
Practical
Oracle SQL

Mastering the Full Power of Oracle Database
—
Kim Berg Hansen

www.allitebooks.com

http://www.allitebooks.org

Practical Oracle SQL
Mastering the Full Power

of Oracle Database

Kim Berg Hansen

www.allitebooks.com

http://www.allitebooks.org

Practical Oracle SQL: Mastering the Full Power of Oracle Database

ISBN-13 (pbk): 978-1-4842-5616-9   	 ISBN-13 (electronic): 978-1-4842-5617-6
https://doi.org/10.1007/978-1-4842-5617-6

Copyright © 2020 by Kim Berg Hansen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484256169. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Kim Berg Hansen
Middelfart, Denmark

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5617-6
http://www.allitebooks.org

To

Lis-Karen

for

patience and clearing the dishes

www.allitebooks.com

http://www.allitebooks.org

v

Part I: Core SQL�� 1

Chapter 1: Correlating Inline Views��� 3

Brewery products and sales�� 3

Scalar subqueries and multiple columns��� 5

Correlating inline view��� 9

Outer joining correlated inline view�� 12

Lessons learned��� 16

Chapter 2: Pitfalls of Set Operations��� 17

Sets of beer�� 18

Set operators��� 20

Set concatenation��� 21

The three set operators�� 25

Multiset operators�� 27

Multiset union��� 28

Multiset intersect��� 30

Multiset except��� 32

Minus vs. multiset except�� 34

Lessons learned��� 38

Table of Contents

About the Author�� xiii

Acknowledgments��xv

Introduction..xvii

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 3: Divide and Conquer with Subquery Factoring�� 39

Products and sales data�� 40

Best-selling years of the less strong beers��� 40

Modularization using the with clause�� 44

Multiple uses of the same subquery�� 47

Listing column names�� 51

Lessons learned��� 55

Chapter 4: Tree Calculations with Recursion��� 57

Bottles in boxes on pallets��� 57

Multiplying hierarchical quantities��� 60

Recursive subquery factoring��� 61

Dynamic SQL in PL/SQL function�� 68

Lessons learned��� 71

Chapter 5: Functions Defined Within SQL�� 73

Table with beer alcohol data�� 73

Blood alcohol concentration�� 75

Function with PRAGMA UDF��� 77

Function in the with clause�� 80

Encapsulated in a view��� 83

Lessons learned��� 85

Chapter 6: Iterative Calculations with Multidimensional Data�������������������������������� 87

Conway’s Game of Life��� 87

Live neighbor count with the model clause��� 89

Iterating generations�� 96

Lessons learned��� 106

Chapter 7: Unpivoting Columns to Rows��� 107

Data received in columns�� 108

Unpivoting to rows��� 108

Do-it-yourself unpivoting�� 111

More than one dimension and/or measure�� 113

Table of Contents

vii

Using dimension tables�� 120

Dynamic mapping to dimension tables�� 123

Lessons learned��� 128

Chapter 8: Pivoting Rows to Columns��� 131

Tables for pivoting�� 132

Pivoting single measure and dimension�� 134

Do-it-yourself manual pivoting��� 138

Multiple measures��� 139

Multiple dimensions as well��� 141

Lessons learned��� 144

Chapter 9: Splitting Delimited Text�� 145

Customer favorites and reviews�� 145

Delimited single values�� 146

Pipelined table function�� 147

Built-in APEX table function�� 152

Straight SQL with row generators�� 153

Treating the string as a JSON array�� 155

Delimited multiple values�� 157

Custom ODCI table function�� 157

Combining apex_string.split and substr��� 162

Row generators and regexp_substr��� 163

Transformation to JSON�� 165

Lessons learned��� 168

Chapter 10: Creating Delimited Text�� 169

Delimited lists of products��� 169

String aggregation��� 171

Aggregate function listagg��� 172

Aggregate function collect��� 173

Custom aggregate function stragg��� 177

Aggregate function xmlagg�� 182

Table of Contents

viii

When it doesn’t fit in a VARCHAR2��� 184

Get just the first part of the result�� 185

Try to make it fit with reduced data��� 186

Use a CLOB instead of a VARCHAR2��� 187

Lessons learned��� 190

Part II: Analytic Functions��� 191

Chapter 11: Analytic Partitions, Ordering, and Windows��������������������������������������� 193

Sums of quantities��� 194

Analytic syntax��� 195

Partitions�� 197

Ordering and windows��� 199

Flexibility of the window clause��� 203

Windows on value ranges�� 206

The danger of the default window��� 208

Lessons learned��� 213

Chapter 12: Answering Top-N Questions��� 215

Top-N of sales data�� 215

Which kind of Top-3 do you mean?�� 217

The sales data for the beer��� 218

Traditional rownum method��� 222

Analytic functions for ranking�� 222

Fetch only the first rows�� 225

Handling of ties�� 226

What the row limiting clause cannot do��� 229

Top-N in multiple partitions��� 231

The lateral trick for the row limiting clause��� 233

Lessons learned��� 235

Table of Contents

ix

Chapter 13: Ordered Subsets with Rolling Sums��� 237

Data for goods picking��� 238

Building the picking SQL�� 240

Solving picking an order by FIFO�� 240

Easy switch of picking principle��� 246

Solving optimal picking route��� 248

Solving batch picking��� 252

Finalizing the complete picking SQL�� 262

Lessons learned��� 264

Chapter 14: Analyzing Activity Logs with Lead��� 267

Picking activity log��� 268

Analyzing departures and arrivals��� 271

Analyzing picking activity�� 275

Complete picking cycle analysis�� 280

Teaser: row pattern matching�� 283

Lessons learned��� 286

Chapter 15: Forecasting with Linear Regression�� 287

Sales forecasting��� 288

Time series��� 289

Calculating the basis for regression��� 292

Linear regression�� 298

Final forecast�� 301

Lessons learned��� 305

Chapter 16: Rolling Sums to Forecast Reaching Minimums��������������������������������� 307

Inventory, budget, and order�� 307

The data�� 310

Accumulating until zero��� 311

Restocking when minimum reached��� 315

Lessons learned��� 322

Table of Contents

x

Part III: Row Pattern Matching�� 323

Chapter 17: Up-and-Down Patterns��� 325

The stock ticker example��� 325

Classifying downs and ups�� 327

Downs + ups = V shapes��� 332

Revisiting if SAME is needed�� 338

V + V = W shapes��� 341

Overlapping W shapes�� 346

Lessons learned��� 349

Chapter 18: Grouping Data Through Patterns�� 351

Two sets of data to group�� 351

Three grouping conditions��� 352

Group consecutive data�� 353

Group until gap too large�� 364

Group until fixed limit��� 367

Lessons learned��� 369

Chapter 19: Merging Date Ranges��� 371

Job hire periods��� 371

Temporal validity�� 375

Merging overlapping ranges�� 378

Attempts comparing to the previous row��� 379

Better comparing to the maximum end date�� 381

Handling the null dates��� 386

Lessons learned��� 388

Chapter 20: Finding Abnormal Peaks�� 389

Web page counter history�� 389

The counter data�� 391

Patterns in the raw counter data�� 393

Table of Contents

xi

Looking at daily visits�� 397

Patterns in daily visits data�� 399

More complex patterns�� 406

Lessons learned��� 410

Chapter 21: Bin Fitting��� 411

Inventory to be packed in boxes�� 411

Bin fitting with unlimited number of bins of limited capacity�� 413

Showing where box capacity is too small�� 422

Bin fitting with limited number of bins of unlimited capacity�� 426

Lessons learned��� 433

Chapter 22: Counting Children in Trees��� 435

Hierarchical tree of employees�� 435

Counting subordinates of all levels�� 437

Counting with row pattern matching�� 439

The details of each match�� 442

Fiddling with the output��� 448

Lessons learned��� 451

Index�� 453

Table of Contents

xiii

About the Author

Kim Berg Hansen is a database developer from Middelfart

in Denmark.

As a youngster originally wanting to work with

electronics, he tried computer programming and discovered

that the programs he wrote worked well – unlike the

electronics projects he soldered that often failed. This led to

a VIC-20 with 5 KB RAM and many hours programming in

Commodore BASIC.

Having discovered his talent, Kim financed computer

science studies at Odense University with a summer job

as sheriff of Legoredo while learning methodology and

programming in Modula-2 and C. From there he moved into consulting as a developer

making customizations to ERP software. That gave him his first introduction to Oracle

SQL and PL/SQL, with which he has worked extensively since the year 2000.

His professional passion is to work with data inside the database utilizing the SQL

language to the fullest to achieve the best application experience for his application

users. With a background fitting programs into 5 KB RAM, Kim hates to waste computing

resources unnecessarily.

Kim shares his experience and knowledge by blogging at www.kibeha.dk, presenting

at various Oracle User Group conferences, and being the SQL quizmaster at the Oracle

Dev Gym. His motivation comes from peers who say “Now I understand” after his

explanations and from end users who “can’t live without” his application coding. He is

an Oracle Certified Expert (OCE) in SQL and an Oracle ACE Director.

Outside the coding world, Kim is married, loves to cook, and is a card-carrying

member of the Danish Beer Enthusiasts Association.

http://www.kibeha.dk

xv

Acknowledgments

Uncountable are the number of people inspiring me over the years learning – and

eventually teaching – SQL. The space allows me only to acknowledge a few that have

been of the greatest importance to me. If you are not mentioned, don’t worry; you have

still been an invaluable inspiration.

My first and greatest inspiration was – and still is – Tom Kyte. I have learned so much

from his books and from AskTom. Without him as my role model, I am not sure I would

have gotten involved in the community, sharing knowledge and blogging, and certainly

I would not have ended up writing a book.

Second on my list is Steven Feuerstein himself, author of books that many of us

consider definitive sources. I thank Steven for giving me the chance to write SQL

quizzes for the Oracle Dev Gym (devgym.oracle.com). Teaching is the best way to learn

something, and having to come up with new quizzes every week is an opportunity for me

to read up on all aspects of SQL.

Everybody involved in sharing knowledge in the community and user groups are also

inspirations for me. This is exemplified beautifully by ODTUG and everybody attending

the Kscope yearly conferences. I’ve attended every year since 2010 and I wouldn’t have

been where I am now without my Kscope network.

Last but definitely not least, I must not forget to acknowledge Stew Ashton.

He is the grand master of row pattern matching in SQL, and he has graciously given

me permission to take great inspiration for several chapters of Part 3 from his blog

(stewashton.wordpress.com).

xvii

Introduction

Where do you go to learn SQL?

Well, if I ask myself that same question, of course, the answer is I learn SQL many

places: books by Tom Kyte and others, the SQL Reference Manual (that I use daily),

conference presentations by experienced developers, blogs, Googling, and much more.

But even all of that would not help if I didn’t simultaneously simply try writing SQL

myself, see where I went wrong, and then try again, and again, and again.

One thing I have noticed in my learning process is that almost all teaching examples

are nicely short and sweet in order to facilitate understanding. This is fine as such, but it

also sometimes means that it can be harder to relate to daily work.

I had the good fortune of working 16 years at a retail company where the philosophy

was never to adapt business practice to whatever the software was capable of, but

instead always to customize the software to make the daily business go smarter and

smoother. We always went by “of course it is possible to solve, we just need to figure out

how.” In this atmosphere, I had plenty of practical real tasks to practice on, trying out

SQL and changing it piece by piece until I had something that solved the task at hand.

When I have presented about some of these solutions that I developed during

those years, I have several times had audience approach me afterward, telling me that

suddenly they “saw the light” and understood how analytic functions could help in their

work, for example. Until then, they had seen it as some SQL extension that was smart

and fancy, but they couldn’t relate it to their own tasks they had to solve.

In this book, I will explain a series of tasks, solving them with SQL, explaining in

steps how I create that SQL, starting small and building on it until I have a working

statement that does not fit on a single PowerPoint slide. The statements I demonstrate

here are not trivial examples – but they look more like something you might have to

develop yourself in your job.

If you end up with an attitude of “Of course it is possible to solve in SQL,” your boss

will be happy because he saves a lot on cloud credits with your code using much less

CPU. You will be happy because it is much more fun really using your brain to find a

good solution.

And I will be happy too and can say: “Mission accomplished!”

xviii

�What is in this book
This is not a SQL 101 For Beginners book. The simplest basics of queries and joins are not

covered here – I am assuming that you already have at least some working knowledge of

querying a table or two.

It is also not a Definitive Reference Guide to SQL book. I am not trying to cover every

single piece of syntax in loving detail – not even of those statements and functions that I

do write about in this book.

Instead Practical Oracle SQL is a book with examples of how to solve lots of different

tasks using SQL that is a little more complex than what is available in the SQL-92

standard. Each chapter solves a different task, so the chapters do not necessarily need to

be read consecutively.

A chapter explains the task; shows the tables, data, and other objects involved; and

then walks through developing the solution to the task. Typically this consists of building

the SQL step by step from simple to complex. In the course of stepwise walking through the

SQL, syntax is explained and examples given of alternatives or caveats where relevant.

All chapters except one (Chapter 6) have as objective a task that is relevant for real

application development. The specific examples are shown from the viewpoint of a

fictional company that trades beer wholesale, but the techniques can be applied to many

other applications. The chapters are divided into three parts based on the SQL technique

used to solve the task.

�Part 1: Core SQL
The first ten chapters deal with solutions that use a variety of SQL constructs. Everything

that does not fit in Part 2 and Part 3 is found in this part.

These chapters cover many techniques: inline view correlation, set operations,

with clause and with clause functions, recursive subquery factoring and model clause

iteration, pivoting and unpivoting, as well as splitting and creating delimited text.

�Part 2: Analytic functions
Analytic functions have been my favorite since I started working with Oracle SQL. I saw

a quote (source unknown) from a conference presentation: “If you write on your CV that

you know SQL, but you do not use analytic functions, then you are lying.” I would hate to

Introduction

xix

solve SQL tasks without having the use of analytic functions, so the six chapters of Part 2

are dedicated to solutions using analytic functions.

Focus is on demonstrating practical tasks that can be solved extremely efficiently,

walking through using analytic functions for tasks such as Top-N questions, warehouse

picking with rolling sums, analyzing activity logs, and two types of forecasting.

�Part 3: Row pattern matching
When in need of SQL that crosses row boundaries, my go-to solution since version 8i

has been analytic functions. From version 12.2, match_recognize has been added to my

toolbox for cases where even an analytic function in SQL would be too convoluted. The

six chapters of Part 3 show both using match_recognize for the row pattern matching it

was designed for and using it for tasks that might not at first glance seem like a case for

match_recognize.

The tasks covered include finding up-and-down patterns, grouping consecutive data,

merging date ranges, finding abnormal peaks, bin fitting, and tree branch calculations.

�About the code
The major part of this book is code – SQL, SQL, and more SQL. To really learn from it,

you should run the code yourself, play with it, alter it and see what happens, and fool

around until you feel confident that you’ve “got it.” Now that wouldn’t be fun if you had

to type in everything by yourself, so all of the code in the book is available as source files

for you.

�Source files
You can get the source files for the book from GitHub via the book’s page on Apress:

www.apress.com/9781484256169

What you will find is these files:

•	 practical_readme.txt

A short readme describing the other files.

Introduction

http://www.apress.com/9781484256169

xx

•	 practical_create_schema.sql

All the example objects reside in a schema called practical (similar

to the Oracle-supplied sample schemas scott and hr). This script

creates the practical schema with necessary privileges and

should be run as a DBA user. If your environment enforces complex

passwords, you may need to edit this script to give the practical

user a more complex password than practical.

•	 practical_fill_schema.sql

Once you have created the practical schema, log in as user

practical – the password is practical unless you changed it in

the preceding file. Then run this script to create all the example

objects – tables, views, types, packages, and so on.

•	 practical_clean_schema.sql

This script is also to be run as user practical. It drops everything

that was created with practical_fill_schema.sql. You can try

things yourself and change the examples and manipulate the

data all you want – when you are done, you can return to a fresh

example schema by running practical_clean_schema.sql

followed by practical_fill_schema.sql.

•	 practical_drop_schema.sql

If you want to completely get rid of the example schema

practical, you can run this script as a DBA user.

•	 ch_{chapter_name}.sql

Each of the 22 chapters has its own example file with the code

from the listings in each chapter. Do note, however, that every

listing that is DDL (creation of views, object types, etc.) is not in

the chapter SQL file but in practical_fill_schema.sql instead.

This way every dictionary object is created and dropped together,

and the chapter example scripts do not need to worry about

cleaning up in the dictionary.

All of the scripts and examples are meant as learning inspiration and should not be

installed in productive environments. They are for your use as a learning tool and should

be treated as such.

Introduction

xxi

�The schema
You should think of the practical schema as part of an application used by a fictional

company called Good Beer Trading Co. Almost all of the examples are based on tasks

that such an application could need to do – also in real life. Admitted, a few cases are

slightly contrived, but most could have been taken straight from real applications. For

example, all techniques shown in Part 2 are directly taken from code I have developed

myself during the 16 years I mentioned in the preceding text – I have only adapted them

to my practical example tables shown in Figure 1.

Figure 1.  The tables in the practical schema

Introduction

xxii

The only table in the schema that has no relation to Good Beer Trading Co is the

table conway_gen_zero used in Chapter 6. The other tables are all related to the fictional

company, each table being used in one or more of the chapters.

�Versions and environment
Almost all of the code examples were developed using the Database App Development

VM pre-built VirtualBox image that can be downloaded from Oracle, specifically the

version that contains Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 – 64bit

Production. A few examples require database version 18c or 19c; for those I have used

either newer VM images or livesql.oracle.com.

In general a lot of the examples shown in Part 1 and Part 2 will work even on

database versions that are no longer supported. Where versions higher than 12.2 are

required, this is explicitly noted. If relevant, I’ve also noted from which version specific

syntax is supported, but I have not explicitly indicated a from-version for everything. If

you are still using unsupported versions, I will leave it up to you to test if a given syntax

works in your specific environment.

During development, I used Oracle SQL Developer version 18.2. Screenshots of ER

diagrams are also taken from this SQL Developer version. Code examples were executed

using SQLcl release 4.2, mostly using set sqlformat ansiconsole, except for a few

cases using traditional SQL∗Plus style formatting. These cases are noted in the source

code files.

When you try the code yourself, I recommend opening the files in Oracle SQL

Developer or TOAD or PLSQL Developer or your favorite SQL IDE. Run each statement

individually, inspecting results in the grid instead of relying on my formatting, which is

optimized for getting an output that fits on a printed page. That way you can also very

easily alter the statement a bit and try to execute it again and compare changes in the

output.

Most diagram figures were created by using various APEX graph and diagram

components in a workspace on apex.oracle.com that I use to fiddle about working with

small APEX pages.

Introduction

xxiii

�A final word
Maybe you are under the impression that if SQL is slightly more complex than a two-

table join, then it is only for geniuses to attempt and you won’t even try it. I assure you

this is not the case.

Expertise comes from practice. Confidence comes from familiarity. You should just

go ahead and write slightly more complex SQL tomorrow, then slightly more the day

after, and so on. Over time it will become as familiar to you as whatever other language

you’ve worked in for years, and you will say to yourself: “What was I afraid of?”

I am confident this book will give you a jump start in your journey toward really

using the power of SQL.

Introduction

PART I

Core SQL

3
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_1

CHAPTER 1

Correlating Inline Views
Most of the time in SQL, you can simply join tables or views to one another to get the

result you want. Often you add inline views and scalar subqueries to the mix, and you

can soon create relatively complex solutions to many problems. With analytic functions,

you really start to rock ‘n’ roll and can solve almost anything.

But it can happen from time to time that you have, for instance, a scalar subquery

and wish that it could return multiple columns instead of just a single column. You can

make workarounds with object types or string concatenation, but it’s never really elegant

nor efficient.

Also from time to time, you would really like, for example, a predicate inside the

inline view to reference a value from a table outside the inline view, which is normally

not possible. Often the workaround is to select the column you would like a predicate on

in the inline view select list and put the predicate in the join on clause instead. This is

often good enough, and the optimizer can often do predicate pushing to automatically

do what you actually wanted – but it is not always able to do this, in which case you end

up with an inefficient query.

For both those problems, it has been possible since version 12.1 to solve them by

correlating the inline view with lateral or apply, enabling you in essence to do your

own predicate pushing.

�Brewery products and sales
In the application schema of the Good Beer Trading Co, I have a couple of views (shown

in Figure 1-1) I can use to illustrate inline view correlation.

4

It could just as easily have been tables that I used to demonstrate these techniques,

so for this chapter, just think of them as such. The internals of the views will be more

relevant in later chapters and shown in those chapters.

View brewery_products shows which beers the Good Beer Trading Co buys from

which breweries, while view yearly_sales shows how many bottles of each beer are

sold per year. Joining the two together in Listing 1-1 on product_id, I can see the yearly

sales of those beers that are bought from Balthazar Brauerei.

Listing 1-1.  The yearly sales of the three beers from Balthazar Brauerei

SQL> select

 2 bp.brewery_name

 3 , bp.product_id as p_id

 4 , bp.product_name

 5 , ys.yr

 6 , ys.yr_qty

 7 from brewery_products bp

 8 join yearly_sales ys

 9 on ys.product_id = bp.product_id

 10 where bp.brewery_id = 518

 11 order by bp.product_id, ys.yr;

This data of 3 years of sales of three beers will be the basis for the examples of this

chapter:

BREWERY_NAME P_ID PRODUCT_NAME YR YR_QTY

Balthazar Brauerei 5310 Monks and Nuns 2016 478

Balthazar Brauerei 5310 Monks and Nuns 2017 582

Balthazar Brauerei 5310 Monks and Nuns 2018 425

Balthazar Brauerei 5430 Hercule Trippel 2016 261

Balthazar Brauerei 5430 Hercule Trippel 2017 344

Figure 1-1.  Two views used in this chapter to illustrate lateral inline views

Chapter 1 Correlating Inline Views

5

Balthazar Brauerei 5430 Hercule Trippel 2018 451

Balthazar Brauerei 6520 Der Helle Kumpel 2016 415

Balthazar Brauerei 6520 Der Helle Kumpel 2017 458

Balthazar Brauerei 6520 Der Helle Kumpel 2018 357

At first I’ll use this to show a typical problem.

�Scalar subqueries and multiple columns
The task at hand is to show for each of the three beers of Balthazar Brauerei which year

the most bottles of that particular beer are sold and how many bottles that were. I can do

this with two scalar subqueries in Listing 1-2.

Listing 1-2.  Retrieving two columns from the best-selling year per beer

SQL> select

 2 bp.brewery_name

 3 , bp.product_id as p_id

 4 , bp.product_name

 5 , (

 6 select ys.yr

 7 from yearly_sales ys

 8 where ys.product_id = bp.product_id

 9 order by ys.yr_qty desc

 10 fetch first row only

 11) as yr

 12 , (

 13 select ys.yr_qty

 14 from yearly_sales ys

 15 where ys.product_id = bp.product_id

 16 order by ys.yr_qty desc

 17 fetch first row only

 18) as yr_qty

 19 from brewery_products bp

 20 where bp.brewery_id = 518

 21 order by bp.product_id;

Chapter 1 Correlating Inline Views

6

For the data at hand (where there are no ties between years), it works okay and gives

me the desired output:

BREWERY_NAME P_ID PRODUCT_NAME YR YR_QTY

Balthazar Brauerei 5310 Monks and Nuns 2017 582

Balthazar Brauerei 5430 Hercule Trippel 2018 451

Balthazar Brauerei 6520 Der Helle Kumpel 2017 458

But there are some issues with this strategy:

•	 The same data in yearly_sales is accessed twice. Had I needed

more than two columns, it would have been multiple times.

•	 Since my order by is not unique, my fetch first row will return

a random one (well, probably the first it happens to find using

whichever access plan it uses, of which I have no control, so in effect,

it could be any one) of those rows that have the highest yr_qty.

That means in the multiple subqueries, I have no guarantee that the

values come from the same row – if I had had a column showing the

profit of the beer in that year and a subquery to retrieve this profit, it

might show the profit of a different year than the one shown in the yr

column of the output.

A classic workaround is to use just a single scalar subquery like in Listing 1-3.

Listing 1-3.  Using just a single scalar subquery and value concatenation

SQL> select

 2 brewery_name

 3 , product_id as p_id

 4 , product_name

 5 , to_number(

 6 substr(yr_qty_str, 1, instr(yr_qty_str, ';') - 1)

 7) as yr

 8 , to_number(

 9 substr(yr_qty_str, instr(yr_qty_str, ';') + 1)

 10) as yr_qty

 11 from (

 12 select

Chapter 1 Correlating Inline Views

7

 13 bp.brewery_name

 14 , bp.product_id

 15 , bp.product_name

 16 , (

 17 select ys.yr || ';' || ys.yr_qty

 18 from yearly_sales ys

 19 where ys.product_id = bp.product_id

 20 order by ys.yr_qty desc

 21 fetch first row only

 22) as yr_qty_str

 23 from brewery_products bp

 24 where bp.brewery_id = 518

 25)

 26 order by product_id;

The scalar subquery is here in lines 16–22, finding the row I want and then selecting

in line 17 a concatenation of the values I am interested in. Then I place the entire thing in

an inline view (lines 11–25) and split the concatenated string into individual values again

in lines 5–10.

The output of this is exactly the same as Listing 1-2, so that is all good, right? Well,

as you can see, if I need more than two columns, it can quickly become unwieldy code.

If I had been concatenating string values, I would have needed to worry about using

a delimiter that didn’t exist in the real data. If I had been concatenating dates and

timestamps, I’d need to use to_char and to_date/to_timestamp. And what if I had LOB

columns or columns of complex types? Then I couldn’t do this at all.

So there are many good reasons to try Listing 1-4 as an alternative workaround.

Listing 1-4.  Using analytic function to be able to retrieve all columns if desired

SQL> select

 2 brewery_name

 3 , product_id as p_id

 4 , product_name

 5 , yr

 6 , yr_qty

 7 from (

 8 select

Chapter 1 Correlating Inline Views

8

 9 bp.brewery_name

 10 , bp.product_id

 11 , bp.product_name

 12 , ys.yr

 13 , ys.yr_qty

 14 , row_number() over (

 15 partition by bp.product_id

 16 order by ys.yr_qty desc

 17) as rn

 18 from brewery_products bp

 19 join yearly_sales ys

 20 on ys.product_id = bp.product_id

 21 where bp.brewery_id = 518

 22)

 23 where rn = 1

 24 order by product_id;

This also gives the exact same output as Listing 1-2, just without any scalar

subqueries at all.

Here I join the two views in lines 18–20 instead of querying yearly_sales in a scalar

subquery. But doing that makes it impossible for me to use the fetch first syntax, as I

need a row per brewery and fetch first does not support a partition clause.

Instead I use the row_number analytic function in lines 14–17 to assign consecutive

numbers 1, 2, 3 … in descending order of yr_qty, in effect giving the row with the highest

yr_qty the value 1 in rn. This happens for each beer because of the partition by in

line 15, so there will be a row with rn=1 for each beer. These rows I keep with the where

clause in line 23.

Tip  Much more about analytic functions is shown in Part 2 of the book.

The effect of this is that I can query as many columns from the yearly_sales view

as I want – here I query two columns in lines 12–13. These can then be used directly in

the outer query as well in lines 5–6. No concatenation needed, each column is available

directly, no matter the datatype.

Chapter 1 Correlating Inline Views

9

This is a much nicer workaround than Listing 1-3, so isn’t this good enough? In this

case it is fine, but the alternative with correlated inline views can be more flexible for

some situations.

�Correlating inline view
Listing 1-5 is yet another way to produce the exact same output as Listing 1-2, just this

time by correlating an inline view.

Listing 1-5.  Achieving the same with a lateral inline view

SQL> select

 2 bp.brewery_name

 3 , bp.product_id as p_id

 4 , bp.product_name

 5 , top_ys.yr

 6 , top_ys.yr_qty

 7 from brewery_products bp

 8 cross join lateral(

 9 select

 10 ys.yr

 11 , ys.yr_qty

 12 from yearly_sales ys

 13 where ys.product_id = bp.product_id

 14 order by ys.yr_qty desc

 15 fetch first row only

 16) top_ys

 17 where bp.brewery_id = 518

 18 order by bp.product_id;

The way this works is as follows:

•	 I do not join brewery_products to yearly_sales directly; instead I

join to the inline view top_ys in line 8.

•	 The inline view in lines 9–15 queries yearly_sales and uses the

fetch first row to find the row of the year with the highest sales.

But it is not executed for all beers finding a single row with the

Chapter 1 Correlating Inline Views

10

best-selling year across all beers, for line 13 correlates the yearly_

sales to the brewery_products on product_id.

•	 Line 13 would normally raise an error, since it would not make

sense in the usual joining to an inline view. But I placed the keyword

lateral in front of the inline view in line 8, which tells the database

that I want a correlation here, so it should execute the inline view

once for each row of the correlated outer row source – in this case

brewery_products. That means that for each beer, there will be

executed an individual fetch first row query, almost as if it were a

scalar subquery.

•	 I then use cross join in line 8 to do the actual joining, which simply

is because I need no on clause in this case. I have all the correlation I

need in line 13, so I need not use an inner or outer join.

Using this lateral inline view enables me to get it executed for each beer like a scalar

subquery, but to have individual columns queried like in Listing 1-4.

You might wonder about the cross join and say, “This isn’t a Cartesian product, is it?”

Consider if I had used the traditional join style with a comma-separated list of tables

and views and all join predicates in the where clause and no on clauses. In that join style,

Cartesian joins happen if you have no join predicate at all between two tables/views

(sometimes that can happen by accident – a classic error that can be hard to catch).

If I had written Listing 1-5 with traditional style joins, line 8 would have looked like

this:

...

 7 from brewery_products bp

 8 , lateral(

 9 select

...

And with no join predicates in the where clause, it does exactly the same that the

cross join does. But because of the lateral clause, it becomes a “Cartesian” join

between each row of brewery_products and each output row set of the correlated inline

view as it is executed for each beer. So for each beer, it actually is a Cartesian product

(think of it as “partitioned Cartesian”), but the net effect is that the total result looks like

a correlated join and doesn’t appear Cartesian at all. Just don’t let the cross join syntax

confuse you.

Chapter 1 Correlating Inline Views

11

I could have chosen to avoid the confusion of the cross join by using a regular

inner join like this:

...

 7 from brewery_products bp

 8 join lateral(

 9 select

...

 16) top_ys

 17 on 1=1

 18 where bp.brewery_id = 518

...

Since the correlation happens inside the lateral inline view, I can simply let the on

clause be always true. The effect is exactly the same.

It might be that you feel that both cross join and the on 1=1 methods really do not

state clearly what happens – both syntaxes can be considered a bit “cludgy” if you will.

Then perhaps you might like the alternative syntax cross apply instead as in Listing 1-6.

Listing 1-6.  The alternative syntax cross apply

SQL> select

 2 bp.brewery_name

 3 , bp.product_id as p_id

 4 , bp.product_name

 5 , top_ys.yr

 6 , top_ys.yr_qty

 7 from brewery_products bp

 8 cross apply(

 9 select

 10 ys.yr

 11 , ys.yr_qty

 12 from yearly_sales ys

 13 where ys.product_id = bp.product_id

 14 order by ys.yr_qty desc

 15 fetch first row only

Chapter 1 Correlating Inline Views

12

 16) top_ys

 17 where bp.brewery_id = 518

 18 order by bp.product_id;

The output is the same as Listing 1-2 like the previous listings, but this time I am

using neither lateral nor join, but the keywords cross apply in line 8. What this

means is that for each row in brewery_products, the inline view will be applied. And

when I use apply, I am allowed to correlate the inline view with the predicate in line 13,

 just like using lateral. Behind the scenes, the database does exactly the same as a

lateral inline view; it is just a case of which syntax you prefer.

The keyword cross distinguishes it from the variant outer apply, which I’ll show in

a moment. Here cross is to be thought of as “partitioned Cartesian” as I discussed in the

preceding text.

Note  You can use the cross apply and outer apply not only for inline
views but also for calling table functions (pipelined or not) in a correlated manner.
This would require a longer syntax if you use lateral. Probably you won’t see
it used often on table functions, as the table functions in Oracle can be used as
a correlated row source in joins anyway, so it is rarely necessary to use apply,
though sometimes it can improve readability.

�Outer joining correlated inline view
So far my uses of lateral and apply have only been of the cross variety. That means

that in fact I have been cheating a little – it is not really the same as using scalar

subqueries. It is only because of having sales data for all the beers that Listings 1-2 to 1-6

all had the same output.

If a scalar subquery finds nothing, the value in that output column of the brewery_

products row will be null – but if a cross join lateral or cross apply inline view

finds no rows, then the brewery_products row will not be in the output at all.

What I need to really emulate the output of the scalar subquery method is a

functionality like an outer join, which I do in Listing 1-7. In this listing, I still find the

top year and quantity for each beer, but only of those yearly sales that were less than 400.

Chapter 1 Correlating Inline Views

13

Listing 1-7.  Using outer apply when you need outer join functionality

SQL> select

 2 bp.brewery_name

 3 , bp.product_id as p_id

 4 , bp.product_name

 5 , top_ys.yr

 6 , top_ys.yr_qty

 7 from brewery_products bp

 8 outer apply(

 9 select

 10 ys.yr

 11 , ys.yr_qty

 12 from yearly_sales ys

 13 where ys.product_id = bp.product_id

 14 and ys.yr_qty < 400

 15 order by ys.yr_qty desc

 16 fetch first row only

 17) top_ys

 18 where bp.brewery_id = 518

 19 order by bp.product_id;

In line 14, I make the inline view query only years that had sales of less than 400

bottles. And then in line 8, I changed cross apply to outer apply, giving me this result:

BREWERY_NAME P_ID PRODUCT_NAME YR YR_QTY

Balthazar Brauerei 5310 Monks and Nuns

Balthazar Brauerei 5430 Hercule Trippel 2017 344

Balthazar Brauerei 6520 Der Helle Kumpel 2018 357

If I had been using cross apply in line 8, I would only have seen the last two rows in

the output.

So outer apply is more correct to use if you want an output that is completely

identical to the scalar subquery method. But just like you don’t want to use regular outer

joins unnecessarily, you should use cross apply if you know for a fact that rows always

will be returned.

Chapter 1 Correlating Inline Views

14

An outer apply is the same as a left outer join lateral with an on 1=1 join

clause, so outer apply cannot support right correlation, only left.

There are cases where an outer join lateral is more flexible than outer apply,

since you can actually use the on clause sensibly, like in Listing 1-8.

Listing 1-8.  Outer join with the lateral keyword

SQL> select

 2 bp.brewery_name

 3 , bp.product_id as p_id

 4 , bp.product_name

 5 , top_ys.yr

 6 , top_ys.yr_qty

 7 from brewery_products bp

 8 left outer join lateral(

 9 select

 10 ys.yr

 11 , ys.yr_qty

 12 from yearly_sales ys

 13 where ys.product_id = bp.product_id

 14 order by ys.yr_qty desc

 15 fetch first row only

 16) top_ys

 17 on top_ys.yr_qty < 500

 18 where bp.brewery_id = 518

 19 order by bp.product_id;

Since I use lateral in the left outer join in line 8, the inline view is executed

once for every beer, finding the best-selling year and quantity, just like most of the

examples in the chapter. But in the on clause in line 17, I filter, so I only output a top_ys

row if the quantity is less than 500. It gives me this output, which is almost but not quite

the same as the output of Listings 1-2 to 1-6:

BREWERY_NAME P_ID PRODUCT_NAME YR YR_QTY

Balthazar Brauerei 5310 Monks and Nuns

Balthazar Brauerei 5430 Hercule Trippel 2018 451

Balthazar Brauerei 6520 Der Helle Kumpel 2017 458

Chapter 1 Correlating Inline Views

15

Normally the on clause is for the joining of the two tables (or views) and shouldn’t

really contain a filter predicate. But in this case, it is exactly because I do the filtering

in the on clause that I get the preceding result. Filtering in different places would solve

different problems:

•	 If the filter predicate is inside the inline view (like Listing 1-7), the

problem solved is “For each beer show me the best-selling year and

quantity out of those years that sold less than 400 bottles.”

•	 If the filter predicate is in the on clause (like Listing 1-8), the problem

solved is “For each beer show me the best-selling year and quantity if

that year sold less than 500 bottles.”

•	 If the filter predicate had been in the where clause right after line 18,

the problem solved would have been “For each beer where the best-

selling year sold less than 500 bottles, show me the best-selling year

and quantity.” (And then it shouldn’t be an outer join, but just an

inner or cross join.)

In all, lateral and apply (both in cross and outer versions) have several uses that,

though they might be solvable by various other workarounds, can be quite nice and

efficient. Typically you don’t want to use it if the best access path would be to build the

entire results of the inline view first and then hash or merge the join with the outer table

(for such a case, Listing 1-4 is often a better solution). But if the best path would be to do

the outer table and then nested loop join to the inline view, lateral and apply are very

nice methods.

Tip  You will find more examples of doing Top-N queries in Chapter 12, more
examples of lateral in Chapters 9 and 12, and examples of using apply on
table functions in Chapter 9.

Chapter 1 Correlating Inline Views

16

�Lessons learned
In this chapter I’ve shown you some workarounds to some problems and then given you

examples of how to solve the same using correlated inline views, so you now know about

•	 Using keyword lateral to enable doing a left correlation inside an

inline view

•	 Distinguishing between cross and outer versions of joining to the

lateral inline view

•	 Applying the cross apply or outer apply as alternative syntax to

achieve a left correlation

•	 Deciding whether a correlated inline view or a regular inline view

with analytic functions can solve a problem most efficiently

Being able to correlate inline views can be handy for several situations in your

application development.

Chapter 1 Correlating Inline Views

17
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_2

CHAPTER 2

Pitfalls of Set Operations
SQL and set theory are quite related, but in practical daily life, I think many developers

(myself included) do not worry too much about theory. Maybe as a consequence thereof,

it is typically more seldom that I see the set operators used than joins. Most often you get

along with joins fine, but now and again, a well-chosen use of a set operator can be quite

nice.

But maybe because we don’t use the set operators as much, I see too often code

where the developer unwittingly fell into one of the pitfalls that exists, specifically

concerning using distinct sets or sets with duplicates.

Most often you see the set operations illustrated with Venn diagrams like Figure 2-1

(normally you’d see them horizontally; I show them vertically as it matches the code and

illustrations I use later in the chapter). And it’s pretty clear what happens.

Figure 2-1.  Venn diagrams of the three set operations

18

But what often isn’t explained as well is that set theory in principle works on distinct

sets – sets that have no duplicates. In fact the function set in Oracle SQL removes

duplicates from a nested table turning it into a proper “set” according to set theory.

In the practical life of a developer, it is often that we actually want to work with sets

including duplicates, but the set operators default to working like set theory.

And when you then add that the multiset operators default the other way around,

confusion can easily abound. This chapter attempts to clear that confusion.

�Sets of beer
In the schema for the Good Beer Trading Co, I have some views (shown in Figure 2-2) I can

use to demonstrate the set operations. The two views brewery_products and customer_

order_products are both joins of multiple tables, but for the purposes in this chapter, you

can think of them as tables, and the internals of the views are irrelevant.

Figure 2-2.  Two views for set examples and one for multiset examples

Chapter 2 Pitfalls of Set Operations

19

View brewery_products simply shows which beers are purchased from which

breweries. A product will be shown only once per brewery.

View customer_order_products shows which beers are sold to which customers, but

also includes how much was sold and when, so a product can be shown multiple times

per customer.

The last view customer_order_products_obj contains the same data as customer_

order_products but aggregated, so there is only one row per customer containing a

nested table column product_coll with the product id and name for each time that

product has been sold to the customer. The creation of the nested table type and this

view is shown in Listing 2-1.

Listing 2-1.  Creating the types and view for the multiset examples

SQL> create or replace type id_name_type as object (

 2 id integer

 3 , name varchar2(20 char)

 4);

 5 /

Type ID_NAME_TYPE compiled

SQL> create or replace type id_name_coll_type

 2 as table of id_name_type;

 3 /

Type ID_NAME_COLL_TYPE compiled

SQL> create or replace view customer_order_products_obj

 2 as

 3 select

 4 customer_id

 5 , max(customer_name) as customer_name

 6 , cast(

 7 collect(

 8 id_name_type(product_id, product_name)

 9 order by product_id

 10)

 11 as id_name_coll_type

Chapter 2 Pitfalls of Set Operations

20

 12) as product_coll

 13 from customer_order_products

 14 group by customer_id;

View CUSTOMER_ORDER_PRODUCTS_OBJ created.

With these views, I can show you the differences between set and multiset operators.

�Set operators
I’m going to use just some of the data, so Listing 2-2 shows you the result of view

customer_order_products for two customers.

Listing 2-2.  Data for two customers and their orders

SQL> select

 2 customer_id as c_id, customer_name, ordered

 3 , product_id as p_id, product_name , qty

 4 from customer_order_products

 5 where customer_id in (50042, 50741)

 6 order by customer_id, product_id;

 C_ID CUSTOMER_NAME ORDERED P_ID PRODUCT_NAME QTY

------ --------------- ---------- ----- ----------------- ----

 50042 The White Hart 2019-01-15 4280 Hoppy Crude Oil 110

 50042 The White Hart 2019-03-22 4280 Hoppy Crude Oil 80

 50042 The White Hart 2019-03-02 4280 Hoppy Crude Oil 60

 50042 The White Hart 2019-03-22 5430 Hercule Trippel 40

 50042 The White Hart 2019-01-15 6520 Der Helle Kumpel 140

 50741 Hygge og Humle 2019-01-18 4280 Hoppy Crude Oil 60

 50741 Hygge og Humle 2019-03-12 4280 Hoppy Crude Oil 90

 50741 Hygge og Humle 2019-01-18 6520 Der Helle Kumpel 40

 50741 Hygge og Humle 2019-02-26 6520 Der Helle Kumpel 40

 50741 Hygge og Humle 2019-02-26 6600 Hazy Pink Cloud 16

 50741 Hygge og Humle 2019-03-29 7950 Pale Rider Rides 50

 50741 Hygge og Humle 2019-03-12 7950 Pale Rider Rides 100

Chapter 2 Pitfalls of Set Operations

21

In the same way, Listing 2-3 shows the output of view brewery_products for two

breweries.

Listing 2-3.  Data for two breweries and the products bought from them

SQL> select

 2 brewery_id as b_id, brewery_name

 3 , product_id as p_id, product_name

 4 from brewery_products

 5 where brewery_id in (518, 523)

 6 order by brewery_id, product_id;

 B_ID BREWERY_NAME P_ID PRODUCT_NAME

------ ------------------ ----- -----------------

 518 Balthazar Brauerei 5310 Monks and Nuns

 518 Balthazar Brauerei 5430 Hercule Trippel

 518 Balthazar Brauerei 6520 Der Helle Kumpel

 523 Happy Hoppy Hippo 6600 Hazy Pink Cloud

 523 Happy Hoppy Hippo 7790 Summer in India

 523 Happy Hoppy Hippo 7870 Ghost of Hops

In set theory, a set has by definition unique values, a condition that brewery_

products satisfies.

But in practice in a database, you often don’t have unique values. If you look at the

data in customer_order_products, it is unique when you include the ordered date and

the qty value, but if you only look at product id and name per customer, it is not unique.

This difference between real life and set theory is to a certain extent reflected in the

set operators.

�Set concatenation
In the daily life of a developer, often I am not concerned with set theory, but merely wish

to concatenate two sets of rows, in effect just appending one set of rows after the other.

This I can do with union all, illustrated in Figure 2-3.

Chapter 2 Pitfalls of Set Operations

22

Figure 2-3 shows first seven rows of product names for customer 50741, followed by three

rows of product names for brewery 523. Expressed as SQL, this is the code in Listing 2-4.

Listing 2-4.  Concatenating the results of two queries

SQL> select product_id as p_id, product_name

 2 from customer_order_products

 3 where customer_id = 50741

 4 union all

 5 select product_id as p_id, product_name

 6 from brewery_products

 7 where brewery_id = 523;

Simply two select statements are separated with union all, and the output is the

two results one after the other:

 P_ID PRODUCT_NAME

----- -----------------

 4280 Hoppy Crude Oil

 4280 Hoppy Crude Oil

 6520 Der Helle Kumpel

Figure 2-3.  Union all simply appends one result set after another

Chapter 2 Pitfalls of Set Operations

23

 6520 Der Helle Kumpel

 6600 Hazy Pink Cloud

 7950 Pale Rider Rides

 7950 Pale Rider Rides

 6600 Hazy Pink Cloud

 7790 Summer in India

 7870 Ghost of Hops

I selected only the two columns that exist in both views, which makes the output

hard to see what rows come from which view. In Listing 2-5 I also select the customer id

and name in the first select, but the brewery id and name in the second select.

Listing 2-5.  Different columns from the two queries

SQL> select

 2 customer_id as c_or_b_id, customer_name as c_or_b_name

 3 , product_id as p_id, product_name

 4 from customer_order_products

 5 where customer_id = 50741

 6 union all

 7 select

 8 brewery_id, brewery_name

 9 , product_id as p_id, product_name

 10 from brewery_products

 11 where brewery_id = 523;

Notice that in the first two columns, I give an alias in the first select, but not in the

second. That does not matter, since it is the column names or aliases of the first select

that are used:

C_OR_B_ID C_OR_B_NAME P_ID PRODUCT_NAME

--------- ------------------ ----- -----------------

 50741 Hygge og Humle 4280 Hoppy Crude Oil

 50741 Hygge og Humle 4280 Hoppy Crude Oil

 50741 Hygge og Humle 6520 Der Helle Kumpel

 50741 Hygge og Humle 6520 Der Helle Kumpel

 50741 Hygge og Humle 6600 Hazy Pink Cloud

 50741 Hygge og Humle 7950 Pale Rider Rides

Chapter 2 Pitfalls of Set Operations

24

 50741 Hygge og Humle 7950 Pale Rider Rides

 523 Happy Hoppy Hippo 6600 Hazy Pink Cloud

 523 Happy Hoppy Hippo 7790 Summer in India

 523 Happy Hoppy Hippo 7870 Ghost of Hops

A side effect of this is that if I have given a column an alias, then I cannot use the

table column name in the order by clause. If I try to append an order by with the table

column product_id, I get an error:

...

12 order by product_id;

Error starting at line : 1 in command -

...

Error at Command Line : 12 Column : 10

Error report -

SQL Error: ORA-00904: "PRODUCT_ID": invalid identifier

Instead I need to use the column alias p_id to get my desired ordering:

12 order by p_id;

C_OR_B_ID C_OR_B_NAME P_ID PRODUCT_NAME

--------- ------------------ ----- -----------------

 50741 Hygge og Humle 4280 Hoppy Crude Oil

 50741 Hygge og Humle 4280 Hoppy Crude Oil

 50741 Hygge og Humle 6520 Der Helle Kumpel

 50741 Hygge og Humle 6520 Der Helle Kumpel

 50741 Hygge og Humle 6600 Hazy Pink Cloud

 523 Happy Hoppy Hippo 6600 Hazy Pink Cloud

 523 Happy Hoppy Hippo 7790 Summer in India

 523 Happy Hoppy Hippo 7870 Ghost of Hops

 50741 Hygge og Humle 7950 Pale Rider Rides

 50741 Hygge og Humle 7950 Pale Rider Rides

The union all is a very practical and often used set operator, but there are more.

Chapter 2 Pitfalls of Set Operations

25

�The three set operators
Using the same data as before, Figure 2-4 illustrates union, intersect, and minus.

Figure 2-4.  Union, intersect, and minus on distinct data

You may wonder why I show union as a different operator than union all?

In reality it is just the union operator. It is one of the three operators union,

intersect, and minus. All three work by design as set theory does: they work on sets

with distinct values, so they implicitly remove all duplicates (illustrated by the grayed-

out strike-through lines in Figure 2-4). The keyword all tells the union operator not to

remove duplicates but to keep all rows.

What I see a lot in code is unfortunately that union is often used where union all

really is wanted. Also in many cases where the values are already distinct, a union

unnecessarily performs an implicit distinct where a union all would avoid this

overhead.

So my rule of thumb is that it is almost always union all that a SQL developer needs

in daily development. Only once in a while is union called for. Therefore, I tend to think

of union all and union separately, as it helps me automatically distinguish between

when I need one and when I need the other.

Having delivered now my lecture that you most of the time need union all, Listing 2-6

shows you the code for implementing the set operations illustrated in Figure 2-4.

Chapter 2 Pitfalls of Set Operations

26

Listing 2-6.  Union is a true set operation that implicitly performs a distinct of the

query result

SQL> select product_id as p_id, product_name

 2 from customer_order_products

 3 where customer_id = 50741

 4 union

 5 select product_id as p_id, product_name

 6 from brewery_products

 7 where brewery_id = 523

 8 order by p_id;

Using union (without all) produces the distinct concatenation of the two sets:

 P_ID PRODUCT_NAME

----- -----------------

 4280 Hoppy Crude Oil

 6520 Der Helle Kumpel

 6600 Hazy Pink Cloud

 7790 Summer in India

 7870 Ghost of Hops

 7950 Pale Rider Rides

And changing to intersect produces the distinct set of overlapping rows:

...

 4 intersect

...

 P_ID PRODUCT_NAME

----- -----------------

 6600 Hazy Pink Cloud

Finally changing to minus produces the distinct set of the rows of the first select that

are not in the second select:

...

 4 minus

...

Chapter 2 Pitfalls of Set Operations

27

 P_ID PRODUCT_NAME

----- -----------------

 4280 Hoppy Crude Oil

 6520 Der Helle Kumpel

 7950 Pale Rider Rides

All straightforward, the important thing to remember is that these three operators

always implicitly remove duplicates. Only by union all can you keep duplicates. (That

will change in a future version of the database – see tip at the end of the chapter.)

�Multiset operators
Data in a column of a nested table type is known as a collection when used in PL/SQL

(that has several types of collections). Within SQL operations, it is known as a multiset.

Different SQL clients will show these in different formats – Listing 2-7 shows how it looks

like in sqlcl and SQL∗Plus.

Listing 2-7.  The customer product data viewed as a collection type

SQL> select

 2 customer_id as c_id, customer_name

 3 , product_coll

 4 from customer_order_products_obj

 5 where customer_id in (50042, 50741)

 6 order by customer_id;

I simply query the aggregate view customer_order_products_obj for my two

customers and get an output with one row per customer having a column that is a

multiset, meaning a collection (or array if you will) of product id and names:

 C_ID CUSTOMER_NAME PRODUCT_COLL(ID, NAME)

------ --------------- --

 50042 The White Hart ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Ho

 ppy Crude Oil'), ID_NAME_TYPE(4280, 'Hop

 py Crude Oil'), ID_NAME_TYPE(4280, 'Hopp

 y Crude Oil'), ID_NAME_TYPE(5430, 'Hercu

 le Trippel'), ID_NAME_TYPE(6520, 'Der He

 lle Kumpel'))

Chapter 2 Pitfalls of Set Operations

28

 50741 Hygge og Humle ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Ho

 ppy Crude Oil'), ID_NAME_TYPE(4280, 'Hop

 py Crude Oil'), ID_NAME_TYPE(6520, 'Der

 Helle Kumpel'), ID_NAME_TYPE(6520, 'Der

 Helle Kumpel'), ID_NAME_TYPE(6600, 'Hazy

 Pink Cloud'), ID_NAME_TYPE(7950, 'Pale

 Rider Rides'), ID_NAME_TYPE(7950, 'Pale

 Rider Rides'))

Note the multiset for each of the customers contains as many rows as there were

rows per customer in the output of Listing 2-2, which is by design as this output is simply

an aggregation of the Listing 2-2 output. Since I did not include the ordered and qty

columns in my multiset, I have duplicates. This enables me to show you how the multiset

operators handle this.

�Multiset union
The operator multiset union supports the use of either all or distinct keyword, as

illustrated in Figure 2-5. With the distinct keyword, it works like the set operator union

by removing all duplicates. Using the all keyword has the same effect as in union all of

keeping all rows including duplicates.

Figure 2-5.  Difference between multiset union all and multiset union distinct

Chapter 2 Pitfalls of Set Operations

29

In Listing 2-8 I do a multiset union between the multisets of customer The White

Hart and customer Hygge og Humle.

Listing 2-8.  Doing union as a multiset operation on the collections

SQL> select

 2 whitehart.product_coll

 3 multiset union

 4 hyggehumle.product_coll

 5 as multiset_coll

 6 from customer_order_products_obj whitehart

 7 cross join customer_order_products_obj hyggehumle

 8 where whitehart.customer_id = 50042

 9 and hyggehumle.customer_id = 50741;

Notice I am using neither all nor distinct. But you can see in the output that all

rows are there and no duplicates have been removed:

MULTISET_COLL(ID, NAME)

--

ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_

NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_NAME_TYPE(4280, 'Hopp

y Crude Oil'), ID_NAME_TYPE(5430, 'Hercule Trippel'), ID_NAM

E_TYPE(6520, 'Der Helle Kumpel'), ID_NAME_TYPE(4280, 'Hoppy

Crude Oil'), ID_NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_NAME_

TYPE(6520, 'Der Helle Kumpel'), ID_NAME_TYPE(6520, 'Der Hell

e Kumpel'), ID_NAME_TYPE(6600, 'Hazy Pink Cloud'), ID_NAME_T

YPE(7950, 'Pale Rider Rides'), ID_NAME_TYPE(7950, 'Pale Ride

r Rides'))

If I do add the keyword all, I get exactly the same result:

...

 3 multiset union all

...

Chapter 2 Pitfalls of Set Operations

30

Caution T his is the basis of confusion, since the set operator union defaults to
distinct behavior, while multiset union defaults to all behavior. To help
myself not to make mistakes, I go by the rule of thumb of never relying on the
defaults. For multiset, I always include all or distinct. For the set operator
union, I have no option of adding a distinct keyword, but I add it in a comment
anyway as /*distinct*/ to make it clear to a future me that I didn’t accidentally
forget an all keyword.

If I change it to distinct, I get an output with all duplicates removed:

...

 3 multiset union distinct

...

MULTISET_COLL(ID, NAME)

--

ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_

NAME_TYPE(5430, 'Hercule Trippel'), ID_NAME_TYPE(6520, 'Der

Helle Kumpel'), ID_NAME_TYPE(6600, 'Hazy Pink Cloud'), ID_NA

ME_TYPE(7950, 'Pale Rider Rides'))

Next up is multiset intersect.

�Multiset intersect
Figure 2-6 shows that with multiset intersect, I get the rows that are common to both.

Chapter 2 Pitfalls of Set Operations

31

And you can see the same in the output if I change the multiset operator of Listing 2-8

to multiset intersect all:

...

 3 multiset intersect all

...

MULTISET_COLL(ID, NAME)

--

ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Hoppy Crude Oil'),

ID_NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_NAME_TYPE(6520,

'Der Helle Kumpel'))

Similarly with the multiset intersect distinct version:

...

 3 multiset intersect distinct

...

MULTISET_COLL(ID, NAME)

--

ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_

NAME_TYPE(6520, 'Der Helle Kumpel'))

Not much surprise here, but it gets more interesting with multiset except.

Figure 2-6.  Difference between multiset intersect all and multiset intersect distinct

Chapter 2 Pitfalls of Set Operations

32

�Multiset except
To the left in Figure 2-7 is the same data in the same order as before, illustrating what

is left if I take the beers of customer Hygge og Humle and use multiset except all to

subtract the beers of customer The White Hart. Using all means it takes into account

the number of occurrences of duplicates – the first customer has three rows with Hoppy

Crude Oil, and the second customer has two rows, which leaves one row in the output of

the subtraction.

In the middle of Figure 2-7, I still use multiset except all, except that I have

swapped the two customers, so I take the beers of The White Hart and subtract the

beers of Hygge og Humle. Same principle as before, the first customer has two rows of

Der Helle Kumpel, and the second customer has one row, which leaves one row in the

output. It gets interesting when I switch to distinct.

To the right in Figure 2-7, you can see that when I use multiset except distinct,

the output no longer contains Der Helle Kumpel. One might think that it should be like

removing duplicates from the output of multiset except all, but it is not. It is first

removing duplicates from both input sets and then doing the subtraction. This means

that there can be some values shown using multiset except all that disappear using

multiset except distinct.

Figure 2-7.  Difference between multiset except all and multiset except distinct

Chapter 2 Pitfalls of Set Operations

33

Showing the same in code, again I simply change the operator of Listing 2-8 to get

the left output of Figure 2-7:

...

 3 multiset except all

...

MULTISET_COLL(ID, NAME)

--

ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_

NAME_TYPE(5430, 'Hercule Trippel'))

Swapping the order of the two input nested table columns gives me the middle

output of Figure 2-7:

SQL> select

 2 hyggehumle.product_coll

 3 multiset except all

 4 whitehart.product_coll

...

MULTISET_COLL(ID, NAME)

--

ID_NAME_COLL_TYPE(ID_NAME_TYPE(6520, 'Der Helle Kumpel'), ID

_NAME_TYPE(6600, 'Hazy Pink Cloud'), ID_NAME_TYPE(7950, 'Pale

Rider Rides'), ID_NAME_TYPE(7950, 'Pale Rider Rides'))

Finally switching to multiset except distinct produces the right output of

Figure 2-7, where you notice Der Helle Kumpel is missing:

SQL> select

 2 hyggehumle.product_coll

 3 multiset except distinct

 4 whitehart.product_coll

...

Chapter 2 Pitfalls of Set Operations

34

MULTISET_COLL(ID, NAME)

--

ID_NAME_COLL_TYPE(ID_NAME_TYPE(6600, 'Hazy Pink Cloud'), ID_

NAME_TYPE(7950, 'Pale Rider Rides'))

With multiset except, you have the choice between all and distinct as shown

here, but that is not the case with the set operator minus.

�Minus vs. multiset except
The set operators are typically used more often than the multiset operators, union all

probably most of all. But sometimes using minus can be a nice alternative to antijoins

(not in and not exists).

I’ve taken some care to show you the differences between multiset except all

and multiset except distinct to lay the ground for Listing 2-9, where I use minus to

produce the same output as I did just before with multiset except distinct.

Listing 2-9.  Minus is like multiset except distinct

SQL> select product_id as p_id, product_name

 2 from customer_order_products

 3 where customer_id = 50741

 4 minus

 5 select product_id as p_id, product_name

 6 from customer_order_products

 7 where customer_id = 50042

 8 order by p_id;

Since minus also removes duplicates of the input sets first before doing the

subtraction, this output also does not have Der Helle Kumpel in it:

 P_ID PRODUCT_NAME

----- -----------------

 6600 Hazy Pink Cloud

 7950 Pale Rider Rides

Chapter 2 Pitfalls of Set Operations

35

But what if I want an output that takes number of occurrences of duplicates into

account? In other words, how can I get a minus all, even if SQL does not support it?

I’ve shown you that the multiset operators support it, so I can utilize this in

Listing 2-10.

Listing 2-10.  Emulating minus all using multiset except all

SQL> select

 2 minus_all_table.id as p_id

 3 , minus_all_table.name as product_name

 4 from table(

 5 cast(

 6 multiset(

 7 select product_id, product_name

 8 from customer_order_products

 9 where customer_id = 50741

 10)

 11 as id_name_coll_type

 12)

 13 multiset except all

 14 cast(

 15 multiset(

 16 select product_id, product_name

 17 from customer_order_products

 18 where customer_id = 50042

 19)

 20 as id_name_coll_type

 21)

 22) minus_all_table

 23 order by p_id;

Each of the two selects of Listing 2-9 I put inside a multiset function call (lines

6–10 and 15–19), which converts the row set to a multiset (nested table). But I cannot just

convert it to a “generic” type; I must use the cast function to specify which nested table

type I want to create, in this case id_name_coll_type.

Chapter 2 Pitfalls of Set Operations

36

That way I now have two multisets, so I can subtract one from the other with

multiset except all in line 13. The result of this subtraction I place in the table

function in line 4, which turns the multiset (nested table) back into a row set, so the

query produces the output that I want:

 P_ID PRODUCT_NAME

----- -----------------

 6520 Der Helle Kumpel

 6600 Hazy Pink Cloud

 7950 Pale Rider Rides

 7950 Pale Rider Rides

It works nicely, and the techniques shown can be useful from time to time to swap

sets and multisets back and forth. But for this specific use case, it is a little bit overkill

as I can emulate minus all simpler with the use of an analytic function, as I show in

Listing 2-11.

Listing 2-11.  Emulating minus all using analytic row_number function

SQL> select

 2 product_id as p_id

 3 , product_name

 4 , row_number() over (

 5 partition by product_id, product_name

 6 order by rownum

 7) as rn

 8 from customer_order_products

 9 where customer_id = 50741

 10 minus

 11 select

 12 product_id as p_id

 13 , product_name

 14 , row_number() over (

 15 partition by product_id, product_name

 16 order by rownum

Chapter 2 Pitfalls of Set Operations

37

 17) as rn

 18 from customer_order_products

 19 where customer_id = 50042

 20 order by p_id;

What I do here is that I add a column that uses row_number to create a consecutive

numbering 1, 2, 3 … for each distinct value combination of product_id and product_

name. This way the implicit distinct performed by the minus operator removes no rows,

since the addition of the consecutive numbers in the rn column makes all rows unique.

That means that the first customer will have two rows with Der Helle Kumpel, one

getting rn=1 and the other getting rn=2. While the second customer only has one row, so

it gets rn=1. The use of minus then means that the row with rn=1 is subtracted away, but

the row with rn=2 stays, as you can see in the output:

 P_ID PRODUCT_NAME RN

----- ----------------- --

 6520 Der Helle Kumpel 2

 6600 Hazy Pink Cloud 1

 7950 Pale Rider Rides 1

 7950 Pale Rider Rides 2

The code in Listing 2-11 might not be much shorter than Listing 2-10, but it is a

solution that does not require creating of a nested table type, and the analytic function

is less overhead than what is needed for converting collection types back and forth. So

until a future SQL release gives us minus all, this is a nice way to emulate it.

Tip I n a future database release (probably 20c), the set operators intersect
and except will also support the keyword all, just like union and the multiset
operators. Then you won’t need a workaround like the ones shown here to emulate
minus all, but can do it directly.

Chapter 2 Pitfalls of Set Operations

38

�Lessons learned
I have explained in detail about the variants of set and multiset operators with or

without distinct and all, so that hopefully you now will

•	 Distinguish clearly between union all and union, so you won’t

fall into the mistake of using union when you don’t want or need

duplicates removed.

•	 Be aware that set operators union, intersect, and minus default to

distinct behavior, unlike the multiset operators multiset union,

multiset intersect, and multiset except that default to all

behavior.

•	 Know how to emulate minus all until the day comes where the

database version supports it directly.

This knowledge can save you from unwitting mistakes that can be hard to find in

development and test environments.

Chapter 2 Pitfalls of Set Operations

39
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_3

CHAPTER 3

Divide and Conquer
with Subquery Factoring
Every programmer has at some point learned about modularization – splitting the code

into smaller units each solving a distinct part of the whole, typically used in procedural

languages as functions and procedures, like in PL/SQL. In SQL there are views to help

reduce complexity and provide reusability.

But modularization does not necessarily mean globally accessible and reusable

units. For example, in PL/SQL I can create local functions and procedures in the

declaration section of another function or procedure. These code units have only

local scope and do not exist as objects in the data dictionary – they only serve as local

modularization to simplify an otherwise large procedure.

In SQL there is a similar mechanism called subquery factoring, also commonly

known as the with clause or sometimes common table expressions, statement scoped
views, or named query blocks (just to mention some of the terms used for this).

The idea is (just like local procedures in a declaration section) to define a “local

view” in a kind of “declaration section” of the SQL statement. This “declaration section”

itself is the with clause, and each “local view” defined in it is called a named subquery.

It is a very useful technique for local modularization within a single SQL statement.

Tip  The with clause has evolved over versions of the database and can do
much more than just what is shown in this chapter. More on that to come in later
chapters.

40

�Products and sales data
To show you an example of modularizing a SQL statement, I will use the tables shown in

Figure 3-1.

Figure 3-1.  This chapter uses tables product_alcohol and monthly_sales

In the products table are stored the beers that Good Beer Trading Co are selling. For

these, beer information about their alcohol content is in table product_alcohol, and

statistics about their monthly sales are in table monthly_sales.

From these data, I will create SQL to find which year sold more than average for

the half of the beers that have the lowest alcohol percentage in column abv (alcohol by

volume).

�Best-selling years of the less strong beers
The Good Beer Trading Co divides their beers into two halves – the half with the lowest

alcohol percentage is defined as alcohol class 1, while the stronger half of the beers is

alcohol class 2. I find out which are which in Listing 3-1.

Chapter 3 Divide and Conquer with Subquery Factoring

41

Listing 3-1.  Dividing the beers into alcohol class 1 and 2

SQL> select

 2 pa.product_id as p_id

 3 , p.name as product_name

 4 , pa.abv

 5 , ntile(2) over (

 6 order by pa.abv, pa.product_id

 7) as alc_class

 8 from product_alcohol pa

 9 join products p

 10 on p.id = pa.product_id

 11 order by pa.abv, pa.product_id;

The analytic function ntile in lines 5–7 assigns each row into buckets – the number

of buckets being the argument. It will be assigned in the order given by the order by

clause and such that the rows are distributed as evenly as possible. In this case with ten

rows, the first five rows in order by abv will be assigned to bucket 1 and the last five rows

to bucket 2:

P_ID PRODUCT_NAME ABV ALC_CLASS

6600 Hazy Pink Cloud 4 1

6520 Der Helle Kumpel 4.5 1

7870 Ghost of Hops 4.5 1

5310 Monks and Nuns 5 1

7950 Pale Rider Rides 5 1

7790 Summer in India 5.5 2

4160 Reindeer Fuel 6 2

5430 Hercule Trippel 6.5 2

4280 Hoppy Crude Oil 7 2

4040 Coalminers Sweat 8.5 2

So now in Listing 3-2, I can take just the beers with the value 1 in alc_class, join

them to the monthly_sales table, and aggregate to show me yearly sales.

Chapter 3 Divide and Conquer with Subquery Factoring

42

Listing 3-2.  Viewing yearly sales of the beers in alcohol class 1

SQL> select

 2 pac.product_id as p_id

 3 , extract(year from ms.mth) as yr

 4 , sum(ms.qty) as yr_qty

 5 from (

 6 select

 7 pa.product_id

 8 , ntile(2) over (

 9 order by pa.abv, pa.product_id

 10) as alc_class

 11 from product_alcohol pa

 12) pac

 13 join monthly_sales ms

 14 on ms.product_id = pac.product_id

 15 where pac.alc_class = 1

 16 group by

 17 pac.product_id

 18 , extract(year from ms.mth)

 19 order by p_id, yr;

As analytic functions cannot be used in a where clause, I need to put the ntile

calculation in an inline view in lines 6–11. In line 15, I keep only those with alc_class

= 1. The rest is a normal inner join and a group by to give me an output with 3 years of

sales for each of the five beers:

P_ID YR YR_QTY

5310 2016 478

5310 2017 582

5310 2018 425

6520 2016 415

6520 2017 458

6520 2018 357

6600 2016 121

6600 2017 105

6600 2018 98

7870 2016 552

Chapter 3 Divide and Conquer with Subquery Factoring

43

7870 2017 482

7870 2018 451

7950 2016 182

7950 2017 210

7950 2018 491

So far so good, now I build further upon that statement, so in Listing 3-3, I can get

just those years where a given beer sold more than it sold in an average year for that beer.

Listing 3-3.  Viewing just the years that sold more than the average year per beer

SQL> select

 2 p_id, yr, yr_qty

 3 , round(avg_yr) as avg_yr

 4 from (

 5 select

 6 pac.product_id as p_id

 7 , extract(year from ms.mth) as yr

 8 , sum(ms.qty) as yr_qty

 9 , avg(sum(ms.qty)) over (

 10 partition by pac.product_id

 11) as avg_yr

 12 from (

 13 select

 14 pa.product_id

 15 , ntile(2) over (

 16 order by pa.abv, pa.product_id

 17) as alc_class

 18 from product_alcohol pa

 19) pac

 20 join monthly_sales ms

 21 on ms.product_id = pac.product_id

 22 where pac.alc_class = 1

 23 group by

 24 pac.product_id

 25 , extract(year from ms.mth)

 26)

Chapter 3 Divide and Conquer with Subquery Factoring

44

 27 where yr_qty > avg_yr

 28 order by p_id, yr;

The code from Listing 3-3 I put inside the inline view in lines 5–25 with the addition

of lines 9–11, where I calculate per beer what was sold in an average year using the

analytic version of the avg function. This enables me in line 27 to keep only those years

where the sales were greater than the average year:

P_ID YR YR_QTY AVG_YR

5310 2017 582 495

6520 2016 415 410

6520 2017 458 410

6600 2016 121 108

7870 2016 552 495

7950 2018 491 294

There is nothing wrong as such with the query in Listing 3-3, but you can see that for

each additional inline view I add, the statement becomes more complex and difficult

to read. Indentation is absolutely essential to keep track of which select list belongs

together with which join and where clause. If the statement grew just a little bigger, you

couldn’t see the select list and the where clause together without scrolling.

This is where the with clause comes in.

�Modularization using the with clause
The with clause allows me to put subqueries at the top of the query, giving them a name,

and use them in other places just as if they were views – you can think of it like refactoring

in procedural programming, hence the name subquery factoring. In Listing 3-4, I refactor

Listing 3-3 to use named subqueries in the with clause instead of inline views.

Listing 3-4.  Rewriting Listing 3-3 using subquery factoring

SQL> with product_alc_class as (

 2 select

 3 pa.product_id

 4 , ntile(2) over (

 5 order by pa.abv, pa.product_id

Chapter 3 Divide and Conquer with Subquery Factoring

45

 6) as alc_class

 7 from product_alcohol pa

 8), class_one_yearly_sales as (

 9 select

 10 pac.product_id as p_id

 11 , extract(year from ms.mth) as yr

 12 , sum(ms.qty) as yr_qty

 13 , avg(sum(ms.qty)) over (

 14 partition by pac.product_id

 15) as avg_yr

 16 from product_alc_class pac

 17 join monthly_sales ms

 18 on ms.product_id = pac.product_id

 19 where pac.alc_class = 1

 20 group by

 21 pac.product_id

 22 , extract(year from ms.mth)

 23)

 24 select

 25 p_id, yr, yr_qty

 26 , round(avg_yr) as avg_yr

 27 from class_one_yearly_sales

 28 where yr_qty > avg_yr

 29 order by p_id, yr;

The subquery from the innermost inline view of Listing 3-3 I place in lines 2–7 and

give it the name product_alc_class (it is a good idea to use some meaningful names).

Then I can refer to product_alc_class in later parts of the query, using it just as if it was

a view in the data dictionary. But it is not created in the data dictionary; it is only locally

defined within this SQL statement.

The second-level inline view of Listing 3-3 then goes in lines 9–22 and gets the name

class_one_yearly_sales in line 8. In line 16, it queries the product_alc_class named

subquery in the same place that Listing 3-3 has an inline view.

And the main query in lines 24–29 corresponds to the outer query of Listing 3-3 lines

1–4 and 26–28, just querying the class_one_yearly_sales named subquery instead of

an inline view.

Chapter 3 Divide and Conquer with Subquery Factoring

46

The output of Listing 3-4 is identical to Listing 3-3, and the optimizer most likely

rewrites the SQL to achieve the same access plan, so what have I gained?

Using the with clause in this simple fashion, I’ve mostly gained readability – having

the select list and where clause close together in lines 24–29, querying a suitably named

subquery makes it easier to write, understand, and check the logic of just this part of

the big query independently. Similarly each of the two named subqueries, they can be

looked at individually. It is the same benefits you know from modularizing procedural

code locally.

But where Listing 3-4 refactors the nested inline views of Listing 3-3 by having

the second subquery select from the first and the main query select from the second

subquery, I can also rewrite it in an alternative manner in Listing 3-5.

Listing 3-5.  Alternative rewrite using independent named subqueries

SQL> with product_alc_class as (

 2 select

 3 pa.product_id

 4 , ntile(2) over (

 5 order by pa.abv, pa.product_id

 6) as alc_class

 7 from product_alcohol pa

 8), yearly_sales as (

 9 select

 10 ms.product_id

 11 , extract(year from ms.mth) as yr

 12 , sum(ms.qty) as yr_qty

 13 , avg(sum(ms.qty)) over (

 14 partition by ms.product_id

 15) as avg_yr

 16 from monthly_sales ms

 17 group by

 18 ms.product_id

 19 , extract(year from ms.mth)

 20)

 21 select

 22 pac.product_id as p_id

Chapter 3 Divide and Conquer with Subquery Factoring

47

 23 , ys.yr

 24 , ys.yr_qty

 25 , round(ys.avg_yr) as avg_yr

 26 from product_alc_class pac

 27 join yearly_sales ys

 28 on ys.product_id = pac.product_id

 29 where pac.alc_class = 1

 30 and ys.yr_qty > ys.avg_yr

 31 order by p_id, yr;

The product_alc_class named subquery is unchanged from Listing 3-4. But instead

of class_one_yearly_sales, I create the simpler yearly_sales in lines 8–20, where I

calculate the yearly sales of all products without joining to product_alc_class. The two

named subqueries in my with clause are now not dependent on one another.

In the main query, I simply join the two named subqueries in lines 26–28 and do

filtering in the where clause in lines 29–30. With this code, I achieve the same output

once again as the last two listings.

Listings 3-4 and 3-5 are both examples of using the with clause in a manner that

could have been solved with inline views. The prime benefit is readability, as the

definition of the named subqueries is separated, not inline nested within one another.

But there are other benefits to the with clause that aren’t as easily solvable with inline

views.

�Multiple uses of the same subquery
One of the issues that potentially can arise from doing something like Listing 3-5 is that I

might calculate the yearly sales of all products, even though I only need it done for half of

the products. Depending on how the code is written, the optimizer might or might not be

smart enough to decide whether or not it is the fastest to just do it for all products, or it

might be faster to push the predicates into the subquery to only do it for the desired half.

Sometimes it is not possible to make the query push the predicates. In such cases,

I can force it to only calculate yearly sales for the desired products by the method in

Listing 3-6.

Chapter 3 Divide and Conquer with Subquery Factoring

48

Listing 3-6.  Querying one subquery multiple places

SQL> with product_alc_class as (

...

 8), yearly_sales as (

...

 16 from monthly_sales ms

 17 where ms.product_id in (

 18 select pac.product_id

 19 from product_alc_class pac

 20 where pac.alc_class = 1

 21)

...

 25)

 26 select

...

 31 from product_alc_class pac

 32 join yearly_sales ys

 33 on ys.product_id = pac.product_id

 34 where ys.yr_qty > ys.avg_yr

 35 order by p_id, yr;

Listing 3-6 is almost identical to Listing 3-5. But I have added lines 17–21 to make the

yearly_sales be calculated only for those products found in the product_alc_class

named subquery. Even so I still use product_alc_class in the join in the main query in

line 31 – that is okay, as it is allowed to use the named subquery multiple places in the

code.

But since the yearly_sales now has been pre-filtered to give me only those for alc_

class = 1, I no longer need it in the final where clause in line 34 – I still get the same

output as the last three listings.

Chapter 3 Divide and Conquer with Subquery Factoring

49

Note  Strictly speaking, in this particular case, I could avoid joining to product_
alc_class in the main query in Listing 3-6, since I could have queried ys.
product_id in the select list instead of pac.product_id. But if there had
been more columns in product_alc_class that I needed in the output, then the
double usage of the named subquery would be necessary.

A huge benefit of factoring out subqueries in the with clause like this is that the

optimizer can decide to treat them in one of two different ways, depending on what it

thinks will give the lowest cost:

It can treat them just like views, meaning that the SQL of the named subqueries is

basically substituted each place that they are queried.

It can also decide to execute the SQL of a named subquery only once, storing the

results in a temporary table it creates on the fly and then accessing this temporary table

each place that the named subquery is queried.

The with clause allows the optimizer this choice, and (like always when the

optimizer is involved) it most often makes a good choice, but sometimes it can make the

wrong choice.

To try and see if it is a good idea for the optimizer to do the second method, I can add

the undocumented hint /*+ materialize */ in line 2 of Listing 3-6 like this:

SQL> with product_alc_class as (

 2 select /*+ materialize */

 3 pa.product_id

...

With this hint, I force the optimizer to choose the access method of doing a temp

table transformation with a load as select as seen in Figure 3-2.

Chapter 3 Divide and Conquer with Subquery Factoring

50

The operations in the explain plan that are nested under the load as select are the

execution of the product_alc_class named subquery, whose results then are stored in

the on-the-fly created temporary table that is given a sys_temp_* name. This temporary

table is then accessed twice in the rest of the explain plan.

The /*+ materialize */ hint is perfect for testing and finding out if you would

really like the optimizer to do it this way. If you find this to be the case, but the optimizer

prefers (wrongly in your opinion) treating your named subquery as a view instead of

materializing it, then you might get the idea that you would like to use the hint in your

production code as well. An idea I cannot recommend.

It is possible, even likely, that you will be safe using the hint, but it is always strongly

discouraged to use undocumented hints in production code. You don’t have any

guarantee from Oracle that it will stay there – it might disappear with no warning at the

next upgrade. Then you can use an alternative method to force materialization:

SQL> with product_alc_class as (

 2 select

 3 pa.product_id

 4 , ntile(2) over (

 5 order by pa.abv, pa.product_id

Figure 3-2.  Explain plan showing creation and use of the ad hoc temporary table

Chapter 3 Divide and Conquer with Subquery Factoring

51

 6) as alc_class

 7 from product_alcohol pa

 8 where rownum >= 1

 9), yearly_sales as (

...

In this version of Listing 3-6, I have taken out the /*+ materialize */ hint again,

but instead added line 8. A filter clause (that always evaluates as true) on rownum also

makes it necessary for the optimizer to materialize the results of the product_alc_class

named subquery.

Using where rownum >= 1 or in other ways referencing rownum is a classic trick to

prevent view merging. It works because the values assigned to the rownum pseudocolumn

could easily be different when view merging is performed compared to when it is not.

The optimizer cannot allow itself to perform a query optimization that potentially can

change the results, so therefore it cannot allow view merging when using rownum. Hence

it must choose to materialize instead. This mechanism works for the with clause as well

as for inline or stored views.

�Listing column names
So far all my with clauses have contained subqueries that depended on column aliases

to specify the column names available when querying the named subqueries.

But I’ve said that this is a lot like defining a “local view,” and you might recall that in

the create view statement, you can choose between explicitly providing a list of column

names and implicitly letting the columns get the names of the query column aliases. In

the with clause, you can also do both.

Note I n the first database versions that supported the with clause, the implicit
column naming was the only way to do it. In version 11.1 the with clause was
expanded to allow recursive subquery factoring (a topic of a later chapter) in which
the explicit column list is mandatory. But the explicit column list can also be used
in general; it is not restricted to only recursive subquery factoring.

Chapter 3 Divide and Conquer with Subquery Factoring

52

Listings 3-4, 3-5, and 3-6 all use implicit column naming from column aliases –

in Listing 3-7, I show a rewrite of Listing 3-6 that uses explicit lists of column names

instead.

Listing 3-7.  Specifying column names list instead of column aliases

SQL> with product_alc_class (

 2 product_id, alc_class

 3) as (

 4 select

 5 pa.product_id

 6 , ntile(2) over (

 7 order by pa.abv, pa.product_id

 8)

 9 from product_alcohol pa

 10), yearly_sales (

 11 product_id, yr, yr_qty, avg_yr

 12) as (

 13 select

 14 ms.product_id

 15 , extract(year from ms.mth)

 16 , sum(ms.qty)

 17 , avg(sum(ms.qty)) over (

 18 partition by ms.product_id

 19)

 20 from monthly_sales ms

 21 where ms.product_id in (

 22 select pac.product_id

 23 from product_alc_class pac

 24 where pac.alc_class = 1

 25)

 26 group by

 27 ms.product_id

 28 , extract(year from ms.mth)

 29)

 30 select

Chapter 3 Divide and Conquer with Subquery Factoring

53

 31 pac.product_id as p_id

 32 , ys.yr

 33 , ys.yr_qty

 34 , round(ys.avg_yr) as avg_yr

 35 from product_alc_class pac

 36 join yearly_sales ys

 37 on ys.product_id = pac.product_id

 38 where ys.yr_qty > ys.avg_yr

 39 order by p_id, yr;

For each of my named subqueries in the with clause, I insert between the query

name and the as keyword a set of parentheses with a list of column names (lines 1–3

and lines 10–12). This overrules whatever column names and/or aliases returned by the

subqueries themselves – I do not even have to provide column aliases, as you can see in

line 8 and lines 15–19.

It does not change the output a bit – all listings from Listings 3-3 to 3-7 produce

the same output. And in many cases like this, you will not see an explicit column name

used, though it can improve productivity a bit – when I do the coding of a subsequent

subquery in the statement and need to know which columns of the product_alc_class

named subquery are available, it is nice to simply refer to the list in line 2 rather than

having to spot what are column names in the code of the select list (that might be long

and convoluted).

But there’s one common use of the with clause where the explicit column list is

extremely handy – that is, for producing test data by selecting from dual like in Listing 3-8.

Listing 3-8.  “Overloading” a table with test data in a with clause

SQL> with product_alcohol (

 2 product_id, sales_volume, abv

 3) as (

 4 /* Simulation of table product_alcohol */

 5 select 4040, 330, 4.5 from dual union all

 6 select 4160, 500, 7.0 from dual union all

 7 select 4280, 330, 8.0 from dual union all

 8 select 5310, 330, 4.0 from dual union all

 9 select 5430, 330, 8.5 from dual union all

 10 select 6520, 500, 6.5 from dual union all

Chapter 3 Divide and Conquer with Subquery Factoring

54

 11 select 6600, 500, 5.0 from dual union all

 12 select 7790, 500, 4.5 from dual union all

 13 select 7870, 330, 6.5 from dual union all

 14 select 7950, 330, 6.0 from dual

 15)

 16 /* Query to test with simulated data */

 17 select

 18 pa.product_id as p_id

 19 , p.name as product_name

 20 , pa.abv

 21 , ntile(2) over (

 22 order by pa.abv, pa.product_id

 23) as alc_class

 24 from product_alcohol pa

 25 join products p

 26 on p.id = pa.product_id

 27 order by pa.abv, pa.product_id;

Lines 17–27 are the same as Listing 3-1. But I want to test what this query would

output if the content of the table was something else.

Instead of creating a test table and doing a search-and-replace in my query to make

it use the name of the test table, I use the with clause in lines 1–15 to create a named

subquery that I give the same name as the product_alcohol table. I provide a list of

column names in line 2, and then I simply select constant values from dual repeatedly

in lines 5–14. It is much more readable without having a lot of column aliases cluttering

the data list, like the following:

...

 4 /* Simulation of table product_alcohol */

 5 �select 4040 as product_id, 330 as sales_volume, 4.5 as abv from

dual union all

 6 �select 4160 as product_id, 500 as sales_volume, 7.0 as abv from

dual union all

...

Chapter 3 Divide and Conquer with Subquery Factoring

55

This way I can easily get output from my query using test data, but without changing

table names in the query itself:

P_ID PRODUCT_NAME ABV ALC_CLASS

5310 Monks and Nuns 4 1

4040 Coalminers Sweat 4.5 1

7790 Summer in India 4.5 1

6600 Hazy Pink Cloud 5 1

7950 Pale Rider Rides 6 1

6520 Der Helle Kumpel 6.5 2

7870 Ghost of Hops 6.5 2

4160 Reindeer Fuel 7 2

4280 Hoppy Crude Oil 8 2

5430 Hercule Trippel 8.5 2

This method of including test data in a with clause is also very handy when you ask

a question on a forum on the Internet. It makes it a lot easier for people that try to help

you, if they can simply execute the query containing data and all, instead of having to

create a table, populate it, and then try your query. It is not applicable to all situations, of

course, but very often it will do nicely.

�Lessons learned
The with clause can do many other things too, much of which I’ll cover in later chapters.

This chapter focused on using it for modularizing a SQL statement so you can

•	 Divide and conquer by having your SQL split into pieces, each easier

to have an overview of.

•	 View the code of each named subquery as a unit, as opposed to using

nested inline views.

•	 Select from a named subquery more than once in your statement,

potentially materializing the result temporarily instead of querying

the base tables multiple times.

Chapter 3 Divide and Conquer with Subquery Factoring

56

•	 Provide column names as a list as alternative to column aliases,

particularly to avoid excessive cluttering of the code when using dual

for test data.

When learning procedural code, we’ve all been taught that modularization is key to

reduce dangers of complexity – it is no different in SQL. The with clause is a very nice

tool indeed for local modularization of SQL statements that are just a bit more complex

than a simple two-table join.

Chapter 3 Divide and Conquer with Subquery Factoring

57
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_4

CHAPTER 4

Tree Calculations
with Recursion
Any procedural language I can think of supports some form of recursion. A procedure

or function can call itself – if needed repeatedly until some condition has been reached.

Typically they’ll also support iteration, which is related but not quite the same.

SQL deals with sets of rows, not procedural logic, so how can you do recursion in

SQL? It still concerns itself with sets of rows: first find a set of rows; then based on that

set of rows, you apply some logic to find a second set of rows; then based on that set of

rows, you apply the logic again (recursively) to find a third set of rows; and so you keep

on going until you find no more rows.

The typical use case for such recursion in SQL is hierarchical data. You find the top-

level nodes of the tree, then find the child nodes of those, then the grandchild nodes, and

so on. Each search for the next level down in the tree is recursively applying a lookup of

children based on the rows of the previous level.

In this chapter I primarily focus on SQL recursion in the form of recursive subquery
factoring that is the most directly applicable method of recursion in SQL. (You can do

iterations with the model clause – I give examples of this in Chapters 6 and 16. Chapter 16

also gives an example of recursive subquery factoring used in a nonhierarchical manner.)

Here I will show the use of recursion on hierarchical data.

�Bottles in boxes on pallets
The Good Beer Trading Co has beers in various sized bottles that are packed in various

sized boxes, which might be in larger boxes, which are stacked on pallets. The definitions

of those different types of product packaging and relations between them are stored in

the tables in Figure 4-1.

58

The packaging table contains the different types and sizes of bottles, boxes, and

pallets. These are related to each other in the packaging_relations table, which shows

how many of each type of packaging are stored within another type of packaging.

Listing 4-1 shows the content of these tables in a hierarchical tree.

Listing 4-1.  The hierarchical relations of the different packaging types

SQL> select

 2 p.id as p_id

 3 , lpad(' ', 2*(level-1)) || p.name as p_name

 4 , c.id as c_id

 5 , c.name as c_name

 6 , pr.qty

 7 from packaging_relations pr

 8 join packaging p

 9 on p.id = pr.packaging_id

 10 join packaging c

 11 on c.id = pr.contains_id

 12 start with pr.packaging_id not in (

Figure 4-1.  Tables of packaging and how much is in each packaging type

Chapter 4 Tree Calculations with Recursion

59

 13 select c.contains_id from packaging_relations c

 14)

 15 connect by pr.packaging_id = prior pr.contains_id

 16 order siblings by pr.contains_id;

In start with in lines 12–14, I start at the top-level pallets, because any packaging

that exists as contains_id in packaging_relations is by definition not at the top level.

The hierarchy is then traversed by the connect by in line 15.

In the output, you can see that pallet types are defined depending on which box

(or mix of boxes) is stacked on the pallets:

P_ID P_NAME C_ID C_NAME QTY

531 Pallet of L 521 Box Large 12

521 Box Large 502 Bottle 500cl 72

532 Pallet of M 522 Box Medium 20

522 Box Medium 501 Bottle 330cl 36

533 Pallet Mix MS 522 Box Medium 10

522 Box Medium 501 Bottle 330cl 36

533 Pallet Mix MS 523 Box Small 20

523 Box Small 502 Bottle 500cl 30

534 Pallet Mix SG 523 Box Small 20

523 Box Small 502 Bottle 500cl 30

534 Pallet Mix SG 524 Gift Box 16

524 Gift Box 511 Gift Carton 8

511 Gift Carton 501 Bottle 330cl 3

511 Gift Carton 502 Bottle 500cl 2

You can see that a Pallet of L contains 12 Box Large, which in turn contains 72 Bottle

500cl per box.

On the other hand, a Pallet Mix SG contains 20 Box Small, which in turn contains

30 Bottle 500cl, and the pallet also contains 16 Gift Box, which contains 8 Gift Carton per

box, which in turn contains 3 Bottle 330cl and 2 Bottle 500cl per carton.

From this hierarchy, the goal is for each top-level packaging (the pallets) to find out

how many it contains of each lowest-level packaging (the bottles). For Pallet Mix SG, I want

to know that it contains 20*30+16*8*2 = 856 Bottle 500cl plus 16*8*3 = 384 Bottle 330cl.

In other words, I need to traverse the branches of the tree and multiply the quantities

of each branch.

Chapter 4 Tree Calculations with Recursion

60

�Multiplying hierarchical quantities
To traverse a hierarchy, the traditional method in Oracle is to use the connect by syntax

(as I used in the preceding text in Listing 4-1), so I will try that first in Listing 4-2.

Listing 4-2.  First attempt at multiplication of quantities

SQL> select

 2 connect_by_root p.id as p_id

 3 , connect_by_root p.name as p_name

 4 , c.id as c_id

 5 , c.name as c_name

 6 , ltrim(sys_connect_by_path(pr.qty, '*'), '*') as qty_expr

 7 , qty * prior qty as qty_mult

 8 from packaging_relations pr

 9 join packaging p

 10 on p.id = pr.packaging_id

 11 join packaging c

 12 on c.id = pr.contains_id

 13 where connect_by_isleaf = 1

 14 start with pr.packaging_id not in (

 15 select c.contains_id from packaging_relations c

 16)

 17 connect by pr.packaging_id = prior pr.contains_id

 18 order siblings by pr.contains_id;

I use the same start with and connect by as Listing 4-1, but the filter on connect_

by_isleaf in line 13 makes the output contain only the leaves of each branch.

By using connect_by_root in lines 2 and 3, I get the desired effect in this output that

p_id is the top-level packaging_id, while c_id is the lowest-level contains_id:

P_ID P_NAME C_ID C_NAME QTY_EXPR QTY_MULT

531 Pallet of L 502 Bottle 500cl 12*72 864

532 Pallet of M 501 Bottle 330cl 20*36 720

533 Pallet Mix MS 501 Bottle 330cl 10*36 360

533 Pallet Mix MS 502 Bottle 500cl 20*30 600

Chapter 4 Tree Calculations with Recursion

61

534 Pallet Mix SG 502 Bottle 500cl 20*30 600

534 Pallet Mix SG 501 Bottle 330cl 16*8*3 24

534 Pallet Mix SG 502 Bottle 500cl 16*8*2 16

The intermediate rows of the hierarchy (that were visible in the output of Listing 4-1)

are omitted from this output, but that does not mean they were skipped. Using

sys_connect_by_path in line 6, I can see the quantities of all intermediate rows in the

qty_expr column, which on purpose I delimited with an asterisk so that it visualizes the

multiplication that I need to do.

In line 7 of the code, I try to calculate the multiplication in column qty_mult, but as

you can see, it only works in the first five rows, which are those where I only have two

levels to multiply. In the last two rows, I have three levels to multiply, but my output

contains just the multiplication of the last two levels.

Probably you spot the error:

 7 , qty * prior qty as qty_mult

I am multiplying qty with just the qty of the prior row. This is patently wrong, and

instead I really want to multiply qty with the calculated qty_mult of the prior row:

 7 , qty * prior qty_mult as qty_mult

But this is unfortunately not supported with the connect by syntax, where prior

only can be used on the table columns and expressions with these, not on column

aliases of the select list. If I try this modification, I get an error: ORA-00904: "QTY_MULT":

invalid identifier.

But there is a different way to traverse a tree that is called recursive subquery

factoring.

�Recursive subquery factoring
Recursive subquery factoring is also sometimes called the recursive with clause, as it

is a special way of using with. Using recursive with in Listing 4-3 enables me to do the

multiplication I want.

Chapter 4 Tree Calculations with Recursion

62

Listing 4-3.  Multiplication of quantities with recursive subquery factoring

SQL> with recursive_pr (

 2 packaging_id, contains_id, qty, lvl

 3) as (

 4 select

 5 pr.packaging_id

 6 , pr.contains_id

 7 , pr.qty

 8 , 1 as lvl

 9 from packaging_relations pr

 10 where pr.packaging_id not in (

 11 select c.contains_id from packaging_relations c

 12)

 13 union all

 14 select

 15 pr.packaging_id

 16 , pr.contains_id

 17 , rpr.qty * pr.qty as qty

 18 , rpr.lvl + 1 as lvl

 19 from recursive_pr rpr

 20 join packaging_relations pr

 21 on pr.packaging_id = rpr.contains_id

 22)

 23 search depth first by contains_id set rpr_order

 24 select

 25 p.id as p_id

 26 , lpad(' ', 2*(rpr.lvl-1)) || p.name as p_name

 27 , c.id as c_id

 28 , c.name as c_name

 29 , rpr.qty

 30 from recursive_pr rpr

 31 join packaging p

 32 on p.id = rpr.packaging_id

 33 join packaging c

Chapter 4 Tree Calculations with Recursion

63

 34 on c.id = rpr.contains_id

 35 order by rpr.rpr_order;

This is quite a bit longer than using the connect by syntax, but diving into the

separate parts should help understanding:

I name my with subquery in line 1 (just as shown in the previous chapter).

When it is a recursive with instead of just a normal with, it is mandatory to include

the list of column names, as I do in line 2.

Inside the with clause, I need two select statements separated by the union all in

line 13.

The first select (lines 4–12) finds the top-level nodes of the hierarchy. This is

equivalent to selecting the rows in the start with clause, but can be more complex

with, for example, joins.

Recursive subquery factoring does not have a built-in pseudocolumn level, so instead

I have my own lvl column, which is initialized to 1 for the top-level nodes in line 8.

The second select (lines 14–21) is the recursive part. It must query itself (line 19)

and join to one or more other tables to find child rows.

In the first iteration, the recursive_pr will contain the level 1 nodes found in the

preceding text, and the join to packaging_relations in lines 20–21 is equivalent to the

connect by and finds the level 2 nodes in the tree. In line 18, I add 1 to the lvl value to

indicate this.

In the second iteration, the recursive_pr will give me the level 2 nodes found in the

first iteration, and the join finds the level 3 nodes. And so it will be executed repeatedly

until no more child rows are found.

This method looks more complex than connect by, but it allows much more

flexibility. One of the things it allows is using values calculated on the prior level in the

expressions for the next level, as I do in line 17 where I multiply the recursive qty with

the qty of the next child row in the tree. This is exactly what I could not do in connect by.

Recursive subquery factoring also does not have an order siblings by clause. But

line 23 specifies three things: first, how the tree should be searched (depth first is

equivalent to how connect by works; breadth first is the other way around and rarely

used); second, which column to order siblings by; and, third, the set rpr_order creating

a virtual column of that name with an incremental value that can be used in the final

order by in line 35 to ensure the entire output is ordered the way I specified.

In the main query beginning line 24, I simply query the recursive subquery and join

it to the packaging table to get the packaging names.

Chapter 4 Tree Calculations with Recursion

64

In the end I get this output with the qty values that I want:

P_ID P_NAME C_ID C_NAME QTY

531 Pallet of L 521 Box Large 12

521 Box Large 502 Bottle 500cl 864

532 Pallet of M 522 Box Medium 20

522 Box Medium 501 Bottle 330cl 720

533 Pallet Mix MS 522 Box Medium 10

522 Box Medium 501 Bottle 330cl 360

533 Pallet Mix MS 523 Box Small 20

523 Box Small 502 Bottle 500cl 600

534 Pallet Mix SG 523 Box Small 20

523 Box Small 502 Bottle 500cl 600

534 Pallet Mix SG 524 Gift Box 16

524 Gift Box 511 Gift Carton 128

511 Gift Carton 501 Bottle 330cl 384

511 Gift Carton 502 Bottle 500cl 256

You can see the last two lines have the correct values 384 and 256 instead of the

wrong values 24 and 16 that were in the Listing 4-2 output.

But I have another problem with this output – it contains all of the intermediate

rows that I do not want to see. Recursive subquery factoring does not have a built-in

pseudocolumn connect_by_isleaf and also the operator connect_by_root, so in

Listing 4-4, I make a workaround to find leaves using analytic functions.

Listing 4-4.  Finding leaves in recursive subquery factoring

SQL> with recursive_pr (

 2 root_id, packaging_id, contains_id, qty, lvl

 3) as (

 4 select

 5 pr.packaging_id as root_id

 6 , pr.packaging_id

 7 , pr.contains_id

 8 , pr.qty

 9 , 1 as lvl

 10 from packaging_relations pr

 11 where pr.packaging_id not in (

Chapter 4 Tree Calculations with Recursion

65

 12 select c.contains_id from packaging_relations c

 13)

 14 union all

 15 select

 16 rpr.root_id

 17 , pr.packaging_id

 18 , pr.contains_id

 19 , rpr.qty * pr.qty as qty

 20 , rpr.lvl + 1 as lvl

 21 from recursive_pr rpr

 22 join packaging_relations pr

 23 on pr.packaging_id = rpr.contains_id

 24)

 25 search depth first by contains_id set rpr_order

 26 select

 27 p.id as p_id

 28 , p.name as p_name

 29 , c.id as c_id

 30 , c.name as c_name

 31 , leaf.qty

 32 from (

 33 select

 34 rpr.*

 35 , case

 36 when nvl(

 37 lead(rpr.lvl) over (order by rpr.rpr_order)

 38 , 0

 39) > rpr.lvl

 40 then 0

 41 else 1

 42 end as is_leaf

 43 from recursive_pr rpr

 44) leaf

 45 join packaging p

 46 on p.id = leaf.root_id

Chapter 4 Tree Calculations with Recursion

66

 47 join packaging c

 48 on c.id = leaf.contains_id

 49 where leaf.is_leaf = 1

 50 order by leaf.rpr_order;

The interesting differences in Listing 4-4 compared to Listing 4-3 are as follows:

I have an extra column root_id in my recursion. In line 5, I initialize this to the

packaging_id of the root nodes. And then in line 16, the same value is copied onto

all child rows of the same branch. This propagates root_id to all nodes and is the

alternative to connect_by_root.

I create an inline view leaf in lines 32–44, in which I create column is_leaf

using the calculation in lines 35–42. By using the analytic function lead in line 37, this

calculation simply states that if the lvl of the next row in the hierarchical order is greater

than the current lvl, then the current row has children and is not a leaf.

I filter on the calculated is_leaf column in line 49 as an alternative to connect_by_

isleaf.

And in line 46, I make sure that in the output, I am seeing the root node in the p_id

and p_name columns by joining on the root_id instead of packaging_id.

In total this gives me the same seven rows as I got from Listing 4-2, just with correct

values of qty:

P_ID P_NAME C_ID C_NAME QTY

531 Pallet of L 502 Bottle 500cl 864

532 Pallet of M 501 Bottle 330cl 720

533 Pallet Mix MS 501 Bottle 330cl 360

533 Pallet Mix MS 502 Bottle 500cl 600

534 Pallet Mix SG 502 Bottle 500cl 600

534 Pallet Mix SG 501 Bottle 330cl 384

534 Pallet Mix SG 502 Bottle 500cl 256

I’m almost there, but you will notice that lines 5 and 7 in the output both are a

quantity of Bottle 500cl contained in Pallet Mix SG – 600 of them stem from Box Small,

and 256 stem from Gift Carton/Gift Box. I actually want that as a single row, which I take

care of in Listing 4-5.

Chapter 4 Tree Calculations with Recursion

67

Listing 4-5.  Grouping totals for packaging combinations

SQL> with recursive_pr (

 2 root_id, packaging_id, contains_id, qty, lvl

 3) as (

...

 24)

 25 search depth first by contains_id set rpr_order

 26 select

 27 p.id as p_id

 28 , p.name as p_name

 29 , c.id as c_id

 30 , c.name as c_name

 31 , leaf.qty

 32 from (

 33 select

 34 root_id, contains_id, sum(qty) as qty

 35 from (

 36 select

 37 rpr.*

 38 , case

 39 when nvl(

 40 lead(rpr.lvl) over (order by rpr.rpr_order)

 41 , 0

 42) > rpr.lvl

 43 then 0

 44 else 1

 45 end as is_leaf

 46 from recursive_pr rpr

 47)

 48 where is_leaf = 1

 49 group by root_id, contains_id

 50) leaf

 51 join packaging p

 52 on p.id = leaf.root_id

Chapter 4 Tree Calculations with Recursion

68

 53 join packaging c

 54 on c.id = leaf.contains_id

 55 order by p.id, c.id;

The recursive subquery is unchanged from Listing 4-4, but the inline view leaf is

expanded a bit and is now an inline view inside an inline view, so that I can do a group

by in line 49 and sum the quantities in line 34.

The joins to packaging are unchanged; I still find the names of the packaging found

from the inline view, but since I have aggregated data, I no longer have the hierarchical

order (column rpr_order is gone and wouldn’t make sense anyway), so instead I simply

order by id columns in line 55. (An alternative could have been to select a min(rpr_

order) in the inline view and order by that, but I am content with ordering by id.)

P_ID P_NAME C_ID C_NAME QTY

531 Pallet of L 502 Bottle 500cl 864

532 Pallet of M 501 Bottle 330cl 720

533 Pallet Mix MS 501 Bottle 330cl 360

533 Pallet Mix MS 502 Bottle 500cl 600

534 Pallet Mix SG 501 Bottle 330cl 384

534 Pallet Mix SG 502 Bottle 500cl 856

This output is what I want – how many of each bottle type is contained within each

pallet type.

Using the recursive subquery function is a more flexible way of traversing hierarchies

than the connect by syntax, and it will in almost all cases do the job perfectly. But to

wrap up the chapter, I’ll show you an alternative that in some rare situations might just

possibly be preferable.

�Dynamic SQL in PL/SQL function
You recall in Listing 4-2 I used sys_connect_by_path to build an expression of the

multiplication to take place, like 16*8*3. Wouldn’t it be nice simply to evaluate this

expression? Well, in Listing 4-6 I do just that.

Chapter 4 Tree Calculations with Recursion

69

Listing 4-6.  Alternative method using dynamic evaluation function

SQL> with

 2 function evaluate_expr(

 3 p_expr varchar2

 4)

 5 return number

 6 is

 7 l_retval number;

 8 begin

 9 execute immediate

 10 'select ' || p_expr || ' from dual'

 11 into l_retval;

 12 return l_retval;

 13 end;

 14 select

 15 connect_by_root p.id as p_id

 16 , connect_by_root p.name as p_name

 17 , c.id as c_id

 18 , c.name as c_name

 19 , ltrim(sys_connect_by_path(pr.qty, '*'), '*') as qty_expr

 20 , evaluate_expr(

 21 ltrim(sys_connect_by_path(pr.qty, '*'), '*')

 22) as qty_mult

 23 from packaging_relations pr

 24 join packaging p

 25 on p.id = pr.packaging_id

 26 join packaging c

 27 on c.id = pr.contains_id

 28 where connect_by_isleaf = 1

 29 start with pr.packaging_id not in (

 30 select c.contains_id from packaging_relations c

 31)

 32 connect by pr.packaging_id = prior pr.contains_id

 33 order siblings by pr.contains_id;

 34 /

Chapter 4 Tree Calculations with Recursion

70

The query itself in lines 14–34 is like Listing 4-2, except that in lines 20–22, I call the

function evaluate_expr using the sys_connect_by_path expression as argument.

I could have created a stand-alone or packaged function for this, but I’ve chosen to

put the function in a with clause (a feature available from version 12.1) as this ensures

the dynamic SQL is not called with wrong arguments (think SQL injection). I’ll give more

examples of this use of PL/SQL in with clause in the next chapter.

Inside the evaluate_expr function, I simply use the execute immediate statement

in lines 9–11 to build a dynamic SQL statement that evaluates the multiplication in

the parameter string and returns the numeric result. That gives me an output with the

correct values in qty_mult:

P_ID P_NAME C_ID C_NAME QTY_EXPR QTY_MULT

531 Pallet of L 502 Bottle 500cl 12*72 864

532 Pallet of M 501 Bottle 330cl 20*36 720

533 Pallet Mix MS 501 Bottle 330cl 10*36 360

533 Pallet Mix MS 502 Bottle 500cl 20*30 600

534 Pallet Mix SG 502 Bottle 500cl 20*30 600

534 Pallet Mix SG 501 Bottle 330cl 16*8*3 384

534 Pallet Mix SG 502 Bottle 500cl 16*8*2 256

I have not bothered to group this result by packaging_id and contains_id like in

Listing 4-5; I will leave that as an exercise to you.

Note L isting 4-6 has a slash in line 34, even though line 33 ends with a
semicolon. Depending on which client and client version you use, this may be
necessary for the client to accept that there was PL/SQL inside a with clause.
Newest versions should accept the code without a slash, but in the version of
sqlcl I used, it was needed.

This last SQL statement wasn’t really recursion, but you might have situations where

even recursion would be hard put to solve your case and a bit of judicious use of PL/

SQL makes the solution possible. The thing to remember, however, is that it incurs a

punishment whenever runtime context is switched from SQL to PL/SQL and vice versa,

though this punishment can in some circumstances be reduced if you put the PL/SQL in

a with clause as shown here.

Chapter 4 Tree Calculations with Recursion

71

This punishment can be irrelevant if the function is called relatively few times

compared to the total runtime, but if it is called millions of times, it can be significant.

The next chapter dives deeper into this dilemma.

�Lessons learned
Hierarchical data is very common, and we all know the classic example of the scott.

emp table. Oracle has traditionally used the connect by syntax, which is not known in

other databases, and it is an easy and usually efficient method. But recursive subquery

factoring (which is known in other databases as well) can be a lot more flexible and solve

things that connect by cannot. When you have understood the examples of this chapter,

you know how to

•	 Do SQL recursion by querying initial row set before the union all

(equivalent of start with) and joining recursively after the union

all (equivalent of connect by).

•	 Let calculations use calculated values from the previous level of the

recursion (rather than only table column values as supported by the

connect by syntax).

•	 Emulate connect_by_root by propagating the values of the initial row

set down through all the levels.

•	 Emulate connect_by_isleaf with analytic lead function.

It is still a good idea to know the connect by syntax, but knowing recursive subquery

factoring allows you to solve problems that connect by cannot do.

Chapter 4 Tree Calculations with Recursion

73
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_5

CHAPTER 5

Functions Defined Within
SQL
One of the beauties of the SQL language in Oracle is that it can so easily be extended

by writing functions that SQL can call. Typically in PL/SQL, but for special cases, it

might also be in C or in Java. With the new multilingual engine, it’ll be possible in future

versions to write stored procedures and functions in multiple languages.

But the thing to note is that SQL and PL/SQL are executed by two different engines,

each with small differences, for example, how variables, datatypes, and memory are

handled. Every time SQL calls a PL/SQL function, or vice versa PL/SQL executes static

or dynamic SQL, data is passed from one engine to the other with some possible

conversion along the way – this is called a context switch.

Context switches are very tiny; normally you wouldn’t worry too much about them.

But if a function is called a thousand times per second from SQL, it all adds up and can

become a noticeable fraction of the time used. In version 12.1, it became possible to

minimize this context switch, so it often becomes barely noticeable.

�Table with beer alcohol data
To demonstrate this minimal context switch function in SQL, I will use the product_

alcohol table shown in Figure 5-1.

74

In this table is stored for each beer the volume (measured in milliliters) in a sales

unit (aka a bottle or can) and the ABV (alcohol by volume) percent. In Listing 5-1, I’ll

show the data for the beers in product group 142, which are the Stouts (relatively strong

and very dark beers).

Listing 5-1.  The alcohol data for the beers in the Stout product group

SQL> select

 2 p.id as p_id

 3 , p.name

 4 , pa.sales_volume as vol

Figure 5-1.  Table product_alcohol contains data for alcohol calculations for the
beers

Chapter 5 Functions Defined Within SQL

75

 5 , pa.abv

 6 from products p

 7 join product_alcohol pa

 8 on pa.product_id = p.id

 9 where p.group_id = 142

 10 order by p.id;

Reindeer Fuel is in a half-liter bottle (500 milliliter) but only 6% alcohol; the other

two are in the standard 0.33-liter bottles but stronger:

P_ID NAME VOL ABV

4040 Coalminers Sweat 330 8.5

4160 Reindeer Fuel 500 6

4280 Hoppy Crude Oil 330 7

This data can be used to find out how much pure alcohol one bottle of beer contains,

which is needed to find out how much the blood alcohol concentration (BAC) will be

increased by drinking one such bottle.

�Blood alcohol concentration
The Good Beer Trading Co must follow a health regulative where each beer must have

an indication of how high a concentration of alcohol in your blood that drinking the

beer will cause. As this is different for males and females and depends on body weight

too, it must be shown both for a male weighing 80 kilograms and a female weighing 60

kilograms.

The BAC (blood alcohol concentration) must be calculated as gram alcohol per

milliliter body fluid, measured in percent. Meaning that a BAC of 0.04 shows that 0.04%

of the liquid in your body is grams of alcohol. It can be calculated using the Widmark

formula.

Widmark formula  Milliliters of drink * ABV/100 = Milliliters alcohol. Milliliters
alcohol * 0.789 (specific gravity of alcohol) = Grams alcohol. Body weight * 1000
* Gender liquid ratio = Milliliter fluid in body. (Males are 68% liquids, females 55%
liquids.) 100 * Grams alcohol / Milliliter body fluid = BAC.

Chapter 5 Functions Defined Within SQL

76

Putting the Widmark formula into SQL, I can calculate the desired BAC values in

Listing 5-2.

Listing 5-2.  Calculating blood alcohol concentration for male and female

SQL> select

 2 p.id as p_id

 3 , p.name

 4 , pa.sales_volume as vol

 5 , pa.abv

 6 , round(

 7 100 * (pa.sales_volume * pa.abv / 100 * 0.789)

 8 / (80 * 1000 * 0.68)

 9 , 3

 10) bac_m

 11 , round(

 12 100 * (pa.sales_volume * pa.abv / 100 * 0.789)

 13 / (60 * 1000 * 0.55)

 14 , 3

 15) bac_f

 16 from products p

 17 join product_alcohol pa

 18 on pa.product_id = p.id

 19 where p.group_id = 142

 20 order by p.id;

Lines 6–10 calculate the BAC of an 80 kg heavy male, while lines 11–15 do the same

for a 60 kg female. The male has more liquid (both because of his gender and his larger

weight), so the alcohol is diluted more in his body, and he has a lower BAC.

These two calculations give the columns bac_m and bac_f, which are the two figures

Good Beer Trading Co needs to show on the beer labels and packaging:

P_ID NAME VOL ABV BAC_M BAC_F

4040 Coalminers Sweat 330 8.5 0.041 0.067

4160 Reindeer Fuel 500 6 0.044 0.072

4280 Hoppy Crude Oil 330 7 0.034 0.055

Chapter 5 Functions Defined Within SQL

77

You can see that if, for example, your country is one of the many that have a legal

limit for driving of 0.05% BAC (some countries prefer showing it as per mille instead of

percent, so it is 0.5‰ in those countries), all of the beers would cause a 60 kg female to

get a ticket for drunk driving if she drove a car after drinking just a single bottle of these

strong beers, while an 80 kg male would be below the limit.

Note T his is example data to illustrate a formula encoded in SQL. Actual BAC will
vary depending upon more detailed factors in individual bodies and metabolisms, so
this should not be used as basis for judging whether you can legally drive a car after
drinking a couple beers or not. Use these formulas only as examples for learning
SQL – I do not take responsibility for any tickets, and I urge you to drink responsibly.

Anyway, as a developer, you obviously see here that I should take that formula and

put it in a function rather than repeat the same code with slightly different numbers

twice in this query.

�Function with PRAGMA UDF
So at first in Listing 5-3, I’ll create a regular (well, almost regular) PL/SQL function for

the Widmark formula for BAC calculation. Not that it matters for this demonstration, but

I’ll follow a best practice of putting the function in a package rather than a stand-alone

function, so I’ve decided to have a package formulas for such functions.

Listing 5-3.  Creating a formula package with a bac function

SQL> create or replace package formulas

 2 is

 3 function bac (

 4 p_volume in number

 5 , p_abv in number

 6 , p_weight in number

 7 , p_gender in varchar2

 8) return number deterministic;

 9 end formulas;

 10 /

Chapter 5 Functions Defined Within SQL

78

Package FORMULAS compiled

SQL> create or replace package body formulas

 2 is

 3 function bac (

 4 p_volume in number

 5 , p_abv in number

 6 , p_weight in number

 7 , p_gender in varchar2

 8) return number deterministic

 9 is

 10 PRAGMA UDF;

 11 begin

 12 return round(

 13 100 * (p_volume * p_abv / 100 * 0.789)

 14 / (p_weight * 1000 * case p_gender

 15 when 'M' then 0.68

 16 when 'F' then 0.55

 17 end)

 18 , 3

 19);

 20 end bac;

 21 end formulas;

 22 /

Package Body FORMULAS compiled

All are pretty straightforward, except line 10 in the body. The UDF pragma (user-

defined function) is available since version 12.1 and tells the compiler that I intend to

primarily call this function from SQL, rather than call it from PL/SQL.

If I had created the function without PRAGMA UDF, it would compile in the normal

way, leading to normal context switching when the function is called. When it is

compiled with PRAGMA UDF, it is compiled in a different manner, which potentially can

reduce the overhead of the context switching. How much (if any) overhead reduction

there might be is out of my control as a developer. I’ll explain more shortly, but first let

me show the use of the function.

Chapter 5 Functions Defined Within SQL

79

Using the function is just the same as I would do with a normal function, so in

Listing 5-4, I query the BAC using calls to the packaged function.

Listing 5-4.  Querying male and female BAC using packaged formula

SQL> select

 2 p.id as p_id

 3 , p.name

 4 , pa.sales_volume as vol

 5 , pa.abv

 6 , formulas.bac(pa.sales_volume, pa.abv, 80, 'M') bac_m

 7 , formulas.bac(pa.sales_volume, pa.abv, 60, 'F') bac_f

 8 from products p

 9 join product_alcohol pa

 10 on pa.product_id = p.id

 11 where p.group_id = 142

 12 order by p.id;

It gives me the same output as Listing 5-2, no surprises there.

What makes this very easy to use is that I code the function just like I normally

would, but as I know the function will be used a lot from SQL and less (or never) from

PL/SQL, I simply add the PRAGMA UDF, and the compiler takes care of the rest, potentially

saving me from some of the runtime overhead of context switching.

How much benefit the PRAGMA UDF might give is depending on several factors.

If the code inside the PL/SQL function only contains something that could have been

expressed directly in SQL itself (such as the formulas.bac function), the benefit

probably is larger, while a more complex function with much PL/SQL functionality or

inline SQL might gain less or no benefit. You should test your use cases, but the general

rule of thumb is that it won’t harm and probably might help a bit if you use the pragma

whenever you know the function will be almost exclusively used from SQL.

When I compile the function with PRAGMA UDF, I ask the compiler to try and make

the function cheaper to call from SQL, if it can. That also means that I do not care if

it might become slightly more expensive to call from PL/SQL. Again depending on

many factors, there might be a slight negative effect here, since a PRAGMA UDF function

could expect to receive data in the format the SQL engine delivers it. It might be hardly

noticeable, or it might be slightly more – it’ll depend on actual circumstances.

Chapter 5 Functions Defined Within SQL

80

But I have another alternative to using a PRAGMA UDF compiled function – I can skip

creating a stored function in the database and just specify my function in the query itself.

�Function in the with clause
Version 12.1 also allows me to place PL/SQL function (and procedure, but that is rarely

useful) code directly inside the with clause of a query, as I do it in Listing 5-5.

Listing 5-5.  Querying BAC with a function in the with clause

SQL> with

 2 function bac (

 3 p_volume in number

 4 , p_abv in number

 5 , p_weight in number

 6 , p_gender in varchar2

 7) return number deterministic

 8 is

 9 begin

 10 return round(

 11 100 * (p_volume * p_abv / 100 * 0.789)

 12 / (p_weight * 1000 * case p_gender

 13 when 'M' then 0.68

 14 when 'F' then 0.55

 15 end)

 16 , 3

 17);

 18 end;

 19 select

 20 p.id as p_id

 21 , p.name

 22 , pa.sales_volume as vol

 23 , pa.abv

 24 , bac(pa.sales_volume, pa.abv, 80, 'M') bac_m

 25 , bac(pa.sales_volume, pa.abv, 60, 'F') bac_f

 26 from products p

Chapter 5 Functions Defined Within SQL

81

 27 join product_alcohol pa

 28 on pa.product_id = p.id

 29 where p.group_id = 142

 30 order by p.id

 31 /

At first is the keyword with, just like in Chapter 3. But then instead of a subquery,

lines 2–18 contain the code of the bac function, just as I had it in the package formulas.

The defined function can then be called in the SQL as shown in lines 24–25. The output

of this query is also the same as Listing 5-2.

A function in the with clause is compiled in the same manner as a PRAGMA UDF

function, but it is not stored in the data dictionary as a PL/SQL object; it is only saved

along with the query in the shared pool and cannot be called from any other SQL or PL/

SQL statement.

Note  Line 31 of Listing 5-5 ends the query with slash (/) instead of semicolon
(;). Once the parser has detected there is PL/SQL in the with clause, it seems
unable (at present) to detect if a semicolon is the end of the statement or part of
the PL/SQL code. This might change in future versions, but for now the workaround
is to use a slash to make sqlcl or SQL*Plus find the end of the statement.

It’s possible to have multiple functions in a single with clause. For example, I might

decide to refactor my code and create two helper functions to calculate grams of alcohol

and grams of body fluid (same as milliliters) and use those two functions inside my bac

function. I can do that in Listing 5-6, which might be longer, but is also a bit more self-

documenting.

Listing 5-6.  Having multiple functions in one with clause

SQL> with

 2 function gram_alcohol (

 3 p_volume in number

 4 , p_abv in number

 5) return number deterministic

 6 is

 7 begin

Chapter 5 Functions Defined Within SQL

82

 8 return p_volume * p_abv / 100 * 0.789;

 9 end;

 10 function gram_body_fluid (

 11 p_weight in number

 12 , p_gender in varchar2

 13) return number deterministic

 14 is

 15 begin

 16 return p_weight * 1000 * case p_gender

 17 when 'M' then 0.68

 18 when 'F' then 0.55

 19 end;

 20 end;

 21 function bac (

 22 p_volume in number

 23 , p_abv in number

 24 , p_weight in number

 25 , p_gender in varchar2

 26) return number deterministic

 27 is

 28 begin

 29 return round(

 30 100 * gram_alcohol(p_volume, p_abv)

 31 / gram_body_fluid(p_weight, p_gender)

 32 , 3

 33);

 34 end;

 35 select

...

The multiple functions make no difference to the output – it’s the same again.

But whether I use a single function or multiple functions, I still have a decision to

make. If I want to use a function in multiple SQL statements, I have to create a stored

function (with or without PRAGMA UDF), no question about it. But otherwise, why would I

ever put it in the with clause instead of using a PRAGMA UDF function?

Chapter 5 Functions Defined Within SQL

83

One reason could be cases where you cannot create stored functions or procedures,

for example, either in a read-only database or if you build some tool statements that you

wish to run without installing code in databases of your clients.

Another reason could be if the function in some rare cases executes dynamic SQL

that for some reason cannot use bind variables, using string concatenated SQL instead.

Having the function in the query gives you absolute control of what arguments the

function is called with, so you can guard yourself more against SQL injection. The

function cannot be called from elsewhere.

A third reason could be functionality that is very specific for a single purpose, where

you could choose a different way to encapsulate your code.

�Encapsulated in a view
It would be reasonable (in this application) to say that the blood alcohol concentration

calculation does not make sense outside the context of a row in the product_alcohol

table. If I had been using object-oriented programming, I could say that it would be a

member method rather than a static method.

I can achieve a somewhat similar effect by creating the view in Listing 5-7.

Listing 5-7.  Creating a view with the BAC calculations

SQL> create view product_alcohol_bac

 2 as

 3 with

 4 function gram_alcohol (

...

 12 function gram_body_fluid (

...

 23 function bac (

...

 37 select

 38 pa.product_id

 39 , pa.sales_volume

 40 , pa.abv

Chapter 5 Functions Defined Within SQL

84

 41 , bac(pa.sales_volume, pa.abv, 80, 'M') bac_m

 42 , bac(pa.sales_volume, pa.abv, 60, 'F') bac_f

 43 from product_alcohol pa

 44 /

View PRODUCT_ALCOHOL_BAC created.

In this view, I use the with clause with the three functions from Listing 5-6. The

query itself in lines 37–43 only uses the product_alcohol table, selecting all columns of

the table plus the two calculated bac_m and bac_f columns.

Now I can make a query joining the products table with the product_alcohol_bac

view in Listing 5-8, giving me the desired data directly and simply.

Listing 5-8.  Querying BAC data using the view

SQL> select

 2 p.id as p_id

 3 , p.name

 4 , pab.sales_volume as vol

 5 , pab.abv

 6 , pab.bac_m

 7 , pab.bac_f

 8 from products p

 9 join product_alcohol_bac pab

 10 on pab.product_id = p.id

 11 where p.group_id = 142

 12 order by p.id;

The same output once again:

P_ID NAME VOL ABV BAC_M BAC_F

4040 Coalminers Sweat 330 8.5 0.041 0.067

4160 Reindeer Fuel 500 6 0.044 0.072

4280 Hoppy Crude Oil 330 7 0.034 0.055

This method enables me to reuse the logic in other SQL statements by querying the

view instead of the table, but still have the logic only in a single place: the view definition.

Chapter 5 Functions Defined Within SQL

85

I could achieve the same by having the view calling the packaged function formulas.

bac instead of defining the functions in the view, but if it is a functionality that is so

specific that it is only relevant for this particular query/view definition, then it can be

a nice thing to keep everything together and not clutter the data dictionary with stored

functions that really never should be called outside this particular SQL.

�Lessons learned
Even though the topic of this book is not PL/SQL as such, having the ability to integrate

PL/SQL into SQL even tighter than it used to be is a feature you as a SQL developer

should be aware of. With this chapter as example, you should now

•	 Consider if a function is primarily used from SQL and thus could

benefit from adding the PRAGMA UDF to the definition.

•	 Know how to embed “single-use” functions in SQL statements in the

with clause.

•	 Think about if very specific functionality might be better off

encapsulated in a view using with clause functions instead of normal

stored functions.

For much of your daily development, probably it is the PRAGMA UDF you mostly

should think about, but the with clause technique can be very useful if you have

situations where you cannot install stored procedures and functions.

Chapter 5 Functions Defined Within SQL

87
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_6

CHAPTER 6

Iterative Calculations
with Multidimensional
Data
You won’t find a multitude of real-life examples using the model clause, apart from doing

recursion and iteration as I showed in Chapter 4. Recursive subquery factoring came in

version 11, but with the model clause, you could do recursion from version 10. However,

the real power of the model clause is the way you can address data in multiple dimensions

in an array-like fashion, building formulas similar to the way spreadsheets work.

A nested table type in Oracle has a single dimension (index), and the “cell” can be

a scalar or a structured type. If you have multiple dimensions, you can nest the nested

table types, or you can work with plain SQL – both methods can become hairy for some

types of calculations. In the model clause, you work in a sense with arrays that can have

multiple dimensions and multiple measures (values) in each cell, and you have a very

dense syntax for addressing multiple cells.

The model clause is not the obvious choice for implementation of everything, but I’ll

show you an example that fits perfectly and uses both multiple dimensions as well as

iteration. This example may not be the most useful in itself, but it demonstrates very well

the kind of situations where you could consider using the model clause.

�Conway’s Game of Life
In 1970, British mathematician John Horton Conway devised the Game of Life (also

known simply as Life). It is about cells in a two-dimensional grid emulating how cells live

and die over generations depending on how crowded things are in the grid. You can see

cells populating the grid in Figure 6-1.

88

The idea is to start with some set of “live” cells (grid cells that are populated by live

cellular organisms) and then see how the population evolves over time from generation

to generation.

The evolvement is governed by these rules:

•	 Any live cell with fewer than two live neighbors dies, as if caused by

underpopulation.

•	 Any live cell with two or three live neighbors lives on to the next

generation.

•	 Any live cell with more than three live neighbors dies, as if by

overcrowding.

•	 Any dead cell with exactly three live neighbors becomes a live cell, as

if by reproduction.

So in order to find out which cells will be alive in the next generation, you count the

number of live neighbors for each cell in this generation and apply the rules. Neighbors

are defined as the eight cells that surround a cell (one cell away horizontally, vertically,

or diagonally).

Most often you see the Game of Life implemented iteratively in a procedural

language – I am going to show you how to do it in a single SQL statement with the model

clause.

Figure 6-1.  Conway’s Game of Life is about life and death of cells in a grid

Chapter 6 Iterative Calculations with Multidimensional Data

89

Note  You can find a fuller explanation of the Game of Life on Wikipedia:
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life.

�Live neighbor count with the model clause
I have created a table conway_gen_zero for holding all cells in the grid and whether they

contain a live cell or not in generation zero. Figure 6-2 shows it has x and y columns

for each grid position and column alive that contains 1 for a live cell and 0 for a dead

(empty) cell.

Figure 6-2.  Table for the grid content of generation zero

To begin with, in Listing 6-1, I populate this table with a 10x10 grid, where the middle

of the grid has some live cells in the pattern shown in Figure 6-1.

Listing 6-1.  Creating a 10x10 generation zero population

SQL> insert into conway_gen_zero (x, y, alive)

 2 select * from (

 3 with numbers as (

 4 select level as n from dual

 5 connect by level <= 10

 6), grid as (

 7 select

 8 x.n as x

 9 , y.n as y

 10 from numbers x

 11 cross join numbers y

 12), start_cells as (

Chapter 6 Iterative Calculations with Multidimensional Data

https://en.wikipedia.org/wiki/Conway's_Game_of_Life

90

 13 select 4 x, 4 y from dual union all

 14 select 5 x, 4 y from dual union all

 15 select 4 x, 5 y from dual union all

 16 select 6 x, 6 y from dual union all

 17 select 7 x, 6 y from dual union all

 18 select 4 x, 7 y from dual union all

 19 select 5 x, 7 y from dual union all

 20 select 6 x, 7 y from dual

 21)

 22 select

 23 g.x

 24 , g.y

 25 , nvl2(sc.x, 1, 0) as alive

 26 from grid g

 27 left outer join start_cells sc

 28 on sc.x = g.x

 29 and sc.y = g.y

 30);

100 rows inserted.

I use the techniques of Chapter 3 to make this query in several with clauses:

•	 numbers in lines 4–5 simply gives me ten rows numbered 1–10.

•	 grid in lines 7–11 makes a Cartesian join using numbers twice to

generate 100 rows with all the (x, y) combinations of a 10x10 grid.

•	 start_cells in lines 13–20 generates eight rows with the (x, y)

coordinates of those cells that are alive in generation zero (the

starting population).

•	 In lines 22–29, the grid is left joined to start_cells, so the result is

the 100 rows of the grid with line 25 calculating a 1 (alive) if the cell

exists in start_cells and otherwise 0 (dead).

My generation zero population is ready, and in Listing 6-2, I display the population

using X for a live cell and space for an empty cell, so you can visually see that this is the

cell pattern of Figure 6-1.

Chapter 6 Iterative Calculations with Multidimensional Data

91

Listing 6-2.  Vizualizing generation zero

SQL> select

 2 listagg(

 3 case alive

 4 when 1 then 'X'

 5 when 0 then ' '

 6 end

 7) within group (

 8 order by x

 9) as cells

 10 from conway_gen_zero

 11 group by y

 12 order by y;

The listagg in lines 2–9 (read more about it in Chapter 10) aggregates a string

containing Xs and spaces in order of column x for each column y giving this output:

CELLS

 XX

 X

 XX

 XXX

Generation zero looks good, so it’s time to play around with the model clause in

Listing 6-3 to calculate how many live neighbors each cell has.

Listing 6-3.  Live neighbor calculation with the model clause

SQL> select *

 2 from conway_gen_zero

 3 model

 4 dimension by (

 5 x, y

 6)

 7 measures (

 8 alive

Chapter 6 Iterative Calculations with Multidimensional Data

92

 9 , 0 as sum_alive

 10 , 0 as nb_alive

 11)

 12 ignore nav

 13 rules

 14 (

 15 sum_alive[any, any] =

 16 sum(alive)[

 17 x between cv() - 1 and cv() + 1

 18 , y between cv() - 1 and cv() + 1

 19]

 20 , nb_alive[any, any] =

 21 sum_alive[cv(), cv()] - alive[cv(), cv()]

 22)

 23 order by x, y;

The model clause is built in a set of subclauses:

•	 dimension by in lines 4–6 states which columns to use as

dimensions – or if you wish, indexes in a multidimensional array.

•	 measures in lines 7–11 are the attributes of each cell in the array. Here

I am creating three measures – one is simply the column alive; the

two others do not exist in the table but are initialized to zero.

•	 Then there can be various options of the model clause – in line 12, I’m

using ignore nav, which simply states that when a formula tries to

use the value of a measure in a cell, any nulls or non-existing values

should be treated as a default value that depends on the datatype (in

this case, zero for numbers).

•	 rules beginning in line 13 is a set of formulas that states how I want

the values of the measures in each cell to be calculated. I have two

formulas here, one for each of the two measures that were not in the

table.

•	 Lines 15–19 calculate sum_alive. Using [any, any] I ask that the

measure should be calculated for all cells in the grid. When the

formula is calculated for a specific cell, function cv() gives the

Chapter 6 Iterative Calculations with Multidimensional Data

93

value of the dimension for that specific cell, and I use this to define

a 3x3 grid for which I calculate the sum of measure alive in the

nine cells in that grid. For example, for the cell in [3, 5], the sum will

be calculated over the cells with dimension x between 2 and 4 and

dimension y between 4 and 6.

•	 Lines 20–21 calculate nb_alive, which is “neighbors alive.” The

sum_alive calculated in the preceding text is the number of live cells

in the nine cells in the 3x3 grid which includes the cell itself. So that

means I can find the number of neighbors alive by subtracting the

alive value in the cell itself.

The model clause in Listing 6-3 looks very different from normal SQL. It is a quite

different way of addressing the data and applying formulas to specified subsets of the

data, more similar to arrays in many procedural languages or formulas in spreadsheets,

just in the more declarative manner that is the hallmark of SQL.

But I could do the same as Listing 6-3 in normal SQL, if I use a scalar subquery and

an inline view. Listing 6-4 provides an example.

Listing 6-4.  Live neighbor calculation with the scalar subquery

SQL> select

 2 x

 3 , y

 4 , alive

 5 , sum_alive

 6 , sum_alive - alive as nb_alive

 7 from (

 8 select

 9 x

 10 , y

 11 , alive

 12 , (

 13 select sum(gz2.alive)

 14 from conway_gen_zero gz2

 15 where gz2.x between gz.x - 1 and gz.x + 1

 16 and gz2.y between gz.y - 1 and gz.y + 1

Chapter 6 Iterative Calculations with Multidimensional Data

94

 17) as sum_alive

 18 from conway_gen_zero gz

 19)

 20 order by x, y;

Both Listing 6-3 and Listing 6-4 produce the same output – all cells in the grid with

the two live counts:

 X Y ALIVE SUM_ALIVE NB_ALIVE

--- --- ----- ---------- ----------

 1 1 0 0 0

 1 2 0 0 0

 1 3 0 0 0

...

 5 5 0 4 4

 5 6 0 5 5

 5 7 1 4 3

 5 8 0 3 3

 5 9 0 0 0

 5 10 0 0 0

 6 1 0 0 0

 6 2 0 0 0

 6 3 0 1 1

 6 4 0 1 1

 6 5 0 3 3

...

 10 9 0 0 0

 10 10 0 0 0

100 rows selected.

So why do I choose to solve the Game of Life with the model clause instead of plain

SQL? For one, it’s because the scalar subquery means a lot of repeated reads of the

same data over and over. Normally I’d look to analytic functions to avoid such repetitive

data access, but the problem here is that I want to sum over a range of two dimensions.

If, for example, I were to use an analytic sum using the range between 1 preceding

and 1 following clause, I could only do that on either x or y dimension, not on both

simultaneously.

Chapter 6 Iterative Calculations with Multidimensional Data

95

The other reason for solving the Game of Life with the model clause will be clear

when I start iterating the calculations over more generations in the game, as doing so is

much more complex in plain SQL than in the model clause. Keep reading, and you’ll see

what I mean.

Before that, however, I’d like to visualize the results of calculations using the listagg

technique of Listing 6-2. So in Listing 6-5, I simply take the SQL from either Listing 6-3 or

Listing 6-4 and put it in a with clause and then query that instead of the table directly.

Listing 6-5.  Displaying the counts grid fashion

SQL> with conway as (

...

 /* Content of Listing 6-3 or 6-4 */

...

 24)

 25 select

 26 listagg(

 27 case alive

 28 when 1 then 'X'

 29 when 0 then ' '

 30 end

 31) within group (

 32 order by x

 33) cells

 34 , listagg(sum_alive) within group (order by x) sum_alives

 35 , listagg(nb_alive) within group (order by x) nb_alives

 36 from conway

 37 group by y

 38 order by y;

Lines 26–33 are just as they were in Listing 6-2, and then I’ve added lines 34 and 35

to visualize the content of measures sum_alive and nb_alive, which will work because

the values always are single-digit. sum_alive I calculated over a 3x3 grid, so it can be a

maximum of 9, and nb_alive can thus be a maximum of 8.

Chapter 6 Iterative Calculations with Multidimensional Data

96

CELLS SUM_ALIVES NB_ALIVES

---------- ---------- ----------

 0000000000 0000000000

 0000000000 0000000000

 0012210000 0012210000

 XX 0023310000 0022210000

 X 0023432100 0022432100

 XX 0023543100 0023532100

 XXX 0012443100 0011333100

 0012321000 0012321000

 0000000000 0000000000

 0000000000 0000000000

You can see that in those positions of the grid where there is an X in cells, the digit

in nb_alives is one less than sum_alives – just as expected.

So far I’ve only modeled and calculated neighbor count for generation zero. Now

it’s time to use that neighbor count to calculate where there will be live cells in the next

generation, calculate neighbor count for that generation, and then repeat the process

iteratively for generation after generation after …

�Iterating generations
In the beginning of the chapter, I stated the four rules of Conway’s Game of Life. They are

good for describing Life in terms of simulating a population of cellular organisms. But

for implementing the rules in a programming language, it can be helpful to examine the

logic of the rules and restate them in the following manner:

•	 Any cell with exactly two live neighbors keeps the same status (alive

or dead) in the next generation.

•	 Any cell with exactly three live neighbors will be alive in the next

generation (no matter if it was alive or dead in this generation).

•	 Any other cell will be dead in the next generation.

Chapter 6 Iterative Calculations with Multidimensional Data

97

The result of these rules is the same as the original four rules, but there is a great

advantage for a programmer: it can easily be stated in an if or case structure whether a

cell is alive or dead in the next generation, based on whether the neighbor count in the

current generation is two, three, or anything else. So that I will do in Listing 6-6.

Listing 6-6.  Iterating two generations

SQL> with conway as (

 2 select *

 3 from conway_gen_zero

 4 model

 5 dimension by (

 6 0 as generation

 7 , x, y

 8)

 9 measures (

 10 alive

 11 , 0 as sum_alive

 12 , 0 as nb_alive

 13)

 14 ignore nav

 15 rules upsert all iterate (2)

 16 (

 17 sum_alive[iteration_number, any, any] =

 18 sum(alive)[

 19 generation = iteration_number

 20 , x between cv() - 1 and cv() + 1

 21 , y between cv() - 1 and cv() + 1

 22]

 23 , nb_alive[iteration_number, any, any] =

 24 sum_alive[iteration_number, cv(), cv()]

 25 - alive[iteration_number, cv(), cv()]

 26 , alive[iteration_number + 1, any, any] =

 27 case nb_alive[iteration_number, cv(), cv()]

 28 when 2 then alive[iteration_number, cv(), cv()]

 29 when 3 then 1

Chapter 6 Iterative Calculations with Multidimensional Data

98

 30 else 0

 31 end

 32)

 33)

 34 select

 35 generation

 36 , listagg(

 37 case alive

 38 when 1 then 'X'

 39 when 0 then ' '

 40 end

 41) within group (

 42 order by x

 43) cells

 44 , listagg(sum_alive) within group (order by x) sum_alives

 45 , listagg(nb_alive) within group (order by x) nb_alives

 46 from conway

 47 group by generation, y

 48 order by generation, y;

Compared to Listing 6-3, I have added some things to handle generations of cells:

•	 In line 6, I have added another dimension generation for a total of

three dimensions. This does not exist in the table, so I initialize it with

the value zero. That means that the 100 rows in the table will be in the

multidimensional array all having zero for generation but x and y

values from the table.

•	 In the rules clause in line 15, I have added upsert all, which states

that if I set a value for an existing cell, it will be updated, but if I set a

value for a non-existing cell, it will be created. This is needed since I

am going to create 100 new cells for every generation I am iterating

over.

•	 In line 15, I have also added iterate (2), which means that the rules

will be applied twice.

Chapter 6 Iterative Calculations with Multidimensional Data

99

•	 As I have added a dimension, I must also expand the indexing used in

cell addressing in the formulas for sum_alive and nb_alive in lines

17–25. For the generation dimension, I use the value of iteration_

number, which is a number that starts with zero for the first iteration

and then increments by one for every iteration. So sum_alive and

nb_alive are calculated for the generation that matches the iteration,

starting with generation zero.

•	 In lines 26–31, I apply the three rewritten rules of Conway, where I

set the value of alive in the next generation using the case structure

based on nb_alive in this generation. This is where the upsert all

is needed, since I am creating new cells with a generation value one

higher.

In total, Listing 6-6 produces this output:

GENERATION CELLS SUM_ALIVES NB_ALIVES

---------- ---------- ---------- ----------

 0 0000000000 0000000000

 0 0000000000 0000000000

 0 0012210000 0012210000

 0 XX 0023310000 0022210000

 0 X 0023432100 0022432100

 0 XX 0023543100 0023532100

 0 XXX 0012443100 0011333100

 0 0012321000 0012321000

 0 0000000000 0000000000

 0 0000000000 0000000000

 1 0000000000 0000000000

 1 0000000000 0000000000

 1 0012210000 0012210000

 1 XX 0023421000 0022321000

 1 X X 0034643100 0033633100

 1 X XX 0023665200 0022654200

 1 XXX 0013564200 0013453200

 1 X 0002342100 0002242100

 1 0001110000 0001110000

Chapter 6 Iterative Calculations with Multidimensional Data

100

 1 0000000000 0000000000

 2

 2

 2

 2 XX

 2 XX XX

 2 X

 2 X X

 2 X

 2

 2

The content of cells (measure alive) in generation zero comes directly from the

table.

In the first iteration (iteration_number 0), the sum_alive and nb_alive of

generation zero are calculated, and the cells (alive) of generation one are calculated.

In the second iteration (iteration_number 1), the sum_alive and nb_alive of

generation one are calculated, and the cells (alive) of generation two are calculated.

Then I do not iterate anymore, so sum_alive and nb_alive of generation two are not

calculated.

Such iteration over multiple generations would have been much more difficult to

do with plain SQL. Using a technique like Listing 6-4 combined with recursive subquery

factoring (Chapter 4), it would probably be possible, but it would not be very nice and

most likely not very performant.

Using the model clause to do this like Listing 6-6 is actually quite declarative, but it is

a different way of thinking. Listing 6-6 may look a bit long, but once I have it developed,

I can see that I do not actually need to explicitly calculate the intermediate values sum_

alive and nb_alive. I can put those calculations directly into the calculation of alive,

making a reduced query in Listing 6-7.

Listing 6-7.  Reducing the query

SQL> with conway as (

 2 select *

 3 from conway_gen_zero

 4 model

 5 dimension by (

Chapter 6 Iterative Calculations with Multidimensional Data

101

 6 0 as generation

 7 , x, y

 8)

 9 measures (

 10 alive

 11)

 12 ignore nav

 13 rules upsert all iterate (2)

 14 (

 15 alive[iteration_number + 1, any, any] =

 16 case sum(alive)[

 17 generation = iteration_number,

 18 x between cv() - 1 and cv() + 1,

 19 y between cv() - 1 and cv() + 1

 20] - alive[iteration_number, cv(), cv()]

 21 when 2 then alive[iteration_number, cv(), cv()]

 22 when 3 then 1

 23 else 0

 24 end

 25)

 26)

 27 select

 28 generation

 29 , listagg(

 30 case alive

 31 when 1 then 'X'

 32 when 0 then ' '

 33 end

 34) within group (

 35 order by x

 36) cells

 37 from conway

 38 group by generation, y

 39 order by generation, y;

Chapter 6 Iterative Calculations with Multidimensional Data

102

The reduced query of course does not show the neighbor counts, but I do not need

them anymore; they were mostly useful during the development of the code:

GENERATION CELLS

---------- ----------

 0

 0

 0

 0 XX

 0 X

 0 XX

 0 XXX

 0

 0

 0

 1

 1

 1

 1 XX

 1 X X

 1 X XX

 1 XXX

 1 X

 1

 1

 2

 2

 2

 2 XX

 2 XX XX

 2 X

 2 X X

 2 X

 2

 2

Chapter 6 Iterative Calculations with Multidimensional Data

103

And now I can play around and try to generate, for example, 25 generations:

 13 rules upsert all iterate (25)

GENERATION CELLS

---------- ----------

...

 25 X X X

 25 XXXX

 25 X XX XX

 25 X X XXX

 25 X X X XX

 25 X X X

 25 X XX X

 25 X X X

 25 XXX

 25 X

260 rows selected.

I can see that the live cells have spread over my entire 10x10 grid, so will it be

completely filled if I do 50 generations?

 13 rules upsert all iterate (50)

GENERATION CELLS

---------- ----------

...

 50

 50

 50 XX

 50 XX

 50

 50

 50

 50

 50

 50

510 rows selected.

Chapter 6 Iterative Calculations with Multidimensional Data

104

Well no, from generation 40 or so, the population starts to decrease, and from

generation 46, I have just four cells alive in a stable pattern that will stay like that forever.

Partly this is because my grid is much too small and limited – in theory the Game of Life

should run on an infinite grid.

Just to round off the playing around with Game of Life, Listing 6-8 puts a different

generation zero onto a 6x6 grid. This new starting point gives us an oscillating game,

which is interesting to see when you run the iterations.

Listing 6-8.  The Toad

SQL> truncate table conway_gen_zero;

Table CONWAY_GEN_ZERO truncated.

SQL> insert into conway_gen_zero (x, y, alive)

 2 select * from (

 3 with numbers as (

 4 select level as n from dual

 5 connect by level <= 6

 6), grid as (

 7 select

 8 x.n as x

 9 , y.n as y

 10 from numbers x

 11 cross join numbers y

 12), start_cells as (

 13 select 4 x, 2 y from dual union all

 14 select 2 x, 3 y from dual union all

 15 select 5 x, 3 y from dual union all

 16 select 2 x, 4 y from dual union all

 17 select 5 x, 4 y from dual union all

 18 select 3 x, 5 y from dual

 19)

 20 select

 21 g.x

 22 , g.y

 23 , nvl2(sc.x, 1, 0) as alive

Chapter 6 Iterative Calculations with Multidimensional Data

105

 24 from grid g

 25 left outer join start_cells sc

 26 on sc.x = g.x

 27 and sc.y = g.y

 28);

36 rows inserted.

And then I run Listing 6-7 iterating just for two generations:

13 rules upsert all iterate (2)

In the output, I can see that generation two is identical to generation zero, which

means generation three would be identical to generation one, and so on:

GENERATION CELLS

---------- ----------

 0

 0 X

 0 X X

 0 X X

 0 X

 0

 1

 1

 1 XXX

 1 XXX

 1

 1

 2

 2 X

 2 X X

 2 X X

 2 X

 2

18 rows selected.

Chapter 6 Iterative Calculations with Multidimensional Data

106

This output is an example of what is known as an oscillator with period 2, since it

oscillates back and forth between two populations. There are many examples of such

oscillators – this one is known as the Toad, visualized in Figure 6-3.

Figure 6-3.  The two states of the Toad oscillator

�Lessons learned
In this chapter I have used an example that is a bit more “for fun” and less practically

useful in itself. I have done it, however, as it is a very good showcase of some of the

powerful features of the model clause, so having read the chapter, you should have an

idea about

•	 Selecting “indexes” for the multidimensional array in dimension by

•	 Defining attributes to carry the values for each cell of the array in

measures

•	 Using [] syntax to retrieve data from one or more (with aggregation)

cells in rules

•	 Repeating the rules multiple times with iterate

•	 Creating new cells with upsert all

With these “building blocks,” you can create your own model clauses when you have

a use case that is suitable for this method of handling data.

Chapter 6 Iterative Calculations with Multidimensional Data

107
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_7

CHAPTER 7

Unpivoting Columns
to Rows
Ideally, you’d hope always to work with data that’s nicely normalized in your relational

database, the way they teach in computer science classes. In reality it’s quite often not as

ideal.

One quite common pattern is to have some data with a bunch of columns, where

you’d really like those data as rows with, for example, key-value pairs, where the key

would be derived from the original column name and the value then would be the value

from that column.

Personally I like to use the terms dimension and measure instead of key and value.

You might say that’s only for data warehousing, but the terms are also used, for example,

in the model clause in SQL. The advantage, in my opinion, is that it is common to think

of multiple dimensions and multiple measures, whereas the key-value terminology most

often is used thinking only of a single key and a single value.

The act of turning data in rows into columns is called pivoting (which is the topic of

the next chapter), so as this is the reverse operation, it is called unpivoting. I’ll show you

unpivoting with examples based on tables that contain data from an external source –

that’s of course not always the case, but it is not uncommon.

108

�Data received in columns
To exemplify unpivoting, I am going to use the two tables shown in Figure 7-1.

Figure 7-1.  Tables holding incoming data from web provider

Good Beer Trading Co uses an external service to gather statistics about visitors to

the company webshop. This service delivers daily statistical data that are imported into

these two tables:

•	 In table web_devices are saved daily stats about how many visitors

to the webshop are from PCs, tablets, and phones, each visitor count

stored in a separate column for each device type.

•	 In table web_demographics are both visitor count as well as the

quantity the visitors ended up buying. Both count and quantity are

separated into male vs. female visitors, as well as into visitors coming

from Twitter campaigns vs. Facebook campaigns. So, for example,

column m_tw_cnt is count of male visitors from Twitter, while column

f_fb_qty is the quantity bought by female visitors from Facebook.

I’m going to demonstrate various unpivoting methods on these tables.

�Unpivoting to rows
First, I take a look at the content of table web_devices in Listing 7-1.

Chapter 7 Unpivoting Columns to Rows

109

Listing 7-1.  Daily web visits per device

SQL> select day, pc, tablet, phone

 2 from web_devices

 3 order by day;

DAY PC TABLET PHONE

2019-05-01 1042 812 1610

2019-05-02 967 1102 2159

What I want to do now is to unpivot these data with a single dimension column

containing the device (PC, tablet, or phone) and a single measure column with the visitor

count for that device – that is, the value from the corresponding column in the table.

The first method is to use the unpivot clause of the select statement as shown in

Listing 7-2.

Listing 7-2.  Using unpivot to get dimension and measure

SQL> select day, device, cnt

 2 from web_devices

 3 unpivot (

 4 cnt

 5 for device

 6 in (

 7 pc as 'PC'

 8 , tablet as 'Tablet'

 9 , phone as 'Phone'

 10)

 11)

 12 order by day, device;

The unpivot clause consists of three parts:

•	 First measures must be defined – in this case cnt in line 4. It’s a

column that does not exist but will be created; I simply define that

there should be a single measure, and it is to be called cnt.

•	 I then define for what dimensions the measures should exist – line 5

with the keyword for followed by dimension name device. Again a

non-existing column will be created.

Chapter 7 Unpivoting Columns to Rows

110

•	 Lastly the in clause in lines 6–10 defines the mapping from the

original columns to the new measure and dimension columns. Here

I have defined three mappings (lines 7–9) which means there will be

generated three output rows for each input row:

•	 One row with the value from pc in cnt and the string 'PC' in

device

•	 One row with the value from tablet in cnt and the string

'Tablet' in device

•	 One row with the value from phone in cnt and the string 'Phone'

in device

Figure 7-2 shows how the data flows – from the mapping rules in the in clause, the

values of the columns on the left flow to the measure column and the literals on the right

flow to the dimension column.

Figure 7-2.  Flow of single dimension and measure values

Those columns of the original table I specify in the in clause will not be part of the

output, as they and their values have been transformed to dimensions and measures.

Any other column of the table will be output unaltered – in this case that is only the day

column, but had there been other columns they would have been there too.

In total Listing 7-2 gives me this output with three rows for each day, one row for

each of the three device types, unpivoted just like I wanted it:

DAY DEVICE CNT

2019-05-01 PC 1042

2019-05-01 Phone 1610

2019-05-01 Tablet 812

Chapter 7 Unpivoting Columns to Rows

111

2019-05-02 PC 967

2019-05-02 Phone 2159

2019-05-02 Tablet 1102

�Do-it-yourself unpivoting
But there is another way to unpivot without using the unpivot clause. Before version 10,

you had to do it yourself manually, and I’ll show you a couple of versions of the manual

unpivot. It can be handy to know of it so you can recognize what’s happening if you see

it in old code. And once in a rare while, there is also the possibility you have something

complex that fits less optimally into the unpivot clause and it is easier to implement it

this way.

The basic idea in both versions is that I need to generate as many rows as I

have values of my dimension. With the unpivot clause, these rows are generated

automatically as many as I have expressions in the in list – in Listing 7-3, I generate those

three rows manually using select from dual.

Listing 7-3.  Manual unpivot using numbered row generator

SQL> select

 2 wd.day

 3 , case r.rn

 4 when 1 then 'PC'

 5 when 2 then 'Tablet'

 6 when 3 then 'Phone'

 7 end as device

 8 , case r.rn

 9 when 1 then wd.pc

 10 when 2 then wd.tablet

 11 when 3 then wd.phone

 12 end as cnt

 13 from web_devices wd

 14 cross join (

 15 select level as rn from dual connect by level <= 3

 16) r

 17 order by day, device;

Chapter 7 Unpivoting Columns to Rows

112

In the inline view r, I generate three rows in line 15 numbered 1, 2, and 3. With these

rows, I do a Cartesian join (line 14) to the web_devices table, so for each and every row

in web_devices, I get three rows in the output.

Then I use two case structures for my dimension and measure:

•	 Lines 3–7 put the literal values for dimension device in the first,

second, and third generated row.

•	 Lines 8–12 put the count values from columns pc, table, and phone

in the same rows in measure cnt.

That makes Listing 7-3 produce the exact same output as Listing 7-2, just performed

with manual unpivoting.

Listing 7-4 is an alternative manual unpivoting method that also produces the same

output.

Listing 7-4.  Manual unpivot using dimension style row generator

SQL> with devices(device) as (

 2 select 'PC' from dual union all

 3 select 'Tablet' from dual union all

 4 select 'Phone' from dual

 5)

 6 select

 7 wd.day

 8 , d.device

 9 , case d.device

 10 when 'PC' then wd.pc

 11 when 'Tablet' then wd.tablet

 12 when 'Phone' then wd.phone

 13 end as cnt

 14 from web_devices wd

 15 cross join devices d

 16 order by day, device;

Where Listing 7-3 generates three numbered rows with case structures defining

what data to put in row 1, row 2, and row 3, Listing 7-4 instead generates three rows that

already have the values needed for the dimension. Here I chose to put the generator in a

with clause in lines 1–5 instead of an inline view, but the effect is the same.

Chapter 7 Unpivoting Columns to Rows

113

Again I do a Cartesian join with the generated rows in line 15, but now I do not need

two case structures anymore. As the dimension value, I can directly use the column from

the generated rows in line 8, leaving me with a single case structure in lines 9–13 for my

measure. The difference here is I do not use “row 1, row 2, row 3,” but rather the values of

the dimension.

Using the with clause also illustrates nicely that devices could have been a real table

instead of generated rows in a with clause – then the query simply would have consisted

of lines 6–16. Note, however, that it would not be a dynamic unpivoting – even though

the dimension values would come from a table, I would still need to hardcode the values

into the case structure. It could be dynamic, but it would require dynamic SQL. I’ll show

an example of this later in the chapter.

�More than one dimension and/or measure
The previous example used table web_devices with a single dimension and single

measure; now I’ll show handling of multiple dimensions and measures. You saw the

diagram of table web_demographics at the start of the chapter; Listing 7-5 shows you the

content.

Listing 7-5.  Daily web visits and purchases per gender and channel

SQL> select

 2 day

 3 , m_tw_cnt

 4 , m_tw_qty

 5 , m_fb_cnt

 6 , m_fb_qty

 7 , f_tw_cnt

 8 , f_tw_qty

 9 , f_fb_cnt

 10 , f_fb_qty

 11 from web_demographics

 12 order by day;

Chapter 7 Unpivoting Columns to Rows

114

Showing all those columns isn’t nicely formatted, but you can see the eight columns

that are all combinations of two measures (cnt and qty) for two values of dimension

gender (m and f) and two values of dimension channel (tw and fb):

DAY M_TW_CNT M_TW_QTY M_FB_CNT M_FB_QTY F_TW_CNT F_TW_QTY F_

FB_CNT F_FB_QTY

2019-05-01 1232 86 1017 64 651 76 564

68

2019-05-02 1438 142 1198 70 840 92 752

78

The syntax for using unpivot with multiple dimensions and/or multiple measures is

pretty much identical to what I did for single dimension/measure in Listing 7-2 – except

that instead of single expressions, I need to use expression lists, as I show it in Listing 7-6.

Listing 7-6.  Using unpivot with two dimensions and two measures

SQL> select day, gender, channel, cnt, qty

 2 from web_demographics

 3 unpivot (

 4 (cnt, qty)

 5 for (gender, channel)

 6 in (

 7 (m_tw_cnt, m_tw_qty) as ('Male' , 'Twitter')

 8 , (m_fb_cnt, m_fb_qty) as ('Male' , 'Facebook')

 9 , (f_tw_cnt, f_tw_qty) as ('Female', 'Twitter')

 10 , (f_fb_cnt, f_fb_qty) as ('Female', 'Facebook')

 11)

 12)

 13 order by day, gender, channel;

Expression lists are comma-separated lists of expressions inside a set of

parentheses – the parentheses are mandatory to identify an expression list, not just a

convenience for readability. In the code, I have expression lists in multiple places:

•	 In line 4, the expression list defines two measures, cnt and qty – like

before, they are columns that will be created, not columns in the

table.

Chapter 7 Unpivoting Columns to Rows

115

•	 The expression list in line 5 defines two dimensions in a similar

manner.

•	 Each mapping in lines 7–10 then uses two expression lists each

with two columns – first on the left side an expression list with two

columns from the table and then on the right an expression list with

two literals.

All this leads to an output with four output rows for each input row – since there are

four mappings in the in clause:

DAY GENDER CHANNEL CNT QTY

2019-05-01 Female Facebook 564 68

2019-05-01 Female Twitter 651 76

2019-05-01 Male Facebook 1017 64

2019-05-01 Male Twitter 1232 86

2019-05-02 Female Facebook 752 78

2019-05-02 Female Twitter 840 92

2019-05-02 Male Facebook 1198 70

2019-05-02 Male Twitter 1438 142

In Figure 7-3 I show that the flow is still the same – just like in Figure 7-2 – and how

the expression lists correspond. Values from the table columns left of the as keyword

flow to the measures, literals to the right of the as keyword flow to the dimensions.

Figure 7-3.  Flow of multiple dimension and measure values

Chapter 7 Unpivoting Columns to Rows

116

Looking on the figure also makes it clear that the expression lists with table columns

(left) must have the same number of columns as the expression list that defines the

measures. Likewise, the expression lists with literals (right) must have the same number

of literals as the expression list that defines the dimensions.

But it is not mandatory for the number of dimensions to be equal to the number of

measures – you can have many dimensions and few or one measure or vice versa. I’ll

show you some examples of this.

The first example is Listing 7-7, where I show using a single dimension and two

measures.

Listing 7-7.  Using unpivot with one composite dimension and two measures

SQL> select day, gender_and_channel, cnt, qty

 2 from web_demographics

 3 unpivot (

 4 (cnt, qty)

 5 for gender_and_channel

 6 in (

 7 (m_tw_cnt, m_tw_qty) as 'Male on Twitter'

 8 , (m_fb_cnt, m_fb_qty) as 'Male on Facebook'

 9 , (f_tw_cnt, f_tw_qty) as 'Female on Twitter'

 10 , (f_fb_cnt, f_fb_qty) as 'Female on Facebook'

 11)

 12)

 13 order by day, gender_and_channel;

The measure expression list in line 4 matches the left-side table column expression

lists in lines 7–10. Then line 5 defines just a single dimension (therefore no parentheses),

and the right-side literals in lines 7–10 accordingly also are single literals.

This way I get an output where I have a single dimension column gender_and_

channel – though in this case I chose it to be “composite” dimension that still carries two

types of information:

DAY GENDER_AND_CHANNEL CNT QTY

2019-05-01 Female on Facebook 564 68

2019-05-01 Female on Twitter 651 76

2019-05-01 Male on Facebook 1017 64

Chapter 7 Unpivoting Columns to Rows

117

2019-05-01 Male on Twitter 1232 86

2019-05-02 Female on Facebook 752 78

2019-05-02 Female on Twitter 840 92

2019-05-02 Male on Facebook 1198 70

2019-05-02 Male on Twitter 1438 142

Of course I do not necessarily need to do that; I can choose to discard information

if I wish and keep just a single “non-composite” dimension keeping only the gender

information and discarding the channel, as I show in Listing 7-8.

Listing 7-8.  Using unpivot with one single dimension and two measures

SQL> select day, gender, cnt, qty

 2 from web_demographics

 3 unpivot (

 4 (cnt, qty)

 5 for gender

 6 in (

 7 (m_tw_cnt, m_tw_qty) as 'Male'

 8 , (m_fb_cnt, m_fb_qty) as 'Male'

 9 , (f_tw_cnt, f_tw_qty) as 'Female'

 10 , (f_fb_cnt, f_fb_qty) as 'Female'

 11)

 12)

 13 order by day, gender;

But note that even though I only keep the dimension information on gender with two

distinct values, I still get four rows in the output for each input row:

DAY GENDER CNT QTY

2019-05-01 Female 564 68

2019-05-01 Female 651 76

2019-05-01 Male 1017 64

2019-05-01 Male 1232 86

2019-05-02 Female 840 92

2019-05-02 Female 752 78

2019-05-02 Male 1438 142

2019-05-02 Male 1198 70

Chapter 7 Unpivoting Columns to Rows

118

In other words, repeating the same dimension value literal does not automatically

aggregate on the dimension. If that is the output I desire, I can use Listing 7-9 to do the

aggregation myself.

Listing 7-9.  Using unpivot with one aggregated dimension and two measures

SQL> select day

 2 , gender

 3 , sum(cnt) as cnt

 4 , sum(qty) as qty

 5 from web_demographics

 6 unpivot (

 7 (cnt, qty)

 8 for gender

 9 in (

 10 (m_tw_cnt, m_tw_qty) as 'Male'

 11 , (m_fb_cnt, m_fb_qty) as 'Male'

 12 , (f_tw_cnt, f_tw_qty) as 'Female'

 13 , (f_fb_cnt, f_fb_qty) as 'Female'

 14)

 15)

 16 group by day, gender

 17 order by day, gender;

It is allowed to use group by and aggregate functions like sum directly in the unpivot

query – I do not need to wrap it in an inline view. This way I can get just two rows for

each original input row – one for each gender:

DAY GENDER CNT QTY

2019-05-01 Female 1215 144

2019-05-01 Male 2249 150

2019-05-02 Female 1592 170

2019-05-02 Male 2636 212

And of course I can also do the other way around – two dimensions with a single

measure. In Listing 7-10, for example, I keep just the cnt measure and discard the qty

information.

Chapter 7 Unpivoting Columns to Rows

119

Listing 7-10.  Using unpivot with two dimensions and one measure

SQL> select day, gender, channel, cnt

 2 from web_demographics

 3 unpivot (

 4 cnt

 5 for (gender, channel)

 6 in (

 7 m_tw_cnt as ('Male' , 'Twitter')

 8 , m_fb_cnt as ('Male' , 'Facebook')

 9 , f_tw_cnt as ('Female', 'Twitter')

 10 , f_fb_cnt as ('Female', 'Facebook')

 11)

 12)

 13 order by day, gender, channel;

Again you see the match that I use single expression for measure as well as for the

left-side table columns and I use expression lists for dimensions and the right-side

literals. As you can figure out, I get this output with all eight rows, just no qty column:

DAY GENDER CHANNEL CNT

2019-05-01 Female Facebook 564

2019-05-01 Female Twitter 651

2019-05-01 Male Facebook 1017

2019-05-01 Male Twitter 1232

2019-05-02 Female Facebook 752

2019-05-02 Female Twitter 840

2019-05-02 Male Facebook 1198

2019-05-02 Male Twitter 1438

Manual unpivoting can also be done with multiple dimensions and measures, but

I will not show you examples of doing this with generated rows using dual like before

(that will be left as an exercise for the reader). Instead I will show it using real dimension

tables.

Chapter 7 Unpivoting Columns to Rows

120

�Using dimension tables
So I’m going to add two tables to hold the values for my two dimensions: gender_dim

and channels_dim defined in Figure 7-4.

Figure 7-4.  Dimension tables

Listing 7-11 shows I’ve entered the values for male and female in gender_dim:

Listing 7-11.  Dimension table for gender

SQL> select letter, name

 2 from gender_dim

 3 order by letter;

LETTER NAME

F Female

M Male

Likewise, Listing 7-12 shows the values for Twitter and Facebook in table channels_

dim.

Listing 7-12.  Dimension table for channels

SQL> select id, name, shortcut

 2 from channels_dim

 3 order by id;

ID NAME SHORTCUT

42 Twitter tw

44 Facebook fb

Chapter 7 Unpivoting Columns to Rows

121

Recall that I did manual unpivot before by doing a Cartesian join to some generated

rows. When I use my dimension tables in Listing 7-13, I simply do Cartesian joins to

both tables, so that for each input row in table web_demographics, I get a row for every

combination of rows in gender_dim and channels_dim.

Listing 7-13.  Manual unpivot using dimension tables

SQL> select

 2 d.day

 3 , g.letter as g_id

 4 , c.id as ch_id

 5 , case g.letter

 6 when 'M' then

 7 case c.shortcut

 8 when 'tw' then d.m_tw_cnt

 9 when 'fb' then d.m_fb_cnt

 10 end

 11 when 'F' then

 12 case c.shortcut

 13 when 'tw' then d.f_tw_cnt

 14 when 'fb' then d.f_fb_cnt

 15 end

 16 end as cnt

 17 , case g.letter

 18 when 'M' then

 19 case c.shortcut

 20 when 'tw' then d.m_tw_qty

 21 when 'fb' then d.m_fb_qty

 22 end

 23 when 'F' then

 24 case c.shortcut

 25 when 'tw' then d.f_tw_qty

 26 when 'fb' then d.f_fb_qty

 27 end

 28 end as qty

 29 from web_demographics d

Chapter 7 Unpivoting Columns to Rows

122

 30 cross join gender_dim g

 31 cross join channels_dim c

 32 order by day, g_id, ch_id;

Explaining from the bottom up, I do the Cartesian joins with cross join in lines 30

and 31.

Having created four rows for each input row, I use two case constructs for each of

my measures – lines 5–16 for cnt and lines 17–28 for qty. Each construct maps values

from the dimension tables to specific columns in web_demographics. Should there

happen to be more rows in the dimension tables with values that are not listed in my

case structures, they will generate rows in the output that will have null values in the

measures.

And in lines 3 and 4, I get values for my dimensions directly from the dimension

tables. Since I have real tables for the dimensions, I choose here to use the primary

keys for the dimension tables instead of the textual descriptions – that way this result

could, if I wished, be directly inserted into a table having foreign key relationships to the

dimension tables:

DAY G_ID CH_ID CNT QTY

2019-05-01 F 42 651 76

2019-05-01 F 44 564 68

2019-05-01 M 42 1232 86

2019-05-01 M 44 1017 64

2019-05-02 F 42 840 92

2019-05-02 F 44 752 78

2019-05-02 M 42 1438 142

2019-05-02 M 44 1198 70

As a little curiosity, I’d like to mention that I tried doing the case expressions using

expression lists like this:

 5 , case (g.letter, c.shortcut)

 6 when ('M', 'tw') then d.m_tw_cnt

 7 when ('M', 'fb') then d.m_fb_cnt

 8 when ('F', 'tw') then d.f_tw_cnt

 9 when ('F', 'fb') then d.f_fb_cnt

 10 end as cnt

Chapter 7 Unpivoting Columns to Rows

123

But that gave me an error – this is not supported syntax for the simple case

expression. I think it would have been nice, but maybe it will be allowed in a future

version, who knows.

As noted earlier, I’m still hard-coding values even when using dimension tables like

this – so I’ll end the chapter with an example of how it can be made truly dynamic.

�Dynamic mapping to dimension tables
To make a truly dynamic unpivoting from values in the dimension tables, I need

specifically to generate the mappings to be used in the in clause. To do this, I create the

query in Listing 7-14.

Listing 7-14.  Preparing column names mapped to dimension values

SQL> select

 2 s.cnt_col, s.qty_col

 3 , s.g_id, s.gender

 4 , s.ch_id, s.channel

 5 from (

 6 select

 7 lower(

 8 g.letter || '_' || c.shortcut || '_cnt'

 9) as cnt_col

 10 , lower(

 11 g.letter || '_' || c.shortcut || '_qty'

 12)as qty_col

 13 , g.letter as g_id

 14 , g.name as gender

 15 , c.id as ch_id

 16 , c.name as channel

 17 from gender_dim g

 18 cross join channels_dim c

 19) s

 20 join user_tab_columns cnt_c

 21 on cnt_c.column_name = upper(s.cnt_col)

 22 join user_tab_columns qty_c

Chapter 7 Unpivoting Columns to Rows

124

 23 on qty_c.column_name = upper(s.cnt_col)

 24 where cnt_c.table_name = 'WEB_DEMOGRAPHICS'

 25 and qty_c.table_name = 'WEB_DEMOGRAPHICS'

 26 order by gender, channel;

I need each possible combination of values from my two dimension tables, so I use

a Cartesian join in lines 17–18. Using the letter and shortcut column values from

the two tables, in lines 7–9 and 10–12, I generate the names of the columns in my web_

demographics table. (Strictly speaking I do not really need to use lower function here, I

just do it for when I check-read the generated code later.)

Since I could get runtime errors if the values in the dimension tables do not correctly

reflect the columns in web_demographics table, I wrap in an inline view and join to user_

tab_columns to make sure I only retrieve columns that exist.

In total the query shows me the data I need for the mappings in the in clause:

CNT_COL QTY_COL G_ID GENDER CH_ID CHANNEL

f_fb_cnt f_fb_qty F Female 44 Facebook

f_tw_cnt f_tw_qty F Female 42 Twitter

m_fb_cnt m_fb_qty M Male 44 Facebook

m_tw_cnt m_tw_qty M Male 42 Twitter

Armed with this query, I’m going to use PL/SQL to build dynamic SQL with unpivot.

First, I’ll turn on serveroutput for debugging purposes:

SQL> set serveroutput on

And I’ll create a sqlcl (or SQL∗Plus) bind variable to hold my dynamically generated

cursor:

SQL> variable unpivoted refcursor

Then I’m ready to execute the anonymous PL/SQL block in Listing 7-15 to build

dynamic SQL.

Listing 7-15.  Dynamically building unpivot query

SQL> declare

 2 v_unpivot_sql varchar2(4000);

 3 begin

 4 for c in (

Chapter 7 Unpivoting Columns to Rows

125

 5 select

 6 s.cnt_col, s.qty_col

 7 , s.g_id, s.gender

 8 , s.ch_id, s.channel

 9 from (

 10 select

 11 lower(

 12 g.letter || '_' || c.shortcut || '_cnt'

 13) as cnt_col

 14 , lower(

 15 g.letter || '_' || c.shortcut || '_qty'

 16)as qty_col

 17 , g.letter as g_id

 18 , g.name as gender

 19 , c.id as ch_id

 20 , c.name as channel

 21 from gender_dim g

 22 cross join channels_dim c

 23) s

 24 join user_tab_columns cnt_c

 25 on cnt_c.column_name = upper(s.cnt_col)

 26 join user_tab_columns qty_c

 27 on qty_c.column_name = upper(s.cnt_col)

 28 where cnt_c.table_name = 'WEB_DEMOGRAPHICS'

 29 and qty_c.table_name = 'WEB_DEMOGRAPHICS'

 30 order by gender, channel

 31) loop

 32

 33 if v_unpivot_sql is null then

 34 v_unpivot_sql := q'[

 35 select day, g_id, ch_id, cnt, qty

 36 from web_demographics

 37 unpivot (

 38 (cnt, qty)

 39 for (g_id, ch_id)

Chapter 7 Unpivoting Columns to Rows

126

 40 in (

 41]';

 42 else

 43 v_unpivot_sql := v_unpivot_sql || q'[

 44 ,]';

 45 end if;

 46

 47 v_unpivot_sql := v_unpivot_sql

 48 || '(' || c.cnt_col

 49 || ', ' || c.qty_col

 50 || ') as (''' || c.g_id

 51 || ''', ' || c.ch_id

 52 || ')';

 53

 54 end loop;

 55

 56 v_unpivot_sql := v_unpivot_sql || q'[

 57)

 58)

 59 order by day, g_id, ch_id]';

 60

 61 dbms_output.put_line(v_unpivot_sql);

 62

 63 open :unpivoted for v_unpivot_sql;

 64 end;

 65 /

In the query from Listing 7-14, I put in a cursor for loop starting in line 4. In line

33, I check if this is the first row in the loop. If it is, then in lines 34–41, I generate the

beginning of the SQL statement I am building. If not, then in lines 43–44, I generate a

new line and a comma as separator between the mappings.

Lines 47–52 generate each individual mapping for the in clause, and when the loop

is done, lines 56–59 append the final pieces of the SQL to be generated.

Line 61 then sends the generated SQL to the server output for debugging purposes,

so I can see here the piece of SQL that was generated in the string variable v_unpivot_

sql:

Chapter 7 Unpivoting Columns to Rows

127

 select day, g_id, ch_id, cnt, qty

 from web_demographics

 unpivot (

 (cnt, qty)

 for (g_id, ch_id)

 in (

 (f_fb_cnt, f_fb_qty) as ('F', 44)

 , (f_tw_cnt, f_tw_qty) as ('F', 42)

 , (m_fb_cnt, m_fb_qty) as ('M', 44)

 , (m_tw_cnt, m_tw_qty) as ('M', 42)

)

)

 order by day, g_id, ch_id

It looks like I want it, with one in clause mapping for each combination of values in

my dimension tables. Actually it is just like Listing 7-6, except it uses the primary keys of

the two dimension tables instead of descriptive names.

Line 63 of the block opens the bind variable unpivoted (that I created before calling

the block) using the dynamically created SQL in the string variable v_unpivot_sql. And

then the block is done:

PL/SQL procedure successfully completed.

And I can see if the cursor retrieves the output I want:

SQL> print unpivoted

Lo and behold – I get the same output as Listing 7-13 gave me:

DAY G CH_ID CNT QTY

---------- - ---------- ---------- ----------

2019-05-01 F 42 651 76

2019-05-01 F 44 564 68

2019-05-01 M 42 1232 86

2019-05-01 M 44 1017 64

2019-05-02 F 42 840 92

2019-05-02 F 44 752 78

2019-05-02 M 42 1438 142

2019-05-02 M 44 1198 70

Chapter 7 Unpivoting Columns to Rows

128

The dynamic aspect gets into play, if, for example, the statistics service adds data

for Instagram and thus the table web_demographics gets four new columns (counts and

quantities for male and female for Instagram).

In such a case, using Listing 7-6 (or Listing 7-13) requires that I add mappings to the

code – change the SQL. But if I use the dynamic technique in Listing 7-15, all I need to

do is insert data for Instagram in the web_channel dimension table, and the code auto-

generates mappings to produce something like

 in (

 (f_fb_cnt, f_fb_qty) as ('F', 44)

 , (f_in_cnt, f_in_qty) as ('F', 46)

 , (f_tw_cnt, f_tw_qty) as ('F', 42)

 , (m_fb_cnt, m_fb_qty) as ('M', 44)

 , (m_in_cnt, m_in_qty) as ('M', 46)

 , (m_tw_cnt, m_tw_qty) as ('M', 42)

)

(Assuming Instagram got id = 46 and shortcut = 'in'.)

This dynamic method opens a cursor using the generated SQL, so it must generate

the SQL runtime every single time. Sometimes you may have a requirement for doing

this, but in many cases, I would prefer using it as a code generator method.

That way when Instagram columns are added, you first insert Instagram in the

dimension table, then you run Listing 7-15 (just with line 63 removed), and finally you

take the generated query from the output and copy it to your real code and compile it.

You have gained the benefit of dynamically generating code with much less chance of

errors, but you do not suffer runtime penalties of building dynamic strings all the time.

If the data change very often, of course, you may need to be completely dynamic. For

a case like this, however, it is likely that such changes are rare and only occur along with

releasing new application functionality anyway. A generator approach is well suited for

such cases.

�Lessons learned
Unpivoting is a useful skill, particularly when dealing with data that hasn’t been

normalized in the usual way of relational databases. In the pages of this chapter, I’ve

shown you different variations on the theme:

Chapter 7 Unpivoting Columns to Rows

129

•	 Unpivoting with the three elements of the unpivot clause, measures,

dimensions, and mappings

•	 Using either single expressions or expression lists to unpivot single or

multiple measures and/or dimensions

•	 Manual alternatives to the unpivot clause for use in real old

databases or really special circumstances

•	 Building dynamic unpivot SQL within PL/SQL based on values in

dimension tables

If you know the concepts of unpivoting and you can remember (or lookup) the

syntax of using for and in in unpivot, you’ll find the methods useful for many things.

Chapter 7 Unpivoting Columns to Rows

131
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_8

CHAPTER 8

Pivoting Rows to Columns
The previous chapter was about unpivoting, which is the process of turning columns into

rows. The opposite operation is called pivoting, which – surprise, surprise – is turning

rows into columns.

The idea is that you have a resultset with some dimensional values in one or more

columns and some facts/measure values in one or more other columns. You’d like the

output grouped by some other columns, so you only have one aggregated row for those

values, and then the values from your measures should be placed in a set of columns,

one for each value of your dimension (or combination of values if you have multiple

dimensions).

One thing to remember here is that in SQL, the engine needs at parse time to be

able to determine names and datatypes of each column. That means that you have to

hardcode the dimension values and what column names they should be turned into.

If you wish to have dynamic pivoting, where there automatically will be columns for

every dimension value in the data, you need to build it with dynamic SQL similarly to

what I showed at the end of the previous chapter. That way there will be a parsing every

time you run it, and the column names can then be known at that time. Alternatively

the pivot clause supports returning XML instead of columns, which allows you dynamic

pivoting without dynamic SQL – which can be an option if an XML output is acceptable.

Either way of dynamic pivoting will not be covered in this book.

Tip  In Oracle version 18c or newer, there is a third dynamic pivoting method
using polymorphic table functions. I won’t be covering PTFs in this book, but Chris
Saxon of the Oracle AskTom team has an example of a PTF for dynamic pivoting on
Live SQL: https://livesql.oracle.com/apex/livesql/file/content_
HPN95108FSSZD87PXX7MG3LW3.html.

https://livesql.oracle.com/apex/livesql/file/content_HPN95108FSSZD87PXX7MG3LW3.html
https://livesql.oracle.com/apex/livesql/file/content_HPN95108FSSZD87PXX7MG3LW3.html

132

�Tables for pivoting
The Good Beer Trading Co purchases beer from some breweries, storing the information

in the purchases table shown in Figure 8-1, along with dimension lookup tables

breweries, products, and product_groups.

I’ll be demonstrating pivoting data by brewery, product group, and year. To do that,

I use the view purchases_with_dims in Listing 8-1, which simply joins the purchases

table with the dimension tables.

Listing 8-1.  View joining purchases table with the dimensions

SQL> create or replace view purchases_with_dims

 2 as

 3 select

 4 pu.id

 5 , pu.purchased

 6 , pu.brewery_id

 7 , b.name as brewery_name

Figure 8-1.  Purchases table and associated dimension tables

Chapter 8 Pivoting Rows to Columns

133

 8 , pu.product_id

 9 , p.name as product_name

 10 , p.group_id

 11 , pg.name as group_name

 12 , pu.qty

 13 , pu.cost

 14 from purchases pu

 15 join breweries b

 16 on b.id = pu.brewery_id

 17 join products p

 18 on p.id = pu.product_id

 19 join product_groups pg

 20 on pg.id = p.group_id;

View PURCHASES_WITH_DIMS created.

At first I’m going to aggregate the quantity grouped by brewery, product group, and

year in Listing 8-2, which is a simple group by without any pivoting at all.

Listing 8-2.  Yearly purchased quantities by brewery and product group

SQL> select

 2 brewery_name

 3 , group_name

 4 , extract(year from purchased) as yr

 5 , sum(qty) as qty

 6 from purchases_with_dims pwd

 7 group by

 8 brewery_name

 9 , group_name

 10 , extract(year from purchased)

 11 order by

 12 brewery_name

 13 , group_name

 14 , yr;

Chapter 8 Pivoting Rows to Columns

134

The output shows me that the company bought from three breweries, two different

product groups from each brewery, in three years from 2016 to 2018, resulting in 18 rows

for those combinations:

BREWERY_NAME GROUP_NAME YR QTY

Balthazar Brauerei Belgian 2016 800

Balthazar Brauerei Belgian 2017 1000

Balthazar Brauerei Belgian 2018 1000

Balthazar Brauerei Wheat 2016 500

Balthazar Brauerei Wheat 2017 500

Balthazar Brauerei Wheat 2018 400

Brewing Barbarian IPA 2016 200

Brewing Barbarian IPA 2017 300

Brewing Barbarian IPA 2018 500

Brewing Barbarian Stout 2016 800

Brewing Barbarian Stout 2017 1000

Brewing Barbarian Stout 2018 1200

Happy Hoppy Hippo IPA 2016 1000

Happy Hoppy Hippo IPA 2017 900

Happy Hoppy Hippo IPA 2018 800

Happy Hoppy Hippo Wheat 2016 200

Happy Hoppy Hippo Wheat 2017 100

Happy Hoppy Hippo Wheat 2018 100

Now I’d like to have a column for quantity purchased each of the three years instead

of a row for each year – this is what pivoting is all about.

�Pivoting single measure and dimension
Listing 8-3 shows how I do the pivoting of the years using the pivot clause.

Listing 8-3.  Pivoting the year rows into columns

SQL> select *

 2 from (

 3 select

 4 brewery_name

Chapter 8 Pivoting Rows to Columns

135

 5 , group_name

 6 , extract(year from purchased) as yr

 7 , sum(qty) as qty

 8 from purchases_with_dims pwd

 9 group by

 10 brewery_name

 11 , group_name

 12 , extract(year from purchased)

 13) pivot (

 14 sum(qty)

 15 for yr

 16 in (

 17 2016 as y2016

 18 , 2017 as y2017

 19 , 2018 as y2018

 20)

 21)

 22 order by brewery_name, group_name;

I built the query of these elements:

•	 Lines 3–12 simply are the select from Listing 8-2, wrapped in an

inline view.

•	 The pivot keyword in line 13 tells Oracle I want to pivot the data.

•	 Then I define my measures – in this case only one, the quantity –

in line 14. I must use an aggregate function here – it can be any

aggregate, the one that makes sense in this case is sum.

•	 After the keyword for in line 15, I define the dimensions I want – here

only the year.

•	 Last, the in clause in lines 16–19 maps in which columns the

aggregated measure should be placed for which values of the

dimension – columns that do not exist in the table, but will be created

in the output.

Chapter 8 Pivoting Rows to Columns

136

Shown schematically, you can see in Figure 8-2 that the measure sum(qty) flows to

the three column aliases, one for each of the values of the yr dimension.

And so I get the output that I desired with 18 aggregated quantities shown in six rows

of three quantity columns (one per year) instead of 18 rows:

BREWERY_NAME GROUP_NAME Y2016 Y2017 Y2018

Balthazar Brauerei Belgian 800 1000 1000

Balthazar Brauerei Wheat 500 500 400

Brewing Barbarian IPA 200 300 500

Brewing Barbarian Stout 800 1000 1200

Happy Hoppy Hippo IPA 1000 900 800

Happy Hoppy Hippo Wheat 200 100 100

Notice that the yr and qty columns from the inline view are no longer in the

output, but brewery_name and group_name are. What happens is that those columns I

am referencing in the measures and dimensions in the pivot clause are used for the

pivoting. The columns that are left over, they are used for an implicit group by.

Since in my inline view I have already grouped the data by brewery, product group,

and year, this means that the sum(qty) in line 14 actually always will “aggregate” just

a single row of data into each of the year columns, so that aggregation is not really

necessary. But I cannot skip it – the pivot clause demands an aggregate function.

What I can do instead is to skip the group by within the inline view and instead let

the implicit group by performed by pivot do the aggregation alone, thus avoiding an

unnecessary grouping operation. Listing 8-4 simply is the same as Listing 8-3, just with

the group by from Listing 8-3 lines 9–12 removed.

Figure 8-2.  The flows of the pivot clause

Chapter 8 Pivoting Rows to Columns

137

Listing 8-4.  Utilizing the implicit group by

SQL> select *

 2 from (

 3 select

 4 brewery_name

 5 , group_name

 6 , extract(year from purchased) as yr

 7 , qty

 8 from purchases_with_dims pwd

 9) pivot (

 10 sum(qty)

 11 for yr

 12 in (

 13 2016 as y2016

 14 , 2017 as y2017

 15 , 2018 as y2018

 16)

 17)

 18 order by brewery_name, group_name;

Listing 8-4 gives exactly the same output as Listing 8-3; it is just a little bit more

efficient from not doing a superfluous grouping operation.

You might think that I could then skip the inline view completely? Well, sometimes

it is possible, but not in this case, first because I need to extract the year from the

purchased date column and second because the pivot performs an implicit group by

on the remaining columns after some of the columns have been used for measures and

dimensions.

If I had the yr column in the view and could pivot directly on the purchases_with_

dims view, the grouping would be performed on all the columns of the view except

qty and yr – it would give me the wrong result. The inline view lets me keep only the

columns I need – those to be used in the pivoting and those to be used for the implicit

group by.

To make it a little more clear what’s happening behind the scenes with the pivot

clause, let me show you pivoting performed manually without pivot.

Chapter 8 Pivoting Rows to Columns

138

�Do-it-yourself manual pivoting
In really old database versions (before version 10), I would have had to do pivoting

myself with no help from the pivot clause. Instead I would have had to write a query like

Listing 8-5.

Listing 8-5.  Manual pivoting without using pivot clause

SQL> select

 2 brewery_name

 3 , group_name

 4 , sum(

 5 case extract(year from purchased)

 6 when 2016 then qty

 7 end

 8) as y2016

 9 , sum(

 10 case extract(year from purchased)

 11 when 2017 then qty

 12 end

 13) as y2017

 14 , sum(

 15 case extract(year from purchased)

 16 when 2018 then qty

 17 end

 18) as y2018

 19 from purchases_with_dims pwd

 20 group by

 21 brewery_name

 22 , group_name

 23 order by brewery_name, group_name;

I do a group by brewery and product group in lines 20–22. And then I have three

case structures for each of the three columns I want, so that all rows in the view from the

year 2016 will have the qty value summed in column y2016, all rows from 2017 will be

summed in y2017, and 2018 in y2018. The output is exactly the same as Listing 8-4 and

Listing 8-3.

Chapter 8 Pivoting Rows to Columns

139

This structure is built for me automatically when I use the pivot clause. In Listing 8-4,

I defined I wanted to use aggregate function sum on the value from column qty, but such

that qty for rows in year 2016 goes to a column I want to be named y2016, and so on.

I am not defining what to use for the implicit group by – this will be whatever columns

are left over, so therefore I am using the inline view to limit the columns that go to the

pivot clause rather than use all columns of the view.

Knowing this is the way pivot works will help, when I now show you pivoting with

multiple measures by also using the column cost from the table purchases and the view

purchases_with_dims, instead of just qty.

�Multiple measures
I’m going to extend my query to not only pivot the aggregate quantity but also the

aggregate cost. In Listing 8-6, you see I’ve simply added the cost column in line 8, so I

also can add the aggregate measure sum(cost) in line 12.

Listing 8-6.  Getting an ORA-00918 error with multiple measures

SQL> select *

 2 from (

 3 select

 4 brewery_name

 5 , group_name

 6 , extract(year from purchased) as yr

 7 , qty

 8 , cost

 9 from purchases_with_dims pwd

 10) pivot (

 11 sum(qty)

 12 , sum(cost)

 13 for yr

 14 in (

 15 2016 as y2016

 16 , 2017 as y2017

 17 , 2018 as y2018

 18)

Chapter 8 Pivoting Rows to Columns

140

 19)

 20 order by brewery_name, group_name;

Error at Command Line : 1 Column : 8

Error report -

SQL Error: ORA-00918: column ambiguously defined

Why do I get an error saying column ambiguously defined? I haven’t written the

same column alias twice? Well, not directly, but indirectly I have.

What happens is that I have defined two measures with no column aliases. Then

I have defined the three year values in the yr dimension and column aliases for them.

There will be created a column for every combination, so 2 x 3 = 6 columns. Those six

columns will be named <dimension alias>_<measure alias>, but if there are no measure

aliases, then they will just be named <dimension alias>, as you saw in Listings 8-3 and

8-4. There it was okay, but here it means there will be two columns named y2016, two

columns y2017, and two columns y2018. Thus the ORA-00918 error.

The solution is to also give the measures column aliases, so, for example, I can do

as shown in Figure 8-3, where I alias the measures simply q and c, while the dimension

values are aliased with two digits of the year (since those aliases do not start with a letter,

they need to be quoted).

This generates therefore the six columns (2 x 3) that are named 16_Q, 16_C, and so on.

Figure 8-3.  Schematic flow when you have multiple measures

Chapter 8 Pivoting Rows to Columns

141

And to show you it is not just in a schematic diagram it works, I change Listing 8-6 by

aliasing the measures and dimension values as shown in Figure 8-3:

...

 10) pivot (

 11 sum(qty) as q

 12 , sum(cost) as c

 13 for yr

 14 in (

 15 2016 as "16"

 16 , 2017 as "17"

 17 , 2018 as "18"

 18)

 19)

 ...

And I get the output I want:

BREWERY_NAME GROUP_NAME 16_Q 16_C 17_Q 17_C 18_Q 18_C

Balthazar Brauerei Belgian 800 5840 1000 7360 1000 6960

Balthazar Brauerei Wheat 500 3280 500 3600 400 2800

Brewing Barbarian IPA 200 1440 300 1680 500 3920

Brewing Barbarian Stout 800 5600 1000 6960 1200 8960

Happy Hoppy Hippo IPA 1000 7360 900 6400 800 5680

Happy Hoppy Hippo Wheat 200 960 100 800 100 720

(Normally I’d probably pick a little more descriptive column aliases, but using so

short aliases makes the lines fit in a book.)

So I’ve now demonstrated getting pivoted columns as combinations of multiple

measures and values of a single dimension. Next up is adding multiple dimensions too.

�Multiple dimensions as well
So far I’ve pivoted only with the year as a dimension, leaving brewery and product group

as the columns that are used for implicit group by. Now I’m going to also pivot the

product group as a second dimension, leaving only the brewery to be grouped upon.

Chapter 8 Pivoting Rows to Columns

142

I have in my data 4 product groups and 3 years, which would mean 12 combinations

of dimension values, each showing 2 measures (quantity and cost) for a total of 24

columns. That’s a bit large to demo here on a printed page, so in Listing 8-7, I’m reducing

the data a bit by selecting only two product groups in line 10 and only two years (2017

and 2018) in lines 11–12.

Listing 8-7.  Combining two dimensions and two measures

SQL> select *

 2 from (

 3 select

 4 brewery_name

 5 , group_name

 6 , extract(year from purchased) as yr

 7 , qty

 8 , cost

 9 from purchases_with_dims pwd

 10 where group_name in ('IPA', 'Wheat')

 11 and purchased >= date '2017-01-01'

 12 and purchased < date '2019-01-01'

 13) pivot (

 14 sum(qty) as q

 15 , sum(cost) as c

 16 for (group_name, yr)

 17 in (

 18 ('IPA' , 2017) as i17

 19 , ('IPA' , 2018) as i18

 20 , ('Wheat', 2017) as w17

 21 , ('Wheat', 2018) as w18

 22)

 23)

 24 order by brewery_name;

You’ll notice that the content of the inline view in lines 3–12 is in principle the same

as before; I’ve simply added a where clause to reduce the dataset I’m pivoting.

The measures q and c in lines 14–15 are also unchanged, just as they were when I

only used a single dimension.

Chapter 8 Pivoting Rows to Columns

143

Line 16 is different, since here I am no longer just specifying a single column to be

my dimension. I am specifying an expression list of two columns instead – group_name

and yr.

And since I use an expression list of two columns in my for clause, I also need to

use corresponding expression lists of values in the in clause mappings in lines 18–21.

Each value expression list (combinations of dimension values) I give a column alias –

in this case a very short alias to keep my lines short enough for print; in real life more

meaningful aliases should be used.

In total you can see in Figure 8-4 that the combining of the two dimensions I do

manually with the expression list and then the combining of the dimension values and

the measures automatically creates the columns named with the aliases joined by an

underscore.

Figure 8-4.  Flows with multiple dimensions just have expression lists instead of
single expressions

And those eight column names you see in the output of Listing 8-7:

BREWERY_NAME I17_Q I17_C I18_Q I18_C W17_Q W17_C W18_Q W18_C

Balthazar Brauerei 500 3600 400 2800

Brewing Barbarian 300 1680 500 3920

Happy Hoppy Hippo 900 6400 800 5680 100 800 100 720

The blanks are because the Good Beer Trading Co does not buy any IPA from

Balthazar Brauerei nor any Wheat beers from Brewing Barbarian.

Chapter 8 Pivoting Rows to Columns

144

Knowing how the pivoting works as an implicit group by as I showed earlier

about do-it-yourself manual pivoting, you can also see that in principle, I did not

need to reduce the dataset with the where clause in lines 10–12. I could simply remove

those three lines, and my output would be exactly the same. (Since I do have all three

breweries in my output already, if I had had breweries with no purchases at all within

the years and product groups I’m after, then there’d be output differences in the form of

empty rows.)

However, it would not be a good idea to do so, since the data from the other years

and other product groups still would be processed; the implicit case structures would

just mean no data from those other years and product groups would be added to the

aggregate sums. It would be a waste of CPU cycles and I/O.

�Lessons learned
With the help of a mix of code examples and some diagrams showing how the bits and

pieces of the pivot clause work together creating new columns, I’ve covered pivoting

topics as

•	 Pivoting with the three elements of the pivot clause, measures,

dimensions, and mappings

•	 Naming the pivoted columns with measure and dimension aliases,

where combinations with multiple measures are automatically joined

with underscores

•	 Manual pivoting with group by and aggregation on case structures to

aid understanding of how pivot works

•	 Using expression lists for values from multiple dimensions when

pivoting

Pivoting is a very useful tool in your toolbox for a variety of things, quite often simply

because users get a much better overview of their data if they do not need to read a lot of

rows like the output of Listing 8-2, but can have fewer rows with more columns like the

various pivoted outputs in the chapter.

Chapter 8 Pivoting Rows to Columns

145
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_9

CHAPTER 9

Splitting Delimited Text
Particularly if you get data from somewhere else, it is not uncommon to get it in the form

of a string with a list of values separated by some delimiter, typically comma, semicolon,

tab, or similar. As you most often don’t know the number of elements in the list, you

can’t just use substr to split it into a fixed number of columns. Instead it is normally

most useful to be able to turn the list into rows, so you can treat it as a table in your SQL.

Such splitting involves generating rows, which you can do in many ways. I’ll show

some different methods, ranging from using PL/SQL to loop over the elements of the list

and generating a row at a time, over generating all rows at once by selecting from dual

and retrieving the elements for each row from the list, to pretending the list is JSON and

parsing it with native JSON functionality.

�Customer favorites and reviews
You would practically never model your tables with a column containing delimited

strings (actually I can’t think of a use case for it, but it’s safer never to say never).

You would get such strings from external data sources like files. For demonstration

purposes here, the web site of Good Beer Trading Co gives the customers a possibility to

choose their favorite beers as well as review beers; the favorites and reviews end up in

the customer_favorites and customer_reviews tables shown in Figure 9-1.

146

Both tables have a proper foreign key to the customers table, but of course cannot

have it to the products table, as the product ids are just part of the strings in columns

favorite_list and review_list – I show sample data in the upcoming sections.

The task at hand is basically to extract out those product ids to be able to join to the

products table.

�Delimited single values
In Listing 9-1, I examine the data of the customer_favorites table, where column

favorite_list contains a comma-separated list of product ids. One customer has saved

an empty favorite list.

Listing 9-1.  Comma-delimited content of customer_favorites table

SQL> select customer_id, favorite_list

 2 from customer_favorites

 3 order by customer_id;

CUSTOMER_ID FAVORITE_LIST

50042 4040,5310

50741 5430,7790,7870

51007

51069 6520

Figure 9-1.  Tables involved in these examples

Chapter 9 Splitting Delimited Text

147

I now need to treat this list as if it was a child table with a row for each of the comma-

separated entries. That will enable me to join to the products table (and any other table

with a product id column, for that matter). In the rest of this section, I show four different

ways to do this.

�Pipelined table function
One way that will work also in old database versions (since version 8i) is to extract values

from the string in a PL/SQL table function. That requires a collection type (nested table

type) and function whose return value is of that type, such as what I create in Listing 9-2.

Listing 9-2.  Collection type and pipelined table function

SQL> create type favorite_coll_type

 2 as table of integer;

 3 /

Type FAVORITE_COLL_TYPE compiled

SQL> create or replace function favorite_list_to_coll_type (

 2 p_favorite_list in customer_favorites.favorite_list%type

 3)

 4 return favorite_coll_type pipelined

 5 is

 6 v_from_pos pls_integer;

 7 v_to_pos pls_integer;

 8 begin

 9 if p_favorite_list is not null then

 10 v_from_pos := 1;

 11 loop

 12 v_to_pos := instr(p_favorite_list, ',', v_from_pos);

 13 pipe row (to_number(

 14 substr(

 15 p_favorite_list

 16 , v_from_pos

 17 , case v_to_pos

 18 when 0 then length(p_favorite_list) + 1

Chapter 9 Splitting Delimited Text

148

 19 else v_to_pos

 20 end - v_from_pos

 21)

 22));

 23 exit when v_to_pos = 0;

 24 v_from_pos := v_to_pos + 1;

 25 end loop;

 26 end if;

 27 end favorite_list_to_coll_type;

 28 /

Function FAVORITE_LIST_TO_COLL_TYPE compiled

Collection types can be of object types or scalar types – in this case a scalar type:

integer.

I’ve chosen to make the table function pipelined by using the keyword pipelined in

line 4.

Inside the function, I create a loop beginning in line 11, where I search for the

position of the next comma (the first if it’s the first iteration of the loop). Lines 13–22 then

pipe a row to the output containing the substr from the previous comma to the found

comma (or the end of the string if no comma was found).

If I reach the end of the string (no comma was found), line 23 breaks out of the loop.

If there’s still something left in the string, line 24 sets the next v_from_pos to be used in

the next iteration of the loop.

The loop strategy works if there’s at least one element in the comma-separated list.

If it’s a completely empty list, I make sure in line 9 that I don’t start the loop at all – in

such a case, no rows will be piped to the output.

Tip I could have used a regular table function instead of pipelined – then I
would have had to build the entire output collection before returning it. But if a
table function is meant to be used strictly from SQL and never from PL/SQL, it is
almost always a good idea to make it pipelined. This has the advantage of less
PGA memory usage as well as the ability to quit processing if the client SQL stops
fetching rows from the function. The downside is that you cannot use it in PL/SQL.

Chapter 9 Splitting Delimited Text

149

Having created my table function, I can use it in Listing 9-3 to split my strings into

collections and turn the collections into rows.

Listing 9-3.  Using pipelined table function to split string

SQL> select

 2 cf.customer_id

 3 , fl.column_value as product_id

 4 from customer_favorites cf

 5 , table(

 6 favorite_list_to_coll_type(cf.favorite_list)

 7) fl

 8 order by cf.customer_id, fl.column_value;

The table keyword in line 5 takes a collection (nested table) and turns the elements

of the collection into rows. If the collection had been of an object type, the columns of

the result would have been named like the object attributes, but here the collection is of

a scalar type (integer), and then the single column is always called column_value, which

in line 3 I give a more meaningful column alias:

CUSTOMER_ID PRODUCT_ID

50042 4040

50042 5310

50741 5430

50741 7790

50741 7870

51069 6520

But you’ll undoubtedly notice that the customer with a blank favorite_list is missing

in the output. That’s how Listing 9-3 works; I’m joining the customer_favorites table to

the row source that is pipelined from my function, and it outputs (correctly) no rows for

a blank favorite_list. This is exactly as if I was inner joining to a child table where no

rows existed for this customer.

Chapter 9 Splitting Delimited Text

150

If I want to show the customer with no favorites, I need the equivalent of a left

outer join. But as there are no join predicates, I cannot use the (+) syntax on a

predicate column. Instead Oracle supports putting the (+) syntax directly after the

table(...) call, so I can change line 7 to this:

...

 7)(+) fl

...

And that gives me an output that includes the customer with no favorites:

CUSTOMER_ID PRODUCT_ID

50042 4040

50042 5310

50741 5430

50741 7790

50741 7870

51007

51069 6520

The row source that’s the result of the table function I can of course use for joins

as well, just like if it had been a real child table. I demonstrate this in Listing 9-4, at the

same time showing you how to do ANSI style joins to the table function instead of the

traditional comma used in Listing 9-3.

Listing 9-4.  Join the results of the splitting to products

SQL> select

 2 cf.customer_id as c_id

 3 , c.name as cust_name

 4 , fl.column_value as p_id

 5 , p.name as prod_name

 6 from customer_favorites cf

 7 cross apply table(

 8 favorite_list_to_coll_type(cf.favorite_list)

 9) fl

Chapter 9 Splitting Delimited Text

151

 10 join customers c

 11 on c.id = cf.customer_id

 12 join products p

 13 on p.id = fl.column_value

 14 order by cf.customer_id, fl.column_value;

The normal join syntax requires an on clause, which I do not have and do not need.

In principle what I need is like a cross join lateral to an inline view, but in ANSI SQL,

it has been decided instead to use a special syntax cross apply for this, which I put just

before the table keyword in line 7.

The rest is normal SQL with normal joins using the column_value column in the on

clause in line 13:

C_ID CUST_NAME P_ID PROD_NAME

50042 The White Hart 4040 Coalminers Sweat

50042 The White Hart 5310 Monks and Nuns

50741 Hygge og Humle 5430 Hercule Trippel

50741 Hygge og Humle 7790 Summer in India

50741 Hygge og Humle 7870 Ghost of Hops

51069 Der Wichtelmann 6520 Der Helle Kumpel

If again I want to include the customer with no favorites, in ANSI SQL I do not use

(+), instead I change the cross apply in line 7 to outer apply, which necessitates

changing join in line 12 to left outer join:

...

 7 outer apply table(

 8 favorite_list_to_coll_type(cf.favorite_list)

 9) fl

 10 join customers c

 11 on c.id = cf.customer_id

 12 left outer join products p

 13 on p.id = fl.column_value

...

Chapter 9 Splitting Delimited Text

152

Customer Boom Beer Bar, who has no favorites, is now included in the output:

C_ID CUST_NAME P_ID PROD_NAME

50042 The White Hart 4040 Coalminers Sweat

50042 The White Hart 5310 Monks and Nuns

50741 Hygge og Humle 5430 Hercule Trippel

50741 Hygge og Humle 7790 Summer in India

50741 Hygge og Humle 7870 Ghost of Hops

51007 Boom Beer Bar

51069 Der Wichtelmann 6520 Der Helle Kumpel

This first method is a custom built table function for this purpose only. You can also

do a generic function, but in fact you don’t need to do that. The built-in APEX schema

that you probably have in your database has already done this for you, as I’ll show next.

�Built-in APEX table function
There is APEX API function apex_util.string_to_table(favorite_list, ',') – but it

returns a PL/SQL collection type defined in a package, not a nested table type defined in

SQL. But it is a deprecated function anyway, so I just mention it so you won’t use it, even

if you happen to Google it.

Note A s of version 12.2, APEX is not installed in the database by default; rather
it is just shipped with the software for easy installation. Even if your company
does not use APEX applications as such, I think it is a good idea to install APEX in
the database anyway to take advantage of the API packages when you code SQL
and PL/SQL. If you wish, you can do it without configuring a web listener (ORDS,
embedded PL/SQL gateway, or Oracle HTTP Server).

From APEX version 5.1, the supported function for this is apex_string.split, which

returns a SQL nested table type and therefore is good to use in SQL as well. Listing 9-5 is

like Listing 9-4, just using the APEX API function instead of the custom function I created

before.

Chapter 9 Splitting Delimited Text

153

Listing 9-5.  Splitting with apex_string.split

SQL> select

 2 cf.customer_id as c_id

 3 , c.name as cust_name

 4 , to_number(fl.column_value) as p_id

 5 , p.name as prod_name

 6 from customer_favorites cf

 7 cross apply table(

 8 apex_string.split(cf.favorite_list, ',')

 9) fl

 10 join customers c

 11 on c.id = cf.customer_id

 12 join products p

 13 on p.id = to_number(fl.column_value)

 14 order by cf.customer_id, p_id;

The difference is just the function call in line 8 and then a small detail in line 14,

where I utilize the fact that I can use column aliases in the order by clause to order by

the more meaningful p_id instead of fl.column_value.

The output of Listing 9-5 is identical to that of Listing 9-4. Both methods call PL/

SQL functions to do the actual splitting of the strings, which of course means context

switching happening. Next up is a method in straight SQL without the context switching.

�Straight SQL with row generators
No matter which method I use, I need to generate rows for each of the elements in

the comma-delimited lists. The two previous methods used collections and the table

function for this purpose. Another typical method of generating rows is to use a connect

by query on dual, and this can be used here as well, as I show in Listing 9-6.

Listing 9-6.  Generating as many rows as delimiter count

SQL> select

 2 favs.customer_id as c_id

 3 , c.name as cust_name

 4 , favs.product_id as p_id

Chapter 9 Splitting Delimited Text

154

 5 , p.name as prod_name

 6 from (

 7 select 8 cf.customer_id

 9 , to_number(

 10 regexp_substr(cf.favorite_list, '[^,]+', 1, sub#)

 11) as product_id

 12 from customer_favorites cf

 13 cross join lateral(

 14 select level sub#

 15 from dual

 16 connect by level <= regexp_count(cf.favorite_list, ',') + 1

 17) fl

 18) favs

 19 join customers c

 20 on c.id = favs.customer_id

 21 join products p

 22 on p.id = favs.product_id

 23 order by favs.customer_id, favs.product_id;

Using cross join lateral in line 13 makes the inline view fl in lines 14–16 be

executed for each row in customer_favorites, since I correlate the lateral inline view

by using cf.favorite_list in line 16. By counting the number of commas and adding

one, the inline view generates exactly the number of rows as there are elements in the

comma-separated list.

As I’ve numbered the fl rows consecutively 1, 2, 3... in column sub#, I can use sub#

in regexp_substr in line 10 to extract the first, second, third... occurrence of a “list of at

least one character not containing a comma.” This is then my product_id which I use to

join the products table.

The output of Listing 9-6 is identical to both Listing 9-5 and Listing 9-4.

The preceding simple regular expression works if every element in the list has at least

one character (hence the +). If I want it to work also if an element can be blank (meaning

two commas in a row in the string), it will not work simply by changing the + to a *,

instead I need to switch to slightly more complex regular expression like this:

Chapter 9 Splitting Delimited Text

155

...

 10 regexp_substr(

 11 cf.favorite_list

 12 , '(^|,)([^,]*)'

 13 , 1

 14 , sub#

 15 , null

 16 , 2

 17)

...

The second group in the expression is like before, just with + changed to *, but I need

to state it must follow either the beginning of the string or a comma. As I don’t want that

preceding comma to be part of the output, I ask for regexp_substr to return to me just

the second group (line 16).

�Treating the string as a JSON array
A simple comma-separated list of values can become a JSON array as shown in Listing 9-7.

Listing 9-7.  Treating the string as a JSON array

SQL> select

 2 cf.customer_id as c_id

 3 , c.name as cust_name

 4 , fl.product_id as p_id

 5 , p.name as prod_name

 6 from customer_favorites cf

 7 outer apply json_table(

 8 '[' || cf.favorite_list || ']'

 9 , '$[*]'

 10 columns (

 11 product_id number path '$'

 12)

 13) fl

 14 join customers c

 15 on c.id = cf.customer_id

Chapter 9 Splitting Delimited Text

156

 16 left outer join products p

 17 on p.id = fl.product_id

 18 order by cf.customer_id, fl.product_id;

Instead of a PL/SQL table function, I use the SQL function json_table in line 7.

The first parameter to json_table must be valid JSON, which in this case I can very

simply accomplish by surrounding the comma-separated list with square brackets in

line 8.

Note I can keep line 8 very simple only because my values are all numeric.
If there had been text values involved, I would have needed to surround the text
values with double quotes by replacing commas with quote-comma-quotes and
take into consideration escaping any existing quotes. Then I would do as Stew
Ashton shows here: https://stewashton.wordpress.com/2018/06/05/
splitting-strings-a-new-champion/.

In line 9, I state that there should be one row output from json_table for every

element in the JSON array. As those elements are simple scalars, the path in line 11

becomes a simple $.

I’ve shown four methods to split simple delimited strings into rows of scalar values.

In most cases, I’d choose between using straight SQL, JSON arrays, and apex_string.

split. If you have very long strings with many elements, the SQL method of asking

for the 1st, 2nd, 3rd…occurrence in regexp_substr might become slower for the 50th

occurrence – such a case might be better with a function that pipes a row as it traverses

the string. On the other hand, if you have many relatively short strings each with few

elements, the overhead of occurrence retrieval of elements might be smaller than the

comparatively more context switching to PL/SQL.

As always, test your own use case whether SQL or pipelined function is the best.

If pipelined function is the answer for you, using built-in apex_string.split is often

a good choice – creating your own pipelined function would be useful if your database

does not have the APEX API packages installed or if you need some special datatype

handling.

Now it’s time to increase the complexity and look at delimited strings with some

more structure in them.

Chapter 9 Splitting Delimited Text

https://stewashton.wordpress.com/2018/06/05/splitting-strings-a-new-champion/
https://stewashton.wordpress.com/2018/06/05/splitting-strings-a-new-champion/

157

�Delimited multiple values
From time to time, I see applications where a string contains data with two delimiters – a

row delimiter and a column delimiter. These days that would typically be a JSON string

instead, but as data lives on a long time, you might still have to deal with such strings.

As an example here, I’ve chosen that the customers on the Good Beer Trading Co

web site not only can enter their favorite lists, but they can also enter a list of beers that

they review, each beer with a score of A, B, or C. This information is stored in column

review_list of table customer_reviews, the content of which I show in Listing 9-8.

Listing 9-8.  Comma- and colon-delimited content of customer_reviews table

SQL> select customer_id, review_list

 2 from customer_reviews

 3 order by customer_id;

The row delimiter is a comma, the column delimiter is a colon, so the data is like

product:score,product:score,…

CUSTOMER_ID REVIEW_LIST

50042 4040:A,6600:C,7950:B

50741 4160:A

51007

51069 4280:B,7790:B

To split up those strings into rows and columns, I’ll show you four different methods.

�Custom ODCI table function
The first method I’ll show involves a pipelined table function again, but not a

straightforward one like Listing 9-2.

Instead I am implementing it with the Oracle Data Cartridge Interface (ODCI)

that allows me to hook into specific points in the processing of a SQL statement. This

means that when the SQL engine hard parses a statement using this function, it will call

my code to find out what columns and datatypes will be returned – instead of finding

this information from the data dictionary. When a statement is prepared, when a row

is fetched, and when the cursor is closed – all these will call my code instead of the

standard handling.

Chapter 9 Splitting Delimited Text

158

Note T his is just one type of ODCI function implementing a custom pipelined
table function. ODCI can also be used to implement a custom aggregate function,
which I’ll show you in the next chapter.

Here I’ll focus on using this ODCI function – all of the details of the PL/SQL is

outside the scope of this book. In Listing 9-9, I just show the skeleton of the object type

used for implementation of the function.

For the curious reader, the complete code is available in the companion scripts.

I describe the internals in detail on my blog: www.kibeha.dk/2015/06/supposing-

youve-got-data-as-text-string.html.

Listing 9-9.  The skeleton of the object type that implements the ODCI function

SQL> create or replace type delimited_col_row as object (

...

 14 , static function parser(

 15 p_text in varchar2

 16 , p_cols in varchar2

 17 , p_col_delim in varchar2 default '|'

 18 , p_row_delim in varchar2 default ';'

 19) return anydataset pipelined

 20 using delimited_col_row

 21

 22 , static function odcitabledescribe(

...

 28) return number

 29

 30 , static function odcitableprepare(

...

 37) return number

 38

 39 , static function odcitablestart(

...

 45) return number

 46

Chapter 9 Splitting Delimited Text

http://www.kibeha.dk/2015/06/supposing-youve-got-data-as-text-string.html
http://www.kibeha.dk/2015/06/supposing-youve-got-data-as-text-string.html

159

 47 , member function odcitablefetch(

...

 51) return number

 52

 53 , member function odcitableclose(

...

 55) return number

 56)

 57 /

Type DELIMITED_COL_ROW compiled

SQL> create or replace type body delimited_col_row as

...

260 end;

261 /

Type Body DELIMITED_COL_ROW compiled

The object type must contain and implement the 5 odci* functions – they will be

called by the SQL engine, not by anyone using the type.

The parser function is the one that should be called when you wish to use it. As it

references the implementing object type using the syntax using delimited_col_row

(line 20), it needs not be inside the object type; if you prefer, it could be implemented as

a stand-alone function or in a package.

The object type can be used generically – in Listing 9-10, I use it for this specific case.

Listing 9-10.  Using the ODCI table function to parse the delimited data

SQL> select cr.customer_id, rl.product_id, rl.score

 2 from customer_reviews cr

 3 outer apply table (

 4 delimited_col_row.parser(

 5 cr.review_list

 6 , 'PRODUCT_ID:NUMBER,SCORE:VARCHAR2(1)'

 7 , ':'

Chapter 9 Splitting Delimited Text

160

 8 , ','

 9)

 10) rl

 11 order by cr.customer_id, rl.product_id;

Just like Listing 9-4, I do an apply on my table function – in this case I chose an outer

apply instead of a cross apply. The table function delimited_col_row.parser then

takes four parameters:

•	 First, the string that contains my delimited data: cr.review_list

•	 Then, the specification of the “columns” of each “row” of delimited

data, what are their names and datatypes (this should be a literal, not

a variable, as this is used at hard parse time, not soft parsing)

•	 Last, what is the column delimiter and the row delimiter in the data

(these same delimiters I use in the column specification in line 6)

When I execute this statement the first time (hard parse), the SQL engine calls my

odcitabledescribe function, which parses the second parameter and lets the SQL

engine know the table function will return a row set with two columns, product_id and

score, of the specified datatypes.

Then the SQL engine runs through odcitableprepare, odcitablestart,

odcitablefetch, and odcitableclose. The actual splitting of the string data happens

in odcitablefetch, where next row delimiter is found and the data split by the column

delimiter, so a “row” is returned. At the end I see this output:

CUSTOMER_ID PRODUCT_ID SCORE

50042 4040 A

50042 6600 C

50042 7950 B

50741 4160 A

51007

51069 4280 B

51069 7790 B

Note that I didn’t have to do any column aliasing of a generic column_value – I can

use rl.product_id and rl.score directly. I use this in Listing 9-11 for a meaningful join

to the products table.

Chapter 9 Splitting Delimited Text

161

Listing 9-11.  Joining with real column names instead of generic column_value

SQL> select

 2 cr.customer_id as c_id

 3 , c.name as cust_name

 4 , rl.product_id as p_id

 5 , p.name as prod_name

 6 , rl.score

 7 from customer_reviews cr

 8 cross apply table (

 9 delimited_col_row.parser(

 10 cr.review_list

 11 , 'PRODUCT_ID:NUMBER,SCORE:VARCHAR2(1)'

 12 , ':'

 13 , ','

 14)

 15) rl

 16 join customers c

 17 on c.id = cr.customer_id

 18 join products p

 19 on p.id = rl.product_id

 20 order by cr.customer_id, rl.product_id;

In line 8, I used cross apply, so the output doesn’t have the customer with no

reviews:

C_ID CUST_NAME P_ID PROD_NAME SCORE

50042 The White Hart 4040 Coalminers Sweat A

50042 The White Hart 6600 Hazy Pink Cloud C

50042 The White Hart 7950 Pale Rider Rides B

50741 Hygge og Humle 4160 Reindeer Fuel A

51069 Der Wichtelmann 4280 Hoppy Crude Oil B

51069 Der Wichtelmann 7790 Summer in India B

Using an ODCI implementation like this allows fine control of all the small details

of the implementation. This is well and good, but there are other solutions as well that

doesn’t need installing a custom ODCI function.

Chapter 9 Splitting Delimited Text

162

�Combining apex_string.split and substr
For the simple delimited list, I showed using apex_string.split as an alternative to

building your own pipelined table function. There is no such standard alternative for the

ODCI function delimited_col_row.parser that will handle both rows and columns.

But I can separate handling of columns from handling of rows, as shown in

Listing 9-12.

Listing 9-12.  Getting rows with apex_string.split and columns with substr

SQL> select

 2 cr.customer_id as c_id

 3 , c.name as cust_name

 4 , p.id as p_id

 5 , p.name as prod_name

 6 , substr(

 7 rl.column_value

 8 , instr(rl.column_value, ':') + 1

 9) as score

 10 from customer_reviews cr

 11 cross apply table(

 12 apex_string.split(cr.review_list, ',')

 13) rl

 14 join customers c

 15 on c.id = cr.customer_id

 16 join products p

 17 on p.id = to_number(

 18 substr(

 19 rl.column_value

 20 , 1

 21 , instr(rl.column_value, ':') - 1

 22))

 23 order by cr.customer_id, p_id;

I start by splitting the review list into rows in line 12 by using apex_string.split with

the row delimiter comma. That means that rl will have rows with column_value, which

will contain values with the two columns delimited by a colon – for example, 4040:A.

Chapter 9 Splitting Delimited Text

163

Then it is a simple matter of using substr to pick out the product id in lines 17–22

and pick out the score in lines 6–9. The output is identical to Listing 9-11.

I’ve eliminated the custom function, but I’m still incurring a lot of context switches to

PL/SQL, so next I’ll try to use pure SQL again.

�Row generators and regexp_substr
Similar to how I used apex_string.split to get the rows and then substr to get the

columns, I am adapting Listing 9-6 to create Listing 9-13, where I generate rows with

dual and use regexp_substr to get the columns.

Listing 9-13.  Generating as many rows as delimiter count

SQL> select

 2 revs.customer_id as c_id

 3 , c.name as cust_name

 4 , revs.product_id as p_id

 5 , p.name as prod_name

 6 , revs.score

 7 from (

 8 select

 9 cr.customer_id

 10 , to_number(

 11 regexp_substr(

 12 cr.review_list

 13 , '(^|,)([^:,]*)'

 14 , 1

 15 , sub#

 16 , null

 17 , 2

 18)

 19) as product_id

 20 , regexp_substr(

 21 cr.review_list

 22 , '([^:,]*)(,|$)'

 23 , 1

Chapter 9 Splitting Delimited Text

164

 24 , sub#

 25 , null

 26 , 1

 27) as score

 28 from customer_reviews cr

 29 cross join lateral(

 30 select level sub#

 31 from dual

 32 connect by level <= regexp_count(cr.review_list, ',') + 1

 33) rl

 34) revs

 35 join customers c

 36 on c.id = revs.customer_id

 37 join products p

 38 on p.id = revs.product_id

 39 order by revs.customer_id, revs.product_id;

The lateral inline view in lines 29–33 is just as I did in Listing 9-6. The trick here is to

specify suitable regular expressions in lines 13 and 22 to extract the two columns as what

comes before and after the colon, respectively:

•	 Line 13 looks for either the beginning of the string or a comma

(group 1), followed by zero or more characters that are neither colon

nor comma (group 2). Line 17 states the function should return the

second group (this needs minimum version 11.2).

•	 Line 22 looks for zero or more characters that are neither colon nor

comma (group 1), followed by either a comma or the end of the string

(group 2). Line 26 states the function should return the first group.

Listing 9-13 produces an identical output as Listing 9-11 and Listing 9-12, but does it

without PL/SQL calls at all. The cost is more use of regular expression functions, which

can be relatively CPU expensive – so to find which performs best, you should test the

approaches against your specific use case.

All three solutions so far handle the string as it is, but I also mentioned at the start of

the chapter that in many modern applications, such data would be stored as JSON rather

than delimited. The database is capable of efficiently handling JSON as well as XML, so

here’s a fourth method that utilizes this.

Chapter 9 Splitting Delimited Text

165

�Transformation to JSON
The first thing I want to do is to transform the delimited string into some valid JSON.

This I do in Listing 9-14, where I transform the delimited pieces into a JSON array of

JSON arrays, where each inner array has two elements, the first having the value of the

product id and the second having the value of the review score.

Listing 9-14.  Turning delimited text into JSON

SQL> select

 2 customer_id

 3 , '[["'

 4 || replace(

 5 replace(

 6 review_list

 7 , ','

 8 , '"],["'

 9)

 10 , ':'

 11 , '","'

 12)

 13 || '"]]'

 14 as json_list

 15 from customer_reviews

 16 order by customer_id;

Let me show you the output before I explain the code:

CUSTOMER_ID JSON_LIST

50042 [["4040","A"],["6600","C"],["7950","B"]]

50741 [["4160","A"]]

51007 [[""]]

51069 [["4280","B"],["7790","B"]]

You can see in the output that the code in lines 3–13 transformed the text of review_

list into nested JSON arrays. An outer array whose elements correspond to rows, where

each row itself is an inner array whose elements correspond to columns.

Chapter 9 Splitting Delimited Text

166

To do this transformation, the innermost replace in lines 5–9 replaces each row

delimiter (comma) with the five characters "],[", where each character is

•	 End of inner element

•	 End of inner array

•	 Comma as delimiter between elements of the outer array

•	 Start of new inner array

•	 Start of new inner element

After that the replace in lines 4 and 10–12 replaces each column delimiter (colon)

with the three characters ",", where each character is

•	 End of inner element

•	 Comma as delimiter between elements in the inner array

•	 Start of new inner element

In line 3, the JSON begins with the three characters [[" for start of outer array, start

of inner array, and start of inner element.

Finally in line 13, the JSON ends with the three characters "]] for end of inner

element, end of inner array, and end of outer array.

Having created the string concatenation expression that transforms the delimited

string to JSON, I can now use it in the json_table function in Listing 9-15.

Listing 9-15.  Parsing JSON with json_table

SQL> select

 2 cr.customer_id as c_id

 3 , c.name as cust_name

 4 , rl.product_id as p_id

 5 , p.name as prod_name

 6 , rl.score

 7 from customer_reviews cr

 8 cross apply json_table (

 9 '[["'

 10 || replace(

 11 replace(

Chapter 9 Splitting Delimited Text

167

 12 cr.review_list

 13 , ','

 14 , '"],["'

 15)

 16 , ':'

 17 , '","'

 18)

 19 || '"]]'

 20 , '$[*]'

 21 columns (

 22 product_id number path '$[0]'

 23 , score varchar2(1) path '$[1]'

 24)

 25) rl

 26 join customers c

 27 on c.id = cr.customer_id

 28 join products p

 29 on p.id = rl.product_id

 30 order by cr.customer_id, rl.product_id;

The first parameter to the json_table function is the JSON itself, so lines 9–19 are

the expression I developed in the previous listing.

The second parameter in line 20 specifies that json_table should take as rows all the

inner arrays (*) in the outer JSON array that is in the root of the JSON string ($).

And last in the column specification lines 22–23, I state that the first element ($[0]) of

the inner array is a number and should be a column called product_id, while the second

element ($[1]) of the inner array is a varchar2 and should be a column called score.

As you see, this output is identical to the output of the three previous methods:

C_ID CUST_NAME P_ID PROD_NAME SCORE

50042 The White Hart 4040 Coalminers Sweat A

50042 The White Hart 6600 Hazy Pink Cloud C

50042 The White Hart 7950 Pale Rider Rides B

50741 Hygge og Humle 4160 Reindeer Fuel A

51069 Der Wichtelmann 4280 Hoppy Crude Oil B

51069 Der Wichtelmann 7790 Summer in India B

Chapter 9 Splitting Delimited Text

168

As shown before, if I had wanted to show the customer with a blank review_list,

I change cross apply in line 8 to outer apply.

Tip L isting 9-15 can be adapted to use linefeed for row delimiter and comma
for column delimiter if you have plain CSV in a CLOB, for example. Alternatively
you could look into the apex_data_parser package as shown here: https://
blogs.oracle.com/apex/super-easy-csv-xlsx-json-or-xml-
parsing-about-the-apex_data_parser-package.

Using json_table requires version 12.1.0.2 or newer. If you have a need for older

versions, you’ll find in the companion script an example of doing the same thing by

transforming to XML and using xmltable instead.

�Lessons learned
Delimited text is most often a list of values separated by a single delimiter, but it can also

be more structured with, for example, both a “row” delimiter and a “column” delimiter.

I’ve shown both types of examples in this chapter along with multiple ways of splitting

them, so you can

•	 Split delimited text with SQL only or built-in PL/SQL functionality.

•	 Create custom PL/SQL table functions – both regular and the ODCI

variant – for special needs.

•	 Transform the text to JSON and use native JSON parsing.

If you create your own data model, you should use child tables, collections, XML, or

JSON rather than relying on storing data as delimited text. But it is common to receive

delimited text from places out of your control, in which case any of the shown methods

can be useful. Normally using native and built-in functionality is the easiest and the best

performant, but for more special use cases, you can test if the other methods are better

suited for you.

Chapter 9 Splitting Delimited Text

https://blogs.oracle.com/apex/super-easy-csv-xlsx-json-or-xml-parsing-about-the-apex_data_parser-package
https://blogs.oracle.com/apex/super-easy-csv-xlsx-json-or-xml-parsing-about-the-apex_data_parser-package
https://blogs.oracle.com/apex/super-easy-csv-xlsx-json-or-xml-parsing-about-the-apex_data_parser-package

169
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_10

CHAPTER 10

Creating Delimited Text
You learned in the previous chapter how to take a delimited text and split it to pieces,

generating rows with one piece of text per row. Guess what, just like I did a chapter on

pivoting after unpivoting, here comes a chapter showing how to take pieces of text in

rows and aggregate them into delimited strings.

This is often much liked by users reading reports, where it is easier to get an overview

if there is not a lot of repeated data in multiple rows with most columns identical and just

a single column with different values. Sometimes you can do pivoting to alleviate that

problem, but sometimes you just don’t have a fixed number of columns. Outputting a

comma-separated string can be the answer for such cases.

Delimited strings can also be useful sometimes for importing elsewhere – for

example, a tab- or semicolon-separated string is easy to import in an Excel spreadsheet

to produce columns.

There are several ways you can create such delimited text, both using built-in

functionality as well as functionality you create yourself. I’ll show some of those different

ways and their advantages and disadvantages.

�Delimited lists of products
As examples, I am going to create text strings with comma-separated lists of product

names that the company sells, using the tables shown in Figure 10-1.

170

For most of the examples in the chapter, I am going to use the tables breweries,

products, and purchases joined together in the view brewery_products shown in

Listing 10-1. At the end of the chapter, I’ll be using monthly_sales and products to

create an artificially long string that won’t fit in a regular varchar2.

Listing 10-1.  View of which products are purchased at which breweries

SQL> create or replace view brewery_products

 2 as

 3 select

 4 b.id as brewery_id

 5 , b.name as brewery_name

 6 , p.id as product_id

 7 , p.name as product_name

 8 from breweries b

 9 cross join products p

 10 where exists (

 11 select null

 12 from purchases pu

Figure 10-1.  The tables used in this chapter

Chapter 10 Creating Delimited Text

171

 13 where pu.brewery_id = b.id

 14 and pu.product_id = p.id

 15);

This view examines all combinations of the breweries and the beers if the beer has

been purchased at some time from that brewery. The result – shown in Listing 10-2 – is a

list that shows which beer is purchased at which brewery.

Listing 10-2.  The breweries and products

SQL> select *

 2 from brewery_products

 3 order by brewery_id, product_id;

BREWERY_ID BREWERY_NAME PRODUCT_ID PRODUCT_NAME

518 Balthazar Brauerei 5310 Monks and Nuns

518 Balthazar Brauerei 5430 Hercule Trippel

518 Balthazar Brauerei 6520 Der Helle Kumpel

523 Happy Hoppy Hippo 6600 Hazy Pink Cloud

523 Happy Hoppy Hippo 7790 Summer in India

523 Happy Hoppy Hippo 7870 Ghost of Hops

536 Brewing Barbarian 4040 Coalminers Sweat

536 Brewing Barbarian 4160 Reindeer Fuel

536 Brewing Barbarian 4280 Hoppy Crude Oil

536 Brewing Barbarian 7950 Pale Rider Rides

In the next section, I’ll show multiple ways to create a variant of this list with just

three rows – one for each brewery containing a column with a comma-separated list of

all the beer names of that brewery.

�String aggregation
You know the function sum is an aggregate function that adds numbers. I’m about to

demonstrate various aggregate functions that concatenate strings instead; therefore,

this is called string aggregation. You can find other methods if you search the Internet or

forums – I’ll just highlight four methods that each have some pros and cons.

Chapter 10 Creating Delimited Text

172

�Aggregate function listagg
In version 11.2, a new built-in function appeared called listagg – it is by definition the

very function to use for string aggregation (just as sum is the function for additive number

aggregation).

It requires a little more syntax than the simple sum function, but it is not hard to use

as you can see in Listing 10-3.

Listing 10-3.  Using listagg to create product list

SQL> select

 2 max(brewery_name) as brewery_name

 3 , listagg(product_name, ',') within group (

 4 order by product_id

 5) as product_list

 6 from brewery_products

 7 group by brewery_id

 8 order by brewery_id;

In line 3, I use listagg with two parameters: the first is the string column or

expression I want to aggregate, and the second (optional) is the delimiter to put between

the strings in the aggregated result. If you don’t provide a delimiter parameter, the default

is null which simply concatenates the strings without any delimiter between them.

After the parameters, the within group is mandatory and requires me to specify an

order by (line 4) that tells Oracle in which order the strings should be aggregated.

With those keywords, Listing 10-3 produces this output that has the beers purchased

at each brewery in a comma-separated string, where the beers are ordered by product_id:

BREWERY_NAME PRODUCT_LIST

Balthazar Brauerei Monks and Nuns,Hercule Trippel,Der Helle Kumpel

Happy Hoppy Hippo Hazy Pink Cloud,Summer in India,Ghost of Hops

Brewing Barbarian Coalminers Sweat,Reindeer Fuel,Hoppy Crude Oil,Pale

Rider Rides

Chapter 10 Creating Delimited Text

173

Suppose I want the beers ordered alphabetically in the product list? That’s very easy;

I just need to change the order by clause inside within group:

...

 4 order by product_name

...

And now the beers are alphabetically listed:

BREWERY_NAME PRODUCT_LIST

Balthazar Brauerei Der Helle Kumpel,Hercule Trippel,Monks and Nuns

Happy Hoppy Hippo Ghost of Hops,Hazy Pink Cloud,Summer in India

Brewing Barbarian Coalminers Sweat,Hoppy Crude Oil,Pale Rider

Rides,Reindeer Fuel

The function listagg is easy to use and as a built-in highly performant. There are

just a few drawbacks:

•	 It cannot return a string larger than a varchar2 – either 4.000 or

32.767 bytes depending on your database setting. (Though there’s

support for handling such situations – more on that later.)

•	 Before version 19c, it cannot do a distinct aggregation.

•	 It does not exist in versions before 11.2.

But in all other cases, listagg should be your first choice when considering string

aggregation. If, however, you do find yourself in one of those situations, there are

alternatives.

�Aggregate function collect
One of the alternatives you can consider if you have one of the special cases is to

aggregate into a collection (nested table type) using the collect function and then build

the string from the collection.

So to make this work, I need to define the two objects shown in Listing 10-4.

The first is a nested table type name_coll_type of varchar2 in the size I need – in this

case 20 char – I just need to represent that as 80 bytes. This is due to a bug – see the

note for further explanation.

Chapter 10 Creating Delimited Text

174

Listing 10-4.  Collection type and function to convert collection to string

SQL> create or replace type name_coll_type

 2 as table of varchar2(80 byte);

 3 /

SQL> create or replace function name_coll_type_to_varchar2 (

 2 p_name_coll in name_coll_type

 3 , p_delimiter in varchar2 default null

 4)

 5 return varchar2

 6 is

 7 v_name_string varchar2(4000 char);

 8 begin

 9 for idx in p_name_coll.first..p_name_coll.last

 10 loop

 11 if idx = p_name_coll.first then

 12 v_name_string := p_name_coll(idx);

 13 else

 14 v_name_string := v_name_string

 15 || p_delimiter

 16 || p_name_coll(idx);

 17 end if;

 18 end loop;

 19 return v_name_string;

 20 end name_coll_type_to_varchar2;

 21 /

The second object I define is the function name_coll_type_to_varchar2 that

converts the collection to a delimited string. It simply loops over the elements of the

collection and keeps concatenating them unto the string variable to be returned – with a

delimiter between each if such parameter has been given.

Chapter 10 Creating Delimited Text

175

Note T ype name_coll_type should really be varchar2(20 char), but
unfortunately this causes an error due to a bug in Oracle. It is only a problem if you
have a database with a multi-byte character set (as I use AL32UTF8) and use char
semantics defining your varchar2 columns. This combination confuses collect. 

I’ve seen the bug in versions 12.2 and 18.3, and others have verified it in 11.2. You
can see if it has been fixed in future releases on My Oracle Support by searching
for bug 29195635. When the bug has been fixed, you can change to the correct
datatype – until then the workaround is to use varchar2(80 byte) which is the
maximum number of bytes that a varchar2(20 char) can be in AL32UTF8.

So armed with these two objects, I can now use them together with the built-in

collect and cast functions as I show in Listing 10-5.

Listing 10-5.  Using collect and the created function

SQL> select

 2 max(brewery_name) as brewery_name

 3 , name_coll_type_to_varchar2(

 4 cast(

 5 collect(

 6 product_name

 7 order by product_id

 8)

 9 as name_coll_type

 10)

 11 , ','

 12) as product_list

 13 from brewery_products

 14 group by brewery_id

 15 order by brewery_id;

Chapter 10 Creating Delimited Text

176

How does it work? Well, starting from the inside of the expression, this is what

happens:

•	 The collect function in lines 5–8 takes the product_name and

aggregates it into a collection that’ll be ordered by product_id.

But this is a “generic” collection type used internally by the database;

we need to tell which real collection type it should be put in.

•	 So therefore in lines 4 and 9–10, I am using cast to specify I want the

collection type name_coll_type.

•	 Now I have a collection of the correct type to call function name_

coll_type_to_varchar2 in line 3, and in line 11, I specify that a

comma should be used as a delimiter in the resulting string.

The output of Listing 10-5 is identical to that of Listing 10-3 using listagg.

This method of using collect can be a workaround for all three drawbacks of

listagg:

•	 It can be used in versions before 11.2.

•	 It supports distinct in the collect function, even you are not yet

using version 19c.

•	 If needed, you can easily make a function name_coll_type_to_clob

to handle cases where the result won’t fit in a varchar2.

As I have the APEX packages installed in my database, I can even use this method

without having to create my own custom nested table type and function. With the

APEX installation comes a type apex_t_varchar2, and the package apex_string has a

function join that does the same as my name_coll_type_to_varchar2 function.

So I can adapt Listing 10-5 to using APEX functionality by just changing lines 3 and 9:

...

 3 , apex_string.join(

...

 9 as apex_t_varchar2

...

And this will work even if I am not using any APEX applications, just as long as the

APEX API packages are installed in my database.

Chapter 10 Creating Delimited Text

177

�Custom aggregate function stragg
Long before version 11.2 was thought of, a quite common question people would ask of

the famous Tom Kyte on http://asktom.oracle.com was how to do string aggregation.

So Tom developed a custom aggregate function he called stragg as an answer to that

question, and it has been used by many over the years. Here I’ll show a version where I

have incorporated a few additions picked up here and there.

Caution  You may possibly find in your database a function called stragg in the
SYS schema. This is a very little known function based on a C library and installed
together with the dbms_xmlindex package. It is undocumented and designed
specifically for certain tasks in the XML Index implementation. Do not use it! There
is no guarantee how it works, and it is all too easy to unknowingly call it in an
unsupported manner and either get errors or wrong results.

Oracle Data Cartridge Interface (ODCI) is a set of interface functions for doing

a rather low-level implementation of functionality that can be used very much like

built-ins. Mostly it is used by library authors implementing special functionality in, for

example, C, but it can also be used for simpler cases implemented in pure PL/SQL.

As this is a book primarily on SQL, I am not going to waste paper having the entire

implementation printed in the book. So I’ll show the create statements in the pieces of

Listing 10-6, but skip the bulk of the body.

Listing 10-6.  Types, type bodies, and function to implement custom aggregate

SQL> create or replace type stragg_expr_type as object (

 2 element varchar2(4000 char)

 3 , delimiter varchar2(4000 char)

 4 , map member function map_func return varchar2

 5);

 6 /

The original stragg by Tom Kyte aggregated simply on a varchar2 and then

hardcoded the delimiter used, since an aggregate function cannot be created with

multiple parameters. I am going to aggregate on an object type stragg_expr_type

instead, allowing me to pass the desired delimiter as a second attribute in the object.

Chapter 10 Creating Delimited Text

http://asktom.oracle.com

178

SQL> create or replace type body stragg_expr_type

 2 as

 3 map member function map_func return varchar2

 4 is

 5 begin

 6 return element || '|' || delimiter;

 7 end map_func;

 8 end;

 9 /

I implement a map member function in my object type, because that allows the

database to discover whether two objects are identical or not. And that in turn allows my

aggregate function to support the distinct keyword, which is one of the things listagg

does not do until version 19c.

SQL> create or replace type stragg_type as object

 2 (

 3 aggregated varchar2(4000)

 4 , delimiter varchar2(4000)

 5

 6 , static function ODCIAggregateInitialize(

 7 new_self in out stragg_type

 8) return number

 9

 10 , member function ODCIAggregateIterate(

 11 self in out stragg_type

 12 , value in stragg_expr_type

 13) return number

 14

 15 , member function ODCIAggregateTerminate(

 16 self in stragg_type

 17 , returnvalue out varchar2

 18 , flags in number

 19) return number

 20

Chapter 10 Creating Delimited Text

179

 21 , member function ODCIAggregateMerge(

 22 self in out stragg_type

 23 , other_self in stragg_type

 24) return number

 25);

 26 /

Then I define the type stragg_type that is going to implement the actual

aggregation. The two attributes I use internally in the implementation. The four

functions are determined by the ODCI interface and must be named like shown and

with a parameter list exactly as shown (the parameter names may be different, but the

order and type of parameters have to match):

•	 ODCIAggregateInitialize is kind of like a constructor function

explicitly called by the database when aggregation is started, so here I

create a new instance of the object.

•	 ODCIAggregateIterate is called by the database with each string

that is to be aggregated, so here I add the delimiter and string to the

aggregated attribute. (In the original stragg, the value parameter

was simply a varchar2; here I am passing a value of type stragg_

expr_type.)

•	 ODCIAggregateTerminate is called by the database at the end of the

aggregation when it wants the result, and I return the aggregated

string here.

•	 In case the database has decided to split the aggregation job

in multiple parts (e.g., in parallel query), each part has called

ODCIAggregateInitialize to get an object and then aggregated along

with ODCIAggregateIterate. At the end each part will have an object

with some strings aggregated in the aggregated attribute – the

database will then call ODCIAggregateMerge to merge the content,

so in this function, I append the aggregated of the other_self object

to the self object.

Chapter 10 Creating Delimited Text

180

That was the textual description of what I need to implement in the functions, and

then I just need to code this in the type body.

SQL> create or replace type body stragg_type

 2 is

...

 54 end;

 55 /

For the code implementing those four functions in the type body, see the companion

script practical_fill_schema.sql.

SQL> create or replace function stragg(input stragg_expr_type)

 2 return varchar2

 3 parallel_enable aggregate using stragg_type;

 4 /

Having create the object type for implementation, the last thing to do is to create the

aggregate function stragg itself. The input parameter must be of datatype matching the

value parameter of ODCIAggregateIterate function, and the return datatype must match

the returnvalue parameter of ODCIAggregateTerminate function.

The aggregate using stragg_type tells the database this is a custom aggregate

function that is implemented by the object type stragg_type, so when the database

performs aggregation with this function, it will call the ODCI∗ functions of the type.

Keyword parallel_enable specifies the database may use parallelization, because

I have implemented ODCIAggregateMerge.

Having created these objects, I am now able to use my custom aggregate function in

Listing 10-7.

Listing 10-7.  Using stragg custom aggregate function

SQL> select

 2 max(brewery_name) as brewery_name

 3 , stragg(

 4 stragg_expr_type(product_name, ',')

 5) as product_list

 6 from brewery_products

 7 group by brewery_id

 8 order by brewery_id;

Chapter 10 Creating Delimited Text

181

Since I declared this function an aggregate function using the ODCI interface, I can

use stragg in lines 3–5 just like any built-in aggregate function. The input datatype is

stragg_expr_type, so I use the type constructor with the product name and the comma

as delimiter.

Note T he trick of using an object type to pass a delimiter to the aggregate
function works nicely, but it does require a bit of self-discipline from me as a
developer, since it is up to me to ensure that the delimiter is a constant. In principle
I could pass different delimiter values in each row, but that would cause problems
in the implementation. I have tried to implement such that the delimiter from the
first call to ODCITableIterate is used, but in case of parallelization, there will be
multiple calls to ODCITableIterate from different rows. It is therefore important you
make sure the delimiter value is constant – the safest is to use a literal.

The output of Listing 10-7 is almost, but not necessarily quite the same as the output

I got from listagg and collect:

BREWERY_NAME PRODUCT_LIST

Balthazar Brauerei Monks and Nuns,Der Helle Kumpel,Hercule Trippel

Happy Hoppy Hippo Hazy Pink Cloud,Ghost of Hops,Summer in India

Brewing Barbarian Coalminers Sweat,Pale Rider Rides,Hoppy Crude

Oil,Reindeer Fuel

The product names within the product_list column are the same – the result is

identical in terms of values. But the order of products within the delimited string is

indeterminate with this custom aggregate function – I cannot implement an order by

clause for stragg.

A thing to note here is the behavior if I add the distinct clause to the call to stragg:

...

 4 distinct stragg_expr_type(product_name, ',')

...

Chapter 10 Creating Delimited Text

182

Suddenly the beers are alphabetically ordered in the product list:

BREWERY_NAME PRODUCT_LIST

Balthazar Brauerei Der Helle Kumpel,Hercule Trippel,Monks and Nuns

Happy Hoppy Hippo Ghost of Hops,Hazy Pink Cloud,Summer in India

Brewing Barbarian Coalminers Sweat,Hoppy Crude Oil,Pale Rider

Rides,Reindeer Fuel

This is a side effect of the database having to sort the product names in order to get

the distinct values. But it cannot be guaranteed always to be ordered and work like you

see here – the database might figure out a way to, for example, use a hash function to do

distinct, and then the result will be very unordered.

�Aggregate function xmlagg
So you’ve now seen listagg, collect, and stragg – if that’s not enough, Listing 10-8

shows a fourth method of string aggregation using xmlagg.

Listing 10-8.  Using xmlagg and extract text from xml

SQL> select

 2 max(brewery_name) as brewery_name

 3 , rtrim(

 4 xmlagg(

 5 xmlelement(z, product_name, ',')

 6 order by product_id

 7).extract('//text()').getstringval()

 8 , ','

 9) as product_list

 10 from brewery_products

 11 group by brewery_id

 12 order by brewery_id;

Chapter 10 Creating Delimited Text

183

Examining the expression I use here, it works like this:

•	 In line 5, I create an XML element called z (the name is irrelevant)

containing a concatenation of the product name and a comma.

•	 Using xmlagg in lines 4 and 6, I create an XML snippet that is an

aggregation of the z XML elements created in the preceding text –

ordered by product id.

•	 In line 7, I get rid of the XML tags in the snippet, keeping only the text

values.

•	 The aggregated text at this point now has a trailing comma too much,

so I get rid of that using rtrim in lines 3 and 8.

All of that together makes Listing 10-8 return the exact same output as listagg and

collect in Listings 10-3 and 10-5.

So what’s up with this z XML element? What’s the purpose of this? Well, if I was to do

just the xmlagg(xmlelement(... alone and skip the extract and rtrim, this would be

the output for Balthazar Brauerei:

<Z>Monks and Nuns,</Z><Z>Hercule Trippel,</Z><Z>Der Helle Kumpel,</Z>

You see the XML start and end tags for a series of Z elements, each containing a

product name and comma. The actual name I use for the XML tag is irrelevant, so it

might as well be as short as possible, because it is stripped away anyway, when I do

extract('//text()') on it:

Monks and Nuns,Hercule Trippel,Der Helle Kumpel,

And now you can see why the rtrim is necessary to remove the comma at the end.

Creating the z XML element is the nice way to behave when using xmlagg. But there

is actually an alternative that can save you from needing to do the extract to strip away

XML tags.

The function xmlparse takes xml as text and transforms it to XMLType datatype.

Normally it will check if it is good XML, but it also supports the keyword wellformed,

by which you tell the database “trust me, this is good XML, you do not need to check

Chapter 10 Creating Delimited Text

184

it.” So I can replace the use of xmlelement with xmlparse and thereby skip having to use

extract:

...

 4 xmlagg(

 5 xmlparse(content product_name || ',' wellformed)

 6 order by product_id

 7).getstringval()

...

This will directly give me the output with no XML tags, ready to use the rtrim

function to get rid of the last comma:

Monks and Nuns,Hercule Trippel,Der Helle Kumpel,

Why would you consider using xmlagg when you have the other alternatives I’ve

shown? Partly it is nice in older databases that string aggregation is possible with xmlagg

without having to install your own datatypes; partly it is one of the ways to handle very

long aggregations, as I’ll show you now.

�When it doesn’t fit in a VARCHAR2
The string aggregations I’ve shown so far will all fail, if the aggregated output is longer

than the maximum length of a varchar2 – normally 4000 bytes, but could be 32.767 bytes

if your database max_string_size is set to extended.

What to do then if you need larger output? To show you that, I’m going to use the

table monthly_sales and join it to the products table.

I have monthly sales data for 3 years for each of my 10 products, so 360 rows in this

table. Imagine I need to output the product name for each of those rows in a fixed length

format – that is, each product name padded with spaces so it fills exactly 20 characters

without using any delimiters. The result is a single string 7200 characters.

In Listing 10-9, I attempt to generate this string using listagg – as I use no

group by, I should get a single row with a single column in the output having this

7.200-character fixed length list of 360 product names.

Chapter 10 Creating Delimited Text

185

Listing 10-9.  Getting ORA-01489 with listagg

SQL> select

 2 listagg(rpad(p.name, 20)) within group (

 3 order by p.id

 4) as product_list

 5 from products p

 6 join monthly_sales ms

 7 on ms.product_id = p.id;

Error starting at line : 1 in command -

Error report -

ORA-01489: result of string concatenation is too long

But it fails in my database where a varchar2 can be at most 4.000 bytes long. To work

around this, I have different options.

�Get just the first part of the result
Sometimes I do not actually need to get the entire result; it is sufficient to get what can

fit in a varchar2 and an indication that there is more than could be shown. In version

12.2, the listagg function was enhanced to provide just this functionality, as I show in

Listing 10-10.

Listing 10-10.  Suppressing error in listagg

SQL> select

 2 listagg(

 3 rpad(p.name, 20)

 4 on overflow truncate '{more}' with count

 5) within group (

 6 order by p.id

 7) as product_list

 8 from products p

 9 join monthly_sales ms

 10 on ms.product_id = p.id;

Chapter 10 Creating Delimited Text

186

Compared to Listing 10-9, I have simply added line 4:

•	 Keywords on overflow is used to specify what the database should do

if the result of the aggregation becomes too long to fit a varchar2. The

default is on overflow error, which gives the error in Listing 10-9.

•	 truncate specifies that instead of raising an error, it should return

only what will fit in a varchar2 and truncate the rest. Note it never

truncates in the middle of a string in the list – the string that causes

the overflow so the output won’t fit, that string will be truncated in its

entirety.

•	 The literal '{more}' will be appended to the result if it was truncated.

If I do not specify a literal, the default is an ellipsis (three dots) '...'.

•	 with count causes a count of how many elements (not characters)

were truncated to be appended. The default is without count.

This addition of line 4 causes Listing 10-10 to run without error and give me this

output instead with a single string almost 4000 characters long (most of them omitted

here to save paper):

PRODUCT_LIST

Coalminers Sweat Coalminers Sweat ...[[3880 characters removed]]...

Der Helle Kumpel Der Helle Kumpel {more}(162)

So for cases where it is enough to know there is more than could fit, this is a nice

enhancement to listagg. But what if that is not the case? Then I have other possibilities.

�Try to make it fit with reduced data
There can be cases where the reason it won’t fit with listagg is that the data is not

unique, and you do not actually need to see each individual occurrence of the duplicated

data – once is enough. When your database is version 19c or later, you can do distinct

string aggregation, making the fewer occurrences possibly fit inside a varchar2.

Listing 10-11 is like Listing 10-9; I just added the keyword distinct in the listagg

function call, which is a new feature in version 19c.

Chapter 10 Creating Delimited Text

187

Listing 10-11.  Reducing data with distinct

SQL> select

 2 listagg(distinct rpad(p.name, 20)) within group (

 3 order by p.id

 4) as product_list

 5 from products p

 6 join monthly_sales ms

 7 on ms.product_id = p.id;

Since the 7200 character string in this case contains a whole lot of repetitions, doing

distinct gives me a string with just 200 characters:

PRODUCT_LIST

Coalminers Sweat Der Helle Kumpel Ghost of Hops Hazy Pink Cloud

Hercule Trippel Hoppy Crude Oil Monks and Nuns Pale Rider

Rides Reindeer Fuel Summer in India

If I had not had a 19c database, I could have used an inline view with a select

distinct and then performed my listagg aggregation on the result of the inline view.

For cases where a distinct set of data makes the aggregated result small enough,

listagg supports it in version 19c or later. But there can also be cases where you really

do need the aggregated result to be larger than a varchar2 – then you need a clob.

�Use a CLOB instead of a VARCHAR2
One way to use a clob is to use the collect function shown earlier and then create a

function name_coll_type_to_clob instead of the name_coll_type_to_varchar2 I have

shown. I’ll leave that as an exercise to you, as it is not much that need to be changed, if

you want to try it.

But in Listing 10-12, I’ll instead show you how to aggregate to a clob using the built-

in function xmlagg – then you do not need to create any function of your own.

Listing 10-12.  Using xmlagg to aggregate to a clob

SQL> select

 2 xmlagg(

 3 xmlparse(

Chapter 10 Creating Delimited Text

188

 4 content rpad(p.name, 20) wellformed

 5)

 6 order by product_id

 7).getclobval() as product_list

 8 from products p

 9 join monthly_sales ms

 10 on ms.product_id = p.id;

This is very like what I did in Listing 10-8, just using getclobval() in line 7 instead of

getstringval(). That is really all that is necessary to get a clob instead of varchar2 from

an xmltype, and the result is the 7200 character string I want (shown here with most of it

cut away):

PRODUCT_LIST

Coalminers Sweat Coalminers Sweat ...[[7120 characters removed]]...

Pale Rider Rides Pale Rider Rides

If my database is version 18c or later, I can get the same output as Listing 10-12 by

using json_arrayagg as alternative to xmlagg. I show an example in Listing 10-13.

Listing 10-13.  Using json_arrayagg to aggregate to a clob

SQL> select

 2 json_value(

 3 replace(

 4 json_arrayagg(

 5 rpad(p.name, 20)

 6 order by product_id

 7 returning clob

 8)

 9 , '","'

 10 , ''

 11)

 12 , '$[0]' returning clob

 13) as product_list

 14 from products p

 15 join monthly_sales ms

 16 on ms.product_id = p.id;

Chapter 10 Creating Delimited Text

189

If you didn’t create your own name_coll_type_to_clob and you have APEX installed in

the database, you also have an APEX function that can be used, as I show in Listing 10-14.

Listing 10-14.  Using apex_string.join_clob to aggregate to a clob

SQL> select

 2 apex_string.join_clob(

 3 cast(

 4 collect(

 5 rpad(p.name, 20)

 6 order by p.id

 7)

 8 as apex_t_varchar2

 9)

 10 , ''

 11 , 12 /* dbms_lob.call */

 12) as product_list

 13 from products p

 14 join monthly_sales ms

 15 on ms.product_id = p.id;

This is a function that can be used just like apex_string.join that I showed you

earlier in the chapter. Since apex_string.join_clob returns a temporary clob, it has

an extra parameter compared to apex_string.join to indicate the life span of the

temporary clob, accepting the same values as dbms_lob.createtemporary. In line 11, I

state that the clob just lives for the duration of the call.

Until perhaps a future listagg implementation might possibly implement clob

support, xmlagg, json_arrayagg, and apex_string.join_clob are all valid methods

to use. The JSON functionality in the database has generally been tuned from version

to version, so in the most recent database versions, the JSON functions are typically the

fastest solution.

Chapter 10 Creating Delimited Text

190

�Lessons learned
I’ve shown both built-in and custom-made methods of string aggregation enabling you to

•	 Use built-in listagg function as the preferred method, except for the

special cases where it will not work.

•	 Create a nested table type and a function (or use APEX built-ins) to

use the collect aggregate function as an alternative.

•	 Use a custom created aggregate function stragg.

•	 Do string aggregation both in varchar2 and clob with various built-

in functions.

All of the methods can be good to know for special circumstances, but my

recommendation is in general to stick to listagg if you can. The built-in functionality

normally outperforms anything you can build yourself – unless the circumstances are

very special.

Chapter 10 Creating Delimited Text

PART II

Analytic Functions

193
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_11

CHAPTER 11

Analytic Partitions,
Ordering, and Windows
A wise man once said in a conference presentation that if you put SQL on your resume

and do not know analytic functions, you are lying. I can only agree. It would be similar to

stating you know Windows and have never worked with a newer windows version than

Windows 95.

I use analytic functions almost daily when developing. There are so many cases

where they either are necessary to create a SQL solution at all (the alternative being

a slow procedural solution instead) or at the very least make the SQL much more

performant than not using analytic functions (often cases of many self-joins leading to

multiple lookups of the same data).

The fantastic bit about analytic functions is that you can retrieve or reference values

across rows – you are not restricted to values in the row itself when doing calculations.

You can use different subclauses of analytic functions in different combinations to

achieve this.

The basics of these subclauses, and how they work together, are shown in this

chapter. The rest of Part 2 contains different use cases of analytic functions solving tasks

that often would be hard without.

194

�Sums of quantities
To showcase the different subclauses of an analytic function call, I’ll be using the

orderlines table shown in Figure 11-1.

Figure 11-1.  Orderlines table of how much of each product is ordered by
customers

The orderlines table contains how much is in order from customers for each of the

beers in the products table. In the example queries of this chapter, I’ll join the two tables

just to make it easier to spot the two different beers whose data I show in Listing 11-1.

Listing 11-1.  Content of orderlines table for two beers

SQL> select

 2 ol.product_id as p_id

 3 , p.name as product_name

 4 , ol.order_id as o_id

Chapter 11 Analytic Partitions, Ordering, and Windows

195

 5 , ol.qty

 6 from orderlines ol

 7 join products p

 8 on p.id = ol.product_id

 9 where ol.product_id in (4280, 6600)

 10 order by ol.product_id, ol.qty;

P_ID PRODUCT_NAME O_ID QTY

4280 Hoppy Crude Oil 423 60

4280 Hoppy Crude Oil 427 60

4280 Hoppy Crude Oil 422 80

4280 Hoppy Crude Oil 429 80

4280 Hoppy Crude Oil 428 90

4280 Hoppy Crude Oil 421 110

6600 Hazy Pink Cloud 424 16

6600 Hazy Pink Cloud 426 16

6600 Hazy Pink Cloud 425 24

I’ll make a lot of different sums of the qty column. With the basic ideas you can apply

to most of the analytic functions, sum is just a handy example.

�Analytic syntax
I’m sure you have seen Figure 11-2 in the SQL Reference Manual, showing that all

analytic functions use the keyword over followed by parentheses surrounding an

analytic clause.

Figure 11-2.  Basic analytic function syntax diagram

Chapter 11 Analytic Partitions, Ordering, and Windows

196

Many functions are aggregate functions when used without over and become

analytic when you add over. The interesting bits happen within the analytic clause

shown in Figure 11-3.

The analytic clause has three parts:

•	 query_partition_clause to split the data into partitions and apply the

function separately to each partition

•	 order_by_clause to apply the function in a specific order and/or

provide the ordering that the windowing_clause depends upon

•	 windowing_clause to specify a certain window (fixed or moving) of

the ordered data in the partition

But you’ll notice that the three parts are all optional in the syntax diagram, so the

analytic clause itself is allowed to be empty. Listing 11-2 shows what happens then.

Listing 11-2.  The simplest analytic function call is a grand total

SQL> select

 2 ol.product_id as p_id

 3 , p.name as product_name

 4 , ol.order_id as o_id

 5 , ol.qty

 6 , sum(ol.qty) over () as t_qty

 7 from orderlines ol

 8 join products p

 9 on p.id = ol.product_id

 10 where ol.product_id in (4280, 6600)

 11 order by ol.product_id, ol.qty;

Figure 11-3.  The three parts that make up the analytic clause

Chapter 11 Analytic Partitions, Ordering, and Windows

197

I’ve just taken Listing 11-1 and added line 6: a sum of the qty column as analytic

function (recognizable by the over keyword) with an empty analytic clause. The output

becomes:

P_ID PRODUCT_NAME O_ID QTY T_QTY

4280 Hoppy Crude Oil 423 60 536

4280 Hoppy Crude Oil 427 60 536

4280 Hoppy Crude Oil 422 80 536

4280 Hoppy Crude Oil 429 80 536

4280 Hoppy Crude Oil 428 90 536

4280 Hoppy Crude Oil 421 110 536

6600 Hazy Pink Cloud 424 16 536

6600 Hazy Pink Cloud 426 16 536

6600 Hazy Pink Cloud 425 24 536

The t_qty column simply contains the sum of all the qty values – not of the entire

table, but of those rows that satisfy the where clause.

When executing a SQL statement, evaluation of analytic functions happens after the

rows have been found (where clause evaluation) and also after any group by aggregation

that may be in the statement. Therefore, analytic functions cannot be used in the where,

group by, and having clauses. But they can be used in the order by clause, if you need to.

The empty analytic clause means that no partitioning has been defined, so there

is just a single partition containing all the rows. Also no ordering and windowing have

been defined, so the entire partition is the window on which the sum function is applied.

Therefore it becomes the grand total.

Often, though, I’d like to apply the analytic function on smaller subsets, which I’ll

show next.

�Partitions
There are two ways to split the rows into smaller subsets for analytic functions, each

serving different purposes. The first is partitioning with the query_partition_clause

shown in Figure 11-4.

Chapter 11 Analytic Partitions, Ordering, and Windows

198

You can use one or more expressions to do the partitioning, where there will

be created a partition for each distinct value in the expression(s). Each partition is

completely separated, and the analytic function evaluated in one partition cannot see

data in any other partition.

Note  You’ll see that Listing 11-3 is the same as Listing 11-2, only changed in
the analytic function call. This goes for most of the examples in the chapter –
if nothing else is indicated, they are copies of Listing 11-2 with just the changed
function call shown.

I show a simple example of using partition by in Listing 11-3.

Listing 11-3.  Creating subtotals by product with partitioning

...

 6 , sum(ol.qty) over (

 7 partition by ol.product_id

 8) as p_qty

...

The analytic clause is no longer empty; I have added line 7 to create a partition for

each beer, and the grand totals now apply within each partition only. This way p_qty is a

grand total per product:

P_ID PRODUCT_NAME O_ID QTY P_QTY

4280 Hoppy Crude Oil 423 60 480

4280 Hoppy Crude Oil 427 60 480

4280 Hoppy Crude Oil 422 80 480

Figure 11-4.  Syntax diagram for the query_partition_clause

Chapter 11 Analytic Partitions, Ordering, and Windows

199

4280 Hoppy Crude Oil 429 80 480

4280 Hoppy Crude Oil 428 90 480

4280 Hoppy Crude Oil 421 110 480

6600 Hazy Pink Cloud 424 16 56

6600 Hazy Pink Cloud 426 16 56

6600 Hazy Pink Cloud 425 24 56

That’s nice, but I can be much more creative with the second form of splitting the

data into subsets – windowing with the order_by_clause and windowing_clause.

�Ordering and windows
For the order_by_clause syntax shown in Figure 11-5, the authors of the SQL Reference

Manual have copied the syntax for the regular order by in a query.

Figure 11-5.  Syntax diagram for the order_by_clause

But it isn’t quite the truth. When you read the following description in the manual,

it is explained that keyword siblings cannot be used, and you also cannot use position

and c_alias for an analytic order by.

For some analytic functions, query_partition_clause and order_by_clause are all there

are – the third subclause is unavailable. But for many, you also have the windowing_clause

(Figure 11-6) available. To use windowing, you must have filled the order_by_clause.

Chapter 11 Analytic Partitions, Ordering, and Windows

200

I’ll do a running total in Listing 11-4 by using both ordering and windowing.

Listing 11-4.  Creating a running sum with ordering and windowing

...

 6 , sum(ol.qty) over (

 7 order by ol.qty

 8 rows between unbounded preceding

 9 and current row

 10) as r_qty

...

 15 order by ol.qty;

Line 7 contains my order by and lines 8–9 my window specification. I specify that

when the analytic sum is to be evaluated on a given row, the sum should be applied to

a rolling window of all the preceding rows up to and including the current row. To see

easily what happens, I change the order by in line 15 to match the order by in line 7,

giving me an output with r_qty being a running sum of qty:

P_ID PRODUCT_NAME O_ID QTY R_QTY

6600 Hazy Pink Cloud 426 16 16

6600 Hazy Pink Cloud 424 16 32

6600 Hazy Pink Cloud 425 24 56

4280 Hoppy Crude Oil 427 60 116

4280 Hoppy Crude Oil 423 60 176

4280 Hoppy Crude Oil 422 80 256

4280 Hoppy Crude Oil 429 80 336

Figure 11-6.  Syntax diagram for the windowing_clause

Chapter 11 Analytic Partitions, Ordering, and Windows

201

4280 Hoppy Crude Oil 428 90 426

4280 Hoppy Crude Oil 421 110 536

The qty of each row is added as the rows are processed in order, resulting in the

running sum. When the ordering is not unique, whichever row the database happens to

access first will be added first. The first two lines of the output might have shown o_id

424 before 426 instead, if the access plan had been such that 424 was accessed first.

I can change the order by in line 15 back to the same ordering as Listing 11-2 (and

most other examples), ordering by product_id first, then qty:

...

 15 order by ol.product_id, ol.qty;

Now my output is ordered differently, but the running sum is still calculated with the

order by in the analytic sum, namely, qty alone. You’ll see, for example, that the two first

lines of the previous output are now near the end, but o_id 426 still has a value of 16 in

r_qty and o_id 424 a value of 32 and so on:

P_ID PRODUCT_NAME O_ID QTY R_QTY

4280 Hoppy Crude Oil 423 60 176

4280 Hoppy Crude Oil 427 60 116

4280 Hoppy Crude Oil 422 80 256

4280 Hoppy Crude Oil 429 80 336

4280 Hoppy Crude Oil 428 90 426

4280 Hoppy Crude Oil 421 110 536

6600 Hazy Pink Cloud 424 16 32

6600 Hazy Pink Cloud 426 16 16

6600 Hazy Pink Cloud 425 24 56

Having analytics applied in a different order than the output itself is a useful

technique in a quite a few situations.

Tip T he lower half of Figure 11-6 shows the shortcut syntax. When you have a
window that is rows between something and current row, you can simply
use rows something, and it will default to using something as start row and
current row as end row of the window. In Listing 11-4, I could have replaced

Chapter 11 Analytic Partitions, Ordering, and Windows

202

lines 8–9 with a single line containing rows unbounded preceding. Personally
I like to always use the between syntax, but you can use the shortcut if you like. It
is only syntactical difference, and the result is identical.

Of course I can combine all three clauses in a single call, as I do it in Listing 11-5.

Listing 11-5.  Combining partitioning, ordering, and windowing

...

 6 , sum(ol.qty) over (

 7 partition by ol.product_id

 8 order by ol.qty

 9 rows between unbounded preceding

 10 and current row

 11) as p_qty

...

I partition in line 7 by product_id and order in line 8 by qty, so the window in lines

8–9 gives me a running sum for each beer, which the output shows nicely since I kept the

usual query ordering of product_id, qty:

P_ID PRODUCT_NAME O_ID QTY P_QTY

4280 Hoppy Crude Oil 423 60 60

4280 Hoppy Crude Oil 427 60 120

4280 Hoppy Crude Oil 422 80 200

4280 Hoppy Crude Oil 429 80 280

4280 Hoppy Crude Oil 428 90 370

4280 Hoppy Crude Oil 421 110 480

6600 Hazy Pink Cloud 424 16 16

6600 Hazy Pink Cloud 426 16 32

6600 Hazy Pink Cloud 425 24 56

Windowing is very handy and often used for running totals, but the window can be

much more flexible than that.

Chapter 11 Analytic Partitions, Ordering, and Windows

203

�Flexibility of the window clause
The running totals in the previous two listings was up to and including current row,

which is quite normal. But the window does not need to include the current row, as I

show in Listing 11-6 that calculates running total of all previous rows.

Listing 11-6.  Window with all previous rows

...

 6 , sum(ol.qty) over (

 7 partition by ol.product_id

 8 order by ol.qty

 9 rows between unbounded preceding

 10 and 1 preceding

 11) as p_qty

...

In line 10, I replaced the current row with 1 preceding, meaning the window is all

rows up to and including the row just before the current row:

P_ID PRODUCT_NAME O_ID QTY P_QTY

4280 Hoppy Crude Oil 423 60

4280 Hoppy Crude Oil 427 60 60

4280 Hoppy Crude Oil 422 80 120

4280 Hoppy Crude Oil 429 80 200

4280 Hoppy Crude Oil 428 90 280

4280 Hoppy Crude Oil 421 110 370

6600 Hazy Pink Cloud 424 16

6600 Hazy Pink Cloud 426 16 16

6600 Hazy Pink Cloud 425 24 32

You’ll notice that means that p_qty is null on the first row of each partition, since

there are no preceding rows at that point.

Chapter 11 Analytic Partitions, Ordering, and Windows

204

Windows can also look ahead in the data rather than just look at the preceding rows.

I can change the window specification of Listing 11-6 to a window starting at the current

row and including all the following rows in the partition:

...

 9 rows between current row

 10 and unbounded following

...

That gives me a reversed running total:

P_ID PRODUCT_NAME O_ID QTY P_QTY

4280 Hoppy Crude Oil 423 60 480

4280 Hoppy Crude Oil 427 60 420

4280 Hoppy Crude Oil 422 80 360

4280 Hoppy Crude Oil 429 80 280

4280 Hoppy Crude Oil 428 90 200

4280 Hoppy Crude Oil 421 110 110

6600 Hazy Pink Cloud 424 16 56

6600 Hazy Pink Cloud 426 16 40

6600 Hazy Pink Cloud 425 24 24

Again I do not only need to include the current row; I can also do a window of all

rows yet to come:

...

 9 rows between 1 following

 10 and unbounded following

...

The null value at the end of each partition indicates there are no rows following:

P_ID PRODUCT_NAME O_ID QTY P_QTY

4280 Hoppy Crude Oil 423 60 420

4280 Hoppy Crude Oil 427 60 360

4280 Hoppy Crude Oil 422 80 280

4280 Hoppy Crude Oil 429 80 200

4280 Hoppy Crude Oil 428 90 110

4280 Hoppy Crude Oil 421 110

Chapter 11 Analytic Partitions, Ordering, and Windows

205

6600 Hazy Pink Cloud 424 16 40

6600 Hazy Pink Cloud 426 16 24

6600 Hazy Pink Cloud 425 24

I can give the window bounds in both ends to sum, for example, the values from the

previous row, the current row, and the following row:

...

 9 rows between 1 preceding

 10 and 1 following

...

P_ID PRODUCT_NAME O_ID QTY P_QTY

4280 Hoppy Crude Oil 423 60 120

4280 Hoppy Crude Oil 427 60 200

4280 Hoppy Crude Oil 422 80 220

4280 Hoppy Crude Oil 429 80 250

4280 Hoppy Crude Oil 428 90 280

4280 Hoppy Crude Oil 421 110 200

6600 Hazy Pink Cloud 424 16 32

6600 Hazy Pink Cloud 426 16 56

6600 Hazy Pink Cloud 425 24 40

Or I can make a window that is unbounded in both ends:

...

 9 rows between unbounded preceding

 10 and unbounded following

...

But this makes little sense, as the totally unbounded window is the entire partition,

which means that the order by clause actually does not make a difference to the output,

which is the same as I got from Listing 11-3 that had no order by and no windowing

clause:

P_ID PRODUCT_NAME O_ID QTY P_QTY

4280 Hoppy Crude Oil 423 60 480

4280 Hoppy Crude Oil 427 60 480

4280 Hoppy Crude Oil 422 80 480

Chapter 11 Analytic Partitions, Ordering, and Windows

206

4280 Hoppy Crude Oil 429 80 480

4280 Hoppy Crude Oil 428 90 480

4280 Hoppy Crude Oil 421 110 480

6600 Hazy Pink Cloud 424 16 56

6600 Hazy Pink Cloud 426 16 56

6600 Hazy Pink Cloud 425 24 56

So for the completely unbounded window, I recommend just skipping order by and

windowing clause.

In the syntax diagram, you saw that a window could be specified using either rows

between or range between. As I gave several examples of, a rows between window is

determined by a number of rows before or after the current row. It is different with range

between.

�Windows on value ranges
If I want, I can specify a window not as “two rows before to two rows after the current

row” but instead as “those rows where the value is from 20 less to 20 more than the value

in the current row.” This I can do with range between like Listing 11-7.

Listing 11-7.  Range window based on qty value

...

 6 , sum(ol.qty) over (

 7 partition by ol.product_id

 8 order by ol.qty

 9 range between 20 preceding

 10 and 20 following

 11) as p_qty

...

When I specify between 20 preceding and 20 following in lines 9–10, I ask that

the window will contain those rows where the value is the same as the value in the

current row plus/minus 20. But the value of what?

The value that range will use is the value of the column used in the order by in the

analytic function. Therefore, in order to use range windows, the order by column must

be a number or a date/timestamp.

Chapter 11 Analytic Partitions, Ordering, and Windows

207

The column I calculate the total of in the sum function does not have to be the same

as the one I use for ordering and range, but in practice, it often is, giving me an output

where you can see both third and fourth rows get a sum of 370, as it is the sum of all the

rows in the partition with values between 80-20=60 and 80+20=100:

P_ID PRODUCT_NAME O_ID QTY P_QTY

4280 Hoppy Crude Oil 423 60 280

4280 Hoppy Crude Oil 427 60 280

4280 Hoppy Crude Oil 422 80 370

4280 Hoppy Crude Oil 429 80 370

4280 Hoppy Crude Oil 428 90 360

4280 Hoppy Crude Oil 421 110 200

6600 Hazy Pink Cloud 424 16 56

6600 Hazy Pink Cloud 426 16 56

6600 Hazy Pink Cloud 425 24 56

Even range windows do not have to include the current row value; I can also specify I

want the window to contain those rows with a qty value between the current qty + 5 and

the current qty + 25:

...

 9 range between 5 following

 10 and 25 following

...

P_ID PRODUCT_NAME O_ID QTY P_QTY

4280 Hoppy Crude Oil 423 60 160

4280 Hoppy Crude Oil 427 60 160

4280 Hoppy Crude Oil 422 80 90

4280 Hoppy Crude Oil 429 80 90

4280 Hoppy Crude Oil 428 90 110

4280 Hoppy Crude Oil 421 110

6600 Hazy Pink Cloud 424 16 24

6600 Hazy Pink Cloud 426 16 24

6600 Hazy Pink Cloud 425 24

Chapter 11 Analytic Partitions, Ordering, and Windows

208

Running totals can be performed with range windows as well:

...

 9 range between unbounded preceding

 10 and current row

...

But notice how the running totals are identical for the rows that have same qty value:

P_ID PRODUCT_NAME O_ID QTY P_QTY

4280 Hoppy Crude Oil 423 60 120

4280 Hoppy Crude Oil 427 60 120

4280 Hoppy Crude Oil 422 80 280

4280 Hoppy Crude Oil 429 80 280

4280 Hoppy Crude Oil 428 90 370

4280 Hoppy Crude Oil 421 110 480

6600 Hazy Pink Cloud 424 16 32

6600 Hazy Pink Cloud 426 16 32

6600 Hazy Pink Cloud 425 24 56

Compare this output to the output of Listing 11-5, where the first two rows have

values in p_qty of 60 and 120, respectively. Here they both have 120.

That is because of the nature of the range window, which gives a different meaning

to the term current row. It no longer specifically means the current row, but rather the

value of the current row. (In my opinion it would have been nice to use wording like

current value for range windows, but that is unfortunately not supported syntax.)

So you see range windows using the current row can actually include following rows

in case of value ties. This leads me to showing you a pitfall that is all too easy to fall into.

�The danger of the default window
In Figure 11-3, you can see that it is possible to use order by without specifying a

windowing clause. That leads to a default windowing clause, which might surprise you.

In Listing 11-8, I show you the difference between the default, range between, and rows

between.

Chapter 11 Analytic Partitions, Ordering, and Windows

209

Listing 11-8.  Comparing running sum with default, range, and rows window

SQL> select

 2 ol.product_id as p_id

 3 , p.name as product_name

 4 , ol.order_id as o_id

 5 , ol.qty

 6 , sum(ol.qty) over (

 7 partition by ol.product_id

 8 order by ol.qty

 9 /* no window - rely on default */

 10) as def_q

 11 , sum(ol.qty) over (

 12 partition by ol.product_id

 13 order by ol.qty

 14 range between unbounded preceding

 15 and current row

 16) as range_q

 17 , sum(ol.qty) over (

 18 partition by ol.product_id

 19 order by ol.qty

 20 rows between unbounded preceding

 21 and current row

 22) as rows_q

 23 from orderlines ol

 24 join products p

 25 on p.id = ol.product_id

 26 where ol.product_id in (4280, 6600)

 27 order by ol.product_id, ol.qty;

Chapter 11 Analytic Partitions, Ordering, and Windows

210

I have three analytic function calls here:

•	 Column def_q in lines 6–10 uses order by but leaves the windowing

clause empty.

•	 Column range_q in lines 11–16 uses the range between window for a

running total.

•	 Column rows_q in lines 17–22 uses the rows between window for a

running total.

You see in the output that def_q and range_q are identical:

P_ID PRODUCT_NAME O_ID QTY DEF_Q RANGE_Q ROWS_Q

4280 Hoppy Crude Oil 423 60 120 120 60

4280 Hoppy Crude Oil 427 60 120 120 120

4280 Hoppy Crude Oil 422 80 280 280 200

4280 Hoppy Crude Oil 429 80 280 280 280

4280 Hoppy Crude Oil 428 90 370 370 370

4280 Hoppy Crude Oil 421 110 480 480 480

6600 Hazy Pink Cloud 424 16 32 32 16

6600 Hazy Pink Cloud 426 16 32 32 32

6600 Hazy Pink Cloud 425 24 56 56 56

Yes, if you have an order_by_clause, the default for the windowing_clause is range

between unbounded preceding and current row.

I have seen many blog and forum posts showing a running total as something like

sum(col1) over (order by col2) and leaving it at that. And when you test your code

with this default window, often you get the result you expect, as the difference in output

only occurs when there are duplicates in the values. So you might not spot the error until

the code has gone into production.

Note I t is not just a problem when there are duplicate values. Even if your order
by is unique, using default range between windows for running totals can
potentially incur some overhead by evaluation of the analytic function, impacting
performance. This is because rows between can be executed more optimally by
the SQL engine, while range between requires the SQL engine to “look ahead”

Chapter 11 Analytic Partitions, Ordering, and Windows

211

in the rows and see if possibly any following rows have the same value. For more
detailed explanation of this, see a blog post I did a while back: www.kibeha.
dk/2013/02/rows-versus-default-range-in-analytic.html.

In my opinion, the default ought to have been rows between, as in my experience,

this is by far the most used window specification. It is very often I use rows between and

only once in a rare while range between.

So my best practice rule of thumb is that whenever I have an order by clause, I

always explicitly write the windowing clause, never relying on the default. Even for

those rare cases where my window actually happens to be range between unbounded

preceding and current row, I still write it explicitly. This tells the future me, or any

developers maintaining my code in the future, that the range between is desired. If I see

code where the windowing clause is absent, I always wonder if it is really meant to be

range between or if it is simply a misunderstood copy-paste from a forum post.

This applies only to analytic functions that support the windowing clause, of course.

And I also do not use it if my window is the entire partition, then I simply omit order

by and windowing clause rather than write rows between unbounded preceding and

unbounded following.

But even though Listing 11-5 adheres to this rule of thumb, there is another issue

with it: the fact that it is possibly to get a different output from the same data in different

executions of the code, because the rows with duplicate values might be in different

order in the output depending on the access plan used by the optimizer.

This issue does not strictly influence the correctness of the solution, but users

are liable to question the correctness when they observe different outputs (even if

both outputs are correct). So I make it my best practice to make the combination of

the columns used in partition by and order by unique in the analytic function

(when using rows between, not applicable to range between). This makes the output

deterministic, so the user can verify he gets the same result in each run.

Listing 11-9 represents both these best practices for doing running totals.

Listing 11-9.  A best practice for a running sum

SQL> select

 2 ol.product_id as p_id

 3 , p.name as product_name

 4 , ol.order_id as o_id

Chapter 11 Analytic Partitions, Ordering, and Windows

http://www.kibeha.dk/2013/02/rows-versus-default-range-in-analytic.html
http://www.kibeha.dk/2013/02/rows-versus-default-range-in-analytic.html

212

 5 , ol.qty

 6 , sum(ol.qty) over (

 7 partition by ol.product_id

 8 order by ol.qty, ol.order_id

 9 rows between unbounded preceding

 10 and current row

 11) as p_qty

 12 from orderlines ol

 13 join products p

 14 on p.id = ol.product_id

 15 where ol.product_id in (4280, 6600)

 16 order by ol.product_id, ol.qty, ol.order_id;

In reality I am only interested in the qty ordering within each product_id partition

(as in Listing 11-5), but the combination of those two columns is not unique, making the

output nondeterministic. Therefore, I add order_id to both order by clauses (lines 8

and 16):

P_ID PRODUCT_NAME O_ID QTY P_QTY

4280 Hoppy Crude Oil 423 60 60

4280 Hoppy Crude Oil 427 60 120

4280 Hoppy Crude Oil 422 80 200

4280 Hoppy Crude Oil 429 80 280

4280 Hoppy Crude Oil 428 90 370

4280 Hoppy Crude Oil 421 110 480

6600 Hazy Pink Cloud 424 16 16

6600 Hazy Pink Cloud 426 16 32

6600 Hazy Pink Cloud 425 24 56

This ensures a deterministic output.

And in this case the statement can even execute using only a single sorting

operation, since the columns in the analytic partition by followed by the columns in

the analytic order by match the columns in the final order by in line 16. This enables

the optimizer to skip the final ordering, as the analytic function evaluation has already

ordered the data correctly.

Chapter 11 Analytic Partitions, Ordering, and Windows

213

�Lessons learned
This chapter introduced the basic elements of the three subclauses of analytic functions.

Although I’ve shown it specifically using the sum function, you can generalize to other

analytic functions and use what you’ve learned about

•	 Using partition by to split rows into parts where the analytic

function is applied within each part separately.

•	 Using the windowing clause in conjunction with order by to create

moving windows of rows to calculate, for example, running totals.

•	 Understanding that the default windowing clause is rarely a good

match for your use case, so always using an explicit windowing clause

is a good idea.

With a good understanding of these subclauses, you can make analytic functions

solve many otherwise difficult tasks for you. The following chapters in this part of the

book are dedicated to several such solutions.

Chapter 11 Analytic Partitions, Ordering, and Windows

215
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_12

CHAPTER 12

Answering Top-N
Questions
I think it is extremely few developers that haven’t been asked to create a Top-N report.

The questions by the business that can be classified as a Top-N question are legion such

as the following:

•	 Which of our products sell the most?

•	 Which user profiles create the most tweets?

•	 Which sales employees generate most leads?

•	 Which hotels in the chain have the least complaints?

The last one could strictly speaking be called a Bottom-N question, but that is

in principle exactly the same. For a Top-N report, you order the data by a specific

descending order and pick the Top-N rows of data. If you want a Bottom-N report, you

simply order the data by a specific ascending order and still pick the Top-N rows of

data. In SQL terms, it simply is a matter of doing order by col_name desc vs. order by

col_name asc. So I’m just going to show Top-N examples – Bottom-N you can get by

replacing desc with asc.

To demonstrate the Top-N SQL, I’m using the first question from the preceding list:

Which of our products sell the most?

�Top-N of sales data
As my Good Beer Trading company sells beer, the marketing department has asked me

to find out the Top-3 best-selling beers the company sells, so they can do a campaign

with a pedestal like Figure 12-1.

216

Now that’s a quite naïve question they gave me here, so I need to get back to them

and ask them to specify what they mean. Do I determine the ordering in terms of

quantity or amount sold? Is it all-time best sellers they want or from a specific year?

What should I do if there are ties where two or more beers have sold the same?

Often the easiest way for me as a developer to get the detailed specification I need is

to give them examples, since they sometimes won’t understand why “Top-3 best-selling

beers” is an ambiguous question.

Figure 12-1.  Top-3 beers by total sales

Chapter 12 Answering Top-N Questions

217

�Which kind of Top-3 do you mean?
Particularly there’s ambiguity concerning what to do in case of ties. Generally there are

three cases:

•	 Top-rows rule: “I want exactly 3 rows.”

In such a case, I need to explain to the business that this means

they will not see, for example, a fourth row that has exactly the

same value as the third row. For such a tie, the output will not

show both rows, but only one of them. In this case, either it will be

a random one or the business needs to decide a tiebreaker rule to

determine which one to output.

•	 Olympic rule: “I want gold, silver, and bronze the Olympic way.”

By the rules often used in sports competitions, if, for example,

there’s a tie for first place, two gold medals are given, then the

silver medal is skipped, and the third guy gets a bronze medal.

Using this rule can lead to more than three rows in the output, for

example, when there is a tie for bronze, in which case there will be

one first place, one second place, and two third places for a total of

four rows in the output.

•	 Top-values rule: “I want all that have the Top-3 values.”

With the previous rule, if there’s a tie for second place, there’ll be a

gold medal and two silver medals, but no bronze medal. This rule

states that no matter how many ties there are for first value, ties for

second value, and ties for third value, the output should contain

all the rows that have the Top-3 values.

All of these Top-3 rules can be handled in SQL – I’ll demonstrate how.

Chapter 12 Answering Top-N Questions

218

�The sales data for the beer
Figure 12-2 shows the tables with the beer sales data per month and the beer product

names.

I’ll be doing Top-N queries both on the total sales of the products and the sales

for each year (there’s sales data for 2016, 2017, and 2018), and in Listing 12-1, I have a

couple of views that aggregate the monthly sales.

Listing 12-1.  Views for aggregating sales on total and year level

SQL> create or replace view total_sales

 2 as

 3 select

 4 ms.product_id

 5 , max(p.name) as product_name

 6 , sum(ms.qty) as total_qty

 7 from products p

 8 join monthly_sales ms

Figure 12-2.  Tables holding monthly sales for products

Chapter 12 Answering Top-N Questions

219

 9 on ms.product_id = p.id

 10 group by

 11 ms.product_id;

View TOTAL_SALES created.

SQL> create or replace view yearly_sales

 2 as

 3 select

 4 extract(year from ms.mth) as yr

 5 , ms.product_id

 6 , max(p.name) as product_name

 7 , sum(ms.qty) as yr_qty

 8 from products p

 9 join monthly_sales ms

 10 on ms.product_id = p.id

 11 group by

 12 extract(year from ms.mth), ms.product_id;

View YEARLY_SALES created.

Querying the total_sales view, I can order it by total_qty desc in Listing 12-2.

Listing 12-2.  A view of the total sales data

SQL> select product_name, total_qty

 2 from total_sales

 3 order by total_qty desc;

That shows me the ten beers from the products table, and I can visually see here

which beers are the Top-3 best-selling beers. Since we have a tie for second place, then

by the top-rows and the Olympic rules, it’s the first three rows, and by the top-values

rule, it’s the first four rows:

PRODUCT_NAME TOTAL_QTY

Reindeer Fuel 1604

Ghost of Hops 1485

Monks and Nuns 1485

Der Helle Kumpel 1230

Chapter 12 Answering Top-N Questions

220

Hercule Trippel 1056

Summer in India 961

Pale Rider Rides 883

Coalminers Sweat 813

Hazy Pink Cloud 324

Hoppy Crude Oil 303

I could query the yearly_sales view the same way:

SQL> select yr, product_name, yr_qty

 2 from yearly_sales

 3 order by yr, yr_qty desc;

But in Listing 12-3, I’m going to use the pivoting technique from Chapter 8 to show

the ranking of the beers in columns for each year. Not that it is necessary for doing Top-N

queries, but it visualizes the difference in the data over the three years.

Listing 12-3.  A view of the yearly sales data (manually formatted, not

ansiconsole)

SQL> select *

 2 from (

 3 select

 4 yr, product_name, yr_qty

 5 , row_number() over (

 6 partition by yr

 7 order by yr_qty desc

 8) as rn

 9 from yearly_sales

 10)

 11 pivot (

 12 max(product_name) as prod

 13 , max(yr_qty)

 14 for yr in (

 15 2016, 2017, 2018

 16)

 17)

 18 order by rn;

Chapter 12 Answering Top-N Questions

221

I’m getting a little ahead of myself with the use of analytic function row_number in

lines 5–8. I’ll explain more in a little while, but what it does here is assigning the numbers

1–10 to each beer within each year in order of quantity sold. This number (rn) is then

used for the implicit group by in the pivot, so I get an output with ten rows numbered

1–10 having two columns for each year – the name of the beer and the quantity sold:

 RN 2016_PROD 2016 2017_PROD 2017 2018_PROD 2018

--- --------- ---- --------- ---- --------- ----

 1 Ghost of 552 Monks and 582 Reindeer 691

 Hops Nuns Fuel

 2 Monks and 478 Reindeer 582 Pale Ride 491

 Nuns Fuel r Rides

 3 Der Helle 415 Ghost of 482 Hercule T 451

 Kumpel Hops rippel

 4 Summer in 377 Der Helle 458 Ghost of 451

 India Kumpel Hops

 5 Reindeer 331 Hercule T 344 Monks and 425

 Fuel rippel Nuns

 6 Coalminer 286 Summer in 321 Der Helle 357

 s Sweat India Kumpel

 7 Hercule T 261 Coalminer 227 Coalminer 300

 rippel s Sweat s Sweat

 8 Pale Ride 182 Pale Ride 210 Summer in 263

 r Rides r Rides India

 9 Hazy Pink 121 Hazy Pink 105 Hoppy Cru 132

 Cloud Cloud de Oil

 10 Hoppy Cru 99 Hoppy Cru 72 Hazy Pink 98

 de Oil de Oil Cloud

I’ve made the beer name columns narrow with sqlcl column formatting to get line

breaks in the names instead of line breaks that put 2018 data below 2016 and 2017.

This way doesn’t break names as nice, but the quantities are aligned to make it easy

Chapter 12 Answering Top-N Questions

222

to observe the ordering in each year and where the ties are. Notice there’s a tie for first

place in 2017 and a tie for third place in 2018.

�Traditional rownum method
Before analytic functions, a traditional method for a Top-N query was to do an inline

view with the desired order by clause and then filter on rownum <= in the outer query, as

I show in Listing 12-4.

Listing 12-4.  Top-3 using inline view and filter on rownum

SQL> select *

 2 from (

 3 select product_name, total_qty

 4 from total_sales

 5 order by total_qty desc

 6)

 7 where rownum <= 3;

This method gives me the Top-3 beers according to the top-rows rule:

PRODUCT_NAME TOTAL_QTY

Reindeer Fuel 1604

Monks and Nuns 1485

Ghost of Hops 1485

It works fine and is performant – the optimizer recognizes the construct and will do

as little work as possible to get only the desired three rows.

However, this method cannot as easily help us with the Olympic rule and the top-

values rule. For those it is much easier to use analytic functions.

�Analytic functions for ranking
In Listing 12-5, I am rewriting Listing 12-4, just using the analytic function row_number in

line 5 instead of the construct with rownum. As an analytic function cannot be used inside

the where clause, I still need to use an inline view.

Chapter 12 Answering Top-N Questions

223

Listing 12-5.  Top-3 using inline view and filter on row_number()

SQL> select *

 2 from (

 3 select

 4 product_name, total_qty

 5 , row_number() over (order by total_qty desc) as ranking

 6 from total_sales

 7)

 8 where ranking <= 3

 9 order by ranking;

The output is the same as I got from Listing 12-4 – it is still the top-rows rule I am

applying for my Top-3 output:

PRODUCT_NAME TOTAL_QTY RANKING

Reindeer Fuel 1604 1

Monks and Nuns 1485 2

Ghost of Hops 1485 3

But row_number is not the only analytic function I can use for ranking my data; I

have two other analytic functions at my disposal too. Listing 12-6 compares the three

functions.

Listing 12-6.  Comparison of the three analytic ranking functions

SQL> select

 2 product_name, total_qty

 3 , row_number() over (order by total_qty desc) as rn

 4 , rank() over (order by total_qty desc) as rnk

 5 , dense_rank() over (order by total_qty desc) as dr

 6 from total_sales

 7 order by total_qty desc;

The three functions correspond directly to the three ranking rules I’ve mentioned:

•	 row_number	 - Implements the top-rows rule

•	 rank		 - Implements the Olympic rule

•	 dense_rank	 - Implements the top-values rule

Chapter 12 Answering Top-N Questions

224

Which I can see in the output:

PRODUCT_NAME TOTAL_QTY RN RNK DR

Reindeer Fuel 1604 1 1 1

Ghost of Hops 1485 2 2 2

Monks and Nuns 1485 3 2 2

Der Helle Kumpel 1230 4 4 3

Hercule Trippel 1056 5 5 4

Summer in India 961 6 6 5

Pale Rider Rides 883 7 7 6

Coalminers Sweat 813 8 8 7

Hazy Pink Cloud 324 9 9 8

Hoppy Crude Oil 303 10 10 9

I simply get consecutive numbers when I use row_number.

When I use rank, a row can follow one of two rules: if it is a tie with the previous row,

it gets the same ranking as the previous row; if it is not a tie, it gets the same ranking as

if it had been using row_number. This makes it “skip” rankings in the Olympic fashion,

like here where we have two beers ranked second place and then the next one is ranked

fourth place.

Lastly with dense_rank, a row can also follow one of two rules: again if it is a tie with

the previous row, it gets the same ranking as the previous row; but if it is not a tie, the row

here gets the ranking of the previous row plus one. Therefore, rankings are not skipped,

but a consecutive ranking is assigned to each unique value, thus implementing the top-

values rule.

Armed with these different analytic functions, it is easy for me to switch between the

different ranking rules. Listing 12-5 gave me the top-rows rule – I can simply change line

5 to rank to use the Olympic rule:

 5 , rank() over (order by total_qty desc) as ranking

In this case, the output is the same three beers; the only difference is that the second

and third rows both are ranked as second place:

PRODUCT_NAME TOTAL_QTY RANKING

Reindeer Fuel 1604 1

Ghost of Hops 1485 2

Monks and Nuns 1485 2

Chapter 12 Answering Top-N Questions

225

Or alternatively I can change line 5 to dense_rank to use the top-values rule:

 5 , dense_rank() over (order by total_qty desc) as ranking

This gives me a Top-3 report with an output of four rows, since there are two rows

both having the second place ranked value:

PRODUCT_NAME TOTAL_QTY RANKING

Reindeer Fuel 1604 1

Monks and Nuns 1485 2

Ghost of Hops 1485 2

Der Helle Kumpel 1230 3

With these three analytic functions, I can answer Top-N questions with all three

rules, so I’m happy. The only slight hitch is that I still need to write inline views and filter

rows in the outer query. Could I write less? The answer is yes.

�Fetch only the first rows
In version 12 came along a new syntax to the select statement – the row limiting clause.

It’s also known as fetch first, since that’s the syntax used as you can see in Listing 12-7.

Listing 12-7.  Fetching only the first three rows

SQL> select product_name, total_qty

 2 from total_sales

 3 order by total_qty desc

 4 fetch first 3 rows only;

With this syntax, I skip the inline view; I just write my query with a suitable order by

clause and append the fetch first clause to state I only want the first three rows, which

is then what I get in the output:

PRODUCT_NAME TOTAL_QTY

Reindeer Fuel 1604

Ghost of Hops 1485

Monks and Nuns 1485

Chapter 12 Answering Top-N Questions

226

Doing rows only gave me a result according to the first-rows rule. In effect this is

simply “syntactic sugar” that makes it easier and simpler to write such a Top-N query,

but underneath the database is automagically rewriting Listing 12-7 to perform the same

operation as an inline view with a row_number function like Listing 12-5. The two listings

work and perform identically; the difference is only that Listing 12-7 is shorter and easier

to write and read.

The row limiting clause has another option instead of rows only – I can choose to do

rows with ties:

 4 fetch first 3 rows with ties;

The definition is that when the three rows have been fetched, it checks if there are

further rows with the same value (ties) – if yes, then these are also output. For the data

here, this is not the case, so I get the same output:

PRODUCT_NAME TOTAL_QTY

Reindeer Fuel 1604

Ghost of Hops 1485

Monks and Nuns 1485

The rule from the rows with ties definition is implemented underneath as an inline

view with a rank function call, as that rule matches the Olympic rule I’ve shown – it is

just stated differently.

But how does that compare to the tie handling of the analytic functions according to

the three ranking rules I showed before? I’ll dive a little deeper into the handling of ties

with some examples from the yearly sales data.

�Handling of ties
In Listing 12-8, I am comparing the three analytic ranking functions for the sales of year

2018 (similar to how I compared them for total sales in Listing 12-6). As I can show my

point just with the first five rows instead of showing all ten beers, I use fetch first in

line 9 just because it’s so easy that way to save paper in the book.

Chapter 12 Answering Top-N Questions

227

Listing 12-8.  Comparison of analytic functions for 2018 sales

SQL> select

 2 product_name, yr_qty

 3 , row_number() over (order by yr_qty desc) as rn

 4 , rank() over (order by yr_qty desc) as rnk

 5 , dense_rank() over (order by yr_qty desc) as dr

 6 from yearly_sales

 7 where yr = 2018

 8 order by yr_qty desc

 9 fetch first 5 rows only;

In 2018 I have a tie for third place, as I can see here in the output:

PRODUCT_NAME YR_QTY RN RNK DR

Reindeer Fuel 691 1 1 1

Pale Rider Rides 491 2 2 2

Hercule Trippel 451 3 3 3

Ghost of Hops 451 4 3 3

Monks and Nuns 425 5 5 4

So in Listing 12-9, I can use line 5 to apply the top-rows rule and get the first three

rows as they are ranked by the row_number function (the rn column in the preceding

output).

Listing 12-9.  Fetching first three rows for 2018

SQL> select product_name, yr_qty

 2 from yearly_sales

 3 where yr = 2018

 4 order by yr_qty desc

 5 fetch first 3 rows only;

And yes, I get the desired three rows in the output:

PRODUCT_NAME YR_QTY

Reindeer Fuel 691

Pale Rider Rides 491

Hercule Trippel 451

Chapter 12 Answering Top-N Questions

228

But hang on – I could also get this output instead, since Ghost of Hops and Hercule

Trippel both sold 451 in 2018:

PRODUCT_NAME YR_QTY

Reindeer Fuel 691

Pale Rider Rides 491

Ghost of Hops 451

The query in Listing 12-9 has an indeterminate output – which of these two outputs

I get will in principle be random; in practice whether I get Hercule Trippel or Ghost of

Hops in the third line depends on which of the two beers the database happens to find

first in the order that it happens to access the data. That will be highly dependent on

which access plan the optimizer chooses.

The problem is not only when using fetch first with rows only, it applies equally

when I myself use the row_number function. In the output from Listing 12-8, Hercule

Trippel and Ghost of Hops might have swapped places – I cannot know.

Typically business users dislike a report whose output “changes overnight” when

supposed be identical, which might happen if, for example, statistics gathering made the

optimizer choose a different access path the next day. In other words, users don’t like

indeterminate output. A best practice when using row_number or fetch first with rows

only can be to always make the order by deterministic by adding some tiebreaker rule,

for example, stating that in case of ties always display the one with the first product id:

order by yr_qty desc, product_id

But I prefer instead to convince the business user that he really doesn’t want to use

the first-rows rule; instead he most likely would like, for example, to use the Olympic

rule, which I then can implement easily by using with ties instead of rows only:

 4 order by yr_qty desc

 5 fetch first 3 rows with ties;

And then I get an output of four rows showing both Hercule Trippel and Ghost of Hops:

PRODUCT_NAME YR_QTY

Reindeer Fuel 691

Pale Rider Rides 491

Hercule Trippel 451

Ghost of Hops 451

Chapter 12 Answering Top-N Questions

229

Now in that output, it is actually indeterminate in which order Hercule Trippel

and Ghost of Hops are displayed. As I remarked before, users dislike that, so it can be

tempting to “fix” this by making sure the order by is deterministic:

 4 order by yr_qty desc, product_id

 5 fetch first 3 rows with ties;

But that would be a wrong approach, since when the order by is deterministic, there

are no ties by definition, so the output then is not what I want:

PRODUCT_NAME YR_QTY

Reindeer Fuel 691

Pale Rider Rides 491

Hercule Trippel 451

When I want ties to be displayed in my output, I’ll have to live with a

nondeterministic output when I use fetch first. If I cannot live with that, I’ll have to

code the inline view with the rank function manually, since that gives me higher control

and enables me to use the nondeterministic order by in the analytic function call and a

deterministic order by in the outer query.

�What the row limiting clause cannot do
So with ties in the fetch first row limiting clause handles ties like if I use analytic

function rank. But let me change Listing 12-8 to show the year 2017 instead of 2018:

 7 where yr = 2017

This time I have a tie for first place:

PRODUCT_NAME YR_QTY RN RNK DR

Monks and Nuns 582 1 1 1

Reindeer Fuel 582 2 1 1

Ghost of Hops 482 3 3 2

Der Helle Kumpel 458 4 4 3

Hercule Trippel 344 5 5 4

Let me try to use fetch first with ties for 2017 in Listing 12-10.

Chapter 12 Answering Top-N Questions

230

Listing 12-10.  Fetching with ties for 2017

SQL> select product_name, yr_qty

 2 from yearly_sales

 3 where yr = 2017

 4 order by yr_qty desc

 5 fetch first 3 rows with ties;

I get those rows where column RNK is <= 3:

PRODUCT_NAME YR_QTY

Monks and Nuns 582

Reindeer Fuel 582

Ghost of Hops 482

In other words this is like the Olympic rule for handling ties. If I want to use the first-

values rule to get all rows that have the Top-3 values, I cannot do it with the row limiting

clause. There simply does not exist syntax like:

fetch first 3 values with ties; /* <-- Invalid syntax */

Instead I need to manually create my inline view and use dense_rank as shown in

Listing 12-11.

Listing 12-11.  Using dense_rank for what fetch first cannot do

SQL> select *

 2 from (

 3 select

 4 product_name, yr_qty

 5 , dense_rank() over (order by yr_qty desc) as ranking

 6 from yearly_sales

 7 where yr = 2017

 8)

 9 where ranking <= 3

 10 order by ranking;

Chapter 12 Answering Top-N Questions

231

Now I’m getting the four rows from 2017 that have the Top-3 values:

PRODUCT_NAME YR_QTY RANKING

Monks and Nuns 582 1

Reindeer Fuel 582 1

Ghost of Hops 482 2

Der Helle Kumpel 458 3

The row limiting clause is a very handy shortcut for Top-N queries, but it can only

do the top-rows or Olympic rule, internally implementing it like an inline view with

row_number or rank analytic functions. If you want top-values rule, you do it yourself

with dense_rank.

�Top-N in multiple partitions
So far I’ve executed a Top-N query either for the total sales or for a specific year in the

yearly sales. In either case, I ended up with just the “top” rows of the entire row set.

But suppose I’d like to see the Top-3 best-selling beers for each of the years. Of

course I could write a query for each year, perhaps putting them together with union all

to get it all in one output.

But Listing 12-12 shows a much easier way using the partition by clause in line 6.

Listing 12-12.  Ranking with row_number within each year

SQL> select *

 2 from (

 3 select

 4 yr, product_name, yr_qty

 5 , row_number() over (

 6 partition by yr

 7 order by yr_qty desc

 8) as ranking

 9 from yearly_sales

 10)

 11 where ranking <= 3

 12 order by yr, ranking;

Chapter 12 Answering Top-N Questions

232

With the partition by, assignment of row_number values happens within each

partition:

•	 The data is split into partitions – one for each distinct value of yr.

•	 In each partition, the data is ordered by yr_qty desc and

consecutive numbers 1, 2, 3, … assigned.

This is what I utilize in Listing 12-3 some pages back in the chapter to get numbers

1-10 assigned to beers within each year, so I could pivot and list the beers in order per

year in columns side by side.

But here in Listing 12-12, I am not pivoting; instead I filter on the result of the inline

view, so I only keep those rows that have got row_number 1, 2, and 3 within each year:

YR PRODUCT_NAME YR_QTY RANKING

2016 Ghost of Hops 552 1

2016 Monks and Nuns 478 2

2016 Der Helle Kumpel 415 3

2017 Monks and Nuns 582 1

2017 Reindeer Fuel 582 2

2017 Ghost of Hops 482 3

2018 Reindeer Fuel 691 1

2018 Pale Rider Rides 491 2

2018 Hercule Trippel 451 3

That gave me nine rows (three beers per each of three years) that are a Top-3 report

per year by the first-rows rule.

I can easily change line 5 to use the rank function and get me a Top-3 report per year

by the Olympic rule:

 5 , rank() over (

That gives me ten rows, since in 2018 there are four beers with ranking <= 3:

YR PRODUCT_NAME YR_QTY RANKING

2016 Ghost of Hops 552 1

2016 Monks and Nuns 478 2

2016 Der Helle Kumpel 415 3

2017 Monks and Nuns 582 1

2017 Reindeer Fuel 582 1

Chapter 12 Answering Top-N Questions

233

2017 Ghost of Hops 482 3

2018 Reindeer Fuel 691 1

2018 Pale Rider Rides 491 2

2018 Hercule Trippel 451 3

2018 Ghost of Hops 451 3

And the first-values rule I implement with a dense_rank in line 5:

 5 , dense_rank() over (

This produces 11 rows, since with this rule I have four beers with ranking <= 3 both

in 2017 and 2018:

YR PRODUCT_NAME YR_QTY RANKING

2016 Ghost of Hops 552 1

2016 Monks and Nuns 478 2

2016 Der Helle Kumpel 415 3

2017 Monks and Nuns 582 1

2017 Reindeer Fuel 582 1

2017 Ghost of Hops 482 2

2017 Der Helle Kumpel 458 3

2018 Reindeer Fuel 691 1

2018 Pale Rider Rides 491 2

2018 Hercule Trippel 451 3

2018 Ghost of Hops 451 3

All in all, using analytic functions in inline views makes it very easy to either choose a

total Top-N report or put in partition by and get a Top-N per year (or whatever you use

for partition key or keys).

Using the row limiting clause, this is not quite so easy.

�The lateral trick for the row limiting clause
fetch first does not support partition by, so basically you cannot do it but have to

write it with analytic functions as shown in Listing 12-12.

But there is a trick that can allow you to emulate the behavior by using a lateral

join to correlate an inline view, if you have some row source that defines your “manual

partitions.”

Chapter 12 Answering Top-N Questions

234

In Listing 12-13 lines 3–5, I create an inline view years that hardcodes three

“partitions” – the three years 2016, 2017, and 2018. Then I have another inline view top_

sales that is a Top-3 query using fetch first, and in this inline view, I filter on the year in

line 10. I can do this correlation in line 10 because of the cross join lateral in line 7,

which means that inline view top_sales is executed once for each of the rows from

inline view years.

Listing 12-13.  Using fetch first in a laterally joined inline view

SQL> select top_sales.*

 2 from (

 3 select 2016 as yr from dual union all

 4 select 2017 as yr from dual union all

 5 select 2018 as yr from dual

 6) years

 7 cross join lateral (

 8 select yr, product_name, yr_qty

 9 from yearly_sales

 10 where yearly_sales.yr = years.yr

 11 order by yr_qty desc

 12 fetch first 3 rows with ties

 13) top_sales;

Using this lateral trick and with ties, Listing 12-13 produces the same ten rows as

Listing 12-12 did when I used rank:

YR PRODUCT_NAME YR_QTY

2016 Ghost of Hops 552

2016 Monks and Nuns 478

2016 Der Helle Kumpel 415

2017 Monks and Nuns 582

2017 Reindeer Fuel 582

2017 Ghost of Hops 482

2018 Reindeer Fuel 691

2018 Pale Rider Rides 491

2018 Hercule Trippel 451

2018 Ghost of Hops 451

Chapter 12 Answering Top-N Questions

235

Depending on the data and indexes and such, this could easily perform worse than

the analytic method in Listing 12-12. If everything is right, it can perform just as well, but

not faster. So is there really any use for this?

Well, the main difference is that the analytic function method of Listing 12-12

requires you to be able to specify an expression resulting in a set of unique values to

partition by – while Listing 12-13 can correlate with an arbitrarily complex where

clause in line 10.

I admit that using, for example, case structure, you can make very complex

expressions for partitioning, so it will be a very rare case where the complexity is such

that Listing 12-13 is needed – but it’s nice to know the option is there, just in case.

�Lessons learned
In this chapter I’ve used sales data to exemplify Top-N queries, along the way providing

you insight in

•	 The three different Top-N query types: top-rows, Olympic, and top-

values

•	 Implementing these with analytic functions row_number, rank, and

dense_rank

•	 Using the shortcut fetch first row limiting clause for the first two

types

•	 Doing Top-N per subsets of data with partition by in analytic

functions

These methods will help you in many use cases, not just sales data.

Chapter 12 Answering Top-N Questions

237
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_13

CHAPTER 13

Ordered Subsets
with Rolling Sums
One of the most useful features of analytic functions is the flexibility of the window clause,

enabling aggregation of particular subsets of the data within a specific order. A classic

subset that can be used for many purposes is the set of data from the beginning until the

current row – if, for example, the sum aggregate function is used on that subset, you get

an accumulated sum or rolling sum or running total (many names for the same thing).

The use cases are plenty; many financial reports need running totals. But a different

practical use case that has been extremely helpful in my work involves a slight variation

of the running total, where I use the sum of all the previous rows to keep selecting rows

until I have selected just sufficiently large subset to cover the sum I need – in this case

until I have picked enough goods in the warehouse to cover the order by a customer.

The complete case in this chapter will demonstrate the use of analytic functions to

solve three problems simultaneously:

•	 Picking goods from the inventory in a certain order – most notably in

first-in, first-out (FIFO) order

•	 Ordering the picking list to make the operator drive optimally

through the warehouse

•	 Batch picking multiple orders

It can all be done in a single SQL statement, and I’ll show the gradual building of

the statement by solving the first problem and then expanding the statement adding the

solutions to the second and third problems.

238

�Data for goods picking
When you look at Figure 13-1, there are a lot of tables, mostly to show you a fairly realistic

data model. For demonstration purposes, I could have simplified this a lot, but I will do

that with a view, as you’ll see shortly.

Figure 13-1.  The tables used in this chapter

Chapter 13 Ordered Subsets with Rolling Sums

239

In the inventory table is stored how many of a given product are currently stored

in a given location and from which purchase did that quantity originate (thereby giving

us the age of quantity in that location). Basically that’s just foreign keys to locations,

products, and purchases tables and then a qty column.

Then there are customers who have given orders that have orderlines specifying

which products they are buying, how many, and for how much.

To simplify working with these tables, I create the view inventory_with_dims shown

in Listing 13-1. This simply joins the inventory table with the three referenced tables,

so that I have all relevant information (product name, purchase date, warehouse, aisle,

position) for each inventory row.

Listing 13-1.  View joining inventory with other relevant tables

create or replace view inventory_with_dims

as

select

 i.id

 , i.product_id

 , p.name as product_name

 , i.purchase_id

 , pu.purchased

 , i.location_id

 , l.warehouse

 , l.aisle

 , l.position

 , i.qty

from inventory i

join purchases pu

 on pu.id = i.purchase_id

join products p

 on p.id = i.product_id

join locations l

 on l.id = i.location_id;

When I build my picking SQL statement, I’ll be using this view together with the

orderlines table.

Chapter 13 Ordered Subsets with Rolling Sums

240

�Building the picking SQL
For the first two parts of the problem, I will just pick a single order, the order with

id = 421. In Listing 13-2, I’ll just show you the data of that order.

Listing 13-2.  Data for the order I am going to pick

SQL> select

 2 c.id as c_id

 3 , c.name as c_name

 4 , o.id as o_id

 5 , ol.product_id as p_id

 6 , p.name as p_name

 7 , ol.qty

 8 from orders o

 9 join orderlines ol

 10 on ol.order_id = o.id

 11 join products p

 12 on p.id = ol.product_id

 13 join customers c

 14 on c.id = o.customer_id

 15 where o.id = 421

 16 order by o.id, ol.product_id;

As you see here in the output, the White Hart pub has ordered 110 of Hoppy Crude

Oil and 140 of Der Helle Kumpel:

C_ID C_NAME O_ID P_ID P_NAME QTY

50042 The White Hart 421 4280 Hoppy Crude Oil 110

50042 The White Hart 421 6520 Der Helle Kumpel 140

Then it’s time to start building an analytic SQL statement.

�Solving picking an order by FIFO
The first thing I do is I join the orderlines of order 421 with the inventory_with_dims

view in Listing 13-3.

Chapter 13 Ordered Subsets with Rolling Sums

241

(Bear with me that I’m using very short column aliases, but it’s an easy way to get a

sqlcl output with very narrow columns that fits nicely on print.)

Listing 13-3.  Possible inventory to pick – in order of purchase date

SQL> select

 2 i.product_id as p_id

 3 , ol.qty as ord_q

 4 , i.qty as loc_q

 5 , sum(i.qty) over (

 6 partition by i.product_id

 7 order by i.purchased, i.qty

 8 rows between unbounded preceding and current row

 9) as acc_q

 10 , i.purchased

 11 , i.warehouse as wh

 12 , i.aisle as ai

 13 , i.position as pos

 14 from orderlines ol

 15 join inventory_with_dims i

 16 on i.product_id = ol.product_id

 17 where ol.order_id = 421

 18 order by i.product_id, i.purchased, i.qty;

In lines 5–9 I am doing a rolling sum of the inventory quantity, partitioned by

product and ordered by purchase date. And for those cases with multiple rows having

the same purchase date, I add the quantity to the ordering, so I get to clean out smaller

quantities in the warehouse first.

In this query, the final order by in line 18 matches the columns of the partition by

followed by order by in the analytic function. This is not necessary (later I will change

this on purpose), but when they match like here, then the optimizer can do both with a

single sorting operation.

Chapter 13 Ordered Subsets with Rolling Sums

242

The output shows me for each of the two ordered products all of the inventory in

purchase order, and in column acc_q (accumulated quantity), I can see the rolling sum:

P_ID ORD_Q LOC_Q ACC_Q PURCHASED WH AI POS

4280 110 36 36 2018-02-23 1 C 1

4280 110 39 75 2018-04-23 1 D 18

4280 110 35 110 2018-06-23 2 B 3

4280 110 34 144 2018-08-23 2 C 20

4280 110 37 181 2018-10-23 1 A 4

4280 110 19 200 2018-12-23 2 C 7

6520 140 14 14 2018-02-26 2 B 5

6520 140 14 28 2018-02-26 1 A 29

6520 140 20 48 2018-02-26 1 C 13

6520 140 24 72 2018-02-26 2 B 26

6520 140 26 98 2018-04-26 2 D 9

6520 140 48 146 2018-04-26 1 A 16

6520 140 70 216 2018-06-26 1 C 5

6520 140 21 237 2018-08-26 2 C 31

6520 140 48 285 2018-08-26 1 D 19

6520 140 72 357 2018-10-26 2 A 1

6520 140 43 400 2018-12-26 1 B 32

So this looks just like what I need, right? When the rolling sum is larger than the

ordered quantity, I’ve got enough, right? I’m going to try that in Listing 13-4 by wrapping

Listing 13-3 in an inline view and filtering in the where clause.

Listing 13-4.  Filtering on the accumulated sum

SQL> select *

 2 from (

...

 20)

 21 where acc_q <= ord_q

 22 order by p_id, purchased, loc_q;

Chapter 13 Ordered Subsets with Rolling Sums

243

Did I get the right result? No, not quite:

P_ID ORD_Q LOC_Q ACC_Q PURCHASED WH AI POS

4280 110 36 36 2018-02-23 1 C 1

4280 110 39 75 2018-04-23 1 D 18

4280 110 35 110 2018-06-23 2 B 3

6520 140 14 14 2018-02-26 2 B 5

6520 140 14 28 2018-02-26 1 A 29

6520 140 20 48 2018-02-26 1 C 13

6520 140 24 72 2018-02-26 2 B 26

6520 140 26 98 2018-04-26 2 D 9

Product 4280 is OK; it just happens that the rolling sum exactly matches the ordered

quantity of 110 after picking at three locations. But product 6520 only gets to pick 98,

where it should get 140? If you look back at the previous output, you’ll see that by the

next location (1 A 16), the rolling sum becomes 146, which is greater than 140 so that

row is not included in the output, even though I need to pick most of the quantity of that

location.

The problem is that I cannot in the where clause create a filter that will include the

first row where the rolling sum is greater than the ordered quantity, but not any more

rows than that.

But what I can do is to create a rolling sum that accumulates the previous rows only,

rather than including the current row. This is simply done in Listing 13-5 by simply

changing the window end point of Listing 13-3 from current row to 1 preceding in

line 8.

Listing 13-5.  Accumulated sum of only the previous rows

...

 5 , sum(i.qty) over (

 6 partition by i.product_id

 7 order by i.purchased, i.qty

 8 rows between unbounded preceding and 1 preceding

 9) as acc_prv_q

...

Chapter 13 Ordered Subsets with Rolling Sums

244

The rolling sums in this output is pushed one row down when compared to the

output of Listing 13-3:

P_ID ORD_Q LOC_Q ACC_PRV_Q PURCHASED WH AI POS

4280 110 36 2018-02-23 1 C 1

4280 110 39 36 2018-04-23 1 D 18

4280 110 35 75 2018-06-23 2 B 3

4280 110 34 110 2018-08-23 2 C 20

4280 110 37 144 2018-10-23 1 A 4

4280 110 19 181 2018-12-23 2 C 7

6520 140 14 2018-02-26 2 B 5

6520 140 14 14 2018-02-26 1 A 29

6520 140 20 28 2018-02-26 1 C 13

6520 140 24 48 2018-02-26 2 B 26

6520 140 26 72 2018-04-26 2 D 9

6520 140 48 98 2018-04-26 1 A 16

6520 140 70 146 2018-06-26 1 C 5

6520 140 21 216 2018-08-26 2 C 31

6520 140 48 237 2018-08-26 1 D 19

6520 140 72 285 2018-10-26 2 A 1

6520 140 43 357 2018-12-26 1 B 32

This means that the row of product 6520 in location 1 A 16 that was missing in the

output of Listing 13-4 is now within the window of rows where acc_prv_q is less than

ord_q, so I can create Listing 13-6 that correctly filters what I need. It is the solution to

the first problem of the three described at the beginning of the chapter.

Listing 13-6.  Filtering on the accumulation of previous rows

SQL> select

 2 wh, ai, pos, p_id

 3 , least(loc_q, ord_q - acc_prv_q) as pick_q

 4 from (

 5 select

 6 i.product_id as p_id

 7 , ol.qty as ord_q

 8 , i.qty as loc_q

Chapter 13 Ordered Subsets with Rolling Sums

245

 9 , nvl(sum(i.qty) over (

 10 partition by i.product_id

 11 order by i.purchased, i.qty

 12 rows between unbounded preceding and 1 preceding

 13), 0) as acc_prv_q

 14 , i.purchased

 15 , i.warehouse as wh

 16 , i.aisle as ai

 17 , i.position as pos

 18 from orderlines ol

 19 join inventory_with_dims i

 20 on i.product_id = ol.product_id

 21 where ol.order_id = 421

 22)

 23 where acc_prv_q < ord_q

 24 order by wh, ai, pos;

In lines 9–13, I do the rolling sum of previous rows, but note that I need to use nvl to

turn the null of the first row into a zero – otherwise, the where clause in line 23 will fail.

That where clause you can read as “As long as the previous row(s) have not yet picked

enough to fulfill the order, I need to include this row in the output.”

In line 3, I calculate how much needs to be picked at the location of each row. I know

how much still needs to be picked; it’s the ordered quantity (ord_q) minus what has

already been picked in the previous rows (acc_prv_q). If this is smaller than what is on

the location (loc_q), that is what I need to pick. But if it is greater, then of course I can

only pick as much as is on the location. In other words, I need to pick the smaller of the

two numbers, which I can do with the least function.

Finally I’ve cleaned up the select list only saving what’s necessary to put on the

picking list, and in line 23, I’m ordering the rows in location order:

WH AI POS P_ID PICK_Q

1 A 16 6520 42

1 A 29 6520 14

1 C 1 4280 36

1 C 13 6520 20

1 D 18 4280 39

Chapter 13 Ordered Subsets with Rolling Sums

246

2 B 3 4280 35

2 B 5 6520 14

2 B 26 6520 24

2 D 9 6520 26

The picking operator can now take this list and drive around the warehouse picking

the goods as specified. He’ll follow the route shown in Figure 13-2.

This route has the problem that after having picked the first two locations in aisle A,

he needs to start “from the bottom” in aisle C. That means he either has to turn around

(as shown in the figure) or he could take an unnecessary drive “down” aisle B. Neither is

really satisfactory, and I’ll come back to the solution of this in a little while.

�Easy switch of picking principle
But first I’d like to stress the point that the order by of the query itself and the order by

within the analytic function do not have to be identical, as they were in Listing 13-3; they

can be different like in the picking list query of Listing 13-6, where I use this fact to select

the inventory in FIFO order with the analytic order by, but give the output of the selected

rows in location order.

This separation means that I can easily switch picking principle simply by changing

my analytic order by, but still get an output in location order.

Figure 13-2.  The result of the first version of the FIFO picking query

Chapter 13 Ordered Subsets with Rolling Sums

247

So for these examples, imagine that beers can keep indefinitely, so it does not matter

if I use the first-in, first-out principle or not.

I could then use a picking principle saying that I want to prioritize locations close to

the starting point of the driver to give him a short picking route. I just need to change line

11 in Listing 13-6:

...

 11 order by i.warehouse, i.aisle, i.position

...

Selecting inventory to pick in location order gives a short route; he does not have to

enter warehouse 2 at all:

WH AI POS P_ID PICK_Q

1 A 4 4280 37

1 A 16 6520 48

1 A 29 6520 14

1 B 32 6520 43

1 C 1 4280 36

1 C 5 6520 35

1 D 18 4280 37

Or I could use as picking principle that I want the smallest number of picks:

...

 11 order by i.qty desc

...

This will pick from inventories with large quantities first, making it possible to fulfill

the order with just five picks:

WH AI POS P_ID PICK_Q

1 A 4 4280 37

1 C 1 4280 34

1 C 5 6520 68

1 D 18 4280 39

2 A 1 6520 72

Chapter 13 Ordered Subsets with Rolling Sums

248

But if I pick from large quantities first, then over time the warehouse will be full of

locations that have just a small quantity that was “left over” from previous picks. I could

choose a picking principle that will clean up such small quantities, freeing the locations

for new inventory:

...

 11 order by i.qty

...

Ordering by quantity ascending instead of descending helps cleaning out locations

in the warehouse, but of course then the operator has to pick in more places:

WH AI POS P_ID PICK_Q

1 A 29 6520 14

1 B 32 6520 21

1 C 1 4280 22

1 C 13 6520 20

2 B 3 4280 35

2 B 5 6520 14

2 B 26 6520 24

2 C 7 4280 19

2 C 20 4280 34

2 C 31 6520 21

2 D 9 6520 26

As you can see, having separated the order by that selects the inventory from the

order by that controls the picking order, it is easy to switch picking strategies.

With that point made, back to solving the routing problem of Figure 13-2.

�Solving optimal picking route
Simply ordering the output in location order means the picking operator needs to drive

in the same direction (“upward”) in every aisle – this is not optimal. I’d like him to switch

directions so that every other aisle he drives “down.”

But it is not so simple that I can just say up in aisle A and C, down in aisle B and D.

Instead I need it to be up in the first, third, fifth…aisle he visits and then down in the

second, fourth, sixth…aisle he visits.

Chapter 13 Ordered Subsets with Rolling Sums

249

To do that, I start by expanding Listing 13-6 with an extra column giving each visited

aisle a consecutive number (Listing 13-7).

Listing 13-7.  Consecutively numbering visited warehouse aisles

SQL> select

 2 wh, ai

 3 , dense_rank() over (

 4 order by wh, ai

 5) as ai#

 6 , pos, p_id

 7 , least(loc_q, ord_q - acc_prv_q) as pick_q

 8 from (

...

 26)

 27 where acc_prv_q < ord_q

 28 order by wh, ai, pos;

The analytic function dense_rank in lines 3–5 gives the same rank to rows that have

the same value in the columns used in the order by. And unlike rank, dense_rank does

not skip any numbers (as I showed in Chapter 12); it assigns the ranks consecutively.

So using warehouse and aisle in the order by in dense_rank, the ai# column

contains the “visited aisle number” I want:

WH AI AI# POS P_ID PICK_Q

1 A 1 16 6520 42

1 A 1 29 6520 14

1 C 2 1 4280 36

1 C 2 13 6520 20

1 D 3 18 4280 39

2 B 4 3 4280 35

2 B 4 5 6520 14

2 B 4 26 6520 24

2 D 5 9 6520 26

That enables me to wrap Listing 13-7 in an inline view to create Listing 13-8 with an

odd-even ordering logic.

Chapter 13 Ordered Subsets with Rolling Sums

250

Listing 13-8.  Ordering ascending and descending alternately

SQL> select *

 2 from (

...

 30)

 31 order by

 32 wh, ai#

 33 , case

 34 when mod(ai#, 2) = 1 then +pos

 35 else -pos

 36 end;

First, I order by warehouse and visited aisle, but then within each aisle, I use the case

structure in lines 33–36 to order the positions ascending in odd numbered aisles and

descending in even numbered aisles:

WH AI AI# POS P_ID PICK_Q

1 A 1 16 6520 42

1 A 1 29 6520 14

1 C 2 13 6520 20

1 C 2 1 4280 36

1 D 3 18 4280 39

2 B 4 26 6520 24

2 B 4 5 6520 14

2 B 4 3 4280 35

2 D 5 9 6520 26

That gives the operator a better picking route as you can see in Figure 13-3,

so Listing 13-8 is the solution to the second of my three problems.

Chapter 13 Ordered Subsets with Rolling Sums

251

Again I can show a variation where I can adapt the query very easily to match

changing conditions. In Figure 13-3, you see a door between warehouses 1 and 2 both at

the bottom and at the top, but what happens if there’s only a door at the bottom and it’s

closed at the top?

A small change to the dense_rank call of Listing 13-8 produces Listing 13-9.

Listing 13-9.  Restarting aisle numbering within each warehouse

...

 5 , dense_rank() over (

 6 partition by wh

 7 order by ai

 8) as ai#

...

All I’ve done is to change an order by warehouse and aisle into a partition by

warehouse and order by aisle. The result is that the ranks assigned in column ai# restart

from 1 in each warehouse:

WH AI AI# POS P_ID PICK_Q

1 A 1 16 6520 42

1 A 1 29 6520 14

1 C 2 13 6520 20

1 C 2 1 4280 36

1 D 3 18 4280 39

Figure 13-3.  Alternating position order of odd/even visited aisles

Chapter 13 Ordered Subsets with Rolling Sums

252

2 B 1 3 4280 35

2 B 1 5 6520 14

2 B 1 26 6520 24

2 D 2 9 6520 26

When ai# restarts in each warehouse, that means that aisle B in warehouse 2

changes from being the fourth aisle he visits overall to being the first aisle he visits

in warehouse 2. That means it changes from being an even numbered aisle (ordered

descending) to being an odd numbered aisle (ordered ascending).

And that gives the picking route shown in Figure 13-4.

Figure 13-4.  What happens when there is just one door between warehouses

The first two problems are now solved, so I’ll now move on to the third and last problem.

�Solving batch picking
It’s all well and good that I now can pick a single order by FIFO with a good picking route,

but to work efficiently, I need the picking operator to be able to pick multiple orders

simultaneously in a single drive through the warehouses.

So I’m going to use Listing 13-2 again to show order data, just this time for two other

orders. In real life, I’d probably model a “picking batch” table to use for specifying which

orders are to be included in a batch, but here I’m just coding the two order ids using in:

...

 15 where o.id in (422, 423)

...

Chapter 13 Ordered Subsets with Rolling Sums

253

And it shows me two pubs that each have ordered a quantity of both Hoppy Crude

Oil and Der Helle Kumpel:

C_ID C_NAME O_ID P_ID P_NAME QTY

51069 Der Wichtelmann 422 4280 Hoppy Crude Oil 80

51069 Der Wichtelmann 422 6520 Der Helle Kumpel 80

50741 Hygge og Humle 423 4280 Hoppy Crude Oil 60

50741 Hygge og Humle 423 6520 Der Helle Kumpel 40

I can start simple in Listing 13-10 by just finding the total quantities ordered for each

product and then applying the FIFO picking method of Listing 13-6 to those totals.

Listing 13-10.  FIFO picking of the total quantities

SQL> with orderbatch as (

 2 select

 3 ol.product_id

 4 , sum(ol.qty) as qty

 5 from orderlines ol

 6 where ol.order_id in (422, 423)

 7 group by ol.product_id

 8)

 9 select

 10 wh, ai, pos, p_id

 11 , least(loc_q, ord_q - acc_prv_q) as pick_q

 12 from (

 13 select

 14 i.product_id as p_id

 15 , ob.qty as ord_q

 16 , i.qty as loc_q

 17 , nvl(sum(i.qty) over (

 18 partition by i.product_id

 19 order by i.purchased, i.qty

 20 rows between unbounded preceding and 1 preceding

 21), 0) as acc_prv_q

 22 , i.purchased

 23 , i.warehouse as wh

Chapter 13 Ordered Subsets with Rolling Sums

254

 24 , i.aisle as ai

 25 , i.position as pos

 26 from orderbatch ob

 27 join inventory_with_dims i

 28 on i.product_id = ob.product_id

 29)

 30 where acc_prv_q < ord_q

 31 order by wh, ai, pos;

Using the with clause, I create the orderbatch subquery in lines 1–8 that simply is

an aggregation of the ordered quantities per product. The rest of the query is identical to

Listing 13-6, except that it uses orderbatch in line 26 instead of table orderlines.

The output is a picking list showing what needs to be picked to fulfill the two orders:

WH AI POS P_ID PICK_Q

1 A 16 6520 22

1 A 29 6520 14

1 C 1 4280 36

1 C 13 6520 20

1 D 18 4280 39

2 B 3 4280 35

2 B 5 6520 14

2 B 26 6520 24

2 C 20 4280 30

2 D 9 6520 26

But there’s a slight problem for the picking operator – he can see how much to pick,

but not how much of that he needs to pack in each order.

To figure that out, I need to calculate some quantity intervals in Listing 13-11.

Listing 13-11.  Quantity intervals for each pick out of total per product

SQL> with orderbatch as (

...

 8)

 9 select

 10 wh, ai, pos, p_id

 11 , least(loc_q, ord_q - acc_prv_q) as pick_q

Chapter 13 Ordered Subsets with Rolling Sums

255

 12 , acc_prv_q + 1 as from_q

 13 , least(acc_q, ord_q) as to_q

 14 from (

 15 select

 16 i.product_id as p_id

 17 , ob.qty as ord_q

 18 , i.qty as loc_q

 19 , nvl(sum(i.qty) over (

 20 partition by i.product_id

 21 order by i.purchased, i.qty

 22 rows between unbounded preceding and 1 preceding

 23), 0) as acc_prv_q

 24 , nvl(sum(i.qty) over (

 25 partition by i.product_id

 26 order by i.purchased, i.qty

 27 rows between unbounded preceding and current row

 28), 0) as acc_q

 29 , i.purchased

 30 , i.warehouse as wh

 31 , i.aisle as ai

 32 , i.position as pos

 33 from orderbatch ob

 34 join inventory_with_dims i

 35 on i.product_id = ob.product_id

 36)

 37 where acc_prv_q < ord_q

 38 order by p_id, purchased, loc_q, wh, ai, pos;

The inline view in lines 14–36 is almost the same as before, but I have added

an extra rolling sum in lines 24–28, so I now have both a rolling sum of the previous rows

in acc_prv_q and a rolling sum that includes the current row in acc_q.

Chapter 13 Ordered Subsets with Rolling Sums

256

With those I can in lines 12–13 calculate the from and to quantity intervals for the

row, showing you this output that I’ve ordered in line 38 so that you easily can see what

happens with the intervals:

WH AI POS P_ID PICK_Q FROM_Q TO_Q

1 C 1 4280 36 1 36

1 D 18 4280 39 37 75

2 B 3 4280 35 76 110

2 C 20 4280 30 111 140

1 A 29 6520 14 1 14

2 B 5 6520 14 15 28

1 C 13 6520 20 29 48

2 B 26 6520 24 49 72

2 D 9 6520 26 73 98

1 A 16 6520 22 99 120

With these quantity intervals, you can read that the 36 to be picked in the first row are

numbers 1-36 out of the total 140 to be picked of product 4280, the 39 in the next row are

then numbers 37-75 out of the 140, and so on.

If you’ve a keen eye, you may have spotted that in Listing 13-11, I am actually doing a

superfluous analytic function call, since I am using a call both to calculate rolling sum of

previous rows and to calculate rolling sum including the current row. But the latter could

also be calculated as the rolling sum of previous rows + the quantity in the current row.

So in Listing 13-12, I’ve changed slightly to only do the rolling sum of previous rows

in order to save an analytic function call.

Listing 13-12.  Quantity intervals with a single analytic sum

SQL> with orderbatch as (

...

 8)

 9 select

 10 wh, ai, pos, p_id

 11 , least(loc_q, ord_q - acc_prv_q) as pick_q

 12 , acc_prv_q + 1 as from_q

 13 , least(acc_prv_q + loc_q, ord_q) as to_q

 14 from (

Chapter 13 Ordered Subsets with Rolling Sums

257

 15 select

 16 i.product_id as p_id

 17 , ob.qty as ord_q

 18 , i.qty as loc_q

 19 , nvl(sum(i.qty) over (

 20 partition by i.product_id

 21 order by i.purchased, i.qty

 22 rows between unbounded preceding and 1 preceding

 23), 0) as acc_prv_q

 24 , i.purchased

 25 , i.warehouse as wh

 26 , i.aisle as ai

 27 , i.position as pos

 28 from orderbatch ob

 29 join inventory_with_dims i

 30 on i.product_id = ob.product_id

 31)

 32 where acc_prv_q < ord_q

 33 order by p_id, purchased, loc_q, wh, ai, pos;

The inline view again only contains the acc_prv_q (as it used to), and then in line

13, I am using acc_prv_q + loc_q instead of the acc_q I no longer have. The result of

Listing 13-12 is identical to that of Listing 13-11.

Having quantity intervals for the picks is not enough; I also need similar quantity

intervals for the orders, as I show in Listing 13-13.

Listing 13-13.  Quantity intervals for each order out of total per product

SQL> select

 2 ol.order_id as o_id

 3 , ol.product_id as p_id

 4 , ol.qty

 5 , nvl(sum(ol.qty) over (

 6 partition by ol.product_id

 7 order by ol.order_id

 8 rows between unbounded preceding and 1 preceding

 9), 0) + 1 as from_q

Chapter 13 Ordered Subsets with Rolling Sums

258

 10 , nvl(sum(ol.qty) over (

 11 partition by ol.product_id

 12 order by ol.order_id

 13 rows between unbounded preceding and 1 preceding

 14), 0) + ol.qty as to_q

 15 from orderlines ol

 16 where ol.order_id in (422, 423)

 17 order by ol.product_id, ol.order_id;

I’m skipping the inline view here and instead calculate from_q directly in lines 5–9

and to_q in lines 10–14. In both calculations, I’m doing a rolling sum of all previous

rows, so that when I’m using the exact same analytic function expression twice, the SQL

engine will recognize this and only perform the analytic call once.

The output shows me then that the 80 of product 4280 that is ordered in order 422

are numbers 1-80 out of the 140, just like the picking quantity intervals before.

O_ID P_ID QTY FROM_Q TO_Q

422 4280 80 1 80

423 4280 60 81 140

422 6520 80 1 80

423 6520 40 81 120

With the two sets of quantity intervals, I can join them where they overlap and that

way see how many of each pick go to what order. Listing 13-14 brings the code together.

Listing 13-14.  Join overlapping pick and order quantity intervals

SQL> with olines as (

 2 select

 3 ol.order_id as o_id

 4 , ol.product_id as p_id

 5 , ol.qty

 6 , nvl(sum(ol.qty) over (

 7 partition by ol.product_id

 8 order by ol.order_id

 9 rows between unbounded preceding and 1 preceding

 10), 0) + 1 as from_q

 11 , nvl(sum(ol.qty) over (

Chapter 13 Ordered Subsets with Rolling Sums

259

 12 partition by ol.product_id

 13 order by ol.order_id

 14 rows between unbounded preceding and 1 preceding

 15), 0) + ol.qty as to_q

 16 from orderlines ol

 17 where ol.order_id in (422, 423)

 18), orderbatch as (

 19 select

 20 ol.p_id

 21 , sum(ol.qty) as qty

 22 from olines ol

 23 group by ol.p_id

 24), fifo as (

 25 select

 26 wh, ai, pos, p_id, loc_q

 27 , least(loc_q, ord_q - acc_prv_q) as pick_q

 28 , acc_prv_q + 1 as from_q

 29 , least(acc_prv_q + loc_q, ord_q) as to_q

 30 from (

 31 select

 32 i.product_id as p_id

 33 , ob.qty as ord_q

 34 , i.qty as loc_q

 35 , nvl(sum(i.qty) over (

 36 partition by i.product_id

 37 order by i.purchased, i.qty

 38 rows between unbounded preceding and 1 preceding

 39), 0) as acc_prv_q

 40 , i.purchased

 41 , i.warehouse as wh

 42 , i.aisle as ai

 43 , i.position as pos

 44 from orderbatch ob

 45 join inventory_with_dims i

 46 on i.product_id = ob.p_id

 47)

Chapter 13 Ordered Subsets with Rolling Sums

260

 48 where acc_prv_q < ord_q

 49)

 50 select

 51 f.wh, f.ai, f.pos, f.p_id

 52 , f.pick_q, f.from_q as p_f_q, f.to_q as p_t_q

 53 , o.o_id , o.from_q as o_f_q, o.to_q as o_t_q

 54 from fifo f

 55 join olines o

 56 on o.p_id = f.p_id

 57 and o.to_q >= f.from_q

 58 and o.from_q <= f.to_q

 59 order by f.p_id, f.from_q, o.from_q;

I build the query using three with clause subqueries:

•	 First I create olines, which is Listing 13-13 calculating the quantity

intervals for the orderlines.

•	 Then orderbatch, similar to how I did it in Listing 13-12, except that I

do the aggregation using olines in line 22 instead of the orderlines

table, since olines already has the desired orderlines.

•	 The third subquery is fifo, which also comes from Listing 13-12 and

takes care of building the FIFO picks including quantity intervals.

The main query then is a join of fifo and olines on the product id and on

overlapping quantity intervals. In the resulting output, you see the from/to intervals for

the picks as p_f_q/p_t_q and for the orderlines as o_f_q/o_t_q (short column names are

good for print):

WH AI POS P_ID PICK_Q P_F_Q P_T_Q O_ID O_F_Q O_T_Q

1 C 1 4280 36 1 36 422 1 80

1 D 18 4280 39 37 75 422 1 80

2 B 3 4280 35 76 110 422 1 80

2 B 3 4280 35 76 110 423 81 140

2 C 20 4280 30 111 140 423 81 140

1 A 29 6520 14 1 14 422 1 80

2 B 5 6520 14 15 28 422 1 80

1 C 13 6520 20 29 48 422 1 80

Chapter 13 Ordered Subsets with Rolling Sums

261

2 B 26 6520 24 49 72 422 1 80

2 D 9 6520 26 73 98 422 1 80

2 D 9 6520 26 73 98 423 81 120

1 A 16 6520 22 99 120 423 81 120

In the first row, all 36 go to order 422. Likewise in the second row, all 39 go to

order 422.

But the next 35 picked are numbers 76-110 (out of 140), which overlaps both with

order 422 (numbers 1-80) and order 423 (numbers 81-140). You can see from those

overlaps that 5 of the 35 (numbers 76-80) should go to order 422 and the 30 of the 35

(numbers 81-110) should go to order 423.

In Listing 13-15, I calculate this as well as clean up the query a bit to not show the

intermediate calculation columns.

Listing 13-15.  How much quantity from each pick goes to which order

SQL> with olines as (

...

 18), orderbatch as (

...

 24), fifo as (

...

 49)

 50 select

 51 f.wh, f.ai, f.pos, f.p_id

 52 , f.pick_q, o.o_id

 53 , least(

 54 f.loc_q

 55 , least(o.to_q, f.to_q) - greatest(o.from_q, f.from_q) + 1

 56) as q_f_o

 57 from fifo f

 58 join olines o

 59 on o.p_id = f.p_id

 60 and o.to_q >= f.from_q

 61 and o.from_q <= f.to_q

 62 order by f.p_id, f.from_q, o.from_q;

Chapter 13 Ordered Subsets with Rolling Sums

262

Lines 53–56 calculate the “quantity for order” (q_f_o) by taking either the quantity

that is on the location or the “size of the interval overlap,” whichever is the smaller of the

two. The result is this output with all the necessary information for the picking operator:

WH AI POS P_ID PICK_Q O_ID Q_F_O

1 C 1 4280 36 422 36

1 D 18 4280 39 422 39

2 B 3 4280 35 422 5

2 B 3 4280 35 423 30

2 C 20 4280 30 423 30

1 A 29 6520 14 422 14

2 B 5 6520 14 422 14

1 C 13 6520 20 422 20

2 B 26 6520 24 422 24

2 D 9 6520 26 422 8

2 D 9 6520 26 423 18

1 A 16 6520 22 423 22

That solved the third problem; now all that is needed to complete the solution is to

combine the solutions of problems 2 and 3, so the picking operator also can do the batch

picking in an efficient picking route.

�Finalizing the complete picking SQL
I have Listing 13-15 for batch picking and Listing 13-8 for a good picking route.

Combining the two in Listing 13-16 gives me the complete solution.

Listing 13-16.  The ultimate FIFO batch picking SQL statement

SQL> with olines as (

...

 18), orderbatch as (

...

 24), fifo as (

...

 49), pick as (

 50 select

Chapter 13 Ordered Subsets with Rolling Sums

263

 51 f.wh, f.ai

 52 , dense_rank() over (

 53 order by wh, ai

 54) as ai#

 55 , f.pos, f.p_id

 56 , f.pick_q, o.o_id

 57 , least(

 58 f.loc_q

 59 , least(o.to_q, f.to_q) - greatest(o.from_q, f.from_q) + 1

 60) as q_f_o

 61 from fifo f

 62 join olines o

 63 on o.p_id = f.p_id

 64 and o.to_q >= f.from_q

 65 and o.from_q <= f.to_q

 66)

 67 select

 68 p.wh, p.ai, p.pos

 69 , p.p_id, p.pick_q

 70 , p.o_id, p.q_f_o

 71 from pick p

 72 order by p.wh

 73 , p.ai#

 74 , case

 75 when mod(p.ai#, 2) = 1 then +p.pos

 76 else -p.pos

 77 end;

The with clause subqueries olines, orderbatch, and fifo are the same as

Listing 13-15. Then the main query from Listing 13-15 I have put into subquery pick in

lines 49–66.

I’ve added the calculation of the “visited aisle number” ai# (from Listing 13-8) in

lines 52–54.

Chapter 13 Ordered Subsets with Rolling Sums

264

Then the main query is simply selecting the necessary information from the pick

subquery and using the order by from Listing 13-8 to give an optimal picking route:

WH AI POS P_ID PICK_Q O_ID Q_F_O

1 A 16 6520 22 423 22

1 A 29 6520 14 422 14

1 C 13 6520 20 422 20

1 C 1 4280 36 422 36

1 D 18 4280 39 422 39

2 B 26 6520 24 422 24

2 B 5 6520 14 422 14

2 B 3 4280 35 422 5

2 B 3 4280 35 423 30

2 C 20 4280 30 423 30

2 D 9 6520 26 422 8

2 D 9 6520 26 423 18

Where a location is repeated on the list, like 2 B 3, you can see that it shows 35 should

be picked, 5 of which are to be placed in the package for order 422 and 30 are for the

package for order 423.

With this list, the picking operator will be led in a good route through the

warehouses, picking products for a batch of multiple orders, where the products have

been selected by the first-in, first-out principle.

In total this is practically a complete warehouse goods picking app in a single SQL

statement.

�Lessons learned
This chapter has shown you the building of a single SQL app with multiple uses of

analytic functions that have given you knowledge on

•	 Using the window clause to apply analytic sum to a subset of the rows

to find the subset that gives a sufficiently large result

•	 Calculating intervals with analytic rolling sums to find overlapping

intervals

•	 Assigning dense_rank to results for alternating ascending and

descending ordering

Chapter 13 Ordered Subsets with Rolling Sums

265

When you understand how to build a statement like this piece by piece with analytic

functions, you can create many similar statements that contain a lot of business logic,

thereby achieving an app with a lot better performance than extracting the data and

doing the same logic procedurally.

Chapter 13 Ordered Subsets with Rolling Sums

267
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_14

CHAPTER 14

Analyzing Activity
Logs with Lead
Logs can be many things, and sometimes you are lucky that each line of the log is

self-contained and has all the data you need to analyze the log. But most often a row in a

log table pinpoints that at this exact moment in time, this specific activity occurred – and

the interesting fact you need to analyze is how long time there was between rows in the log.

This is where analytic functions lag and lead come in very handy, as they can be

used on a given row to retrieve information from previous rows (lag) or next rows (lead)

in a given order. You can often choose to use either lag or lead depending on how you

build your logic, but most often the deciding factor will be when the row is inserted in

the activity log. If the row is inserted at the start of the activity, the time of the activity is

the time between this row and the next row, so lead is the sensible choice. Contrariwise,

if the row is inserted when the activity is finished, the time of the activity is the time

between the previous row and this row, and then the use of lag makes sense.

Where I worked when I created this type of code first, there was an automatic

warehouse with robot picking, so the operator stood in a fixed position, boxes came on

a conveyor belt to him, he picked products, the box moved away, and a new one came.

Departures and arrivals of the boxes were logged, which meant that the time from a

box arrived until it departed was the time used for picking, while the time from the box

departed until the next box arrived was waiting time. With the use of lead SQL similar to

what I show here, we could analyze when there was too much waiting time and use that

information to tune the robot warehouse.

The Good Beer Trading Co in this book does not have a robot warehouse, but I

showed picking optimization in the previous chapter. Now I can follow up in this chapter

with analyzing how much time was used picking vs. driving around in the warehouse.

268

�Picking activity log
In Chapter 13 I showed how Good Beer Trading Co can calculate efficient picking lists

for picking beers in the warehouse for multiple orders. When the warehouse operators

start picking some orders, they do not just print the output from the queries in Chapter 13;

instead a picking list is created in table picking_list, and the query output is stored in

table picking_line, these two tables shown in Figure 14-1.

Then after the picking list with corresponding picking lines has been created and

printed, the picking operator drives off on his electric picking cart. As he drives along

and picks the beers in the warehouse, he scans barcodes on the location shelves and the

beers to register his activity – this activity is stored in table picking_log, the contents of

which you can see in Listing 14-1.

Figure 14-1.  Tables to hold picking lists and logs for doing the picking

Chapter 14 Analyzing Activity Logs with Lead

269

Listing 14-1.  Content of the activity log for picking lists

SQL> select

 2 list.picker_emp_id as emp

 3 , list.id as list

 4 , log.log_time

 5 , log.activity as act

 6 , log.location_id as loc

 7 , log.pickline_no as line

 8 from picking_list list

 9 join picking_log log

 10 on log.picklist_id = list.id

 11 order by list.id, log.log_time;

I join with the picking_list table in order to retrieve the employee id, so that in my

statistical reports, I can compare and see which operator works the fastest, so (s)he can

teach the others:

EMP LIST LOG_TIME ACT LOC LINE

149 841 2019-01-16 14:05:11 D

149 841 2019-01-16 14:05:44 A 16

149 841 2019-01-16 14:05:52 P 16 1

149 841 2019-01-16 14:06:01 D 16

149 841 2019-01-16 14:06:20 A 29

149 841 2019-01-16 14:06:27 P 29 2

...

149 841 2019-01-16 14:13:00 D 233

149 841 2019-01-16 14:14:41 A

152 842 2019-01-19 16:01:12 D

152 842 2019-01-19 16:01:48 A 16

152 842 2019-01-19 16:01:53 P 16 1

...

152 842 2019-01-19 16:08:58 D 212

152 842 2019-01-19 16:09:23 A 233

152 842 2019-01-19 16:09:34 P 233 11

152 842 2019-01-19 16:09:42 P 233 12

Chapter 14 Analyzing Activity Logs with Lead

270

152 842 2019-01-19 16:09:53 D 233

152 842 2019-01-19 16:11:42 A

63 rows selected.

In the activity column of the table (act in the output) can be stored either D for

departure, A for arrival, or P for pick. When he drives off from a location, he scans the

location barcode, and a row with D is inserted in the table. Upon arrival at the next

location, again he scans the location barcode, and a row with A is created. Then he picks

one or more picking lines at that location, each time scanning the beer which creates a P

row.

There’s a little variation at each end. When he sets off on his picking tour, a D row

is inserted with a null location. When he’s done and returns to his origin, an A row is

similarly inserted with a null location.

Apart from that variation, the work follows a repetitive cycle as shown in Figure 14-2.

You can see how he works, scanning locations and beers as he goes along, and this

cycle repeats. It will always be D->A->P->D, with the possibility of there being more than

one P in a cycle.

Figure 14-2.  Timeline of part of the picking log

Chapter 14 Analyzing Activity Logs with Lead

271

But the interesting thing to analyze is the number of seconds between rows and also

figuring out that the 25 seconds is driving, the 11+8 seconds is picking, and the last 11

seconds is packing. I’ll show you all of that, but I start simply by figuring out driving and

working (lumping picking and packing together).

�Analyzing departures and arrivals
First, I will simply analyze departures and arrivals, where the time between a departure

and an arrival is driving time and the time between an arrival and a departure is work

time (later I’ll look at the picking and packing part of the work time). In Listing 14-2,

I look at just the D and A activities.

Listing 14-2.  Departures and arrivals with lead function calls

SQL> select

 2 list.picker_emp_id as emp

 3 , list.id as list

 4 , log.log_time

 5 , log.activity as act

 6 , log.location_id as loc

 7 , to_char(

 8 lead(log_time) over (

 9 partition by list.id

 10 order by log.log_time

 11)

 12 , 'HH24:MI:SS'

 13) as next_time

 14 , to_char(

 15 lead(log_time, 2) over (

 16 partition by list.id

 17 order by log.log_time

 18)

 19 , 'HH24:MI:SS'

 20) as next2_time

 21 from picking_list list

 22 join picking_log log

Chapter 14 Analyzing Activity Logs with Lead

272

 23 on log.picklist_id = list.id

 24 where log.activity in ('D', 'A')

 25 order by list.id, log.log_time;

I restrict the data to D and A activities in line 24.

Using lead in lines 8–11 gives me what is the log_time of the next row, and

adding the parameter 2 to the lead call in line 15 gives me the log_time of the next row

after that:

EMP LIST LOG_TIME ACT LOC NEXT_TIME NEXT2_TIME

149 841 2019-01-16 14:05:11 D 14:05:44 14:06:01

149 841 2019-01-16 14:05:44 A 16 14:06:01 14:06:20

149 841 2019-01-16 14:06:01 D 16 14:06:20 14:06:35

149 841 2019-01-16 14:06:20 A 29 14:06:35 14:07:16

...

149 841 2019-01-16 14:11:26 D 163 14:12:42 14:13:00

149 841 2019-01-16 14:12:42 A 233 14:13:00 14:14:41

149 841 2019-01-16 14:13:00 D 233 14:14:41

149 841 2019-01-16 14:14:41 A

152 842 2019-01-19 16:01:12 D 16:01:48 16:02:04

152 842 2019-01-19 16:01:48 A 16 16:02:04 16:02:19

...

152 842 2019-01-19 16:09:53 D 233 16:11:42

152 842 2019-01-19 16:11:42 A

42 rows selected.

You notice that the last row of each partition (picking list) has null in next_time, and

the two last rows have null in next2_time. That makes sense and is OK for my purpose.

Using lead twice in this manner gives me that each D row has the time of a complete

Depart – Arrive – Depart picking cycle. Likewise each A row has the time of a complete

Arrive – Depart – Arrive cycle. I only need one of the two, so I choose to work with

Depart–Arrive–Depart cycles in Listing 14-3.

Chapter 14 Analyzing Activity Logs with Lead

273

Listing 14-3.  Depart–Arrive–Depart cycles

SQL> select

 2 emp, list

 3 , log_time as depart

 4 , to_char(next_time , 'HH24:MI:SS') as arrive

 5 , to_char(next2_time, 'HH24:MI:SS') as next_depart

 6 , round((next_time - log_time)*(24*60*60)) as drive

 7 , round((next2_time - next_time)*(24*60*60)) as work

 8 from (

 9 select

 10 list.picker_emp_id as emp

 11 , list.id as list

 12 , log.log_time

 13 , log.activity as act

 14 , lead(log_time) over (

 15 partition by list.id

 16 order by log.log_time

 17) as next_time

 18 , lead(log_time, 2) over (

 19 partition by list.id

 20 order by log.log_time

 21) as next2_time

 22 from picking_list list

 23 join picking_log log

 24 on log.picklist_id = list.id

 25 where log.activity in ('D', 'A')

 26)

 27 where act = 'D'

 28 order by list, log_time;

Listing 14-2 I use in the inline view and simply keep only the D rows in line 27 – I have

all the data I need in those rows and can skip the A rows.

Then I can give my time columns meaningful names in lines 3–5 (had I chosen A-D-A

cycles instead of D-A-D cycles, the names would have been different). And that makes

it easy to calculate the number of seconds used for drive and for work in lines 6–7 (the

Chapter 14 Analyzing Activity Logs with Lead

274

rounding is just because the calculations otherwise would have shown a small inevitable

rounding error in the 20th decimal or so):

EMP LIST DEPART ARRIVE NEXT_DEPART DRIVE WORK

149 841 2019-01-16 14:05:11 14:05:44 14:06:01 33 17

149 841 2019-01-16 14:06:01 14:06:20 14:06:35 19 15

...

149 841 2019-01-16 14:11:26 14:12:42 14:13:00 76 18

149 841 2019-01-16 14:13:00 14:14:41 101

152 842 2019-01-19 16:01:12 16:01:48 16:02:04 36 16

152 842 2019-01-19 16:02:04 16:02:19 16:02:37 15 18

...

152 842 2019-01-19 16:08:58 16:09:23 16:09:53 25 30

152 842 2019-01-19 16:09:53 16:11:42 109

21 rows selected.

The last row of each picking list (partition) has a null value in next_depart, which

makes the work calculation become null too. As shown before, the picker starts at the

null location and ends at the null location, so after having picked the last product on

the picking list, he registers a departure from that location and an arrival at the null

location, indicating he is done and there is no next_depart. So the last D-A-D picking

cycle is incomplete; it is only D-A. (If I had chosen to use A-D-A cycles, it would have been

the first row that would be incomplete, having only D-A.)

Listing 14-3 gives me the details for each picking cycle. I can then simply aggregate

these data in Listing 14-4 to give me some statistics on how efficient the employee has

worked on each picking list.

Listing 14-4.  Statistics per picking list

SQL> select

 2 max(emp) as emp

 3 , list

 4 , min(log_time) as begin

 5 , to_char(max(next_time), 'HH24:MI:SS') as end

 6 , count(*) as drives

 7 , round(

 8 avg((next_time - log_time)*(24*60*60))

Chapter 14 Analyzing Activity Logs with Lead

275

 9 , 1

 10) as avg_d

 11 , count(next2_time) as stops

 12 , round(

 13 avg((next2_time - next_time)*(24*60*60))

 14 , 1

 15) as avg_w

 16 from (

...

 34)

 35 where act = 'D'

 36 group by list

 37 order by list;

I take the query from Listing 14-3 and tack on a group by in line 36 and then simply

choose which aggregates I am interested in in the select list:

EMP LIST BEGIN END DRIVES AVG_D STOPS AVG_W

149 841 2019-01-16 14:05:11 14:14:41 10 42.9 9 15.7

152 842 2019-01-19 16:01:12 16:11:42 11 41.5 10 17.4

Here I chose to show the average number of seconds used to drive between picking

locations and the average number of seconds used working (picking and packing) at

each stop. I could just as easily have used min, max, median, sum, and so on, but I leave

that as an exercise for the reader. It is more interesting to move on to analyzing the data

when I also want to include the picking activity.

�Analyzing picking activity
It is possible for me to use a similar technique with lead to include the picking activity,

as I show in Listing 14-5.

Listing 14-5.  Including picking activity

SQL> select

 2 emp, list

 3 , to_char(depart, 'HH24:MI:SS') as depart

 4 , to_char(arrive, 'HH24:MI:SS') as arrive

Chapter 14 Analyzing Activity Logs with Lead

276

 5 , to_char(pick1 , 'HH24:MI:SS') as pick1

 6 , to_char(

 7 case when pick2 < next_depart then pick2 end

 8 , 'HH24:MI:SS'

 9) as pick2

 10 , to_char(next_depart, 'HH24:MI:SS') as next_dep

 11 , round((arrive - depart)*(24*60*60)) as drv

 12 , round((next_depart - arrive)*(24*60*60)) as wrk

 13 from (

 14 select

 15 list.picker_emp_id as emp

 16 , list.id as list

 17 , log.activity as act

 18 , log.log_time as depart

 19 , lead(log_time) over (

 20 partition by list.id

 21 order by log.log_time

 22) as arrive

 23 , lead(

 24 case log.activity when 'P' then log_time end

 25) ignore nulls over (

 26 partition by list.id

 27 order by log.log_time

 28) as pick1

 29 , lead(

 30 case log.activity when 'P' then log_time end, 2

 31) ignore nulls over (

 32 partition by list.id

 33 order by log.log_time

 34) as pick2

 35 , lead(

 36 case log.activity when 'D' then log_time end

 37) ignore nulls over (

 38 partition by list.id

 39 order by log.log_time

Chapter 14 Analyzing Activity Logs with Lead

277

 40) as next_depart

 41 from picking_list list

 42 join picking_log log

 43 on log.picklist_id = list.id

 44)

 45 where act = 'D'

 46 order by list, depart;

I have here four calls to lead, which for any D row will give me the following:

•	 Lines 19–22 give me the next row after the D row, which always will be

an A row.

•	 Lines 23–28 give me the next P row after the D row by using a case

expression to return null for all rows that are not P rows, enabling me

to skip those rows using ignore nulls.

•	 Lines 29–34 are almost identical, just adding parameter 2 in line 30 to

get the second P row after the D row.

•	 Lines 35–40 finally use the case and ignore nulls technique to get

me the next D row after the current D row.

All that gives me an output very similar to that of Listing 14-3, just adding columns

for the time of the first and second (if any) picks:

EMP LIST DEPART ARRIVE PICK1 PICK2 NEXT_DEP DRV WRK

149 841 14:05:11 14:05:44 14:05:52 14:06:01 33 17

149 841 14:06:01 14:06:20 14:06:27 14:06:35 19 15

...

149 841 14:11:26 14:12:42 14:12:53 14:13:00 76 18

149 841 14:13:00 14:14:41 101

152 842 16:01:12 16:01:48 16:01:53 16:02:04 36 16

...

152 842 16:07:03 16:07:12 16:07:16 16:07:22 16:07:34 9 22

152 842 16:07:34 16:08:44 16:08:49 16:08:58 70 14

152 842 16:08:58 16:09:23 16:09:34 16:09:42 16:09:53 25 30

152 842 16:09:53 16:11:42 109

21 rows selected.

Chapter 14 Analyzing Activity Logs with Lead

278

I could then start calculating how many seconds were spent picking and packing out

of the wrk seconds, but it is not really a good way to continue, as this code only works if

the worker picks at most two picking lines at each stop on the route. And it’s a bad idea to

try to keep adding multiple lead calls to try and create columns pick1 to pick<n>. I want

to try something else instead.

When I don’t know how many picks there might be for each stop, it is better to work

with rows instead of columns. But then I somehow need to know which rows belong

together in a picking cycle. I can do that with last_value in Listing 14-6.

Listing 14-6.  Identifying cycles

SQL> select

 2 list.picker_emp_id as emp

 3 , list.id as list

 4 , last_value(

 5 case log.activity when 'D' then log_time end

 6) ignore nulls over (

 7 partition by list.id

 8 order by log.log_time

 9 rows between unbounded preceding and current row

 10) as begin_cycle

 11 , to_char(log_time, 'HH24:MI:SS') as act_time

 12 , log.activity as act

 13 , lead(activity) over (

 14 partition by list.id

 15 order by log.log_time

 16) as next_act

 17 , round((

 18 lead(log_time) over (

 19 partition by list.id

 20 order by log.log_time

 21) - log_time

 22)*(24*60*60)) as secs

 23 from picking_list list

Chapter 14 Analyzing Activity Logs with Lead

279

 24 join picking_log log

 25 on log.picklist_id = list.id

 26 order by list.id, log.log_time;

The case expression in line 5 that I use as parameter for last_value will only have

the log_time value for D rows, otherwise null. So on a D row, the output of the last_

value call will be the log_time of the row. On the next row, the ignore nulls clause

in line 6 makes last_value go back and find the last non-null value, which was the

log_time of the D row. This repeats on each subsequent row until a new D row is reached,

making all rows belonging together in the same picking cycle have the same value in

column begin_cycle.

With lead calls in lines 13–22, I calculate on each row what is the activity of the next

row and how many seconds did this activity last. In total I get an output with all the

details for every row, but ready to be grouped by each cycle:

EMP LIST BEGIN_CYCLE ACT_TIME ACT NEXT_ACT SECS

149 841 2019-01-16 14:05:11 14:05:11 D A 33

149 841 2019-01-16 14:05:11 14:05:44 A P 8

149 841 2019-01-16 14:05:11 14:05:52 P D 9

149 841 2019-01-16 14:06:01 14:06:01 D A 19

149 841 2019-01-16 14:06:01 14:06:20 A P 7

149 841 2019-01-16 14:06:01 14:06:27 P D 8

...

149 841 2019-01-16 14:13:00 14:13:00 D A 101

149 841 2019-01-16 14:13:00 14:14:41 A

152 842 2019-01-19 16:01:12 16:01:12 D A 36

152 842 2019-01-19 16:01:12 16:01:48 A P 5

152 842 2019-01-19 16:01:12 16:01:53 P D 11

...

152 842 2019-01-19 16:08:58 16:08:58 D A 25

152 842 2019-01-19 16:08:58 16:09:23 A P 11

152 842 2019-01-19 16:08:58 16:09:34 P P 8

152 842 2019-01-19 16:08:58 16:09:42 P D 11

152 842 2019-01-19 16:09:53 16:09:53 D A 109

152 842 2019-01-19 16:09:53 16:11:42 A

63 rows selected.

Chapter 14 Analyzing Activity Logs with Lead

280

Now I have what I need to do some analysis that includes picking and packing

activities, no matter how many picks there are at each stop.

�Complete picking cycle analysis
I could use a group by on the emp, list, and begin_cycle to get data for each picking

cycle, but in this case, it can be a little easier in Listing 14-7 to use the implicit grouping

that is performed by pivot.

Listing 14-7.  Grouping cycles by pivoting

SQL> select *

 2 from (

 3 select

 4 list.picker_emp_id as emp

 5 , list.id as list

 6 , last_value(

 7 case log.activity when 'D' then log_time end

 8) ignore nulls over (

 9 partition by list.id

 10 order by log.log_time

 11 rows between unbounded preceding and current row

 12) as begin_cycle

 13 , lead(activity) over (

 14 partition by list.id

 15 order by log.log_time

 16) as next_act

 17 , round((

 18 lead(log_time) over (

 19 partition by list.id

 20 order by log.log_time

 21) - log_time

 22)*(24*60*60)) as secs

 23 from picking_list list

 24 join picking_log log

 25 on log.picklist_id = list.id

 26) pivot (

Chapter 14 Analyzing Activity Logs with Lead

281

 27 sum(secs)

 28 for (next_act) in (

 29 'A' as drive -- D->A

 30 , 'P' as pick -- A->P or P->P

 31 , 'D' as pack -- P->D

 32)

 33)

 34 order by list, begin_cycle;

I wrap Listing 14-6 in an inline view and use the pivot operator on the result. But

since pivot makes implicit group by on all columns not used in the pivot clause itself,

I do need to leave out columns act_time and act from Listing 14-6, as they would have

ruined the implicit grouping.

If you look again at Figure 14-2, you see there are four possible combinations of the

activity on one row and the activity on the next row. The seconds going from a D row to

an A row are spent driving, seconds going from an A row to a P row are picking, seconds

going from a P row to a P row are also picking, and finally the seconds going from a P row

to a D row are spent packing.

This means that I can pivot on the next_act column in line 28 with the three

different values creating virtual columns drive, pick, and pack. Line 30 represents both

picking cases: A->P and P->P.

So with the sum in place in line 27, I get an output with each picking cycle just like the

output of Listing 14-3, except I now have the working time split up into pick and pack,

where the pick column may contain time from one or more rows of the picking log:

EMP LIST BEGIN_CYCLE DRIVE PICK PACK

149 841 2019-01-16 14:05:11 33 8 9

149 841 2019-01-16 14:06:01 19 7 8

...

149 841 2019-01-16 14:11:26 76 11 7

149 841 2019-01-16 14:13:00 101

152 842 2019-01-19 16:01:12 36 5 11

...

152 842 2019-01-19 16:08:58 25 19 11

152 842 2019-01-19 16:09:53 109

21 rows selected.

Chapter 14 Analyzing Activity Logs with Lead

282

I could have included a count(*) measure in the pivot clause if I wanted to show

also how many picks at each stop rather than just the total seconds used for picking at

the stop.

And just as Listing 14-4 aggregated data from Listing 14-3, I use Listing 14-8 to

aggregate the data of Listing 14-7.

Listing 14-8.  Statistics per picking list on the pivoted cycles

SQL> select

 2 max(emp) as emp

 3 , list

 4 , min(begin_cycle) as begin

 5 , count(*) as drvs

 6 , round(avg(drive), 1) as avg_d

 7 , count(pick) as stops

 8 , round(avg(pick), 1) as avg_pick

 9 , round(avg(pack), 1) as avg_pack

 10 from (

...

 34) pivot (

 35 sum(secs)

 36 for (next_act) in (

 37 'A' as drive -- D->A

 38 , 'P' as pick -- A->P or P->P

 39 , 'D' as pack -- P->D

 40)

 41)

 42 group by list

 43 order by list;

Chapter 14 Analyzing Activity Logs with Lead

283

A nice little thing to note here is that I do not need to wrap Listing 14-7 in another

inline view; I can add the group by directly after the pivot. Actually that means that two

grouping operations will be performed, first the implicit one in the pivot and then the

explicit one in line 42 where I group by each picking list:

EMP LIST BEGIN DRVS AVG_D STOPS AVG_PICK AVG_PACK

149 841 2019-01-16 14:05:11 10 42.9 9 7.1 8.6

152 842 2019-01-19 16:01:12 11 41.5 10 7.8 9.6

As before, you can play around yourself doing other aggregates than simply count

and avg; you know the technique now.

I could end the chapter here, but I just want to give you a little teaser on what you’ll

see when you get to Part 3 of this book.

�Teaser: row pattern matching
The match_recognize clause (formally known as row pattern matching) is a very

powerful tool in the SQL developer’s toolbox. The entire Part 3 is dedicated to various

ways to use this clause.

But what I have been showing in this chapter is actually detecting and grouping on a

pattern in the data – a cyclic pattern of activities going from D to A to one or more P and

back to D. I have used some useful tricks in the analytic function toolbox by deliberately

making null values for the ignore nulls clause to create groups of cycles, but it is

actually relatively obscure what the code in Listing 14-7 and 14-8 does.

With row pattern matching, I can make a SQL statement in Listing 14-9 that at first

glance might seem even more obscure, but once you know match_recognize, this is

actually (trust me on this) more readable.

Listing 14-9.  Identifying picking cycles with row pattern matching

SQL> select

 2 *

 3 from (

 4 select

 5 list.picker_emp_id as emp

 6 , list.id as list

 7 , log.log_time

Chapter 14 Analyzing Activity Logs with Lead

284

 8 , log.activity as act

 9 from picking_list list

 10 join picking_log log

 11 on log.picklist_id = list.id

 12)

 13 match_recognize (

 14 partition by list

 15 order by log_time

 16 measures

 17 max(emp) as emp

 18 , first(log_time) as begin_cycle

 19 , round(

 20 (arrive.log_time - first(depart.log_time))

 21 * (24*60*60)

 22) as drive

 23 , round(

 24 (last(pick.log_time) - arrive.log_time)

 25 * (24*60*60)

 26) as pick

 27 , round(

 28 (next(last(pick.log_time)) - last(pick.log_time))

 29 * (24*60*60)

 30) as pack

 31 one row per match

 32 after match skip to last arrive

 33 pattern (depart arrive pick* depart{0,1})

 34 define

 35 depart as act = 'D'

 36 , arrive as act = 'A'

 37 , pick as act = 'P'

 38)

 39 order by list;

I will not dive deep into the syntax at this point, but I invite you to come back here

after you have read Part 3 and read this listing again and see if you do not agree that (with

suitable knowledge of the syntax) it is more clear what the code does.

Chapter 14 Analyzing Activity Logs with Lead

285

But the important thing you can note here is that in lines 34–37, I make some

definitions that a row with act = 'D' is called depart and similar for arrive and pick,

and then in line 33, I can easily state that one picking cycle contains a depart, followed

by an arrive, followed by zero or more pick, and followed by zero or one depart. You’ll

notice the similarity to regular expression syntax. (The zero or more and zero or one parts

are to handle the incomplete picking cycle that ends each picking tour.)

And just as Listing 14-9 produces the same output as Listing 14-7, I can get the same

statistical output from Listing 14-10 that I got in Listing 14-8.

Listing 14-10.  Statistics per picking list with row pattern matching

SQL> select

 2 max(emp) as emp

 3 , list

 4 , min(begin_cycle) as begin

 5 , count(*) as drvs

 6 , round(avg(drive), 1) as avg_d

 7 , count(pick) as stops

 8 , round(avg(pick), 1) as avg_pick

 9 , round(avg(pack), 1) as avg_pack

 10 from (

...

 19)

 20 match_recognize (

...

 45)

 46 group by list

 47 order by list;

I hope I have wetted your appetite for Part 3 of the book. Come back to this and play

with this code when you are done with Part 3.

Chapter 14 Analyzing Activity Logs with Lead

286

�Lessons learned
The techniques of this chapter are classic examples of how analytic functions enable you

to use data from across rows for inter-row calculations. In particular you have seen

•	 The use of lead to fetch data from the next row or lead with an

optional parameter to fetch from the nth next row

•	 The use of the ignore nulls clause of lead to fetch data from the

next row with a non-null value, where you can customize the value to

be non-null only on those rows you want lead to fetch data from

•	 The use of last_value with the ignore nulls clause to set up a

common value on a group of rows that belong together and grouping

or pivoting on that common value

These are all techniques useful in many situations, and if it becomes too complex to

use these techniques, I recommend looking into using match_recognize (the topic of

Part 3) as an alternative that often fits these situations very nicely.

Chapter 14 Analyzing Activity Logs with Lead

287
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_15

CHAPTER 15

Forecasting with
Linear Regression
Some years ago at the retail company I worked at then, our data analyst came up to me.

She was working on forecasting how much each of our products would sell in the next 12

months and wanted to know if I could help develop a piece of SQL to do this.

Such forecasting can be done with a multitude of different models, each suitable

to different types of data and circumstances. She had experimented with tools and

researched and ran tests of the models on selected products and done whatever magic

analysts do to make discoveries in our data. In the course of this, she found that a very

suitable model for such sales forecasting in our case was a time series model with

seasonal adjustment and exponential smoothing.

To help me understand this model and implement it, she brought me an Excel

spreadsheet in which she had 3 years of monthly sales data for one of our products

and then a series of columns that successively calculated the intermediate steps in the

model, ending with the forecast for the next year.

The problem for her was that this spreadsheet was nice but could only operate on

a single product. We had 100.000 products we needed to forecast. Therefore she really

wished the forecast could be performed right inside the database with SQL.

With the help of analytic functions for averaging and linear regression, I could

implement the same forecasting model in SQL, doing a series of calculations that

emulated the calculations of each separate column of the spreadsheet. In this chapter I

will show you this step by step.

288

Note  The spreadsheet made by our analyst that I used as basis for developing
this SQL was based on the work by Robert Nau, Fuqua School of Business, Duke
University, who has written about it here, where you can download a similar
spreadsheet: http://people.duke.edu/~rnau/411outbd.htm.

�Sales forecasting
To demonstrate this time series forecasting model, I am going to use monthly sales data

for the beers that my fictional Good Beer Trading Co sells. I have those data in the tables

of Figure 15-1.

Figure 15-1.  Table with monthly sales for products

There are more beers in the products table, but I am going to concentrate on two that

have a nice seasonal variation in their sales – one sold primarily wintertime and one sold

primarily summertime. Listing 15-1 shows the two beers queried by primary key id values.

Listing 15-1.  The two products for showing forecasting

SQL> select id, name

 2 from products

 3 where id in (4160, 7790);

Chapter 15 Forecasting with Linear Regression

http://people.duke.edu/~rnau/411outbd.htm

289

So you can see that if I query sales data for product ids 4160 and 7790, I will get data

for Reindeer Fuel and Summer in India:

 ID NAME

---------- --------------------

 4160 Reindeer Fuel

 7790 Summer in India

I have the sales data for 2016, 2017, and 2018, and besides having nice seasonal

variations, Reindeer Fuel is selling a bit more each year, while Summer in India is selling

a bit less. Now it’s time to try and apply this time series forecasting model to the data and

forecast the sales of 2019.

�Time series
The first thing to do in time series forecasting is to build the time series, which is a set of

consecutive data each being exactly one time unit apart. In this case I am using months

for time unit. I have 3 years = 36 months of actual data, and I want to forecast 1 year = 12

months, so I need to create a time series of 48 rows for each beer in Listing 15-2.

Listing 15-2.  Building time series 2016–2019 for the two beers

SQL> select

 2 ms.product_id

 3 , mths.mth

 4 , mths.ts

 5 , extract(year from mths.mth) as yr

 6 , extract(month from mths.mth) as mthno

 7 , ms.qty

 8 from (

 9 select

 10 add_months(date '2016-01-01', level - 1) as mth

 11 , level as ts --time series

 12 from dual

 13 connect by level <= 48

 14) mths

Chapter 15 Forecasting with Linear Regression

290

 15 left outer join (

 16 select product_id, mth, qty

 17 from monthly_sales

 18 where product_id in (4160, 7790)

 19) ms

 20 partition by (ms.product_id)

 21 on ms.mth = mths.mth

 22 order by ms.product_id, mths.mth;

The inline view mths in lines 9–13 creates 48 rows, one for each month in 2016–2019.

The column mth contains the month as a date datatype, which I need to join with the

sales data. Column ts contains consecutive numbers 1–48, which I can think of as

number of “time unit,” in this case number of months.

Inline view ms in lines 16–18 simply queries the monthly_sales table for the two

products I’m after – when I’m happy with my model, I can simply remove line 18 and run

for all products instead of only two.

The left outer join between the two inline views is partitioned in line 20 on the

product id, which means that the 48 rows of mths will be outer joined individually to

each product – first outer joined to the 36 rows of product 4160 and then outer joined to

the 36 rows of product 7790.

In total I get 96 rows in the output, partially shown here:

PROD MTH TS YR MTHNO QTY

---- ------- --- ----- ----- ----

4160 2016-01 1 2016 1 79

4160 2016-02 2 2016 2 133

...

4160 2018-11 35 2018 11 73

4160 2018-12 36 2018 12 160

4160 2019-01 37 2019 1

4160 2019-02 38 2019 2

...

4160 2019-11 47 2019 11

4160 2019-12 48 2019 12

7790 2016-01 1 2016 1 4

7790 2016-02 2 2016 2 6

...

Chapter 15 Forecasting with Linear Regression

291

7790 2018-11 35 2018 11 3

7790 2018-12 36 2018 12 5

7790 2019-01 37 2019 1

7790 2019-02 38 2019 2

...

7790 2019-11 47 2019 11

7790 2019-12 48 2019 12

96 rows selected.

For each product, the first 36 rows contain actual sales data in column qty and then

12 rows (ts = 37–48) with null in qty – these 12 rows are to be filled with the forecast

sales as I continue developing the query.

In the preceding output, I only showed parts of the rows; since it is easier for us

humans to grasp such data if presented visually, the complete result set I show in

Figure 15-2.

Figure 15-2.  The monthly sales 2016–2018 plus rows in the time series for 2019
forecast

Chapter 15 Forecasting with Linear Regression

292

The two lines are the sales for the two beers, and then at the end, there is the 12

months I’m going to forecast. So let me start by generating the values I need for the linear

regression.

�Calculating the basis for regression
In principle I could just do a linear regression on the sales data just as they are, but that

would just give me a straight line in 2019, not a forecast that takes into account that the

beers sell well in specific seasons of the year. With the forecasting model I’ve chosen, I

will get a forecast that takes into account the seasons and the trend over the years and

smooths out irregular outliers.

The first value I need to calculate is the centered moving average, so I take my time

series code from Listing 15-2 and place it in a with clause named s1. That enables me to

select from s1 in Listing 15-3.

Listing 15-3.  Calculating centered moving average

SQL> with s1 as (

... /* Listing 15-2 minus order by */

 23)

 24 select

 25 product_id, mth, ts, yr, mthno, qty

 26 , case

 27 when ts between 7 and 30 then

 28 (nvl(avg(qty) over (

 29 partition by product_id

 30 order by ts

 31 rows between 5 preceding and 6 following

 32), 0) + nvl(avg(qty) over (

 33 partition by product_id

 34 order by ts

 35 rows between 6 preceding and 5 following

 36), 0)) / 2

 37 else

 38 null

Chapter 15 Forecasting with Linear Regression

293

 39 end as cma -- centered moving average

 40 from s1

 41 order by product_id, mth;

What happens here is the following:

•	 In lines 28–31, I calculate the average quantity sold in a moving

window of 12 months between 5 preceding and 6 following.

That’s the monthly average sales measured over a year, but slightly

“off center,” since I have 5 months before, then the current month,

and then 6 months after.

•	 So in lines 32–26, I calculate another monthly average sales measured

over a year, but this time between 6 preceding and 5 following, so

I’m slightly off center in the other direction.

•	 Adding these two together and dividing by two (lines 28, 32, and 36)

gives me the average of these two “off center” averages, and that is

what is called centered moving average.

•	 If I calculated this for all 36 months of my sales data, I would get

wrong values at both ends, because they would not be calculated for

the entire 12-month periods. Therefore, I use a case structure in lines

26–27 and 37–38 to skip the first 6 months and the last 6 months of

the 36 and only calculate cma for month numbers 7–30 (that’s the ts–

time series–column).

So when I plot in cma on the graph in Figure 15-3, you can see it’s a slowly rising

line covering the “middle” two years of the sales period. (To keep the graphs clearly

separable, from now I’m only showing one of the beers – Reindeer Fuel. At the end of the

chapter, I’ll show the final graphs for both beers.)

Chapter 15 Forecasting with Linear Regression

294

Having calculated cma, I put that calculation into a new with clause named s2 and

proceed to calculate seasonality factor in Listing 15-4.

Listing 15-4.  Calculating seasonality factor

SQL> with s1 as (

... /* Listing 15-2 minus order by */

 23), s2 as (

... /* Listing 15-3 final query minus order by */

 41)

 42 select

 43 product_id, mth, ts, yr, mthno, qty, cma

 44 , nvl(avg(

 45 case qty

 46 when 0 then 0.0001

 47 else qty

 48 end / nullif(cma, 0)

Figure 15-3.  Centered moving average for Reindeer Fuel

Chapter 15 Forecasting with Linear Regression

295

 49) over (

 50 partition by product_id, mthno

 51),0) as s -- seasonality

 52 from s2

 53 order by product_id, mth;

Basically the seasonality factor is how much the monthly sales is higher or lower

than the average month. But there’s a little more to it than just taking qty/cma:

•	 The model does not like months with zero sales – they will skew

the data in later steps and make the forecast wrong, so my little

workaround for this in lines 45–48 is to make any zeroes become a

very small value instead. In my final result, I’ll be rounding to integers

anyway, so I will end up forecasting zeroes; I just need to use small

values instead of zeroes in the intermediate calculations.

•	 To avoid potential division by zero errors, in line 48, I use nullif to

turn any zeroes into null. There will also be rows where cma itself is

null, so with this I make sure that the result of the division becomes

null both where cma is null and where cma is zero.

•	 The seasonal variations might vary a bit from year to year (different

weather, which month contains Easter, and so on), so I want a

seasonality factor that is an average over the years, but by month. In

other words, for January, I want the average seasonality of January

2016, January 2017, and January 2018; for February, the average of

all Februaries; and so on. This is accomplished in lines 44 and 49–51

with an analytic avg call that partitions by product and mthno – which

was calculated as extract(month from mths.mth), so it contains 1,

2,…12.

That calculation produces this output (partially reproduced), where you can see that

the values of column s (seasonality factor) repeat, so all Januaries have the same value

and so on. Note in particular that due to the avg being partitioned on mthno, s has values

also in those months where cma is null (or zero). This is crucial both for the next step

(deseasonalizing) and the final step (reseasonalizing):

Chapter 15 Forecasting with Linear Regression

296

PROD MTH TS YR MTHNO QTY CMA S

---- ------- --- ----- ----- ---- ----- ------

4160 2016-01 1 2016 1 79 3.3824

4160 2016-02 2 2016 2 133 4.8771

...

4160 2017-01 13 2017 1 148 40.3 3.3824

4160 2017-02 14 2017 2 209 40.3 4.8771

...

4160 2018-01 25 2018 1 167 54.1 3.3824

4160 2018-02 26 2018 2 247 54.1 4.8771

...

4160 2019-01 37 2019 1 3.3824

4160 2019-02 38 2019 2 4.8771

...

Armed with a seasonality factor in every month of the time series, once again I put

the code in with clause s3 and calculate deseasonalizing in Listing 15-5.

Listing 15-5.  Deseasonalizing sales data

SQL> with s1 as (

... /* Listing 15-2 minus order by */

 23), s2 as (

... /* Listing 15-3 final query minus order by */

 41), s3 as (

... /* Listing 15-4 final query minus order by */

 53)

 54 select

 55 product_id, mth, ts, yr, mthno, qty, cma, s

 56 , case when ts <= 36 then

 57 nvl(

 58 case qty

 59 when 0 then 0.0001

 60 else qty

 61 end / nullif(s, 0)

 62 , 0)

Chapter 15 Forecasting with Linear Regression

297

 63 end as des -- deseasonalized

 64 from s3

 65 order by product_id, mth;

Deseasonalizing (“taking the season out of the data”) basically just is dividing the

quantity with the seasonality factor. Once again I avoid problems with zeroes by turning

them into a small value (lines 58–61) and avoid potential division by zero errors with a

nullif call in line 61.

In Figure 15-4 you can see that I have values in column des for all 36 months and the

line follows more or less the cma line (centered moving average). The more identical the

seasonal variations was in each year, the closer the des line will match the cma line.

Mostly the variations here are due to the zero sales that were turned into small

values, where you’ll see a sharp spike followed by a sharp dip (or vice versa). But since

the average of the spike and the dip hits the cma fairly well, it will even out in the next

step (as I’ll show you). If I had left the zeroes (perhaps turning into null to avoid division

by zero), I would have skewed the data and messed up the model.

Figure 15-4.  Deseasonalized sales for Reindeer Fuel

Chapter 15 Forecasting with Linear Regression

298

This deseasonalized line on the graph is now representing a somewhat smoothed out

version of monthly average sales over a year taking into account seasonal variations averaged

over the years. Next step is creating a straight line as closely as possible matching the des line.

�Linear regression
As you may have guessed by now, in Listing 15-6, I put the previous calculations into

with clause s4 and proceed to perform linear regression.

Listing 15-6.  Calculating trend line

SQL> with s1 as (

... /* Listing 15-2 minus order by */

 23), s2 as (

... /* Listing 15-3 final query minus order by */

 41), s3 as (

... /* Listing 15-4 final query minus order by */

 53), s4 as (

... /* Listing 15-5 final query minus order by */

 65)

 66 select

 67 product_id, mth, ts, yr, mthno, qty, cma, s, des

 68 , regr_intercept(des, ts) over (

 69 partition by product_id

 70) + ts * regr_slope(des, ts) over (

 71 partition by product_id

 72) as t -- trend

 73 from s4

 74 order by product_id, mth;

I am using two of the analytic linear regression functions here, each partitioned by

product:

•	 Both functions accept two parameters, first the y coordinate

of the graph and second the x coordinate. In my case the des

(deseasonalized) value is the y coordinate, while ts (time series) is

the x coordinate. I cannot use month directly; it must be a numeric

datatype, so ts with a unit of 1 month is perfect.

Chapter 15 Forecasting with Linear Regression

299

•	 Lines 68–70 use regr_intercept, which gives me the interception

point between the y axis and the interpolated straight line. In other

words, the y value where x = 0.

•	 Lines 70–72 use regr_slope, which gives me the slope of the

interpolated straight line. The slope is how much the y value

increases (or decreases if negative) when the x value increases by

1. Since my x axis has a unit of 1 month, the slope therefore is how

much the graph goes up (or down) per month.

•	 So in total lines 68–72 calculate the y value where x = 0 (regr_

intercept) and for each month add the number of months (ts)

times how much it goes up (or down) per month (regr_slope).

Plotted on the graph in Figure 15-5, I have now a straight trend line t that has a value

in all 48 months.

Figure 15-5.  Trend line for Reindeer Fuel by linear regression

Chapter 15 Forecasting with Linear Regression

300

I shove the calculation so far into with clause s5 in Listing 15-7, and I can now do the

final step in the forecast.

Listing 15-7.  Reseasonalizing trend ➤ forecast

SQL> with s1 as (

... /* Listing 15-2 minus order by */

 23), s2 as (

... /* Listing 15-3 final query minus order by */

 41), s3 as (

... /* Listing 15-4 final query minus order by */

 53), s4 as (

... /* Listing 15-5 final query minus order by */

 65), s5 as (

... /* Listing 15-6 final query minus order by */

 74)

 75 select

 76 product_id, mth, ts, yr, mthno, qty, cma, s, des

 77 , t * s as forecast --reseasonalized

 78 from s5

 79 order by product_id, mth;

It is very simple – in line 77, I reseasonalize the trend line t by multiplying it with the

seasonality factor s.

Remember that the seasonality factor values were available in all rows in all years,

including 2019 for which we have no sales data but wish a forecast. And as the trend line

also exists in rows for 2019, I can plot the forecast values into Figure 15-6.

Chapter 15 Forecasting with Linear Regression

301

Having both qty and forecast values plotted in the same graph enables me visually

to check if the model fits my data reasonably well. The closer the two lines match in

2016–2018, the more I can trust the forecast in 2019. In this case, it looks like it fits fairly

well.

�Final forecast
Having satisfied myself that the model looks like it fits my data, I’m going to clean up

a little and not retrieve the columns with all the intermediate calculations, but instead

in Listing 15-8, I just get the relevant information for showing my users the actual and

forecast sales quantity.

Figure 15-6.  Reseasonalized forecast for Reindeer Fuel

Chapter 15 Forecasting with Linear Regression

302

Listing 15-8.  Selecting actual and forecast

SQL> with s1 as (

... /* Listing 15-2 minus order by */

 23), s2 as (

... /* Listing 15-3 final query minus order by */

 41), s3 as (

... /* Listing 15-4 final query minus order by */

 53), s4 as (

... /* Listing 15-5 final query minus order by */

 65), s5 as (

... /* Listing 15-6 final query minus order by */

 74)

 75 select

 76 product_id

 77 , mth

 78 , case

 79 when ts <= 36 then qty

 80 else round(t * s)

 81 end as qty

 82 , case

 83 when ts <= 36 then 'Actual'

 84 else 'Forecast'

 85 end as type

 86 from s5

 87 order by product_id, mth;

I simply select the product and month, and then I use a case structure twice to give

me a qty column and a type column:

•	 Lines 78–81 give me actual sold quantity for the first 36 months and

the forecast (reseasonalized trend) for the last 12 months. As I cannot

sell fractional beers, I’m rounding the forecast to integers.

•	 Lines 82–85 populate the type column with Actual for the first

36 months and Forecast for the last 12 months to allow me to

distinguish what the contents of qty represent.

Chapter 15 Forecasting with Linear Regression

303

That way I produce a simpler output:

PROD MTH QTY TYPE

---- ------- ---- --------

4160 2016-01 79 Actual

4160 2016-02 133 Actual

...

4160 2018-11 73 Actual

4160 2018-12 160 Actual

4160 2019-01 222 Forecast

4160 2019-02 325 Forecast

...

4160 2019-11 26 Forecast

4160 2019-12 191 Forecast

7790 2016-01 4 Actual

7790 2016-02 6 Actual

...

7790 2018-11 3 Actual

7790 2018-12 5 Actual

7790 2019-01 1 Forecast

7790 2019-02 7 Forecast

...

7790 2019-11 3 Forecast

7790 2019-12 3 Forecast

96 rows selected.

In Figure 15-7 I plot these into a graph, where I show the results for both beers (same

as I showed in Figure 15-2, just now with the forecast added in).

Chapter 15 Forecasting with Linear Regression

304

For Reindeer Fuel I’ve shown all the details in the previous pages, and here I only

show the actual sales and the 2019 forecast. But even without the details in this graph,

you can still visually see that it is a beer selling well in the winter time, it sells a little more

each year, and the 2019 forecast graph matches the shape of the other years, just a little

higher.

The other beer, Summer in India, sells well in the summertime and sells a little less

each year, and the 2019 forecast is shaped like the other years, just a little lower.

All in all, for these two beers, this forecasting model looks quite good; and being

entirely developed in SQL with analytic functions, it performs quite well indeed. At the

job I mentioned at the start of the chapter, I forecasted 100,000 products by inserting 1.2

million rows to a forecast table using insert into…select…in 1½ minute.

Other products with a less nice seasonal variation profile might not fit as well into

this forecasting model. This is where you probably need statistical tools instead of

plain SQL in order to discover which forecasting models fit best to which products (or

whatever you are forecasting).

Figure 15-7.  The monthly sales 2016–2018 plus the forecasts for 2019

Chapter 15 Forecasting with Linear Regression

305

However, it can still be a nice option to use the tools in a discovery phase, and once

you have categorized your products into a handful of different models, maybe it can still

make sense then to implement this handful of models using the power of SQL to be able

to efficiently process lots of data without needing to pull them out of the database.

�Lessons learned
Forecasting is a science, and one small chapter in a book on SQL will not make you a

forecasting expert, but even with such a small appetizer on the forecasting topic, I’ve

shown you some things about

•	 Chaining calculations in multiple with clauses as an alternative to

nested inline views

•	 Building time series data with consecutive rows one time unit apart

•	 Averaging with moving windows and averaging the same period

across different years

•	 Calculating linear regression with regr_intercept and regr_slope

•	 Combining these techniques to implement a forecasting model in

SQL

Though this chapter has shown just a single forecasting model, this should help you

implement other similar time series–based regressions in SQL, if you have the formulas

and you have the need for speed and efficiency higher than many external forecasting

tools can offer.

Chapter 15 Forecasting with Linear Regression

307
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_16

CHAPTER 16

Rolling Sums to Forecast
Reaching Minimums
If you have a steady consumption rate, it is easy to forecast how far you can go with that

rate – for example, if you know your car on average drives 20 kilometers per liter fuel and

it has 30 liters left in the tank, you can simply multiply to know that you can drive 600

kilometers before you run out of fuel.

But if the consumption is not steady, you need something else. If the Good Beer

Trading Co sells a particular seasonal Christmas beer, it is not simply a steady 100 beers

sold per month – June will sell very few of those beers, while December sells hundreds.

For such a case, you estimate (perhaps using the techniques of the previous chapter)

what you think you are going to sell and store it as a forecast or sales budget.

Once you have forecast you are going to sell 150 in January, 100 in February, 250 in

March, and so on, you need to figure out that the 400 you have in stock in your inventory

will dwindle to 250 by the end of January and to 150 by the end of February and be sold

out a little later than the middle of March. Figuring this out is the topic of this chapter.

�Inventory, budget, and order
In the Good Beer Trading Co example, I’m going to demonstrate the case of forecasting

when the inventory reaches zero (or a minimum) given that I know how many beers are

in order (waiting to be picked from the inventory) and how many beers are budgeted to

be sold (assumed to be picked at some point).

I’ll use month as the time granularity, budgeting sales quantities per month. For this

demonstration purpose, I don’t need to go to weekly or daily data, but you can easily

adapt the methods to finer time granularity if you need it. I will use the data in the tables

shown in Figure 16-1.

308

From table inventory, I know what quantity of each beer is in stock, table monthly_

budget shows me the quantity each beer is expected to sell per month, and how much

has been ordered (but not yet picked and therefore not yet taken from the stock) is in

table orderlines. Table product_minimums I’ll get back to later in the chapter.

You’ll notice the inventory table contains quantities per location (I used the table

in the FIFO picking in Chapter 13), but for this purpose, I just need the total quantity in

stock per beer. To make that easier, I create the view inventory_totals in Listing 16-1

aggregating the inventory per beer.

Figure 16-1.  The tables used in the examples of this chapter

Chapter 16 Rolling Sums to Forecast Reaching Minimums

309

Listing 16-1.  View of total inventory per product

SQL> create or replace view inventory_totals

 2 as

 3 select

 4 i.product_id

 5 , sum(i.qty) as qty

 6 from inventory i

 7 group by i.product_id;

View INVENTORY_TOTALS created.

Similarly for the quantities in order, I do not need specific orderlines. I just need how

many of each beer each month, so I aggregate those figures in view monthly_orders in

Listing 16-2.

Listing 16-2.  View of monthly order totals per product

SQL> create or replace view monthly_orders

 2 as

 3 select

 4 ol.product_id

 5 , trunc(o.ordered, 'MM') as mth

 6 , sum(ol.qty) as qty

 7 from orders o

 8 join orderlines ol

 9 on ol.order_id = o.id

 10 group by ol.product_id, trunc(o.ordered, 'MM');

View MONTHLY_ORDERS created.

Those are the tables and views I’m going to be using; now I’ll show the data in

them.

Chapter 16 Rolling Sums to Forecast Reaching Minimums

310

�The data
I’ll use two beers for the examples of this chapter: Der Helle Kumpel and Hazy Pink

Cloud. They have the total inventory shown in Listing 16-3.

Listing 16-3.  The inventory totals for two products

SQL> select it.product_id, p.name, it.qty

 2 from inventory_totals it

 3 join products p

 4 on p.id = it.product_id

 5 where product_id in (6520, 6600)

 6 order by product_id;

PRODUCT_ID NAME QTY

6520 Der Helle Kumpel 400

6600 Hazy Pink Cloud 100

This is totals in stock as of January 1, 2019. Then I have a monthly sales budget for

the year 2019 (Listing 16-4).

Listing 16-4.  The 2019 monthly budget for the two beers

SQL> select mb.product_id, mb.mth, mb.qty

 2 from monthly_budget mb

 3 where mb.product_id in (6520, 6600)

 4 and mb.mth >= date '2019-01-01'

 5 order by mb.product_id, mb.mth;

PRODUCT_ID MTH QTY

6520 2019-01-01 45

6520 2019-02-01 45

6520 2019-03-01 50

...

6520 2019-10-01 50

6520 2019-11-01 40

6520 2019-12-01 40

6600 2019-01-01 20

Chapter 16 Rolling Sums to Forecast Reaching Minimums

311

6600 2019-02-01 20

6600 2019-03-01 20

...

6600 2019-10-01 20

6600 2019-11-01 20

6600 2019-12-01 20

24 rows selected.

Product 6520 is expected to sell a bit more in the summer months, while product

6600 is expected to sell a steady 20 per month.

But I don’t just have the expected quantities; I also have in Listing 16-5 the quantities

that have already been ordered in the first months of 2019.

Listing 16-5.  The current monthly order quantities

SQL> select mo.product_id, mo.mth, mo.qty

 2 from monthly_orders mo

 3 where mo.product_id in (6520, 6600)

 4 order by mo.product_id, mo.mth;

PRODUCT_ID MTH QTY

6520 2019-01-01 260

6520 2019-02-01 40

6600 2019-01-01 16

6600 2019-02-01 40

The thing to note here is that in January, product 6520 has been ordered much more

than what was expected.

Given these data, I’ll now make some SQL to find out when we run out of beers for

those two products.

�Accumulating until zero
One of the really useful things you can do with analytic functions is the rolling

(accumulated) sum that I’ve shown before. In Listing 16-6, I use it again.

Chapter 16 Rolling Sums to Forecast Reaching Minimums

312

Listing 16-6.  Accumulating quantities

SQL> select

 2 mb.product_id as p_id, mb.mth

 3 , mb.qty b_qty, mo.qty o_qty

 4 , greatest(mb.qty, nvl(mo.qty, 0)) as qty

 5 , sum(greatest(mb.qty, nvl(mo.qty, 0))) over (

 6 partition by mb.product_id

 7 order by mb.mth

 8 rows between unbounded preceding and current row

 9) as acc_qty

 10 from monthly_budget mb

 11 left outer join monthly_orders mo

 12 on mo.product_id = mb.product_id

 13 and mo.mth = mb.mth

 14 where mb.product_id in (6520, 6600)

 15 and mb.mth >= date '2019-01-01'

 16 order by mb.product_id, mb.mth;

In line 4, I calculate the monthly quantity as whichever is the greatest of either the

budgeted quantity or the ordered quantity. In the following output, you see January for

product 6520 has o_qty as the greatest (making qty = 260), while January for product

6600 has b_qty as the greatest (making qty = 20.)

The idea is that if the ordered quantity is the smallest, there hasn’t yet been orders

to match the budget, but it’s still expected to rise until budget is reached. But when the

ordered quantity is the greatest, I know the budget has been surpassed, so I don’t expect

it to become greater yet.

So this quantity is then what I accumulate with the analytic sum in lines 5–9, so I end

up with column acc_qty that shows me accumulated how much I expect to pick from

the inventory:

P_ID MTH B_QTY O_QTY QTY ACC_QTY

6520 2019-01-01 45 260 260 260

6520 2019-02-01 45 40 45 305

6520 2019-03-01 50 50 355

...

Chapter 16 Rolling Sums to Forecast Reaching Minimums

313

6520 2019-11-01 40 40 775

6520 2019-12-01 40 40 815

6600 2019-01-01 20 16 20 20

6600 2019-02-01 20 40 40 60

6600 2019-03-01 20 20 80

...

6600 2019-11-01 20 20 240

6600 2019-12-01 20 20 260

In Listing 16-7, I use this accumulated quantity to calculate what’s the expected

inventory for each month (if I don’t restock along the way).

Listing 16-7.  Dwindling inventory

SQL> select

 2 mb.product_id as p_id, mb.mth

 3 , greatest(mb.qty, nvl(mo.qty, 0)) as qty

 4 , greatest(

 5 it.qty - nvl(sum(

 6 greatest(mb.qty, nvl(mo.qty, 0))

 7) over (

 8 partition by mb.product_id

 9 order by mb.mth

 10 rows between unbounded preceding and 1 preceding

 11), 0)

 12 , 0

 13) as inv_begin

 14 , greatest(

 15 it.qty - sum(

 16 greatest(mb.qty, nvl(mo.qty, 0))

 17) over (

 18 partition by mb.product_id

 19 order by mb.mth

 20 rows between unbounded preceding and current row

 21)

 22 , 0

 23) as inv_end

Chapter 16 Rolling Sums to Forecast Reaching Minimums

314

 24 from monthly_budget mb

 25 left outer join monthly_orders mo

 26 on mo.product_id = mb.product_id

 27 and mo.mth = mb.mth

 28 join inventory_totals it

 29 on it.product_id = mb.product_id

 30 where mb.product_id in (6520, 6600)

 31 and mb.mth >= date '2019-01-01'

 32 order by mb.product_id, mb.mth;

Lines 4–13 calculate how much quantity was in stock at the beginning of the month,

while lines 14–23 calculate how much at the end of the month:

P_ID MTH QTY INV_BEGIN INV_END

6520 2019-01-01 260 400 140

6520 2019-02-01 45 140 95

6520 2019-03-01 50 95 45

6520 2019-04-01 50 45 0

6520 2019-05-01 55 0 0

...

6600 2019-01-01 20 100 80

6600 2019-02-01 40 80 40

6600 2019-03-01 20 40 20

6600 2019-04-01 20 20 0

6600 2019-05-01 20 0 0

...

You see how the inventory dwindles until it reaches zero. As I use month for time

granularity, in principle I can only state that the inventory will reach zero at some point

during that month. But if I assume that the budgeted sales will be evenly distributed

throughout the month, I can also in Listing 16-8 make a guesstimation of which day that

zero will be reached.

Listing 16-8.  Estimating when zero is reached

SQL> select

 2 product_id as p_id, mth, inv_begin, inv_end

 3 , trunc(

Chapter 16 Rolling Sums to Forecast Reaching Minimums

315

 4 mth + numtodsinterval(

 5 (add_months(mth, 1) - 1 - mth) * inv_begin / qty

 6 , 'day'

 7)

 8) as zero_day

 9 from (

...

 41)

 42 where inv_begin > 0 and inv_end = 0

 43 order by product_id;

I wrap Listing 16-7 in an inline view and use inv_begin / qty in line 5 to figure out

how large a fraction of the estimated monthly sales can be fulfilled by the inventory at

hand at the beginning of the month. When I assume evenly distributed sales, this is then

the fraction of the number of days in the month that I have sufficient stock for.

Filtering in line 42 gives me as output just the rows where the inventory becomes

zero:

P_ID MTH INV_BEGIN INV_END ZERO_DAY

6520 2019-04-01 45 0 2019-04-27

6600 2019-04-01 20 0 2019-04-30

In reality, however, I wouldn’t let the inventory reach zero. I’d set up a minimum

quantity that I mustn’t get below of (as a buffer in case I underestimated sales), and every

time I get to the minimum quantity, I must buy more beer and restock the inventory.

�Restocking when minimum reached
In table product_minimums, I have parameters for the inventory handling of each

product. Listing 16-9 shows the table content for the two beers I use for demonstration.

Listing 16-9.  Product minimum restocking parameters

SQL> select product_id, qty_minimum, qty_purchase

 2 from product_minimums pm

 3 where pm.product_id in (6520, 6600)

 4 order by pm.product_id;

Chapter 16 Rolling Sums to Forecast Reaching Minimums

316

Column qty_minimum is my inventory buffer – I plan that the inventory should never

get below this. Column qty_purchase is the number of beers I buy every time I restock

the inventory:

PRODUCT_ID QTY_MINIMUM QTY_PURCHASE

6520 100 400

6600 30 100

With this I am ready to write SQL that can show me when I need to purchase more

beer and restock throughout 2019.

This is not simply done with analytic functions, since I cannot use the result of an

analytic function inside the analytic function itself to add more quantity. This would mean

an unsupported type of recursive function call; it cannot be done. But I can do it with

recursive subquery factoring instead of analytic functions as shown in Listing 16-10.

Listing 16-10.  Restocking when a minimum is reached

SQL> with mb_recur(

 2 product_id, mth, qty, inv_begin, date_purch

 3 , p_qty, inv_end, qty_minimum, qty_purchase

 4) as (

 5 select

 6 it.product_id

 7 , date '2018-12-01' as mth

 8 , 0 as qty

 9 , 0 as inv_begin

 10 , cast(null as date) as date_purch

 11 , 0 as p_qty

 12 , it.qty as inv_end

 13 , pm.qty_minimum

 14 , pm.qty_purchase

 15 from inventory_totals it

 16 join product_minimums pm

 17 on pm.product_id = it.product_id

 18 where it.product_id in (6520, 6600)

 19 union all

 20 select

Chapter 16 Rolling Sums to Forecast Reaching Minimums

317

 21 mb.product_id

 22 , mb.mth

 23 , greatest(mb.qty, nvl(mo.qty, 0)) as qty

 24 , mbr.inv_end as inv_begin

 25 , case

 26 when mbr.inv_end - greatest(mb.qty, nvl(mo.qty, 0))

 27 < mbr.qty_minimum

 28 then

 29 trunc(

 30 mb.mth

 31 + numtodsinterval(

 32 (add_months(mb.mth, 1) - 1 - mb.mth)

 33 * (mbr.inv_end - mbr.qty_minimum)

 34 / mb.qty

 35 , 'day'

 36)

 37)

 38 end as date_purch

 39 , case

 40 when mbr.inv_end - greatest(mb.qty, nvl(mo.qty, 0))

 41 < mbr.qty_minimum

 42 then mbr.qty_purchase

 43 end as p_qty

 44 , mbr.inv_end - greatest(mb.qty, nvl(mo.qty, 0))

 45 + case

 46 when mbr.inv_end - greatest(mb.qty, nvl(mo.qty, 0))

 47 < mbr.qty_minimum

 48 then mbr.qty_purchase

 49 else 0

 50 end as inv_end

 51 , mbr.qty_minimum

 52 , mbr.qty_purchase

 53 from mb_recur mbr

 54 join monthly_budget mb

 55 on mb.product_id = mbr.product_id

 56 and mb.mth = add_months(mbr.mth, 1)

Chapter 16 Rolling Sums to Forecast Reaching Minimums

318

 57 left outer join monthly_orders mo

 58 on mo.product_id = mb.product_id

 59 and mo.mth = mb.mth

 60)

 61 select

 62 product_id as p_id, mth, qty, inv_begin

 63 , date_purch, p_qty, inv_end

 64 from mb_recur

 65 where mth >= date '2019-01-01'

 66 and p_qty is not null

 67 order by product_id, mth;

I start in lines 5–18 by setting up one row per product containing what is the

inventory when I start, along with the parameters for minimum quantity and how much

to purchase. I set this row as being in December 2018 with the inventory in the inv_end

column – that way it will function as a “primer” row for the recursive part of the query in

lines 20–59.

In the recursive part I do:

•	 Join to the monthly budget for the next month in line 56. The first

iteration here will find January 2019 (since my “primer” row was

December 2018), and then each iteration will find the next month

until there are no more budget rows.

•	 The inv_begin of this next month in the iteration is then equal to the

inv_end of the previous month, so that’s a simple assignment in line 24.

•	 Lines 44–50 calculate the inv_end, which is the beginning inventory

(previous inv_end) minus the quantity picked that month plus a

possible restocking. If the beginning inventory minus the quantity

would become less than the minimum, I add the quantity I will be

purchasing for restocking.

•	 To show on the output how much I need to purchase for restocking, I

separate this case structure out in lines 39–43.

•	 And in lines 25–28, I use the same case condition to calculate an

estimated date of the month where the restocking by purchasing

more beer should take place.

Chapter 16 Rolling Sums to Forecast Reaching Minimums

319

Line 65 removes the “primer” rows from the output (they are not interesting), and

line 66 gives me just those months where I need to restock:

P_ID MTH QTY INV_BEGIN DATE_PURCH P_QTY INV_END

6520 2019-02-01 45 140 2019-02-25 400 495

6520 2019-10-01 50 115 2019-10-10 400 465

6600 2019-03-01 20 40 2019-03-16 100 120

6600 2019-08-01 20 40 2019-08-16 100 120

I am now able to plan when I need to purchase more beers to restock the inventory.

In Listing 16-10, I used recursive subquery factoring. The way I did it means that

for the budget and orders, there will be a series of repeated small lookups to the tables

for each month. Depending on circumstances, this might be perfectly fine, but in other

cases, it could be bad for performance.

Listing 16-11 shows an alternative method of recursion (or rather, iteration) with the

model clause instead, where a different access plan can be used by the optimizer.

Listing 16-11.  Restocking with model clause

SQL> select

 2 product_id as p_id, mth, qty, inv_begin

 3 , date_purch, p_qty, inv_end

 4 from (

 5 select *

 6 from monthly_budget mb

 7 left outer join monthly_orders mo

 8 on mo.product_id = mb.product_id

 9 and mo.mth = mb.mth

 10 join inventory_totals it

 11 on it.product_id = mb.product_id

 12 join product_minimums pm

 13 on pm.product_id = mb.product_id

 14 where mb.product_id in (6520, 6600)

 15 and mb.mth >= date '2019-01-01'

 16 model

 17 partition by (mb.product_id)

Chapter 16 Rolling Sums to Forecast Reaching Minimums

320

 18 dimension by (

 19 row_number() over (

 20 partition by mb.product_id order by mb.mth

 21) - 1 as rn

 22)

 23 measures (

 24 mb.mth

 25 , greatest(mb.qty, nvl(mo.qty, 0)) as qty

 26 , 0 as inv_begin

 27 , cast(null as date) as date_purch

 28 , 0 as p_qty

 29 , 0 as inv_end

 30 , it.qty as inv_orig

 31 , pm.qty_minimum

 32 , pm.qty_purchase

 33)

 34 rules sequential order iterate (12) (

 35 inv_begin[iteration_number]

 36 = nvl(inv_end[iteration_number-1], inv_orig[cv()])

 37 , p_qty[iteration_number]

 38 = case

 39 when inv_begin[cv()] - qty[cv()]

 40 < qty_minimum[cv()]

 41 then qty_purchase[cv()]

 42 end

 43 , date_purch[iteration_number]

 44 = case

 45 when p_qty[cv()] is not null

 46 then

 47 trunc(

 48 mth[cv()]

 49 + numtodsinterval(

 50 (add_months(mth[cv()], 1) - 1 - mth[cv()])

 51 * (inv_begin[cv()] - qty_minimum[cv()])

 52 / qty[cv()]

Chapter 16 Rolling Sums to Forecast Reaching Minimums

321

 53 , 'day'

 54)

 55)

 56 end

 57 , inv_end[iteration_number]

 58 = inv_begin[cv()] + nvl(p_qty[cv()], 0) - qty[cv()]

 59)

 60)

 61 where p_qty is not null

 62 order by product_id, mth;

With this method I do not need “primer” rows and repeated monthly lookups.

Instead I grab all the data I need in one go in lines 5–15, rather like if I was using analytic

functions. And then I can use model:

•	 Lines 19–21 create a consecutive numbering that I can use as

dimension (“index”) in my measures. I deliberately make it have the

values 0–11 instead of 1–12, because that fits how iteration_number

is filled when using iteration.

•	 In the measures in lines 24–32, I set up the “variables” I need to work

with.

•	 In the rules clause, I can then perform all my calculations. In line

34, I specify that I want my calculations to be performed in the

order I have typed them, and they should be performed 12 times.

That means that within each of the 12 iterations, I can use the

pseudocolumn iteration_number, and it will increase from 0 to 11.

•	 The first rule to be executed is lines 35–36, where I set inv_begin to

the inv_end of the previous month (in the first iteration, this will be

null, so with nvl I set it to the original inventory in the first month).

•	 If the inventory minus the quantity is less than the minimum, then in

lines 37–42, I set p_qty to the quantity I need to purchase.

•	 If I did find a p_qty (line 45), the rule in lines 43–56 calculates the day

I need to purchase and restock.

•	 And lines 57–68 calculate the inv_end by using the other measures.

Chapter 16 Rolling Sums to Forecast Reaching Minimums

322

The 12 iterations and calculations are quite similar to what I did in the recursive

subquery factoring, except that I use measures indexed by a dimension where the data in

those measures have all been filled initially before I start iterating and calculating.

This method will for some cases enable more efficient access of the tables – but at

the cost of using more memory to keep all the data and work with them in the model

clause (potentially needing to spill some to disk if you have huge amounts of data here.)

Whether Listing 16-10 or 16-11 is the best will depend on the case – you’ll need to test

the methods yourself.

�Lessons learned
Analytic functions are extremely useful and can solve a lot of things, including rolling

sums to find when you reach some minimum. But it cannot do all, so in this chapter, I

showed you a mix of

•	 Subtracting a rolling sum from a starting figure to discover when a

minimum (or zero) has been reached

•	 Using recursive subquery to repeatedly replenish the dwindling

figure whenever minimum has been reached

•	 Using the model clause to accomplish the same with an alternative

data access plan

Though it’s a mix of techniques, all in all they should help you solve similar cases in

the future.

Chapter 16 Rolling Sums to Forecast Reaching Minimums

PART III

Row Pattern Matching

325
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_17

CHAPTER 17

Up-and-Down Patterns
Using match_recognize is also known as row pattern matching for a reason – it is very

applicable for situations where you have data nicely ordered in, for example, a time

series that can be depicted with a value on the y axis and the time on the x axis of a

graph. Visually on a graph is an easy way for us humans to look for patterns – match_

recognize can do the same with SQL.

It doesn’t necessarily have to be time on the x axis, and there could be multiple

values on the y axis – the thing to remember is that if you as human would visualize

something on line graphs and look for patterns on the graphs, you can code SQL to go

through the data a lot faster than your eyes can spot patterns visually.

This chapter exemplifies this approach step by step, so that at the end you can apply

the technique for similar pattern searching on other types of data.

�The stock ticker example
In the Oracle Data Warehousing Guide, pattern matching examples are given using stock

ticker data, because they are a nice example of data with a value that changes over time,

where analysts look for specific patterns like V and W shapes that can indicate if it’s time

to buy or sell shares. I’ll do the same.

In the practical schema, I have created the tables shown in Figure 17-1 for storing

information on stock and their prices. The examples in the chapter only concern

themselves with the ticker table, but for completeness, the stock table is created too.

326

I have created a fictional stock symbol BEER for my Good Beer Trading Co. In the

ticker table, I’ve inserted the end-of-day stock prices for three weeks of stock trading in

April 2019, depicted on the graph in Figure 17-2.

Figure 17-1.  The ticker table used in this chapter

Figure 17-2.  Graphical depiction of the data in the TICKER table

Chapter 17 Up-and-Down Patterns

327

Those 15 days of stock prices will be the basis for my walk-through of pattern

matching for up-and-down patterns.

�Classifying downs and ups
When developing a pattern matching query, I typically start simple.

Almost always I’ll know beforehand what I want to partition by, as well as the

ordering the data needs to be in for the pattern matching to make sense. For example,

for the stock ticker data, I want to look for patterns within each symbol value separately,

so I will use partition by for that purpose (this data only contains a single symbol, but

there might have been more). And the patterns I’m looking for deal with how the data

changes over time, so I do order by the day column (within each symbol).

Then I build my first skeleton query (shown in Listing 17-1), where I define how I

want my rows to be classified and have the simplest possible pattern enabling me to test

if my definitions are as I want them.

Listing 17-1.  Classifying the rows

SQL> select *

 2 from ticker

 3 match_recognize (

 4 partition by symbol

 5 order by day

 6 measures

 7 match_number() as match

 8 , classifier() as class

 9 , prev(price) as prev

 10 all rows per match

 11 pattern (

 12 down | up

 13)

 14 define

 15 down as price < prev(price)

 16 , up as price > prev(price)

 17)

 18 order by symbol, day;

Chapter 17 Up-and-Down Patterns

328

Apart from the partition by and order by, I like to go over the clauses from the

bottom going up – that makes more sense to me.

So in lines 15 and 16, I am defining that if the price in a row is less than the price in

the previous row, the row is to be classified as a down row, but if the price is greater than

the previous, the row is to be classified as an up row.

The pattern in row 12 is as simple as possible – a match consists of a single row that

is either a down row or an up row (the | sign is used for logical or in the pattern.) This is

of course not the pattern I will end up with; it is merely a convenient pattern to test if my

classification definitions give me what I want.

Since my pattern in this case only gives a single row for each match, I’d get the

same number of rows in my output if I chose one row per match in line 10 instead of

the all rows per match I use here. But a difference is that one row would only output

the columns used in partition and order by as well as the measures, while all rows

output all columns of the table. That helps for debugging while developing, even if I

know that my final desired result will use one row per match.

Lines 7–9 define what measures I want in the output (besides the table columns).

Function match_number() shows me which rows belong together in a match (in this case

always single rows in a match, but later that will change). Function classifier() shows

me which classification definition the row got, which is what I want to see if I got right.

And lastly in line 9, I output the previous price, so I can double-check that the correlation

between price and previous price matches the classification.

Running the query in Listing 17-1 gives this output:

SYMBOL DAY MATCH CLASS PREV PRICE

BEER 2019-04-02 1 DOWN 14.9 14.2

BEER 2019-04-04 2 UP 14.2 15.7

BEER 2019-04-05 3 DOWN 15.7 15.6

BEER 2019-04-08 4 DOWN 15.6 14.8

BEER 2019-04-10 5 DOWN 14.8 14

BEER 2019-04-11 6 UP 14 14.4

BEER 2019-04-12 7 UP 14.4 15.2

BEER 2019-04-15 8 DOWN 15.2 15

BEER 2019-04-16 9 DOWN 15 13.7

BEER 2019-04-17 10 UP 13.7 14.3

BEER 2019-04-19 11 UP 14.3 15.5

Chapter 17 Up-and-Down Patterns

329

I can see that my rows are classified correctly according to the definition I made.

But I notice I’m not really matching all rows here, only 11 out of 15. For one thing I am

not finding the rows where the price is equal to the previous price. So I try changing my

definitions in lines 15 and 16 to use less-than-or-equal and greater-than-or-equal:

...

 15 down as price <= prev(price)

 16 , up as price >= prev(price)

...

SYMBOL DAY MATCH CLASS PREV PRICE

BEER 2019-04-02 1 DOWN 14.9 14.2

BEER 2019-04-03 2 DOWN 14.2 14.2

BEER 2019-04-04 3 UP 14.2 15.7

BEER 2019-04-05 4 DOWN 15.7 15.6

BEER 2019-04-08 5 DOWN 15.6 14.8

BEER 2019-04-09 6 DOWN 14.8 14.8

BEER 2019-04-10 7 DOWN 14.8 14

BEER 2019-04-11 8 UP 14 14.4

BEER 2019-04-12 9 UP 14.4 15.2

BEER 2019-04-15 10 DOWN 15.2 15

BEER 2019-04-16 11 DOWN 15 13.7

BEER 2019-04-17 12 UP 13.7 14.3

BEER 2019-04-18 13 DOWN 14.3 14.3

BEER 2019-04-19 14 UP 14.3 15.5

I got more rows in my output now; those rows with a price equal to the previous

price are included. But it is maybe not the best idea, since looking at match numbers 12,

13, and 14, that is definitely an upward-going trend on the graph, but my definition has

classified the row in match 13 as DOWN.

My problem is that rows with an unchanged price potentially match both of my

definitions, so with the simple or pattern I have used, such rows will be classified as the

first classifier in the pattern that evaluates to true. This may not always be a problem as

I’ll show later, but for now I will try changing my definitions to be mutually exclusive by

adding a same classification (remembering to add it to the or pattern):

Chapter 17 Up-and-Down Patterns

330

...

 11 pattern (

 12 down | up | same

 13)

 14 define

 15 down as price < prev(price)

 16 , up as price > prev(price)

 17 , same as price = prev(price)

...

And I get the same rows as the last output, just this time classified three ways: DOWN,

UP, and SAME:

SYMBOL DAY MATCH CLASS PREV PRICE

BEER 2019-04-02 1 DOWN 14.9 14.2

BEER 2019-04-03 2 SAME 14.2 14.2

BEER 2019-04-04 3 UP 14.2 15.7

BEER 2019-04-05 4 DOWN 15.7 15.6

BEER 2019-04-08 5 DOWN 15.6 14.8

BEER 2019-04-09 6 SAME 14.8 14.8

BEER 2019-04-10 7 DOWN 14.8 14

BEER 2019-04-11 8 UP 14 14.4

BEER 2019-04-12 9 UP 14.4 15.2

BEER 2019-04-15 10 DOWN 15.2 15

BEER 2019-04-16 11 DOWN 15 13.7

BEER 2019-04-17 12 UP 13.7 14.3

BEER 2019-04-18 13 SAME 14.3 14.3

BEER 2019-04-19 14 UP 14.3 15.5

I’m still not entirely happy, as I’m not seeing the very first row in the output. Since

it has no previous row, it can never satisfy any of the three definitions, so how to handle

that? It is fairly easy by adding a fourth classification to the pattern in line 12:

...

 12 down | up | same | strt

...

Chapter 17 Up-and-Down Patterns

331

Now you’ll be expecting me to add strt to the definitions in the define clause, but

that is not needed here. If the pattern matching hits a definition in the pattern that is not

defined, it is simply assumed always to be true. So the first row cannot match any of the

three defined classifications, and the matching then attempts to see if it matches strt,

and it does, since any row can do that.

Therefore I see classifier strt for the first row in the output, which now contains all

15 rows:

SYMBOL DAY MATCH CLASS PREV PRICE

BEER 2019-04-01 1 STRT 14.9

BEER 2019-04-02 2 DOWN 14.9 14.2

BEER 2019-04-03 3 SAME 14.2 14.2

BEER 2019-04-04 4 UP 14.2 15.7

BEER 2019-04-05 5 DOWN 15.7 15.6

BEER 2019-04-08 6 DOWN 15.6 14.8

BEER 2019-04-09 7 SAME 14.8 14.8

BEER 2019-04-10 8 DOWN 14.8 14

BEER 2019-04-11 9 UP 14 14.4

BEER 2019-04-12 10 UP 14.4 15.2

BEER 2019-04-15 11 DOWN 15.2 15

BEER 2019-04-16 12 DOWN 15 13.7

BEER 2019-04-17 13 UP 13.7 14.3

BEER 2019-04-18 14 SAME 14.3 14.3

BEER 2019-04-19 15 UP 14.3 15.5

A thing to note is that it does matter where in the pattern I place such an undefined

classification. For example, I could have placed it at the beginning of my or list of

classifications:

...

 12 strt | down | up | same

...

As the matching is lazy and short circuit evaluates the pattern, it’ll begin by seeing

if the row matches the definition of strt, which is undefined, and therefore any row

matches it, so I’m getting an immediate match, and down, up, and same are never

evaluated. I get an output that isn’t very helpful:

Chapter 17 Up-and-Down Patterns

332

SYMBOL DAY MATCH CLASS PREV PRICE

BEER 2019-04-01 1 STRT 14.9

BEER 2019-04-02 2 STRT 14.9 14.2

BEER 2019-04-03 3 STRT 14.2 14.2

BEER 2019-04-04 4 STRT 14.2 15.7

BEER 2019-04-05 5 STRT 15.7 15.6

BEER 2019-04-08 6 STRT 15.6 14.8

BEER 2019-04-09 7 STRT 14.8 14.8

BEER 2019-04-10 8 STRT 14.8 14

BEER 2019-04-11 9 STRT 14 14.4

BEER 2019-04-12 10 STRT 14.4 15.2

BEER 2019-04-15 11 STRT 15.2 15

BEER 2019-04-16 12 STRT 15 13.7

BEER 2019-04-17 13 STRT 13.7 14.3

BEER 2019-04-18 14 STRT 14.3 14.3

BEER 2019-04-19 15 STRT 14.3 15.5

But I’m reasonably happy with the query so far, classifying my rows into down, up,

same, and strt – it’s now time to start using these classifications for some pattern

matching.

�Downs + ups = V shapes
By now I’ve made the definitions down, up, and same – it’s time to put those together in a

pattern to look for specific patterns of rows. I’d like to find where the price is going down

(or staying the same within a downward slope) for a period, followed by going up (or

staying the same within an upward slope) for a period – in other words a V shape in the

graph.

As discussed in the previous chapter, syntax for the pattern clause is very similar to

regular expressions, so a period of at least one down-or-same price can be defined as

(down | same)+ and then followed by (up | same)+ for a period of at least one up-or-

same price, leading to the pattern shown in line 12 of Listing 17-2.

Chapter 17 Up-and-Down Patterns

333

Listing 17-2.  Searching for V shapes

SQL> select *

 2 from ticker

 3 match_recognize (

 4 partition by symbol

 5 order by day

 6 measures

 7 match_number() as match

 8 , classifier() as class

 9 , prev(price) as prev

 10 all rows per match

 11 pattern (

 12 (down | same)+ (up | same)+

 13)

 14 define

 15 down as price < prev(price)

 16 , up as price > prev(price)

 17 , same as price = prev(price)

 18)

 19 order by symbol, day;

The output no longer has a unique match_number() for each row as in all the

previous queries; this time I get three distinct matches, one for each of the three V

shapes in the graph:

SYMBOL DAY MATCH CLASS PREV PRICE

BEER 2019-04-02 1 DOWN 14.9 14.2

BEER 2019-04-03 1 SAME 14.2 14.2

BEER 2019-04-04 1 UP 14.2 15.7

BEER 2019-04-05 2 DOWN 15.7 15.6

BEER 2019-04-08 2 DOWN 15.6 14.8

BEER 2019-04-09 2 SAME 14.8 14.8

BEER 2019-04-10 2 DOWN 14.8 14

BEER 2019-04-11 2 UP 14 14.4

BEER 2019-04-12 2 UP 14.4 15.2

BEER 2019-04-15 3 DOWN 15.2 15

Chapter 17 Up-and-Down Patterns

334

BEER 2019-04-16 3 DOWN 15 13.7

BEER 2019-04-17 3 UP 13.7 14.3

BEER 2019-04-18 3 SAME 14.3 14.3

BEER 2019-04-19 3 UP 14.3 15.5

Having a pattern now that matches multiple rows, it makes sense to condense the

output to show me one row per match, like in Listing 17-3 in line 11. But then I need

some other changes as well.

In the measures, I now use navigational functions first and last in lines 8–9 to

get the first and last day of each match, and I use aggregate count in line 10 to find how

many days each match covers.

Using one row per match, I also no longer get all columns in the output; here I

only get what I use in partition by as well as all the measures, which means that in the

order by in line 20, I cannot use column day, but need to use measure first_day.

Listing 17-3.  Output a single row for each match

SQL> select *

 2 from ticker

 3 match_recognize (

 4 partition by symbol

 5 order by day

 6 measures

 7 match_number() as match

 8 , first(day) as first_day

 9 , last(day) as last_day

 10 , count(*) as days

 11 one row per match

 12 pattern (

 13 (down | same)+ (up | same)+

 14)

 15 define

 16 down as price < prev(price)

 17 , up as price > prev(price)

 18 , same as price = prev(price)

 19)

 20 order by symbol, first_day;

Chapter 17 Up-and-Down Patterns

335

My output is now condensed to a single row with data for each of the three V shapes

in the graph:

SYMBOL MATCH FIRST_DAY LAST_DAY DAYS

BEER 1 2019-04-02 2019-04-04 3

BEER 2 2019-04-05 2019-04-12 6

BEER 3 2019-04-15 2019-04-19 5

But hang on; I’m not quite happy with this – each matched V shape seems to start a

day too late? When I mark out the three matches on the graph in Figure 17-3, it is quite

clear I’m not getting the entire V shape.

Figure 17-3.  The three V shapes not quite entirely matched

OK, I can try adding a STRT to my pattern to match any row as the beginning of the V

shape. I simply add that to my pattern in line 13:

...

 13 strt (down | same)+ (up | same)+

...

Chapter 17 Up-and-Down Patterns

336

And it helps for the first match, but not the second and third:

SYMBOL MATCH FIRST_DAY LAST_DAY DAYS

BEER 1 2019-04-01 2019-04-04 4

BEER 2 2019-04-05 2019-04-12 6

BEER 3 2019-04-15 2019-04-19 5

The reason is that I have not defined what match_recognize should do after it has

found a match – where should it start looking for the next match. When I do not specify

anything, it defaults to jumping to the row right after the match and starts looking there.

It behaves just as if I had specified this line 12 in the query:

...

 11 one row per match

 12 after match skip past last row

 13 pattern (

...

The after match clause tells where to start looking for a new match after a match

has finished, and the default is skip past last row. But starting the search for a new

match at the row after the last row of the previous match is the reason why match 2 starts

on 2019-04-05 instead of 2019-04-04 as I would have liked it.

If there had been an option after match skip to last row, this would have been

exactly what I want. But such an option does not exist; it is invalid syntax. Instead I need

to use the syntax after match skip to last {definition name}.

My problem then is that I do not know if the last row of the match was classified up

or same; it could be either one. And in skip to I need to specify a single classification

definition name. The solution is to use the subset clause here in line 16 to make a

definition name of a subset that covers both up and same:

...

 11 one row per match

 12 after match skip to last up_or_same

 13 pattern (

 14 strt (down | same)+ (up | same)+

 15)

 16 subset up_or_same = (up, same)

Chapter 17 Up-and-Down Patterns

337

 17 define

 18 down as price < prev(price)

 19 , up as price > prev(price)

 20 , same as price = prev(price)

 21)

 22 order by symbol, first_day;

Using the subset up_or_same in the after match skip to last clause in line 12

gives me the desired effect, which is that a search for a new match is begun on the same

row as the last row of the previous match. This means that the last day of one match

is also included in the next match as the first day, as seen here in the output and in

Figure 17-4:

SYMBOL MATCH FIRST_DAY LAST_DAY DAYS

BEER 1 2019-04-01 2019-04-04 4

BEER 2 2019-04-04 2019-04-12 7

BEER 3 2019-04-12 2019-04-19 6

Figure 17-4.  The three V shapes entirely matched

Chapter 17 Up-and-Down Patterns

338

�Revisiting if SAME is needed
This is nice that I could achieve my desired pattern matching using the three definitions

down, up, and same and then a subset up_or_same. But could it be simplified?

Remember in the beginning of the chapter I tried using less-than-or-equal and

greater-than-or-equal:

...

 15 down as price <= prev(price)

 16 , up as price >= prev(price)

...

This was not working well when I simply was classifying single rows. But I promised

to show that this is not always a problem – it depends on the pattern I use.

I can rewrite the query so it looks like Listing 17-4. Here I am not using any same

definition, but only down and up in lines 17–18 – notice both are using -or-equal variants

of less-than and greater-than. That also means I can simplify the pattern in line 14 and

avoid the use of a subset, and then line 12 simply skips to last up.

Listing 17-4.  Simplified query utilizing how definitions are evaluated for

patterns

SQL> select *

 2 from ticker

 3 match_recognize (

 4 partition by symbol

 5 order by day

 6 measures

 7 match_number() as match

 8 , first(day) as first_day

 9 , last(day) as last_day

 10 , count(*) as days

 11 one row per match

 12 after match skip to last up

 13 pattern (

 14 strt down+ up+

 15)

 16 define

Chapter 17 Up-and-Down Patterns

339

 17 down as price <= prev(price)

 18 , up as price >= prev(price)

 19)

 20 order by symbol, first_day;

The simplified Listing 17-4 gives me exactly the same desired result as I had before:

SYMBOL MATCH FIRST_DAY LAST_DAY DAYS

BEER 1 2019-04-01 2019-04-04 4

BEER 2 2019-04-04 2019-04-12 7

BEER 3 2019-04-12 2019-04-19 6

Now how did it do that? Why do I not seem to have the problem from the beginning

of the chapter, where the row on 2019-04-18 incorrectly was classified as down? To find

out, it helps to go back and see all rows per match (very often a good trick when

debugging match_recognize) in line 10 of Listing 17-5.

Listing 17-5.  Seeing all rows of the simplified query

SQL> select *

 2 from ticker

 3 match_recognize (

 4 partition by symbol

 5 order by day

 6 measures

 7 match_number() as match

 8 , classifier() as class

 9 , prev(price) as prev

 10 all rows per match

 11 after match skip to last up

 12 pattern (

 13 strt down+ up+

 14)

 15 define

 16 down as price <= prev(price)

 17 , up as price >= prev(price)

 18)

 19 order by symbol, day;

Chapter 17 Up-and-Down Patterns

340

Seeing all rows, I can also clearly see how 2019-04-04 and 2019-04-12 both are twice

in the output – once as last row of one match and once as first row of the next match – so

the total number of rows in the output is 17, even though the table contains 15 rows:

SYMBOL DAY MATCH CLASS PREV PRICE

BEER 2019-04-01 1 STRT 14.9

BEER 2019-04-02 1 DOWN 14.9 14.2

BEER 2019-04-03 1 DOWN 14.2 14.2

BEER 2019-04-04 1 UP 14.2 15.7

BEER 2019-04-04 2 STRT 14.2 15.7

BEER 2019-04-05 2 DOWN 15.7 15.6

BEER 2019-04-08 2 DOWN 15.6 14.8

BEER 2019-04-09 2 DOWN 14.8 14.8

BEER 2019-04-10 2 DOWN 14.8 14

BEER 2019-04-11 2 UP 14 14.4

BEER 2019-04-12 2 UP 14.4 15.2

BEER 2019-04-12 3 STRT 14.4 15.2

BEER 2019-04-15 3 DOWN 15.2 15

BEER 2019-04-16 3 DOWN 15 13.7

BEER 2019-04-17 3 UP 13.7 14.3

BEER 2019-04-18 3 UP 14.3 14.3

BEER 2019-04-19 3 UP 14.3 15.5

But I’m really very interested in the row on 2019-04-18, which was originally

classified as down, which led me to introduce same to get a proper classification. Why is it

correctly classified as up here?

The reason is how things are evaluated when doing pattern matching. The database

is not simply going through the definitions first to classify the rows and then checking if

it fits the pattern. It tries to evaluate as little as possible. This means it will go along and

evaluate something like this:

•	 When starting to look for a match, it will see if the first row matches

strt – which any row will.

•	 Then it knows that if a match is to be found, the next row must be a

down, so it checks if that is the case.

Chapter 17 Up-and-Down Patterns

341

•	 The next row must be a down or an up, so it checks first if it is a down;

if not, then it checks if it is an up. Repeat as long as it was a down

that was found. So any row having less than or the same value as the

previous row is classified down as long as we are in this part of the

pattern, as down definition is evaluated first. The 2019-04-03 and

2019-04-09 rows are therefore both down rows.

•	 When the previous step found an up, it knows that the next row must

be an up to make a valid match, so it checks if that is the case. Repeat

checking for up as long as an up is found. That means that at this

point, it will not evaluate a row having same value as the previous

row to be down, because that definition is simply not evaluated at this

point in the pattern.

•	 Therefore, since 2019-04-18 comes in the up+ part of the pattern, it

will not be classified down, but up as we want it to.

This can be tricky when you have complex definitions and patterns. Life is simpler

if the definitions are mutually exclusive like down, up, and same, but with knowledge of

the evaluation method used by match_recognize, it is possible to utilize it to simplify

a query like this, where rows that fall into more than one definition get the desired

classification anyway, because the pattern dictates which definition is evaluated when.

�V + V = W shapes
In stock ticker analysis, a W shape (also known as double-bottom) indicates a trend

reversal, so it is an important pattern to search for in the data. Well, I already know how

to find V shapes, so I simply expand the pattern clause in line 14 in Listing 17-6.

Listing 17-6.  First attempt at finding W shapes

SQL> select *

 2 from ticker

 3 match_recognize (

 4 partition by symbol

 5 order by day

 6 measures

Chapter 17 Up-and-Down Patterns

342

 7 match_number() as match

 8 , first(day) as first_day

 9 , last(day) as last_day

 10 , count(*) as days

 11 one row per match

 12 after match skip to last up

 13 pattern (

 14 strt down+ up+ down+ up+

 15)

 16 define

 17 down as price <= prev(price)

 18 , up as price >= prev(price)

 19)

 20 order by symbol, first_day;

Hang on; I was only expecting a single W match to be found, but my output shows

two?

SYMBOL MATCH FIRST_DAY LAST_DAY DAYS

BEER 1 2019-04-01 2019-04-12 10

BEER 2 2019-04-12 2019-04-19 6

Looking at the graph in Figure 17-5, I can see that first I do match a W shape from

2019-04-01 to 2019-04-12; that is fine. But after that, the graph has only a V shape, but it

is matched as a W shape? Why?

Chapter 17 Up-and-Down Patterns

343

As usual I fall back to show the output of my W pattern using an all rows per match

and that enables me to see that suddenly 2019-04-18 is again classified as a down row

instead of the up that it should have been:

SYMBOL DAY MATCH CLASS PREV PRICE

BEER 2019-04-01 1 STRT 14.9

BEER 2019-04-02 1 DOWN 14.9 14.2

BEER 2019-04-03 1 DOWN 14.2 14.2

BEER 2019-04-04 1 UP 14.2 15.7

BEER 2019-04-05 1 DOWN 15.7 15.6

BEER 2019-04-08 1 DOWN 15.6 14.8

BEER 2019-04-09 1 DOWN 14.8 14.8

BEER 2019-04-10 1 DOWN 14.8 14

BEER 2019-04-11 1 UP 14 14.4

BEER 2019-04-12 1 UP 14.4 15.2

BEER 2019-04-12 2 STRT 14.4 15.2

BEER 2019-04-15 2 DOWN 15.2 15

Figure 17-5.  Unexpected match of the last V as a W shape

Chapter 17 Up-and-Down Patterns

344

BEER 2019-04-16 2 DOWN 15 13.7

BEER 2019-04-17 2 UP 13.7 14.3

BEER 2019-04-18 2 DOWN 14.3 14.3

BEER 2019-04-19 2 UP 14.3 15.5

Again I have to try and see how the pattern is evaluated and the order the definitions

then are evaluated.

As I explained before, in the V pattern (strt down+ up+), when the match reaches

the up+ part, it can skip evaluating the down definition, because it knows that the pattern

can only be satisfied if it finds up rows; in all other cases, there will not be a match.

But in the W pattern (strt down+ up+ down+ up+), when the match reaches the

first up+ part, a match can be satisfied by either another up row or a down row that would

lead the match into the second down+ part. Therefore it cannot skip evaluating the down

definition, and so 2019-04-18 is classified as down, leading to the pattern being satisfied.

So because of the change in pattern, my little “trick” with nonunique definitions that

are evaluated correctly in a V shape does not work for a W shape. I’ll have to think of

something else.

Could I go back to using down, up, and same and then use a pattern like in the

following?

...

 14 strt (down | same)+ (up | same)+ (down | same)+ (up | same)+

...

Well no, it would not help in this case. The last V shape on the graph would become

classified like this:

...

BEER 2019-04-12 2 STRT 14.4 15.2

BEER 2019-04-15 2 DOWN 15.2 15

BEER 2019-04-16 2 DOWN 15 13.7

BEER 2019-04-17 2 UP 13.7 14.3

BEER 2019-04-18 2 SAME 14.3 14.3

BEER 2019-04-19 2 UP 14.3 15.5

And those six classifiers in that order will actually match that pattern, so it won’t do.

Instead I’m going to put some more logic in the definitions in my define clause in

Listing 17-7.

Chapter 17 Up-and-Down Patterns

345

Listing 17-7.  More intelligent definitions for W shape matching

SQL> select *

 2 from ticker

 3 match_recognize (

 4 partition by symbol

 5 order by day

 6 measures

 7 match_number() as match

 8 , classifier() as class

 9 , prev(price) as prev

 10 all rows per match

 11 after match skip to last up

 12 pattern (

 13 strt down+ up+ down+ up+

 14)

 15 define

 16 down as price < prev(price)

 17 or (price = prev(price)

 18 and price = last(down.price, 1)

 19)

 20 , up as price > prev(price)

 21 or (price = prev(price)

 22 and price = last(up.price , 1)

 23)

 24)

 25 order by symbol, day;

Looking at down, the idea is to replace the less-than-or-equal with a dual logic:

•	 If the price is less than the previous (line 16), it certainly is a down

row.

•	 If the price is equal to the previous row (line 17), it is only a down row

if the graph was sloping down right before it hit this place with equal

prices. I can check that in line 18 by testing if the price in the row is

equal to the price of the last row that was classified down. This can only

happen if that last down row was just before the flat part of the graph.

Chapter 17 Up-and-Down Patterns

346

And for up I use a similar dual logic in lines 20–23. With such a logic built into the

definitions, Listing 17-7 produces only one match – the first W shape in the graph:

SYMBOL DAY MATCH CLASS PREV PRICE

BEER 2019-04-01 1 STRT 14.9

BEER 2019-04-02 1 DOWN 14.9 14.2

BEER 2019-04-03 1 DOWN 14.2 14.2

BEER 2019-04-04 1 UP 14.2 15.7

BEER 2019-04-05 1 DOWN 15.7 15.6

BEER 2019-04-08 1 DOWN 15.6 14.8

BEER 2019-04-09 1 DOWN 14.8 14.8

BEER 2019-04-10 1 DOWN 14.8 14

BEER 2019-04-11 1 UP 14 14.4

BEER 2019-04-12 1 UP 14.4 15.2

�Overlapping W shapes
The way I searched for the patterns in the last example meant that I looked on the graph

as consisting of first a W shape and then a V shape. Looking at it that way means I only

find a single W shape.

But I could look on the graph as having two overlapping W shapes, as marked out in

Figure 17-6.

Chapter 17 Up-and-Down Patterns

347

Changing my code to enable searching for overlapping shapes is a matter of

changing my after match clause, which in the previous examples was set like this:

...

 11 after match skip to last up

...

That meant I never overlapped (except that strictly speaking a single row of each

match would “overlap,” like in Figure 17-4 with three V matches).

If I do want to overlap, I need to change where to skip to in order to make the search

for the next match start at a suitable row. Ideally it should be the “last row of the first up+

part of the pattern,” but that cannot be specified.

I could define two classifications, up1 and up2, with identical definitions, use up1+ for

the first up-part and up2+ for the second up-part, and then skip to last up1. But there

is an easier solution that will work here, as I do in line 12 of Listing 17-8.

Figure 17-6.  The graph can be seen as having two overlapping W shapes

Chapter 17 Up-and-Down Patterns

348

Listing 17-8.  Finding overlapping W shapes

SQL> select *

 2 from ticker

 3 match_recognize (

 4 partition by symbol

 5 order by day

 6 measures

 7 match_number() as match

 8 , first(day) as first_day

 9 , last(day) as last_day

 10 , count(*) as days

 11 one row per match

 12 after match skip to first up

 13 pattern (

 14 strt down+ up+ down+ up+

 15)

 16 define

 17 down as price < prev(price)

 18 or (price = prev(price)

 19 and price = last(down.price, 1)

 20)

 21 , up as price > prev(price)

 22 or (price = prev(price)

 23 and price = last(up.price , 1)

 24)

 25)

 26 order by symbol, first_day;

When I do skip to first up in line 12, the matching will run like this:

•	 The first W match is found from 2019-04-01 to 2019-04-12.

•	 The first up is 2019-04-04, so it goes there and tries if a new match can

be found from there.

•	 So 2019-04-04 is classified strt, 2019-04-05 is down, and it keeps

classifying rows that match the pattern right until 2019-04-19.

Chapter 17 Up-and-Down Patterns

349

•	 The second W match therefore is 2019-04-04 to 2019-04-19.

•	 The first up of the second W match is 2019-04-11

•	 2019-04-11 is classified strt, 2019-04-12 is up, so the pattern is

broken and no match.

•	 It moves on to 2019-04-12 and tries again for a new match, which will

fail because it only matches a V shape, not a W.

•	 So it moves on to 2019-04-15 and tries again and fails.

•	 And so on until the end and no more matches are found.

And that is exactly the output I get when I run Listing 17-8, which matches the

markings on Figure 17-6:

SYMBOL MATCH FIRST_DAY LAST_DAY DAYS

BEER 1 2019-04-01 2019-04-12 10

BEER 2 2019-04-04 2019-04-19 12

�Lessons learned
In this chapter I’ve dived deeper into the stock ticker example than the Oracle

documentation does, mostly showing the complexities introduced when “flat” parts of

the graph needs to be considered part of either a down-sloping or an up-sloping part of

the graph.

In the course of this walk-trough, I hope I’ve conveyed some knowledge about

•	 Using all rows vs. one row per match (often to debug the logic)

•	 How definitions in define are evaluated according to the fulfillment

of pattern

•	 Different uses of after match skip to, with, or without subset

This knowledge should help you develop code for matching similar patterns yourself.

Chapter 17 Up-and-Down Patterns

351
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_18

CHAPTER 18

Grouping Data
Through Patterns
Grouping data with a group by clause requires you to find one or more values that are

the same in those rows you want to belong to the same group. Often that is simply some

columns or just as often a calculation on some columns.

Sometimes, though, the condition that tells you a row belongs to a group is not

simply a condition you can calculate using only values from that row itself, but the

condition is on how the row relates to other rows. A condition to group by could, for

example, be that all rows with consecutive sequential values should be grouped – when

a gap in the sequence is found, a new group is started. This requires a calculation across

rows, which often can be handled by analytic functions – but sometimes not.

A solution here is to remember that in pattern matching when you use one row

per match, that is in fact like an implicit group by, and you can use aggregates in the

measures and get a result very much like if you had used a group by. And when you use

match_recognize for grouping, the define and pattern clauses are just perfect for a

grouping condition that depends on relations between rows in a certain order.

�Two sets of data to group
To demonstrate grouping data with pattern matching, I use the tables in Figure 18-1.

352

In the server_heartbeat table, a row is inserted every time a server sends a

heartbeat (a call that basically just says “I’m alive”), which should happen every 5

minutes for every server.

The web_page_visits table stores every visit to every web page in the web

applications of Good Beer Trading Co (i.e., every click a user makes). This table

references the web_pages table, which I include in the figure just to give you the context,

but the examples in this chapter use the web_page_visits table.

I’ll show the data of both tables later, just before the relevant examples.

�Three grouping conditions
I’m going to show you three different types of relational conditions you can use pattern

matching to group:

•	 Data where all consecutive data belong in a group, where consecutive

simply means that a value increases by an exact fixed amount for

each row. It can be numbers that increase by 1 or 100 or dates that

increase by 5 minutes or 1 day or similar definitions of consecutive.

•	 Data where rows belong to a group as long as a value is close to the

value of the previous row, for example, as long as a date value is

within 15 minutes of the previous date.

Figure 18-1.  Tables with server heartbeat and web page visits used for grouping
data

Chapter 18 Grouping Data Through Patterns

353

•	 Data where a group is rows within a fixed interval, for example, one

hour. But not hours on the clock (like grouping by trunc(date_col,

'HH')), instead hours that begin by the first row in each group.

You can probably think of other types of conditions, but these three cover a

lot of use cases.

�Group consecutive data
First let me delve into grouping data that is consecutive. This part I’ll cover more detailed

to give you a ground base before going into the other two grouping methods.

For comparison I’ll show you one method this could be done just with an analytic

function and discuss why you might consider using match_recognize instead.

�Analytic Tabibitosan vs. match_recognize

Before moving on to the example tables I’ve shown, I will walk you through the

Tabibitosan method to find groups of consecutive integers using a single analytic

function. This method was introduced by Aketi Jyuuzou on the Oracle Community

Forums (back then OTN Forums).

I’ll start with Listing 18-1, where I just use a with clause to generate some rows with

numbers instead of creating a real table.

Listing 18-1.  Difference between value and row_number

SQL> with ints(i) as (

 2 select 1 from dual union all

 3 select 2 from dual union all

 4 select 3 from dual union all

 5 select 6 from dual union all

 6 select 8 from dual union all

 7 select 9 from dual

 8)

 9 select

 10 i

 11 , row_number() over (order by i) as rn

Chapter 18 Grouping Data Through Patterns

354

 12 , i - row_number() over (order by i) as diff

 13 from ints

 14 order by i;

Tabibitosan in Japanese means something like Mr. Pilgrim or Mr. Traveler. The idea

is to imagine two walking pilgrims that both start at zero:

•	 The first pilgrim walks different distances each day, sometimes

one mile and sometimes longer. His distance from the origin is

represented by the integer value, in this case column i.

•	 The second pilgrim walks exactly one mile every day. His distance

from the origin is represented by the results of row_number function

that increases by exactly one for each row, in this case column rn.

The third column in the output is the difference between i and rn. In the analogy,

this represents the distance between the two pilgrims:

I RN DIFF

1 1 0

2 2 0

3 3 0

6 4 2

8 5 3

9 6 3

Those days where the first pilgrim travels at a speed of one mile per day, the distance

between them remains the same. If the first pilgrim walks more than a single mile in one

day, the distance between them increases. The numbers are fairly clear as is, but it’s even

more clear when plotted on the graph in Figure 18-2.

Chapter 18 Grouping Data Through Patterns

355

In other words, the difference (the red diamonds in the graph) between the integer

column and row_number will be constant for those rows where the integer column

increases by exactly one per row (i.e., is consecutive), so I can easily group by this

difference in Listing 18-2.

Listing 18-2.  Tabibitosan grouping

SQL> with ints(i) as (

 2 select 1 from dual union all

 3 select 2 from dual union all

 4 select 3 from dual union all

 5 select 6 from dual union all

 6 select 8 from dual union all

Figure 18-2.  Difference between the two pilgrims can be used for grouping

Chapter 18 Grouping Data Through Patterns

356

 7 select 9 from dual

 8)

 9 select

 10 min(i) as first_int

 11 , max(i) as last_int

 12 , count(*) as ints_in_grp

 13 from (

 14 select i, i - row_number() over (order by i) as diff

 15 from ints

 16)

 17 group by diff

 18 order by first_int;

Simply wrap the difference calculation in an inline view in lines 14–15 and group

by the diff in line 17, and I get an output specifying the three groups of consecutive

integers found in the data:

FIRST_INT LAST_INT INTS_IN_GRP

1 3 3

6 6 1

8 9 2

So why do it with pattern matching if a perfectly good method exists with analytic

functions? Part of the answer is that it can become easier to adapt to changing

requirements, as I’ll show you. Part of it is about the efficiency of doing a one-pass

operation while working through the data, instead of two passes – first the analytic row

numbering and then the grouping.

In Listing 18-3, I show you how to get the exact same output as Listing 18-2, just

using match_recognize instead of the Tabibitosan method.

Listing 18-3.  Same grouping with match_recognize

SQL> with ints(i) as (

 2 select 1 from dual union all

 3 select 2 from dual union all

 4 select 3 from dual union all

 5 select 6 from dual union all

Chapter 18 Grouping Data Through Patterns

357

 6 select 8 from dual union all

 7 select 9 from dual

 8)

 9 select first_int, last_int, ints_in_grp

 10 from ints

 11 match_recognize (

 12 order by i

 13 measures

 14 first(i) as first_int

 15 , last(i) as last_int

 16 , count(*) as ints_in_grp

 17 one row per match

 18 pattern (strt one_higher*)

 19 define

 20 one_higher as i = prev(i) + 1

 21)

 22 order by first_int;

It is reasonably straightforward and reads like this:

•	 I define classification one_higher in line 20 to be a row where i is

exactly 1 greater than the previous i – indicating it is consecutive to

the previous row.

•	 The pattern in line 18 looks for any row (classified strt) followed

by zero or more one_higher rows. So this matches a group of rows

as long as they have consecutive i values – when it no longer is

consecutive, the match stops.

•	 Instead of the group by in Tabibitosan, here I can simply specify in

line 17 that I just want a single row output per match.

•	 Lines 14–16 get me the same values as Listing 18-2, just without

grouping; here the pattern matching can work out the results as it

walks along the data.

I’ve laid the ground rules with some simple integer data showing analytic function

solution vs. pattern matching; now I’ll move on to doing the same with a different

datatype on more realistic data.

Chapter 18 Grouping Data Through Patterns

358

�Consecutive dates instead of integers

In the server_heartbeat table, I should get a heartbeat stored from every server exactly

every five minutes. In Listing 18-4, you see the data of the table.

Listing 18-4.  Server heartbeat as example of something other than integers

SQL> select server, beat_time

 2 from server_heartbeat

 3 order by server, beat_time;

Observe there are two servers and there are places where one or more heartbeats

have been skipped:

SERVER BEAT_TIME

10.0.0.100 2019-04-10 13:00:00

10.0.0.100 2019-04-10 13:05:00

10.0.0.100 2019-04-10 13:10:00

10.0.0.100 2019-04-10 13:15:00

10.0.0.100 2019-04-10 13:20:00

10.0.0.100 2019-04-10 13:35:00

10.0.0.100 2019-04-10 13:40:00

10.0.0.100 2019-04-10 13:45:00

10.0.0.100 2019-04-10 13:55:00

10.0.0.142 2019-04-10 13:00:00

10.0.0.142 2019-04-10 13:20:00

10.0.0.142 2019-04-10 13:25:00

10.0.0.142 2019-04-10 13:50:00

10.0.0.142 2019-04-10 13:55:00

Can I use Tabibitosan to group rows that are consecutive with exactly 5-minute

intervals? Yes, surely. I just need to adjust the “unit” used, so it becomes a 5-minute unit

instead of a simple number 1. I do that in Listing 18-5.

Listing 18-5.  Tabibitosan adjusted to 5-minute intervals

SQL> select

 2 server

 3 , min(beat_time) as first_beat

Chapter 18 Grouping Data Through Patterns

359

 4 , max(beat_time) as last_beat

 5 , count(*) as beats

 6 from (

 7 select

 8 server

 9 , beat_time

 10 , beat_time - interval '5' minute

 11 * row_number() over (

 12 partition by server

 13 order by beat_time

 14) as diff

 15 from server_heartbeat

 16)

 17 group by server, diff

 18 order by server, first_beat;

What was i before in Listing 18-2 is now beat_time in line 9. In order to create

something with a constant difference as long as the rows are consecutive, in lines 10–14,

I multiply row_number with an interval of 5 minutes, which I then can subtract from the

beat_time to get the diff value I can use for grouping.

Since (unlike Listing 18-2) I do this per server instead of on all rows at once, I use

partition by in line 12. That way I get this output with three groups for each server:

SERVER FIRST_BEAT LAST_BEAT BEATS

10.0.0.100 2019-04-10 13:00:00 2019-04-10 13:20:00 5

10.0.0.100 2019-04-10 13:35:00 2019-04-10 13:45:00 3

10.0.0.100 2019-04-10 13:55:00 2019-04-10 13:55:00 1

10.0.0.142 2019-04-10 13:00:00 2019-04-10 13:00:00 1

10.0.0.142 2019-04-10 13:20:00 2019-04-10 13:25:00 2

10.0.0.142 2019-04-10 13:50:00 2019-04-10 13:55:00 2

Multiplying row_number with an interval to make a “unit” adjustment is not

hard, but it is not really very clear from reading the code in Listing 18-5 what this diff

calculation is good for and what it does.

So let me try to similarly adapt Listing 18-4 to the 5-minute interval data and create

Listing 18-6, which will give me the same output as Listing 18-5.

Chapter 18 Grouping Data Through Patterns

360

Listing 18-6.  Same adjustment to match_recognize solution

SQL> select server, first_beat, last_beat, beats

 2 from server_heartbeat

 3 match_recognize (

 4 partition by server

 5 order by beat_time

 6 measures

 7 first(beat_time) as first_beat

 8 , last(beat_time) as last_beat

 9 , count(*) as beats

 10 one row per match

 11 pattern (strt five_mins_later*)

 12 define

 13 five_mins_later as

 14 beat_time = prev(beat_time) + interval '5' minute

 15)

 16 order by server, first_beat;

I have given definitions and measures some other names than in Listing 18-4, so they

represent the data better.

But the only functional change I made is in line 14 (compared to line 20 in

Listing 18-4), where I replaced + 1 with + interval '5' minute – that is all it took to

change the functionality, and it is very self-documenting.

You might have noticed that the data is very neatly exactly 5 minutes apart, which

in reality is unlikely for such heartbeat data that probably arrives within some seconds

either side of the exact time. I could create neatly aligned data by having a before

insert trigger that rounded the inserted value to the nearest 5-minute value, but that

would lose information (e.g., I might be interested in seeing that one server was always

about 20 seconds late).

So rather than “massage” the data, I want to change my query to allow for a certain

leeway rather than looking for exactly 5 minutes. With the Tabibitosan method, I’d

have to round the values to the nearest 5 minutes at query time in order to achieve the

“constant difference” for grouping. With pattern matching, it is much easier to simply

adapt the definition and change line 14 of Listing 18-6 into a condition with a between

clause to define that five_mins_later means somewhere between 4 and 6 minutes later:

Chapter 18 Grouping Data Through Patterns

361

...

 12 define

 13 five_mins_later as

 14 beat_time between prev(beat_time) + interval '4' minute

 15 and prev(beat_time) + interval '6' minute

...

Again it is almost plain English and fairly readable and self-documenting.

But these queries found me groups of rows that are consecutive (for some unit of

measurement). Often what I’m asked to find is the gaps between such groups; where are

data missing that should have been there.

�Gap detection

When I have the consecutive groups in the output from Listings 18-5 and 18-6,

the gaps can be defined by the last_beat of one row (last beat before the gap) and the

first_beat of the next row (next beat after the gap).

Getting a value from the next row naturally makes me think of using the lead analytic

function. So I use lead in Listing 18-7.

Listing 18-7.  Detecting gaps from consecutive grouping using lead function

SQL> select

 2 server, last_beat, next_beat

 3 , round((next_beat - last_beat) * (24*60)) as gap_minutes

 4 from (

 5 select

 6 server

 7 , last_beat

 8 , lead(first_beat) over (

 9 partition by server order by first_beat

 10) as next_beat

 11 from (

...

 27)

 28)

 29 where next_beat is not null

 30 order by server, last_beat;

Chapter 18 Grouping Data Through Patterns

362

The query of Listing 18-6 I put inside the inline view in lines 11–27, and then in lines

8–10, I use lead to find the value of first_beat of the next row.

But for the last row in the partition, lead will return null, and it doesn’t make

sense to talk of a gap after the last row. So I wrap in yet another inline view and filter

away those last rows in line 29, giving me this output showing two gaps for each server

(compare this with the output of Listing 18-5):

SERVER LAST_BEAT NEXT_BEAT GAP_MINUTES

10.0.0.100 2019-04-10 13:20:00 2019-04-10 13:35:00 15

10.0.0.100 2019-04-10 13:45:00 2019-04-10 13:55:00 10

10.0.0.142 2019-04-10 13:00:00 2019-04-10 13:20:00 20

10.0.0.142 2019-04-10 13:25:00 2019-04-10 13:50:00 25

(If you noticed the round in line 3, this is simply because some of these gap_minutes

values have teeny tiny rounding errors around the 20th decimal or so, because next_

beat – last_beat is measured in days and in some of the cases has some values that

create rounding errors when multiplied with 24∗60 to get minutes.)

Now this works nicely, but it is actually possible to avoid having to use analytic

functions on the output of match_recognize. In Listing 18-8, I show how to detect the

gaps directly with pattern matching without any “post-processing.”

Listing 18-8.  Detecting gaps directly in match_recognize

SQL> select

 2 server, last_beat, next_beat

 3 , round((next_beat - last_beat) * (24*60)) as gap_minutes

 4 from server_heartbeat

 5 match_recognize (

 6 partition by server

 7 order by beat_time

 8 measures

 9 last(before_gap.beat_time) as last_beat

 10 , next_after_gap.beat_time as next_beat

 11 one row per match

 12 after match skip to last next_after_gap

 13 pattern (strt five_mins_later* next_after_gap)

 14 subset before_gap = (strt, five_mins_later)

Chapter 18 Grouping Data Through Patterns

363

 15 define

 16 five_mins_later as

 17 beat_time = prev(beat_time) + interval '5' minute

 18 , next_after_gap as

 19 beat_time > prev(beat_time) + interval '5' minute

 20)

 21 order by server, last_beat;

This adds slightly more complexity to the pattern matching:

•	 I have two definitions in lines 16–19. One is the five_mins_later that

I also used in Listing 18-6. The other is next_after_gap that classifies

rows where beat_time is more than 5 minutes after the previous row.

•	 This enables me in line 13 to specify a pattern that begins like before:

any strt row followed by zero or more five_mins_later rows. But

then there should be exactly one next_after_gap row. So a match

will consist of the group of consecutive rows plus the row after (that

comes after the gap). This also means that for the last group, no next_

after_gap row can be found, so it will not be matched – meaning I

do not need to filter away the last group, as this pattern only finds the

two groups (per server) that actually have a gap after them.

•	 From this match, I need the last beat before the gap and the first after

the gap. The latter is easy; it is simply the beat_time of the single

next_after_gap row (line 10). The first is a bit trickier, since it might

be a value from a strt row (if the consecutive “group” consists of

only a single row) or it might be a value from a five_mins_later row.

Therefore I define a subset called before_gap in line 14, so that I in

line 9 can specify that I want the beat_time of the last before_gap

row.

•	 Finally, since I have included the next_after_gap row in the match,

I need to specify that the next match should be searched for from

this row (rather than normally from the row immediately following

the match). This I do in line 12 in the after match clause, so that

the next_after_gap row becomes the strt row of the next match (if

any).

Chapter 18 Grouping Data Through Patterns

364

A little more complex, yes, but when you know the meaning of the different clauses

in pattern matching, it still can be read and understood relatively plainly as English –

especially if you have given the definitions meaningful names.

So far I’ve shown various queries grouping data that is consecutive, where

consecutive means a column value increases by a specific fixed unit for every row. But

there are cases where we want to group the data by other definitions.

�Group until gap too large
One of these other definitions is that a row keeps belonging to the group as long as it is

“close” to the previous row – by however you define “close.” A group can become large

and span a lot of rows, as the grouping doesn’t stop until the gap between two rows is

bigger than the defined “closeness.”

A common example of this is doing the so-called sessionization. You log every page

visit (click) to your web site without having a unique session id – but as long as the clicks

from a given client (IP address) keep on coming without much pause between them,

you consider those visits together to be a “session.” Once the client has been away for a

longer period (gaps in the page visit log), you consider his next visit to be the start of a

new session.

Good Beer Trading Co has such a web page visit log table, whose content you can see

in Listing 18-9.

Listing 18-9.  Web page visit data

SQL> select app_id, visit_time, client_ip, page_no

 2 from web_page_visits

 3 order by app_id, visit_time, client_ip;

Two different IP addresses have visited different pages at different times

on a given date:

APP_ID VISIT_TIME CLIENT_IP PAGE_NO

542 2019-04-20 08:15:42 104.130.89.12 1

542 2019-04-20 08:16:31 104.130.89.12 3

542 2019-04-20 08:28:55 104.130.89.12 4

542 2019-04-20 08:41:12 104.130.89.12 3

542 2019-04-20 08:42:37 104.130.89.12 2

Chapter 18 Grouping Data Through Patterns

365

542 2019-04-20 08:55:02 104.130.89.12 4

542 2019-04-20 09:03:34 104.130.89.12 2

542 2019-04-20 09:17:50 104.130.89.12 2

542 2019-04-20 09:28:32 104.130.89.12 2

542 2019-04-20 09:34:29 104.130.89.12 2

542 2019-04-20 09:43:46 104.130.89.12 2

542 2019-04-20 09:47:08 104.130.89.12 2

542 2019-04-20 09:49:12 104.130.89.12 3

542 2019-04-20 11:57:26 85.237.86.200 1

542 2019-04-20 11:58:09 85.237.86.200 2

542 2019-04-20 11:58:39 85.237.86.200 2

542 2019-04-20 12:02:02 85.237.86.200 3

542 2019-04-20 14:45:10 104.130.89.12 1

542 2019-04-20 15:02:22 104.130.89.12 3

542 2019-04-20 15:02:44 104.130.89.12 2

542 2019-04-20 15:04:01 104.130.89.12 2

542 2019-04-20 15:05:11 104.130.89.12 2

542 2019-04-20 15:05:48 104.130.89.12 3

This is solved in Listing 18-10 pretty much like finding consecutive groups of rows,

just adapting very slightly the criteria in the define clause.

Listing 18-10.  Data belongs to same group (session) as long as max 15 minutes

between page visits

SQL> select app_id, first_visit, last_visit, visits, client_ip

 2 from web_page_visits

 3 match_recognize (

 4 partition by app_id, client_ip

 5 order by visit_time

 6 measures

 7 first(visit_time) as first_visit

 8 , last(visit_time) as last_visit

 9 , count(*) as visits

 10 one row per match

 11 pattern (strt within_15_mins*)

 12 define

Chapter 18 Grouping Data Through Patterns

366

 13 within_15_mins as

 14 visit_time <= prev(visit_time) + interval '15' minute

 15)

 16 order by app_id, first_visit, client_ip;

It’s another table and other column names and a classification name that gives more

meaning for this case, but apart from that, you should recognize this is rather much like

Listing 18-6. The functional difference is simply line 14 that uses <= instead of =, showing

how a match_recognize solution is easy to adapt with small changes, as the different

parts of the logic have been separated out in mainly the define, pattern, and measure

clauses. Adapting Tabibitosan to solve sessionization would have been a lot harder (if

not impossible) as the logic is so dependent on creating a value that can be compared to

a monotonically increasing value.

With this easy adaptation in Listing 18-10, I get four “session” groups created:

APP_ID FIRST_VISIT LAST_VISIT VISITS CLIENT_IP

542 2019-04-20 08:15:42 2019-04-20 09:49:12 13 104.130.89.12

542 2019-04-20 11:57:26 2019-04-20 12:02:02 4 85.237.86.200

542 2019-04-20 14:45:10 2019-04-20 14:45:10 1 104.130.89.12

542 2019-04-20 15:02:22 2019-04-20 15:05:48 5 104.130.89.12

Very often the logic used in pattern matching compares current rows to previous

rows, but sometimes it can be a nice exercise to try and reverse the logic. Not that it

changes much for this task, but knowing that you can do it with a “look ahead” logic can

from time to time help in more tricky situations:

...

 11 pattern (has_15_mins_to_next* last_time)

 12 define

 13 has_15_mins_to_next as

 14 visit_time + interval '15' minute >= next(visit_time)

...

Chapter 18 Grouping Data Through Patterns

367

Most of the code is like Listing 18-10, but I changed the pattern and define clauses:

•	 Lines 13–14 define has_15_mins_to_next by comparing values to

the next row – if the visit_time of the current row + 15 minutes is

greater than the next row, I know it is within 15 minutes.

•	 And then the pattern in line 11 needs to be adapted to find zero or

more has_15_mins_to_next rows followed by exactly one other row

(which I call last_time) that is not classified has_15_mins_to_next.

This logic that looks ahead instead of back produces the same output as

Listing 18-10.

I’ve shown that almost same logic can group rows that either has a fixed interval

between rows (consecutively) or has at most a certain interval between rows. But what if

the groups are defined by having to be within a certain interval of the first row?

�Group until fixed limit
I could choose to define a session not by “as long as visits are happening at suitably small

intervals,” but rather define that the first page visit (click) starts a session, which then

lasts for one hour. All the visits within an hour from the first visit are part of the session.

The next visit after the hour has gone by (whether 2 minutes or 2 days thereafter) marks

the beginning of a new one-hour session.

This can also be accomplished by a slight tweaking of the logic in the pattern and

define of match_recognize, as I show in Listing 18-11.

Listing 18-11.  Sessions max one hour long since first page visit

SQL> select app_id, first_visit, last_visit, visits, client_ip

 2 from web_page_visits

 3 match_recognize (

 4 partition by app_id, client_ip

 5 order by visit_time

 6 measures

 7 first(visit_time) as first_visit

 8 , last(visit_time) as last_visit

 9 , count(*) as visits

 10 one row per match

Chapter 18 Grouping Data Through Patterns

368

 11 pattern (same_hour+)

 12 define

 13 same_hour as

 14 visit_time <= first(visit_time) + interval '1' hour

 15)

 16 order by app_id, first_visit, client_ip;

You’ll quickly spot that it’s not that much different from Listings 18-6 and 18-10. But

there are a couple small, but important, changes:

•	 In the definition of classification same_hour in line 14, I am no longer

comparing to prev(visit_time), but instead to first(visit_time).

This does exactly what I wanted – whenever a row is within 1 hour of

the first row in the match, the row will be included in the match.

•	 Notice in line 11 I no longer have a strt or similar undefined

classification. This was needed when I used prev, which would yield

nothing on the first row. But this time I am using first, and as a row

is always included when evaluating the definition condition, the first

row itself will be the result of the first call to first. This means that

when testing the condition, it will always be true when it is tested on

the first row (either the first overall or the first after a previous match

has ended). Therefore I can skip having a strt and instead simply

state that a match must be one or more same_hour rows.

With this altered logic, I get four different session groups than I did before:

APP_ID FIRST_VISIT LAST_VISIT VISITS CLIENT_IP

542 2019-04-20 08:15:42 2019-04-20 09:03:34 7 104.130.89.12

542 2019-04-20 09:17:50 2019-04-20 09:49:12 6 104.130.89.12

542 2019-04-20 11:57:26 2019-04-20 12:02:02 4 85.237.86.200

542 2019-04-20 14:45:10 2019-04-20 15:05:48 6 104.130.89.12

When you compare to the output of Listing 18-10, you see that where IP

104.130.89.12 before had a single 13-visit session that lasted over 1½ hour, that is now

two sessions of 7 and 6 visits, because the visit 09:17:50 is more than an hour away from

08:15:42.

Chapter 18 Grouping Data Through Patterns

369

On the other hand, the same IP now has a single six-visit session starting at 14:45:10

and lasting about 20 minutes, whereas before that was split into two sessions because

15:02:22 is more than 15 minutes after 14:45:10.

For different use cases, both of these grouping methods are useful.

�Lessons learned
In this chapter, I’ve been showing various uses of pattern matching to group data

that doesn’t have some key value to group by, but instead relates the rows by being

consecutive or not too far apart. These examples should enable you to

•	 Consider match_recognize as an alternative to group by for cases

where you cannot easily specify a grouping value from each row, but

the grouping criteria are relations between rows.

•	 Express which rows are related and belong together with the define

and pattern clauses.

•	 Use aggregate and navigational functions in the measures clause

together with one row per match to achieve output like group by.

•	 Utilize the separation of logic in the different clauses

of match_recognize with suitable aliasing and naming to make your

code more readable and understandable.

Once you grasp the fundamentals of this approach, you’ll find your own cases where

you can substitute pattern matching for complex group by or analytic SQL.

Chapter 18 Grouping Data Through Patterns

371
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_19

CHAPTER 19

Merging Date Ranges
Lots of data have a date range for validity – when is or was the event or price or whatever

active. Schedules, prices, discounts, versioning, audit trails, the list is endless.

It’s common to want to merge rows (at least in report output) where the date

ranges are right after one another or even overlapping. For example, you may have

a production schedule for your assembly line having three rows with adjoining date

ranges – producing the same product for three different sales orders. For production

planning, you may want to output this as a single row with the total date range and the

sum of the quantities you need to produce.

There can be many other examples of this – in this chapter I’ll show you an example

of merging job hire periods with the match_recognize clause.

�Job hire periods
As an example of a table with date ranges, I’ll be using the emp_hire_periods table

shown in Figure 19-1, which has a foreign key relation to the employees table.

Figure 19-1.  The table of periods that employees have been hired for a given job

372

A given employee can be hired in different periods for different job functions

(indicated by the title column). The date ranges I have in the table follow these rules:

•	 A null value in end_date means the employee currently works at that

function.

•	 When an employee stops working for Good Beer Trading Co,

end_date is filled.

•	 If the employee is rehired, a new row is inserted.

•	 By promotion or change in job function, end_date is filled, and a new

row is inserted with the new title.

•	 An employee can have more than one function at the same time, so

the date ranges may overlap.

•	 The start_date is included in the date range and the end_date is

excluded from the date range – often written as a [start_date, end_

date[half-open interval.

You may find the last rule less than intuitive, but I’ll get back shortly with an

explanation of why this is a good idea.

Note  A closed interval [start, end] is start <= x <= end, while an open
interval]start, end[is start < x < end. The half-open interval is then
either]start, end] or (as in this case) [start, end[.

All of the logic I’ll be showing in this chapter is in principle valid just by working with

the emp_hire_periods table alone, but to make it easier to see who is whom, I create a

view in Listing 19-1 so that I retrieve the employee name too.

Listing 19-1.  View joining the hire periods with the employees

SQL> create or replace view emp_hire_periods_with_name

 2 as

 3 select

 4 ehp.emp_id

 5 , e.name

 6 , ehp.start_date

Chapter 19 Merging Date Ranges

373

 7 , ehp.end_date

 8 , ehp.title

 9 from emp_hire_periods ehp

 10 join employees e

 11 on e.id = ehp.emp_id;

View EMP_HIRE_PERIODS_WITH_NAME created.

Querying the emp_hire_periods_with_name view in Listing 19-2, I can show you the

data I have.

Listing 19-2.  The hire periods data

SQL> select

 2 ehp.emp_id

 3 , ehp.name

 4 , ehp.start_date

 5 , ehp.end_date

 6 , ehp.title

 7 from emp_hire_periods_with_name ehp

 8 order by ehp.emp_id, ehp.start_date;

In the interest of saving a little space, I have not filled the table with data for all 14

employees, just a selection of 6:

EMP_ID NAME START_DATE END_DATE TITLE

142 Harold King 2010-07-01 2012-04-01 Product Director

142 Harold King 2012-04-01 Managing Director

143 Mogens Juel 2010-07-01 2014-01-01 IT Technician

143 Mogens Juel 2014-01-01 2016-06-01 Sys Admin

143 Mogens Juel 2014-04-01 2015-10-01 Code Tester

143 Mogens Juel 2016-06-01 IT Manager

144 Axel de Proef 2010-07-01 2013-07-01 Sales Manager

144 Axel de Proef 2012-04-01 Product Director

145 Zoe Thorston 2014-02-01 IT Developer

145 Zoe Thorston 2019-02-01 Scrum Master

146 Lim Tok Lo 2014-10-01 2016-02-01 Forklift Operator

146 Lim Tok Lo 2017-03-01 Warehouse Manager

Chapter 19 Merging Date Ranges

374

147 Ursula Mwbesi 2014-10-01 2015-05-01 Delivery Manager

147 Ursula Mwbesi 2016-05-01 2017-03-01 Warehouse Manager

147 Ursula Mwbesi 2016-11-01 Operations Chief

When I visualize the same data in Figure 19-2, it’s easy to see who has changed jobs

along the way, who has been away from the company and returned in a different job, and

who has had double jobs for periods of time.

You’ll notice that because I use the half-open interval I mentioned before, employees

changing jobs have a start_date on the new job that is equal to the end_date of the old

job. Why didn’t I use closed intervals instead, so Harold King was product director from

2010-07-01 to 2012-03-31 – both dates included?

It might seem easier to use closed intervals, so you can simplify your code a little by

using between instead of >= and < – but there’s a problem. The date datatype can contain

not only whole dates but also hours, minutes, and seconds. That means that with a

closed interval end_date of 2012-03-31, Harold King would not be hired anymore at 1

Figure 19-2.  Visualizing the data helps see the overlaps

Chapter 19 Merging Date Ranges

375

second past midnight, and the entire day of March 31st, he would be out of a job until

rehired April 1st at midnight.

“Easy,” you say, “just put an end_date of 2012-03-31 23:59:59, and all is well.” But

is it? Possibly it’ll be OK, but what if you need to switch to a timestamp datatype in the

future and support fractional seconds? (Probably not the case for hire periods, but you

can easily imagine other use cases for this.)

By using half-open intervals instead for your date ranges, you will never have the

problem that Harold King in principle is not hired for a short time (a day, a second, a

microsecond – no matter how small, with the closed interval, there will always be a piece

of time that is not covered by the ranges).

When working with half-open intervals, it can help to think of both dates

as from dates:

•	 The start_date is the exact moment from which the row starts being

active.

•	 The end_date is the exact moment from which the row is no longer

active (i.e., it ends being active immediately before that moment).

This thought process might have been helped by choosing column names like

active_from and inactive_from, but the notion of start and end is just so commonly

used that I’m doing the same.

Oracle itself has realized the usefulness of half-open intervals when they introduced

temporal validity in version 12.1. So let me use this as a good opportunity for a brief

detour and show you how temporal validity works. Afterward I’ll get back to the date

range merging.

�Temporal validity
In Listing 19-3, you’ll see the create table statement I used for creating the

emp_hire_periods table.

Listing 19-3.  Table defined with temporal validity

SQL> create table emp_hire_periods (

 2 emp_id not null constraint emp_hire_periods_emp_fk

 3 references employees

 4 , start_date date not null

Chapter 19 Merging Date Ranges

376

 5 , end_date date

 6 , title varchar2(20 char) not null

 7 , constraint emp_hire_periods_pk primary key (emp_id, start_date)

 8 , period for employed_in (start_date, end_date)

 9);

The interesting bit is line 8, which is the period for clause for defining temporal

validity on the table.

In the parentheses, I’ve specified the two columns that contain the start and end

point of the half-open interval. (These can be date or timestamp columns.) Both

columns are allowed to be nullable; it is just for this use case I have set start_date to

be not null as a job period will always have a specific starting point, whereas end_date

allows nulls, because this means the job is still current.

Tip I f you do not specify the two columns, the database auto-creates two hidden
columns to contain the interval. Normally I prefer to create the columns myself and
specify them, but it might be handy if you have a use case where those who query
are not interested in the actual interval, just whether the row is valid at a specific
point in time or not.

Right after period for, you must name the period (give it an identifier), and I have

carefully chosen employed_in. It is a good idea to give the name some thought, as a good

name will be helpful in queries that use temporal validity, as I show it in Listing 19-4.

Listing 19-4.  Querying hire periods table as of a specific date

SQL> select

 2 ehp.emp_id

 3 , e.name

 4 , ehp.start_date

 5 , ehp.end_date

 6 , ehp.title

 7 from emp_hire_periods

 8 as of period for employed_in date '2010-07-01'

 9 ehp

Chapter 19 Merging Date Ranges

377

 10 join employees e

 11 on e.id = ehp.emp_id

 12 order by ehp.emp_id, ehp.start_date;

In the from clause lines 7–9, I can use an as of syntax very similar to flashback

queries, with the table in line 7, the as of specification in line 8, and the table alias

in line 9.

When using flashback, I specify as of timestamp or as of scn, but with temporal

validity, I specify as of period for and then the name of the period. This means that

the name employed_in in line 8 helps self-document that I’m querying those that were

employed in 2010-07-01, which was the start of the company, and there were only three

people:

EMP_ID NAME START_DATE END_DATE TITLE

142 Harold King 2010-07-01 2012-04-01 Product Director

143 Mogens Juel 2010-07-01 2014-01-01 IT Technician

144 Axel de Proef 2010-07-01 2013-07-01 Sales Manager

If I want to find those that were employed 6 years later, I just change the date

value in line 8:

...

 8 as of period for employed_in date '2016-07-01'

...

And here I have five people (some of whom are the same, just with new titles):

EMP_ID NAME START_DATE END_DATE TITLE

142 Harold King 2012-04-01 Managing Director

143 Mogens Juel 2016-06-01 IT Manager

144 Axel de Proef 2012-04-01 Product Director

145 Zoe Thorston 2014-02-01 IT Developer

147 Ursula Mwbesi 2016-05-01 2017-03-01 Warehouse Manager

The query with as of is internally rewritten by the database into a regular where

clause with suitable >= and < predicates; it is just easier to get it right with as of. Also the

database treats it as a type of constraint – it will not let you insert data with an end_date

that is before start_date.

Chapter 19 Merging Date Ranges

378

This little aside showed you briefly how temporal validity can make things easier,

and if you do use temporal validity, you’ll also automatically get the benefits of the half-

open intervals. Now I’ll get back to the range merging, which you can do with or without

temporal validity.

�Merging overlapping ranges
What I want to do now is to take the data in Figure 19-2, find all places where hire periods

of the same employee either adjoin or overlap, and merge those into single aggregate

rows showing how many jobs (either successively or concurrently) the employee has had

in that aggregated period. The result I want is shown in Figure 19-3.

I am now going to attempt solving this with match_recognize. To demonstrate trying

out different approaches and changing the logic along the way, I will first show some

attempts that do not quite work, leading up to a working solution in the end.

Figure 19-3.  Expected results after merging overlapping and adjoining date
ranges

Chapter 19 Merging Date Ranges

379

�Attempts comparing to the previous row
In quite a few scenarios using match_recognize, it is typical to compare a value from the

current row to a value from the previous row in order to make a row classification. So I’ll

try that first in Listing 19-5.

Listing 19-5.  Comparing start_date to end_date of the previous row

SQL> select

 2 emp_id

 3 , name

 4 , start_date

 5 , end_date

 6 , jobs

 7 from emp_hire_periods_with_name

 8 match_recognize (

 9 partition by emp_id

 10 order by start_date, end_date

 11 measures

 12 max(name) as name

 13 , first(start_date) as start_date

 14 , last(end_date) as end_date

 15 , count(*) as jobs

 16 pattern (

 17 strt adjoin_or_overlap*

 18)

 19 define

 20 adjoin_or_overlap as

 21 start_date <= prev(end_date)

 22)

 23 order by emp_id, start_date;

My simple definition in line 21 states that a row is overlapping or adjoining if the

start_date is smaller than or equal to the end_date of the previous row. A match is

then found by the pattern in line 17 of any row followed by zero or more adjoining or

overlapping rows.

Chapter 19 Merging Date Ranges

380

And sure enough, this rule does indeed merge some of the date ranges in this output:

EMP_ID NAME START_DATE END_DATE JOBS

142 Harold King 2010-07-01 2

143 Mogens Juel 2010-07-01 2015-10-01 3

143 Mogens Juel 2016-06-01 1

144 Axel de Proef 2010-07-01 2

145 Zoe Thorston 2014-02-01 1

145 Zoe Thorston 2019-02-01 1

146 Lim Tok Lo 2014-10-01 2016-02-01 1

146 Lim Tok Lo 2017-03-01 1

147 Ursula Mwbesi 2014-10-01 2015-05-01 1

147 Ursula Mwbesi 2016-05-01 2

But the output of, for example, Mogens Juel is not completely merged; there should

have been a single row only for him with four jobs. The problem is that when I order

his rows by start_date, the Code Tester and IT Manager rows are compared and not

overlapping. A comparison like this to the previous row fails to discover that both rows

are adjoining or overlapping to Sys Admin.

Thinking about it, I figured that maybe it would help simply to change the ordering

in line 10 to order by end_date first:

...

 10 order by end_date, start_date

...

The output has changed, but Mogens Juel still wrongly is shown twice:

EMP_ID NAME START_DATE END_DATE JOBS

142 Harold King 2010-07-01 2

143 Mogens Juel 2010-07-01 2014-01-01 1

143 Mogens Juel 2014-04-01 3

144 Axel de Proef 2010-07-01 2

145 Zoe Thorston 2014-02-01 1

145 Zoe Thorston 2019-02-01 1

146 Lim Tok Lo 2014-10-01 2016-02-01 1

146 Lim Tok Lo 2017-03-01 1

Chapter 19 Merging Date Ranges

381

147 Ursula Mwbesi 2014-10-01 2015-05-01 1

147 Ursula Mwbesi 2016-05-01 2

With the changed ordering, the first attempt at finding a match for Mogens Juel

will try to compare the IT Technician row with the Code Tester row and fail to find an

overlap.

No matter which ordering I choose, I cannot get all the overlaps in a single match by

simply comparing a row to the previous row. I need a different way to handle this.

�Better comparing to the maximum end date
Looking more closely on the rows of Mogens Juel in Figure 19-2, I decide that a better

approach would be to compare the start_date of a row with the highest end_date that I

have found so far in the match.

A first attempt at this approach could look like this, but it would not work:

...

 8 match_recognize (

 9 partition by emp_id

 10 order by start_date, end_date

 11 measures

 12 max(name) as name

 13 , first(start_date) as start_date

 14 , max(end_date) as end_date

 15 , count(*) as jobs

 16 pattern (

 17 strt adjoin_or_overlap*

 18)

 19 define

 20 adjoin_or_overlap as

 21 start_date <= max(end_date)

 22)

 ...

Chapter 19 Merging Date Ranges

382

The reason it does not work is that when a definition condition like line 21 is

evaluated, the row is first assumed to be classified adjoin_or_overlap, and then the

condition is tested if it is true. Therefore the result of max(end_date) is calculated of all

rows of the match so far plus the current row, which does not make sense.

In fact it makes so little sense that when I tested this first attempt, the query gave

me either ORA-03113: end-of-file on communication channel or java.lang.

NullPointerException depending on database version and which client I use. The

database connection was then broken.

So do not use this first attempt. Instead you should try my second attempt, which is

shown in Listing 19-6.

Listing 19-6.  Comparing start_date of next row to highest end_date seen so far

...

 8 match_recognize (

 9 partition by emp_id

 10 order by start_date, end_date

 11 measures

 12 max(name) as name

 13 , first(start_date) as start_date

 14 , max(end_date) as end_date

 15 , count(*) as jobs

 16 pattern (

 17 adjoin_or_overlap* last_row

 18)

 19 define

 20 adjoin_or_overlap as

 21 next(start_date) <= max(end_date)

 22)

 23 order by emp_id, start_date;

Chapter 19 Merging Date Ranges

383

In Listing 19-6, I reverse the logic. Instead of comparing the current row with the

previous row, I compare it with the next row:

•	 I go back to ordering by start_date in line 10.

•	 In line 21, I check if the start_date of the next row is less than or

equal to the highest end_date seen so far in the match – including

the current row, because the max call will assume the current row is

part of the match when it is evaluated. That means that when a row is

classified as adjoin_or_overlap, that row should be merged with the

next row.

•	 The pattern in line 17 looks for zero or more adjoin_or_overlap

rows followed by one single row classified last_row. As that

classification is undefined, any row can match it – but since the row

before last_row was classified adjoin_or_overlap, I know that the

last_row should be merged too.

•	 If I find no adjoin_or_overlap rows, the row will become classified

last_row because of the * in line 17 that says that zero adjoin_or_

overlap rows are acceptable in the pattern. This means that when a

row is not overlapping with any other rows, it will become a match of

a single row classified as last_row and thus unmerged be part of the

output.

•	 The measure end_date in line 14 is calculated as the largest end_date

of the match. Since I am not qualifying the end_date in the max call

with either adjoin_or_overlap or last_row, max is applied to all rows

of the match no matter what classification the rows got.

This is a somewhat tricky match_recognize clause to understand. When I do

conference presentations on this topic, I usually draw the date ranges on a whiteboard

and step through the evaluation of the row classification row by row. As I cannot do

an animated drawing in a book, I am going to simulate it using a series of figures from

Figure 19-4 to Figure 19-8, going through the steps of finding a match for Mogens Juel.

Chapter 19 Merging Date Ranges

384

Figure 19-4.  Can first row be classified as adjoin_or_overlap?

Figure 19-5.  Can second row be classified as adjoin_or_overlap?

Figure 19-6.  Can third row be classified as adjoin_or_overlap?

In Figure 19-4, I start by evaluating if the first row of Mogens Juel can be classified

adjoin_or_overlap or not. Since I start by assuming it can, the max(end_date) in line

21 of Listing 19-6 evaluates to the end of the first row. The next(start_date) evaluates

to the start_date of the second row. The two are equal, therefore adjoining, so the

condition in line 21 is true, and the first row is classified adjoin_or_overlap.

Having classified the first row, Figure 19-5 evaluates if the second row can be

classified adjoin_or_overlap or not. The max(end_date) evaluates to the end_date of

the second row, while the next(start_date) is the start_date of the third row. The

latter is less than the former, therefore overlapping, and the second row is classified

adjoin_or_overlap.

The pattern is still fulfilled, so in Figure 19-6, the classification evaluation is

performed for the third row. In this case the max(end_date) does not move; it is still the

end_date of the second row. The next(start_date) is the start_date of the fourth row.

They are equal, so the fourth row is adjoining to the match found so far, and therefore

the third row is adjoin_or_overlap.

Chapter 19 Merging Date Ranges

385

The match continues, and Figure 19-7 evaluates the fourth row. This time max(end_

date) should be infinity as shown in the figure, because the fourth row has null in

end_date. I am not yet handling this situation (more on this shortly), so in actual

fact, max(end_date) would wrongly evaluate to the end_date of the second row. But

since there are no more rows, next(start_date) evaluates to null, which makes the

condition evaluate to Boolean unknown. Therefore the fourth row is not classified as

adjoin_or_overlap.

Figure 19-8.  Fourth row classified as last_row and a match has been found

Figure 19-7.  Can fourth row be classified as adjoin_or_overlap?

When the fourth row is not adjoin_or_overlap, the pattern in line 17 of Listing 19-6

states that it should be a last_row in order to complete the match. So Figure 19-8

evaluates if the fourth row can be classified last_row or not. As last_row is an undefined

classification, it always evaluates to true, and the fourth row is therefore classified as

last_row, and the match has been completed.

This step-by-step evaluation of the row classification of Mogens Juel leads to the

output of Listing 19-6, where the four hire periods of Mogens Juel have correctly been

merged into a single row showing four jobs:

EMP_ID NAME START_DATE END_DATE JOBS

142 Harold King 2010-07-01 2012-04-01 2

143 Mogens Juel 2010-07-01 2016-06-01 4

144 Axel de Proef 2010-07-01 2013-07-01 2

145 Zoe Thorston 2014-02-01 1

145 Zoe Thorston 2019-02-01 1

Chapter 19 Merging Date Ranges

386

146 Lim Tok Lo 2014-10-01 2016-02-01 1

146 Lim Tok Lo 2017-03-01 1

147 Ursula Mwbesi 2014-10-01 2015-05-01 1

147 Ursula Mwbesi 2016-05-01 2017-03-01 2

But I still have a couple of problems with this output.

Firstly several of the employees (including Mogens Juel) have a wrong value

in the measure end_date. Those that are still employed should have null (blank) in the

end_date column, and in this output that is only true for those with just a single hire

period. For those that have had more than one job, the highest non-null end_date is

wrongly displayed.

Secondly I notice that Zoe Thorston also has overlapping rows – the problem here is

just that the end_date of both rows are null, meaning both rows are current and she has

both job functions. With the null values, the simple comparison in line 21 of Listing 19-6

will not be true.

Both of these problems are because I am not handling the null values in end_date.

This I will do now.

�Handling the null dates
To handle these null values, I change a little bit more in Listing 19-7.

Listing 19-7.  Handling null=infinity for both start and end

...

 8 match_recognize (

 9 partition by emp_id

 10 order by start_date nulls first, end_date nulls last

 11 measures

 12 max(name) as name

 13 , first(start_date) as start_date

 14 , nullif(

 15 max(nvl(end_date, date '9999-12-31'))

 16 , date '9999-12-31'

 17) as end_date

 18 , count(*) as jobs

Chapter 19 Merging Date Ranges

387

 19 pattern (

 20 adjoin_or_overlap* last_row

 21)

 22 define

 23 adjoin_or_overlap as

 24 nvl(next(start_date), date '-4712-01-01')

 25 <= max(nvl(end_date, date '9999-12-31'))

 26)

 27 order by emp_id, start_date;

Even though this particular case only has null values in the end_date, for

demonstration purposes, I have made the changes necessary to handle if there were

null values in the start_date as well:

•	 In line 10, I make the order by a bit more explicit. If there had been

null values in start_date, these would be considered earlier than

any other start_date, so I use nulls first to make those rows

come first. Similarly null values in end_date are considered later

than any other end_date, so I use nulls last to make those rows

come last.

•	 In comparisons I cannot simply use a nulls first to consider a null

in start_date to be less than any other date, so in line 24, I turn a

null into the smallest date possible in the Oracle date datatype.

•	 The aggregate function max ignores null values, so in line 25, I turn a

null in end_date into the largest date possible in a date.

•	 To get a correct result in the end_date measure, I do the same nvl

inside the max function in line 15. Then if the max results in the largest

date, I use nullif in lines 14 and 16 to turn that back into null for

output.

With these expanded rules, I get the final output where the rows of Zoe Thorston also

are merged into one:

EMP_ID NAME START_DATE END_DATE JOBS

142 Harold King 2010-07-01 2

143 Mogens Juel 2010-07-01 4

144 Axel de Proef 2010-07-01 2

Chapter 19 Merging Date Ranges

388

145 Zoe Thorston 2014-02-01 2

146 Lim Tok Lo 2014-10-01 2016-02-01 1

146 Lim Tok Lo 2017-03-01 1

147 Ursula Mwbesi 2014-10-01 2015-05-01 1

147 Ursula Mwbesi 2016-05-01 2

This output matches Figure 19-3, the result that I wanted.

Now I cannot merge any further – the rows of this output are all neither overlapping

nor adjoining.

�Lessons learned
This is just a single example of merging rows with date ranges in a report on employee

job history, but it serves as inspiration and lesson to enable you to go ahead and do the

same for other data.

In the course of the chapter, I’ve been explaining about

•	 The advantages of using half-open intervals for date ranges and how

temporal validity can make it easier to query data with such intervals

•	 Using match_recognize to compare maximum values with next

row to find overlapping or adjoining ranges and merge them into

aggregate rows

•	 Expanding the rules to also handle situations where null indicates

infinity

You’ll likely find many places you can use these methods.

Chapter 19 Merging Date Ranges

389
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_20

CHAPTER 20

Finding Abnormal Peaks
In many cases there’s sequential data (often chronological) that’s supposed to have a

fairly steady value or increasing/decreasing at a fairly steady rate. If there are spots in

the data where it is not fairly steady, you want to know about it. Or in other words, if you

graphically represent the data, you want to find the abnormal peaks and spikes.

As a database professional, an obvious case of this situation is tablespace storage

usage. Normally the number of GBs grows approximately the same rate each day/week/

month – any excessive growth rate is indicative of an abnormal workload, which could

be caused by a large scheduled onetime job or a bug causing a runaway process to falsely

insert millions of rows.

Another use case is the one I’ll use in this chapter – number of visits to individual

web pages on the web site. Abnormal visit counts can mean denial-of-service attacks,

high response to a marketing campaign, spam bots, and viral tweets – in all cases it’d be

good to find such peaks in the data.

I think you can easily think of many other similar use cases, but how then to spot

those peaks? Putting the data on a graph often makes such peaks easily visible to the

human eye, but you can’t make SQL code look at a graph – or can you? Well, in a sense,

yes you can. I showed in Chapter 17 how to look for up-and-down patterns with match_

recognize – it is a similar technique to find these peaks.

�Web page counter history
As the example use case, I am going to use page counters for web pages – simply that

each page on the Good Beer Trading Co web site has a counter that increments by 1 for

every time someone visits that page.

Every midnight the current value of each page counter is stored in the web_counter_

hist table shown in Figure 20-1, where you also see the web_pages and web_apps tables.

390

As the web_counter_hist.page_no column is not very human-friendly, in Listing 20-1,

I create a view joining the three tables.

Listing 20-1.  View joining web apps, pages, and counter history

SQL> create or replace view web_page_counter_hist

 2 as

 3 select

 4 ch.app_id

 5 , a.name as app_name

 6 , ch.page_no

 7 , p.friendly_url

 8 , ch.day

 9 , ch.counter

 10 from web_apps a

 11 join web_pages p

 12 on p.app_id = a.id

 13 join web_counter_hist ch

Figure 20-1.  The tables for storing web apps, pages, and counter history

Chapter 20 Finding Abnormal Peaks

391

 14 on ch.app_id = p.app_id

 15 and ch.page_no = p.page_no;

View WEB_PAGE_COUNTER_HIST created.

Having set the stage, I am now ready to dive into the data.

�The counter data
First, with Listing 20-2, I’ll show you that my web site has only a single application with

four pages in it.

Listing 20-2.  The pages in my webshop app

SQL> select

 2 p.app_id

 3 , a.name as app_name

 4 , p.page_no

 5 , p.friendly_url

 6 from web_apps a

 7 join web_pages p

 8 on p.app_id = a.id

 9 order by p.app_id, p.page_no;

The application is the webshop, and the four pages each have a friendly_url, since

it is nicer for us humans to use /About instead of /pls/apex/f?p=542:4::::::

APP_ID APP_NAME PAGE_NO FRIENDLY_URL

542 Webshop 1 /Shop

542 Webshop 2 /Categories

542 Webshop 3 /Breweries

542 Webshop 4 /About

And so I can use Listing 20-3 to see the counter history for each of the four pages of

application 542.

Chapter 20 Finding Abnormal Peaks

392

Listing 20-3.  Web page counter history data

SQL> select

 2 friendly_url, day, counter

 3 from web_page_counter_hist

 4 where app_id = 542

 5 order by page_no, day;

I get incrementing counter values for the 30 days of April 2019:

FRIENDLY_URL DAY COUNTER

/Shop 2019-04-01 5010

/Shop 2019-04-02 5088

...

/Shop 2019-04-29 7755

/Shop 2019-04-30 7833

/Categories 2019-04-01 3397

...

/Categories 2019-04-30 5033

/Breweries 2019-04-01 1866

...

/Breweries 2019-04-30 3115

/About 2019-04-01 455

...

/About 2019-04-30 586

120 rows selected.

These data I visualize on the graph in Figure 20-2. It’s actually not that easy to

spot abnormalities on these graphs. Mostly I can spot that the top line has a period of

acceleration around the middle of the month, and the second line has a short burst near

the end of the month. But to really find these spots, I’ll be turning to SQL.

Chapter 20 Finding Abnormal Peaks

393

As I only have this one single application, I’m simplifying the rest of the SQL in this

chapter and skip using where app_id = 542 all over. The assumption for the rest of the

code is a single application.

�Patterns in the raw counter data
In this set of match_recognize examples, I’ll be using these raw counter data as depicted

in the preceding graph.

First I can try simply to find periods where a given page counter grew by at least a

constant number every day. In Listing 20-4 I search for counter growth of at least 200.

Listing 20-4.  Recognizing days where counter grew by at least 200

SQL> select

 2 url, from_day, to_day, days, begin, growth, daily

 3 from web_page_counter_hist

 4 match_recognize(

 5 partition by page_no

Figure 20-2.  Web page counter history data

Chapter 20 Finding Abnormal Peaks

394

 6 order by day

 7 measures

 8 first(friendly_url) as url

 9 , first(day) as from_day

 10 , last(day) as to_day

 11 , count(*) as days

 12 , first(counter) as begin

 13 , next(counter) - first(counter) as growth

 14 , (next(counter) - first(counter)) / count(*)

 15 as daily

 16 one row per match

 17 after match skip past last row

 18 pattern (peak+)

 19 define

 20 peak as next(counter) - counter >= 200

 21)

 22 order by page_no, from_day;

In the definition in line 20, I state what a peak is: it is a day where the counter grew

by at least 200 on that day. Since the counter values are stored at midnight, the growth of

the counter during the day is the next value minus the current value. So any rows where

this is greater than or equal to 200 is classified as a peak row.

The pattern in line 18 can then be very simple – I’m looking for periods of one or

more consecutive days classified as peak rows. I output just a single row per period by

using one row per match in line 16. And the measures calculations in lines 8–15 give me

this output:

URL FROM_DAY TO_DAY DAYS BEGIN GROWTH DAILY

/Shop 2019-04-12 2019-04-15 4 5800 1039 259.75

/Categories 2019-04-28 2019-04-28 1 4625 360 360

That’s exactly those two abnormalities that I mentioned in the preceding text I could

spot by eye on the graphs in Figure 20-2.

Note that since I did not specify any running or final in Listing 20-4, the output

specifically works because I am using one row per match – had I been using all rows

per match, most of the measures would have used running semantics and given me an

output I probably didn’t want.

Chapter 20 Finding Abnormal Peaks

395

But I can also be explicit and specify that I actually want it to use final semantics,

that is, evaluate the expressions as of the last row of the match. This would mean

changing the measures expressions in lines 8–15 this way:

...

 8 first(friendly_url) as url

 9 , first(day) as from_day

 10 , final last(day) as to_day

 11 , final count(*) as days

 12 , first(counter) as begin

 13 , next(final last(counter)) - first(counter) as growth

 14 , (next(final last(counter)) - first(counter))

 15 / final count(*) as daily

...

It gives me the exact same output, but now I’d also get the same values calculated if I

used all rows per match.

Note A s explained in the preceding text, using next(counter) in the define
clause gets the value of the next midnight, so when I subtract the current value,
I get the day’s growth. To get the total growth of the period in line 13, the final
last goes to the last day of the match – applying next then gives me the counter
value from the following midnight even though it is outside the match.

I’ve now found growth peaks that exceeded a constant number, but the problem

is that “at least 200” may be a good number for the most-visited pages, but is not

appropriate for the least-visited pages.

So in Listing 20-5, I do not look for absolute numbers, but rather a relative growth in

percent.

Listing 20-5.  Recognizing days where counter grew by at least 4%

SQL> select

 2 url, from_day, to_day, days, begin, pct, daily

 3 from web_page_counter_hist

 4 match_recognize(

 5 partition by page_no

Chapter 20 Finding Abnormal Peaks

396

 6 order by day

 7 measures

 8 first(friendly_url) as url

 9 , first(day) as from_day

 10 , final last(day) as to_day

 11 , final count(*) as days

 12 , first(counter) as begin

 13 , round(

 14 100 * (next(final last(counter)) / first(counter))

 15 - 100

 16 , 1

 17) as pct

 18 , round(

 19 (100 * (next(final last(counter)) / first(counter))

 20 - 100) / final count(*)

 21 , 1

 22) as daily

 23 one row per match

 24 after match skip past last row

 25 pattern (peak+)

 26 define

 27 peak as next(counter) / counter >= 1.04

 28)

 29 order by page_no, from_day;

In line 27, I changed my definition of what is a peak row, so I do not look at the

difference between the values of next and current midnight, but rather the ratio. If the

next value is at least a factor 1.04 of the current value, the growth that day has been at

least 4%, and the row is a peak row.

I keep most of my measures expressions, but in lines 13–22, I change from showing

absolute growth to showing the total growth and average daily growth in percent:

URL FROM_DAY TO_DAY DAYS BEGIN PCT DAILY

/Shop 2019-04-12 2019-04-14 3 5800 14 4.7

/Categories 2019-04-28 2019-04-28 1 4625 7.8 7.8

/Breweries 2019-04-17 2019-04-17 1 2484 6.6 6.6

/About 2019-04-05 2019-04-05 1 468 4.9 4.9

Chapter 20 Finding Abnormal Peaks

397

In Listing 20-5, I look for periods where the growth in every day of the period has

been at least 4%. But I can change the definition in line 27 to a slightly more complex

calculation:

...

 27 peak as ((next(counter) / first(counter)) - 1)

 28 / running count(*) >= 0.04

...

With this formula, I look for periods where the average daily growth in the period

has been at least 4%. The output shows me almost the same four matches, except that

each of the first three periods is a little bit longer now, since some larger daily growths

in the start of the periods mean that an extra day or two can be included in the end of

the match. Even though those extra days individually have a growth less than 4%, the

average in the period still stays at least 4%:

URL FROM_DAY TO_DAY DAYS BEGIN PCT DAILY

/Shop 2019-04-12 2019-04-16 5 5800 21.2 4.2

/Categories 2019-04-28 2019-04-29 2 4625 8.8 4.4

/Breweries 2019-04-17 2019-04-18 2 2484 8.4 4.2

/About 2019-04-05 2019-04-05 1 468 4.9 4.9

I’ve now shown looking for abnormal growth in terms of absolute or relative growth,

but it might not be the best to do in this case. It might be better to look at daily visits.

�Looking at daily visits
Some cases can usefully look for growth the ways I’ve shown in the preceding text, but

when you think about it, maybe it isn’t such a good idea for this case. Over time the

counter value will just keep on increasing, so when the counter value over the years

become orders of magnitude larger, a 4% growth rate needs a lot more daily visitors to

satisfy.

So I’m going to try to look instead into how the daily visit counts behave. When

you look at the data this way, it becomes clear that what I actually found in Listing

20-5 were periods where the daily visits were at least 4% of the counter value. That will

unfortunately make the same daily visits give a high percentage in the start of the counter

lifetime and a lower and lower percentage as time goes by and the counter increases.

Chapter 20 Finding Abnormal Peaks

398

To create a better solution, first, I’ll use Listing 20-6 to just show the daily visits.

Listing 20-6.  Focusing on daily visits

SQL> select

 2 friendly_url, day

 3 , lead(counter) over (

 4 partition by page_no order by day

 5) - counter as visits

 6 from web_page_counter_hist

 7 order by page_no, day;

The expression in lines 3–5 uses the lead analytic function to find the difference

between the counter value next midnight and this midnight – same as I did before using

next in the match_recognize syntax:

FRIENDLY_URL DAY VISITS

/Shop 2019-04-01 78

/Shop 2019-04-02 72

...

/Shop 2019-04-29 78

/Shop 2019-04-30

/Categories 2019-04-01 57

...

/Categories 2019-04-29 48

/Categories 2019-04-30

/Breweries 2019-04-01 21

...

/Breweries 2019-04-29 38

/Breweries 2019-04-30

/About 2019-04-01 4

...

/About 2019-04-29 5

/About 2019-04-30

120 rows selected.

And I visualize this output in Figure 20-3.

Chapter 20 Finding Abnormal Peaks

399

On this graph, it is much easier to spot the peaks compared to the graph in

Figure 20-2. You can even see the small peaks on the lowest line – the /About page.

Then I’ll proceed to finding patterns based on this graph.

�Patterns in daily visits data
For starters, again I simply try to find patterns based on an absolute number.

In Listing 20-7, I look for periods where the daily visits are at least 50 higher than the

day just before the period.

Listing 20-7.  Daily visits at least 50 higher than previous day

SQL> select

 2 url, from_day, to_day, days, begin, p_v, f_v, t_v, d_v

 3 from web_page_counter_hist

 4 match_recognize(

 5 partition by page_no

 6 order by day

Figure 20-3.  Graphing visits instead of counter highlights peaks

Chapter 20 Finding Abnormal Peaks

400

 7 measures

 8 first(friendly_url) as url

 9 , first(day) as from_day

 10 , final last(day) as to_day

 11 , final count(*) as days

 12 , first(counter) as begin

 13 , first(counter) - prev(first(counter)) as p_v

 14 , next(first(counter)) - first(counter) as f_v

 15 , next(final last(counter)) - first(counter) as t_v

 16 , round(

 17 (next(final last(counter)) - first(counter))

 18 / final count(*)

 19 , 1

 20) as d_v

 21 one row per match

 22 after match skip past last row

 23 pattern (peak+)

 24 define

 25 peak as next(counter) - counter

 26 - (first(counter) - prev(first(counter))) >= 50

 27)

 28 order by page_no, from_day;

Much looks similar to what I did before, but there are some differences:

•	 The definition of the peak classification in lines 25–26 works like this:

•	 The next counter value minus current counter value in line 25 is

the visits of the current day.

•	 Taking the first minus prev(first in line 26 is identical to going

back to the previous row and doing next minus current, or in

other words this is the visits of the day just before the beginning

of the match.

•	 Subtracting the “day before” visits from the current day visits

gives how much higher the current day is – if this is at least 50, the

row is classified peak.

Chapter 20 Finding Abnormal Peaks

401

•	 In the measures I calculate these four values:

•	 p_v is previous visits – the visits of the day before the first row of

the match, as explained in the preceding text

•	 f_v is first day’s visits – the visits of the first day of the match

•	 t_v is total period visits – the visits from the first to the last day of

the match

•	 d_v is daily visits – the average visits per day in the match period

All in all, the code produces this output:

URL FROM_DAY TO_DAY DAYS BEGIN P_V F_V T_V D_V

/Shop 2019-04-12 2019-04-17 6 5800 67 279 1386 231

/Categories 2019-04-28 2019-04-28 1 4625 37 360 360 360

/Breweries 2019-04-17 2019-04-17 1 2484 42 163 163 163

Which you’ll recognize as the largest three spikes on the graph shown in Figure 20-3.

There was a lot of prev, next, first, and last used in Listing 20-7 to calculate visits

based on the counter data. Alternatively I can pre-calculate the daily visits and that way

simplify my match_recognize clause, like in Listing 20-8.

Listing 20-8.  Pre-calculating visits for simplifying code

SQL> select

 2 url, from_day, to_day, days, begin, p_v, f_v, t_v, d_v

 3 from (

 4 select

 5 page_no, friendly_url, day, counter

 6 , lead(counter) over (

 7 partition by page_no order by day

 8) - counter as visits

 9 from web_page_counter_hist

 10)

 11 match_recognize(

 12 partition by page_no

 13 order by day

 14 measures

Chapter 20 Finding Abnormal Peaks

402

 15 first(friendly_url) as url

 16 , first(day) as from_day

 17 , final last(day) as to_day

 18 , final count(*) as days

 19 , first(counter) as begin

 20 , prev(first(visits)) as p_v

 21 , first(visits) as f_v

 22 , final sum(visits) as t_v

 23 , round(final avg(visits)) as d_v

 24 one row per match

 25 after match skip past last row

 26 pattern (peak+)

 27 define

 28 peak as visits - prev(first(visits)) >= 50

 29)

 30 order by page_no, from_day;

Lines 4–9 contain an inline view identical to Listing 20-6, where I calculate the daily

visits with the analytic lead function. Then my match_recognize clauses become a lot

simpler:

•	 Line 28 simply is the difference between current visits and visits from

the day before the match start.

•	 The four measures described in the preceding text are much simpler

in lines 20–23 by using navigational functions and aggregates.

The output of Listing 20-8 is identical to Listing 20-7.

It is worth noting that the database worked a little harder in Listing 20-8, since it

had to first do the pre-calculation with analytic functions before it could do the pattern

matching. On the other hand, the pattern matching processing became simpler, so

depending on the data, it might offset this overhead – your mileage may vary, so test

either approach on your own data.

It can also often be the case that your data already contains data in the form like

“daily visits” instead of historical snapshot values of an increasing counter. If so, then it is

easy to skip the inline view in Listing 20-8 and simply apply the pattern matching directly

on your data.

Chapter 20 Finding Abnormal Peaks

403

Now, I do seem to get a better peak detection focusing on the visits than in the first

couple of examples in this chapter, but it is still probably not good to look for an absolute

like “at least 50 higher.” So in Listing 20-9, I’m altering Listing 20-8 to search relatively for

“at least 50% higher” instead.

Listing 20-9.  Daily visits at least 50% higher than the previous day

SQL> select

 2 url, from_day, to_day, days, begin, p_v, f_v, t_v, d_pct

 3 from (

...

 10)

 11 match_recognize(

...

 23 , round(

 24 (100*(final sum(visits) / prev(first(visits))) - 100)

 25 / final count(*)

 26 , 1

 27) as d_pct

...

 31 define

 32 peak as visits / nullif(prev(first(visits)), 0) >= 1.5

 33)

 34 order by page_no, from_day;

In line 32 I switch from looking at differences to looking at ratios. If the prev row had

zero visits, I cannot calculate a ratio, so I use nullif to make the entire expression null in

those cases.

And then instead of a daily visits measure, I use lines 23–27 to calculate the daily

average of the percentage of the day’s visits compared to the “day before” visits.

Chapter 20 Finding Abnormal Peaks

404

I’m now finding quite a few more peaks in my data, or are they really peaks?

URL FROM_DAY TO_DAY DAYS BEGIN P_V F_V T_V D_PCT

/Shop 2019-04-12 2019-04-17 6 5800 67 279 1386 328.1

/Shop 2019-04-28 2019-04-29 2 7683 23 72 150 276.1

/Categories 2019-04-08 2019-04-29 22 3637 7 54 1396 901.9

/Breweries 2019-04-05 2019-04-29 25 1955 17 51 1160 268.9

/About 2019-04-04 2019-04-07 4 463 1 5 38 925

/About 2019-04-11 2019-04-11 1 508 3 5 5 66.7

/About 2019-04-13 2019-04-14 2 514 1 2 10 450

/About 2019-04-23 2019-04-24 2 531 4 8 21 212.5

/About 2019-04-28 2019-04-28 1 563 8 18 18 125

The problem with this approach is that when I have even just a single day with very

low number of visits, practically all days afterward are 50% higher, even though there

isn’t really a peak. Like the output shows a 25-day “peak” for the /Breweries page.

So maybe instead I should go for searching periods where the daily visits are at least

50% higher than the average daily visit? I’ll try that in Listing 20-10.

Listing 20-10.  Daily visits at least 50% higher than average

SQL> select

 2 url, avg_v, from_day, to_day, days, t_v, d_v, d_pct

 3 from (

 4 select

 5 page_no, friendly_url, day, counter, visits

 6 , avg(visits) over (

 7 partition by page_no

 8) as avg_visits

 9 from (

 10 select

 11 page_no, friendly_url, day, counter

 12 , lead(counter) over (

 13 partition by page_no order by day

 14) - counter as visits

 15 from web_page_counter_hist

 16)

Chapter 20 Finding Abnormal Peaks

405

 17)

 18 match_recognize(

 19 partition by page_no

 20 order by day

 21 measures

 22 first(friendly_url) as url

 23 , round(first(avg_visits), 1) as avg_v

 24 , first(day) as from_day

 25 , final last(day) as to_day

 26 , final count(*) as days

 27 , final sum(visits) as t_v

 28 , round(final avg(visits), 1) as d_v

 29 , round(

 30 (100 * final avg(visits) / avg_visits) - 100

 31 , 1

 32) as d_pct

 33 one row per match

 34 after match skip past last row

 35 pattern (peak+)

 36 define

 37 peak as visits / avg_visits >= 1.5

 38)

 39 order by page_no, from_day;

My original inline view (lines 10–15) I wrap in another inline view, so that I can use

analytic avg function in lines 6–8 to calculate the average daily visits for each page (by

partitioning by page_no.)

Having pre-calculated the average visits, the expression in line 37 is pretty simple – if

the ratio of visits to average visits is at least 1.5, the row is a peak row.

That gives me a much more realistic output that finds each of the three large spikes

(that I also found with Listing 20-7) as well as the four small spikes on the /About page

that I can see in Figure 20-3:

Chapter 20 Finding Abnormal Peaks

406

URL AVG_V FROM_DAY TO_DAY DAYS T_V D_V D_PCT

/Shop 97.3 2019-04-12 2019-04-17 6 1386 231 137.3

/Categories 56.4 2019-04-28 2019-04-28 1 360 360 538.1

/Breweries 43.1 2019-04-17 2019-04-17 1 163 163 278.5

/About 4.5 2019-04-05 2019-04-06 2 31 15.5 243.1

/About 4.5 2019-04-14 2019-04-14 1 8 8 77.1

/About 4.5 2019-04-23 2019-04-24 2 21 10.5 132.4

/About 4.5 2019-04-27 2019-04-28 2 26 13 187.8

Using Listing 20-10 with the pre-calculated daily and average visits, it becomes easy

to look for other things than simply spikes of 50% greater than average.

For example, I can change the definition in line 37 to find periods where the daily

visits are at least 80% less than average:

...

 37 peak as visits / avg_visits <= 0.2

...

That gives me periods where the pages might have had problems – particularly those

periods where the /About page had absolutely no visitors at all:

URL AVG_V FROM_DAY TO_DAY DAYS T_V D_V D_PCT

/Shop 97.3 2019-04-25 2019-04-25 1 18 18 -81.5

/Categories 56.4 2019-04-05 2019-04-07 3 25 8.3 -85.2

/About 4.5 2019-04-08 2019-04-08 1 0 0 -100

/About 4.5 2019-04-15 2019-04-20 6 0 0 -100

/About 4.5 2019-04-26 2019-04-26 1 0 0 -100

And I can make the pattern searching more complex as well in the next examples.

�More complex patterns
With Listing 20-11, I can search simultaneously for high, medium, and low peaks.

Listing 20-11.  Finding multiple peak classifications simultaneously

SQL> select

 2 url, avg_v, from_day, days, class, t_v, d_v, d_pct

 3 from (

Chapter 20 Finding Abnormal Peaks

407

...

 17)

 18 match_recognize(

 19 partition by page_no

 20 order by day

 21 measures

 22 first(friendly_url) as url

 23 , round(first(avg_visits), 1) as avg_v

 24 , first(day) as from_day

 25 , final count(*) as days

 26 , classifier() as class

 27 , final sum(visits) as t_v

 28 , round(final avg(visits), 1) as d_v

 29 , round(

 30 (100 * final avg(visits) / avg_visits) - 100

 31 , 1

 32) as d_pct

 33 one row per match

 34 after match skip past last row

 35 pattern (high{1,} | medium{2,} | low{3,})

 36 define

 37 high as visits / avg_visits >= 4

 38 , medium as visits / avg_visits >= 2

 39 , low as visits / avg_visits >= 1.1

 40)

 41 order by page_no, from_day;

In lines 37–39 instead of just the single peak, I define three different classifications

named high, medium, and low – each with a different minimum ratio between the day’s

visits and the average visits. The high is a ratio of at least 4, meaning the day’s visits must

be at least 400% of the average or 300% higher than the average, similar for the other

definitions.

Chapter 20 Finding Abnormal Peaks

408

In the pattern in line 35, I state that a match must be either at least one high row or at

least two medium rows or at least three low rows. A single low spike can be random, but

three days in a row can be interesting to look at:

URL AVG_V FROM_DAY DAYS CLASS T_V D_V D_PCT

/Shop 97.3 2019-04-12 4 MEDIUM 1039 259.8 166.8

/Categories 56.4 2019-04-28 1 HIGH 360 360 538.1

/Breweries 43.1 2019-04-05 4 LOW 217 54.3 26

/About 4.5 2019-04-04 3 LOW 36 12 165.6

/About 4.5 2019-04-27 3 LOW 31 10.3 128.8

I see in the output all the three different types of peaks has been found.

Note T he two last low peaks found both have an average daily visit count that
is more than 100% larger than the total average, or in other words a ratio greater
than 2 – so why are they not classified medium? In order to see why, switch for all
rows per match, and remove all final keywords – I’ll leave that as an exercise for
you. You will find that the answer is that the first row of each of those periods has
a ratio between 1.1 and 2, so it is classified low. Therefore, the next rows will not
be tested as to whether they are medium or high, since that would be impossible
according to the pattern. The only viable pattern that starts with a low row is to find
at least three low rows, so the second and third rows in the bottom two matches
are only evaluated as having a ratio of at least 1.1, which is true (even though they
actually have a ratio of at least 2).

Instead of looking for multiple classifications simultaneously, I can mold a pattern

to find a peak of a particular shape. For example, after sending out a newsletter with

some links, I’d expect to find a sharp rise for one or a few days, which then tapers off to a

medium rise and then low. Listing 20-12 finds such a shaped peak.

Listing 20-12.  Finding peaks of a particular shape

SQL> select

 2 url, avg_v, from_day, days, hi, med, low, t_v, d_v, d_pct

 3 from (

...

Chapter 20 Finding Abnormal Peaks

409

 17)

 18 match_recognize(

 19 partition by page_no

 20 order by day

 21 measures

 22 first(friendly_url) as url

 23 , round(first(avg_visits), 1) as avg_v

 24 , first(day) as from_day

 25 , final count(*) as days

 26 , final count(high.*) as hi

 27 , final count(medium.*) as med

 28 , final count(low.*) as low

 29 , final sum(visits) as t_v

 30 , round(final avg(visits), 1) as d_v

 31 , round(

 32 (100 * final avg(visits) / avg_visits) - 100

 33 , 1

 34) as d_pct

 35 one row per match

 36 after match skip past last row

 37 pattern (high+ medium+ low+)

 38 define

 39 high as visits / avg_visits >= 2.5

 40 , medium as visits / avg_visits >= 1.5

 41 , low as visits / avg_visits >= 1.1

 42)

 43 order by page_no, from_day;

Again in lines 39–41, I define three different classifications (slightly different ratio

values as before but otherwise same principle.)

My pattern in line 37 then states I’m looking for a peak shaped with at least one high

day, followed by at least one medium day and followed by at least one low day.

Chapter 20 Finding Abnormal Peaks

410

The measures hi, med, and low in lines 26–28 tell me how many days of each

classification, so I can see how many days the visit count stayed high before it started to

taper off:

URL AVG_V FROM_DAY DAYS HI MED LOW T_V D_V D_PCT

/Shop 97.3 2019-04-12 6 3 2 1 1386 231 137.3

I found the single peak in the data that has the shape I was looking for.

�Lessons learned
I’ve shown multiple examples here of looking for spikes in chronological data –

techniques very similar to the up-and-down pattern search in Chapter 17 yet slightly

different for slightly different use cases.

Having understood these examples, you should now know about

•	 Using the navigational functions prev and next (in conjunction with

final) to access rows outside the match in the measures expressions

•	 Pre-calculating values to enable simpler pattern matching (test it to

see if it hurts or helps performance)

•	 Having multiple classification definitions to use in patterns that find

either any of the classifications or specific classification combinations

in a certain order

There are many use cases of similar chronological (or just sequential) data where

you can apply these types of pattern searches.

Chapter 20 Finding Abnormal Peaks

411
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_21

CHAPTER 21

Bin Fitting
Imagine packing your car to go on a holiday. Probably there’s one person in your family

that has the 3-D intuition needed to work out how to fit the suitcases just so, so that

there’s a nook free here to fit a pair of boots and a cranny free there to fit the odd-shaped

gift you’re bringing along to Aunt Mathilda. That one person always does the packing;

the rest of you stay out of the way until the car is packed.

Such packing skills can be highly valued in certain industries, as it is not an easy

task to make an algorithm that will do it perfectly. Variants are known as bin fitting, bin
packing, knapsack problem, cutting stock problem, and more. Googling these terms

you will find many algorithms for approximate answers, where typically the better the

solution is, the longer time it takes to run.

The very best algorithms often require either several passes of the data or storing

data in intermediate arrays for lookups. These are not easily translated to SQL and

might even be examples of code where it is not optimal to do it in SQL. But with match_

recognize, you can do some simple approximate bin fitting algorithms that are still

quite useful.

�Inventory to be packed in boxes
As an example of bin fitting, imagine that the Good Beer Trading Co is moving, so all

of the inventory has to be packed into boxes (boxes being my specific example of the

generic term bin) and moved to a new warehouse somewhere else.

I will be using the inventory and related tables I introduced to you in Chapter 13

on FIFO picking. In Chapter 13 I used more tables, but here I just use the ones shown in

Figure 21-1.

412

In Chapter 13 I also introduced the view inventory_with_dims that joins the

inventory with locations and products. This view I will be using throughout this

chapter.

Observe the inventory data of one of the beers in Listing 21-1.

Listing 21-1.  The inventory of the beer Der Helle Kumpel

SQL> select

 2 product_name

 3 , warehouse as wh

 4 , aisle

 5 , position as pos

 6 , qty

 7 from inventory_with_dims

 8 where product_name = 'Der Helle Kumpel'

 9 order by wh, aisle, pos;

Figure 21-1.  Inventory, locations, and products tables used in this chapter

Chapter 21 Bin Fitting

413

Most of the chapter examples show bin fitting for this beer:

PRODUCT_NAME WH AISLE POS QTY

Der Helle Kumpel 1 A 16 48

Der Helle Kumpel 1 A 29 14

Der Helle Kumpel 1 B 32 43

Der Helle Kumpel 1 C 5 70

Der Helle Kumpel 1 C 13 20

Der Helle Kumpel 1 D 19 48

Der Helle Kumpel 2 A 1 72

Der Helle Kumpel 2 B 5 14

Der Helle Kumpel 2 B 26 24

Der Helle Kumpel 2 C 31 21

Der Helle Kumpel 2 D 9 26

I’ll try to pack these beers into boxes according to my bin fitting rules. First with

limited capacity boxes.

�Bin fitting with unlimited number of bins of limited
capacity
This type of bin fitting is also a simple variant of the knapsack problem, which is a

problem that is quite hard to solve exactly within reasonable time. In fact it belongs to a

class of problems called NP-hard, which is out of the scope of this book to delve deeper

into. Suffice it to say here that any solution I give will just be an approximation – more or

less optimal.

I pack the beers into boxes according to these rules:

•	 A box can contain at maximum 72 bottles of beer.

•	 Quantities from different locations are allowed to be packed together

in the same box.

•	 A quantity from a single location cannot be split into multiple boxes

but must stay together in a single box.

Chapter 21 Bin Fitting

414

At first I am not worrying about trying to get close to optimal bin fitting. In Listing 21-2

I simply go through the warehouse in order of location and pack the beers into boxes.

When I reach a location, if the quantity will fit into the current box, I will pack it into that

box; otherwise, I will start packing in a new box.

Listing 21-2.  Bin fitting in order of location

SQL> select wh, aisle, pos, qty, run_qty, box#, box_qty

 2 from (

 3 select

 4 product_name

 5 , warehouse as wh

 6 , aisle

 7 , position as pos

 8 , qty

 9 from inventory_with_dims

 10 where product_name = 'Der Helle Kumpel'

 11) iwd

 12 match_recognize (

 13 order by wh, aisle, pos

 14 measures

 15 match_number() as box#

 16 , running sum(qty) as run_qty

 17 , final sum(qty) as box_qty

 18 all rows per match

 19 pattern (

 20 fits_in_box+

 21)

 22 define

 23 fits_in_box as sum(qty) <= 72

 24)

 25 order by wh, aisle, pos;

Chapter 21 Bin Fitting

415

So what happens in this query? I’ll explain:

•	 In the inline view lines 3–10, I simply limit the data to the beer I am

packing at the moment.

•	 In match_recognize, I order the data by location in line 13.

•	 I define the classification fits_in_box in line 23 to be when the

sum of qty is less than or equal to 72. When using an aggregate in a

definition, it is evaluated using running semantics.

•	 The pattern in line 20 states I want one or more rows that are

classified fits_in_box. This means that the qty of the first row is set

as the running sum. If the running sum is not larger than 72, the row

is added to the match. Then the qty of the second row is added to the

running sum. If it still is not larger than 72, the row is added to the

match and so on until a row causes the running sum to exceed 72, at

which point the match ends.

•	 In the measures lines 15–17, I use the match_number() as the number

of the box to be packed in, and I show both the running and the

final sums.

When you look at the output, you can see this in action:

WH AISLE POS QTY RUN_QTY BOX# BOX_QTY

1 A 16 48 48 1 62

1 A 29 14 62 1 62

1 B 32 43 43 2 43

1 C 5 70 70 3 70

1 C 13 20 20 4 68

1 D 19 48 68 4 68

2 A 1 72 72 5 72

2 B 5 14 14 6 59

2 B 26 24 38 6 59

2 C 31 21 59 6 59

2 D 9 26 26 7 26

The first 48 beers are added to the running sum – it’s not larger than 72, so it is

assigned to box# 1. Then 14 beers are added making the running sum 62 – still assigned

to box# 1.

Chapter 21 Bin Fitting

416

Then it tries to add the 43 beers in the third row, which gives a running sum of 105 –

it’s larger than 72, so therefore the row is not classified fits_in_box, and the box# 1 thus

stops with the first two rows. Instead the 43 beers in the third row become the first beers

in the second match – box# 2.

And so it goes on until I end up having packed the beers from the 11 locations into 7

boxes. Fast and easy, but not very optimal. It’s easy to spot that at the very least I could save

one box by putting the contents of box# 2 and 7 together in a single box with 69 beers.

The problem is that packing simply in order of location does not take into account

at all whether the quantities would fit together or not. Had the spread of quantities been

different, I might even have gotten an even worse result using more than seven boxes.

One of the beauties of both analytic functions as well as pattern matching is that

I can use different order by clauses for the logic and for the final output. So I can try

to change the order by in the match_recognize in line 13 to order by the quantity in

descending order (and then only use location as a tiebreaker).

To verify the output more easily, I also change the final order by in line 25 to the

same (when making a packing list I can always change it back to location order):

...

 12 match_recognize (

 13 order by qty desc, wh, aisle, pos

...

 24)

 25 order by qty desc, wh, aisle, pos;

I get an output that packs the beers quite differently than before:

WH AISLE POS QTY RUN_QTY BOX# BOX_QTY

2 A 1 72 72 1 72

1 C 5 70 70 2 70

1 A 16 48 48 3 48

1 D 19 48 48 4 48

1 B 32 43 43 5 69

2 D 9 26 69 5 69

2 B 26 24 24 6 65

2 C 31 21 45 6 65

1 C 13 20 65 6 65

1 A 29 14 14 7 28

2 B 5 14 28 7 28

Chapter 21 Bin Fitting

417

But it isn’t really any more optimal as I still use seven boxes. In fact this can even be

called slightly worse, since here I cannot even take the two least-filled boxes and pack

them together, as 28 + 48 would exceed 72.

There are various approximation algorithms that can get more or less close to

the optimal solution. I have created a quite simplified version of a modified first fit

decreasing (MFFD) algorithm. My simple algorithm works like this:

•	 First any quantity larger than 2/3 of a box capacity is simply

assigned to individual boxes. (Any small quantities that might have

“filled the holes” are likely to also fit into the rest of the boxes, so as

approximation it won’t be too far off.)

•	 The remaining quantities I sort in an interleaved manner:

•	 First, the largest

•	 Then the smallest

•	 Then the second largest

•	 Then the second smallest

•	 And so on

•	 Then I pack as before, but using this sorted order, so that I get good

chances that the interleaved large/small sorting creates pairs that fit

together in a box.

This simple approximation algorithm I implement in Listing 21-3.

Listing 21-3.  Using a simple best-fit approximation

SQL> select wh, aisle, pos, qty, run_qty, box#, box_qty

 2 , prio ,rn

 3 from (

 4 select

 5 product_name

 6 , warehouse as wh

 7 , aisle

 8 , position as pos

 9 , qty

 10 , case when qty > 72*2/3 then 1 else 2 end prio

Chapter 21 Bin Fitting

418

 11 , least(

 12 row_number() over (

 13 partition by

 14 case when qty > 72*2/3 then 1 else 2 end

 15 order by qty

 16)

 17 , row_number() over (

 18 partition by

 19 case when qty > 72*2/3 then 1 else 2 end

 20 order by qty desc

 21)

 22) rn

 23 from inventory_with_dims

 24 where product_name = 'Der Helle Kumpel'

 25) iwd

 26 match_recognize (

 27 order by prio, rn, qty desc, wh, aisle, pos

 28 measures

 29 match_number() as box#

 30 , running sum(qty) as run_qty

 31 , final sum(qty) as box_qty

 32 all rows per match

 33 pattern (

 34 fits_in_box+

 35)

 36 define

 37 fits_in_box as sum(qty) <= 72

 38)

 39 order by prio, rn, qty desc, wh, aisle, pos;

With this modified algorithm, I get to use just six boxes. The first two have just a

single large quantity, the next three all have a pair of quantities (one medium, one

small), and in the last box fit three middlish/smallish quantities:

Chapter 21 Bin Fitting

419

WH AISLE POS QTY RUN_QTY BOX# BOX_QTY PRIO RN

2 A 1 72 72 1 72 1 1

1 C 5 70 70 2 70 1 1

1 A 16 48 48 3 62 2 1

1 A 29 14 62 3 62 2 1

1 D 19 48 48 4 62 2 2

2 B 5 14 62 4 62 2 2

1 B 32 43 43 5 63 2 3

1 C 13 20 63 5 63 2 3

2 D 9 26 26 6 71 2 4

2 C 31 21 47 6 71 2 4

2 B 26 24 71 6 71 2 5

This algorithm is by no means the most optimal in all cases. I suggest you try out

several methods for your specific use cases. But the most near-optimal algorithms

can easily be harder to implement (perhaps almost impossible to implement in SQL,

requiring procedural code) and use more CPU, so it will probably be a matter of a trade-

off between a simple perhaps-good-enough algorithm like this and a very-good-but-too-

slow algorithm.

Using the Der Helle Kumpel beer as example, I am now ready in Listing 21-4 to

expand the algorithm to pack all beers in the warehouse.

Listing 21-4.  Using partition by to bin fit all products

SQL> select product_id

 2 , wh, aisle, pos, qty, run_qty, box#, box_qty

 3 from (

 4 select

 5 product_id

 6 , product_name

 7 , warehouse as wh

 8 , aisle

 9 , position as pos

 10 , qty

 11 , case when qty > 72*2/3 then 1 else 2 end prio

 12 , least(

 13 row_number() over (

Chapter 21 Bin Fitting

420

 14 partition by

 15 product_id

 16 , case when qty > 72*2/3 then 1 else 2 end

 17 order by qty

 18)

 19 , row_number() over (

 20 partition by

 21 product_id

 22 , case when qty > 72*2/3 then 1 else 2 end

 23 order by qty desc

 24)

 25) rn

 26 from inventory_with_dims

 27) iwd

 28 match_recognize (

 29 partition by product_id

 30 order by prio, rn, qty desc, wh, aisle, pos

 31 measures

 32 match_number() as box#

 33 , running sum(qty) as run_qty

 34 , final sum(qty) as box_qty

 35 all rows per match

 36 pattern (

 37 fits_in_box+

 38)

 39 define

 40 fits_in_box as sum(qty) <= 72

 41)

 42 order by product_id, prio, rn, qty desc, wh, aisle, pos;

Basically it’s the same thing, but I include product_id in the inline view in line 5, so

that I can use it to do partition by in line 29. That gives me an output that bin fits all the

beers:

Chapter 21 Bin Fitting

421

PRODUCT_ID WH AISLE POS QTY RUN_QTY BOX# BOX_QTY

4040 1 A 13 48 48 1 51

4040 1 C 10 3 51 1 51

4040 2 C 28 48 48 2 53

4040 1 A 25 5 53 2 53

...

7950 2 B 25 48 48 10 48

7950 1 C 24 42 42 11 42

7950 2 C 5 44 44 12 44

113 rows selected.

Note that since I use match_number() for the box# column, the box numbering

restarts for each product; it is not a unique box number throughout the output. If I need

that, then I need to add, for example, a dense_rank() over (order by product_id,

box#) to the select list.

Listing 21-4 gave me details about which quantities to put in which box by using

all rows per match. I can also get just the quantity of each box along with how many

locations have been packed together by using one row per match in Listing 21-5.

Listing 21-5.  Getting a single output row for each box

SQL> select product_id, product_name, box#, box_qty, locs

 2 from (

...

 26) iwd

 27 match_recognize (

 28 partition by product_id

 29 order by prio, rn, qty desc, wh, aisle, pos

 30 measures

 31 max(product_name) as product_name

 32 , match_number() as box#

 33 , final sum(qty) as box_qty

 34 , final count(*) as locs

 35 one row per match

 36 pattern (

Chapter 21 Bin Fitting

422

 37 fits_in_box+

 38)

 39 define

 40 fits_in_box as sum(qty) <= 72

 41)

 42 order by product_id, box#;

Besides changing line 35, I just change the measures, select list, and order by a bit

to fit, so I get a simpler output:

PRODUCT_ID PRODUCT_NAME BOX# BOX_QTY LOCS

4040 Coalminers Sweat 1 51 2

4040 Coalminers Sweat 2 53 2

4040 Coalminers Sweat 3 54 2

...

7950 Pale Rider Rides 10 48 1

7950 Pale Rider Rides 11 42 1

7950 Pale Rider Rides 12 44 1

86 rows selected.

So far I’ve been packing in boxes that had sufficient capacity to contain even the

largest location quantity I have in the warehouse (72). What happens if I used boxes that

were too small?

�Showing where box capacity is too small
To demonstrate, I use the simple packing in location order from Listing 21-2 instead of

the slightly more optimal modified first fit algorithm. The principle is the same no matter

what algorithm, so I just keep it simple in Listing 21-6.

Listing 21-6.  Problems when the boxes are too small

SQL> select wh, aisle, pos, qty, run_qty, box#, box_qty

 2 from (

 3 select

 4 product_name

 5 , warehouse as wh

Chapter 21 Bin Fitting

423

 6 , aisle

 7 , position as pos

 8 , qty

 9 from inventory_with_dims

 10 where product_name = 'Der Helle Kumpel'

 11) iwd

 12 match_recognize (

 13 order by wh, aisle, pos

 14 measures

 15 match_number() as box#

 16 , running sum(qty) as run_qty

 17 , final sum(qty) as box_qty

 18 all rows per match

 19 pattern (

 20 fits_in_box+

 21)

 22 define

 23 fits_in_box as sum(qty) <= 64

 24)

 25 order by wh, aisle, pos;

The difference from Listing 21-2 is simply that I use boxes with a capacity of 64 in line

23 instead of 72. What happens then in my output?

WH AISLE POS QTY RUN_QTY BOX# BOX_QTY

1 A 16 48 48 1 62

1 A 29 14 62 1 62

1 B 32 43 43 2 43

1 C 13 20 20 3 20

1 D 19 48 48 4 48

2 B 5 14 14 5 59

2 B 26 24 38 5 59

2 C 31 21 59 5 59

2 D 9 26 26 6 26

I only get nine lines instead of 11. The two quantities that are too large to fit in a box

are not matched at all, so they do not appear in the output.

Chapter 21 Bin Fitting

424

What if I want them to be shown in the output, just without a box#, so I can see that I

have a problem with those? Well, I could try simply to change the pattern from fits_in_

box+ to fits_in_box* in line 20:

...

 20 fits_in_box*

...

Well, close, but not quite what I want:

WH AISLE POS QTY RUN_QTY BOX# BOX_QTY

1 A 16 48 48 1 62

1 A 29 14 62 1 62

1 B 32 43 43 2 43

1 C 5 70 3

1 C 13 20 20 4 20

1 D 19 48 48 5 48

2 A 1 72 6

2 B 5 14 14 7 59

2 B 26 24 38 7 59

2 C 31 21 59 7 59

2 D 9 26 26 8 26

The two rows with qty 70 and 72 appear as I want them to, but they are assigned a

box# even though they do not match the rule in the define clause? This is because I use

* that means zero or more, so match number 3 (box#) and match number 6 are actually

empty matches.

The pattern matching syntax recognizes empty matches and has a syntax to exclude

these from the output if you so desire:

...

 18 all rows per match omit empty matches

 19 pattern (

 20 fits_in_box*

 21)

...

I simply add omit empty matches in line 18, and then the two empty matches no

longer show in the output:

Chapter 21 Bin Fitting

425

WH AISLE POS QTY RUN_QTY BOX# BOX_QTY

1 A 16 48 48 1 62

1 A 29 14 62 1 62

1 B 32 43 43 2 43

1 C 13 20 20 4 20

1 D 19 48 48 5 48

2 B 5 14 14 7 59

2 B 26 24 38 7 59

2 C 31 21 59 7 59

2 D 9 26 26 8 26

But notice in the box# column that match numbers 3 and 6 were actually assigned,

just not shown. This could be appropriate in some circumstances, but it is not what I

want.

Instead I go back to using + instead of * and use a different syntax:

...

 18 all rows per match with unmatched rows

 19 pattern (

 20 fits_in_box+

 21)

...

The pattern uses + (1 or more) in line 20, but then I add with unmatched rows in line

18. This gives me the output that I want:

WH AISLE POS QTY RUN_QTY BOX# BOX_QTY

1 A 16 48 48 1 62

1 A 29 14 62 1 62

1 B 32 43 43 2 43

1 C 5 70

1 C 13 20 20 3 20

1 D 19 48 48 4 48

2 A 1 72

2 B 5 14 14 5 59

2 B 26 24 38 5 59

2 C 31 21 59 5 59

2 D 9 26 26 6 26

Chapter 21 Bin Fitting

426

Here the quantities 70 and 72 are included in the output, but all of the measures of

those rows are null, including box#, to show it is a row that was not matched at all – not

even as an empty match. And you can see that the match number is not increased for the

unmatched rows.

This is all well and good for the type of bin fitting that has unlimited number of bins

of limited capacity. But there is a different type of bin fitting as well, so let me show that

too.

�Bin fitting with limited number of bins of unlimited
capacity
Imagine we have boxes that are infinitely large – we can pack all the beer bottles into a

box that we want. But we only have three such boxes, and we want to pack the beers as

evenly distributed across the three boxes as possible. Still the rule goes that the quantity

from a given location cannot be split across multiple boxes.

Let me recap the inventory of Der Helle Kumpel, but in Listing 21-7, I just show it in

order of descending quantity instead of location order as I used in Listing 21-1.

Listing 21-7.  The inventory of the beer Der Helle Kumpel in order of

descending quantity

SQL> select

 2 product_name

 3 , warehouse as wh

 4 , aisle

 5 , position as pos

 6 , qty

 7 from inventory_with_dims

 8 where product_name = 'Der Helle Kumpel'

 9 order by qty desc, wh, aisle, pos;

Chapter 21 Bin Fitting

427

You see the by now familiar numbers, just in a different order:

PRODUCT_NAME WH AISLE POS QTY

Der Helle Kumpel 2 A 1 72

Der Helle Kumpel 1 C 5 70

Der Helle Kumpel 1 A 16 48

Der Helle Kumpel 1 D 19 48

Der Helle Kumpel 1 B 32 43

Der Helle Kumpel 2 D 9 26

Der Helle Kumpel 2 B 26 24

Der Helle Kumpel 2 C 31 21

Der Helle Kumpel 1 C 13 20

Der Helle Kumpel 1 A 29 14

Der Helle Kumpel 2 B 5 14

A fairly simple but good approximation algorithm for this type of bin fitting is to take

the quantities in descending order one by one and put them in the box that has the least

quantity already. Keep doing that, and at the end you’ll have a pretty even distribution of

the quantities.

So for three boxes, that means that at first, the three largest quantities are each put in

a different box. Then the fourth largest is put in the box with the smallest total, and so on.

I illustrate this in Figure 21-2, which starts at the fourth step and shows the following five

steps of distributing the quantities. It goes on after that, but you should get the picture of

how it works.

Chapter 21 Bin Fitting

428

To implement this with pattern matching, it is no longer sufficient to use simple

define and pattern clauses to create one match at a time. In principle here I would need

to work simultaneously on three matches, adding rows interchangeably to each of the

matches. That’s not how match_recognize works, however, so I need another way.

Instead in Listing 21-8, I can create a classification definition for each of the three

boxes and utilize running sums on each classification variable.

Listing 21-8.  All rows in a single match, distributing with logic in define clause

SQL> select wh, aisle, pos, qty, box, qty1, qty2, qty3

 2 from (

 3 select

 4 product_name

Figure 21-2.  Distributing in order of descending quantity

Chapter 21 Bin Fitting

429

 5 , warehouse as wh

 6 , aisle

 7 , position as pos

 8 , qty

 9 from inventory_with_dims

 10 where product_name = 'Der Helle Kumpel'

 11) iwd

 12 match_recognize (

 13 order by qty desc, wh, aisle, pos

 14 measures

 15 classifier() as box

 16 , running sum(box1.qty) as qty1

 17 , running sum(box2.qty) as qty2

 18 , running sum(box3.qty) as qty3

 19 all rows per match

 20 pattern (

 21 (box1 | box2 | box3)*

 22)

 23 define

 24 box1 as count(box1.*) = 1

 25 or sum(box1.qty) - box1.qty

 26 <= least(sum(box2.qty), sum(box3.qty))

 27 , box2 as count(box2.*) = 1

 28 or sum(box2.qty) - box2.qty

 29 <= sum(box3.qty)

 30)

 31 order by qty desc, wh, aisle, pos;

This query requires some explanations:

•	 The pattern in line 21 is deceptively simple: I look for any number

of consecutive rows that are classified either box1 or box2 or box3.

But if you look in the define clause, only box1 and box2 are defined,

not box3. This means that any row not classified box1 or box2 will

automatically be classified box3, which in turn means that it is certain

that all rows will be either box1 or box2 or box3, so that the pattern

ends up matching all rows.

Chapter 21 Bin Fitting

430

•	 In other words, I’m not really interested in creating multiple matches.

What interests me is how the individual rows are classified as I walk

along the rows in the one big single match in the order specified in

line 13.

•	 The rows are classified in this way: The classification definitions

that potentially can expand the match (in this case all three

classifications) are tested one by one for truth in such a way

that it checks if the condition is true if the row is included in

this classification. At the first true definition, the row gets that

classification. If neither box1 nor box2 is true, the row gets the

undefined (and thus by default true) classification box3.

•	 So when checking if a row is to be classified box1, it makes the

assumption that the row is box1 and then checks if the condition is

true. Therefore, when in line 25 it evaluates the running sum(box1.

qty), this includes the qty of the current row. But I want to check how

much was in box1 before adding the current row, so I need to subtract

the qty of the current row.

•	 Line 25 calculates how much is in box1 (excluding the current row).

In line 26, I check if this is less than (or equal to) the smallest of how

much is in box2 and box3. If this is true, then box1 is the box with

the least in it (or at least one of them if more than one has the same

smallest sum) and the current row should go into box1.

•	 If box1 was not the one with the least in it, I move on to test box2 by

calculating in line 28 how much is in box2 (excluding the current row)

and checking in line 29 if it is less than (or equal) to how much is in

box3. If this is true, then box2 is the box with the least in it, and the

current row should go into box2.

•	 If box2 was not the one, the row defaults to box3 – the only possibility

left in the pattern.

Chapter 21 Bin Fitting

431

•	 In lines 24 and 27, I check the count of box1 and box2, respectively.

If the count is 1, then that 1 row is the current row (remember by

evaluating the conditions it is assumed the current row will be

classified box1 and box2, respectively) which means that the box

was empty before the current row and therefore definitely the one

with the least in it. Testing these counts eliminates worrying about

null sums.

•	 As it is all one single match, line 19 outputs all of the rows. Line 15

then uses the classifier() function to show which box the row

ended up in.

•	 Lines 16–18 show the running sums of the three boxes enabling

me to inspect in the output if my algorithm worked. (Note that I

haven’t written running in the sums in the define clause – they are by

definition running sums.)

Making the final order by identical to the match_recognize ordering makes the

output explain what happens in the single match as the rows are handled in descending

quantity order:

WH AISLE POS QTY BOX QTY1 QTY2 QTY3

2 A 1 72 BOX1 72

1 C 5 70 BOX2 72 70

1 A 16 48 BOX3 72 70 48

1 D 19 48 BOX3 72 70 96

1 B 32 43 BOX2 72 113 96

2 D 9 26 BOX1 98 113 96

2 B 26 24 BOX3 98 113 120

2 C 31 21 BOX1 119 113 120

1 C 13 20 BOX2 119 133 120

1 A 29 14 BOX1 133 133 120

2 B 5 14 BOX3 133 133 134

You can see how for each quantity it is distributed into the boxes just like Figure 21-2,

where columns qty1, qty2, and qty3 are the running sums that show how much so far

has been put into, respectively, box1, box2, and box3.

Chapter 21 Bin Fitting

432

The one slight drawback with this method is that the number of boxes needs a bit

of work to change. If, for example, I have four boxes instead of three, I need to modify

Listing 21-8 like this:

 20 pattern (

 21 (box1 | box2 | box3 | box4)*

 22)

 23 define

 24 box1 as count(box1.*) = 1

 25 or sum(box1.qty) - box1.qty

 26 <= least(

 27 sum(box2.qty)

 28 , sum(box3.qty)

 29 , sum(box3.qty)

 30)

 31 , box2 as count(box2.*) = 1

 32 or sum(box2.qty) - box2.qty

 33 <= least(sum(box3.qty), sum(box4.qty))

 34 , box3 as count(box3.*) = 1

 35 or sum(box3.qty) - box3.qty

 36 <= sum(box4.qty)

To complete it all, in Listing 21-9, I do this for every product, so that each product has

three infinite-capacity boxes.

Listing 21-9.  All products in three boxes each – output sorted by location

SQL> select product_name, wh, aisle, pos, qty, box

 2 from (

 3 select

 4 product_id

 5 , product_name

 6 , warehouse as wh

 7 , aisle

 8 , position as pos

 9 , qty

 10 from inventory_with_dims

Chapter 21 Bin Fitting

433

 11) iwd

 12 match_recognize (

 13 partition by product_id

...

 28)

 29 order by wh, aisle, pos;

This I accomplish with the partition by in line 13. If I skipped this line, all beers

would be packed into the same three boxes.

And then I’ve ordered the output in location order, so this can be a packing list for

packing everything from the warehouse:

PRODUCT_NAME WH AISLE POS QTY BOX

Ghost of Hops 1 A 2 39 BOX1

Reindeer Fuel 1 A 3 48 BOX1

Hoppy Crude Oil 1 A 4 37 BOX2

...

Hazy Pink Cloud 2 D 23 17 BOX2

Reindeer Fuel 2 D 25 29 BOX2

Pale Rider Rides 2 D 28 40 BOX3

113 rows selected.

Maybe you think that it is not a very practical method for packing beers, as beer

boxes of course in real life do not have an infinite capacity. But the principle is valid

for other cases as well – a fairly common one is scheduling tasks on a given set of

processors/resources. Instead of quantity, it is just time that is distributed as evenly

as possible – putting a task on the processor with the least number of minutes in it is

equivalent to putting it on the one that has the earliest available timeslot.

�Lessons learned
Bin fitting in itself is a difficult problem to get as optimal a fit as possible; usually it is a

matter of choosing either a complex solution with a nearly optimal fit or a simpler and

faster solution with an approximate fit. What you choose is most often determined by

how good an approximation you need for your business purpose.

Chapter 21 Bin Fitting

434

In this chapter I haven’t given you perfect fit solutions, but rather approximations –

the bin fitting with limited number of boxes being reasonably good and the one with

unlimited number of boxes being a relatively rough approximation. But with match_

recognize, they’re pretty fast, and they are good examples to teach you the following:

•	 Using running aggregates in the define clause to make the

classification depend on summary values up to the current row.

•	 Creating calculated column values to support complex ordering to

make the match_recognize clause walk through the data in very

specific desired order.

•	 Having the pattern match all rows and utilize define to classify all

rows can be an option to make match_recognize a tool to create a

data manipulation algorithm rather than a data search tool.

•	 Using aggregates of other classification variables in the define clause

to make the outcomes of different classification variables depend on

each other.

•	 Utilizing the fact that an undefined classification variable is by default

considered true, so it can be used as a kind of else option.

All in all, understanding these examples will help you gain the way of thinking that

lets you really utilize all the power of match_recognize.

Chapter 21 Bin Fitting

435
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6_22

CHAPTER 22

Counting Children
in Trees
Sometimes you’d like to do aggregation where a row is included in multiple rows of the

output, for example, being counted multiple times or having the value added multiple

times. An example of this is hierarchical data, where you want for every row to find the

count of all the children in the tree – not just immediate children but also grandchildren

and their children and so on, all the way down to the leaves of the tree.

It means that a given row is counted in the result for the parent, but also counted

again in the result of the grandparent, and so on. It can look similar to subtotals created

with group by and rollup, but with the hierarchy, you don’t know how many levels

down it goes, so you cannot simply use rollup.

One way I can solve this is using the after match skip to next row clause of

match_recognize. Of course it could be used for other aggregates than count, but count

is easy to understand, and once you know the technique, you can do the others easily.

�Hierarchical tree of employees
The most classic table used to demonstrate hierarchical queries on Oracle is scott.emp

table. Well, the Good Beer Trading Co also employs people, so my practical schema

naturally has a table employees depicted in Figure 22-1.

436

The column supervisor_id is a self-referencing foreign key that references the

primary key id. Only one person has no supervisor – the boss of the company – for

everyone else the supervisor_id contains the id of their immediate supervisor in the

employee hierarchy. So I can show you the data of the table in a tree using Listing 22-1.

Listing 22-1.  A classic hierarchical query of employees

SQL> select

 2 e.id

 3 , lpad(' ', 2*(level-1)) || e.name as name

 4 , e.title as title

 5 , e.supervisor_id as super

 6 from employees e

 7 start with e.supervisor_id is null

 8 connect by e.supervisor_id = prior e.id

 9 order siblings by e.name;

For a simple hierarchy like this, I tend to use the Oracle proprietary connect by

query instead of the recursive subquery factoring I showed in Chapter 4. One of the

things that are easier with connect by is, for example, the order siblings by I use

here – that is more awkward to code with recursive subquery factoring.

Figure 22-1.  The employees table with a self-referencing foreign key

Chapter 22 Counting Children in Trees

437

So I start with the boss by specifying in line 7 to start with those with no supervisors.

Then line 8 finds the immediate subordinates of the boss and then goes on recursively to

find subordinates of those and so on:

ID NAME TITLE SUPER

142 Harold King Managing Director

144 Axel de Proef Product Director 142

151 Jim Kronzki Sales Manager 144

150 Laura Jensen Bulk Salesman 151

154 Simon Chang Retail Salesman 151

148 Maria Juarez Purchaser 144

147 Ursula Mwbesi Operations Chief 142

146 Lim Tok Lo Warehouse Manager 147

152 Evelyn Smith Forklift Operator 146

149 Kurt Zollman Forklift Operator 146

155 Susanne Hoff Janitor 146

143 Mogens Juel IT Manager 147

153 Dan Hoeffler IT Supporter 143

145 Zoe Thorston IT Developer 143

It’s different persons, but you’re likely to have seen a very similar output using

scott.emp somewhere. And this query will form the basis for the rest of the SQL I’ll show

in this chapter.

�Counting subordinates of all levels
The task is now for each row to do a count of subordinates all the way down the tree – not

just the immediate subordinates one level down. If you look at the organization diagram

in Figure 22-2, I need to find that Harold King has 13 subordinates (all employees except

himself), Ursula Mwbesi has 7 subordinates total (2 immediately below her plus 5 that

are a level further down the tree), Lim Tok Lo has 3 subordinates total (all just 1 level

below and they have no further subordinates), and so on.

Chapter 22 Counting Children in Trees

438

A simple way to do this is using a scalar subquery as shown in Listing 22-2. The

scalar subquery can find the relevant subtree in the hierarchy and count the nodes of the

subtree.

Listing 22-2.  Counting the number of subordinates

SQL> select

 2 e.id

 3 , lpad(' ', 2*(level-1)) || e.name as name

 4 , (

 5 select count(*)

 6 from employees sub

 7 start with sub.supervisor_id = e.id

 8 connect by sub.supervisor_id = prior sub.id

 9) as subs

 10 from employees e

 11 start with e.supervisor_id is null

 12 connect by e.supervisor_id = prior e.id

 13 order siblings by e.name;

Figure 22-2.  Organization diagram with some of the subtrees marked

Chapter 22 Counting Children in Trees

439

The outer query is the same as Listing 22-1. The scalar subquery in lines 4–9 utilizes

the same connect by query; only start with is not from the top of the tree, but instead

start with in line 7 starts with those that are immediate subordinates of the current row

in the outer query and searches the subtree from there and down:

ID NAME SUBS

142 Harold King 13

144 Axel de Proef 4

151 Jim Kronzki 2

150 Laura Jensen 0

154 Simon Chang 0

148 Maria Juarez 0

147 Ursula Mwbesi 7

146 Lim Tok Lo 3

152 Evelyn Smith 0

149 Kurt Zollman 0

155 Susanne Hoff 0

143 Mogens Juel 2

153 Dan Hoeffler 0

145 Zoe Thorston 0

The output is just what I’m after, but I’ve accessed the same rows of the tables

multiple times – like Simon Chang that has been accessed four times: once in the scalar

subquery for each of the three people above him in the tree and then once in the main

query when it got to him in the tree. Also every time a leaf node in the tree was accessed,

the database queried if there was anyone below him/her, so the four times Simon was

accessed also incurred four lookups if he had subordinates.

All in all, it is a lot of repetitive work for the database. But luckily I have a way to

reduce that amount of work.

�Counting with row pattern matching
Using row pattern matching, I can create the query shown in Listing 22-3, which only

needs to do the hierarchical query a single time and then do all the necessary counts on

the retrieved tree without accessing the tables over and over again.

Chapter 22 Counting Children in Trees

440

Listing 22-3.  Counting subordinates with match_recognize

SQL> with hierarchy as (

 2 select

 3 lvl, id, name, rownum as rn

 4 from (

 5 select

 6 level as lvl, e.id, e.name

 7 from employees e

 8 start with e.supervisor_id is null

 9 connect by e.supervisor_id = prior e.id

 10 order siblings by e.name

 11)

 12)

 13 select

 14 id

 15 , lpad(' ', (lvl-1)*2) || name as name

 16 , subs

 17 from hierarchy

 18 match_recognize (

 19 order by rn

 20 measures

 21 strt.rn as rn

 22 , strt.lvl as lvl

 23 , strt.id as id

 24 , strt.name as name

 25 , count(higher.lvl) as subs

 26 one row per match

 27 after match skip to next row

 28 pattern (

 29 strt higher*

 30)

 31 define

 32 higher as higher.lvl > strt.lvl

 33)

 34 order by rn;

Chapter 22 Counting Children in Trees

441

The output of Listing 22-3 is exactly the same as the output of Listing 22-2. I’ll tell you

how it works:

•	 I’m using a with clause for clarity as I taught you in Chapter 3.

•	 Inside the with clause lines 5–10 is an inline view containing the

basic hierarchical query I’ve already shown you in the previous

listings. Notice the order by in line 10 is inside the inline view.

•	 I place it in an inline view so that I can use rownum in line 3 (outside

the inline view) and save it as column alias rn. I need to preserve the

hierarchical ordering created by the inline view when I do my row

pattern matching – this allows me to do so.

•	 Building my match_recognize clause, I start by defining in line 32

that a row that has a higher level than the starting row of the pattern

is classified as higher – meaning that when it has a higher level, then

it is a child/grandchild/greatgrandchild/… of the starting row (i.e., a

subordinate).

•	 Of course, not everybody in the entire row set with a higher level is

a subordinate – only those consecutive rows with a higher level that

follow the row itself. Once I reach someone with the same level (or

lower), then I am no longer within the subtree I want. I solve this in

the pattern in line 29 by looking for a strt row (which is undefined

and therefore can be any row) followed by zero or more higher

rows – when a row is reached that is no longer classified higher, the

match stops.

•	 In line 26, I’ve specified one row per match, and the employee I’m

interested in outputting data from is the strt row, so I’m using strt

columns in the measures in lines 21–24.

•	 In line 25, I’m doing a count on how many higher rows were in

the match. If I just did a plain count(*), I’d be including the strt

row, but on that row anything I qualify with higher will be null,

so counting higher.lvl gives me a count only of the higher rows,

which is the count of subordinates that I want.

Chapter 22 Counting Children in Trees

442

•	 With after match skip to next row in line 27, I’m specifying that

once it has finished with a match of one strt row and zero or more

higher rows, it should move to the next row that follows after the

strt row. This is the part that makes rows be counted more than

once – I’ll explain in detail shortly.

That’s all clear, right? Well, I’ll dive a little more into the details to clarify why it

works.

Note A few words on why you’d consider using the long and somewhat
convoluted Listing 22-3 instead of the short and clear Listing 22-2. 

I tested this on an employee table where I had 14001 employees in it. 

The scalar subquery method used about 11 seconds, nearly half a million
consistent gets, and over 37000 sorts, due to a full table scan and many, many
index range scans for the connect by processing. 

The match_recognize method used less than half a second, 55 consistent gets,
and four (four!) sorts, with just a single full table scan. 

Your mileage will vary, of course, so test it yourself.

�The details of each match
As I’ve mentioned before, very often a good way to see what happens is to inspect the

detailed output using all rows per match. So this is what I do in Listing 22-4.

Listing 22-4.  Inspecting the details with all rows per match

SQL> with hierarchy as (

...

 12)

 13 select

 14 mn

 15 , rn

 16 , lvl

 17 , lpad(' ', (lvl-1)*2)

Chapter 22 Counting Children in Trees

443

 18 || substr(name, 1, instr(name, ' ') - 1) as name

 19 , roll

 20 , subs

 21 , cls

 22 , substr(stname, 1, instr(stname, ' ') - 1) as stname

 23 , substr(hiname, 1, instr(hiname, ' ') - 1) as hiname

 24 from hierarchy

 25 match_recognize (

 26 order by rn

 27 measures

 28 match_number() as mn

 29 , classifier() as cls

 30 , strt.name as stname

 31 , higher.name as hiname

 32 , count(higher.lvl) as roll

 33 , final count(higher.lvl) as subs

 34 all rows per match

 35 after match skip to next row

 36 pattern (

 37 strt higher*

 38)

 39 define

 40 higher as higher.lvl > strt.lvl

 41)

 42 order by mn, rn;

The with clause subquery is unchanged, as are the after match, pattern, and

define clauses. I’ve changed the one row to all rows per match in line 34 and then

created some different measures in lines 28–33:

•	 The match_number() function in line 28 is a consecutive numbering

of the matches found. Without it, I couldn’t tell which rows in the

output belongs together as part of each match.

•	 The classifier() function shows what the row has been classified

as according to the pattern and define clauses – in this case showing

whether a row is strt or higher.

Chapter 22 Counting Children in Trees

444

•	 When column names are not qualified, values of the current row

in the match are used, no matter what classifier they have. When I

qualify the column names with the classifier strt and higher in lines

30 and 31, I get the values from the last of the rows with that classifier.

•	 Aggregate functions like count in lines 32 and 33 can be running

or final. In Listing 22-3, it did not matter, since I used one row

per match, but here it does matter, so I output both to show the

difference. Line 32 defaults to running (aka rolling count) which

gives a result similar to an analytic function with a window of rows

between unbounded preceding and current row, while line 33

with final keyword works similar to rows between unbounded

preceding and unbounded following.

The output of Listing 22-4 has far more rows than are in the table, but I have

14 matches (one for each row in the table) identified by 1–14 in the mn column. So if I step

through the output, here’s the rows for the first match:

MN RN LVL NAME ROLL SUBS CLS STNAME HINAME

1 1 1 Harold 0 13 STRT Harold

1 2 2 Axel 1 13 HIGHER Harold Axel

1 3 3 Jim 2 13 HIGHER Harold Jim

1 4 4 Laura 3 13 HIGHER Harold Laura

1 5 4 Simon 4 13 HIGHER Harold Simon

1 6 3 Maria 5 13 HIGHER Harold Maria

1 7 2 Ursula 6 13 HIGHER Harold Ursula

1 8 3 Lim 7 13 HIGHER Harold Lim

1 9 4 Evelyn 8 13 HIGHER Harold Evelyn

1 10 4 Kurt 9 13 HIGHER Harold Kurt

1 11 4 Susanne 10 13 HIGHER Harold Susanne

1 12 3 Mogens 11 13 HIGHER Harold Mogens

1 13 4 Dan 12 13 HIGHER Harold Dan

1 14 4 Zoe 13 13 HIGHER Harold Zoe

As my pattern matching is ordered by rn, it starts at rn = 1 (Harold) and classifies

him strt (since any row can match strt) and then repeatedly checks if the next row has

a lvl greater than the lvl of the strt row, which is true for all of the remaining 13 rows,

Chapter 22 Counting Children in Trees

445

as everybody else has a lvl greater than 1. That means that the first match does not stop

until it reaches the end of the rows.

Match number 1 has now been found, containing 1 strt row and 13 higher rows as

shown in the cls column. In the strt row, no higher rows have been found yet, so when

I qualify a column with higher (and I am not using the final keyword), the result is

null, as you can see in column hiname. This also means that when I do the total (final)

count of higher in column subs, the strt row is not counted, and the result is the

desired 13 subordinates.

You can also see in the output how the running total goes in column roll and that

strt.name in column stname keeps the value of the last (in this case only) strt row.

So when the first match is finished, I specified after match skip to next row,

which in this case is rn = 2 (Axel). He’ll be the strt row of match mn = 2 in the

continued output:

2 2 2 Axel 0 4 STRT Axel

2 3 3 Jim 1 4 HIGHER Axel Jim

2 4 4 Laura 2 4 HIGHER Axel Laura

2 5 4 Simon 3 4 HIGHER Axel Simon

2 6 3 Maria 4 4 HIGHER Axel Maria

After Axel as strt, this match finds four higher rows, because row rn = 7 (Ursula)

has lvl = 2, which is not higher than Axel (it is the same), and therefore the match stops

with Maria. The counting of subordinates works just like before – even though there are

five rows in the match, there are only four that are classified higher and are counted.

These rows were also included in the count of Harold King’s subordinates in match

number 1, but because of skipping back up to rn = 2 to find the next match, these rows

are included once more.

The next row after Axel is Jim, who’ll be the strt row of match mn = 3 that is the next

in the output:

3 3 3 Jim 0 2 STRT Jim

3 4 4 Laura 1 2 HIGHER Jim Laura

3 5 4 Simon 2 2 HIGHER Jim Simon

Match number 3 ends up with one strt row and just 2 higher rows, since Maria

(who follows Simon in the rn order) does not have a lvl higher than Jim. So Laura and

Simon are counted as Jim’s subordinates – just as they also were counted under Axel and

under Harold.

Chapter 22 Counting Children in Trees

446

The output moves on to match number 4, which starts with Laura classifying her

as a strt row. After her comes Simon, but he has the same lvl as Laura. Therefore, he

cannot be a higher row, and the match becomes a match containing only a single strt

row and no higher rows, leading to a subordinate count of 0 in the output:

4 4 4 Laura 0 0 STRT Laura

And so it goes on and on, until at the end, the match number mn = 14 is found,

containing just Zoe:

...

14 14 4 Zoe 0 0 STRT Zoe

The details of this long output are good to learn how the different pieces of match_

recognize work for this solution. But I can also take just some of the columns of the all

rows per match output and use pivot in Listing 22-5 to visualize the rows that are part

of each match.

Listing 22-5.  Pivoting to show which rows are in which match

SQL> with hierarchy as (

...

 12)

 13 select

 14 name

 15 , "1", "2", "3", "4", "5", "6", "7"

 16 , "8", "9", "10", "11", "12", "13", "14"

 17 from (

 18 select

 19 mn

 20 , rn

 21 , lpad(' ', (lvl-1)*2)

 22 || substr(name, 1, instr(name, ' ') - 1) as name

 23 from hierarchy

 24 match_recognize (

 25 order by rn

 26 measures

 27 match_number() as mn

Chapter 22 Counting Children in Trees

447

 28 all rows per match

 29 after match skip to next row

 30 pattern (

 31 strt higher*

 32)

 33 define

 34 higher as higher.lvl > strt.lvl

 35)

 36) pivot (

 37 max('X')

 38 for mn in (

 39 1,2,3,4,5,6,7,8,9,10,11,12,13,14

 40)

 41)

 42 order by rn;

The only measure I am using is match_number() in line 27, and then in lines

19–22, I select just mn, rn, and the name. This allows me to do a pivot for mn in line 38

specifying the 14 match numbers in line 39, thereby getting rn, name, and 14 columns

named 1–14 (these column names must be enclosed in double quotes, as they do not

start with a letter).

The value of the 14 match number columns is the literal X if the rn of the row is

included in the match, otherwise null. So I can select the mn column and the Xs and just

use rn for ordering the output:

NAME 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Harold X

 Axel X X

 Jim X X X

 Laura X X X X

 Simon X X X X

 Maria X X X

 Ursula X X

 Lim X X X

 Evelyn X X X X

 Kurt X X X X

 Susanne X X X X

Chapter 22 Counting Children in Trees

448

 Mogens X X X

 Dan X X X X

 Zoe X X X X

In this pivoted output, it is easy to use the Xs to check that all rows are included in

match number 1, the rows from Axel to Maria are included in match number 2, and so on.

�Fiddling with the output
Having examined the detailed output, I’ll return to the one row per match version to

fiddle a bit more and show you a couple of things.

First, I’d like to make it clear that although Listing 22-3 with one row per match only

has a single aggregate measure, and so far I’ve only shown multiple aggregate measures

in Listing 22-4 using all rows per match, it is perfectly legitimate to use multiple

aggregates or uses of functions like first and last together with one row. Take a look at

Listing 22-6.

Listing 22-6.  Adding multiple measures when doing one row per match

SQL> with hierarchy as (

...

 12)

 13 select

 14 lpad(' ', (lvl-1)*2) || name as name

 15 , subs

 16 , hifrom

 17 , hito

 18 , himax

 19 from hierarchy

 20 match_recognize (

 21 order by rn

 22 measures

 23 strt.rn as rn

 24 , strt.lvl as lvl

 25 , strt.name as name

 26 , count(higher.lvl) as subs

 27 , first(higher.name) as hifrom

Chapter 22 Counting Children in Trees

449

 28 , last(higher.name) as hito

 29 , max(higher.lvl) as himax

 30 one row per match

 31 after match skip to next row

 32 pattern (

 33 strt higher*

 34)

 35 define

 36 higher as higher.lvl > strt.lvl

 37)

 38 order by rn;

In lines 26–29, I am using both navigational functions and aggregates. Remember

that when I use one row per match, it makes no difference if I use running or final for

the aggregates, so even if I didn’t specify final, I get the same result:

NAME SUBS HIFROM HITO HIMAX

Harold King 13 Axel de Proef Zoe Thorston 4

 Axel de Proef 4 Jim Kronzki Maria Juarez 4

 Jim Kronzki 2 Laura Jensen Simon Chang 4

 Laura Jensen 0

 Simon Chang 0

 Maria Juarez 0

 Ursula Mwbesi 7 Lim Tok Lo Zoe Thorston 4

 Lim Tok Lo 3 Evelyn Smith Susanne Hoff 4

 Evelyn Smith 0

 Kurt Zollman 0

 Susanne Hoff 0

 Mogens Juel 2 Dan Hoeffler Zoe Thorston 4

 Dan Hoeffler 0

 Zoe Thorston 0

So my first point was the use of multiple measures for whatever output I want in

the various columns. Can I fiddle with the rows in the output as well? Say, for example,

I want to output only those employees that actually have subordinates (or in other words

are not leaf nodes in the tree).

Chapter 22 Counting Children in Trees

450

Sure, I could put the entire query in an inline view and then use a where clause to

filter on subs > 0 and that way not get any leaf nodes in the output. It would work fine,

but my second point to show you is a better alternative that filters away the non-leaf

nodes earlier in the processing.

In Listing 22-3 line 29, I’m using a pattern of strt higher* which is a pattern that

by design will be matched by any row that will be classified strt – it is just a question of

how many higher rows will follow after that strt row. So Listing 22-3 will by the nature

of the pattern output all rows of the table.

Let me in Listing 22-7 change just one character – otherwise, it is identical to

Listing 22-3.

Listing 22-7.  Filtering matches with the pattern definition

...

 29 strt higher+

...

I have changed * to + which means that any given strt row will only cause a match

if it is followed by at least one higher row. So the leaf nodes, which are not followed by

any higher row, will not cause a match – instead the database simply moves one row

along and checks if it can find a match using the next row as strt row. This leads to only

supervisors being output:

ID NAME SUBS

142 Harold King 13

144 Axel de Proef 4

151 Jim Kronzki 2

147 Ursula Mwbesi 7

146 Lim Tok Lo 3

143 Mogens Juel 2

Doing it this way allows the database to discard the unwanted rows immediately as it

works its way through the pattern matching process – rather than the inline view that lets

the database build a result set of all rows and then afterward removes the unwanted ones

again.

Chapter 22 Counting Children in Trees

451

�Lessons learned
In this chapter I’ve demonstrated that with a suitable ordering, the after match skip

to next row clause can very efficiently allow match_recognize to process the same rows

multiple times in different groupings without accessing them in the table multiple times.

In the demos I covered

•	 Preparing the source query by creating an ordering column that

allows match_recognize to work in the hierarchical order

•	 Setting a pattern that for each row finds the group of rows that are in

the subtree below

•	 Using after match skip to next row to use the pattern search on

every row, even if it was included in previous matches

•	 Changing the pattern to ignore those rows not having a subtree

below

These methods you can use on any hierarchical data. They can also be useful on

other data with an ordering that is nontrivial, where you can set up a more complex

query to prepare the data and preserve the ordering, before you process the data with

match_recognize.

Chapter 22 Counting Children in Trees

453
© Kim Berg Hansen 2020
K. Berg Hansen, Practical Oracle SQL, https://doi.org/10.1007/978-1-4842-5617-6

Index

A
Accumulated sum, See Rolling sum
Analytic functions

avg
sliding windows for centered

moving average, 292
dense_rank, 223–225

restart ranking using partition
by, 251

lag, 267
last_value

case expression to create null on
rows of group except the first, 279

ignore nulls, 278
lead, 361–362, 398, 402

case expression to create null on
undesired rows, 277

emulating connect_by_isleaf in
with clause recursion, 71

ignore nulls, 276–280, 283
look more than one row ahead

using second parameter, 272, 277
null at end of partition, 270, 272,

274, 276, 277, 279, 283
ntile, 41, 42
order by clause

analytic order by different than
query order by, 199, 246

over, 209
query partition clause, 196, 197

rank, 222–225
regr_intercept, 298, 299, 305
regr_slope, 298, 299, 305
row_number, 220–222, 353–356, 359,

418–420
emulating minus all, 35–37
emulating multi-column scalar

subquery, 8
sum (see also Rolling sum)
windowing clause

default window clause
dangers, 208–212

number of rows preceding or
following, 211, 292, 293

range between, 206, 210
range on current row may include

following rows, 206–208
rows between, 200, 312, 313
shortcut with implicit
between, 201

unbounded following, 204, 211
unbounded preceding, 210, 211,

312, 313
values preceding or following, 211

B
Bin fitting

approximation algorithm, 411
evenly distributing in bins, 423
limited number of bins, 426–433

https://doi.org/10.1007/978-1-4842-5617-6

454

modified first fit decreasing
(MFFD), 417

unlimited number of bins, 413–422

C
Collection, See Nested table type
Collection operators, See Multiset

operators
Common table expressions, See with

clause
connect by queries, See Queries,

hierarchical
Conway’s Game of Life

oscillator, 104
Creating delimited text

large delimited text
distinct in listagg, 182
ORA-01489 when using listagg, 185
on overflow subclause in
listagg, 186

using collect
specifying nested table type using
cast, 175

using apex_string.join, 176
using apex_string.join_clob, 189

using json_arrayagg
returning clob using
json_value, 188

using listagg, 172–173
using stragg ODCI aggregate function

supporting distinct using map
member, 177, 178

using xmlagg
getclobval, 188
using xmlelement, 182
using xmlparse, 183, 184

D
Date intervals

half-open intervals
advantages compared to closed

intervals, 372, 374–376
Dynamic SQL

expression evaluation with execute
immediate, 70

E
execute immediate, See Dynamic SQL
Expression lists

in pivot measures, 143

F
Forecasting future values

centered moving average, 292–293
deseasonalizing, 295–298
linear regression

interception point, 299
slope, 299

reseasonalizing, 301–305
seasonality factor

partition by month of
year, 290

time series, 287–292
trend line, 298–300

Forecasting reaching minimum
adding values when minimum

reached
using model clause

iteration, 319–321
using with clause recursion,

316, 319, 322
summing expected values from

budget, 308

Bin fitting (cont.)

Index

455

Functions
add_months, 289, 315, 317, 320
analytic functions (see Analytic

functions)
extract, 289, 295
greatest, 312, 313, 317, 320
least, 245, 418, 419
listagg

visualizing two dimensions, 91
mod, 250, 263
nullif, 294–297, 403
numtodsinterval, 315, 317, 320
regexp_count, 154, 164
regexp_substr, 154–156, 163–164
replace, 147, 158, 159, 165
trunc, 309, 314, 317, 320

G
Gap detection

using lead, 361–362
using match_recognize

first row of next group using skip
to last, 362

using value of subset in
measures, 362, 363

Grouping rows
on cross-row conditions using

match_recognize
consecutive data, 358–361
within fixed interval from first

row, 367–369
until gap in data, 364–367

Tabibitosan method
on consecutive dates, 358–361
on consecutive integers, 356

using last_value, case and ignore
nulls, 280

H
Hierarchical queries, See Queries,

hierarchical

I
Inline views

as alternative to scalar subquery, 9
correlating

cross apply, 11–12
lateral, 3, 9–12
outer apply, 13–14

J
JSON

json_arrayagg
returning clob, 188

json_table
individual elements of JSON array

in path, 156
treating delimited string as JSON

array, 155–156
json_value, 188

K
Knapsack problem, See Bin fitting

L
loop

exit when, 148

M
match_recognize

after match
compare to last row of specific

classification using last, 336

Index

456

compare to previous row using
prev, 328

complex row-classifying
condition, 341

default, 336
evaluation depending on
pattern, 327

mutually exclusive definitions, 329
skip past last row, 336
skip to last, 284, 336–339,

342, 362
skip to next row, 440, 442, 443,

445, 447, 449
undefined classification always

true, 331
define

compare next row to max of rows so
far, 381–386

compare to following row using
next, 361, 367, 382–383, 398,
408, 435

compare to previous row using
prev, 366, 368, 379–381

compare to specific row using
classification name, 434

compare to starting row using
first, 367–368

complex row-classifying
condition, 407, 415

evaluation depending on
pattern, 407

simple row-classifying
condition, 283

skip to first, 348
truth assumption when evaluating

condition, 430

undefined classification always
true, 368, 383, 385, 430, 434, 441

using running sum, 430
gap detection (see Gap detection)
measures

classifier, 443
final semantics, 395, 396, 444,

445, 449
match_number, 328, 333, 334, 338,

339, 342, 414, 418, 420, 421, 423,
443, 446, 447

running semantics, 394, 415, 444,
445, 449

using first, 284, 334, 335, 360, 379,
381, 382, 394–397, 400, 448

using last, 284, 334, 335, 360, 379,
381, 382, 394–396, 400, 448, 449

using last on subset, 362, 363
using max, 379, 381, 382
using next, 394–396, 400, 449
using next on last, 284, 400, 418
using prev, 327
using prev on first, 395, 396, 400

omit empty matches, 424
order by, 327, 328
output

all rows per match, 327, 328, 333,
334, 336, 338, 342, 414, 418, 420,
421, 423–425, 429, 442–443

one row per match, 328, 334, 336,
338, 342, 348, 349, 394, 396, 400,
402, 405, 407, 421, 448–449

partition by, 327, 328, 334, 338,
339, 345

pattern
| alternator (or), 327, 328,

330–333, 407

match_recognize (cont.)

Index

457

matching all rows in
one match, 429

∗ quantifier, 283
* quantifier, 364, 379, 440, 441, 443,

446, 450
+ quantifier, 332–336, 338, 341, 394,

396, 400, 402, 405, 409, 425, 450
subset

after match skip to last of a
subset, 336–339, 342, 362

with unmatched rows, 425, 426
model clause

any, 92
cv() cell addressing, 97, 320
dimension by, 91, 92

consecutive number using
row_number, 320

ignore nav, 92
iteration_number, 97, 320
measures, 92, 320
partition by, 319
rules

iterate, 97, 98, 320
sequential order, 320

upsert all, 97
Modularization of SQL, See with clause
Multiset operators

default differences compared to set
operators, 38

disappearing values by multiset
except distinct, 32

multiset except
compared to minus, 34–37

multiset intersect, 30–31
multiset union, 28–30
using all, 28, 32
using distinct, 28

N, O
Nested table type

aggregated output of collect, 184
iterating elements with first and

last, 174
output of pipelined table function, 147

P
Pipelined table function

apex_string.split, 152–153
custom built, 152
pipe row, 147

PL/SQL functions
in with clause (see with clause,

PL/SQL functions)
PRAGMA UDF, 77–80
reducing context switching

overhead, 78, 79

Q
Queries

cross join
generate dynamic unpivot

dimension mapping, 123–128
generate grid, 89
generate rows for manual

unpivoting, 121–122
generate variable number of rows

using lateral, 151
lateral, 10

Expression lists
in unpivot measures and

dimensions, 114–116, 119, 122
fetch first (see Top-N calculations,

using fetch first)

Index

458

fetch first rows
in correlated inline views, 10

hierarchical
connect by, 59, 436
connect_by_isleaf, 60
connect_by_root, 60
level, 58, 436
order siblings by, 60, 436
start with, 58, 436
sys_connect_by_path, 60

outer join
partitioned, 290
using lateral and on clause

together, 12
pivot (see below pivoting)
pivoting

column naming by aliasing,
140, 141, 143

expression lists in measures, 143
implicit group by aggregation,

136, 137, 280–281, 435
keeping only needed columns for

implicit group by, 137
multiple measures and

dimensions, 139–144
single measure and dimension,

134–137, 139–144
using group by and case

expressions, 138
using pivot, 138, 282, 446–447

refcursor variable
opening with dynamic SQL, 124

table keyword
adding (+) as outer join

equivalent, 150
column_value for scalar

output, 149

cross apply, 151
outer apply, 159–160

temporal validity
null for infinity, 386–387
as of period for in select, 376
period for in table creation, 376

unpivot (see below unpivoting)
unpivoting

group by and aggregates on
unpivot output, 118

multiple measure and
dimension, 113–119

single measure and dimension, 110
using dimension tables

dynamically, 123–128
using dimension tables

manually, 121
using generated dimension

rows, 112–113
using generated numbered

rows, 111–112
using unpivot, 118

R
Recursive subquery factoring, See with

clause, recursion
Rolling sum, 237–265, 307–322

of all previous rows, 243–245, 255, 256,
258, 328

including current row, 241, 243, 255,
256, 312, 313

null when window has no rows, 245
partitioned, 241, 312, 313, 319, 320
sum interval from previous to current

row, 317, 320
join overlapping

intervals, 258–260

Queries (cont.)

Index

459

Row pattern matching, See
match_recognize

Running total, See Rolling sum

S
Scalar subqueries

concatenated values, 6–7
hierarchical, 438, 439, 442
multiple, 5–9

Sessionization, See Grouping rows, on
cross-row conditions using match_
recognize, until gap in data

Set operators
concatenating sets (see below Set

operators, union all)
default differences compared to

multiset operators, 20
implicit distinct, 25, 37
intersect, 25, 26
minus

compared to multiset except, 334
emulating minus all using
multiset except all, 35

emulating minus all using row_
number, 36–37

order by column aliases, 24
union, 25, 26
union all, 25

Splitting delimited text
Oracle Data Cartridge Interface (see

Creating delimited text, using
stragg ODCI aggregate function;
see below Splitting delimited text,
using ODCI function)

using apex_string.split to split to
rows

using substr to split to columns, 147

using generated rows
using regexp_substr to split to

columns, 154, 155
using json_table

JSON array of scalar values, 156
transformation to nested

JSON arrays of rows and
columns, 165–168

using ODCI function
real column names instead of

generic column_value, 161
using PL/SQL in pipelined table

function, 147
String aggregation, See Creating delimited

text
Subquery factoring, See with clause

T, U, V
Top-N calculations

handling ties
avoiding indeterminate output, 228
using dense_rank, 230–231
using rank, 229
using with ties subclause of fetch
first, 229–230

Olympic rule, 217
partitioned

avoiding indeterminate output, 228
using dense_rank, 233
using fetch first and lateral

inline view, 233–235
using rank, 232
using row_number, 231–232

top-rows rule, 217
top-values rule, 217
using dense_rank, 222–225, 227,

230–232

Index

460

using fetch first
not able to do Olympic

rule, 226
rows only, 225
rows with ties, 226

using rank, 222–225
using rownum, 222
using row_number, 222, 223

Turning columns into rows, See Queries,
unpivoting

Turning rows into columns, See Queries,
pivoting

W, X, Y, Z
Warehouse picking

batch picking
assigning picks to

orders, 252–262
different picking

principles, 246–248
FIFO, 240–246
First-In-First-Out (see above

Warehouse picking, FIFO)
picking route

aisle numbering, 249, 251
odd-even switching order by

direction, 250
with clause

column names list, 52–53
modularization, 44–47

successive named subqueries
emulating Excel column
calculations, 287

optimizer handling
creation of single-use temporary

tables, 50
forcing materialization using
rownum, 50–51

materialize hint, 50, 51
substitution like views, 49

PL/SQL functions
compiled like PRAGMA UDF, 81, 82
dynamic evaluation, 69–70
encapsulation in view, 83–85
multiple functions in with

clause, 81–82
use for tools or read-only

database, 83
preserving hierarchy before

match_recognize, 440–442
recursion, 319

emulating connect_by_isleaf, 71
emulating connect_by_root, 60, 64,

66, 69, 71
emulating level, 71
emulating order siblings by, 60, 63
hierarchical, 61

refactoring nested inline views, 46–47
test data creation

overloading a table, 53–55
using named subquery multiple

times, 48

Top-N calculations (cont.)

Index

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Part I: Core SQL
	Chapter 1: Correlating Inline Views
	Brewery products and sales
	Scalar subqueries and multiple columns
	Correlating inline view
	Outer joining correlated inline view

	Lessons learned

	Chapter 2: Pitfalls of Set Operations
	Sets of beer
	Set operators
	Set concatenation
	The three set operators

	Multiset operators
	Multiset union
	Multiset intersect
	Multiset except

	Minus vs. multiset except
	Lessons learned

	Chapter 3: Divide and Conquer with Subquery Factoring
	Products and sales data
	Best-selling years of the less strong beers
	Modularization using the with clause
	Multiple uses of the same subquery
	Listing column names

	Lessons learned

	Chapter 4: Tree Calculations with Recursion
	Bottles in boxes on pallets
	Multiplying hierarchical quantities
	Recursive subquery factoring
	Dynamic SQL in PL/SQL function

	Lessons learned

	Chapter 5: Functions Defined Within SQL
	Table with beer alcohol data
	Blood alcohol concentration
	Function with PRAGMA UDF
	Function in the with clause
	Encapsulated in a view

	Lessons learned

	Chapter 6: Iterative Calculations with Multidimensional Data
	Conway’s Game of Life
	Live neighbor count with the model clause
	Iterating generations
	Lessons learned

	Chapter 7: Unpivoting Columns to Rows
	Data received in columns
	Unpivoting to rows
	Do-it-yourself unpivoting
	More than one dimension and/or measure

	Using dimension tables
	Dynamic mapping to dimension tables

	Lessons learned

	Chapter 8: Pivoting Rows to Columns
	Tables for pivoting
	Pivoting single measure and dimension
	Do-it-yourself manual pivoting

	Multiple measures
	Multiple dimensions as well

	Lessons learned

	Chapter 9: Splitting Delimited Text
	Customer favorites and reviews
	Delimited single values
	Pipelined table function
	Built-in APEX table function
	Straight SQL with row generators
	Treating the string as a JSON array

	Delimited multiple values
	Custom ODCI table function
	Combining apex_string.split and substr
	Row generators and regexp_substr
	Transformation to JSON

	Lessons learned

	Chapter 10: Creating Delimited Text
	Delimited lists of products
	String aggregation
	Aggregate function listagg
	Aggregate function collect
	Custom aggregate function stragg
	Aggregate function xmlagg

	When it doesn’t fit in a VARCHAR2
	Get just the first part of the result
	Try to make it fit with reduced data
	Use a CLOB instead of a VARCHAR2

	Lessons learned

	Part II: Analytic Functions
	Chapter 11: Analytic Partitions, Ordering, and Windows
	Sums of quantities
	Analytic syntax
	Partitions
	Ordering and windows

	Flexibility of the window clause
	Windows on value ranges
	The danger of the default window
	Lessons learned

	Chapter 12: Answering Top-N Questions
	Top-N of sales data
	Which kind of Top-3 do you mean?
	The sales data for the beer

	Traditional rownum method
	Analytic functions for ranking
	Fetch only the first rows
	Handling of ties
	What the row limiting clause cannot do

	Top-N in multiple partitions
	The lateral trick for the row limiting clause

	Lessons learned

	Chapter 13: Ordered Subsets with Rolling Sums
	Data for goods picking
	Building the picking SQL
	Solving picking an order by FIFO
	Easy switch of picking principle
	Solving optimal picking route
	Solving batch picking
	Finalizing the complete picking SQL

	Lessons learned

	Chapter 14: Analyzing Activity Logs with Lead
	Picking activity log
	Analyzing departures and arrivals
	Analyzing picking activity
	Complete picking cycle analysis

	Teaser: row pattern matching
	Lessons learned

	Chapter 15: Forecasting with Linear Regression
	Sales forecasting
	Time series
	Calculating the basis for regression
	Linear regression
	Final forecast

	Lessons learned

	Chapter 16: Rolling Sums to Forecast Reaching Minimums
	Inventory, budget, and order
	The data

	Accumulating until zero
	Restocking when minimum reached
	Lessons learned

	Part III: Row Pattern Matching
	Chapter 17: Up-and-Down Patterns
	The stock ticker example
	Classifying downs and ups
	Downs + ups = V shapes
	Revisiting if SAME is needed

	V + V = W shapes
	Overlapping W shapes

	Lessons learned

	Chapter 18: Grouping Data Through Patterns
	Two sets of data to group
	Three grouping conditions
	Group consecutive data
	Analytic Tabibitosan vs. match_recognize
	Consecutive dates instead of integers
	Gap detection

	Group until gap too large
	Group until fixed limit

	Lessons learned

	Chapter 19: Merging Date Ranges
	Job hire periods
	Temporal validity

	Merging overlapping ranges
	Attempts comparing to the previous row
	Better comparing to the maximum end date
	Handling the null dates

	Lessons learned

	Chapter 20: Finding Abnormal Peaks
	Web page counter history
	The counter data
	Patterns in the raw counter data

	Looking at daily visits
	Patterns in daily visits data
	More complex patterns

	Lessons learned

	Chapter 21: Bin Fitting
	Inventory to be packed in boxes
	Bin fitting with unlimited number of bins of limited capacity
	Showing where box capacity is too small

	Bin fitting with limited number of bins of unlimited capacity
	Lessons learned

	Chapter 22: Counting Children in Trees
	Hierarchical tree of employees
	Counting subordinates of all levels
	Counting with row pattern matching
	The details of each match
	Fiddling with the output

	Lessons learned

	Index

