 5–6. Downloading Multiple Files

AsyncTask<String, Object, Void> task = new AsyncTask<String, Object, Void>() {

 private ByteArrayBuffer downloadFile(String urlString, byte[] buffer) {
 try {
 URL url = new URL(urlString);
 URLConnection connection = url.openConnection();
 InputStream is = connection.getInputStream();
 //Log.i(TAG, "InputStream: " + is.getClass().getName()); // if you are
curious
 //is = new BufferedInputStream(is); // optional line, try with and without
 ByteArrayBuffer baf = new ByteArrayBuffer(640 * 1024);
 int len;
 while ((len = is.read(buffer)) != -1) {
 baf.append(buffer, 0, len);
 }
 return baf;
 } catch (MalformedURLException e) {
 return null;
 } catch (IOException e) {
 return null;
 }
 }

 @Override
 protected Void doInBackground(String... params) {
 if (params != null && params.length > 0) {
 byte[] buffer = new byte[4 * 1024]; // try different sizes (1 for example
will give lower performance)
 for (String url : params) {
 long time = System.currentTimeMillis();
 ByteArrayBuffer baf = downloadFile(url, buffer);
 time = System.currentTimeMillis() - time;
 publishProgress(url, baf, time);
 }

http://

CHAPTER 5: Multithreading and Synchronization 139

 } else {
 publishProgress(null, null);
 }
 return null; // we don’t care about any result but we still have to return
something
 }

 @Override
 protected void onProgressUpdate(Object... values) {
 // values[0] is the URL (String), values[1] is the buffer (ByteArrayBuffer),
values[2] is the duration
 String url = (String) values[0];
 ByteArrayBuffer buffer = (ByteArrayBuffer) values[1];
 if (buffer != null) {
 long time = (Long) values[2];
 Log.i(TAG, "Downloaded " + url + " (" + buffer.length() + " bytes) in " +
time + " milliseconds");
 } else {
 Log.w(TAG, "Could not download " + url);
 }

 // update UI accordingly, etc
 }
};

String url1 = "http://www.google.com/index.html";
String url2 = "http://d.android.com/reference/android/os/AsyncTask.html";
task.execute(url1, url2);
//task.execute("http://d.android.com/resources/articles/painless-threading.html"); //
try that to get exception

The example in Listing 5–6 simply downloads the files in memory (a ByteArrayBuffer
object). If you want to save the file to permanent storage, you should also perform that
operation in a thread other than the UI thread. In addition, the example showed files
downloaded one after the other. Depending on your application’s needs, it may be
better to download several files in parallel.

NOTE: An AsyncTask object must be created in the UI thread and can be executed only once.

When the doInBackground() task is actually scheduled depends on the Android version.
Before Android 1.6, tasks were executed serially, so only one background thread was
needed. Starting with Android 1.6, the single background thread was replaced by a pool
of threads allowing multiple tasks to be executed in parallel to allow for better
performance. However, executing several tasks in parallel can cause serious problems
when synchronization is not implemented properly or when tasks are executed or
completed in a certain order (which may not be the order the developer anticipated).
Consequently, the Android team plans to revert back to a single background thread
model by default after Honeycomb. To continue to allow applications to execute tasks in
parallel, a new executeOnExecutor() API was added in Honeycomb, providing time for
application developers to update their applications accordingly. This new API can be
used together with AsyncTask.SERIAL_EXECUTOR for serial execution or
AsyncTask.THREAD_POOL_EXECUTOR for parallel execution.

http://

CHAPTER 5: Multithreading and Synchronization 140

The planned future change shows that parallel execution requires a careful design and
thorough tests. The Android team may have underestimated the potential problems or
overestimated the applications’ abilities to deal with them when switching to a pool of
threads in Android 1.6, triggering the decision to revert back to a single thread model
after Honeycomb. Applications’ overall quality will improve while more experienced
developers will still have the flexibility to execute tasks in parallel for better performance.

The AsyncTask class can simplify your code when dealing with background tasks and
user-interface updates, however it is not meant to fully replace the more basic classes
Android defines to communicate between threads.

Handlers and Loopers
Android defines two classes in the android.os package that will often be the
cornerstones of the interthread communication in your multithreaded applications:

� Handler

� Looper

While creating an AsyncTask object hides the Handler and Looper details from you, in
some cases you need to use handlers and loopers explicitly, for example when you need
to post a Runnable to a thread other than the main thread.

Handlers
Listing 5–2 gave you a glimpse of how the Handler and Looper work together: you use a
Handler object to post a Runnable in a Looper’s message queue. Your application’s main
thread already has a message queue, so you don’t have to create one explicitly.
However, the threads you create do not come automatically with a message queue and
message loop, so you would have to create one yourself if needed. Listing 5–7 shows
how you can create a thread with a Looper.

Listing 5–7. Thread Class With Message Queue

public class MyThread extends Thread {
 private static final String TAG = “MyThread”;
 private Handler mHandler;

 public MyThread(String name) {
 super(name);
 }

 public Handler getHandler() {
 return mHandler;
 }

 @Override

http://

CHAPTER 5: Multithreading and Synchronization 141

 public void run() {
 Looper.prepare(); // binds a looper to this thread

 mHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 // process messages here
 }
 }
 };
 // the handler is bound to this thread’s looper

 Looper.loop(); // don’t forget to call loop() to start the message loop

 // loop() won’t return until the loop is stopped (e.g., when Looper.quit() is
called)
 }
}

NOTE: The handler object is created in the run() method as it needs to be bound to a specific
looper, which is also created in run() when Looper.prepare() is called. Consequently,

calling getHandler() before the thread is spawned will return null.

Once the thread is running, you can post Runnable objects or send messages to its
message queue, as shown in Listing 5–8.

Listing 5–8. Posting Runnables and Sending Messages

 MyThread thread = new MyThread(“looper thread”);
 thread.start();

 // later...
 Handler handler = thread.getHandler();
 // careful: this could return null if the handler is not initialized yet!

 // to post a runnable
 handler.post(new Runnable() {
 public void run() {
 Log.i(TAG, "Where am I? " + Thread.currentThread().getName());
 }
 });

 // to send a message
 int what = 0; // define your own values
 int arg1 = 1;
 int arg2 = 2;
 Message msg = Message.obtain(handler, what, arg1, arg2);
 handler.sendMessage(msg);

 // another message...
 what = 1;
 msg = Message.obtain(handler, what, new Long(Thread.currentThread().getId()));
 handler.sendMessageAtFrontOfQueue(msg);

http://

CHAPTER 5: Multithreading and Synchronization 142

TIP: Use one of the Message.obtain() or Handler.obtainMessage() APIs to get a
Message object, as they return a Message object from the global message pool, which is more
efficient than allocating a new instance every single time a message is needed. These APIs also

make it simpler to set the various fields of the message.

Loopers
Android provides an easier way to work with looper threads with the HandlerThread
class, which also makes it easier to avoid the potential race condition mentioned in
Listing 5–8, where getHandler() may still return null even after the thread has been
started. Listing 5–9 shows how to use the HandlerThread class.

Listing 5–9. Using the HandlerThread Class

public class MyHandlerThread extends HandlerThread {
 private static final String TAG = "MyHandlerThread";
 private Handler mHandler;

 public MyHandlerThread(String name) {
 super(name);
 }

 public Handler getHandler() {
 return mHandler;
 }

 @Override
 public void start() {
 super.start();
 Looper looper = getLooper(); // will block until thread’s Looper object is
initialized
 mHandler = new Handler(looper) {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 // process messages here
 }
 }
 };
 }
}

Since the handler is created in the start() method instead of in the run() method, it will
be available (via a call to getHandler()) after the start() method returns without any
race condition.

http://

CHAPTER 5: Multithreading and Synchronization 143

Data Types
We have seen two ways to spawn a thread, using the Thread and AsyncTask classes.
When two or more threads access the same data, you need to make sure the data types
support concurrent access. The Java language defines many classes in the
java.util.concurrent package for that purpose:

� ArrayBlockingQueue

� ConcurrentHashMap

� ConcurrentLinkedQueue

� ConcurrentSkipListMap

� ConcurrentSkipListSet

� CopyOnWriteArrayList

� CopyOnWriteArraySet

� DelayQueue

� LinkedBlockingDeque

� LinkedBlockingQueue

� PriorityBlockingQueue

� SynchronousQueue

You will have to carefully select your data types based on your application’s
requirements. Also, the fact that they are concurrent implementations does not
necessarily imply that operations are atomic. In fact, many operations are not atomic
and by design are not meant to be. For example, the putAll() method in the
ConcurrentSkipListMap class is not atomic. A concurrent implementation merely means
that the data structure will not be corrupted when accessed by multiple threads.

Synchronized, Volatile, Memory Model
If you want to share objects between multiple threads but have not implemented any
fine-grained locking mechanism, you can use the synchronized keyword to make sure
your access is thread-safe, as shown in Listing 5–10.

Listing 5–10. Using the Synchronized Keyword

public class MyClass {
 private int mValue;

 public MyClass(int n) {
 mValue = n;
 }

 public synchronized void add (int a) {

http://

CHAPTER 5: Multithreading and Synchronization 144

 mValue += a;
 }

 public synchronized void multiplyAndAdd (int m, int a) {
 mValue = mValue * m + a;
 }
}

The two methods add and multiplyAndAdd in Listing 5–7 are synchronized methods. This
means two things:

� If one thread is executing a synchronized method, other threads
trying to call any synchronized method for the same object have to
wait until the first thread is done.

� When a synchronized method exits, the updated state of the object
is visible to all other threads.

The first item is quite intuitive. The second one should be as well although it still requires
an explanation. As a matter of fact, the Java memory model is such that a modification
to a variable in one thread may not immediately be visible to other threads. Actually, it
may never be visible. Consider the code in Listing 5–11: if one thread calls
MyClass.loop(), and at some point in the future another thread calls
Myclass.setValue(100), the first thread may still not terminate; may carry on looping
forever and always print out a value other than 100, simply because of the Java
language’s memory model.

Listing 5–11. Java Memory Model Impact

public class MyClass {
 private static final String TAG = "MyClass";
 private static int mValue = 0;

 public static void setValue(int n) {
 mValue = n;
 }

 public static void loop () {
 while (mValue != 100) {
 try {
 Log.i(TAG, “Value is ” + mValue);
 Thread.sleep(1000);
 } catch (Exception e) {
 // ignored
 }
 }
 }
}

You have two options to fix that:

� Use the synchronized keyword, as shown in Listing 5–12.

� Use the volatile keyword, as shown in Listing 5–13.

http://

CHAPTER 5: Multithreading and Synchronization 145

Listing 5–12. Adding the Synchronized Keyword

public class MyClass {
 private static final String TAG = "MyClass";
 private static int mValue = 0;

 public static synchronized void setValue(int n) {
 mValue = n;
 }

 public static synchronized int getValue() {
 return mValue;
 }

 public static void loop () {
 int value;
 while ((value = getValue()) != 100) {
 try {
 Log.i(TAG, “Value is ” + value);
 Thread.sleep(1000);
 } catch (Exception e) {
 // ignored
 }
 }
 }
}

Listing 5–13. Adding the Volatile Keyword

public class MyClass {
 private static final String TAG = "MyClass";
 private static volatile int mValue = 0; // we add the volatile keyword and remove
the synchronize keyword

 public static void setValue(int n) {
 mValue = n; // you’d still have to use synchronized if that statement were
mValue += n (not atomic)
 }

 public static void loop () {
 while (mValue != 100) {
 try {
 Log.i(TAG, “Value is ” + mValue);
 Thread.sleep(1000);
 } catch (Exception e) {
 // ignored
 }
 }
 }
}

NOTE: Make sure you understand which statements are atomic. For example, value++ is not
atomic while value = 1 is. This is important as the volatile keyword can only fix
concurrency issues if the statements using the variable are atomic. If they are not, then you have

to use the synchronized keyword instead.

http://

CHAPTER 5: Multithreading and Synchronization 146

You can improve concurrency and throughput by using synchronized statements, as
shown in Listing 5–14, as opposed to making whole methods synchronized. In these
cases, you want to protect only the part that needs to be protected (that is, where
mValue is being modified), but leave the log message outside of the synchronized block.
You can also use objects other than this as a lock.

Listing 5–14. Synchronized Statements

public class MyOtherClass {
 private static final String TAG = "MyOtherClass";
 private int mValue;
 private Object myLock = new Object(); // more than this… there is

 public MyClass(int n) {
 mValue = n;
 }

 public void add (int a) {
 synchronized (myLock) {
 mValue += a;
 }
 Log.i(TAG, "add: a=" + a); // no need to block
 }

 public void multiplyAndAdd (int m, int a) {
 synchronized (myLock) {
 mValue = mValue * m + a;
 }
 Log.i(TAG, " multiplyAndAdd: m=" + m + ", a=" + a); // no need to block
 }
}

Making methods or statements synchronized is the easiest way to guarantee your class
supports concurrent access. However, it may reduce the throughput when not
everything needs to be protected, and even worse, it can cause deadlocks. Indeed,
deadlocks can occur when you call another object’s method from within a synchronized
block, which may attempt to acquire a lock on an object that is already locked and
waiting for your own object’s lock.

TIP: Don’t call another object’s method within a synchronized block unless you can guarantee no
deadlock will occur. Usually, you can guarantee that only when you are the author of the code of

the other object’s class.

In general, it is best to avoid accessing the same object from different threads if you
have any doubt about whether it will work or not. The classes defined by Java are a
good reference, and since the Android code is available, you can refer to the
implementation of these classes to understand the various techniques you can take
advantage of. In addition, to simplify your development, Java defines many classes that
already support thread-safe or concurrent programming, which can be used as the basis
for some of your own algorithms.

http://

CHAPTER 5: Multithreading and Synchronization 147

Concurrency
More classes are defined in the java.util.concurrent.atomic and java.util.concurrent.locks
packages. The java.util.concurrent.atomic package contains the following classes:

� AtomicBoolean

� AtomicInteger

� AtomicIntegerArray

� AtomicIntegerFieldUpdater (abstract)

� AtomicLong

� AtomicLongArray

� AtomicLongFieldUpdater (abstract)

� AtomicMarkableReference

� AtomicReference

� AtomicReferenceArray

� AtomicReferenceFieldUpdater (abstract)

� AtomicStampedReference

Most of these classes require little explanation as they simply define methods to update
values atomically. For example, the AtomicInteger class defines the addAndGet()
method, which adds a given value to the current value of the AtomicInteger object while
returning the updated value. The abstract classes defined in this package are used
internally but would very rarely be used directly in your applications’ code.

In addition to the CountDownLatch, CyclicBarrier, and Semaphore classes from the
java.util.concurrent package, more synchronization aids are defined in the
java.util.concurrent.locks package:

� AbstractOwnableSynchronizer (abstract, since API level 5)

� AbstractQueuedLongSynchronizer (abstract, since API level 9)

� AbstractQueuedLongSynchronizer (since API level 9)

� AbstractQueuedSynchronizer (abstract)

� AbstractQueuedSynchronizer.ConditionObject

� LockSupport

� ReentrantLock

� ReentrantReadWriteLock

� ReentrantReadWriteLock.ReadLock

� ReentrantReadWriteLock.WriteLock

http://

CHAPTER 5: Multithreading and Synchronization 148

These classes are not commonly used in typical Android applications. Perhaps the most
common one you would still use is the ReentrantReadWriteLock class, together with its
ReentrantReadWriteLock.ReadLock and ReentrantReadWriteLock.WriteLock
companions, as they allow for multiple reader threads to have access to the data (as
long as there is no writer thread modifying the data) while there can only be one writer
thread at a time. This is a common object when multiple threads access the same data
for reading only, and you want to maximize throughput.

As a general rule, sharing data between threads creates problems (throughput,
concurrency issues). Synchronization can become quite complex, and you need to have
a solid understanding of the subject and of your code to enable shared data
successfully. Debugging issues related to synchronization can also be quite an
endeavor, so you should aim for simplicity before you try to optimize things like
throughput. Focus on your application’s quality first before any optimization.

Multicore
Recently, a number of Android devices came out based on multicore architecture. For
example, the Samsung Galaxy Tab 10.1 and Motorola Xoom tablets both use a dual-
core processor (Cortex A9 cores). A multicore processor, unlike a single-core processor,
can execute multiple threads simultaneously. That being said, it is easy to see how this
could improve performance as a dual-core processor can theoretically do twice as much
as a single-core one (everything else being equal, for example, clock frequency).
Although optimizing for multiple cores is not as easy as it sounds, and some caveats
exist, your application can definitely leverage the additional power that today’s multicore
processors bring. Devices with dual-core CPUs include:

� Samsung Galaxy Tab 10.1

� Motorola Xoom

� Motorola Phonton 4G

� Motorola Droid 3

� HTC EVO 3D

� LG Optimus 2X

� Samsung Galaxy Nexus

In many cases, you won’t have to worry about how many cores a device has. Delegating
certain operations to a separate thread using a Thread object or AsyncTask is usually
enough as you can still create multiple threads even on a single-core processor. If the
processor has several cores, then threads will simply run on different processor units,
which will be transparent to your application.

That being said, there may be times when you really need to get the most out of the
CPU to achieve an acceptable level of performance and design algorithms especially
tailored for multiple cores.

http://

CHAPTER 5: Multithreading and Synchronization 149

To achieve the best performance, your application may first need to find out how many
cores are available, simply by calling the RunTime.availableProcessors() method, as
shown in Listing 5–15.

Listing 5–15. Getting the Number Of Processors

 // will return 2 on a Galaxy Tab 10.1 or BeBox Dual603, but only 1 on a Nexus S or
Logitech Revue
 final int proc = Runtime.getRuntime().availableProcessors();

Typically, the number of “available processors” is 1 or 2 although future products will be
using quad-core CPUs. Current Android notebooks may already be using quad-core
architecture. Depending on when you plan on making your application available, you
may want to focus on only 1- and 2-core CPUs and only later publish an update to take
advantage of more cores.

NOTE: Assume the number of cores may not always be a power of 2.

Modifying Algorithm For Multicore
Some of the Fibonacci algorithms presented in Chapter 1 are good candidates to take
advantage of multiple cores. Let’s start with the divide-and-conquer algorithm whose
implementation is shown in Listing 5–16 (which is the same implementation shown in
Listing 1-7 in Chapter 1).

Listing 5–16. Fibonacci Divide-and-Conquer Algorithm

public class Fibonacci
{
 public static BigInteger recursiveFasterBigInteger (int n)
 {
 if (n > 1) {
 int m = (n / 2) + (n & 1);

 // two simpler sub-problems
 BigInteger fM = recursiveFasterBigInteger(m);
 BigInteger fM_1 = recursiveFasterBigInteger(m - 1);

 // results are combined to compute the solution to the original problem
 if ((n & 1) == 1) {
 // F(m)^2 + F(m-1)^2
 return fM.pow(2).add(fM_1.pow(2));
 } else {
 // (2*F(m-1) + F(m)) * F(m)
 return fM_1.shiftLeft(1).add(fM).multiply(fM);
 }
 }
 return (n == 0) ? BigInteger.ZERO : BigInteger.ONE;
 }
}

http://

CHAPTER 5: Multithreading and Synchronization 150

This algorithm does what divide-and-conquer algorithms do:

� The original problem is divided into simpler sub-problems.

� The results are then combined to compute the solution to the
original problem.

Since the two sub-problems are independent, it is possible to execute them in parallel
without much synchronization. The Java language defines the ExecutorService
interface, which is implemented by several classes you can use to schedule work to be
done. An example is shown in Listing 5–17, which uses the factory method from the
Executors class to create a thread pool.

Listing 5–17. Using ExecutorService

public class Fibonacci {
 private static final int proc = Runtime.getRuntime().availableProcessors();
 private static final ExecutorService executorService =
Executors.newFixedThreadPool(proc + 2);

 public static BigInteger recursiveFasterBigInteger (int n) {
 // see Listing 5–16 for implementation
 }

 public static BigInteger recursiveFasterBigIntegerAndThreading (int n) {
 int proc = Runtime.getRuntime().availableProcessors();
 if (n < 128 || proc <= 1) {
 return recursiveFasterBigInteger(n);
 }

 final int m = (n / 2) + (n & 1);
 Callable<BigInteger> callable = new Callable<BigInteger>() {
 public BigInteger call() throws Exception {
 return recursiveFasterBigInteger(m);
 }
 };
 Future<BigInteger> ffM = executorService.submit(callable); // submit first job
as early as possible

 callable = new Callable<BigInteger>() {
 public BigInteger call() throws Exception {
 return recursiveFasterBigInteger(m-1);
 }
 };
 Future<BigInteger> ffM_1 = executorService.submit(callable); // submit second
job

 // getting partial results and combining them
 BigInteger fM, fM_1, fN;

 try {
 fM = ffM.get(); // get result of first sub-problem (blocking call)
 } catch (Exception e) {
 // if exception, compute fM in current thread
 fM = recursiveFasterBigInteger(m);
 }
 try {

http://

CHAPTER 5: Multithreading and Synchronization 151

 fM_1 = ffM_1.get(); // get result of second sub-problem (blocking call)
 } catch (Exception e) {
 // if exception, compute fM in current thread
 fM_1 = recursiveFasterBigInteger(m-1);
 }

 if ((n & 1) != 0) {
 fN = fM.pow(2).add(fM_1.pow(2));
 } else {
 fN = fM_1.shiftLeft(1).add(fM).multiply(fM);
 }

 return fN;
 }
}

As you can clearly see, the code is harder to read. Moreover, this implementation is still
based on a low-performance code: as we saw in Chapter 1, the two sub-problems
would end up computing many of the same Fibonacci numbers. Better implementations
were using a cache to remember the Fibonacci numbers already computed, saving
significant time. Listing 5–18 shows a very similar implementation, but using a cache.

Listing 5–18. Using ExecutorService and Caches

public class Fibonacci {
 private static final int proc = Runtime.getRuntime().availableProcessors();
 private static final ExecutorService executorService =
Executors.newFixedThreadPool(proc + 2);

 private static BigInteger recursiveFasterWithCache (int n, Map<Integer, BigInteger>
cache)
 {
 // see Listing 1-11 for implementation (slightly different though as it was
using SparseArray)
 }

 public static BigInteger recursiveFasterWithCache (int n)
 {
 HashMap<Integer , BigInteger> cache = new HashMap<Integer , BigInteger>();
 return recursiveFasterWithCache(n, cache);
 }

 public static BigInteger recursiveFasterWithCacheAndThreading (int n) {
 int proc = Runtime.getRuntime().availableProcessors();
 if (n < 128 || proc <= 1) {
 return recursiveFasterWithCache (n);
 }

 final int m = (n / 2) + (n & 1);
 Callable<BigInteger> callable = new Callable<BigInteger>() {
 public BigInteger call() throws Exception {
 return recursiveFasterWithCache (m);
 }
 };
 Future<BigInteger> ffM = executorService.submit(callable);

 callable = new Callable<BigInteger>() {

http://

CHAPTER 5: Multithreading and Synchronization 152

 public BigInteger call() throws Exception {
 return recursiveFasterWithCache (m-1);
 }
 };
 Future<BigInteger> ffM_1 = executorService.submit(callable);

 // getting partial results and combining them
 BigInteger fM, fM_1, fN;

 try {
 fM = ffM.get(); // get result of first sub-problem (blocking call)
 } catch (Exception e) {
 // if exception, compute fM in current thread
 fM = recursiveFasterBigInteger(m);
 }
 try {
 fM_1 = ffM_1.get(); // get result of second sub-problem (blocking call)
 } catch (Exception e) {
 // if exception, compute fM in current thread
 fM_1 = recursiveFasterBigInteger(m-1);
 }

 if ((n & 1) != 0) {
 fN = fM.pow(2).add(fM_1.pow(2));
 } else {
 fN = fM_1.shiftLeft(1).add(fM).multiply(fM);
 }

 return fN;
 }
}

Using Concurrent Cache
One thing to notice in this implementation is the fact that each sub-problem will use its
own cache object and therefore duplicate values will still be computed. For the two sub-
problems to share a cache, we need to change the cache from a SparseArray object to
an object that allows concurrent access from different threads. Listing 5–19 shows such
an implementation, using a ConcurrentHashMap object as the cache.

Listing 5–19. Using ExecutorService and a Single Cache

public class Fibonacci {
 private static final int proc = Runtime.getRuntime().availableProcessors();
 private static final ExecutorService executorService =
Executors.newFixedThreadPool(proc + 2);

 private static BigInteger recursiveFasterWithCache (int n, Map<Integer, BigInteger>
cache)
 {
 // see Listing 1-11 for implementation (slightly different though as it was
using SparseArray)
 }

 public static BigInteger recursiveFasterWithCache (int n)

http://

CHAPTER 5: Multithreading and Synchronization 153

 {
 HashMap<Integer , BigInteger> cache = new HashMap<Integer , BigInteger>();
 return recursiveFasterWithCache(n, cache);
 }

 public static BigInteger recursiveFasterWithCacheAndThreading (int n) {
 int proc = Runtime.getRuntime().availableProcessors();
 if (n < 128 || proc <= 1) {
 return recursiveFasterWithCache (n);
 }

 final ConcurrentHashMap<Integer, BigInteger> cache =
 new ConcurrentHashMap<Integer, BigInteger>(); // concurrent access ok

 final int m = (n / 2) + (n & 1);

 Callable<BigInteger> callable = new Callable<BigInteger>() {
 public BigInteger call() throws Exception {
 return recursiveFasterWithCache (m, cache); // first and second jobs
share the same cache
 }
 };
 Future<BigInteger> ffM = executorService.submit(callable);

 callable = new Callable<BigInteger>() {
 public BigInteger call() throws Exception {
 return recursiveFasterWithCache (m-1, cache); // first and second jobs
share the same cache
 }
 };
 Future<BigInteger> ffM_1 = executorService.submit(callable);

 // getting partial results and combining them
 BigInteger fM, fM_1, fN;

 try {
 fM = ffM.get(); // get result of first sub-problem (blocking call)
 } catch (Exception e) {
 // if exception, compute fM in current thread
 fM = recursiveFasterBigInteger(m);
 }
 try {
 fM_1 = ffM_1.get(); // get result of second sub-problem (blocking call)
 } catch (Exception e) {
 // if exception, compute fM in current thread
 fM_1 = recursiveFasterBigInteger(m-1);
 }

 if ((n & 1) != 0) {
 fN = fM.pow(2).add(fM_1.pow(2));
 } else {
 fN = fM_1.shiftLeft(1).add(fM).multiply(fM);
 }

 return fN;
 }
}

http://

CHAPTER 5: Multithreading and Synchronization 154

NOTE: The second parameter of recursiveFasterWithCache is a map so that it can be
called with any cache that implements the Map interface, for example a ConcurrentHashMap

or HashMap object. A SparseArray object is not a map.

You may not always observe performance gains when dividing a problem into sub-
problems and assigning each sub-problem to a different thread. Since there could still
be dependency between data, and synchronization would have to occur, threads may
spend some or most of their time waiting for the access to data to be possible. Also,
performance gains may not be as significant as you would hope for. Even though
theoretically you would expect to double the performance on a dual-core processor and
quadruple the performance on a quad-core processor, reality can show you otherwise.

In practice, it is easier to use multiple threads to perform unrelated tasks (therefore
avoiding the need for synchronization), or tasks that need to be synchronized only either
sporadically or regularly if the frequency is “low enough.” For example, a video game
would typically use one thread for the game logic and another thread to do the
rendering. The rendering thread would therefore need to read the data manipulated by
the logic thread 30 or 60 times per second (for every frame being rendered), and could
relatively quickly make a copy of the data needed to start rendering a frame, therefore
blocking the access for only a very short moment.

Activity Lifecycle
The threads you create are not automatically aware of the changes in your activity’s
lifecycle. For example, a thread you spawned would not automatically be notified that
your activity’s onStop() method has been called, and the activity is not visible anymore,
or that your activity’s onDestroy() method has been called. This means you may need to
do additional work to synchronize your threads with your application’s lifecycle. Listing
5–20 shows a simply example of an AsyncTask still running even after the activity has
been destroyed.

Listing 5–20. Computing a Fibonacci Number In the Background Thread and Updating the User Interface
Accordingly

public class MyActivity extends Activity {
 private TextView mResultTextView;
 private Button mRunButton;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // layout contains TextView and Button
 mResultTextView = (TextView) findViewById(R.id.resultTextView); // where result
will be displayed
 mRunButton = (Button) findViewById(R.id.runButton); // button to start
computation
 }

http://

CHAPTER 5: Multithreading and Synchronization 155

 public void onClick (View v) {
 new AsyncTask<Integer, Void, BigInteger>() {
 @Override
 protected void onPreExecute() {
 // button is disabled so the user can only start one computation at a
time
 mRunButton.setEnabled(false);
 }

 @Override
 protected void onCancelled() {
 // button is enabled again to let the user start another computation
 mRunButton.setEnabled(true);
 }

 @Override
 protected BigInteger doInBackground(Integer... params) {
 return Fibonacci.recursiveFasterPrimitiveAndBigInteger(params[0]);
 }

 @Override
 protected void onPostExecute(BigInteger result) {
 mResultTextView.setText(result.toString());
 // button is enabled again to let the user start another computation
 mRunButton.setEnabled(true);
 }
 }.execute(100000); // for simplicity here, we hard-code the parameter
 }
}

This example does two simple things when the user presses the button:

� It computes a Fibonacci number in a separate thread.

� The button is disabled while the computation is ongoing and
enabled once the computation is completed so that the user can
start only one computation at a time.

On the surface, it looks correct. However, if the user turns the device while the
computation is being executed, the activity will be destroyed and created again. (We
assume here that the manifest file does not specify that this activity will handle the
orientation change by itself.) The current instance of MyActivity goes through the usual
sequence of onPause(), onStop(), and onDestroy() calls, while the new instance goes
through the usual sequence of onCreate(), onStart(), and onResume() calls. While all of
this is happening, the AsyncTask’s thread still runs as if nothing had happened, unaware
of the orientation change, and the computation eventually completes. Again, it looks
correct so far, and this would seem to be the behavior one would expect.

However, one thing happened that you may not have been expecting: the button
became enabled again after the change of orientation was completed. This is easily
explained since the Button you see after the change of orientation is actually a new
button, which was created in onCreate() and is enabled by default. As a consequence,
the user could start a second computation while the first one is still going. While

http://

CHAPTER 5: Multithreading and Synchronization 156

relatively harmless, this breaks the user-interface paradigm you had established when
deciding to disable the button while a computation is ongoing.

Passing Information
If you want to fix this bug, you may want the new instance of the activity to know
whether a computation is already in progress so that is can disable the button after it is
created in onCreate(). Listing 2-21 shows the modifications you could make to
communicate information to the new instance of MyActivity.

Listing 5–21. Passing Information From One Activity Instance to Another

public class MyActivity extends Activity {
 private static final String TAG = “MyActivity”;

 private TextView mResultTextView;
 private Button mRunButton;
 private AsyncTask<Integer, Void, BigInteger> mTask; // we’ll pass that object to the
other instance

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // we add a log message here to know what instance of MyActivity is now created
 Log.i(TAG, “MyActivity instance is ” + MyActivity.this.toString());
 Log.i(TAG, “onCreate() called in thread ” + Thread.currentThread().getId());

 // layout contains TextView and Button
 mResultTextView = (TextView) findViewById(R.id.resultTextView); // where result
will be displayed
 mRunButton = (Button) findViewById(R.id.runButton); // button to start
computation

 // we get the object returned in onRetainNonConfigurationInstance() below
 mTask = (AsyncTask<Integer, Void, BigInteger>)
getLastNonConfigurationInstance();
 if (mTask != null) {
 mRunButton.setEnabled(false); // computation still in progress so we disable
the button
 }
 }

 @Override
 public Object onRetainNonConfigurationInstance() {
 return mTask; // will be non-null if computation is in progress
 }

 public void onClick (View v) {
 // we keep a reference to the AsyncTask object
 mTask = new AsyncTask<Integer, Void, BigInteger>() {
 @Override
 protected void onPreExecute() {

http://

CHAPTER 5: Multithreading and Synchronization 157

 // button is disabled so the user can start only one computation at a
time
 mRunButton.setEnabled(false);
 }

 @Override
 protected void onCancelled() {
 // button is enabled again to let the user start another computation
 mRunButton.setEnabled(true);
 mTask = null;
 }

 @Override
 protected BigInteger doInBackground(Integer... params) {
 return Fibonacci.recursiveFasterPrimitiveAndBigInteger(params[0]);
 }

 @Override
 protected void onPostExecute(BigInteger result) {
 mResultTextView.setText(result.toString());
 // button is enabled again to let the user start another computation
 mRunButton.setEnabled(true);
 mTask = null;

 // we add a log message to know when the computation is done
 Log.i(TAG, “Computation completed in ” + MyActivity.this.toString());
 Log.i(TAG, “onPostExecute () called in thread ” +
Thread.currentThread().getId());
 }
 }.execute(100000); // for simplicity here, we hard-code the parameter
 }
}

NOTE: onRetainNonConfigurationInstance() is now deprecated in favor of the Fragment
APIs available in API level 11 or on older platforms through the Android compatibility package.

This deprecated method is used here for simplicity; you will find more sample code using this

method. However, you should write new applications using the Fragment APIs.

If you execute that code, you’ll then find that the button remains disabled when you
rotate your device and a computation is in progress. This would seem to fix the problem
we encountered in Listing 5–20. However, you may notice a new problem: if you rotate
the device while a computation is in progress and wait until the computation is done, the
button is not enabled again even though onPostExecute() was called. This is a much
more significant problem since the button can never be enabled again! Moreover, the
result of the computation is not propagated on the user interface. (This problem is also
in Listing 5–20, so probably you would have noticed that issue before the fact that the
button was enabled again after the orientation change.)

Once again this can easily be explained (but may not be obvious if you are relatively new
to Java): while onPostExecute was called in the same thread as onCreate (the first
activity was destroyed but the main thread is still the same), the mResultTextView and

http://

CHAPTER 5: Multithreading and Synchronization 158

mRunButton objects used in onPostExecute actually belong to the first instance of
MyActivity, not to the new instance. The anonymous inner class declared when the new
AsyncTask object was created is associated with the instance of its enclosing class (this
is why the AsyncTask object we created can reference the fields declared in MyActivity
such as mResultTextView and mTask), and therefore it won’t have access to the fields of
the new instance of MyActivity. Basically, the code in Listing 5–21 has two major flaws
when the user rotates the device while a computation is in progress:

� The button is never enabled again, and the result is never showed.

� The previous activity is leaked since mTask keeps a reference to an
instance of its enclosing class (so two instances of MyActivity exist
when the device is rotated).

Remembering State
One way to solve this problem is to simply let the new instance of MyActivity know that
a computation was in progress and to start this computation again. The previous
computation can be canceled in onStop() or onDestroy() using the AsyncTask.cancel()
API. Listing 5–22 shows a possible implementation.

Listing 5–22. Remembering a Computation In Progress

public class MyActivity extends Activity {
 private static final String TAG = “MyActivity”;

 private static final String STATE_COMPUTE = “myactivity.compute”;

 private TextView mResultTextView;
 private Button mRunButton;
 private AsyncTask<Integer, Void, BigInteger> mTask;

 @Override
 protected void onStop() {
 super.onStop();
 if (mTask != null) {
 mTask.cancel(true); // although it is canceled now, the thread may still be
running for a while
 }
 }

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 // if called, it is guaranteed to be called before onStop()
 super.onSaveInstanceState(outState);
 if (mTask != null) {
 outState.putInt(STATE_COMPUTE, 100000); // for simplicity, hard-coded value
 }
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

http://

CHAPTER 5: Multithreading and Synchronization 159

 // we add a log message here to know what instance of MyActivity is now created
 Log.i(TAG, “MyActivity instance is ” + MyActivity.this.toString());
 Log.i(TAG, “onCreate() called in thread ” + Thread.currentThread().getId());

 // layout contains TextView and Button
 mResultTextView = (TextView) findViewById(R.id.resultTextView); // where result
will be displayed
 mRunButton = (Button) findViewById(R.id.runButton); // button to start
computation

 // make sure you check whether savedInstanceState is null
 if (savedInstanceState != null && savedInstanceState.containsKey(STATE_COMPUTE))
{
 int value = savedInstanceState.getInt(STATE_COMPUTE);
 mTask = createMyTask().execute(value); // button will be disabled in
onPreExecute()
 }
 }

 // creation of AsyncTask moved to private method as it can now be created from 2
places
 private AsyncTask<Integer, Void, BigInteger> createMyTask() {
 return new AsyncTask<Integer, Void, BigInteger>() {
 @Override
 protected void onPreExecute() {
 // button is disabled so the user can start only one computation at a
time
 mRunButton.setEnabled(false);
 }

 @Override
 protected void onCancelled() {
 // button is enabled again to let the user start another computation
 mRunButton.setEnabled(true);
 mTask = null;
 }

 @Override
 protected BigInteger doInBackground(Integer... params) {
 return Fibonacci.recursiveFasterPrimitiveAndBigInteger(params[0]);
 }

 @Override
 protected void onPostExecute(BigInteger result) {
 mResultTextView.setText(result.toString());
 // button is enabled again to let the user start another computation
 mRunButton.setEnabled(true);
 mTask = null;

 // we add a log message to know when the computation is done
 Log.i(TAG, “Computation completed in ” + MyActivity.this.toString());
 Log.i(TAG, “onPostExecute () called in thread ” +
Thread.currentThread().getId());
 }
 };
 }

http://

CHAPTER 5: Multithreading and Synchronization 160

 public void onClick (View v) {
 // we keep a reference to the AsyncTask object
 mTask = createMyTask.execute(100000); // for simplicity here, we hard-code the
parameter
 }
}

With this implementation, we basically tell the new instance that the previous instance
was computing a certain value when it was destroyed. The new instance will then start
the computation again, and the user interface will be updated accordingly.

A device does not have to be rotated to generate a change of configuration as other
events are also considered a configuration change. For example, these include a change
of locale or an external keyboard being connected. While a Google TV device may not
be rotated (at least for now), you should still take the configuration change scenario into
account when you target Google TV devices specifically as other events are still likely to
occur. Besides, new events may be added in the future, which could also result in a
configuration change.

NOTE: onSaveInstanceState() is not always called. It will basically be called only when

Android has a good reason to call it. Refer to the Android documentation for more information.

Canceling an AsyncTask object does not necessarily mean the thread will stop
immediately though. The actual behavior depends on several things:

� Whether the task has been started already

� Which parameter (true or false) was passed to cancel()

Calling AsyncTask.cancel() triggers a call to onCancelled() after doInBackground()
returns, instead of a call to onPostExecute(). Because doInBackground() may still have
to complete before onCancelled() is called, you may want to call
AsyncTask.isCancelled() periodically in doInBackground() to return as early as
possible. While this was not relevant in our example, this may make your code a little bit
harder to maintain since you would have to interleave AsyncTask-related calls
(isCancelled()) and code doing the actual work (which should ideally be AsyncTask-
agnostic).

NOTE: Threads don’t always have to be interrupted when the activity is destroyed. You can use
the Activity.isChangingConfiguration() and Activity.isFinishing() APIs to

learn more about what is happening and plan accordingly. For example, in Listing 5–22 we could

decide to cancel the task in onStop() only when isFinishing() returns true.

In general, you should at least try to pause the background threads when your activity is
paused or stopped. This prevents your application from using resources (CPU, memory,
internal storage) other activities could be in dire need of.

http://

CHAPTER 5: Multithreading and Synchronization 161

TIP: Have a look at the source code of Shelves on http://code.google.com/p/shelves
and PhotoStream on http://code.google.com/p/apps-for-android for more examples

on saving a state between instantiations of activities.

Summary
Using threads can make your code more efficient and easier to maintain even on single-
threaded devices. However, multithreading can also add complexity to your application,
especially when synchronization is involved and the state of the application needs to be
preserved for a better user experience. Make sure you understand the ramifications of
using multiple threads in your application as this can easily get out of control, and
debugging can become quite difficult. Although sometimes not trivial, using
multithreading can dramatically boost your application’s performance. Because
multicore architectures are quickly becoming ubiquitous, adding multithreading support
in your application is definitely something most of your users will benefit from.

http://

163

 Chapter

Benchmarking And
Profiling
Being able to measure performance is required in order to determine whether
optimizations are needed, and whether the optimizations actually improved anything.

Performance in most cases will be measured as a function of the time it takes to
complete an operation. For example, the performance of a game will very often be
measured in how many frames per second can be rendered, which directly depends on
how much time it takes to render frames: to achieve a constant frame rate of 60 frames
per second, each frame should take less than 16.67 milliseconds to render and display.
Also, as we discussed in Chapter 1, a response time of 100 milliseconds is often desired
in order for results to appear instantaneous.

In this chapter you learn the various ways of measuring time in your application. You
also learn how to use a profiling tool, Traceview, to trace Java code and native code and
easily identify bottlenecks in your application. Finally, you learn about the logging
mechanism in Android and how to take advantage of the filtering capabilities.

Measuring Time
How much time an operation or sequence of operations takes to complete is a critical
piece of information when it is time to optimize code. Without knowing how much time is
spent doing something, your optimizations are impossible to measure. Java and Android
provide the following simple APIs your application can use to measure time and
therefore performance:

� System.currentTimeMillis

� System.nanoTime

� Debug.threadCpuTimeNanos

� SystemClock.currentThreadTimeMillis

6

H. Guihot, Pro Android App
© Hervé Guihot 2012

s Performance Optimization

http://

CHAPTER 6: Benchmarking And Profiling 164

� SystemClock.elapsedRealtime

� SystemClock.uptimeMillis

Typically, your application needs to make two calls to these methods as a single call is
hardly meaningful. To measure time, your application needs a start time and an end
time, and performance is measured as the difference between these two values. At the
risk of sounding overly patronizing, now is a good time to state that there are
1,000,000,000 nanoseconds in one second, or in other words, a nanosecond is one
billionth of a second.

NOTE: Even though some methods return a time expressed in nanoseconds, it does not imply
nanosecond accuracy. The actual accuracy depends on the platform and may differ between
devices. Similarly, System.currentTimeMillis() returns a number of milliseconds but does

not guarantee millisecond accuracy.

A typical usage is shown in Listing 6–1.

Listing 6–1. Measuring Time

 long startTime = System.nanoTime();

 // perform operation you want to measure here

 long duration = System.nanoTime() - startTime;

 System.out.println(“Duration: ” + duration);

An important detail is the fact that Listing 6–1 does not use anything Android-specific.
As a matter of fact, this measurement code is only using the java.lang.System,
java.lang.String and java.io.PrintStream packages. Consequently, you could use similar
code in another Java application that is not meant to run on an Android device. The
Debug and SystemClock classes are, on the other hand, Android-specific.

While System.currentTimeMillis() was listed as a method to measure time, it is
actually not recommended to use this method, for two reasons:

� Its precision and accuracy may not be good enough.

� Changing the system time can affect the results.

Instead, your application should use System.nanoTime() as it offers better precision and
accuracy.

System.nanoTime()
Because the reference time is not defined, you should only use System.nanoTime() to
measure time intervals, as shown in Listing 6–1. To get the time (as a clock), use
System.currentTimeMillis() as it defines the return value as the number of milliseconds
since January 1, 1970 00:00:00 UTC.

http://

CHAPTER 6: Benchmarking And Profiling 165

Listing 6–2 shows you how to measure, roughly, the time it takes for System.nanoTime()
to complete.

Listing 6–2. Measuring System.nanoTime()

private void measureNanoTime() {
 final int ITERATIONS = 100000;
 long total = 0;
 long min = Long.MAX_VALUE;
 long max = Long.MIN_VALUE;

 for (int i = 0; i < ITERATIONS; i++) {
 long startTime = System.nanoTime();
 long time = System.nanoTime() - startTime;
 total += time;
 if (time < min) {
 min = time;
 }
 if (time > max) {
 max = time;
 }
 }

 Log.i(TAG, "Average time: " + ((float)total / ITERATIONS) + " nanoseconds");
 Log.i(TAG, " Minimum: " + min);
 Log.i(TAG, " Maximum: " + max);
}

On a Samsung Galaxy Tab 10.1, the average time is about 750 nanoseconds.

NOTE: How much time a call to System.nanoTime() takes depends on the implementation

and the device.

Because the scheduler is ultimately responsible for scheduling threads to run on the
processing units, the operation you want to measure may sometimes be interrupted,
possibly several times, to make room for another thread. Therefore, your measurement
may include time spent on executing some other code, which can make your
measurement incorrect, and therefore misleading.

To have a better idea of how much time your own code needs to complete, you can use
the Android-specific Debug.threadCpuTimeNanos() method.

Debug.threadCpuTimeNanos()
Because it measures only the time spent in the current thread,
Debug.threadCpuTimeNanos() should give you a better idea of how much time your own
code takes to complete. However, if what you are measuring is executed in multiple
threads, a single call to Debug.threadCpuTimeNanos() won’t give you an accurate
estimate, and you would have to call this method from all the threads of interest and
sum the results.

http://

CHAPTER 6: Benchmarking And Profiling 166

Listing 6–3 shows a simple example of how Debug.threadCpuTimeNanos() can be used.
The usage is no different from System.nanoTime()’s, and it should only be used to
measure a time interval.

Listing 6–3. Using Debug.threadCpuTimeNanos()

 long startTime = Debug.threadCpuTimeNanos();
 // warning: this may return -1 if the system does not support this operation

 // simply sleep for one second (other threads will be scheduled to run during that
time)
 try {
 TimeUnit.SECONDS.sleep(1);
 // same as Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 long duration = Debug.threadCpuTimeNanos() - startTime;

 Log.i(TAG, "Duration: " + duration + " nanoseconds");

While the code will take about one second to complete because of the call to
TimeUnit.SECONDS.sleep(), the actual time spent executing code is much less. In fact,
running that code on a Galaxy Tab 10.1 shows that the duration is only about 74
microseconds. This is expected as nothing much is done in between the two calls to
Debug.threadCpuTimeNanos() other than putting the thread to sleep for one second.

NOTE: Refer to the TimeUnit class documentation. TimeUnit offers convenient methods for
converting time between different units and also performing thread-related operations such as

Thread.join() and Object.wait().

Of course, you can also measure time in your application’s C code using “standard” C
time functions, as shown in Listing 6–4.

Listing 6–4. Using C Time Function

#include <time.h>

void foo() {
 double duration;
 time_t time = time(NULL);

 // do something here you want to measure

 duration = difftime(time(NULL), time); // duration in seconds
}

http://

CHAPTER 6: Benchmarking And Profiling 167

Tracing
Once you identify what is taking too much time, you probably want to be able to know in
more detail which methods are the culprits. You can do this by creating trace files with
the help of a tracing-specific method, and then analyze them with the Traceview tool.

Debug.startMethodTracing()
Android provides the Debug.startMethodTracing() method to create trace files that can
then be used with the Traceview tool to debug and profile your application. There are
actually four variants of the Debug.startMethodTracing() method:

� startMethodTracing()

� startMethodTracing(String traceName)

� startMethodTracing(String traceName, int bufferSize)

� startMethodTracing(String traceName, int bufferSize, int flags)

The traceName parameter specifies the name of the file to write the trace information
into. (If the file already exists it will be truncated.) You need to make sure your
application has write access to this file. (By default, the file will be created in the sdcard
directory unless an absolute path is given.) The bufferSize parameter specifies the
maximum size of the trace file. Trace information can use a fair amount of space and
your storage capacity may be limited so try to use a sensible value (default is 8MB).
Android currently defines only one flag, Debug.TRACE_COUNT_ALLOCS, so the flags
parameter should be set to either 0 or Debug.TRACE_COUNT_ALLOCS (to add the results
from Debug.startAllocCounting() to the trace, that is, the number and aggregate size of
memory allocations). Android also provides the Debug.stopMethodTracing() method,
which, you would have guessed, stops the method tracing. The usage is very similar to
time measurements seen earlier, as shown in Listing 6–5.

Listing 6–5. Enabling Tracing

 Debug.startMethodTracing(“/sdcard/awesometrace.trace”);

 // perform operation you want to trace here
 BigInteger fN = Fibonacci.computeRecursivelyWithCache(100000);

 Debug.stopMethodTracing();

 // now there should be a file named awesometrace.trace in /mnt/sdcard, get it in
Eclipse DDMS

The trace file will be saved onto your Android device (or the emulator), so you will need
to copy the file from the device to your host machine, for example in Eclipse (using
DDMS) or with the “adb pull” command.

http://

CHAPTER 6: Benchmarking And Profiling 168

Using the Traceview Tool
The Android SDK comes with a tool named Traceview, which can use these trace files
and give you a graphical representation of the trace, as shown in Figure 6–1. You can
find the Traceview tool in the SDK’s tools directory and simply type traceview
awesometrace.trace on a command line to start Traceview.

Figure 6–1. Traceview window

The trace basically contains the list of all the function calls together with how much time
these calls took and how many were made. Seven columns are displayed:

� Name: the name of the method

� Incl %: the percentage of time spent in that method (including
children methods)

� Inclusive: the time in milliseconds spent in that method (including
children methods)

� Excl %: the percentage of time spent in that method (excluding
children methods)

http://

CHAPTER 6: Benchmarking And Profiling 169

� Exclusive: the time in milliseconds spent in that method (excluding
children methods)

� Calls+RecurCalls/Total: the number of calls and recursive calls

� Time/Call: the average time per call in milliseconds

For example, a total of 14 calls to BigInteger.multiply() were made for a total of
10.431 milliseconds, or 745 microseconds per call. Because the VM will run more slowly
when tracing is enabled, you should not consider the time values as definitive numbers.
Instead, use these time values simply to determine which method or run is faster.

If you click on a method name, Traceview will show you more detailed information for
that specific method, as shown in Figure 6–2. This includes:

� Parents (the methods calling this method)

� Children (the methods called by this method)

� Parents while recursive (if method is recursive)

� Children while recursive (if method is recursive)

As you can see in Figure 6–2, most of the time is spent on four methods:

� BigInteger.multiply()

� BigInteger.pow()

� BigInteger.add()

� BigInteger.shiftLeft()

Even though we established where the bottlenecks were in Chapter 1 already, Traceview
allows you to very quickly determine where they can be without having to perform any
expansive research. In this particular case, you can quickly see that
BigInteger.multiply() is where most of the time is spent, followed by
BigInteger.pow(). This is not surprising as multiplications are intuitively more
complicated than additions and shifts done by BigInteger.add() and
BigInteger.shiftLeft().

http://

CHAPTER 6: Benchmarking And Profiling 170

Figure 6–2. A method’s detailed information

At the top of the window, you can see the timeline for the main thread. You can zoom in
by selecting a certain region in this timeline, and zoom out by double-clicking on the
time scale. Familiarize yourself with the Traceview tool and learn how to navigate from
one method to another. Hint: it’s easy. Just click on a method’s name!

Because the Just-In-Time compiler is disabled when tracing is enabled, the results you
get can be somewhat misleading. In fact, you may think a method takes a certain time
when in reality it can be much faster since it can be compiled into native code by the
Dalvik Just-In-Time compiler. Also, the trace won’t show you how much time is spent in
native functions. For example, Figure 6–1 shows calls to NativeBN.BN_mul() and
NativeBN.BN_exp(), but if you click on these methods, you won’t see what other
methods they may call.

Traceview in DDMS
Another way to trace calls and use Traceview is to generate a trace file directly from the
Eclipse DDMS perspective. After you select a specific process, you can click on the
Start Method Profiling icon, and then click again to stop profiling. Once you stop
profiling, the trace will be visible in the Debug perspective in Eclipse and it will be like
using Traceview. Figure 6–3 shows how to start method profiling from the DDMS

http://

CHAPTER 6: Benchmarking And Profiling 171

perspective, and Figure 6–4 shows you the method profiling view in the Debug
perspective.

Figure 6–3. Starting method profiling from the DDMS perspective

Figure 6–4. Method profiling in the Debug perspective

As you can see in Figure 6–4, timelines for multiple threads can be shown.

Traceview is not perfect, however it can give you great insight into what code is actually
executed and where the bottlenecks may be. When it is time to achieve better
performance, this should be one of your preferred tools to detect where you should
focus your attention.

http://

CHAPTER 6: Benchmarking And Profiling 172

TIP: Remember to delete the trace files when you are done with your debugging and profiling.

You can use the Eclipse DDMS perspective to delete files from your device.

Native Tracing
In addition to profiling Java methods with the startMethodTracing() APIs, Android also
supports native tracing (including kernel code). Native tracing is also referred to as
QEMU tracing. In this section you learn how to generate the QEMU trace files and how
to convert them into a file Traceview can interpret..

To generate QEMU traces, you have to do two things:

� Start the emulator using the –trace option (for example, “emulator –
trace mytrace –avd myavd”).

� Start and then stop native tracing, either by calling
Debug.startNativeTracing() and Debug.stopNativeTracing(), or by
pressing the F9 key (the first time will start tracing, the second time
will stop tracing).

In the AVD’s traces directory on your host machine, you will then find a mytrace
directory containing several QEMU emulator trace files:

� qtrace.bb

� qtrace.exc

� qtrace.insn

� qtrace.method

� qtrace.pid

� qtrace.static

NOTE: QEMU is an open-source emulator. Refer to http://wiki.qemu.org for more

information.

Generating Trace File For Traceview
To use the traces in Traceview like we did for Java methods, you need to generate a
trace file that Traceview can understand. To do this, you will use the tracedmdump
command (not to be confused with the dmtracedump SDK tool, which is a tool used to
create the call stack as a tree diagram). The tracedmdump command is defined in the
Android source code, in build/envsetup.sh. For access to this command, you have to
download the Android source code and compile Android.

http://

CHAPTER 6: Benchmarking And Profiling 173

To download the full Android code, follow the instructions on:

http://source.android.com/source/downloading.html.

To compile Android, follow the instructions on

http://source.android.com/source/building.html

You can also compile your own emulator from the Android source code instead of
relying on the one from the SDK. Once Android is compiled, you should have all the
tools you need to create the trace file Traceview needs.

In the AVD’s traces directory, you can now simply run tracedmdump mytrace, which will
create a trace file you can open with Traceview, as shown in Figure 6–5. Make sure your
path is set so that all the commands executed by tracedmdump can succeed. If
tracedmdump fails with a “command not found” error message, it is likely your path is not
set properly. For example, tracedmdump will call post_trace, which is located in the
out/host/linux-x86/bin directory.

Figure 6–5. Native tracing with Traceview

While the user interface stays the same, what you actually see in Figure 6–5 is the list of
native functions being called, such as vsnprintf() and sys_open(), respectively #10 and
#13.

http://

CHAPTER 6: Benchmarking And Profiling 174

Two files representing the same data are actually created by tracedmdump:

� dmtrace

� dmtrace.html

The first file is to be used with Traceview while the second can be opened with any web
browser, including Lynx.

NOTE: Many users report problems when using tracedmdump, and error messages are not
always very clear. If you encounter an error, search for a solution on the Internet as it is very

likely someone had the same problem and published a solution.

Sometimes simply having a real-time, human-readable description of what is happening
in your application can help you tremendously. Logging messages have been used for a
very long time before sophisticated debugging tools were invented, and many
developers will heavily rely on logs to debug or profile applications.

Logging
As we have seen in many listings already, you can use the Log class to print out
messages to LogCat. In addition to the Java traditional logging mechanism such as
System.out.println(), Android defines six log levels, each having its own methods:

� verbose (Log.v)

� debug (Log.d)

� info (Log.i)

� warning (Log.w)

� error (Log.e)

� assert (Log.wtf)

For example, a call to Log.v(TAG, “my message”) is equivalent to a call to
Log.println(Log.VERBOSE, TAG, “my message”).

NOTE: The Log.wtf() methods were introduced in API level 8, but Log.ASSERT exists since
API level 1. If you want to use the ASSERT log level but want to guarantee compatibility with

older Android devices, use Log.println(Log.ASSERT, …) instead of Log.wtf(…).

You can then use LogCat in Eclipse (Window ➤ Show View ➤ LogCat) and/or in a terminal
(adb logcat, or simply logcat from an adb shell) and see the messages generated while
your application runs.

http://

CHAPTER 6: Benchmarking And Profiling 175

Since many messages may be displayed, many of them not coming from your
application, you may want to create filters so you can focus on the output that is
relevant to you. You can filter messages based on their tags, priority levels, and PIDs. In
Eclipse, you can use the Create Filter feature, as shown in Figure 6–6.

Figure 6–6. Creating LogCat filter with Eclipse

Eclipse currently does not support creating a filter on multiple tags, so you will have to
use adb logcat instead if you want to do that. For example, to show only log messages
with the tag “MyTag” at priority “Debug” or above (that is, Debug, Info, Warning, Error,
and Assert), and log messages with the tag “MyOtherTag” at priority “Warning” or
above, you can type:

adb logcat MyTag:D MyOtherTag:W *:S

Make sure you don’t forget the *:S part since it means all other log messages will be
filtered out. (S is for Silent.)

Logging functions are also available in the NDK, so you can use LogCat as well to log
messages from your C/C++ code. Functions are defined in the NDK’s android/log.h:

� __android_log_write

� __android_log_print

� __android_log_vprint

� __android_log_assert

For example, the equivalent of Log.i(“MyTag”, “Hello”) would be
__android_log_write(ANDROID_LOG_INFO, “MyTag”, “Hello”).

Because these are Android-specific routines and because their use makes your code a
little too wordy, it is recommended you create a wrapper around these functions. As a
matter of fact, this is exactly what the Android source code does in the cutils/log.h file
by creating macros such as LOGI and LOGE, the equivalent of Log.i and Log.e,
respectively. You should design your wrapper so you can easily use it in non-Android
code as well.

http://

CHAPTER 6: Benchmarking And Profiling 176

Summary
Being able to measure performance is a simple yet critical feature in optimizations, and
Android provides simple yet powerful tools to assist you. Traceview, whether it is used
for Java or native tracing, is one of the most useful tools you will use, but remember that
only actual measurements on a real device give you a definitive answer as Traceview
disables the Dalvik Just-In-Time compiler. While considered quite trivial, these topics are
important, and you should become comfortable with the various tools Android offers.
You should also always check for new tools in new versions of the SDK that could
improve your profiling, benchmarking, and debugging capabilities. Remember to first
find where bottlenecks are before you start optimizing code as you want to focus your
effort on the things that actually need to be optimized.

http://

177

 Chapter

Maximizing Battery Life
With little power comes great responsibility. Android portable devices run on batteries,
and everything your application does draws a certain amount of power from the device’s
battery. Since most devices are charged at home during the night and will be used
during the day when there is no opportunity to recharge the battery, most device owners
expect the battery to last at least about 12 hours. Typical usage may cause the battery
to drain more quickly: for example, charging stations were available at Google I/O as
many were using their devices for periods of time longer than usual during the event.

Even though applications sometimes do not seem to be doing much, it is actually quite
easy to draw so much power from the battery that the device runs out of juice in the
middle of the day, leaving the user without a phone or tablet for several hours. An
application that empties the battery quickly will most likely become a strong candidate
for deletion, poor reviews, and possibly lower revenues. As a consequence, you as a
developer should try to use as little power as possible and make sensible use of the
device’s battery.

In this chapter, you learn how to measure battery usage and how to make sure you can
conserve power without negatively impacting the user experience, using some of the
very things that make Android applications appealing: networking, access to location
information, and sensors. You also learn how to work efficiently with more internal
components of Android, such as broadcast receivers, alarms, and wake locks.

Batteries
Different devices have different capacities. Battery capacity for phones and tablets is
often measured in mAh—that is, milliampere-hour. Table 7–1 shows the capacities of
the devices mentioned in Chapter 2.

NOTE: The ampere, named after André-Marie Ampère, is an SI unit of electric current and is

often shortened to “amp.” One ampere-hour equals 3,600

7

H. Guihot, Pro Android App
© Hervé Guihot 2012

s Performance Optimization

http://

CHAPTER 7: Maximizing Battery Life 178

coulombs, and therefore one ampere-second equals one coulomb, and one mAh equals 3.6
coulombs. The coulomb, an SI unit named after Charles-Augustin de Coulomb, is rarely used in

the descriptions of consumer products.

Table 7–1. Capacities of Some Android Devices’ Batteries

Device Manufacturer Battery capacity

Blade ZTE 1,250 mAh

LePhone Lenovo 1,500 mAh

Nexus S Samsung 1,500 mAh

Xoom Motorola 6,500 mAh

Galaxy Tab (7’’) Samsung 4,000 mAh

Galaxy Tab 10.1 Samsung 7,000 mAh

Revue (set-top box) Logitech n/a (not battery-powered)

NSZ-GT1 (Blu-ray player) Sony n/a (not battery-powered)

The fact that tablets use batteries with much larger capacities is a strong indicator that
the screen alone consumes a lot of power. Android provides a way for the user to
know approximately how much power is used by applications and system
components. Figure 7–1 shows how much power was used on a Galaxy Tab 10.1
while spending most of the time using a slingshot to throw choleric feathered animals
at swine.

http://

CHAPTER 7: Maximizing Battery Life 179

Figure 7–1. Battery usage

Two items clearly stand out in this screenshot: Screen and Wi-Fi. As these two
components use a lot of power, devices provide ways for end-users to configure their
usage. For example, users can change the brightness of the screen (manually or
automatically based on the image displayed), define after how much time without
activity the screen should turn off, and also have Wi-Fi turned off whenever the screen
turns off. For instance, the Wi-Fi connection may represent only a few percent of the
total battery usage when it is turned off as soon as the screen turns off.

NOTE: The Galaxy Tab 10.1 used here is a Wi-Fi-only version. Other items will show with

different devices, for example “Cell standby” or “Voice calls.”

Although users themselves can proactively manage the battery usage, this is not without
its own limitations. Ultimately, how much power is used on a device is heavily
dependent on what all the applications do, and therefore dependent on how you
designed and implemented your application.

Typical things your applications do are:

� Executing code (Captain Obvious would not have said it better)

� Transferring data (downloading and uploading, using Wi-Fi, EDGE, 3G, 4G)

� Tracking location (using network or GPS)

� Using sensors (accelerometer, gyroscope)

� Rendering images (using GPU or CPU)

� Waking up to perform various tasks

http://

CHAPTER 7: Maximizing Battery Life 180

Before we learn how to minimize the battery usage, we should have a way to measure
how much power the application uses.

Measuring Battery Usage
Unfortunately, such accurate measurements require electrical equipment most
developers don’t have access to. However, Android provides APIs to get information
about the battery usage. While there is no API such as getBatteryInfo(), it is possible
to retrieve the battery information via a so-called sticky intent, that is, a broadcast intent
that is always around, as shown in Listing 7–1.

Listing 7–1. Activity Showing Battery Information

import static android.os.BatteryManager.*;
// note the static keyword here (don’t know what it does? Remove it and see!)

public class BatteryInfoActivity extends Activity {
 private static final String TAG = "BatteryInfo";

 private BroadcastReceiver mBatteryChangedReceiver;
 private TextView mTextView; // layout contains TextView to show battery information

 private static String healthCodeToString(int health) {
 switch (health) {
 //case BATTERY_HEALTH_COLD: return "Cold"; // API level 11 only
 case BATTERY_HEALTH_DEAD: return "Dead";
 case BATTERY_HEALTH_GOOD: return "Good";
 case BATTERY_HEALTH_OVERHEAT: return "Overheat";
 case BATTERY_HEALTH_OVER_VOLTAGE: return "Over voltage";
 case BATTERY_HEALTH_UNSPECIFIED_FAILURE: return "Unspecified failure";
 case BATTERY_HEALTH_UNKNOWN:
 default: return "Unknown";
 }
 }

 private static String pluggedCodeToString(int plugged) {
 switch (plugged) {
 case 0: return "Battery";
 case BATTERY_PLUGGED_AC: return "AC";
 case BATTERY_PLUGGED_USB: return "USB";
 default: return "Unknown";
 }
 }

 private static String statusCodeToString(int status) {
 switch (status) {
 case BATTERY_STATUS_CHARGING: return "Charging";
 case BATTERY_STATUS_DISCHARGING: return "Discharging";
 case BATTERY_STATUS_FULL: return "Full";
 case BATTERY_STATUS_NOT_CHARGING: return "Not charging";
 case BATTERY_STATUS_UNKNOWN:
 default: return "Unknown";
 }
 }

http://

CHAPTER 7: Maximizing Battery Life 181

 private void showBatteryInfo(Intent intent) {
 if (intent != null) {
 int health = intent.getIntExtra(EXTRA_HEALTH, BATTERY_HEALTH_UNKNOWN);
 String healthString = "Health: " + healthCodeToString(health);
 Log.i(TAG, healthString);

 int level = intent.getIntExtra(EXTRA_LEVEL, 0);
 int scale = intent.getIntExtra(EXTRA_SCALE, 100);
 float percentage = (scale != 0) ? (100.f * (level / (float)scale)) : 0.0f;
 String levelString = String.format("Level: %d/%d (%.2f%%)", level, scale,
percentage);
 Log.i(TAG, levelString);

 int plugged = intent.getIntExtra(EXTRA_PLUGGED, 0);
 String pluggedString = "Power source: " + pluggedCodeToString(plugged);
 Log.i(TAG, pluggedString);

 boolean present = intent.getBooleanExtra(EXTRA_PRESENT, false);
 String presentString = "Present? " + (present ? "Yes" : "No");
 Log.i(TAG, presentString);

 int status = intent.getIntExtra(EXTRA_STATUS, BATTERY_STATUS_UNKNOWN);
 String statusString = "Status: " + statusCodeToString(status);
 Log.i(TAG, statusString);

 String technology = intent.getStringExtra(EXTRA_TECHNOLOGY);
 String technologyString = "Technology: " + technology;
 Log.i(TAG, technologyString);

 int temperature = intent.getIntExtra(EXTRA_STATUS, Integer.MIN_VALUE);
 String temperatureString = "Temperature: " + temperature;
 Log.i(TAG, temperatureString);

 int voltage = intent.getIntExtra(EXTRA_VOLTAGE, Integer.MIN_VALUE);
 String voltageString = "Voltage: " + voltage;
 Log.i(TAG, voltageString);

 String s = healthString + "\n";
 s += levelString + "\n";
 s += pluggedString + "\n";
 s += presentString + "\n";
 s += statusString + "\n";
 s += technologyString + "\n";
 s += temperatureString + "\n";
 s += voltageString;
 mTextView.setText(s);

 // Note: using a StringBuilder object would have been more efficient

 int id = intent.getIntExtra(EXTRA_ICON_SMALL, 0);
 setFeatureDrawableResource(Window.FEATURE_LEFT_ICON, id);
 } else {
 String s = "No battery information";
 Log.i(TAG, s);
 mTextView.setText(s);

 setFeatureDrawable(Window.FEATURE_LEFT_ICON, null);

http://

CHAPTER 7: Maximizing Battery Life 182

 }
 }

 private void showBatteryInfo() {
 // no receiver needed
 Intent intent = registerReceiver(null, new
IntentFilter(Intent.ACTION_BATTERY_CHANGED));
 showBatteryInfo(intent);
 }

 private void createBatteryReceiver() {
 mBatteryChangedReceiver = new BroadcastReceiver() {

 @Override
 public void onReceive(Context context, Intent intent) {
 showBatteryInfo(intent);
 }
 };
 }

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_LEFT_ICON);
 setContentView(R.layout.main);

 mTextView = (TextView) findViewById(R.id.battery);

 showBatteryInfo(); // no receiver needed
 }

 @Override
 protected void onPause() {
 super.onPause();

 // unregistering the receiver when the application is not in the foreground
saves power
 unregisterReceiver(mBatteryChangedReceiver);
 }

 @Override
 protected void onResume() {
 super.onResume();
 if (mBatteryChangedReceiver == null) {
 createBatteryReceiver();
 }
 registerReceiver(mBatteryChangedReceiver,
 new IntentFilter(Intent.ACTION_BATTERY_CHANGED));
 }

 @Override
 public void onLowMemory() {
 super.onLowMemory();
 unregisterReceiver(mBatteryChangedReceiver);
 mBatteryChangedReceiver = null;
 }
}

http://

CHAPTER 7: Maximizing Battery Life 183

As you can see, the battery information is part of the intent’s extra information. This
activity wants to be notified of changes therefore it registers a broadcast receiver in
onResume(). However, since the sole purpose of the notification is to update the user
interface with the new battery information, the activity needs to be notified only when it
is in the foreground and when the user is directly interacting with the application, and
consequently it unregisters the broadcast receiver in onPause().

NOTE: Another possible implementation is to move the registration and un-registration of the
receiver to onStart() and onStop() respectively. To achieve greater power savings, it is

usually better to register and unregister broadcast receivers in onResume() and onPause()

though.

If you need to know the current battery information but do not need to be notified of
changes, you can simply get the sticky intent containing the battery information without
registering any broadcast receiver by calling registerReceiver() and passing null as
the broadcast receiver.

To measure the battery usage, it is recommended you get the battery level when your
application starts, use your application for a while, and then when the application exits
once again get the battery level. While the difference between the two levels won’t tell
you exactly how much power your own application uses (as other applications can still
be running at the same time), it should give you a good idea of your application’s power
usage. For example, you could determine how much time one could use your
application before the battery is empty.

Disabling Broadcast Receivers
To preserve the battery, applications should avoid executing code that serves no
purpose. In the example above, updating the TextView’s text when the user interface is
not in the foreground is of little value and will only draw power from the battery
unnecessarily.

In addition to the ACTION_BATTERY_CHANGED sticky intent containing the battery
information shown above, Android defines four more broadcast intents your application
can use:

� ACTION_BATTERY_LOW

� ACTION_BATTERY_OKAY

� ACTION_POWER_CONNECTED

� ACTION_POWER_DISCONNECTED

While you could not receive the ACTION_BATTERY_CHANGED broadcast intent by simply
declaring a receiver in your application’s manifest (this receiver has to be registered
explicitly with a call to registerReceiver()), these other intents allow you to register the
receivers in your application’s manifest file, as shown in Listing 7–2.

http://

CHAPTER 7: Maximizing Battery Life 184

Listing 7–2. Declaring Broadcast Receiver In Manifest

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.proandroid.ch07" android:versionCode="1"
android:versionName="1.0">
 <uses-sdk android:minSdkVersion="8" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".BatteryInfoActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=".BatteryReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BATTERY_LOW" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.BATTERY_OKAY" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.ACTION_POWER_CONNECTED" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.ACTION_POWER_DISCONNECTED"
/>
 </intent-filter>
 </receiver>

 </application>
</manifest>

A simple implementation of the broadcast receiver is shown in Listing 7–3. Here we
define a single BatteryReceiver broadcast receiver that is responsible for handling all
four actions.

Listing 7–3. BatteryReceiver Implementation

public class BatteryReceiver extends BroadcastReceiver {
 private static final String TAG = "BatteryReceiver";

 @Override
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();
 String text;

 // the four actions are processed here

 if (Intent.ACTION_BATTERY_LOW.equals(action)) {
 text = "Low power";
 } else if (Intent.ACTION_BATTERY_OKAY.equals(action)) {
 text = "Power okay (not low anymore)";
 } else if (Intent.ACTION_POWER_CONNECTED.equals(action)) {
 text = "Power now connected";
 } else if (Intent.ACTION_POWER_DISCONNECTED.equals(action)) {

http://

CHAPTER 7: Maximizing Battery Life 185

 text = "Power now disconnected";
 } else {
 return;
 }

 Log.i(TAG, text);
 Toast.makeText(context, text, Toast.LENGTH_SHORT).show();
 }
}

As it is now, the application can be considered to have a serious flaw. As a matter of
fact, the application will start (if it is not started already) whenever one of these four
actions occurs. While this may be the desired behavior, in many cases you may want
your application to behave differently. In this case for example, we can argue it only
makes sense to show the Toast messages when the application is the foreground
application, as the Toast messages would actually interfere with other applications
should we always show them, therefore worsening the user experience.

When the application is not running or is in the background, let’s say we want to disable
these Toast messages. There are basically two ways to do this:

� We can add a flag in the application that is set to true in the
activity’s onResume() and set to false in onPause(), and modify the
receiver’s onReceive() method to check that flag.

� We can enable the broadcast receiver only when the application is
the foreground application.

While the first approach would work fine, it would not prevent the application from being
started whenever one of the four actions triggers. This would ultimately result in
unnecessary instructions being executed, which would still draw power from the battery
for what is essentially a no-op. Besides, you may have to modify that flag in multiple files
should your application define several activities.

The second approach is much better as we can guarantee instructions are executed
only when they serve an actual purpose, and therefore power will be drawn from the
battery only for a good reason. To achieve this, there are two things we need to do in
the application:

� The broadcast receiver needs to be disabled by default.

� The broadcast receiver needs to be enabled in onResume() and
disabled again in onPause().

http://

CHAPTER 7: Maximizing Battery Life 186

Disabling and Enabling the Broadcast Receiver
Listing 7–4 shows how to disable the broadcast receiver in the application’s manifest
file.

Listing 7–4. Disabling Broadcast Receiver In Manifest

 …
 <receiver android:name=".BatteryReceiver" android:enabled="false" >
 …

NOTE: The <application> element has its own enabled attribute. The broadcast receiver will
be enabled when both the application and receiver attributes are set to true, and will be

disabled when either one of them is set to false.

Listing 7–5 shows how to enable and disable the broadcast receiver in onResume() and
onPause().

Listing 7–5. Enabling and Disabling Broadcast Receiver

public class BatteryInfoActivity extends Activity {

 …

 private void enableBatteryReceiver(boolean enabled) {
 PackageManager pm = getPackageManager();
 ComponentName receiverName = new ComponentName(this, BatteryReceiver.class);
 int newState;

 if (enabled) {
 newState = PackageManager.COMPONENT_ENABLED_STATE_ENABLED;
 } else {
 newState = PackageManager.COMPONENT_ENABLED_STATE_DISABLED;
 }

 pm.setComponentEnabledSetting(receiverName, newState,
PackageManager.DONT_KILL_APP);
 }

 …

 @Override
 protected void onPause() {
 super.onPause();
 unregisterReceiver(mBatteryChangedReceiver);

 enableBatteryReceiver(false); // battery receiver now disabled

 // unregistering the receivers when the application is not in the foreground
saves power
 }

 @Override

http://

CHAPTER 7: Maximizing Battery Life 187

 protected void onResume() {
 super.onResume();
 if (mBatteryChangedReceiver == null) {
 createBatteryReceiver();
 }
 registerReceiver(mBatteryChangedReceiver, new
 IntentFilter(Intent.ACTION_BATTERY_CHANGED));

 enableBatteryReceiver(true); // battery receiver now enabled
 }

 …
}

Enabling broadcast receivers only when they are really needed can make a big
difference in power consumption. While this is an aspect that can be easily overlooked
when developing an application, special attention should be given to receivers so that
they are enabled only when required.

Networking
Many Android applications transfer data between the device and a server, or between
devices. Like the battery state, applications may need to retrieve information about the
network connections on the device. The ConnectivityManager class provides APIs
applications can call to have access to the network information. Android devices often
have multiple data connections available:

� Bluetooth

� Ethernet

� Wi-Fi

� WiMAX

� Mobile (EDGE, UMTS, LTE)

Listing 7–6 shows how to retrieve information about the active connection as well as all
the connections.

Listing 7–6. Network Information

 private void showNetworkInfoToast() {
 ConnectivityManager cm = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);

 // to show only the active connection
 NetworkInfo info = cm.getActiveNetworkInfo();
 if (info != null) {
 Toast.makeText(this, "Active: " + info.toString(),
Toast.LENGTH_LONG).show();
 }

 // to show all connections
 NetworkInfo[] array = cm.getAllNetworkInfo();

http://

CHAPTER 7: Maximizing Battery Life 188

 if (array != null) {
 String s = "All: ";
 for (NetworkInfo i: array) {
 s += i.toString() + "\n";
 }
 Toast.makeText(this, s, Toast.LENGTH_LONG).show();
 }
 }

NOTE: Your application needs the ACCESS_NETWORK_STATE permission to be able to retrieve

the network information.

Since the focus is on maximizing the battery life, we need to be aware of certain things:

� Background data setting

� Data transfer rates

Background Data
Users have the ability to specify whether background data transfer is allowed or not in
the settings, presumably to preserve battery life. If your application needs to perform
data transfers when it is not the foreground application, it should check that flag, as
shown in Listing 7–7. Services typically have to check that setting before initiating any
transfer.

Listing 7–7. Checking Background Data Setting

 private void transferData(byte[] array) {
 ConnectivityManager cm = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);
 boolean backgroundDataSetting = cm.getBackgroundDataSetting();
 if (backgroundDataSetting) {
 // transfer data
 } else {
 // honor setting and do not transfer data
 }
 }

Because this is a voluntary check, your application could actually ignore that setting and
transfer data anyway. However, since it would go against the wish of the user,
potentially slow down foreground data transfers, and impact battery life, such behavior
would likely cause your application to be uninstalled by the user eventually.

To be notified when the background data setting changes, your application can register
a broadcast receiver explicitly in the Java code using the
ConnectivityManager.ACTION_BACKGROUND_DATA_SETTING_CHANGED string to build the
intent filter or android.net.conn.BACKGROUND_DATA_SETTING_CHANGED in the application’s
manifest file. Because this setting is to control background data transfer, it actually
makes more sense to disable this broadcast receiver in onResume() and enable it again
in onPause().

http://

CHAPTER 7: Maximizing Battery Life 189

NOTE: The getBackgroundDataSetting() method is deprecated in Android 4.0 and will
always return true. Instead, the network will appear disconnected when background data

transfer is not available.

Data Transfer
Transfer rates can vary wildly, typically from less than 100 kilobits per second on a
GPRS data connection to several megabits per second on an LTE or Wi-Fi connection.
In addition to the connection type, the NetworkInfo class specifies the subtype of a
connection. This is particularly important when the connection type is TYPE_MOBILE.
Android defines the following connection subtypes (in the TelephonyManager class):

� NETWORK_TYPE_GPRS (API level 1)

� NETWORK_TYPE_EDGE (API level 1)

� NETWORK_TYPE_UMTS (API level 1)

� NETWORK_TYPE_CDMA (API level 4)

� NETWORK_TYPE_EVDO_0 (API level 4)

� NETWORK_TYPE_EVDO_A (API level 4)

� NETWORK_TYPE_1xRTT (API level 4)

� NETWORK_TYPE_HSDPA (API level 5)

� NETWORK_TYPE_HSUPA (API level 5)

� NETWORK_TYPE_HSPA (API level 5)

� NETWORK_TYPE_IDEN (API level 8)

� NETWORK_TYPE_EVDO_B (API level 9)

� NETWORK_TYPE_LTE (API level 11)

� NETWORK_TYPE_EHRPD (API level 11)

� NETWORK_TYPE_HSPAP (API level 13)

Subtypes are added as new technologies are created and deployed. For example, the
LTE subtype was added in API level 11, whereas the HSPAP subtype was added in API
level 13. If your code depends on these values, make sure you handle the case where
your application is presented with a new value it does not know about; otherwise it
could result in your application not being able to transfer data. You should update your
code when new subtypes are defined, so pay attention to each release of the Android
SDK. A list of differences is available on
http://d.android.com/sdk/api_diff/13/changes.html, for example.

http://

CHAPTER 7: Maximizing Battery Life 190

Intuitively, your application should prefer faster connections. Even if the 3G radio chip
consumes less power than the Wi-Fi radio chip, the Wi-Fi transfer rate may ultimately
mean the Wi-Fi transfer reduces power consumption as the transfer can be completed
in a shorter time.

NOTE: Since data plans now typically allow for a limited amount of data to be transferred (for
example, $30 for 2GB a month), Wi-Fi connections are usually preferred. Also, your application
can use NetworkInfo.isRoaming() to know if the device is currently roaming on the given

network. Since this can incur additional cost, you should avoid transferring data when

isRoaming() returns true.

Table 7–2 shows the memory consumption of various components on the T-Mobile G1
phone (also known as the HTC Dream, or Era G1). While the phone is somewhat old now
(it was released in late 2008), the numbers still give a pretty good overview of how much
power each component draws.

Table 7–2. Android G1Phone Power Consumption (source: Google I/O 2009)

Component Power consumption

Idle, airplane mode (radios turned off) 2 mA

Idle, 3G radio on 5 mA

Idle, EDGE radio on 5 mA

Idle, Wi-Fi radio on 12 mA

Display (LCD) 90 mA (min brightness: 70 mA; max brightness: 110 mA)

CPU (100% load) 110 mA

Sensors 80 mA

GPS 85 mA

3G (max transfer) 150 mA

EDGE (max transfer) 250 mA

Wi-Fi (max transfer) 275 mA

While the exact numbers vary between devices, it is important to know roughly how
much power your application would use. Since the G1 had a 1,150 mAh battery, an
application that downloads and plays videos (for example, YouTube) would empty the
battery in about three hours assuming it uses a 3G connection: 150mA for 3G, 90 mA for

http://

CHAPTER 7: Maximizing Battery Life 191

CPU, and 90mA for LCD would total 330 mA, or three and a half hours of usage
(assuming nothing else runs on the phone).

If you have control over what kind of data gets transferred, then you should consider
compressing the data before it is sent to the device. While the CPU will have to
decompress the data before it can be used (and therefore more power will be needed
for that purpose), the transfer will be faster and the radios (for example, 3G, Wi-Fi) can
be turned off again faster, preserving battery life. The things to consider are:

� Compress text data using GZIP and use the GZIPInputStream to
access the data.

� Use JPEG instead of PNG if possible.

� Use assets that match the resolution of the device (for example,
there is no need to download a 1920x1080 picture if it is going to be
resized to 96x54).

The slower the connection (for example, EDGE) the more important compression is, as
you want to reduce the time the radios are turned on.

Since Android is running on more and more devices, from cell phones to tablets, from
set-top boxes to netbooks, generating assets for all these devices can become tedious.
However, using the right assets can greatly improve the battery life and therefore make
your application more desirable. In addition to saving power, faster downloads and
uploads will make your application more responsive.

Location
Any real estate agent will tell you the three most important things are location, location,
location. Android understands that and lets your application know where the device is.
(It won’t tell you if the device is in a good school district, although I am pretty sure there
is an application for that.) Listing 7–8 shows how to request location updates using the
system location services.

Listing 7–8. Receiving Location Updates

 private void requestLocationUpdates() {
 LocationManager lm = (LocationManager)
getSystemService(Context.LOCATION_SERVICE);

 List<String> providers = lm.getAllProviders();

 if (providers != null && ! providers.isEmpty()) {
 LocationListener listener = new LocationListener() {

 @Override
 public void onLocationChanged(Location location) {
 Log.i(TAG, location.toString());
 }

 @Override
 public void onProviderDisabled(String provider) {

http://

CHAPTER 7: Maximizing Battery Life 192

 Log.i(TAG, provider + " location provider disabled");
 }

 @Override
 public void onProviderEnabled(String provider) {
 Log.i(TAG, provider + " location provider enabled");
 }

 @Override
 public void onStatusChanged(String provider, int status, Bundle extras)
{
 Log.i(TAG, provider + " location provider status changed to " +
status);
 }
 };

 for (String name : providers) {
 Log.i(TAG, "Requesting location updates on " + name);
 lm.requestLocationUpdates(name, 0, 0, listener);
 }
 }
 }

NOTE: Your application needs either the ACCESS_COARSE_LOCATION permission or the
ACCESS_FINE_LOCATION permission to be able to retrieve the location information. The GPS
location provider requires the ACCESS_FINE_LOCATION permission while the network provider

requires either ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION.

This piece of code has serious flaws, but you should still run it, for example in your
application’s onCreate() method, in order to see the impact this code has on the battery
life.

On a Galaxy Tab 10.1, one can observe the following:

� Three location providers are available (network, gps, and passive).

� GPS location updates are very frequent (one update per second).

� Network location updates are not as frequent (one update every 45
seconds).

If you let your application with this piece of code run for a while, you should see the
battery level going down faster than usual. This code’s three main flaws are:

� Location listeners are not unregistered.

� Location updates are most likely too frequent.

� Location updates are requested on multiple providers.

Luckily, all these flaws can easily be fixed. Ultimately though, how you need to use the
location services depends on what your application needs to do so there is no one
single solution for all applications, so what is considered a flaw in one application may

http://

CHAPTER 7: Maximizing Battery Life 193

be a feature in another. Also note that there is typically not one single solution for all
users: you should consider the needs of your users as well and offer different settings in
your application to cater for your end-users. For example, some users may be willing to
sacrifice battery life to get more frequent location updates while others would rather limit
the number of updates to make sure their device does not need to be charged during
their lunch break.

Unregistering a Listener
In order to unregister a listener, you can simply call removeUpdates() as showed in
Listing 7–9. It is usually good to do that in onPause() like for broadcast receivers but
your application many need to do that elsewhere. Listening for location updates for a
long period of time will consume a lot of power so your application should try to get the
information it needs and then stop listening for updates. In some cases it can be a good
idea to offer a way for the user to force a location fix.

Listing 7–9. Disabling Location Listener

 private void disableLocationListener(LocationListener listener) {
 LocationManager lm = (LocationManager)
getSystemService(Context.LOCATION_SERVICE);
 lm.removeUpdates(listener);
 }

The frequency of the updates can be adjusted when calling requestLocationUpdates().

Frequency of Updates
Even though the LocationManager class defines five requestLocationUpdates()
methods, all have two parameters in common: minTime and minDistance. The first one,
minTime, specifies the time interval for notifications in milliseconds. This is used only as a
hint for the system to save power and the actual time between updates may be greater
(or less) than specified. Obviously, greater values will result in greater power savings.
The second one, minDistance, specifies the minimum distance interval for notifications.
Greater values can still result in power savings as fewer instructions would be executed
if your application is not notified of all location updates. Listing 7–10 shows how to
register for updates with one hour between updates and a 100-meter threshold.

Listing 7–10. Receiving Location Updates Not As Frequently

 private void requestLocationUpdates() {
 LocationManager lm = (LocationManager)
getSystemService(Context.LOCATION_SERVICE);

 List<String> providers = lm.getAllProviders();

 if (providers != null) {
 for (String name : providers) {
 LocationListener listener = new LocationListener() {
 …
 };

http://

CHAPTER 7: Maximizing Battery Life 194

 Log.i(TAG, "Requesting location updates on " + name);
 lm.requestLocationUpdates(name, DateUtils.HOUR_IN_MILLIS * 1, 100,
listener);
 }
 }
 }

Choosing the right interval is more art than science and once again depends on your
application. A navigation application would typically require frequent updates, but if the
same navigation application can be used by hikers, for example, updates could be less
frequent. Moreover, you may have to trade accuracy for power in some cases. Give your
users the choice and offer settings that can be adjusted to let them choose the best
behavior for themselves.

Multiple Providers
As mentioned earlier, Android defines multiple location providers:

� GPS (Global Positioning System using satellites)

� Network (using Cell-ID and Wi-Fi locations)

� Passive (since API level 8)

The GPS location provider (LocationManager.GPS_PROVIDER) is typically the most
accurate one, with a horizontal accuracy of about 10 meters (11 yards). The network
location provider is not as accurate as the GPS, and the accuracy will depend on how
many locations the system can use to compute the device’s location. For example, my
own logs show an accuracy of 48 meters for locations coming from the network location
provider, or the width of a football field.

While more accurate, GPS locations are expensive in terms of time and battery usage.
Getting a “fix” from the GPS location provider requires locking the signals from multiple
satellites, which can take from a few seconds in an open field to an infinite amount of
time if the device is indoors and signal cannot be locked (like in a parking garage when
your car’s GPS tries to acquire satellites). For example, it took about 35 seconds to get
the first location update after GPS was enabled while inside the house, but only 5
seconds when the same test was repeated outside. When using the network location
provider, it took 5 seconds to get the first location update, inside and outside. An
Assisted GPS (AGPS) would typically provide faster locations fixes, but actual times
would depend on information already cached by the device and the network access.

NOTE: The Galaxy Tab 10.1 used for these measurements is Wi-Fi only. Faster location fixes

would be achieved by the network provider if cell ids were also used.

Even though receiving updates from multiple providers was listed as a flow earlier, it
may not always be one. As a matter of fact, you may want to receive updates from
several providers for a while in order to get a more accurate location fix.

http://

CHAPTER 7: Maximizing Battery Life 195

The passive location provider is the one that can preserve the battery the most. When
your application uses the passive location provider, it says it is interested in location
updates but won’t be proactively requesting location fixes. In other words, your
application will simply wait for other applications, services, or system components to
request location updates and will be notified together with these other listeners.
Listing 7–11 shows how to receive passive location updates. To test whether your
application receives updates, open another application that makes use of the location
services, such as Maps.

Listing 7–11. Receiving Passive Location Updates

 private void requestPassiveLocationUpdates() {
 LocationManager lm = (LocationManager)
getSystemService(Context.LOCATION_SERVICE);
 LocationListener listener = new LocationListener() {

 @Override
 public void onLocationChanged(Location location) {
 Log.i(TAG, "[PASSIVE] " + location.toString());

 // let's say you only care about GPS location updates

 if (LocationManager.GPS_PROVIDER.equals(location.getProvider())) {

 // if you care about accuracy, make sure you call hasAccuracy()
 // (same comment for altitude and bearing)

 if (location.hasAccuracy() && (location.getAccuracy() < 10.0f)) {
 // do something here
 }
 }
 }

 @Override
 public void onProviderDisabled(String provider) {
 Log.i(TAG, "[PASSIVE] " + provider + " location provider disabled");
 }

 @Override
 public void onProviderEnabled(String provider) {
 Log.i(TAG, "[PASSIVE] " + provider + " location provider enabled");
 }

 @Override
 public void onStatusChanged(String provider, int status, Bundle extras) {
 Log.i(TAG, "[PASSIVE] " + provider + " location provider status changed
to " + status);
 }
 };

 Log.i(TAG, "Requesting passive location updates");
 lm.requestLocationUpdates(LocationManager.PASSIVE_PROVIDER,
 DateUtils.SECOND_IN_MILLIS * 30, 100, listener);
 }

http://

CHAPTER 7: Maximizing Battery Life 196

If you use that code and disable or enable Wi-Fi or GPS, you will notice the passive
listener does not get notified when a provider is disabled or enabled, or when a
provider’s status changes. While this is usually not important, this may force your
application to use the other location providers should it really care about being notified
of these changes.

A good trade-off is to register a listener with the network location provider, which uses less
power than the GPS provider, while also registering a listener with the passive location
provider in order to get possibly more accurate location information from the GPS.

NOTE: Your application will need the ACCESS_FINE_LOCATION to use the passive location
provider even if it only receives location updates from the network provider. This may end up
being a problem if you believe this may raise privacy concerns with your users. There is currently
no way to receive passive updates only from the network location provider and only ask for the

ACCESS_COARSE_LOCATION permission.

Filtering Providers
Since our focus is on battery life, your application may want to filter out location providers
with a high power requirement if using a passive location provider is not an option. Listing
7–12 shows how you can get the power requirement of all the location providers.

Listing 7–12. Location Providers Power Requirement

 private static String powerRequirementCodeToString(int powerRequirement) {
 switch (powerRequirement) {
 case Criteria.POWER_LOW: return "Low";
 case Criteria.POWER_MEDIUM: return "Medium";
 case Criteria.POWER_HIGH: return "High";
 default: return String.format("Unknown (%d)", powerRequirement);
 }
 }

 private void showLocationProvidersPowerRequirement() {
 LocationManager lm = (LocationManager)
getSystemService(Context.LOCATION_SERVICE);

 List<String> providers = lm.getAllProviders();

 if (providers != null) {
 for (String name : providers) {
 LocationProvider provider = lm.getProvider(name);
 if (provider != null) {
 int powerRequirement = provider.getPowerRequirement();
 Log.i(TAG, name + " location provider power requirement: " +
 powerRequirementCodeToString(powerRequirement));
 }
 }
 }
 }

http://

CHAPTER 7: Maximizing Battery Life 197

NOTE: As one would expect, the power requirement of the passive location provider is unknown.

However, since your application may have very specific needs, it may be easier to first
specify as precisely as possible what location provider you are looking for. For example,
your application may want to use a location provider that reports speed information in
addition to coordinates. Listing 7–13 shows how you can create a Criteria object and
find out which location provider you should be using.

Listing 7–13. Using Criteria to Find Location Provider

 private LocationProvider getMyLocationProvider() {
 LocationManager lm = (LocationManager)
getSystemService(Context.LOCATION_SERVICE);
 Criteria criteria = new Criteria();
 LocationProvider provider = null;

 // define your criteria here
 criteria.setAccuracy(Criteria.ACCURACY_COARSE);
 criteria.setAltitudeRequired(true);
 criteria.setBearingAccuracy(Criteria.NO_REQUIREMENT); // API level 9
 criteria.setBearingRequired(false);
 criteria.setCostAllowed(true); // most likely you want the user to be able to
set that
 criteria.setHorizontalAccuracy(Criteria.ACCURACY_LOW); // API level 9
 criteria.setPowerRequirement(Criteria.POWER_LOW);
 criteria.setSpeedAccuracy(Criteria.ACCURACY_MEDIUM); // API level 9
 criteria.setSpeedRequired(false);
 criteria.setVerticalAccuracy(Criteria.NO_REQUIREMENT); // API level 9

 List<String> names = lm.getProviders(criteria, false); // perfect matches only

 if ((names != null) && ! names.isEmpty()) {
 for (String name : names) {
 provider = lm.getProvider(name);
 Log.d(TAG, "[getMyLocationProvider] " + provider.getName() + " " +
provider);
 }
 provider = lm.getProvider(names.get(0));
 } else {
 Log.d(TAG, "Could not find perfect match for location provider");

 String name = lm.getBestProvider(criteria, false); // not necessarily
perfect match

 if (name != null) {
 provider = lm.getProvider(name);
 Log.d(TAG, "[getMyLocationProvider] " + provider.getName() + " " +
provider);
 }
 }

 return provider;
 }

http://

CHAPTER 7: Maximizing Battery Life 198

LocationManager.getProviders() and LocationManager.getBestProvider() differ quite
significantly. While getProviders() will only return perfect matches, getBestProvider()
will first search for a perfect match but may return a location provider that does not meet
the criteria if no provider was a perfect match. The criteria are loosened in the following
sequence:

� Power requirement

� Accuracy

� Bearing

� Speed

� Altitude

Since this order may not necessarily be the policy you want to adopt to find a location
provider, you may have to develop your own algorithm to find the right provider for your
needs. Also, the algorithm may depend on the current battery status: your application
may not be willing to loosen the power requirement criterion if the battery is low.

Last Known Location
Before you decide to register a location listener with a location provider, you may first
want to check if a location is already known (and was cached by the system). The
LocationManager class defines the getLastKnownLocation() method, which returns the
last known location for a given provider, or null if no known location exists. While this
location may be out of date, it is often a good starting point since this location can be
retrieved instantly and calling this method won’t start the provider. Even applications
that register a location listener usually first retrieve the last known location in order to be
more responsive as it typically takes a few seconds before any location update is
received. Listing 7–14 shows how a last known location can be retrieved.

Listing 7–14. Last Known Location

 private Location getLastKnownLocation() {
 LocationManager lm = (LocationManager)
getSystemService(Context.LOCATION_SERVICE);
 List<String> names = lm.getAllProviders();
 Location location = null;

 if (names != null) {
 for (String name : names) {
 if (! LocationManager.PASSIVE_PROVIDER.equals(name)) {

 Location l = lm.getLastKnownLocation(name);

 if ((l != null) && (location == null || l.getTime() >
location.getTime())) {
 location = l;

 /*
 * Warning: GPS and network providers' clocks may be out of sync
so comparing the times

http://

CHAPTER 7: Maximizing Battery Life 199

 * may not be such a good idea... We may not get the most recent
location fix after all.
 */
 }
 }
 }
 }

 return location;
 }

While a GPS is sensitive to satellite signals, most Android devices come with other types
of sensors that can make Android applications more interesting than what you would
typically find on a traditional computer.

Sensors
Sensors are fun. Everybody likes them and everybody wants to use them. The way to
use sensors is very similar to the way to use location providers: your application
registers a sensor listener with a specific sensor and is notified of updates. Listing 7–15
shows how you can register a listener with the device’s accelerometer.

Listing 7–15. Registering Sensor Listener With Accelerometer

 private void registerWithAccelerometer() {
 SensorManager sm = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

 List<Sensor> sensors = sm.getSensorList(Sensor.TYPE_ACCELEROMETER);

 if (sensors != null && ! sensors.isEmpty()) {
 SensorEventListener listener = new SensorEventListener() {

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 Log.i(TAG, "Accuracy changed to " + accuracy);
 }

 @Override
 public void onSensorChanged(SensorEvent event) {
 /*
 * Accelerometer: array of 3 values
 *
 * event.values[0] = acceleration minus Gx on the x-axis
 * event.values[1] = acceleration minus Gy on the y-axis
 * event.values[2] = acceleration minus Gz on the z-axis
 */

 Log.i(TAG, String.format("x:%.2f y:%.2f z:%.2f ",
 event.values[0], event.values[1], event.values[2]));

 // do something interesting here
 }
 };

 // we simply pick the first one

http://

CHAPTER 7: Maximizing Battery Life 200

 Sensor sensor = sensors.get(0);
 Log.d(TAG, "Using sensor " + sensor.getName() + " from " +
sensor.getVendor());

 sm.registerListener(listener, sensor, SensorManager.SENSOR_DELAY_NORMAL);
 }
 }

In the same manner we could specify how often we wanted location updates, Android
lets applications specify how often they want to receive sensor updates. While we used
milliseconds with the location providers, we have to use one of four possible values to
specify how often we want to receive sensor updates:

� SENSOR_DELAY_NORMAL

� SENSOR_DELAY_UI

� SENSOR_DELAY_GAME

� SENSOR_DELAY_FASTEST

On a Galaxy Tab 10.1 (using an MPL accelerometer from Invensense), the
accelerometer’s NORMAL, UI, GAME, and FASTEST delays are about 180, 60, 20, and
10 milliseconds respectively. While these numbers vary depending on devices, faster
updates will require more power. For example, on the Android G1 phone, using the
NORMAL delay draws 10 mA from the battery while using the FASTEST delay draws 90
mA (15 mA for UI and 80 mA for GAME).

Like for location providers, reducing the frequency of the notification is the best way to
preserve battery life. Since every device is different, your application can measure the
frequency of the notifications for each of the four delays and choose the one that gives
the best user experience while still conserving power. Another strategy, which may not
apply to all applications, is to use the NORMAL or UI delay when you detect that the
values don’t seem to change that much, and switch to a GAME or FASTEST delay when
you detect sudden variations. Such strategy may give acceptable results for some
applications and would result in a longer battery life.

Like other listeners, the sensor listeners should be disabled whenever notifications are
not needed. For this purpose, use the SensorManager’s unregisterListener()
methods.

Graphics
Applications can spend a lot of time drawing things on the screen. Whether it is a 3D
game using the GPU or simply a Calendar application using the CPU for most of its
rendering, the idea is to do as little work as possible while still getting the desired results
on the screen in order to preserve battery life.

As we saw earlier, the CPU uses less power when it is not running at full speed. Modern
CPUs use dynamic frequency scaling and dynamic voltage scaling to conserve power or
reduce heat. Such techniques are usually used together and referred to as DVFS

http://

CHAPTER 7: Maximizing Battery Life 201

(Dynamic Voltage and Frequency Scaling) and the Linux kernel, Android, and modern
processors support such techniques.

Similarly, modern GPUs are able to turn off internal components, from a whole core to
an individual pipeline, even between the renderings of two frames.

While you have no direct control over things like voltage, frequency, or what hardware
module gets powered off, you do have direct control over what your application renders.
While achieving a good frame rate is usually the first priority for most applications,
reducing the power consumption should not be forgotten. Even though the frame rate
on Android devices is usually capped (for example, at 60 frames per second), optimizing
your rendering routines can still be beneficial even if your application has already
reached the maximum frame rate. In addition to possibly reducing power consumption,
you may also leave more room for other background applications to run, providing a
better overall user experience.

For example, a typical pitfall is to ignore the call to onVisibilityChanged() in a live
wallpaper. The fact that the wallpaper can be invisible can easily be overlooked, and
perpetually drawing the wallpaper can use a lot of power.

For tips on how to optimize rendering, refer to Chapter 8.

Alarms
Your application may for some reason need to wake up every now and then to perform
some operation. A typical example would be an RSS reader application that wakes up
every 30 minutes to download RSS feeds so that the user always has an updated view
of the feed when the application is started, or a stalker application that sends a message
to one of your contacts every 5 minutes. Listing 7–16 shows how an alarm can be
created to wake up the application and start a service that simply prints out a message
and terminates. Listing 7–17 shows the implementation of the service.

Listing 7–16. Setting Up An Alarm

 private void setupAlarm(boolean cancel) {
 AlarmManager am = (AlarmManager) getSystemService(Context.ALARM_SERVICE);

 Intent intent = new Intent(this, MyService.class);

 PendingIntent pendingIntent = PendingIntent.getService(this, 0, intent, 0);

 if (cancel) {
 am.cancel(pendingIntent); // will cancel all alarms whose intent matches
this one
 } else {
 long interval = DateUtils.HOUR_IN_MILLIS * 1;
 long firstInterval = DateUtils.MINUTE_IN_MILLIS * 30;

 am.setRepeating(AlarmManager.RTC_WAKEUP, firstInterval, interval,
pendingIntent);
 // use am.set(…) to schedule a non-repeating alarm
 }
 }

http://

CHAPTER 7: Maximizing Battery Life 202

Listing 7–17. Service Implementation

public class MyService extends Service {
 private static final String TAG = "MyService";

 @Override
 public IBinder onBind(Intent intent) {
 // we return null as client cannot bind to the service
 return null;
 }

 @Override
 public void onStart(Intent intent, int startId) {
 super.onStart(intent, startId);

 Log.i(TAG, "Alarm went off – Service was started");

 stopSelf(); // remember to call stopSelf() when done to free resources
 }
}

As seen with the sensor event listeners, a single value can make a big difference as far
as power consumption is concerned. Here this value is AlarmManager.RTC_WAKEUP.
Android defines four types of alarms:

� ELAPSED_TIME

� ELAPSED_TIME_WAKEUP

� RTC

� RTC_WAKEUP

The RTC and ELAPSED_TIME types differ only in the way the time is represented, in
milliseconds since the Unix epoch for both RTC types (RTC and RTC_WAKEUP) vs. in
milliseconds since boot time for both ELAPSED_TIME types (ELAPSED_TIME and
ELAPSED_TIME_WAKEUP).

The key here is in the _WAKEUP suffix. An RTC or ELAPSED_TIME alarm that goes off when
the device is asleep won’t be delivered until the next time the device wakes up, whereas
an RTC_WAKEUP or ELAPSED_TIME_WAKEUP alarm will wake up the device when it goes off.
Obviously, waking up the device continuously can have a dramatic impact on power
consumption even if the application that is woken up does not do anything:

� The device will wake up to start your own application.

� Other (well-behaved) alarms that were waiting for the device to
wake up will be delivered.

As you can see, this can trigger a chain reaction. Even when the other alarms are the
ones consuming more power, for example because they end up transferring data over a
3G connection, your application is the one that triggered everything.

Few applications really need to forcibly wake up the device when an alarm goes off. Of
course an application such as an alarm clock would need such capability, but it is often
preferred to simply wait for the device to wake up (most commonly following a user

http://

CHAPTER 7: Maximizing Battery Life 203

interaction with the device) before doing any work. As with the location provider,
following a passive approach can lead to a longer battery life.

Scheduling Alarms
More often than not, applications need to schedule alarms that go off at some point in
the future, without any strict requirement of when exactly they should go off. For that
purpose, Android defines the AlarmManager.setInexactRepeating(), which takes the
same parameters as its sibling setRepeating(). The main difference is in the way the
system schedules the time the alarm will actually go off: Android can adjust the actual
trigger time to fire multiple alarms (possibly from multiple applications) simultaneously.
Such alarms are more power-efficient as the system will avoid waking up the device
more often than necessary. Android defines five intervals for these alarms:

� INTERVAL_FIFTEEN_MINUTES

� INTERVAL_HALF_HOUR

� INTERVAL_HOUR

� INTERVAL_HALF_DAY

� INTERVAL_DAY

While these values are defined as the number of milliseconds they represent (for
example, INTERVAL_HOUR equals 3,600,000), they are the only intervals
setInexactRepeating() understands to create “inexact alarms.” Passing any other value
to setInexactRepeating will be equivalent to calling setRepeating(). Listing 7–18 shows
how to use inexact alarms.

Listing 7–18. Setting Up An Inexact Alarm

 private void setupInexactAlarm(boolean cancel) {
 AlarmManager am = (AlarmManager) getSystemService(Context.ALARM_SERVICE);

 Intent intent = new Intent(this, MyService.class);

 PendingIntent pendingIntent = PendingIntent.getService(this, 0, intent, 0);

 if (cancel) {
 am.cancel(pendingIntent); // will cancel all alarms whose intent matches
this one
 } else {
 long interval = AlarmManager.INTERVAL_HOUR;
 long firstInterval = DateUtils.MINUTE_IN_MILLIS * 30;

 am.setInexactRepeating(AlarmManager.RTC, firstInterval, interval,
pendingIntent);
 }
 }

http://

CHAPTER 7: Maximizing Battery Life 204

TIP: There is no setInexact() method. If your application needs to schedule an inexact alarm
that goes off only once, call setInexactRepeating() and cancel the alarm after it goes off

the first time.

Clearly, the best results are achieved when all applications use such alarms instead of
alarms with exact trigger times. To maximize power savings, your application can also
let the user configure how often alarms should go off, as some may find that longer
intervals do not negatively impact their user experience.

WakeLocks
Some applications, in some cases, need to prevent the device from going to sleep to
maintain a good user experience even if the user is not interacting with the device for an
extended period of time. The simplest example, and probably the most relevant, is when
a user is watching a video or movie on the device. In such a case, the CPU needs to
decode the video while the screen needs to be on for the user to be able to watch it.
Also, the screen should not be dimmed while the video is playing.

The WakeLock class allows for such scenarios, as shown in Listing 7–19.

 Listing 7–19. Creating WakeLock

 private void runInWakeLock(Runnable runnable, int flags) {
 PowerManager pm = (PowerManager) getSystemService(Context.POWER_SERVICE);

 PowerManager.WakeLock wl = pm.newWakeLock(flags, "My WakeLock");

 wl.acquire();

 runnable.run();

 wl.release();
 }

NOTE: Your application needs the WAKE_LOCK permission to be able to use WakeLock objects.

How the system will behave depends on which flag is used when the WakeLock object
is created. Android defines the following flags:

� PARTIAL_WAKE_LOCK (CPU on)

� SCREEN_DIM_WAKE_LOCK (CPU on, display dimmed)

� SCREEN_BRIGHT_WAKE_LOCK (CPU on, bright display)

� FULL_WAKE_LOCK (CPU on, bright display and keyboard)

http://

CHAPTER 7: Maximizing Battery Life 205

The flags can be combined with two more flags:

� ACQUIRE_CAUSES_WAKEUP (to turn on screen and/or keyboard)

� ON_AFTER_RELEASE (to keep screen and/or keyboard turned on
for a little longer after the WakeLock is released)

While their use is trivial, WakeLocks can cause significant problems if they are not
released. A buggy application may simply forget to release a WakeLock, causing, for
example, the display to remain on for a very long time, emptying the battery very quickly.
In general, WakeLocks should be released as soon as possible. For example, an
application acquiring a WakeLock when a video is playing should most likely release it
when the video is paused, and acquire it again when the user starts playing the video
again. It should also release the WakeLock when the application is paused and acquire
it again when the application is resumed (if the video is still playing at that time). As you
can see, the number of different cases to handle can grow quickly, making your
application prone to have bugs.

Preventing Issues
To prevent possible problems, it is recommended you use the timeout version of
WakeLock.acquire(), which will guarantee the WakeLock will be released after the given
timeout. For example, an application playing a video could use the duration of the video
as the WakeLock timeout.

Alternatively, if keeping the screen on is associated with a view in an activity, you can
use the XML attribute android:keepScreenOn in your layout files. A benefit of using that
approach is that you don’t take the risk of forgetting to release the WakeLock, as it is
handled by the system and no additional permission is needed in the application’s
manifest file. Listing 7–20 shows how to use the attribute with a linear layout element.

Listing 7–20. keepScreenOn XML Attribute

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:keepScreenOn="true"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

…

</LinearLayout>

TIP: android:keepScreenOn can be used in any view. As long as one visible view specifies
the screen should remain on, the screen will remain on. You can also control whether the screen

should remain on with the View.setKeepScreenOn() method.

http://

CHAPTER 7: Maximizing Battery Life 206

Despite the problems they may cause, WakeLocks are sometimes necessary. If you
have to use them, make sure you carefully think about when they should be acquired
and when they should be released. Also make sure you fully understand your
application’s lifecycle, and make sure the test cases are exhaustive. WakeLocks are only
problematic when bugs exist!

Summary
Users typically won’t notice if your application preserves battery life. However, they
most likely will notice if it does not. All applications need to behave and cooperate as
much as possible in order to maximize the battery life, as a single application can ruin all
the efforts made by others. As users often uninstall applications that consume too much
power, your application needs to make a sensible use of the battery and yet should give
the users options to configure certain things as different users will ask for different
things. Empower your users.

http://

207

 Chapter

Graphics
Quite often you’ll have to spend a lot of time defining what your application should look
like. Whether it is an e-mail application using standard Android widgets or a game using
OpenGL ES, what your applications looks like is one of the first things people will notice
when browsing application stores like Android Market or Amazon Appstore.

An application that looks great but has graphics that are slow to appear on the screen or
slow to get updated is not likely to become a huge hit. Similarly, a game with high-
quality rendering but low frame rate could easily be ignored by users. Reviews will
ultimately drive the success of your application and it is therefore important your
application is more than just a little eye candy.

In this chapter, you learn the basic methods to optimize your layouts with various
techniques and tools as well as some techniques to optimize OpenGL ES rendering to
achieve a better frame rate or lower power consumption.

Optimizing Layouts
By now you should already be familiar with XML layouts and the setContentView()
method. A typical use of this method is shown in Listing 8–1. Even though many
consider layouts to be simple to define, especially with the graphical layout interface in
Eclipse, it is easy to get carried away and define far from optimal layouts. This section
provides several easy ways to simplify layouts and accelerate layout inflation.

Listing 8–1. Typical setContentView() Call

public class MyActivity extends Activity {
 private static final String TAG = "MyActivity";

 /** Called when the activity is first created. */
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // call to setContentView() to inflate and set layout (defined in main.xml)
 setContentView(R.layout.main);

8

H. Guihot, Pro Android App
© Hervé Guihot 2012

s Performance Optimization

http://

CHAPTER 8: Graphics 208

 ...
 }

 ...
}

While this is a very simple call, a few things happen under the hood when
setContentView() is called:

� Android reads the application’s resource data (in the APK file, stored
either on internal storage or SD card).

� The resource data is parsed and the layout is inflated.

� The inflated layout becomes the top-level view of the activity.

How much time this call will take depends on the complexity of the layout: the bigger the
resource data the slower the parsing is, and the more classes to instantiate the slower
the layout instantiation.

When you create an Android project in Eclipse, a default layout is generated in main.xml,
as shown in Listing 8–2. The TextView’s text is defined in strings.xml.

Listing 8–2. Default Layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />

</LinearLayout>

A call to setContentView() as shown in Listing 8–1 using this particular layout takes
about 17 milliseconds to complete on a Samsung Galaxy Tab 10.1. While this is quite
quick, it is also an extremely simple layout that is not really representative of a typical
Android application: only two classes will be instantiated (LinearLayout and TextView)
and very few properties are specified in the XML file.

NOTE: Layouts can be created programmatically as well but XML is usually preferred.

After adding multiple widgets to the default layout to reach a total of thirty widgets
(including ScrollView, EditText, and ProgressBar), the call to setContentView() took
more than 163 milliseconds to complete.

As you can see, the time it takes to inflate a layout grows almost linearly with the
number of widgets to create. Moreover, the call to setContentView() represented almost
99% of the time spent between the beginning of onCreate() and the end of onResume().

http://

CHAPTER 8: Graphics 209

You can perform your own measurements by simply adding widgets to or removing
widgets from the layout. Using the graphical layout view of the XML files in Eclipse
makes it very easy. If you already have defined your application’s layout, the first thing
you should do is to measure how much time it takes to inflate it. Because the layout is
typically inflated in your activity’s onCreate() method, the time it takes to inflate it will
have a direct impact on your activity’s start-up time, as well as your application’s. It is
therefore recommended you try to minimize the time spent inflating layouts.

To achieve this, several techniques are available, most of them based on the same
principle: reducing the number of objects to create. You can do this by using different
layouts while still achieving the same visual result, by eliminating unnecessary objects,
or by deferring the creation of objects.

RelativeLayout
Linear layouts are typically the first layout application developers learn to use. As a
matter of fact, this layout is part of the default layout shown in Listing 8–1 and therefore
is one of the first ViewGroups developers get familiar with. It is also an easy layout to
understand as a linear layout is basically a container for widgets that are aligned either
horizontally or vertically.

Most developers who are new to Android start nesting linear layouts to achieve the
desired result. Listing 8–3 shows an example of nested linear layouts.

Listing 8–3. Nested Linear Layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <TextView
 android:id="@+id/text1"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="str1"
android:textAppearance="?android:attr/textAppearanceLarge" />
 <TextView
 android:id="@+id/text2"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="str2"
android:textAppearance="?android:attr/textAppearanceLarge" />
 </LinearLayout>

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <TextView

http://

CHAPTER 8: Graphics 210

 android:id="@+id/text3"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="str3"
android:textAppearance="?android:attr/textAppearanceLarge" />
 <TextView
 android:id="@+id/text4"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="str4"
android:textAppearance="?android:attr/textAppearanceLarge" />
 </LinearLayout>

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <TextView
 android:id="@+id/text5"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="str5"
android:textAppearance="?android:attr/textAppearanceLarge" />
 <TextView
 android:id="@+id/text6"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="str6"
android:textAppearance="?android:attr/textAppearanceLarge" />
 </LinearLayout>

</LinearLayout>

This layout’s core views are the six text views. The four linear layouts are simply here to
help with positioning.

This layout exposes two issues:

� As linear layouts are nested, the layout hierarchy becomes deeper
(causing layout and key handling to be slower).

� Out of ten objects, four exist only for positioning.

These two issues are easily solved by replacing all these linear layouts with a single
relative layout, as shown in Listing 8–4.

Listing 8–4. Relative Layout

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView
 android:id="@+id/text1"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_alignParentTop="true"
 android:text="@string/str1"
android:textAppearance="?android:attr/textAppearanceLarge" />
 <TextView

http://

CHAPTER 8: Graphics 211

 android:id="@+id/text2"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:layout_toRightOf="@id/text1"
 android:layout_alignParentTop="true"
 android:text="@string/str2"
android:textAppearance="?android:attr/textAppearanceLarge" />
 <TextView
 android:id="@+id/text3"
 android:layout_alignParentLeft="true"
 android:layout_below="@id/text1"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="@string/str3"
android:textAppearance="?android:attr/textAppearanceLarge" />
 <TextView
 android:id="@+id/text4"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:layout_toRightOf="@id/text3"
 android:layout_below="@id/text2"
 android:text="@string/str4"
android:textAppearance="?android:attr/textAppearanceLarge" />
 <TextView
 android:id="@+id/text5"
 android:layout_alignParentLeft="true"
 android:layout_below="@id/text3"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="@string/str5"
android:textAppearance="?android:attr/textAppearanceLarge" />
 <TextView
 android:id="@+id/text6"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:layout_toRightOf="@id/text5"
 android:layout_below="@id/text4"
 android:text="@string/str6"
android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

As you can see, all six text views are now within a single relative layout, and therefore
only seven objects are created instead of 10. The layout is also not as deep as it used to
be: the text views are now one level higher. The key to positioning the widgets is in the
layout_*** attributes. Android defines many such attributes that you can use to
determine the positioning of the various elements in your layout:

� layout_above

� layout_alignBaseline

� layout_alignBottom

� layout_alignLeft

� layout_alignRight

� layout_alignTop

� layout_alignParentBottom

� layout_alignParentLeft

http://

CHAPTER 8: Graphics 212

� layout_alignParentRight

� layout_alignParentTop

� layout_alignWithParentIfMissing

� layout_below

� layout_centerHorizontal

� layout_centerInParent

� layout_centerVertical

� layout_column

� layout_columnSpan

� layout_gravity

� layout_height

� layout_margin

� layout_marginBottom

� layout_marginLeft

� layout_marginRight

� layout_marginTop

� layout_row

� layout_rowSpan

� layout_scale

� layout_span

� layout_toLeftOf

� layout_toRightOf

� layout_weight

� layout_width

� layout_x

� layout_y

NOTE: Some attributes are specific to a certain type of layout. For example, the
layout_column, layout_columnSpan, layout_row, and layout_rowSpan are to be used

with the grid layout.

http://

CHAPTER 8: Graphics 213

Relative layouts are especially important in list items as it is quite common for
applications to show ten or more such items on the screen at any given time.

Merging Layouts
Another way to reduce the height of the layout hierarchy is to merge layouts with the
<merge /> tag. Quite often the top element of your own layout will be a FrameLayout, as
shown in Listing 8–5.

Listing 8–5. Frame Layout

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/my_top_layout" >

 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />

</FrameLayout>

Because the parent of an activity’s content view is also a FrameLayout, you would end
up with two FrameLayout objects in the layout:

� Your own FrameLayout

� The parent of the activity’s content view, another FrameLayout,
which has only one child (your own FrameLayout)

Figure 8–1 shows the layout you would obtain assuming your own FrameLayout had two
children: an ImageView and a TextView.

Figure 8–1. FrameLayout child of another FrameLayout

This is one FrameLayout too many, and you can reduce the height of the layout by
replacing your own FrameLayout with a <merge /> tag. By doing so, Android simply

http://

CHAPTER 8: Graphics 214

attaches the children of the <merge /> tag to the parent FrameLayout. Listing 8–6 shows
the new XML layout.

Listing 8–6. Merge Tag

<?xml version="1.0" encoding="utf-8"?>
<merge xmlns:android="http://schemas.android.com/apk/res/android">

 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />

</merge>

As you can see, it is just a matter of replacing the <FrameLayout /> tag with a <merge />
tag. Figure 8–2 shows the resulting layout.

Figure 8–2. <FrameLayout /> replaced With <merge />

Reusing Layouts
Similar to the #include directive in C or C++, Android supports the <include /> tag in the
XML layouts. Simply put, the <include /> tag includes another XML layout, as shown in
Listing 8–7.

The <include /> tag can be used for two purposes:

� You want to use the same layout multiple times.

� Your layout has a common part and also parts that depend on the
device configuration (for example, screen orientation—landscape or
portrait).

Listing 8–7 shows how you can include a layout multiple times while overriding some of
the included layout’s parameters.

http://

CHAPTER 8: Graphics 215

Listing 8–7. Including Layout Multiple Times

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <include android:id="@+id/myid1" android:layout="@layout/mylayout"
android:layout_margin="9dip" />
 <include android:id="@+id/myid2" android:layout="@layout/mylayout"
android:layout_margin="3dip" />
 <include android:id="@+id/myid3" android:layout="@layout/mylayout" />

</LinearLayout>

Listing 8–8 shows how you can include a layout just once, but depending on the
device’s screen orientation, either layout-land/mylayout.xml or layout-port/mylayout.xml
will be included. (It is assumed here there are two versions of mylayout.xml, one in the
res/layout-land directory and the other in the res/layout-port directory.)

Listing 8–8. Including Layout Depending On Screen Orientation

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <include android:id="@+id/myid" android:layout="@layout/mylayout" />

</LinearLayout>

When a layout is included, it is possible to override some of the layout’s parameters,
such as:

� The root view’s id (android:id)

� The layout parameters (android:layout_*)

NOTE: Overriding the layout’s parameters is optional. Only the android:layout attribute is

mandatory in the <include /> tag.

As Listing 8–8 demonstrates, the inclusion of the layout is done dynamically when the
layout is inflated. Should the inclusion be done at compile time Android would not know
which of the two layouts to include (layout-land/mylayout.xml or layout-
port/mylayout.xml). This is different from the #include directive in C or C++, which is
handled by the preprocessor at compile time.

View Stubs
As we saw in Chapter 1, lazy initialization is a convenient technique to defer
instantiations, improve performance, and potentially save memory (when objects never
have to be created).

http://

CHAPTER 8: Graphics 216

Android defines the ViewStub class for that purpose. A ViewStub is a lightweight invisible
view that you can use in your layout to allow you to lazily inflate layout resources when
you need them. Listing 8–9, a modified version of Listing 8–8, shows how to use
ViewStub in an XML layout.

Listing 8–9. ViewStub In XML

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <ViewStub
 android:id="@+id/mystubid"
 android:inflatedId=”@+id/myid”
 android:layout="@layout/mylayout" />

</LinearLayout>

When the LineaLayout is inflated, it will contain only one child, a ViewStub. The layout
the ViewStub is referring to, @layout/mylayout, could be a very complicated layout,
requiring significant time to be inflated, but it is not inflated yet. To inflate the layout
defined in mylayout.xml, you have two options in your code, as shown in Listing 8–10
and Listing 8–11.

Listing 8–10. Inflating Layout In Code

 ViewStub stub = (ViewStub) findViewById(R.id.mystubid);
 View inflatedView = stub.inflate(); // inflatedView will be the layout defined in
mylayout.xml

Listing 8–11. Inflating Layout In Code Using setVisibility()

 View view = findViewById(R.id.mystubid);
 view.setVisibility(View.VISIBLE); // view stub replaced with inflated layout
 view = findViewById(R.id.myid); // we need to get the newly inflated view now

While the first way of inflating the layout (in Listing 8–10) seems more convenient, some
may argue it has a slight problem: the code is aware of the fact that the view is a stub
and explicitly needs to inflate the layout. In most cases, this won’t be an issue though,
and it will be the recommended way of inflating a layout when your application uses
ViewStub in its layout.

The second way of inflating the layout, shown in Listing 8–11, is more generic as it does
not refer to the ViewStub class. However, the code as shown above is still aware of the
fact that it uses a ViewStub since it uses two distinct ids: R.id.mystubid and R.id.myid. To
be fully generic, the layout should be defined as shown in Listing 8–12, and inflating the
layout should be done as shown in Listing 8–13. Listing 8–12 is identical to Listing 8–9
except for the fact that only one id is created, R.id.myid, instead of two. Similarly,
Listing 8–13 is identical to Listing 8–11 except for R.id.mystubid being replaced with
R.id.myid.

http://

CHAPTER 8: Graphics 217

Listing 8–12. ViewStub In XML Without Overriding ID

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <ViewStub
 android:id="@+id/myid"
 android:layout="@layout/mylayout" />

</LinearLayout>

Listing 8–13. Inflating Layout In Code Using setVisibility()

 View view = findViewById(R.id.myid);
 view.setVisibility(View.VISIBLE); // view stub replaced with inflated layout
 view = findViewById(R.id.myid); // we need to get the newly inflated view now

As a matter of fact, Listing 8–13 would be valid whether or not a ViewStub is used in the
layout. If it is important for your code to be generic and work fine regardless of the use
of ViewStub in the layout, then this approach is preferred. However, the two calls to
findViewById() would affect performance negatively. To partially fix this problem, since
a ViewStub will be removed from its parent when setVisibility(View.VISIBLE) is called,
you could first check whether the view still has a parent before calling findViewById()
the second time. While this is not optimal as a second call to findViewById() would still
be needed when you used a ViewStub in your layout, it would guarantee that
findViewById() is only called once when you did not use a ViewStub. The modified code
is shown in Listing 8–14.

Listing 8–14. Calling findViewById() Once When Possible

 View view = findViewById(R.id.myid);
 view.setVisibility(View.VISIBLE); // view stub replaced with inflated layout (if
stub is used in layout)
 if (view.getParent() == null) {
 // a stub was used so we need to find the newly inflated view that replaced it
 view = findViewById(R.id.myid);
 } else {
 // nothing to do, the view we found the first time is what we want
 }

What is shown in Listing 8–13 and Listing 8–14 is uncommon, and you usually won’t
have to follow this approach. Typically, it will be acceptable for your code to know that
ViewStubs are used in the layouts and therefore the simple way of inflating stubs shown
in Listing 8–10 will be sufficient.

Layout Tools
To assist you in creating the best layouts, the Android SDK provides two easy-to-use
tools: hierarchyviewer and layoutopt. You can find these tools, among others, in the SDK
tools directory.

http://

CHAPTER 8: Graphics 218

Hierarchy Viewer
The Android SDK comes with a very useful tool to view and analyze your application’s
layout: hierarchyviewer. As a matter of fact, Figure 8–1 and Figure 8–2 were generated
using that tool. In addition to showing you the detailed layout of your application, this
tool also measures how much time it takes to measure, lay out, and draw each widget,
and identifies which widgets took longer to measure, lay out, and draw.

You can use hierarchyviewer as a standalone tool or directly in Eclipse with the
“Hierarchy View” perspective.

layoutopt
The Android SDK comes with another tool that can help you with your layouts:
layoutopt. This tool analyzes your layout files and can recommend changes in order to
make the layout more efficient.

For example, using layoutopt on the layout from Listing 8–5 results in the following
output:

The root-level <FrameLayout/> can be replaced with <merge/>

As it turns out, this is exactly what Listing 8–6 did. Running layoutopt in Listing 8–6 did
not result in any recommendation.

TIP: Use the latest version of the layoutopt tool to make sure you get the best results.

Make sure all issues reported by layoutopt are taken care of before you release your
application. Unoptimized layouts can slow down your application, and it is usually quite
easy to remedy such layouts.

OpenGL ES
Three-dimensional rendering is becoming a more and more important feature of today’s
Android devices and applications. While becoming an expert in 3D rendering would take
quite some time, the following section introduces some simple techniques that are easy
to implement as well as some basic concepts you need to be aware of in order to start
working with 3D rendering. If you want to learn more about OpenGL ES for Android, you
can refer to “Pro OpenGL ES for Android” by Mike Smithwick and Mayank Verma.

Most recent Android devices support both OpenGL ES 1.1 and OpenGL ES 2.0 while
older devices would support only OpenGL ES 1.1. As of December 2011, about 90% of
the devices connecting to Android Market support OpenGL ES 2.0.

http://

CHAPTER 8: Graphics 219

While OpenGL ES is a standard from the Khronos Group, several implementations exist.
The most common GPUs supporting OpenGL ES in Android devices are:

� ARM Mali (example: Mali 400-MP4)

� Imagination Technologies PowerVR (example: PowerVR SGX543)

� Nvidia GeForce (Nvidia Tegra)

� Qualcomm Adreno (acquired from AMD, formerly ATI Imageon, and
integrated into Qualcomm Snapdragon)

Extensions
The OpenGL standard supports extensions, allowing new features to be incorporated in
certain GPUs. For example, the following extensions are supported by the Samsung
Galaxy Tab 10.1 (based on Nvidia Tegra 2):

� GL_NV_platform_binary

� GL_OES_rgb8_rgba8

� GL_OES_EGL_sync

� GL_OES_fbo_render_mipmap

� GL_NV_depth_nonlinear

� GL_NV_draw_path

� GL_NV_texture_npot_2D_mipmap

� GL_OES_EGL_image

� GL_OES_EGL_image_external

� GL_OES_vertex_half_float

� GL_NV_framebuffer_vertex_attrib_array

� GL_NV_coverage_sample

� GL_OES_mapbuffer

� GL_ARB_draw_buffers

� GL_EXT_Cg_shaders

� GL_EXT_packed_float

� GL_OES_texture_half_float

� GL_OES_texture_float

� GL_EXT_texture_array

� GL_OES_compressed_ETC1_RGB8_texture

http://

CHAPTER 8: Graphics 220

� GL_EXT_texture_compression_latc

� GL_EXT_texture_compression_dxt1

� GL_EXT_texture_compression_s3tc

� GL_EXT_texture_filter_anisotropic

� GL_NV_get_text_image

� GL_NV_read_buffer

� GL_NV_shader_framebuffer_fetch

� GL_NV_fbo_color_attachements

� GL_EXT_bgra

� GL_EXT_texture_format_BGRA8888

� GL_EXT_unpack_subimage

� GL_NV_texture_compression_st3c_update

Listing 8–15 shows how to retrieve the list of the extensions a device supports. Since
OpenGL ES 2.0 is currently not supported by the Android emulator, make sure you run
that code on an actual device.

Listing 8–15. OpenGL ES Extensions

 // list of extensions returned as a single string (parse it to find a specific
extension)

 String extensions = GLES20.glGetString(GLES20.GL_EXTENSIONS);

 Log.d(TAG, "Extensions: " + extensions);

You will need an OpenGL context to be able to successfully execute the code in
Listing 8–15 and retrieve the list of extensions. For example, you can execute the code
in your GLSurfaceView.Renderer’s onSurfaceChanged() method. If you run that code and
no OpenGL is available, then you will see a “call to OpenGL ES API with no current
context” message in LogCat.

As you can see, the extensions above can be separated into multiple groups:

� GL_OES_*

� GL_ARB_*

� GL_EXT_*

� GL_NV_*

The GL_OES_* extensions are extensions that have been approved by the Khronos
OpenGL ES Working Group. Even though these extensions are not required by OpenGL
ES, they are widely available.

The GL_ARB_* extensions have been approved by the OpenGL Architecture Review
Board. The GL_EXT_* extensions have been agreed upon by multiple vendors, whereas

http://

CHAPTER 8: Graphics 221

the GL_NV_* extensions are specific to Nvidia. By looking at what extensions are
supported, you can usually tell which company provides a device’s GPU:

� ARM extensions use the GL_ARM prefix.

� Imagination Technologies extensions use the GL_IMG prefix.

� Nvidia extensions use the GL_NV prefix.

� Qualcomm extensions use the GL_QUALCOMM, GL_AMD and
GL_ATI prefixes.

NOTE: Visit http://www.khronos.org/registry/gles and

http://www.opengl.org/registry for more information.

Because not all devices support the same extensions (hello, fragmentation), you have to
be extremely careful when optimizing for a specific device, as something that works on
one device may not work on another. Typical examples include using Non-Power-Of-
Two (NPOT) textures or a texture compression format that is supported on the device
you test your application on but not on other devices. If you plan on supported non-
Android devices, also check which extensions these devices support. For example,
current Apple iPhone/iPod/iPad devices are all Imagination Technologies PowerVR-
based (which may or may not share the same extensions) but future models may not be
PowerVR-based.

Texture Compression
Textures will define what your OpenGL ES applications will look like. While it is easy to
use uncompressed textures, such textures can quickly bloat your application. For
example, an uncompressed 256x256 RGBA8888 texture could use 256 kilobytes of
memory.

Uncompressed textures impact performance negatively as they are not as cacheable as
compressed texture (because of their size), and they require more memory access
(affecting also power consumption). Applications that use uncompressed textures are
also bigger and therefore require more time to be downloaded and installed. Besides,
the amount of memory on Android devices is typically limited, so your applications
should use as little memory as possible.

In the list above, the following extensions show which texture compression formats are
supported by the Samsung Galaxy Tab 10.1:

� GL_OES_compressed_ETC1_RGB8_texture

� GL_EXT_texture_compression_latc

� GL_EXT_texture_compression_dxt1

� GL_EXT_texture_compression_s3tc

http://

CHAPTER 8: Graphics 222

The ETC1 compression format was created by Ericsson (ETC stands for Ericsson
Texture Compression) and is supported by most Android devices (and by all Android
devices that support OpenGL ES 2.0). It is therefore the safest choice to target as many
devices as possible. This compression format uses 4 bits per pixel instead of 24 (ETC1
does not support alpha) and therefore achieves a 6x compression ratio: including the
16-byte header, a 256-by-256 ETC1 texture would use 32,784 bytes.

Multiple tools exist to create ETC1 textures. The Android SDK includes etc1tool, a
command-line tool to encode PNG images to compressed ETC1 images. For example,
the following line shows how to compress lassen.png (183 kilobytes) and generate the
difference between the original image and the compressed one:

etc1tool lassen.png --encode --showDifference lassen_diff.png

The output file, if not specified, is generated based on the name of the input file. In this
particular case, the output file will be lassen.pkm (33 kilobytes). Figure 8–3 shows the
difference between the compressed image and the original.

Figure 8–3. Original image (left) and difference with compressed image (right)

NOTE: etc1tool can also be used to decode an ETC1 image into a PNG image. For more
information about etc1tool, refer to

http://d.android.com/guide/developing/tools/etc1tool.html.

Unfortunately, the Android SDK’s etc1tool does not provide many options. For those
who want to be able to fine tune the compression and visual quality, another tool is
recommended: etcpack. The etcpack tool can be downloaded from the Ericsson
website (http://devtools.ericsson.com/etc) and allows for more options:

� Compression speed (slower speed = higher quality)

� Error metric (perceptual or non-perceptual)

� Orientation

You should always use the best quality possible before releasing your application when
ETC1 textures are generated offline (that is, not on the Android device itself). Since the
human eye is more sensitive to green than red or blue, you should also select

http://

CHAPTER 8: Graphics 223

“perceptual” as the error metric. (The algorithm will make green be closer to its original
value at the expense of red and blue, decreasing the peak signal-to-noise ratio.)

While the difference may not be obvious, there is no reason to release an application
that uses lower-quality textures as a higher-quality ETC1 texture will be the same size as
a lower-quality one. Even though generating higher-quality textures takes more time and
therefore many developers choose to work with lower-quality textures during
development, you should always remember to switch to high-quality textures before
releasing your application.

Alternatively, you can use the ARM Mali GPU Compression Tool, available for free at
http://www.malideveloper.com/developer-resources/tools. This tool offers options
similar to etcpack but with a graphical interface (a command-line version is also
provided). Figure 8–4 shows the ARM Mali GPU Compression Tool in action with the
same input file as above.

Figure 8–4. ARM Mali GPU compression tool

Figure 8–5 shows the difference in quality between a higher-quality (slow) compression
and a lower-quality (fast) compression. Once again, the differences are not obvious.

http://

CHAPTER 8: Graphics 224

Figure 8–5. Higher quality (left), medium (middle), and lower-quality (right)

As you can see on the ARM Mali developer website, many other tools are available. You
can find many authoring and debugging tools on the ARM, Imagination Technologies,
Nvidia, and Qualcomm websites:

� http://www.malideveloper.com/developer-resources/tools

� http://www.imgtec.com/powervr/insider/sdkdownloads

� http://developer.nvidia.com/tegra-android-development-pack

� http://developer.qualcomm.com/develop/mobile-
technologies/graphics-optimization-adreno

For example, Imagination Technologies also provides a tool to create compressed
textures, PVRTexTool, and the Nvidia website offers a complete SDK (including Android
SDK, NDK, Eclipse, and sample code).

NOTE: You may have to register to gain access to the various tools and documents on these

websites.

Starting in Android 2.2 (API level 8), the following classes are defined to help you work
with ETC1 textures:

� android.opengl.ETC1

� android.opengl.ETC1Util

� android.opengl.ETC1Util.ETC1Texture

Your application can compress images into ETC1 textures dynamically with the
ETC1.encodeImage() and ETC1Util.compressTexture() methods. This is useful when
ETC1 textures cannot be generated offline, for example when the textures are based on
pictures stored on the device (perhaps a picture of one of the user’s contacts).

http://

CHAPTER 8: Graphics 225

TIP: Even though ETC1 does not support transparency (there is no alpha component in the
compressed texture), you can use another single-channel texture that contains only the

transparency information and combine the two textures in a shader.

Other Texture Compression Formats
While ETC1 is the most common texture compression format, other formats exist and
are supported by some devices. Among these are:

� PowerVR Texture Compression (PVRTC)

� ATI Texture Compression (ATC or ATITC)

� S3 Texture Compression (S3TC), with DXT1 to DXT5 variants

You should experiment with various compression formats depending on which devices
you target. Because a particular GPU may be optimized for its own compression format
(for example, PowerVR GPU optimized for PVRTC compression format), you may
achieve better results with a proprietary compression format than with the more
standard ETC1 compression format.

NOTE: You can also use Apple’s iOS texturetool to generate PVRTC textures.

Manifest
Your OpenGL application’s manifest should specify two things:

� Which OpenGL version it requires the device to support

� Which texture compression formats the application supports

Listing 8–16 shows how to specify the device should support OpenGL ES 2.0 and
shows the application supports only two texture compression formats: ETC1 and
PVRTC.

Listing 8–16. Manifest and OpenGL

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.proandroid.opengl"
 android:versionCode="1" android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <uses-feature android:glEsVersion="0x00020000" />

 <supports-gl-texture android:name="GL_OES_compressed_ETC1_RGB8_texture" />
 <supports-gl-texture android:name="GL_IMG_texture_compression_pvrtc" />

http://

CHAPTER 8: Graphics 226

 ...

</manifest>

NOTE: The OpenGL ES version is a 16.16 number, so 0x0002000 is for OpenGL ES 2.0.

Android Market will use this information to filter applications when a device connects to
Market. For example, a device that supports only OpenGL ES 1.1 will not see
applications that use OpenGL ES 2.0. Similarly, a device that supports only ETC1
texture compression will not see applications that support only PVRTC and ATC
textures.

If your application does not specify any texture compression format in its manifest, then
Android Market will not apply any filtering based on compression format (and therefore
will assume your application supports all compression formats). This could lead to users
installing your application only to find out that the application does not work, potentially
leading to bad reviews.

Mipmaps
Often, objects in a 3D scene appear in the background and do not use that much space
on the screen. For example, using a 256x256 texture on an object that is only 10x10
pixels on the screen is a waste of resources (memory, bandwidth). Mipmaps solve this
by providing multiple levels of detail for a texture, as shown in Figure 8–6.

Fige 8–6. Mipmaps from 256x256 to 1x1

While a mipmap set uses about 33% more memory than its lone original image, it may
improve not only performance but also visual quality.

As you can see in Figure 8–6, each image is a version of the original image but at a
different level of detail. Obviously, it is quite hard to see a flower in the 1x1 version of the
texture.

http://

CHAPTER 8: Graphics 227

The ARM Mali GPU Texture Compression Tool can generate mipmaps for you. Instead
of generating only a single .pkm file, the tool will generate all levels of details all the way
to 1x1 and will create a single .pkm file for each. Your application will then have to load
these different levels one by one, for example by calling ETC1Util.loadTexture() or
GLES20.glTexImage2D().

Because not all devices are equal, they may not all require the same levels of detail. For
example, a Google TV device with a resolution of 1920x1080 (HD resolution) would
typically require a higher level of detail than a Samsung Nexus S with a resolution of
800x480 (WVGA). Consequently, while a 256x256 texture may be needed for a Google
TV device, the Nexus S may never have any use for such texture and would be ok using
a 128x128 texture.

NOTE: Do not simply rely on the resolution of a device to determine what your application should
do. For example, Sony Google TV televisions (1920x1080 resolution) use a PowerVR SGX535 at
400MHz, which is not as powerful as the PowerVR SGX540 at 384MHz found in the newer

Samsung Galaxy Nexus (1280x720 resolution).

How the textures will be rendered also depends on what texture parameters are set with
one of the glTexParameter() methods (for example, glTexParameteri()). For example,
you can set the minifying function by calling glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, param) with param being one of the following values:

� GL_NEAREST

� GL_LINEAR

� GL_NEAREST_MIPMAP_NEAREST

� GL_NEAREST_MIPMAP_LINEAR

� GL_LINEAR_MIPMAP_NEAREST

� GL_LINEAR_MIPMAP_LINEAR

While GL_NEAREST is generally faster than GL_LINEAR, and GL_LINEAR is faster than
the other four, better visual quality will be achieved with slower functions. What
parameters your application will choose may depend on the user’s preferences (if you
provide a way for the user to configure the quality of rendering), however many users
won’t have the patience to try various settings to find a combination that works well on
their devices. As a consequence, your application should do its best to determine the
OpenGL configuration it should use.

Many things can be configured in OpenGL and some default values favor visual quality
over performance, so you should become familiar with what your application can
configure. For example, as far as textures are concerned, the documentation on
http://www.khronos.org/opengles/sdk/docs/man/ will show you all the different
parameters you can set.

http://

CHAPTER 8: Graphics 228

Multiple APKs
Because you may want to support multiple texture compression formats (optimizing as
much as possible for each device) and because mipmaps take more space, your
application may go over the size limit defined by Android Market (currently 50
megabytes).

If that happens, you have basically three options:

� Reduce the size of your application, for example by supporting only
ETC1 texture compression.

� Download textures from a remote server after the application is
installed.

� Generate multiple APKs, each with its own set of textures.

Android Market lets you publish different APKs for your application, each targeting a
different configuration. For example, you could have one APK using only ETC1 textures
and a second one using only PVRTC textures—that is, an APK optimized for PowerVR-
based Android devices. These APKs will share the same Android Market listing, and
Android Market will take care of selecting the right APK for each device. Users won’t
have to worry about downloading and installing the right APK as the selection is
automatic and transparent.

NOTE: Not all Android application stores support this feature, so if you plan on distributing your

application in multiple stores, try to use a single APK for all devices whenever possible.

Of course, textures may not be the sole reason why you would need or want to release
multiple APKs. For example, you may want to release a smaller APK for older devices
and a larger APK with more features for newer devices. While shipping multiple APKs is
possible, it makes your maintenance and release process more complicated and
therefore it is recommended you try to ship a single APK whenever possible.

Shaders
OpenGL ES 2.0 supports the OpenGL ES Shading Language, replacing the fixed
function transformation and fragment pipeline of OpenGL ES 1.x. Based on C, the
language allows you to have more control over the OpenGL pipeline by writing your own
vertex and fragment shaders.

Like any C program, shaders can go from very simple to extremely complex. While there
is no single rule you have to follow, you should try to reduce complexity as much as
possible in your shaders as it can have a significant impact on performance.

http://

CHAPTER 8: Graphics 229

Scene Complexity
Obviously, a complex scene will take longer to render than a simple one. An easy way to
increase the frame rate therefore is to simplify the scenes to render while maintaining an
acceptable visual quality. For example, as you have already seen with textures, objects
that are further away can be less detailed and can be made of fewer triangles. Simpler
objects will use less memory and bandwidth.

Culling
Even though GPUs are good at geometry and can determine what has to be rendered,
your application should do its best to eliminate objects that are outside of the viewing
frustum so it does not send draw commands for objects that will simply be discarded
because they are not visible.

There are numerous methods to cull objects or even triangles and while these methods
are outside the scope of this book, a lower-than-expected frame rate may be caused by
poor culling. For example, it is pretty easy to quickly eliminate objects that are behind
the camera.

NOTE: More often than not you want to enable back face culling so that back facing triangles in

objects are not rendered.

Render Mode
By default, the OpenGL renderer keeps rendering the scene, regardless of what might
have changed. In some cases, the scene may not change between frames, and you may
want to explicitly tell the renderer to only render the scene when you request it. You can
achieve this by changing the GLSurfaceView’s render mode.

You can set a GLSurfaceView’s render mode by calling setRenderMode() with one of the
following two values:

� RENDERMODE_CONTINUOUSLY

� RENDERMODE_WHEN_DIRTY

When the render mode is set to RENDERMODE_WHEN_DIRTY, the renderer will render
the scene when the surface is created, or when GLSurfaceView.requestRender() is
called.

Power Consumption
One of the great qualities of modern GPUs is that they can fall asleep or at least slow
down very quickly during periods of inactivity. For example, the GPU can shut down

http://

CHAPTER 8: Graphics 230

(partially or fully) between two frames if it has nothing to do for a while, reducing power
consumption and therefore increasing battery life.

Once you have achieved an acceptable frame rate for your application, you may still
want to optimize further if only to reduce power consumption. The faster a frame is
being rendered, the sooner the GPU can idle and the longer the battery life (and the
longer a user can use your application). For some applications, one of the great ways to
increase battery life with OpenGL is to render frames only when the scene changed (as
described above with the RENDERMODE_WHEN_DIRTY render mode).

Summary
The latest Android devices are very powerful pieces of hardware and are capable of
great graphics, both 2D and 3D. While some optimizations may become less important
than just a couple of years ago, new challenges present themselves with the higher and
higher resolutions the devices support, the almost ubiquitous support for OpenGL ES
2.0, and the increasingly higher expectations from users. This chapter only scratched
the surface of OpenGL ES and only introduced some techniques that are easy to
implement and yet can give tremendous results. Luckily for you, there exist many
resources to learn about OpenGL, whether you are looking for beginner or advanced
material. Also remember to refer to the documentation offered by the GPU vendors
(ARM, Imagination Technologies, Nvidia, Qualcomm) as they explain ways to optimize
rendering for their own GPU.

http://

231

 Chapter

RenderScript
Introduced in Honeycomb (API level 11), RenderScript is a new framework targeted at
high-performance 3D rendering and compute operations. While RenderScript was
already used back in Android 2.1 (Éclair), Honeycomb is the first Android version where
RenderScript is made publicly available.

After a brief overview of RenderScript, you will learn how to create a simple script and
how to use it from your Java application. Then you will learn how to perform rendering
operations from your script and how to access your script’s data from Java. We will
review one of the sample applications provided in the Android SDK, HelloCompute, and
compare two implementations of the same application, one based on Honeycomb APIs
and the other based on Ice Cream Sandwich (Android 4.0) APIs. To conclude this
chapter, we will review the RenderScript header files for both Honeycomb and Ice
Cream Sandwich, and the functions you can use in your scripts.

NOTE: This chapter is not meant to be a complete guide to 3D rendering. For example, one
should acquire knowledge of the OpenGL Shading Language (GLSL) as well in order to use
advanced features of RenderScript. Whole books are dedicated to OpenGL and GLSL, and

mastering 3D rendering can take years of practice.

Overview
There aren’t that many applications currently using RenderScript. Since a picture is
worth a thousand words, let’s see examples of where RenderScript is used. Perhaps the
most popular example is the YouTube application and its carousel view, as shown in
Figure 9–1. For clarity, the screenshot was taken when the videos were not loaded yet,
and you can see what each rectangle looks like (each rectangle would then contain a
video thumbnail). Another example, Balls, is available as sample code in the Android
SDK and uses sensors’ information and physic to compute the position of the balls on
the screen, as shown in Figure 9–2.

9

H. Guihot, Pro Android App
© Hervé Guihot 2012

s Performance Optimization

http://

CHAPTER 9: RenderScript 232

Figure 9–1. YouTube Carousel view

Figure 9–2. Balls sample application

http://

CHAPTER 9: RenderScript 233

NOTE: To create a project from sample code (for example, Balls), create a new Android project in
Eclipse and select “Create project from existing sample,” or simply create a new Android Sample
project (option available with newer versions of the Eclipse ADT plugin). RenderScript samples

are available only when you select 3.0 or above as the target. You can download a carousel

example from http://code.google.com/p/android-ui-utils/downloads/list.

RenderScript uses C99 as its language but is not meant to completely replace your Java
application. Instead, your application will use RenderScript for certain parts and Java for
others. When you use RenderScript, your scripts will be compiled to Low-Level Virtual
Machine (LLVM) bitcode on the host machine (for example, your Windows PC on which
you installed Eclipse), and the LLVM bitcode will then be compiled to native code on the
Android device itself. In that respect, it is similar to your Java code being compiled to
Dalvik bytecode on the host, which can be compiled to native code on the device by the
Dalvik Just-In-Time compiler.

The native code is then cached on your device, so subsequent executions of the script
will be faster as the script will already be compiled to native code. As compilation of the
bitcode to native code occurs on the device, the resulting native code can be optimized
for the device, or even hardware module (for example, GPU), and you as a developer
won’t have to worry about the various architectures and features. This is a major
difference with the NDK, where, for example, your code has to check whether NEON is
available, and should simplify your workflow significantly.

NOTE: For more information about LLVM, visit http://llvm.org. You can download and
install various LLVM tools from there as well. LLVM is not an Android-specific technology. As a

matter of fact, it is used by Apple’s Xcode 4.

Before we talk in more detail about what you can do in RenderScript, we are going to
walk through how to create a basic RenderScript script in a project. Since the emulator
does not support all the features needed by RenderScript you will need an actual
Android device to use RenderScript. You will often find that a RenderScript script is
simply referred to as a RenderScript.

Hello World
As always when introduced to a new framework, your first instinct should be to say
“hello” to the world from a RenderScript script. To create a script, simply create a new
file in your Android project and call it helloworld.rs. Listing 9–1 shows how we can create
a simple function that will output the “Hello, World” string using a simple RenderScript
debugging function.

http://

CHAPTER 9: RenderScript 234

Listing 9–1. “Hello, World” Script

#pragma version(1)
#pragma rs java_package_name(com.apress.proandroid.ch9)

void hello_world() {
 rsDebug("Hello, World", 0); // 0 is because we cannot send only a string to the
debug output...
}

The first line declares which version of RenderScript your script uses. The second line
declares the package name of the Java reflection of this script. As you build your
Android project, many things will happen under the hood, and the build tools will create
the following three files:

� ScriptC_helloworld.java (in gen/ directory)

� helloworld.d (in gen/ directory)

� helloworld.bc (in res/raw/ directory)

Listing 9–2 shows the content of the auto-generated ScriptC_helloworld.java file. You
can find that file in your project’s gen directory, which is the same directory R.java is
generated. This file is part of the reflected layer of your script and contains the definition
of the class that will allow you to invoke functions from your script and communicate
with your script in general. In that same directory you will also find helloworld.d, which
simply lists the dependencies for the helloworld.bc file (that is, helloworld.bc would have
to be generated again if any of the listed dependencies in helloworld.d is modified).

Listing 9–2. ScriptC_helloworld.java

/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This file is auto-generated. DO NOT MODIFY!
 * The source RenderScript file: E:\ws\Chapter
9\src\com\apress\proandroid\ch9\helloworld.rs
 */
package com.apress.proandroid.ch9;

import android.renderscript.*;
import android.content.res.Resources;

http://

CHAPTER 9: RenderScript 235

/**
 * @hide
 */
public class ScriptC_helloworld extends ScriptC {
 // Constructor
 public ScriptC_helloworld(RenderScript rs, Resources resources, int id) {
 super(rs, resources, id);
 }

 private final static int mExportFuncIdx_hello_world = 0;
 public void invoke_hello_world() {
 invoke(mExportFuncIdx_hello_world);
 }

}

Three things stand out in this auto-generated file:

� The package name is the one defined in the script with #pragma

� The public constructor

� The invoke_hello_world function

Parts of this auto-generated file, even though they are important, are not relevant to you.
For example, the private mExportFuncIdx_hello_world constant in Listing 9–2 refers to
the index of a function in the script, but its actual value is of no importance to you or
your application.

To use the script, you will have to create an instance of ScriptC_helloworld in your Java
code, which will then allow you to call the script’s hello_world function via the reflected
invoke_hello_world method, as shown in Listing 9–3.

Listing 9–3. Calling RenderScript Function

public class Chapter9Activity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 HelloWorldRenderScript();
 }

 private void HelloWorldRenderScript() {
 RenderScript rs = RenderScript.create(this); // needs a Context as parameter

 // script created using the helloworld bitcode in res/raw/helloworld.bc
 ScriptC_helloworld helloworldScript = new ScriptC_helloworld(rs, getResources(),
R.raw.helloworld);

 // now we can call the script’s hello_world function using the reflected method
 helloworldScript.invoke_hello_world();
 }
}

http://

CHAPTER 9: RenderScript 236

Executing this code will result in “Hello, World 0 0x0” being displayed in logcat with the
tag “RenderScript”.

NOTE: Use DDMS perspective in Eclipse to observe that RenderScript-related threads are now

running in the application (with the name RSMessageThread). You can also see the following
output in logcat: “RS Launching thread(s), reported CPU count 2” (if your device has 2 cores). As

you learn about RenderScript, observe the outputs generated with the tag “RenderScript”.

While the helloworld.bc file is critical as it contains the script bitcode, its actual content
is not of great value to you. All you should care about is the fact that the LLVM bitcode
is the platform-independent representation of your script. That being said, it is possible
to disassemble this file and convert it to human-readable LLVM assembly language
using the LLVM disassembler llvm-dis (available as part of the LLVM suite). Listing 9–4
shows the LLVM assembly language version of helloworld.bc.

Listing 9–4. LLVM Assembly Language (helloworld.bc)

; ModuleID = '/home/herve/helloworld.bc'
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-
f64:64:64-v64:64:64-v128:128:128-a0:0:64-n32"
target triple = "armv7-none-linux-gnueabi"

@.str = private constant [13 x i8] c"Hello, World\00"

define void @hello_world() nounwind {
 tail call void @_Z7rsDebugPKci(i8* getelementptr inbounds ([13 x i8]* @.str, i32 0,
i32 0), i32 0) nounwind
 ret void
}

declare void @_Z7rsDebugPKci(i8*, i32)

!#pragma = !{!0, !1}
!#rs_export_func = !{!2}

!0 = metadata !{metadata !"version", metadata !"1"}
!1 = metadata !{metadata !"java_package_name", metadata !"com.apress.proandroid.ch9"}
!2 = metadata !{metadata !"hello_world"}

This example did not perform any rendering using RenderScript. In fact, the activity’s
layout was still defined using XML and the activity content was still set from a layout
resource which was inflated when setContentView() was called. Now that you know
how to create a basic script, it is time to see how rendering can be performed with
RenderScript.

Hello Rendering
Rendering with RenderScript is a little bit more complicated than simply invoking a script
function, and requires a little more work before you can see anything on the screen. You
will need to:

http://

CHAPTER 9: RenderScript 237

� Create a script that does the rendering.

� Create a RenderScriptGL context object.

� Create a class that extends RSSurfaceView.

� Set your RSSurfaceView as the content view for your activity.

Creating a Rendering Script
Our first rendering script will be extremely simple as it will only change the background
color to some random color. The script is shown in Listing 9–5 and is in a file called
hellorendering.rs. The names of the RenderScript files are important as they define the
resource name (in that case R.raw.hellorendering, which is simply defined as an integer
in R.java).

Listing 9–5. Changing Background Color

#pragma version(1)
#pragma rs java_package_name(com.apress.proandroid.ch9)

#include "rs_graphics.rsh"

// invoked automatically when the script is created
void init() {
 // do whatever you need to do here...
}

int root() {
 float red = rsRand(1.0f);
 float green = rsRand(1.0f);
 float blue = rsRand(1.0f);

 // clear the background color with random color
 rsgClearColor(red, green, blue, 1.0f); // alpha is 1.0f, i.e. opaque

 // 50 frames per second = 20 milliseconds per frame
 return 20;
}

The first two lines of the files are the same as in Listing 9–1. The following line is to
include the rs_graphics.rsh header file, where rsgClearColor() is defined. Header files
are automatically included except for rs_graphics.rsh, so you will have to explicitly
include that file when you use graphics RenderScript functions such as rsgClearColor()
or rsgBindFont().

The init() function here is for informational purpose only as its implementation is
empty. The init() function is optional and, if present, will be called automatically when
the script is created. This allows you to perform any initialization before other routines
are executed. A script that does no rendering, like the one shown in Listing 9–1, could
also have an init() function.

The root() function is where the rendering actually happens. The implementation here is
trivial as all it does is clear the background with a random color. What is interesting

http://

CHAPTER 9: RenderScript 238

though is the return value of the function as it specifies how often rendering will occur. In
this particular case we return 20, which means the frame should be updated every 20
milliseconds (that is, frame rate of 50 frames per second).

NOTE: init() and root() are reserved functions and do not result in invoke_init() and
invoke_root() methods being created in the reflected layer (ScriptC_hellorendering.java in

this case).

Creating a RenderScriptGL Context
Now that the rendering script is complete, you will need a RenderScriptGL context
object. Here the RenderScriptGL context object is created when the RSSurfaceView’s
surfaceChanged() method is called. The HelloRenderingView implementation is shown in
Listing 9–6.

Listing 9–6. HelloRenderingView.java

public class HelloRenderingView extends RSSurfaceView {

 public HelloRenderingView(Context context) {
 super(context);
 }

 private RenderScriptGL mRS;
 private HelloRenderingRS mRender; // helper class

 public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {
 super.surfaceChanged(holder, format, w, h);
 if (mRS == null) {
 RenderScriptGL.SurfaceConfig sc = new RenderScriptGL.SurfaceConfig();
 mRS = createRenderScriptGL(sc);
 mRender = new HelloRenderingRS();
 mRender.init(mRS, getResources());
 }
 mRS.setSurface(holder, w, h);
 }

 @Override
 protected void onDetachedFromWindow() {
 if(mRS != null) {
 mRS = null;
 destroyRenderScriptGL();
 }
 }
}

As you can see in Listing 9–6, a HelloRenderingRS helper class is used as well.

http://

CHAPTER 9: RenderScript 239

Extending RSSurfaceView
The implementation of this class is shown in Listing 9–7.

Listing 9–7. HelloRenderingRS.java

public class HelloRenderingRS {

 public HelloRenderingRS() {
 }

 private Resources mRes;
 private RenderScriptGL mRS;
 private ScriptC_hellorendering mScript;

 public void init(RenderScriptGL rs, Resources res) {
 mRS = rs;
 mRes = res;

 mScript = new ScriptC_hellorendering(mRS, mRes, R.raw.hellorendering);

 mRS.bindRootScript(mScript);
 }
}

In this class, we create the actual ScriptC_hellorendering script and bind it to the
RenderScriptGL object. Without the call to bindRootScript(), nothing would actually get
rendered as the script’s root() function would not be called. If you find yourself staring
at a black screen when you were expecting some rendering to happen, first check you
did not forget to call bindRootScript().

Setting the Content View
Now that all these files exist, you can create an instance of HelloRenderingView and set
the activity’s content to this instance, as shown in Listing 9–8.

 Listing 9–8. Activity

public class Chapter9Activity extends Activity {
 static final String TAG = "Chapter9Activity";

 private HelloRenderingView mHelloRenderingView;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //setContentView(R.layout.main); // we don’t use the XML layout anymore here so
we comment it out

 HelloWorldRenderScript();

 mHelloRenderingView = new HelloRenderingView(this);
 setContentView(mHelloRenderingView);

http://

CHAPTER 9: RenderScript 240

 }

 @Override
 protected void onPause() {
 super.onPause();
 mHelloRenderingView.pause(); // to pause the rendering thread
 }

 @Override
 protected void onResume() {
 super.onResume();
 mHelloRenderingView.resume(); // to resume the rendering thread
 }

 private void HelloWorldRenderScript() {
 // see Listing 9–3 for implementation
 }
}

While most of this file should be trivial to you now, there is one thing in this file worth
noting: the RSSurfaceView must be told when the activity is paused and resumed.
Without the calls to RSSurfaceView.pause() and RSSurfaceView.resume(), the rendering
thread would not be aware of the activity’s state and would carry on rendering things
even when the activity is not necessarily visible.

In Android 4.0 two new important features are added:

� Your application can use an allocation as an off-screen buffer by
setting the Allocation.USAGE_GRAPHICS_RENDER_TARGET flag
when creating the allocation object.

� You can use an RSTextureView in your layout (together with other
views). While an RSSurfaceView creates a separate window, an
RSTextureView does not.

Adding Variables to Script
Let’s modify Listing 9–5 a little bit to learn more about the reflected layer. So far, we only
saw how the hello_world routine from the script was reflected in Listing 9–2. Here we
are going to add more variables in the script, which we will call hellorendering2.rs, as
shown in Listing 9–9.

Listing 9–9. Changing Background Color (Second Version)

#pragma version(1)
#pragma rs java_package_name(com.apress.proandroid.ch9)

#include "rs_graphics.rsh"

// we removed init() as it was empty anyway

float red = 0.0f; // initialized to 1.0f

float green; // purposely not initialized

http://

CHAPTER 9: RenderScript 241

static float blue; // purposely not initialized, static

const float alpha = 1.0f; // constant

int root() {
 // clear the background color
 blue = rsRand(1.0f);
 rsgClearColor(red, green, blue, alpha);

 // 50 frames per second = 20 milliseconds per frame
 return 20;
}

As you can see, the four variables—red, green, blue, and alpha—are all defined
differently. While this does not necessarily make sense for the actual script, it allows us
to see how the reflected layer is created. Listing 9–10 shows the
ScriptC_hellorendering2.java class.

Listing 9–10. ScriptC_hellorendering2.java

/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This file is auto-generated. DO NOT MODIFY!
 * The source RenderScript file: E:\ws\Chapter
9\src\com\apress\proandroid\ch9\hellorendering2.rs
 */
package com.apress.proandroid.ch9;

import android.renderscript.*;
import android.content.res.Resources;

/**
 * @hide
 */
public class ScriptC_hellorendering2 extends ScriptC {
 // Constructor
 public ScriptC_hellorendering2(RenderScript rs, Resources resources, int id) {
 super(rs, resources, id);
 mExportVar_red = 0f;
 mExportVar_alpha = 1f;
 }

http://

CHAPTER 9: RenderScript 242

 private final static int mExportVarIdx_red = 0;
 private float mExportVar_red;
 public void set_red(float v) {
 mExportVar_red = v;
 setVar(mExportVarIdx_red, v);
 }

 public float get_red() {
 return mExportVar_red;
 }

 private final static int mExportVarIdx_green = 1;
 private float mExportVar_green;
 public void set_green(float v) {
 mExportVar_green = v;
 setVar(mExportVarIdx_green, v);
 }

 public float get_green() {
 return mExportVar_green;
 }

 private final static int mExportVarIdx_alpha = 2;
 private float mExportVar_alpha;
 public float get_alpha() {
 return mExportVar_alpha;
 }
}

The global red variable was defined in the script and initialized to zero. Consequently,
the reflected layer defines a private mExportVar_red floating-point member, initialized to
zero in the constructor, as well as two methods to set and get the red value: set_red()
and get_red().

The global green variable in the script was very similar to the red one, except for the fact
that it was not initialized. The reflected layer therefore also defines a private
mExportVar_green floating-point member as well as two methods, set_green() and
get_green(). However, the mExportVar_green member is not initialized in the
constructor.

The blue variable was defined as static, which means it is not exported outside the
script. As a consequence, the reflected layer does not define any member or method
related to the script’s blue component.

Finally, the alpha component was defined as a constant, and therefore the reflected
layer contains the initialization of the mExportVar_alpha member in the constructor and
only defines one method, get_alpha(), to access the value of the member. Since the
alpha component is constant, there is indeed no need to define any set_alpha() method
in Java.

NOTE: Global pointers defined in the script would result in a bind_pointer_name() method in

the reflected layer instead of a set_pointer_name() method.

http://

CHAPTER 9: RenderScript 243

As you can see, a get() method in the reflected layer returns the last value set in Java.
For example, get_green() simply returns mExportVar_green, which can only be modified
by a call to set_green(). This basically means that if the script modifies the value of the
global green variable, the change won’t propagate to the Java layer. This is a very
important detail to be aware of.

We will now review one of the simple examples provided by Android as sample code to
learn more about one of the most important RenderScript functions.

HelloCompute
The Android HelloCompute sample application simply converts a color picture to black
and white. Listing 9–11 shows the script implementation (build target is Honeycomb).

Listing 9–11. RenderScript mono.rs

/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma version(1)
#pragma rs java_package_name(com.android.example.hellocompute)

rs_allocation gIn;
rs_allocation gOut;
rs_script gScript;

const static float3 gMonoMult = {0.299f, 0.587f, 0.114f};

void root(const uchar4 *v_in, uchar4 *v_out, const void *usrData, uint32_t x, uint32_t
y) {
 float4 f4 = rsUnpackColor8888(*v_in);

 float3 mono = dot(f4.rgb, gMonoMult);

 *v_out = rsPackColorTo8888(mono);
}

void filter() {
 rsForEach(gScript, gIn, gOut, 0); // first: script; second: input allocation; third:
output allocation
}

http://

CHAPTER 9: RenderScript 244

The root() function converts a single pixel to black and white. It does so in four steps:

1. The ARGB value (*v_in) is converted to a floating-point vector.

2. root() performs the dot product of f4.rgb and gMonoMult, which
returns a single floating-point value (the luminance).

3. All three entries in the mono vector are given the same value (the result
of the dot product, that is, the luminance).

4. The mono vector is converted to an ARGB value that is copied into
*v_out.

NOTE: The gMonoMult values are defined by the NTSC standard.

In order for the script to convert a whole picture to black and white, it has to
be told to execute the root() function on each pixel. This is what the filter()
function is doing by calling the rsForEach() function. The rsForEach() function
executes the script (first parameter) for each pair of elements in the input and
output allocations (second and third parameters). The fourth parameter,
usrData, is set to zero here and is ignored by the root() function.

Allocations
As rsForEach() uses allocations as parameters, allocations have to be created
in Java and must then be passed down to the script. This is what
createScript() in HelloCompute.java does among other things, as shown in
Listing 9–12.

Listing 9–12. Allocations

 private RenderScript mRS;
 private Allocation mInAllocation; // input allocation
 private Allocation mOutAllocation; // output allocation
 private ScriptC_mono mScript;

 ...

 private void createScript() {
 mRS = RenderScript.create(this);

 mInAllocation = Allocation.createFromBitmap(mRS, mBitmapIn,
 Allocation.MipmapControl.MIPMAP_NONE,
 Allocation.USAGE_SCRIPT);

 mOutAllocation = Allocation.createTyped(mRS, mInAllocation.getType());

 mScript = new ScriptC_mono(mRS, getResources(), R.raw.mono);

http://

CHAPTER 9: RenderScript 245

 mScript.set_gIn(mInAllocation);
 mScript.set_gOut(mOutAllocation);
 mScript.set_gScript(mScript);

 mScript.invoke_filter();

 mOutAllocation.copyTo(mBitmapOutRS);
 }

In this example, the input memory allocation is created from a bitmap, and the
allocation will be used by the script. Other possible uses include texture
source (USAGE_GRAPHICS_TEXTURE) and graphics mesh
(USAGE_GRAPHICS_VERTEX). You can review the various methods defined in
the Allocation class to create allocations. Allocations can be one dimensional
(for example, array), two-dimensional (for example, bitmap), or three-
dimensional.

rsForEach
The rsForEach function exists in three different flavors:

� rsForEach(rs_script script, rs_allocation input, rs_allocation output)
(only in Android 4.0 and above)

� rsForEach(rs_script script, rs_allocation input, rs_allocation output,
const void * usrData)

� rsForEach(rs_script script, rs_allocation input, rs_allocation output,
const void * usrData, const rs_script_call_t*)

As we saw in Listing 9–11, the first parameter is a script. It will define which
root() function to execute. The second and third parameters specify the input
and output allocations. The fourth parameter, if present, is some private user
data that can be used by the script. Android will not use this value and it can
be set to zero or any other value when not used by the root() function. The
fifth parameter, when present, will specify how the root() function will be
executed. Listing 9–13 shows the definitions of the rs_script_call_t
structure.

Listing 9–13. rs_script_call_t

enum rs_for_each_strategy {
 RS_FOR_EACH_STRATEGY_SERIAL,
 RS_FOR_EACH_STRATEGY_DONT_CARE,
 RS_FOR_EACH_STRATEGY_DST_LINEAR,
 RS_FOR_EACH_STRATEGY_TILE_SMALL,
 RS_FOR_EACH_STRATEGY_TILE_MEDIUM,
 RS_FOR_EACH_STRATEGY_TILE_LARGE
};

typedef struct rs_script_call {
 enum rs_for_each_strategy strategy;
 uint32_t xStart;

http://

CHAPTER 9: RenderScript 246

 uint32_t xEnd;
 uint32_t yStart;
 uint32_t yEnd;
 uint32_t zStart;
 uint32_t zEnd;
 uint32_t arrayStart;
 uint32_t arrayEnd;
} rs_script_call_t;

You can configure the strategy as well as the start and end parameters (for all
dimensions of the allocations). The strategy is only a hint and there is no guarantee
implementations will obey the order.

For convenience, Android 4.0 (Ice Cream Sandwich) defines the Script.forEach()
method. While you should not be calling this method in your code directly, it is being
used in the reflected code. Thanks to this new method, the mono.rs script can be
simplified, and Listing 9–14 shows the implementation of the script when the build target
is set to Android 4.0.

Listing 9–14. RenderScript mono.rs (Android 4.0 Version)

/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma version(1)
#pragma rs java_package_name(com.example.android.rs.hellocompute)

const static float3 gMonoMult = {0.299f, 0.587f, 0.114f};

void root(const uchar4 *v_in, uchar4 *v_out) {
 float4 f4 = rsUnpackColor8888(*v_in);

 float3 mono = dot(f4.rgb, gMonoMult);
 *v_out = rsPackColorTo8888(mono);
}

As you can see, the filter() function has been removed and so were the gIn, gOut, and
gScript variables. To understand why it was possible to remove this function in the
Android 4.0 sample application, one has to look at the reflected layer that is generated
when the project is built. Listing 9–15 shows the new reflected layer.

http://

CHAPTER 9: RenderScript 247

Listing 9–15. ScriptC_mono.java (Android 4.0 Version)

/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This file is auto-generated. DO NOT MODIFY!
 * The source Renderscript file:
E:\ws\HelloCompute\src\com\example\android\rs\hellocompute\mono.rs
 */
package com.example.android.rs.hellocompute;

import android.renderscript.*;
import android.content.res.Resources;

/**
 * @hide
 */
public class ScriptC_mono extends ScriptC {
 // Constructor
 public ScriptC_mono(RenderScript rs, Resources resources, int id) {
 super(rs, resources, id);
 __U8_4 = Element.U8_4(rs);
 }

 private Element __U8_4;
 private final static int mExportForEachIdx_root = 0;
 public void forEach_root(Allocation ain, Allocation aout) {
 // check ain
 if (!ain.getType().getElement().isCompatible(__U8_4)) {
 throw new RSRuntimeException("Type mismatch with U8_4!");
 }
 // check aout
 if (!aout.getType().getElement().isCompatible(__U8_4)) {
 throw new RSRuntimeException("Type mismatch with U8_4!");
 }
 // Verify dimensions
 Type tIn = ain.getType();
 Type tOut = aout.getType();
 if ((tIn.getCount() != tOut.getCount()) ||
 (tIn.getX() != tOut.getX()) ||
 (tIn.getY() != tOut.getY()) ||
 (tIn.getZ() != tOut.getZ()) ||
 (tIn.hasFaces() != tOut.hasFaces()) ||
 (tIn.hasMipmaps() != tOut.hasMipmaps())) {

http://

CHAPTER 9: RenderScript 248

 throw new RSRuntimeException("Dimension mismatch between input and output
parameters!");
 }
 forEach(mExportForEachIdx_root, ain, aout, null);
 }
}

Obviously the invoke_filter() method does not appear in the reflected layer as
filter() is not defined in the script anymore. Because the gIn, gOut, and gScript
variables were removed, all the set/get methods in the reflected layer are also gone. The
key method now is forEach_root(), which is called in createScript() in
HelloCompute.java, as shown in Listing 9–16 (the Honeycomb version is shown in
Listing 9–12).

Listing 9–16. createScript() Method (Android 4.0 Version)

 private void createScript() {
 mRS = RenderScript.create(this);

 mInAllocation = Allocation.createFromBitmap(mRS, mBitmapIn,
 Allocation.MipmapControl.MIPMAP_NONE,
 Allocation.USAGE_SCRIPT);

 mOutAllocation = Allocation.createTyped(mRS, mInAllocation.getType());

 mScript = new ScriptC_mono(mRS, getResources(), R.raw.mono);

 mScript.forEach_root(mInAllocation, mOutAllocation);

 mOutAllocation.copyTo(mBitmapOut);
 }

NOTE: Allocations have to be compatible (for example, same sizes in all dimensions).

As you can see, createScript() now simply calls the forEach_root() method from the
reflected layer. Because the Script.forEach() method does not exist in Honeycomb,
you may want to avoid using that method and instead use the original Honeycomb way
of doing things. Although it is more complicated, it also allows your application to be
compatible with Android 3.x devices.

Performance
Since RenderScript is targeted at high-performance 3D rendering and compute
operations, it is important to compare the performance of a script to its Java counterpart
to give you an idea of how much gain you can achieve with RenderScript. For this
purpose, a simple Java implementation of the black-and-white filter is provided in Listing
9–17.

http://

CHAPTER 9: RenderScript 249

Listing 9–17. Java Filter

 // mBitmapIn is the input bitmap, mBitmapOut is the output bitmap

 int w = mBitmapIn.getWidth();
 int h = mBitmapIn.getHeight();
 int size = w * h;
 int[] pixels = new int[size];

 mBitmapIn.getPixels(pixels, 0, w, 0, 0, w, h); // we get all the pixels (as 32-bit
integer values)

 for (int i = 0; i < size; i++) {
 int c = pixels[i]; // 0xAARRGGBB

 // we extract red, green and blue components (each one in [0, 255] range)
 int r = (c >> 16) & 0xFF;
 int g = (c >> 8) & 0xFF;
 int b = c & 0xFF;

 // approximation of the formula using integer arithmetic
 r *= 76;
 g *= 151;
 b *= 29;
 int y = (r + g + b) >> 8; // luminance

 pixels[i] = y | (y << 8) | (y << 16) | (c & 0xFF000000);
 }

 mBitmapOut.setPixels(pixels, 0, w, 0, 0, w, h); // we set the output bitmap’s pixels

While the RenderScript version of the filter took about 115 milliseconds to complete on a
Galaxy Tab 10.1 (using the bitmap resource provided in the sample application as input),
the Java version took only 48 milliseconds! The no-JIT version
(android:vmSafeMode=”true” in the application’s manifest) took about 130 milliseconds
to complete.The results may sound surprising but one has to consider the overhead of
creating the script, allocations, and floating-point operations. A more complicated script
may perform better than its Java counterpart, and may benefit in the future from more
powerful processing units. For example, in the future a script could run on the GPU
instead of the CPU, possibly taking advantage of better support for parallel execution.
Not all scripts will be slower, but this example shows that using RenderScript may not
always make your code faster.

Native RenderScript APIs
Your RenderScript code has access to a limited set of APIs as it cannot simply call APIs
from the NDK or C library. The RenderScript APIs are defined in six header files, located
in the SDK’s platform/android-xx/renderscript/include (where xx is the API level, for
example, 13):

� rs_types.rsh

� rs_core.rsh

http://

CHAPTER 9: RenderScript 250

� rs_cl.rsh

� rs_math.rsh

� rs_graphics.rsh

� rs_time.rsh

In Ice Cream Sandwich, the RenderScript APIs are defined in 12 header files. In addition
to the six header files above, the following six files were added:

� rs_allocation.rsh

� rs_atomic.rsh

� rs_debug.rsh

� rs_matrix.rsh

� rs_object.rsh

� rs_quaternion.rsh

Again, as online documentation for RenderScript is currently quite scant, it is
recommended you review these files. One of the big differences between Honeycomb
and Ice Cream Sandwich is the addition of comments in these header files. You should
therefore refer to the Android 4.0 RenderScript header files whenever possible since you
will find more information in those than in the Honeycomb header files.

rs_types.rsh
� This header file defines the basic types used in RenderScript (in

addition to the C99 standard types char, short, int, long, and
float):

� int8_t

� int16_t

� int32_t

� int64_t

� uint8_t

� uint16_t

� uint32_t

� uint64_t

� uchar (defined as uint8_t)

� ushort (defined as uint16_t)

� uint (defined as uint32_t)

http://

CHAPTER 9: RenderScript 251

� ulong (defined as uint64_t)

In addition to these basic types, this file defines vector types:

� float2

� float3

� float4

� double2 (Android 4.0 and above)

� double3 (Android 4.0 and above)

� double4 (Android 4.0 and above)

� char2

� char3

� char4

� uchar2

� uchar3

� uchar4

� short2

� short3

� short4

� ushort2

� ushort3

� ushort4

� int2

� int3

� int4

� uint2

� uint3

� uint4

Since a 3D framework would not be complete without matrices, several matrix types are
also defined:

� rs_matrix2x2 (square matrix of order 2)

� rs_matrix3x3 (square matrix of order 3)

� rs_matrix4x4 (square matrix of order 4)

http://

CHAPTER 9: RenderScript 252

NOTE: While vector types are defined for both floating-point and integer vectors (for example,

float2, ushort3, and int4), matrix types use float only.

Honeycomb MR1 (API level 12) introduced the quaternion type rs_quaternion (defined
as float4). Additional APIs were also introduced to manipulate this new type.

As you can see, the number of types is relatively high, however each of these types can
be seen as a scalar, a vector, or a matrix.

The following types are also defined in rs_types.rsh and are opaque handles to their
Java counterparts:

� rs_element

� rs_type

� rs_allocation

� rs_sampler

� rs_script

� rs_mesh

� rs_program_fragment

� rs_program_vertex

� rs_program_raster

� rs_program_store

� rs_font

All these types are also exposed in the Java layer in the android.renderscript package:

� Byte2

� Byte3

� Byte4

� Double2 (Android 4.0 and above)

� Double3 (Android 4.0 and above)

� Double4 (Android 4.0 and above)

� Float2

� Float3

� Float4

� Int2

� Int3

http://

CHAPTER 9: RenderScript 253

� Int4

� Long2

� Long3

� Long4

� Matrix2f

� Matrix3f

� Matrix4f

� Short2

� Short3

� Short4

� Element

� Type

� Allocation

� Sampler

� Script

� Mesh

� ProgramFragment

� ProgramVertex

� ProgramRaster

� ProgramStore

� Font

rs_core.rsh
This header file defines the following functions in Honeycomb:

� rsDebug

� rsPackColorTo8888

� rsUnpackColor8888

� rsMatrixSet

� rsMatrixGet

� rsMatrixLoadIdentity

� rsMatrixLoad

http://

CHAPTER 9: RenderScript 254

� rsMatrixLoadRotate

� rsMatrixLoadScale

� rsMatrixLoadTranslate

� rsMatrixLoadMultiply

� rsMatrixMultiply

� rsMatrixRotate

� rsMatrixScale

� rsMatrixTranslate

� rsMatrixLoadOrtho

� rsMatrixLoadFrustum

� rsMatrixLoadPerspective

� rsMatrixInverse

� rsMatrixInverseTranspose

� rsMatrixTranspose

� rsClamp

The matrix functions were moved to a dedicated header file in Android 4.0:
rs_matrix.rsh.

As the quaternion type was introduced in Honeycomb MR1 (Android 3.1), new functions
were also added to rs_core.rsh:

� rsQuaternionSet

� rsQuaternionMultiply

� rsQuaternionAdd

� rsQuaternionLoadRotateUnit

� rsQuaternionLoadRotate

� rsQuaternionConjugate

� rsQuaternionDot

� rsQuaternionNormalize

� rsQuaternionSlerp

� rsQuaternionGetMatrixUnit

This header file went through a metamorphosis in Android 4.0. As a matter of fact, the
Honeycomb version of this file was a little bit all over the place, containing matrix,
quaternion, debugging, and some math functions. The file was dramatically reorganized
in Android 4.0 to define only the following functions:

http://

CHAPTER 9: RenderScript 255

� rsSendToClient

� rsSendToClientBlocking

� rsForEach

The matrix, quaternion, and debugging functions were moved to their new respective
files (rs_matrix.rsh, rs_quaternion.rsh, and rs_debug.rsh) while the math functions
were naturally moved to rs_math.rsh. Since header files are automatically included, the
fact that functions were moved from one header file to another should not affect your
script.

rs_cl.rsh
This header file is actually somewhat hard to read as it uses many macros to define
functions. It contains the main “compute” APIs, and if you played hooky instead of
attending math classes, you are in for a shock.

This header file defines the following math functions:

� acos arc cosine

� acosh inverse hyperbolic cosine

� acospi acos(x) / pi

� asin arc sine

� asinh inverse hyperbolic sine

� asinpi asin(x) / pi

� atan arc tangent

� atan2 arc tangent with 2 parameters

� atanh hyperbolic arc tangent

� atanpi atan(x) / pi

� atan2pi atan2(x,y) / pi

� cbrt cubic root

� ceil round up value

� copysign x with its sign changed to sign of y

� cos cosine

� cosh hyperbolic cosine

� cospi cos(pi * x)

� erf error function encountered in integrating the normal distribution

� erfc complimentary error function

http://

CHAPTER 9: RenderScript 256

� exp ex

� exp2 2x

� exp10 10x

� expm1 ex – 1.0

� fabs absolute value of floating-point value

� fdim positive difference between x and y

� floor largest integer less than or equal to x

� fma (x * y) + z, rounded

� fmax maximum of 2 floating-point values

� fmin minimum of 2 floating-point values

� fmod modulus

� fract fractional value in x (floor(x) also returned)

� frexp extract mantissa and exponent

� hypot square root of x2 + y2

� ilogb exponent as integer value

� ldexp x * 2y

� lgamma natural logarithm of the absolute value of the gamma

� log natural logarithm (base e)

� log10 common logarithm (base 10)

� log2 logarithm base 2

� log1p natural logarithm of 1+x

� logb exponent of x, which is the integral part of logr|x|

� mad approximation of (x * y) + z (when speed is preferred
 over accuracy)

� modf decompose floating-point number into integral and
 fractional parts

� nextafter next representable floating-point value following x in
 the direction of y

� pow xy

� pown xy (y is integer)

� powr xy (x greater than or equal to zero)

� remainder remainder

http://

CHAPTER 9: RenderScript 257

� remquo remainder and quotient

� rint round to nearest integer (in floating-point format)

� rootn x1/y

� round nearest integer value (in floating-point format)

� sqrt square root

� rsqrt reciprocal of square root (i.e. 1.0 / sqrt(x))

� sin sine

� sincos sine and cosine

� sinh hyperbolic sine

� sinpi sin(pi * x)

� tan tangent

� tanh hyperbolic tangent

� tanpi tan(pi * x)

� tgamma gamma function

� trunc truncate floating-point value

It also defines these few integer functions:

� abs absolute value

� clz number of leading 0-bits

� min minimum of two integers

� max maximum of two integers

Some other common functions are also defined:

� clamp clamp amount to range given by low and high

� degrees convert radians to degrees

� mix start + (stop – start)*amount (linear blend)

� radians convert degrees to radians

� step 0.0 if v is less than edge, else 1.0

� smoothstep 0.0 if v � edge0, 1.0 if v � edge1, else smooth Hermite
 interpolation

� sign sign (-1.0, -0.0, +0.0 or 1.0)

Last but not least, this header file defines some geometric functions:

� cross cross product

http://

CHAPTER 9: RenderScript 258

� dot dot product

� length vector length

� distance distance between 2 points

� normalize normalize vector (length will be 1.0)

If you are familiar with OpenCL, you should recognize these APIs. As a matter of fact,
the Honeycomb rs_cl.rsh header file itself refers to the OpenCL documentation as it
contains comments referring to sections 6.11.2, 6.11.3, 6.11.4, and 6.11.5, which are the
sections in the OpenCL 1.1 specifications covering the math, integer, common, and
geometric functions respectively. Listing 9–18 shows these comments from rs_cl.rsh.
You can also refer to the OpenCL documentation for more information, which is freely
available on the Khronos website (www.khronos.org/opencl).

Listing 9–18. Comments Referring To OpenCL In rs_cl.rsh

#ifndef __RS_CL_RSH__
#define __RS_CL_RSH__

...

// Float ops, 6.11.2

...
extern float __attribute__((overloadable)) trunc(float);
FN_FUNC_FN(trunc)

// Int ops (partial), 6.11.3

...
IN_FUNC_IN_IN_BODY(max, (v1 > v2 ? v1 : v2))
FN_FUNC_FN_F(max)

// 6.11.4

_RS_RUNTIME float __attribute__((overloadable)) clamp(float amount, float low, float
high);
...

// 6.11.5
_RS_RUNTIME float3 __attribute__((overloadable)) cross(float3 lhs, float3 rhs);

...

#endif

This header file also defines some conversion functions such as convert_int3, which
converts a vector of three elements to a vector of three integers.

http://

CHAPTER 9: RenderScript 259

rs_math.rsh
This header file defines the following functions in Honeycomb:

� rsSetObject

� rsClearObject

� rsIsObject

� rsGetAllocation

� rsAllocationGetDimX

� rsAllocationGetDimY

� rsAllocationGetDimZ

� rsAllocationGetDimLOD

� rsAllocationGetDimFaces

� rsGetElementAt

� rsRand

� rsFrac

� rsSendToClient

� rsSendToClientBlocking

� rsForEach

As we saw earlier, rsForEach() is one of the most important functions.

The rsSendToClient() and rsSendToClientBlocking() functions (moved to rs_core.rsh
in Android 4.0) are worth mentioning as they allow a script to send data to the Java
layer. For the Java layer to be able to receive data, your application will have to register
a message handler, as shown in Listing 9–19.

Listing 9–19. Message Handler

 RenderScript rs = RenderScript.create(this); // needs a Context as parameter

 rs.setMessageHandler(new RenderScript.RSMessageHandler() {

 @Override
 public void run() {
 super.run();
 Log.d(TAG, String.valueOf(this.mID) + " " + mData + ", length:" + mLength);
 }
 });

The handler’s mID, mData, and mLength fields will contain the information passed by the
script. If your script sends data to the Java layer but no handler is registered, an
exception will be thrown.

http://

CHAPTER 9: RenderScript 260

In Android 4.0, the rs_math.rsh was also modified to focus exclusively on mathematical
functions:

� rsRand

� rsFrac

� rsClamp

� rsExtractFrustumPlanes (new in Android 4.0)

� rsIsSphereInFrustum (new in Android 4.0)

� rsPackColorTo8888

� rsUnpackColor8888

The allocation functions were moved to a new file, rs_allocation.rsh, which, in addition
to the functions introduced in Honeycomb, defines the following two new functions:

� rsAllocationCopy1DRange

� rsAllocationCopy2DRange

The object functions were also moved to a new header file: rs_object.rsh.

rs_graphics.rsh
This header files defines the following functions:

� rsgBindProgramFragment

� rsgBindProgramStore

� rsgBindProgramVertex

� rsgBindProgramRaster

� rsgBindSampler

� rsgBindTexture

� rsgProgramVertexLoadProjectionMatrix

� rsgProgramVertexLoadModelMatrix

� rsgProgramVertexLoadTextureMatrix

� rsgProgramVertexGetProjectionMatrix

� rsgProgramFragmentConstantColor

� rsgGetWidth

� rsgGetHeight

� rsgAllocationsSyncAll (new overloaded function added in Android 4.0)

� rsgDrawRect

http://

CHAPTER 9: RenderScript 261

� rsgDrawQuad

� rsgDrawQuadTexCoords

� rsgDrawSpriteScreenspace

� rsgDrawMesh

� rsgClearColor

� rsgClearDepth

� rsgDrawText

� rsgBindFont

� rsgFontColor

� rsgMeasureText

� rsgMeshComputeBoundingBox

In Android 4.0 the following functions were added to rs_graphics.rsh:

� rsgBindColorTarget

� rsgClearColorTarget

� rsgBindDepthTarget

� rsgClearDepthTarget

� rsgClearAllRenderTargets

� rsgFinish

Since the focus of this chapter is not on making you an expert in 3D rendering,
we won’t review these functions in detail. If you are already familiar with
OpenGL, then you should easily be able to use these functions. If you are not,
then it is recommended you first get familiar with 3D terms like fragment,
vertex, and mesh before you dive into RenderScript.

rs_time.rsh
This file defines the following:

� rsTime

� rsLocalTime

� rsUptimeMillis

� rsUptimeNanos

� rsGetDt

http://

CHAPTER 9: RenderScript 262

Of particular interest is the rsGetDt() function, which returns the number of seconds (as
a floating-point value) since it was last called. Listing 9–20 shows how this would
typically be used in a script.

Listing 9–20. Calling rsGetDt()

#pragma version(1)
#pragma rs java_package_name(com.yourpackagehere)

typedef struct __attribute__((packed, aligned(4))) MyObject {
 float x;
 float other_property;
} MyObject_t;
MyObject_t *object; // Java layer would have to call bind_object

int root() {
 float dt = rsGetDt();
 float dx = dt * 10.f; // 10 pixels per second

 object->x += dx; // new x position of object

 // do something else here, for example to draw the object

 return 20;
}

NOTE: While the root() function returns 20 (that is, 20 milliseconds between frames, or 50
frames per second), the frame rate is not guaranteed. This is why your code should use

rsGetDt() instead of assuming the duration between two frames is the value root() returns.

rs_atomic.rsh
New in Android 4.0, this file defines functions that were not defined in Honeycomb:

� rsAtomicInc

� rsAtomicDec

� rsAtomicAdd

� rsAtomicSub

� rsAtomicAnd

� rsAtomicOr

� rsAtomicXor

� rsAtomicMin

� rsAtomicMax

� rsAtomicCas

http://

CHAPTER 9: RenderScript 263

As their names indicate, these functions perform various operations atomically.

RenderScript vs. NDK
Both RenderScript and NDK are here to improve the performance of applications. While
they share a common goal, you should think carefully about using one versus the other.
Each has its own advantages and drawbacks, and not thinking things through could
result in you being stuck during development or finding out the hard way that something
is extremely difficult to implement.

The advantages of RenderScript can be summarized as follows:

� Platform-independent (ARM, MIPS, Intel, for example)

� Easy parallel execution

� Can use CPU, GPU, or other processing units

On the other hand, RenderScript does have some drawbacks:

� Android-only (scripts cannot be used with other platforms like iOS)

� Learning curve

� Limited number of APIs

Actual RenderScript performance results are hard to obtain as they will heavily depend
on the Android version and the hardware device. Some scripts may run much faster than
their Java or NDK counterpart while others may not. Because of legacy code or because
it simply makes sense in your application, you can actually use both RenderScript and
the NDK in the same application.

Summary
While it still appears to be a somewhat immature technology in Honeycomb,
RenderScript is already improving in Android 4.0 and is going to take advantage of more
hardware features in the future. Even though ARM is clearly the dominant architecture in
Android portable devices nowadays and using the NDK can therefore be justified, the
fact that RenderScript is platform-independent can be a huge benefit as it can ultimately
reduce your maintenance cost significantly. All in all, RenderScript shows some
promises and is likely to be an important part of your applications in the future should
you need to reach performance levels not attainable with Java alone.

http://

 265

Index

■ A�
Android Native Development Kit (NDK),

33, 73
Android devices and architectures,

35
Application Binary Interfaces, 35
ARM assembly code, 73–74
ARM instructions, 87–96
ARM NEON registers, 96–97
C extensions, 98

built-in functions, 99
vector instructions, 99–103

C/C++, performance improvements,
53

ARM assembly code, 54–55
Dalvik bytecode, 54
Fibonacci.computeIterativelyFast

er() method, 53
iterativeFaster() implementations,

56–57
JNI glue layer (see JNI glue layer)
test and compare, 55–56

color conversion, 79
Android.mk, 82
ARMv5 Assembly code (ARM

Mode), 80
ARMv5 Assembly code (Thumb

Mode), 80
ARMv7 Assembly code (ARM

Mode), 80
ARMv7 Assembly code (Thumb

Mode), 81
function implementation, 79
Hand-crafted Assembly code, 81
x86 Assembly code, 80

components, 34

CPU features, 97–98
directories, 34
greatest common divisor, 74

Android.mk, 78
ARMv5 Assembly code, 76, 77
ARMv7 Assembly code, 76, 77
disassembled gcd_asm code, 79
function implementation, 75
Hand-crafted Assembly code, 78
x86 Assembly code, 75

inlining functions, 104
LDM/STM, 106–107
MIPS technologies, 36
mixing java and C/C++ code, 37

JNI glue layer implementation
(see JNI glue layer)

Makefiles (see Makefiles)
native function implementation,

41–43
native library, 43–44
native method declaration, 37

NativeActivity class, 62
alternatives, 70–71
Android.mk, 64
header files, 62–63
manifest files, 63
myapp.c, 64, 65–70

new revisions, 36
parallel average function

Android.mk, 86
ARMv5 Assembly code (ARM

mode), 83
ARMv5 Assembly code (Thumb

mode), 84
ARMv7 Assembly code (ARM

mode), 83

http://

Index 266

ARMv7 Assembly code (Thumb
mode), 84, 85

Assembly code mixed with C
code, 86

faster implementation, 84
function implementation, 83
Hand-crafted Assembly code, 85
x86 Assembly code, 83

preloading memory, 105–106
README text file, 34
unrolling loops, 104

Android.mk, basic version, 40
Android.mk file

LOCAL_ARM_MODE, 52
LOCAL_ARM_NEON, 52
LOCAL_CFLAGS and

LOCAL_CPPFLAGS, 52
LOCAL_DISABLE_NO_EXECUTE, 52
modules, 53
variables, 51–52

Application Binary Interfaces (ABIs), 35
Application Not Responding (ANR)

dialog, 21
Application.mk

armeabi ABI, 40
basic version, 40

Application.mk file
APP_ABI, 46
APP_CFLAGS and APP_CPPFLAGS,

45
APP_OPTIM, 45
APP_STL, 45–46
Java implementation

library files, 48
using strategy pattern, 49

libfibonacci.so, 47
MIPS-based Android system, 48
primary and secondary ABIs, 47
strategy pattern, 49, 50
variables, 44

ARM Embedded Application Binary
Interface, 35

ARM instructions, 87–96
armeabi, 35

■ B, C�
Battery life, 177

alarms, 201
ELAPSED_TIME_WAKEUP, 202
RTC and ELAPSED_TIME, 202
RTC_WAKEUP, 202
schedule alarms, 203–204
service implementation, 201–202

broadcast receiver
ACTION_BATTERY_CHANGED,

183
BatteryReceiver implementation,

184
broadcast intents, 183
declaration, 184
enabling and disabling, 186–187
registerReceiver(), 183
Toast messages, 185

capacities, 177–178
G1Phone power consumption, 190
graphics, 200–201
location updates, 191

filtering providers, 196–198
flaws, 192
frequency of updates, 193–194
GPS location updates, 192
last known location, 198–199
location providers, 192, 194–196
network location updates, 192
unregister a listener, 193

network information
active connection, 187
background data setting,

188–189
data connections, 187
data transfer rates, 189–191

sensors, 199–200
usage

screen and Wi-Fi, 179
sticky intent, 180–182

WakeLocks
flags, 204
problems, 205–206
WakeLock creation, 204

Benchmarking and profiling, 163
measuring time

http://

Index 267

applications, 163
Debug.threadCpuTimeNanos(),

165, 166
System.currentTimeMillis(), 164
System.nanoTime(), 164, 165

tracing, 167
Debug.startMethodTracing()

method, 167
logging, 174–175
native tracing, 172–174
traceview, 168–172

BigInteger Version
computeIterativelyFaster, 7
Faster Recursive implementation,

8–11
Fibonacci Q-matrix, 8
lackluster performance, 7

■ D, E�
Dalvik bytecode, 2
Dalvik Just-In-Time (JIT) compiler, 33
Dalvik virtual machine, 3
Debug.startMethodTracing() method,

167
Debug.threadCpuTimeNanos(), 165,

166

■ F�
Fibonacci series

BigInteger version (see BigInteger
version)

definition, 2
faster recursive implementation

using BigInteger, 8
using BigInteger and long

Primitive Type, 9
using BigInteger and

Precomputed results, 10
using BigInteger, long Primitive

Type and Cache, 11
human-readable Dalvik bytecode, 2
Naïve recursive Implementation, 2
optimization

iterative implementation, 5

modified iterative
implementation, 5–6

recursive implementation, 8–11
Fibonacci.computeIterativelyFaster()

method, 53

■ G�
Garbage collector

GC_CONCURRENT, 130
GC_EXPLICIT, 130
GC_EXTERNAL_ALLOC, 130
GC_FOR_MALLOC, 130
GC_HPROF_DUMP_HEAP, 130
log messages, 130
memory leaks

DDMS perspective, 125
StrictMode class, 126–127

references
phantom references, 128–129
reference queues, 129–130
soft and weak references, 128
strong references, 127–128

GPS location provider, 194
Graphics, 207

culling, 229
layout tools, 217
merging layout, 213–214
Mipmaps, 226–227
Multiple APKs, 228
OpenGL ES, 218

extensions, 219–221
texture compression (�����������	
�

���������
optimizing layouts

default layout, 208
setContentView(), 207, 208

power consumption, 230
relativelayout, 209–213
render mode, 229
reusing layout, 214–215
scene complexity, 229
shaders, 228
view stubs, 215–217

Greatest common divisor (gcd), 74
Android.mk, 78

http://

Index 268

ARMv5 Assembly code
ARM Mode, 76
Thumb Mode, 77

ARMv7 Assembly code
ARM Mode, 76
Thumb Mode, 77

disassembled gcd_asm code, 79
function implementation, 75
Hand-crafted Assembly code, 78
x86 Assembly code, 75

■ H, I�
Handlers, 140–142
Hierarchy Viewer, 218

■ J, K�
Java code optimization, 1

API levels, 13–16
data structures, 17

in java.util package, 18
using LruCache, 18
OutOfMemoryError exception, 19

execution, 2
Dalvik bytecode, 2
dexdump tool, 2
Fibonacci series, 2
Google benchmarks, 3
JIT compiler, 3
strategies, 3–4
virtual register, 3
vmSafeMode, 4

fragmentation, 16–17
responsiveness, 20

classes, 20
main thread, 20
procrastination, 22–23
startup sequence, 21
StrictMode, 23–24

SQLite, 25
queries, 30–31
SQLite statements, 25–28
transactions, 28–30

using cache, 11
android.util.LruCache<K, V>,

12–13
Faster Recursive Implementation,

11
HashMap, 11
SparseArray, 11

Java Virtual Machine (VM), 2
java.math package, 6
JNI glue layer, 57

access fields and methods, 59–62
C Source file, 39
header file, 62–63
Java Development Kit, 38
JNIEnv object, 39
strings, 58–59

Just-In-Time (JIT) compiler, 3, 33

■ L�
Layoutopt, 218
Logging, 174–175
Loopers, 142
Low-Level Virtual Machine (LLVM), 233

■ M�
Makefiles

Android.mk (see Android.mk)
Application.mk (see Application.mk)
LOCAL_MODULE, 41
my-dir macro, 40
ndk-build tool, 40
shared library, 41

Memory management, 109
APIs, 131
data types

add two 64-bit integers, 111
add_16_16 with two 32-bit

values, 113
add_16_16’s C and assembly,

111
add_16_32’s C and assembly,

111
assembly code, 111, 112
BitSet class, 117–118

http://

Index 269

cache line size, 119–120
cache miss, 119
comparing two values, 113–115
Level 1 and 2 cache, 119
sorting arrays, 116–117
sorting, finding and summing,

115–116
sum of two 32-bit values, 111

garbage collection, 125
GC_CONCURRENT, 130
GC_EXPLICIT, 130
GC_EXTERNAL_ALLOC, 130
GC_FOR_MALLOC, 130
GC_HPROF_DUMP_HEAP, 130
log messages, 130
memory leaks, 125–127
references, 127–130

getMemoryInfo() methods, 131
Java primitive types, 110
modified MyRecords class

using short array, 123
using two array, 124–125

modified sum values(), 122
onLowMemory(), 131
performance, 110
physical memory, 109
Record class, 121
saving records, 121–122
virtual memory swapping, 109

Mipmaps, 226–227
Multithreading and synchronization, 133

activity’s lifecycle
computation, progression,

158–161
Fibonacci Number computation,

154, 155
passing information, 156–158

AsyncTask, 137
multiple file downloading, 138
protected methods, 138
sequence implementation, 137,

138
UI thread and execution, 139

concurrency, 147
data types

Java language, 143, 144

synchronized keywords, 143, 144
Synchronized Statements, 146
volatile keyword addition, 145

handlers, 140–142
loopers, 142
multicore

algorithm modification, 149–152
concurrent cache, 152–154
dual core CPUs, 148, 149

threads
code execution, 134
creation, 134
Fibonacci number computation,

135
non-UI thread, 135
priority, 136–137

■ N, O�
Native code, 35
NEON registers, 96
Network location provider, 194

■ P, Q�
Passive location provider, 195

■ R�
RenderScript, 231

Balls sample application, 231
Hello rendering, 236

Content View setting, 239, 240
RenderScriptGL context creation,

238
RSSurfaceView, 239
script creation, 237

Hello, World script, 233
auto-generated file, 234, 235
calling function, 235
LLVM Assembly Language, 236

HelloCompute
allocations, 244, 245
performance, 248, 249
RenderScript mono.rs, 243
root() function, 244

http://

Index 270

rsForEach function, 245–248
LLVM bitcode, 233
native code, 233
native RenderScript APIs

definition, 249, 250
rs_atomic.rsh, 262
rs_cl.rsh, 255–258
rs_core.rsh, 253–255
rs_graphics.rsh, 260–261
rs_math.rsh, 259–260
rs_time.rsh, 261, 262
rs_types.rsh, 250–253

vs. NDK, 263
variable addition

alpha component, 242
background Color, 240
blue variable, 242
get() method, 243
global red and green variable,

242
ScriptC_hellorendering2.java,

241, 242
YouTube Carousel view, 231

■ S�
SQLite

queries, 30–31
SQLite statements

cheese database, 26

compilation, 27
execution, 25
populateWithCompileStatement,

28
StringBuilder/String format

version, 26
transactions, 28

Atomic commit, 28
performance, 29

System.nanoTime(), 164, 165

■ T, U �
Textures, OpenGL ES, 221

ARM Mali GPU Compression tool,
223, 224

compression formats, 221
ETC1 compression format, 222
ETC1 compression vs. original

image, 222
etcpack tool, 222
Imagination Technologies, 224
manifest, 225, 226
PowerVR, 225
uncompressed textures, 221

■ V, W, X, Y, Z�
Virtual register, 3

http://

	GetFullPageImage
	Binder1
	front-matter
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	About the Technical Reviewers
	AcknowledgmentsI
	Introduction

	fulltext
	Chapter 1 Optimizing Java Code
	How Android Executes Your Code
	Optimizing Fibonacci
	From Recursive To Iterative
	BigInteger

	Caching Results
	android.util.LruCache<K, V>

	API Levels
	Fragmentation

	Data Structures
	Responsiveness
	Lazy initializations
	StrictMode

	SQLite
	SQLite Statements
	Transactions
	Queries

	Summary

	fulltext(1)
	Chapter 2 Getting Started With the NDK
	What Is In the NDK?
	Mixing Java and C/C++ Code
	Declaring the Native Method
	Implementing the JNI Glue LayerJava uses
	Creating the Makefiles
	Implementing the Native Function
	Compiling the Native Library
	Loading the Native Library

	Application.mk
	Optimizing For (Almost) All Devices
	Supporting All Devices

	Android.mk
	Performance Improvements With C/C++
	More About JNI
	Strings
	Accessing Fields or Methods

	Native Activity
	Building the Missing Library
	Alternative

	Summary

	fulltext(2)
	Chapter 3 Advanced NDK
	Assembly
	Greatest Common Divisor
	Color Conversion
	Parallel Computation of Average
	ARM Instructions
	ARM NEON
	CPU Features

	C Extensions
	Built-in Functions
	Vector Instructions

	Tips
	Inlining Functions
	Unrolling Loops
	Preloading Memory
	LDM/STM Instead Of LDR/STD

	Summary

	fulltext(3)
	Chapter 4 Using Memory Efficiently
	A Word On Memory
	Data Types
	Comparing Values
	Other Algorithms
	Sorting Arrays
	Defining Your Own Classes

	Accessing Memory
	The Cache’s Line Size

	Laying Out Your Data
	Garbage Collection
	Memory Leaks
	References
	Strong References
	Soft, Weak, and Phantom References
	Garbage Collection

	APIs
	Low Memory
	Summary

	fulltext(4)
	Chapter 5 Multithreading and Synchronization
	Threads
	AsyncTask
	Handlers and Loopers
	Handlers
	Loopers

	Data Types
	Synchronized, Volatile, Memory Model

	Concurrency
	Multicore
	Modifying Algorithm For Multicore
	Using Concurrent Cache

	Activity Lifecycle
	Passing Information
	Remembering State

	Summary

	fulltext(5)
	Chapter 6 Benchmarking And Profiling
	Measuring Time
	System.nanoTime()
	Debug.threadCpuTimeNanos()

	Tracing
	Debug.startMethodTracing()
	Using the Traceview Tool
	Traceview in DDMS
	Native Tracing
	Generating Trace File For Traceview

	Logging
	Summary

	fulltext(6)
	Chapter 7 Maximizing Battery Life
	Batteries
	Measuring Battery Usage

	Disabling Broadcast Receivers
	Disabling and Enabling the Broadcast Receiver

	Networking
	Background Data
	Data Transfer

	Location
	Unregistering a Listener
	Frequency of Updates
	Multiple Providers
	Filtering Providers
	Last Known Location

	Sensors
	Graphics
	Alarms
	Scheduling Alarms

	WakeLocks
	Preventing Issues

	Summary

	fulltext(7)
	Chapter 8 Graphics
	Optimizing Layouts
	RelativeLayout
	Merging Layouts
	Reusing Layouts
	View Stubs

	Layout Tools
	Hierarchy Viewer
	layoutopt

	OpenGL ES
	Extensions
	Texture Compression
	Other Texture Compression Formats
	Manifest

	Mipmaps
	Multiple APKs
	Shaders
	Scene Complexity
	Culling
	Render Mode
	Power Consumption

	Summary

	fulltext(8)
	Chater 9 RenderScript
	Overview
	Hello World
	Hello Rendering
	Creating a Rendering Script
	Creating a RenderScriptGL Context
	Extending RSSurfaceView
	Setting the Content View

	Adding Variables to Script
	HelloCompute
	Allocations
	rsForEach
	Performance

	Native RenderScript APIs
	rs_types.rsh
	rs_core.rsh
	rs_cl.rsh
	rs_math.rsh
	rs_graphics.rsh
	rs_time.rsh
	rs_atomic.rsh

	RenderScript vs. NDK
	Summary

	back-matter
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions false
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

