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Introduction

Where do you go to learn SQL?

Well, if I ask myself that same question, of course, the answer is I learn SQL many 

places: books by Tom Kyte and others, the SQL Reference Manual (that I use daily), 

conference presentations by experienced developers, blogs, Googling, and much more. 

But even all of that would not help if I didn’t simultaneously simply try writing SQL 

myself, see where I went wrong, and then try again, and again, and again.

One thing I have noticed in my learning process is that almost all teaching examples 

are nicely short and sweet in order to facilitate understanding. This is fine as such, but it 

also sometimes means that it can be harder to relate to daily work.

I had the good fortune of working 16 years at a retail company where the philosophy 

was never to adapt business practice to whatever the software was capable of, but 

instead always to customize the software to make the daily business go smarter and 

smoother. We always went by “of course it is possible to solve, we just need to figure out 

how.” In this atmosphere, I had plenty of practical real tasks to practice on, trying out 

SQL and changing it piece by piece until I had something that solved the task at hand.

When I have presented about some of these solutions that I developed during 

those years, I have several times had audience approach me afterward, telling me that 

suddenly they “saw the light” and understood how analytic functions could help in their 

work, for example. Until then, they had seen it as some SQL extension that was smart 

and fancy, but they couldn’t relate it to their own tasks they had to solve.

In this book, I will explain a series of tasks, solving them with SQL, explaining in 

steps how I create that SQL, starting small and building on it until I have a working 

statement that does not fit on a single PowerPoint slide. The statements I demonstrate 

here are not trivial examples – but they look more like something you might have to 

develop yourself in your job.

If you end up with an attitude of “Of course it is possible to solve in SQL,” your boss 

will be happy because he saves a lot on cloud credits with your code using much less 

CPU. You will be happy because it is much more fun really using your brain to find a 

good solution.

And I will be happy too and can say: “Mission accomplished!”
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�What is in this book
This is not a SQL 101 For Beginners book. The simplest basics of queries and joins are not 

covered here – I am assuming that you already have at least some working knowledge of 

querying a table or two.

It is also not a Definitive Reference Guide to SQL book. I am not trying to cover every 

single piece of syntax in loving detail – not even of those statements and functions that I 

do write about in this book.

Instead Practical Oracle SQL is a book with examples of how to solve lots of different 

tasks using SQL that is a little more complex than what is available in the SQL-92 

standard. Each chapter solves a different task, so the chapters do not necessarily need to 

be read consecutively.

A chapter explains the task; shows the tables, data, and other objects involved; and 

then walks through developing the solution to the task. Typically this consists of building 

the SQL step by step from simple to complex. In the course of stepwise walking through the 

SQL, syntax is explained and examples given of alternatives or caveats where relevant.

All chapters except one (Chapter 6) have as objective a task that is relevant for real 

application development. The specific examples are shown from the viewpoint of a 

fictional company that trades beer wholesale, but the techniques can be applied to many 

other applications. The chapters are divided into three parts based on the SQL technique 

used to solve the task.

�Part 1: Core SQL
The first ten chapters deal with solutions that use a variety of SQL constructs. Everything 

that does not fit in Part 2 and Part 3 is found in this part.

These chapters cover many techniques: inline view correlation, set operations, 

with clause and with clause functions, recursive subquery factoring and model clause 

iteration, pivoting and unpivoting, as well as splitting and creating delimited text.

�Part 2: Analytic functions
Analytic functions have been my favorite since I started working with Oracle SQL. I saw 

a quote (source unknown) from a conference presentation: “If you write on your CV that 

you know SQL, but you do not use analytic functions, then you are lying.” I would hate to 
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solve SQL tasks without having the use of analytic functions, so the six chapters of Part 2 

are dedicated to solutions using analytic functions.

Focus is on demonstrating practical tasks that can be solved extremely efficiently, 

walking through using analytic functions for tasks such as Top-N questions, warehouse 

picking with rolling sums, analyzing activity logs, and two types of forecasting.

�Part 3: Row pattern matching
When in need of SQL that crosses row boundaries, my go-to solution since version 8i 

has been analytic functions. From version 12.2, match_recognize has been added to my 

toolbox for cases where even an analytic function in SQL would be too convoluted. The 

six chapters of Part 3 show both using match_recognize for the row pattern matching it 

was designed for and using it for tasks that might not at first glance seem like a case for 

match_recognize.

The tasks covered include finding up-and-down patterns, grouping consecutive data, 

merging date ranges, finding abnormal peaks, bin fitting, and tree branch calculations.

�About the code
The major part of this book is code – SQL, SQL, and more SQL. To really learn from it, 

you should run the code yourself, play with it, alter it and see what happens, and fool 

around until you feel confident that you’ve “got it.” Now that wouldn’t be fun if you had 

to type in everything by yourself, so all of the code in the book is available as source files 

for you.

�Source files
You can get the source files for the book from GitHub via the book’s page on Apress:

www.apress.com/9781484256169

What you will find is these files:

•	 practical_readme.txt

A short readme describing the other files.

Introduction
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•	 practical_create_schema.sql

All the example objects reside in a schema called practical (similar 

to the Oracle-supplied sample schemas scott and hr). This script 

creates the practical schema with necessary privileges and 

should be run as a DBA user. If your environment enforces complex 

passwords, you may need to edit this script to give the practical 

user a more complex password than practical.

•	 practical_fill_schema.sql

Once you have created the practical schema, log in as user 

practical – the password is practical unless you changed it in 

the preceding file. Then run this script to create all the example 

objects – tables, views, types, packages, and so on.

•	 practical_clean_schema.sql

This script is also to be run as user practical. It drops everything 

that was created with practical_fill_schema.sql. You can try 

things yourself and change the examples and manipulate the 

data all you want – when you are done, you can return to a fresh 

example schema by running practical_clean_schema.sql 

followed by practical_fill_schema.sql.

•	 practical_drop_schema.sql

If you want to completely get rid of the example schema 

practical, you can run this script as a DBA user.

•	 ch_{chapter_name}.sql

Each of the 22 chapters has its own example file with the code 

from the listings in each chapter. Do note, however, that every 

listing that is DDL (creation of views, object types, etc.) is not in 

the chapter SQL file but in practical_fill_schema.sql instead. 

This way every dictionary object is created and dropped together, 

and the chapter example scripts do not need to worry about 

cleaning up in the dictionary.

All of the scripts and examples are meant as learning inspiration and should not be 

installed in productive environments. They are for your use as a learning tool and should 

be treated as such.
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�The schema
You should think of the practical schema as part of an application used by a fictional 

company called Good Beer Trading Co. Almost all of the examples are based on tasks 

that such an application could need to do – also in real life. Admitted, a few cases are 

slightly contrived, but most could have been taken straight from real applications. For 

example, all techniques shown in Part 2 are directly taken from code I have developed 

myself during the 16 years I mentioned in the preceding text – I have only adapted them 

to my practical example tables shown in Figure 1.

Figure 1.  The tables in the practical schema
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The only table in the schema that has no relation to Good Beer Trading Co is the 

table conway_gen_zero used in Chapter 6. The other tables are all related to the fictional 

company, each table being used in one or more of the chapters.

�Versions and environment
Almost all of the code examples were developed using the Database App Development 

VM pre-built VirtualBox image that can be downloaded from Oracle, specifically the 

version that contains Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 – 64bit 

Production. A few examples require database version 18c or 19c; for those I have used 

either newer VM images or livesql.oracle.com.

In general a lot of the examples shown in Part 1 and Part 2 will work even on 

database versions that are no longer supported. Where versions higher than 12.2 are 

required, this is explicitly noted. If relevant, I’ve also noted from which version specific 

syntax is supported, but I have not explicitly indicated a from-version for everything. If 

you are still using unsupported versions, I will leave it up to you to test if a given syntax 

works in your specific environment.

During development, I used Oracle SQL Developer version 18.2. Screenshots of ER 

diagrams are also taken from this SQL Developer version. Code examples were executed 

using SQLcl release 4.2, mostly using set sqlformat ansiconsole, except for a few 

cases using traditional SQL∗Plus style formatting. These cases are noted in the source 

code files.

When you try the code yourself, I recommend opening the files in Oracle SQL 

Developer or TOAD or PLSQL Developer or your favorite SQL IDE. Run each statement 

individually, inspecting results in the grid instead of relying on my formatting, which is 

optimized for getting an output that fits on a printed page. That way you can also very 

easily alter the statement a bit and try to execute it again and compare changes in the 

output.

Most diagram figures were created by using various APEX graph and diagram 

components in a workspace on apex.oracle.com that I use to fiddle about working with 

small APEX pages.
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�A final word
Maybe you are under the impression that if SQL is slightly more complex than a two-

table join, then it is only for geniuses to attempt and you won’t even try it. I assure you 

this is not the case.

Expertise comes from practice. Confidence comes from familiarity. You should just 

go ahead and write slightly more complex SQL tomorrow, then slightly more the day 

after, and so on. Over time it will become as familiar to you as whatever other language 

you’ve worked in for years, and you will say to yourself: “What was I afraid of?”

I am confident this book will give you a jump start in your journey toward really 

using the power of SQL.
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CHAPTER 1

Correlating Inline Views
Most of the time in SQL, you can simply join tables or views to one another to get the 

result you want. Often you add inline views and scalar subqueries to the mix, and you 

can soon create relatively complex solutions to many problems. With analytic functions, 

you really start to rock ‘n’ roll and can solve almost anything.

But it can happen from time to time that you have, for instance, a scalar subquery 

and wish that it could return multiple columns instead of just a single column. You can 

make workarounds with object types or string concatenation, but it’s never really elegant 

nor efficient.

Also from time to time, you would really like, for example, a predicate inside the 

inline view to reference a value from a table outside the inline view, which is normally 

not possible. Often the workaround is to select the column you would like a predicate on 

in the inline view select list and put the predicate in the join on clause instead. This is 

often good enough, and the optimizer can often do predicate pushing to automatically 

do what you actually wanted – but it is not always able to do this, in which case you end 

up with an inefficient query.

For both those problems, it has been possible since version 12.1 to solve them by 

correlating the inline view with lateral or apply, enabling you in essence to do your 

own predicate pushing.

�Brewery products and sales
In the application schema of the Good Beer Trading Co, I have a couple of views (shown 

in Figure 1-1) I can use to illustrate inline view correlation.
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It could just as easily have been tables that I used to demonstrate these techniques, 

so for this chapter, just think of them as such. The internals of the views will be more 

relevant in later chapters and shown in those chapters.

View brewery_products shows which beers the Good Beer Trading Co buys from 

which breweries, while view yearly_sales shows how many bottles of each beer are 

sold per year. Joining the two together in Listing 1-1 on product_id, I can see the yearly 

sales of those beers that are bought from Balthazar Brauerei.

Listing 1-1.  The yearly sales of the three beers from Balthazar Brauerei

SQL> select

  2     bp.brewery_name

  3   , bp.product_id as p_id

  4   , bp.product_name

  5   , ys.yr

  6   , ys.yr_qty

  7  from brewery_products bp

  8  join yearly_sales ys

  9     on ys.product_id = bp.product_id

 10  where bp.brewery_id = 518

 11  order by bp.product_id, ys.yr;

This data of 3 years of sales of three beers will be the basis for the examples of this 

chapter:

BREWERY_NAME        P_ID  PRODUCT_NAME      YR    YR_QTY

Balthazar Brauerei  5310  Monks and Nuns    2016  478

Balthazar Brauerei  5310  Monks and Nuns    2017  582

Balthazar Brauerei  5310  Monks and Nuns    2018  425

Balthazar Brauerei  5430  Hercule Trippel   2016  261

Balthazar Brauerei  5430  Hercule Trippel   2017  344

Figure 1-1.  Two views used in this chapter to illustrate lateral inline views
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Balthazar Brauerei  5430  Hercule Trippel   2018  451

Balthazar Brauerei  6520  Der Helle Kumpel  2016  415

Balthazar Brauerei  6520  Der Helle Kumpel  2017  458

Balthazar Brauerei  6520  Der Helle Kumpel  2018  357

At first I’ll use this to show a typical problem.

�Scalar subqueries and multiple columns
The task at hand is to show for each of the three beers of Balthazar Brauerei which year 

the most bottles of that particular beer are sold and how many bottles that were. I can do 

this with two scalar subqueries in Listing 1-2.

Listing 1-2.  Retrieving two columns from the best-selling year per beer

SQL> select

  2     bp.brewery_name

  3   , bp.product_id as p_id

  4   , bp.product_name

  5   , (

  6        select ys.yr

  7        from yearly_sales ys

  8        where ys.product_id = bp.product_id

  9        order by ys.yr_qty desc

 10        fetch first row only

 11     ) as yr

 12   , (

 13        select ys.yr_qty

 14        from yearly_sales ys

 15        where ys.product_id = bp.product_id

 16        order by ys.yr_qty desc

 17        fetch first row only

 18     ) as yr_qty

 19  from brewery_products bp

 20  where bp.brewery_id = 518

 21  order by bp.product_id;
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For the data at hand (where there are no ties between years), it works okay and gives 

me the desired output:

BREWERY_NAME        P_ID  PRODUCT_NAME      YR    YR_QTY

Balthazar Brauerei  5310  Monks and Nuns    2017  582

Balthazar Brauerei  5430  Hercule Trippel   2018  451

Balthazar Brauerei  6520  Der Helle Kumpel  2017  458

But there are some issues with this strategy:

•	 The same data in yearly_sales is accessed twice. Had I needed 

more than two columns, it would have been multiple times.

•	 Since my order by is not unique, my fetch first row will return 

a random one (well, probably the first it happens to find using 

whichever access plan it uses, of which I have no control, so in effect, 

it could be any one) of those rows that have the highest yr_qty. 

That means in the multiple subqueries, I have no guarantee that the 

values come from the same row – if I had had a column showing the 

profit of the beer in that year and a subquery to retrieve this profit, it 

might show the profit of a different year than the one shown in the yr 

column of the output.

A classic workaround is to use just a single scalar subquery like in Listing 1-3.

Listing 1-3.  Using just a single scalar subquery and value concatenation

SQL> select

  2     brewery_name

  3   , product_id as p_id

  4   , product_name

  5   , to_number(

  6        substr(yr_qty_str, 1, instr(yr_qty_str, ';') - 1)

  7     ) as yr

  8   , to_number(

  9        substr(yr_qty_str, instr(yr_qty_str, ';') + 1)

 10     ) as yr_qty

 11  from (

 12     select
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 13        bp.brewery_name

 14      , bp.product_id

 15      , bp.product_name

 16      , (

 17           select ys.yr || ';' || ys.yr_qty

 18           from yearly_sales ys

 19           where ys.product_id = bp.product_id

 20           order by ys.yr_qty desc

 21           fetch first row only

 22        ) as yr_qty_str

 23     from brewery_products bp

 24     where bp.brewery_id = 518

 25  )

 26  order by product_id;

The scalar subquery is here in lines 16–22, finding the row I want and then selecting 

in line 17 a concatenation of the values I am interested in. Then I place the entire thing in 

an inline view (lines 11–25) and split the concatenated string into individual values again 

in lines 5–10.

The output of this is exactly the same as Listing 1-2, so that is all good, right? Well, 

as you can see, if I need more than two columns, it can quickly become unwieldy code. 

If I had been concatenating string values, I would have needed to worry about using 

a delimiter that didn’t exist in the real data. If I had been concatenating dates and 

timestamps, I’d need to use to_char and to_date/to_timestamp. And what if I had LOB 

columns or columns of complex types? Then I couldn’t do this at all.

So there are many good reasons to try Listing 1-4 as an alternative workaround.

Listing 1-4.  Using analytic function to be able to retrieve all columns if desired

SQL> select

  2     brewery_name

  3   , product_id as p_id

  4   , product_name

  5   , yr

  6   , yr_qty

  7  from (

  8     select
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  9        bp.brewery_name

 10      , bp.product_id

 11      , bp.product_name

 12      , ys.yr

 13      , ys.yr_qty

 14      , row_number() over (

 15           partition by bp.product_id

 16           order by ys.yr_qty desc

 17        ) as rn

 18     from brewery_products bp

 19     join yearly_sales ys

 20        on ys.product_id = bp.product_id

 21     where bp.brewery_id = 518

 22  )

 23  where rn = 1

 24  order by product_id;

This also gives the exact same output as Listing 1-2, just without any scalar 

subqueries at all.

Here I join the two views in lines 18–20 instead of querying yearly_sales in a scalar 

subquery. But doing that makes it impossible for me to use the fetch first syntax, as I 

need a row per brewery and fetch first does not support a partition clause.

Instead I use the row_number analytic function in lines 14–17 to assign consecutive 

numbers 1, 2, 3 … in descending order of yr_qty, in effect giving the row with the highest 

yr_qty the value 1 in rn. This happens for each beer because of the partition by in 

line 15, so there will be a row with rn=1 for each beer. These rows I keep with the where 

clause in line 23.

Tip  Much more about analytic functions is shown in Part 2 of the book.

The effect of this is that I can query as many columns from the yearly_sales view 

as I want – here I query two columns in lines 12–13. These can then be used directly in 

the outer query as well in lines 5–6. No concatenation needed, each column is available 

directly, no matter the datatype.
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This is a much nicer workaround than Listing 1-3, so isn’t this good enough? In this 

case it is fine, but the alternative with correlated inline views can be more flexible for 

some situations.

�Correlating inline view
Listing 1-5 is yet another way to produce the exact same output as Listing 1-2, just this 

time by correlating an inline view.

Listing 1-5.  Achieving the same with a lateral inline view

SQL> select

  2     bp.brewery_name

  3   , bp.product_id as p_id

  4   , bp.product_name

  5   , top_ys.yr

  6   , top_ys.yr_qty

  7  from brewery_products bp

  8  cross join lateral(

  9     select

 10        ys.yr

 11      , ys.yr_qty

 12     from yearly_sales ys

 13     where ys.product_id = bp.product_id

 14     order by ys.yr_qty desc

 15     fetch first row only

 16  ) top_ys

 17  where bp.brewery_id = 518

 18  order by bp.product_id;

The way this works is as follows:

•	 I do not join brewery_products to yearly_sales directly; instead I 

join to the inline view top_ys in line 8.

•	 The inline view in lines 9–15 queries yearly_sales and uses the 

fetch first row to find the row of the year with the highest sales. 

But it is not executed for all beers finding a single row with the  
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best-selling year across all beers, for line 13 correlates the yearly_

sales to the brewery_products on product_id.

•	 Line 13 would normally raise an error, since it would not make 

sense in the usual joining to an inline view. But I placed the keyword 

lateral in front of the inline view in line 8, which tells the database 

that I want a correlation here, so it should execute the inline view 

once for each row of the correlated outer row source – in this case 

brewery_products. That means that for each beer, there will be 

executed an individual fetch first row query, almost as if it were a 

scalar subquery.

•	 I then use cross join in line 8 to do the actual joining, which simply 

is because I need no on clause in this case. I have all the correlation I 

need in line 13, so I need not use an inner or outer join.

Using this lateral inline view enables me to get it executed for each beer like a scalar 

subquery, but to have individual columns queried like in Listing 1-4.

You might wonder about the cross join and say, “This isn’t a Cartesian product, is it?”

Consider if I had used the traditional join style with a comma-separated list of tables 

and views and all join predicates in the where clause and no on clauses. In that join style, 

Cartesian joins happen if you have no join predicate at all between two tables/views 

(sometimes that can happen by accident – a classic error that can be hard to catch).

If I had written Listing 1-5 with traditional style joins, line 8 would have looked like 

this:

...

  7  from brewery_products bp

  8  , lateral(

  9     select

...

And with no join predicates in the where clause, it does exactly the same that the 

cross join does. But because of the lateral clause, it becomes a “Cartesian” join 

between each row of brewery_products and each output row set of the correlated inline 

view as it is executed for each beer. So for each beer, it actually is a Cartesian product 

(think of it as “partitioned Cartesian”), but the net effect is that the total result looks like 

a correlated join and doesn’t appear Cartesian at all. Just don’t let the cross join syntax 

confuse you.
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I could have chosen to avoid the confusion of the cross join by using a regular 

inner join like this:

...

  7  from brewery_products bp

  8  join lateral(

  9     select

...

 16  ) top_ys

 17     on 1=1

 18  where bp.brewery_id = 518

...

Since the correlation happens inside the lateral inline view, I can simply let the on 

clause be always true. The effect is exactly the same.

It might be that you feel that both cross join and the on 1=1 methods really do not 

state clearly what happens – both syntaxes can be considered a bit “cludgy” if you will. 

Then perhaps you might like the alternative syntax cross apply instead as in Listing 1-6.

Listing 1-6.  The alternative syntax cross apply

SQL> select

  2     bp.brewery_name

  3   , bp.product_id as p_id

  4   , bp.product_name

  5   , top_ys.yr

  6   , top_ys.yr_qty

  7  from brewery_products bp

  8  cross apply(

  9     select

 10        ys.yr

 11      , ys.yr_qty

 12     from yearly_sales ys

 13     where ys.product_id = bp.product_id

 14     order by ys.yr_qty desc

 15     fetch first row only
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 16  ) top_ys

 17  where bp.brewery_id = 518

 18  order by bp.product_id;

The output is the same as Listing 1-2 like the previous listings, but this time I am 

using neither lateral nor join, but the keywords cross apply in line 8. What this 

means is that for each row in brewery_products, the inline view will be applied. And 

when I use apply, I am allowed to correlate the inline view with the predicate in line 13, 

 just like using lateral. Behind the scenes, the database does exactly the same as a 

lateral inline view; it is just a case of which syntax you prefer.

The keyword cross distinguishes it from the variant outer apply, which I’ll show in 

a moment. Here cross is to be thought of as “partitioned Cartesian” as I discussed in the 

preceding text.

Note  You can use the cross apply and outer apply not only for inline 
views but also for calling table functions (pipelined or not) in a correlated manner. 
This would require a longer syntax if you use lateral. Probably you won’t see 
it used often on table functions, as the table functions in Oracle can be used as 
a correlated row source in joins anyway, so it is rarely necessary to use apply, 
though sometimes it can improve readability.

�Outer joining correlated inline view
So far my uses of lateral and apply have only been of the cross variety. That means 

that in fact I have been cheating a little – it is not really the same as using scalar 

subqueries. It is only because of having sales data for all the beers that Listings 1-2 to 1-6 

all had the same output.

If a scalar subquery finds nothing, the value in that output column of the brewery_

products row will be null – but if a cross join lateral or cross apply inline view 

finds no rows, then the brewery_products row will not be in the output at all.

What I need to really emulate the output of the scalar subquery method is a 

functionality like an outer join, which I do in Listing 1-7. In this listing, I still find the 

top year and quantity for each beer, but only of those yearly sales that were less than 400.
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Listing 1-7.  Using outer apply when you need outer join functionality

SQL> select

  2     bp.brewery_name

  3   , bp.product_id as p_id

  4   , bp.product_name

  5   , top_ys.yr

  6   , top_ys.yr_qty

  7  from brewery_products bp

  8  outer apply(

  9     select

 10        ys.yr

 11      , ys.yr_qty

 12     from yearly_sales ys

 13     where ys.product_id = bp.product_id

 14     and ys.yr_qty < 400

 15     order by ys.yr_qty desc

 16     fetch first row only

 17  ) top_ys

 18  where bp.brewery_id = 518

 19  order by bp.product_id;

In line 14, I make the inline view query only years that had sales of less than 400 

bottles. And then in line 8, I changed cross apply to outer apply, giving me this result:

BREWERY_NAME        P_ID  PRODUCT_NAME      YR    YR_QTY

Balthazar Brauerei  5310  Monks and Nuns

Balthazar Brauerei  5430  Hercule Trippel   2017  344

Balthazar Brauerei  6520  Der Helle Kumpel  2018  357

If I had been using cross apply in line 8, I would only have seen the last two rows in 

the output.

So outer apply is more correct to use if you want an output that is completely 

identical to the scalar subquery method. But just like you don’t want to use regular outer 

joins unnecessarily, you should use cross apply if you know for a fact that rows always 

will be returned.
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An outer apply is the same as a left outer join lateral with an on 1=1 join 

clause, so outer apply cannot support right correlation, only left.

There are cases where an outer join lateral is more flexible than outer apply, 

since you can actually use the on clause sensibly, like in Listing 1-8.

Listing 1-8.  Outer join with the lateral keyword

SQL> select

  2     bp.brewery_name

  3   , bp.product_id as p_id

  4   , bp.product_name

  5   , top_ys.yr

  6   , top_ys.yr_qty

  7  from brewery_products bp

  8  left outer join lateral(

  9     select

 10        ys.yr

 11      , ys.yr_qty

 12     from yearly_sales ys

 13     where ys.product_id = bp.product_id

 14     order by ys.yr_qty desc

 15     fetch first row only

 16  ) top_ys

 17     on top_ys.yr_qty < 500

 18  where bp.brewery_id = 518

 19  order by bp.product_id;

Since I use lateral in the left outer join in line 8, the inline view is executed 

once for every beer, finding the best-selling year and quantity, just like most of the 

examples in the chapter. But in the on clause in line 17, I filter, so I only output a top_ys 

row if the quantity is less than 500. It gives me this output, which is almost but not quite 

the same as the output of Listings 1-2 to 1-6:

BREWERY_NAME        P_ID  PRODUCT_NAME      YR    YR_QTY

Balthazar Brauerei  5310  Monks and Nuns

Balthazar Brauerei  5430  Hercule Trippel   2018  451

Balthazar Brauerei  6520  Der Helle Kumpel  2017  458
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Normally the on clause is for the joining of the two tables (or views) and shouldn’t 

really contain a filter predicate. But in this case, it is exactly because I do the filtering 

in the on clause that I get the preceding result. Filtering in different places would solve 

different problems:

•	 If the filter predicate is inside the inline view (like Listing 1-7), the 

problem solved is “For each beer show me the best-selling year and 

quantity out of those years that sold less than 400 bottles.”

•	 If the filter predicate is in the on clause (like Listing 1-8), the problem 

solved is “For each beer show me the best-selling year and quantity if 

that year sold less than 500 bottles.”

•	 If the filter predicate had been in the where clause right after line 18, 

the problem solved would have been “For each beer where the best-

selling year sold less than 500 bottles, show me the best-selling year 

and quantity.” (And then it shouldn’t be an outer join, but just an 

inner or cross join.)

In all, lateral and apply (both in cross and outer versions) have several uses that, 

though they might be solvable by various other workarounds, can be quite nice and 

efficient. Typically you don’t want to use it if the best access path would be to build the 

entire results of the inline view first and then hash or merge the join with the outer table 

(for such a case, Listing 1-4 is often a better solution). But if the best path would be to do 

the outer table and then nested loop join to the inline view, lateral and apply are very 

nice methods.

Tip  You will find more examples of doing Top-N queries in Chapter 12, more 
examples of lateral in Chapters 9 and 12, and examples of using apply on 
table functions in Chapter 9.
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�Lessons learned
In this chapter I’ve shown you some workarounds to some problems and then given you 

examples of how to solve the same using correlated inline views, so you now know about

•	 Using keyword lateral to enable doing a left correlation inside an 

inline view

•	 Distinguishing between cross and outer versions of joining to the 

lateral inline view

•	 Applying the cross apply or outer apply as alternative syntax to 

achieve a left correlation

•	 Deciding whether a correlated inline view or a regular inline view 

with analytic functions can solve a problem most efficiently

Being able to correlate inline views can be handy for several situations in your 

application development.
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CHAPTER 2

Pitfalls of Set Operations
SQL and set theory are quite related, but in practical daily life, I think many developers 

(myself included) do not worry too much about theory. Maybe as a consequence thereof, 

it is typically more seldom that I see the set operators used than joins. Most often you get 

along with joins fine, but now and again, a well-chosen use of a set operator can be quite 

nice.

But maybe because we don’t use the set operators as much, I see too often code 

where the developer unwittingly fell into one of the pitfalls that exists, specifically 

concerning using distinct sets or sets with duplicates.

Most often you see the set operations illustrated with Venn diagrams like Figure 2-1 

(normally you’d see them horizontally; I show them vertically as it matches the code and 

illustrations I use later in the chapter). And it’s pretty clear what happens.

Figure 2-1.  Venn diagrams of the three set operations
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But what often isn’t explained as well is that set theory in principle works on distinct 

sets – sets that have no duplicates. In fact the function set in Oracle SQL removes 

duplicates from a nested table turning it into a proper “set” according to set theory. 

In the practical life of a developer, it is often that we actually want to work with sets 

including duplicates, but the set operators default to working like set theory.

And when you then add that the multiset operators default the other way around, 

confusion can easily abound. This chapter attempts to clear that confusion.

�Sets of beer
In the schema for the Good Beer Trading Co, I have some views (shown in Figure 2-2) I can 

use to demonstrate the set operations. The two views brewery_products and customer_

order_products are both joins of multiple tables, but for the purposes in this chapter, you 

can think of them as tables, and the internals of the views are irrelevant.

Figure 2-2.  Two views for set examples and one for multiset examples
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View brewery_products simply shows which beers are purchased from which 

breweries. A product will be shown only once per brewery.

View customer_order_products shows which beers are sold to which customers, but 

also includes how much was sold and when, so a product can be shown multiple times 

per customer.

The last view customer_order_products_obj contains the same data as customer_

order_products but aggregated, so there is only one row per customer containing a 

nested table column product_coll with the product id and name for each time that 

product has been sold to the customer. The creation of the nested table type and this 

view is shown in Listing 2-1.

Listing 2-1.  Creating the types and view for the multiset examples

SQL> create or replace type id_name_type as object (

  2     id     integer

  3   , name   varchar2(20 char)

  4  );

  5  /

Type ID_NAME_TYPE compiled

SQL> create or replace type id_name_coll_type

  2     as table of id_name_type;

  3  /

Type ID_NAME_COLL_TYPE compiled

SQL> create or replace view customer_order_products_obj

  2  as

  3  select

  4     customer_id

  5   , max(customer_name) as customer_name

  6   , cast(

  7        collect(

  8           id_name_type(product_id, product_name)

  9           order by product_id

 10        )

 11        as id_name_coll_type
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 12     ) as product_coll

 13  from customer_order_products

 14  group by customer_id;

View CUSTOMER_ORDER_PRODUCTS_OBJ created.

With these views, I can show you the differences between set and multiset operators.

�Set operators
I’m going to use just some of the data, so Listing 2-2 shows you the result of view 

customer_order_products for two customers.

Listing 2-2.  Data for two customers and their orders

SQL> select

  2     customer_id as c_id, customer_name, ordered

  3   , product_id  as p_id, product_name , qty

  4  from customer_order_products

  5  where customer_id in (50042, 50741)

  6  order by customer_id, product_id;

  C_ID CUSTOMER_NAME   ORDERED     P_ID PRODUCT_NAME       QTY

------ --------------- ---------- ----- ----------------- ----

 50042 The White Hart  2019-01-15  4280 Hoppy Crude Oil    110

 50042 The White Hart  2019-03-22  4280 Hoppy Crude Oil     80

 50042 The White Hart  2019-03-02  4280 Hoppy Crude Oil     60

 50042 The White Hart  2019-03-22  5430 Hercule Trippel     40

 50042 The White Hart  2019-01-15  6520 Der Helle Kumpel   140

 50741 Hygge og Humle  2019-01-18  4280 Hoppy Crude Oil     60

 50741 Hygge og Humle  2019-03-12  4280 Hoppy Crude Oil     90

 50741 Hygge og Humle  2019-01-18  6520 Der Helle Kumpel    40

 50741 Hygge og Humle  2019-02-26  6520 Der Helle Kumpel    40

 50741 Hygge og Humle  2019-02-26  6600 Hazy Pink Cloud     16

 50741 Hygge og Humle  2019-03-29  7950 Pale Rider Rides    50

 50741 Hygge og Humle  2019-03-12  7950 Pale Rider Rides   100
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In the same way, Listing 2-3 shows the output of view brewery_products for two 

breweries.

Listing 2-3.  Data for two breweries and the products bought from them

SQL> select

  2     brewery_id as b_id, brewery_name

  3   , product_id as p_id, product_name

  4  from brewery_products

  5  where brewery_id in (518, 523)

  6  order by brewery_id, product_id;

  B_ID BREWERY_NAME        P_ID PRODUCT_NAME

------ ------------------ ----- -----------------

   518 Balthazar Brauerei  5310 Monks and Nuns

   518 Balthazar Brauerei  5430 Hercule Trippel

   518 Balthazar Brauerei  6520 Der Helle Kumpel

   523 Happy Hoppy Hippo   6600 Hazy Pink Cloud

   523 Happy Hoppy Hippo   7790 Summer in India

   523 Happy Hoppy Hippo   7870 Ghost of Hops

In set theory, a set has by definition unique values, a condition that brewery_

products satisfies.

But in practice in a database, you often don’t have unique values. If you look at the 

data in customer_order_products, it is unique when you include the ordered date and 

the qty value, but if you only look at product id and name per customer, it is not unique.

This difference between real life and set theory is to a certain extent reflected in the 

set operators.

�Set concatenation
In the daily life of a developer, often I am not concerned with set theory, but merely wish 

to concatenate two sets of rows, in effect just appending one set of rows after the other. 

This I can do with union all, illustrated in Figure 2-3.
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Figure 2-3 shows first seven rows of product names for customer 50741, followed by three 

rows of product names for brewery 523. Expressed as SQL, this is the code in Listing 2-4.

Listing 2-4.  Concatenating the results of two queries

SQL> select product_id as p_id, product_name

  2  from customer_order_products

  3  where customer_id = 50741

  4  union all

  5  select product_id as p_id, product_name

  6  from brewery_products

  7  where brewery_id = 523;

Simply two select statements are separated with union all, and the output is the 

two results one after the other:

 P_ID PRODUCT_NAME

----- -----------------

 4280 Hoppy Crude Oil

 4280 Hoppy Crude Oil

 6520 Der Helle Kumpel

Figure 2-3.  Union all simply appends one result set after another
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 6520 Der Helle Kumpel

 6600 Hazy Pink Cloud

 7950 Pale Rider Rides

 7950 Pale Rider Rides

 6600 Hazy Pink Cloud

 7790 Summer in India

 7870 Ghost of Hops

I selected only the two columns that exist in both views, which makes the output 

hard to see what rows come from which view. In Listing 2-5 I also select the customer id 

and name in the first select, but the brewery id and name in the second select.

Listing 2-5.  Different columns from the two queries

SQL> select

  2     customer_id as c_or_b_id, customer_name as c_or_b_name

  3   , product_id as p_id, product_name

  4  from customer_order_products

  5  where customer_id = 50741

  6  union all

  7  select

  8     brewery_id, brewery_name

  9   , product_id as p_id, product_name

 10  from brewery_products

 11  where brewery_id = 523;

Notice that in the first two columns, I give an alias in the first select, but not in the 

second. That does not matter, since it is the column names or aliases of the first select 

that are used:

C_OR_B_ID C_OR_B_NAME         P_ID PRODUCT_NAME

--------- ------------------ ----- -----------------

    50741 Hygge og Humle      4280 Hoppy Crude Oil

    50741 Hygge og Humle      4280 Hoppy Crude Oil

    50741 Hygge og Humle      6520 Der Helle Kumpel

    50741 Hygge og Humle      6520 Der Helle Kumpel

    50741 Hygge og Humle      6600 Hazy Pink Cloud

    50741 Hygge og Humle      7950 Pale Rider Rides
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    50741 Hygge og Humle      7950 Pale Rider Rides

      523 Happy Hoppy Hippo   6600 Hazy Pink Cloud

      523 Happy Hoppy Hippo   7790 Summer in India

      523 Happy Hoppy Hippo   7870 Ghost of Hops

A side effect of this is that if I have given a column an alias, then I cannot use the 

table column name in the order by clause. If I try to append an order by with the table 

column product_id, I get an error:

...

12  order by product_id;

Error starting at line : 1 in command -

...

Error at Command Line : 12 Column : 10

Error report -

SQL Error: ORA-00904: "PRODUCT_ID": invalid identifier

Instead I need to use the column alias p_id to get my desired ordering:

12  order by p_id;

C_OR_B_ID C_OR_B_NAME         P_ID PRODUCT_NAME

--------- ------------------ ----- -----------------

    50741 Hygge og Humle      4280 Hoppy Crude Oil

    50741 Hygge og Humle      4280 Hoppy Crude Oil

    50741 Hygge og Humle      6520 Der Helle Kumpel

    50741 Hygge og Humle      6520 Der Helle Kumpel

    50741 Hygge og Humle      6600 Hazy Pink Cloud

      523 Happy Hoppy Hippo   6600 Hazy Pink Cloud

      523 Happy Hoppy Hippo   7790 Summer in India

      523 Happy Hoppy Hippo   7870 Ghost of Hops

    50741 Hygge og Humle      7950 Pale Rider Rides

    50741 Hygge og Humle      7950 Pale Rider Rides

The union all is a very practical and often used set operator, but there are more.
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�The three set operators
Using the same data as before, Figure 2-4 illustrates union, intersect, and minus.

Figure 2-4.  Union, intersect, and minus on distinct data

You may wonder why I show union as a different operator than union all?

In reality it is just the union operator. It is one of the three operators union, 

intersect, and minus. All three work by design as set theory does: they work on sets 

with distinct values, so they implicitly remove all duplicates (illustrated by the grayed-

out strike-through lines in Figure 2-4). The keyword all tells the union operator not to 

remove duplicates but to keep all rows.

What I see a lot in code is unfortunately that union is often used where union all 

really is wanted. Also in many cases where the values are already distinct, a union 

unnecessarily performs an implicit distinct where a union all would avoid this 

overhead.

So my rule of thumb is that it is almost always union all that a SQL developer needs 

in daily development. Only once in a while is union called for. Therefore, I tend to think 

of union all and union separately, as it helps me automatically distinguish between 

when I need one and when I need the other.

Having delivered now my lecture that you most of the time need union all, Listing 2-6 

shows you the code for implementing the set operations illustrated in Figure 2-4.
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Listing 2-6.  Union is a true set operation that implicitly performs a distinct of the 

query result

SQL> select product_id as p_id, product_name

  2  from customer_order_products

  3  where customer_id = 50741

  4  union

  5  select product_id as p_id, product_name

  6  from brewery_products

  7  where brewery_id = 523

  8  order by p_id;

Using union (without all) produces the distinct concatenation of the two sets:

 P_ID PRODUCT_NAME

----- -----------------

 4280 Hoppy Crude Oil

 6520 Der Helle Kumpel

 6600 Hazy Pink Cloud

 7790 Summer in India

 7870 Ghost of Hops

 7950 Pale Rider Rides

And changing to intersect produces the distinct set of overlapping rows:

...

  4  intersect

...

 P_ID PRODUCT_NAME

----- -----------------

 6600 Hazy Pink Cloud

Finally changing to minus produces the distinct set of the rows of the first select that 

are not in the second select:

...

  4  minus

...
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 P_ID PRODUCT_NAME

----- -----------------

 4280 Hoppy Crude Oil

 6520 Der Helle Kumpel

 7950 Pale Rider Rides

All straightforward, the important thing to remember is that these three operators 

always implicitly remove duplicates. Only by union all can you keep duplicates. (That 

will change in a future version of the database – see tip at the end of the chapter.)

�Multiset operators
Data in a column of a nested table type is known as a collection when used in PL/SQL 

(that has several types of collections). Within SQL operations, it is known as a multiset. 

Different SQL clients will show these in different formats – Listing 2-7 shows how it looks 

like in sqlcl and SQL∗Plus.

Listing 2-7.  The customer product data viewed as a collection type

SQL> select

  2     customer_id as c_id, customer_name

  3   , product_coll

  4  from customer_order_products_obj

  5  where customer_id in (50042, 50741)

  6  order by customer_id;

I simply query the aggregate view customer_order_products_obj for my two 

customers and get an output with one row per customer having a column that is a 

multiset, meaning a collection (or array if you will) of product id and names:

  C_ID CUSTOMER_NAME   PRODUCT_COLL(ID, NAME)

------ --------------- ----------------------------------------

 50042 The White Hart  ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Ho

                       ppy Crude Oil'), ID_NAME_TYPE(4280, 'Hop

                       py Crude Oil'), ID_NAME_TYPE(4280, 'Hopp

                       y Crude Oil'), ID_NAME_TYPE(5430, 'Hercu

                       le Trippel'), ID_NAME_TYPE(6520, 'Der He

                       lle Kumpel'))
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 50741 Hygge og Humle  ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Ho

                       ppy Crude Oil'), ID_NAME_TYPE(4280, 'Hop

                       py Crude Oil'), ID_NAME_TYPE(6520, 'Der

                       Helle Kumpel'), ID_NAME_TYPE(6520, 'Der

                       Helle Kumpel'), ID_NAME_TYPE(6600, 'Hazy

                       Pink Cloud'), ID_NAME_TYPE(7950, 'Pale

                       Rider Rides'), ID_NAME_TYPE(7950, 'Pale

                       Rider Rides'))

Note the multiset for each of the customers contains as many rows as there were 

rows per customer in the output of Listing 2-2, which is by design as this output is simply 

an aggregation of the Listing 2-2 output. Since I did not include the ordered and qty 

columns in my multiset, I have duplicates. This enables me to show you how the multiset 

operators handle this.

�Multiset union
The operator multiset union supports the use of either all or distinct keyword, as 

illustrated in Figure 2-5. With the distinct keyword, it works like the set operator union 

by removing all duplicates. Using the all keyword has the same effect as in union all of 

keeping all rows including duplicates.

Figure 2-5.  Difference between multiset union all and multiset union distinct
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In Listing 2-8 I do a multiset union between the multisets of customer The White 

Hart and customer Hygge og Humle.

Listing 2-8.  Doing union as a multiset operation on the collections

SQL> select

  2     whitehart.product_coll

  3     multiset union

  4     hyggehumle.product_coll

  5        as multiset_coll

  6  from customer_order_products_obj whitehart

  7  cross join customer_order_products_obj hyggehumle

  8  where whitehart.customer_id = 50042

  9  and hyggehumle.customer_id = 50741;

Notice I am using neither all nor distinct. But you can see in the output that all 

rows are there and no duplicates have been removed:

MULTISET_COLL(ID, NAME)

------------------------------------------------------------

ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_

NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_NAME_TYPE(4280, 'Hopp

y Crude Oil'), ID_NAME_TYPE(5430, 'Hercule Trippel'), ID_NAM

E_TYPE(6520, 'Der Helle Kumpel'), ID_NAME_TYPE(4280, 'Hoppy

Crude Oil'), ID_NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_NAME_

TYPE(6520, 'Der Helle Kumpel'), ID_NAME_TYPE(6520, 'Der Hell

e Kumpel'), ID_NAME_TYPE(6600, 'Hazy Pink Cloud'), ID_NAME_T

YPE(7950, 'Pale Rider Rides'), ID_NAME_TYPE(7950, 'Pale Ride

r Rides'))

If I do add the keyword all, I get exactly the same result:

...

  3     multiset union all

...
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Caution T his is the basis of confusion, since the set operator union defaults to 
distinct behavior, while multiset union defaults to all behavior. To help 
myself not to make mistakes, I go by the rule of thumb of never relying on the 
defaults. For multiset, I always include all or distinct. For the set operator 
union, I have no option of adding a distinct keyword, but I add it in a comment 
anyway as /*distinct*/ to make it clear to a future me that I didn’t accidentally 
forget an all keyword.

If I change it to distinct, I get an output with all duplicates removed:

...

  3     multiset union distinct

...

MULTISET_COLL(ID, NAME)

------------------------------------------------------------

ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_

NAME_TYPE(5430, 'Hercule Trippel'), ID_NAME_TYPE(6520, 'Der

Helle Kumpel'), ID_NAME_TYPE(6600, 'Hazy Pink Cloud'), ID_NA

ME_TYPE(7950, 'Pale Rider Rides'))

Next up is multiset intersect.

�Multiset intersect
Figure 2-6 shows that with multiset intersect, I get the rows that are common to both.
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And you can see the same in the output if I change the multiset operator of Listing 2-8 

to multiset intersect all:

...

  3     multiset intersect all

...

MULTISET_COLL(ID, NAME)

------------------------------------------------------------

ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Hoppy Crude Oil'), 

ID_NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_NAME_TYPE(6520, 

'Der Helle Kumpel'))

Similarly with the multiset intersect distinct version:

...

  3     multiset intersect distinct

...

MULTISET_COLL(ID, NAME)

------------------------------------------------------------

ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_

NAME_TYPE(6520, 'Der Helle Kumpel'))

Not much surprise here, but it gets more interesting with multiset except.

Figure 2-6.  Difference between multiset intersect all and multiset intersect distinct
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�Multiset except
To the left in Figure 2-7 is the same data in the same order as before, illustrating what 

is left if I take the beers of customer Hygge og Humle and use multiset except all to 

subtract the beers of customer The White Hart. Using all means it takes into account 

the number of occurrences of duplicates – the first customer has three rows with Hoppy 

Crude Oil, and the second customer has two rows, which leaves one row in the output of 

the subtraction.

In the middle of Figure 2-7, I still use multiset except all, except that I have 

swapped the two customers, so I take the beers of The White Hart and subtract the 

beers of Hygge og Humle. Same principle as before, the first customer has two rows of 

Der Helle Kumpel, and the second customer has one row, which leaves one row in the 

output. It gets interesting when I switch to distinct.

To the right in Figure 2-7, you can see that when I use multiset except distinct, 

the output no longer contains Der Helle Kumpel. One might think that it should be like 

removing duplicates from the output of multiset except all, but it is not. It is first 

removing duplicates from both input sets and then doing the subtraction. This means 

that there can be some values shown using multiset except all that disappear using 

multiset except distinct.

Figure 2-7.  Difference between multiset except all and multiset except distinct

Chapter 2  Pitfalls of Set Operations



33

Showing the same in code, again I simply change the operator of Listing 2-8 to get 

the left output of Figure 2-7:

...

  3     multiset except all

...

MULTISET_COLL(ID, NAME)

------------------------------------------------------------

ID_NAME_COLL_TYPE(ID_NAME_TYPE(4280, 'Hoppy Crude Oil'), ID_

NAME_TYPE(5430, 'Hercule Trippel'))

Swapping the order of the two input nested table columns gives me the middle 

output of Figure 2-7:

SQL> select

  2     hyggehumle.product_coll

  3     multiset except all

  4     whitehart.product_coll

...

MULTISET_COLL(ID, NAME)

------------------------------------------------------------

ID_NAME_COLL_TYPE(ID_NAME_TYPE(6520, 'Der Helle Kumpel'), ID

_NAME_TYPE(6600, 'Hazy Pink Cloud'), ID_NAME_TYPE(7950, 'Pale

Rider Rides'), ID_NAME_TYPE(7950, 'Pale Rider Rides'))

Finally switching to multiset except distinct produces the right output of 

Figure 2-7, where you notice Der Helle Kumpel is missing:

SQL> select

  2     hyggehumle.product_coll

  3     multiset except distinct

  4     whitehart.product_coll

...
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MULTISET_COLL(ID, NAME)

------------------------------------------------------------

ID_NAME_COLL_TYPE(ID_NAME_TYPE(6600, 'Hazy Pink Cloud'), ID_

NAME_TYPE(7950, 'Pale Rider Rides'))

With multiset except, you have the choice between all and distinct as shown 

here, but that is not the case with the set operator minus.

�Minus vs. multiset except
The set operators are typically used more often than the multiset operators, union all 

probably most of all. But sometimes using minus can be a nice alternative to antijoins 

(not in and not exists).

I’ve taken some care to show you the differences between multiset except all 

and multiset except distinct to lay the ground for Listing 2-9, where I use minus to 

produce the same output as I did just before with multiset except distinct.

Listing 2-9.  Minus is like multiset except distinct

SQL> select product_id as p_id, product_name

  2  from customer_order_products

  3  where customer_id = 50741

  4  minus

  5  select product_id as p_id, product_name

  6  from customer_order_products

  7  where customer_id = 50042

  8  order by p_id;

Since minus also removes duplicates of the input sets first before doing the 

subtraction, this output also does not have Der Helle Kumpel in it:

 P_ID PRODUCT_NAME

----- -----------------

 6600 Hazy Pink Cloud

 7950 Pale Rider Rides
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But what if I want an output that takes number of occurrences of duplicates into 

account? In other words, how can I get a minus all, even if SQL does not support it?

I’ve shown you that the multiset operators support it, so I can utilize this in  

Listing 2-10.

Listing 2-10.  Emulating minus all using multiset except all

SQL> select

  2     minus_all_table.id   as p_id

  3   , minus_all_table.name as product_name

  4  from table(

  5     cast(

  6        multiset(

  7           select product_id, product_name

  8           from customer_order_products

  9           where customer_id = 50741

 10        )

 11        as id_name_coll_type

 12     )

 13     multiset except all

 14     cast(

 15        multiset(

 16           select product_id, product_name

 17           from customer_order_products

 18           where customer_id = 50042

 19        )

 20        as id_name_coll_type

 21     )

 22  ) minus_all_table

 23  order by p_id;

Each of the two selects of Listing 2-9 I put inside a multiset function call (lines 

6–10 and 15–19), which converts the row set to a multiset (nested table). But I cannot just 

convert it to a “generic” type; I must use the cast function to specify which nested table 

type I want to create, in this case id_name_coll_type.
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That way I now have two multisets, so I can subtract one from the other with 

multiset except all in line 13. The result of this subtraction I place in the table 

function in line 4, which turns the multiset (nested table) back into a row set, so the 

query produces the output that I want:

 P_ID PRODUCT_NAME

----- -----------------

 6520 Der Helle Kumpel

 6600 Hazy Pink Cloud

 7950 Pale Rider Rides

 7950 Pale Rider Rides

It works nicely, and the techniques shown can be useful from time to time to swap 

sets and multisets back and forth. But for this specific use case, it is a little bit overkill 

as I can emulate minus all simpler with the use of an analytic function, as I show in 

Listing 2-11.

Listing 2-11.  Emulating minus all using analytic row_number function

SQL> select

  2     product_id as p_id

  3   , product_name

  4   , row_number() over (

  5        partition by product_id, product_name

  6        order by rownum

  7     ) as rn

  8  from customer_order_products

  9  where customer_id = 50741

 10  minus

 11  select

 12     product_id as p_id

 13   , product_name

 14   , row_number() over (

 15        partition by product_id, product_name

 16        order by rownum
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 17     ) as rn

 18  from customer_order_products

 19  where customer_id = 50042

 20  order by p_id;

What I do here is that I add a column that uses row_number to create a consecutive 

numbering 1, 2, 3 … for each distinct value combination of product_id and product_

name. This way the implicit distinct performed by the minus operator removes no rows, 

since the addition of the consecutive numbers in the rn column makes all rows unique.

That means that the first customer will have two rows with Der Helle Kumpel, one 

getting rn=1 and the other getting rn=2. While the second customer only has one row, so 

it gets rn=1. The use of minus then means that the row with rn=1 is subtracted away, but 

the row with rn=2 stays, as you can see in the output:

 P_ID PRODUCT_NAME      RN

----- ----------------- --

 6520 Der Helle Kumpel   2

 6600 Hazy Pink Cloud    1

 7950 Pale Rider Rides   1

 7950 Pale Rider Rides   2

The code in Listing 2-11 might not be much shorter than Listing 2-10, but it is a 

solution that does not require creating of a nested table type, and the analytic function 

is less overhead than what is needed for converting collection types back and forth. So 

until a future SQL release gives us minus all, this is a nice way to emulate it.

Tip I n a future database release (probably 20c), the set operators intersect 
and except will also support the keyword all, just like union and the multiset 
operators. Then you won’t need a workaround like the ones shown here to emulate 
minus all, but can do it directly.
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�Lessons learned
I have explained in detail about the variants of set and multiset operators with or 

without distinct and all, so that hopefully you now will

•	 Distinguish clearly between union all and union, so you won’t 

fall into the mistake of using union when you don’t want or need 

duplicates removed.

•	 Be aware that set operators union, intersect, and minus default to 

distinct behavior, unlike the multiset operators multiset union, 

multiset intersect, and multiset except that default to all 

behavior.

•	 Know how to emulate minus all until the day comes where the 

database version supports it directly.

This knowledge can save you from unwitting mistakes that can be hard to find in 

development and test environments.
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CHAPTER 3

Divide and Conquer 
with Subquery Factoring
Every programmer has at some point learned about modularization – splitting the code 

into smaller units each solving a distinct part of the whole, typically used in procedural 

languages as functions and procedures, like in PL/SQL. In SQL there are views to help 

reduce complexity and provide reusability.

But modularization does not necessarily mean globally accessible and reusable 

units. For example, in PL/SQL I can create local functions and procedures in the 

declaration section of another function or procedure. These code units have only 

local scope and do not exist as objects in the data dictionary – they only serve as local 

modularization to simplify an otherwise large procedure.

In SQL there is a similar mechanism called subquery factoring, also commonly 

known as the with clause or sometimes common table expressions, statement scoped 
views, or named query blocks (just to mention some of the terms used for this).

The idea is (just like local procedures in a declaration section) to define a “local 

view” in a kind of “declaration section” of the SQL statement. This “declaration section” 

itself is the with clause, and each “local view” defined in it is called a named subquery. 

It is a very useful technique for local modularization within a single SQL statement.

Tip  The with clause has evolved over versions of the database and can do 
much more than just what is shown in this chapter. More on that to come in later 
chapters.



40

�Products and sales data
To show you an example of modularizing a SQL statement, I will use the tables shown in 

Figure 3-1.

Figure 3-1.  This chapter uses tables product_alcohol and monthly_sales

In the products table are stored the beers that Good Beer Trading Co are selling. For 

these, beer information about their alcohol content is in table product_alcohol, and 

statistics about their monthly sales are in table monthly_sales.

From these data, I will create SQL to find which year sold more than average for 

the half of the beers that have the lowest alcohol percentage in column abv (alcohol by 

volume).

�Best-selling years of the less strong beers
The Good Beer Trading Co divides their beers into two halves – the half with the lowest 

alcohol percentage is defined as alcohol class 1, while the stronger half of the beers is 

alcohol class 2. I find out which are which in Listing 3-1.
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Listing 3-1.  Dividing the beers into alcohol class 1 and 2

SQL> select

  2     pa.product_id as p_id

  3   , p.name        as product_name

  4   , pa.abv

  5   , ntile(2) over (

  6        order by pa.abv, pa.product_id

  7     ) as alc_class

  8  from product_alcohol pa

  9  join products p

 10     on p.id = pa.product_id

 11  order by pa.abv, pa.product_id;

The analytic function ntile in lines 5–7 assigns each row into buckets – the number 

of buckets being the argument. It will be assigned in the order given by the order by 

clause and such that the rows are distributed as evenly as possible. In this case with ten 

rows, the first five rows in order by abv will be assigned to bucket 1 and the last five rows 

to bucket 2:

P_ID  PRODUCT_NAME      ABV  ALC_CLASS

6600  Hazy Pink Cloud   4    1

6520  Der Helle Kumpel  4.5  1

7870  Ghost of Hops     4.5  1

5310  Monks and Nuns    5    1

7950  Pale Rider Rides  5    1

7790  Summer in India   5.5  2

4160  Reindeer Fuel     6    2

5430  Hercule Trippel   6.5  2

4280  Hoppy Crude Oil   7    2

4040  Coalminers Sweat  8.5  2

So now in Listing 3-2, I can take just the beers with the value 1 in alc_class, join 

them to the monthly_sales table, and aggregate to show me yearly sales.
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Listing 3-2.  Viewing yearly sales of the beers in alcohol class 1

SQL> select

  2     pac.product_id as p_id

  3   , extract(year from ms.mth) as yr

  4   , sum(ms.qty) as yr_qty

  5  from (

  6     select

  7        pa.product_id

  8      , ntile(2) over (

  9           order by pa.abv, pa.product_id

 10        ) as alc_class

 11     from product_alcohol pa

 12  ) pac

 13  join monthly_sales ms

 14     on ms.product_id = pac.product_id

 15  where pac.alc_class = 1

 16  group by

 17     pac.product_id

 18   , extract(year from ms.mth)

 19  order by p_id, yr;

As analytic functions cannot be used in a where clause, I need to put the ntile 

calculation in an inline view in lines 6–11. In line 15, I keep only those with alc_class 

= 1. The rest is a normal inner join and a group by to give me an output with 3 years of 

sales for each of the five beers:

P_ID  YR    YR_QTY

5310  2016  478

5310  2017  582

5310  2018  425

6520  2016  415

6520  2017  458

6520  2018  357

6600  2016  121

6600  2017  105

6600  2018  98

7870  2016  552
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7870  2017  482

7870  2018  451

7950  2016  182

7950  2017  210

7950  2018  491

So far so good, now I build further upon that statement, so in Listing 3-3, I can get 

just those years where a given beer sold more than it sold in an average year for that beer.

Listing 3-3.  Viewing just the years that sold more than the average year per beer

SQL> select

  2     p_id, yr, yr_qty

  3   , round(avg_yr) as avg_yr

  4  from (

  5     select

  6        pac.product_id as p_id

  7      , extract(year from ms.mth) as yr

  8      , sum(ms.qty) as yr_qty

  9      , avg(sum(ms.qty)) over (

 10           partition by pac.product_id

 11        ) as avg_yr

 12     from (

 13        select

 14           pa.product_id

 15         , ntile(2) over (

 16              order by pa.abv, pa.product_id

 17           ) as alc_class

 18        from product_alcohol pa

 19     ) pac

 20     join monthly_sales ms

 21        on ms.product_id = pac.product_id

 22     where pac.alc_class = 1

 23     group by

 24        pac.product_id

 25      , extract(year from ms.mth)

 26  )
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 27  where yr_qty > avg_yr

 28  order by p_id, yr;

The code from Listing 3-3 I put inside the inline view in lines 5–25 with the addition 

of lines 9–11, where I calculate per beer what was sold in an average year using the 

analytic version of the avg function. This enables me in line 27 to keep only those years 

where the sales were greater than the average year:

P_ID  YR    YR_QTY  AVG_YR

5310  2017  582     495

6520  2016  415     410

6520  2017  458     410

6600  2016  121     108

7870  2016  552     495

7950  2018  491     294

There is nothing wrong as such with the query in Listing 3-3, but you can see that for 

each additional inline view I add, the statement becomes more complex and difficult 

to read. Indentation is absolutely essential to keep track of which select list belongs 

together with which join and where clause. If the statement grew just a little bigger, you 

couldn’t see the select list and the where clause together without scrolling.

This is where the with clause comes in.

�Modularization using the with clause
The with clause allows me to put subqueries at the top of the query, giving them a name, 

and use them in other places just as if they were views – you can think of it like refactoring 

in procedural programming, hence the name subquery factoring. In Listing 3-4, I refactor 

Listing 3-3 to use named subqueries in the with clause instead of inline views.

Listing 3-4.  Rewriting Listing 3-3 using subquery factoring

SQL> with product_alc_class as (

  2     select

  3        pa.product_id

  4      , ntile(2) over (

  5           order by pa.abv, pa.product_id
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  6        ) as alc_class

  7     from product_alcohol pa

  8  ), class_one_yearly_sales as (

  9     select

 10        pac.product_id as p_id

 11      , extract(year from ms.mth) as yr

 12      , sum(ms.qty) as yr_qty

 13      , avg(sum(ms.qty)) over (

 14           partition by pac.product_id

 15        ) as avg_yr

 16     from product_alc_class pac

 17     join monthly_sales ms

 18        on ms.product_id = pac.product_id

 19     where pac.alc_class = 1

 20     group by

 21        pac.product_id

 22      , extract(year from ms.mth)

 23  )

 24  select

 25     p_id, yr, yr_qty

 26   , round(avg_yr) as avg_yr

 27  from class_one_yearly_sales

 28  where yr_qty > avg_yr

 29  order by p_id, yr;

The subquery from the innermost inline view of Listing 3-3 I place in lines 2–7 and 

give it the name product_alc_class (it is a good idea to use some meaningful names). 

Then I can refer to product_alc_class in later parts of the query, using it just as if it was 

a view in the data dictionary. But it is not created in the data dictionary; it is only locally 

defined within this SQL statement.

The second-level inline view of Listing 3-3 then goes in lines 9–22 and gets the name 

class_one_yearly_sales in line 8. In line 16, it queries the product_alc_class named 

subquery in the same place that Listing 3-3 has an inline view.

And the main query in lines 24–29 corresponds to the outer query of Listing 3-3 lines 

1–4 and 26–28, just querying the class_one_yearly_sales named subquery instead of 

an inline view.
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The output of Listing 3-4 is identical to Listing 3-3, and the optimizer most likely 

rewrites the SQL to achieve the same access plan, so what have I gained?

Using the with clause in this simple fashion, I’ve mostly gained readability – having 

the select list and where clause close together in lines 24–29, querying a suitably named 

subquery makes it easier to write, understand, and check the logic of just this part of 

the big query independently. Similarly each of the two named subqueries, they can be 

looked at individually. It is the same benefits you know from modularizing procedural 

code locally.

But where Listing 3-4 refactors the nested inline views of Listing 3-3 by having 

the second subquery select from the first and the main query select from the second 

subquery, I can also rewrite it in an alternative manner in Listing 3-5.

Listing 3-5.  Alternative rewrite using independent named subqueries

SQL> with product_alc_class as (

  2     select

  3        pa.product_id

  4      , ntile(2) over (

  5           order by pa.abv, pa.product_id

  6        ) as alc_class

  7     from product_alcohol pa

  8  ), yearly_sales as (

  9     select

 10        ms.product_id

 11      , extract(year from ms.mth) as yr

 12      , sum(ms.qty) as yr_qty

 13      , avg(sum(ms.qty)) over (

 14           partition by ms.product_id

 15        ) as avg_yr

 16     from monthly_sales ms

 17     group by

 18        ms.product_id

 19      , extract(year from ms.mth)

 20  )

 21  select

 22     pac.product_id as p_id
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 23   , ys.yr

 24   , ys.yr_qty

 25   , round(ys.avg_yr) as avg_yr

 26  from product_alc_class pac

 27  join yearly_sales ys

 28     on ys.product_id = pac.product_id

 29  where pac.alc_class = 1

 30  and ys.yr_qty > ys.avg_yr

 31  order by p_id, yr;

The product_alc_class named subquery is unchanged from Listing 3-4. But instead 

of class_one_yearly_sales, I create the simpler yearly_sales in lines 8–20, where I 

calculate the yearly sales of all products without joining to product_alc_class. The two 

named subqueries in my with clause are now not dependent on one another.

In the main query, I simply join the two named subqueries in lines 26–28 and do 

filtering in the where clause in lines 29–30. With this code, I achieve the same output 

once again as the last two listings.

Listings 3-4 and 3-5 are both examples of using the with clause in a manner that 

could have been solved with inline views. The prime benefit is readability, as the 

definition of the named subqueries is separated, not inline nested within one another. 

But there are other benefits to the with clause that aren’t as easily solvable with inline 

views.

�Multiple uses of the same subquery
One of the issues that potentially can arise from doing something like Listing 3-5 is that I 

might calculate the yearly sales of all products, even though I only need it done for half of 

the products. Depending on how the code is written, the optimizer might or might not be 

smart enough to decide whether or not it is the fastest to just do it for all products, or it 

might be faster to push the predicates into the subquery to only do it for the desired half.

Sometimes it is not possible to make the query push the predicates. In such cases, 

I can force it to only calculate yearly sales for the desired products by the method in 

Listing 3-6.
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Listing 3-6.  Querying one subquery multiple places

SQL> with product_alc_class as (

...

  8  ), yearly_sales as (

...

 16     from monthly_sales ms

 17     where ms.product_id in (

 18        select pac.product_id

 19        from product_alc_class pac

 20        where pac.alc_class = 1

 21     )

...

 25  )

 26  select

...

 31  from product_alc_class pac

 32  join yearly_sales ys

 33     on ys.product_id = pac.product_id

 34  where ys.yr_qty > ys.avg_yr

 35  order by p_id, yr;

Listing 3-6 is almost identical to Listing 3-5. But I have added lines 17–21 to make the 

yearly_sales be calculated only for those products found in the product_alc_class 

named subquery. Even so I still use product_alc_class in the join in the main query in 

line 31 – that is okay, as it is allowed to use the named subquery multiple places in the 

code.

But since the yearly_sales now has been pre-filtered to give me only those for alc_

class = 1, I no longer need it in the final where clause in line 34 – I still get the same 

output as the last three listings.
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Note  Strictly speaking, in this particular case, I could avoid joining to product_
alc_class in the main query in Listing 3-6, since I could have queried ys.
product_id in the select list instead of pac.product_id. But if there had 
been more columns in product_alc_class that I needed in the output, then the 
double usage of the named subquery would be necessary.

A huge benefit of factoring out subqueries in the with clause like this is that the 

optimizer can decide to treat them in one of two different ways, depending on what it 

thinks will give the lowest cost:

It can treat them just like views, meaning that the SQL of the named subqueries is 

basically substituted each place that they are queried.

It can also decide to execute the SQL of a named subquery only once, storing the 

results in a temporary table it creates on the fly and then accessing this temporary table 

each place that the named subquery is queried.

The with clause allows the optimizer this choice, and (like always when the 

optimizer is involved) it most often makes a good choice, but sometimes it can make the 

wrong choice.

To try and see if it is a good idea for the optimizer to do the second method, I can add 

the undocumented hint /*+ materialize */ in line 2 of Listing 3-6 like this:

SQL> with product_alc_class as (

  2     select /*+ materialize */

  3        pa.product_id

...

With this hint, I force the optimizer to choose the access method of doing a temp 

table transformation with a load as select as seen in Figure 3-2.
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The operations in the explain plan that are nested under the load as select are the 

execution of the product_alc_class named subquery, whose results then are stored in 

the on-the-fly created temporary table that is given a sys_temp_* name. This temporary 

table is then accessed twice in the rest of the explain plan.

The /*+ materialize */ hint is perfect for testing and finding out if you would 

really like the optimizer to do it this way. If you find this to be the case, but the optimizer 

prefers (wrongly in your opinion) treating your named subquery as a view instead of 

materializing it, then you might get the idea that you would like to use the hint in your 

production code as well. An idea I cannot recommend.

It is possible, even likely, that you will be safe using the hint, but it is always strongly 

discouraged to use undocumented hints in production code. You don’t have any 

guarantee from Oracle that it will stay there – it might disappear with no warning at the 

next upgrade. Then you can use an alternative method to force materialization:

SQL> with product_alc_class as (

  2     select

  3        pa.product_id

  4      , ntile(2) over (

  5           order by pa.abv, pa.product_id

Figure 3-2.  Explain plan showing creation and use of the ad hoc temporary table
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  6        ) as alc_class

  7     from product_alcohol pa

  8     where rownum >= 1

  9  ), yearly_sales as (

...

In this version of Listing 3-6, I have taken out the /*+ materialize */ hint again, 

but instead added line 8. A filter clause (that always evaluates as true) on rownum also 

makes it necessary for the optimizer to materialize the results of the product_alc_class 

named subquery.

Using where rownum >= 1 or in other ways referencing rownum is a classic trick to 

prevent view merging. It works because the values assigned to the rownum pseudocolumn 

could easily be different when view merging is performed compared to when it is not. 

The optimizer cannot allow itself to perform a query optimization that potentially can 

change the results, so therefore it cannot allow view merging when using rownum. Hence 

it must choose to materialize instead. This mechanism works for the with clause as well 

as for inline or stored views.

�Listing column names
So far all my with clauses have contained subqueries that depended on column aliases 

to specify the column names available when querying the named subqueries.

But I’ve said that this is a lot like defining a “local view,” and you might recall that in 

the create view statement, you can choose between explicitly providing a list of column 

names and implicitly letting the columns get the names of the query column aliases. In 

the with clause, you can also do both.

Note I n the first database versions that supported the with clause, the implicit 
column naming was the only way to do it. In version 11.1 the with clause was 
expanded to allow recursive subquery factoring (a topic of a later chapter) in which 
the explicit column list is mandatory. But the explicit column list can also be used 
in general; it is not restricted to only recursive subquery factoring.
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Listings 3-4, 3-5, and 3-6 all use implicit column naming from column aliases – 

in Listing 3-7, I show a rewrite of Listing 3-6 that uses explicit lists of column names 

instead.

Listing 3-7.  Specifying column names list instead of column aliases

SQL> with product_alc_class (

  2     product_id, alc_class

  3  ) as (

  4     select

  5        pa.product_id

  6      , ntile(2) over (

  7           order by pa.abv, pa.product_id

  8        )

  9     from product_alcohol pa

 10  ), yearly_sales (

 11     product_id, yr, yr_qty, avg_yr

 12  ) as (

 13     select

 14        ms.product_id

 15      , extract(year from ms.mth)

 16      , sum(ms.qty)

 17      , avg(sum(ms.qty)) over (

 18           partition by ms.product_id

 19        )

 20     from monthly_sales ms

 21     where ms.product_id in (

 22        select pac.product_id

 23        from product_alc_class pac

 24        where pac.alc_class = 1

 25     )

 26     group by

 27        ms.product_id

 28      , extract(year from ms.mth)

 29  )

 30  select
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 31     pac.product_id as p_id

 32   , ys.yr

 33   , ys.yr_qty

 34   , round(ys.avg_yr) as avg_yr

 35  from product_alc_class pac

 36  join yearly_sales ys

 37     on ys.product_id = pac.product_id

 38  where ys.yr_qty > ys.avg_yr

 39  order by p_id, yr;

For each of my named subqueries in the with clause, I insert between the query 

name and the as keyword a set of parentheses with a list of column names (lines 1–3 

and lines 10–12). This overrules whatever column names and/or aliases returned by the 

subqueries themselves – I do not even have to provide column aliases, as you can see in 

line 8 and lines 15–19.

It does not change the output a bit – all listings from Listings 3-3 to 3-7 produce 

the same output. And in many cases like this, you will not see an explicit column name 

used, though it can improve productivity a bit – when I do the coding of a subsequent 

subquery in the statement and need to know which columns of the product_alc_class 

named subquery are available, it is nice to simply refer to the list in line 2 rather than 

having to spot what are column names in the code of the select list (that might be long 

and convoluted).

But there’s one common use of the with clause where the explicit column list is 

extremely handy – that is, for producing test data by selecting from dual like in Listing 3-8.

Listing 3-8.  “Overloading” a table with test data in a with clause

SQL> with product_alcohol (

  2     product_id, sales_volume, abv

  3  ) as (

  4     /* Simulation of table product_alcohol */

  5     select 4040, 330, 4.5 from dual union all

  6     select 4160, 500, 7.0 from dual union all

  7     select 4280, 330, 8.0 from dual union all

  8     select 5310, 330, 4.0 from dual union all

  9     select 5430, 330, 8.5 from dual union all

 10     select 6520, 500, 6.5 from dual union all
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 11     select 6600, 500, 5.0 from dual union all

 12     select 7790, 500, 4.5 from dual union all

 13     select 7870, 330, 6.5 from dual union all

 14     select 7950, 330, 6.0 from dual

 15  )

 16  /* Query to test with simulated data */

 17  select

 18     pa.product_id as p_id

 19   , p.name        as product_name

 20   , pa.abv

 21   , ntile(2) over (

 22        order by pa.abv, pa.product_id

 23     ) as alc_class

 24  from product_alcohol pa

 25  join products p

 26     on p.id = pa.product_id

 27  order by pa.abv, pa.product_id;

Lines 17–27 are the same as Listing 3-1. But I want to test what this query would 

output if the content of the table was something else.

Instead of creating a test table and doing a search-and-replace in my query to make 

it use the name of the test table, I use the with clause in lines 1–15 to create a named 

subquery that I give the same name as the product_alcohol table. I provide a list of 

column names in line 2, and then I simply select constant values from dual repeatedly 

in lines 5–14. It is much more readable without having a lot of column aliases cluttering 

the data list, like the following:

...

  4     /* Simulation of table product_alcohol */

  5     �select 4040 as product_id, 330 as sales_volume, 4.5 as abv from 

dual union all

  6     �select 4160 as product_id, 500 as sales_volume, 7.0 as abv from 

dual union all

...
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This way I can easily get output from my query using test data, but without changing 

table names in the query itself:

P_ID  PRODUCT_NAME      ABV  ALC_CLASS

5310  Monks and Nuns    4    1

4040  Coalminers Sweat  4.5  1

7790  Summer in India   4.5  1

6600  Hazy Pink Cloud   5    1

7950  Pale Rider Rides  6    1

6520  Der Helle Kumpel  6.5  2

7870  Ghost of Hops     6.5  2

4160  Reindeer Fuel     7    2

4280  Hoppy Crude Oil   8    2

5430  Hercule Trippel   8.5  2

This method of including test data in a with clause is also very handy when you ask 

a question on a forum on the Internet. It makes it a lot easier for people that try to help 

you, if they can simply execute the query containing data and all, instead of having to 

create a table, populate it, and then try your query. It is not applicable to all situations, of 

course, but very often it will do nicely.

�Lessons learned
The with clause can do many other things too, much of which I’ll cover in later chapters. 

This chapter focused on using it for modularizing a SQL statement so you can

•	 Divide and conquer by having your SQL split into pieces, each easier 

to have an overview of.

•	 View the code of each named subquery as a unit, as opposed to using 

nested inline views.

•	 Select from a named subquery more than once in your statement, 

potentially materializing the result temporarily instead of querying 

the base tables multiple times.
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•	 Provide column names as a list as alternative to column aliases, 

particularly to avoid excessive cluttering of the code when using dual 

for test data.

When learning procedural code, we’ve all been taught that modularization is key to 

reduce dangers of complexity – it is no different in SQL. The with clause is a very nice 

tool indeed for local modularization of SQL statements that are just a bit more complex 

than a simple two-table join.
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CHAPTER 4

Tree Calculations 
with Recursion
Any procedural language I can think of supports some form of recursion. A procedure 

or function can call itself – if needed repeatedly until some condition has been reached. 

Typically they’ll also support iteration, which is related but not quite the same.

SQL deals with sets of rows, not procedural logic, so how can you do recursion in 

SQL? It still concerns itself with sets of rows: first find a set of rows; then based on that 

set of rows, you apply some logic to find a second set of rows; then based on that set of 

rows, you apply the logic again (recursively) to find a third set of rows; and so you keep 

on going until you find no more rows.

The typical use case for such recursion in SQL is hierarchical data. You find the top-

level nodes of the tree, then find the child nodes of those, then the grandchild nodes, and 

so on. Each search for the next level down in the tree is recursively applying a lookup of 

children based on the rows of the previous level.

In this chapter I primarily focus on SQL recursion in the form of recursive subquery 
factoring that is the most directly applicable method of recursion in SQL. (You can do 

iterations with the model clause – I give examples of this in Chapters 6 and 16. Chapter 16 

also gives an example of recursive subquery factoring used in a nonhierarchical manner.)

Here I will show the use of recursion on hierarchical data.

�Bottles in boxes on pallets
The Good Beer Trading Co has beers in various sized bottles that are packed in various 

sized boxes, which might be in larger boxes, which are stacked on pallets. The definitions 

of those different types of product packaging and relations between them are stored in 

the tables in Figure 4-1.
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The packaging table contains the different types and sizes of bottles, boxes, and 

pallets. These are related to each other in the packaging_relations table, which shows 

how many of each type of packaging are stored within another type of packaging. 

Listing 4-1 shows the content of these tables in a hierarchical tree.

Listing 4-1.  The hierarchical relations of the different packaging types

SQL> select

  2     p.id as p_id

  3   , lpad(' ', 2*(level-1)) || p.name as p_name

  4   , c.id as c_id

  5   , c.name as c_name

  6   , pr.qty

  7  from packaging_relations pr

  8  join packaging p

  9     on p.id = pr.packaging_id

 10  join packaging c

 11     on c.id = pr.contains_id

 12  start with pr.packaging_id not in (

Figure 4-1.  Tables of packaging and how much is in each packaging type
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 13     select c.contains_id from packaging_relations c

 14  )

 15  connect by pr.packaging_id = prior pr.contains_id

 16  order siblings by pr.contains_id;

In start with in lines 12–14, I start at the top-level pallets, because any packaging 

that exists as contains_id in packaging_relations is by definition not at the top level. 

The hierarchy is then traversed by the connect by in line 15.

In the output, you can see that pallet types are defined depending on which box  

(or mix of boxes) is stacked on the pallets:

P_ID  P_NAME           C_ID  C_NAME        QTY

531   Pallet of L      521   Box Large     12

521     Box Large      502   Bottle 500cl  72

532   Pallet of M      522   Box Medium    20

522     Box Medium     501   Bottle 330cl  36

533   Pallet Mix MS    522   Box Medium    10

522     Box Medium     501   Bottle 330cl  36

533   Pallet Mix MS    523   Box Small     20

523     Box Small      502   Bottle 500cl  30

534   Pallet Mix SG    523   Box Small     20

523     Box Small      502   Bottle 500cl  30

534   Pallet Mix SG    524   Gift Box      16

524     Gift Box       511   Gift Carton   8

511       Gift Carton  501   Bottle 330cl  3

511       Gift Carton  502   Bottle 500cl  2

You can see that a Pallet of L contains 12 Box Large, which in turn contains 72 Bottle 

500cl per box.

On the other hand, a Pallet Mix SG contains 20 Box Small, which in turn contains 

30 Bottle 500cl, and the pallet also contains 16 Gift Box, which contains 8 Gift Carton per 

box, which in turn contains 3 Bottle 330cl and 2 Bottle 500cl per carton.

From this hierarchy, the goal is for each top-level packaging (the pallets) to find out 

how many it contains of each lowest-level packaging (the bottles). For Pallet Mix SG, I want 

to know that it contains 20*30+16*8*2 = 856 Bottle 500cl plus 16*8*3 = 384 Bottle 330cl.

In other words, I need to traverse the branches of the tree and multiply the quantities 

of each branch.
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�Multiplying hierarchical quantities
To traverse a hierarchy, the traditional method in Oracle is to use the connect by syntax 

(as I used in the preceding text in Listing 4-1), so I will try that first in Listing 4-2.

Listing 4-2.  First attempt at multiplication of quantities

SQL> select

  2     connect_by_root p.id as p_id

  3   , connect_by_root p.name as p_name

  4   , c.id as c_id

  5   , c.name as c_name

  6   , ltrim(sys_connect_by_path(pr.qty, '*'), '*') as qty_expr

  7   , qty * prior qty as qty_mult

  8  from packaging_relations pr

  9  join packaging p

 10     on p.id = pr.packaging_id

 11  join packaging c

 12     on c.id = pr.contains_id

 13  where connect_by_isleaf = 1

 14  start with pr.packaging_id not in (

 15     select c.contains_id from packaging_relations c

 16  )

 17  connect by pr.packaging_id = prior pr.contains_id

 18  order siblings by pr.contains_id;

I use the same start with and connect by as Listing 4-1, but the filter on connect_

by_isleaf in line 13 makes the output contain only the leaves of each branch.

By using connect_by_root in lines 2 and 3, I get the desired effect in this output that 

p_id is the top-level packaging_id, while c_id is the lowest-level contains_id:

P_ID  P_NAME         C_ID  C_NAME        QTY_EXPR  QTY_MULT

531   Pallet of L    502   Bottle 500cl  12*72     864

532   Pallet of M    501   Bottle 330cl  20*36     720

533   Pallet Mix MS  501   Bottle 330cl  10*36     360

533   Pallet Mix MS  502   Bottle 500cl  20*30     600
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534   Pallet Mix SG  502   Bottle 500cl  20*30     600

534   Pallet Mix SG  501   Bottle 330cl  16*8*3    24

534   Pallet Mix SG  502   Bottle 500cl  16*8*2    16

The intermediate rows of the hierarchy (that were visible in the output of Listing 4-1)  

are omitted from this output, but that does not mean they were skipped. Using 

sys_connect_by_path in line 6, I can see the quantities of all intermediate rows in the 

qty_expr column, which on purpose I delimited with an asterisk so that it visualizes the 

multiplication that I need to do.

In line 7 of the code, I try to calculate the multiplication in column qty_mult, but as 

you can see, it only works in the first five rows, which are those where I only have two 

levels to multiply. In the last two rows, I have three levels to multiply, but my output 

contains just the multiplication of the last two levels.

Probably you spot the error:

  7   , qty * prior qty as qty_mult

I am multiplying qty with just the qty of the prior row. This is patently wrong, and 

instead I really want to multiply qty with the calculated qty_mult of the prior row:

  7   , qty * prior qty_mult as qty_mult

But this is unfortunately not supported with the connect by syntax, where prior 

only can be used on the table columns and expressions with these, not on column 

aliases of the select list. If I try this modification, I get an error: ORA-00904: "QTY_MULT": 

invalid identifier.

But there is a different way to traverse a tree that is called recursive subquery 

factoring.

�Recursive subquery factoring
Recursive subquery factoring is also sometimes called the recursive with clause, as it 

is a special way of using with. Using recursive with in Listing 4-3 enables me to do the 

multiplication I want.
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Listing 4-3.  Multiplication of quantities with recursive subquery factoring

SQL> with recursive_pr (

  2     packaging_id, contains_id, qty, lvl

  3  ) as (

  4     select

  5        pr.packaging_id

  6      , pr.contains_id

  7      , pr.qty

  8      , 1 as lvl

  9     from packaging_relations pr

 10     where pr.packaging_id not in (

 11        select c.contains_id from packaging_relations c

 12     )

 13     union all

 14     select

 15        pr.packaging_id

 16      , pr.contains_id

 17      , rpr.qty * pr.qty as qty

 18      , rpr.lvl + 1      as lvl

 19     from recursive_pr rpr

 20     join packaging_relations pr

 21        on pr.packaging_id = rpr.contains_id

 22  )

 23     search depth first by contains_id set rpr_order

 24  select

 25     p.id as p_id

 26   , lpad(' ', 2*(rpr.lvl-1)) || p.name as p_name

 27   , c.id as c_id

 28   , c.name as c_name

 29   , rpr.qty

 30  from recursive_pr rpr

 31  join packaging p

 32     on p.id = rpr.packaging_id

 33  join packaging c
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 34     on c.id = rpr.contains_id

 35  order by rpr.rpr_order;

This is quite a bit longer than using the connect by syntax, but diving into the 

separate parts should help understanding:

I name my with subquery in line 1 (just as shown in the previous chapter).

When it is a recursive with instead of just a normal with, it is mandatory to include 

the list of column names, as I do in line 2.

Inside the with clause, I need two select statements separated by the union all in 

line 13.

The first select (lines 4–12) finds the top-level nodes of the hierarchy. This is 

equivalent to selecting the rows in the start with clause, but can be more complex 

with, for example, joins.

Recursive subquery factoring does not have a built-in pseudocolumn level, so instead 

I have my own lvl column, which is initialized to 1 for the top-level nodes in line 8.

The second select (lines 14–21) is the recursive part. It must query itself (line 19) 

and join to one or more other tables to find child rows.

In the first iteration, the recursive_pr will contain the level 1 nodes found in the 

preceding text, and the join to packaging_relations in lines 20–21 is equivalent to the 

connect by and finds the level 2 nodes in the tree. In line 18, I add 1 to the lvl value to 

indicate this.

In the second iteration, the recursive_pr will give me the level 2 nodes found in the 

first iteration, and the join finds the level 3 nodes. And so it will be executed repeatedly 

until no more child rows are found.

This method looks more complex than connect by, but it allows much more 

flexibility. One of the things it allows is using values calculated on the prior level in the 

expressions for the next level, as I do in line 17 where I multiply the recursive qty with 

the qty of the next child row in the tree. This is exactly what I could not do in connect by.

Recursive subquery factoring also does not have an order siblings by clause. But 

line 23 specifies three things: first, how the tree should be searched (depth first is 

equivalent to how connect by works; breadth first is the other way around and rarely 

used); second, which column to order siblings by; and, third, the set rpr_order creating 

a virtual column of that name with an incremental value that can be used in the final 

order by in line 35 to ensure the entire output is ordered the way I specified.

In the main query beginning line 24, I simply query the recursive subquery and join 

it to the packaging table to get the packaging names.
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In the end I get this output with the qty values that I want:

P_ID  P_NAME           C_ID  C_NAME        QTY

531   Pallet of L      521   Box Large     12

521     Box Large      502   Bottle 500cl  864

532   Pallet of M      522   Box Medium    20

522     Box Medium     501   Bottle 330cl  720

533   Pallet Mix MS    522   Box Medium    10

522     Box Medium     501   Bottle 330cl  360

533   Pallet Mix MS    523   Box Small     20

523     Box Small      502   Bottle 500cl  600

534   Pallet Mix SG    523   Box Small     20

523     Box Small      502   Bottle 500cl  600

534   Pallet Mix SG    524   Gift Box      16

524     Gift Box       511   Gift Carton   128

511       Gift Carton  501   Bottle 330cl  384

511       Gift Carton  502   Bottle 500cl  256

You can see the last two lines have the correct values 384 and 256 instead of the 

wrong values 24 and 16 that were in the Listing 4-2 output.

But I have another problem with this output – it contains all of the intermediate 

rows that I do not want to see. Recursive subquery factoring does not have a built-in 

pseudocolumn connect_by_isleaf and also the operator connect_by_root, so in 

Listing 4-4, I make a workaround to find leaves using analytic functions.

Listing 4-4.  Finding leaves in recursive subquery factoring

SQL> with recursive_pr (

  2     root_id, packaging_id, contains_id, qty, lvl

  3  ) as (

  4     select

  5        pr.packaging_id as root_id

  6      , pr.packaging_id

  7      , pr.contains_id

  8      , pr.qty

  9      , 1 as lvl

 10     from packaging_relations pr

 11     where pr.packaging_id not in (
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 12        select c.contains_id from packaging_relations c

 13     )

 14     union all

 15     select

 16        rpr.root_id

 17      , pr.packaging_id

 18      , pr.contains_id

 19      , rpr.qty * pr.qty as qty

 20      , rpr.lvl + 1      as lvl

 21     from recursive_pr rpr

 22     join packaging_relations pr

 23        on pr.packaging_id = rpr.contains_id

 24  )

 25     search depth first by contains_id set rpr_order

 26  select

 27     p.id as p_id

 28   , p.name as p_name

 29   , c.id as c_id

 30   , c.name as c_name

 31   , leaf.qty

 32  from (

 33     select

 34        rpr.*

 35      , case

 36           when nvl(

 37                   lead(rpr.lvl) over (order by rpr.rpr_order)

 38                 , 0

 39                ) > rpr.lvl

 40           then 0

 41           else 1

 42        end as is_leaf

 43     from recursive_pr rpr

 44  ) leaf

 45  join packaging p

 46     on p.id = leaf.root_id

Chapter 4  Tree Calculations with Recursion



66

 47  join packaging c

 48     on c.id = leaf.contains_id

 49  where leaf.is_leaf = 1

 50  order by leaf.rpr_order;

The interesting differences in Listing 4-4 compared to Listing 4-3 are as follows:

I have an extra column root_id in my recursion. In line 5, I initialize this to the 

packaging_id of the root nodes. And then in line 16, the same value is copied onto 

all child rows of the same branch. This propagates root_id to all nodes and is the 

alternative to connect_by_root.

I create an inline view leaf in lines 32–44, in which I create column is_leaf 

using the calculation in lines 35–42. By using the analytic function lead in line 37, this 

calculation simply states that if the lvl of the next row in the hierarchical order is greater 

than the current lvl, then the current row has children and is not a leaf.

I filter on the calculated is_leaf column in line 49 as an alternative to connect_by_

isleaf.

And in line 46, I make sure that in the output, I am seeing the root node in the p_id 

and p_name columns by joining on the root_id instead of packaging_id.

In total this gives me the same seven rows as I got from Listing 4-2, just with correct 

values of qty:

P_ID  P_NAME         C_ID  C_NAME        QTY

531   Pallet of L    502   Bottle 500cl  864

532   Pallet of M    501   Bottle 330cl  720

533   Pallet Mix MS  501   Bottle 330cl  360

533   Pallet Mix MS  502   Bottle 500cl  600

534   Pallet Mix SG  502   Bottle 500cl  600

534   Pallet Mix SG  501   Bottle 330cl  384

534   Pallet Mix SG  502   Bottle 500cl  256

I’m almost there, but you will notice that lines 5 and 7 in the output both are a 

quantity of Bottle 500cl contained in Pallet Mix SG – 600 of them stem from Box Small, 

and 256 stem from Gift Carton/Gift Box. I actually want that as a single row, which I take 

care of in Listing 4-5.
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Listing 4-5.  Grouping totals for packaging combinations

SQL> with recursive_pr (

  2     root_id, packaging_id, contains_id, qty, lvl

  3  ) as (

...

 24  )

 25     search depth first by contains_id set rpr_order

 26  select

 27     p.id as p_id

 28   , p.name as p_name

 29   , c.id as c_id

 30   , c.name as c_name

 31   , leaf.qty

 32  from (

 33     select

 34        root_id, contains_id, sum(qty) as qty

 35     from (

 36        select

 37           rpr.*

 38         , case

 39              when nvl(

 40                      lead(rpr.lvl) over (order by rpr.rpr_order)

 41                    , 0

 42                   ) > rpr.lvl

 43              then 0

 44              else 1

 45           end as is_leaf

 46        from recursive_pr rpr

 47     )

 48     where is_leaf = 1

 49     group by root_id, contains_id

 50  ) leaf

 51  join packaging p

 52     on p.id = leaf.root_id
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 53  join packaging c

 54     on c.id = leaf.contains_id

 55  order by p.id, c.id;

The recursive subquery is unchanged from Listing 4-4, but the inline view leaf is 

expanded a bit and is now an inline view inside an inline view, so that I can do a group 

by in line 49 and sum the quantities in line 34.

The joins to packaging are unchanged; I still find the names of the packaging found 

from the inline view, but since I have aggregated data, I no longer have the hierarchical 

order (column rpr_order is gone and wouldn’t make sense anyway), so instead I simply 

order by id columns in line 55. (An alternative could have been to select a min(rpr_

order) in the inline view and order by that, but I am content with ordering by id.)

P_ID  P_NAME         C_ID  C_NAME        QTY

531   Pallet of L    502   Bottle 500cl  864

532   Pallet of M    501   Bottle 330cl  720

533   Pallet Mix MS  501   Bottle 330cl  360

533   Pallet Mix MS  502   Bottle 500cl  600

534   Pallet Mix SG  501   Bottle 330cl  384

534   Pallet Mix SG  502   Bottle 500cl  856

This output is what I want – how many of each bottle type is contained within each 

pallet type.

Using the recursive subquery function is a more flexible way of traversing hierarchies 

than the connect by syntax, and it will in almost all cases do the job perfectly. But to 

wrap up the chapter, I’ll show you an alternative that in some rare situations might just 

possibly be preferable.

�Dynamic SQL in PL/SQL function
You recall in Listing 4-2 I used sys_connect_by_path to build an expression of the 

multiplication to take place, like 16*8*3. Wouldn’t it be nice simply to evaluate this 

expression? Well, in Listing 4-6 I do just that.
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Listing 4-6.  Alternative method using dynamic evaluation function

SQL> with

  2     function evaluate_expr(

  3        p_expr varchar2

  4     )

  5        return number

  6     is

  7        l_retval number;

  8     begin

  9        execute immediate

 10           'select ' || p_expr || ' from dual'

 11           into l_retval;

 12        return l_retval;

 13     end;

 14  select

 15     connect_by_root p.id as p_id

 16   , connect_by_root p.name as p_name

 17   , c.id as c_id

 18   , c.name as c_name

 19   , ltrim(sys_connect_by_path(pr.qty, '*'), '*') as qty_expr

 20   , evaluate_expr(

 21        ltrim(sys_connect_by_path(pr.qty, '*'), '*')

 22     ) as qty_mult

 23  from packaging_relations pr

 24  join packaging p

 25     on p.id = pr.packaging_id

 26  join packaging c

 27     on c.id = pr.contains_id

 28  where connect_by_isleaf = 1

 29  start with pr.packaging_id not in (

 30     select c.contains_id from packaging_relations c

 31  )

 32  connect by pr.packaging_id = prior pr.contains_id

 33  order siblings by pr.contains_id;

 34  /
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The query itself in lines 14–34 is like Listing 4-2, except that in lines 20–22, I call the 

function evaluate_expr using the sys_connect_by_path expression as argument.

I could have created a stand-alone or packaged function for this, but I’ve chosen to 

put the function in a with clause (a feature available from version 12.1) as this ensures 

the dynamic SQL is not called with wrong arguments (think SQL injection). I’ll give more 

examples of this use of PL/SQL in with clause in the next chapter.

Inside the evaluate_expr function, I simply use the execute immediate statement 

in lines 9–11 to build a dynamic SQL statement that evaluates the multiplication in 

the parameter string and returns the numeric result. That gives me an output with the 

correct values in qty_mult:

P_ID  P_NAME         C_ID  C_NAME        QTY_EXPR  QTY_MULT

531   Pallet of L    502   Bottle 500cl  12*72     864

532   Pallet of M    501   Bottle 330cl  20*36     720

533   Pallet Mix MS  501   Bottle 330cl  10*36     360

533   Pallet Mix MS  502   Bottle 500cl  20*30     600

534   Pallet Mix SG  502   Bottle 500cl  20*30     600

534   Pallet Mix SG  501   Bottle 330cl  16*8*3    384

534   Pallet Mix SG  502   Bottle 500cl  16*8*2    256

I have not bothered to group this result by packaging_id and contains_id like in 

Listing 4-5; I will leave that as an exercise to you.

Note L isting 4-6 has a slash in line 34, even though line 33 ends with a 
semicolon. Depending on which client and client version you use, this may be 
necessary for the client to accept that there was PL/SQL inside a with clause. 
Newest versions should accept the code without a slash, but in the version of 
sqlcl I used, it was needed.

This last SQL statement wasn’t really recursion, but you might have situations where 

even recursion would be hard put to solve your case and a bit of judicious use of PL/

SQL makes the solution possible. The thing to remember, however, is that it incurs a 

punishment whenever runtime context is switched from SQL to PL/SQL and vice versa, 

though this punishment can in some circumstances be reduced if you put the PL/SQL in 

a with clause as shown here.
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This punishment can be irrelevant if the function is called relatively few times 

compared to the total runtime, but if it is called millions of times, it can be significant. 

The next chapter dives deeper into this dilemma.

�Lessons learned
Hierarchical data is very common, and we all know the classic example of the scott.

emp table. Oracle has traditionally used the connect by syntax, which is not known in 

other databases, and it is an easy and usually efficient method. But recursive subquery 

factoring (which is known in other databases as well) can be a lot more flexible and solve 

things that connect by cannot. When you have understood the examples of this chapter, 

you know how to

•	 Do SQL recursion by querying initial row set before the union all 

(equivalent of start with) and joining recursively after the union 

all (equivalent of connect by).

•	 Let calculations use calculated values from the previous level of the 

recursion (rather than only table column values as supported by the 

connect by syntax).

•	 Emulate connect_by_root by propagating the values of the initial row 

set down through all the levels.

•	 Emulate connect_by_isleaf with analytic lead function.

It is still a good idea to know the connect by syntax, but knowing recursive subquery 

factoring allows you to solve problems that connect by cannot do.
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CHAPTER 5

Functions Defined Within 
SQL
One of the beauties of the SQL language in Oracle is that it can so easily be extended 

by writing functions that SQL can call. Typically in PL/SQL, but for special cases, it 

might also be in C or in Java. With the new multilingual engine, it’ll be possible in future 

versions to write stored procedures and functions in multiple languages.

But the thing to note is that SQL and PL/SQL are executed by two different engines, 

each with small differences, for example, how variables, datatypes, and memory are 

handled. Every time SQL calls a PL/SQL function, or vice versa PL/SQL executes static 

or dynamic SQL, data is passed from one engine to the other with some possible 

conversion along the way – this is called a context switch.

Context switches are very tiny; normally you wouldn’t worry too much about them. 

But if a function is called a thousand times per second from SQL, it all adds up and can 

become a noticeable fraction of the time used. In version 12.1, it became possible to 

minimize this context switch, so it often becomes barely noticeable.

�Table with beer alcohol data
To demonstrate this minimal context switch function in SQL, I will use the product_

alcohol table shown in Figure 5-1.
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In this table is stored for each beer the volume (measured in milliliters) in a sales 

unit (aka a bottle or can) and the ABV (alcohol by volume) percent. In Listing 5-1, I’ll 

show the data for the beers in product group 142, which are the Stouts (relatively strong 

and very dark beers).

Listing 5-1.  The alcohol data for the beers in the Stout product group

SQL> select

  2     p.id as p_id

  3   , p.name

  4   , pa.sales_volume as vol

Figure 5-1.  Table product_alcohol contains data for alcohol calculations for the 
beers
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  5   , pa.abv

  6  from products p

  7  join product_alcohol pa

  8     on pa.product_id = p.id

  9  where p.group_id = 142

 10  order by p.id;

Reindeer Fuel is in a half-liter bottle (500 milliliter) but only 6% alcohol; the other 

two are in the standard 0.33-liter bottles but stronger:

P_ID  NAME              VOL  ABV

4040  Coalminers Sweat  330  8.5

4160  Reindeer Fuel     500  6

4280  Hoppy Crude Oil   330  7

This data can be used to find out how much pure alcohol one bottle of beer contains, 

which is needed to find out how much the blood alcohol concentration (BAC) will be 

increased by drinking one such bottle.

�Blood alcohol concentration
The Good Beer Trading Co must follow a health regulative where each beer must have 

an indication of how high a concentration of alcohol in your blood that drinking the 

beer will cause. As this is different for males and females and depends on body weight 

too, it must be shown both for a male weighing 80 kilograms and a female weighing 60 

kilograms.

The BAC (blood alcohol concentration) must be calculated as gram alcohol per 

milliliter body fluid, measured in percent. Meaning that a BAC of 0.04 shows that 0.04% 

of the liquid in your body is grams of alcohol. It can be calculated using the Widmark 

formula.

Widmark formula  Milliliters of drink * ABV/100 = Milliliters alcohol. Milliliters 
alcohol * 0.789 (specific gravity of alcohol) = Grams alcohol. Body weight * 1000 
* Gender liquid ratio = Milliliter fluid in body. (Males are 68% liquids, females 55% 
liquids.) 100 * Grams alcohol / Milliliter body fluid = BAC.
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Putting the Widmark formula into SQL, I can calculate the desired BAC values in 

Listing 5-2.

Listing 5-2.  Calculating blood alcohol concentration for male and female

SQL> select

  2     p.id as p_id

  3   , p.name

  4   , pa.sales_volume as vol

  5   , pa.abv

  6   , round(

  7        100 * (pa.sales_volume * pa.abv / 100 * 0.789)

  8         / (80 * 1000 * 0.68)

  9      , 3

 10     ) bac_m

 11   , round(

 12        100 * (pa.sales_volume * pa.abv / 100 * 0.789)

 13         / (60 * 1000 * 0.55)

 14      , 3

 15     ) bac_f

 16  from products p

 17  join product_alcohol pa

 18     on pa.product_id = p.id

 19  where p.group_id = 142

 20  order by p.id;

Lines 6–10 calculate the BAC of an 80 kg heavy male, while lines 11–15 do the same 

for a 60 kg female. The male has more liquid (both because of his gender and his larger 

weight), so the alcohol is diluted more in his body, and he has a lower BAC.

These two calculations give the columns bac_m and bac_f, which are the two figures 

Good Beer Trading Co needs to show on the beer labels and packaging:

P_ID  NAME              VOL  ABV  BAC_M  BAC_F

4040  Coalminers Sweat  330  8.5  0.041  0.067

4160  Reindeer Fuel     500  6    0.044  0.072

4280  Hoppy Crude Oil   330  7    0.034  0.055
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You can see that if, for example, your country is one of the many that have a legal 

limit for driving of 0.05% BAC (some countries prefer showing it as per mille instead of 

percent, so it is 0.5‰ in those countries), all of the beers would cause a 60 kg female to 

get a ticket for drunk driving if she drove a car after drinking just a single bottle of these 

strong beers, while an 80 kg male would be below the limit.

Note T his is example data to illustrate a formula encoded in SQL. Actual BAC will 
vary depending upon more detailed factors in individual bodies and metabolisms, so 
this should not be used as basis for judging whether you can legally drive a car after 
drinking a couple beers or not. Use these formulas only as examples for learning 
SQL – I do not take responsibility for any tickets, and I urge you to drink responsibly.

Anyway, as a developer, you obviously see here that I should take that formula and 

put it in a function rather than repeat the same code with slightly different numbers 

twice in this query.

�Function with PRAGMA UDF
So at first in Listing 5-3, I’ll create a regular (well, almost regular) PL/SQL function for 

the Widmark formula for BAC calculation. Not that it matters for this demonstration, but 

I’ll follow a best practice of putting the function in a package rather than a stand-alone 

function, so I’ve decided to have a package formulas for such functions.

Listing 5-3.  Creating a formula package with a bac function

SQL> create or replace package formulas

  2  is

  3     function bac (

  4        p_volume in number

  5      , p_abv    in number

  6      , p_weight in number

  7      , p_gender in varchar2

  8     ) return number deterministic;

  9  end formulas;

 10  /
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Package FORMULAS compiled

SQL> create or replace package body formulas

  2  is

  3     function bac (

  4        p_volume in number

  5      , p_abv    in number

  6      , p_weight in number

  7      , p_gender in varchar2

  8     ) return number deterministic

  9     is

 10        PRAGMA UDF;

 11     begin

 12        return round(

 13           100 * (p_volume * p_abv / 100 * 0.789)

 14            / (p_weight * 1000 * case p_gender

 15                                    when 'M' then 0.68

 16                                    when 'F' then 0.55

 17                                 end)

 18         , 3

 19        );

 20     end bac;

 21  end formulas;

 22  /

Package Body FORMULAS compiled

All are pretty straightforward, except line 10 in the body. The UDF pragma (user-

defined function) is available since version 12.1 and tells the compiler that I intend to 

primarily call this function from SQL, rather than call it from PL/SQL.

If I had created the function without PRAGMA UDF, it would compile in the normal 

way, leading to normal context switching when the function is called. When it is 

compiled with PRAGMA UDF, it is compiled in a different manner, which potentially can 

reduce the overhead of the context switching. How much (if any) overhead reduction 

there might be is out of my control as a developer. I’ll explain more shortly, but first let 

me show the use of the function.
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Using the function is just the same as I would do with a normal function, so in 

Listing 5-4, I query the BAC using calls to the packaged function.

Listing 5-4.  Querying male and female BAC using packaged formula

SQL> select

  2     p.id as p_id

  3   , p.name

  4   , pa.sales_volume as vol

  5   , pa.abv

  6   , formulas.bac(pa.sales_volume, pa.abv, 80, 'M') bac_m

  7   , formulas.bac(pa.sales_volume, pa.abv, 60, 'F') bac_f

  8  from products p

  9  join product_alcohol pa

 10     on pa.product_id = p.id

 11  where p.group_id = 142

 12  order by p.id;

It gives me the same output as Listing 5-2, no surprises there.

What makes this very easy to use is that I code the function just like I normally 

would, but as I know the function will be used a lot from SQL and less (or never) from 

PL/SQL, I simply add the PRAGMA UDF, and the compiler takes care of the rest, potentially 

saving me from some of the runtime overhead of context switching.

How much benefit the PRAGMA UDF might give is depending on several factors. 

If the code inside the PL/SQL function only contains something that could have been 

expressed directly in SQL itself (such as the formulas.bac function), the benefit 

probably is larger, while a more complex function with much PL/SQL functionality or 

inline SQL might gain less or no benefit. You should test your use cases, but the general 

rule of thumb is that it won’t harm and probably might help a bit if you use the pragma 

whenever you know the function will be almost exclusively used from SQL.

When I compile the function with PRAGMA UDF, I ask the compiler to try and make 

the function cheaper to call from SQL, if it can. That also means that I do not care if 

it might become slightly more expensive to call from PL/SQL. Again depending on 

many factors, there might be a slight negative effect here, since a PRAGMA UDF function 

could expect to receive data in the format the SQL engine delivers it. It might be hardly 

noticeable, or it might be slightly more – it’ll depend on actual circumstances.

Chapter 5  Functions Defined Within SQL



80

But I have another alternative to using a PRAGMA UDF compiled function – I can skip 

creating a stored function in the database and just specify my function in the query itself.

�Function in the with clause
Version 12.1 also allows me to place PL/SQL function (and procedure, but that is rarely 

useful) code directly inside the with clause of a query, as I do it in Listing 5-5.

Listing 5-5.  Querying BAC with a function in the with clause

SQL> with

  2     function bac (

  3        p_volume in number

  4      , p_abv    in number

  5      , p_weight in number

  6      , p_gender in varchar2

  7     ) return number deterministic

  8     is

  9     begin

 10        return round(

 11           100 * (p_volume * p_abv / 100 * 0.789)

 12            / (p_weight * 1000 * case p_gender

 13                                    when 'M' then 0.68

 14                                    when 'F' then 0.55

 15                                 end)

 16         , 3

 17        );

 18     end;

 19  select

 20     p.id as p_id

 21   , p.name

 22   , pa.sales_volume as vol

 23   , pa.abv

 24   , bac(pa.sales_volume, pa.abv, 80, 'M') bac_m

 25   , bac(pa.sales_volume, pa.abv, 60, 'F') bac_f

 26  from products p
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 27  join product_alcohol pa

 28     on pa.product_id = p.id

 29  where p.group_id = 142

 30  order by p.id

 31  /

At first is the keyword with, just like in Chapter 3. But then instead of a subquery, 

lines 2–18 contain the code of the bac function, just as I had it in the package formulas. 

The defined function can then be called in the SQL as shown in lines 24–25. The output 

of this query is also the same as Listing 5-2.

A function in the with clause is compiled in the same manner as a PRAGMA UDF 

function, but it is not stored in the data dictionary as a PL/SQL object; it is only saved 

along with the query in the shared pool and cannot be called from any other SQL or PL/

SQL statement.

Note  Line 31 of Listing 5-5 ends the query with slash (/) instead of semicolon 
(;). Once the parser has detected there is PL/SQL in the with clause, it seems 
unable (at present) to detect if a semicolon is the end of the statement or part of 
the PL/SQL code. This might change in future versions, but for now the workaround 
is to use a slash to make sqlcl or SQL*Plus find the end of the statement.

It’s possible to have multiple functions in a single with clause. For example, I might 

decide to refactor my code and create two helper functions to calculate grams of alcohol 

and grams of body fluid (same as milliliters) and use those two functions inside my bac 

function. I can do that in Listing 5-6, which might be longer, but is also a bit more self-

documenting.

Listing 5-6.  Having multiple functions in one with clause

SQL> with

  2     function gram_alcohol (

  3        p_volume in number

  4      , p_abv    in number

  5     ) return number deterministic

  6     is

  7     begin
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  8        return p_volume * p_abv / 100 * 0.789;

  9     end;

 10     function gram_body_fluid (

 11        p_weight in number

 12      , p_gender in varchar2

 13     ) return number deterministic

 14     is

 15     begin

 16        return p_weight * 1000 * case p_gender

 17                                    when 'M' then 0.68

 18                                    when 'F' then 0.55

 19                                 end;

 20     end;

 21     function bac (

 22        p_volume in number

 23      , p_abv    in number

 24      , p_weight in number

 25      , p_gender in varchar2

 26     ) return number deterministic

 27     is

 28     begin

 29        return round(

 30           100 * gram_alcohol(p_volume, p_abv)

 31            / gram_body_fluid(p_weight, p_gender)

 32         , 3

 33        );

 34     end;

 35  select

...

The multiple functions make no difference to the output – it’s the same again.

But whether I use a single function or multiple functions, I still have a decision to 

make. If I want to use a function in multiple SQL statements, I have to create a stored 

function (with or without PRAGMA UDF), no question about it. But otherwise, why would I 

ever put it in the with clause instead of using a PRAGMA UDF function?
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One reason could be cases where you cannot create stored functions or procedures, 

for example, either in a read-only database or if you build some tool statements that you 

wish to run without installing code in databases of your clients.

Another reason could be if the function in some rare cases executes dynamic SQL 

that for some reason cannot use bind variables, using string concatenated SQL instead. 

Having the function in the query gives you absolute control of what arguments the 

function is called with, so you can guard yourself more against SQL injection. The 

function cannot be called from elsewhere.

A third reason could be functionality that is very specific for a single purpose, where 

you could choose a different way to encapsulate your code.

�Encapsulated in a view
It would be reasonable (in this application) to say that the blood alcohol concentration 

calculation does not make sense outside the context of a row in the product_alcohol 

table. If I had been using object-oriented programming, I could say that it would be a 

member method rather than a static method.

I can achieve a somewhat similar effect by creating the view in Listing 5-7.

Listing 5-7.  Creating a view with the BAC calculations

SQL> create view product_alcohol_bac

  2  as

  3  with

  4     function gram_alcohol (

...

 12     function gram_body_fluid (

...

 23     function bac (

...

 37  select

 38     pa.product_id

 39   , pa.sales_volume

 40   , pa.abv
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 41   , bac(pa.sales_volume, pa.abv, 80, 'M') bac_m

 42   , bac(pa.sales_volume, pa.abv, 60, 'F') bac_f

 43  from product_alcohol pa

 44  /

View PRODUCT_ALCOHOL_BAC created.

In this view, I use the with clause with the three functions from Listing 5-6. The 

query itself in lines 37–43 only uses the product_alcohol table, selecting all columns of 

the table plus the two calculated bac_m and bac_f columns.

Now I can make a query joining the products table with the product_alcohol_bac 

view in Listing 5-8, giving me the desired data directly and simply.

Listing 5-8.  Querying BAC data using the view

SQL> select

  2     p.id as p_id

  3   , p.name

  4   , pab.sales_volume as vol

  5   , pab.abv

  6   , pab.bac_m

  7   , pab.bac_f

  8  from products p

  9  join product_alcohol_bac pab

 10     on pab.product_id = p.id

 11  where p.group_id = 142

 12  order by p.id;

The same output once again:

P_ID  NAME              VOL  ABV  BAC_M  BAC_F

4040  Coalminers Sweat  330  8.5  0.041  0.067

4160  Reindeer Fuel     500  6    0.044  0.072

4280  Hoppy Crude Oil   330  7    0.034  0.055

This method enables me to reuse the logic in other SQL statements by querying the 

view instead of the table, but still have the logic only in a single place: the view definition.
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I could achieve the same by having the view calling the packaged function formulas.

bac instead of defining the functions in the view, but if it is a functionality that is so 

specific that it is only relevant for this particular query/view definition, then it can be 

a nice thing to keep everything together and not clutter the data dictionary with stored 

functions that really never should be called outside this particular SQL.

�Lessons learned
Even though the topic of this book is not PL/SQL as such, having the ability to integrate 

PL/SQL into SQL even tighter than it used to be is a feature you as a SQL developer 

should be aware of. With this chapter as example, you should now

•	 Consider if a function is primarily used from SQL and thus could 

benefit from adding the PRAGMA UDF to the definition.

•	 Know how to embed “single-use” functions in SQL statements in the 

with clause.

•	 Think about if very specific functionality might be better off 

encapsulated in a view using with clause functions instead of normal 

stored functions.

For much of your daily development, probably it is the PRAGMA UDF you mostly 

should think about, but the with clause technique can be very useful if you have 

situations where you cannot install stored procedures and functions.
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CHAPTER 6

Iterative Calculations 
with Multidimensional 
Data
You won’t find a multitude of real-life examples using the model clause, apart from doing 

recursion and iteration as I showed in Chapter 4. Recursive subquery factoring came in 

version 11, but with the model clause, you could do recursion from version 10. However, 

the real power of the model clause is the way you can address data in multiple dimensions 

in an array-like fashion, building formulas similar to the way spreadsheets work.

A nested table type in Oracle has a single dimension (index), and the “cell” can be 

a scalar or a structured type. If you have multiple dimensions, you can nest the nested 

table types, or you can work with plain SQL – both methods can become hairy for some 

types of calculations. In the model clause, you work in a sense with arrays that can have 

multiple dimensions and multiple measures (values) in each cell, and you have a very 

dense syntax for addressing multiple cells.

The model clause is not the obvious choice for implementation of everything, but I’ll 

show you an example that fits perfectly and uses both multiple dimensions as well as 

iteration. This example may not be the most useful in itself, but it demonstrates very well 

the kind of situations where you could consider using the model clause.

�Conway’s Game of Life
In 1970, British mathematician John Horton Conway devised the Game of Life (also 

known simply as Life). It is about cells in a two-dimensional grid emulating how cells live 

and die over generations depending on how crowded things are in the grid. You can see 

cells populating the grid in Figure 6-1.
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The idea is to start with some set of “live” cells (grid cells that are populated by live 

cellular organisms) and then see how the population evolves over time from generation 

to generation.

The evolvement is governed by these rules:

•	 Any live cell with fewer than two live neighbors dies, as if caused by 

underpopulation.

•	 Any live cell with two or three live neighbors lives on to the next 

generation.

•	 Any live cell with more than three live neighbors dies, as if by 

overcrowding.

•	 Any dead cell with exactly three live neighbors becomes a live cell, as 

if by reproduction.

So in order to find out which cells will be alive in the next generation, you count the 

number of live neighbors for each cell in this generation and apply the rules. Neighbors 

are defined as the eight cells that surround a cell (one cell away horizontally, vertically, 

or diagonally).

Most often you see the Game of Life implemented iteratively in a procedural 

language – I am going to show you how to do it in a single SQL statement with the model 

clause.

Figure 6-1.  Conway’s Game of Life is about life and death of cells in a grid
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Note  You can find a fuller explanation of the Game of Life on Wikipedia: 
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life.

�Live neighbor count with the model clause
I have created a table conway_gen_zero for holding all cells in the grid and whether they 

contain a live cell or not in generation zero. Figure 6-2 shows it has x and y columns 

for each grid position and column alive that contains 1 for a live cell and 0 for a dead 

(empty) cell.

Figure 6-2.  Table for the grid content of generation zero

To begin with, in Listing 6-1, I populate this table with a 10x10 grid, where the middle 

of the grid has some live cells in the pattern shown in Figure 6-1.

Listing 6-1.  Creating a 10x10 generation zero population

SQL> insert into conway_gen_zero (x, y, alive)

  2  select * from (

  3     with numbers as (

  4        select level as n from dual

  5        connect by level <= 10

  6     ), grid as (

  7        select

  8           x.n as x

  9         , y.n as y

 10        from numbers x

 11        cross join numbers y

 12     ), start_cells as (
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 13        select  4 x,  4 y from dual union all

 14        select  5 x,  4 y from dual union all

 15        select  4 x,  5 y from dual union all

 16        select  6 x,  6 y from dual union all

 17        select  7 x,  6 y from dual union all

 18        select  4 x,  7 y from dual union all

 19        select  5 x,  7 y from dual union all

 20        select  6 x,  7 y from dual

 21     )

 22     select

 23        g.x

 24      , g.y

 25      , nvl2(sc.x, 1, 0) as alive

 26     from grid g

 27     left outer join start_cells sc

 28        on  sc.x = g.x

 29        and sc.y = g.y

 30  );

100 rows inserted.

I use the techniques of Chapter 3 to make this query in several with clauses:

•	 numbers in lines 4–5 simply gives me ten rows numbered 1–10.

•	 grid in lines 7–11 makes a Cartesian join using numbers twice to 

generate 100 rows with all the (x, y) combinations of a 10x10 grid.

•	 start_cells in lines 13–20 generates eight rows with the (x, y) 

coordinates of those cells that are alive in generation zero (the 

starting population).

•	 In lines 22–29, the grid is left joined to start_cells, so the result is 

the 100 rows of the grid with line 25 calculating a 1 (alive) if the cell 

exists in start_cells and otherwise 0 (dead).

My generation zero population is ready, and in Listing 6-2, I display the population 

using X for a live cell and space for an empty cell, so you can visually see that this is the 

cell pattern of Figure 6-1.
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Listing 6-2.  Vizualizing generation zero

SQL> select

  2     listagg(

  3        case alive

  4           when 1 then 'X'

  5           when 0 then ' '

  6        end

  7     ) within group (

  8        order by x

  9     ) as cells

 10  from conway_gen_zero

 11  group by y

 12  order by y;

The listagg in lines 2–9 (read more about it in Chapter 10) aggregates a string 

containing Xs and spaces in order of column x for each column y giving this output:

CELLS

----------

   XX

   X

     XX

   XXX

Generation zero looks good, so it’s time to play around with the model clause in 

Listing 6-3 to calculate how many live neighbors each cell has.

Listing 6-3.  Live neighbor calculation with the model clause

SQL> select *

  2  from conway_gen_zero

  3  model

  4  dimension by (

  5     x, y

  6  )

  7  measures (

  8     alive
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  9   , 0 as sum_alive

 10   , 0 as nb_alive

 11  )

 12  ignore nav

 13  rules

 14  (

 15     sum_alive[any, any] =

 16        sum(alive)[

 17           x between cv() - 1 and cv() + 1

 18         , y between cv() - 1 and cv() + 1

 19        ]

 20   , nb_alive[any, any] =

 21        sum_alive[cv(), cv()] - alive[cv(), cv()]

 22  )

 23  order by x, y;

The model clause is built in a set of subclauses:

•	 dimension by in lines 4–6 states which columns to use as 

dimensions – or if you wish, indexes in a multidimensional array.

•	 measures in lines 7–11 are the attributes of each cell in the array. Here 

I am creating three measures – one is simply the column alive; the 

two others do not exist in the table but are initialized to zero.

•	 Then there can be various options of the model clause – in line 12, I’m 

using ignore nav, which simply states that when a formula tries to 

use the value of a measure in a cell, any nulls or non-existing values 

should be treated as a default value that depends on the datatype (in 

this case, zero for numbers).

•	 rules beginning in line 13 is a set of formulas that states how I want 

the values of the measures in each cell to be calculated. I have two 

formulas here, one for each of the two measures that were not in the 

table.

•	 Lines 15–19 calculate sum_alive. Using [any, any] I ask that the 

measure should be calculated for all cells in the grid. When the 

formula is calculated for a specific cell, function cv() gives the 
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value of the dimension for that specific cell, and I use this to define 

a 3x3 grid for which I calculate the sum of measure alive in the 

nine cells in that grid. For example, for the cell in [3, 5], the sum will 

be calculated over the cells with dimension x between 2 and 4 and 

dimension y between 4 and 6.

•	 Lines 20–21 calculate nb_alive, which is “neighbors alive.” The 

sum_alive calculated in the preceding text is the number of live cells 

in the nine cells in the 3x3 grid which includes the cell itself. So that 

means I can find the number of neighbors alive by subtracting the 

alive value in the cell itself.

The model clause in Listing 6-3 looks very different from normal SQL. It is a quite 

different way of addressing the data and applying formulas to specified subsets of the 

data, more similar to arrays in many procedural languages or formulas in spreadsheets, 

just in the more declarative manner that is the hallmark of SQL.

But I could do the same as Listing 6-3 in normal SQL, if I use a scalar subquery and 

an inline view. Listing 6-4 provides an example.

Listing 6-4.  Live neighbor calculation with the scalar subquery

SQL> select

  2     x

  3   , y

  4   , alive

  5   , sum_alive

  6   , sum_alive - alive as nb_alive

  7  from (

  8     select

  9        x

 10      , y

 11      , alive

 12      , (

 13           select sum(gz2.alive)

 14           from conway_gen_zero gz2

 15           where gz2.x between gz.x - 1 and gz.x + 1

 16           and   gz2.y between gz.y - 1 and gz.y + 1
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 17        ) as sum_alive

 18     from conway_gen_zero gz

 19  )

 20  order by x, y;

Both Listing 6-3 and Listing 6-4 produce the same output – all cells in the grid with 

the two live counts:

  X   Y ALIVE  SUM_ALIVE   NB_ALIVE

--- --- ----- ---------- ----------

  1   1     0          0          0

  1   2     0          0          0

  1   3     0          0          0

...

  5   5     0          4          4

  5   6     0          5          5

  5   7     1          4          3

  5   8     0          3          3

  5   9     0          0          0

  5  10     0          0          0

  6   1     0          0          0

  6   2     0          0          0

  6   3     0          1          1

  6   4     0          1          1

  6   5     0          3          3

...

 10   9     0          0          0

 10  10     0          0          0

100 rows selected.

So why do I choose to solve the Game of Life with the model clause instead of plain 

SQL? For one, it’s because the scalar subquery means a lot of repeated reads of the 

same data over and over. Normally I’d look to analytic functions to avoid such repetitive 

data access, but the problem here is that I want to sum over a range of two dimensions. 

If, for example, I were to use an analytic sum using the range between 1 preceding 

and 1 following clause, I could only do that on either x or y dimension, not on both 

simultaneously.
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The other reason for solving the Game of Life with the model clause will be clear 

when I start iterating the calculations over more generations in the game, as doing so is 

much more complex in plain SQL than in the model clause. Keep reading, and you’ll see 

what I mean.

Before that, however, I’d like to visualize the results of calculations using the listagg 

technique of Listing 6-2. So in Listing 6-5, I simply take the SQL from either Listing 6-3 or 

Listing 6-4 and put it in a with clause and then query that instead of the table directly.

Listing 6-5.  Displaying the counts grid fashion

SQL> with conway as (

...

        /* Content of Listing 6-3 or 6-4 */

...

 24  )

 25  select

 26     listagg(

 27        case alive

 28           when 1 then 'X'

 29           when 0 then ' '

 30        end

 31     ) within group (

 32        order by x

 33     ) cells

 34   , listagg(sum_alive) within group (order by x) sum_alives

 35   , listagg(nb_alive ) within group (order by x) nb_alives

 36  from conway

 37  group by y

 38  order by y;

Lines 26–33 are just as they were in Listing 6-2, and then I’ve added lines 34 and 35 

to visualize the content of measures sum_alive and nb_alive, which will work because 

the values always are single-digit. sum_alive I calculated over a 3x3 grid, so it can be a 

maximum of 9, and nb_alive can thus be a maximum of 8.
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CELLS      SUM_ALIVES NB_ALIVES

---------- ---------- ----------

           0000000000 0000000000

           0000000000 0000000000

           0012210000 0012210000

   XX      0023310000 0022210000

   X       0023432100 0022432100

     XX    0023543100 0023532100

   XXX     0012443100 0011333100

           0012321000 0012321000

           0000000000 0000000000

           0000000000 0000000000

You can see that in those positions of the grid where there is an X in cells, the digit 

in nb_alives is one less than sum_alives – just as expected.

So far I’ve only modeled and calculated neighbor count for generation zero. Now 

it’s time to use that neighbor count to calculate where there will be live cells in the next 

generation, calculate neighbor count for that generation, and then repeat the process 

iteratively for generation after generation after …

�Iterating generations
In the beginning of the chapter, I stated the four rules of Conway’s Game of Life. They are 

good for describing Life in terms of simulating a population of cellular organisms. But 

for implementing the rules in a programming language, it can be helpful to examine the 

logic of the rules and restate them in the following manner:

•	 Any cell with exactly two live neighbors keeps the same status (alive 

or dead) in the next generation.

•	 Any cell with exactly three live neighbors will be alive in the next 

generation (no matter if it was alive or dead in this generation).

•	 Any other cell will be dead in the next generation.
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The result of these rules is the same as the original four rules, but there is a great 

advantage for a programmer: it can easily be stated in an if or case structure whether a 

cell is alive or dead in the next generation, based on whether the neighbor count in the 

current generation is two, three, or anything else. So that I will do in Listing 6-6.

Listing 6-6.  Iterating two generations

SQL> with conway as (

  2     select *

  3     from conway_gen_zero

  4     model

  5     dimension by (

  6        0 as generation

  7      , x, y

  8     )

  9     measures (

 10        alive

 11      , 0 as sum_alive

 12      , 0 as nb_alive

 13     )

 14     ignore nav

 15     rules upsert all iterate (2)

 16     (

 17        sum_alive[iteration_number, any, any] =

 18           sum(alive)[

 19              generation = iteration_number

 20            , x between cv() - 1 and cv() + 1

 21            , y between cv() - 1 and cv() + 1

 22           ]

 23      , nb_alive[iteration_number, any, any] =

 24           sum_alive[iteration_number, cv(), cv()]

 25             - alive[iteration_number, cv(), cv()]

 26      , alive[iteration_number + 1, any, any] =

 27           case nb_alive[iteration_number, cv(), cv()]

 28              when 2 then alive[iteration_number, cv(), cv()]

 29              when 3 then 1
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 30              else 0

 31           end

 32     )

 33  )

 34  select

 35     generation

 36   , listagg(

 37        case alive

 38           when 1 then 'X'

 39           when 0 then ' '

 40        end

 41     ) within group (

 42        order by x

 43     ) cells

 44   , listagg(sum_alive) within group (order by x) sum_alives

 45   , listagg(nb_alive ) within group (order by x) nb_alives

 46  from conway

 47  group by generation, y

 48  order by generation, y;

Compared to Listing 6-3, I have added some things to handle generations of cells:

•	 In line 6, I have added another dimension generation for a total of 

three dimensions. This does not exist in the table, so I initialize it with 

the value zero. That means that the 100 rows in the table will be in the 

multidimensional array all having zero for generation but x and y 

values from the table.

•	 In the rules clause in line 15, I have added upsert all, which states 

that if I set a value for an existing cell, it will be updated, but if I set a 

value for a non-existing cell, it will be created. This is needed since I 

am going to create 100 new cells for every generation I am iterating 

over.

•	 In line 15, I have also added iterate (2), which means that the rules 

will be applied twice.
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•	 As I have added a dimension, I must also expand the indexing used in 

cell addressing in the formulas for sum_alive and nb_alive in lines 

17–25. For the generation dimension, I use the value of iteration_

number, which is a number that starts with zero for the first iteration 

and then increments by one for every iteration. So sum_alive and 

nb_alive are calculated for the generation that matches the iteration, 

starting with generation zero.

•	 In lines 26–31, I apply the three rewritten rules of Conway, where I 

set the value of alive in the next generation using the case structure 

based on nb_alive in this generation. This is where the upsert all 

is needed, since I am creating new cells with a generation value one 

higher.

In total, Listing 6-6 produces this output:

GENERATION CELLS      SUM_ALIVES NB_ALIVES

---------- ---------- ---------- ----------

         0            0000000000 0000000000

         0            0000000000 0000000000

         0            0012210000 0012210000

         0    XX      0023310000 0022210000

         0    X       0023432100 0022432100

         0      XX    0023543100 0023532100

         0    XXX     0012443100 0011333100

         0            0012321000 0012321000

         0            0000000000 0000000000

         0            0000000000 0000000000

         1            0000000000 0000000000

         1            0000000000 0000000000

         1            0012210000 0012210000

         1    XX      0023421000 0022321000

         1    X X     0034643100 0033633100

         1    X XX    0023665200 0022654200

         1     XXX    0013564200 0013453200

         1     X      0002342100 0002242100

         1            0001110000 0001110000
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         1            0000000000 0000000000

         2

         2

         2

         2    XX

         2   XX XX

         2    X

         2    X  X

         2     X

         2

         2

The content of cells (measure alive) in generation zero comes directly from the 

table.

In the first iteration (iteration_number 0), the sum_alive and nb_alive of 

generation zero are calculated, and the cells (alive) of generation one are calculated.

In the second iteration (iteration_number 1), the sum_alive and nb_alive of 

generation one are calculated, and the cells (alive) of generation two are calculated. 

Then I do not iterate anymore, so sum_alive and nb_alive of generation two are not 

calculated.

Such iteration over multiple generations would have been much more difficult to 

do with plain SQL. Using a technique like Listing 6-4 combined with recursive subquery 

factoring (Chapter 4), it would probably be possible, but it would not be very nice and 

most likely not very performant.

Using the model clause to do this like Listing 6-6 is actually quite declarative, but it is 

a different way of thinking. Listing 6-6 may look a bit long, but once I have it developed, 

I can see that I do not actually need to explicitly calculate the intermediate values sum_

alive and nb_alive. I can put those calculations directly into the calculation of alive, 

making a reduced query in Listing 6-7.

Listing 6-7.  Reducing the query

SQL> with conway as (

  2     select *

  3     from conway_gen_zero

  4     model

  5     dimension by (
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  6        0 as generation

  7      , x, y

  8     )

  9     measures (

 10        alive

 11     )

 12     ignore nav

 13     rules upsert all iterate (2)

 14     (

 15        alive[iteration_number + 1, any, any] =

 16           case sum(alive)[

 17                    generation = iteration_number,

 18                    x between cv() - 1 and cv() + 1,

 19                    y between cv() - 1 and cv() + 1

 20                ] - alive[iteration_number, cv(), cv()]

 21              when 2 then alive[iteration_number, cv(), cv()]

 22              when 3 then 1

 23              else 0

 24           end

 25     )

 26  )

 27  select

 28     generation

 29   , listagg(

 30        case alive

 31           when 1 then 'X'

 32           when 0 then ' '

 33        end

 34     ) within group (

 35        order by x

 36     ) cells

 37  from conway

 38  group by generation, y

 39  order by generation, y;
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The reduced query of course does not show the neighbor counts, but I do not need 

them anymore; they were mostly useful during the development of the code:

GENERATION CELLS

---------- ----------

         0

         0

         0

         0    XX

         0    X

         0      XX

         0    XXX

         0

         0

         0

         1

         1

         1

         1    XX

         1    X X

         1    X XX

         1     XXX

         1     X

         1

         1

         2

         2

         2

         2    XX

         2   XX XX

         2    X

         2    X  X

         2     X

         2

         2
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And now I can play around and try to generate, for example, 25 generations:

 13     rules upsert all iterate (25)

GENERATION CELLS

---------- ----------

...

        25    X   X X

        25   XXXX

        25  X  XX  XX

        25 X X   XXX

        25 X X X  XX

        25 X    X X

        25 X XX   X

        25  X    X  X

        25        XXX

        25         X

260 rows selected.

I can see that the live cells have spread over my entire 10x10 grid, so will it be 

completely filled if I do 50 generations?

 13     rules upsert all iterate (50)

GENERATION CELLS

---------- ----------

...

        50

        50

        50         XX

        50         XX

        50

        50

        50

        50

        50

        50

510 rows selected.
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Well no, from generation 40 or so, the population starts to decrease, and from 

generation 46, I have just four cells alive in a stable pattern that will stay like that forever. 

Partly this is because my grid is much too small and limited – in theory the Game of Life 

should run on an infinite grid.

Just to round off the playing around with Game of Life, Listing 6-8 puts a different 

generation zero onto a 6x6 grid. This new starting point gives us an oscillating game, 

which is interesting to see when you run the iterations.

Listing 6-8.  The Toad

SQL> truncate table conway_gen_zero;

Table CONWAY_GEN_ZERO truncated.

SQL> insert into conway_gen_zero (x, y, alive)

  2  select * from (

  3     with numbers as (

  4        select level as n from dual

  5        connect by level <= 6

  6     ), grid as (

  7        select

  8           x.n as x

  9         , y.n as y

 10        from numbers x

 11        cross join numbers y

 12     ), start_cells as (

 13        select  4 x,  2 y from dual union all

 14        select  2 x,  3 y from dual union all

 15        select  5 x,  3 y from dual union all

 16        select  2 x,  4 y from dual union all

 17        select  5 x,  4 y from dual union all

 18        select  3 x,  5 y from dual

 19     )

 20     select

 21        g.x

 22      , g.y

 23      , nvl2(sc.x, 1, 0) as alive
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 24     from grid g

 25     left outer join start_cells sc

 26        on  sc.x = g.x

 27        and sc.y = g.y

 28  );

36 rows inserted.

And then I run Listing 6-7 iterating just for two generations:

13     rules upsert all iterate (2)

In the output, I can see that generation two is identical to generation zero, which 

means generation three would be identical to generation one, and so on:

GENERATION CELLS

---------- ----------

         0

         0    X

         0  X  X

         0  X  X

         0   X

         0

         1

         1

         1   XXX

         1  XXX

         1

         1

         2

         2    X

         2  X  X

         2  X  X

         2   X

         2

18 rows selected.
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This output is an example of what is known as an oscillator with period 2, since it 

oscillates back and forth between two populations. There are many examples of such 

oscillators – this one is known as the Toad, visualized in Figure 6-3.

Figure 6-3.  The two states of the Toad oscillator

�Lessons learned
In this chapter I have used an example that is a bit more “for fun” and less practically 

useful in itself. I have done it, however, as it is a very good showcase of some of the 

powerful features of the model clause, so having read the chapter, you should have an 

idea about

•	 Selecting “indexes” for the multidimensional array in dimension by

•	 Defining attributes to carry the values for each cell of the array in 

measures

•	 Using [] syntax to retrieve data from one or more (with aggregation) 

cells in rules

•	 Repeating the rules multiple times with iterate

•	 Creating new cells with upsert all

With these “building blocks,” you can create your own model clauses when you have 

a use case that is suitable for this method of handling data.
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CHAPTER 7

Unpivoting Columns 
to Rows
Ideally, you’d hope always to work with data that’s nicely normalized in your relational 

database, the way they teach in computer science classes. In reality it’s quite often not as 

ideal.

One quite common pattern is to have some data with a bunch of columns, where 

you’d really like those data as rows with, for example, key-value pairs, where the key 

would be derived from the original column name and the value then would be the value 

from that column.

Personally I like to use the terms dimension and measure instead of key and value. 

You might say that’s only for data warehousing, but the terms are also used, for example, 

in the model clause in SQL. The advantage, in my opinion, is that it is common to think 

of multiple dimensions and multiple measures, whereas the key-value terminology most 

often is used thinking only of a single key and a single value.

The act of turning data in rows into columns is called pivoting (which is the topic of 

the next chapter), so as this is the reverse operation, it is called unpivoting. I’ll show you 

unpivoting with examples based on tables that contain data from an external source – 

that’s of course not always the case, but it is not uncommon.
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�Data received in columns
To exemplify unpivoting, I am going to use the two tables shown in Figure 7-1.

Figure 7-1.  Tables holding incoming data from web provider

Good Beer Trading Co uses an external service to gather statistics about visitors to 

the company webshop. This service delivers daily statistical data that are imported into 

these two tables:

•	 In table web_devices are saved daily stats about how many visitors 

to the webshop are from PCs, tablets, and phones, each visitor count 

stored in a separate column for each device type.

•	 In table web_demographics are both visitor count as well as the 

quantity the visitors ended up buying. Both count and quantity are 

separated into male vs. female visitors, as well as into visitors coming 

from Twitter campaigns vs. Facebook campaigns. So, for example, 

column m_tw_cnt is count of male visitors from Twitter, while column 

f_fb_qty is the quantity bought by female visitors from Facebook.

I’m going to demonstrate various unpivoting methods on these tables.

�Unpivoting to rows
First, I take a look at the content of table web_devices in Listing 7-1.
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Listing 7-1.  Daily web visits per device

SQL> select day, pc, tablet, phone

  2  from web_devices

  3  order by day;

DAY         PC    TABLET  PHONE

2019-05-01  1042  812     1610

2019-05-02  967   1102    2159

What I want to do now is to unpivot these data with a single dimension column 

containing the device (PC, tablet, or phone) and a single measure column with the visitor 

count for that device – that is, the value from the corresponding column in the table.

The first method is to use the unpivot clause of the select statement as shown in 

Listing 7-2.

Listing 7-2.  Using unpivot to get dimension and measure

SQL> select day, device, cnt

  2  from web_devices

  3  unpivot (

  4     cnt

  5     for device

  6     in (

  7        pc     as 'PC'

  8      , tablet as 'Tablet'

  9      , phone  as 'Phone'

 10     )

 11  )

 12  order by day, device;

The unpivot clause consists of three parts:

•	 First measures must be defined – in this case cnt in line 4. It’s a 

column that does not exist but will be created; I simply define that 

there should be a single measure, and it is to be called cnt.

•	 I then define for what dimensions the measures should exist – line 5 

with the keyword for followed by dimension name device. Again a 

non-existing column will be created.
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•	 Lastly the in clause in lines 6–10 defines the mapping from the 

original columns to the new measure and dimension columns. Here 

I have defined three mappings (lines 7–9) which means there will be 

generated three output rows for each input row:

•	 One row with the value from pc in cnt and the string 'PC' in 

device

•	 One row with the value from tablet in cnt and the string 

'Tablet' in device

•	 One row with the value from phone in cnt and the string 'Phone' 

in device

Figure 7-2 shows how the data flows – from the mapping rules in the in clause, the 

values of the columns on the left flow to the measure column and the literals on the right 

flow to the dimension column.

Figure 7-2.  Flow of single dimension and measure values

Those columns of the original table I specify in the in clause will not be part of the 

output, as they and their values have been transformed to dimensions and measures. 

Any other column of the table will be output unaltered – in this case that is only the day 

column, but had there been other columns they would have been there too.

In total Listing 7-2 gives me this output with three rows for each day, one row for 

each of the three device types, unpivoted just like I wanted it:

DAY         DEVICE  CNT

2019-05-01  PC      1042

2019-05-01  Phone   1610

2019-05-01  Tablet  812
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2019-05-02  PC      967

2019-05-02  Phone   2159

2019-05-02  Tablet  1102

�Do-it-yourself unpivoting
But there is another way to unpivot without using the unpivot clause. Before version 10, 

you had to do it yourself manually, and I’ll show you a couple of versions of the manual 

unpivot. It can be handy to know of it so you can recognize what’s happening if you see 

it in old code. And once in a rare while, there is also the possibility you have something 

complex that fits less optimally into the unpivot clause and it is easier to implement it 

this way.

The basic idea in both versions is that I need to generate as many rows as I 

have values of my dimension. With the unpivot clause, these rows are generated 

automatically as many as I have expressions in the in list – in Listing 7-3, I generate those 

three rows manually using select from dual.

Listing 7-3.  Manual unpivot using numbered row generator

SQL> select

  2     wd.day

  3   , case r.rn

  4        when 1 then 'PC'

  5        when 2 then 'Tablet'

  6        when 3 then 'Phone'

  7     end as device

  8   , case r.rn

  9        when 1 then wd.pc

 10        when 2 then wd.tablet

 11        when 3 then wd.phone

 12     end as cnt

 13  from web_devices wd

 14  cross join (

 15     select level as rn from dual connect by level <= 3

 16  ) r

 17  order by day, device;
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In the inline view r, I generate three rows in line 15 numbered 1, 2, and 3. With these 

rows, I do a Cartesian join (line 14) to the web_devices table, so for each and every row 

in web_devices, I get three rows in the output.

Then I use two case structures for my dimension and measure:

•	 Lines 3–7 put the literal values for dimension device in the first, 

second, and third generated row.

•	 Lines 8–12 put the count values from columns pc, table, and phone 

in the same rows in measure cnt.

That makes Listing 7-3 produce the exact same output as Listing 7-2, just performed 

with manual unpivoting.

Listing 7-4 is an alternative manual unpivoting method that also produces the same 

output.

Listing 7-4.  Manual unpivot using dimension style row generator

SQL> with devices( device ) as (

  2     select 'PC'     from dual union all

  3     select 'Tablet' from dual union all

  4     select 'Phone'  from dual

  5  )

  6  select

  7     wd.day

  8   , d.device

  9   , case d.device

 10        when 'PC'     then wd.pc

 11        when 'Tablet' then wd.tablet

 12        when 'Phone'  then wd.phone

 13     end as cnt

 14  from web_devices wd

 15  cross join devices d

 16  order by day, device;

Where Listing 7-3 generates three numbered rows with case structures defining 

what data to put in row 1, row 2, and row 3, Listing 7-4 instead generates three rows that 

already have the values needed for the dimension. Here I chose to put the generator in a 

with clause in lines 1–5 instead of an inline view, but the effect is the same.
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Again I do a Cartesian join with the generated rows in line 15, but now I do not need 

two case structures anymore. As the dimension value, I can directly use the column from 

the generated rows in line 8, leaving me with a single case structure in lines 9–13 for my 

measure. The difference here is I do not use “row 1, row 2, row 3,” but rather the values of 

the dimension.

Using the with clause also illustrates nicely that devices could have been a real table 

instead of generated rows in a with clause – then the query simply would have consisted 

of lines 6–16. Note, however, that it would not be a dynamic unpivoting – even though 

the dimension values would come from a table, I would still need to hardcode the values 

into the case structure. It could be dynamic, but it would require dynamic SQL. I’ll show 

an example of this later in the chapter.

�More than one dimension and/or measure
The previous example used table web_devices with a single dimension and single 

measure; now I’ll show handling of multiple dimensions and measures. You saw the 

diagram of table web_demographics at the start of the chapter; Listing 7-5 shows you the 

content.

Listing 7-5.  Daily web visits and purchases per gender and channel

SQL> select

  2     day

  3   , m_tw_cnt

  4   , m_tw_qty

  5   , m_fb_cnt

  6   , m_fb_qty

  7   , f_tw_cnt

  8   , f_tw_qty

  9   , f_fb_cnt

 10   , f_fb_qty

 11  from web_demographics

 12  order by day;
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Showing all those columns isn’t nicely formatted, but you can see the eight columns 

that are all combinations of two measures (cnt and qty) for two values of dimension 

gender (m and f) and two values of dimension channel (tw and fb):

DAY         M_TW_CNT  M_TW_QTY  M_FB_CNT  M_FB_QTY  F_TW_CNT  F_TW_QTY  F_

FB_CNT  F_FB_QTY

2019-05-01  1232      86        1017      64        651       76        564       

68

2019-05-02  1438      142       1198      70        840       92        752       

78

The syntax for using unpivot with multiple dimensions and/or multiple measures is 

pretty much identical to what I did for single dimension/measure in Listing 7-2 – except 

that instead of single expressions, I need to use expression lists, as I show it in Listing 7-6.

Listing 7-6.  Using unpivot with two dimensions and two measures

SQL> select day, gender, channel, cnt, qty

  2  from web_demographics

  3  unpivot (

  4     ( cnt, qty )

  5     for ( gender, channel )

  6     in (

  7        (m_tw_cnt, m_tw_qty) as ('Male'  , 'Twitter' )

  8      , (m_fb_cnt, m_fb_qty) as ('Male'  , 'Facebook')

  9      , (f_tw_cnt, f_tw_qty) as ('Female', 'Twitter' )

 10      , (f_fb_cnt, f_fb_qty) as ('Female', 'Facebook')

 11     )

 12  )

 13  order by day, gender, channel;

Expression lists are comma-separated lists of expressions inside a set of 

parentheses – the parentheses are mandatory to identify an expression list, not just a 

convenience for readability. In the code, I have expression lists in multiple places:

•	 In line 4, the expression list defines two measures, cnt and qty – like 

before, they are columns that will be created, not columns in the 

table.
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•	 The expression list in line 5 defines two dimensions in a similar 

manner.

•	 Each mapping in lines 7–10 then uses two expression lists each 

with two columns – first on the left side an expression list with two 

columns from the table and then on the right an expression list with 

two literals.

All this leads to an output with four output rows for each input row – since there are 

four mappings in the in clause:

DAY         GENDER  CHANNEL   CNT   QTY

2019-05-01  Female  Facebook  564   68

2019-05-01  Female  Twitter   651   76

2019-05-01  Male    Facebook  1017  64

2019-05-01  Male    Twitter   1232  86

2019-05-02  Female  Facebook  752   78

2019-05-02  Female  Twitter   840   92

2019-05-02  Male    Facebook  1198  70

2019-05-02  Male    Twitter   1438  142

In Figure 7-3 I show that the flow is still the same – just like in Figure 7-2 – and how 

the expression lists correspond. Values from the table columns left of the as keyword 

flow to the measures, literals to the right of the as keyword flow to the dimensions.

Figure 7-3.  Flow of multiple dimension and measure values
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Looking on the figure also makes it clear that the expression lists with table columns 

(left) must have the same number of columns as the expression list that defines the 

measures. Likewise, the expression lists with literals (right) must have the same number 

of literals as the expression list that defines the dimensions.

But it is not mandatory for the number of dimensions to be equal to the number of 

measures – you can have many dimensions and few or one measure or vice versa. I’ll 

show you some examples of this.

The first example is Listing 7-7, where I show using a single dimension and two 

measures.

Listing 7-7.  Using unpivot with one composite dimension and two measures

SQL> select day, gender_and_channel, cnt, qty

  2  from web_demographics

  3  unpivot (

  4     ( cnt, qty )

  5     for gender_and_channel

  6     in (

  7        (m_tw_cnt, m_tw_qty) as 'Male on Twitter'

  8      , (m_fb_cnt, m_fb_qty) as 'Male on Facebook'

  9      , (f_tw_cnt, f_tw_qty) as 'Female on Twitter'

 10      , (f_fb_cnt, f_fb_qty) as 'Female on Facebook'

 11     )

 12  )

 13  order by day, gender_and_channel;

The measure expression list in line 4 matches the left-side table column expression 

lists in lines 7–10. Then line 5 defines just a single dimension (therefore no parentheses), 

and the right-side literals in lines 7–10 accordingly also are single literals.

This way I get an output where I have a single dimension column gender_and_

channel – though in this case I chose it to be “composite” dimension that still carries two 

types of information:

DAY         GENDER_AND_CHANNEL  CNT   QTY

2019-05-01  Female on Facebook  564   68

2019-05-01  Female on Twitter   651   76

2019-05-01  Male on Facebook    1017  64
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2019-05-01  Male on Twitter     1232  86

2019-05-02  Female on Facebook  752   78

2019-05-02  Female on Twitter   840   92

2019-05-02  Male on Facebook    1198  70

2019-05-02  Male on Twitter     1438  142

Of course I do not necessarily need to do that; I can choose to discard information 

if I wish and keep just a single “non-composite” dimension keeping only the gender 

information and discarding the channel, as I show in Listing 7-8.

Listing 7-8.  Using unpivot with one single dimension and two measures

SQL> select day, gender, cnt, qty

  2  from web_demographics

  3  unpivot (

  4     ( cnt, qty )

  5     for gender

  6     in (

  7        (m_tw_cnt, m_tw_qty) as 'Male'

  8      , (m_fb_cnt, m_fb_qty) as 'Male'

  9      , (f_tw_cnt, f_tw_qty) as 'Female'

 10      , (f_fb_cnt, f_fb_qty) as 'Female'

 11     )

 12  )

 13  order by day, gender;

But note that even though I only keep the dimension information on gender with two 

distinct values, I still get four rows in the output for each input row:

DAY         GENDER  CNT   QTY

2019-05-01  Female  564   68

2019-05-01  Female  651   76

2019-05-01  Male    1017  64

2019-05-01  Male    1232  86

2019-05-02  Female  840   92

2019-05-02  Female  752   78

2019-05-02  Male    1438  142

2019-05-02  Male    1198  70
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In other words, repeating the same dimension value literal does not automatically 

aggregate on the dimension. If that is the output I desire, I can use Listing 7-9 to do the 

aggregation myself.

Listing 7-9.  Using unpivot with one aggregated dimension and two measures

SQL> select day

  2       , gender

  3       , sum(cnt) as cnt

  4       , sum(qty) as qty

  5  from web_demographics

  6  unpivot (

  7     ( cnt, qty )

  8     for gender

  9     in (

 10        (m_tw_cnt, m_tw_qty) as 'Male'

 11      , (m_fb_cnt, m_fb_qty) as 'Male'

 12      , (f_tw_cnt, f_tw_qty) as 'Female'

 13      , (f_fb_cnt, f_fb_qty) as 'Female'

 14     )

 15  )

 16  group by day, gender

 17  order by day, gender;

It is allowed to use group by and aggregate functions like sum directly in the unpivot 

query – I do not need to wrap it in an inline view. This way I can get just two rows for 

each original input row – one for each gender:

DAY         GENDER  CNT   QTY

2019-05-01  Female  1215  144

2019-05-01  Male    2249  150

2019-05-02  Female  1592  170

2019-05-02  Male    2636  212

And of course I can also do the other way around – two dimensions with a single 

measure. In Listing 7-10, for example, I keep just the cnt measure and discard the qty 

information.
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Listing 7-10.  Using unpivot with two dimensions and one measure

SQL> select day, gender, channel, cnt

  2  from web_demographics

  3  unpivot (

  4     cnt

  5     for ( gender, channel )

  6     in (

  7        m_tw_cnt as ('Male'  , 'Twitter' )

  8      , m_fb_cnt as ('Male'  , 'Facebook')

  9      , f_tw_cnt as ('Female', 'Twitter' )

 10      , f_fb_cnt as ('Female', 'Facebook')

 11     )

 12  )

 13  order by day, gender, channel;

Again you see the match that I use single expression for measure as well as for the 

left-side table columns and I use expression lists for dimensions and the right-side 

literals. As you can figure out, I get this output with all eight rows, just no qty column:

DAY         GENDER  CHANNEL   CNT

2019-05-01  Female  Facebook  564

2019-05-01  Female  Twitter   651

2019-05-01  Male    Facebook  1017

2019-05-01  Male    Twitter   1232

2019-05-02  Female  Facebook  752

2019-05-02  Female  Twitter   840

2019-05-02  Male    Facebook  1198

2019-05-02  Male    Twitter   1438

Manual unpivoting can also be done with multiple dimensions and measures, but 

I will not show you examples of doing this with generated rows using dual like before 

(that will be left as an exercise for the reader). Instead I will show it using real dimension 

tables.
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�Using dimension tables
So I’m going to add two tables to hold the values for my two dimensions: gender_dim 

and channels_dim defined in Figure 7-4.

Figure 7-4.  Dimension tables

Listing 7-11 shows I’ve entered the values for male and female in gender_dim:

Listing 7-11.  Dimension table for gender

SQL> select letter, name

  2  from gender_dim

  3  order by letter;

LETTER  NAME

F       Female

M       Male

Likewise, Listing 7-12 shows the values for Twitter and Facebook in table channels_

dim.

Listing 7-12.  Dimension table for channels

SQL> select id, name, shortcut

  2  from channels_dim

  3  order by id;

ID  NAME      SHORTCUT

42  Twitter   tw

44  Facebook  fb
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Recall that I did manual unpivot before by doing a Cartesian join to some generated 

rows. When I use my dimension tables in Listing 7-13, I simply do Cartesian joins to 

both tables, so that for each input row in table web_demographics, I get a row for every 

combination of rows in gender_dim and channels_dim.

Listing 7-13.  Manual unpivot using dimension tables

SQL> select

  2     d.day

  3   , g.letter as g_id

  4   , c.id as ch_id

  5   , case g.letter

  6        when 'M' then

  7           case c.shortcut

  8              when 'tw' then d.m_tw_cnt

  9              when 'fb' then d.m_fb_cnt

 10           end

 11        when 'F' then

 12           case c.shortcut

 13              when 'tw' then d.f_tw_cnt

 14              when 'fb' then d.f_fb_cnt

 15           end

 16     end as cnt

 17   , case g.letter

 18        when 'M' then

 19           case c.shortcut

 20              when 'tw' then d.m_tw_qty

 21              when 'fb' then d.m_fb_qty

 22           end

 23        when 'F' then

 24           case c.shortcut

 25              when 'tw' then d.f_tw_qty

 26              when 'fb' then d.f_fb_qty

 27           end

 28     end as qty

 29  from web_demographics d
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 30  cross join gender_dim g

 31  cross join channels_dim c

 32  order by day, g_id, ch_id;

Explaining from the bottom up, I do the Cartesian joins with cross join in lines 30 

and 31.

Having created four rows for each input row, I use two case constructs for each of 

my measures – lines 5–16 for cnt and lines 17–28 for qty. Each construct maps values 

from the dimension tables to specific columns in web_demographics. Should there 

happen to be more rows in the dimension tables with values that are not listed in my 

case structures, they will generate rows in the output that will have null values in the 

measures.

And in lines 3 and 4, I get values for my dimensions directly from the dimension 

tables. Since I have real tables for the dimensions, I choose here to use the primary 

keys for the dimension tables instead of the textual descriptions – that way this result 

could, if I wished, be directly inserted into a table having foreign key relationships to the 

dimension tables:

DAY         G_ID  CH_ID  CNT   QTY

2019-05-01  F     42     651   76

2019-05-01  F     44     564   68

2019-05-01  M     42     1232  86

2019-05-01  M     44     1017  64

2019-05-02  F     42     840   92

2019-05-02  F     44     752   78

2019-05-02  M     42     1438  142

2019-05-02  M     44     1198  70

As a little curiosity, I’d like to mention that I tried doing the case expressions using 

expression lists like this:

  5   , case (g.letter, c.shortcut)

  6        when ('M', 'tw') then d.m_tw_cnt

  7        when ('M', 'fb') then d.m_fb_cnt

  8        when ('F', 'tw') then d.f_tw_cnt

  9        when ('F', 'fb') then d.f_fb_cnt

 10     end as cnt
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But that gave me an error – this is not supported syntax for the simple case 

expression. I think it would have been nice, but maybe it will be allowed in a future 

version, who knows.

As noted earlier, I’m still hard-coding values even when using dimension tables like 

this – so I’ll end the chapter with an example of how it can be made truly dynamic.

�Dynamic mapping to dimension tables
To make a truly dynamic unpivoting from values in the dimension tables, I need 

specifically to generate the mappings to be used in the in clause. To do this, I create the 

query in Listing 7-14.

Listing 7-14.  Preparing column names mapped to dimension values

SQL> select

  2     s.cnt_col, s.qty_col

  3   , s.g_id, s.gender

  4   , s.ch_id, s.channel

  5  from (

  6     select

  7        lower(

  8           g.letter || '_' || c.shortcut || '_cnt'

  9        ) as cnt_col

 10      , lower(

 11           g.letter || '_' || c.shortcut || '_qty'

 12        )as qty_col

 13      , g.letter as g_id

 14      , g.name as gender

 15      , c.id as ch_id

 16      , c.name as channel

 17     from gender_dim g

 18     cross join channels_dim c

 19  ) s

 20  join user_tab_columns cnt_c

 21     on cnt_c.column_name = upper(s.cnt_col)

 22  join user_tab_columns qty_c
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 23     on qty_c.column_name = upper(s.cnt_col)

 24  where cnt_c.table_name = 'WEB_DEMOGRAPHICS'

 25  and   qty_c.table_name = 'WEB_DEMOGRAPHICS'

 26  order by gender, channel;

I need each possible combination of values from my two dimension tables, so I use 

a Cartesian join in lines 17–18. Using the letter and shortcut column values from 

the two tables, in lines 7–9 and 10–12, I generate the names of the columns in my web_

demographics table. (Strictly speaking I do not really need to use lower function here, I 

just do it for when I check-read the generated code later.)

Since I could get runtime errors if the values in the dimension tables do not correctly 

reflect the columns in web_demographics table, I wrap in an inline view and join to user_

tab_columns to make sure I only retrieve columns that exist.

In total the query shows me the data I need for the mappings in the in clause:

CNT_COL   QTY_COL   G_ID  GENDER  CH_ID  CHANNEL

f_fb_cnt  f_fb_qty  F     Female  44     Facebook

f_tw_cnt  f_tw_qty  F     Female  42     Twitter

m_fb_cnt  m_fb_qty  M     Male    44     Facebook

m_tw_cnt  m_tw_qty  M     Male    42     Twitter

Armed with this query, I’m going to use PL/SQL to build dynamic SQL with unpivot. 

First, I’ll turn on serveroutput for debugging purposes:

SQL> set serveroutput on

And I’ll create a sqlcl (or SQL∗Plus) bind variable to hold my dynamically generated 

cursor:

SQL> variable unpivoted refcursor

Then I’m ready to execute the anonymous PL/SQL block in Listing 7-15 to build 

dynamic SQL.

Listing 7-15.  Dynamically building unpivot query

SQL> declare

  2     v_unpivot_sql  varchar2(4000);

  3  begin

  4     for c in (
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  5        select

  6           s.cnt_col, s.qty_col

  7         , s.g_id, s.gender

  8         , s.ch_id, s.channel

  9        from (

 10           select

 11              lower(

 12                 g.letter || '_' || c.shortcut || '_cnt'

 13              ) as cnt_col

 14            , lower(

 15                 g.letter || '_' || c.shortcut || '_qty'

 16              )as qty_col

 17            , g.letter as g_id

 18            , g.name as gender

 19            , c.id as ch_id

 20            , c.name as channel

 21           from gender_dim g

 22           cross join channels_dim c

 23        ) s

 24        join user_tab_columns cnt_c

 25           on cnt_c.column_name = upper(s.cnt_col)

 26        join user_tab_columns qty_c

 27           on qty_c.column_name = upper(s.cnt_col)

 28        where cnt_c.table_name = 'WEB_DEMOGRAPHICS'

 29        and   qty_c.table_name = 'WEB_DEMOGRAPHICS'

 30        order by gender, channel

 31     ) loop

 32

 33        if v_unpivot_sql is null then

 34           v_unpivot_sql := q'[

 35              select day, g_id, ch_id, cnt, qty

 36              from web_demographics

 37              unpivot (

 38                 ( cnt, qty )

 39                 for ( g_id, ch_id )
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 40                 in (

 41                    ]';

 42        else

 43           v_unpivot_sql := v_unpivot_sql || q'[

 44                  , ]';

 45        end if;

 46

 47        v_unpivot_sql := v_unpivot_sql

 48                      || '(' || c.cnt_col

 49                      || ', ' || c.qty_col

 50                      || ') as (''' || c.g_id

 51                      || ''', ' || c.ch_id

 52                      || ')';

 53

 54     end loop;

 55

 56     v_unpivot_sql := v_unpivot_sql || q'[

 57                 )

 58              )

 59              order by day, g_id, ch_id]';

 60

 61     dbms_output.put_line(v_unpivot_sql);

 62

 63     open :unpivoted for v_unpivot_sql;

 64  end;

 65  /

In the query from Listing 7-14, I put in a cursor for loop starting in line 4. In line 

33, I check if this is the first row in the loop. If it is, then in lines 34–41, I generate the 

beginning of the SQL statement I am building. If not, then in lines 43–44, I generate a 

new line and a comma as separator between the mappings.

Lines 47–52 generate each individual mapping for the in clause, and when the loop 

is done, lines 56–59 append the final pieces of the SQL to be generated.

Line 61 then sends the generated SQL to the server output for debugging purposes, 

so I can see here the piece of SQL that was generated in the string variable v_unpivot_

sql:
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            select day, g_id, ch_id, cnt, qty

            from web_demographics

            unpivot (

               ( cnt, qty )

               for ( g_id, ch_id )

               in (

                  (f_fb_cnt, f_fb_qty) as ('F', 44)

                , (f_tw_cnt, f_tw_qty) as ('F', 42)

                , (m_fb_cnt, m_fb_qty) as ('M', 44)

                , (m_tw_cnt, m_tw_qty) as ('M', 42)

               )

            )

            order by day, g_id, ch_id

It looks like I want it, with one in clause mapping for each combination of values in 

my dimension tables. Actually it is just like Listing 7-6, except it uses the primary keys of 

the two dimension tables instead of descriptive names.

Line 63 of the block opens the bind variable unpivoted (that I created before calling 

the block) using the dynamically created SQL in the string variable v_unpivot_sql. And 

then the block is done:

PL/SQL procedure successfully completed.

And I can see if the cursor retrieves the output I want:

SQL> print unpivoted

Lo and behold – I get the same output as Listing 7-13 gave me:

DAY        G      CH_ID        CNT        QTY

---------- - ---------- ---------- ----------

2019-05-01 F         42        651         76

2019-05-01 F         44        564         68

2019-05-01 M         42       1232         86

2019-05-01 M         44       1017         64

2019-05-02 F         42        840         92

2019-05-02 F         44        752         78

2019-05-02 M         42       1438        142

2019-05-02 M         44       1198         70
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The dynamic aspect gets into play, if, for example, the statistics service adds data 

for Instagram and thus the table web_demographics gets four new columns (counts and 

quantities for male and female for Instagram).

In such a case, using Listing 7-6 (or Listing 7-13) requires that I add mappings to the 

code – change the SQL. But if I use the dynamic technique in Listing 7-15, all I need to 

do is insert data for Instagram in the web_channel dimension table, and the code auto-

generates mappings to produce something like

               in (

                  (f_fb_cnt, f_fb_qty) as ('F', 44)

                , (f_in_cnt, f_in_qty) as ('F', 46)

                , (f_tw_cnt, f_tw_qty) as ('F', 42)

                , (m_fb_cnt, m_fb_qty) as ('M', 44)

                , (m_in_cnt, m_in_qty) as ('M', 46)

                , (m_tw_cnt, m_tw_qty) as ('M', 42)

               )

(Assuming Instagram got id = 46 and shortcut = 'in'.)

This dynamic method opens a cursor using the generated SQL, so it must generate 

the SQL runtime every single time. Sometimes you may have a requirement for doing 

this, but in many cases, I would prefer using it as a code generator method.

That way when Instagram columns are added, you first insert Instagram in the 

dimension table, then you run Listing 7-15 (just with line 63 removed), and finally you 

take the generated query from the output and copy it to your real code and compile it. 

You have gained the benefit of dynamically generating code with much less chance of 

errors, but you do not suffer runtime penalties of building dynamic strings all the time.

If the data change very often, of course, you may need to be completely dynamic. For 

a case like this, however, it is likely that such changes are rare and only occur along with 

releasing new application functionality anyway. A generator approach is well suited for 

such cases.

�Lessons learned
Unpivoting is a useful skill, particularly when dealing with data that hasn’t been 

normalized in the usual way of relational databases. In the pages of this chapter, I’ve 

shown you different variations on the theme:
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•	 Unpivoting with the three elements of the unpivot clause, measures, 

dimensions, and mappings

•	 Using either single expressions or expression lists to unpivot single or 

multiple measures and/or dimensions

•	 Manual alternatives to the unpivot clause for use in real old 

databases or really special circumstances

•	 Building dynamic unpivot SQL within PL/SQL based on values in 

dimension tables

If you know the concepts of unpivoting and you can remember (or lookup) the 

syntax of using for and in in unpivot, you’ll find the methods useful for many things.
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CHAPTER 8

Pivoting Rows to Columns
The previous chapter was about unpivoting, which is the process of turning columns into 

rows. The opposite operation is called pivoting, which – surprise, surprise – is turning 

rows into columns.

The idea is that you have a resultset with some dimensional values in one or more 

columns and some facts/measure values in one or more other columns. You’d like the 

output grouped by some other columns, so you only have one aggregated row for those 

values, and then the values from your measures should be placed in a set of columns, 

one for each value of your dimension (or combination of values if you have multiple 

dimensions).

One thing to remember here is that in SQL, the engine needs at parse time to be 

able to determine names and datatypes of each column. That means that you have to 

hardcode the dimension values and what column names they should be turned into.

If you wish to have dynamic pivoting, where there automatically will be columns for 

every dimension value in the data, you need to build it with dynamic SQL similarly to 

what I showed at the end of the previous chapter. That way there will be a parsing every 

time you run it, and the column names can then be known at that time. Alternatively 

the pivot clause supports returning XML instead of columns, which allows you dynamic 

pivoting without dynamic SQL – which can be an option if an XML output is acceptable. 

Either way of dynamic pivoting will not be covered in this book.

Tip  In Oracle version 18c or newer, there is a third dynamic pivoting method 
using polymorphic table functions. I won’t be covering PTFs in this book, but Chris 
Saxon of the Oracle AskTom team has an example of a PTF for dynamic pivoting on 
Live SQL: https://livesql.oracle.com/apex/livesql/file/content_
HPN95108FSSZD87PXX7MG3LW3.html.

https://livesql.oracle.com/apex/livesql/file/content_HPN95108FSSZD87PXX7MG3LW3.html
https://livesql.oracle.com/apex/livesql/file/content_HPN95108FSSZD87PXX7MG3LW3.html
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�Tables for pivoting
The Good Beer Trading Co purchases beer from some breweries, storing the information 

in the purchases table shown in Figure 8-1, along with dimension lookup tables 

breweries, products, and product_groups.

I’ll be demonstrating pivoting data by brewery, product group, and year. To do that, 

I use the view purchases_with_dims in Listing 8-1, which simply joins the purchases 

table with the dimension tables.

Listing 8-1.  View joining purchases table with the dimensions

SQL> create or replace view purchases_with_dims

  2  as

  3  select

  4     pu.id

  5   , pu.purchased

  6   , pu.brewery_id

  7   , b.name as brewery_name

Figure 8-1.  Purchases table and associated dimension tables
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  8   , pu.product_id

  9   , p.name as product_name

 10   , p.group_id

 11   , pg.name as group_name

 12   , pu.qty

 13   , pu.cost

 14  from purchases pu

 15  join breweries b

 16     on b.id = pu.brewery_id

 17  join products p

 18     on p.id = pu.product_id

 19  join product_groups pg

 20     on pg.id = p.group_id;

View PURCHASES_WITH_DIMS created.

At first I’m going to aggregate the quantity grouped by brewery, product group, and 

year in Listing 8-2, which is a simple group by without any pivoting at all.

Listing 8-2.  Yearly purchased quantities by brewery and product group

SQL> select

  2     brewery_name

  3   , group_name

  4   , extract(year from purchased) as yr

  5   , sum(qty) as qty

  6  from purchases_with_dims pwd

  7  group by

  8     brewery_name

  9   , group_name

 10   , extract(year from purchased)

 11  order by

 12     brewery_name

 13   , group_name

 14   , yr;
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The output shows me that the company bought from three breweries, two different 

product groups from each brewery, in three years from 2016 to 2018, resulting in 18 rows 

for those combinations:

BREWERY_NAME        GROUP_NAME  YR    QTY

Balthazar Brauerei  Belgian     2016  800

Balthazar Brauerei  Belgian     2017  1000

Balthazar Brauerei  Belgian     2018  1000

Balthazar Brauerei  Wheat       2016  500

Balthazar Brauerei  Wheat       2017  500

Balthazar Brauerei  Wheat       2018  400

Brewing Barbarian   IPA         2016  200

Brewing Barbarian   IPA         2017  300

Brewing Barbarian   IPA         2018  500

Brewing Barbarian   Stout       2016  800

Brewing Barbarian   Stout       2017  1000

Brewing Barbarian   Stout       2018  1200

Happy Hoppy Hippo   IPA         2016  1000

Happy Hoppy Hippo   IPA         2017  900

Happy Hoppy Hippo   IPA         2018  800

Happy Hoppy Hippo   Wheat       2016  200

Happy Hoppy Hippo   Wheat       2017  100

Happy Hoppy Hippo   Wheat       2018  100

Now I’d like to have a column for quantity purchased each of the three years instead 

of a row for each year – this is what pivoting is all about.

�Pivoting single measure and dimension
Listing 8-3 shows how I do the pivoting of the years using the pivot clause.

Listing 8-3.  Pivoting the year rows into columns

SQL> select *

  2  from (

  3     select

  4        brewery_name
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  5      , group_name

  6      , extract(year from purchased) as yr

  7      , sum(qty) as qty

  8     from purchases_with_dims pwd

  9     group by

 10        brewery_name

 11      , group_name

 12      , extract(year from purchased)

 13  ) pivot (

 14     sum(qty)

 15     for yr

 16     in (

 17        2016 as y2016

 18      , 2017 as y2017

 19      , 2018 as y2018

 20     )

 21  )

 22  order by brewery_name, group_name;

I built the query of these elements:

•	 Lines 3–12 simply are the select from Listing 8-2, wrapped in an 

inline view.

•	 The pivot keyword in line 13 tells Oracle I want to pivot the data.

•	 Then I define my measures – in this case only one, the quantity – 

in line 14. I must use an aggregate function here – it can be any 

aggregate, the one that makes sense in this case is sum.

•	 After the keyword for in line 15, I define the dimensions I want – here 

only the year.

•	 Last, the in clause in lines 16–19 maps in which columns the 

aggregated measure should be placed for which values of the 

dimension – columns that do not exist in the table, but will be created 

in the output.
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Shown schematically, you can see in Figure 8-2 that the measure sum(qty) flows to 

the three column aliases, one for each of the values of the yr dimension.

And so I get the output that I desired with 18 aggregated quantities shown in six rows 

of three quantity columns (one per year) instead of 18 rows:

BREWERY_NAME        GROUP_NAME  Y2016  Y2017  Y2018

Balthazar Brauerei  Belgian     800    1000   1000

Balthazar Brauerei  Wheat       500    500    400

Brewing Barbarian   IPA         200    300    500

Brewing Barbarian   Stout       800    1000   1200

Happy Hoppy Hippo   IPA         1000   900    800

Happy Hoppy Hippo   Wheat       200    100    100

Notice that the yr and qty columns from the inline view are no longer in the 

output, but brewery_name and group_name are. What happens is that those columns I 

am referencing in the measures and dimensions in the pivot clause are used for the 

pivoting. The columns that are left over, they are used for an implicit group by.

Since in my inline view I have already grouped the data by brewery, product group, 

and year, this means that the sum(qty) in line 14 actually always will “aggregate” just 

a single row of data into each of the year columns, so that aggregation is not really 

necessary. But I cannot skip it – the pivot clause demands an aggregate function.

What I can do instead is to skip the group by within the inline view and instead let 

the implicit group by performed by pivot do the aggregation alone, thus avoiding an 

unnecessary grouping operation. Listing 8-4 simply is the same as Listing 8-3, just with 

the group by from Listing 8-3 lines 9–12 removed.

Figure 8-2.  The flows of the pivot clause
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Listing 8-4.  Utilizing the implicit group by

SQL> select *

  2  from (

  3     select

  4        brewery_name

  5      , group_name

  6      , extract(year from purchased) as yr

  7      , qty

  8     from purchases_with_dims pwd

  9  ) pivot (

 10     sum(qty)

 11     for yr

 12     in (

 13        2016 as y2016

 14      , 2017 as y2017

 15      , 2018 as y2018

 16     )

 17  )

 18  order by brewery_name, group_name;

Listing 8-4 gives exactly the same output as Listing 8-3; it is just a little bit more 

efficient from not doing a superfluous grouping operation.

You might think that I could then skip the inline view completely? Well, sometimes 

it is possible, but not in this case, first because I need to extract the year from the 

purchased date column and second because the pivot performs an implicit group by 

on the remaining columns after some of the columns have been used for measures and 

dimensions.

If I had the yr column in the view and could pivot directly on the purchases_with_

dims view, the grouping would be performed on all the columns of the view except 

qty and yr – it would give me the wrong result. The inline view lets me keep only the 

columns I need – those to be used in the pivoting and those to be used for the implicit 

group by.

To make it a little more clear what’s happening behind the scenes with the pivot 

clause, let me show you pivoting performed manually without pivot.
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�Do-it-yourself manual pivoting
In really old database versions (before version 10), I would have had to do pivoting 

myself with no help from the pivot clause. Instead I would have had to write a query like 

Listing 8-5.

Listing 8-5.  Manual pivoting without using pivot clause

SQL> select

  2     brewery_name

  3   , group_name

  4   , sum(

  5        case extract(year from purchased)

  6           when 2016 then qty

  7        end

  8     ) as y2016

  9   , sum(

 10        case extract(year from purchased)

 11           when 2017 then qty

 12        end

 13     ) as y2017

 14   , sum(

 15        case extract(year from purchased)

 16           when 2018 then qty

 17        end

 18     ) as y2018

 19  from purchases_with_dims pwd

 20  group by

 21     brewery_name

 22   , group_name

 23  order by brewery_name, group_name;

I do a group by brewery and product group in lines 20–22. And then I have three 

case structures for each of the three columns I want, so that all rows in the view from the 

year 2016 will have the qty value summed in column y2016, all rows from 2017 will be 

summed in y2017, and 2018 in y2018. The output is exactly the same as Listing 8-4 and 

Listing 8-3.
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This structure is built for me automatically when I use the pivot clause. In Listing 8-4, 

I defined I wanted to use aggregate function sum on the value from column qty, but such 

that qty for rows in year 2016 goes to a column I want to be named y2016, and so on.  

I am not defining what to use for the implicit group by – this will be whatever columns 

are left over, so therefore I am using the inline view to limit the columns that go to the 

pivot clause rather than use all columns of the view.

Knowing this is the way pivot works will help, when I now show you pivoting with 

multiple measures by also using the column cost from the table purchases and the view 

purchases_with_dims, instead of just qty.

�Multiple measures
I’m going to extend my query to not only pivot the aggregate quantity but also the 

aggregate cost. In Listing 8-6, you see I’ve simply added the cost column in line 8, so I 

also can add the aggregate measure sum(cost) in line 12.

Listing 8-6.  Getting an ORA-00918 error with multiple measures

SQL> select *

  2  from (

  3     select

  4        brewery_name

  5      , group_name

  6      , extract(year from purchased) as yr

  7      , qty

  8      , cost

  9     from purchases_with_dims pwd

 10  ) pivot (

 11     sum(qty)

 12   , sum(cost)

 13     for yr

 14     in (

 15        2016 as y2016

 16      , 2017 as y2017

 17      , 2018 as y2018

 18     )
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 19  )

 20  order by brewery_name, group_name;

Error at Command Line : 1 Column : 8

Error report -

SQL Error: ORA-00918: column ambiguously defined

Why do I get an error saying column ambiguously defined? I haven’t written the 

same column alias twice? Well, not directly, but indirectly I have.

What happens is that I have defined two measures with no column aliases. Then 

I have defined the three year values in the yr dimension and column aliases for them. 

There will be created a column for every combination, so 2 x 3 = 6 columns. Those six 

columns will be named <dimension alias>_<measure alias>, but if there are no measure 

aliases, then they will just be named <dimension alias>, as you saw in Listings 8-3 and 

8-4. There it was okay, but here it means there will be two columns named y2016, two 

columns y2017, and two columns y2018. Thus the ORA-00918 error.

The solution is to also give the measures column aliases, so, for example, I can do 

as shown in Figure 8-3, where I alias the measures simply q and c, while the dimension 

values are aliased with two digits of the year (since those aliases do not start with a letter, 

they need to be quoted).

This generates therefore the six columns (2 x 3) that are named 16_Q, 16_C, and so on.

Figure 8-3.  Schematic flow when you have multiple measures
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And to show you it is not just in a schematic diagram it works, I change Listing 8-6 by 

aliasing the measures and dimension values as shown in Figure 8-3:

...

 10  ) pivot (

 11     sum(qty)  as q

 12   , sum(cost) as c

 13     for yr

 14     in (

 15        2016 as "16"

 16      , 2017 as "17"

 17      , 2018 as "18"

 18     )

 19  )

 ...

And I get the output I want:

BREWERY_NAME        GROUP_NAME  16_Q  16_C  17_Q  17_C  18_Q  18_C

Balthazar Brauerei  Belgian     800   5840  1000  7360  1000  6960

Balthazar Brauerei  Wheat       500   3280  500   3600  400   2800

Brewing Barbarian   IPA         200   1440  300   1680  500   3920

Brewing Barbarian   Stout       800   5600  1000  6960  1200  8960

Happy Hoppy Hippo   IPA         1000  7360  900   6400  800   5680

Happy Hoppy Hippo   Wheat       200   960   100   800   100   720

(Normally I’d probably pick a little more descriptive column aliases, but using so 

short aliases makes the lines fit in a book.)

So I’ve now demonstrated getting pivoted columns as combinations of multiple 

measures and values of a single dimension. Next up is adding multiple dimensions too.

�Multiple dimensions as well
So far I’ve pivoted only with the year as a dimension, leaving brewery and product group 

as the columns that are used for implicit group by. Now I’m going to also pivot the 

product group as a second dimension, leaving only the brewery to be grouped upon.
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I have in my data 4 product groups and 3 years, which would mean 12 combinations 

of dimension values, each showing 2 measures (quantity and cost) for a total of 24 

columns. That’s a bit large to demo here on a printed page, so in Listing 8-7, I’m reducing 

the data a bit by selecting only two product groups in line 10 and only two years (2017 

and 2018) in lines 11–12.

Listing 8-7.  Combining two dimensions and two measures

SQL> select *

  2  from (

  3     select

  4        brewery_name

  5      , group_name

  6      , extract(year from purchased) as yr

  7      , qty

  8      , cost

  9     from purchases_with_dims pwd

 10     where group_name in ('IPA', 'Wheat')

 11     and   purchased >= date '2017-01-01'

 12     and   purchased <  date '2019-01-01'

 13  ) pivot (

 14     sum(qty)  as q

 15   , sum(cost) as c

 16     for (group_name, yr)

 17     in (

 18        ('IPA'  , 2017) as i17

 19      , ('IPA'  , 2018) as i18

 20      , ('Wheat', 2017) as w17

 21      , ('Wheat', 2018) as w18

 22     )

 23  )

 24  order by brewery_name;

You’ll notice that the content of the inline view in lines 3–12 is in principle the same 

as before; I’ve simply added a where clause to reduce the dataset I’m pivoting.

The measures q and c in lines 14–15 are also unchanged, just as they were when I 

only used a single dimension.
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Line 16 is different, since here I am no longer just specifying a single column to be 

my dimension. I am specifying an expression list of two columns instead – group_name 

and yr.

And since I use an expression list of two columns in my for clause, I also need to 

use corresponding expression lists of values in the in clause mappings in lines 18–21. 

Each value expression list (combinations of dimension values) I give a column alias – 

in this case a very short alias to keep my lines short enough for print; in real life more 

meaningful aliases should be used.

In total you can see in Figure 8-4 that the combining of the two dimensions I do 

manually with the expression list and then the combining of the dimension values and 

the measures automatically creates the columns named with the aliases joined by an 

underscore.

Figure 8-4.  Flows with multiple dimensions just have expression lists instead of 
single expressions

And those eight column names you see in the output of Listing 8-7:

BREWERY_NAME        I17_Q I17_C I18_Q I18_C W17_Q W17_C W18_Q W18_C

Balthazar Brauerei                          500   3600  400   2800

Brewing Barbarian   300   1680  500   3920

Happy Hoppy Hippo   900   6400  800   5680  100   800   100   720

The blanks are because the Good Beer Trading Co does not buy any IPA from 

Balthazar Brauerei nor any Wheat beers from Brewing Barbarian.
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Knowing how the pivoting works as an implicit group by as I showed earlier 

about do-it-yourself manual pivoting, you can also see that in principle, I did not 

need to reduce the dataset with the where clause in lines 10–12. I could simply remove 

those three lines, and my output would be exactly the same. (Since I do have all three 

breweries in my output already, if I had had breweries with no purchases at all within 

the years and product groups I’m after, then there’d be output differences in the form of 

empty rows.)

However, it would not be a good idea to do so, since the data from the other years 

and other product groups still would be processed; the implicit case structures would 

just mean no data from those other years and product groups would be added to the 

aggregate sums. It would be a waste of CPU cycles and I/O.

�Lessons learned
With the help of a mix of code examples and some diagrams showing how the bits and 

pieces of the pivot clause work together creating new columns, I’ve covered pivoting 

topics as

•	 Pivoting with the three elements of the pivot clause, measures, 

dimensions, and mappings

•	 Naming the pivoted columns with measure and dimension aliases, 

where combinations with multiple measures are automatically joined 

with underscores

•	 Manual pivoting with group by and aggregation on case structures to 

aid understanding of how pivot works

•	 Using expression lists for values from multiple dimensions when 

pivoting

Pivoting is a very useful tool in your toolbox for a variety of things, quite often simply 

because users get a much better overview of their data if they do not need to read a lot of 

rows like the output of Listing 8-2, but can have fewer rows with more columns like the 

various pivoted outputs in the chapter.
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CHAPTER 9

Splitting Delimited Text
Particularly if you get data from somewhere else, it is not uncommon to get it in the form 

of a string with a list of values separated by some delimiter, typically comma, semicolon, 

tab, or similar. As you most often don’t know the number of elements in the list, you 

can’t just use substr to split it into a fixed number of columns. Instead it is normally 

most useful to be able to turn the list into rows, so you can treat it as a table in your SQL.

Such splitting involves generating rows, which you can do in many ways. I’ll show 

some different methods, ranging from using PL/SQL to loop over the elements of the list 

and generating a row at a time, over generating all rows at once by selecting from dual 

and retrieving the elements for each row from the list, to pretending the list is JSON and 

parsing it with native JSON functionality.

�Customer favorites and reviews
You would practically never model your tables with a column containing delimited 

strings (actually I can’t think of a use case for it, but it’s safer never to say never).  

You would get such strings from external data sources like files. For demonstration 

purposes here, the web site of Good Beer Trading Co gives the customers a possibility to 

choose their favorite beers as well as review beers; the favorites and reviews end up in 

the customer_favorites and customer_reviews tables shown in Figure 9-1.



146

Both tables have a proper foreign key to the customers table, but of course cannot 

have it to the products table, as the product ids are just part of the strings in columns 

favorite_list and review_list – I show sample data in the upcoming sections.  

The task at hand is basically to extract out those product ids to be able to join to the 

products table.

�Delimited single values
In Listing 9-1, I examine the data of the customer_favorites table, where column 

favorite_list contains a comma-separated list of product ids. One customer has saved 

an empty favorite list.

Listing 9-1.  Comma-delimited content of customer_favorites table

SQL> select customer_id, favorite_list

  2  from customer_favorites

  3  order by customer_id;

CUSTOMER_ID  FAVORITE_LIST

50042        4040,5310

50741        5430,7790,7870

51007

51069        6520

Figure 9-1.  Tables involved in these examples
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I now need to treat this list as if it was a child table with a row for each of the comma-

separated entries. That will enable me to join to the products table (and any other table 

with a product id column, for that matter). In the rest of this section, I show four different 

ways to do this.

�Pipelined table function
One way that will work also in old database versions (since version 8i) is to extract values 

from the string in a PL/SQL table function. That requires a collection type (nested table 

type) and function whose return value is of that type, such as what I create in Listing 9-2.

Listing 9-2.  Collection type and pipelined table function

SQL> create type favorite_coll_type

  2     as table of integer;

  3  /

Type FAVORITE_COLL_TYPE compiled

SQL> create or replace function favorite_list_to_coll_type (

  2     p_favorite_list   in customer_favorites.favorite_list%type

  3  )

  4     return favorite_coll_type pipelined

  5  is

  6     v_from_pos  pls_integer;

  7     v_to_pos    pls_integer;

  8  begin

  9     if p_favorite_list is not null then

 10        v_from_pos := 1;

 11        loop

 12           v_to_pos := instr(p_favorite_list, ',', v_from_pos);

 13           pipe row (to_number(

 14              substr(

 15                 p_favorite_list

 16               , v_from_pos

 17               , case v_to_pos

 18                    when 0 then length(p_favorite_list) + 1
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 19                           else v_to_pos

 20                 end - v_from_pos

 21              )

 22           ));

 23           exit when v_to_pos = 0;

 24           v_from_pos := v_to_pos + 1;

 25        end loop;

 26     end if;

 27  end favorite_list_to_coll_type;

 28  /

Function FAVORITE_LIST_TO_COLL_TYPE compiled

Collection types can be of object types or scalar types – in this case a scalar type: 

integer.

I’ve chosen to make the table function pipelined by using the keyword pipelined in 

line 4.

Inside the function, I create a loop beginning in line 11, where I search for the 

position of the next comma (the first if it’s the first iteration of the loop). Lines 13–22 then 

pipe a row to the output containing the substr from the previous comma to the found 

comma (or the end of the string if no comma was found).

If I reach the end of the string (no comma was found), line 23 breaks out of the loop. 

If there’s still something left in the string, line 24 sets the next v_from_pos to be used in 

the next iteration of the loop.

The loop strategy works if there’s at least one element in the comma-separated list.  

If it’s a completely empty list, I make sure in line 9 that I don’t start the loop at all – in 

such a case, no rows will be piped to the output.

Tip I  could have used a regular table function instead of pipelined – then I 
would have had to build the entire output collection before returning it. But if a 
table function is meant to be used strictly from SQL and never from PL/SQL, it is 
almost always a good idea to make it pipelined. This has the advantage of less 
PGA memory usage as well as the ability to quit processing if the client SQL stops 
fetching rows from the function. The downside is that you cannot use it in PL/SQL.
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Having created my table function, I can use it in Listing 9-3 to split my strings into 

collections and turn the collections into rows.

Listing 9-3.  Using pipelined table function to split string

SQL> select

  2     cf.customer_id

  3   , fl.column_value as product_id

  4  from customer_favorites cf

  5     , table(

  6          favorite_list_to_coll_type(cf.favorite_list)

  7       ) fl

  8  order by cf.customer_id, fl.column_value;

The table keyword in line 5 takes a collection (nested table) and turns the elements 

of the collection into rows. If the collection had been of an object type, the columns of 

the result would have been named like the object attributes, but here the collection is of 

a scalar type (integer), and then the single column is always called column_value, which 

in line 3 I give a more meaningful column alias:

CUSTOMER_ID  PRODUCT_ID

50042        4040

50042        5310

50741        5430

50741        7790

50741        7870

51069        6520

But you’ll undoubtedly notice that the customer with a blank favorite_list is missing 

in the output. That’s how Listing 9-3 works; I’m joining the customer_favorites table to 

the row source that is pipelined from my function, and it outputs (correctly) no rows for 

a blank favorite_list. This is exactly as if I was inner joining to a child table where no 

rows existed for this customer.
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If I want to show the customer with no favorites, I need the equivalent of a left 

outer join. But as there are no join predicates, I cannot use the (+) syntax on a 

predicate column. Instead Oracle supports putting the (+) syntax directly after the 

table(...) call, so I can change line 7 to this:

...

  7       )(+) fl

...

And that gives me an output that includes the customer with no favorites:

CUSTOMER_ID  PRODUCT_ID

50042        4040

50042        5310

50741        5430

50741        7790

50741        7870

51007

51069        6520

The row source that’s the result of the table function I can of course use for joins 

as well, just like if it had been a real child table. I demonstrate this in Listing 9-4, at the 

same time showing you how to do ANSI style joins to the table function instead of the 

traditional comma used in Listing 9-3.

Listing 9-4.  Join the results of the splitting to products

SQL> select

  2     cf.customer_id  as c_id

  3   , c.name          as cust_name

  4   , fl.column_value as p_id

  5   , p.name          as prod_name

  6  from customer_favorites cf

  7  cross apply table(

  8     favorite_list_to_coll_type(cf.favorite_list)

  9  ) fl
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 10  join customers c

 11     on c.id = cf.customer_id

 12  join products p

 13     on p.id = fl.column_value

 14  order by cf.customer_id, fl.column_value;

The normal join syntax requires an on clause, which I do not have and do not need. 

In principle what I need is like a cross join lateral to an inline view, but in ANSI SQL, 

it has been decided instead to use a special syntax cross apply for this, which I put just 

before the table keyword in line 7.

The rest is normal SQL with normal joins using the column_value column in the on 

clause in line 13:

C_ID   CUST_NAME        P_ID  PROD_NAME

50042  The White Hart   4040  Coalminers Sweat

50042  The White Hart   5310  Monks and Nuns

50741  Hygge og Humle   5430  Hercule Trippel

50741  Hygge og Humle   7790  Summer in India

50741  Hygge og Humle   7870  Ghost of Hops

51069  Der Wichtelmann  6520  Der Helle Kumpel

If again I want to include the customer with no favorites, in ANSI SQL I do not use 

(+), instead I change the cross apply in line 7 to outer apply, which necessitates 

changing join in line 12 to left outer join:

...

  7  outer apply table(

  8     favorite_list_to_coll_type(cf.favorite_list)

  9  ) fl

 10  join customers c

 11     on c.id = cf.customer_id

 12  left outer join products p

 13     on p.id = fl.column_value

...
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Customer Boom Beer Bar, who has no favorites, is now included in the output:

C_ID   CUST_NAME        P_ID  PROD_NAME

50042  The White Hart   4040  Coalminers Sweat

50042  The White Hart   5310  Monks and Nuns

50741  Hygge og Humle   5430  Hercule Trippel

50741  Hygge og Humle   7790  Summer in India

50741  Hygge og Humle   7870  Ghost of Hops

51007  Boom Beer Bar

51069  Der Wichtelmann  6520  Der Helle Kumpel

This first method is a custom built table function for this purpose only. You can also 

do a generic function, but in fact you don’t need to do that. The built-in APEX schema 

that you probably have in your database has already done this for you, as I’ll show next.

�Built-in APEX table function
There is APEX API function apex_util.string_to_table(favorite_list, ',') – but it 

returns a PL/SQL collection type defined in a package, not a nested table type defined in 

SQL. But it is a deprecated function anyway, so I just mention it so you won’t use it, even 

if you happen to Google it.

Note A s of version 12.2, APEX is not installed in the database by default; rather 
it is just shipped with the software for easy installation. Even if your company 
does not use APEX applications as such, I think it is a good idea to install APEX in 
the database anyway to take advantage of the API packages when you code SQL 
and PL/SQL. If you wish, you can do it without configuring a web listener (ORDS, 
embedded PL/SQL gateway, or Oracle HTTP Server).

From APEX version 5.1, the supported function for this is apex_string.split, which 

returns a SQL nested table type and therefore is good to use in SQL as well. Listing 9-5 is 

like Listing 9-4, just using the APEX API function instead of the custom function I created 

before.
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Listing 9-5.  Splitting with apex_string.split

SQL> select

  2     cf.customer_id  as c_id

  3   , c.name          as cust_name

  4   , to_number(fl.column_value) as p_id

  5   , p.name          as prod_name

  6  from customer_favorites cf

  7  cross apply table(

  8     apex_string.split(cf.favorite_list, ',')

  9  ) fl

 10  join customers c

 11     on c.id = cf.customer_id

 12  join products p

 13     on p.id = to_number(fl.column_value)

 14  order by cf.customer_id, p_id;

The difference is just the function call in line 8 and then a small detail in line 14, 

where I utilize the fact that I can use column aliases in the order by clause to order by 

the more meaningful p_id instead of fl.column_value.

The output of Listing 9-5 is identical to that of Listing 9-4. Both methods call PL/

SQL functions to do the actual splitting of the strings, which of course means context 

switching happening. Next up is a method in straight SQL without the context switching.

�Straight SQL with row generators
No matter which method I use, I need to generate rows for each of the elements in 

the comma-delimited lists. The two previous methods used collections and the table 

function for this purpose. Another typical method of generating rows is to use a connect 

by query on dual, and this can be used here as well, as I show in Listing 9-6.

Listing 9-6.  Generating as many rows as delimiter count

SQL> select

  2     favs.customer_id as c_id

  3   , c.name           as cust_name

  4   , favs.product_id  as p_id
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  5   , p.name           as prod_name

  6  from (

  7     select  8        cf.customer_id

  9      , to_number(

 10           regexp_substr(cf.favorite_list, '[^,]+', 1, sub#)

 11        ) as product_id

 12     from customer_favorites cf

 13     cross join lateral(

 14        select level sub#

 15        from dual

 16        connect by level <= regexp_count(cf.favorite_list, ',') + 1

 17     ) fl

 18  ) favs

 19  join customers c

 20     on c.id = favs.customer_id

 21  join products p

 22     on p.id = favs.product_id

 23  order by favs.customer_id, favs.product_id;

Using cross join lateral in line 13 makes the inline view fl in lines 14–16 be 

executed for each row in customer_favorites, since I correlate the lateral inline view 

by using cf.favorite_list in line 16. By counting the number of commas and adding 

one, the inline view generates exactly the number of rows as there are elements in the 

comma-separated list.

As I’ve numbered the fl rows consecutively 1, 2, 3... in column sub#, I can use sub# 

in regexp_substr in line 10 to extract the first, second, third... occurrence of a “list of at 

least one character not containing a comma.” This is then my product_id which I use to 

join the products table.

The output of Listing 9-6 is identical to both Listing 9-5 and Listing 9-4.

The preceding simple regular expression works if every element in the list has at least 

one character (hence the +). If I want it to work also if an element can be blank (meaning 

two commas in a row in the string), it will not work simply by changing the + to a *, 

instead I need to switch to slightly more complex regular expression like this:
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...

 10           regexp_substr(

 11              cf.favorite_list

 12            , '(^|,)([^,]*)'

 13            , 1

 14            , sub#

 15            , null

 16            , 2

 17           )

...

The second group in the expression is like before, just with + changed to *, but I need 

to state it must follow either the beginning of the string or a comma. As I don’t want that 

preceding comma to be part of the output, I ask for regexp_substr to return to me just 

the second group (line 16).

�Treating the string as a JSON array
A simple comma-separated list of values can become a JSON array as shown in Listing 9-7.

Listing 9-7.  Treating the string as a JSON array

SQL> select

  2     cf.customer_id  as c_id

  3   , c.name          as cust_name

  4   , fl.product_id   as p_id

  5   , p.name          as prod_name

  6  from customer_favorites cf

  7  outer apply json_table(

  8     '[' || cf.favorite_list || ']'

  9   , '$[*]'

 10     columns (

 11        product_id number path '$'

 12     )

 13  ) fl

 14  join customers c

 15     on c.id = cf.customer_id
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 16  left outer join products p

 17     on p.id = fl.product_id

 18  order by cf.customer_id, fl.product_id;

Instead of a PL/SQL table function, I use the SQL function json_table in line 7.

The first parameter to json_table must be valid JSON, which in this case I can very 

simply accomplish by surrounding the comma-separated list with square brackets in 

line 8.

Note I  can keep line 8 very simple only because my values are all numeric.  
If there had been text values involved, I would have needed to surround the text 
values with double quotes by replacing commas with quote-comma-quotes and 
take into consideration escaping any existing quotes. Then I would do as Stew 
Ashton shows here: https://stewashton.wordpress.com/2018/06/05/
splitting-strings-a-new-champion/.

In line 9, I state that there should be one row output from json_table for every 

element in the JSON array. As those elements are simple scalars, the path in line 11 

becomes a simple $.

I’ve shown four methods to split simple delimited strings into rows of scalar values. 

In most cases, I’d choose between using straight SQL, JSON arrays, and apex_string.

split. If you have very long strings with many elements, the SQL method of asking 

for the 1st, 2nd, 3rd…occurrence in regexp_substr might become slower for the 50th 

occurrence – such a case might be better with a function that pipes a row as it traverses 

the string. On the other hand, if you have many relatively short strings each with few 

elements, the overhead of occurrence retrieval of elements might be smaller than the 

comparatively more context switching to PL/SQL.

As always, test your own use case whether SQL or pipelined function is the best.  

If pipelined function is the answer for you, using built-in apex_string.split is often 

a good choice – creating your own pipelined function would be useful if your database 

does not have the APEX API packages installed or if you need some special datatype 

handling.

Now it’s time to increase the complexity and look at delimited strings with some 

more structure in them.
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�Delimited multiple values
From time to time, I see applications where a string contains data with two delimiters – a 

row delimiter and a column delimiter. These days that would typically be a JSON string 

instead, but as data lives on a long time, you might still have to deal with such strings.

As an example here, I’ve chosen that the customers on the Good Beer Trading Co 

web site not only can enter their favorite lists, but they can also enter a list of beers that 

they review, each beer with a score of A, B, or C. This information is stored in column 

review_list of table customer_reviews, the content of which I show in Listing 9-8.

Listing 9-8.  Comma- and colon-delimited content of customer_reviews table

SQL> select customer_id, review_list

  2  from customer_reviews

  3  order by customer_id;

The row delimiter is a comma, the column delimiter is a colon, so the data is like 

product:score,product:score,…

CUSTOMER_ID  REVIEW_LIST

50042        4040:A,6600:C,7950:B

50741        4160:A

51007

51069        4280:B,7790:B

To split up those strings into rows and columns, I’ll show you four different methods.

�Custom ODCI table function
The first method I’ll show involves a pipelined table function again, but not a 

straightforward one like Listing 9-2.

Instead I am implementing it with the Oracle Data Cartridge Interface (ODCI) 

that allows me to hook into specific points in the processing of a SQL statement. This 

means that when the SQL engine hard parses a statement using this function, it will call 

my code to find out what columns and datatypes will be returned – instead of finding 

this information from the data dictionary. When a statement is prepared, when a row 

is fetched, and when the cursor is closed – all these will call my code instead of the 

standard handling.
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Note T his is just one type of ODCI function implementing a custom pipelined 
table function. ODCI can also be used to implement a custom aggregate function, 
which I’ll show you in the next chapter.

Here I’ll focus on using this ODCI function – all of the details of the PL/SQL is 

outside the scope of this book. In Listing 9-9, I just show the skeleton of the object type 

used for implementation of the function.

For the curious reader, the complete code is available in the companion scripts.  

I describe the internals in detail on my blog: www.kibeha.dk/2015/06/supposing-

youve-got-data-as-text-string.html.

Listing 9-9.  The skeleton of the object type that implements the ODCI function

SQL> create or replace type delimited_col_row as object (

...

 14   , static function parser(

 15        p_text      in    varchar2

 16      , p_cols      in    varchar2

 17      , p_col_delim in    varchar2 default '|'

 18      , p_row_delim in    varchar2 default ';'

 19     ) return anydataset pipelined

 20       using delimited_col_row

 21

 22   , static function odcitabledescribe(

...

 28     ) return number

 29

 30   , static function odcitableprepare(

...

 37     ) return number

 38

 39   , static function odcitablestart(

...

 45     ) return number

 46
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 47   , member function odcitablefetch(

...

 51     ) return number

 52

 53   , member function odcitableclose(

...

 55     ) return number

 56  )

 57  /

Type DELIMITED_COL_ROW compiled

SQL> create or replace type body delimited_col_row as

...

260  end;

261  /

Type Body DELIMITED_COL_ROW compiled

The object type must contain and implement the 5 odci* functions – they will be 

called by the SQL engine, not by anyone using the type.

The parser function is the one that should be called when you wish to use it. As it 

references the implementing object type using the syntax using delimited_col_row 

(line 20), it needs not be inside the object type; if you prefer, it could be implemented as 

a stand-alone function or in a package.

The object type can be used generically – in Listing 9-10, I use it for this specific case.

Listing 9-10.  Using the ODCI table function to parse the delimited data

SQL> select cr.customer_id, rl.product_id, rl.score

  2  from customer_reviews cr

  3  outer apply table (

  4     delimited_col_row.parser(

  5        cr.review_list

  6      , 'PRODUCT_ID:NUMBER,SCORE:VARCHAR2(1)'

  7      , ':'
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  8      , ','

  9     )

 10  ) rl

 11  order by cr.customer_id, rl.product_id;

Just like Listing 9-4, I do an apply on my table function – in this case I chose an outer 

apply instead of a cross apply. The table function delimited_col_row.parser then 

takes four parameters:

•	 First, the string that contains my delimited data: cr.review_list

•	 Then, the specification of the “columns” of each “row” of delimited 

data, what are their names and datatypes (this should be a literal, not 

a variable, as this is used at hard parse time, not soft parsing)

•	 Last, what is the column delimiter and the row delimiter in the data 

(these same delimiters I use in the column specification in line 6)

When I execute this statement the first time (hard parse), the SQL engine calls my 

odcitabledescribe function, which parses the second parameter and lets the SQL 

engine know the table function will return a row set with two columns, product_id and 

score, of the specified datatypes.

Then the SQL engine runs through odcitableprepare, odcitablestart, 

odcitablefetch, and odcitableclose. The actual splitting of the string data happens 

in odcitablefetch, where next row delimiter is found and the data split by the column 

delimiter, so a “row” is returned. At the end I see this output:

CUSTOMER_ID  PRODUCT_ID  SCORE

50042        4040        A

50042        6600        C

50042        7950        B

50741        4160        A

51007

51069        4280        B

51069        7790        B

Note that I didn’t have to do any column aliasing of a generic column_value – I can 

use rl.product_id and rl.score directly. I use this in Listing 9-11 for a meaningful join 

to the products table.
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Listing 9-11.  Joining with real column names instead of generic column_value

SQL> select

  2     cr.customer_id  as c_id

  3   , c.name          as cust_name

  4   , rl.product_id   as p_id

  5   , p.name          as prod_name

  6   , rl.score

  7  from customer_reviews cr

  8  cross apply table (

  9     delimited_col_row.parser(

 10        cr.review_list

 11      , 'PRODUCT_ID:NUMBER,SCORE:VARCHAR2(1)'

 12      , ':'

 13      , ','

 14     )

 15  ) rl

 16  join customers c

 17     on c.id = cr.customer_id

 18  join products p

 19     on p.id = rl.product_id

 20  order by cr.customer_id, rl.product_id;

In line 8, I used cross apply, so the output doesn’t have the customer with no 

reviews:

C_ID   CUST_NAME        P_ID  PROD_NAME         SCORE

50042  The White Hart   4040  Coalminers Sweat  A

50042  The White Hart   6600  Hazy Pink Cloud   C

50042  The White Hart   7950  Pale Rider Rides  B

50741  Hygge og Humle   4160  Reindeer Fuel     A

51069  Der Wichtelmann  4280  Hoppy Crude Oil   B

51069  Der Wichtelmann  7790  Summer in India   B

Using an ODCI implementation like this allows fine control of all the small details 

of the implementation. This is well and good, but there are other solutions as well that 

doesn’t need installing a custom ODCI function.
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�Combining apex_string.split and substr
For the simple delimited list, I showed using apex_string.split as an alternative to 

building your own pipelined table function. There is no such standard alternative for the 

ODCI function delimited_col_row.parser that will handle both rows and columns.

But I can separate handling of columns from handling of rows, as shown in  

Listing 9-12.

Listing 9-12.  Getting rows with apex_string.split and columns with substr

SQL> select

  2     cr.customer_id  as c_id

  3   , c.name          as cust_name

  4   , p.id            as p_id

  5   , p.name          as prod_name

  6   , substr(

  7        rl.column_value

  8      , instr(rl.column_value, ':') + 1

  9     ) as score

 10  from customer_reviews cr

 11  cross apply table(

 12     apex_string.split(cr.review_list, ',')

 13  ) rl

 14  join customers c

 15     on c.id = cr.customer_id

 16  join products p

 17     on p.id = to_number(

 18                  substr(

 19                     rl.column_value

 20                   , 1

 21                   , instr(rl.column_value, ':') - 1

 22               ))

 23  order by cr.customer_id, p_id;

I start by splitting the review list into rows in line 12 by using apex_string.split with 

the row delimiter comma. That means that rl will have rows with column_value, which 

will contain values with the two columns delimited by a colon – for example, 4040:A.
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Then it is a simple matter of using substr to pick out the product id in lines 17–22 

and pick out the score in lines 6–9. The output is identical to Listing 9-11.

I’ve eliminated the custom function, but I’m still incurring a lot of context switches to 

PL/SQL, so next I’ll try to use pure SQL again.

�Row generators and regexp_substr
Similar to how I used apex_string.split to get the rows and then substr to get the 

columns, I am adapting Listing 9-6 to create Listing 9-13, where I generate rows with 

dual and use regexp_substr to get the columns.

Listing 9-13.  Generating as many rows as delimiter count

SQL> select

  2     revs.customer_id as c_id

  3   , c.name           as cust_name

  4   , revs.product_id  as p_id

  5   , p.name           as prod_name

  6   , revs.score

  7  from (

  8     select

  9        cr.customer_id

 10      , to_number(

 11           regexp_substr(

 12              cr.review_list

 13            , '(^|,)([^:,]*)'

 14            , 1

 15            , sub#

 16            , null

 17            , 2

 18           )

 19        ) as product_id

 20      , regexp_substr(

 21           cr.review_list

 22         , '([^:,]*)(,|$)'

 23         , 1
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 24         , sub#

 25         , null

 26         , 1

 27        ) as score

 28     from customer_reviews cr

 29     cross join lateral(

 30        select level sub#

 31        from dual

 32        connect by level <= regexp_count(cr.review_list, ',') + 1

 33     ) rl

 34  ) revs

 35  join customers c

 36     on c.id = revs.customer_id

 37  join products p

 38     on p.id = revs.product_id

 39  order by revs.customer_id, revs.product_id;

The lateral inline view in lines 29–33 is just as I did in Listing 9-6. The trick here is to 

specify suitable regular expressions in lines 13 and 22 to extract the two columns as what 

comes before and after the colon, respectively:

•	 Line 13 looks for either the beginning of the string or a comma 

(group 1), followed by zero or more characters that are neither colon 

nor comma (group 2). Line 17 states the function should return the 

second group (this needs minimum version 11.2).

•	 Line 22 looks for zero or more characters that are neither colon nor 

comma (group 1), followed by either a comma or the end of the string 

(group 2). Line 26 states the function should return the first group.

Listing 9-13 produces an identical output as Listing 9-11 and Listing 9-12, but does it 

without PL/SQL calls at all. The cost is more use of regular expression functions, which 

can be relatively CPU expensive – so to find which performs best, you should test the 

approaches against your specific use case.

All three solutions so far handle the string as it is, but I also mentioned at the start of 

the chapter that in many modern applications, such data would be stored as JSON rather 

than delimited. The database is capable of efficiently handling JSON as well as XML, so 

here’s a fourth method that utilizes this.
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�Transformation to JSON
The first thing I want to do is to transform the delimited string into some valid JSON.  

This I do in Listing 9-14, where I transform the delimited pieces into a JSON array of 

JSON arrays, where each inner array has two elements, the first having the value of the 

product id and the second having the value of the review score.

Listing 9-14.  Turning delimited text into JSON

SQL> select

  2     customer_id

  3   , '[["'

  4     || replace(

  5           replace(

  6              review_list

  7            , ','

  8            , '"],["'

  9           )

 10         , ':'

 11         , '","'

 12        )

 13     || '"]]'

 14     as json_list

 15  from customer_reviews

 16  order by customer_id;

Let me show you the output before I explain the code:

CUSTOMER_ID  JSON_LIST

50042        [["4040","A"],["6600","C"],["7950","B"]]

50741        [["4160","A"]]

51007        [[""]]

51069        [["4280","B"],["7790","B"]]

You can see in the output that the code in lines 3–13 transformed the text of review_

list into nested JSON arrays. An outer array whose elements correspond to rows, where 

each row itself is an inner array whose elements correspond to columns.
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To do this transformation, the innermost replace in lines 5–9 replaces each row 

delimiter (comma) with the five characters "],[", where each character is

•	 End of inner element

•	 End of inner array

•	 Comma as delimiter between elements of the outer array

•	 Start of new inner array

•	 Start of new inner element

After that the replace in lines 4 and 10–12 replaces each column delimiter (colon) 

with the three characters ",", where each character is

•	 End of inner element

•	 Comma as delimiter between elements in the inner array

•	 Start of new inner element

In line 3, the JSON begins with the three characters [[" for start of outer array, start 

of inner array, and start of inner element.

Finally in line 13, the JSON ends with the three characters "]] for end of inner 

element, end of inner array, and end of outer array.

Having created the string concatenation expression that transforms the delimited 

string to JSON, I can now use it in the json_table function in Listing 9-15.

Listing 9-15.  Parsing JSON with json_table

SQL> select

  2     cr.customer_id  as c_id

  3   , c.name          as cust_name

  4   , rl.product_id   as p_id

  5   , p.name          as prod_name

  6   , rl.score

  7  from customer_reviews cr

  8  cross apply json_table (

  9     '[["'

 10     || replace(

 11           replace(
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 12              cr.review_list

 13            , ','

 14            , '"],["'

 15           )

 16         , ':'

 17         , '","'

 18        )

 19     || '"]]'

 20   , '$[*]'

 21     columns (

 22        product_id  number      path '$[0]'

 23      , score       varchar2(1) path '$[1]'

 24     )

 25  ) rl

 26  join customers c

 27     on c.id = cr.customer_id

 28  join products p

 29     on p.id = rl.product_id

 30  order by cr.customer_id, rl.product_id;

The first parameter to the json_table function is the JSON itself, so lines 9–19 are 

the expression I developed in the previous listing.

The second parameter in line 20 specifies that json_table should take as rows all the 

inner arrays (*) in the outer JSON array that is in the root of the JSON string ($).

And last in the column specification lines 22–23, I state that the first element ($[0]) of 

the inner array is a number and should be a column called product_id, while the second 

element ($[1]) of the inner array is a varchar2 and should be a column called score.

As you see, this output is identical to the output of the three previous methods:

C_ID   CUST_NAME        P_ID  PROD_NAME         SCORE

50042  The White Hart   4040  Coalminers Sweat  A

50042  The White Hart   6600  Hazy Pink Cloud   C

50042  The White Hart   7950  Pale Rider Rides  B

50741  Hygge og Humle   4160  Reindeer Fuel     A

51069  Der Wichtelmann  4280  Hoppy Crude Oil   B

51069  Der Wichtelmann  7790  Summer in India   B
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As shown before, if I had wanted to show the customer with a blank review_list,  

I change cross apply in line 8 to outer apply.

Tip L isting 9-15 can be adapted to use linefeed for row delimiter and comma 
for column delimiter if you have plain CSV in a CLOB, for example. Alternatively 
you could look into the apex_data_parser package as shown here: https://
blogs.oracle.com/apex/super-easy-csv-xlsx-json-or-xml-
parsing-about-the-apex_data_parser-package.

Using json_table requires version 12.1.0.2 or newer. If you have a need for older 

versions, you’ll find in the companion script an example of doing the same thing by 

transforming to XML and using xmltable instead.

�Lessons learned
Delimited text is most often a list of values separated by a single delimiter, but it can also 

be more structured with, for example, both a “row” delimiter and a “column” delimiter. 

I’ve shown both types of examples in this chapter along with multiple ways of splitting 

them, so you can

•	 Split delimited text with SQL only or built-in PL/SQL functionality.

•	 Create custom PL/SQL table functions – both regular and the ODCI 

variant – for special needs.

•	 Transform the text to JSON and use native JSON parsing.

If you create your own data model, you should use child tables, collections, XML, or 

JSON rather than relying on storing data as delimited text. But it is common to receive 

delimited text from places out of your control, in which case any of the shown methods 

can be useful. Normally using native and built-in functionality is the easiest and the best 

performant, but for more special use cases, you can test if the other methods are better 

suited for you.
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CHAPTER 10

Creating Delimited Text
You learned in the previous chapter how to take a delimited text and split it to pieces, 

generating rows with one piece of text per row. Guess what, just like I did a chapter on 

pivoting after unpivoting, here comes a chapter showing how to take pieces of text in 

rows and aggregate them into delimited strings.

This is often much liked by users reading reports, where it is easier to get an overview 

if there is not a lot of repeated data in multiple rows with most columns identical and just 

a single column with different values. Sometimes you can do pivoting to alleviate that 

problem, but sometimes you just don’t have a fixed number of columns. Outputting a 

comma-separated string can be the answer for such cases.

Delimited strings can also be useful sometimes for importing elsewhere – for 

example, a tab- or semicolon-separated string is easy to import in an Excel spreadsheet 

to produce columns.

There are several ways you can create such delimited text, both using built-in 

functionality as well as functionality you create yourself. I’ll show some of those different 

ways and their advantages and disadvantages.

�Delimited lists of products
As examples, I am going to create text strings with comma-separated lists of product 

names that the company sells, using the tables shown in Figure 10-1.
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For most of the examples in the chapter, I am going to use the tables breweries, 

products, and purchases joined together in the view brewery_products shown in 

Listing 10-1. At the end of the chapter, I’ll be using monthly_sales and products to 

create an artificially long string that won’t fit in a regular varchar2.

Listing 10-1.  View of which products are purchased at which breweries

SQL> create or replace view brewery_products

  2  as

  3  select

  4     b.id   as brewery_id

  5   , b.name as brewery_name

  6   , p.id   as product_id

  7   , p.name as product_name

  8  from breweries b

  9  cross join products p

 10  where exists (

 11     select null

 12     from purchases pu

Figure 10-1.  The tables used in this chapter
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 13     where pu.brewery_id = b.id

 14     and   pu.product_id = p.id

 15  );

This view examines all combinations of the breweries and the beers if the beer has 

been purchased at some time from that brewery. The result – shown in Listing 10-2 – is a 

list that shows which beer is purchased at which brewery.

Listing 10-2.  The breweries and products

SQL> select *

  2  from brewery_products

  3  order by brewery_id, product_id;

BREWERY_ID  BREWERY_NAME        PRODUCT_ID  PRODUCT_NAME

518         Balthazar Brauerei  5310        Monks and Nuns

518         Balthazar Brauerei  5430        Hercule Trippel

518         Balthazar Brauerei  6520        Der Helle Kumpel

523         Happy Hoppy Hippo   6600        Hazy Pink Cloud

523         Happy Hoppy Hippo   7790        Summer in India

523         Happy Hoppy Hippo   7870        Ghost of Hops

536         Brewing Barbarian   4040        Coalminers Sweat

536         Brewing Barbarian   4160        Reindeer Fuel

536         Brewing Barbarian   4280        Hoppy Crude Oil

536         Brewing Barbarian   7950        Pale Rider Rides

In the next section, I’ll show multiple ways to create a variant of this list with just 

three rows – one for each brewery containing a column with a comma-separated list of 

all the beer names of that brewery.

�String aggregation
You know the function sum is an aggregate function that adds numbers. I’m about to 

demonstrate various aggregate functions that concatenate strings instead; therefore, 

this is called string aggregation. You can find other methods if you search the Internet or 

forums – I’ll just highlight four methods that each have some pros and cons.
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�Aggregate function listagg
In version 11.2, a new built-in function appeared called listagg – it is by definition the 

very function to use for string aggregation (just as sum is the function for additive number 

aggregation).

It requires a little more syntax than the simple sum function, but it is not hard to use 

as you can see in Listing 10-3.

Listing 10-3.  Using listagg to create product list

SQL> select

  2     max(brewery_name) as brewery_name

  3   , listagg(product_name, ',') within group (

  4        order by product_id

  5     ) as product_list

  6  from brewery_products

  7  group by brewery_id

  8  order by brewery_id;

In line 3, I use listagg with two parameters: the first is the string column or 

expression I want to aggregate, and the second (optional) is the delimiter to put between 

the strings in the aggregated result. If you don’t provide a delimiter parameter, the default 

is null which simply concatenates the strings without any delimiter between them.

After the parameters, the within group is mandatory and requires me to specify an 

order by (line 4) that tells Oracle in which order the strings should be aggregated.

With those keywords, Listing 10-3 produces this output that has the beers purchased 

at each brewery in a comma-separated string, where the beers are ordered by product_id:

BREWERY_NAME        PRODUCT_LIST

Balthazar Brauerei  Monks and Nuns,Hercule Trippel,Der Helle Kumpel

Happy Hoppy Hippo   Hazy Pink Cloud,Summer in India,Ghost of Hops

Brewing Barbarian   Coalminers Sweat,Reindeer Fuel,Hoppy Crude Oil,Pale 

Rider Rides
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Suppose I want the beers ordered alphabetically in the product list? That’s very easy; 

I just need to change the order by clause inside within group:

...

  4        order by product_name

...

And now the beers are alphabetically listed:

BREWERY_NAME        PRODUCT_LIST

Balthazar Brauerei  Der Helle Kumpel,Hercule Trippel,Monks and Nuns

Happy Hoppy Hippo   Ghost of Hops,Hazy Pink Cloud,Summer in India

Brewing Barbarian   Coalminers Sweat,Hoppy Crude Oil,Pale Rider 

Rides,Reindeer Fuel

The function listagg is easy to use and as a built-in highly performant. There are 

just a few drawbacks:

•	 It cannot return a string larger than a varchar2 – either 4.000 or 

32.767 bytes depending on your database setting. (Though there’s 

support for handling such situations – more on that later.)

•	 Before version 19c, it cannot do a distinct aggregation.

•	 It does not exist in versions before 11.2.

But in all other cases, listagg should be your first choice when considering string 

aggregation. If, however, you do find yourself in one of those situations, there are 

alternatives.

�Aggregate function collect
One of the alternatives you can consider if you have one of the special cases is to 

aggregate into a collection (nested table type) using the collect function and then build 

the string from the collection.

So to make this work, I need to define the two objects shown in Listing 10-4.  

The first is a nested table type name_coll_type of varchar2 in the size I need – in this 

case 20 char – I just need to represent that as 80 bytes. This is due to a bug – see the 

note for further explanation.
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Listing 10-4.  Collection type and function to convert collection to string

SQL> create or replace type name_coll_type

  2     as table of varchar2(80 byte);

  3  /

SQL> create or replace function name_coll_type_to_varchar2 (

  2     p_name_coll    in name_coll_type

  3   , p_delimiter    in varchar2 default null

  4  )

  5     return varchar2

  6  is

  7     v_name_string  varchar2(4000 char);

  8  begin

  9     for idx in p_name_coll.first..p_name_coll.last

 10     loop

 11        if idx = p_name_coll.first then

 12           v_name_string := p_name_coll(idx);

 13        else

 14           v_name_string := v_name_string

 15                         || p_delimiter

 16                         || p_name_coll(idx);

 17        end if;

 18     end loop;

 19     return v_name_string;

 20  end name_coll_type_to_varchar2;

 21  /

The second object I define is the function name_coll_type_to_varchar2 that 

converts the collection to a delimited string. It simply loops over the elements of the 

collection and keeps concatenating them unto the string variable to be returned – with a 

delimiter between each if such parameter has been given.
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Note T ype name_coll_type should really be varchar2(20 char), but 
unfortunately this causes an error due to a bug in Oracle. It is only a problem if you 
have a database with a multi-byte character set (as I use AL32UTF8) and use char 
semantics defining your varchar2 columns. This combination confuses collect. 

I’ve seen the bug in versions 12.2 and 18.3, and others have verified it in 11.2. You 
can see if it has been fixed in future releases on My Oracle Support by searching 
for bug 29195635. When the bug has been fixed, you can change to the correct 
datatype – until then the workaround is to use varchar2(80 byte) which is the 
maximum number of bytes that a varchar2(20 char) can be in AL32UTF8.

So armed with these two objects, I can now use them together with the built-in 

collect and cast functions as I show in Listing 10-5.

Listing 10-5.  Using collect and the created function

SQL> select

  2     max(brewery_name) as brewery_name

  3   , name_coll_type_to_varchar2(

  4        cast(

  5           collect(

  6              product_name

  7              order by product_id

  8           )

  9           as name_coll_type

 10        )

 11      , ','

 12     ) as product_list

 13  from brewery_products

 14  group by brewery_id

 15  order by brewery_id;
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How does it work? Well, starting from the inside of the expression, this is what 

happens:

•	 The collect function in lines 5–8 takes the product_name and 

aggregates it into a collection that’ll be ordered by product_id.  

But this is a “generic” collection type used internally by the database; 

we need to tell which real collection type it should be put in.

•	 So therefore in lines 4 and 9–10, I am using cast to specify I want the 

collection type name_coll_type.

•	 Now I have a collection of the correct type to call function name_

coll_type_to_varchar2 in line 3, and in line 11, I specify that a 

comma should be used as a delimiter in the resulting string.

The output of Listing 10-5 is identical to that of Listing 10-3 using listagg.

This method of using collect can be a workaround for all three drawbacks of 

listagg:

•	 It can be used in versions before 11.2.

•	 It supports distinct in the collect function, even you are not yet 

using version 19c.

•	 If needed, you can easily make a function name_coll_type_to_clob 

to handle cases where the result won’t fit in a varchar2.

As I have the APEX packages installed in my database, I can even use this method 

without having to create my own custom nested table type and function. With the 

APEX installation comes a type apex_t_varchar2, and the package apex_string has a 

function join that does the same as my name_coll_type_to_varchar2 function.

So I can adapt Listing 10-5 to using APEX functionality by just changing lines 3 and 9:

...

  3   , apex_string.join(

...

  9           as apex_t_varchar2

...

And this will work even if I am not using any APEX applications, just as long as the 

APEX API packages are installed in my database.
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�Custom aggregate function stragg
Long before version 11.2 was thought of, a quite common question people would ask of 

the famous Tom Kyte on http://asktom.oracle.com was how to do string aggregation. 

So Tom developed a custom aggregate function he called stragg as an answer to that 

question, and it has been used by many over the years. Here I’ll show a version where I 

have incorporated a few additions picked up here and there.

Caution  You may possibly find in your database a function called stragg in the 
SYS schema. This is a very little known function based on a C library and installed 
together with the dbms_xmlindex package. It is undocumented and designed 
specifically for certain tasks in the XML Index implementation. Do not use it! There 
is no guarantee how it works, and it is all too easy to unknowingly call it in an 
unsupported manner and either get errors or wrong results.

Oracle Data Cartridge Interface (ODCI) is a set of interface functions for doing 

a rather low-level implementation of functionality that can be used very much like 

built-ins. Mostly it is used by library authors implementing special functionality in, for 

example, C, but it can also be used for simpler cases implemented in pure PL/SQL.

As this is a book primarily on SQL, I am not going to waste paper having the entire 

implementation printed in the book. So I’ll show the create statements in the pieces of 

Listing 10-6, but skip the bulk of the body.

Listing 10-6.  Types, type bodies, and function to implement custom aggregate

SQL> create or replace type stragg_expr_type as object (

  2     element    varchar2(4000 char)

  3   , delimiter  varchar2(4000 char)

  4   , map member function map_func return varchar2

  5  );

  6  /

The original stragg by Tom Kyte aggregated simply on a varchar2 and then 

hardcoded the delimiter used, since an aggregate function cannot be created with 

multiple parameters. I am going to aggregate on an object type stragg_expr_type 

instead, allowing me to pass the desired delimiter as a second attribute in the object.
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SQL> create or replace type body stragg_expr_type

  2  as

  3     map member function map_func return varchar2

  4     is

  5     begin

  6        return element || '|' || delimiter;

  7     end map_func;

  8  end;

  9  /

I implement a map member function in my object type, because that allows the 

database to discover whether two objects are identical or not. And that in turn allows my 

aggregate function to support the distinct keyword, which is one of the things listagg 

does not do until version 19c.

SQL> create or replace type stragg_type as object

  2  (

  3     aggregated varchar2(4000)

  4   , delimiter  varchar2(4000)

  5

  6   , static function ODCIAggregateInitialize(

  7        new_self    in out stragg_type

  8     ) return number

  9

 10   , member function ODCIAggregateIterate(

 11        self        in out stragg_type

 12      , value       in     stragg_expr_type

 13     ) return number

 14

 15   , member function ODCIAggregateTerminate(

 16        self        in     stragg_type

 17      , returnvalue out    varchar2

 18      , flags       in     number

 19     ) return number

 20
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 21   , member function ODCIAggregateMerge(

 22        self        in out stragg_type

 23      , other_self  in     stragg_type

 24     ) return number

 25  );

 26  /

Then I define the type stragg_type that is going to implement the actual 

aggregation. The two attributes I use internally in the implementation. The four 

functions are determined by the ODCI interface and must be named like shown and 

with a parameter list exactly as shown (the parameter names may be different, but the 

order and type of parameters have to match):

•	 ODCIAggregateInitialize is kind of like a constructor function 

explicitly called by the database when aggregation is started, so here I 

create a new instance of the object.

•	 ODCIAggregateIterate is called by the database with each string 

that is to be aggregated, so here I add the delimiter and string to the 

aggregated attribute. (In the original stragg, the value parameter 

was simply a varchar2; here I am passing a value of type stragg_

expr_type.)

•	 ODCIAggregateTerminate is called by the database at the end of the 

aggregation when it wants the result, and I return the aggregated 

string here.

•	 In case the database has decided to split the aggregation job 

in multiple parts (e.g., in parallel query), each part has called 

ODCIAggregateInitialize to get an object and then aggregated along 

with ODCIAggregateIterate. At the end each part will have an object 

with some strings aggregated in the aggregated attribute – the 

database will then call ODCIAggregateMerge to merge the content, 

so in this function, I append the aggregated of the other_self object 

to the self object.
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That was the textual description of what I need to implement in the functions, and 

then I just need to code this in the type body.

SQL> create or replace type body stragg_type

  2  is

...

 54  end;

 55  /

For the code implementing those four functions in the type body, see the companion 

script practical_fill_schema.sql.

SQL> create or replace function stragg(input stragg_expr_type )

  2     return varchar2

  3     parallel_enable aggregate using stragg_type;

  4  /

Having create the object type for implementation, the last thing to do is to create the 

aggregate function stragg itself. The input parameter must be of datatype matching the 

value parameter of ODCIAggregateIterate function, and the return datatype must match 

the returnvalue parameter of ODCIAggregateTerminate function.

The aggregate using stragg_type tells the database this is a custom aggregate 

function that is implemented by the object type stragg_type, so when the database 

performs aggregation with this function, it will call the ODCI∗ functions of the type. 

Keyword parallel_enable specifies the database may use parallelization, because  

I have implemented ODCIAggregateMerge.

Having created these objects, I am now able to use my custom aggregate function in 

Listing 10-7.

Listing 10-7.  Using stragg custom aggregate function

SQL> select

  2     max(brewery_name) as brewery_name

  3   , stragg(

  4        stragg_expr_type(product_name, ',')

  5     ) as product_list

  6  from brewery_products

  7  group by brewery_id

  8  order by brewery_id;
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Since I declared this function an aggregate function using the ODCI interface, I can 

use stragg in lines 3–5 just like any built-in aggregate function. The input datatype is 

stragg_expr_type, so I use the type constructor with the product name and the comma 

as delimiter.

Note T he trick of using an object type to pass a delimiter to the aggregate 
function works nicely, but it does require a bit of self-discipline from me as a 
developer, since it is up to me to ensure that the delimiter is a constant. In principle 
I could pass different delimiter values in each row, but that would cause problems 
in the implementation. I have tried to implement such that the delimiter from the 
first call to ODCITableIterate is used, but in case of parallelization, there will be 
multiple calls to ODCITableIterate from different rows. It is therefore important you 
make sure the delimiter value is constant – the safest is to use a literal.

The output of Listing 10-7 is almost, but not necessarily quite the same as the output 

I got from listagg and collect:

BREWERY_NAME        PRODUCT_LIST

Balthazar Brauerei  Monks and Nuns,Der Helle Kumpel,Hercule Trippel

Happy Hoppy Hippo   Hazy Pink Cloud,Ghost of Hops,Summer in India

Brewing Barbarian   Coalminers Sweat,Pale Rider Rides,Hoppy Crude 

Oil,Reindeer Fuel

The product names within the product_list column are the same – the result is 

identical in terms of values. But the order of products within the delimited string is 

indeterminate with this custom aggregate function – I cannot implement an order by 

clause for stragg.

A thing to note here is the behavior if I add the distinct clause to the call to stragg:

...

  4        distinct stragg_expr_type(product_name, ',')

...
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Suddenly the beers are alphabetically ordered in the product list:

BREWERY_NAME        PRODUCT_LIST

Balthazar Brauerei  Der Helle Kumpel,Hercule Trippel,Monks and Nuns

Happy Hoppy Hippo   Ghost of Hops,Hazy Pink Cloud,Summer in India

Brewing Barbarian   Coalminers Sweat,Hoppy Crude Oil,Pale Rider 

Rides,Reindeer Fuel

This is a side effect of the database having to sort the product names in order to get 

the distinct values. But it cannot be guaranteed always to be ordered and work like you 

see here – the database might figure out a way to, for example, use a hash function to do 

distinct, and then the result will be very unordered.

�Aggregate function xmlagg
So you’ve now seen listagg, collect, and stragg – if that’s not enough, Listing 10-8 

shows a fourth method of string aggregation using xmlagg.

Listing 10-8.  Using xmlagg and extract text from xml

SQL> select

  2     max(brewery_name) as brewery_name

  3   , rtrim(

  4        xmlagg(

  5           xmlelement(z, product_name, ',')

  6           order by product_id

  7        ).extract('//text()').getstringval()

  8      , ','

  9     ) as product_list

 10  from brewery_products

 11  group by brewery_id

 12  order by brewery_id;
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Examining the expression I use here, it works like this:

•	 In line 5, I create an XML element called z (the name is irrelevant) 

containing a concatenation of the product name and a comma.

•	 Using xmlagg in lines 4 and 6, I create an XML snippet that is an 

aggregation of the z XML elements created in the preceding text – 

ordered by product id.

•	 In line 7, I get rid of the XML tags in the snippet, keeping only the text 

values.

•	 The aggregated text at this point now has a trailing comma too much, 

so I get rid of that using rtrim in lines 3 and 8.

All of that together makes Listing 10-8 return the exact same output as listagg and 

collect in Listings 10-3 and 10-5.

So what’s up with this z XML element? What’s the purpose of this? Well, if I was to do 

just the xmlagg(xmlelement(... alone and skip the extract and rtrim, this would be 

the output for Balthazar Brauerei:

<Z>Monks and Nuns,</Z><Z>Hercule Trippel,</Z><Z>Der Helle Kumpel,</Z>

You see the XML start and end tags for a series of Z elements, each containing a 

product name and comma. The actual name I use for the XML tag is irrelevant, so it 

might as well be as short as possible, because it is stripped away anyway, when I do 

extract('//text()') on it:

Monks and Nuns,Hercule Trippel,Der Helle Kumpel,

And now you can see why the rtrim is necessary to remove the comma at the end.

Creating the z XML element is the nice way to behave when using xmlagg. But there 

is actually an alternative that can save you from needing to do the extract to strip away 

XML tags.

The function xmlparse takes xml as text and transforms it to XMLType datatype. 

Normally it will check if it is good XML, but it also supports the keyword wellformed, 

by which you tell the database “trust me, this is good XML, you do not need to check 
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it.” So I can replace the use of xmlelement with xmlparse and thereby skip having to use 

extract:

...

  4        xmlagg(

  5           xmlparse(content product_name || ',' wellformed)

  6           order by product_id

  7        ).getstringval()

...

This will directly give me the output with no XML tags, ready to use the rtrim 

function to get rid of the last comma:

Monks and Nuns,Hercule Trippel,Der Helle Kumpel,

Why would you consider using xmlagg when you have the other alternatives I’ve 

shown? Partly it is nice in older databases that string aggregation is possible with xmlagg 

without having to install your own datatypes; partly it is one of the ways to handle very 

long aggregations, as I’ll show you now.

�When it doesn’t fit in a VARCHAR2
The string aggregations I’ve shown so far will all fail, if the aggregated output is longer 

than the maximum length of a varchar2 – normally 4000 bytes, but could be 32.767 bytes 

if your database max_string_size is set to extended.

What to do then if you need larger output? To show you that, I’m going to use the 

table monthly_sales and join it to the products table.

I have monthly sales data for 3 years for each of my 10 products, so 360 rows in this 

table. Imagine I need to output the product name for each of those rows in a fixed length 

format – that is, each product name padded with spaces so it fills exactly 20 characters 

without using any delimiters. The result is a single string 7200 characters.

In Listing 10-9, I attempt to generate this string using listagg – as I use no 

group by, I should get a single row with a single column in the output having this 

7.200-character fixed length list of 360 product names.
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Listing 10-9.  Getting ORA-01489 with listagg

SQL> select

  2     listagg(rpad(p.name, 20)) within group (

  3        order by p.id

  4     ) as product_list

  5  from products p

  6  join monthly_sales ms

  7     on ms.product_id = p.id;

Error starting at line : 1 in command -

Error report -

ORA-01489: result of string concatenation is too long

But it fails in my database where a varchar2 can be at most 4.000 bytes long. To work 

around this, I have different options.

�Get just the first part of the result
Sometimes I do not actually need to get the entire result; it is sufficient to get what can  

fit in a varchar2 and an indication that there is more than could be shown. In version 

12.2, the listagg function was enhanced to provide just this functionality, as I show in 

Listing 10-10.

Listing 10-10.  Suppressing error in listagg

SQL> select

  2     listagg(

  3        rpad(p.name, 20)

  4        on overflow truncate '{more}' with count

  5     ) within group (

  6        order by p.id

  7     ) as product_list

  8  from products p

  9  join monthly_sales ms

 10     on ms.product_id = p.id;
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Compared to Listing 10-9, I have simply added line 4:

•	 Keywords on overflow is used to specify what the database should do 

if the result of the aggregation becomes too long to fit a varchar2. The 

default is on overflow error, which gives the error in Listing 10-9.

•	 truncate specifies that instead of raising an error, it should return 

only what will fit in a varchar2 and truncate the rest. Note it never 

truncates in the middle of a string in the list – the string that causes 

the overflow so the output won’t fit, that string will be truncated in its 

entirety.

•	 The literal '{more}' will be appended to the result if it was truncated. 

If I do not specify a literal, the default is an ellipsis (three dots) '...'.

•	 with count causes a count of how many elements (not characters) 

were truncated to be appended. The default is without count.

This addition of line 4 causes Listing 10-10 to run without error and give me this 

output instead with a single string almost 4000 characters long (most of them omitted 

here to save paper):

PRODUCT_LIST

Coalminers Sweat    Coalminers Sweat    ...[[3880 characters removed]]...

Der Helle Kumpel    Der Helle Kumpel    {more}(162)

So for cases where it is enough to know there is more than could fit, this is a nice 

enhancement to listagg. But what if that is not the case? Then I have other possibilities.

�Try to make it fit with reduced data
There can be cases where the reason it won’t fit with listagg is that the data is not 

unique, and you do not actually need to see each individual occurrence of the duplicated 

data – once is enough. When your database is version 19c or later, you can do distinct 

string aggregation, making the fewer occurrences possibly fit inside a varchar2.

Listing 10-11 is like Listing 10-9; I just added the keyword distinct in the listagg 

function call, which is a new feature in version 19c.
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Listing 10-11.  Reducing data with distinct

SQL> select

  2     listagg(distinct rpad(p.name, 20)) within group (

  3        order by p.id

  4     ) as product_list

  5  from products p

  6  join monthly_sales ms

  7     on ms.product_id = p.id;

Since the 7200 character string in this case contains a whole lot of repetitions, doing 

distinct gives me a string with just 200 characters:

PRODUCT_LIST

Coalminers Sweat    Der Helle Kumpel    Ghost of Hops       Hazy Pink Cloud     

Hercule Trippel     Hoppy Crude Oil     Monks and Nuns      Pale Rider 

Rides    Reindeer Fuel       Summer in India

If I had not had a 19c database, I could have used an inline view with a select 

distinct and then performed my listagg aggregation on the result of the inline view.

For cases where a distinct set of data makes the aggregated result small enough, 

listagg supports it in version 19c or later. But there can also be cases where you really 

do need the aggregated result to be larger than a varchar2 – then you need a clob.

�Use a CLOB instead of a VARCHAR2
One way to use a clob is to use the collect function shown earlier and then create a 

function name_coll_type_to_clob instead of the name_coll_type_to_varchar2 I have 

shown. I’ll leave that as an exercise to you, as it is not much that need to be changed, if 

you want to try it.

But in Listing 10-12, I’ll instead show you how to aggregate to a clob using the built-

in function xmlagg – then you do not need to create any function of your own.

Listing 10-12.  Using xmlagg to aggregate to a clob

SQL> select

  2     xmlagg(

  3        xmlparse(
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  4           content rpad(p.name, 20) wellformed

  5        )

  6        order by product_id

  7     ).getclobval() as product_list

  8  from products p

  9  join monthly_sales ms

 10     on ms.product_id = p.id;

This is very like what I did in Listing 10-8, just using getclobval() in line 7 instead of 

getstringval(). That is really all that is necessary to get a clob instead of varchar2 from 

an xmltype, and the result is the 7200 character string I want (shown here with most of it 

cut away):

PRODUCT_LIST

Coalminers Sweat    Coalminers Sweat    ...[[7120 characters removed]]...

Pale Rider Rides    Pale Rider Rides

If my database is version 18c or later, I can get the same output as Listing 10-12 by 

using json_arrayagg as alternative to xmlagg. I show an example in Listing 10-13.

Listing 10-13.  Using json_arrayagg to aggregate to a clob

SQL> select

  2     json_value(

  3        replace(

  4           json_arrayagg(

  5              rpad(p.name, 20)

  6              order by product_id

  7              returning clob

  8           )

  9         , '","'

 10         , ''

 11        )

 12      , '$[0]' returning clob

 13     ) as product_list

 14  from products p

 15  join monthly_sales ms

 16     on ms.product_id = p.id;
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If you didn’t create your own name_coll_type_to_clob and you have APEX installed in 

the database, you also have an APEX function that can be used, as I show in Listing 10-14.

Listing 10-14.  Using apex_string.join_clob to aggregate to a clob

SQL> select

  2     apex_string.join_clob(

  3        cast(

  4           collect(

  5              rpad(p.name, 20)

  6              order by p.id

  7           )

  8           as apex_t_varchar2

  9        )

 10      , ''

 11      , 12 /* dbms_lob.call */

 12     ) as product_list

 13  from products p

 14  join monthly_sales ms

 15     on ms.product_id = p.id;

This is a function that can be used just like apex_string.join that I showed you 

earlier in the chapter. Since apex_string.join_clob returns a temporary clob, it has 

an extra parameter compared to apex_string.join to indicate the life span of the 

temporary clob, accepting the same values as dbms_lob.createtemporary. In line 11, I 

state that the clob just lives for the duration of the call.

Until perhaps a future listagg implementation might possibly implement clob 

support, xmlagg, json_arrayagg, and apex_string.join_clob are all valid methods 

to use. The JSON functionality in the database has generally been tuned from version 

to version, so in the most recent database versions, the JSON functions are typically the 

fastest solution.
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�Lessons learned
I’ve shown both built-in and custom-made methods of string aggregation enabling you to

•	 Use built-in listagg function as the preferred method, except for the 

special cases where it will not work.

•	 Create a nested table type and a function (or use APEX built-ins) to 

use the collect aggregate function as an alternative.

•	 Use a custom created aggregate function stragg.

•	 Do string aggregation both in varchar2 and clob with various built-

in functions.

All of the methods can be good to know for special circumstances, but my 

recommendation is in general to stick to listagg if you can. The built-in functionality 

normally outperforms anything you can build yourself – unless the circumstances are 

very special.
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CHAPTER 11

Analytic Partitions, 
Ordering, and Windows
A wise man once said in a conference presentation that if you put SQL on your resume 

and do not know analytic functions, you are lying. I can only agree. It would be similar to 

stating you know Windows and have never worked with a newer windows version than 

Windows 95.

I use analytic functions almost daily when developing. There are so many cases 

where they either are necessary to create a SQL solution at all (the alternative being 

a slow procedural solution instead) or at the very least make the SQL much more 

performant than not using analytic functions (often cases of many self-joins leading to 

multiple lookups of the same data).

The fantastic bit about analytic functions is that you can retrieve or reference values 

across rows – you are not restricted to values in the row itself when doing calculations. 

You can use different subclauses of analytic functions in different combinations to 

achieve this.

The basics of these subclauses, and how they work together, are shown in this 

chapter. The rest of Part 2 contains different use cases of analytic functions solving tasks 

that often would be hard without.
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�Sums of quantities
To showcase the different subclauses of an analytic function call, I’ll be using the 

orderlines table shown in Figure 11-1.

Figure 11-1.  Orderlines table of how much of each product is ordered by 
customers

The orderlines table contains how much is in order from customers for each of the 

beers in the products table. In the example queries of this chapter, I’ll join the two tables 

just to make it easier to spot the two different beers whose data I show in Listing 11-1.

Listing 11-1.  Content of orderlines table for two beers

SQL> select

  2     ol.product_id as p_id

  3   , p.name        as product_name

  4   , ol.order_id   as o_id
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  5   , ol.qty

  6  from orderlines ol

  7  join products p

  8     on p.id = ol.product_id

  9  where ol.product_id in (4280, 6600)

 10  order by ol.product_id, ol.qty;

P_ID  PRODUCT_NAME     O_ID  QTY

4280  Hoppy Crude Oil  423   60

4280  Hoppy Crude Oil  427   60

4280  Hoppy Crude Oil  422   80

4280  Hoppy Crude Oil  429   80

4280  Hoppy Crude Oil  428   90

4280  Hoppy Crude Oil  421   110

6600  Hazy Pink Cloud  424   16

6600  Hazy Pink Cloud  426   16

6600  Hazy Pink Cloud  425   24

I’ll make a lot of different sums of the qty column. With the basic ideas you can apply 

to most of the analytic functions, sum is just a handy example.

�Analytic syntax
I’m sure you have seen Figure 11-2 in the SQL Reference Manual, showing that all 

analytic functions use the keyword over followed by parentheses surrounding an 

analytic clause.

Figure 11-2.  Basic analytic function syntax diagram
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Many functions are aggregate functions when used without over and become 

analytic when you add over. The interesting bits happen within the analytic clause 

shown in Figure 11-3.

The analytic clause has three parts:

•	 query_partition_clause to split the data into partitions and apply the 

function separately to each partition

•	 order_by_clause to apply the function in a specific order and/or 

provide the ordering that the windowing_clause depends upon

•	 windowing_clause to specify a certain window (fixed or moving) of 

the ordered data in the partition

But you’ll notice that the three parts are all optional in the syntax diagram, so the 

analytic clause itself is allowed to be empty. Listing 11-2 shows what happens then.

Listing 11-2.  The simplest analytic function call is a grand total

SQL> select

  2     ol.product_id as p_id

  3   , p.name        as product_name

  4   , ol.order_id   as o_id

  5   , ol.qty

  6   , sum(ol.qty) over () as t_qty

  7  from orderlines ol

  8  join products p

  9     on p.id = ol.product_id

 10  where ol.product_id in (4280, 6600)

 11  order by ol.product_id, ol.qty;

Figure 11-3.  The three parts that make up the analytic clause
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I’ve just taken Listing 11-1 and added line 6: a sum of the qty column as analytic 

function (recognizable by the over keyword) with an empty analytic clause. The output 

becomes:

P_ID  PRODUCT_NAME     O_ID  QTY  T_QTY

4280  Hoppy Crude Oil  423   60   536

4280  Hoppy Crude Oil  427   60   536

4280  Hoppy Crude Oil  422   80   536

4280  Hoppy Crude Oil  429   80   536

4280  Hoppy Crude Oil  428   90   536

4280  Hoppy Crude Oil  421   110  536

6600  Hazy Pink Cloud  424   16   536

6600  Hazy Pink Cloud  426   16   536

6600  Hazy Pink Cloud  425   24   536

The t_qty column simply contains the sum of all the qty values – not of the entire 

table, but of those rows that satisfy the where clause.

When executing a SQL statement, evaluation of analytic functions happens after the 

rows have been found (where clause evaluation) and also after any group by aggregation 

that may be in the statement. Therefore, analytic functions cannot be used in the where, 

group by, and having clauses. But they can be used in the order by clause, if you need to.

The empty analytic clause means that no partitioning has been defined, so there 

is just a single partition containing all the rows. Also no ordering and windowing have 

been defined, so the entire partition is the window on which the sum function is applied. 

Therefore it becomes the grand total.

Often, though, I’d like to apply the analytic function on smaller subsets, which I’ll 

show next.

�Partitions
There are two ways to split the rows into smaller subsets for analytic functions, each 

serving different purposes. The first is partitioning with the query_partition_clause 

shown in Figure 11-4.

Chapter 11  Analytic Partitions, Ordering, and Windows



198

You can use one or more expressions to do the partitioning, where there will 

be created a partition for each distinct value in the expression(s). Each partition is 

completely separated, and the analytic function evaluated in one partition cannot see 

data in any other partition.

Note   You’ll see that Listing 11-3 is the same as Listing 11-2, only changed in 
the analytic function call. This goes for most of the examples in the chapter –  
if nothing else is indicated, they are copies of Listing 11-2 with just the changed 
function call shown.

I show a simple example of using partition by in Listing 11-3.

Listing 11-3.  Creating subtotals by product with partitioning

...

  6   , sum(ol.qty) over (

  7        partition by ol.product_id

  8     ) as p_qty

...

The analytic clause is no longer empty; I have added line 7 to create a partition for 

each beer, and the grand totals now apply within each partition only. This way p_qty is a 

grand total per product:

P_ID  PRODUCT_NAME     O_ID  QTY  P_QTY

4280  Hoppy Crude Oil  423   60   480

4280  Hoppy Crude Oil  427   60   480

4280  Hoppy Crude Oil  422   80   480

Figure 11-4.  Syntax diagram for the query_partition_clause
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4280  Hoppy Crude Oil  429   80   480

4280  Hoppy Crude Oil  428   90   480

4280  Hoppy Crude Oil  421   110  480

6600  Hazy Pink Cloud  424   16   56

6600  Hazy Pink Cloud  426   16   56

6600  Hazy Pink Cloud  425   24   56

That’s nice, but I can be much more creative with the second form of splitting the 

data into subsets – windowing with the order_by_clause and windowing_clause.

�Ordering and windows
For the order_by_clause syntax shown in Figure 11-5, the authors of the SQL Reference 

Manual have copied the syntax for the regular order by in a query.

Figure 11-5.  Syntax diagram for the order_by_clause

But it isn’t quite the truth. When you read the following description in the manual, 

it is explained that keyword siblings cannot be used, and you also cannot use position 

and c_alias for an analytic order by.

For some analytic functions, query_partition_clause and order_by_clause are all there 

are – the third subclause is unavailable. But for many, you also have the windowing_clause 

(Figure 11-6) available. To use windowing, you must have filled the order_by_clause.
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I’ll do a running total in Listing 11-4 by using both ordering and windowing.

Listing 11-4.  Creating a running sum with ordering and windowing

...

  6   , sum(ol.qty) over (

  7        order by ol.qty

  8        rows between unbounded preceding

  9                 and current row

 10     ) as r_qty

...

 15  order by ol.qty;

Line 7 contains my order by and lines 8–9 my window specification. I specify that 

when the analytic sum is to be evaluated on a given row, the sum should be applied to 

a rolling window of all the preceding rows up to and including the current row. To see 

easily what happens, I change the order by in line 15 to match the order by in line 7, 

giving me an output with r_qty being a running sum of qty:

P_ID  PRODUCT_NAME     O_ID  QTY  R_QTY

6600  Hazy Pink Cloud  426   16   16

6600  Hazy Pink Cloud  424   16   32

6600  Hazy Pink Cloud  425   24   56

4280  Hoppy Crude Oil  427   60   116

4280  Hoppy Crude Oil  423   60   176

4280  Hoppy Crude Oil  422   80   256

4280  Hoppy Crude Oil  429   80   336

Figure 11-6.  Syntax diagram for the windowing_clause
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4280  Hoppy Crude Oil  428   90   426

4280  Hoppy Crude Oil  421   110  536

The qty of each row is added as the rows are processed in order, resulting in the 

running sum. When the ordering is not unique, whichever row the database happens to 

access first will be added first. The first two lines of the output might have shown o_id 

424 before 426 instead, if the access plan had been such that 424 was accessed first.

I can change the order by in line 15 back to the same ordering as Listing 11-2 (and 

most other examples), ordering by product_id first, then qty:

...

 15  order by ol.product_id, ol.qty;

Now my output is ordered differently, but the running sum is still calculated with the 

order by in the analytic sum, namely, qty alone. You’ll see, for example, that the two first 

lines of the previous output are now near the end, but o_id 426 still has a value of 16 in 

r_qty and o_id 424 a value of 32 and so on:

P_ID  PRODUCT_NAME     O_ID  QTY  R_QTY

4280  Hoppy Crude Oil  423   60   176

4280  Hoppy Crude Oil  427   60   116

4280  Hoppy Crude Oil  422   80   256

4280  Hoppy Crude Oil  429   80   336

4280  Hoppy Crude Oil  428   90   426

4280  Hoppy Crude Oil  421   110  536

6600  Hazy Pink Cloud  424   16   32

6600  Hazy Pink Cloud  426   16   16

6600  Hazy Pink Cloud  425   24   56

Having analytics applied in a different order than the output itself is a useful 

technique in a quite a few situations.

Tip T he lower half of Figure 11-6 shows the shortcut syntax. When you have a 
window that is rows between something and current row, you can simply 
use rows something, and it will default to using something as start row and 
current row as end row of the window. In Listing 11-4, I could have replaced 

Chapter 11  Analytic Partitions, Ordering, and Windows



202

lines 8–9 with a single line containing rows unbounded preceding. Personally 
I like to always use the between syntax, but you can use the shortcut if you like. It 
is only syntactical difference, and the result is identical.

Of course I can combine all three clauses in a single call, as I do it in Listing 11-5.

Listing 11-5.  Combining partitioning, ordering, and windowing

...

  6   , sum(ol.qty) over (

  7        partition by ol.product_id

  8        order by ol.qty

  9        rows between unbounded preceding

 10                 and current row

 11     ) as p_qty

...

I partition in line 7 by product_id and order in line 8 by qty, so the window in lines 

8–9 gives me a running sum for each beer, which the output shows nicely since I kept the 

usual query ordering of product_id, qty:

P_ID  PRODUCT_NAME     O_ID  QTY  P_QTY

4280  Hoppy Crude Oil  423   60   60

4280  Hoppy Crude Oil  427   60   120

4280  Hoppy Crude Oil  422   80   200

4280  Hoppy Crude Oil  429   80   280

4280  Hoppy Crude Oil  428   90   370

4280  Hoppy Crude Oil  421   110  480

6600  Hazy Pink Cloud  424   16   16

6600  Hazy Pink Cloud  426   16   32

6600  Hazy Pink Cloud  425   24   56

Windowing is very handy and often used for running totals, but the window can be 

much more flexible than that.
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�Flexibility of the window clause
The running totals in the previous two listings was up to and including current row, 

which is quite normal. But the window does not need to include the current row, as I 

show in Listing 11-6 that calculates running total of all previous rows.

Listing 11-6.  Window with all previous rows

...

  6   , sum(ol.qty) over (

  7        partition by ol.product_id

  8        order by ol.qty

  9        rows between unbounded preceding

 10                 and 1 preceding

 11     ) as p_qty

...

In line 10, I replaced the current row with 1 preceding, meaning the window is all 

rows up to and including the row just before the current row:

P_ID  PRODUCT_NAME     O_ID  QTY  P_QTY

4280  Hoppy Crude Oil  423   60

4280  Hoppy Crude Oil  427   60   60

4280  Hoppy Crude Oil  422   80   120

4280  Hoppy Crude Oil  429   80   200

4280  Hoppy Crude Oil  428   90   280

4280  Hoppy Crude Oil  421   110  370

6600  Hazy Pink Cloud  424   16

6600  Hazy Pink Cloud  426   16   16

6600  Hazy Pink Cloud  425   24   32

You’ll notice that means that p_qty is null on the first row of each partition, since 

there are no preceding rows at that point.
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Windows can also look ahead in the data rather than just look at the preceding rows. 

I can change the window specification of Listing 11-6 to a window starting at the current 

row and including all the following rows in the partition:

...

  9        rows between current row

 10                 and unbounded following

...

That gives me a reversed running total:

P_ID  PRODUCT_NAME     O_ID  QTY  P_QTY

4280  Hoppy Crude Oil  423   60   480

4280  Hoppy Crude Oil  427   60   420

4280  Hoppy Crude Oil  422   80   360

4280  Hoppy Crude Oil  429   80   280

4280  Hoppy Crude Oil  428   90   200

4280  Hoppy Crude Oil  421   110  110

6600  Hazy Pink Cloud  424   16   56

6600  Hazy Pink Cloud  426   16   40

6600  Hazy Pink Cloud  425   24   24

Again I do not only need to include the current row; I can also do a window of all 

rows yet to come:

...

  9        rows between 1 following

 10                 and unbounded following

...

The null value at the end of each partition indicates there are no rows following:

P_ID  PRODUCT_NAME     O_ID  QTY  P_QTY

4280  Hoppy Crude Oil  423   60   420

4280  Hoppy Crude Oil  427   60   360

4280  Hoppy Crude Oil  422   80   280

4280  Hoppy Crude Oil  429   80   200

4280  Hoppy Crude Oil  428   90   110

4280  Hoppy Crude Oil  421   110
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6600  Hazy Pink Cloud  424   16   40

6600  Hazy Pink Cloud  426   16   24

6600  Hazy Pink Cloud  425   24

I can give the window bounds in both ends to sum, for example, the values from the 

previous row, the current row, and the following row:

...

  9        rows between 1 preceding

 10                 and 1 following

...

P_ID  PRODUCT_NAME     O_ID  QTY  P_QTY

4280  Hoppy Crude Oil  423   60   120

4280  Hoppy Crude Oil  427   60   200

4280  Hoppy Crude Oil  422   80   220

4280  Hoppy Crude Oil  429   80   250

4280  Hoppy Crude Oil  428   90   280

4280  Hoppy Crude Oil  421   110  200

6600  Hazy Pink Cloud  424   16   32

6600  Hazy Pink Cloud  426   16   56

6600  Hazy Pink Cloud  425   24   40

Or I can make a window that is unbounded in both ends:

...

  9        rows between unbounded preceding

 10                 and unbounded following

...

But this makes little sense, as the totally unbounded window is the entire partition, 

which means that the order by clause actually does not make a difference to the output, 

which is the same as I got from Listing 11-3 that had no order by and no windowing 

clause:

P_ID  PRODUCT_NAME     O_ID  QTY  P_QTY

4280  Hoppy Crude Oil  423   60   480

4280  Hoppy Crude Oil  427   60   480

4280  Hoppy Crude Oil  422   80   480

Chapter 11  Analytic Partitions, Ordering, and Windows



206

4280  Hoppy Crude Oil  429   80   480

4280  Hoppy Crude Oil  428   90   480

4280  Hoppy Crude Oil  421   110  480

6600  Hazy Pink Cloud  424   16   56

6600  Hazy Pink Cloud  426   16   56

6600  Hazy Pink Cloud  425   24   56

So for the completely unbounded window, I recommend just skipping order by and 

windowing clause.

In the syntax diagram, you saw that a window could be specified using either rows 

between or range between. As I gave several examples of, a rows between window is 

determined by a number of rows before or after the current row. It is different with range 

between.

�Windows on value ranges
If I want, I can specify a window not as “two rows before to two rows after the current 

row” but instead as “those rows where the value is from 20 less to 20 more than the value 

in the current row.” This I can do with range between like Listing 11-7.

Listing 11-7.  Range window based on qty value

...

  6   , sum(ol.qty) over (

  7        partition by ol.product_id

  8        order by ol.qty

  9        range between 20 preceding

 10                  and 20 following

 11     ) as p_qty

...

When I specify between 20 preceding and 20 following in lines 9–10, I ask that 

the window will contain those rows where the value is the same as the value in the 

current row plus/minus 20. But the value of what?

The value that range will use is the value of the column used in the order by in the 

analytic function. Therefore, in order to use range windows, the order by column must 

be a number or a date/timestamp.
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The column I calculate the total of in the sum function does not have to be the same 

as the one I use for ordering and range, but in practice, it often is, giving me an output 

where you can see both third and fourth rows get a sum of 370, as it is the sum of all the 

rows in the partition with values between 80-20=60 and 80+20=100:

P_ID  PRODUCT_NAME     O_ID  QTY  P_QTY

4280  Hoppy Crude Oil  423   60   280

4280  Hoppy Crude Oil  427   60   280

4280  Hoppy Crude Oil  422   80   370

4280  Hoppy Crude Oil  429   80   370

4280  Hoppy Crude Oil  428   90   360

4280  Hoppy Crude Oil  421   110  200

6600  Hazy Pink Cloud  424   16   56

6600  Hazy Pink Cloud  426   16   56

6600  Hazy Pink Cloud  425   24   56

Even range windows do not have to include the current row value; I can also specify I 

want the window to contain those rows with a qty value between the current qty + 5 and 

the current qty + 25:

...

  9        range between  5 following

 10                  and 25 following

...

P_ID  PRODUCT_NAME     O_ID  QTY  P_QTY

4280  Hoppy Crude Oil  423   60   160

4280  Hoppy Crude Oil  427   60   160

4280  Hoppy Crude Oil  422   80   90

4280  Hoppy Crude Oil  429   80   90

4280  Hoppy Crude Oil  428   90   110

4280  Hoppy Crude Oil  421   110

6600  Hazy Pink Cloud  424   16   24

6600  Hazy Pink Cloud  426   16   24

6600  Hazy Pink Cloud  425   24
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Running totals can be performed with range windows as well:

...

  9        range between unbounded preceding

 10                  and current row

...

But notice how the running totals are identical for the rows that have same qty value:

P_ID  PRODUCT_NAME     O_ID  QTY  P_QTY

4280  Hoppy Crude Oil  423   60   120

4280  Hoppy Crude Oil  427   60   120

4280  Hoppy Crude Oil  422   80   280

4280  Hoppy Crude Oil  429   80   280

4280  Hoppy Crude Oil  428   90   370

4280  Hoppy Crude Oil  421   110  480

6600  Hazy Pink Cloud  424   16   32

6600  Hazy Pink Cloud  426   16   32

6600  Hazy Pink Cloud  425   24   56

Compare this output to the output of Listing 11-5, where the first two rows have 

values in p_qty of 60 and 120, respectively. Here they both have 120.

That is because of the nature of the range window, which gives a different meaning 

to the term current row. It no longer specifically means the current row, but rather the 

value of the current row. (In my opinion it would have been nice to use wording like 

current value for range windows, but that is unfortunately not supported syntax.)

So you see range windows using the current row can actually include following rows 

in case of value ties. This leads me to showing you a pitfall that is all too easy to fall into.

�The danger of the default window
In Figure 11-3, you can see that it is possible to use order by without specifying a 

windowing clause. That leads to a default windowing clause, which might surprise you. 

In Listing 11-8, I show you the difference between the default, range between, and rows 

between.
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Listing 11-8.  Comparing running sum with default, range, and rows window

SQL> select

  2     ol.product_id as p_id

  3   , p.name        as product_name

  4   , ol.order_id   as o_id

  5   , ol.qty

  6   , sum(ol.qty) over (

  7        partition by ol.product_id

  8        order by ol.qty

  9        /* no window - rely on default */

 10     ) as def_q

 11   , sum(ol.qty) over (

 12        partition by ol.product_id

 13        order by ol.qty

 14        range between unbounded preceding

 15                  and current row

 16     ) as range_q

 17   , sum(ol.qty) over (

 18        partition by ol.product_id

 19        order by ol.qty

 20        rows between unbounded preceding

 21                 and current row

 22     ) as rows_q

 23  from orderlines ol

 24  join products p

 25     on p.id = ol.product_id

 26  where ol.product_id in (4280, 6600)

 27  order by ol.product_id, ol.qty;
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I have three analytic function calls here:

•	 Column def_q in lines 6–10 uses order by but leaves the windowing 

clause empty.

•	 Column range_q in lines 11–16 uses the range between window for a 

running total.

•	 Column rows_q in lines 17–22 uses the rows between window for a 

running total.

You see in the output that def_q and range_q are identical:

P_ID  PRODUCT_NAME     O_ID  QTY  DEF_Q  RANGE_Q  ROWS_Q

4280  Hoppy Crude Oil  423   60   120    120      60

4280  Hoppy Crude Oil  427   60   120    120      120

4280  Hoppy Crude Oil  422   80   280    280      200

4280  Hoppy Crude Oil  429   80   280    280      280

4280  Hoppy Crude Oil  428   90   370    370      370

4280  Hoppy Crude Oil  421   110  480    480      480

6600  Hazy Pink Cloud  424   16   32     32       16

6600  Hazy Pink Cloud  426   16   32     32       32

6600  Hazy Pink Cloud  425   24   56     56       56

Yes, if you have an order_by_clause, the default for the windowing_clause is range 

between unbounded preceding and current row.

I have seen many blog and forum posts showing a running total as something like 

sum(col1) over (order by col2) and leaving it at that. And when you test your code 

with this default window, often you get the result you expect, as the difference in output 

only occurs when there are duplicates in the values. So you might not spot the error until 

the code has gone into production.

Note I t is not just a problem when there are duplicate values. Even if your order 
by is unique, using default range between windows for running totals can 
potentially incur some overhead by evaluation of the analytic function, impacting 
performance. This is because rows between can be executed more optimally by 
the SQL engine, while range between requires the SQL engine to “look ahead” 
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in the rows and see if possibly any following rows have the same value. For more 
detailed explanation of this, see a blog post I did a while back: www.kibeha.
dk/2013/02/rows-versus-default-range-in-analytic.html.

In my opinion, the default ought to have been rows between, as in my experience, 

this is by far the most used window specification. It is very often I use rows between and 

only once in a rare while range between.

So my best practice rule of thumb is that whenever I have an order by clause, I 

always explicitly write the windowing clause, never relying on the default. Even for 

those rare cases where my window actually happens to be range between unbounded 

preceding and current row, I still write it explicitly. This tells the future me, or any 

developers maintaining my code in the future, that the range between is desired. If I see 

code where the windowing clause is absent, I always wonder if it is really meant to be 

range between or if it is simply a misunderstood copy-paste from a forum post.

This applies only to analytic functions that support the windowing clause, of course. 

And I also do not use it if my window is the entire partition, then I simply omit order 

by and windowing clause rather than write rows between unbounded preceding and 

unbounded following.

But even though Listing 11-5 adheres to this rule of thumb, there is another issue 

with it: the fact that it is possibly to get a different output from the same data in different 

executions of the code, because the rows with duplicate values might be in different 

order in the output depending on the access plan used by the optimizer.

This issue does not strictly influence the correctness of the solution, but users 

are liable to question the correctness when they observe different outputs (even if 

both outputs are correct). So I make it my best practice to make the combination of 

the columns used in partition by and order by unique in the analytic function 

(when using rows between, not applicable to range between). This makes the output 

deterministic, so the user can verify he gets the same result in each run.

Listing 11-9 represents both these best practices for doing running totals.

Listing 11-9.  A best practice for a running sum

SQL> select

  2     ol.product_id as p_id

  3   , p.name        as product_name

  4   , ol.order_id   as o_id
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  5   , ol.qty

  6   , sum(ol.qty) over (

  7        partition by ol.product_id

  8        order by ol.qty, ol.order_id

  9        rows between unbounded preceding

 10                 and current row

 11     ) as p_qty

 12  from orderlines ol

 13  join products p

 14     on p.id = ol.product_id

 15  where ol.product_id in (4280, 6600)

 16  order by ol.product_id, ol.qty, ol.order_id;

In reality I am only interested in the qty ordering within each product_id partition 

(as in Listing 11-5), but the combination of those two columns is not unique, making the 

output nondeterministic. Therefore, I add order_id to both order by clauses (lines 8 

and 16):

P_ID  PRODUCT_NAME     O_ID  QTY  P_QTY

4280  Hoppy Crude Oil  423   60   60

4280  Hoppy Crude Oil  427   60   120

4280  Hoppy Crude Oil  422   80   200

4280  Hoppy Crude Oil  429   80   280

4280  Hoppy Crude Oil  428   90   370

4280  Hoppy Crude Oil  421   110  480

6600  Hazy Pink Cloud  424   16   16

6600  Hazy Pink Cloud  426   16   32

6600  Hazy Pink Cloud  425   24   56

This ensures a deterministic output.

And in this case the statement can even execute using only a single sorting 

operation, since the columns in the analytic partition by followed by the columns in 

the analytic order by match the columns in the final order by in line 16. This enables 

the optimizer to skip the final ordering, as the analytic function evaluation has already 

ordered the data correctly.
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�Lessons learned
This chapter introduced the basic elements of the three subclauses of analytic functions. 

Although I’ve shown it specifically using the sum function, you can generalize to other 

analytic functions and use what you’ve learned about

•	 Using partition by to split rows into parts where the analytic 

function is applied within each part separately.

•	 Using the windowing clause in conjunction with order by to create 

moving windows of rows to calculate, for example, running totals.

•	 Understanding that the default windowing clause is rarely a good 

match for your use case, so always using an explicit windowing clause 

is a good idea.

With a good understanding of these subclauses, you can make analytic functions 

solve many otherwise difficult tasks for you. The following chapters in this part of the 

book are dedicated to several such solutions.
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CHAPTER 12

Answering Top-N 
Questions
I think it is extremely few developers that haven’t been asked to create a Top-N report. 

The questions by the business that can be classified as a Top-N question are legion such 

as the following:

•	 Which of our products sell the most?

•	 Which user profiles create the most tweets?

•	 Which sales employees generate most leads?

•	 Which hotels in the chain have the least complaints?

The last one could strictly speaking be called a Bottom-N question, but that is 

in principle exactly the same. For a Top-N report, you order the data by a specific 

descending order and pick the Top-N rows of data. If you want a Bottom-N report, you 

simply order the data by a specific ascending order and still pick the Top-N rows of 

data. In SQL terms, it simply is a matter of doing order by col_name desc vs. order by 

col_name asc. So I’m just going to show Top-N examples – Bottom-N you can get by 

replacing desc with asc.

To demonstrate the Top-N SQL, I’m using the first question from the preceding list: 

Which of our products sell the most?

�Top-N of sales data
As my Good Beer Trading company sells beer, the marketing department has asked me 

to find out the Top-3 best-selling beers the company sells, so they can do a campaign 

with a pedestal like Figure 12-1.
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Now that’s a quite naïve question they gave me here, so I need to get back to them 

and ask them to specify what they mean. Do I determine the ordering in terms of 

quantity or amount sold? Is it all-time best sellers they want or from a specific year? 

What should I do if there are ties where two or more beers have sold the same?

Often the easiest way for me as a developer to get the detailed specification I need is 

to give them examples, since they sometimes won’t understand why “Top-3 best-selling 

beers” is an ambiguous question.

Figure 12-1.  Top-3 beers by total sales
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�Which kind of Top-3 do you mean?
Particularly there’s ambiguity concerning what to do in case of ties. Generally there are 

three cases:

•	 Top-rows rule: “I want exactly 3 rows.”

In such a case, I need to explain to the business that this means 

they will not see, for example, a fourth row that has exactly the 

same value as the third row. For such a tie, the output will not 

show both rows, but only one of them. In this case, either it will be 

a random one or the business needs to decide a tiebreaker rule to 

determine which one to output.

•	 Olympic rule: “I want gold, silver, and bronze the Olympic way.”

By the rules often used in sports competitions, if, for example, 

there’s a tie for first place, two gold medals are given, then the 

silver medal is skipped, and the third guy gets a bronze medal. 

Using this rule can lead to more than three rows in the output, for 

example, when there is a tie for bronze, in which case there will be 

one first place, one second place, and two third places for a total of 

four rows in the output.

•	 Top-values rule: “I want all that have the Top-3 values.”

With the previous rule, if there’s a tie for second place, there’ll be a 

gold medal and two silver medals, but no bronze medal. This rule 

states that no matter how many ties there are for first value, ties for 

second value, and ties for third value, the output should contain 

all the rows that have the Top-3 values.

All of these Top-3 rules can be handled in SQL – I’ll demonstrate how.
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�The sales data for the beer
Figure 12-2 shows the tables with the beer sales data per month and the beer product 

names.

I’ll be doing Top-N queries both on the total sales of the products and the sales 

for each year (there’s sales data for 2016, 2017, and 2018), and in Listing 12-1, I have a 

couple of views that aggregate the monthly sales.

Listing 12-1.  Views for aggregating sales on total and year level

SQL> create or replace view total_sales

  2  as

  3  select

  4     ms.product_id

  5   , max(p.name) as product_name

  6   , sum(ms.qty) as total_qty

  7  from products p

  8  join monthly_sales ms

Figure 12-2.  Tables holding monthly sales for products
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  9     on ms.product_id = p.id

 10  group by

 11     ms.product_id;

View TOTAL_SALES created.

SQL> create or replace view yearly_sales

  2  as

  3  select

  4     extract(year from ms.mth) as yr

  5   , ms.product_id

  6   , max(p.name) as product_name

  7   , sum(ms.qty) as yr_qty

  8  from products p

  9  join monthly_sales ms

 10     on ms.product_id = p.id

 11  group by

 12     extract(year from ms.mth), ms.product_id;

View YEARLY_SALES created.

Querying the total_sales view, I can order it by total_qty desc in Listing 12-2.

Listing 12-2.  A view of the total sales data

SQL> select product_name, total_qty

  2  from total_sales

  3  order by total_qty desc;

That shows me the ten beers from the products table, and I can visually see here 

which beers are the Top-3 best-selling beers. Since we have a tie for second place, then 

by the top-rows and the Olympic rules, it’s the first three rows, and by the top-values 

rule, it’s the first four rows:

PRODUCT_NAME      TOTAL_QTY

Reindeer Fuel     1604

Ghost of Hops     1485

Monks and Nuns    1485

Der Helle Kumpel  1230
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Hercule Trippel   1056

Summer in India   961

Pale Rider Rides  883

Coalminers Sweat  813

Hazy Pink Cloud   324

Hoppy Crude Oil   303

I could query the yearly_sales view the same way:

SQL> select yr, product_name, yr_qty

  2  from yearly_sales

  3  order by yr, yr_qty desc;

But in Listing 12-3, I’m going to use the pivoting technique from Chapter 8 to show 

the ranking of the beers in columns for each year. Not that it is necessary for doing Top-N 

queries, but it visualizes the difference in the data over the three years.

Listing 12-3.  A view of the yearly sales data (manually formatted, not 

ansiconsole)

SQL> select *

  2  from (

  3     select

  4        yr, product_name, yr_qty

  5      , row_number() over (

  6           partition by yr

  7           order by yr_qty desc

  8        ) as rn

  9     from yearly_sales

 10  )

 11  pivot (

 12     max(product_name) as prod

 13   , max(yr_qty)

 14     for yr in (

 15        2016, 2017, 2018

 16     )

 17  )

 18  order by rn;
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I’m getting a little ahead of myself with the use of analytic function row_number in 

lines 5–8. I’ll explain more in a little while, but what it does here is assigning the numbers 

1–10 to each beer within each year in order of quantity sold. This number (rn) is then 

used for the implicit group by in the pivot, so I get an output with ten rows numbered 

1–10 having two columns for each year – the name of the beer and the quantity sold:

 RN 2016_PROD 2016 2017_PROD 2017 2018_PROD 2018

--- --------- ---- --------- ---- --------- ----

  1 Ghost of   552 Monks and  582 Reindeer   691

    Hops            Nuns          Fuel

  2 Monks and  478 Reindeer   582 Pale Ride  491

     Nuns          Fuel           r Rides

  3 Der Helle  415 Ghost of   482 Hercule T  451

     Kumpel        Hops           rippel

  4 Summer in  377 Der Helle  458 Ghost of   451

     India          Kumpel        Hops

  5 Reindeer   331 Hercule T  344 Monks and  425

    Fuel           rippel          Nuns

  6 Coalminer  286 Summer in  321 Der Helle  357

    s Sweat         India          Kumpel

  7 Hercule T  261 Coalminer  227 Coalminer  300

    rippel         s Sweat        s Sweat

  8 Pale Ride  182 Pale Ride  210 Summer in  263

    r Rides        r Rides         India

  9 Hazy Pink  121 Hazy Pink  105 Hoppy Cru  132

     Cloud          Cloud         de Oil

 10 Hoppy Cru   99 Hoppy Cru   72 Hazy Pink   98

    de Oil         de Oil          Cloud

I’ve made the beer name columns narrow with sqlcl column formatting to get line 

breaks in the names instead of line breaks that put 2018 data below 2016 and 2017. 

This way doesn’t break names as nice, but the quantities are aligned to make it easy 
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to observe the ordering in each year and where the ties are. Notice there’s a tie for first 

place in 2017 and a tie for third place in 2018.

�Traditional rownum method
Before analytic functions, a traditional method for a Top-N query was to do an inline 

view with the desired order by clause and then filter on rownum <= in the outer query, as 

I show in Listing 12-4.

Listing 12-4.  Top-3 using inline view and filter on rownum

SQL> select *

  2  from (

  3     select product_name, total_qty

  4     from total_sales

  5     order by total_qty desc

  6  )

  7  where rownum <= 3;

This method gives me the Top-3 beers according to the top-rows rule:

PRODUCT_NAME    TOTAL_QTY

Reindeer Fuel   1604

Monks and Nuns  1485

Ghost of Hops   1485

It works fine and is performant – the optimizer recognizes the construct and will do 

as little work as possible to get only the desired three rows.

However, this method cannot as easily help us with the Olympic rule and the top-

values rule. For those it is much easier to use analytic functions.

�Analytic functions for ranking
In Listing 12-5, I am rewriting Listing 12-4, just using the analytic function row_number in 

line 5 instead of the construct with rownum. As an analytic function cannot be used inside 

the where clause, I still need to use an inline view.
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Listing 12-5.  Top-3 using inline view and filter on row_number()

SQL> select *

  2  from (

  3     select

  4        product_name, total_qty

  5      , row_number() over (order by total_qty desc) as ranking

  6     from total_sales

  7  )

  8  where ranking <= 3

  9  order by ranking;

The output is the same as I got from Listing 12-4 – it is still the top-rows rule I am 

applying for my Top-3 output:

PRODUCT_NAME    TOTAL_QTY  RANKING

Reindeer Fuel   1604       1

Monks and Nuns  1485       2

Ghost of Hops   1485       3

But row_number is not the only analytic function I can use for ranking my data; I 

have two other analytic functions at my disposal too. Listing 12-6 compares the three 

functions.

Listing 12-6.  Comparison of the three analytic ranking functions

SQL> select

  2     product_name, total_qty

  3   , row_number() over (order by total_qty desc) as rn

  4   , rank() over (order by total_qty desc) as rnk

  5   , dense_rank() over (order by total_qty desc) as dr

  6  from total_sales

  7  order by total_qty desc;

The three functions correspond directly to the three ranking rules I’ve mentioned:

•	 row_number	 - Implements the top-rows rule

•	 rank		  - Implements the Olympic rule

•	 dense_rank	 - Implements the top-values rule
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Which I can see in the output:

PRODUCT_NAME      TOTAL_QTY  RN  RNK  DR

Reindeer Fuel     1604       1   1    1

Ghost of Hops     1485       2   2    2

Monks and Nuns    1485       3   2    2

Der Helle Kumpel  1230       4   4    3

Hercule Trippel   1056       5   5    4

Summer in India   961        6   6    5

Pale Rider Rides  883        7   7    6

Coalminers Sweat  813        8   8    7

Hazy Pink Cloud   324        9   9    8

Hoppy Crude Oil   303        10  10   9

I simply get consecutive numbers when I use row_number.

When I use rank, a row can follow one of two rules: if it is a tie with the previous row, 

it gets the same ranking as the previous row; if it is not a tie, it gets the same ranking as 

if it had been using row_number. This makes it “skip” rankings in the Olympic fashion, 

like here where we have two beers ranked second place and then the next one is ranked 

fourth place.

Lastly with dense_rank, a row can also follow one of two rules: again if it is a tie with 

the previous row, it gets the same ranking as the previous row; but if it is not a tie, the row 

here gets the ranking of the previous row plus one. Therefore, rankings are not skipped, 

but a consecutive ranking is assigned to each unique value, thus implementing the top-

values rule.

Armed with these different analytic functions, it is easy for me to switch between the 

different ranking rules. Listing 12-5 gave me the top-rows rule – I can simply change line 

5 to rank to use the Olympic rule:

  5      , rank() over (order by total_qty desc) as ranking

In this case, the output is the same three beers; the only difference is that the second 

and third rows both are ranked as second place:

PRODUCT_NAME    TOTAL_QTY  RANKING

Reindeer Fuel   1604       1

Ghost of Hops   1485       2

Monks and Nuns  1485       2
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Or alternatively I can change line 5 to dense_rank to use the top-values rule:

  5      , dense_rank() over (order by total_qty desc) as ranking

This gives me a Top-3 report with an output of four rows, since there are two rows 

both having the second place ranked value:

PRODUCT_NAME      TOTAL_QTY  RANKING

Reindeer Fuel     1604       1

Monks and Nuns    1485       2

Ghost of Hops     1485       2

Der Helle Kumpel  1230       3

With these three analytic functions, I can answer Top-N questions with all three 

rules, so I’m happy. The only slight hitch is that I still need to write inline views and filter 

rows in the outer query. Could I write less? The answer is yes.

�Fetch only the first rows
In version 12 came along a new syntax to the select statement – the row limiting clause. 

It’s also known as fetch first, since that’s the syntax used as you can see in Listing 12-7.

Listing 12-7.  Fetching only the first three rows

SQL> select product_name, total_qty

  2  from total_sales

  3  order by total_qty desc

  4  fetch first 3 rows only;

With this syntax, I skip the inline view; I just write my query with a suitable order by 

clause and append the fetch first clause to state I only want the first three rows, which 

is then what I get in the output:

PRODUCT_NAME    TOTAL_QTY

Reindeer Fuel   1604

Ghost of Hops   1485

Monks and Nuns  1485
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Doing rows only gave me a result according to the first-rows rule. In effect this is 

simply “syntactic sugar” that makes it easier and simpler to write such a Top-N query, 

but underneath the database is automagically rewriting Listing 12-7 to perform the same 

operation as an inline view with a row_number function like Listing 12-5. The two listings 

work and perform identically; the difference is only that Listing 12-7 is shorter and easier 

to write and read.

The row limiting clause has another option instead of rows only – I can choose to do 

rows with ties:

  4  fetch first 3 rows with ties;

The definition is that when the three rows have been fetched, it checks if there are 

further rows with the same value (ties) – if yes, then these are also output. For the data 

here, this is not the case, so I get the same output:

PRODUCT_NAME    TOTAL_QTY

Reindeer Fuel   1604

Ghost of Hops   1485

Monks and Nuns  1485

The rule from the rows with ties definition is implemented underneath as an inline 

view with a rank function call, as that rule matches the Olympic rule I’ve shown – it is 

just stated differently.

But how does that compare to the tie handling of the analytic functions according to 

the three ranking rules I showed before? I’ll dive a little deeper into the handling of ties 

with some examples from the yearly sales data.

�Handling of ties
In Listing 12-8, I am comparing the three analytic ranking functions for the sales of year 

2018 (similar to how I compared them for total sales in Listing 12-6). As I can show my 

point just with the first five rows instead of showing all ten beers, I use fetch first in 

line 9 just because it’s so easy that way to save paper in the book.
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Listing 12-8.  Comparison of analytic functions for 2018 sales

SQL> select

  2     product_name, yr_qty

  3   , row_number() over (order by yr_qty desc) as rn

  4   , rank() over (order by yr_qty desc) as rnk

  5   , dense_rank() over (order by yr_qty desc) as dr

  6  from yearly_sales

  7  where yr = 2018

  8  order by yr_qty desc

  9  fetch first 5 rows only;

In 2018 I have a tie for third place, as I can see here in the output:

PRODUCT_NAME      YR_QTY  RN  RNK  DR

Reindeer Fuel     691     1   1    1

Pale Rider Rides  491     2   2    2

Hercule Trippel   451     3   3    3

Ghost of Hops     451     4   3    3

Monks and Nuns    425     5   5    4

So in Listing 12-9, I can use line 5 to apply the top-rows rule and get the first three 

rows as they are ranked by the row_number function (the rn column in the preceding 

output).

Listing 12-9.  Fetching first three rows for 2018

SQL> select product_name, yr_qty

  2  from yearly_sales

  3  where yr = 2018

  4  order by yr_qty desc

  5  fetch first 3 rows only;

And yes, I get the desired three rows in the output:

PRODUCT_NAME      YR_QTY

Reindeer Fuel     691

Pale Rider Rides  491

Hercule Trippel   451
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But hang on – I could also get this output instead, since Ghost of Hops and Hercule 

Trippel both sold 451 in 2018:

PRODUCT_NAME      YR_QTY

Reindeer Fuel     691

Pale Rider Rides  491

Ghost of Hops     451

The query in Listing 12-9 has an indeterminate output – which of these two outputs 

I get will in principle be random; in practice whether I get Hercule Trippel or Ghost of 

Hops in the third line depends on which of the two beers the database happens to find 

first in the order that it happens to access the data. That will be highly dependent on 

which access plan the optimizer chooses.

The problem is not only when using fetch first with rows only, it applies equally 

when I myself use the row_number function. In the output from Listing 12-8, Hercule 

Trippel and Ghost of Hops might have swapped places – I cannot know.

Typically business users dislike a report whose output “changes overnight” when 

supposed be identical, which might happen if, for example, statistics gathering made the 

optimizer choose a different access path the next day. In other words, users don’t like 

indeterminate output. A best practice when using row_number or fetch first with rows 

only can be to always make the order by deterministic by adding some tiebreaker rule, 

for example, stating that in case of ties always display the one with the first product id:

order by yr_qty desc, product_id

But I prefer instead to convince the business user that he really doesn’t want to use 

the first-rows rule; instead he most likely would like, for example, to use the Olympic 

rule, which I then can implement easily by using with ties instead of rows only:

  4  order by yr_qty desc

  5  fetch first 3 rows with ties;

And then I get an output of four rows showing both Hercule Trippel and Ghost of Hops:

PRODUCT_NAME      YR_QTY

Reindeer Fuel     691

Pale Rider Rides  491

Hercule Trippel   451

Ghost of Hops     451
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Now in that output, it is actually indeterminate in which order Hercule Trippel 

and Ghost of Hops are displayed. As I remarked before, users dislike that, so it can be 

tempting to “fix” this by making sure the order by is deterministic:

  4  order by yr_qty desc, product_id

  5  fetch first 3 rows with ties;

But that would be a wrong approach, since when the order by is deterministic, there 

are no ties by definition, so the output then is not what I want:

PRODUCT_NAME      YR_QTY

Reindeer Fuel     691

Pale Rider Rides  491

Hercule Trippel   451

When I want ties to be displayed in my output, I’ll have to live with a 

nondeterministic output when I use fetch first. If I cannot live with that, I’ll have to 

code the inline view with the rank function manually, since that gives me higher control 

and enables me to use the nondeterministic order by in the analytic function call and a 

deterministic order by in the outer query.

�What the row limiting clause cannot do
So with ties in the fetch first row limiting clause handles ties like if I use analytic 

function rank. But let me change Listing 12-8 to show the year 2017 instead of 2018:

  7  where yr = 2017

This time I have a tie for first place:

PRODUCT_NAME      YR_QTY  RN  RNK  DR

Monks and Nuns    582     1   1    1

Reindeer Fuel     582     2   1    1

Ghost of Hops     482     3   3    2

Der Helle Kumpel  458     4   4    3

Hercule Trippel   344     5   5    4

Let me try to use fetch first with ties for 2017 in Listing 12-10.
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Listing 12-10.  Fetching with ties for 2017

SQL> select product_name, yr_qty

  2  from yearly_sales

  3  where yr = 2017

  4  order by yr_qty desc

  5  fetch first 3 rows with ties;

I get those rows where column RNK is <= 3:

PRODUCT_NAME    YR_QTY

Monks and Nuns  582

Reindeer Fuel   582

Ghost of Hops   482

In other words this is like the Olympic rule for handling ties. If I want to use the first-

values rule to get all rows that have the Top-3 values, I cannot do it with the row limiting 

clause. There simply does not exist syntax like:

fetch first 3 values with ties;  /* <-- Invalid syntax */

Instead I need to manually create my inline view and use dense_rank as shown in 

Listing 12-11.

Listing 12-11.  Using dense_rank for what fetch first cannot do

SQL> select *

  2  from (

  3     select

  4        product_name, yr_qty

  5      , dense_rank() over (order by yr_qty desc) as ranking

  6     from yearly_sales

  7     where yr = 2017

  8  )

  9  where ranking <= 3

 10  order by ranking;

Chapter 12  Answering Top-N Questions



231

Now I’m getting the four rows from 2017 that have the Top-3 values:

PRODUCT_NAME      YR_QTY  RANKING

Monks and Nuns    582     1

Reindeer Fuel     582     1

Ghost of Hops     482     2

Der Helle Kumpel  458     3

The row limiting clause is a very handy shortcut for Top-N queries, but it can only 

do the top-rows or Olympic rule, internally implementing it like an inline view with 

row_number or rank analytic functions. If you want top-values rule, you do it yourself 

with dense_rank.

�Top-N in multiple partitions
So far I’ve executed a Top-N query either for the total sales or for a specific year in the 

yearly sales. In either case, I ended up with just the “top” rows of the entire row set.

But suppose I’d like to see the Top-3 best-selling beers for each of the years. Of 

course I could write a query for each year, perhaps putting them together with union all 

to get it all in one output.

But Listing 12-12 shows a much easier way using the partition by clause in line 6.

Listing 12-12.  Ranking with row_number within each year

SQL> select *

  2  from (

  3     select

  4        yr, product_name, yr_qty

  5      , row_number() over (

  6           partition by yr

  7           order by yr_qty desc

  8        ) as ranking

  9     from yearly_sales

 10  )

 11  where ranking <= 3

 12  order by yr, ranking;
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With the partition by, assignment of row_number values happens within each 

partition:

•	 The data is split into partitions – one for each distinct value of yr.

•	 In each partition, the data is ordered by yr_qty desc and 

consecutive numbers 1, 2, 3, … assigned.

This is what I utilize in Listing 12-3 some pages back in the chapter to get numbers 

1-10 assigned to beers within each year, so I could pivot and list the beers in order per 

year in columns side by side.

But here in Listing 12-12, I am not pivoting; instead I filter on the result of the inline 

view, so I only keep those rows that have got row_number 1, 2, and 3 within each year:

YR    PRODUCT_NAME      YR_QTY  RANKING

2016  Ghost of Hops     552     1

2016  Monks and Nuns    478     2

2016  Der Helle Kumpel  415     3

2017  Monks and Nuns    582     1

2017  Reindeer Fuel     582     2

2017  Ghost of Hops     482     3

2018  Reindeer Fuel     691     1

2018  Pale Rider Rides  491     2

2018  Hercule Trippel   451     3

That gave me nine rows (three beers per each of three years) that are a Top-3 report 

per year by the first-rows rule.

I can easily change line 5 to use the rank function and get me a Top-3 report per year 

by the Olympic rule:

  5      , rank() over (

That gives me ten rows, since in 2018 there are four beers with ranking <= 3:

YR    PRODUCT_NAME      YR_QTY  RANKING

2016  Ghost of Hops     552     1

2016  Monks and Nuns    478     2

2016  Der Helle Kumpel  415     3

2017  Monks and Nuns    582     1

2017  Reindeer Fuel     582     1
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2017  Ghost of Hops     482     3

2018  Reindeer Fuel     691     1

2018  Pale Rider Rides  491     2

2018  Hercule Trippel   451     3

2018  Ghost of Hops     451     3

And the first-values rule I implement with a dense_rank in line 5:

  5      , dense_rank() over (

This produces 11 rows, since with this rule I have four beers with ranking <= 3 both 

in 2017 and 2018:

YR    PRODUCT_NAME      YR_QTY  RANKING

2016  Ghost of Hops     552     1

2016  Monks and Nuns    478     2

2016  Der Helle Kumpel  415     3

2017  Monks and Nuns    582     1

2017  Reindeer Fuel     582     1

2017  Ghost of Hops     482     2

2017  Der Helle Kumpel  458     3

2018  Reindeer Fuel     691     1

2018  Pale Rider Rides  491     2

2018  Hercule Trippel   451     3

2018  Ghost of Hops     451     3

All in all, using analytic functions in inline views makes it very easy to either choose a 

total Top-N report or put in partition by and get a Top-N per year (or whatever you use 

for partition key or keys).

Using the row limiting clause, this is not quite so easy.

�The lateral trick for the row limiting clause
fetch first does not support partition by, so basically you cannot do it but have to 

write it with analytic functions as shown in Listing 12-12.

But there is a trick that can allow you to emulate the behavior by using a lateral 

join to correlate an inline view, if you have some row source that defines your “manual 

partitions.”
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In Listing 12-13 lines 3–5, I create an inline view years that hardcodes three 

“partitions” – the three years 2016, 2017, and 2018. Then I have another inline view top_

sales that is a Top-3 query using fetch first, and in this inline view, I filter on the year in 

line 10. I can do this correlation in line 10 because of the cross join lateral in line 7,  

which means that inline view top_sales is executed once for each of the rows from 

inline view years.

Listing 12-13.  Using fetch first in a laterally joined inline view

SQL> select top_sales.*

  2  from (

  3     select 2016 as yr from dual union all

  4     select 2017 as yr from dual union all

  5     select 2018 as yr from dual

  6  ) years

  7  cross join lateral (

  8     select yr, product_name, yr_qty

  9     from yearly_sales

 10     where yearly_sales.yr = years.yr

 11     order by yr_qty desc

 12     fetch first 3 rows with ties

 13  ) top_sales;

Using this lateral trick and with ties, Listing 12-13 produces the same ten rows as 

Listing 12-12 did when I used rank:

YR    PRODUCT_NAME      YR_QTY

2016  Ghost of Hops     552

2016  Monks and Nuns    478

2016  Der Helle Kumpel  415

2017  Monks and Nuns    582

2017  Reindeer Fuel     582

2017  Ghost of Hops     482

2018  Reindeer Fuel     691

2018  Pale Rider Rides  491

2018  Hercule Trippel   451

2018  Ghost of Hops     451

Chapter 12  Answering Top-N Questions



235

Depending on the data and indexes and such, this could easily perform worse than 

the analytic method in Listing 12-12. If everything is right, it can perform just as well, but 

not faster. So is there really any use for this?

Well, the main difference is that the analytic function method of Listing 12-12 

requires you to be able to specify an expression resulting in a set of unique values to 

partition by – while Listing 12-13 can correlate with an arbitrarily complex where 

clause in line 10.

I admit that using, for example, case structure, you can make very complex 

expressions for partitioning, so it will be a very rare case where the complexity is such 

that Listing 12-13 is needed – but it’s nice to know the option is there, just in case.

�Lessons learned
In this chapter I’ve used sales data to exemplify Top-N queries, along the way providing 

you insight in

•	 The three different Top-N query types: top-rows, Olympic, and top-

values

•	 Implementing these with analytic functions row_number, rank, and 

dense_rank

•	 Using the shortcut fetch first row limiting clause for the first two 

types

•	 Doing Top-N per subsets of data with partition by in analytic 

functions

These methods will help you in many use cases, not just sales data.
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CHAPTER 13

Ordered Subsets 
with Rolling Sums
One of the most useful features of analytic functions is the flexibility of the window clause, 

enabling aggregation of particular subsets of the data within a specific order. A classic 

subset that can be used for many purposes is the set of data from the beginning until the 

current row – if, for example, the sum aggregate function is used on that subset, you get 

an accumulated sum or rolling sum or running total (many names for the same thing).

The use cases are plenty; many financial reports need running totals. But a different 

practical use case that has been extremely helpful in my work involves a slight variation 

of the running total, where I use the sum of all the previous rows to keep selecting rows 

until I have selected just sufficiently large subset to cover the sum I need – in this case 

until I have picked enough goods in the warehouse to cover the order by a customer.

The complete case in this chapter will demonstrate the use of analytic functions to 

solve three problems simultaneously:

•	 Picking goods from the inventory in a certain order – most notably in 

first-in, first-out (FIFO) order

•	 Ordering the picking list to make the operator drive optimally 

through the warehouse

•	 Batch picking multiple orders

It can all be done in a single SQL statement, and I’ll show the gradual building of 

the statement by solving the first problem and then expanding the statement adding the 

solutions to the second and third problems.
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�Data for goods picking
When you look at Figure 13-1, there are a lot of tables, mostly to show you a fairly realistic 

data model. For demonstration purposes, I could have simplified this a lot, but I will do 

that with a view, as you’ll see shortly.

Figure 13-1.  The tables used in this chapter
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In the inventory table is stored how many of a given product are currently stored 

in a given location and from which purchase did that quantity originate (thereby giving 

us the age of quantity in that location). Basically that’s just foreign keys to locations, 

products, and purchases tables and then a qty column.

Then there are customers who have given orders that have orderlines specifying 

which products they are buying, how many, and for how much.

To simplify working with these tables, I create the view inventory_with_dims shown 

in Listing 13-1. This simply joins the inventory table with the three referenced tables, 

so that I have all relevant information (product name, purchase date, warehouse, aisle, 

position) for each inventory row.

Listing 13-1.  View joining inventory with other relevant tables

create or replace view inventory_with_dims

as

select

   i.id

 , i.product_id

 , p.name as product_name

 , i.purchase_id

 , pu.purchased

 , i.location_id

 , l.warehouse

 , l.aisle

 , l.position

 , i.qty

from inventory i

join purchases pu

   on pu.id = i.purchase_id

join products p

   on p.id = i.product_id

join locations l

   on l.id = i.location_id;

When I build my picking SQL statement, I’ll be using this view together with the 

orderlines table.
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�Building the picking SQL
For the first two parts of the problem, I will just pick a single order, the order with  

id = 421. In Listing 13-2, I’ll just show you the data of that order.

Listing 13-2.  Data for the order I am going to pick

SQL> select

  2     c.id           as c_id

  3   , c.name         as c_name

  4   , o.id           as o_id

  5   , ol.product_id  as p_id

  6   , p.name         as p_name

  7   , ol.qty

  8  from orders o

  9  join orderlines ol

 10     on ol.order_id = o.id

 11  join products p

 12     on p.id = ol.product_id

 13  join customers c

 14     on c.id = o.customer_id

 15  where o.id = 421

 16  order by o.id, ol.product_id;

As you see here in the output, the White Hart pub has ordered 110 of Hoppy Crude 

Oil and 140 of Der Helle Kumpel:

C_ID   C_NAME          O_ID  P_ID  P_NAME            QTY

50042  The White Hart  421   4280  Hoppy Crude Oil   110

50042  The White Hart  421   6520  Der Helle Kumpel  140

Then it’s time to start building an analytic SQL statement.

�Solving picking an order by FIFO
The first thing I do is I join the orderlines of order 421 with the inventory_with_dims 

view in Listing 13-3.
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(Bear with me that I’m using very short column aliases, but it’s an easy way to get a 

sqlcl output with very narrow columns that fits nicely on print.)

Listing 13-3.  Possible inventory to pick – in order of purchase date

SQL> select

  2     i.product_id as p_id

  3   , ol.qty       as ord_q

  4   , i.qty        as loc_q

  5   , sum(i.qty) over (

  6        partition by i.product_id

  7        order by i.purchased, i.qty

  8        rows between unbounded preceding and current row

  9     )            as acc_q

 10   , i.purchased

 11   , i.warehouse  as wh

 12   , i.aisle      as ai

 13   , i.position   as pos

 14  from orderlines ol

 15  join inventory_with_dims i

 16     on i.product_id = ol.product_id

 17  where ol.order_id = 421

 18  order by i.product_id, i.purchased, i.qty;

In lines 5–9 I am doing a rolling sum of the inventory quantity, partitioned by 

product and ordered by purchase date. And for those cases with multiple rows having 

the same purchase date, I add the quantity to the ordering, so I get to clean out smaller 

quantities in the warehouse first.

In this query, the final order by in line 18 matches the columns of the partition by 

followed by order by in the analytic function. This is not necessary (later I will change 

this on purpose), but when they match like here, then the optimizer can do both with a 

single sorting operation.
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The output shows me for each of the two ordered products all of the inventory in 

purchase order, and in column acc_q (accumulated quantity), I can see the rolling sum:

P_ID  ORD_Q  LOC_Q  ACC_Q  PURCHASED   WH  AI  POS

4280  110    36     36     2018-02-23  1   C   1

4280  110    39     75     2018-04-23  1   D   18

4280  110    35     110    2018-06-23  2   B   3

4280  110    34     144    2018-08-23  2   C   20

4280  110    37     181    2018-10-23  1   A   4

4280  110    19     200    2018-12-23  2   C   7

6520  140    14     14     2018-02-26  2   B   5

6520  140    14     28     2018-02-26  1   A   29

6520  140    20     48     2018-02-26  1   C   13

6520  140    24     72     2018-02-26  2   B   26

6520  140    26     98     2018-04-26  2   D   9

6520  140    48     146    2018-04-26  1   A   16

6520  140    70     216    2018-06-26  1   C   5

6520  140    21     237    2018-08-26  2   C   31

6520  140    48     285    2018-08-26  1   D   19

6520  140    72     357    2018-10-26  2   A   1

6520  140    43     400    2018-12-26  1   B   32

So this looks just like what I need, right? When the rolling sum is larger than the 

ordered quantity, I’ve got enough, right? I’m going to try that in Listing 13-4 by wrapping 

Listing 13-3 in an inline view and filtering in the where clause.

Listing 13-4.  Filtering on the accumulated sum

SQL> select *

  2  from (

...

 20  )

 21  where acc_q <= ord_q

 22  order by p_id, purchased, loc_q;
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Did I get the right result? No, not quite:

P_ID  ORD_Q  LOC_Q  ACC_Q  PURCHASED   WH  AI  POS

4280  110    36     36     2018-02-23  1   C   1

4280  110    39     75     2018-04-23  1   D   18

4280  110    35     110    2018-06-23  2   B   3

6520  140    14     14     2018-02-26  2   B   5

6520  140    14     28     2018-02-26  1   A   29

6520  140    20     48     2018-02-26  1   C   13

6520  140    24     72     2018-02-26  2   B   26

6520  140    26     98     2018-04-26  2   D   9

Product 4280 is OK; it just happens that the rolling sum exactly matches the ordered 

quantity of 110 after picking at three locations. But product 6520 only gets to pick 98, 

where it should get 140? If you look back at the previous output, you’ll see that by the 

next location (1 A 16), the rolling sum becomes 146, which is greater than 140 so that 

row is not included in the output, even though I need to pick most of the quantity of that 

location.

The problem is that I cannot in the where clause create a filter that will include the 

first row where the rolling sum is greater than the ordered quantity, but not any more 

rows than that.

But what I can do is to create a rolling sum that accumulates the previous rows only, 

rather than including the current row. This is simply done in Listing 13-5 by simply 

changing the window end point of Listing 13-3 from current row to 1 preceding in  

line 8.

Listing 13-5.  Accumulated sum of only the previous rows

...

  5   , sum(i.qty) over (

  6        partition by i.product_id

  7        order by i.purchased, i.qty

  8        rows between unbounded preceding and 1 preceding

  9     )            as acc_prv_q

...
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The rolling sums in this output is pushed one row down when compared to the 

output of Listing 13-3:

P_ID  ORD_Q  LOC_Q  ACC_PRV_Q  PURCHASED   WH  AI  POS

4280  110    36                2018-02-23  1   C   1

4280  110    39     36         2018-04-23  1   D   18

4280  110    35     75         2018-06-23  2   B   3

4280  110    34     110        2018-08-23  2   C   20

4280  110    37     144        2018-10-23  1   A   4

4280  110    19     181        2018-12-23  2   C   7

6520  140    14                2018-02-26  2   B   5

6520  140    14     14         2018-02-26  1   A   29

6520  140    20     28         2018-02-26  1   C   13

6520  140    24     48         2018-02-26  2   B   26

6520  140    26     72         2018-04-26  2   D   9

6520  140    48     98         2018-04-26  1   A   16

6520  140    70     146        2018-06-26  1   C   5

6520  140    21     216        2018-08-26  2   C   31

6520  140    48     237        2018-08-26  1   D   19

6520  140    72     285        2018-10-26  2   A   1

6520  140    43     357        2018-12-26  1   B   32

This means that the row of product 6520 in location 1 A 16 that was missing in the 

output of Listing 13-4 is now within the window of rows where acc_prv_q is less than 

ord_q, so I can create Listing 13-6 that correctly filters what I need. It is the solution to 

the first problem of the three described at the beginning of the chapter.

Listing 13-6.  Filtering on the accumulation of previous rows

SQL> select

  2     wh, ai, pos, p_id

  3   , least(loc_q, ord_q - acc_prv_q) as pick_q

  4  from (

  5     select

  6        i.product_id as p_id

  7      , ol.qty       as ord_q

  8      , i.qty        as loc_q
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  9      , nvl(sum(i.qty) over (

 10           partition by i.product_id

 11           order by i.purchased, i.qty

 12           rows between unbounded preceding and 1 preceding

 13        ), 0)        as acc_prv_q

 14      , i.purchased

 15      , i.warehouse  as wh

 16      , i.aisle      as ai

 17      , i.position   as pos

 18     from orderlines ol

 19     join inventory_with_dims i

 20        on i.product_id = ol.product_id

 21     where ol.order_id = 421

 22  )

 23  where acc_prv_q < ord_q

 24  order by wh, ai, pos;

In lines 9–13, I do the rolling sum of previous rows, but note that I need to use nvl to 

turn the null of the first row into a zero – otherwise, the where clause in line 23 will fail.

That where clause you can read as “As long as the previous row(s) have not yet picked 

enough to fulfill the order, I need to include this row in the output.”

In line 3, I calculate how much needs to be picked at the location of each row. I know 

how much still needs to be picked; it’s the ordered quantity (ord_q) minus what has 

already been picked in the previous rows (acc_prv_q). If this is smaller than what is on 

the location (loc_q), that is what I need to pick. But if it is greater, then of course I can 

only pick as much as is on the location. In other words, I need to pick the smaller of the 

two numbers, which I can do with the least function.

Finally I’ve cleaned up the select list only saving what’s necessary to put on the 

picking list, and in line 23, I’m ordering the rows in location order:

WH  AI  POS  P_ID  PICK_Q

1   A   16   6520  42

1   A   29   6520  14

1   C   1    4280  36

1   C   13   6520  20

1   D   18   4280  39
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2   B   3    4280  35

2   B   5    6520  14

2   B   26   6520  24

2   D   9    6520  26

The picking operator can now take this list and drive around the warehouse picking 

the goods as specified. He’ll follow the route shown in Figure 13-2.

This route has the problem that after having picked the first two locations in aisle A, 

he needs to start “from the bottom” in aisle C. That means he either has to turn around 

(as shown in the figure) or he could take an unnecessary drive “down” aisle B. Neither is 

really satisfactory, and I’ll come back to the solution of this in a little while.

�Easy switch of picking principle
But first I’d like to stress the point that the order by of the query itself and the order by 

within the analytic function do not have to be identical, as they were in Listing 13-3; they 

can be different like in the picking list query of Listing 13-6, where I use this fact to select 

the inventory in FIFO order with the analytic order by, but give the output of the selected 

rows in location order.

This separation means that I can easily switch picking principle simply by changing 

my analytic order by, but still get an output in location order.

Figure 13-2.  The result of the first version of the FIFO picking query
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So for these examples, imagine that beers can keep indefinitely, so it does not matter 

if I use the first-in, first-out principle or not.

I could then use a picking principle saying that I want to prioritize locations close to 

the starting point of the driver to give him a short picking route. I just need to change line 

11 in Listing 13-6:

...

 11           order by i.warehouse, i.aisle, i.position

...

Selecting inventory to pick in location order gives a short route; he does not have to 

enter warehouse 2 at all:

WH  AI  POS  P_ID  PICK_Q

1   A   4    4280  37

1   A   16   6520  48

1   A   29   6520  14

1   B   32   6520  43

1   C   1    4280  36

1   C   5    6520  35

1   D   18   4280  37

Or I could use as picking principle that I want the smallest number of picks:

...

 11           order by i.qty desc

...

This will pick from inventories with large quantities first, making it possible to fulfill 

the order with just five picks:

WH  AI  POS  P_ID  PICK_Q

1   A   4    4280  37

1   C   1    4280  34

1   C   5    6520  68

1   D   18   4280  39

2   A   1    6520  72
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But if I pick from large quantities first, then over time the warehouse will be full of 

locations that have just a small quantity that was “left over” from previous picks. I could 

choose a picking principle that will clean up such small quantities, freeing the locations 

for new inventory:

...

 11           order by i.qty

...

Ordering by quantity ascending instead of descending helps cleaning out locations 

in the warehouse, but of course then the operator has to pick in more places:

WH  AI  POS  P_ID  PICK_Q

1   A   29   6520  14

1   B   32   6520  21

1   C   1    4280  22

1   C   13   6520  20

2   B   3    4280  35

2   B   5    6520  14

2   B   26   6520  24

2   C   7    4280  19

2   C   20   4280  34

2   C   31   6520  21

2   D   9    6520  26

As you can see, having separated the order by that selects the inventory from the 

order by that controls the picking order, it is easy to switch picking strategies.

With that point made, back to solving the routing problem of Figure 13-2.

�Solving optimal picking route
Simply ordering the output in location order means the picking operator needs to drive 

in the same direction (“upward”) in every aisle – this is not optimal. I’d like him to switch 

directions so that every other aisle he drives “down.”

But it is not so simple that I can just say up in aisle A and C, down in aisle B and D. 

Instead I need it to be up in the first, third, fifth…aisle he visits and then down in the 

second, fourth, sixth…aisle he visits.
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To do that, I start by expanding Listing 13-6 with an extra column giving each visited 

aisle a consecutive number (Listing 13-7).

Listing 13-7.  Consecutively numbering visited warehouse aisles

SQL> select

  2     wh, ai

  3   , dense_rank() over (

  4        order by wh, ai

  5     ) as ai#

  6   , pos, p_id

  7   , least(loc_q, ord_q - acc_prv_q) as pick_q

  8  from (

...

 26  )

 27  where acc_prv_q < ord_q

 28  order by wh, ai, pos;

The analytic function dense_rank in lines 3–5 gives the same rank to rows that have 

the same value in the columns used in the order by. And unlike rank, dense_rank does 

not skip any numbers (as I showed in Chapter 12); it assigns the ranks consecutively.

So using warehouse and aisle in the order by in dense_rank, the ai# column 

contains the “visited aisle number” I want:

WH  AI  AI#  POS  P_ID  PICK_Q

1   A   1    16   6520  42

1   A   1    29   6520  14

1   C   2    1    4280  36

1   C   2    13   6520  20

1   D   3    18   4280  39

2   B   4    3    4280  35

2   B   4    5    6520  14

2   B   4    26   6520  24

2   D   5    9    6520  26

That enables me to wrap Listing 13-7 in an inline view to create Listing 13-8 with an 

odd-even ordering logic.
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Listing 13-8.  Ordering ascending and descending alternately

SQL> select *

  2  from (

...

 30  )

 31  order by

 32     wh, ai#

 33   , case

 34        when mod(ai#, 2) = 1 then +pos

 35                             else -pos

 36     end;

First, I order by warehouse and visited aisle, but then within each aisle, I use the case 

structure in lines 33–36 to order the positions ascending in odd numbered aisles and 

descending in even numbered aisles:

WH  AI  AI#  POS  P_ID  PICK_Q

1   A   1    16   6520  42

1   A   1    29   6520  14

1   C   2    13   6520  20

1   C   2    1    4280  36

1   D   3    18   4280  39

2   B   4    26   6520  24

2   B   4    5    6520  14

2   B   4    3    4280  35

2   D   5    9    6520  26

That gives the operator a better picking route as you can see in Figure 13-3,  

so Listing 13-8 is the solution to the second of my three problems.
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Again I can show a variation where I can adapt the query very easily to match 

changing conditions. In Figure 13-3, you see a door between warehouses 1 and 2 both at 

the bottom and at the top, but what happens if there’s only a door at the bottom and it’s 

closed at the top?

A small change to the dense_rank call of Listing 13-8 produces Listing 13-9.

Listing 13-9.  Restarting aisle numbering within each warehouse

...

  5      , dense_rank() over (

  6           partition by wh

  7           order by ai

  8        ) as ai#

...

All I’ve done is to change an order by warehouse and aisle into a partition by 

warehouse and order by aisle. The result is that the ranks assigned in column ai# restart 

from 1 in each warehouse:

WH  AI  AI#  POS  P_ID  PICK_Q

1   A   1    16   6520  42

1   A   1    29   6520  14

1   C   2    13   6520  20

1   C   2    1    4280  36

1   D   3    18   4280  39

Figure 13-3.  Alternating position order of odd/even visited aisles
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2   B   1    3    4280  35

2   B   1    5    6520  14

2   B   1    26   6520  24

2   D   2    9    6520  26

When ai# restarts in each warehouse, that means that aisle B in warehouse 2 

changes from being the fourth aisle he visits overall to being the first aisle he visits 

in warehouse 2. That means it changes from being an even numbered aisle (ordered 

descending) to being an odd numbered aisle (ordered ascending).

And that gives the picking route shown in Figure 13-4.

Figure 13-4.  What happens when there is just one door between warehouses

The first two problems are now solved, so I’ll now move on to the third and last problem.

�Solving batch picking
It’s all well and good that I now can pick a single order by FIFO with a good picking route, 

but to work efficiently, I need the picking operator to be able to pick multiple orders 

simultaneously in a single drive through the warehouses.

So I’m going to use Listing 13-2 again to show order data, just this time for two other 

orders. In real life, I’d probably model a “picking batch” table to use for specifying which 

orders are to be included in a batch, but here I’m just coding the two order ids using in:

...

 15  where o.id in (422, 423)

...
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And it shows me two pubs that each have ordered a quantity of both Hoppy Crude 

Oil and Der Helle Kumpel:

C_ID   C_NAME           O_ID  P_ID  P_NAME            QTY

51069  Der Wichtelmann  422   4280  Hoppy Crude Oil   80

51069  Der Wichtelmann  422   6520  Der Helle Kumpel  80

50741  Hygge og Humle   423   4280  Hoppy Crude Oil   60

50741  Hygge og Humle   423   6520  Der Helle Kumpel  40

I can start simple in Listing 13-10 by just finding the total quantities ordered for each 

product and then applying the FIFO picking method of Listing 13-6 to those totals.

Listing 13-10.  FIFO picking of the total quantities

SQL> with orderbatch as (

  2     select

  3        ol.product_id

  4      , sum(ol.qty) as qty

  5     from orderlines ol

  6     where ol.order_id in (422, 423)

  7     group by ol.product_id

  8  )

  9  select

 10     wh, ai, pos, p_id

 11   , least(loc_q, ord_q - acc_prv_q) as pick_q

 12  from (

 13     select

 14        i.product_id as p_id

 15      , ob.qty       as ord_q

 16      , i.qty        as loc_q

 17      , nvl(sum(i.qty) over (

 18           partition by i.product_id

 19           order by i.purchased, i.qty

 20           rows between unbounded preceding and 1 preceding

 21        ), 0)        as acc_prv_q

 22      , i.purchased

 23      , i.warehouse  as wh
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 24      , i.aisle      as ai

 25      , i.position   as pos

 26     from orderbatch ob

 27     join inventory_with_dims i

 28        on i.product_id = ob.product_id

 29  )

 30  where acc_prv_q < ord_q

 31  order by wh, ai, pos;

Using the with clause, I create the orderbatch subquery in lines 1–8 that simply is 

an aggregation of the ordered quantities per product. The rest of the query is identical to 

Listing 13-6, except that it uses orderbatch in line 26 instead of table orderlines.

The output is a picking list showing what needs to be picked to fulfill the two orders:

WH  AI  POS  P_ID  PICK_Q

1   A   16   6520  22

1   A   29   6520  14

1   C   1    4280  36

1   C   13   6520  20

1   D   18   4280  39

2   B   3    4280  35

2   B   5    6520  14

2   B   26   6520  24

2   C   20   4280  30

2   D   9    6520  26

But there’s a slight problem for the picking operator – he can see how much to pick, 

but not how much of that he needs to pack in each order.

To figure that out, I need to calculate some quantity intervals in Listing 13-11.

Listing 13-11.  Quantity intervals for each pick out of total per product

SQL> with orderbatch as (

...

  8  )

  9  select

 10     wh, ai, pos, p_id

 11   , least(loc_q, ord_q - acc_prv_q) as pick_q
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 12   , acc_prv_q + 1       as from_q

 13   , least(acc_q, ord_q) as to_q

 14  from (

 15     select

 16        i.product_id as p_id

 17      , ob.qty       as ord_q

 18      , i.qty        as loc_q

 19      , nvl(sum(i.qty) over (

 20           partition by i.product_id

 21           order by i.purchased, i.qty

 22           rows between unbounded preceding and 1 preceding

 23        ), 0)        as acc_prv_q

 24      , nvl(sum(i.qty) over (

 25           partition by i.product_id

 26           order by i.purchased, i.qty

 27           rows between unbounded preceding and current row

 28        ), 0)        as acc_q

 29      , i.purchased

 30      , i.warehouse  as wh

 31      , i.aisle      as ai

 32      , i.position   as pos

 33     from orderbatch ob

 34     join inventory_with_dims i

 35        on i.product_id = ob.product_id

 36  )

 37  where acc_prv_q < ord_q

 38  order by p_id, purchased, loc_q, wh, ai, pos;

The inline view in lines 14–36 is almost the same as before, but I have added  

an extra rolling sum in lines 24–28, so I now have both a rolling sum of the previous rows 

in acc_prv_q and a rolling sum that includes the current row in acc_q.
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With those I can in lines 12–13 calculate the from and to quantity intervals for the 

row, showing you this output that I’ve ordered in line 38 so that you easily can see what 

happens with the intervals:

WH  AI  POS  P_ID  PICK_Q  FROM_Q  TO_Q

1   C   1    4280  36      1       36

1   D   18   4280  39      37      75

2   B   3    4280  35      76      110

2   C   20   4280  30      111     140

1   A   29   6520  14      1       14

2   B   5    6520  14      15      28

1   C   13   6520  20      29      48

2   B   26   6520  24      49      72

2   D   9    6520  26      73      98

1   A   16   6520  22      99      120

With these quantity intervals, you can read that the 36 to be picked in the first row are 

numbers 1-36 out of the total 140 to be picked of product 4280, the 39 in the next row are 

then numbers 37-75 out of the 140, and so on.

If you’ve a keen eye, you may have spotted that in Listing 13-11, I am actually doing a 

superfluous analytic function call, since I am using a call both to calculate rolling sum of 

previous rows and to calculate rolling sum including the current row. But the latter could 

also be calculated as the rolling sum of previous rows + the quantity in the current row.

So in Listing 13-12, I’ve changed slightly to only do the rolling sum of previous rows 

in order to save an analytic function call.

Listing 13-12.  Quantity intervals with a single analytic sum

SQL> with orderbatch as (

...

  8  )

  9  select

 10     wh, ai, pos, p_id

 11   , least(loc_q, ord_q - acc_prv_q) as pick_q

 12   , acc_prv_q + 1                   as from_q

 13   , least(acc_prv_q + loc_q, ord_q) as to_q

 14  from (
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 15     select

 16        i.product_id as p_id

 17      , ob.qty       as ord_q

 18      , i.qty        as loc_q

 19      , nvl(sum(i.qty) over (

 20           partition by i.product_id

 21           order by i.purchased, i.qty

 22           rows between unbounded preceding and 1 preceding

 23        ), 0)        as acc_prv_q

 24      , i.purchased

 25      , i.warehouse  as wh

 26      , i.aisle      as ai

 27      , i.position   as pos

 28     from orderbatch ob

 29     join inventory_with_dims i

 30        on i.product_id = ob.product_id

 31  )

 32  where acc_prv_q < ord_q

 33  order by p_id, purchased, loc_q, wh, ai, pos;

The inline view again only contains the acc_prv_q (as it used to), and then in line 

13, I am using acc_prv_q + loc_q instead of the acc_q I no longer have. The result of 

Listing 13-12 is identical to that of Listing 13-11.

Having quantity intervals for the picks is not enough; I also need similar quantity 

intervals for the orders, as I show in Listing 13-13.

Listing 13-13.  Quantity intervals for each order out of total per product

SQL> select

  2     ol.order_id    as o_id

  3   , ol.product_id  as p_id

  4   , ol.qty

  5   , nvl(sum(ol.qty) over (

  6        partition by ol.product_id

  7        order by ol.order_id

  8        rows between unbounded preceding and 1 preceding

  9     ), 0) + 1      as from_q
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 10   , nvl(sum(ol.qty) over (

 11        partition by ol.product_id

 12        order by ol.order_id

 13        rows between unbounded preceding and 1 preceding

 14     ), 0) + ol.qty as to_q

 15  from orderlines ol

 16  where ol.order_id in (422, 423)

 17  order by ol.product_id, ol.order_id;

I’m skipping the inline view here and instead calculate from_q directly in lines 5–9 

and to_q in lines 10–14. In both calculations, I’m doing a rolling sum of all previous 

rows, so that when I’m using the exact same analytic function expression twice, the SQL 

engine will recognize this and only perform the analytic call once.

The output shows me then that the 80 of product 4280 that is ordered in order 422 

are numbers 1-80 out of the 140, just like the picking quantity intervals before.

O_ID  P_ID  QTY  FROM_Q  TO_Q

422   4280  80   1       80

423   4280  60   81      140

422   6520  80   1       80

423   6520  40   81      120

With the two sets of quantity intervals, I can join them where they overlap and that 

way see how many of each pick go to what order. Listing 13-14 brings the code together.

Listing 13-14.  Join overlapping pick and order quantity intervals

SQL> with olines as (

  2     select

  3        ol.order_id    as o_id

  4      , ol.product_id  as p_id

  5      , ol.qty

  6      , nvl(sum(ol.qty) over (

  7           partition by ol.product_id

  8           order by ol.order_id

  9           rows between unbounded preceding and 1 preceding

 10        ), 0) + 1      as from_q

 11      , nvl(sum(ol.qty) over (

Chapter 13  Ordered Subsets with Rolling Sums



259

 12           partition by ol.product_id

 13           order by ol.order_id

 14           rows between unbounded preceding and 1 preceding

 15        ), 0) + ol.qty as to_q

 16     from orderlines ol

 17     where ol.order_id in (422, 423)

 18  ), orderbatch as (

 19     select

 20        ol.p_id

 21      , sum(ol.qty) as qty

 22     from olines ol

 23     group by ol.p_id

 24  ), fifo as (

 25     select

 26        wh, ai, pos, p_id, loc_q

 27      , least(loc_q, ord_q - acc_prv_q) as pick_q

 28      , acc_prv_q + 1                   as from_q

 29      , least(acc_prv_q + loc_q, ord_q) as to_q

 30     from (

 31        select

 32           i.product_id as p_id

 33         , ob.qty       as ord_q

 34         , i.qty        as loc_q

 35         , nvl(sum(i.qty) over (

 36              partition by i.product_id

 37              order by i.purchased, i.qty

 38              rows between unbounded preceding and 1 preceding

 39           ), 0)        as acc_prv_q

 40         , i.purchased

 41         , i.warehouse  as wh

 42         , i.aisle      as ai

 43         , i.position   as pos

 44        from orderbatch ob

 45        join inventory_with_dims i

 46           on i.product_id = ob.p_id

 47     )
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 48     where acc_prv_q < ord_q

 49  )

 50  select

 51     f.wh, f.ai, f.pos, f.p_id

 52   , f.pick_q, f.from_q as p_f_q, f.to_q as p_t_q

 53   , o.o_id  , o.from_q as o_f_q, o.to_q as o_t_q

 54  from fifo f

 55  join olines o

 56     on o.p_id = f.p_id

 57     and o.to_q >= f.from_q

 58     and o.from_q <= f.to_q

 59  order by f.p_id, f.from_q, o.from_q;

I build the query using three with clause subqueries:

•	 First I create olines, which is Listing 13-13 calculating the quantity 

intervals for the orderlines.

•	 Then orderbatch, similar to how I did it in Listing 13-12, except that I 

do the aggregation using olines in line 22 instead of the orderlines 

table, since olines already has the desired orderlines.

•	 The third subquery is fifo, which also comes from Listing 13-12 and 

takes care of building the FIFO picks including quantity intervals.

The main query then is a join of fifo and olines on the product id and on 

overlapping quantity intervals. In the resulting output, you see the from/to intervals for 

the picks as p_f_q/p_t_q and for the orderlines as o_f_q/o_t_q (short column names are 

good for print):

WH  AI  POS  P_ID  PICK_Q  P_F_Q  P_T_Q  O_ID  O_F_Q  O_T_Q

1   C   1    4280  36      1      36     422   1      80

1   D   18   4280  39      37     75     422   1      80

2   B   3    4280  35      76     110    422   1      80

2   B   3    4280  35      76     110    423   81     140

2   C   20   4280  30      111    140    423   81     140

1   A   29   6520  14      1      14     422   1      80

2   B   5    6520  14      15     28     422   1      80

1   C   13   6520  20      29     48     422   1      80
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2   B   26   6520  24      49     72     422   1      80

2   D   9    6520  26      73     98     422   1      80

2   D   9    6520  26      73     98     423   81     120

1   A   16   6520  22      99     120    423   81     120

In the first row, all 36 go to order 422. Likewise in the second row, all 39 go to  

order 422.

But the next 35 picked are numbers 76-110 (out of 140), which overlaps both with 

order 422 (numbers 1-80) and order 423 (numbers 81-140). You can see from those 

overlaps that 5 of the 35 (numbers 76-80) should go to order 422 and the 30 of the 35 

(numbers 81-110) should go to order 423.

In Listing 13-15, I calculate this as well as clean up the query a bit to not show the 

intermediate calculation columns.

Listing 13-15.  How much quantity from each pick goes to which order

SQL> with olines as (

...

 18  ), orderbatch as (

...

 24  ), fifo as (

...

 49  )

 50  select

 51     f.wh, f.ai, f.pos, f.p_id

 52   , f.pick_q, o.o_id

 53   , least(

 54        f.loc_q

 55      , least(o.to_q, f.to_q) - greatest(o.from_q, f.from_q) + 1

 56     ) as q_f_o

 57  from fifo f

 58  join olines o

 59     on o.p_id = f.p_id

 60     and o.to_q >= f.from_q

 61     and o.from_q <= f.to_q

 62  order by f.p_id, f.from_q, o.from_q;

Chapter 13  Ordered Subsets with Rolling Sums



262

Lines 53–56 calculate the “quantity for order” (q_f_o) by taking either the quantity 

that is on the location or the “size of the interval overlap,” whichever is the smaller of the 

two. The result is this output with all the necessary information for the picking operator:

WH  AI  POS  P_ID  PICK_Q  O_ID  Q_F_O

1   C   1    4280  36      422   36

1   D   18   4280  39      422   39

2   B   3    4280  35      422   5

2   B   3    4280  35      423   30

2   C   20   4280  30      423   30

1   A   29   6520  14      422   14

2   B   5    6520  14      422   14

1   C   13   6520  20      422   20

2   B   26   6520  24      422   24

2   D   9    6520  26      422   8

2   D   9    6520  26      423   18

1   A   16   6520  22      423   22

That solved the third problem; now all that is needed to complete the solution is to 

combine the solutions of problems 2 and 3, so the picking operator also can do the batch 

picking in an efficient picking route.

�Finalizing the complete picking SQL
I have Listing 13-15 for batch picking and Listing 13-8 for a good picking route. 

Combining the two in Listing 13-16 gives me the complete solution.

Listing 13-16.  The ultimate FIFO batch picking SQL statement

SQL> with olines as (

...

 18  ), orderbatch as (

...

 24  ), fifo as (

...

 49  ), pick as (

 50     select
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 51        f.wh, f.ai

 52      , dense_rank() over (

 53           order by wh, ai

 54        ) as ai#

 55      , f.pos, f.p_id

 56      , f.pick_q, o.o_id

 57      , least(

 58           f.loc_q

 59         , least(o.to_q, f.to_q) - greatest(o.from_q, f.from_q) + 1

 60        ) as q_f_o

 61     from fifo f

 62     join olines o

 63        on o.p_id = f.p_id

 64        and o.to_q >= f.from_q

 65        and o.from_q <= f.to_q

 66  )

 67  select

 68     p.wh, p.ai, p.pos

 69   , p.p_id, p.pick_q

 70   , p.o_id, p.q_f_o

 71  from pick p

 72  order by p.wh

 73         , p.ai#

 74         , case

 75              when mod(p.ai#, 2) = 1 then +p.pos

 76                                     else -p.pos

 77           end;

The with clause subqueries olines, orderbatch, and fifo are the same as  

Listing 13-15. Then the main query from Listing 13-15 I have put into subquery pick in 

lines 49–66.

I’ve added the calculation of the “visited aisle number” ai# (from Listing 13-8) in 

lines 52–54.
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Then the main query is simply selecting the necessary information from the pick 

subquery and using the order by from Listing 13-8 to give an optimal picking route:

WH  AI  POS  P_ID  PICK_Q  O_ID  Q_F_O

1   A   16   6520  22      423   22

1   A   29   6520  14      422   14

1   C   13   6520  20      422   20

1   C   1    4280  36      422   36

1   D   18   4280  39      422   39

2   B   26   6520  24      422   24

2   B   5    6520  14      422   14

2   B   3    4280  35      422   5

2   B   3    4280  35      423   30

2   C   20   4280  30      423   30

2   D   9    6520  26      422   8

2   D   9    6520  26      423   18

Where a location is repeated on the list, like 2 B 3, you can see that it shows 35 should 

be picked, 5 of which are to be placed in the package for order 422 and 30 are for the 

package for order 423.

With this list, the picking operator will be led in a good route through the 

warehouses, picking products for a batch of multiple orders, where the products have 

been selected by the first-in, first-out principle.

In total this is practically a complete warehouse goods picking app in a single SQL 

statement.

�Lessons learned
This chapter has shown you the building of a single SQL app with multiple uses of 

analytic functions that have given you knowledge on

•	 Using the window clause to apply analytic sum to a subset of the rows 

to find the subset that gives a sufficiently large result

•	 Calculating intervals with analytic rolling sums to find overlapping 

intervals

•	 Assigning dense_rank to results for alternating ascending and 

descending ordering
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When you understand how to build a statement like this piece by piece with analytic 

functions, you can create many similar statements that contain a lot of business logic, 

thereby achieving an app with a lot better performance than extracting the data and 

doing the same logic procedurally.
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CHAPTER 14

Analyzing Activity  
Logs with Lead
Logs can be many things, and sometimes you are lucky that each line of the log is  

self-contained and has all the data you need to analyze the log. But most often a row in a 

log table pinpoints that at this exact moment in time, this specific activity occurred – and 

the interesting fact you need to analyze is how long time there was between rows in the log.

This is where analytic functions lag and lead come in very handy, as they can be 

used on a given row to retrieve information from previous rows (lag) or next rows (lead) 

in a given order. You can often choose to use either lag or lead depending on how you 

build your logic, but most often the deciding factor will be when the row is inserted in 

the activity log. If the row is inserted at the start of the activity, the time of the activity is 

the time between this row and the next row, so lead is the sensible choice. Contrariwise, 

if the row is inserted when the activity is finished, the time of the activity is the time 

between the previous row and this row, and then the use of lag makes sense.

Where I worked when I created this type of code first, there was an automatic 

warehouse with robot picking, so the operator stood in a fixed position, boxes came on 

a conveyor belt to him, he picked products, the box moved away, and a new one came. 

Departures and arrivals of the boxes were logged, which meant that the time from a 

box arrived until it departed was the time used for picking, while the time from the box 

departed until the next box arrived was waiting time. With the use of lead SQL similar to 

what I show here, we could analyze when there was too much waiting time and use that 

information to tune the robot warehouse.

The Good Beer Trading Co in this book does not have a robot warehouse, but I 

showed picking optimization in the previous chapter. Now I can follow up in this chapter 

with analyzing how much time was used picking vs. driving around in the warehouse.
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�Picking activity log
In Chapter 13 I showed how Good Beer Trading Co can calculate efficient picking lists 

for picking beers in the warehouse for multiple orders. When the warehouse operators 

start picking some orders, they do not just print the output from the queries in Chapter 13;  

instead a picking list is created in table picking_list, and the query output is stored in 

table picking_line, these two tables shown in Figure 14-1.

Then after the picking list with corresponding picking lines has been created and 

printed, the picking operator drives off on his electric picking cart. As he drives along 

and picks the beers in the warehouse, he scans barcodes on the location shelves and the 

beers to register his activity – this activity is stored in table picking_log, the contents of 

which you can see in Listing 14-1.

Figure 14-1.  Tables to hold picking lists and logs for doing the picking
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Listing 14-1.  Content of the activity log for picking lists

SQL> select

  2     list.picker_emp_id as emp

  3   , list.id            as list

  4   , log.log_time

  5   , log.activity       as act

  6   , log.location_id    as loc

  7   , log.pickline_no    as line

  8  from picking_list list

  9  join picking_log log

 10     on log.picklist_id = list.id

 11  order by list.id, log.log_time;

I join with the picking_list table in order to retrieve the employee id, so that in my 

statistical reports, I can compare and see which operator works the fastest, so (s)he can 

teach the others:

EMP  LIST  LOG_TIME             ACT  LOC  LINE

149  841   2019-01-16 14:05:11  D

149  841   2019-01-16 14:05:44  A    16

149  841   2019-01-16 14:05:52  P    16   1

149  841   2019-01-16 14:06:01  D    16

149  841   2019-01-16 14:06:20  A    29

149  841   2019-01-16 14:06:27  P    29   2

...

149  841   2019-01-16 14:13:00  D    233

149  841   2019-01-16 14:14:41  A

152  842   2019-01-19 16:01:12  D

152  842   2019-01-19 16:01:48  A    16

152  842   2019-01-19 16:01:53  P    16   1

...

152  842   2019-01-19 16:08:58  D    212

152  842   2019-01-19 16:09:23  A    233

152  842   2019-01-19 16:09:34  P    233  11

152  842   2019-01-19 16:09:42  P    233  12
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152  842   2019-01-19 16:09:53  D    233

152  842   2019-01-19 16:11:42  A

63 rows selected.

In the activity column of the table (act in the output) can be stored either D for 

departure, A for arrival, or P for pick. When he drives off from a location, he scans the 

location barcode, and a row with D is inserted in the table. Upon arrival at the next 

location, again he scans the location barcode, and a row with A is created. Then he picks 

one or more picking lines at that location, each time scanning the beer which creates a P 

row.

There’s a little variation at each end. When he sets off on his picking tour, a D row 

is inserted with a null location. When he’s done and returns to his origin, an A row is 

similarly inserted with a null location.

Apart from that variation, the work follows a repetitive cycle as shown in Figure 14-2.

You can see how he works, scanning locations and beers as he goes along, and this 

cycle repeats. It will always be D->A->P->D, with the possibility of there being more than 

one P in a cycle.

Figure 14-2.  Timeline of part of the picking log
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But the interesting thing to analyze is the number of seconds between rows and also 

figuring out that the 25 seconds is driving, the 11+8 seconds is picking, and the last 11 

seconds is packing. I’ll show you all of that, but I start simply by figuring out driving and 

working (lumping picking and packing together).

�Analyzing departures and arrivals
First, I will simply analyze departures and arrivals, where the time between a departure 

and an arrival is driving time and the time between an arrival and a departure is work 

time (later I’ll look at the picking and packing part of the work time). In Listing 14-2,  

I look at just the D and A activities.

Listing 14-2.  Departures and arrivals with lead function calls

SQL> select

  2     list.picker_emp_id as emp

  3   , list.id            as list

  4   , log.log_time

  5   , log.activity       as act

  6   , log.location_id    as loc

  7   , to_char(

  8        lead(log_time) over (

  9           partition by list.id

 10           order by log.log_time

 11        )

 12      , 'HH24:MI:SS'

 13     ) as next_time

 14   , to_char(

 15        lead(log_time, 2) over (

 16           partition by list.id

 17           order by log.log_time

 18        )

 19      , 'HH24:MI:SS'

 20     ) as next2_time

 21  from picking_list list

 22  join picking_log log
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 23     on log.picklist_id = list.id

 24  where log.activity in ('D', 'A')

 25  order by list.id, log.log_time;

I restrict the data to D and A activities in line 24.

Using lead in lines 8–11 gives me what is the log_time of the next row, and  

adding the parameter 2 to the lead call in line 15 gives me the log_time of the next row 

after that:

EMP  LIST  LOG_TIME             ACT  LOC  NEXT_TIME  NEXT2_TIME

149  841   2019-01-16 14:05:11  D         14:05:44   14:06:01

149  841   2019-01-16 14:05:44  A    16   14:06:01   14:06:20

149  841   2019-01-16 14:06:01  D    16   14:06:20   14:06:35

149  841   2019-01-16 14:06:20  A    29   14:06:35   14:07:16

...

149  841   2019-01-16 14:11:26  D    163  14:12:42   14:13:00

149  841   2019-01-16 14:12:42  A    233  14:13:00   14:14:41

149  841   2019-01-16 14:13:00  D    233  14:14:41

149  841   2019-01-16 14:14:41  A

152  842   2019-01-19 16:01:12  D         16:01:48   16:02:04

152  842   2019-01-19 16:01:48  A    16   16:02:04   16:02:19

...

152  842   2019-01-19 16:09:53  D    233  16:11:42

152  842   2019-01-19 16:11:42  A

42 rows selected.

You notice that the last row of each partition (picking list) has null in next_time, and 

the two last rows have null in next2_time. That makes sense and is OK for my purpose.

Using lead twice in this manner gives me that each D row has the time of a complete 

Depart – Arrive – Depart picking cycle. Likewise each A row has the time of a complete 

Arrive – Depart – Arrive cycle. I only need one of the two, so I choose to work with 

Depart–Arrive–Depart cycles in Listing 14-3.
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Listing 14-3.  Depart–Arrive–Depart cycles

SQL> select

  2     emp, list

  3   , log_time as depart

  4   , to_char(next_time , 'HH24:MI:SS') as arrive

  5   , to_char(next2_time, 'HH24:MI:SS') as next_depart

  6   , round((next_time  - log_time )*(24*60*60)) as drive

  7   , round((next2_time - next_time)*(24*60*60)) as work

  8  from (

  9     select

 10        list.picker_emp_id as emp

 11      , list.id            as list

 12      , log.log_time

 13      , log.activity       as act

 14      , lead(log_time) over (

 15           partition by list.id

 16           order by log.log_time

 17        ) as next_time

 18      , lead(log_time, 2) over (

 19           partition by list.id

 20           order by log.log_time

 21        ) as next2_time

 22     from picking_list list

 23     join picking_log log

 24        on log.picklist_id = list.id

 25     where log.activity in ('D', 'A')

 26  )

 27  where act = 'D'

 28  order by list, log_time;

Listing 14-2 I use in the inline view and simply keep only the D rows in line 27 – I have 

all the data I need in those rows and can skip the A rows.

Then I can give my time columns meaningful names in lines 3–5 (had I chosen A-D-A 

cycles instead of D-A-D cycles, the names would have been different). And that makes 

it easy to calculate the number of seconds used for drive and for work in lines 6–7 (the 
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rounding is just because the calculations otherwise would have shown a small inevitable 

rounding error in the 20th decimal or so):

EMP  LIST  DEPART               ARRIVE    NEXT_DEPART  DRIVE  WORK

149  841   2019-01-16 14:05:11  14:05:44  14:06:01     33     17

149  841   2019-01-16 14:06:01  14:06:20  14:06:35     19     15

...

149  841   2019-01-16 14:11:26  14:12:42  14:13:00     76     18

149  841   2019-01-16 14:13:00  14:14:41               101

152  842   2019-01-19 16:01:12  16:01:48  16:02:04     36     16

152  842   2019-01-19 16:02:04  16:02:19  16:02:37     15     18

...

152  842   2019-01-19 16:08:58  16:09:23  16:09:53     25     30

152  842   2019-01-19 16:09:53  16:11:42               109

21 rows selected.

The last row of each picking list (partition) has a null value in next_depart, which 

makes the work calculation become null too. As shown before, the picker starts at the 

null location and ends at the null location, so after having picked the last product on 

the picking list, he registers a departure from that location and an arrival at the null 

location, indicating he is done and there is no next_depart. So the last D-A-D picking 

cycle is incomplete; it is only D-A. (If I had chosen to use A-D-A cycles, it would have been 

the first row that would be incomplete, having only D-A.)

Listing 14-3 gives me the details for each picking cycle. I can then simply aggregate 

these data in Listing 14-4 to give me some statistics on how efficient the employee has 

worked on each picking list.

Listing 14-4.  Statistics per picking list

SQL> select

  2     max(emp) as emp

  3   , list

  4   , min(log_time) as begin

  5   , to_char(max(next_time), 'HH24:MI:SS') as end

  6   , count(*) as drives

  7   , round(

  8        avg((next_time - log_time )*(24*60*60))
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  9      , 1

 10     ) as avg_d

 11   , count(next2_time) as stops

 12   , round(

 13        avg((next2_time  - next_time)*(24*60*60))

 14      , 1

 15     ) as avg_w

 16  from (

...

 34  )

 35  where act = 'D'

 36  group by list

 37  order by list;

I take the query from Listing 14-3 and tack on a group by in line 36 and then simply 

choose which aggregates I am interested in in the select list:

EMP  LIST  BEGIN                END       DRIVES  AVG_D  STOPS  AVG_W

149  841   2019-01-16 14:05:11  14:14:41  10      42.9   9      15.7

152  842   2019-01-19 16:01:12  16:11:42  11      41.5   10     17.4

Here I chose to show the average number of seconds used to drive between picking 

locations and the average number of seconds used working (picking and packing) at 

each stop. I could just as easily have used min, max, median, sum, and so on, but I leave 

that as an exercise for the reader. It is more interesting to move on to analyzing the data 

when I also want to include the picking activity.

�Analyzing picking activity
It is possible for me to use a similar technique with lead to include the picking activity, 

as I show in Listing 14-5.

Listing 14-5.  Including picking activity

SQL> select

  2     emp, list

  3   , to_char(depart, 'HH24:MI:SS') as depart

  4   , to_char(arrive, 'HH24:MI:SS') as arrive
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  5   , to_char(pick1 , 'HH24:MI:SS') as pick1

  6   , to_char(

  7        case when pick2 < next_depart then pick2 end

  8      , 'HH24:MI:SS'

  9     ) as pick2

 10   , to_char(next_depart, 'HH24:MI:SS') as next_dep

 11   , round((arrive      - depart)*(24*60*60)) as drv

 12   , round((next_depart - arrive)*(24*60*60)) as wrk

 13  from (

 14     select

 15        list.picker_emp_id as emp

 16      , list.id            as list

 17      , log.activity       as act

 18      , log.log_time       as depart

 19      , lead(log_time) over (

 20           partition by list.id

 21           order by log.log_time

 22        ) as arrive

 23      , lead(

 24           case log.activity when 'P' then log_time end

 25        ) ignore nulls over (

 26           partition by list.id

 27           order by log.log_time

 28        ) as pick1

 29      , lead(

 30           case log.activity when 'P' then log_time end, 2

 31        ) ignore nulls over (

 32           partition by list.id

 33           order by log.log_time

 34        ) as pick2

 35      , lead(

 36           case log.activity when 'D' then log_time end

 37        ) ignore nulls over (

 38           partition by list.id

 39           order by log.log_time
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 40        ) as next_depart

 41     from picking_list list

 42     join picking_log log

 43        on log.picklist_id = list.id

 44  )

 45  where act = 'D'

 46  order by list, depart;

I have here four calls to lead, which for any D row will give me the following:

•	 Lines 19–22 give me the next row after the D row, which always will be 

an A row.

•	 Lines 23–28 give me the next P row after the D row by using a case 

expression to return null for all rows that are not P rows, enabling me 

to skip those rows using ignore nulls.

•	 Lines 29–34 are almost identical, just adding parameter 2 in line 30 to 

get the second P row after the D row.

•	 Lines 35–40 finally use the case and ignore nulls technique to get 

me the next D row after the current D row.

All that gives me an output very similar to that of Listing 14-3, just adding columns 

for the time of the first and second (if any) picks:

EMP  LIST  DEPART    ARRIVE    PICK1     PICK2     NEXT_DEP  DRV  WRK

149  841   14:05:11  14:05:44  14:05:52            14:06:01  33   17

149  841   14:06:01  14:06:20  14:06:27            14:06:35  19   15

...

149  841   14:11:26  14:12:42  14:12:53            14:13:00  76   18

149  841   14:13:00  14:14:41                                101

152  842   16:01:12  16:01:48  16:01:53            16:02:04  36   16

...

152  842   16:07:03  16:07:12  16:07:16  16:07:22  16:07:34  9    22

152  842   16:07:34  16:08:44  16:08:49            16:08:58  70   14

152  842   16:08:58  16:09:23  16:09:34  16:09:42  16:09:53  25   30

152  842   16:09:53  16:11:42                                109

21 rows selected.
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I could then start calculating how many seconds were spent picking and packing out 

of the wrk seconds, but it is not really a good way to continue, as this code only works if 

the worker picks at most two picking lines at each stop on the route. And it’s a bad idea to 

try to keep adding multiple lead calls to try and create columns pick1 to pick<n>. I want 

to try something else instead.

When I don’t know how many picks there might be for each stop, it is better to work 

with rows instead of columns. But then I somehow need to know which rows belong 

together in a picking cycle. I can do that with last_value in Listing 14-6.

Listing 14-6.  Identifying cycles

SQL> select

  2     list.picker_emp_id as emp

  3   , list.id            as list

  4   , last_value(

  5        case log.activity when 'D' then log_time end

  6     ) ignore nulls over (

  7        partition by list.id

  8        order by log.log_time

  9        rows between unbounded preceding and current row

 10     ) as begin_cycle

 11   , to_char(log_time, 'HH24:MI:SS') as act_time

 12   , log.activity as act

 13   , lead(activity) over (

 14        partition by list.id

 15        order by log.log_time

 16     ) as next_act

 17   , round((

 18        lead(log_time) over (

 19           partition by list.id

 20           order by log.log_time

 21        ) - log_time

 22     )*(24*60*60)) as secs

 23  from picking_list list
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 24  join picking_log log

 25     on log.picklist_id = list.id

 26  order by list.id, log.log_time;

The case expression in line 5 that I use as parameter for last_value will only have 

the log_time value for D rows, otherwise null. So on a D row, the output of the last_

value call will be the log_time of the row. On the next row, the ignore nulls clause 

in line 6 makes last_value go back and find the last non-null value, which was the 

log_time of the D row. This repeats on each subsequent row until a new D row is reached, 

making all rows belonging together in the same picking cycle have the same value in 

column begin_cycle.

With lead calls in lines 13–22, I calculate on each row what is the activity of the next 

row and how many seconds did this activity last. In total I get an output with all the 

details for every row, but ready to be grouped by each cycle:

EMP  LIST  BEGIN_CYCLE          ACT_TIME  ACT  NEXT_ACT  SECS

149  841   2019-01-16 14:05:11  14:05:11  D    A         33

149  841   2019-01-16 14:05:11  14:05:44  A    P         8

149  841   2019-01-16 14:05:11  14:05:52  P    D         9

149  841   2019-01-16 14:06:01  14:06:01  D    A         19

149  841   2019-01-16 14:06:01  14:06:20  A    P         7

149  841   2019-01-16 14:06:01  14:06:27  P    D         8

...

149  841   2019-01-16 14:13:00  14:13:00  D    A         101

149  841   2019-01-16 14:13:00  14:14:41  A

152  842   2019-01-19 16:01:12  16:01:12  D    A         36

152  842   2019-01-19 16:01:12  16:01:48  A    P         5

152  842   2019-01-19 16:01:12  16:01:53  P    D         11

...

152  842   2019-01-19 16:08:58  16:08:58  D    A         25

152  842   2019-01-19 16:08:58  16:09:23  A    P         11

152  842   2019-01-19 16:08:58  16:09:34  P    P         8

152  842   2019-01-19 16:08:58  16:09:42  P    D         11

152  842   2019-01-19 16:09:53  16:09:53  D    A         109

152  842   2019-01-19 16:09:53  16:11:42  A

63 rows selected.
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Now I have what I need to do some analysis that includes picking and packing 

activities, no matter how many picks there are at each stop.

�Complete picking cycle analysis
I could use a group by on the emp, list, and begin_cycle to get data for each picking 

cycle, but in this case, it can be a little easier in Listing 14-7 to use the implicit grouping 

that is performed by pivot.

Listing 14-7.  Grouping cycles by pivoting

SQL> select *

  2  from (

  3     select

  4        list.picker_emp_id as emp

  5      , list.id            as list

  6      , last_value(

  7           case log.activity when 'D' then log_time end

  8        ) ignore nulls over (

  9           partition by list.id

 10           order by log.log_time

 11           rows between unbounded preceding and current row

 12        ) as begin_cycle

 13      , lead(activity) over (

 14           partition by list.id

 15           order by log.log_time

 16        ) as next_act

 17      , round((

 18           lead(log_time) over (

 19              partition by list.id

 20              order by log.log_time

 21           ) - log_time

 22        )*(24*60*60)) as secs

 23     from picking_list list

 24     join picking_log log

 25        on log.picklist_id = list.id

 26  ) pivot (
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 27     sum(secs)

 28     for (next_act) in (

 29        'A' as drive   -- D->A

 30      , 'P' as pick    -- A->P or P->P

 31      , 'D' as pack    -- P->D

 32     )

 33  )

 34  order by list, begin_cycle;

I wrap Listing 14-6 in an inline view and use the pivot operator on the result. But 

since pivot makes implicit group by on all columns not used in the pivot clause itself, 

I do need to leave out columns act_time and act from Listing 14-6, as they would have 

ruined the implicit grouping.

If you look again at Figure 14-2, you see there are four possible combinations of the 

activity on one row and the activity on the next row. The seconds going from a D row to 

an A row are spent driving, seconds going from an A row to a P row are picking, seconds 

going from a P row to a P row are also picking, and finally the seconds going from a P row 

to a D row are spent packing.

This means that I can pivot on the next_act column in line 28 with the three 

different values creating virtual columns drive, pick, and pack. Line 30 represents both 

picking cases: A->P and P->P.

So with the sum in place in line 27, I get an output with each picking cycle just like the 

output of Listing 14-3, except I now have the working time split up into pick and pack, 

where the pick column may contain time from one or more rows of the picking log:

EMP  LIST  BEGIN_CYCLE          DRIVE  PICK  PACK

149  841   2019-01-16 14:05:11  33     8     9

149  841   2019-01-16 14:06:01  19     7     8

...

149  841   2019-01-16 14:11:26  76     11    7

149  841   2019-01-16 14:13:00  101

152  842   2019-01-19 16:01:12  36     5     11

...

152  842   2019-01-19 16:08:58  25     19    11

152  842   2019-01-19 16:09:53  109

21 rows selected.
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I could have included a count(*) measure in the pivot clause if I wanted to show 

also how many picks at each stop rather than just the total seconds used for picking at 

the stop.

And just as Listing 14-4 aggregated data from Listing 14-3, I use Listing 14-8 to 

aggregate the data of Listing 14-7.

Listing 14-8.  Statistics per picking list on the pivoted cycles

SQL> select

  2     max(emp) as emp

  3   , list

  4   , min(begin_cycle) as begin

  5   , count(*) as drvs

  6   , round(avg(drive), 1) as avg_d

  7   , count(pick) as stops

  8   , round(avg(pick), 1) as avg_pick

  9   , round(avg(pack), 1) as avg_pack

 10  from (

...

 34  ) pivot (

 35     sum(secs)

 36     for (next_act) in (

 37        'A' as drive   -- D->A

 38      , 'P' as pick    -- A->P or P->P

 39      , 'D' as pack    -- P->D

 40     )

 41  )

 42  group by list

 43  order by list;
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A nice little thing to note here is that I do not need to wrap Listing 14-7 in another 

inline view; I can add the group by directly after the pivot. Actually that means that two 

grouping operations will be performed, first the implicit one in the pivot and then the 

explicit one in line 42 where I group by each picking list:

EMP  LIST  BEGIN                DRVS  AVG_D  STOPS  AVG_PICK  AVG_PACK

149  841   2019-01-16 14:05:11  10    42.9   9      7.1       8.6

152  842   2019-01-19 16:01:12  11    41.5   10     7.8       9.6

As before, you can play around yourself doing other aggregates than simply count 

and avg; you know the technique now.

I could end the chapter here, but I just want to give you a little teaser on what you’ll 

see when you get to Part 3 of this book.

�Teaser: row pattern matching
The match_recognize clause (formally known as row pattern matching) is a very 

powerful tool in the SQL developer’s toolbox. The entire Part 3 is dedicated to various 

ways to use this clause.

But what I have been showing in this chapter is actually detecting and grouping on a 

pattern in the data – a cyclic pattern of activities going from D to A to one or more P and 

back to D. I have used some useful tricks in the analytic function toolbox by deliberately 

making null values for the ignore nulls clause to create groups of cycles, but it is 

actually relatively obscure what the code in Listing 14-7 and 14-8 does.

With row pattern matching, I can make a SQL statement in Listing 14-9 that at first 

glance might seem even more obscure, but once you know match_recognize, this is 

actually (trust me on this) more readable.

Listing 14-9.  Identifying picking cycles with row pattern matching

SQL> select

  2     *

  3  from (

  4     select

  5        list.picker_emp_id as emp

  6      , list.id            as list

  7      , log.log_time
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  8      , log.activity       as act

  9     from picking_list list

 10     join picking_log log

 11        on log.picklist_id = list.id

 12  )

 13  match_recognize (

 14     partition by list

 15     order by log_time

 16     measures

 17        max(emp) as emp

 18      , first(log_time) as begin_cycle

 19      , round(

 20           (arrive.log_time - first(depart.log_time))

 21         * (24*60*60)

 22        ) as drive

 23      , round(

 24           (last(pick.log_time) - arrive.log_time)

 25         * (24*60*60)

 26        ) as pick

 27      , round(

 28           (next(last(pick.log_time)) - last(pick.log_time))

 29         * (24*60*60)

 30        ) as pack

 31     one row per match

 32     after match skip to last arrive

 33     pattern (depart arrive pick* depart{0,1})

 34     define

 35        depart as act = 'D'

 36      , arrive as act = 'A'

 37      , pick   as act = 'P'

 38  )

 39  order by list;

I will not dive deep into the syntax at this point, but I invite you to come back here 

after you have read Part 3 and read this listing again and see if you do not agree that (with 

suitable knowledge of the syntax) it is more clear what the code does.
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But the important thing you can note here is that in lines 34–37, I make some 

definitions that a row with act = 'D' is called depart and similar for arrive and pick, 

and then in line 33, I can easily state that one picking cycle contains a depart, followed 

by an arrive, followed by zero or more pick, and followed by zero or one depart. You’ll 

notice the similarity to regular expression syntax. (The zero or more and zero or one parts 

are to handle the incomplete picking cycle that ends each picking tour.)

And just as Listing 14-9 produces the same output as Listing 14-7, I can get the same 

statistical output from Listing 14-10 that I got in Listing 14-8.

Listing 14-10.  Statistics per picking list with row pattern matching

SQL> select

  2     max(emp) as emp

  3   , list

  4   , min(begin_cycle) as begin

  5   , count(*) as drvs

  6   , round(avg(drive), 1) as avg_d

  7   , count(pick) as stops

  8   , round(avg(pick), 1) as avg_pick

  9   , round(avg(pack), 1) as avg_pack

 10  from (

...

 19  )

 20  match_recognize (

...

 45  )

 46  group by list

 47  order by list;

I hope I have wetted your appetite for Part 3 of the book. Come back to this and play 

with this code when you are done with Part 3.
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�Lessons learned
The techniques of this chapter are classic examples of how analytic functions enable you 

to use data from across rows for inter-row calculations. In particular you have seen

•	 The use of lead to fetch data from the next row or lead with an 

optional parameter to fetch from the nth next row

•	 The use of the ignore nulls clause of lead to fetch data from the 

next row with a non-null value, where you can customize the value to 

be non-null only on those rows you want lead to fetch data from

•	 The use of last_value with the ignore nulls clause to set up a 

common value on a group of rows that belong together and grouping 

or pivoting on that common value

These are all techniques useful in many situations, and if it becomes too complex to 

use these techniques, I recommend looking into using match_recognize (the topic of 

Part 3) as an alternative that often fits these situations very nicely.
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CHAPTER 15

Forecasting with  
Linear Regression
Some years ago at the retail company I worked at then, our data analyst came up to me. 

She was working on forecasting how much each of our products would sell in the next 12 

months and wanted to know if I could help develop a piece of SQL to do this.

Such forecasting can be done with a multitude of different models, each suitable 

to different types of data and circumstances. She had experimented with tools and 

researched and ran tests of the models on selected products and done whatever magic 

analysts do to make discoveries in our data. In the course of this, she found that a very 

suitable model for such sales forecasting in our case was a time series model with 

seasonal adjustment and exponential smoothing.

To help me understand this model and implement it, she brought me an Excel 

spreadsheet in which she had 3 years of monthly sales data for one of our products 

and then a series of columns that successively calculated the intermediate steps in the 

model, ending with the forecast for the next year.

The problem for her was that this spreadsheet was nice but could only operate on 

a single product. We had 100.000 products we needed to forecast. Therefore she really 

wished the forecast could be performed right inside the database with SQL.

With the help of analytic functions for averaging and linear regression, I could 

implement the same forecasting model in SQL, doing a series of calculations that 

emulated the calculations of each separate column of the spreadsheet. In this chapter I 

will show you this step by step.



288

Note  The spreadsheet made by our analyst that I used as basis for developing 
this SQL was based on the work by Robert Nau, Fuqua School of Business, Duke 
University, who has written about it here, where you can download a similar 
spreadsheet: http://people.duke.edu/~rnau/411outbd.htm.

�Sales forecasting
To demonstrate this time series forecasting model, I am going to use monthly sales data 

for the beers that my fictional Good Beer Trading Co sells. I have those data in the tables 

of Figure 15-1.

Figure 15-1.  Table with monthly sales for products

There are more beers in the products table, but I am going to concentrate on two that 

have a nice seasonal variation in their sales – one sold primarily wintertime and one sold 

primarily summertime. Listing 15-1 shows the two beers queried by primary key id values.

Listing 15-1.  The two products for showing forecasting

SQL> select id, name

  2  from products

  3  where id in (4160, 7790);
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So you can see that if I query sales data for product ids 4160 and 7790, I will get data 

for Reindeer Fuel and Summer in India:

        ID NAME

---------- --------------------

      4160 Reindeer Fuel

      7790 Summer in India

I have the sales data for 2016, 2017, and 2018, and besides having nice seasonal 

variations, Reindeer Fuel is selling a bit more each year, while Summer in India is selling 

a bit less. Now it’s time to try and apply this time series forecasting model to the data and 

forecast the sales of 2019.

�Time series
The first thing to do in time series forecasting is to build the time series, which is a set of 

consecutive data each being exactly one time unit apart. In this case I am using months 

for time unit. I have 3 years = 36 months of actual data, and I want to forecast 1 year = 12 

months, so I need to create a time series of 48 rows for each beer in Listing 15-2.

Listing 15-2.  Building time series 2016–2019 for the two beers

SQL> select

  2     ms.product_id

  3   , mths.mth

  4   , mths.ts

  5   , extract(year from mths.mth) as yr

  6   , extract(month from mths.mth) as mthno

  7   , ms.qty

  8  from (

  9     select

 10        add_months(date '2016-01-01', level - 1) as mth

 11      , level as ts --time series

 12     from dual

 13     connect by level <= 48

 14  ) mths
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 15  left outer join (

 16     select product_id, mth, qty

 17     from monthly_sales

 18     where product_id in (4160, 7790)

 19  ) ms

 20     partition by (ms.product_id)

 21     on  ms.mth = mths.mth

 22  order by ms.product_id, mths.mth;

The inline view mths in lines 9–13 creates 48 rows, one for each month in 2016–2019. 

The column mth contains the month as a date datatype, which I need to join with the 

sales data. Column ts contains consecutive numbers 1–48, which I can think of as 

number of “time unit,” in this case number of months.

Inline view ms in lines 16–18 simply queries the monthly_sales table for the two 

products I’m after – when I’m happy with my model, I can simply remove line 18 and run 

for all products instead of only two.

The left outer join between the two inline views is partitioned in line 20 on the 

product id, which means that the 48 rows of mths will be outer joined individually to 

each product – first outer joined to the 36 rows of product 4160 and then outer joined to 

the 36 rows of product 7790.

In total I get 96 rows in the output, partially shown here:

PROD MTH      TS    YR MTHNO  QTY

---- ------- --- ----- ----- ----

4160 2016-01   1  2016     1   79

4160 2016-02   2  2016     2  133

...

4160 2018-11  35  2018    11   73

4160 2018-12  36  2018    12  160

4160 2019-01  37  2019     1

4160 2019-02  38  2019     2

...

4160 2019-11  47  2019    11

4160 2019-12  48  2019    12

7790 2016-01   1  2016     1    4

7790 2016-02   2  2016     2    6

...
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7790 2018-11  35  2018    11    3

7790 2018-12  36  2018    12    5

7790 2019-01  37  2019     1

7790 2019-02  38  2019     2

...

7790 2019-11  47  2019    11

7790 2019-12  48  2019    12

96 rows selected.

For each product, the first 36 rows contain actual sales data in column qty and then 

12 rows (ts = 37–48) with null in qty – these 12 rows are to be filled with the forecast 

sales as I continue developing the query.

In the preceding output, I only showed parts of the rows; since it is easier for us 

humans to grasp such data if presented visually, the complete result set I show in 

Figure 15-2.

Figure 15-2.  The monthly sales 2016–2018 plus rows in the time series for 2019 
forecast
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The two lines are the sales for the two beers, and then at the end, there is the 12 

months I’m going to forecast. So let me start by generating the values I need for the linear 

regression.

�Calculating the basis for regression
In principle I could just do a linear regression on the sales data just as they are, but that 

would just give me a straight line in 2019, not a forecast that takes into account that the 

beers sell well in specific seasons of the year. With the forecasting model I’ve chosen, I 

will get a forecast that takes into account the seasons and the trend over the years and 

smooths out irregular outliers.

The first value I need to calculate is the centered moving average, so I take my time 

series code from Listing 15-2 and place it in a with clause named s1. That enables me to 

select from s1 in Listing 15-3.

Listing 15-3.  Calculating centered moving average

SQL> with s1 as (

...      /* Listing 15-2 minus order by */

 23  )

 24  select

 25     product_id, mth, ts, yr, mthno, qty

 26   , case

 27        when ts between 7 and 30 then

 28           (nvl(avg(qty) over (

 29              partition by product_id

 30              order by ts

 31              rows between 5 preceding and 6 following

 32           ), 0) + nvl(avg(qty) over (

 33              partition by product_id

 34              order by ts

 35              rows between 6 preceding and 5 following

 36           ), 0)) / 2

 37        else

 38           null
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 39     end as cma -- centered moving average

 40  from s1

 41  order by product_id, mth;

What happens here is the following:

•	 In lines 28–31, I calculate the average quantity sold in a moving 

window of 12 months between 5 preceding and 6 following. 

That’s the monthly average sales measured over a year, but slightly 

“off center,” since I have 5 months before, then the current month, 

and then 6 months after.

•	 So in lines 32–26, I calculate another monthly average sales measured 

over a year, but this time between 6 preceding and 5 following, so 

I’m slightly off center in the other direction.

•	 Adding these two together and dividing by two (lines 28, 32, and 36) 

gives me the average of these two “off center” averages, and that is 

what is called centered moving average.

•	 If I calculated this for all 36 months of my sales data, I would get 

wrong values at both ends, because they would not be calculated for 

the entire 12-month periods. Therefore, I use a case structure in lines 

26–27 and 37–38 to skip the first 6 months and the last 6 months of 

the 36 and only calculate cma for month numbers 7–30 (that’s the ts–

time series–column).

So when I plot in cma on the graph in Figure 15-3, you can see it’s a slowly rising 

line covering the “middle” two years of the sales period. (To keep the graphs clearly 

separable, from now I’m only showing one of the beers – Reindeer Fuel. At the end of the 

chapter, I’ll show the final graphs for both beers.)
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Having calculated cma, I put that calculation into a new with clause named s2 and 

proceed to calculate seasonality factor in Listing 15-4.

Listing 15-4.  Calculating seasonality factor

SQL> with s1 as (

...     /* Listing 15-2 minus order by */

 23  ), s2 as (

...     /* Listing 15-3 final query minus order by */

 41  )

 42  select

 43     product_id, mth, ts, yr, mthno, qty, cma

 44   , nvl(avg(

 45        case qty

 46           when 0 then 0.0001

 47           else qty

 48        end / nullif(cma, 0)

Figure 15-3.  Centered moving average for Reindeer Fuel
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 49     ) over (

 50        partition by product_id, mthno

 51     ),0) as s -- seasonality

 52  from s2

 53  order by product_id, mth;

Basically the seasonality factor is how much the monthly sales is higher or lower 

than the average month. But there’s a little more to it than just taking qty/cma:

•	 The model does not like months with zero sales – they will skew 

the data in later steps and make the forecast wrong, so my little 

workaround for this in lines 45–48 is to make any zeroes become a 

very small value instead. In my final result, I’ll be rounding to integers 

anyway, so I will end up forecasting zeroes; I just need to use small 

values instead of zeroes in the intermediate calculations.

•	 To avoid potential division by zero errors, in line 48, I use nullif to 

turn any zeroes into null. There will also be rows where cma itself is 

null, so with this I make sure that the result of the division becomes 

null both where cma is null and where cma is zero.

•	 The seasonal variations might vary a bit from year to year (different 

weather, which month contains Easter, and so on), so I want a 

seasonality factor that is an average over the years, but by month. In 

other words, for January, I want the average seasonality of January 

2016, January 2017, and January 2018; for February, the average of 

all Februaries; and so on. This is accomplished in lines 44 and 49–51 

with an analytic avg call that partitions by product and mthno – which 

was calculated as extract(month from mths.mth), so it contains 1, 

2,…12.

That calculation produces this output (partially reproduced), where you can see that 

the values of column s (seasonality factor) repeat, so all Januaries have the same value 

and so on. Note in particular that due to the avg being partitioned on mthno, s has values 

also in those months where cma is null (or zero). This is crucial both for the next step 

(deseasonalizing) and the final step (reseasonalizing):
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PROD MTH      TS    YR MTHNO  QTY   CMA      S

---- ------- --- ----- ----- ---- ----- ------

4160 2016-01   1  2016     1   79       3.3824

4160 2016-02   2  2016     2  133       4.8771

...

4160 2017-01  13  2017     1  148  40.3 3.3824

4160 2017-02  14  2017     2  209  40.3 4.8771

...

4160 2018-01  25  2018     1  167  54.1 3.3824

4160 2018-02  26  2018     2  247  54.1 4.8771

...

4160 2019-01  37  2019     1            3.3824

4160 2019-02  38  2019     2            4.8771

...

Armed with a seasonality factor in every month of the time series, once again I put 

the code in with clause s3 and calculate deseasonalizing in Listing 15-5.

Listing 15-5.  Deseasonalizing sales data

SQL> with s1 as (

...     /* Listing 15-2 minus order by */

 23  ), s2 as (

...     /* Listing 15-3 final query minus order by */

 41  ), s3 as (

...     /* Listing 15-4 final query minus order by */

 53  )

 54  select

 55     product_id, mth, ts, yr, mthno, qty, cma, s

 56   , case when ts <= 36 then

 57        nvl(

 58           case qty

 59              when 0 then 0.0001

 60              else qty

 61           end / nullif(s, 0)

 62         , 0)
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 63     end as des -- deseasonalized

 64  from s3

 65  order by product_id, mth;

Deseasonalizing (“taking the season out of the data”) basically just is dividing the 

quantity with the seasonality factor. Once again I avoid problems with zeroes by turning 

them into a small value (lines 58–61) and avoid potential division by zero errors with a 

nullif call in line 61.

In Figure 15-4 you can see that I have values in column des for all 36 months and the 

line follows more or less the cma line (centered moving average). The more identical the 

seasonal variations was in each year, the closer the des line will match the cma line.

Mostly the variations here are due to the zero sales that were turned into small 

values, where you’ll see a sharp spike followed by a sharp dip (or vice versa). But since 

the average of the spike and the dip hits the cma fairly well, it will even out in the next 

step (as I’ll show you). If I had left the zeroes (perhaps turning into null to avoid division 

by zero), I would have skewed the data and messed up the model.

Figure 15-4.  Deseasonalized sales for Reindeer Fuel

Chapter 15  Forecasting with Linear Regression 



298

This deseasonalized line on the graph is now representing a somewhat smoothed out 

version of monthly average sales over a year taking into account seasonal variations averaged 

over the years. Next step is creating a straight line as closely as possible matching the des line.

�Linear regression
As you may have guessed by now, in Listing 15-6, I put the previous calculations into 

with clause s4 and proceed to perform linear regression.

Listing 15-6.  Calculating trend line

SQL> with s1 as (

...     /* Listing 15-2 minus order by */

 23  ), s2 as (

...     /* Listing 15-3 final query minus order by */

 41  ), s3 as (

...     /* Listing 15-4 final query minus order by */

 53  ), s4 as (

...     /* Listing 15-5 final query minus order by */

 65  )

 66  select

 67     product_id, mth, ts, yr, mthno, qty, cma, s, des

 68   , regr_intercept(des, ts) over (

 69        partition by product_id

 70     ) + ts * regr_slope(des, ts) over (

 71                 partition by product_id

 72              ) as t -- trend

 73  from s4

 74  order by product_id, mth;

I am using two of the analytic linear regression functions here, each partitioned by 

product:

•	 Both functions accept two parameters, first the y coordinate 

of the graph and second the x coordinate. In my case the des 

(deseasonalized) value is the y coordinate, while ts (time series) is 

the x coordinate. I cannot use month directly; it must be a numeric 

datatype, so ts with a unit of 1 month is perfect.
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•	 Lines 68–70 use regr_intercept, which gives me the interception 

point between the y axis and the interpolated straight line. In other 

words, the y value where x = 0.

•	 Lines 70–72 use regr_slope, which gives me the slope of the 

interpolated straight line. The slope is how much the y value 

increases (or decreases if negative) when the x value increases by 

1. Since my x axis has a unit of 1 month, the slope therefore is how 

much the graph goes up (or down) per month.

•	 So in total lines 68–72 calculate the y value where x = 0 (regr_

intercept) and for each month add the number of months (ts) 

times how much it goes up (or down) per month (regr_slope).

Plotted on the graph in Figure 15-5, I have now a straight trend line t that has a value 

in all 48 months.

Figure 15-5.  Trend line for Reindeer Fuel by linear regression
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I shove the calculation so far into with clause s5 in Listing 15-7, and I can now do the 

final step in the forecast.

Listing 15-7.  Reseasonalizing trend ➤ forecast

SQL> with s1 as (

...     /* Listing 15-2 minus order by */

 23  ), s2 as (

...     /* Listing 15-3 final query minus order by */

 41  ), s3 as (

...     /* Listing 15-4 final query minus order by */

 53  ), s4 as (

...     /* Listing 15-5 final query minus order by */

 65  ), s5 as (

...     /* Listing 15-6 final query minus order by */

 74  )

 75  select

 76     product_id, mth, ts, yr, mthno, qty, cma, s, des

 77   , t * s as forecast --reseasonalized

 78  from s5

 79  order by product_id, mth;

It is very simple – in line 77, I reseasonalize the trend line t by multiplying it with the 

seasonality factor s.

Remember that the seasonality factor values were available in all rows in all years, 

including 2019 for which we have no sales data but wish a forecast. And as the trend line 

also exists in rows for 2019, I can plot the forecast values into Figure 15-6.
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Having both qty and forecast values plotted in the same graph enables me visually 

to check if the model fits my data reasonably well. The closer the two lines match in 

2016–2018, the more I can trust the forecast in 2019. In this case, it looks like it fits fairly 

well.

�Final forecast
Having satisfied myself that the model looks like it fits my data, I’m going to clean up 

a little and not retrieve the columns with all the intermediate calculations, but instead 

in Listing 15-8, I just get the relevant information for showing my users the actual and 

forecast sales quantity.

Figure 15-6.  Reseasonalized forecast for Reindeer Fuel

Chapter 15  Forecasting with Linear Regression 



302

Listing 15-8.  Selecting actual and forecast

SQL> with s1 as (

...     /* Listing 15-2 minus order by */

 23  ), s2 as (

...     /* Listing 15-3 final query minus order by */

 41  ), s3 as (

...     /* Listing 15-4 final query minus order by */

 53  ), s4 as (

...     /* Listing 15-5 final query minus order by */

 65  ), s5 as (

...     /* Listing 15-6 final query minus order by */

 74  )

 75  select

 76     product_id

 77   , mth

 78   , case

 79        when ts <= 36 then qty

 80        else round(t * s)

 81     end as qty

 82   , case

 83        when ts <= 36 then 'Actual'

 84        else 'Forecast'

 85     end as type

 86  from s5

 87  order by product_id, mth;

I simply select the product and month, and then I use a case structure twice to give 

me a qty column and a type column:

•	 Lines 78–81 give me actual sold quantity for the first 36 months and 

the forecast (reseasonalized trend) for the last 12 months. As I cannot 

sell fractional beers, I’m rounding the forecast to integers.

•	 Lines 82–85 populate the type column with Actual for the first 

36 months and Forecast for the last 12 months to allow me to 

distinguish what the contents of qty represent.
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That way I produce a simpler output:

PROD MTH      QTY TYPE

---- ------- ---- --------

4160 2016-01   79 Actual

4160 2016-02  133 Actual

...

4160 2018-11   73 Actual

4160 2018-12  160 Actual

4160 2019-01  222 Forecast

4160 2019-02  325 Forecast

...

4160 2019-11   26 Forecast

4160 2019-12  191 Forecast

7790 2016-01    4 Actual

7790 2016-02    6 Actual

...

7790 2018-11    3 Actual

7790 2018-12    5 Actual

7790 2019-01    1 Forecast

7790 2019-02    7 Forecast

...

7790 2019-11    3 Forecast

7790 2019-12    3 Forecast

96 rows selected.

In Figure 15-7 I plot these into a graph, where I show the results for both beers (same 

as I showed in Figure 15-2, just now with the forecast added in).
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For Reindeer Fuel I’ve shown all the details in the previous pages, and here I only 

show the actual sales and the 2019 forecast. But even without the details in this graph, 

you can still visually see that it is a beer selling well in the winter time, it sells a little more 

each year, and the 2019 forecast graph matches the shape of the other years, just a little 

higher.

The other beer, Summer in India, sells well in the summertime and sells a little less 

each year, and the 2019 forecast is shaped like the other years, just a little lower.

All in all, for these two beers, this forecasting model looks quite good; and being 

entirely developed in SQL with analytic functions, it performs quite well indeed. At the 

job I mentioned at the start of the chapter, I forecasted 100,000 products by inserting 1.2 

million rows to a forecast table using insert into…select…in 1½ minute.

Other products with a less nice seasonal variation profile might not fit as well into 

this forecasting model. This is where you probably need statistical tools instead of 

plain SQL in order to discover which forecasting models fit best to which products (or 

whatever you are forecasting).

Figure 15-7.  The monthly sales 2016–2018 plus the forecasts for 2019
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However, it can still be a nice option to use the tools in a discovery phase, and once 

you have categorized your products into a handful of different models, maybe it can still 

make sense then to implement this handful of models using the power of SQL to be able 

to efficiently process lots of data without needing to pull them out of the database.

�Lessons learned
Forecasting is a science, and one small chapter in a book on SQL will not make you a 

forecasting expert, but even with such a small appetizer on the forecasting topic, I’ve 

shown you some things about

•	 Chaining calculations in multiple with clauses as an alternative to 

nested inline views

•	 Building time series data with consecutive rows one time unit apart

•	 Averaging with moving windows and averaging the same period 

across different years

•	 Calculating linear regression with regr_intercept and regr_slope

•	 Combining these techniques to implement a forecasting model in 

SQL

Though this chapter has shown just a single forecasting model, this should help you 

implement other similar time series–based regressions in SQL, if you have the formulas 

and you have the need for speed and efficiency higher than many external forecasting 

tools can offer.
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CHAPTER 16

Rolling Sums to Forecast 
Reaching Minimums
If you have a steady consumption rate, it is easy to forecast how far you can go with that 

rate – for example, if you know your car on average drives 20 kilometers per liter fuel and 

it has 30 liters left in the tank, you can simply multiply to know that you can drive 600 

kilometers before you run out of fuel.

But if the consumption is not steady, you need something else. If the Good Beer 

Trading Co sells a particular seasonal Christmas beer, it is not simply a steady 100 beers 

sold per month – June will sell very few of those beers, while December sells hundreds. 

For such a case, you estimate (perhaps using the techniques of the previous chapter) 

what you think you are going to sell and store it as a forecast or sales budget.

Once you have forecast you are going to sell 150 in January, 100 in February, 250 in 

March, and so on, you need to figure out that the 400 you have in stock in your inventory 

will dwindle to 250 by the end of January and to 150 by the end of February and be sold 

out a little later than the middle of March. Figuring this out is the topic of this chapter.

�Inventory, budget, and order
In the Good Beer Trading Co example, I’m going to demonstrate the case of forecasting 

when the inventory reaches zero (or a minimum) given that I know how many beers are 

in order (waiting to be picked from the inventory) and how many beers are budgeted to 

be sold (assumed to be picked at some point).

I’ll use month as the time granularity, budgeting sales quantities per month. For this 

demonstration purpose, I don’t need to go to weekly or daily data, but you can easily 

adapt the methods to finer time granularity if you need it. I will use the data in the tables 

shown in Figure 16-1.
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From table inventory, I know what quantity of each beer is in stock, table monthly_

budget shows me the quantity each beer is expected to sell per month, and how much 

has been ordered (but not yet picked and therefore not yet taken from the stock) is in 

table orderlines. Table product_minimums I’ll get back to later in the chapter.

You’ll notice the inventory table contains quantities per location (I used the table 

in the FIFO picking in Chapter 13), but for this purpose, I just need the total quantity in 

stock per beer. To make that easier, I create the view inventory_totals in Listing 16-1 

aggregating the inventory per beer.

Figure 16-1.  The tables used in the examples of this chapter
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Listing 16-1.  View of total inventory per product

SQL> create or replace view inventory_totals

  2  as

  3  select

  4     i.product_id

  5   , sum(i.qty) as qty

  6  from inventory i

  7  group by i.product_id;

View INVENTORY_TOTALS created.

Similarly for the quantities in order, I do not need specific orderlines. I just need how 

many of each beer each month, so I aggregate those figures in view monthly_orders in 

Listing 16-2.

Listing 16-2.  View of monthly order totals per product

SQL> create or replace view monthly_orders

  2  as

  3  select

  4     ol.product_id

  5   , trunc(o.ordered, 'MM') as mth

  6   , sum(ol.qty) as qty

  7  from orders o

  8  join orderlines ol

  9     on ol.order_id = o.id

 10  group by ol.product_id, trunc(o.ordered, 'MM');

View MONTHLY_ORDERS created.

Those are the tables and views I’m going to be using; now I’ll show the data in 

them.
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�The data
I’ll use two beers for the examples of this chapter: Der Helle Kumpel and Hazy Pink 

Cloud. They have the total inventory shown in Listing 16-3.

Listing 16-3.  The inventory totals for two products

SQL> select it.product_id, p.name, it.qty

  2  from inventory_totals it

  3  join products p

  4     on p.id = it.product_id

  5  where product_id in (6520, 6600)

  6  order by product_id;

PRODUCT_ID  NAME              QTY

6520        Der Helle Kumpel  400

6600        Hazy Pink Cloud   100

This is totals in stock as of January 1, 2019. Then I have a monthly sales budget for 

the year 2019 (Listing 16-4).

Listing 16-4.  The 2019 monthly budget for the two beers

SQL> select mb.product_id, mb.mth, mb.qty

  2  from monthly_budget mb

  3  where mb.product_id in (6520, 6600)

  4  and mb.mth >= date '2019-01-01'

  5  order by mb.product_id, mb.mth;

PRODUCT_ID  MTH         QTY

6520        2019-01-01  45

6520        2019-02-01  45

6520        2019-03-01  50

...

6520        2019-10-01  50

6520        2019-11-01  40

6520        2019-12-01  40

6600        2019-01-01  20

Chapter 16  Rolling Sums to Forecast Reaching Minimums



311

6600        2019-02-01  20

6600        2019-03-01  20

...

6600        2019-10-01  20

6600        2019-11-01  20

6600        2019-12-01  20

24 rows selected.

Product 6520 is expected to sell a bit more in the summer months, while product 

6600 is expected to sell a steady 20 per month.

But I don’t just have the expected quantities; I also have in Listing 16-5 the quantities 

that have already been ordered in the first months of 2019.

Listing 16-5.  The current monthly order quantities

SQL> select mo.product_id, mo.mth, mo.qty

  2  from monthly_orders mo

  3  where mo.product_id in (6520, 6600)

  4  order by mo.product_id, mo.mth;

PRODUCT_ID  MTH         QTY

6520        2019-01-01  260

6520        2019-02-01  40

6600        2019-01-01  16

6600        2019-02-01  40

The thing to note here is that in January, product 6520 has been ordered much more 

than what was expected.

Given these data, I’ll now make some SQL to find out when we run out of beers for 

those two products.

�Accumulating until zero
One of the really useful things you can do with analytic functions is the rolling 

(accumulated) sum that I’ve shown before. In Listing 16-6, I use it again.
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Listing 16-6.  Accumulating quantities

SQL> select

  2     mb.product_id as p_id, mb.mth

  3   , mb.qty b_qty, mo.qty o_qty

  4   , greatest(mb.qty, nvl(mo.qty, 0)) as qty

  5   , sum(greatest(mb.qty, nvl(mo.qty, 0))) over (

  6        partition by mb.product_id

  7        order by mb.mth

  8        rows between unbounded preceding and current row

  9     ) as acc_qty

 10  from monthly_budget mb

 11  left outer join monthly_orders mo

 12     on mo.product_id = mb.product_id

 13     and mo.mth = mb.mth

 14  where mb.product_id in (6520, 6600)

 15  and mb.mth >= date '2019-01-01'

 16  order by mb.product_id, mb.mth;

In line 4, I calculate the monthly quantity as whichever is the greatest of either the 

budgeted quantity or the ordered quantity. In the following output, you see January for 

product 6520 has o_qty as the greatest (making qty = 260), while January for product 

6600 has b_qty as the greatest (making qty = 20.)

The idea is that if the ordered quantity is the smallest, there hasn’t yet been orders 

to match the budget, but it’s still expected to rise until budget is reached. But when the 

ordered quantity is the greatest, I know the budget has been surpassed, so I don’t expect 

it to become greater yet.

So this quantity is then what I accumulate with the analytic sum in lines 5–9, so I end 

up with column acc_qty that shows me accumulated how much I expect to pick from 

the inventory:

P_ID  MTH         B_QTY  O_QTY  QTY  ACC_QTY

6520  2019-01-01  45     260    260  260

6520  2019-02-01  45     40     45   305

6520  2019-03-01  50            50   355

...
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6520  2019-11-01  40            40   775

6520  2019-12-01  40            40   815

6600  2019-01-01  20     16     20   20

6600  2019-02-01  20     40     40   60

6600  2019-03-01  20            20   80

...

6600  2019-11-01  20            20   240

6600  2019-12-01  20            20   260

In Listing 16-7, I use this accumulated quantity to calculate what’s the expected 

inventory for each month (if I don’t restock along the way).

Listing 16-7.  Dwindling inventory

SQL> select

  2     mb.product_id as p_id, mb.mth

  3   , greatest(mb.qty, nvl(mo.qty, 0)) as qty

  4   , greatest(

  5        it.qty - nvl(sum(

  6            greatest(mb.qty, nvl(mo.qty, 0))

  7        ) over (

  8           partition by mb.product_id

  9           order by mb.mth

 10           rows between unbounded preceding and 1 preceding

 11        ), 0)

 12      , 0

 13     ) as inv_begin

 14   , greatest(

 15        it.qty - sum(

 16            greatest(mb.qty, nvl(mo.qty, 0))

 17        ) over (

 18           partition by mb.product_id

 19           order by mb.mth

 20           rows between unbounded preceding and current row

 21        )

 22      , 0

 23     ) as inv_end
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 24  from monthly_budget mb

 25  left outer join monthly_orders mo

 26     on mo.product_id = mb.product_id

 27     and mo.mth = mb.mth

 28  join inventory_totals it

 29     on it.product_id = mb.product_id

 30  where mb.product_id in (6520, 6600)

 31  and mb.mth >= date '2019-01-01'

 32  order by mb.product_id, mb.mth;

Lines 4–13 calculate how much quantity was in stock at the beginning of the month, 

while lines 14–23 calculate how much at the end of the month:

P_ID  MTH         QTY  INV_BEGIN  INV_END

6520  2019-01-01  260  400        140

6520  2019-02-01  45   140        95

6520  2019-03-01  50   95         45

6520  2019-04-01  50   45         0

6520  2019-05-01  55   0          0

...

6600  2019-01-01  20   100        80

6600  2019-02-01  40   80         40

6600  2019-03-01  20   40         20

6600  2019-04-01  20   20         0

6600  2019-05-01  20   0          0

...

You see how the inventory dwindles until it reaches zero. As I use month for time 

granularity, in principle I can only state that the inventory will reach zero at some point 

during that month. But if I assume that the budgeted sales will be evenly distributed 

throughout the month, I can also in Listing 16-8 make a guesstimation of which day that 

zero will be reached.

Listing 16-8.  Estimating when zero is reached

SQL> select

  2     product_id as p_id, mth, inv_begin, inv_end

  3   , trunc(
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  4        mth + numtodsinterval(

  5                 (add_months(mth, 1) - 1 - mth) * inv_begin / qty

  6               , 'day'

  7              )

  8     ) as zero_day

  9  from (

...

 41  )

 42  where inv_begin > 0 and inv_end = 0

 43  order by product_id;

I wrap Listing 16-7 in an inline view and use inv_begin / qty in line 5 to figure out 

how large a fraction of the estimated monthly sales can be fulfilled by the inventory at 

hand at the beginning of the month. When I assume evenly distributed sales, this is then 

the fraction of the number of days in the month that I have sufficient stock for.

Filtering in line 42 gives me as output just the rows where the inventory becomes 

zero:

P_ID  MTH         INV_BEGIN  INV_END  ZERO_DAY

6520  2019-04-01  45         0        2019-04-27

6600  2019-04-01  20         0        2019-04-30

In reality, however, I wouldn’t let the inventory reach zero. I’d set up a minimum 

quantity that I mustn’t get below of (as a buffer in case I underestimated sales), and every 

time I get to the minimum quantity, I must buy more beer and restock the inventory.

�Restocking when minimum reached
In table product_minimums, I have parameters for the inventory handling of each 

product. Listing 16-9 shows the table content for the two beers I use for demonstration.

Listing 16-9.  Product minimum restocking parameters

SQL> select product_id, qty_minimum, qty_purchase

  2  from product_minimums pm

  3  where pm.product_id in (6520, 6600)

  4  order by pm.product_id;
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Column qty_minimum is my inventory buffer – I plan that the inventory should never 

get below this. Column qty_purchase is the number of beers I buy every time I restock 

the inventory:

PRODUCT_ID  QTY_MINIMUM  QTY_PURCHASE

6520        100          400

6600        30           100

With this I am ready to write SQL that can show me when I need to purchase more 

beer and restock throughout 2019.

This is not simply done with analytic functions, since I cannot use the result of an 

analytic function inside the analytic function itself to add more quantity. This would mean 

an unsupported type of recursive function call; it cannot be done. But I can do it with 

recursive subquery factoring instead of analytic functions as shown in Listing 16-10.

Listing 16-10.  Restocking when a minimum is reached

SQL> with mb_recur(

  2     product_id, mth, qty, inv_begin, date_purch

  3   , p_qty, inv_end, qty_minimum, qty_purchase

  4  ) as (

  5     select

  6        it.product_id

  7      , date '2018-12-01' as mth

  8      , 0 as qty

  9      , 0 as inv_begin

 10      , cast(null as date) as date_purch

 11      , 0 as p_qty

 12      , it.qty as inv_end

 13      , pm.qty_minimum

 14      , pm.qty_purchase

 15     from inventory_totals it

 16     join product_minimums pm

 17        on pm.product_id = it.product_id

 18     where it.product_id in (6520, 6600)

 19  union all

 20     select
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 21        mb.product_id

 22      , mb.mth

 23      , greatest(mb.qty, nvl(mo.qty, 0)) as qty

 24      , mbr.inv_end as inv_begin

 25      , case

 26           when mbr.inv_end - greatest(mb.qty, nvl(mo.qty, 0))

 27                 < mbr.qty_minimum

 28           then

 29              trunc(

 30                 mb.mth

 31               + numtodsinterval(

 32                    (add_months(mb.mth, 1) - 1 - mb.mth)

 33                     * (mbr.inv_end - mbr.qty_minimum)

 34                     / mb.qty

 35                  , 'day'

 36                 )

 37              )

 38        end as date_purch

 39      , case

 40           when mbr.inv_end - greatest(mb.qty, nvl(mo.qty, 0))

 41                 < mbr.qty_minimum

 42           then mbr.qty_purchase

 43        end as p_qty

 44      , mbr.inv_end - greatest(mb.qty, nvl(mo.qty, 0))

 45         + case

 46              when mbr.inv_end - greatest(mb.qty, nvl(mo.qty, 0))

 47                    < mbr.qty_minimum

 48              then mbr.qty_purchase

 49              else 0

 50           end as inv_end

 51      , mbr.qty_minimum

 52      , mbr.qty_purchase

 53     from mb_recur mbr

 54     join monthly_budget mb

 55        on mb.product_id = mbr.product_id

 56        and mb.mth = add_months(mbr.mth, 1)
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 57     left outer join monthly_orders mo

 58        on mo.product_id = mb.product_id

 59        and mo.mth = mb.mth

 60  )

 61  select

 62     product_id as p_id, mth, qty, inv_begin

 63   , date_purch, p_qty, inv_end

 64  from mb_recur

 65  where mth >= date '2019-01-01'

 66  and p_qty is not null

 67  order by product_id, mth;

I start in lines 5–18 by setting up one row per product containing what is the 

inventory when I start, along with the parameters for minimum quantity and how much 

to purchase. I set this row as being in December 2018 with the inventory in the inv_end 

column – that way it will function as a “primer” row for the recursive part of the query in 

lines 20–59.

In the recursive part I do:

•	 Join to the monthly budget for the next month in line 56. The first 

iteration here will find January 2019 (since my “primer” row was 

December 2018), and then each iteration will find the next month 

until there are no more budget rows.

•	 The inv_begin of this next month in the iteration is then equal to the 

inv_end of the previous month, so that’s a simple assignment in line 24.

•	 Lines 44–50 calculate the inv_end, which is the beginning inventory 

(previous inv_end) minus the quantity picked that month plus a 

possible restocking. If the beginning inventory minus the quantity 

would become less than the minimum, I add the quantity I will be 

purchasing for restocking.

•	 To show on the output how much I need to purchase for restocking, I 

separate this case structure out in lines 39–43.

•	 And in lines 25–28, I use the same case condition to calculate an 

estimated date of the month where the restocking by purchasing 

more beer should take place.
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Line 65 removes the “primer” rows from the output (they are not interesting), and 

line 66 gives me just those months where I need to restock:

P_ID  MTH         QTY  INV_BEGIN  DATE_PURCH  P_QTY  INV_END

6520  2019-02-01  45   140        2019-02-25  400    495

6520  2019-10-01  50   115        2019-10-10  400    465

6600  2019-03-01  20   40         2019-03-16  100    120

6600  2019-08-01  20   40         2019-08-16  100    120

I am now able to plan when I need to purchase more beers to restock the inventory.

In Listing 16-10, I used recursive subquery factoring. The way I did it means that 

for the budget and orders, there will be a series of repeated small lookups to the tables 

for each month. Depending on circumstances, this might be perfectly fine, but in other 

cases, it could be bad for performance.

Listing 16-11 shows an alternative method of recursion (or rather, iteration) with the 

model clause instead, where a different access plan can be used by the optimizer.

Listing 16-11.  Restocking with model clause

SQL> select

  2     product_id as p_id, mth, qty, inv_begin

  3   , date_purch, p_qty, inv_end

  4  from (

  5     select *

  6     from monthly_budget mb

  7     left outer join monthly_orders mo

  8        on mo.product_id = mb.product_id

  9        and mo.mth = mb.mth

 10     join inventory_totals it

 11        on it.product_id = mb.product_id

 12     join product_minimums pm

 13        on pm.product_id = mb.product_id

 14     where mb.product_id in (6520, 6600)

 15     and mb.mth >= date '2019-01-01'

 16     model

 17     partition by (mb.product_id)
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 18     dimension by (

 19        row_number() over (

 20           partition by mb.product_id order by mb.mth

 21        ) - 1 as rn

 22     )

 23     measures (

 24        mb.mth

 25      , greatest(mb.qty, nvl(mo.qty, 0)) as qty

 26      , 0 as inv_begin

 27      , cast(null as date) as date_purch

 28      , 0 as p_qty

 29      , 0 as inv_end

 30      , it.qty as inv_orig

 31      , pm.qty_minimum

 32      , pm.qty_purchase

 33     )

 34     rules sequential order iterate (12) (

 35        inv_begin[iteration_number]

 36         = nvl(inv_end[iteration_number-1], inv_orig[cv()])

 37      , p_qty[iteration_number]

 38         = case

 39              when inv_begin[cv()] - qty[cv()]

 40                    < qty_minimum[cv()]

 41              then qty_purchase[cv()]

 42           end

 43      , date_purch[iteration_number]

 44         = case

 45              when p_qty[cv()] is not null

 46              then

 47                 trunc(

 48                    mth[cv()]

 49                  + numtodsinterval(

 50                       (add_months(mth[cv()], 1) - 1 - mth[cv()])

 51                        * (inv_begin[cv()] - qty_minimum[cv()])

 52                        / qty[cv()]
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 53                     , 'day'

 54                    )

 55                 )

 56           end

 57      , inv_end[iteration_number]

 58         = inv_begin[cv()] + nvl(p_qty[cv()], 0) - qty[cv()]

 59     )

 60  )

 61  where p_qty is not null

 62  order by product_id, mth;

With this method I do not need “primer” rows and repeated monthly lookups. 

Instead I grab all the data I need in one go in lines 5–15, rather like if I was using analytic 

functions. And then I can use model:

•	 Lines 19–21 create a consecutive numbering that I can use as 

dimension (“index”) in my measures. I deliberately make it have the 

values 0–11 instead of 1–12, because that fits how iteration_number 

is filled when using iteration.

•	 In the measures in lines 24–32, I set up the “variables” I need to work 

with.

•	 In the rules clause, I can then perform all my calculations. In line 

34, I specify that I want my calculations to be performed in the 

order I have typed them, and they should be performed 12 times. 

That means that within each of the 12 iterations, I can use the 

pseudocolumn iteration_number, and it will increase from 0 to 11.

•	 The first rule to be executed is lines 35–36, where I set inv_begin to 

the inv_end of the previous month (in the first iteration, this will be 

null, so with nvl I set it to the original inventory in the first month).

•	 If the inventory minus the quantity is less than the minimum, then in 

lines 37–42, I set p_qty to the quantity I need to purchase.

•	 If I did find a p_qty (line 45), the rule in lines 43–56 calculates the day 

I need to purchase and restock.

•	 And lines 57–68 calculate the inv_end by using the other measures.
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The 12 iterations and calculations are quite similar to what I did in the recursive 

subquery factoring, except that I use measures indexed by a dimension where the data in 

those measures have all been filled initially before I start iterating and calculating.

This method will for some cases enable more efficient access of the tables – but at 

the cost of using more memory to keep all the data and work with them in the model 

clause (potentially needing to spill some to disk if you have huge amounts of data here.) 

Whether Listing 16-10 or 16-11 is the best will depend on the case – you’ll need to test 

the methods yourself.

�Lessons learned
Analytic functions are extremely useful and can solve a lot of things, including rolling 

sums to find when you reach some minimum. But it cannot do all, so in this chapter, I 

showed you a mix of

•	 Subtracting a rolling sum from a starting figure to discover when a 

minimum (or zero) has been reached

•	 Using recursive subquery to repeatedly replenish the dwindling 

figure whenever minimum has been reached

•	 Using the model clause to accomplish the same with an alternative 

data access plan

Though it’s a mix of techniques, all in all they should help you solve similar cases in 

the future.
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CHAPTER 17

Up-and-Down Patterns
Using match_recognize is also known as row pattern matching for a reason – it is very 

applicable for situations where you have data nicely ordered in, for example, a time 

series that can be depicted with a value on the y axis and the time on the x axis of a 

graph. Visually on a graph is an easy way for us humans to look for patterns – match_

recognize can do the same with SQL.

It doesn’t necessarily have to be time on the x axis, and there could be multiple 

values on the y axis – the thing to remember is that if you as human would visualize 

something on line graphs and look for patterns on the graphs, you can code SQL to go 

through the data a lot faster than your eyes can spot patterns visually.

This chapter exemplifies this approach step by step, so that at the end you can apply 

the technique for similar pattern searching on other types of data.

�The stock ticker example
In the Oracle Data Warehousing Guide, pattern matching examples are given using stock 

ticker data, because they are a nice example of data with a value that changes over time, 

where analysts look for specific patterns like V and W shapes that can indicate if it’s time 

to buy or sell shares. I’ll do the same.

In the practical schema, I have created the tables shown in Figure 17-1 for storing 

information on stock and their prices. The examples in the chapter only concern 

themselves with the ticker table, but for completeness, the stock table is created too.
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I have created a fictional stock symbol BEER for my Good Beer Trading Co. In the 

ticker table, I’ve inserted the end-of-day stock prices for three weeks of stock trading in 

April 2019, depicted on the graph in Figure 17-2.

Figure 17-1.  The ticker table used in this chapter

Figure 17-2.  Graphical depiction of the data in the TICKER table

Chapter 17  Up-and-Down Patterns



327

Those 15 days of stock prices will be the basis for my walk-through of pattern 

matching for up-and-down patterns.

�Classifying downs and ups
When developing a pattern matching query, I typically start simple.

Almost always I’ll know beforehand what I want to partition by, as well as the 

ordering the data needs to be in for the pattern matching to make sense. For example, 

for the stock ticker data, I want to look for patterns within each symbol value separately, 

so I will use partition by for that purpose (this data only contains a single symbol, but 

there might have been more). And the patterns I’m looking for deal with how the data 

changes over time, so I do order by the day column (within each symbol).

Then I build my first skeleton query (shown in Listing 17-1), where I define how I 

want my rows to be classified and have the simplest possible pattern enabling me to test 

if my definitions are as I want them.

Listing 17-1.  Classifying the rows

SQL> select *

  2  from ticker

  3  match_recognize (

  4     partition by symbol

  5     order by day

  6     measures

  7        match_number() as match

  8      , classifier()   as class

  9      , prev(price)    as prev

 10     all rows per match

 11     pattern (

 12        down | up

 13     )

 14     define

 15        down as price < prev(price)

 16      , up   as price > prev(price)

 17  )

 18  order by symbol, day;
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Apart from the partition by and order by, I like to go over the clauses from the 

bottom going up – that makes more sense to me.

So in lines 15 and 16, I am defining that if the price in a row is less than the price in 

the previous row, the row is to be classified as a down row, but if the price is greater than 

the previous, the row is to be classified as an up row.

The pattern in row 12 is as simple as possible – a match consists of a single row that 

is either a down row or an up row (the | sign is used for logical or in the pattern.) This is 

of course not the pattern I will end up with; it is merely a convenient pattern to test if my 

classification definitions give me what I want.

Since my pattern in this case only gives a single row for each match, I’d get the 

same number of rows in my output if I chose one row per match in line 10 instead of 

the all rows per match I use here. But a difference is that one row would only output 

the columns used in partition and order by as well as the measures, while all rows 

output all columns of the table. That helps for debugging while developing, even if I 

know that my final desired result will use one row per match.

Lines 7–9 define what measures I want in the output (besides the table columns). 

Function match_number() shows me which rows belong together in a match (in this case 

always single rows in a match, but later that will change). Function classifier() shows 

me which classification definition the row got, which is what I want to see if I got right. 

And lastly in line 9, I output the previous price, so I can double-check that the correlation 

between price and previous price matches the classification.

Running the query in Listing 17-1 gives this output:

SYMBOL  DAY         MATCH  CLASS  PREV  PRICE

BEER    2019-04-02  1      DOWN   14.9  14.2

BEER    2019-04-04  2      UP     14.2  15.7

BEER    2019-04-05  3      DOWN   15.7  15.6

BEER    2019-04-08  4      DOWN   15.6  14.8

BEER    2019-04-10  5      DOWN   14.8  14

BEER    2019-04-11  6      UP     14    14.4

BEER    2019-04-12  7      UP     14.4  15.2

BEER    2019-04-15  8      DOWN   15.2  15

BEER    2019-04-16  9      DOWN   15    13.7

BEER    2019-04-17  10     UP     13.7  14.3

BEER    2019-04-19  11     UP     14.3  15.5
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I can see that my rows are classified correctly according to the definition I made. 

But I notice I’m not really matching all rows here, only 11 out of 15. For one thing I am 

not finding the rows where the price is equal to the previous price. So I try changing my 

definitions in lines 15 and 16 to use less-than-or-equal and greater-than-or-equal:

...

 15        down as price <= prev(price)

 16      , up   as price >= prev(price)

...

SYMBOL  DAY         MATCH  CLASS  PREV  PRICE

BEER    2019-04-02  1      DOWN   14.9  14.2

BEER    2019-04-03  2      DOWN   14.2  14.2

BEER    2019-04-04  3      UP     14.2  15.7

BEER    2019-04-05  4      DOWN   15.7  15.6

BEER    2019-04-08  5      DOWN   15.6  14.8

BEER    2019-04-09  6      DOWN   14.8  14.8

BEER    2019-04-10  7      DOWN   14.8  14

BEER    2019-04-11  8      UP     14    14.4

BEER    2019-04-12  9      UP     14.4  15.2

BEER    2019-04-15  10     DOWN   15.2  15

BEER    2019-04-16  11     DOWN   15    13.7

BEER    2019-04-17  12     UP     13.7  14.3

BEER    2019-04-18  13     DOWN   14.3  14.3

BEER    2019-04-19  14     UP     14.3  15.5

I got more rows in my output now; those rows with a price equal to the previous 

price are included. But it is maybe not the best idea, since looking at match numbers 12, 

13, and 14, that is definitely an upward-going trend on the graph, but my definition has 

classified the row in match 13 as DOWN.

My problem is that rows with an unchanged price potentially match both of my 

definitions, so with the simple or pattern I have used, such rows will be classified as the 

first classifier in the pattern that evaluates to true. This may not always be a problem as 

I’ll show later, but for now I will try changing my definitions to be mutually exclusive by 

adding a same classification (remembering to add it to the or pattern):
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...

 11     pattern (

 12        down | up | same

 13     )

 14     define

 15        down as price < prev(price)

 16      , up   as price > prev(price)

 17      , same as price = prev(price)

...

And I get the same rows as the last output, just this time classified three ways: DOWN, 

UP, and SAME:

SYMBOL  DAY         MATCH  CLASS  PREV  PRICE

BEER    2019-04-02  1      DOWN   14.9  14.2

BEER    2019-04-03  2      SAME   14.2  14.2

BEER    2019-04-04  3      UP     14.2  15.7

BEER    2019-04-05  4      DOWN   15.7  15.6

BEER    2019-04-08  5      DOWN   15.6  14.8

BEER    2019-04-09  6      SAME   14.8  14.8

BEER    2019-04-10  7      DOWN   14.8  14

BEER    2019-04-11  8      UP     14    14.4

BEER    2019-04-12  9      UP     14.4  15.2

BEER    2019-04-15  10     DOWN   15.2  15

BEER    2019-04-16  11     DOWN   15    13.7

BEER    2019-04-17  12     UP     13.7  14.3

BEER    2019-04-18  13     SAME   14.3  14.3

BEER    2019-04-19  14     UP     14.3  15.5

I’m still not entirely happy, as I’m not seeing the very first row in the output. Since 

it has no previous row, it can never satisfy any of the three definitions, so how to handle 

that? It is fairly easy by adding a fourth classification to the pattern in line 12:

...

 12        down | up | same | strt

...
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Now you’ll be expecting me to add strt to the definitions in the define clause, but 

that is not needed here. If the pattern matching hits a definition in the pattern that is not 

defined, it is simply assumed always to be true. So the first row cannot match any of the 

three defined classifications, and the matching then attempts to see if it matches strt, 

and it does, since any row can do that.

Therefore I see classifier strt for the first row in the output, which now contains all 

15 rows:

SYMBOL  DAY         MATCH  CLASS  PREV  PRICE

BEER    2019-04-01  1      STRT         14.9

BEER    2019-04-02  2      DOWN   14.9  14.2

BEER    2019-04-03  3      SAME   14.2  14.2

BEER    2019-04-04  4      UP     14.2  15.7

BEER    2019-04-05  5      DOWN   15.7  15.6

BEER    2019-04-08  6      DOWN   15.6  14.8

BEER    2019-04-09  7      SAME   14.8  14.8

BEER    2019-04-10  8      DOWN   14.8  14

BEER    2019-04-11  9      UP     14    14.4

BEER    2019-04-12  10     UP     14.4  15.2

BEER    2019-04-15  11     DOWN   15.2  15

BEER    2019-04-16  12     DOWN   15    13.7

BEER    2019-04-17  13     UP     13.7  14.3

BEER    2019-04-18  14     SAME   14.3  14.3

BEER    2019-04-19  15     UP     14.3  15.5

A thing to note is that it does matter where in the pattern I place such an undefined 

classification. For example, I could have placed it at the beginning of my or list of 

classifications:

...

 12        strt | down | up | same

...

As the matching is lazy and short circuit evaluates the pattern, it’ll begin by seeing 

if the row matches the definition of strt, which is undefined, and therefore any row 

matches it, so I’m getting an immediate match, and down, up, and same are never 

evaluated. I get an output that isn’t very helpful:
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SYMBOL  DAY         MATCH  CLASS  PREV  PRICE

BEER    2019-04-01  1      STRT         14.9

BEER    2019-04-02  2      STRT   14.9  14.2

BEER    2019-04-03  3      STRT   14.2  14.2

BEER    2019-04-04  4      STRT   14.2  15.7

BEER    2019-04-05  5      STRT   15.7  15.6

BEER    2019-04-08  6      STRT   15.6  14.8

BEER    2019-04-09  7      STRT   14.8  14.8

BEER    2019-04-10  8      STRT   14.8  14

BEER    2019-04-11  9      STRT   14    14.4

BEER    2019-04-12  10     STRT   14.4  15.2

BEER    2019-04-15  11     STRT   15.2  15

BEER    2019-04-16  12     STRT   15    13.7

BEER    2019-04-17  13     STRT   13.7  14.3

BEER    2019-04-18  14     STRT   14.3  14.3

BEER    2019-04-19  15     STRT   14.3  15.5

But I’m reasonably happy with the query so far, classifying my rows into down, up, 

same, and strt – it’s now time to start using these classifications for some pattern 

matching.

�Downs + ups = V shapes
By now I’ve made the definitions down, up, and same – it’s time to put those together in a 

pattern to look for specific patterns of rows. I’d like to find where the price is going down 

(or staying the same within a downward slope) for a period, followed by going up (or 

staying the same within an upward slope) for a period – in other words a V shape in the 

graph.

As discussed in the previous chapter, syntax for the pattern clause is very similar to 

regular expressions, so a period of at least one down-or-same price can be defined as 

(down | same)+ and then followed by (up | same)+ for a period of at least one up-or-

same price, leading to the pattern shown in line 12 of Listing 17-2.
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Listing 17-2.  Searching for V shapes

SQL> select *

  2  from ticker

  3  match_recognize (

  4     partition by symbol

  5     order by day

  6     measures

  7        match_number() as match

  8      , classifier()   as class

  9      , prev(price)    as prev

 10     all rows per match

 11     pattern (

 12        (down | same)+ (up | same)+

 13     )

 14     define

 15        down as price < prev(price)

 16      , up   as price > prev(price)

 17      , same as price = prev(price)

 18  )

 19  order by symbol, day;

The output no longer has a unique match_number() for each row as in all the 

previous queries; this time I get three distinct matches, one for each of the three V 

shapes in the graph:

SYMBOL  DAY         MATCH  CLASS  PREV  PRICE

BEER    2019-04-02  1      DOWN   14.9  14.2

BEER    2019-04-03  1      SAME   14.2  14.2

BEER    2019-04-04  1      UP     14.2  15.7

BEER    2019-04-05  2      DOWN   15.7  15.6

BEER    2019-04-08  2      DOWN   15.6  14.8

BEER    2019-04-09  2      SAME   14.8  14.8

BEER    2019-04-10  2      DOWN   14.8  14

BEER    2019-04-11  2      UP     14    14.4

BEER    2019-04-12  2      UP     14.4  15.2

BEER    2019-04-15  3      DOWN   15.2  15
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BEER    2019-04-16  3      DOWN   15    13.7

BEER    2019-04-17  3      UP     13.7  14.3

BEER    2019-04-18  3      SAME   14.3  14.3

BEER    2019-04-19  3      UP     14.3  15.5

Having a pattern now that matches multiple rows, it makes sense to condense the 

output to show me one row per match, like in Listing 17-3 in line 11. But then I need 

some other changes as well.

In the measures, I now use navigational functions first and last in lines 8–9 to 

get the first and last day of each match, and I use aggregate count in line 10 to find how 

many days each match covers.

Using one row per match, I also no longer get all columns in the output; here I 

only get what I use in partition by as well as all the measures, which means that in the 

order by in line 20, I cannot use column day, but need to use measure first_day.

Listing 17-3.  Output a single row for each match

SQL> select *

  2  from ticker

  3  match_recognize (

  4     partition by symbol

  5     order by day

  6     measures

  7        match_number() as match

  8      , first(day)     as first_day

  9      , last(day)      as last_day

 10      , count(*)       as days

 11     one row per match

 12     pattern (

 13        (down | same)+ (up | same)+

 14     )

 15     define

 16        down as price < prev(price)

 17      , up   as price > prev(price)

 18      , same as price = prev(price)

 19  )

 20  order by symbol, first_day;

Chapter 17  Up-and-Down Patterns



335

My output is now condensed to a single row with data for each of the three V shapes 

in the graph:

SYMBOL  MATCH  FIRST_DAY   LAST_DAY    DAYS

BEER    1      2019-04-02  2019-04-04  3

BEER    2      2019-04-05  2019-04-12  6

BEER    3      2019-04-15  2019-04-19  5

But hang on; I’m not quite happy with this – each matched V shape seems to start a 

day too late? When I mark out the three matches on the graph in Figure 17-3, it is quite 

clear I’m not getting the entire V shape.

Figure 17-3.  The three V shapes not quite entirely matched

OK, I can try adding a STRT to my pattern to match any row as the beginning of the V 

shape. I simply add that to my pattern in line 13:

...

 13        strt (down | same)+ (up | same)+

...
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And it helps for the first match, but not the second and third:

SYMBOL  MATCH  FIRST_DAY   LAST_DAY    DAYS

BEER    1      2019-04-01  2019-04-04  4

BEER    2      2019-04-05  2019-04-12  6

BEER    3      2019-04-15  2019-04-19  5

The reason is that I have not defined what match_recognize should do after it has 

found a match – where should it start looking for the next match. When I do not specify 

anything, it defaults to jumping to the row right after the match and starts looking there. 

It behaves just as if I had specified this line 12 in the query:

...

 11     one row per match

 12     after match skip past last row

 13     pattern (

...

The after match clause tells where to start looking for a new match after a match 

has finished, and the default is skip past last row. But starting the search for a new 

match at the row after the last row of the previous match is the reason why match 2 starts 

on 2019-04-05 instead of 2019-04-04 as I would have liked it.

If there had been an option after match skip to last row, this would have been 

exactly what I want. But such an option does not exist; it is invalid syntax. Instead I need 

to use the syntax after match skip to last {definition name}.

My problem then is that I do not know if the last row of the match was classified up 

or same; it could be either one. And in skip to I need to specify a single classification 

definition name. The solution is to use the subset clause here in line 16 to make a 

definition name of a subset that covers both up and same:

...

 11     one row per match

 12     after match skip to last up_or_same

 13     pattern (

 14        strt (down | same)+ (up | same)+

 15     )

 16     subset up_or_same = (up, same)
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 17     define

 18        down as price < prev(price)

 19      , up   as price > prev(price)

 20      , same as price = prev(price)

 21  )

 22  order by symbol, first_day;

Using the subset up_or_same in the after match skip to last clause in line 12 

gives me the desired effect, which is that a search for a new match is begun on the same 

row as the last row of the previous match. This means that the last day of one match 

is also included in the next match as the first day, as seen here in the output and in 

Figure 17-4:

SYMBOL  MATCH  FIRST_DAY   LAST_DAY    DAYS

BEER    1      2019-04-01  2019-04-04  4

BEER    2      2019-04-04  2019-04-12  7

BEER    3      2019-04-12  2019-04-19  6

Figure 17-4.  The three V shapes entirely matched
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�Revisiting if SAME is needed
This is nice that I could achieve my desired pattern matching using the three definitions 

down, up, and same and then a subset up_or_same. But could it be simplified?

Remember in the beginning of the chapter I tried using less-than-or-equal and 

greater-than-or-equal:

...

 15        down as price <= prev(price)

 16      , up   as price >= prev(price)

...

This was not working well when I simply was classifying single rows. But I promised 

to show that this is not always a problem – it depends on the pattern I use.

I can rewrite the query so it looks like Listing 17-4. Here I am not using any same 

definition, but only down and up in lines 17–18 – notice both are using -or-equal variants 

of less-than and greater-than. That also means I can simplify the pattern in line 14 and 

avoid the use of a subset, and then line 12 simply skips to last up.

Listing 17-4.  Simplified query utilizing how definitions are evaluated for 

patterns

SQL> select *

  2  from ticker

  3  match_recognize (

  4     partition by symbol

  5     order by day

  6     measures

  7        match_number() as match

  8      , first(day)     as first_day

  9      , last(day)      as last_day

 10      , count(*)       as days

 11     one row per match

 12     after match skip to last up

 13     pattern (

 14        strt down+ up+

 15     )

 16     define
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 17        down as price <= prev(price)

 18      , up   as price >= prev(price)

 19  )

 20  order by symbol, first_day;

The simplified Listing 17-4 gives me exactly the same desired result as I had before:

SYMBOL  MATCH  FIRST_DAY   LAST_DAY    DAYS

BEER    1      2019-04-01  2019-04-04  4

BEER    2      2019-04-04  2019-04-12  7

BEER    3      2019-04-12  2019-04-19  6

Now how did it do that? Why do I not seem to have the problem from the beginning 

of the chapter, where the row on 2019-04-18 incorrectly was classified as down? To find 

out, it helps to go back and see all rows per match (very often a good trick when 

debugging match_recognize) in line 10 of Listing 17-5.

Listing 17-5.  Seeing all rows of the simplified query

SQL> select *

  2  from ticker

  3  match_recognize (

  4     partition by symbol

  5     order by day

  6     measures

  7        match_number() as match

  8      , classifier()   as class

  9      , prev(price)    as prev

 10     all rows per match

 11     after match skip to last up

 12     pattern (

 13        strt down+ up+

 14     )

 15     define

 16        down as price <= prev(price)

 17      , up   as price >= prev(price)

 18  )

 19  order by symbol, day;
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Seeing all rows, I can also clearly see how 2019-04-04 and 2019-04-12 both are twice 

in the output – once as last row of one match and once as first row of the next match – so 

the total number of rows in the output is 17, even though the table contains 15 rows:

SYMBOL  DAY         MATCH  CLASS  PREV  PRICE

BEER    2019-04-01  1      STRT         14.9

BEER    2019-04-02  1      DOWN   14.9  14.2

BEER    2019-04-03  1      DOWN   14.2  14.2

BEER    2019-04-04  1      UP     14.2  15.7

BEER    2019-04-04  2      STRT   14.2  15.7

BEER    2019-04-05  2      DOWN   15.7  15.6

BEER    2019-04-08  2      DOWN   15.6  14.8

BEER    2019-04-09  2      DOWN   14.8  14.8

BEER    2019-04-10  2      DOWN   14.8  14

BEER    2019-04-11  2      UP     14    14.4

BEER    2019-04-12  2      UP     14.4  15.2

BEER    2019-04-12  3      STRT   14.4  15.2

BEER    2019-04-15  3      DOWN   15.2  15

BEER    2019-04-16  3      DOWN   15    13.7

BEER    2019-04-17  3      UP     13.7  14.3

BEER    2019-04-18  3      UP     14.3  14.3

BEER    2019-04-19  3      UP     14.3  15.5

But I’m really very interested in the row on 2019-04-18, which was originally 

classified as down, which led me to introduce same to get a proper classification. Why is it 

correctly classified as up here?

The reason is how things are evaluated when doing pattern matching. The database 

is not simply going through the definitions first to classify the rows and then checking if 

it fits the pattern. It tries to evaluate as little as possible. This means it will go along and 

evaluate something like this:

•	 When starting to look for a match, it will see if the first row matches 

strt – which any row will.

•	 Then it knows that if a match is to be found, the next row must be a 

down, so it checks if that is the case.
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•	 The next row must be a down or an up, so it checks first if it is a down; 

if not, then it checks if it is an up. Repeat as long as it was a down 

that was found. So any row having less than or the same value as the 

previous row is classified down as long as we are in this part of the 

pattern, as down definition is evaluated first. The 2019-04-03 and 

2019-04-09 rows are therefore both down rows.

•	 When the previous step found an up, it knows that the next row must 

be an up to make a valid match, so it checks if that is the case. Repeat 

checking for up as long as an up is found. That means that at this 

point, it will not evaluate a row having same value as the previous 

row to be down, because that definition is simply not evaluated at this 

point in the pattern.

•	 Therefore, since 2019-04-18 comes in the up+ part of the pattern, it 

will not be classified down, but up as we want it to.

This can be tricky when you have complex definitions and patterns. Life is simpler 

if the definitions are mutually exclusive like down, up, and same, but with knowledge of 

the evaluation method used by match_recognize, it is possible to utilize it to simplify 

a query like this, where rows that fall into more than one definition get the desired 

classification anyway, because the pattern dictates which definition is evaluated when.

�V + V = W shapes
In stock ticker analysis, a W shape (also known as double-bottom) indicates a trend 

reversal, so it is an important pattern to search for in the data. Well, I already know how 

to find V shapes, so I simply expand the pattern clause in line 14 in Listing 17-6.

Listing 17-6.  First attempt at finding W shapes

SQL> select *

  2  from ticker

  3  match_recognize (

  4     partition by symbol

  5     order by day

  6     measures
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  7        match_number() as match

  8      , first(day)     as first_day

  9      , last(day)      as last_day

 10      , count(*)       as days

 11     one row per match

 12     after match skip to last up

 13     pattern (

 14        strt down+ up+ down+ up+

 15     )

 16     define

 17        down as price <= prev(price)

 18      , up   as price >= prev(price)

 19  )

 20  order by symbol, first_day;

Hang on; I was only expecting a single W match to be found, but my output shows 

two?

SYMBOL  MATCH  FIRST_DAY   LAST_DAY    DAYS

BEER    1      2019-04-01  2019-04-12  10

BEER    2      2019-04-12  2019-04-19  6

Looking at the graph in Figure 17-5, I can see that first I do match a W shape from 

2019-04-01 to 2019-04-12; that is fine. But after that, the graph has only a V shape, but it 

is matched as a W shape? Why?
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As usual I fall back to show the output of my W pattern using an all rows per match 

and that enables me to see that suddenly 2019-04-18 is again classified as a down row 

instead of the up that it should have been:

SYMBOL  DAY         MATCH  CLASS  PREV  PRICE

BEER    2019-04-01  1      STRT         14.9

BEER    2019-04-02  1      DOWN   14.9  14.2

BEER    2019-04-03  1      DOWN   14.2  14.2

BEER    2019-04-04  1      UP     14.2  15.7

BEER    2019-04-05  1      DOWN   15.7  15.6

BEER    2019-04-08  1      DOWN   15.6  14.8

BEER    2019-04-09  1      DOWN   14.8  14.8

BEER    2019-04-10  1      DOWN   14.8  14

BEER    2019-04-11  1      UP     14    14.4

BEER    2019-04-12  1      UP     14.4  15.2

BEER    2019-04-12  2      STRT   14.4  15.2

BEER    2019-04-15  2      DOWN   15.2  15

Figure 17-5.  Unexpected match of the last V as a W shape

Chapter 17  Up-and-Down Patterns



344

BEER    2019-04-16  2      DOWN   15    13.7

BEER    2019-04-17  2      UP     13.7  14.3

BEER    2019-04-18  2      DOWN   14.3  14.3

BEER    2019-04-19  2      UP     14.3  15.5

Again I have to try and see how the pattern is evaluated and the order the definitions 

then are evaluated.

As I explained before, in the V pattern (strt down+ up+), when the match reaches 

the up+ part, it can skip evaluating the down definition, because it knows that the pattern 

can only be satisfied if it finds up rows; in all other cases, there will not be a match.

But in the W pattern (strt down+ up+ down+ up+), when the match reaches the 

first up+ part, a match can be satisfied by either another up row or a down row that would 

lead the match into the second down+ part. Therefore it cannot skip evaluating the down 

definition, and so 2019-04-18 is classified as down, leading to the pattern being satisfied.

So because of the change in pattern, my little “trick” with nonunique definitions that 

are evaluated correctly in a V shape does not work for a W shape. I’ll have to think of 

something else.

Could I go back to using down, up, and same and then use a pattern like in the 

following?

...

 14        strt (down | same)+ (up | same)+ (down | same)+ (up | same)+

...

Well no, it would not help in this case. The last V shape on the graph would become 

classified like this:

...

BEER    2019-04-12  2      STRT   14.4  15.2

BEER    2019-04-15  2      DOWN   15.2  15

BEER    2019-04-16  2      DOWN   15    13.7

BEER    2019-04-17  2      UP     13.7  14.3

BEER    2019-04-18  2      SAME   14.3  14.3

BEER    2019-04-19  2      UP     14.3  15.5

And those six classifiers in that order will actually match that pattern, so it won’t do.

Instead I’m going to put some more logic in the definitions in my define clause in 

Listing 17-7.
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Listing 17-7.  More intelligent definitions for W shape matching

SQL> select *

  2  from ticker

  3  match_recognize (

  4     partition by symbol

  5     order by day

  6     measures

  7        match_number() as match

  8      , classifier()   as class

  9      , prev(price)    as prev

 10     all rows per match

 11     after match skip to last up

 12     pattern (

 13        strt down+ up+ down+ up+

 14     )

 15     define

 16        down as price < prev(price)

 17             or (    price = prev(price)

 18                 and price = last(down.price, 1)

 19                )

 20      , up   as price > prev(price)

 21             or (    price = prev(price)

 22                 and price = last(up.price  , 1)

 23                )

 24  )

 25  order by symbol, day;

Looking at down, the idea is to replace the less-than-or-equal with a dual logic:

•	 If the price is less than the previous (line 16), it certainly is a down 

row.

•	 If the price is equal to the previous row (line 17), it is only a down row 

if the graph was sloping down right before it hit this place with equal 

prices. I can check that in line 18 by testing if the price in the row is 

equal to the price of the last row that was classified down. This can only 

happen if that last down row was just before the flat part of the graph.
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And for up I use a similar dual logic in lines 20–23. With such a logic built into the 

definitions, Listing 17-7 produces only one match – the first W shape in the graph:

SYMBOL  DAY         MATCH  CLASS  PREV  PRICE

BEER    2019-04-01  1      STRT         14.9

BEER    2019-04-02  1      DOWN   14.9  14.2

BEER    2019-04-03  1      DOWN   14.2  14.2

BEER    2019-04-04  1      UP     14.2  15.7

BEER    2019-04-05  1      DOWN   15.7  15.6

BEER    2019-04-08  1      DOWN   15.6  14.8

BEER    2019-04-09  1      DOWN   14.8  14.8

BEER    2019-04-10  1      DOWN   14.8  14

BEER    2019-04-11  1      UP     14    14.4

BEER    2019-04-12  1      UP     14.4  15.2

�Overlapping W shapes
The way I searched for the patterns in the last example meant that I looked on the graph 

as consisting of first a W shape and then a V shape. Looking at it that way means I only 

find a single W shape.

But I could look on the graph as having two overlapping W shapes, as marked out in 

Figure 17-6.
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Changing my code to enable searching for overlapping shapes is a matter of 

changing my after match clause, which in the previous examples was set like this:

...

 11     after match skip to last up

...

That meant I never overlapped (except that strictly speaking a single row of each 

match would “overlap,” like in Figure 17-4 with three V matches).

If I do want to overlap, I need to change where to skip to in order to make the search 

for the next match start at a suitable row. Ideally it should be the “last row of the first up+ 

part of the pattern,” but that cannot be specified.

I could define two classifications, up1 and up2, with identical definitions, use up1+ for 

the first up-part and up2+ for the second up-part, and then skip to last up1. But there 

is an easier solution that will work here, as I do in line 12 of Listing 17-8.

Figure 17-6.  The graph can be seen as having two overlapping W shapes
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Listing 17-8.  Finding overlapping W shapes

SQL> select *

  2  from ticker

  3  match_recognize (

  4     partition by symbol

  5     order by day

  6     measures

  7        match_number() as match

  8      , first(day)     as first_day

  9      , last(day)      as last_day

 10      , count(*)       as days

 11     one row per match

 12     after match skip to first up

 13     pattern (

 14        strt down+ up+ down+ up+

 15     )

 16     define

 17        down as price < prev(price)

 18             or (    price = prev(price)

 19                 and price = last(down.price, 1)

 20                )

 21      , up   as price > prev(price)

 22             or (    price = prev(price)

 23                 and price = last(up.price  , 1)

 24                )

 25  )

 26  order by symbol, first_day;

When I do skip to first up in line 12, the matching will run like this:

•	 The first W match is found from 2019-04-01 to 2019-04-12.

•	 The first up is 2019-04-04, so it goes there and tries if a new match can 

be found from there.

•	 So 2019-04-04 is classified strt, 2019-04-05 is down, and it keeps 

classifying rows that match the pattern right until 2019-04-19.
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•	 The second W match therefore is 2019-04-04 to 2019-04-19.

•	 The first up of the second W match is 2019-04-11

•	 2019-04-11 is classified strt, 2019-04-12 is up, so the pattern is 

broken and no match.

•	 It moves on to 2019-04-12 and tries again for a new match, which will 

fail because it only matches a V shape, not a W.

•	 So it moves on to 2019-04-15 and tries again and fails.

•	 And so on until the end and no more matches are found.

And that is exactly the output I get when I run Listing 17-8, which matches the 

markings on Figure 17-6:

SYMBOL  MATCH  FIRST_DAY   LAST_DAY    DAYS

BEER    1      2019-04-01  2019-04-12  10

BEER    2      2019-04-04  2019-04-19  12

�Lessons learned
In this chapter I’ve dived deeper into the stock ticker example than the Oracle 

documentation does, mostly showing the complexities introduced when “flat” parts of 

the graph needs to be considered part of either a down-sloping or an up-sloping part of 

the graph.

In the course of this walk-trough, I hope I’ve conveyed some knowledge about

•	 Using all rows vs. one row per match (often to debug the logic)

•	 How definitions in define are evaluated according to the fulfillment 

of pattern

•	 Different uses of after match skip to, with, or without subset

This knowledge should help you develop code for matching similar patterns yourself.

Chapter 17  Up-and-Down Patterns
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CHAPTER 18

Grouping Data  
Through Patterns
Grouping data with a group by clause requires you to find one or more values that are 

the same in those rows you want to belong to the same group. Often that is simply some 

columns or just as often a calculation on some columns.

Sometimes, though, the condition that tells you a row belongs to a group is not 

simply a condition you can calculate using only values from that row itself, but the 

condition is on how the row relates to other rows. A condition to group by could, for 

example, be that all rows with consecutive sequential values should be grouped – when 

a gap in the sequence is found, a new group is started. This requires a calculation across 

rows, which often can be handled by analytic functions – but sometimes not.

A solution here is to remember that in pattern matching when you use one row 

per match, that is in fact like an implicit group by, and you can use aggregates in the 

measures and get a result very much like if you had used a group by. And when you use 

match_recognize for grouping, the define and pattern clauses are just perfect for a 

grouping condition that depends on relations between rows in a certain order.

�Two sets of data to group
To demonstrate grouping data with pattern matching, I use the tables in Figure 18-1.
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In the server_heartbeat table, a row is inserted every time a server sends a 

heartbeat (a call that basically just says “I’m alive”), which should happen every 5 

minutes for every server.

The web_page_visits table stores every visit to every web page in the web 

applications of Good Beer Trading Co (i.e., every click a user makes). This table 

references the web_pages table, which I include in the figure just to give you the context, 

but the examples in this chapter use the web_page_visits table.

I’ll show the data of both tables later, just before the relevant examples.

�Three grouping conditions
I’m going to show you three different types of relational conditions you can use pattern 

matching to group:

•	 Data where all consecutive data belong in a group, where consecutive 

simply means that a value increases by an exact fixed amount for 

each row. It can be numbers that increase by 1 or 100 or dates that 

increase by 5 minutes or 1 day or similar definitions of consecutive.

•	 Data where rows belong to a group as long as a value is close to the 

value of the previous row, for example, as long as a date value is 

within 15 minutes of the previous date.

Figure 18-1.  Tables with server heartbeat and web page visits used for grouping 
data
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•	 Data where a group is rows within a fixed interval, for example, one 

hour. But not hours on the clock (like grouping by trunc(date_col, 

'HH')), instead hours that begin by the first row in each group.

You can probably think of other types of conditions, but these three cover a  

lot of use cases.

�Group consecutive data
First let me delve into grouping data that is consecutive. This part I’ll cover more detailed 

to give you a ground base before going into the other two grouping methods.

For comparison I’ll show you one method this could be done just with an analytic 

function and discuss why you might consider using match_recognize instead.

�Analytic Tabibitosan vs. match_recognize

Before moving on to the example tables I’ve shown, I will walk you through the 

Tabibitosan method to find groups of consecutive integers using a single analytic 

function. This method was introduced by Aketi Jyuuzou on the Oracle Community 

Forums (back then OTN Forums).

I’ll start with Listing 18-1, where I just use a with clause to generate some rows with 

numbers instead of creating a real table.

Listing 18-1.  Difference between value and row_number

SQL> with ints(i) as (

  2     select 1 from dual union all

  3     select 2 from dual union all

  4     select 3 from dual union all

  5     select 6 from dual union all

  6     select 8 from dual union all

  7     select 9 from dual

  8  )

  9  select

 10     i

 11   , row_number() over (order by i)     as rn
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 12   , i - row_number() over (order by i) as diff

 13  from ints

 14  order by i;

Tabibitosan in Japanese means something like Mr. Pilgrim or Mr. Traveler. The idea 

is to imagine two walking pilgrims that both start at zero:

•	 The first pilgrim walks different distances each day, sometimes 

one mile and sometimes longer. His distance from the origin is 

represented by the integer value, in this case column i.

•	 The second pilgrim walks exactly one mile every day. His distance 

from the origin is represented by the results of row_number function 

that increases by exactly one for each row, in this case column rn.

The third column in the output is the difference between i and rn. In the analogy, 

this represents the distance between the two pilgrims:

I  RN  DIFF

1  1   0

2  2   0

3  3   0

6  4   2

8  5   3

9  6   3

Those days where the first pilgrim travels at a speed of one mile per day, the distance 

between them remains the same. If the first pilgrim walks more than a single mile in one 

day, the distance between them increases. The numbers are fairly clear as is, but it’s even 

more clear when plotted on the graph in Figure 18-2.
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In other words, the difference (the red diamonds in the graph) between the integer 

column and row_number will be constant for those rows where the integer column 

increases by exactly one per row (i.e., is consecutive), so I can easily group by this 

difference in Listing 18-2.

Listing 18-2.  Tabibitosan grouping

SQL> with ints(i) as (

  2     select 1 from dual union all

  3     select 2 from dual union all

  4     select 3 from dual union all

  5     select 6 from dual union all

  6     select 8 from dual union all

Figure 18-2.  Difference between the two pilgrims can be used for grouping
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  7     select 9 from dual

  8  )

  9  select

 10     min(i)   as first_int

 11   , max(i)   as last_int

 12   , count(*) as ints_in_grp

 13  from (

 14     select i, i - row_number() over (order by i) as diff

 15     from ints

 16  )

 17  group by diff

 18  order by first_int;

Simply wrap the difference calculation in an inline view in lines 14–15 and group 

by the diff in line 17, and I get an output specifying the three groups of consecutive 

integers found in the data:

FIRST_INT  LAST_INT  INTS_IN_GRP

1          3         3

6          6         1

8          9         2

So why do it with pattern matching if a perfectly good method exists with analytic 

functions? Part of the answer is that it can become easier to adapt to changing 

requirements, as I’ll show you. Part of it is about the efficiency of doing a one-pass 

operation while working through the data, instead of two passes – first the analytic row 

numbering and then the grouping.

In Listing 18-3, I show you how to get the exact same output as Listing 18-2, just 

using match_recognize instead of the Tabibitosan method.

Listing 18-3.  Same grouping with match_recognize

SQL> with ints(i) as (

  2     select 1 from dual union all

  3     select 2 from dual union all

  4     select 3 from dual union all

  5     select 6 from dual union all
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  6     select 8 from dual union all

  7     select 9 from dual

  8  )

  9  select first_int, last_int, ints_in_grp

 10  from ints

 11  match_recognize (

 12     order by i

 13     measures

 14        first(i) as first_int

 15      , last(i)  as last_int

 16      , count(*) as ints_in_grp

 17     one row per match

 18     pattern (strt one_higher*)

 19     define

 20        one_higher as i = prev(i) + 1

 21  )

 22  order by first_int;

It is reasonably straightforward and reads like this:

•	 I define classification one_higher in line 20 to be a row where i is 

exactly 1 greater than the previous i – indicating it is consecutive to 

the previous row.

•	 The pattern in line 18 looks for any row (classified strt) followed 

by zero or more one_higher rows. So this matches a group of rows 

as long as they have consecutive i values – when it no longer is 

consecutive, the match stops.

•	 Instead of the group by in Tabibitosan, here I can simply specify in 

line 17 that I just want a single row output per match.

•	 Lines 14–16 get me the same values as Listing 18-2, just without 

grouping; here the pattern matching can work out the results as it 

walks along the data.

I’ve laid the ground rules with some simple integer data showing analytic function 

solution vs. pattern matching; now I’ll move on to doing the same with a different 

datatype on more realistic data.
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�Consecutive dates instead of integers

In the server_heartbeat table, I should get a heartbeat stored from every server exactly 

every five minutes. In Listing 18-4, you see the data of the table.

Listing 18-4.  Server heartbeat as example of something other than integers

SQL> select server, beat_time

  2  from server_heartbeat

  3  order by server, beat_time;

Observe there are two servers and there are places where one or more heartbeats 

have been skipped:

SERVER      BEAT_TIME

10.0.0.100  2019-04-10 13:00:00

10.0.0.100  2019-04-10 13:05:00

10.0.0.100  2019-04-10 13:10:00

10.0.0.100  2019-04-10 13:15:00

10.0.0.100  2019-04-10 13:20:00

10.0.0.100  2019-04-10 13:35:00

10.0.0.100  2019-04-10 13:40:00

10.0.0.100  2019-04-10 13:45:00

10.0.0.100  2019-04-10 13:55:00

10.0.0.142  2019-04-10 13:00:00

10.0.0.142  2019-04-10 13:20:00

10.0.0.142  2019-04-10 13:25:00

10.0.0.142  2019-04-10 13:50:00

10.0.0.142  2019-04-10 13:55:00

Can I use Tabibitosan to group rows that are consecutive with exactly 5-minute 

intervals? Yes, surely. I just need to adjust the “unit” used, so it becomes a 5-minute unit 

instead of a simple number 1. I do that in Listing 18-5.

Listing 18-5.  Tabibitosan adjusted to 5-minute intervals

SQL> select

  2     server

  3   , min(beat_time) as first_beat
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  4   , max(beat_time) as last_beat

  5   , count(*)       as beats

  6  from (

  7     select

  8        server

  9      , beat_time

 10      , beat_time - interval '5' minute

 11                  * row_number() over (

 12                       partition by server

 13                       order by beat_time

 14                    ) as diff

 15     from server_heartbeat

 16  )

 17  group by server, diff

 18  order by server, first_beat;

What was i before in Listing 18-2 is now beat_time in line 9. In order to create 

something with a constant difference as long as the rows are consecutive, in lines 10–14, 

I multiply row_number with an interval of 5 minutes, which I then can subtract from the 

beat_time to get the diff value I can use for grouping.

Since (unlike Listing 18-2) I do this per server instead of on all rows at once, I use 

partition by in line 12. That way I get this output with three groups for each server:

SERVER      FIRST_BEAT           LAST_BEAT            BEATS

10.0.0.100  2019-04-10 13:00:00  2019-04-10 13:20:00  5

10.0.0.100  2019-04-10 13:35:00  2019-04-10 13:45:00  3

10.0.0.100  2019-04-10 13:55:00  2019-04-10 13:55:00  1

10.0.0.142  2019-04-10 13:00:00  2019-04-10 13:00:00  1

10.0.0.142  2019-04-10 13:20:00  2019-04-10 13:25:00  2

10.0.0.142  2019-04-10 13:50:00  2019-04-10 13:55:00  2

Multiplying row_number with an interval to make a “unit” adjustment is not 

hard, but it is not really very clear from reading the code in Listing 18-5 what this diff 

calculation is good for and what it does.

So let me try to similarly adapt Listing 18-4 to the 5-minute interval data and create 

Listing 18-6, which will give me the same output as Listing 18-5.
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Listing 18-6.  Same adjustment to match_recognize solution

SQL> select server, first_beat, last_beat, beats

  2  from server_heartbeat

  3  match_recognize (

  4     partition by server

  5     order by beat_time

  6     measures

  7        first(beat_time) as first_beat

  8      , last(beat_time)  as last_beat

  9      , count(*)         as beats

 10     one row per match

 11     pattern (strt five_mins_later*)

 12     define

 13        five_mins_later as

 14           beat_time = prev(beat_time) + interval '5' minute

 15  )

 16  order by server, first_beat;

I have given definitions and measures some other names than in Listing 18-4, so they 

represent the data better.

But the only functional change I made is in line 14 (compared to line 20 in  

Listing 18-4), where I replaced + 1 with + interval '5' minute – that is all it took to 

change the functionality, and it is very self-documenting.

You might have noticed that the data is very neatly exactly 5 minutes apart, which 

in reality is unlikely for such heartbeat data that probably arrives within some seconds 

either side of the exact time. I could create neatly aligned data by having a before 

insert trigger that rounded the inserted value to the nearest 5-minute value, but that 

would lose information (e.g., I might be interested in seeing that one server was always 

about 20 seconds late).

So rather than “massage” the data, I want to change my query to allow for a certain 

leeway rather than looking for exactly 5 minutes. With the Tabibitosan method, I’d 

have to round the values to the nearest 5 minutes at query time in order to achieve the 

“constant difference” for grouping. With pattern matching, it is much easier to simply 

adapt the definition and change line 14 of Listing 18-6 into a condition with a between 

clause to define that five_mins_later means somewhere between 4 and 6 minutes later:
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...

 12     define

 13        five_mins_later as

 14           beat_time between prev(beat_time) + interval '4' minute

 15                         and prev(beat_time) + interval '6' minute

...

Again it is almost plain English and fairly readable and self-documenting.

But these queries found me groups of rows that are consecutive (for some unit of 

measurement). Often what I’m asked to find is the gaps between such groups; where are 

data missing that should have been there.

�Gap detection

When I have the consecutive groups in the output from Listings 18-5 and 18-6,  

the gaps can be defined by the last_beat of one row (last beat before the gap) and the 

first_beat of the next row (next beat after the gap).

Getting a value from the next row naturally makes me think of using the lead analytic 

function. So I use lead in Listing 18-7.

Listing 18-7.  Detecting gaps from consecutive grouping using lead function

SQL> select

  2     server, last_beat, next_beat

  3   , round((next_beat - last_beat) * (24*60)) as gap_minutes

  4  from (

  5     select

  6        server

  7      , last_beat

  8      , lead(first_beat) over (

  9           partition by server order by first_beat

 10        ) as next_beat

 11     from (

...

 27     )

 28  )

 29  where next_beat is not null

 30  order by server, last_beat;
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The query of Listing 18-6 I put inside the inline view in lines 11–27, and then in lines 

8–10, I use lead to find the value of first_beat of the next row.

But for the last row in the partition, lead will return null, and it doesn’t make 

sense to talk of a gap after the last row. So I wrap in yet another inline view and filter 

away those last rows in line 29, giving me this output showing two gaps for each server 

(compare this with the output of Listing 18-5):

SERVER      LAST_BEAT            NEXT_BEAT            GAP_MINUTES

10.0.0.100  2019-04-10 13:20:00  2019-04-10 13:35:00  15

10.0.0.100  2019-04-10 13:45:00  2019-04-10 13:55:00  10

10.0.0.142  2019-04-10 13:00:00  2019-04-10 13:20:00  20

10.0.0.142  2019-04-10 13:25:00  2019-04-10 13:50:00  25

(If you noticed the round in line 3, this is simply because some of these gap_minutes 

values have teeny tiny rounding errors around the 20th decimal or so, because next_

beat – last_beat is measured in days and in some of the cases has some values that 

create rounding errors when multiplied with 24∗60 to get minutes.)

Now this works nicely, but it is actually possible to avoid having to use analytic 

functions on the output of match_recognize. In Listing 18-8, I show how to detect the 

gaps directly with pattern matching without any “post-processing.”

Listing 18-8.  Detecting gaps directly in match_recognize

SQL> select

  2     server, last_beat, next_beat

  3   , round((next_beat - last_beat) * (24*60)) as gap_minutes

  4  from server_heartbeat

  5  match_recognize (

  6     partition by server

  7     order by beat_time

  8     measures

  9        last(before_gap.beat_time) as last_beat

 10      , next_after_gap.beat_time   as next_beat

 11     one row per match

 12     after match skip to last next_after_gap

 13     pattern (strt five_mins_later* next_after_gap)

 14     subset before_gap = (strt, five_mins_later)
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 15     define

 16        five_mins_later as

 17           beat_time = prev(beat_time) + interval '5' minute

 18      , next_after_gap as

 19           beat_time > prev(beat_time) + interval '5' minute

 20  )

 21  order by server, last_beat;

This adds slightly more complexity to the pattern matching:

•	 I have two definitions in lines 16–19. One is the five_mins_later that 

I also used in Listing 18-6. The other is next_after_gap that classifies 

rows where beat_time is more than 5 minutes after the previous row.

•	 This enables me in line 13 to specify a pattern that begins like before: 

any strt row followed by zero or more five_mins_later rows. But 

then there should be exactly one next_after_gap row. So a match 

will consist of the group of consecutive rows plus the row after (that 

comes after the gap). This also means that for the last group, no next_

after_gap row can be found, so it will not be matched – meaning I 

do not need to filter away the last group, as this pattern only finds the 

two groups (per server) that actually have a gap after them.

•	 From this match, I need the last beat before the gap and the first after 

the gap. The latter is easy; it is simply the beat_time of the single 

next_after_gap row (line 10). The first is a bit trickier, since it might 

be a value from a strt row (if the consecutive “group” consists of 

only a single row) or it might be a value from a five_mins_later row. 

Therefore I define a subset called before_gap in line 14, so that I in 

line 9 can specify that I want the beat_time of the last before_gap 

row.

•	 Finally, since I have included the next_after_gap row in the match, 

I need to specify that the next match should be searched for from 

this row (rather than normally from the row immediately following 

the match). This I do in line 12 in the after match clause, so that 

the next_after_gap row becomes the strt row of the next match (if 

any).
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A little more complex, yes, but when you know the meaning of the different clauses 

in pattern matching, it still can be read and understood relatively plainly as English – 

especially if you have given the definitions meaningful names.

So far I’ve shown various queries grouping data that is consecutive, where 

consecutive means a column value increases by a specific fixed unit for every row. But 

there are cases where we want to group the data by other definitions.

�Group until gap too large
One of these other definitions is that a row keeps belonging to the group as long as it is 

“close” to the previous row – by however you define “close.” A group can become large 

and span a lot of rows, as the grouping doesn’t stop until the gap between two rows is 

bigger than the defined “closeness.”

A common example of this is doing the so-called sessionization. You log every page 

visit (click) to your web site without having a unique session id – but as long as the clicks 

from a given client (IP address) keep on coming without much pause between them, 

you consider those visits together to be a “session.” Once the client has been away for a 

longer period (gaps in the page visit log), you consider his next visit to be the start of a 

new session.

Good Beer Trading Co has such a web page visit log table, whose content you can see 

in Listing 18-9.

Listing 18-9.  Web page visit data

SQL> select app_id, visit_time, client_ip, page_no

  2  from web_page_visits

  3  order by app_id, visit_time, client_ip;

Two different IP addresses have visited different pages at different times  

on a given date:

APP_ID  VISIT_TIME           CLIENT_IP      PAGE_NO

542     2019-04-20 08:15:42  104.130.89.12  1

542     2019-04-20 08:16:31  104.130.89.12  3

542     2019-04-20 08:28:55  104.130.89.12  4

542     2019-04-20 08:41:12  104.130.89.12  3

542     2019-04-20 08:42:37  104.130.89.12  2
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542     2019-04-20 08:55:02  104.130.89.12  4

542     2019-04-20 09:03:34  104.130.89.12  2

542     2019-04-20 09:17:50  104.130.89.12  2

542     2019-04-20 09:28:32  104.130.89.12  2

542     2019-04-20 09:34:29  104.130.89.12  2

542     2019-04-20 09:43:46  104.130.89.12  2

542     2019-04-20 09:47:08  104.130.89.12  2

542     2019-04-20 09:49:12  104.130.89.12  3

542     2019-04-20 11:57:26  85.237.86.200  1

542     2019-04-20 11:58:09  85.237.86.200  2

542     2019-04-20 11:58:39  85.237.86.200  2

542     2019-04-20 12:02:02  85.237.86.200  3

542     2019-04-20 14:45:10  104.130.89.12  1

542     2019-04-20 15:02:22  104.130.89.12  3

542     2019-04-20 15:02:44  104.130.89.12  2

542     2019-04-20 15:04:01  104.130.89.12  2

542     2019-04-20 15:05:11  104.130.89.12  2

542     2019-04-20 15:05:48  104.130.89.12  3

This is solved in Listing 18-10 pretty much like finding consecutive groups of rows, 

just adapting very slightly the criteria in the define clause.

Listing 18-10.  Data belongs to same group (session) as long as max 15 minutes 

between page visits

SQL> select app_id, first_visit, last_visit, visits, client_ip

  2  from web_page_visits

  3  match_recognize (

  4     partition by app_id, client_ip

  5     order by visit_time

  6     measures

  7        first(visit_time) as first_visit

  8      , last(visit_time)  as last_visit

  9      , count(*)          as visits

 10     one row per match

 11     pattern (strt within_15_mins*)

 12     define
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 13        within_15_mins as

 14           visit_time <= prev(visit_time) + interval '15' minute

 15  )

 16  order by app_id, first_visit, client_ip;

It’s another table and other column names and a classification name that gives more 

meaning for this case, but apart from that, you should recognize this is rather much like 

Listing 18-6. The functional difference is simply line 14 that uses <= instead of =, showing 

how a match_recognize solution is easy to adapt with small changes, as the different 

parts of the logic have been separated out in mainly the define, pattern, and measure 

clauses. Adapting Tabibitosan to solve sessionization would have been a lot harder (if 

not impossible) as the logic is so dependent on creating a value that can be compared to 

a monotonically increasing value.

With this easy adaptation in Listing 18-10, I get four “session” groups created:

APP_ID  FIRST_VISIT          LAST_VISIT           VISITS  CLIENT_IP

542     2019-04-20 08:15:42  2019-04-20 09:49:12  13      104.130.89.12

542     2019-04-20 11:57:26  2019-04-20 12:02:02  4       85.237.86.200

542     2019-04-20 14:45:10  2019-04-20 14:45:10  1       104.130.89.12

542     2019-04-20 15:02:22  2019-04-20 15:05:48  5       104.130.89.12

Very often the logic used in pattern matching compares current rows to previous 

rows, but sometimes it can be a nice exercise to try and reverse the logic. Not that it 

changes much for this task, but knowing that you can do it with a “look ahead” logic can 

from time to time help in more tricky situations:

...

 11     pattern (has_15_mins_to_next* last_time)

 12     define

 13        has_15_mins_to_next as

 14           visit_time + interval '15' minute >= next(visit_time)

...
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Most of the code is like Listing 18-10, but I changed the pattern and define clauses:

•	 Lines 13–14 define has_15_mins_to_next by comparing values to 

the next row – if the visit_time of the current row + 15 minutes is 

greater than the next row, I know it is within 15 minutes.

•	 And then the pattern in line 11 needs to be adapted to find zero or 

more has_15_mins_to_next rows followed by exactly one other row 

(which I call last_time) that is not classified has_15_mins_to_next.

This logic that looks ahead instead of back produces the same output as  

Listing 18-10.

I’ve shown that almost same logic can group rows that either has a fixed interval 

between rows (consecutively) or has at most a certain interval between rows. But what if 

the groups are defined by having to be within a certain interval of the first row?

�Group until fixed limit
I could choose to define a session not by “as long as visits are happening at suitably small 

intervals,” but rather define that the first page visit (click) starts a session, which then 

lasts for one hour. All the visits within an hour from the first visit are part of the session. 

The next visit after the hour has gone by (whether 2 minutes or 2 days thereafter) marks 

the beginning of a new one-hour session.

This can also be accomplished by a slight tweaking of the logic in the pattern and 

define of match_recognize, as I show in Listing 18-11.

Listing 18-11.  Sessions max one hour long since first page visit

SQL> select app_id, first_visit, last_visit, visits, client_ip

  2  from web_page_visits

  3  match_recognize (

  4     partition by app_id, client_ip

  5     order by visit_time

  6     measures

  7        first(visit_time) as first_visit

  8      , last(visit_time)  as last_visit

  9      , count(*)          as visits

 10     one row per match
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 11     pattern (same_hour+)

 12     define

 13        same_hour as

 14           visit_time <= first(visit_time) + interval '1' hour

 15  )

 16  order by app_id, first_visit, client_ip;

You’ll quickly spot that it’s not that much different from Listings 18-6 and 18-10. But 

there are a couple small, but important, changes:

•	 In the definition of classification same_hour in line 14, I am no longer 

comparing to prev(visit_time), but instead to first(visit_time). 

This does exactly what I wanted – whenever a row is within 1 hour of 

the first row in the match, the row will be included in the match.

•	 Notice in line 11 I no longer have a strt or similar undefined 

classification. This was needed when I used prev, which would yield 

nothing on the first row. But this time I am using first, and as a row 

is always included when evaluating the definition condition, the first 

row itself will be the result of the first call to first. This means that 

when testing the condition, it will always be true when it is tested on 

the first row (either the first overall or the first after a previous match 

has ended). Therefore I can skip having a strt and instead simply 

state that a match must be one or more same_hour rows.

With this altered logic, I get four different session groups than I did before:

APP_ID  FIRST_VISIT          LAST_VISIT           VISITS  CLIENT_IP

542     2019-04-20 08:15:42  2019-04-20 09:03:34  7       104.130.89.12

542     2019-04-20 09:17:50  2019-04-20 09:49:12  6       104.130.89.12

542     2019-04-20 11:57:26  2019-04-20 12:02:02  4       85.237.86.200

542     2019-04-20 14:45:10  2019-04-20 15:05:48  6       104.130.89.12

When you compare to the output of Listing 18-10, you see that where IP 

104.130.89.12 before had a single 13-visit session that lasted over 1½ hour, that is now 

two sessions of 7 and 6 visits, because the visit 09:17:50 is more than an hour away from 

08:15:42.
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On the other hand, the same IP now has a single six-visit session starting at 14:45:10 

and lasting about 20 minutes, whereas before that was split into two sessions because 

15:02:22 is more than 15 minutes after 14:45:10.

For different use cases, both of these grouping methods are useful.

�Lessons learned
In this chapter, I’ve been showing various uses of pattern matching to group data 

that doesn’t have some key value to group by, but instead relates the rows by being 

consecutive or not too far apart. These examples should enable you to

•	 Consider match_recognize as an alternative to group by for cases 

where you cannot easily specify a grouping value from each row, but 

the grouping criteria are relations between rows.

•	 Express which rows are related and belong together with the define 

and pattern clauses.

•	 Use aggregate and navigational functions in the measures clause 

together with one row per match to achieve output like group by.

•	 Utilize the separation of logic in the different clauses  

of match_recognize with suitable aliasing and naming to make your 

code more readable and understandable.

Once you grasp the fundamentals of this approach, you’ll find your own cases where 

you can substitute pattern matching for complex group by or analytic SQL.
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CHAPTER 19

Merging Date Ranges
Lots of data have a date range for validity – when is or was the event or price or whatever 

active. Schedules, prices, discounts, versioning, audit trails, the list is endless.

It’s common to want to merge rows (at least in report output) where the date  

ranges are right after one another or even overlapping. For example, you may have 

a production schedule for your assembly line having three rows with adjoining date 

ranges – producing the same product for three different sales orders. For production 

planning, you may want to output this as a single row with the total date range and the 

sum of the quantities you need to produce.

There can be many other examples of this – in this chapter I’ll show you an example 

of merging job hire periods with the match_recognize clause.

�Job hire periods
As an example of a table with date ranges, I’ll be using the emp_hire_periods table 

shown in Figure 19-1, which has a foreign key relation to the employees table.

Figure 19-1.  The table of periods that employees have been hired for a given job
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A given employee can be hired in different periods for different job functions 

(indicated by the title column). The date ranges I have in the table follow these rules:

•	 A null value in end_date means the employee currently works at that 

function.

•	 When an employee stops working for Good Beer Trading Co,  

end_date is filled.

•	 If the employee is rehired, a new row is inserted.

•	 By promotion or change in job function, end_date is filled, and a new 

row is inserted with the new title.

•	 An employee can have more than one function at the same time, so 

the date ranges may overlap.

•	 The start_date is included in the date range and the end_date is 

excluded from the date range – often written as a [start_date, end_

date[ half-open interval.

You may find the last rule less than intuitive, but I’ll get back shortly with an 

explanation of why this is a good idea.

Note  A closed interval [start, end] is start <= x <= end, while an open 
interval ]start, end[ is start < x < end. The half-open interval is then 
either ]start, end] or (as in this case) [start, end[.

All of the logic I’ll be showing in this chapter is in principle valid just by working with 

the emp_hire_periods table alone, but to make it easier to see who is whom, I create a 

view in Listing 19-1 so that I retrieve the employee name too.

Listing 19-1.  View joining the hire periods with the employees

SQL> create or replace view emp_hire_periods_with_name

  2  as

  3  select

  4     ehp.emp_id

  5   , e.name

  6   , ehp.start_date
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  7   , ehp.end_date

  8   , ehp.title

  9  from emp_hire_periods ehp

 10  join employees e

 11     on e.id = ehp.emp_id;

View EMP_HIRE_PERIODS_WITH_NAME created.

Querying the emp_hire_periods_with_name view in Listing 19-2, I can show you the 

data I have.

Listing 19-2.  The hire periods data

SQL> select

  2     ehp.emp_id

  3   , ehp.name

  4   , ehp.start_date

  5   , ehp.end_date

  6   , ehp.title

  7  from emp_hire_periods_with_name ehp

  8  order by ehp.emp_id, ehp.start_date;

In the interest of saving a little space, I have not filled the table with data for all 14 

employees, just a selection of 6:

EMP_ID  NAME           START_DATE  END_DATE    TITLE

142     Harold King    2010-07-01  2012-04-01  Product Director

142     Harold King    2012-04-01              Managing Director

143     Mogens Juel    2010-07-01  2014-01-01  IT Technician

143     Mogens Juel    2014-01-01  2016-06-01  Sys Admin

143     Mogens Juel    2014-04-01  2015-10-01  Code Tester

143     Mogens Juel    2016-06-01              IT Manager

144     Axel de Proef  2010-07-01  2013-07-01  Sales Manager

144     Axel de Proef  2012-04-01              Product Director

145     Zoe Thorston   2014-02-01              IT Developer

145     Zoe Thorston   2019-02-01              Scrum Master

146     Lim Tok Lo     2014-10-01  2016-02-01  Forklift Operator

146     Lim Tok Lo     2017-03-01              Warehouse Manager
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147     Ursula Mwbesi  2014-10-01  2015-05-01  Delivery Manager

147     Ursula Mwbesi  2016-05-01  2017-03-01  Warehouse Manager

147     Ursula Mwbesi  2016-11-01              Operations Chief

When I visualize the same data in Figure 19-2, it’s easy to see who has changed jobs 

along the way, who has been away from the company and returned in a different job, and 

who has had double jobs for periods of time.

You’ll notice that because I use the half-open interval I mentioned before, employees 

changing jobs have a start_date on the new job that is equal to the end_date of the old 

job. Why didn’t I use closed intervals instead, so Harold King was product director from 

2010-07-01 to 2012-03-31 – both dates included?

It might seem easier to use closed intervals, so you can simplify your code a little by 

using between instead of >= and < – but there’s a problem. The date datatype can contain 

not only whole dates but also hours, minutes, and seconds. That means that with a 

closed interval end_date of 2012-03-31, Harold King would not be hired anymore at 1 

Figure 19-2.  Visualizing the data helps see the overlaps
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second past midnight, and the entire day of March 31st, he would be out of a job until 

rehired April 1st at midnight.

“Easy,” you say, “just put an end_date of 2012-03-31 23:59:59, and all is well.” But 

is it? Possibly it’ll be OK, but what if you need to switch to a timestamp datatype in the 

future and support fractional seconds? (Probably not the case for hire periods, but you 

can easily imagine other use cases for this.)

By using half-open intervals instead for your date ranges, you will never have the 

problem that Harold King in principle is not hired for a short time (a day, a second, a 

microsecond – no matter how small, with the closed interval, there will always be a piece 

of time that is not covered by the ranges).

When working with half-open intervals, it can help to think of both dates  

as from dates:

•	 The start_date is the exact moment from which the row starts being 

active.

•	 The end_date is the exact moment from which the row is no longer 

active (i.e., it ends being active immediately before that moment).

This thought process might have been helped by choosing column names like 

active_from and inactive_from, but the notion of start and end is just so commonly 

used that I’m doing the same.

Oracle itself has realized the usefulness of half-open intervals when they introduced 

temporal validity in version 12.1. So let me use this as a good opportunity for a brief 

detour and show you how temporal validity works. Afterward I’ll get back to the date 

range merging.

�Temporal validity
In Listing 19-3, you’ll see the create table statement I used for creating the  

emp_hire_periods table.

Listing 19-3.  Table defined with temporal validity

SQL> create table emp_hire_periods (

  2     emp_id         not null constraint emp_hire_periods_emp_fk

  3                       references employees

  4   , start_date     date not null
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  5   , end_date       date

  6   , title          varchar2(20 char) not null

  7   , constraint emp_hire_periods_pk primary key (emp_id, start_date)

  8   , period for employed_in (start_date, end_date)

  9  );

The interesting bit is line 8, which is the period for clause for defining temporal 

validity on the table.

In the parentheses, I’ve specified the two columns that contain the start and end 

point of the half-open interval. (These can be date or timestamp columns.) Both 

columns are allowed to be nullable; it is just for this use case I have set start_date to 

be not null as a job period will always have a specific starting point, whereas end_date 

allows nulls, because this means the job is still current.

Tip I f you do not specify the two columns, the database auto-creates two hidden 
columns to contain the interval. Normally I prefer to create the columns myself and 
specify them, but it might be handy if you have a use case where those who query 
are not interested in the actual interval, just whether the row is valid at a specific 
point in time or not.

Right after period for, you must name the period (give it an identifier), and I have 

carefully chosen employed_in. It is a good idea to give the name some thought, as a good 

name will be helpful in queries that use temporal validity, as I show it in Listing 19-4.

Listing 19-4.  Querying hire periods table as of a specific date

SQL> select

  2     ehp.emp_id

  3   , e.name

  4   , ehp.start_date

  5   , ehp.end_date

  6   , ehp.title

  7  from emp_hire_periods

  8          as of period for employed_in date '2010-07-01'

  9       ehp
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 10  join employees e

 11     on e.id = ehp.emp_id

 12  order by ehp.emp_id, ehp.start_date;

In the from clause lines 7–9, I can use an as of syntax very similar to flashback 

queries, with the table in line 7, the as of specification in line 8, and the table alias  

in line 9.

When using flashback, I specify as of timestamp or as of scn, but with temporal 

validity, I specify as of period for and then the name of the period. This means that 

the name employed_in in line 8 helps self-document that I’m querying those that were 

employed in 2010-07-01, which was the start of the company, and there were only three 

people:

EMP_ID  NAME           START_DATE  END_DATE    TITLE

142     Harold King    2010-07-01  2012-04-01  Product Director

143     Mogens Juel    2010-07-01  2014-01-01  IT Technician

144     Axel de Proef  2010-07-01  2013-07-01  Sales Manager

If I want to find those that were employed 6 years later, I just change the date  

value in line 8:

...

  8          as of period for employed_in date '2016-07-01'

...

And here I have five people (some of whom are the same, just with new titles):

EMP_ID  NAME           START_DATE  END_DATE    TITLE

142     Harold King    2012-04-01              Managing Director

143     Mogens Juel    2016-06-01              IT Manager

144     Axel de Proef  2012-04-01              Product Director

145     Zoe Thorston   2014-02-01              IT Developer

147     Ursula Mwbesi  2016-05-01  2017-03-01  Warehouse Manager

The query with as of is internally rewritten by the database into a regular where 

clause with suitable >= and < predicates; it is just easier to get it right with as of. Also the 

database treats it as a type of constraint – it will not let you insert data with an end_date 

that is before start_date.
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This little aside showed you briefly how temporal validity can make things easier, 

and if you do use temporal validity, you’ll also automatically get the benefits of the half-

open intervals. Now I’ll get back to the range merging, which you can do with or without 

temporal validity.

�Merging overlapping ranges
What I want to do now is to take the data in Figure 19-2, find all places where hire periods 

of the same employee either adjoin or overlap, and merge those into single aggregate 

rows showing how many jobs (either successively or concurrently) the employee has had 

in that aggregated period. The result I want is shown in Figure 19-3.

I am now going to attempt solving this with match_recognize. To demonstrate trying 

out different approaches and changing the logic along the way, I will first show some 

attempts that do not quite work, leading up to a working solution in the end.

Figure 19-3.  Expected results after merging overlapping and adjoining date 
ranges
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�Attempts comparing to the previous row
In quite a few scenarios using match_recognize, it is typical to compare a value from the 

current row to a value from the previous row in order to make a row classification. So I’ll 

try that first in Listing 19-5.

Listing 19-5.  Comparing start_date to end_date of the previous row

SQL> select

  2     emp_id

  3   , name

  4   , start_date

  5   , end_date

  6   , jobs

  7  from emp_hire_periods_with_name

  8  match_recognize (

  9     partition by emp_id

 10     order by start_date, end_date

 11     measures

 12        max(name)         as name

 13      , first(start_date) as start_date

 14      , last(end_date)    as end_date

 15      , count(*)          as jobs

 16     pattern (

 17        strt adjoin_or_overlap*

 18     )

 19     define

 20        adjoin_or_overlap as

 21           start_date <= prev(end_date)

 22  )

 23  order by emp_id, start_date;

My simple definition in line 21 states that a row is overlapping or adjoining if the 

start_date is smaller than or equal to the end_date of the previous row. A match is 

then found by the pattern in line 17 of any row followed by zero or more adjoining or 

overlapping rows.
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And sure enough, this rule does indeed merge some of the date ranges in this output:

EMP_ID  NAME           START_DATE  END_DATE    JOBS

142     Harold King    2010-07-01              2

143     Mogens Juel    2010-07-01  2015-10-01  3

143     Mogens Juel    2016-06-01              1

144     Axel de Proef  2010-07-01              2

145     Zoe Thorston   2014-02-01              1

145     Zoe Thorston   2019-02-01              1

146     Lim Tok Lo     2014-10-01  2016-02-01  1

146     Lim Tok Lo     2017-03-01              1

147     Ursula Mwbesi  2014-10-01  2015-05-01  1

147     Ursula Mwbesi  2016-05-01              2

But the output of, for example, Mogens Juel is not completely merged; there should 

have been a single row only for him with four jobs. The problem is that when I order 

his rows by start_date, the Code Tester and IT Manager rows are compared and not 

overlapping. A comparison like this to the previous row fails to discover that both rows 

are adjoining or overlapping to Sys Admin.

Thinking about it, I figured that maybe it would help simply to change the ordering 

in line 10 to order by end_date first:

...

 10     order by end_date, start_date

...

The output has changed, but Mogens Juel still wrongly is shown twice:

EMP_ID  NAME           START_DATE  END_DATE    JOBS

142     Harold King    2010-07-01              2

143     Mogens Juel    2010-07-01  2014-01-01  1

143     Mogens Juel    2014-04-01              3

144     Axel de Proef  2010-07-01              2

145     Zoe Thorston   2014-02-01              1

145     Zoe Thorston   2019-02-01              1

146     Lim Tok Lo     2014-10-01  2016-02-01  1

146     Lim Tok Lo     2017-03-01              1
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147     Ursula Mwbesi  2014-10-01  2015-05-01  1

147     Ursula Mwbesi  2016-05-01              2

With the changed ordering, the first attempt at finding a match for Mogens Juel 

will try to compare the IT Technician row with the Code Tester row and fail to find an 

overlap.

No matter which ordering I choose, I cannot get all the overlaps in a single match by 

simply comparing a row to the previous row. I need a different way to handle this.

�Better comparing to the maximum end date
Looking more closely on the rows of Mogens Juel in Figure 19-2, I decide that a better 

approach would be to compare the start_date of a row with the highest end_date that I 

have found so far in the match.

A first attempt at this approach could look like this, but it would not work:

...

  8  match_recognize (

  9     partition by emp_id

 10     order by start_date, end_date

 11     measures

 12        max(name)         as name

 13      , first(start_date) as start_date

 14      , max(end_date)     as end_date

 15      , count(*)          as jobs

 16     pattern (

 17        strt adjoin_or_overlap*

 18     )

 19     define

 20        adjoin_or_overlap as

 21           start_date <= max(end_date)

 22  )

 ...
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The reason it does not work is that when a definition condition like line 21 is 

evaluated, the row is first assumed to be classified adjoin_or_overlap, and then the 

condition is tested if it is true. Therefore the result of max(end_date) is calculated of all 

rows of the match so far plus the current row, which does not make sense.

In fact it makes so little sense that when I tested this first attempt, the query gave 

me either ORA-03113: end-of-file on communication channel or java.lang.

NullPointerException depending on database version and which client I use. The 

database connection was then broken.

So do not use this first attempt. Instead you should try my second attempt, which is 

shown in Listing 19-6.

Listing 19-6.  Comparing start_date of next row to highest end_date seen so far

...

  8  match_recognize (

  9     partition by emp_id

 10     order by start_date, end_date

 11     measures

 12        max(name)         as name

 13      , first(start_date) as start_date

 14      , max(end_date)     as end_date

 15      , count(*)          as jobs

 16     pattern (

 17        adjoin_or_overlap* last_row

 18     )

 19     define

 20        adjoin_or_overlap as

 21           next(start_date) <= max(end_date)

 22  )

 23  order by emp_id, start_date;
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In Listing 19-6, I reverse the logic. Instead of comparing the current row with the 

previous row, I compare it with the next row:

•	 I go back to ordering by start_date in line 10.

•	 In line 21, I check if the start_date of the next row is less than or 

equal to the highest end_date seen so far in the match – including 

the current row, because the max call will assume the current row is 

part of the match when it is evaluated. That means that when a row is 

classified as adjoin_or_overlap, that row should be merged with the 

next row.

•	 The pattern in line 17 looks for zero or more adjoin_or_overlap  

rows followed by one single row classified last_row. As that 

classification is undefined, any row can match it – but since the row 

before last_row was classified adjoin_or_overlap, I know that the 

last_row should be merged too.

•	 If I find no adjoin_or_overlap rows, the row will become classified 

last_row because of the * in line 17 that says that zero adjoin_or_

overlap rows are acceptable in the pattern. This means that when a 

row is not overlapping with any other rows, it will become a match of 

a single row classified as last_row and thus unmerged be part of the 

output.

•	 The measure end_date in line 14 is calculated as the largest end_date 

of the match. Since I am not qualifying the end_date in the max call 

with either adjoin_or_overlap or last_row, max is applied to all rows 

of the match no matter what classification the rows got.

This is a somewhat tricky match_recognize clause to understand. When I do 

conference presentations on this topic, I usually draw the date ranges on a whiteboard 

and step through the evaluation of the row classification row by row. As I cannot do 

an animated drawing in a book, I am going to simulate it using a series of figures from 

Figure 19-4 to Figure 19-8, going through the steps of finding a match for Mogens Juel.
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Figure 19-4.  Can first row be classified as adjoin_or_overlap?

Figure 19-5.  Can second row be classified as adjoin_or_overlap?

Figure 19-6.  Can third row be classified as adjoin_or_overlap?

In Figure 19-4, I start by evaluating if the first row of Mogens Juel can be classified 

adjoin_or_overlap or not. Since I start by assuming it can, the max(end_date) in line 

21 of Listing 19-6 evaluates to the end of the first row. The next(start_date) evaluates 

to the start_date of the second row. The two are equal, therefore adjoining, so the 

condition in line 21 is true, and the first row is classified adjoin_or_overlap.

Having classified the first row, Figure 19-5 evaluates if the second row can be 

classified adjoin_or_overlap or not. The max(end_date) evaluates to the end_date of 

the second row, while the next(start_date) is the start_date of the third row. The 

latter is less than the former, therefore overlapping, and the second row is classified 

adjoin_or_overlap.

The pattern is still fulfilled, so in Figure 19-6, the classification evaluation is 

performed for the third row. In this case the max(end_date) does not move; it is still the 

end_date of the second row. The next(start_date) is the start_date of the fourth row. 

They are equal, so the fourth row is adjoining to the match found so far, and therefore 

the third row is adjoin_or_overlap.

Chapter 19  Merging Date Ranges



385

The match continues, and Figure 19-7 evaluates the fourth row. This time max(end_

date) should be infinity as shown in the figure, because the fourth row has null in 

end_date. I am not yet handling this situation (more on this shortly), so in actual 

fact, max(end_date) would wrongly evaluate to the end_date of the second row. But 

since there are no more rows, next(start_date) evaluates to null, which makes the 

condition evaluate to Boolean unknown. Therefore the fourth row is not classified as 

adjoin_or_overlap.

Figure 19-8.  Fourth row classified as last_row and a match has been found

Figure 19-7.  Can fourth row be classified as adjoin_or_overlap?

When the fourth row is not adjoin_or_overlap, the pattern in line 17 of Listing 19-6  

states that it should be a last_row in order to complete the match. So Figure 19-8 

evaluates if the fourth row can be classified last_row or not. As last_row is an undefined 

classification, it always evaluates to true, and the fourth row is therefore classified as 

last_row, and the match has been completed.

This step-by-step evaluation of the row classification of Mogens Juel leads to the 

output of Listing 19-6, where the four hire periods of Mogens Juel have correctly been 

merged into a single row showing four jobs:

EMP_ID  NAME           START_DATE  END_DATE    JOBS

142     Harold King    2010-07-01  2012-04-01  2

143     Mogens Juel    2010-07-01  2016-06-01  4

144     Axel de Proef  2010-07-01  2013-07-01  2

145     Zoe Thorston   2014-02-01              1

145     Zoe Thorston   2019-02-01              1
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146     Lim Tok Lo     2014-10-01  2016-02-01  1

146     Lim Tok Lo     2017-03-01              1

147     Ursula Mwbesi  2014-10-01  2015-05-01  1

147     Ursula Mwbesi  2016-05-01  2017-03-01  2

But I still have a couple of problems with this output.

Firstly several of the employees (including Mogens Juel) have a wrong value  

in the measure end_date. Those that are still employed should have null (blank) in the 

end_date column, and in this output that is only true for those with just a single hire 

period. For those that have had more than one job, the highest non-null end_date is 

wrongly displayed.

Secondly I notice that Zoe Thorston also has overlapping rows – the problem here is 

just that the end_date of both rows are null, meaning both rows are current and she has 

both job functions. With the null values, the simple comparison in line 21 of Listing 19-6 

will not be true.

Both of these problems are because I am not handling the null values in end_date. 

This I will do now.

�Handling the null dates
To handle these null values, I change a little bit more in Listing 19-7.

Listing 19-7.  Handling null=infinity for both start and end

...

  8  match_recognize (

  9     partition by emp_id

 10     order by start_date nulls first, end_date nulls last

 11     measures

 12        max(name)         as name

 13      , first(start_date) as start_date

 14      , nullif(

 15           max(nvl(end_date, date '9999-12-31'))

 16         , date '9999-12-31'

 17        )                 as end_date

 18      , count(*)          as jobs
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 19     pattern (

 20        adjoin_or_overlap* last_row

 21     )

 22     define

 23        adjoin_or_overlap as

 24           nvl(next(start_date), date '-4712-01-01')

 25              <= max(nvl(end_date, date '9999-12-31'))

 26  )

 27  order by emp_id, start_date;

Even though this particular case only has null values in the end_date, for 

demonstration purposes, I have made the changes necessary to handle if there were 

null values in the start_date as well:

•	 In line 10, I make the order by a bit more explicit. If there had been 

null values in start_date, these would be considered earlier than 

any other start_date, so I use nulls first to make those rows 

come first. Similarly null values in end_date are considered later 

than any other end_date, so I use nulls last to make those rows 

come last.

•	 In comparisons I cannot simply use a nulls first to consider a null 

in start_date to be less than any other date, so in line 24, I turn a 

null into the smallest date possible in the Oracle date datatype.

•	 The aggregate function max ignores null values, so in line 25, I turn a 

null in end_date into the largest date possible in a date.

•	 To get a correct result in the end_date measure, I do the same nvl 

inside the max function in line 15. Then if the max results in the largest 

date, I use nullif in lines 14 and 16 to turn that back into null for 

output.

With these expanded rules, I get the final output where the rows of Zoe Thorston also 

are merged into one:

EMP_ID  NAME           START_DATE  END_DATE    JOBS

142     Harold King    2010-07-01              2

143     Mogens Juel    2010-07-01              4

144     Axel de Proef  2010-07-01              2
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145     Zoe Thorston   2014-02-01              2

146     Lim Tok Lo     2014-10-01  2016-02-01  1

146     Lim Tok Lo     2017-03-01              1

147     Ursula Mwbesi  2014-10-01  2015-05-01  1

147     Ursula Mwbesi  2016-05-01              2

This output matches Figure 19-3, the result that I wanted.

Now I cannot merge any further – the rows of this output are all neither overlapping 

nor adjoining.

�Lessons learned
This is just a single example of merging rows with date ranges in a report on employee 

job history, but it serves as inspiration and lesson to enable you to go ahead and do the 

same for other data.

In the course of the chapter, I’ve been explaining about

•	 The advantages of using half-open intervals for date ranges and how 

temporal validity can make it easier to query data with such intervals

•	 Using match_recognize to compare maximum values with next 

row to find overlapping or adjoining ranges and merge them into 

aggregate rows

•	 Expanding the rules to also handle situations where null indicates 

infinity

You’ll likely find many places you can use these methods.
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CHAPTER 20

Finding Abnormal Peaks
In many cases there’s sequential data (often chronological) that’s supposed to have a 

fairly steady value or increasing/decreasing at a fairly steady rate. If there are spots in 

the data where it is not fairly steady, you want to know about it. Or in other words, if you 

graphically represent the data, you want to find the abnormal peaks and spikes.

As a database professional, an obvious case of this situation is tablespace storage 

usage. Normally the number of GBs grows approximately the same rate each day/week/

month – any excessive growth rate is indicative of an abnormal workload, which could 

be caused by a large scheduled onetime job or a bug causing a runaway process to falsely 

insert millions of rows.

Another use case is the one I’ll use in this chapter – number of visits to individual 

web pages on the web site. Abnormal visit counts can mean denial-of-service attacks, 

high response to a marketing campaign, spam bots, and viral tweets – in all cases it’d be 

good to find such peaks in the data.

I think you can easily think of many other similar use cases, but how then to spot 

those peaks? Putting the data on a graph often makes such peaks easily visible to the 

human eye, but you can’t make SQL code look at a graph – or can you? Well, in a sense, 

yes you can. I showed in Chapter 17 how to look for up-and-down patterns with match_

recognize – it is a similar technique to find these peaks.

�Web page counter history
As the example use case, I am going to use page counters for web pages – simply that 

each page on the Good Beer Trading Co web site has a counter that increments by 1 for 

every time someone visits that page.

Every midnight the current value of each page counter is stored in the web_counter_

hist table shown in Figure 20-1, where you also see the web_pages and web_apps tables.



390

As the web_counter_hist.page_no column is not very human-friendly, in Listing 20-1, 

I create a view joining the three tables.

Listing 20-1.  View joining web apps, pages, and counter history

SQL> create or replace view web_page_counter_hist

  2  as

  3  select

  4     ch.app_id

  5   , a.name as app_name

  6   , ch.page_no

  7   , p.friendly_url

  8   , ch.day

  9   , ch.counter

 10  from web_apps a

 11  join web_pages p

 12     on p.app_id = a.id

 13  join web_counter_hist ch

Figure 20-1.  The tables for storing web apps, pages, and counter history
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 14     on ch.app_id = p.app_id

 15     and ch.page_no = p.page_no;

View WEB_PAGE_COUNTER_HIST created.

Having set the stage, I am now ready to dive into the data.

�The counter data
First, with Listing 20-2, I’ll show you that my web site has only a single application with 

four pages in it.

Listing 20-2.  The pages in my webshop app

SQL> select

  2     p.app_id

  3   , a.name as app_name

  4   , p.page_no

  5   , p.friendly_url

  6  from web_apps a

  7  join web_pages p

  8     on p.app_id = a.id

  9  order by p.app_id, p.page_no;

The application is the webshop, and the four pages each have a friendly_url, since 

it is nicer for us humans to use /About instead of /pls/apex/f?p=542:4::::::

APP_ID  APP_NAME  PAGE_NO  FRIENDLY_URL

542     Webshop   1        /Shop

542     Webshop   2        /Categories

542     Webshop   3        /Breweries

542     Webshop   4        /About

And so I can use Listing 20-3 to see the counter history for each of the four pages of 

application 542.
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Listing 20-3.  Web page counter history data

SQL> select

  2     friendly_url, day, counter

  3  from web_page_counter_hist

  4  where app_id = 542

  5  order by page_no, day;

I get incrementing counter values for the 30 days of April 2019:

FRIENDLY_URL  DAY         COUNTER

/Shop         2019-04-01  5010

/Shop         2019-04-02  5088

...

/Shop         2019-04-29  7755

/Shop         2019-04-30  7833

/Categories   2019-04-01  3397

...

/Categories   2019-04-30  5033

/Breweries    2019-04-01  1866

...

/Breweries    2019-04-30  3115

/About        2019-04-01  455

...

/About        2019-04-30  586

120 rows selected.

These data I visualize on the graph in Figure 20-2. It’s actually not that easy to 

spot abnormalities on these graphs. Mostly I can spot that the top line has a period of 

acceleration around the middle of the month, and the second line has a short burst near 

the end of the month. But to really find these spots, I’ll be turning to SQL.
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As I only have this one single application, I’m simplifying the rest of the SQL in this 

chapter and skip using where app_id = 542 all over. The assumption for the rest of the 

code is a single application.

�Patterns in the raw counter data
In this set of match_recognize examples, I’ll be using these raw counter data as depicted 

in the preceding graph.

First I can try simply to find periods where a given page counter grew by at least a 

constant number every day. In Listing 20-4 I search for counter growth of at least 200.

Listing 20-4.  Recognizing days where counter grew by at least 200

SQL> select

  2     url, from_day, to_day, days, begin, growth, daily

  3  from web_page_counter_hist

  4  match_recognize(

  5     partition by page_no

Figure 20-2.  Web page counter history data
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  6     order by day

  7     measures

  8        first(friendly_url) as url

  9      , first(day) as from_day

 10      , last(day) as to_day

 11      , count(*) as days

 12      , first(counter) as begin

 13      , next(counter) - first(counter) as growth

 14      , (next(counter) - first(counter)) / count(*)

 15           as daily

 16     one row per match

 17     after match skip past last row

 18     pattern ( peak+ )

 19     define

 20        peak as next(counter) - counter >= 200

 21  )

 22  order by page_no, from_day;

In the definition in line 20, I state what a peak is: it is a day where the counter grew 

by at least 200 on that day. Since the counter values are stored at midnight, the growth of 

the counter during the day is the next value minus the current value. So any rows where 

this is greater than or equal to 200 is classified as a peak row.

The pattern in line 18 can then be very simple – I’m looking for periods of one or 

more consecutive days classified as peak rows. I output just a single row per period by 

using one row per match in line 16. And the measures calculations in lines 8–15 give me 

this output:

URL          FROM_DAY    TO_DAY      DAYS  BEGIN  GROWTH  DAILY

/Shop        2019-04-12  2019-04-15  4     5800   1039    259.75

/Categories  2019-04-28  2019-04-28  1     4625   360     360

That’s exactly those two abnormalities that I mentioned in the preceding text I could 

spot by eye on the graphs in Figure 20-2.

Note that since I did not specify any running or final in Listing 20-4, the output 

specifically works because I am using one row per match – had I been using all rows 

per match, most of the measures would have used running semantics and given me an 

output I probably didn’t want.
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But I can also be explicit and specify that I actually want it to use final semantics, 

that is, evaluate the expressions as of the last row of the match. This would mean 

changing the measures expressions in lines 8–15 this way:

...

  8        first(friendly_url) as url

  9      , first(day) as from_day

 10      , final last(day) as to_day

 11      , final count(*) as days

 12      , first(counter) as begin

 13      , next(final last(counter)) - first(counter) as growth

 14      , (next(final last(counter)) - first(counter))

 15           / final count(*) as daily

...

It gives me the exact same output, but now I’d also get the same values calculated if I 

used all rows per match.

Note A s explained in the preceding text, using next(counter) in the define 
clause gets the value of the next midnight, so when I subtract the current value, 
I get the day’s growth. To get the total growth of the period in line 13, the final 
last goes to the last day of the match – applying next then gives me the counter 
value from the following midnight even though it is outside the match.

I’ve now found growth peaks that exceeded a constant number, but the problem 

is that “at least 200” may be a good number for the most-visited pages, but is not 

appropriate for the least-visited pages.

So in Listing 20-5, I do not look for absolute numbers, but rather a relative growth in 

percent.

Listing 20-5.  Recognizing days where counter grew by at least 4%

SQL> select

  2     url, from_day, to_day, days, begin, pct, daily

  3  from web_page_counter_hist

  4  match_recognize(

  5     partition by page_no
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  6     order by day

  7     measures

  8        first(friendly_url) as url

  9      , first(day) as from_day

 10      , final last(day) as to_day

 11      , final count(*) as days

 12      , first(counter) as begin

 13      , round(

 14           100 * (next(final last(counter)) / first(counter))

 15               - 100

 16         , 1

 17        ) as pct

 18      , round(

 19           (100 * (next(final last(counter)) / first(counter))

 20                    - 100) / final count(*)

 21         , 1

 22        ) as daily

 23     one row per match

 24     after match skip past last row

 25     pattern ( peak+ )

 26     define

 27        peak as next(counter) / counter >= 1.04

 28  )

 29  order by page_no, from_day;

In line 27, I changed my definition of what is a peak row, so I do not look at the 

difference between the values of next and current midnight, but rather the ratio. If the 

next value is at least a factor 1.04 of the current value, the growth that day has been at 

least 4%, and the row is a peak row.

I keep most of my measures expressions, but in lines 13–22, I change from showing 

absolute growth to showing the total growth and average daily growth in percent:

URL          FROM_DAY    TO_DAY      DAYS  BEGIN  PCT  DAILY

/Shop        2019-04-12  2019-04-14  3     5800   14   4.7

/Categories  2019-04-28  2019-04-28  1     4625   7.8  7.8

/Breweries   2019-04-17  2019-04-17  1     2484   6.6  6.6

/About       2019-04-05  2019-04-05  1     468    4.9  4.9
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In Listing 20-5, I look for periods where the growth in every day of the period has 

been at least 4%. But I can change the definition in line 27 to a slightly more complex 

calculation:

...

 27        peak as ((next(counter) / first(counter)) - 1)

 28                   / running count(*)  >= 0.04

...

With this formula, I look for periods where the average daily growth in the period 

has been at least 4%. The output shows me almost the same four matches, except that 

each of the first three periods is a little bit longer now, since some larger daily growths 

in the start of the periods mean that an extra day or two can be included in the end of 

the match. Even though those extra days individually have a growth less than 4%, the 

average in the period still stays at least 4%:

URL          FROM_DAY    TO_DAY      DAYS  BEGIN  PCT   DAILY

/Shop        2019-04-12  2019-04-16  5     5800   21.2  4.2

/Categories  2019-04-28  2019-04-29  2     4625   8.8   4.4

/Breweries   2019-04-17  2019-04-18  2     2484   8.4   4.2

/About       2019-04-05  2019-04-05  1     468    4.9   4.9

I’ve now shown looking for abnormal growth in terms of absolute or relative growth, 

but it might not be the best to do in this case. It might be better to look at daily visits.

�Looking at daily visits
Some cases can usefully look for growth the ways I’ve shown in the preceding text, but 

when you think about it, maybe it isn’t such a good idea for this case. Over time the 

counter value will just keep on increasing, so when the counter value over the years 

become orders of magnitude larger, a 4% growth rate needs a lot more daily visitors to 

satisfy.

So I’m going to try to look instead into how the daily visit counts behave. When 

you look at the data this way, it becomes clear that what I actually found in Listing 

20-5 were periods where the daily visits were at least 4% of the counter value. That will 

unfortunately make the same daily visits give a high percentage in the start of the counter 

lifetime and a lower and lower percentage as time goes by and the counter increases.
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To create a better solution, first, I’ll use Listing 20-6 to just show the daily visits.

Listing 20-6.  Focusing on daily visits

SQL> select

  2     friendly_url, day

  3   , lead(counter) over (

  4        partition by page_no order by day

  5     ) - counter as visits

  6  from web_page_counter_hist

  7  order by page_no, day;

The expression in lines 3–5 uses the lead analytic function to find the difference 

between the counter value next midnight and this midnight – same as I did before using 

next in the match_recognize syntax:

FRIENDLY_URL  DAY         VISITS

/Shop         2019-04-01  78

/Shop         2019-04-02  72

...

/Shop         2019-04-29  78

/Shop         2019-04-30

/Categories   2019-04-01  57

...

/Categories   2019-04-29  48

/Categories   2019-04-30

/Breweries    2019-04-01  21

...

/Breweries    2019-04-29  38

/Breweries    2019-04-30

/About        2019-04-01  4

...

/About        2019-04-29  5

/About        2019-04-30

120 rows selected.

And I visualize this output in Figure 20-3.
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On this graph, it is much easier to spot the peaks compared to the graph in 

Figure 20-2. You can even see the small peaks on the lowest line – the /About page.

Then I’ll proceed to finding patterns based on this graph.

�Patterns in daily visits data
For starters, again I simply try to find patterns based on an absolute number.  

In Listing 20-7, I look for periods where the daily visits are at least 50 higher than the 

day just before the period.

Listing 20-7.  Daily visits at least 50 higher than previous day

SQL> select

  2     url, from_day, to_day, days, begin, p_v, f_v, t_v, d_v

  3  from web_page_counter_hist

  4  match_recognize(

  5     partition by page_no

  6     order by day

Figure 20-3.  Graphing visits instead of counter highlights peaks
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  7     measures

  8        first(friendly_url) as url

  9      , first(day) as from_day

 10      , final last(day) as to_day

 11      , final count(*) as days

 12      , first(counter) as begin

 13      , first(counter) - prev(first(counter)) as p_v

 14      , next(first(counter)) - first(counter) as f_v

 15      , next(final last(counter)) - first(counter) as t_v

 16      , round(

 17           (next(final last(counter)) - first(counter))

 18              / final count(*)

 19         , 1

 20        ) as d_v

 21     one row per match

 22     after match skip past last row

 23     pattern ( peak+ )

 24     define

 25        peak as next(counter) - counter

 26                 - (first(counter) - prev(first(counter))) >= 50

 27  )

 28  order by page_no, from_day;

Much looks similar to what I did before, but there are some differences:

•	 The definition of the peak classification in lines 25–26 works like this:

•	 The next counter value minus current counter value in line 25 is 

the visits of the current day.

•	 Taking the first minus prev(first in line 26 is identical to going 

back to the previous row and doing next minus current, or in 

other words this is the visits of the day just before the beginning 

of the match.

•	 Subtracting the “day before” visits from the current day visits 

gives how much higher the current day is – if this is at least 50, the 

row is classified peak.
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•	 In the measures I calculate these four values:

•	 p_v is previous visits – the visits of the day before the first row of 

the match, as explained in the preceding text

•	 f_v is first day’s visits – the visits of the first day of the match

•	 t_v is total period visits – the visits from the first to the last day of 

the match

•	 d_v is daily visits – the average visits per day in the match period

All in all, the code produces this output:

URL          FROM_DAY    TO_DAY      DAYS  BEGIN  P_V  F_V  T_V   D_V

/Shop        2019-04-12  2019-04-17  6     5800   67   279  1386  231

/Categories  2019-04-28  2019-04-28  1     4625   37   360  360   360

/Breweries   2019-04-17  2019-04-17  1     2484   42   163  163   163

Which you’ll recognize as the largest three spikes on the graph shown in Figure 20-3.

There was a lot of prev, next, first, and last used in Listing 20-7 to calculate visits 

based on the counter data. Alternatively I can pre-calculate the daily visits and that way 

simplify my match_recognize clause, like in Listing 20-8.

Listing 20-8.  Pre-calculating visits for simplifying code

SQL> select

  2     url, from_day, to_day, days, begin, p_v, f_v, t_v, d_v

  3  from (

  4     select

  5        page_no, friendly_url, day, counter

  6      , lead(counter) over (

  7           partition by page_no order by day

  8        ) - counter as visits

  9     from web_page_counter_hist

 10  )

 11  match_recognize(

 12     partition by page_no

 13     order by day

 14     measures
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 15        first(friendly_url) as url

 16      , first(day) as from_day

 17      , final last(day) as to_day

 18      , final count(*) as days

 19      , first(counter) as begin

 20      , prev(first(visits)) as p_v

 21      , first(visits) as f_v

 22      , final sum(visits) as t_v

 23      , round(final avg(visits)) as d_v

 24     one row per match

 25     after match skip past last row

 26     pattern ( peak+ )

 27     define

 28        peak as visits - prev(first(visits)) >= 50

 29  )

 30  order by page_no, from_day;

Lines 4–9 contain an inline view identical to Listing 20-6, where I calculate the daily 

visits with the analytic lead function. Then my match_recognize clauses become a lot 

simpler:

•	 Line 28 simply is the difference between current visits and visits from 

the day before the match start.

•	 The four measures described in the preceding text are much simpler 

in lines 20–23 by using navigational functions and aggregates.

The output of Listing 20-8 is identical to Listing 20-7.

It is worth noting that the database worked a little harder in Listing 20-8, since it 

had to first do the pre-calculation with analytic functions before it could do the pattern 

matching. On the other hand, the pattern matching processing became simpler, so 

depending on the data, it might offset this overhead – your mileage may vary, so test 

either approach on your own data.

It can also often be the case that your data already contains data in the form like 

“daily visits” instead of historical snapshot values of an increasing counter. If so, then it is 

easy to skip the inline view in Listing 20-8 and simply apply the pattern matching directly 

on your data.
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Now, I do seem to get a better peak detection focusing on the visits than in the first 

couple of examples in this chapter, but it is still probably not good to look for an absolute 

like “at least 50 higher.” So in Listing 20-9, I’m altering Listing 20-8 to search relatively for 

“at least 50% higher” instead.

Listing 20-9.  Daily visits at least 50% higher than the previous day

SQL> select

  2     url, from_day, to_day, days, begin, p_v, f_v, t_v, d_pct

  3  from (

...

 10  )

 11  match_recognize(

...

 23      , round(

 24           (100*(final sum(visits) / prev(first(visits))) - 100)

 25              / final count(*)

 26         , 1

 27        ) as d_pct

...

 31     define

 32        peak as visits / nullif(prev(first(visits)), 0) >= 1.5

 33  )

 34  order by page_no, from_day;

In line 32 I switch from looking at differences to looking at ratios. If the prev row had 

zero visits, I cannot calculate a ratio, so I use nullif to make the entire expression null in 

those cases.

And then instead of a daily visits measure, I use lines 23–27 to calculate the daily 

average of the percentage of the day’s visits compared to the “day before” visits.
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I’m now finding quite a few more peaks in my data, or are they really peaks?

URL          FROM_DAY    TO_DAY      DAYS  BEGIN  P_V  F_V  T_V   D_PCT

/Shop        2019-04-12  2019-04-17  6     5800   67   279  1386  328.1

/Shop        2019-04-28  2019-04-29  2     7683   23   72   150   276.1

/Categories  2019-04-08  2019-04-29  22    3637   7    54   1396  901.9

/Breweries   2019-04-05  2019-04-29  25    1955   17   51   1160  268.9

/About       2019-04-04  2019-04-07  4     463    1    5    38    925

/About       2019-04-11  2019-04-11  1     508    3    5    5     66.7

/About       2019-04-13  2019-04-14  2     514    1    2    10    450

/About       2019-04-23  2019-04-24  2     531    4    8    21    212.5

/About       2019-04-28  2019-04-28  1     563    8    18   18    125

The problem with this approach is that when I have even just a single day with very 

low number of visits, practically all days afterward are 50% higher, even though there 

isn’t really a peak. Like the output shows a 25-day “peak” for the /Breweries page.

So maybe instead I should go for searching periods where the daily visits are at least 

50% higher than the average daily visit? I’ll try that in Listing 20-10.

Listing 20-10.  Daily visits at least 50% higher than average

SQL> select

  2     url, avg_v, from_day, to_day, days, t_v, d_v, d_pct

  3  from (

  4     select

  5        page_no, friendly_url, day, counter, visits

  6      , avg(visits) over (

  7           partition by page_no

  8        ) as avg_visits

  9     from (

 10        select

 11           page_no, friendly_url, day, counter

 12         , lead(counter) over (

 13              partition by page_no order by day

 14           ) - counter as visits

 15        from web_page_counter_hist

 16     )
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 17  )

 18  match_recognize(

 19     partition by page_no

 20     order by day

 21     measures

 22        first(friendly_url) as url

 23      , round(first(avg_visits), 1) as avg_v

 24      , first(day) as from_day

 25      , final last(day) as to_day

 26      , final count(*) as days

 27      , final sum(visits) as t_v

 28      , round(final avg(visits), 1) as d_v

 29      , round(

 30           (100 * final avg(visits) / avg_visits) - 100

 31         , 1

 32        ) as d_pct

 33     one row per match

 34     after match skip past last row

 35     pattern ( peak+ )

 36     define

 37        peak as visits / avg_visits >= 1.5

 38  )

 39  order by page_no, from_day;

My original inline view (lines 10–15) I wrap in another inline view, so that I can use 

analytic avg function in lines 6–8 to calculate the average daily visits for each page (by 

partitioning by page_no.)

Having pre-calculated the average visits, the expression in line 37 is pretty simple – if 

the ratio of visits to average visits is at least 1.5, the row is a peak row.

That gives me a much more realistic output that finds each of the three large spikes 

(that I also found with Listing 20-7) as well as the four small spikes on the /About page 

that I can see in Figure 20-3:
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URL          AVG_V  FROM_DAY    TO_DAY      DAYS  T_V   D_V   D_PCT

/Shop        97.3   2019-04-12  2019-04-17  6     1386  231   137.3

/Categories  56.4   2019-04-28  2019-04-28  1     360   360   538.1

/Breweries   43.1   2019-04-17  2019-04-17  1     163   163   278.5

/About       4.5    2019-04-05  2019-04-06  2     31    15.5  243.1

/About       4.5    2019-04-14  2019-04-14  1     8     8     77.1

/About       4.5    2019-04-23  2019-04-24  2     21    10.5  132.4

/About       4.5    2019-04-27  2019-04-28  2     26    13    187.8

Using Listing 20-10 with the pre-calculated daily and average visits, it becomes easy 

to look for other things than simply spikes of 50% greater than average.

For example, I can change the definition in line 37 to find periods where the daily 

visits are at least 80% less than average:

...

 37        peak as visits / avg_visits <= 0.2

...

That gives me periods where the pages might have had problems – particularly those 

periods where the /About page had absolutely no visitors at all:

URL          AVG_V  FROM_DAY    TO_DAY      DAYS  T_V  D_V  D_PCT

/Shop        97.3   2019-04-25  2019-04-25  1     18   18   -81.5

/Categories  56.4   2019-04-05  2019-04-07  3     25   8.3  -85.2

/About       4.5    2019-04-08  2019-04-08  1     0    0    -100

/About       4.5    2019-04-15  2019-04-20  6     0    0    -100

/About       4.5    2019-04-26  2019-04-26  1     0    0    -100

And I can make the pattern searching more complex as well in the next examples.

�More complex patterns
With Listing 20-11, I can search simultaneously for high, medium, and low peaks.

Listing 20-11.  Finding multiple peak classifications simultaneously

SQL> select

  2     url, avg_v, from_day, days, class, t_v, d_v, d_pct

  3  from (
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...

 17  )

 18  match_recognize(

 19     partition by page_no

 20     order by day

 21     measures

 22        first(friendly_url) as url

 23      , round(first(avg_visits), 1) as avg_v

 24      , first(day) as from_day

 25      , final count(*) as days

 26      , classifier() as class

 27      , final sum(visits) as t_v

 28      , round(final avg(visits), 1) as d_v

 29      , round(

 30           (100 * final avg(visits) / avg_visits) - 100

 31         , 1

 32        ) as d_pct

 33     one row per match

 34     after match skip past last row

 35     pattern ( high{1,} | medium{2,} | low{3,} )

 36     define

 37        high   as visits / avg_visits >= 4

 38      , medium as visits / avg_visits >= 2

 39      , low    as visits / avg_visits >= 1.1

 40  )

 41  order by page_no, from_day;

In lines 37–39 instead of just the single peak, I define three different classifications 

named high, medium, and low – each with a different minimum ratio between the day’s 

visits and the average visits. The high is a ratio of at least 4, meaning the day’s visits must 

be at least 400% of the average or 300% higher than the average, similar for the other 

definitions.
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In the pattern in line 35, I state that a match must be either at least one high row or at 

least two medium rows or at least three low rows. A single low spike can be random, but 

three days in a row can be interesting to look at:

URL          AVG_V  FROM_DAY    DAYS  CLASS   T_V   D_V    D_PCT

/Shop        97.3   2019-04-12  4     MEDIUM  1039  259.8  166.8

/Categories  56.4   2019-04-28  1     HIGH    360   360    538.1

/Breweries   43.1   2019-04-05  4     LOW     217   54.3   26

/About       4.5    2019-04-04  3     LOW     36    12     165.6

/About       4.5    2019-04-27  3     LOW     31    10.3   128.8

I see in the output all the three different types of peaks has been found.

Note T he two last low peaks found both have an average daily visit count that 
is more than 100% larger than the total average, or in other words a ratio greater 
than 2 – so why are they not classified medium? In order to see why, switch for all 
rows per match, and remove all final keywords – I’ll leave that as an exercise for 
you. You will find that the answer is that the first row of each of those periods has 
a ratio between 1.1 and 2, so it is classified low. Therefore, the next rows will not 
be tested as to whether they are medium or high, since that would be impossible 
according to the pattern. The only viable pattern that starts with a low row is to find 
at least three low rows, so the second and third rows in the bottom two matches 
are only evaluated as having a ratio of at least 1.1, which is true (even though they 
actually have a ratio of at least 2).

Instead of looking for multiple classifications simultaneously, I can mold a pattern 

to find a peak of a particular shape. For example, after sending out a newsletter with 

some links, I’d expect to find a sharp rise for one or a few days, which then tapers off to a 

medium rise and then low. Listing 20-12 finds such a shaped peak.

Listing 20-12.  Finding peaks of a particular shape

SQL> select

  2     url, avg_v, from_day, days, hi, med, low, t_v, d_v, d_pct

  3  from (

...
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 17  )

 18  match_recognize(

 19     partition by page_no

 20     order by day

 21     measures

 22        first(friendly_url) as url

 23      , round(first(avg_visits), 1) as avg_v

 24      , first(day) as from_day

 25      , final count(*) as days

 26      , final count(high.*) as hi

 27      , final count(medium.*) as med

 28      , final count(low.*) as low

 29      , final sum(visits) as t_v

 30      , round(final avg(visits), 1) as d_v

 31      , round(

 32           (100 * final avg(visits) / avg_visits) - 100

 33         , 1

 34        ) as d_pct

 35     one row per match

 36     after match skip past last row

 37     pattern ( high+ medium+ low+ )

 38     define

 39        high   as visits / avg_visits >= 2.5

 40      , medium as visits / avg_visits >= 1.5

 41      , low    as visits / avg_visits >= 1.1

 42  )

 43  order by page_no, from_day;

Again in lines 39–41, I define three different classifications (slightly different ratio 

values as before but otherwise same principle.)

My pattern in line 37 then states I’m looking for a peak shaped with at least one high 

day, followed by at least one medium day and followed by at least one low day.
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The measures hi, med, and low in lines 26–28 tell me how many days of each 

classification, so I can see how many days the visit count stayed high before it started to 

taper off:

URL    AVG_V  FROM_DAY    DAYS  HI  MED  LOW  T_V   D_V  D_PCT

/Shop  97.3   2019-04-12  6     3   2    1    1386  231  137.3

I found the single peak in the data that has the shape I was looking for.

�Lessons learned
I’ve shown multiple examples here of looking for spikes in chronological data – 

techniques very similar to the up-and-down pattern search in Chapter 17 yet slightly 

different for slightly different use cases.

Having understood these examples, you should now know about

•	 Using the navigational functions prev and next (in conjunction with 

final) to access rows outside the match in the measures expressions

•	 Pre-calculating values to enable simpler pattern matching (test it to 

see if it hurts or helps performance)

•	 Having multiple classification definitions to use in patterns that find 

either any of the classifications or specific classification combinations 

in a certain order

There are many use cases of similar chronological (or just sequential) data where 

you can apply these types of pattern searches.
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CHAPTER 21

Bin Fitting
Imagine packing your car to go on a holiday. Probably there’s one person in your family 

that has the 3-D intuition needed to work out how to fit the suitcases just so, so that 

there’s a nook free here to fit a pair of boots and a cranny free there to fit the odd-shaped 

gift you’re bringing along to Aunt Mathilda. That one person always does the packing; 

the rest of you stay out of the way until the car is packed.

Such packing skills can be highly valued in certain industries, as it is not an easy 

task to make an algorithm that will do it perfectly. Variants are known as bin fitting, bin 
packing, knapsack problem, cutting stock problem, and more. Googling these terms 

you will find many algorithms for approximate answers, where typically the better the 

solution is, the longer time it takes to run.

The very best algorithms often require either several passes of the data or storing 

data in intermediate arrays for lookups. These are not easily translated to SQL and 

might even be examples of code where it is not optimal to do it in SQL. But with match_

recognize, you can do some simple approximate bin fitting algorithms that are still 

quite useful.

�Inventory to be packed in boxes
As an example of bin fitting, imagine that the Good Beer Trading Co is moving, so all 

of the inventory has to be packed into boxes (boxes being my specific example of the 

generic term bin) and moved to a new warehouse somewhere else.

I will be using the inventory and related tables I introduced to you in Chapter 13 

on FIFO picking. In Chapter 13 I used more tables, but here I just use the ones shown in 

Figure 21-1.
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In Chapter 13 I also introduced the view inventory_with_dims that joins the 

inventory with locations and products. This view I will be using throughout this 

chapter.

Observe the inventory data of one of the beers in Listing 21-1.

Listing 21-1.  The inventory of the beer Der Helle Kumpel

SQL> select

  2     product_name

  3   , warehouse as wh

  4   , aisle

  5   , position  as pos

  6   , qty

  7  from inventory_with_dims

  8  where product_name = 'Der Helle Kumpel'

  9  order by wh, aisle, pos;

Figure 21-1.  Inventory, locations, and products tables used in this chapter
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Most of the chapter examples show bin fitting for this beer:

PRODUCT_NAME      WH  AISLE  POS  QTY

Der Helle Kumpel  1   A      16   48

Der Helle Kumpel  1   A      29   14

Der Helle Kumpel  1   B      32   43

Der Helle Kumpel  1   C      5    70

Der Helle Kumpel  1   C      13   20

Der Helle Kumpel  1   D      19   48

Der Helle Kumpel  2   A      1    72

Der Helle Kumpel  2   B      5    14

Der Helle Kumpel  2   B      26   24

Der Helle Kumpel  2   C      31   21

Der Helle Kumpel  2   D      9    26

I’ll try to pack these beers into boxes according to my bin fitting rules. First with 

limited capacity boxes.

�Bin fitting with unlimited number of bins of limited 
capacity
This type of bin fitting is also a simple variant of the knapsack problem, which is a 

problem that is quite hard to solve exactly within reasonable time. In fact it belongs to a 

class of problems called NP-hard, which is out of the scope of this book to delve deeper 

into. Suffice it to say here that any solution I give will just be an approximation – more or 

less optimal.

I pack the beers into boxes according to these rules:

•	 A box can contain at maximum 72 bottles of beer.

•	 Quantities from different locations are allowed to be packed together 

in the same box.

•	 A quantity from a single location cannot be split into multiple boxes 

but must stay together in a single box.
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At first I am not worrying about trying to get close to optimal bin fitting. In Listing 21-2 

I simply go through the warehouse in order of location and pack the beers into boxes. 

When I reach a location, if the quantity will fit into the current box, I will pack it into that 

box; otherwise, I will start packing in a new box.

Listing 21-2.  Bin fitting in order of location

SQL> select wh, aisle, pos, qty, run_qty, box#, box_qty

  2  from (

  3     select

  4        product_name

  5      , warehouse as wh

  6      , aisle

  7      , position  as pos

  8      , qty

  9     from inventory_with_dims

 10     where product_name = 'Der Helle Kumpel'

 11  ) iwd

 12  match_recognize (

 13     order by wh, aisle, pos

 14     measures

 15        match_number()   as box#

 16      , running sum(qty) as run_qty

 17      , final   sum(qty) as box_qty

 18     all rows per match

 19     pattern (

 20        fits_in_box+

 21     )

 22     define

 23        fits_in_box as sum(qty) <= 72

 24  )

 25  order by wh, aisle, pos;
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So what happens in this query? I’ll explain:

•	 In the inline view lines 3–10, I simply limit the data to the beer I am 

packing at the moment.

•	 In match_recognize, I order the data by location in line 13.

•	 I define the classification fits_in_box in line 23 to be when the 

sum of qty is less than or equal to 72. When using an aggregate in a 

definition, it is evaluated using running semantics.

•	 The pattern in line 20 states I want one or more rows that are 

classified fits_in_box. This means that the qty of the first row is set 

as the running sum. If the running sum is not larger than 72, the row 

is added to the match. Then the qty of the second row is added to the 

running sum. If it still is not larger than 72, the row is added to the 

match and so on until a row causes the running sum to exceed 72, at 

which point the match ends.

•	 In the measures lines 15–17, I use the match_number() as the number 

of the box to be packed in, and I show both the running and the 

final sums.

When you look at the output, you can see this in action:

WH  AISLE  POS  QTY  RUN_QTY  BOX#  BOX_QTY

1   A      16   48   48       1     62

1   A      29   14   62       1     62

1   B      32   43   43       2     43

1   C      5    70   70       3     70

1   C      13   20   20       4     68

1   D      19   48   68       4     68

2   A      1    72   72       5     72

2   B      5    14   14       6     59

2   B      26   24   38       6     59

2   C      31   21   59       6     59

2   D      9    26   26       7     26

The first 48 beers are added to the running sum – it’s not larger than 72, so it is 

assigned to box# 1. Then 14 beers are added making the running sum 62 – still assigned 

to box# 1.
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Then it tries to add the 43 beers in the third row, which gives a running sum of 105 – 

it’s larger than 72, so therefore the row is not classified fits_in_box, and the box# 1 thus 

stops with the first two rows. Instead the 43 beers in the third row become the first beers 

in the second match – box# 2.

And so it goes on until I end up having packed the beers from the 11 locations into 7 

boxes. Fast and easy, but not very optimal. It’s easy to spot that at the very least I could save 

one box by putting the contents of box# 2 and 7 together in a single box with 69 beers.

The problem is that packing simply in order of location does not take into account 

at all whether the quantities would fit together or not. Had the spread of quantities been 

different, I might even have gotten an even worse result using more than seven boxes.

One of the beauties of both analytic functions as well as pattern matching is that 

I can use different order by clauses for the logic and for the final output. So I can try 

to change the order by in the match_recognize in line 13 to order by the quantity in 

descending order (and then only use location as a tiebreaker).

To verify the output more easily, I also change the final order by in line 25 to the 

same (when making a packing list I can always change it back to location order):

...

 12  match_recognize (

 13     order by qty desc, wh, aisle, pos

...

 24  )

 25  order by qty desc, wh, aisle, pos;

I get an output that packs the beers quite differently than before:

WH  AISLE  POS  QTY  RUN_QTY  BOX#  BOX_QTY

2   A      1    72   72       1     72

1   C      5    70   70       2     70

1   A      16   48   48       3     48

1   D      19   48   48       4     48

1   B      32   43   43       5     69

2   D      9    26   69       5     69

2   B      26   24   24       6     65

2   C      31   21   45       6     65

1   C      13   20   65       6     65

1   A      29   14   14       7     28

2   B      5    14   28       7     28
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But it isn’t really any more optimal as I still use seven boxes. In fact this can even be 

called slightly worse, since here I cannot even take the two least-filled boxes and pack 

them together, as 28 + 48 would exceed 72.

There are various approximation algorithms that can get more or less close to 

the optimal solution. I have created a quite simplified version of a modified first fit 

decreasing (MFFD) algorithm. My simple algorithm works like this:

•	 First any quantity larger than 2/3 of a box capacity is simply 

assigned to individual boxes. (Any small quantities that might have 

“filled the holes” are likely to also fit into the rest of the boxes, so as 

approximation it won’t be too far off.)

•	 The remaining quantities I sort in an interleaved manner:

•	 First, the largest

•	 Then the smallest

•	 Then the second largest

•	 Then the second smallest

•	 And so on

•	 Then I pack as before, but using this sorted order, so that I get good 

chances that the interleaved large/small sorting creates pairs that fit 

together in a box.

This simple approximation algorithm I implement in Listing 21-3.

Listing 21-3.  Using a simple best-fit approximation

SQL> select wh, aisle, pos, qty, run_qty, box#, box_qty

  2       , prio ,rn

  3  from (

  4     select

  5        product_name

  6      , warehouse as wh

  7      , aisle

  8      , position  as pos

  9      , qty

 10      , case when qty > 72*2/3 then 1 else 2 end prio
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 11      , least(

 12           row_number() over (

 13              partition by

 14                 case when qty > 72*2/3 then 1 else 2 end

 15              order by qty

 16           )

 17         , row_number() over (

 18              partition by

 19                 case when qty > 72*2/3 then 1 else 2 end

 20              order by qty desc

 21           )

 22        ) rn

 23     from inventory_with_dims

 24     where product_name = 'Der Helle Kumpel'

 25  ) iwd

 26  match_recognize (

 27     order by prio, rn, qty desc, wh, aisle, pos

 28     measures

 29        match_number()   as box#

 30      , running sum(qty) as run_qty

 31      , final   sum(qty) as box_qty

 32     all rows per match

 33     pattern (

 34        fits_in_box+

 35     )

 36     define

 37        fits_in_box as sum(qty) <= 72

 38  )

 39  order by prio, rn, qty desc, wh, aisle, pos;

With this modified algorithm, I get to use just six boxes. The first two have just a 

single large quantity, the next three all have a pair of quantities (one medium, one 

small), and in the last box fit three middlish/smallish quantities:
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WH  AISLE  POS  QTY  RUN_QTY  BOX#  BOX_QTY  PRIO  RN

2   A      1    72   72       1     72       1     1

1   C      5    70   70       2     70       1     1

1   A      16   48   48       3     62       2     1

1   A      29   14   62       3     62       2     1

1   D      19   48   48       4     62       2     2

2   B      5    14   62       4     62       2     2

1   B      32   43   43       5     63       2     3

1   C      13   20   63       5     63       2     3

2   D      9    26   26       6     71       2     4

2   C      31   21   47       6     71       2     4

2   B      26   24   71       6     71       2     5

This algorithm is by no means the most optimal in all cases. I suggest you try out 

several methods for your specific use cases. But the most near-optimal algorithms 

can easily be harder to implement (perhaps almost impossible to implement in SQL, 

requiring procedural code) and use more CPU, so it will probably be a matter of a trade-

off between a simple perhaps-good-enough algorithm like this and a very-good-but-too-

slow algorithm.

Using the Der Helle Kumpel beer as example, I am now ready in Listing 21-4 to 

expand the algorithm to pack all beers in the warehouse.

Listing 21-4.  Using partition by to bin fit all products

SQL> select product_id

  2       , wh, aisle, pos, qty, run_qty, box#, box_qty

  3  from (

  4     select

  5        product_id

  6      , product_name

  7      , warehouse as wh

  8      , aisle

  9      , position  as pos

 10      , qty

 11      , case when qty > 72*2/3 then 1 else 2 end prio

 12      , least(

 13           row_number() over (
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 14              partition by

 15                 product_id

 16               , case when qty > 72*2/3 then 1 else 2 end

 17              order by qty

 18           )

 19         , row_number() over (

 20              partition by

 21                 product_id

 22               , case when qty > 72*2/3 then 1 else 2 end

 23              order by qty desc

 24           )

 25        ) rn

 26     from inventory_with_dims

 27  ) iwd

 28  match_recognize (

 29     partition by product_id

 30     order by prio, rn, qty desc, wh, aisle, pos

 31     measures

 32        match_number()   as box#

 33      , running sum(qty) as run_qty

 34      , final   sum(qty) as box_qty

 35     all rows per match

 36     pattern (

 37        fits_in_box+

 38     )

 39     define

 40        fits_in_box as sum(qty) <= 72

 41  )

 42  order by product_id, prio, rn, qty desc, wh, aisle, pos;

Basically it’s the same thing, but I include product_id in the inline view in line 5, so 

that I can use it to do partition by in line 29. That gives me an output that bin fits all the 

beers:
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PRODUCT_ID  WH  AISLE  POS  QTY  RUN_QTY  BOX#  BOX_QTY

4040        1   A      13   48   48       1     51

4040        1   C      10   3    51       1     51

4040        2   C      28   48   48       2     53

4040        1   A      25   5    53       2     53

...

7950        2   B      25   48   48       10    48

7950        1   C      24   42   42       11    42

7950        2   C      5    44   44       12    44

113 rows selected.

Note that since I use match_number() for the box# column, the box numbering 

restarts for each product; it is not a unique box number throughout the output. If I need 

that, then I need to add, for example, a dense_rank() over (order by product_id, 

box#) to the select list.

Listing 21-4 gave me details about which quantities to put in which box by using 

all rows per match. I can also get just the quantity of each box along with how many 

locations have been packed together by using one row per match in Listing 21-5.

Listing 21-5.  Getting a single output row for each box

SQL> select product_id, product_name, box#, box_qty, locs

  2  from (

...

 26  ) iwd

 27  match_recognize (

 28     partition by product_id

 29     order by prio, rn, qty desc, wh, aisle, pos

 30     measures

 31        max(product_name) as product_name

 32      , match_number()    as box#

 33      , final sum(qty)    as box_qty

 34      , final count(*)    as locs

 35     one row per match

 36     pattern (
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 37        fits_in_box+

 38     )

 39     define

 40        fits_in_box as sum(qty) <= 72

 41  )

 42  order by product_id, box#;

Besides changing line 35, I just change the measures, select list, and order by a bit 

to fit, so I get a simpler output:

PRODUCT_ID  PRODUCT_NAME      BOX#  BOX_QTY  LOCS

4040        Coalminers Sweat  1     51       2

4040        Coalminers Sweat  2     53       2

4040        Coalminers Sweat  3     54       2

...

7950        Pale Rider Rides  10    48       1

7950        Pale Rider Rides  11    42       1

7950        Pale Rider Rides  12    44       1

86 rows selected.

So far I’ve been packing in boxes that had sufficient capacity to contain even the 

largest location quantity I have in the warehouse (72). What happens if I used boxes that 

were too small?

�Showing where box capacity is too small
To demonstrate, I use the simple packing in location order from Listing 21-2 instead of 

the slightly more optimal modified first fit algorithm. The principle is the same no matter 

what algorithm, so I just keep it simple in Listing 21-6.

Listing 21-6.  Problems when the boxes are too small

SQL> select wh, aisle, pos, qty, run_qty, box#, box_qty

  2  from (

  3     select

  4        product_name

  5      , warehouse as wh
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  6      , aisle

  7      , position  as pos

  8      , qty

  9     from inventory_with_dims

 10     where product_name = 'Der Helle Kumpel'

 11  ) iwd

 12  match_recognize (

 13     order by wh, aisle, pos

 14     measures

 15        match_number()   as box#

 16      , running sum(qty) as run_qty

 17      , final   sum(qty) as box_qty

 18     all rows per match

 19     pattern (

 20        fits_in_box+

 21     )

 22     define

 23        fits_in_box as sum(qty) <= 64

 24  )

 25  order by wh, aisle, pos;

The difference from Listing 21-2 is simply that I use boxes with a capacity of 64 in line 

23 instead of 72. What happens then in my output?

WH  AISLE  POS  QTY  RUN_QTY  BOX#  BOX_QTY

1   A      16   48   48       1     62

1   A      29   14   62       1     62

1   B      32   43   43       2     43

1   C      13   20   20       3     20

1   D      19   48   48       4     48

2   B      5    14   14       5     59

2   B      26   24   38       5     59

2   C      31   21   59       5     59

2   D      9    26   26       6     26

I only get nine lines instead of 11. The two quantities that are too large to fit in a box 

are not matched at all, so they do not appear in the output.
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What if I want them to be shown in the output, just without a box#, so I can see that I 

have a problem with those? Well, I could try simply to change the pattern from fits_in_

box+ to fits_in_box* in line 20:

...

 20        fits_in_box*

...

Well, close, but not quite what I want:

WH  AISLE  POS  QTY  RUN_QTY  BOX#  BOX_QTY

1   A      16   48   48       1     62

1   A      29   14   62       1     62

1   B      32   43   43       2     43

1   C      5    70            3

1   C      13   20   20       4     20

1   D      19   48   48       5     48

2   A      1    72            6

2   B      5    14   14       7     59

2   B      26   24   38       7     59

2   C      31   21   59       7     59

2   D      9    26   26       8     26

The two rows with qty 70 and 72 appear as I want them to, but they are assigned a 

box# even though they do not match the rule in the define clause? This is because I use 

* that means zero or more, so match number 3 (box#) and match number 6 are actually 

empty matches.

The pattern matching syntax recognizes empty matches and has a syntax to exclude 

these from the output if you so desire:

...

 18     all rows per match omit empty matches

 19     pattern (

 20        fits_in_box*

 21     )

...

I simply add omit empty matches in line 18, and then the two empty matches no 

longer show in the output:
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WH  AISLE  POS  QTY  RUN_QTY  BOX#  BOX_QTY

1   A      16   48   48       1     62

1   A      29   14   62       1     62

1   B      32   43   43       2     43

1   C      13   20   20       4     20

1   D      19   48   48       5     48

2   B      5    14   14       7     59

2   B      26   24   38       7     59

2   C      31   21   59       7     59

2   D      9    26   26       8     26

But notice in the box# column that match numbers 3 and 6 were actually assigned, 

just not shown. This could be appropriate in some circumstances, but it is not what I 

want.

Instead I go back to using + instead of * and use a different syntax:

...

 18     all rows per match with unmatched rows

 19     pattern (

 20        fits_in_box+

 21     )

...

The pattern uses + (1 or more) in line 20, but then I add with unmatched rows in line 

18. This gives me the output that I want:

WH  AISLE  POS  QTY  RUN_QTY  BOX#  BOX_QTY

1   A      16   48   48       1     62

1   A      29   14   62       1     62

1   B      32   43   43       2     43

1   C      5    70

1   C      13   20   20       3     20

1   D      19   48   48       4     48

2   A      1    72

2   B      5    14   14       5     59

2   B      26   24   38       5     59

2   C      31   21   59       5     59

2   D      9    26   26       6     26

Chapter 21  Bin Fitting



426

Here the quantities 70 and 72 are included in the output, but all of the measures of 

those rows are null, including box#, to show it is a row that was not matched at all – not 

even as an empty match. And you can see that the match number is not increased for the 

unmatched rows.

This is all well and good for the type of bin fitting that has unlimited number of bins 

of limited capacity. But there is a different type of bin fitting as well, so let me show that 

too.

�Bin fitting with limited number of bins of unlimited 
capacity
Imagine we have boxes that are infinitely large – we can pack all the beer bottles into a 

box that we want. But we only have three such boxes, and we want to pack the beers as 

evenly distributed across the three boxes as possible. Still the rule goes that the quantity 

from a given location cannot be split across multiple boxes.

Let me recap the inventory of Der Helle Kumpel, but in Listing 21-7, I just show it in 

order of descending quantity instead of location order as I used in Listing 21-1.

Listing 21-7.  The inventory of the beer Der Helle Kumpel in order of  

descending quantity

SQL> select

  2     product_name

  3   , warehouse as wh

  4   , aisle

  5   , position  as pos

  6   , qty

  7  from inventory_with_dims

  8  where product_name = 'Der Helle Kumpel'

  9  order by qty desc, wh, aisle, pos;
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You see the by now familiar numbers, just in a different order:

PRODUCT_NAME      WH  AISLE  POS  QTY

Der Helle Kumpel  2   A      1    72

Der Helle Kumpel  1   C      5    70

Der Helle Kumpel  1   A      16   48

Der Helle Kumpel  1   D      19   48

Der Helle Kumpel  1   B      32   43

Der Helle Kumpel  2   D      9    26

Der Helle Kumpel  2   B      26   24

Der Helle Kumpel  2   C      31   21

Der Helle Kumpel  1   C      13   20

Der Helle Kumpel  1   A      29   14

Der Helle Kumpel  2   B      5    14

A fairly simple but good approximation algorithm for this type of bin fitting is to take 

the quantities in descending order one by one and put them in the box that has the least 

quantity already. Keep doing that, and at the end you’ll have a pretty even distribution of 

the quantities.

So for three boxes, that means that at first, the three largest quantities are each put in 

a different box. Then the fourth largest is put in the box with the smallest total, and so on. 

I illustrate this in Figure 21-2, which starts at the fourth step and shows the following five 

steps of distributing the quantities. It goes on after that, but you should get the picture of 

how it works.
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To implement this with pattern matching, it is no longer sufficient to use simple 

define and pattern clauses to create one match at a time. In principle here I would need 

to work simultaneously on three matches, adding rows interchangeably to each of the 

matches. That’s not how match_recognize works, however, so I need another way.

Instead in Listing 21-8, I can create a classification definition for each of the three 

boxes and utilize running sums on each classification variable.

Listing 21-8.  All rows in a single match, distributing with logic in define clause

SQL> select wh, aisle, pos, qty, box, qty1, qty2, qty3

  2  from (

  3     select

  4        product_name

Figure 21-2.  Distributing in order of descending quantity
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  5      , warehouse as wh

  6      , aisle

  7      , position  as pos

  8      , qty

  9     from inventory_with_dims

 10     where product_name = 'Der Helle Kumpel'

 11  ) iwd

 12  match_recognize (

 13     order by qty desc, wh, aisle, pos

 14     measures

 15        classifier()          as box

 16      , running sum(box1.qty) as qty1

 17      , running sum(box2.qty) as qty2

 18      , running sum(box3.qty) as qty3

 19     all rows per match

 20     pattern (

 21        (box1 | box2 | box3)*

 22     )

 23     define

 24        box1 as count(box1.*) = 1

 25             or sum(box1.qty) - box1.qty

 26                  <= least(sum(box2.qty), sum(box3.qty))

 27      , box2 as count(box2.*) = 1

 28             or sum(box2.qty) - box2.qty

 29                  <= sum(box3.qty)

 30  )

 31  order by qty desc, wh, aisle, pos;

This query requires some explanations:

•	 The pattern in line 21 is deceptively simple: I look for any number 

of consecutive rows that are classified either box1 or box2 or box3. 

But if you look in the define clause, only box1 and box2 are defined, 

not box3. This means that any row not classified box1 or box2 will 

automatically be classified box3, which in turn means that it is certain 

that all rows will be either box1 or box2 or box3, so that the pattern 

ends up matching all rows.
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•	 In other words, I’m not really interested in creating multiple matches. 

What interests me is how the individual rows are classified as I walk 

along the rows in the one big single match in the order specified in 

line 13.

•	 The rows are classified in this way: The classification definitions 

that potentially can expand the match (in this case all three 

classifications) are tested one by one for truth in such a way 

that it checks if the condition is true if the row is included in 

this classification. At the first true definition, the row gets that 

classification. If neither box1 nor box2 is true, the row gets the 

undefined (and thus by default true) classification box3.

•	 So when checking if a row is to be classified box1, it makes the 

assumption that the row is box1 and then checks if the condition is 

true. Therefore, when in line 25 it evaluates the running sum(box1.

qty), this includes the qty of the current row. But I want to check how 

much was in box1 before adding the current row, so I need to subtract 

the qty of the current row.

•	 Line 25 calculates how much is in box1 (excluding the current row). 

In line 26, I check if this is less than (or equal to) the smallest of how 

much is in box2 and box3. If this is true, then box1 is the box with 

the least in it (or at least one of them if more than one has the same 

smallest sum) and the current row should go into box1.

•	 If box1 was not the one with the least in it, I move on to test box2 by 

calculating in line 28 how much is in box2 (excluding the current row) 

and checking in line 29 if it is less than (or equal) to how much is in 

box3. If this is true, then box2 is the box with the least in it, and the 

current row should go into box2.

•	 If box2 was not the one, the row defaults to box3 – the only possibility 

left in the pattern.
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•	 In lines 24 and 27, I check the count of box1 and box2, respectively. 

If the count is 1, then that 1 row is the current row (remember by 

evaluating the conditions it is assumed the current row will be 

classified box1 and box2, respectively) which means that the box 

was empty before the current row and therefore definitely the one 

with the least in it. Testing these counts eliminates worrying about 

null sums.

•	 As it is all one single match, line 19 outputs all of the rows. Line 15 

then uses the classifier() function to show which box the row 

ended up in.

•	 Lines 16–18 show the running sums of the three boxes enabling 

me to inspect in the output if my algorithm worked. (Note that I 

haven’t written running in the sums in the define clause – they are by 

definition running sums.)

Making the final order by identical to the match_recognize ordering makes the 

output explain what happens in the single match as the rows are handled in descending 

quantity order:

WH  AISLE  POS  QTY  BOX   QTY1  QTY2  QTY3

2   A      1    72   BOX1  72

1   C      5    70   BOX2  72    70

1   A      16   48   BOX3  72    70    48

1   D      19   48   BOX3  72    70    96

1   B      32   43   BOX2  72    113   96

2   D      9    26   BOX1  98    113   96

2   B      26   24   BOX3  98    113   120

2   C      31   21   BOX1  119   113   120

1   C      13   20   BOX2  119   133   120

1   A      29   14   BOX1  133   133   120

2   B      5    14   BOX3  133   133   134

You can see how for each quantity it is distributed into the boxes just like Figure 21-2, 

where columns qty1, qty2, and qty3 are the running sums that show how much so far 

has been put into, respectively, box1, box2, and box3.
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The one slight drawback with this method is that the number of boxes needs a bit 

of work to change. If, for example, I have four boxes instead of three, I need to modify 

Listing 21-8 like this:

 20     pattern (

 21        (box1 | box2 | box3 | box4)*

 22     )

 23     define

 24        box1 as count(box1.*) = 1

 25             or sum(box1.qty) - box1.qty

 26                  <= least(

 27                        sum(box2.qty)

 28                      , sum(box3.qty)

 29                      , sum(box3.qty)

 30                     )

 31      , box2 as count(box2.*) = 1

 32             or sum(box2.qty) - box2.qty

 33                  <= least(sum(box3.qty), sum(box4.qty))

 34      , box3 as count(box3.*) = 1

 35             or sum(box3.qty) - box3.qty

 36                  <= sum(box4.qty)

To complete it all, in Listing 21-9, I do this for every product, so that each product has 

three infinite-capacity boxes.

Listing 21-9.  All products in three boxes each – output sorted by location

SQL> select product_name, wh, aisle, pos, qty, box

  2  from (

  3     select

  4        product_id

  5      , product_name

  6      , warehouse as wh

  7      , aisle

  8      , position  as pos

  9      , qty

 10     from inventory_with_dims
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 11  ) iwd

 12  match_recognize (

 13     partition by product_id

...

 28  )

 29  order by wh, aisle, pos;

This I accomplish with the partition by in line 13. If I skipped this line, all beers 

would be packed into the same three boxes.

And then I’ve ordered the output in location order, so this can be a packing list for 

packing everything from the warehouse:

PRODUCT_NAME      WH  AISLE  POS  QTY  BOX

Ghost of Hops     1   A      2    39   BOX1

Reindeer Fuel     1   A      3    48   BOX1

Hoppy Crude Oil   1   A      4    37   BOX2

...

Hazy Pink Cloud   2   D      23   17   BOX2

Reindeer Fuel     2   D      25   29   BOX2

Pale Rider Rides  2   D      28   40   BOX3

113 rows selected.

Maybe you think that it is not a very practical method for packing beers, as beer 

boxes of course in real life do not have an infinite capacity. But the principle is valid 

for other cases as well – a fairly common one is scheduling tasks on a given set of 

processors/resources. Instead of quantity, it is just time that is distributed as evenly 

as possible – putting a task on the processor with the least number of minutes in it is 

equivalent to putting it on the one that has the earliest available timeslot.

�Lessons learned
Bin fitting in itself is a difficult problem to get as optimal a fit as possible; usually it is a 

matter of choosing either a complex solution with a nearly optimal fit or a simpler and 

faster solution with an approximate fit. What you choose is most often determined by 

how good an approximation you need for your business purpose.
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In this chapter I haven’t given you perfect fit solutions, but rather approximations – 

the bin fitting with limited number of boxes being reasonably good and the one with 

unlimited number of boxes being a relatively rough approximation. But with match_

recognize, they’re pretty fast, and they are good examples to teach you the following:

•	 Using running aggregates in the define clause to make the 

classification depend on summary values up to the current row.

•	 Creating calculated column values to support complex ordering to 

make the match_recognize clause walk through the data in very 

specific desired order.

•	 Having the pattern match all rows and utilize define to classify all 

rows can be an option to make match_recognize a tool to create a 

data manipulation algorithm rather than a data search tool.

•	 Using aggregates of other classification variables in the define clause 

to make the outcomes of different classification variables depend on 

each other.

•	 Utilizing the fact that an undefined classification variable is by default 

considered true, so it can be used as a kind of else option.

All in all, understanding these examples will help you gain the way of thinking that 

lets you really utilize all the power of match_recognize.
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CHAPTER 22

Counting Children 
in Trees
Sometimes you’d like to do aggregation where a row is included in multiple rows of the 

output, for example, being counted multiple times or having the value added multiple 

times. An example of this is hierarchical data, where you want for every row to find the 

count of all the children in the tree – not just immediate children but also grandchildren 

and their children and so on, all the way down to the leaves of the tree.

It means that a given row is counted in the result for the parent, but also counted 

again in the result of the grandparent, and so on. It can look similar to subtotals created 

with group by and rollup, but with the hierarchy, you don’t know how many levels 

down it goes, so you cannot simply use rollup.

One way I can solve this is using the after match skip to next row clause of 

match_recognize. Of course it could be used for other aggregates than count, but count 

is easy to understand, and once you know the technique, you can do the others easily.

�Hierarchical tree of employees
The most classic table used to demonstrate hierarchical queries on Oracle is scott.emp 

table. Well, the Good Beer Trading Co also employs people, so my practical schema 

naturally has a table employees depicted in Figure 22-1.
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The column supervisor_id is a self-referencing foreign key that references the 

primary key id. Only one person has no supervisor – the boss of the company – for 

everyone else the supervisor_id contains the id of their immediate supervisor in the 

employee hierarchy. So I can show you the data of the table in a tree using Listing 22-1.

Listing 22-1.  A classic hierarchical query of employees

SQL> select

  2     e.id

  3   , lpad(' ', 2*(level-1)) || e.name as name

  4   , e.title as title

  5   , e.supervisor_id as super

  6  from employees e

  7  start with e.supervisor_id is null

  8  connect by e.supervisor_id = prior e.id

  9  order siblings by e.name;

For a simple hierarchy like this, I tend to use the Oracle proprietary connect by 

query instead of the recursive subquery factoring I showed in Chapter 4. One of the 

things that are easier with connect by is, for example, the order siblings by I use 

here – that is more awkward to code with recursive subquery factoring.

Figure 22-1.  The employees table with a self-referencing foreign key
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So I start with the boss by specifying in line 7 to start with those with no supervisors. 

Then line 8 finds the immediate subordinates of the boss and then goes on recursively to 

find subordinates of those and so on:

ID   NAME                TITLE              SUPER

142  Harold King         Managing Director

144    Axel de Proef     Product Director   142

151      Jim Kronzki     Sales Manager      144

150        Laura Jensen  Bulk Salesman      151

154        Simon Chang   Retail Salesman    151

148      Maria Juarez    Purchaser          144

147    Ursula Mwbesi     Operations Chief   142

146      Lim Tok Lo      Warehouse Manager  147

152        Evelyn Smith  Forklift Operator  146

149        Kurt Zollman  Forklift Operator  146

155        Susanne Hoff  Janitor            146

143      Mogens Juel     IT Manager         147

153        Dan Hoeffler  IT Supporter       143

145        Zoe Thorston  IT Developer       143

It’s different persons, but you’re likely to have seen a very similar output using 

scott.emp somewhere. And this query will form the basis for the rest of the SQL I’ll show 

in this chapter.

�Counting subordinates of all levels
The task is now for each row to do a count of subordinates all the way down the tree – not 

just the immediate subordinates one level down. If you look at the organization diagram 

in Figure 22-2, I need to find that Harold King has 13 subordinates (all employees except 

himself), Ursula Mwbesi has 7 subordinates total (2 immediately below her plus 5 that 

are a level further down the tree), Lim Tok Lo has 3 subordinates total (all just 1 level 

below and they have no further subordinates), and so on.
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A simple way to do this is using a scalar subquery as shown in Listing 22-2. The 

scalar subquery can find the relevant subtree in the hierarchy and count the nodes of the 

subtree.

Listing 22-2.  Counting the number of subordinates

SQL> select

  2     e.id

  3   , lpad(' ', 2*(level-1)) || e.name as name

  4   , (

  5        select count(*)

  6        from employees sub

  7        start with sub.supervisor_id = e.id

  8        connect by sub.supervisor_id = prior sub.id

  9     ) as subs

 10  from employees e

 11  start with e.supervisor_id is null

 12  connect by e.supervisor_id = prior e.id

 13  order siblings by e.name;

Figure 22-2.  Organization diagram with some of the subtrees marked
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The outer query is the same as Listing 22-1. The scalar subquery in lines 4–9 utilizes 

the same connect by query; only start with is not from the top of the tree, but instead 

start with in line 7 starts with those that are immediate subordinates of the current row 

in the outer query and searches the subtree from there and down:

ID   NAME                SUBS

142  Harold King         13

144    Axel de Proef     4

151      Jim Kronzki     2

150        Laura Jensen  0

154        Simon Chang   0

148      Maria Juarez    0

147    Ursula Mwbesi     7

146      Lim Tok Lo      3

152        Evelyn Smith  0

149        Kurt Zollman  0

155        Susanne Hoff  0

143      Mogens Juel     2

153        Dan Hoeffler  0

145        Zoe Thorston  0

The output is just what I’m after, but I’ve accessed the same rows of the tables 

multiple times – like Simon Chang that has been accessed four times: once in the scalar 

subquery for each of the three people above him in the tree and then once in the main 

query when it got to him in the tree. Also every time a leaf node in the tree was accessed, 

the database queried if there was anyone below him/her, so the four times Simon was 

accessed also incurred four lookups if he had subordinates.

All in all, it is a lot of repetitive work for the database. But luckily I have a way to 

reduce that amount of work.

�Counting with row pattern matching
Using row pattern matching, I can create the query shown in Listing 22-3, which only 

needs to do the hierarchical query a single time and then do all the necessary counts on 

the retrieved tree without accessing the tables over and over again.
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Listing 22-3.  Counting subordinates with match_recognize

SQL> with hierarchy as (

  2     select

  3        lvl, id, name, rownum as rn

  4     from (

  5        select

  6           level as lvl, e.id, e.name

  7        from employees e

  8        start with e.supervisor_id is null

  9        connect by e.supervisor_id = prior e.id

 10        order siblings by e.name

 11     )

 12  )

 13  select

 14     id

 15   , lpad(' ', (lvl-1)*2) || name as name

 16   , subs

 17  from hierarchy

 18  match_recognize (

 19     order by rn

 20     measures

 21        strt.rn           as rn

 22      , strt.lvl          as lvl

 23      , strt.id           as id

 24      , strt.name         as name

 25      , count(higher.lvl) as subs

 26     one row per match

 27     after match skip to next row

 28     pattern (

 29        strt higher*

 30     )

 31     define

 32        higher as higher.lvl > strt.lvl

 33  )

 34  order by rn;
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The output of Listing 22-3 is exactly the same as the output of Listing 22-2. I’ll tell you 

how it works:

•	 I’m using a with clause for clarity as I taught you in Chapter 3.

•	 Inside the with clause lines 5–10 is an inline view containing the 

basic hierarchical query I’ve already shown you in the previous 

listings. Notice the order by in line 10 is inside the inline view.

•	 I place it in an inline view so that I can use rownum in line 3 (outside 

the inline view) and save it as column alias rn. I need to preserve the 

hierarchical ordering created by the inline view when I do my row 

pattern matching – this allows me to do so.

•	 Building my match_recognize clause, I start by defining in line 32 

that a row that has a higher level than the starting row of the pattern 

is classified as higher – meaning that when it has a higher level, then 

it is a child/grandchild/greatgrandchild/… of the starting row (i.e., a 

subordinate).

•	 Of course, not everybody in the entire row set with a higher level is 

a subordinate – only those consecutive rows with a higher level that 

follow the row itself. Once I reach someone with the same level (or 

lower), then I am no longer within the subtree I want. I solve this in 

the pattern in line 29 by looking for a strt row (which is undefined 

and therefore can be any row) followed by zero or more higher 

rows – when a row is reached that is no longer classified higher, the 

match stops.

•	 In line 26, I’ve specified one row per match, and the employee I’m 

interested in outputting data from is the strt row, so I’m using strt 

columns in the measures in lines 21–24.

•	 In line 25, I’m doing a count on how many higher rows were in 

the match. If I just did a plain count(*), I’d be including the strt 

row, but on that row anything I qualify with higher will be null, 

so counting higher.lvl gives me a count only of the higher rows, 

which is the count of subordinates that I want.
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•	 With after match skip to next row in line 27, I’m specifying that 

once it has finished with a match of one strt row and zero or more 

higher rows, it should move to the next row that follows after the 

strt row. This is the part that makes rows be counted more than 

once – I’ll explain in detail shortly.

That’s all clear, right? Well, I’ll dive a little more into the details to clarify why it 

works.

Note A  few words on why you’d consider using the long and somewhat 
convoluted Listing 22-3 instead of the short and clear Listing 22-2. 

I tested this on an employee table where I had 14001 employees in it. 

The scalar subquery method used about 11 seconds, nearly half a million 
consistent gets, and over 37000 sorts, due to a full table scan and many, many 
index range scans for the connect by processing. 

The match_recognize method used less than half a second, 55 consistent gets, 
and four (four!) sorts, with just a single full table scan. 

Your mileage will vary, of course, so test it yourself.

�The details of each match
As I’ve mentioned before, very often a good way to see what happens is to inspect the 

detailed output using all rows per match. So this is what I do in Listing 22-4.

Listing 22-4.  Inspecting the details with all rows per match

SQL> with hierarchy as (

...

 12  )

 13  select

 14     mn

 15   , rn

 16   , lvl

 17   , lpad(' ', (lvl-1)*2)
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 18      || substr(name, 1, instr(name, ' ') - 1) as name

 19   , roll

 20   , subs

 21   , cls

 22   , substr(stname, 1, instr(stname, ' ') - 1) as stname

 23   , substr(hiname, 1, instr(hiname, ' ') - 1) as hiname

 24  from hierarchy

 25  match_recognize (

 26     order by rn

 27     measures

 28        match_number()    as mn

 29      , classifier()      as cls

 30      , strt.name         as stname

 31      , higher.name       as hiname

 32      , count(higher.lvl) as roll

 33      , final count(higher.lvl) as subs

 34     all rows per match

 35     after match skip to next row

 36     pattern (

 37        strt higher*

 38     )

 39     define

 40        higher as higher.lvl > strt.lvl

 41  )

 42  order by mn, rn;

The with clause subquery is unchanged, as are the after match, pattern, and 

define clauses. I’ve changed the one row to all rows per match in line 34 and then 

created some different measures in lines 28–33:

•	 The match_number() function in line 28 is a consecutive numbering 

of the matches found. Without it, I couldn’t tell which rows in the 

output belongs together as part of each match.

•	 The classifier() function shows what the row has been classified 

as according to the pattern and define clauses – in this case showing 

whether a row is strt or higher.
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•	 When column names are not qualified, values of the current row 

in the match are used, no matter what classifier they have. When I 

qualify the column names with the classifier strt and higher in lines 

30 and 31, I get the values from the last of the rows with that classifier.

•	 Aggregate functions like count in lines 32 and 33 can be running 

or final. In Listing 22-3, it did not matter, since I used one row 

per match, but here it does matter, so I output both to show the 

difference. Line 32 defaults to running (aka rolling count) which 

gives a result similar to an analytic function with a window of rows 

between unbounded preceding and current row, while line 33 

with final keyword works similar to rows between unbounded 

preceding and unbounded following.

The output of Listing 22-4 has far more rows than are in the table, but I have 

14 matches (one for each row in the table) identified by 1–14 in the mn column. So if I step 

through the output, here’s the rows for the first match:

MN  RN  LVL  NAME           ROLL  SUBS  CLS     STNAME   HINAME

1   1   1    Harold         0     13    STRT    Harold

1   2   2      Axel         1     13    HIGHER  Harold   Axel

1   3   3        Jim        2     13    HIGHER  Harold   Jim

1   4   4          Laura    3     13    HIGHER  Harold   Laura

1   5   4          Simon    4     13    HIGHER  Harold   Simon

1   6   3        Maria      5     13    HIGHER  Harold   Maria

1   7   2      Ursula       6     13    HIGHER  Harold   Ursula

1   8   3        Lim        7     13    HIGHER  Harold   Lim

1   9   4          Evelyn   8     13    HIGHER  Harold   Evelyn

1   10  4          Kurt     9     13    HIGHER  Harold   Kurt

1   11  4          Susanne  10    13    HIGHER  Harold   Susanne

1   12  3        Mogens     11    13    HIGHER  Harold   Mogens

1   13  4          Dan      12    13    HIGHER  Harold   Dan

1   14  4          Zoe      13    13    HIGHER  Harold   Zoe

As my pattern matching is ordered by rn, it starts at rn = 1 (Harold) and classifies 

him strt (since any row can match strt) and then repeatedly checks if the next row has 

a lvl greater than the lvl of the strt row, which is true for all of the remaining 13 rows, 
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as everybody else has a lvl greater than 1. That means that the first match does not stop 

until it reaches the end of the rows.

Match number 1 has now been found, containing 1 strt row and 13 higher rows as 

shown in the cls column. In the strt row, no higher rows have been found yet, so when 

I qualify a column with higher (and I am not using the final keyword), the result is 

null, as you can see in column hiname. This also means that when I do the total (final) 

count of higher in column subs, the strt row is not counted, and the result is the 

desired 13 subordinates.

You can also see in the output how the running total goes in column roll and that 

strt.name in column stname keeps the value of the last (in this case only) strt row.

So when the first match is finished, I specified after match skip to next row, 

which in this case is rn = 2 (Axel). He’ll be the strt row of match mn = 2 in the 

continued output:

2   2   2      Axel         0     4     STRT    Axel

2   3   3        Jim        1     4     HIGHER  Axel     Jim

2   4   4          Laura    2     4     HIGHER  Axel     Laura

2   5   4          Simon    3     4     HIGHER  Axel     Simon

2   6   3        Maria      4     4     HIGHER  Axel     Maria

After Axel as strt, this match finds four higher rows, because row rn = 7 (Ursula) 

has lvl = 2, which is not higher than Axel (it is the same), and therefore the match stops 

with Maria. The counting of subordinates works just like before – even though there are 

five rows in the match, there are only four that are classified higher and are counted. 

These rows were also included in the count of Harold King’s subordinates in match 

number 1, but because of skipping back up to rn = 2 to find the next match, these rows 

are included once more.

The next row after Axel is Jim, who’ll be the strt row of match mn = 3 that is the next 

in the output:

3   3   3        Jim        0     2     STRT    Jim

3   4   4          Laura    1     2     HIGHER  Jim      Laura

3   5   4          Simon    2     2     HIGHER  Jim      Simon

Match number 3 ends up with one strt row and just 2 higher rows, since Maria 

(who follows Simon in the rn order) does not have a lvl higher than Jim. So Laura and 

Simon are counted as Jim’s subordinates – just as they also were counted under Axel and 

under Harold.
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The output moves on to match number 4, which starts with Laura classifying her 

as a strt row. After her comes Simon, but he has the same lvl as Laura. Therefore, he 

cannot be a higher row, and the match becomes a match containing only a single strt 

row and no higher rows, leading to a subordinate count of 0 in the output:

4   4   4          Laura    0     0     STRT    Laura

And so it goes on and on, until at the end, the match number mn = 14 is found, 

containing just Zoe:

...

14  14  4          Zoe      0     0     STRT    Zoe

The details of this long output are good to learn how the different pieces of match_

recognize work for this solution. But I can also take just some of the columns of the all 

rows per match output and use pivot in Listing 22-5 to visualize the rows that are part 

of each match.

Listing 22-5.  Pivoting to show which rows are in which match

SQL> with hierarchy as (

...

 12  )

 13  select

 14     name

 15   , "1", "2", "3", "4", "5", "6", "7"

 16   , "8", "9", "10", "11", "12", "13", "14"

 17  from (

 18     select

 19        mn

 20      , rn

 21      , lpad(' ', (lvl-1)*2)

 22         || substr(name, 1, instr(name, ' ') - 1) as name

 23     from hierarchy

 24     match_recognize (

 25        order by rn

 26        measures

 27           match_number()    as mn
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 28        all rows per match

 29        after match skip to next row

 30        pattern (

 31           strt higher*

 32        )

 33        define

 34           higher as higher.lvl > strt.lvl

 35     )

 36  ) pivot (

 37     max('X')

 38     for mn in (

 39        1,2,3,4,5,6,7,8,9,10,11,12,13,14

 40     )

 41  )

 42  order by rn;

The only measure I am using is match_number() in line 27, and then in lines 

19–22, I select just mn, rn, and the name. This allows me to do a pivot for mn in line 38 

specifying the 14 match numbers in line 39, thereby getting rn, name, and 14 columns 

named 1–14 (these column names must be enclosed in double quotes, as they do not 

start with a letter).

The value of the 14 match number columns is the literal X if the rn of the row is 

included in the match, otherwise null. So I can select the mn column and the Xs and just 

use rn for ordering the output:

NAME           1  2  3  4  5  6  7  8  9  10  11  12  13  14

Harold         X

  Axel         X  X

    Jim        X  X  X

      Laura    X  X  X  X

      Simon    X  X  X     X

    Maria      X  X           X

  Ursula       X                 X

    Lim        X                 X  X

      Evelyn   X                 X  X  X

      Kurt     X                 X  X     X

      Susanne  X                 X  X         X
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    Mogens     X                 X                X

      Dan      X                 X                X   X

      Zoe      X                 X                X       X

In this pivoted output, it is easy to use the Xs to check that all rows are included in 

match number 1, the rows from Axel to Maria are included in match number 2, and so on.

�Fiddling with the output
Having examined the detailed output, I’ll return to the one row per match version to 

fiddle a bit more and show you a couple of things.

First, I’d like to make it clear that although Listing 22-3 with one row per match only 

has a single aggregate measure, and so far I’ve only shown multiple aggregate measures 

in Listing 22-4 using all rows per match, it is perfectly legitimate to use multiple 

aggregates or uses of functions like first and last together with one row. Take a look at 

Listing 22-6.

Listing 22-6.  Adding multiple measures when doing one row per match

SQL> with hierarchy as (

...

 12  )

 13  select

 14     lpad(' ', (lvl-1)*2) || name as name

 15   , subs

 16   , hifrom

 17   , hito

 18   , himax

 19  from hierarchy

 20  match_recognize (

 21     order by rn

 22     measures

 23        strt.rn            as rn

 24      , strt.lvl           as lvl

 25      , strt.name          as name

 26      , count(higher.lvl)  as subs

 27      , first(higher.name) as hifrom
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 28      , last(higher.name)  as hito

 29      , max(higher.lvl)    as himax

 30     one row per match

 31     after match skip to next row

 32     pattern (

 33        strt higher*

 34     )

 35     define

 36        higher as higher.lvl > strt.lvl

 37  )

 38  order by rn;

In lines 26–29, I am using both navigational functions and aggregates. Remember 

that when I use one row per match, it makes no difference if I use running or final for 

the aggregates, so even if I didn’t specify final, I get the same result:

NAME                SUBS  HIFROM         HITO          HIMAX

Harold King         13    Axel de Proef  Zoe Thorston  4

  Axel de Proef     4     Jim Kronzki    Maria Juarez  4

    Jim Kronzki     2     Laura Jensen   Simon Chang   4

      Laura Jensen  0

      Simon Chang   0

    Maria Juarez    0

  Ursula Mwbesi     7     Lim Tok Lo     Zoe Thorston  4

    Lim Tok Lo      3     Evelyn Smith   Susanne Hoff  4

      Evelyn Smith  0

      Kurt Zollman  0

      Susanne Hoff  0

    Mogens Juel     2     Dan Hoeffler   Zoe Thorston  4

      Dan Hoeffler  0

      Zoe Thorston  0

So my first point was the use of multiple measures for whatever output I want in 

the various columns. Can I fiddle with the rows in the output as well? Say, for example, 

I want to output only those employees that actually have subordinates (or in other words 

are not leaf nodes in the tree).
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Sure, I could put the entire query in an inline view and then use a where clause to 

filter on subs > 0 and that way not get any leaf nodes in the output. It would work fine, 

but my second point to show you is a better alternative that filters away the non-leaf 

nodes earlier in the processing.

In Listing 22-3 line 29, I’m using a pattern of strt higher* which is a pattern that 

by design will be matched by any row that will be classified strt – it is just a question of 

how many higher rows will follow after that strt row. So Listing 22-3 will by the nature 

of the pattern output all rows of the table.

Let me in Listing 22-7 change just one character – otherwise, it is identical to 

Listing 22-3.

Listing 22-7.  Filtering matches with the pattern definition

...

 29        strt higher+

...

I have changed * to + which means that any given strt row will only cause a match 

if it is followed by at least one higher row. So the leaf nodes, which are not followed by 

any higher row, will not cause a match – instead the database simply moves one row 

along and checks if it can find a match using the next row as strt row. This leads to only 

supervisors being output:

ID   NAME             SUBS

142  Harold King      13

144    Axel de Proef  4

151      Jim Kronzki  2

147    Ursula Mwbesi  7

146      Lim Tok Lo   3

143      Mogens Juel  2

Doing it this way allows the database to discard the unwanted rows immediately as it 

works its way through the pattern matching process – rather than the inline view that lets 

the database build a result set of all rows and then afterward removes the unwanted ones 

again.
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�Lessons learned
In this chapter I’ve demonstrated that with a suitable ordering, the after match skip 

to next row clause can very efficiently allow match_recognize to process the same rows 

multiple times in different groupings without accessing them in the table multiple times. 

In the demos I covered

•	 Preparing the source query by creating an ordering column that 

allows match_recognize to work in the hierarchical order

•	 Setting a pattern that for each row finds the group of rows that are in 

the subtree below

•	 Using after match skip to next row to use the pattern search on 

every row, even if it was included in previous matches

•	 Changing the pattern to ignore those rows not having a subtree 

below

These methods you can use on any hierarchical data. They can also be useful on 

other data with an ordering that is nontrivial, where you can set up a more complex 

query to prepare the data and preserve the ordering, before you process the data with 

match_recognize.
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lead, 361–362, 398, 402

case expression to create null on 
undesired rows, 277

emulating connect_by_isleaf in 
with clause recursion, 71

ignore nulls, 276–280, 283
look more than one row ahead 

using second parameter, 272, 277
null at end of partition, 270, 272, 

274, 276, 277, 279, 283
ntile, 41, 42
order by clause

analytic order by different than 
query order by, 199, 246

over, 209
query partition clause, 196, 197

rank, 222–225
regr_intercept, 298, 299, 305
regr_slope, 298, 299, 305
row_number, 220–222, 353–356, 359, 

418–420
emulating minus all, 35–37
emulating multi-column scalar 

subquery, 8
sum (see also Rolling sum)
windowing clause

default window clause  
dangers, 208–212

number of rows preceding or 
following, 211, 292, 293

range between, 206, 210
range on current row may include 

following rows, 206–208
rows between, 200, 312, 313
shortcut with implicit  
between, 201

unbounded following, 204, 211
unbounded preceding, 210, 211, 

312, 313
values preceding or following, 211

B
Bin fitting

approximation algorithm, 411
evenly distributing in bins, 423
limited number of bins, 426–433
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modified first fit decreasing  
(MFFD), 417

unlimited number of bins, 413–422

C
Collection, See Nested table type
Collection operators, See Multiset 

operators
Common table expressions, See with 

clause
connect by queries, See Queries, 

hierarchical
Conway’s Game of Life

oscillator, 104
Creating delimited text

large delimited text
distinct in listagg, 182
ORA-01489 when using listagg, 185
on overflow subclause in  
listagg, 186

using collect
specifying nested table type using 
cast, 175

using apex_string.join, 176
using apex_string.join_clob, 189

using json_arrayagg
returning clob using  
json_value, 188

using listagg, 172–173
using stragg ODCI aggregate function

supporting distinct using map 
member, 177, 178

using xmlagg
getclobval, 188
using xmlelement, 182
using xmlparse, 183, 184

D
Date intervals

half-open intervals
advantages compared to closed 

intervals, 372, 374–376
Dynamic SQL

expression evaluation with execute 
immediate, 70

E
execute immediate, See Dynamic SQL
Expression lists

in pivot measures, 143

F
Forecasting future values

centered moving average, 292–293
deseasonalizing, 295–298
linear regression

interception point, 299
slope, 299

reseasonalizing, 301–305
seasonality factor

partition by month of  
year, 290

time series, 287–292
trend line, 298–300

Forecasting reaching minimum
adding values when minimum  

reached
using model clause  

iteration, 319–321
using with clause recursion,  

316, 319, 322
summing expected values from 

budget, 308

Bin fitting (cont.)
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Functions
add_months, 289, 315, 317, 320
analytic functions (see Analytic 

functions)
extract, 289, 295
greatest, 312, 313, 317, 320
least, 245, 418, 419
listagg

visualizing two dimensions, 91
mod, 250, 263
nullif, 294–297, 403
numtodsinterval, 315, 317, 320
regexp_count, 154, 164
regexp_substr, 154–156, 163–164
replace, 147, 158, 159, 165
trunc, 309, 314, 317, 320

G
Gap detection

using lead, 361–362
using match_recognize

first row of next group using skip 
to last, 362

using value of subset in  
measures, 362, 363

Grouping rows
on cross-row conditions using 

match_recognize
consecutive data, 358–361
within fixed interval from first  

row, 367–369
until gap in data, 364–367

Tabibitosan method
on consecutive dates, 358–361
on consecutive integers, 356

using last_value, case and ignore 
nulls, 280

H
Hierarchical queries, See Queries, 

hierarchical

I
Inline views

as alternative to scalar subquery, 9
correlating

cross apply, 11–12
lateral, 3, 9–12
outer apply, 13–14

J
JSON

json_arrayagg
returning clob, 188

json_table
individual elements of JSON array 

in path, 156
treating delimited string as JSON 

array, 155–156
json_value, 188

K
Knapsack problem, See Bin fitting

L
loop

exit when, 148

M
match_recognize

after match
compare to last row of specific 

classification using last, 336
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compare to previous row using 
prev, 328

complex row-classifying  
condition, 341

default, 336
evaluation depending on  
pattern, 327

mutually exclusive definitions, 329
skip past last row, 336
skip to last, 284, 336–339,  

342, 362
skip to next row, 440, 442, 443, 

445, 447, 449
undefined classification always 

true, 331
define

compare next row to max of rows so 
far, 381–386

compare to following row using 
next, 361, 367, 382–383, 398,  
408, 435

compare to previous row using 
prev, 366, 368, 379–381

compare to specific row using 
classification name, 434

compare to starting row using 
first, 367–368

complex row-classifying  
condition, 407, 415

evaluation depending on  
pattern, 407

simple row-classifying  
condition, 283

skip to first, 348
truth assumption when evaluating 

condition, 430

undefined classification always 
true, 368, 383, 385, 430, 434, 441

using running sum, 430
gap detection (see Gap detection)
measures

classifier, 443
final semantics, 395, 396, 444,  

445, 449
match_number, 328, 333, 334, 338, 

339, 342, 414, 418, 420, 421, 423, 
443, 446, 447

running semantics, 394, 415, 444, 
445, 449

using first, 284, 334, 335, 360, 379, 
381, 382, 394–397, 400, 448

using last, 284, 334, 335, 360, 379, 
381, 382, 394–396, 400, 448, 449

using last on subset, 362, 363
using max, 379, 381, 382
using next, 394–396, 400, 449
using next on last, 284, 400, 418
using prev, 327
using prev on first, 395, 396, 400

omit empty matches, 424
order by, 327, 328
output

all rows per match, 327, 328, 333, 
334, 336, 338, 342, 414, 418, 420, 
421, 423–425, 429, 442–443

one row per match, 328, 334, 336, 
338, 342, 348, 349, 394, 396, 400, 
402, 405, 407, 421, 448–449

partition by, 327, 328, 334, 338,  
339, 345

pattern
| alternator (or), 327, 328,  

330–333, 407

match_recognize (cont.)
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matching all rows in  
one match, 429

∗ quantifier, 283
* quantifier, 364, 379, 440, 441, 443, 

446, 450
+ quantifier, 332–336, 338, 341, 394, 

396, 400, 402, 405, 409, 425, 450
subset

after match skip to last of a 
subset, 336–339, 342, 362

with unmatched rows, 425, 426
model clause

any, 92
cv() cell addressing, 97, 320
dimension by, 91, 92

consecutive number using  
row_number, 320

ignore nav, 92
iteration_number, 97, 320
measures, 92, 320
partition by, 319
rules

iterate, 97, 98, 320
sequential order, 320

upsert all, 97
Modularization of SQL, See with clause
Multiset operators

default differences compared to set 
operators, 38

disappearing values by multiset 
except distinct, 32

multiset except
compared to minus, 34–37

multiset intersect, 30–31
multiset union, 28–30
using all, 28, 32
using distinct, 28

N, O
Nested table type

aggregated output of collect, 184
iterating elements with first and 

last, 174
output of pipelined table function, 147

P
Pipelined table function

apex_string.split, 152–153
custom built, 152
pipe row, 147

PL/SQL functions
in with clause (see with clause,  

PL/SQL functions)
PRAGMA UDF, 77–80
reducing context switching  

overhead, 78, 79

Q
Queries

cross join
generate dynamic unpivot 

dimension mapping, 123–128
generate grid, 89
generate rows for manual 

unpivoting, 121–122
generate variable number of rows 

using lateral, 151
lateral, 10

Expression lists
in unpivot measures and 

dimensions, 114–116, 119, 122
fetch first (see Top-N calculations, 

using fetch first)
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fetch first rows
in correlated inline views, 10

hierarchical
connect by, 59, 436
connect_by_isleaf, 60
connect_by_root, 60
level, 58, 436
order siblings by, 60, 436
start with, 58, 436
sys_connect_by_path, 60

outer join
partitioned, 290
using lateral and on clause 

together, 12
pivot (see below pivoting)
pivoting

column naming by aliasing,  
140, 141, 143

expression lists in measures, 143
implicit group by aggregation,  

136, 137, 280–281, 435
keeping only needed columns for 

implicit group by, 137
multiple measures and  

dimensions, 139–144
single measure and dimension, 

134–137, 139–144
using group by and case 

expressions, 138
using pivot, 138, 282, 446–447

refcursor variable
opening with dynamic SQL, 124

table keyword
adding (+) as outer join 

equivalent, 150
column_value for scalar  

output, 149

cross apply, 151
outer apply, 159–160

temporal validity
null for infinity, 386–387
as of period for in select, 376
period for in table creation, 376

unpivot (see below unpivoting)
unpivoting

group by and aggregates on 
unpivot output, 118

multiple measure and  
dimension, 113–119

single measure and dimension, 110
using dimension tables 

dynamically, 123–128
using dimension tables  

manually, 121
using generated dimension  

rows, 112–113
using generated numbered  

rows, 111–112
using unpivot, 118

R
Recursive subquery factoring, See with 

clause, recursion
Rolling sum, 237–265, 307–322

of all previous rows, 243–245, 255, 256, 
258, 328

including current row, 241, 243, 255, 
256, 312, 313

null when window has no rows, 245
partitioned, 241, 312, 313, 319, 320
sum interval from previous to current 

row, 317, 320
join overlapping  

intervals, 258–260

Queries (cont.)
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Row pattern matching, See 
match_recognize

Running total, See Rolling sum

S
Scalar subqueries

concatenated values, 6–7
hierarchical, 438, 439, 442
multiple, 5–9

Sessionization, See Grouping rows, on 
cross-row conditions using match_
recognize, until gap in data

Set operators
concatenating sets (see below Set 

operators, union all)
default differences compared to 

multiset operators, 20
implicit distinct, 25, 37
intersect, 25, 26
minus

compared to multiset except, 334
emulating minus all using 
multiset except all, 35

emulating minus all using row_
number, 36–37

order by column aliases, 24
union, 25, 26
union all, 25

Splitting delimited text
Oracle Data Cartridge Interface (see 

Creating delimited text, using 
stragg ODCI aggregate function; 
see below Splitting delimited text, 
using ODCI function)

using apex_string.split to split to 
rows

using substr to split to columns, 147

using generated rows
using regexp_substr to split to 

columns, 154, 155
using json_table

JSON array of scalar values, 156
transformation to nested  

JSON arrays of rows and  
columns, 165–168

using ODCI function
real column names instead of 

generic column_value, 161
using PL/SQL in pipelined table 

function, 147
String aggregation, See Creating delimited 

text
Subquery factoring, See with clause

T, U, V
Top-N calculations

handling ties
avoiding indeterminate output, 228
using dense_rank, 230–231
using rank, 229
using with ties subclause of fetch 
first, 229–230

Olympic rule, 217
partitioned

avoiding indeterminate output, 228
using dense_rank, 233
using fetch first and lateral 

inline view, 233–235
using rank, 232
using row_number, 231–232

top-rows rule, 217
top-values rule, 217
using dense_rank, 222–225, 227, 

230–232
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using fetch first
not able to do Olympic  

rule, 226
rows only, 225
rows with ties, 226

using rank, 222–225
using rownum, 222
using row_number, 222, 223

Turning columns into rows, See Queries, 
unpivoting

Turning rows into columns, See Queries, 
pivoting

W, X, Y, Z
Warehouse picking

batch picking
assigning picks to  

orders, 252–262
different picking  

principles, 246–248
FIFO, 240–246
First-In-First-Out (see above 

Warehouse picking, FIFO)
picking route

aisle numbering, 249, 251
odd-even switching order by 

direction, 250
with clause

column names list, 52–53
modularization, 44–47

successive named subqueries 
emulating Excel column 
calculations, 287

optimizer handling
creation of single-use temporary 

tables, 50
forcing materialization using 
rownum, 50–51

materialize hint, 50, 51
substitution like views, 49

PL/SQL functions
compiled like PRAGMA UDF, 81, 82
dynamic evaluation, 69–70
encapsulation in view, 83–85
multiple functions in with  

clause, 81–82
use for tools or read-only  

database, 83
preserving hierarchy before  

match_recognize, 440–442
recursion, 319

emulating connect_by_isleaf, 71
emulating connect_by_root, 60, 64, 

66, 69, 71
emulating level, 71
emulating order siblings by, 60, 63
hierarchical, 61

refactoring nested inline views, 46–47
test data creation

overloading a table, 53–55
using named subquery multiple  

times, 48

Top-N calculations (cont.)
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