
Practical
Oracle JET

Developing Enterprise Applications
in JavaScript
—
Daniel Curtis

www.allitebooks.com

http://www.allitebooks.org

Practical Oracle JET
Developing Enterprise Applications

in JavaScript

Daniel Curtis

www.allitebooks.com

http://www.allitebooks.org

Practical Oracle JET: Developing Enterprise Applications in JavaScript

ISBN-13 (pbk): 978-1-4842-4345-9 ISBN-13 (electronic): 978-1-4842-4346-6
https://doi.org/10.1007/978-1-4842-4346-6

Library of Congress Control Number: 2019935824

Copyright © 2019 by Daniel Curtis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the author nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science+Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484243459. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Daniel Curtis
Birmingham, UK

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4346-6
http://www.allitebooks.org

Dedicated to all my family, friends, and Charlotte.

To Berni, your spirit and determination continue to influence us all.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

Table of Contents

Chapter 1: User Experience in Enterprise Applications �� 1

Technology Architecture Limitations ��� 2

Closed Source Usability �� 4

Improving Usability ��� 4

Summary��� 5

Chapter 2: Oracle JET As a Solution ��� 7

RequireJS �� 8

define Example �� 9

Under the Hood of RequireJS �� 10

require vs� define ��� 11

Using RequireJS in JET ��� 11

Configuration ��� 11

require Block ��� 13

Architecture Pattern �� 14

MVVM �� 14

Model ��� 15

View ��� 15

ViewModel ��� 15

Advantages of MVVM over MVC ��� 16

www.allitebooks.com

http://www.allitebooks.org

vi

KnockoutJS ��� 16

Automatic Dependency Propagation ��� 17

Declarative Bindings �� 17

Templating ��� 19

What Are Web Components? ��� 21

Using KnockoutJS Within JET ��� 21

View Code Example ��� 22

ViewModel Code Example ��� 23

Oracle JET Webpack Support �� 24

BackboneJS (Common Model) �� 24

Oracle JET Modules �� 31

Summary��� 31

Chapter 3: Support Ticket Application �� 33

Scope �� 34

Page Skeleton ��� 36

Ticket List �� 37

Viewing a Ticket �� 38

Replying to Tickets �� 39

Closing and Rating Tickets �� 40

Creating a New Ticket ��� 42

Notifications �� 43

Searching for Tickets �� 44

Summary��� 45

Chapter 4: Hello World �� 47

Environment Setup �� 48

Oracle JET CLI ��� 50

Integrated Development Environment (IDE) ��� 50

Scaffolding an Application �� 51

Table of ConTenTs

vii

Application Structure �� 53

oraclejetconfig�json ��� 54

package�json and package-lock�json �� 54

Gruntfile ��� 56

scripts Directory �� 56

config ��� 56

hooks ��� 57

Source Directory (src) ��� 57

index�html �� 58

Oracle JET Build Tools ��� 61

Building ��� 61

Serving �� 63

Mock API Setup ��� 65

Summary��� 71

Chapter 5: Theming �� 73

Why Is Theming Important? �� 73

Use of Default Theming ��� 74

Oracle-Supplied Themes ��� 74

Oracle Skyros Theme ��� 74

Oracle Alta Theme ��� 75

SASS and CSS Custom Properties �� 77

Working in SASS ��� 77

Variables and Importing Partials ��� 78

Nesting �� 78

Extend �� 79

Mixins �� 80

Theme Builder ��� 81

Creating a New Theme �� 81

Including Custom SASS Partials �� 83

The Three-Step Theme Process �� 84

Summary��� 85

Table of ConTenTs

viii

Chapter 6: Creating the Page Skeleton ��� 87

Flexbox �� 88

The Flex Attribute �� 89

align-items �� 89

justify-content ��� 90

flex-direction ��� 90

flex-wrap ��� 91

Flex Within Oracle JET �� 91

Setting Up the Application Structure ��� 92

Including List Component in View ��� 94

Creating the List ViewModel �� 96

Adding a Search Placeholder �� 99

Creating a Tab View ��� 99

Welcome Message and Avatar��� 103

Theming �� 104

Header Padding ��� 104

Removal of Oracle Logo ��� 104

Setting List Container Height ��� 104

Adding Color �� 105

Further Container Classes ��� 106

Component Styling �� 107

Footer �� 108

Summary��� 109

Chapter 7: Viewing Tickets ��� 111

API Setup��� 111

List View Selections �� 118

Extending Tab Functionality �� 121

Closing Open Tickets ��� 122

Busy Context �� 123

Table of ConTenTs

ix

Creating the View Ticket Module ��� 123

Implementing Ticket View ��� 125

Ticket Replies �� 131

Tidying Up and Styling ��� 134

Support Representative �� 136

Summary��� 139

Chapter 8: Replying to Tickets �� 141

API Setup��� 141

Setting Up ��� 142

Copying over the CSS �� 143

Initializing the Editor ��� 144

File Picker ��� 147

Sending the Reply ��� 150

What Is a Promise? �� 150

Creating a Promise �� 151

Reply Toolbar Button ��� 155

Installing FontAwesome �� 156

Displaying File Attachments �� 157

Adding Icons to Buttons �� 159

Summary��� 160

Chapter 9: Ticket Management ��� 161

API Setup��� 162

Understanding Signals �� 162

add��� 163

dispatch ��� 163

dispose �� 163

remove ��� 163

Ticket Closure and Priority Update �� 164

Ticket Closure Dialog ��� 167

Table of ConTenTs

x

Signal Listeners �� 168

Adding Ticket Ratings ��� 170

Summary��� 173

Chapter 10: Search Component �� 175

Why Components? �� 175

Creating Your First Component ��� 176

loader�js ��� 177

component�json ��� 178

Built-in Events ��� 180

Events and Slots �� 180

inline-search-viewModel�js ��� 181

inline-search-view�html ��� 184

inline-search-styles�css �� 185

Consuming the New Component ��� 185

Summary��� 188

Chapter 11: Ticket Creation �� 189

API Setup��� 189

Create a Ticket Module ��� 190

Adding Animation �� 193

Building the Creation Form ��� 195

Adding Attachments and Form Submission �� 198

New Status and Zero Replies �� 205

Refactor Ticket Replies ��� 206

Summary��� 207

Chapter 12: Logging, Messages, and Validation ��� 209

Logging ��� 209

Messages �� 211

Ticket Priority Escalation and Closure ��� 213

Ticket Replies �� 215

Table of ConTenTs

xi

Validation �� 216

Summary��� 220

Chapter 13: Automated Unit Testing ��� 221

Installing Karma and Jasmine �� 221

Karma Setup ��� 221

test-main Setup �� 225

Writing a Test �� 228

Summary��� 230

Index ��� 231

Table of ConTenTs

xiii

About the Author

Daniel Curtis is a front-end developer specializing in

Oracle’s JavaScript Extension Toolkit (JET). He has had an

interest in technology from an early age, particularly web

development, for which he taught himself PHP, MySQL, and

HTML back in 2008. This eventually led him to build web

sites for customers, alongside his studies throughout A levels

and university.

Since graduating, he now has more than five years’

experience working with different Oracle front-end

technologies, including Oracle’s Application Development Framework (ADF),

WebCenter Portal, and WebCenter Sites. He works for Griffiths Waite, a company based

in Birmingham, UK, developing solutions for a number of enterprise customers. Daniel

has most recently been involved in modernizing applications in Oracle JET and has

written articles on the technology for Medium, the Oracle developer publication.

xv

About the Technical Reviewer

Geertjan Wielenga is an open source enthusiast working at Oracle and, before that, Sun

Microsystems. Since starting at Sun Microsystems in Prague, Czech Republic, in 2004,

he has primarily focused on writing documentation and training materials for the free

and open source NetBeans IDE. Gradually, as he participated in conferences and began

setting up workshops, especially on the use of NetBeans IDE for the development of

Java applications, as well as introductions to the NetBeans APIs and the development

of large Java Swing desktop applications on top of the NetBeans platform, he grew into

a developer advocacy and product management role and specialized in Java and the

tooling requirements connected to NetBeans IDE in support of Java.

When Oracle took over Sun Microsystems, and the developer ecosystem began

to embrace JavaScript as a useful language and ecosystem for the development of

enterprise applications, NetBeans IDE was repositioned to provide tooling for JavaScript

as much as it had for Java. Oracle’s strategy for JavaScript was developed and expanded

over the years into an in-house front-end technology stack called Oracle JET. When

Oracle JET was made available for external use as a free and open source technology

stack, Geertjan joined the related product management team at Oracle, focusing

specifically on promoting Oracle JET to the Oracle ecosystem and beyond.

In the meantime, Oracle decided to share the cost of ownership of NetBeans IDE

and, accordingly, donated it to the Apache Software Foundation. Together with his focus

on promoting Oracle JET, Geertjan has been leading the NetBeans IDE transition of

NetBeans IDE to the Apache Software Foundation from within Oracle.

Through his experiences with customers, partners, and conferences, Geertjan

has seen the strengths of the JavaScript ecosystem, as well as its gaps in the enterprise

ecosystem. He has seen time and again how enterprises value Oracle JET’s enterprise-

grade features and functionalities, and this continues to enthuse him in his role as

product manager for Oracle JET.

xvii

Acknowledgments

I would like to thank everyone who has been involved in the journey of putting this

project together. A special thank you to my colleagues at Griffiths Waite for their support

and guidance from the get-go, especially to Andrew Bennett and Rich Barber.

Thank you to my amazing girlfriend, Charlotte, who has not only had to put up with

the late nights of writing but also created the book illustrations and given much needed

encouragement along the way.

To my parents and family, thank you so much for your support always.

Finally, a thank you to Nick Dobson, for pushing me to do this; to Ian Watson, for

proofreading; and to Reece Jacques, Oliver Butler, and James Potts, for being the best

support network anyone could ask for.

xix

Introduction

Practical Oracle JET will walk you through the process of developing a functional

application, using Oracle’s JavaScript Extension Toolkit (JET). Rather than being a typical

theoretical book, it will guide you through the practical creation of a complete support

ticket system, using a variety of different components bundled with the toolkit, including

lists, inputs, and visualizations. The skills acquired from reading this book and working

the examples will equip you to build your own applications and take your understanding

even further to more advanced topics.

A basic knowledge of JavaScript is expected before proceeding with this book. The

technologies that JET uses under the hood will be explored, and complete code will be

given in a chapter-by-chapter format on GitHub or JSFiddle (where specified).

1
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6_1

CHAPTER 1

User Experience
in Enterprise Applications
User experience is a term often used when developing any kind of web interface. Such

an interface could be for a web site or web application. Implementing user experience

essentially requires getting the right balance between the end goals of the business,

technical restraints, and preferences of end users. User experience involves much more

than just reducing the amount of clicks a user takes to achieve a goal. A lot of factors are

considered in getting it right.

A report conducted by Nielsen indicated that intranet (enterprise) users are stuck at

a low level of productivity, and the average employee success rate at basic intranet tasks

decreased over time. Web sites were said to have a much higher success rate. Why is this?

Enterprise systems can be very complicated, and often, a lot of different functionality

can be required in a single system. Imagine an application for a mortgage broker that

processes mortgage applications. Applying for a mortgage is complicated in itself when

you are one buyer dealing with one bank. Imagine designing an interface that has to

integrate with 30 different banks. Each one of these banks may have different data

required in different formats, so you could end up having to design 30 different user-

interface forms to achieve the same requirement within a single application. If we throw

in different levels of user access, so that different people can work on different parts of

the application, you can see how quickly it can become complex and potentially cause

usability issues.

As the design becomes more complicated, the development can too, leading to

functionality challenges. With tight deadlines it is possible to end up with a scenario in

which the design and user experience analysis takes a back seat to getting the business

functionality delivered. This is a common scenario, illustrated in Figure 1-1, and

results in applications that may achieve the functionality set out in the requirements

2

but may not be the most usable. When this occurs, and end users are logging on to

the application day in and day out, the experience for the user becomes unpleasant

and ultimately, lowers productivity.

Tie any complexity in with the fact that enterprise application solutions are typically

quite behind the latest trends (preferring stability over latest versions), and it begins to

become obvious why web sites are more likely to be successful, as they can implement

the latest usability guidelines and functionality provided by the toolkits they are using.

 Technology Architecture Limitations
There was once a time when server-side rendering of web sites did exactly what it

needed to. There was little interaction required between the client and server, other

than requesting a URL and being returned a static HTML page with text and images.

Today this is no longer the case, as web sites are now more like applications but are still

behaving (from a technology perspective) like traditional web sites.

Figure 1-1. Functionality outweighing design

Chapter 1 User experienCe in enterprise appliCations

3

With server-side web applications, a web browser must make a request to the server

and await a response, in order to complete a task that a user has requested. This task

could be a request for data, or it could be something as simple as opening a pop-up

window. The latency of the round-trip to the server, as illustrated in Figure 1-2, could

have detrimental effects on usability. Even a small delay can be a nuisance when

someone is using a system for day-to-day tasks.

Long-running tasks, for which the browser is awaiting the response from the server

can cause usability headaches. A data export may lock the UI functionality until the

server has completed the task, and long batch jobs that take hours can leave a user

without being able to use an application at all.

 A lot of existing enterprise applications have been developed with the traditional

server-side rendering, and more recently the sort of problems I’ve just described have

caused a rethink in the way that web technologies are being developed. As web browsers

have become more powerful and are able to handle more complicated calculations,

client-side frameworks are starting to become more popular. The server becomes

responsible only for serving the main application file on initial load, subsequent module

loading and API calls for data. The client therefore is responsible for processing and

running the code locally.

Figure 1-2. Round-trips to a server can take time

Chapter 1 User experienCe in enterprise appliCations

4

The benefits of this kind of architecture are massive for enterprise applications,

the speed of interactivity being most noticeable, but also the scalability. Servers no

longer have to be monolithic to handle the processing of hundreds or thousands of

concurrent users.

This leads me to believe that we are at a point of transformation in the enterprise

industry. With client-side toolkits becoming increasingly popular, and cloud computing

becoming more mature, we may finally be at the cornerstone of building really great

enterprise solutions.

 Closed Source Usability
Closed source systems, in which a developer does not have direct access to view or

modify the source code of the framework being used, can have an indirect impact on

the usability of an application. Although these kinds of frameworks have many benefits,

such as rapid development and enterprise support, they force the developer to use the

components and technology that the framework provides. These components will have

been trialed and tested against common business use cases; however, real-life use cases

may have differing requirements that are not supported.

Even the smallest unsupported requirement can have a huge impact on time lines,

as a developer struggles to “fight against the framework” to achieve the desired outcome.

If this is not possible, an alternative may be presented that still achieves the desired

functionality, at the cost of the user experience.

Ideally, we want a toolkit that completely eliminates any struggle against framework

components. Developers shouldn’t be restricted by the tools they are using. They should

be able to pull from the open source community and have a multitude of different

options available.

 Improving Usability
Enterprise applications should be more successful than web sites, as designers will have

a smaller subset of users to design for, and have easier access to usability data, resulting

in a product for which the requirements have been thought out more efficiently.

Part (but not all) of the problem is owing to the technology choices that are made for

enterprise applications. By addressing the following points, some fundamental usability

issues can be prevented.

Chapter 1 User experienCe in enterprise appliCations

5

Client-side framework: Move away from the traditional client-server model. Choose

a technology that runs the application on the client, mitigating the need for a round-trip

to the server every time a change occurs on the page.

By running the application on the client, it opens up the potential

for a faster, fluid, and more responsive experience for users, in

addition to a multitude of other benefits that will be explored

during the course of this book.

Designer/developer harmony: Choose a toolkit that already has some design

guidelines in place (and can be easily extended), so that designers have clear visibility of

the toolkit’s components and capabilities. Ideally, the toolkit should help to close the gap

between design and development teams.

Open source: Development teams should have the ability and freedom to customize

code to achieve the desired requirements outlined by both the business and design

experts. Developers should also benefit from being able to harness the ever-expanding

sea of component libraries available and customize any component libraries included

within the vendor toolkit.

Keeping up with trends: Enterprise frameworks can often be quite behind the latest

trends, to ensure they have stability, and upgrading can sometimes be an expensive task.

The issue then is that user-interface trends change very quickly, so systems can become

outdated before they are even launched. Ideally, it is best to get a good balance between

stability and newer features, without the need to have monolithic yearly upgrades

that take ages to implement and are still way behind the latest technologies. Smaller,

incremental upgrades throughout the year can help with this.

 Summary
This book is not about how we should visually design an application. (There are plenty

of other books that cover the best practices for that.) It is more of a means of highlighting

the issues with enterprise applications and how you, as a developer, can use a toolkit that

will provide the necessary components to develop great applications with the least effort

possible required for design thought. Although, as a developer it is good to consider

design, the basic UX principles should be provided to you by the tools that you are using.

Chapter 1 User experienCe in enterprise appliCations

6

In addition, we want a set of tools that will aid designers and developers to work side

by side seamlessly. It is becoming clearer that there is more of an overlap between a “UX

designer” and a “front-end developer,” with UX designers being able not only to design

an interface but also to implement the basic CSS and HTML markup for the page, with a

developer coming in afterward and hooking up all the back-end business logic.

Chapter 1 User experienCe in enterprise appliCations

7
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6_2

CHAPTER 2

Oracle JET As a Solution
There may finally be a solution to developing great enterprise applications—solutions

that are both functionally rich and beautiful in design. For the past four years, Oracle

JavaScript Extension Toolkit (JET) has been used for many internal Oracle applications.

In fact, a lot of the Oracle Cloud Services are being built using Oracle JET. VBCS (Visual

Builder Cloud Service) is an Oracle SaaS product that is built on top of JET and gives

users the ability to declaratively build rich applications in no time at all.

There is often an anxiety that surrounds the JavaScript ecosystem, and quite rightly

so. The libraries and trends are changing so rapidly that it is becoming increasingly

difficult for developers to keep up and for enterprise customers to trust that the software

they are investing in will be relevant a few months later. With Oracle JET, developers

have access to a modern JavaScript toolkit that challenges the frameworks of the past by

offering rapid development, extensibility, and the stability and support that you come to

expect from Oracle.

JET is essentially a group of different JavaScript libraries and build tools, pulled

together into a toolkit. Some of these libraries are open source and commonly known,

such as JQuery, RequireJS, and KnockoutJS. There are also libraries that are built

by Oracle but still are open source, such as the feature-rich Oracle JET visualization

components that come with years of maturity inherited from Oracle ADF and WebCenter

products.

In this chapter, you are going to explore some of the libraries that make up the JET

toolkit, and by the end, you should have a good understanding of the core technologies

you need to be aware of before we move on to using them within an Oracle JET project.

All examples throughout this chapter are hosted on JSFiddle, so you can use and

extend the examples yourself. Try not to worry too much about how these examples

are set up. Later in the book you will see how to set up a JET application. For now, just

concentrate on the concepts and technologies that JET uses.

8

 RequireJS
RequireJS is a JavaScript library that is used for loading in JavaScript files. It implements

a specification called AMD, which stands for Asynchronous Module Definition.

Normally, when including multiple JavaScript libraries, an HTML file would include

a bunch of script tags similar to the following:

<script src="jQuery.js"></script>

<script src="library1.js"></script>

<script src="library2.js"></script>

<script src="library3.js"></script>

Loading libraries in this way isn’t an issue when there are only a few libraries to

include, but it can become a real problem when there are a large number of JavaScript

files, as it can be a nightmare to manage and also requires a request for each and every

library upon page load.

Dependencies can be an issue too. If a library is dependent on another that has

not been loaded yet, it will cause an error. (It is possible that you have seen the “$ is

undefined” error once or twice.)

If we change the import order of the script tags to place jQuery at the bottom, and

the libraries are dependent on jQuery, the application will throw errors.

<script src="library1.js"></script>

<script src="library2.js"></script>

<script src="library3.js"></script>

<script src="jQuery.js"></script>

RequireJS solves the preceding problems, as it takes care of loading in the JavaScript

libraries and ensures that they are loaded in the correct order and when they are needed. In

order to understand how this works, we must first take a look at the AMD specification.

The AMD specification outlines a single function, called define, which looks like this:

define(id?, dependencies?, factory);

There are three arguments to the define function, and these are as follows:

• id: This is the id for the module that is being defined. The id

argument is optional, and we won’t really be using it in the context

of JET.

Chapter 2 OraCle Jet as a sOlutiOn

9

• dependencies: This is an array of JavaScript libraries that must be

loaded for the factory to run.

• factory: This is the code that will be running once all the

dependencies are loaded.

So, with the AMD definition, you are able to set an identifier for the define block,

include all the dependencies, and then finally run a module of code that uses the

dependencies that have been defined. Next, we will take a look at a RequireJS example,

using the define block.

 define Example
The define syntax in RequireJS is fairly straightforward, and by applying the AMD

define function, we can write the following:

define(['jquery', 'myLibrary'], function($) {

 // Application code logic here

});

The argument that is passed into the factory function ($) will reference the

corresponding library from the dependency list. In this case, it will be used to reference

jQuery, as it is the first item in the dependency list. You should not always have to pass the

library into your factory function, as we have done with jQuery. It is only required when

the library returns an object that you must use. In this scenario, myLibrary does not return

anything, and, therefore, it does not require a corresponding argument within the function.

However, if myLibrary did have a return value, you would add another argument into

the function, as in the following:

define(['jquery', 'myLibrary'], function($, myLib) {

 // Application code logic here

});

Ordering is important here. Although define will take care of JavaScript loading

dependencies, the order of the arguments into the function matters. Swapping the

dependency ordering can cause mapping inconsistencies.

define(['myLibrary', 'jquery'], function($, myLib) {

 // Application code logic here

});

Chapter 2 OraCle Jet as a sOlutiOn

10

In the preceding example, using $ will map to myLibrary instead of jquery.

Therefore, it is important to make sure the mapping is correct and that all dependencies

that have a return value are placed at the start of the dependency list.

 Under the Hood of RequireJS
RequireJS takes the dependency list you specify, works out the correct ordering, and

then adds the script tags into the head of the page dynamically. Figures 2-1 and 2-2

visualise this process in practice. Figure 2-1 shows the block skeleton, and Figure 2-2

shows the resulting HTML script tags.

Figure 2-1. Define block skeleton with dependencies

Figure 2-2. index.html file with script tags added into the DOM

Chapter 2 OraCle Jet as a sOlutiOn

11

 require vs. define
We have looked into the define function, but RequireJS also has a function called

require. It is possible to use both the require and define functions within RequireJS. As

a rule of thumb, require should be used to run immediate functionalities, and define

should be used to define modules of code that can be used in multiple locations within

an application.

In modular applications, this will result in a single require block to load in all the

immediate application logic that is necessary for the application to initialize and run,

followed by multiple define blocks used across the application for individual modules

of code.

 Using RequireJS in JET
Now that you understand what problems RequireJS solves, let’s take a look at how it is

implemented within an Oracle JET application. RequireJS is included out of the box

when you scaffold your JET application, and the following is added at the bottom of the

index.html file of a new project:

<script type="text/javascript" src="js/libs/require/require.js"></script>

<script type="text/javascript" src="js/main.js"></script>

The main.js file is an important piece of the RequireJS puzzle that comes bundled

with a JET application. The file contains a list of all the library dependencies required

for the project to run (also known as the configuration block). It will also include a

require block, which loads all the libraries required to kick-start the JET application. It is

essentially an entry point into your application code.

 Configuration
Within the main.js file, you will have what is called the “configuration block.” The

configuration essentially sets the base location (baseUrl) of the JavaScript modules and

declares all the libraries that the application will be using.

The example in Listing 2-1 is the configuration block and lists some of the default

libraries that are required to run JET. Later in the book, we will be adding new libraries to

the paths object.

Chapter 2 OraCle Jet as a sOlutiOn

12

Listing 2-1. Example of a Configuration Block

requirejs.config(

{

 baseUrl: 'js',

 // Path mappings for the logical module names

 // Update the main-release-paths.json for release mode when updating the

mappings

 paths:

 //injector:mainReleasePaths

 {

 'knockout': 'libs/knockout/knockout-3.4.2.debug',

 'jquery': 'libs/jquery/jquery-3.3.1',

 'jqueryui-amd': 'libs/jquery/jqueryui-amd-1.12.1',

 'promise': 'libs/es6-promise/es6-promise',

 'hammerjs': 'libs/hammer/hammer-2.0.8',

 'ojdnd': 'libs/dnd-polyfill/dnd-polyfill-1.0.0',

 'ojs': 'libs/oj/v6.0.0/debug',

 'ojL10n': 'libs/oj/v6.0.0/ojL10n',

 'ojtranslations': 'libs/oj/v6.0.0/resources',

 'text': 'libs/require/text',

 'signals': 'libs/js-signals/signals',

 'customElements': 'libs/webcomponents/custom-elements.min',

 'proj4': 'libs/proj4js/dist/proj4-src',

 'css': 'libs/require-css/css',

 }

 //endinjector

 ,

 // Shim configurations for modules that do not expose AMD

 shim:

 {

Chapter 2 OraCle Jet as a sOlutiOn

13

 'jquery':

 {

 exports: ['jQuery', '$']

 }

 }

}

);

 require Block
A require block is used to load all the modules that are required to initialize the

application, such as ojModule and ojRouter. Both are Oracle JET libraries required at this

level to initialize the application routing logic.

The appController module is also imported at this point, which is an Oracle JET

specific file that contains application wide logic and properties, such as the application

name and routing configuration. We will be exploring more around the Oracle JET

modules and the appController as we progress through this book.

Listing 2-2 shows what this require block will look like when you create an Oracle

JET application for the first time.

Listing 2-2. Sample require Block

require(['ojs/ojcore', 'knockout', 'appController', 'ojs/ojknockout',

 'ojs/ojmodule', 'ojs/ojrouter', 'ojs/ojnavigationlist', 'ojs/ojbutton',

'ojs/ojtoolbar'],

 function (oj, ko, app) { // this callback gets executed when all required

modules are loaded

 $(function() {

 function init() {

 oj.Router.sync().then(

 function () {

 app.loadModule();

 // Bind your ViewModel for the content of the whole page body.

 ko.applyBindings(app, document.getElementById('globalBody'));

 },

Chapter 2 OraCle Jet as a sOlutiOn

14

 function (error) {

 oj.Logger.error('Error in root start: ' + error.message);

 }

);

 }

 // If running in a hybrid (e.g. Cordova) environment, we need to wait

for the deviceready

 // event before executing any code that might interact with Cordova

APIs or plugins.

 if ($(document.body).hasClass('oj-hybrid')) {

 document.addEventListener("deviceready", init);

 } else {

 init();

 }

 });

 }

);

 Architecture Pattern
The MVC (Model-View-Controller) pattern is well known and has been used by

frameworks for many years, especially if you come from an Oracle ADF (Application

Development Framework) background. JET uses a different architecture pattern called

MVVM (Model-View-ViewModel).

 MVVM
MVVM is common in client-side implementations, due to its two-way data binding

between the View and ViewModel, meaning that any data changes in the ViewModel

are sent to the UI components, and any user inputs from the UI are updated in the

ViewModel. The pattern helps to achieve a cleaner separation of UI code. Complex

applications can quickly become tangled, and MVVM strives to prevent this by splitting

the code into three areas. Figure 2-3 illustrates how the three areas are broken up within

a JET application.

Chapter 2 OraCle Jet as a sOlutiOn

15

 Model
The Model is responsible for accessing the data stores using APIs, holding the data

locally on the client and interacting with the APIs to keep the datastore up to date with

any changes from the client. In JET, the model is handled by the Oracle JET Common

Model and Collection API. These are a set of methods to handle the processing of data

from the external API calls.

 View
View is the most familiar segment of MVVM. It is the visual and interactive web page

that end users will be seeing, and it showcases the data from the model to an end user

through the current state of the ViewModel. In JET, it is the HTML and CSS markup of the

page, powered by the JET Web Components and KnockoutJS declarative bindings.

 ViewModel
The Model is responsible for holding the data, and the View is responsible for presenting

the data. Think of the ViewModel as the intermediate. It exposes the Model data to assist

in maintaining the state of the View. For JET, the ViewModel uses KnockoutJS at its core.

Figure 2-3. MVVM architecture in JET

Chapter 2 OraCle Jet as a sOlutiOn

16

As a quick example, the structure of a ViewModel will be split into two areas. First is the

ViewModel container, which is responsible for holding all of the data and application logic.

function MyNewViewModel(){

 // All ViewModel logic goes here

}

Next is an activation of Knockout. Use the following line of code to apply your new

ViewModel to KnockoutJS:

ko.applyBindings(new MyNewViewModel());

Shortly, we will look into a real example of setting up a working ViewModel, using

KnockoutJS.

 Advantages of MVVM over MVC
Both MVC and MVVM offer a separation of concerns for an application. The problem

with MVC is that the view can become large, as it contains both the View markup and the

“code behind” logic that drives the functionality. The View is also tightly coupled to the

business logic that sits behind it, meaning it is not really feasible to be able to easily swap

out the View in the same way you can with MVVM.

The separation really helps when it comes to testing. With MVVM, you can isolate

your ViewModel code and test it independently. Rerunnable, stand-alone unit tests

become a lot easier to implement in MVVM.

Finally, MVVM enables design and development teams to work more seamlessly

together on the same application. It is possible for design teams to work on the View

layer HTML markup and CSS, without worrying about writing the business logic coding

within the ViewModel.

 KnockoutJS
Knockout provides the means to create rich user interfaces with JavaScript and

HTML. These interfaces will feel more like a native desktop application, and this

is because the code is actually running and processing on a user’s machine (more

specifically, a web browser) and not on a server, like traditional web applications.

KnockoutJS will keep your View synchronized with your underline data model, using a

combination of “observables” and “computables.”

Chapter 2 OraCle Jet as a sOlutiOn

17

There are three fundamental concepts to Knockout: automatic dependency

propagation, declarative bindings, and templating. Let’s take a look at what each of

these are.

 Automatic Dependency Propagation
Using a combination of observables and computed values, KnockoutJS ensures that any

changes to the underlying data model are automatically propagated to all dependencies,

throughout the application. For example, if a user selects a postage method from

a drop-down list at a checkout, the total value should automatically update, based

upon their selection. KnockoutJS can be used to compute the new value and let any

dependencies know of the updates, without the need to code any custom events and

listeners.

In order to harness the dependency tracking, we must declare our variables and

objects as observables, which is pretty straightforward to do. Take a normal JavaScript

variable declaration.

this.myVar = 'Hello World!'

Wrap the value of the variable in the ko.observable function, to ensure that any

changes are bubbled up to its dependencies.

this.myVar = ko.observable('Hello World!')

The variable this.myVar is now an observable, with all the resulting behavior that

implies.

 Declarative Bindings
Knockout uses an attribute introduced with HTML5 to create a binding between HTML

elements on the View and the JavaScript objects within the ViewModel. This attribute

is called data-bind, and there are many different bindings available, along with the

ability to create custom bindings. An example of a binding is the text binding, which

will display your parameter as text in the associated HTML element. Combined with the

observable created earlier, the span below would output “Hello World.”

Chapter 2 OraCle Jet as a sOlutiOn

18

A few other notable bindings are

• Visible: This will change the visible state of an HTML element.

• CSS: This will change the CSS classes for an HTML element.

• Attr: This will change any attributes on an HTML, such as an ID. This

can be useful when appending dynamic IDs to elements.

Using the previously mentioned scenario of a checkout, we will now look at combining

observables, computables, and declarative bindings to produce a working example of

postage calculation. You can view the code and have a go at modifying it yourself at the

following JSFiddle workspace: https://jsfiddle.net/practicaloraclejet/06hyrkfv/.

 View Code Example

Notice the bolded data-bind attributes in Listing 2-3. They are the attributes used to

bind the HTML elements to KnockoutJS variables within the ViewModel that follows.

The text binding is used for outputting a variable, while the value binding is used for

inputting or changing a Knockout variable.

Listing 2-3. data-bind Attributes

<!-- Item information -->

<div>Item: Sugar Bowl:

</div>

<!-- Postage Information -->

<div>Postage:

<select data-bind='value: postageCost'>

<option value='2'>Cheap postage</option>

<option value='5'>Super Deluxe Postage</option>

</select>

</div>

<!-- Total -->

<div>Total: </div>

Chapter 2 OraCle Jet as a sOlutiOn

https://jsfiddle.net/practicaloraclejet/06hyrkfv/

19

 ViewModel Code Example

The ViewModel code in Listing 2-4 sets up the observables and computables to be used

within the View.

Listing 2-4. Sample ViewModel Code

function AppViewModel() {

this.purchasePrice = ko.observable(13)

 this.postageCost = ko.observable(2);

 this.totalValue = ko.computed(function() {

 return parseFloat(this.purchasePrice()) + parseFloat(this.

postageCost());

 }, this);

}

// Activates knockout.js

ko.applyBindings(new AppViewModel());

 Templating
Often, in rich enterprise applications, you will have to use some sort of templating to

build a view. A template in Knockout is essentially skeleton HTML, which can be used to

build repeated chunks of code using data from your ViewModel.

A common example of where templates will become useful is within tables, wherein

it may be required to have a certain markup or styling on a row and should be repeated

for each row of data in the table.

It can also be useful when you have different elements on the page that have the

same HTML markup but different data. That is exactly what the following example is

demonstrating. Imagine that you are at a checkout, and you need to provide a billing

address and a postal address. The data for these two could be different, but the template

is the same.

Chapter 2 OraCle Jet as a sOlutiOn

20

 View Example

In the View code shown in Listing 2-5, a single template has been created that is used

for two different types of address (billing and shipping). The data is provided using the

KnockoutJS data binding attribute data, and the template is assigned using the template

attribute.

Listing 2-5. Code to Create a Single Template

Billing Address

<div data-bind="template: {name:'address-template',

data:billingAddress}"></div>

Shipping Address

<div data-bind="template: {name:'address-template',

data:shippingAddress}"></div>

<script id="address-template" type="text/html">

</script>

 ViewModel Example

The ViewModel code in Listing 2-6 sets up the data to be used within the template

defined previously.

Listing 2-6. Example of Code to Create a ViewModel

function AppViewModel() {

 this.billingAddress = ko.observable({line1: '42 Planet Earth', line2:

'Orion Branch', postcode: 'N2 O2AR' });

 this.shippingAddress = ko.observable({line1: '1976 Mars', line2: 'Orion

Branch', postcode: 'CO2 N2AR ' });

 }

ko.applyBindings(new AppViewModel());

Chapter 2 OraCle Jet as a sOlutiOn

21

The example in Listing 2-6 is available on JSFiddle from the following link: https://

jsfiddle.net/practicaloraclejet/njfr74xy/.

Access the example from your browser. Then have a go at adding extra addresses or

at modifying the template itself.

 What Are Web Components?
Before we move on to looking at how we implement KnockoutJS within a JET

application, first let’s consider what Web Components are and why they are significant.

Web Components are a collection of standards set out by W3C that package all the code

for a specific widget into a custom HTML element. They do all this while being immune

to any CSS or JavaScript already set on their page. This is achieved using the Shadow

DOM (which isn’t as scary as it sounds).

The Shadow DOM encapsulates a Web Component into its own private section of the

page. Similar to how an iframe functions, but it isn’t an iframe. It is essentially a nested

DOM within the main DOM of the page. It is the Shadow DOM that gives Web Components

their independence and prevents them being affected by other code within the page.

 Using KnockoutJS Within JET
It is important to have a good understanding of KnockoutJS when using JET, as it will

play a fundamental role in building your JET application. JET implements KnockoutJS

slightly differently when binding to Knockout objects. The difference lies with the

usage of the data-bind attribute, and although you can use the data-bind attribute

as you normally would with a KnockoutJS application, it is encouraged to use the

Google Polymer syntax instead. This syntax helps to provide an abstraction away from

the binding technology. Google Polymer is an open source library for building Web

Components, and the syntax is used to handle the binding between Web Components

and KnockoutJS objects.

There are two different kinds of bindings to be aware of:

 1. One-way binding [[]]: Using double square bracket binding

indicates a one-way binding. A one-way binding will populate and

update the View with the data stored within a ViewModel object,

but it will not let the View update the object. Think of it as a read-

only binding.

Chapter 2 OraCle Jet as a sOlutiOn

https://jsfiddle.net/practicaloraclejet/njfr74xy/
https://jsfiddle.net/practicaloraclejet/njfr74xy/

22

 2. Two-way binding {{ }}: Using the double curly bracket (braces)

binding indicates a two-way binding. A two-way binding works

both ways: the View can update the dependent ViewModel object,

and the ViewModel can update the View (in the same way it can

with a one-way binding).

Taking our previous checkout implementation, we will now look at how we

can implement the same functionality in JET. To view, modify, and use this code,

head over to the JSFiddle and access the following URL: https://jsfiddle.net/

practicaloraclejet/Ljg8kt6e/.

 View Code Example
Taking the existing View example, we have changed some of the elements to use a couple

of Oracle JET Web Components and removed the requirement to use the data-bind

syntax. Listing 2-7 shows the resulting code.

Listing 2-7. Using Oracle JET Web Components

<h1>Total value Example</h1>

<oj-label for="item-name">Item</oj-label>

Practical Oracle JET book -

<oj-label for="basicSelect">Postage</oj-label>

<oj-select-one id="basicSelect" value="{{postageCost}}"

style="max- width:20em">

 <oj-option value="2.00">Cheap postage</oj-option>

 <oj-option value="5.00">Super deluxe postage</oj-option>

</oj-select-one>

<div>

 <br/ >

 <oj-label for="total-value">Total</oj-label>

 <oj-bind-text value="[[totalValue]]"></oj-bind-text>

</div>

Chapter 2 OraCle Jet as a sOlutiOn

https://jsfiddle.net/practicaloraclejet/Ljg8kt6e/
https://jsfiddle.net/practicaloraclejet/Ljg8kt6e/

23

Have a go at changing the two-way binding and removed the requirement to use

the data-bind of the postageCost variable to a one-way binding, to see whether the

calculation still works.

 ViewModel Code Example
The ViewModel code is very similar to the previous example in Listing 2-7. Notice,

however, that in Listing 2-8 we have combined the RequireJS code that we explored

earlier with the KnockoutJS ViewModel code. In the require block, we are importing the

libraries that this module needs to run, and this includes some Oracle JET components.

The ojs/ojselectcombobox and ojs/ojlabel are two JET Web Components that we

used previously within the View.

Listing 2-8. Combining RequireJS with KnockoutJS

require(['knockout',

 'ojs/ojcore',

 'jquery',

 'ojs/ojknockout',

 'ojs/ojselectcombobox',

 'ojs/ojlabel'

], function(ko, oj, $) {

 'use strict';

 var ViewModel = function() {

 var self = this;

 self.purchasePrice = ko.observable(25.00)

 self.postageCost = ko.observable(2.00);

 self.totalValue = ko.computed(function() {

 return parseFloat(self.purchasePrice()) + parseFloat(self.postageCost());

 });

 }

 ko.applyBindings(new ViewModel());

});

Chapter 2 OraCle Jet as a sOlutiOn

24

 Oracle JET Webpack Support
Webpack is also a tool to load in libraries, and the newer versions of Oracle JET now

include direct support for Webpack as an alternative to RequireJS. The way that Webpack

loads libraries is different from RequireJS. It bundles all the libraries that the application

requires into a single bundle when the application is built, rather than lazy loading them

individually when required.

JET offers a Webpack plug-in, which can be installed by downloading it from

the Oracle Technology Network (OTN): https://www.oracle.com/technetwork/

developer-tools/jet/downloads/index.html. This file includes a README on how to

switch an application over to use Webpack.

For the purposes of this book, we will be using RequireJS as the module loader, not

Webpack.

 BackboneJS (Common Model)
The Oracle JET Common Model is an implementation of the “active record”

architecture pattern developed by Martin Fowler. The active record pattern wraps a

single table row into an object, the object storing not only the data but also behavior

permitted on that data.

The syntax of the common model is from Backbone JS, specifically Backbone.Model

and Backbone.Collection. The best way to think of models and collections is this: a model

is a single table row; it is a single object. A collection is the full table of rows (or models),

as illustrated in Figure 2-4.

Figure 2-4. Models and collections

Chapter 2 OraCle Jet as a sOlutiOn

https://www.oracle.com/technetwork/developer-tools/jet/downloads/index.html
https://www.oracle.com/technetwork/developer-tools/jet/downloads/index.html

25

When creating a model or collection, you will have to use the .extend method to

specify custom parameters (such as the URL of the API). In the following example, we

are going to expand on an existing Oracle JET example from the Oracle JET “Getting

Started” section and consume the end point (https://apex.oracle.com/pls/apex/

oraclejet/emp/) into an ojCollection.

We will build upon the technologies explored within this chapter to build a table that

includes the following:

• RequireJS, to import modules

• KnockoutJS, to create a ViewModel

• An Oracle JET table with KnockoutJS templating

• Implementation of the Oracle Common Model and Collection API

As we have not yet explored how to set up the structure of a JET application (I will

cover this in Chapter 4), we will again be using a JSFiddle environment to build this

example. The code is located at the following JSFiddle workspace: https://jsfiddle.

net/practicaloraclejet/pkbzwgu1/.

The notable difference here is that we will not be implementing a main.js file. The

RequireJS configuration will be included within the same block of code (similar to the

previous postage example), and we will use the require function instead of define.

To begin, create a ViewModel and add in the RequireJS imports as shown in Listing 2-9.

Listing 2-9. Adding RequireJS

require(['knockout',

 'ojs/ojcore', // Imports all of the core Oracle JET libraries

 'jquery', // Imports JQuery

 'ojs/ojknockout', // Imports Knockout

 'ojs/ojtable', // Imports the Oracle JET table component

 'ojs/ojvalidation-datetime', // Imports a date validator

 'ojs/ojcollectiontabledatasource', // Imports the collection data source

 'ojs/ojvalidation-number' // Imports a number validator

], function(ko, oj, $) {

 'use strict';

Chapter 2 OraCle Jet as a sOlutiOn

https://apex.oracle.com/pls/apex/oraclejet/emp/
https://apex.oracle.com/pls/apex/oraclejet/emp/
https://jsfiddle.net/practicaloraclejet/pkbzwgu1/
https://jsfiddle.net/practicaloraclejet/pkbzwgu1/

26

 var ViewModel = function() {

 var self = this;

 // We will include our code logic here shortly

 };

 ko.applyBindings(new ViewModel());

});

Then include the RequireJS configuration, as shown in Listing 2-10. To reiterate, later

in the book, this code will be within a main.js file, and we won’t have to worry about the

_getCDNPath function. The function is provided by Oracle’s Getting Started example and

is used to get the paths of the libraries.

Listing 2-10. RequireJS Configuration

function _getCDNPath(paths) {

 var cdnPath = "https://static.oracle.com/cdn/jet/";

 var ojPath = "v6.0.0/default/js/";

 var thirdpartyPath = "v6.0.0/3rdparty/";

 var keys = Object.keys(paths);

 var newPaths = {};

 function _isoj(key) {

 return (key.indexOf('oj') === 0 && key !== 'ojdnd');

 }

 keys.forEach(function(key) {

 newPaths[key] = cdnPath + (_isoj(key) ? ojPath : thirdpartyPath) +

paths[key];

 });

 return newPaths;

}

requirejs.config({

 paths: _getCDNPath({

 'knockout': 'knockout/knockout-3.4.2',

 'jquery': 'jquery/jquery-3.3.1.min',

 'jqueryui-amd': 'jquery/jqueryui-amd-1.12.1.min',

 'promise': 'es6-promise/es6-promise.min',

 'ojs': 'min',

Chapter 2 OraCle Jet as a sOlutiOn

27

 'ojL10n': 'ojL10n',

 'ojtranslations': 'resources',

 'signals': 'js-signals/signals.min',

 'text': 'require/text',

 'hammerjs': 'hammer/hammer-2.0.8.min',

 'ojdnd': 'dnd-polyfill/dnd-polyfill-1.0.0.min',

 'touchr': 'touchr/touchr',

 'customElements': 'webcomponents/custom-elements.min'

 }),

 // Shim configurations for modules that do not expose AMD

 shim: {

 'jquery': {

 exports: ['jQuery', '$']

 }

 }

});

Now that the framework for this example is in place, let’s build the application

logic. The rest of the ViewModel code will have to be placed in the ViewModel function.

Declare the variables that the example will use.

 // API Endpoint

 self.serviceURL = 'https://apex.oracle.com/pls/apex/oraclejet/emp/';

 // Create observables for the collection and datasource

 self.empCol = ko.observable();

 self.dataSource = ko.observable();

Create the model and the collection and assign the collection to a data source.

// Create the Employee Model, using empno as the unique ID for model objects

 self.employee = oj.Model.extend({

 idAttribute: 'empno'

 });

 self.myEmp = new self.employee();

Chapter 2 OraCle Jet as a sOlutiOn

28

 // Create the Employees Collection, assigning the URL to retrieve the

data from the API endpoint, and assigning the model created above

 self.empCollection = oj.Collection.extend({

 url: self.serviceURL,

 model: self.myEmp

 });

 self.empCol(new self.empCollection());

 // Assign the newly created Collection to a datasource in a format that

the ojTable Component can understand

 self.dataSource(new oj.CollectionTableDataSource(self.empCol()))

Finally, for the ViewModel, we must create a couple of converters for the date

and salaries.

 // Formatting data for salary fields

 var salOptions = {style: 'currency', currency: 'USD'};

 var salaryConverter = oj.Validation.converterFactory("number").

createConverter(salOptions);

 // Formatting data for date fields

 var dateOptions = {formatStyle: 'date', dateFormat: 'medium'};

 var dateConverter = oj.Validation.converterFactory("datetime").

createConverter(dateOptions);

 self.formatSal = function(data){

 return salaryConverter.format(data);

 };

 self.formatDate = function(data){

 return dateConverter.format(data);

 };

The ViewModel is complete, so we will move onto the View, which will consist of an

Oracle JET Web Component called ojTable. We will be specifying five attributes on this

component:

id: Unique HTML element identifier

aria-label: Label for the component, used for accessibility

Chapter 2 OraCle Jet as a sOlutiOn

29

data: The data attribute is used to populate the component with

data. We will be using Knockout to create a one-way binding

between the observable dataSource and the ojTable component.

columns: Specifies the structure of each column. It is possible to

set the headerText to be anything, but the field attribute must

match the attribute names being returned from the service.

row-renderer: Specifies the template to provide to the

component. The template will be repeated for each row in the

table. Here we are telling the component to use the template of ID

row_template.

Given the preceding components, following then is the View itself:

<h1>Employee List</h1>

<oj-table id='table' aria-label='Employees Table' data='[[dataSource]]'

columns='[

{"headerText": "Employee Number", "field": "empno"},

{"headerText": "Username", "field": "ename"},

 {"headerText": "Title", "field": "job"},

{"headerText": "Hire Date", "field": "hiredate"},

{"headerText": "Salary", "field": "sal"}

]'

row-renderer="[[oj.KnockoutTemplateUtils.getRenderer('row_template', true)]]">

</oj-table>

Creating the template is relatively simple, we use the <template> element and

ensure that the id attribute matches the one that has been specified in the component,

which is row_template. (See Listing 2-11.)

The template itself will consist only of HTML markup, and the data that is fed into

the template is specified using data-bind attributes on the elements within the template.

As we only want to output the service data to the table, we use the text binding, followed

by the attribute (column) name from the JSON payload.

Notice the use of $parent. This is called a context property and is used for accessing

data outside the table context. The formatDate and formatSal functions that were

created earlier do not reside within the context of the data we are accessing for the table.

Therefore, they must be accessed using the $parent context property.

Chapter 2 OraCle Jet as a sOlutiOn

30

Listing 2-11. Creating the Template

<template id="row_template">

 <tr>

 <td data-bind="text: empno">

 </td>

 <td data-bind="text: ename">

 </td>

 <td data-bind="text: job">

 </td>

 <td data-bind="text: $parent.formatDate(hiredate)">

 </td>

 <td data-bind="text: $parent.formatSal(sal)">

 </td>

 </tr>

</template>

The final output should look like the JSFiddle example shown in Figure 2-5.

Figure 2-5. Sample employee list

Chapter 2 OraCle Jet as a sOlutiOn

31

 Oracle JET Modules
In this chapter, you have seen how RequireJS and KnockoutJS can be used for modular

development within Oracle JET. Code can be broken into separate define blocks

and ViewModels. JET provides a component for encapsulating these separate code

definitions, and that component is called an Oracle JET Module. Everything you will

come to build within JET will be inside an Oracle JET Module (apart from the index.

html file). We will be using ojModules for the different sections of the application, where

they will be explored in more detail.

 Summary
Throughout this chapter, you have learned the technical architecture of Oracle JET

and how Model-View-ViewModel can segment the application structure and make it

easier to develop cleaner UI code. You have also seen how KnockoutJS can be used to

implement a MVVM application and how KnockoutJS provisions automatic UI updates

and templating for more sophisticated tables and lists.

You have also discovered the drawbacks of including multiple JavaScript script

tags, and how RequireJS can be used to asynchronously load in libraries and aid in

modulating code.

Finally, you have seen how JET implements the BackboneJS syntax for Models and

Collections and built a sample ojTable in JSFiddle.

Before moving on, it is highly recommended that you have a good understanding of

KnockoutJS. Taking time to go through the interactive tutorial on the Knockout web site

would be a great starting point.

Chapter 2 OraCle Jet as a sOlutiOn

33
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6_3

CHAPTER 3

Support Ticket
Application
In the first two chapters, we explored some issues with enterprise applications related to

usability and how shortfalls in the usability of an application can ultimately decrease the

productivity of end users. Oracle JET was outlined as a solution, and we have covered the

basics of what makes up the Oracle JET toolkit.

Throughout the remainder of this book we will be building on the skills you have

picked up from Chapter 2, to implement a functional application in JET. The application

will be a support ticket system, which is often a system that people turn to when they are

having difficulties with other systems or processes.

Support ticket systems for large companies can handle thousands of tickets a day,

with many users and multiple levels of priorities, all at different stages in their support

process. As users of a support ticket system are likely to be slightly more frustrated than

average, it is important to get the user experience right. Waiting that few extra seconds

for a support ticket to load, or difficulties finding tickets, could ultimately be the tipping

point for losing business.

You will be building the application from the perspective of a user, and so that you

are able to concentrate on Oracle JET, you will not have to worry about setting up a

database or service layer. Instead, the book will provide mock data in the form of JSON

payloads to get you started. You will, of course, be free to extend the application to

include more functionality or write your own services to consume, if you desire.

This chapter will walk through the design for this system and includes low-fi

mock- ups of how the system will look.

34

 Scope
Before we delve into building the functionality of the system, we will first spend this

chapter outlining the scope of the application. This will put you in a good position to

begin setting up a JET application for the first time (in Chapter 4). Up until this point,

you have been working with JSFiddle examples. Going forward you will be expected to

scaffold your own JET application locally on your PC. Chapter-by-chapter versions of the

code will be available on GitHub, if you get stuck.

The JSON data payloads for Chapter 3 will be made available on GitHub. Throughout

the book, they will also be given at the start of the chapter in which they are used.

The APIs will be mocked using a tool called mock-server. Mocking end points can be

really useful for front-end application development for a few reasons.

• We can quickly get the front end up and running, without the need to

worry about setting up services and database environments.

• Front- and back-end developers can agree on the set structure of the

end points up front, and the front-end developers can start building

the UI straight away, instead of having to wait for the back-end

developers to implement the service layer. This can greatly speed up

the development process, and, provided the structure of the real end

points matches the mock, they should be able to swap them over

when the real ones are ready.

• Mocking is great for unit testing. It can sometimes be really difficult

to replicate some scenarios with the real data set. Mocking the data

means you have full control and can mock out all scenarios in your

testing.

The functionality that you will have built by the end of this book can be broken down

into the following:

• Viewing list of tickets: Viewing the list of outstanding tickets for a user

• Searching for tickets: Inline data searching to provide quick “as you

type” searching, so users can get to their tickets faster

• Viewing selected ticket: Viewing a ticket and all of its replies

chronologically

Chapter 3 Support tiCket appliCation

35

• Replying to existing tickets: A What You See Is What You Get

(WYSIWYG) editor to reply to existing tickets

• Creating new tickets: Using a WYSIWYG editor to create new tickets

• Closing Tickets: Closing a ticket and specifying a reason why

• Escalating ticket priority: Escalating the priority of a ticket after the

ticket has been created

• Rating tickets: Using one of the visualization components to rate

tickets

• Attachments: To aid with support for ticket resolution, users can

attach files to tickets using the ojFilePicker component.

Some of the Oracle JET Web Components that will be explored throughout the book

are listed following:

• ojListView: www.oracle.com/webfolder/technetwork/jet/jsdocs/

oj.ojListView.html

• ojSwitcher: www.oracle.com/webfolder/technetwork/jet/jsdocs/

oj.ojSwitcher.html

• ojAvatar: www.oracle.com/webfolder/technetwork/jet/jsdocs/

oj.ojAvatar.html

• ojInputText: www.oracle.com/webfolder/technetwork/jet/jsdocs/

oj.ojInputText.html

• ojTabBar: www.oracle.com/webfolder/technetwork/jet/jsdocs/

oj.ojTabBar.html

• ojDialog: www.oracle.com/webfolder/technetwork/jet/jsdocs/

oj.ojDialog.html

• ojMessages: www.oracle.com/webfolder/technetwork/jet/jsdocs/

oj.ojMessages.html

• ojSelectOne: www.oracle.com/webfolder/technetwork/jet/jsdocs/

oj.ojSelectOne.html

• ojRatingGauge: www.oracle.com/webfolder/technetwork/jet/

jsdocs/oj.ojRatingGauge.html

Chapter 3 Support tiCket appliCation

http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojListView.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojListView.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojSwitcher.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojSwitcher.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojAvatar.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojAvatar.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojInputText.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojInputText.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojTabBar.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojTabBar.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojDialog.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojDialog.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojMessages.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojMessages.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojSelectOne.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojSelectOne.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojRatingGauge.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojRatingGauge.html

36

• ojBindIf: www.oracle.com/webfolder/technetwork/jet/jsdocs/

oj.ojBindIf.html

• ojBindText: www.oracle.com/webfolder/technetwork/jet/jsdocs/

oj.ojBindText.html

• ojModule: www.oracle.com/webfolder/technetwork/jet/jsdocs/

ojModule.html

• ojConveyorBelt: www.oracle.com/webfolder/technetwork/jet/

jsdocs/oj.ojConveyorBelt.html

• ojButton: www.oracle.com/webfolder/technetwork/jet/jsdocs/

oj.ojButton.html

• ojLabel: www.oracle.com/webfolder/technetwork/jet/jsdocs/

oj.ojLabel.html

• ojFilePicker: www.oracle.com/webfolder/technetwork/jet/jsdocs/

oj.ojFilePicker.html

Some of the libraries that will be explored throughout the book are

• Trumbowyg: Used for the text areas as a WYSIWYG editor

• Jasmine / Karma: Used for unit testing the application

• Signals: Used to send signal events between different modules

 Page Skeleton
The layout of the application will follow a standard three-column application layout.

The left-hand column will be used for viewing and filtering open tickets, and the main

content area will show the selected ticket and all its information. The box in the main

section on the right will contain metadata about the selected ticket, such as information

on the person assigned to the ticket, any ticket history, and rating information.

There will be a total of two menu bars. The main menu bar will hold the application

logo, main menu navigation, and user information. The second menu bar will hold

ticket-related actions, such as adding a new ticket and the tabs of the open tickets.

Note that the logged-in user text at the top right is in a more natural language format.

This has been added to keep with the theme of improving the user experience. A simple

Chapter 3 Support tiCket appliCation

http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojBindIf.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojBindIf.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojBindText.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojBindText.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/ojModule.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/ojModule.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojConveyorBelt.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojConveyorBelt.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojButton.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojButton.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojLabel.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojLabel.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojFilePicker.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojFilePicker.html

37

change such as using natural language, can make the application feel a little friendlier,

which, in turn, will make the user feel happier. Natural language additions such as this

work great if an application is looking to adopt some sort of AI interface too, such as

integrating the Oracle Digital Assistant Service into the UI.

We will be using a tab component for the main content area. This is so that users

can have multiple tickets open at the same time. Having this kind of multitasking will be

beneficial to bigger companies that have a lot of different support tickets open, or even

for a support representative who will be dealing with multiple tickets and may have to

keep several tickets open concurrently. The page skeleton is illustrated in Figure 3-1.

 Ticket List
The leftmost pane of the application will contain a list of tickets, as shown in Figure 3- 2.

This list will be searchable using quick inline searching, which will give the user a “search

as you type” experience. The search functionality will be built as a Web Component,

giving it the full benefits of the Web Component architecture, which we will explore more

later in the book.

Figure 3-1. Skeleton of application mock-up

Chapter 3 Support tiCket appliCation

38

 Viewing a Ticket
Selecting a ticket from the list will open the ticket in a new tab in the main content

section. Each ticket will be assigned to a new tab, and the currently visible ticket will be

highlighted in the list on the right-hand side.

The ticket view itself will show information about the current status of the ticket and

options to escalate the priority of the ticket and close the ticket. Escalating the priority

will move the ticket up one level, and users will be informed of this when they click the

button. Before closing a ticket, users will be shown a pop-up asking them to confirm

their action.

The first message displayed for a ticket will be the original support message raised

by the customer; this will include the avatar of the user, the user’s full name, attachment

(if available), and their message. Following the original message will be all the replies

by both support representatives and the user, all in the same format. Any notes from the

user will be displayed on the left-hand side, whereas the support representatives’ replies

will be on the right. The amount of time since each note was posted is also shown.

To the right of the notes, users will be able to see information about their support

representative, including a small bio and their average rating. The aim of this to reassure

customers that they are in safe hands. Figure 3-3 shows selected ticket 10006 in focus.

Figure 3-2. Ticket list mock-up

Chapter 3 Support tiCket appliCation

39

 Replying to Tickets
At the bottom of each open ticket (see Figure 3-4), there will be a box in which users

can reply, using a WYSIWYG editor. The editor will be implemented using a third-party

plug-in. The idea here is not to have a rich editor that permits images, HTML, etc., just a

simple editor that can handle line spaces and some basic formatting.

Users will be able to upload an attachment with their comment, such as an image to

aid with the support incident.

Clicking the Reply button at the top of a ticket will move the focus down to the reply

box, so that it is easy for a user to get to the reply box on really long tickets.

Figure 3-3. View ticket mock-up

Chapter 3 Support tiCket appliCation

40

 Closing and Rating Tickets
Once users have received a satisfactory outcome to their support ticket, they will be able

to self-close the ticket. To do this, they must click the Close Ticket button at the top of the

screen, as shown in Figure 3-5.

Figure 3-4. Ticket replying mock-up

Figure 3-5. Ticket buttons

Chapter 3 Support tiCket appliCation

41

Clicking the Close Ticket button will show a dialog window asking users to confirm

that they want to close the ticket. Figure 3-6 illustrates the ticket closure dialog, with a

drop-down list to specify a closure reason.

Once they confirm, the ticket will then be closed, and the status of the ticket updated.

The buttons at the top of the ticket will disappear and are switched instead to a rating

component, with which users can rate their experience with the support assistant, as

shown in Figure 3-7.

Figure 3-6. Close ticket confirmation mock-up

Chapter 3 Support tiCket appliCation

42

 Creating a New Ticket
Clicking the Create Ticket button at the top right of the screen will cause the create ticket

section to slide down. Here, the user will be able to fill out four fields to create a new

ticket. The fields that will be shown are as follows:

• Title: The name of the ticket. Required field.

• Priority: Drop-down limited to values between 1 and 5, 1 being the

highest priority. Required field.

• Issue Summary: A longer description to be used for detailing the

issue. Required field.

• Upload attachment: Option to upload an attachment to the ticket

when it is first created. Not Required.

Figure 3-8 illustrates how the create ticket section will look. The section will slide

down and push the rest of the content farther down the page, making the ticket creation

the primary focus to the user.

Figure 3-7. Rating a closed ticket

Chapter 3 Support tiCket appliCation

43

 Notifications
Notifications generated by the application will be shown in a box at the bottom

right- hand corner of the screen. (See Figure 3-9). For example, if there is an error

with the action a user is trying to perform, an error message will be shown. Success

messages will also be displayed here, and the component we will use provides the

means to easily set the type of notification.

Notifications will be global, and they can be dismissed by the user, by clicking the

cross next to them.

Figure 3-8. Create a new ticket dialog mock-up

Chapter 3 Support tiCket appliCation

44

 Searching for Tickets
As briefly mentioned, users will have the ability to quickly search for tickets using a

“search as you type” search box at the top of the ticket list. Search as you type gives users

a better experience. It is similar to autocomplete on Google, in that it will start returning

results to the user almost instantly, meaning their item may appear before they even

finish typing a word. Combine that with not having a search button to press, and the time

and effort for a user to find what they are looking for is greatly reduced.

Note in Figure 3-10 that the full search term has not been typed, yet the user can

already see the item he or she is trying to search for.

Figure 3-9. Notifications mock-up

Chapter 3 Support tiCket appliCation

45

 Summary
This chapter has provided an overview of the screens we will be building using the

mock- ups provided, and it has also explored their functionality. Make sure that you have

a good understanding of the expected functionality before moving on.

Figure 3-10. Searching mock-up

Chapter 3 Support tiCket appliCation

47
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6_4

CHAPTER 4

Hello World
The JavaScript world can be a scary place and extremely overwhelming for newcomers.

There are thousands of libraries, and with many doing similar, if not the same, things,

it can be difficult to see the forest for the trees. The last thing you want to worry about

is loads of build tools required to run the code you don’t even know how to write yet!

Luckily, Oracle JET makes the getting started process straightforward.

Throughout this chapter, we are going to look at how to set up a JET version 6

project for the first time and the prerequisites that are needed to set up a development

environment. The Oracle JET web site (oraclejet.org) has a section specifically for

getting started (Figure 4-1), so we will be using this as a guide, as we delve into more

detail.

We will also look at how to install and manage the JavaScript libraries, using a tool

called Node Package Manager (NPM).

Figure 4-1. Getting started with Oracle JET

http://www.oraclejet.org

48

 Environment Setup
The first task in setting up your first JET application is to ensure that you have Node.js

installed on your machine. Node.js is an open source server environment, created for

running JavaScript code on a server. It is simply an environment, built on Chrome’s V8

JavaScript engine, which includes everything required to run a JavaScript program.

Node.js comes bundled with a package manager for handling JavaScript libraries

(or packages), named Node Package Manager (NPM). NPM has a wide range of

different JavaScript libraries within its repository. There should be a library on NPM for

almost any scenario you encounter.

To install Node.js, go to https://nodejs.org/ and install Node version 8.12.0. This

version has support for Oracle JET Version 6, which is the version of JET that will be used

throughout this book.

To find this version of Node.js on the relevant web site, click Other Downloads,

then Previous Releases, which should bring you to the page https://nodejs.org/en/

download/releases/, as shown in Figure 4-2. Navigate to Downloads and choose either

the .msi or .pkg file, depending on your OS.

Figure 4-2. Previous Node.js releases

Chapter 4 hello World

https://nodejs.org/
https://nodejs.org/en/download/releases/
https://nodejs.org/en/download/releases/

49

Once Node.js has downloaded, verify the installation and version number, by

running the following in a command window:

node –version

You can also check that NPM has been installed. Node.js will install the right version

of NPM automatically:

npm --version

The primary command to be aware of with NPM will be the install command. To run

the install command, simply follow the structure below:

npm install [insert library name]

The command npm install will look up the specified library on the NPM repository

and install the library into a folder called node_modules. This folder will store all the

JavaScript libraries installed via NPM, such as RequireJS and KnockoutJS. So, for

example, running the command npm install jquery in an empty directory will

download jQuery into an automatically created node_modules folder. (See Figure 4-3.)

Figure 4-3. Installing jQuery via NPM

Chapter 4 hello World

50

As well as having a node_modules folder local to the directory you are in, there is also

a global node_modules folder stored on your machine. This should be stored under /usr/

local/lib/node_modules on Mac, and %USERPROFILE%/AppData/Roaming/npm/node_

modules on Windows. NPM is installed as a global node module when you install Node.js.

 Oracle JET CLI
To develop an Oracle JET application, first install the Oracle JET Command Line Interface

(CLI). The Oracle JET CLI is a command-line tool used for building and managing an Oracle

JET application. Prior to the CLI tool, developers would have to run separate commands for

Yeoman, to scaffold an application; Grunt, to manage build tasks; and Cordova, for mobile

application development. These tools are now encapsulated into the one single tool.

As the CLI is a module that should be used globally across all JET projects, it must be

installed using the global attribute by adding a -g into the install command, as follows:

npm install -g @oracle/ojet-cli@6.0.0

Run the install command, and you should have the ojet-cli module installed on

your machine. You can verify that the CLI has been installed by visiting the global node_

modules folder mentioned earlier.

Note that any modules that are installed globally will have to be installed individually

by each person working on a project.

To find out more about the CLI tool, or if you require any help, you can run the ojet

command with the 'help' attribute.

ojet --help

To check the version number of JET installed, use the 'version' attribute.

ojet --version

 Integrated Development Environment (IDE)
The IDE that I recommend and will be using throughout the book for JET development

is Visual Studio Code (VSC). VSC is lightweight, highly configurable, and has excellent

GIT integration. It is possible to perform all your development, check out new branches,

switch branches, commit, and push all changes directly within VSC. The interface

is easy to use, and the way it tracks changes under the source control tab makes it

straightforward to manage code changes.

Chapter 4 hello World

51

Of course, any IDE can be used for JET development. You aren’t tied down to using

a single IDE, as you would be with other frameworks. If you prefer to use NetBeans or

WebStorm, these can be used instead.

Another useful feature of VSC is the ability to have multiple integrated terminal

windows open within the single window. All the commands needed for JET development

can be run within the same application that you will be developing within.

To show the integrated terminal, navigate to View, then select Integrated Terminal,

as shown in Figure 4-4.

 Scaffolding an Application
Scaffolding a JET application is essentially installing the base skeleton files of the

application to get you started. The process is shown in Figure 4-5. First decide on your

application location, navigate there within your terminal, and then run the following

command:

ojet create MyOnlineSupport --template=navdrawer

Figure 4-4. VSC Integrated Terminal

Chapter 4 hello World

52

Running the create command will begin to scaffold an application with the

name “MyOnlineSupport” in the directory specified. It will then run an npm install

command, to install all the library dependencies.

Once the install has completed, create a new folder in the new MyOnlineSupport

directory called UI and move the entire contents of the MyOnlineSupport into this

new directory. So, all the new application files that you have just created are within

MyOnlineSupport/UI.

For the purposes of this book, we have created a new JET application with the

navdrawer template. There are four different template options available: navdrawer,

navbar, basic, and blank. The template determines what starting files and navigation

options are created when you initially scaffold an application. You can see a live

example of each of these types on the Oracle JET web site (www.oracle.com/webfolder/

technetwork/jet/globalExamples.html).

Figure 4-5. Scaffolding an Oracle JET application

Chapter 4 hello World

http://www.oracle.com/webfolder/technetwork/jet/globalExamples.html
http://www.oracle.com/webfolder/technetwork/jet/globalExamples.html

53

 Application Structure
If you now open the project in VSC, by navigating to File ➤ Open and then selecting the

project folder MyOnlineSupport, you will see the file structure of the new application in

the explorer pane on the left-hand side, such as in Figure 4-6.

Next, we are going to take a look at the different files that have been created during

the scaffolding process.

Figure 4-6. Project file structure

Chapter 4 hello World

54

 oraclejetconfig.json
The oraclejetconfig.json file is relatively small and includes some parameter

configuration for paths within your application structure. For now, it is fine to leave

everything in here as default. However, if you wanted to rename the folder location for

the tests, for example, this is the place to do so.

 package.json and package-lock.json
Both the package.json and package-lock.json files contain a list of dependencies that

must be installed for the application to run. Whenever you run an npm install against

a project, it will use these two files to work out what dependencies to install, and it will

fetch the libraries and place them all within the local node_modules folder.

At this point, look in the node_modules folder. It will be full of hundreds of different

directories that are dependencies for JET to run.

 package vs. package-lock

You may have noticed that the package and package-lock files are very similar in nature.

The truth is that they are indeed similar, but there is a history behind why that is.

When working within a project, if you come to install a new library, for example,

trumbowyg (which we will be using later in the book), you can run the following

command, and notice that trumbowyg will be added to the package.json file (seen

in Figure 4-7), alongside the version installed:

npm install trumbowyg

Chapter 4 hello World

55

Note that the version of trumbowyg within the package.json file has a caret at the

beginning (^2.11.1). This essentially instructs NPM to install the latest version of the

major release line (so, the latest 2.x.x release). This means that if someone else were to

check out this project in the future, and rerun an npm install following a newer release

(such as version 2.12.1), they would get a newer (and, therefore mismatched) version to

the one originally installed.

The package-lock.json file was introduced to overcome this inconsistency. The file

contains a long list of the dependencies and the specific version that should be installed.

It also includes extra information, such as the module location and a list of packages that

it requires. If we take a look at my package-lock.json file after the install (Figure 4- 8),

we see that it also includes the trumbowyg installation and the exact version that was

installed initially.

Figure 4-7. trumbowyg added to package.json file

Chapter 4 hello World

56

I can now be sure that if another developer joins the project, their working copy will

be using the same versions as I do.

You should, however, always treat package.json as the source of truth. If you

manually update the reference in package.json to a newer version of trumbowyg and

rerun npm install, the newer version will be installed, not the older version, within the

package-lock.json file.

 Gruntfile
Prior to JET 4.0, Grunt was used as a task runner to build and serve Oracle JET

applications. This is no longer the case, as the Oracle JET CLI has since replaced it. Grunt

(and Yeoman, which was used for application scaffolding) will be removed completely in

Oracle JET 7.0. Therefore, it is not recommended to use Grunt for registering build tasks.

Instead, you should be using the hooks provided in the scripts/hooks directory.

 scripts Directory
 config
As part of the Oracle JET tooling, there are a lot of tasks that are run when either building

or serving an application. For example, as part of the build task we will see shortly,

JET tooling will copy over all the libraries required from node_modules into a staging

directory. All of this is done by the core Oracle JET tooling library, and the files within

the scripts directory provide the ability to extend the build tasks to perform custom

functionality or commands as part of the build process.

In Chapter 8, we will be using the copyCustomLibsToStaging task to copy over a

custom library that we will have to include and use within the application.

Figure 4-8. trumbowyg added to package-lock.json file

Chapter 4 hello World

57

 hooks
As well as using the existing build tasks, such as the copyCustomLibsToStaging

mentioned previously, it is also possible to include your own build tasks. To do this, you

must create a hook using one of the built-in hook points. The Oracle JET tooling defines

various hook points and creates skeleton files for them when you create an application.

These hook points are

• before_build: Triggered prior to the tooling kicking off the build

process

• before_release_build: Triggered prior to the tooling kicking off

before the uglify and RequireJS bundling occurs within release mode.

(We will look at release mode shortly.)

• before_hybrid_build: Triggered before the cordovaPrepare build

steps occur. Only applicable to mobile application development

• before_serve: Triggered before the web serve process connects

• after_serve: Triggered after the build process is complete and the

application is served

If your company has a strict set of rules that must be passed before code can be

committed to a shared repository, you will be able to use the hooks directory to run a

linting process before an application is built. In this scenario, you would use the before_

build hook, located in scripts/hooks/before_build.js.

 Source Directory (src)
The source directory is where all the pre-compiled application code will be stored. When

creating a new project, JET will get you started by providing a basic template (in the form

of an index.html file), some technology-specific configuration files (such as main.js

and appController.js), and sample Views and ViewModels. Let’s look at what each of

these does.

Chapter 4 hello World

58

 index.html
The index file, as shown within Figure 4-9, will hold the initial HTML markup required

to initialize the application. Some of this markup will persist through the lifetime of a

session; however, most of it will be dynamically changed as a user interacts with the

application. This is why most client-side applications are referred to as single-page

applications (SPAs). The user remains on a single page (index.html), and the content of

the page will be dynamically switched, compared to a traditional web site, wherein they

would navigate between different pages (about-us.html, etc.).

Much of the content switching will be performed within the ojModule located

between the header and footer elements (shown in Figure 4-10). This is where the

modulated views and view models will be injected.

Figure 4-9. Index file of a new Oracle JET installation

Figure 4-10. ojModule used for loading main application content

Chapter 4 hello World

59

In Chapter 2, we explored require.js and the main.js files. The require.js library

and the main.js are both imported at the bottom of the index.html file.

The element with the ID of globalBody is where KnockoutJS will be bound to in the

main.js file, after they are activated.

 js/path_mapping.json

This is a relatively new addition to JET from version 5.0. It was essentially added to

minimize the number of different places required to reference library files.

Prior to the path_mapping.json file, a reference to any third-party libraries would

have to be added in the scripts/config/oraclejet-build.js file, then a reference in

the main-release-paths.json file (which no longer exists), and finally a reference in the

main.js file to set up the library to use with RequireJS.

JET 5.0 replaced main-release-paths.js with the path_mapping.json file, with the

aim to reduce the number of places needed to include any library declarations. Using the

trumbowyg library we have already installed, let’s see how we can copy the library over

into our application.

First open the js/path_mapping.json file, and add the following code anywhere in

the libs object:

 "trumbowyg": {

 "cdn": "3rdparty",

 "cwd": "node_modules/trumbowyg/dist",

 "debug": {

 "src": ["trumbowyg.min.js", "ui/icons.svg", "plugins/cleanpaste/**"],

 "path": "libs/trumbowyg/trumbowyg.min.js"

 },

 "release": {

 "src": ["trumbowyg.min.js", "ui/icons.svg", "plugins/cleanpaste/**"],

 "path": "libs/trumbowyg/trumbowyg.min.js"

 }

 },

What this will do is copy trumbowyg.min.js, seen in the screenshot from the

node_modules/trumbowyg/dist folder (Figure 4-11), into the web/libs/trumbowyg folder

that is created when you build or serve a JET application.

Chapter 4 hello World

60

The separate debug and release objects provide the ability to have different

parameters set for dev and release mode builds. This can be useful in copying over a

minified version for production use. You will start to see this in action shortly, when we

start to build and run the application.

JET uses a library called Glob (and minimatch) to match files and directories using

patterns. Different patterns can be used to copy over whole directories or certain file

types within directories.

If you would like to test out patterns, I recommend using http://www.globtester.com.

It’s a really useful tool for ensuring that patterns are correct.

 js/main.js

The main.js file was explored in Chapter 2. It is the file which sets up all the JavaScript

library configuration and initializes the application through the root require block. A

main.js file is already included in the application, with all the JET library configurations

in place.

Figure 4-11. trumbowyg file within the node_modules folder

Chapter 4 hello World

http://www.globtester.com

61

As trumbowyg is installed and the reference to it included within the path_mapping.

json file, we don’t have to specify a path within the main.js file. Prior to 5.0, the

following line would have to be added:

'trumbowyg': 'libs/trumbowyg/trumbowyg.min'

Now only the library identifier is required, and if it matches, JET will inject the path

from the path_mapping.json file during build.

'trumbowyg': ''

 js/appController.js

The appController file is responsible for setting up all the application-wide control

logic, such as routing information and the logic for switching out the module responsible

for the application’s main view.

The ID of the router configuration must match that of the View/ViewModel name.

 js/views and js/viewModels

All the Oracle JET module code should be placed within these two folders (views and

viewModels). The naming and location of the files within these directories should be

the same. So, for example, the dashboard.html in the views directory should have a

corresponding dashboard.js file in the viewModels directory.

 Oracle JET Build Tools
Now that we have explored all the files and folders that make up an Oracle JET

application, let’s take a look at how to build and serve an application. To do this, we will

again be looking at the ojet command installed earlier with the Oracle JET CLI.

 Building
To build an application, simply run the following command within the integrated

terminal:

ojet build

Chapter 4 hello World

62

The build command, as illustrated in Figure 4-12, is included among the Oracle JET

CLI tools. It runs all the tasks needed to compile the project source code and required

dependencies into a runnable application. After running the command, you will notice

that there is a new web and themes directory in the file tree. Look in the web/js/libs/

trumbowyg directory, and you should see the library we added earlier in the path_

mapping.json file.

The web directory contains the compiled code. It is possible to take this folder

outside of the project and deploy it anywhere. In Chapter 5, we will explore what the

themes directory is and what it does.

Be careful here! It is easy, especially to begin with, to make edits to the files within

the web (or themes) directory instead of within the src directory. If you do this and run

build again, you will lose all your changes.

When the application is ready to be deployed to a production environment, you

will want to build in release mode instead. Release mode will ensure that the code is

optimized for production use, by minifying all the CSS and JavaScript code. To run in

release mode, append --release to the end of the build command, as follows:

ojet build --release

Figure 4-12. Using the build command

Chapter 4 hello World

63

 Serving
Efficient and seamless development is possible with Oracle JET, thanks to the serve

command. The process provides the ability to develop and see the result almost

instantly.

Running the serve command “watches” certain folders within your project and

recompiles the source code if a change occurs. The folders it watches by default are:

• All CSS files in src/css/ (including subdirectories)

• All JavaScript files in the src/js/ directory, except for the libs folder

(including subdirectories)

• All JSON files in the src/js/ directory, except for the libs folder

(including subdirectories)

• All CSS and JS files within the /src/tests directory

• All HTML files across all of the /src/ directory (including

subdirectories)

It is possible to override the default watched directories by using the script/config/

oraclejet-serve.js file to specify an array of files within the watch task. The files array

uses the same global library mentioned within the path_mappings.json section for

resolving path names.

The following example shows what would be required to watch files within a new

directory created, called /src/js/toolkit:

watch: {

 sourceFiles:

 {

 files: [

 `${paths.src.common}/${paths.src.javascript}/toolkit/*.js`

],

}

 options: {

 livereload: true

 }

 }

}

Chapter 4 hello World

64

For the purposes of this book, you will not be required to manually watch any

directories. The defaults will suffice.

So, to serve the application, simply run the following command from a terminal

window that has navigated to the UI directory:

ojet serve

What this will do now is build the source of your code and then launch a local web

server on port 8000. It will then continuously watch for any changes in your application

code and automatically open a browser window with the application loaded, as shown

in Figure 4-13.

It is possible to change the default port from 8000 (if something else is using that

port), by adding the server-port attribute when running the serve command.

ojet serve --server-port=8001

Now, if you navigate to src/js/views/dashboard.html, open the file and replace

the text in the H1 element to be Hello World.When you save the file the watcher task

will detect that the dashboard.html file has been edited, recompile it, and automatically

reload the web browser window with the changes. This is demonstrated in Figure 4-14.

Figure 4-13. Oracle JET application being served

Chapter 4 hello World

65

It is clear to see why this functionality is so useful. It can save hours previously

wasted by having to manually rerun an application or deploy to servers to see the results.

 Mock API Setup
To set up the API layer, we are going to use a plug-in called mock-server (www.npmjs.

com/package/mockserver). If a chapter requires new mock APIs, the payloads will be

included at the start of the chapter, and all the mock payloads will be available online in

GitHub.

To begin, create a new directory, called API, at the root level of your application and

another, called mocks, within the API directory. The structure should look like that shown

in Figure 4-15.

Figure 4-14. Hello World

Figure 4-15. Folder structure

Chapter 4 hello World

http://www.npmjs.com/package/mockserver
http://www.npmjs.com/package/mockserver

66

Open a new terminal window within VSC, navigate to the API directory, and run the

following command globally:

npm install mockserver -g

To set up the mock-server plug-in, you must create new files within the mocks

directory that are named as REST methods. Within these files, you can include the JSON

response payload and header information.

In Chapter 6, we will be building the ticket list view, and the API call to populate the

ticket list will be a GET request to /tickets/. To return data on the end point, create a

new file within API/mocks/tickets called GET.mock and populate it with the following

data (Figure 4-16 shows what this should look like):

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

{

 "tickets": [

 {

 "id": 10006,

 "title": "Website Unavailable",

 "author": "Charlotte Illidge",

 "authorImage": "image.jpg",

 "representativeId": "1",

 "priority": 1,

 "service": "stylearchive",

 "dateCreated": "2018-07-12T16:20:47+00:00",

 "status": "Working",

 "message": "Hi, My website (thestylearchive) is currently down and I

cannot access it. I can successfully log in to the back end systems

but not the actual website.

I have tried on multiple

devices and internet connections but none seems to work.

Could you please help?

 Thanks!",

 "attachment": [{

 "filePath": "images/websitedown.jpg",

 "fileSize": "87KB",

Chapter 4 hello World

67

 "timestamp": "2018-07-12T16:20:47+00:00"

 }],

 "ticketRating": -1

 },

 {

 "id": 10005,

 "title": "Account Upgrade",

 "author": "Charlotte Illidge",

 "authorImage": "image.jpg",

 "representativeId": "2",

 "priority": 3,

 "service": "stylearchive",

 "dateCreated": "2018-07-09T08:37:17+00:00",

 "status": "Closed",

 "message": "Hi,

I would like to upgrade my account to the

next tier, so that I can include custom HTML in my templates, thanks!",

 "attachment": [],

 "ticketRating": 4

 },

 {

 "id": 10004,

 "title": "Advertisements",

 "author": "Charlotte Illidge",

 "authorImage": "image.jpg",

 "representativeId": "3",

 "priority": 3,

 "service": "stylearchive",

 "dateCreated": "2018-06-25T14:54:17+00:00",

 "status": "Closed",

 "message": "Hi,

I would like to include AdSense

advertisements on my website, but I cannot seem to find a way to do

this.

Is this possible?

Thanks.",

 "attachment": [],

 "ticketRating": 5

 },

Chapter 4 hello World

68

 {

 "id": 10003,

 "title": "Data Migration",

 "author": "Charlotte Illidge",

 "authorImage": "image.jpg",

 "representativeId": "4",

 "priority": 3,

 "service": "stylearchive",

 "dateCreated": "2018-06-11T11:22:16+00:00",

 "status": "Closed",

 "message": "Hi, I need to transfer all my data from my old provider

to you.

I have a copy of the SQL dump.

How do

I import this?

Thanks,
 Charlotte.",

 "attachment": [],

 "ticketRating": 4

 },

 {

 "id": 10002,

 "title": "Importing Image",

 "author": "Charlotte Illidge",

 "authorImage": "image.jpg",

 "representativeId": "5",

 "priority": 3,

 "service": "stylearchive",

 "dateCreated": "2018-06-11T17:20:24+00:00",

 "status": "Awaiting Customer Response",

 "message": "Hi,

 I have recently moved over to using your

services from my old hosting company. I have a lot of images hosted

externally on image upload websites that I would like to migrate over

to here.

Do you have any tools to support with this? If

not would you be able to point me in the right direction?

Many thanks!",

 "attachment": [],

 "ticketRating": -1

Chapter 4 hello World

69

 },

 {

 "id": 10001,

 "title": "Domain Transfer",

 "author": "Charlotte Illidge",

 "authorImage": "image.jpg",

 "representativeId": "6",

 "priority": 2,

 "service": "stylearchive",

 "dateCreated": "2018-06-11T17:22:29+00:00",

 "status": "Closed",

 "message": "Hi, Could I please get all the DNS information so that I

can point my domain name to your servers please?

Can you

also assign my domain thestylearchive.co.uk to my account here too?

Many thanks!",

 "attachment": [],

 "ticketRating": 5

 }

]

}

Figure 4-16. Tickets GET response file

Chapter 4 hello World

70

Finally, you can start the mock server by running the following command:

mockserver -p 8080 -m mocks

This initializes the mock server on port 8080, so if you visit http://localhost:8080/

tickets, you should get a valid response with a formatted JSON payload, similar to that

in Figure 4-17.

Figure 4-17. Tickets response

Chapter 4 hello World

71

 Summary
Following the completion of this chapter you will have a project ready to begin building

an Oracle JET application, as well an understanding of the following:

 1. How to install Node.js on a machine and what NPM is used for

 2. How to install the Oracle JET CLI

 3. How to create your first Oracle JET application, using the Oracle

JET CLI

 4. The file structure and scaffolded files in a new Oracle JET project

 5. How to build and serve your first Oracle JET project

 6. How to install and run a mock server

Chapter 4 hello World

73
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6_5

CHAPTER 5

Theming
A theme is a set of style rules that applies to the entire application. These rules are

usually split into separate CSS files, alongside images and fonts, and contained within a

single location known as the theme folder.

Application theming is extremely important, yet often overlooked. Despite theming

getting more consideration, there is still a lot that can be improved. The struggles with

theming in enterprise applications can be pinpointed to several factors, including the

following:

• Where systems have transitioned from older paper-based systems,

there may be a tendency for the system to replicate the design or

theme of the paper forms that preceded, instead of rethinking for the

digital implementation.

• The technology stack has made it difficult for implementing a theme.

Prior to CSS3, most web sites were built using a combination of

tables (instead of divs), and images were used to style the pages. This

resulted in themes that were built of many “sliced” images that were

difficult to modify and extend. Often, a small change to the layout

would require a complete redesign of the page structure.

• Design and user experience were not as forefront as they are today.

Functionality drove.

 Why Is Theming Important?
A common reason for theming an application is to ensure that it follows your company

branding guidelines, as it can help to provide consistency across applications, build

brand recognition, and showcase a unique look to users. The theme of an application

could be the difference between a customer staying or moving to a competitor.

74

If the application is an internal business application, ensuring that a suitable theme

is in place can keep employees happier and in turn increase productivity. Users may be

logging on to these applications day in, day out. A clunky looking application is going to

make their experience (and, therefore, job) more miserable.

A theme is not just about the colors or font sizes. It is about the way that an element

responds to user interaction, or the way that elements should be positioned on a page.

Considering these aspects is critical to the user experience.

A theme is ultimately the face of a product. If the face is ugly, frustrating, or causes

the user distress, the user will be put off the product, possibly until a new theme is used.

Therefore, getting it right from the outset could be make or break.

 Use of Default Theming
If possible, you should avoid using the default theme that comes with a product or

framework. A default theme that has been used across multiple different applications

can blur the lines for consumers. Imagine you have a really bad experience with a mobile

banking application and decide to look elsewhere for your banking services. You look

into another bank and find out that their mobile application uses the same software as

the previous bank, just with a different logo or color scheme. Due to your experience

with the previous bank’s app, you will likely avoid this one too, for fear of the same issue.

Therefore, you want a toolkit that provides the ability to easily extend or replace the

default theme.

 Oracle-Supplied Themes
There are two Oracle-supplied themes to be aware of. These are Skyros and Alta. Skyros

was the old default, and Alta is a newer and more modern default.

 Oracle Skyros Theme
Oracle ADF applications prior to 12c came with a default theme called Skyros.

Figure 5- 1 shows a sample theme. Those who have worked with ADF before will

recognize the theme, and comparing with the standards of applications today, it may

look a little dated.

Chapter 5 theming

75

One of the issues that come with theming ADF applications is the difficulty of

changing elements of the theme. Trying to hook on to the classes for components in ADF

can be difficult, and it is therefore easier to just use the default Skyros look and feel. This

kind of scenario has resulted in a lot of applications that share the same theme, and at

first glance, you might not be able to tell the difference between them. This is not limited

to ADF either. Oracle forms applications were affected by this too, and many other non-

Oracle applications end up with the default look and feel.

The Skyros theme and markup are quite heavy to load. It contains a lot of images and

contributes to a slower performance on page load.

 Oracle Alta Theme
Alongside the release of 12c, Oracle introduced a new theme named Alta UI. Figure 5-2

shows an example of this theme, which is cleaner, feels lighter, and is more responsive

than its predecessor. It comes with extensive documentation of guidelines and best

practices, including information such as behavior, usage, and appearance of elements,

Figure 5-1. Oracle Skyros theme

Chapter 5 theming

76

to help designers and developers get the most out of the theme. The Alta theme is deeply

ingrained into the Oracle Cloud products, showcasing a common experience within the

different cloud products currently on offer.

The Alta theme is available across all Fusion Middleware, Mobile Application

Framework (MAF), and JET products, which can aid with consistency when a

combination of products are used. It is designed to be responsive, with a separate set of

patterns for mobile and web development.

Oracle Alta UI continues to evolve today and is really the centerpiece of theming in

an Oracle JET application. The default theme is Alta, and unlike the pain and struggles in

trying to modify or extend the Skyros theme in ADF, Alta in Oracle JET is designed to be

modified and extended.

Figure 5-2. Oracle Alta theme

Chapter 5 theming

77

For our application, we are going to be using the Alta theme as our base and

extending it out slightly to fit our designs.

 SASS and CSS Custom Properties
CSS3 brought many great additions to the world of style sheets but still has many

limitations, such as a lack of variables, nesting, and inheritance we come to know and

love from programming. As style sheets have become more complicated, Syntactically

Awesome Style Sheets (SASS) was developed as a solution to try and resolve some of the

complexity and maintenance issues than can arise with large style sheets.

SASS is what is known as a CSS pre-processor (it transcribes down to CSS code as

part of the build process). SASS brings variables, nesting, inheritance, and more to CSS.

At the time of writing this book, SASS is the pre-processor in Oracle JET, but starting

with JET 6.0, an insight into the future of style sheets has been demonstrated with the

introduction of support for CSS custom properties.

Most newer browser versions now support CSS custom properties, which are

essentially variables without the need of a pre-processor. This is beneficial because using

pre-processors has limitations, such as not being able to change variables dynamically.

With CSS custom properties, you can hook onto the variables with JavaScript and

dynamically change them at runtime.

The support for custom properties within JET comes accompanied with PreCSS,

which will essentially allow for us to get the best of the SASS features alongside CSS

custom properties. It will also ensure that older browsers and IE11 are supported where

custom properties do not work.

Custom properties are just an experimental feature in JET, with the aim for them to

replace SASS in the future. For now, though, we will be working with SASS until the full

support of custom properties comes to JET in later versions.

 Working in SASS
Let’s initially look at some of the features that SASS offers and see a few examples of

how they can be implemented. We will then move on to creating a new theme and using

some of the SASS features discussed.

Chapter 5 theming

78

 Variables and Importing Partials
SASS files are appended with the .scss extension. They are often referred to as partials

and help to modularize CSS into smaller maintainable chunks. Partials can be imported

into the main CSS file using the @import function.

An example of how importing and variables can be used within SASS is

demonstrated following:

_vars.scss

// This is an example of a variable declaration, which can be stored

// within a separate SASS partial called vars.scss

$font-color: #2F4550;

myTheme.scss

// This is an example of an import and use of a variable within

// the main theme file: myTheme.scss

@import 'vars';

h1,h2,h3 {

 color: $font-color;

}

The approach just illustrated shows how you might define all your site’s colors in a

single partial, using SASS variables. Then you can load and refer to those colors from all

your other partials files. Color changes can be made in the one file and will be applied to

all classes that reference the variable.

 Nesting
CSS lacks a nested hierarchy, which can be missed when trying to write clear and

maintainable CSS structures. SASS introduces a concept of nesting, which can help to

form better structured elements.

If all span elements within a header element were required to have the same font

color (we can use the variable $font-color created in the prior section), nesting could

be used to show a clear hierarchy of classes.

Chapter 5 theming

79

header {

 span {

 color: $font-color;

 }

}

When processed into raw CSS, the resulting rule will look similar to this:

header span {

 color: $font-color;

}

Although the preceding is a simple scenario, in larger applications, it is beneficial

to have a clear visual nested hierarchy that matches the visual hierarchy of your HTML

markup.

 Extend
The extend feature in SASS provides inheritance for CSS selectors, which can be useful

when reusing attributes within multiple CSS selectors. For example, if you have a button

that can be in three different colors (gray, red, and green), but there are some attributes

of the button that should remain consistent across all three colors, it is possible to extend

the shared attributes, as in the method shown following:

// Shared attributes

%button-common {

 padding: 10px;

 font-family: Arial;

 font-size: 14px;

 color: #333;

}

// Colored buttons

.button-green {

 @extend %button-common;

 background-color:green;

}

Chapter 5 theming

80

.button-gray {

 @extend %button-common;

 background-color:gray;

}

.button-red {

 @extend %button-common;

 background-color:red;

}

We can therefore see in the example that there are common attributes in the button-

common class. This class is extended using the @extend keyword within the three button

color classes. The attributes from the common class will be included within the three

color classes when the CSS is compiled. Using this kind of inheritance can cut code

repetition.

 Mixins
Mixins are reusable CSS declarations, with support for parameters. They are useful for

grouping CSS declarations and, like extending, can help to avoid code repetition.

@mixin button($color) {

 padding: 10px;

 font-family: Arial;

 font-size: 14px;

 color: $color;

}

// Colored buttons

.button-green {

 @include button(green)

}

.button-gray {

 @include button(gray)

}

.button-red {

 @include button(red)

}

Chapter 5 theming

81

Using the button example again, we have created a mixin that accepts a color

parameter. The mixin can be used in multiple classes, helping to cut down the need for

code reuse.

 Theme Builder
The Oracle JET theme builder is a JET application that can be used to familiarize yourself

with the way different themes affect all the JET components and can be a good starting

point for theme development. You can view a live version of the theme builder from the

following web site: www.oracle.com/webfolder/technetwork/jet/public_samples/

JET-Theme-Builder/public_html/index.html.

The live version of the theme builder offers an interactive application with six

preloaded themes to switch between and instructions on how to get the theme builder

set up locally on your machine.

It is possible to create a theme directly in your application without the theme builder.

I tend to use the theme builder only as a reference point and instead do the creation and

setup of theme directly in my application. To create the theme for this book, we will just

do it directly within the application we have already scaffolded.

 Creating a New Theme
Let’s explore how we can extend the Alta UI theme, by creating a new theme directly

within the application we created in Chapter 4. Make sure that you already have the

MyOnlineSupport application open within your IDE.

To create a new theme, first we must add SASS to the project, by running the

following command:

ojet add sass

Now create a theme by running the following command (note that mosTheme can be

anything; it is the name that will be assigned to the theme when the process creates the

theme skeleton):

ojet create theme mosTheme

Chapter 5 theming

http://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Theme-Builder/public_html/index.html
http://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Theme-Builder/public_html/index.html

82

This will have created a new theme named mosTheme in the src/themes directory, as

shown in Figure 5-3.

Note the four directories within the themes folder. These are three separate theme

files for serving different variants of the theme on different platforms. We will be working

in the web directory. This is the default platform when serving a JET application.

If you expand this directory, you will see two files:

 1. _mosTheme.web.settings.scss: This settings file contains a

long list of SASS variables that can be used for applying various

styles across the whole of the theme. By default, all of these are

commented out. Uncommenting a variable and changing its value

will override the default value being set by the Alta theme.

 2. mosTheme.scss: This SASS file encapsulates all the style sheets that

will be combined to form the applications mosTheme.css file. This

file contains all the SCSS imports required, such as the settings

file, the Alta theme, and any other SASS partials developers

include.

Figure 5-3. New theme directory

Chapter 5 theming

83

 Including Custom SASS Partials
It is possible to override the default variables used by JET in the settings file, but

inevitably, custom CSS classes will be required to style an element in a certain way.

Custom classes should be contained within an SASS partial file.

To include SASS partials within a theme, first create a file called _vars.scss (SASS

partials should be prefixed with an underscore) in src/themes/mosTheme/web/base and

add the following variable into the file:

$font-color: #2F4550;

Next, create another file called _body.scss in src/themes/mosTheme/web/base and

include the following:

h1,h2,h3 {

 color: $font-color;

}

Finally, include an import to the new file from within mosTheme.scss, by adding the

following lines to the bottom of the file:

// Custom imports

@import "base/vars";

@import "base/body";

Now you must run the application with the new theme. To do this, you must append

the theme attribute to end of the serve command and specify the theme name, as

follows:

ojet serve --theme=mosTheme

Note the same attribute can be applied when using the build command (ojet
build --theme=mosTheme).

As the color change is subtle, you can confirm that the change has been successfully

applied, by inspecting the element with the web console (using F12 on a browser will

open the web console), as demonstrated in Figure 5-4.

Chapter 5 theming

84

 The Three-Step Theme Process
The build process to themes is a little different from the rest of the application. Themes

are staged before they are copied over to the web directory. When building or serving,

any theme changes within src/themes are first processed by the SASS compiler and

copied over the themes directory. This serves as an intermediate between the source and

executable application code.

As you can see in Figure 5-5, there are three different theme directories, and

this can be very confusing. You should never edit anything within the themes or web

directory. Always make changes within src/themes, and let the build process copy the

changes for you.

Figure 5-4. Heading color changes

Chapter 5 theming

85

 Summary
We have explored the theming processes within Oracle JET applications, by looking at

the benefits that an open and expandable theme can provide and created our first JET

theme. SASS is a fundamental part of creating clean and maintainable style sheets within

an Oracle JET application, and we have looked at what SASS is and how it can be used.

The theme created will be expanded as the application progresses.

Figure 5-5. The three-step theme process

Chapter 5 theming

87
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6_6

CHAPTER 6

Creating the Page
Skeleton
Now that everything is set up and the fundamentals have been covered, we can get to

the good stuff by starting to build the application and seeing some real results! As the

application is going to consist of a single page driven by Oracle JET modules, we will be

setting up the structure of this single page by extending the existing template and themes

we have already scaffolded in previous chapters.

We will also introduce several components, as well as CSS flexbox, which is used

for structuring containers and elements of the page in a manner that is responsive. JET

provides a collection of CSS classes out of the box to implement responsive layouts, and

throughout this chapter, we will look at the most common ones and apply some of them

to the application.

By the end of the chapter, you will have built the foundations of the application and

used the following components:

• ojInputText

• ojListView

• ojAvatar

• ojTabBar

• ojModel

• ojCollection

• ojBindText

88

 Flexbox
There was once a time when web development was a lot simpler, as the number of

different devices and screen sizes were limited. With the introduction of smartphones

in 2007, and the wave of different screen sizes that followed, a shift began toward the

responsive web.

Initially, web sites started offering a “mobile” version of a web site that was often

limited in functionality and was still not suited to several different sized devices. Making

web sites responsive was more intrusive, as it often involved completely redesigning and

rewriting a web site with different designs for different “breakpoints.”

CSS3 introduced a new layout mode (an alternative to floats and positioning) called

flexbox, which is an easy and responsive method of arranging elements on a page.

To use flexbox, you simply have to specify the CSS attribute display: flex on the

container elements, and any elements within the container (also called flex items) will

automatically align into separate columns. Figure 6-1 illustrates the structure of a flexbox

container with three flex items.

Figure 6-1. Flex container with flex items

Chapter 6 Creating the page Skeleton

89

 The Flex Attribute
Once the flex container has been set up, the elements inside the container (the flex

items) can have a flex property set against them. The flex property is a combination (or

shorthand) of the flex-grow, flex-shrink, and flex-basis properties. These three

properties are responsible for determining how much space flex items should be taking

up within the container.

The three properties do the following:

• flex-grow: Number value that specifies how much the item will grow

relative to the rest of the children within the container

• flex-shrink: Number value that specifies how much the item will

shrink relative to the rest of the children within the container

• flex-basis: The length of the item; can be auto, inherit or a number

followed by a length unit

The default values for the flex attribute are 0, 1, auto. This means that flex-grow is

set to 0; flex-shrink is set to 1; and the basis is auto.

I recommend you look at this excellent web site: http://the-echoplex.net/

flexyboxes. The site is a really useful tool when trying to work out how flex works and a

great reference to come back to in the future when building new flex layouts.

Alongside the flex attribute, there are also several other attributes you can use with

flexboxes. The following sections describe a few of these other attributes that will be

useful and most commonly used within JET.

 align-items
The align-items attribute aligns items vertically within a flexbox. This attribute has the

following options:

• center: Positions the children in the center of the container

• flex-start: Positions the children at the beginning (top) of the

container

• flex-end: Positions the children at the end (bottom) of the container

• baseline: Positions the children so that the baselines align

• stretch (default): The children stretch to fill the container.

Chapter 6 Creating the page Skeleton

http://the-echoplex.net/flexyboxes
http://the-echoplex.net/flexyboxes

90

 justify-content
justify-content will position the flex items horizontally. If you struggle trying to

remember the difference between align and justify, try to remember that justify positions

flex items in the same way that the justify positioning works within Microsoft Word. The

attribute has the following options:

• center: Positions the flex items in the center of the container

• flex-start (default): Positions the flex items at the beginning (left) of

the container

• flex-end: Positions the flex items at the end (right) of the container

• space-between: Spreads the flex items evenly across the width of the

container

• space-around: Spreads the flex items evenly across the width of the

container, but with space around the edges of the items

 flex-direction
When setting a container to flex, the default direction is row, meaning the children will

display side by side horizontally. Using the flex-direction attribute, you can change

the default direction of the children to any of the following values:

• row (default): Positions the children next to each other horizontally

• row-reverse: Positions the children next to each other horizontally,

but in reverse order

• column: Positions the children under each other vertically, as a

column

• column-reverse: Positions the children under each other vertically,

as a column, but in reverse order

When changing the flex direction, you will also change the axis, and as a result, the

align-items and justify-content attributes will inverse their default behavior.

Chapter 6 Creating the page Skeleton

91

 flex-wrap
The flex-wrap attribute specifies whether the flex items remain in the same row, and

overflow once there are too many, or whether they wrap onto the next line. The attribute

has three values:

• nowrap (default): Items will not wrap.

• wrap: Items will wrap, if needed, in relation to the direction set by the

flex-direction attribute.

• wrap-reverse: Items will wrap, if needed, in reverse order.

 Flex Within Oracle JET
It is not necessary to create CSS classes and use the flex attributes outlined earlier in this

chapter when using JET, as the toolkit includes classes to help with implementing flex

layouts. Having these classes available helps to cut down on the amount of custom CSS

needed and declutters the SASS partials.

The toolkit classes also have responsive prefixes, to target different screen sizes. The

responsive prefixes are as follows:

• Small (sm): Range of 0–767px

• Medium (md): Range of 768px–1023px

• Large (lg): Range of 1024px–1280px

• Extra large (xl): 1281px +

• Print (print): Layout for when a browser’s print option is used

Media queries, which are a common web development technique introduced in

CSS3 for responsive development, always target the minimal value and above. Similarly,

any class ending in sm will cover all screen sizes. However, if you also apply classes

using the md and lg sizes to an element, the media queries will kick in to override the sm

settings when screens reach those larger sizes.

Chapter 6 Creating the page Skeleton

92

The most commonly used classes available from the offset in JET are:

• oj-flex: Sets the display attribute to flex, the flex-wrap property to

wrap, and adds padding to the children

• oj-[size]-[cols]: Specifies the number of columns an element will

occupy, which can be between 1 and 12. For example, using oj-sm-2

and oj-md-3 on an element would result in the element occupying

two columns within the small range and switching to three columns

in the medium range.

• oj-[size]-justify-content-[value]: Specifies the horizontal

position of the container’s children, using the same values outlined

previously: center, flex-start, flex-end, space-between, and space-

around

• oj-[size]-align-items-[value]: Specifies the vertical position of

the container’s children, using the same values outlined previously:

center, flex-start, flex-end, baseline, and stretch

• oj-[size]-flex-direction-column: Switches the default direction

from row to column

• oj-[size]-padding-[multiplier]-[edge]: Responsive margin and

padding classes. For example, oj-sm-padding-2x-end would add a 2x

padding to the end of the element.

I have covered some of the more common flex classes, and there are a lot more than

can be used for more advanced layouts. A full guide to the available classes is available

within the Oracle JET documentation and is useful as a reference. Here’s a direct link

to that documentation: www.oracle.com/webfolder/technetwork/jet/jsdocs/

FlexLayout.html.

 Setting Up the Application Structure
Time to dive into creating the structure of the page. Start by opening the application

directory and rename the dashboard module files to ticket-desk. Make sure that you

have renamed both the ViewModel file (src/js/viewModels/dashboard.js) and the

View file (src/js/views/dashboard.html).

Chapter 6 Creating the page Skeleton

http://www.oracle.com/webfolder/technetwork/jet/jsdocs/FlexLayout.html
http://www.oracle.com/webfolder/technetwork/jet/jsdocs/FlexLayout.html

93

As the dashboard module name has changed, you must also update the router

within the appController.js file. Open appController and change the reference to the

dashboard within the router configuration to ticket-desk instead, so that it looks like

the following:

self.router.configure({

 'ticket-desk': {label: 'Ticket Desk', isDefault: true},

 'incidents': {label: 'Incidents'},

 'customers': {label: 'Customers'},

 'about': {label: 'About'}

});

Ensure that your application is serving with the mosTheme. As a reminder on how to

do this, run the following command from the application directory:

ojet serve --theme=mosTheme

Now we will be using flexbox to create the page containers. First, open the ticket-

desk.html file and replace the contents with the following code. The markup will form

the base container structure that will eventually contain all the application components

and modules. It is split into three columns for the left and nine columns for the right.

(There can be up to a maximum of 12 columns in an Oracle JET flexbox.)

<div class="oj-flex">

 <!-- Left Column Start-->

 <div class="oj-sm-3">

 Ticket List goes here

 </div>

 <!-- Left Column End-->

 <!-- Right Column Start-->

 <div class="oj-sm-9">

 Ticket Content goes here

 </div>

 <!-- Right Column End -->

</div>

Chapter 6 Creating the page Skeleton

94

If you apply a background color to the surrounding divs, you will notice that there

is a padding surrounding the whole of your content. To have a full-width application,

we need to remove this padding by opening src/index.html and removing the class

attribute from the ojModule component that sits between the header and the footer. The

ojModule should then look like the following:

<oj-module role="main" config="[[moduleConfig]]"></oj-module>

 Including List Component in View
Let’s move on to including the first component into the application. We are going to use

the ojList component, which is an HTML list with advanced features, such as selection

control.

Include the component within the left column.

<!-- Ticket List -->

<oj-list-view id='ticket-list'

 aria-label='ticket-list'

 class='oj-sm-12'

 data='[[ticketListDataSource]]'

 selection-mode='single'

 selection-required='true'

 item.renderer="[[oj.KnockoutTemplateUtils.getRenderer('ticket-list-

template', true)]]">

</oj-list-view>

There are few attributes on this component to consider. We have assigned the class

oj-sm-12 so that it spans the full width of its parent. The selection-mode attribute has

been set to single, as we want one selection to be made at a time. There are two other

options for the selection-mode attribute. These are 'multiple' (to allow multiple item

selection) or 'none' (to disable selection altogether). We also want an item to always be

selected, so the selection-required attribute is true.

The item.renderer attribute is used to specify the template to be used for each one

of the list items. To create the template, include the following directly underneath the list

view component:

Chapter 6 Creating the page Skeleton

95

<script type="text/html" id="ticket-list-template">

 <li data-bind="attr: {id: $data['id']}">

 <div class="oj-flex">

 <div class="oj-sm-8">

 Ticket ID:

 <oj-bind-text value="[[id]]"></oj-bind-text>

 </div>

 <div class="oj-sm-4">

 <oj-bind-text value="[[$parent.formatDate(dateCreated)]]">

</oj-bind-text>

 </div>

 </div>

 <div class="oj-flex oj-sm-padding-2x-top oj-sm-padding-2x-bottom">

 <oj-bind-text value="[[title]]"></oj-bind-text>

 </div>

 <div class="oj-flex">

 <div class="oj-sm-8">

 Status:

 <oj-bind-text value="[[status]]"></oj-bind-text>

 </div>

 <div class="oj-sm-4">

 <oj-bind-text value="[[priority]]"></oj-bind-text>

 </div>

 </div>

</script>

<!-- Ticket List -->

The template is applied to each row within the ticket list, and the values associated

with each row can be accessed by their attribute key. As an example, title is an attribute

that comes back from the API for each ticket and contains the ticket title.

For the date value, we are calling a function that formats the date and passing in the

dateCreated attribute to the function. A formatted date will be returned once we set up

the function within the next section.

Chapter 6 Creating the page Skeleton

96

 Creating the List ViewModel
The ViewModel for the ticket desk must be set up to support the data being used by the

Oracle JET list component within the View.

Open the file src/js/viewModels/ticket-desk.js and remove the contents that

were created when the application was scaffolded. Once removed, the first section we

want to add in is the define block. We must include some extra libraries within this

define block, to load in the components we will be using within the module. These extra

components are

• ojs/ojlistview: For loading the list component

• ojs/ojinputtext: For loading the inputText component we will be

using later in the chapter

• ojs/ojcollectiontabledatasource: For loading the collection table

data source, which is the object that encapsulates our data into a

format accepted by the list view

• ojs/ojarraytabledatasource: Loads the array table data source

module. It will be used for the tab bar implementation later in the

chapter.

• ojs/ojmodel: For loading the model API, which will be used within

the list collection

• ojs/ojvalidation-datetime: For loading the validation library that

we will be using to convert the date into the right format for the UI

With the extra modules added, the define block and ViewModel function should look

like the example below.

define(['ojs/ojcore',

 'knockout',

 'jquery',

 'ojs/ojlistview',

 'ojs/ojinputtext',

 'ojs/ojcollectiontabledatasource',

 'ojs/ojarraytabledatasource',

 'ojs/ojmodel',

Chapter 6 Creating the page Skeleton

97

 'ojs/ojvalidation-datetime'],

 function(oj, ko, $) {

 function TicketDeskViewModel() {

 var self = this;

 }

 return TicketDeskViewModel;

 }

);

Now we need to declare variables and set up the model and collection. Within the

TicketDeskViewModel function, create ticketListDataSource as an observable, to

ensure any changes to the data will automatically update its dependencies.

/* Variables */

self.ticketListDataSource = ko.observable();

Next, create a model object by extending the oj.Model function to pass in an

idAttribute of 'id' when the model is declared. The idAttribute will be the unique

identifier and reference for each model item.

When creating a collection, it is possible to specify several attributes. In this case,

we want to specify the URL end point that will be used to retrieve the ticket list data. The

model can also be assigned to the collection, using the 'model' attribute.

/* List View Collection and Model */

var ticketModelItem = oj.Model.extend({

 idAttribute: 'id'

});

var ticketListCollection = new oj.Collection(null, {

 url: "http://localhost:8080/tickets",

 model: ticketModelItem

});

Assign the collection to the ticketListDataSource observable, so that

the component within the view is populated with the collection data. The

CollectionTableDataSource formats the collection into a format suitable to be used

with the ojListView component.

self.ticketListDataSource(new oj.CollectionTableDataSource(ticketListCollection));

Chapter 6 Creating the page Skeleton

98

Finally, create a small utility function for formatting the date within the list. This utility

function uses the Oracle JET converter factory to format a date into a specified pattern.

 /* Utils */

 self.formatDate = function (date){

 var formatDate = oj.Validation.converterFactory(oj.

ConverterFactory.CONVERTER_TYPE_DATETIME)

 .createConverter(

 {

 'pattern': 'dd/MM/yyyy'

 }

);

 return formatDate.format(date)

 }

Make sure that the mock server is running. As a reminder on how to run this, the

command is as follows:

mockserver -m=mocks -p=8080

All being well, you should see a similar screen to that in Figure 6-2, which looks basic

at the moment, but a lot is going on. We are retrieving data from an API and loading it

into a working Oracle JET List View component that uses a template renderer. Through a

very small amount of coding, we have achieved a good amount of functionality already!

Figure 6-2. Ticket list

Chapter 6 Creating the page Skeleton

99

 Adding a Search Placeholder
Just above the list view component include the following code, which will be used later

on to implement the search functionality:

<!-- Search functionality -->

<oj-input-text class="oj-sm-12 oj-sm-padding-3x-vertical oj-sm-padding-2x-

horizontal"></oj-input-text>

<!-- Search functionality -->

 Creating a Tab View
To help users multitask and have multiple tickets open at a time, we will use a

component called ojTabBar. Tabs can be extremely useful on applications that have a lot

of information on one screen, or where it is useful to have dynamic content displayed.

By using the example in the Oracle JET cookbook (www.oracle.com/webfolder/

technetwork/jet/jetCookbook.html?component=tabbar&demo=tbaddremovetabs),

include the following code into the second column of the ticket-desk.html file above

'Ticket Content goes here':

<!-- Tab Bar -->

 <div class="oj-flex oj-sm-padding-2x-top">

 <oj-tab-bar

 contextmenu="tabmenu"

 id="ticket-tab-bar"

 selection="{{selectedTabItem}}"

 edge="top"

 data="[[tabBarDataSource]]"

 item.renderer="[[oj.KnockoutTemplateUtils.getRenderer('tab- template',

true)]]"

 on-oj-remove="[[onTabRemove]]"

 class="oj-sm-12 oj-sm-condense">

 <oj-menu slot="contextMenu" style="display:none" aria- label="Actions">

 <oj-option data-oj-command="oj-tabbar-remove">

 Removable

 </oj-option>

Chapter 6 Creating the page Skeleton

http://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=tabbar&demo=tbaddremovetabs
http://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=tabbar&demo=tbaddremovetabs

100

 </oj-menu>

 </oj-tab-bar>

</div>

 <script type="text/html" id="tab-template">

 <li class="oj-removable" data-bind="css:{'oj-disabled' :

$data['disabled']=='true'}">

 <oj-bind-text value='[[name]]'></oj-bind-text>

 </script>

<!-- Tab Bar-->

The tab bar component accepts a number of different attributes, the most notable of

which are:

• contextmenu: References the ojMenu component nested within the

ojTabBar component, which provides a contextual menu for when

a user right-clicks a tab. The context menu will have the option to

remove a tab.

• selection: Binds to an observable that will hold the currently

selected tab item

• edge: Specifies the location of the tab bar (start, end, top, or bottom)

• data: Binds to an observable that will hold the data to populate the

tab bar component

• item.renderer: Like a list view, the tab bar can have a template for

each tab item.

• on-oj-remove: Will call a function when a tab has been removed by

the user

To include the variables and functions that sit behind the tab bar, open the ticket

desk ViewModel and start by adding the following variables:

self.selectedTabItem = ko.observable("settings");

Chapter 6 Creating the page Skeleton

101

Next, include an array of sample data for the tab component (this will be replaced as

we progress) and assign the data to the tabBarDataSource observable.

 /* Tab Component */

 self.tabData = ko.observableArray([{

 name: 'Settings',

 id: 'settings'

 },

 {

 name: 'Tools',

 id: 'tools'

 },

 {

 name: 'Base',

 id: 'base'

 },

 {

 name: 'Environment',

 disabled: 'true',

 id: 'environment'

 },

 {

 name: 'Security',

 id: 'security'

 }]);

self.tabBarDataSource = new oj.ArrayTableDataSource(self.tabData,

{ idAttribute: 'id' });

Finally, we are going to include some functions for handling the deletion of tab

items, provided by the cookbook example.

 self.deleteTab = function (id) {

 var hnavlist = document.getElementById('ticket-tab-bar'),

 items = self.tabData();

 for (var i = 0; i < items.length; i++) {

 if (items[i].id === id) {

Chapter 6 Creating the page Skeleton

102

 self.tabData.splice(i, 1);

 oj.Context.getContext(hnavlist)

 .getBusyContext()

 .whenReady()

 .then(function () {

 hnavlist.focus();

 });

 break;

 }

 }

 };

 self.onTabRemove = function (event) {

 self.deleteTab(event.detail.key);

 event.preventDefault();

 event.stopPropagation();

 };

Currently, the tab functionality is driven by the cookbook example, and the tab

items, as shown in Figure 6-3, are just placeholders. We will be extending the tab

functionality to our use case later in the book.

Figure 6-3. Oracle JET tab bar

Chapter 6 Creating the page Skeleton

103

 Welcome Message and Avatar
At the top right of the screen we are going to add an avatar component, plus a welcome

message with some information regarding a user’s tickets. As we are developing the

application within a single page, we will not require a top-level navigation at this stage,

so we will be removing the menu bar.

To implement the avatar and welcome message, open index.html and replace the

entire oj-flex-bar-end div and the navigation div that follows it with the following:

<div class="oj-flex-bar-end">

 <div class="oj-flex oj-md-align-items-center oj-sm-margin-2x-vertical">

 <oj-avatar role="img" aria-label="Single Placeholder Avatar"

size="xxs">

 </oj-avatar>

 Welcome back Charlotte, you currently have 2 open

tickets, with 1 awaiting your response.

 </div>

</div>

To load the avatar component, we must define it within the appController. Open the

appController.js file and add the ojs/ojavatar module into the end of the define

block. The header should now look similar to that in Figure 6-4.

Figure 6-4. Welcome message and Oracle JET avatar component

Chapter 6 Creating the page Skeleton

104

 Theming
Now that we have the functionality in place, we can make a couple of simple changes

to make the application look more refined. The following sections describe several

refinements that you’ll find useful when creating your own JET applications.

 Header Padding
Open src/index.html and on the header element, add the oj-sm-padding-2x-vertical

class. Then remove the oj-web-applayout-max-width class from the first child div of

the header element. This will increase the width of the header and add a small padding

either side of it.

 Removal of Oracle Logo
Still within the index.html file, remove the reference to the demo Oracle logo, which will be

a span element with the class demo-oracle-icon. Then open src/js/appController.js

and change the appName observable to My Online Support.

 Setting List Container Height
To ensure that the height of the scrollable list view is correct, and that the height resizes

for different screens, a dynamic height must be specified by using viewport height (vh).

We can subtract the height of the header and footer areas to give us a dynamic height for

the list view.

Create a SASS partial called containers within the base directory (themes/

mosTheme/web/base/_containers.scss) and add the following class into it:

.list-view-container {

 height: calc(100vh - 175px);

}

Then import the SASS partial within your mosTheme.scss, so that it should now look

like the following:

// Custom imports

@import "base/vars";

@import "base/body",

 "base/containers";

Chapter 6 Creating the page Skeleton

105

Finally, wrap the ticket list view in a new div with the classes oj-flex and list-

view- container, and then you should be able to resize the height of the browser window

and see the height of the list container adjust accordingly. The wrapping div should look

like the following:

<div class="oj-flex list-view-container">

</div>

 Adding Color
To give the application its own feel, we can define some colors as variables and then

use them to color various areas of the system. To do this first declare some new color

variables within the vars.scss file. Replace the existing contents of the vars.scss with

the following:

$brand-color: #2C3E50;

$accent-color: #E74C3C;

$neutral-color: #ECF0F1;

$base-white-color: #ffffff;

If you are already serving the application, it may break when it tries to recompile.

This is because the variable that we declared earlier in Chapter 5 ($font-color) will no

longer exist and cause the compiler to fail when looking for it. Don’t worry, open the

body partial and replace the contents with the following:

h1,h2, h3 {

 color: $brand-color;

}

.oj-web-applayout-header {

 background-color: $brand-color;

 box-shadow: 0 8px 16px 0 rgba($brand-color, 0.2);

}

.oj-web-applayout-header-title {

 color: $base-white-color;

}

Chapter 6 Creating the page Skeleton

106

.oj-web-applayout-footer {

 min-height:0;

}

header {

 span {

 color: $base-white-color;

 }

 .oj-hover {

 background-color:transparent !important;

 }

}

Finally, open _mosTheme.web.settings.scss, find $brandColor, and uncomment

the variable. Replace the hex code with the following:

$brandColor: #788585 !default;

You may now have to serve the application again if it stopped earlier in this section.

 Further Container Classes
To add further color and some shadowing to the containers, include the following

classes within the containers partial:

.left-column-container {

 box-shadow: 0 8px 12px 0 $neutral-color;

}

.tabbar-container {

 background-color:$neutral-color;

}

Chapter 6 Creating the page Skeleton

107

Then apply the left-column-container class to the div that surrounds the entire left

column, and the tabbar-container class to the div that surrounds the tab bar. Be careful

not to apply the tabbar-container to the whole right-hand container.

 Component Styling
Oracle JET components come with CSS classes already applied to them. When inspecting

the ojTabBar, you will notice that each of the items within the tab bar have a class of

oj-tabbar-item, as shown in Figure 6-5.

We can target these classes when necessary and add custom styling onto the Oracle

JET components. Create a new directory within mosTheme/web called components. This

new directory will be used to create partials that are needed for any component-specific

styling.

Figure 6-5. Tab bar items

Chapter 6 Creating the page Skeleton

108

First, create a partial for the tab bar component, called _tabs.scss, and use the

following class, which will add a padding to the tab so that the text looks more central

within the tab bar:

.oj-tabbar-item {

 padding-bottom: 10px;

}

Create another partial in the components folder named _list-view.scss and add

the following:

.oj-listview-element {

 .oj-selected {

 border-left: 6px solid $accent-color;

 }

}

Make sure that you import the two new partials in the mosTheme.scss file. When you

view the application, you should be able to see a red left border when selecting an item

in the list view.

 Footer
Within the index.html file, replace the footer element with the following:

 <footer class="oj-web-applayout-footer" role="contentinfo">

 <div class="oj-web-applayout-footer-item oj-text-secondary-color

oj-text-sm">

 Copyright © Practical Oracle JET. Developed on Earth C-137

 </div>

</footer>

You may also remove the footerLinks references from the appController.js file, as

these are no longer needed.

Chapter 6 Creating the page Skeleton

109

 Summary
By following all the steps outlined within this chapter you should have an Oracle JET

application that looks similar to Figure 6-6. You should have an understanding of how

CSS flex works and how it can be implemented quickly and easily, using the out-of-

the-box classes that JET provides. You will also have built your first JET layout in flex

and included several components, as well as hooking up the list component to the JET

Common Model and retrieving data from a mock server.

Figure 6-6. Completed Chapter 6 outcome

Chapter 6 Creating the page Skeleton

111
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6_7

CHAPTER 7

Viewing Tickets
Time to get to the main act of the development. We will begin to create the ticket viewing

and switching functionality, using a variety of components. By the end of this chapter,

you will have an application that is essentially in read-only mode—perfect for showing

your friends or coworkers this cool new JET application that you have put together but

not for letting them click any of the buttons, because they won’t work yet.

For this chapter, the following elements and classes will be used:

• ojModule

• ojConveyorBelt

• ojListView

• ojButton

• ojAvatar

• ojGauge

• ojTabs

• ojContext

• ojArrayDataProvider

As well as the components in the preceding list, we will also work more with

computables, utility files, and the Oracle JET Busy Context.

 API Setup
For this chapter, we will create new mock API end points. Create the files in

Listings 7-1 through 7-12. Remember that you don’t need to type the files in by hand.

They are available from this book’s GitHub page.

112

Listings 7-1 to 7-6 include the reply payloads for each of the tickets. Add these in the

same way you have added the mock files previously and follow the directory structure

outlined for each listing.

Listing 7-1. API/mocks/tickets/replies/10001/GET.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

{

 "notes": [

 {

 "id": 1,

 "author": "Dom Ainsley",

 "timestamp": "2018-06-11T17:24:32+00:00",

 "note": "Hi there! My name is Dom and I will helping you

today!

The nameservers that you require are as

follows:

ns1.practicalhosting.co.uk
ns2.

practicalhosting.co.uk.

I have added the domain

(thestylearchive.co.uk) to your account, so as soon as your DNS

has transfered and propagated, you will be good to go!

Any further questions - please let me know.

Dom",

"attachment": []

 },

 {

 "id": 2,

 "author": "Charlotte Illidge",

 "timestamp": "2018-06-11T17:39:46+00:00",

 "note": "Hi Dom, thanks for your help. Everything seems to be

working now.

 Charlotte",

"attachment": []

 }

]

}

Chapter 7 Viewing tiCkets

113

Listing 7-2. API/mocks/tickets/replies/10002/GET.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

{

 "notes": [

 {

 "id": 1,

 "author": "Imogen Gifford",

 "timestamp": "2018-06-11T18:24:29+00:00",

 "note": "Hey! I'm Imogen and I will be assisting you today.

 Would you be able to let me know the external image

services you are using? Do you have any idea of how many images

you are looking to migrate?

Imogen",

"attachment": []

 }

]

}

Listing 7-3. API/mocks/tickets/replies/10003/GET.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

{

 "notes": [

 {

 "id": 1,

 "author": "Reece Jacques",

 "timestamp": "2018-06-11T13:43:54+00:00",

 "note": "Hi Charlotte,

We cannot upload that data for

you, but it is really easy for you to do it!

Head to

your control panel, then to databases and hit the data import

tool. Follow the steps and the data will be there in no time!

Chapter 7 Viewing tiCkets

114

Please let me know if you have any further questions.

Reece",

"attachment": []

 }

]

}

Listing 7-4. API/mocks/tickets/replies/10004/GET.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

{

 "notes": [

 {

 "id": 1,

 "author": "Oliver Butler",

 "timestamp": "2018-06-25T15:20:24+00:00",

 "note": "Hi Charlotte,

You are not able to add the

code into your website using custom HTML with your package.

 Unfortunately in order to do this you will need to

upgrade your package. You can find more information over on our

services page.

Please let me know if you have anymore

questions.

Kind Regards
Oliver",

"attachment": []

 }

]

}

Listing 7-5. API/mocks/tickets/replies/10005/GET.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

{

 "notes": [

Chapter 7 Viewing tiCkets

115

 {

 "id": 1,

 "author": "Nick Dobson",

 "timestamp": "2018-07-09T09:33:11+00:00",

 "note": "Hi Charlotte, thank you for your inquiry!

I have now upgraded your account for you.

You will

now have received an e-mail with your updated billing amount and

schedule.

Please let me know if you have any questions.",

"attachment": []

 },

 {

 "id": 2,

 "author": "Charlotte Illidge",

 "timestamp": "2018-07-09T09:35:07+00:00",

 "note": "Hi Nick, thank you, that worked great.",

"attachment": []

 }

]

}

Listing 7-6. API/mocks/tickets/replies/10006/GET.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

{

 "notes": [

 {

 "id": 1,

 "author": "James Potts",

 "timestamp": "2018-07-12T16:32:47+00:00",

 "note": "Hi there! My name is James (or Jim!) and I will be here

to help you through this problem.

Could you please

let me know the last time the website was available?

 I

have instructed one of our engineers to look into this now and they

are working hard to get your website back online.

 Jim",

Chapter 7 Viewing tiCkets

116

"attachment": []

 },

 {

 "id": 2,

 "author": "Charlotte Illidge",

 "timestamp": "2018-07-12T16:40:23+00:00",

 "note": "Hi, thank you for your quick reply.

 The

website has been down for about 2 hours now.

I look

forward to hearing back.",

"attachment": []

 }

]

}

Listings 7-7 to 7-12 include the information about each of the representatives

assigned to the tickets. Add these in the same way you have added the mock files

previously and follow the directory structure outlined for each listing.

Listing 7-7. API/mocks/representative-information/1/GET.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

{

 "name": "James Potts",

 "role": "Senior Support Assistant",

 "bio": "I am here to help you with any support issues and to ensure you

have a great experience, don't hesitate to ask me anything!",

 "ratingValue": 4.5

}

Listing 7-8. API/mocks/representative-information/2/GET.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

Chapter 7 Viewing tiCkets

117

{

 "name": "Nick Dobson",

 "role": "Account Management",

 "bio": "I am apart of the accounts team. Any issues with your account,

such as billing, upgrades or cancellations, I am the guy to come to!",

 "ratingValue": 4.5

}

Listing 7-9. API/mocks/tickets/representative-information/3/GET.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

{

 "name": "Oliver Butler",

 "role": "Marketing Manager",

 "bio": "I head up the marketing department here. With over 5 years

experience, I am ready to help with any marketing or advertising

questions you may have.",

 "ratingValue": 4

}

Listing 7-10. API/mocks/tickets/representative-information/4/GET.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

{

 "name": "Reece Jacques",

 "role": "Data Guy",

 "bio": "I spent a long time in university studying chemistry, where

I found a natural talent in data processing. I am responsible for

everything data related, and happy to answer any questions!",

 "ratingValue": 4.5

}

Chapter 7 Viewing tiCkets

118

Listing 7-11. API/mocks/tickets/representative-information/5/GET.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

{

 "name": "Imogen Gifford",

 "role": "Content Management Expert",

 "bio": "I am an expert at content management and here to ensure your

content experiences are as smooth as they can be.",

 "ratingValue": 4.5

}

Listing 7-12. API/mocks/tickets/representative-information/6/GET.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

{

 "name": "Dom Ainsley",

 "role": "Domain Specialist",

 "bio": "I work as part of the domain department to help customers with

any domain realted struggles.",

 "ratingValue": 4

}

 List View Selections
To handle the initialization of a selected ticket, we must first add two attributes to the List

View component within ticket-desk.html. On the ticket-list component created in

Chapter 6, add the following attributes:

selection="{{selectedTicket}}"

on-selection-changed="[[listSelectionChanged]]"

Chapter 7 Viewing tiCkets

119

The selection attribute will store the selected item in the list view, and the on-

selection- changed attribute is an event listener that will call the listSelectionChanged

function when the selection is changed. The listener is a one-way binding, as we are not

expecting to write data back through this function. The selection attribute is a two-way

binding, as we are expecting the selection to pass data back to the ViewModel when a

user selects an item.

To store the selectedTicket, as well as the ticket model object and also the

representatives ID (which is the ID of the support representative assigned to the ticket),

we must create some new variables. Within the ticket desk ViewModel, add the following

into the variables section:

self.selectedTicket = ko.observableArray([]);

self.selectedTicketModel = ko.observable();

self.selectedTicketRepId = ko.observable();

You will have to replace the self.ticketListDataSource() variable that was created

in Chapter 6 with the following two lines of code. This will allow us to access the ticket

list collection before it is passed into the CollectionTableDataSource object.

self.ticketList = ko.observable(ticketListCollection);

self.ticketListDataSource(new oj.CollectionTableDataSource(self.ticketList()));

Next, create the listSelectionChanged function shown in Listing 7-13. This function

performs a few tasks. First, it assigns the selected ticket model to an observable

(selectedTicketModel), by utilizing the .get method on a collection. The get method

on a Collection object will return the model of the unique item ID (the idAttribute

set against the Model). There is another method available too, called the .at method,

which will also return a model object but instead accepts the row key rather than the ID.

The function then performs a check, to see if the selected ticket already exists within

the tabData array. If it does not, it will push a new array item and bring the selected

ticket into focus. If the ticket is already open, it will focus the ticket that has been selected

in the list view.

Finally, the function also sets the selectedTicketRepId value, which will be used

later to pass into the support representative information module.

Chapter 7 Viewing tiCkets

120

Listing 7-13. The listSelectionChanged Function

/* List selection listener */

self.listSelectionChanged = function () {

self.selectedTicketModel(self.ticketList().get(self.selectedTicket()[0]))

 // Check if the selected ticket exists within the tab data

 var match = ko.utils.arrayFirst(self.tabData(), function

(item) {

 return item.id == self.selectedTicket()[0];

 });

 if (!match) {

 self.tabData.push({

 "name": self.selectedTicket()[0],

 "id": self.selectedTicket()[0]

 });

 }

 self.selectedTicketRepId(self.selectedTicketModel().

get('representativeId'));

 self.selectedTabItem(self.selectedTicket()[0]);

}

Now is a good time to remove the sample data from the self.tabData array, so that

it looks like the following:

self.tabData = ko.observableArray([]);

Also remove the contents of the selectedTabItem variable, so that it is empty too.

self.selectedTabItem = ko.observable();

If you run the application, you should see that tabs will open as you select tickets

from the list view, as illustrated in Figure 7-1.

Chapter 7 Viewing tiCkets

121

 Extending Tab Functionality
In Chapter 6, we used the cookbook to implement an Oracle JET Tab Bar component just

above where the main ticket area will go. We will now extend the tab bar further, to get

the tabs functionality working with the tickets.

First, we want to make a change to the Oracle JET Tab Bar component within

ticket-desk.html and add the following listener to the Tab Bar component. This

listener will fire every time that a user clicks one of the tab items.

on-selection-changed="[[tabSelectionChanged]]"

Next, include the function from Listing 7-14 within the ViewModel. This will ensure

that the selected ticket is updated when a tab is changed and also that the list view and

tab are always in sync with the selected item.

Listing 7-14. The tabSelectionChanged Function

self.tabSelectionChanged = function () {

 self.selectedTicketModel(self.ticketList().get(self.selectedTabItem()))

 self.selectedTicket([self.selectedTabItem()])

}

Figure 7-1. Working list view selection

Chapter 7 Viewing tiCkets

122

Within the ViewModel, add ojs/ojconveyorbelt into the define block. Then

within the ticket-desk.html file, wrap the entire oj-tab-bar element in the following

component:

<oj-conveyor-belt class="oj-sm-9">

</oj-conveyor-belt>

If a user has enough tabs open that it takes up the entirety of the tab bar, the Oracle

JET Conveyor Belt component will turn it into a horizontally scrollable region, making it

easy for a user to scroll through all of the open tabs. Resizing the browser window with a

few tabs open should show this in action.

 Closing Open Tickets
To ensure that the selected ticket is reset when a tab is deleted, we will reset the

selected item on both the list view and the tab bar to the first item in the index. This will

prevent a scenario in which the selected item on the list view and the tab bar are in

an inconsistent state. Add the following to the deleteTab function, directly above the

oj.Context.getContext line.

/* Check if the current selected list item matches the open tab,

if so, reset to the first index in the list

 */

 if(id === self.selectedTicket()[0] ||

 self.selectedTicket()[0] != self.selectedTabItem()){

 self.selectedTabItem(self.tabData()[0].id);

}

We also want to prevent a scenario in which there are no open tabs. To accomplish

this, we will prevent the first item in the list from ever being closed. Wrap the entire

contents of the deleteTab function in the following conditional statement:

// Prevent the first item in the list being removed

if(id != self.ticketList().at(0).id){

}

Chapter 7 Viewing tiCkets

123

 Busy Context
In the ViewModel for the ticket desk, the delete function references a class called

BusyContext. This is a really useful class that can be used to get the state of any element

within a JET application. In this scenario, it is used to wait for the tab bar to finish

loading and then bring the list into focus.

You will find when working in JavaScript, which involves a lot of asynchronous

operations, you are likely to come across scenarios in which you must wait for certain

elements to finish loading before executing code that is dependent on an element to

finish. BusyContext allows you to get a handle on the state of elements.

 Creating the View Ticket Module
The rendering of the ticket content is going to be contained within an Oracle JET

module. A module can make up a region of a page and can be dynamically replaced, as

needed. We will be using a single module and changing the parameter we pass into the

module to switch the content.

First, create a new View and ViewModel called view-ticket in the respective

directories. (At this point, you could also delete the about, customers, and incidents

modules, as they are not needed.)

Set up the view-ticket.js file, as shown in Listing 7-15.

Listing 7-15. The view-ticket.js File

define(['ojs/ojcore',

 'knockout',

 'jquery',

 'ojs/ojlistview',

 'ojs/ojarraydataprovider',

],

 function (oj, ko, $) {

 function ViewTicketViewModel(params) {

 var self = this;

 console.log(params.ticketModel())

 }

 return ViewTicketViewModel;

});

Chapter 7 Viewing tiCkets

124

Note how we are passing params into the ViewTicketViewModel function. This

parameter will be passed in when the Oracle JET module initializes.

Next, open ticket-desk.html and include the following directly below the tab bar

(overwrite the Ticket content goes here text):

<!-- Selected Ticket View -->

<div data-bind="ojModule: { name: 'view-ticket',

 params: {ticketModel: selectedTicketModel }

 }" class="oj-sm-padding-4x">

</div>

<!-- Selected Ticket View -->

The module will pass in a parameter to the ViewTicketViewModel, and the

parameter will be the model object of the selected ticket. After saving the file, open

the web console (F12 in your browser window with the app running), and you should

see an output of a Model object. This is the object we have passed into the view ticket

ViewModel. By expanding the object, you should see the attributes of the selected ticket,

as shown within Figure 7-2.

Figure 7-2. Selected ticket Model object

Chapter 7 Viewing tiCkets

125

 Implementing Ticket View
Within view-ticket.js, add the variables and computable from Listing 7-16 into the

ViewTicketViewModel function. In this scenario, the ticketModel variable must be set

up as a computed function in order for it to listen to the parameter changing as a user

switches between tickets. When a change occurs, the computed function will update all

of the observables within the module to the selected ticket information.

Listing 7-16. Variables and Computable

/* Variables */

self.ticketId = ko.observable();

self.title = ko.observable();

self.author = ko.observable();

self.dateCreated = ko.observable();

self.showDateDifference = ko.observable();

self.message = ko.observable();

self.status = ko.observable()

self.attachment = ko.observable();

self.ticketModel = ko.computed(function () {

 self.ticketId(params.ticketModel().get('id'))

 self.title(params.ticketModel().get('title'))

 self.author(params.ticketModel().get('author'))

 self.dateCreated(params.ticketModel().get('dateCreated'))

 self.message(params.ticketModel().get('message'))

 self.status(params.ticketModel().get('status'))

 self.attachment(params.ticketModel().get('attachment'))

 return params.ticketModel();

});

The .get method on a model object will retrieve the value of the attribute key you

pass into the method.

To format the date on a ticket we require the same function (formatDate) that we

used in Chapter 6. As we are reusing the same code, it is best to move this into a common

utility file.

Chapter 7 Viewing tiCkets

126

Create a new file under the src/js/utils folder called app-utils.js and include

the contents from Listing 7-17 in that file.

Listing 7-17. The app-utils.js File

define(['knockout'],

 function (ko) {

 function appUtils() {

 var self = this;

 /* Utils */

 self.formatDate = function (date){

 var formatDate = oj.Validation.converterFactory(oj.

ConverterFactory.CONVERTER_TYPE_DATETIME)

 .createConverter(

 {

 'pattern': 'dd/MM/yyyy'

 }

);

 return formatDate.format(date)

 }

 }

 return new appUtils;

 }

)

Within the main.js file add the following line into the paths configuration

object, which will register the library with RequireJS:

'appUtils': 'utils/app-utils'

Also, add the following object into the path_mapping.json file:

"appUtils": {

 "debug": {

 "src": ["app-util.js"],

 "path": "utils/app-utils.js"

 },

Chapter 7 Viewing tiCkets

127

 "release": {

 "src": ["app-utils.js"],

 "path": "utils/app-utils.js"

 }

},

Next, import appUtils into the define block for view-ticket.js, and also ensure

that you are referencing it within the parameters into the factory function too, so that you

can access the methods within it. The define block for view-ticket.js should now look

like the following:

define(['ojs/ojcore',

 'knockout',

 'jquery',

 'appUtils',

 'ojs/ojlistview',

 'ojs/ojarraydataprovider',

],

 function (oj, ko, $, appUtils)

Now, include the following variable declaration within view-ticket.js:

self.formatDate = appUtils.formatDate;

Note You should go back to the ticket-desk.js file and repeat the steps of
importing the appUtils library into the define block and replacing the existing
formatDate function with the preceding variable.

There are a couple more functions required within view-ticket.js before we move

on to the view. The first one is dateDifference (Listing 7-18), which is used to calculate

the number of days between the present day and the date against the ticket, and it

returns a preset string that will be displayed to the user. The second is ticketStatus

(Listing 7-19), which takes the ticket status as a parameter and again returns a preset

string describing the ticket status to the user.

Chapter 7 Viewing tiCkets

128

Listing 7-18. The dateDifference Function

/* Function to calculate date ranges */

self.dateDifference = function (date) {

 var todaysDate = new Date();

 var messageDate = new Date(date)

 var res = Math.abs(todaysDate - messageDate) / 1000;

 var days = Math.floor(res / 86400);

 if (days < 1) {

 return "less than a day ago"

 }

 else if (days === 1) {

 return "a day ago"

 }

 else if (days <= 7) {

 return "less than a week ago"

 }

 else if (days > 7 && days <= 30) {

 return "more than a week ago"

 }

 else if (days > 30) {

 return "more than a month ago"

 }

}

Listing 7-19. The ticketStatus Function

/* Function to get ticket status */

self.ticketStatus = function (status) {

 if (status === "Working") {

 return "Ticket status currently 'working', our team are

hard at work looking into your issue."

 } else if (status === "Closed") {

 return "Ticket status is 'closed', and is now in read-

only mode. In order to help us continue to offer the

best support we can, please rate your experience."

Chapter 7 Viewing tiCkets

129

 } else if (status === "Awaiting Customer Response") {

 return "Ticket status is currently 'awaiting customer

response', our team is awaiting your reply."

 }

}

Open view-ticket.html and include the HTML markup from Listing 7-20, which

is split into three parts. First, there is the ticket status, rating, and buttons. Within

this section the ticket status is displayed using the preceding ticketStatus function,

as well as some placeholder buttons for ticket management. These buttons will be

implemented, along with the rating functionality, later in the book.

Second, there is the ticket header information, which is split into three columns. The

first contains the avatar for the user, the second the title and the users name, and, finally,

the third containing the date. Both the formatDate and the dateDifference functions

are used here.

The final container outputs the message and positions it, so that it aligns with the

central column of the header information. Note the use of the html binding instead of

text. This is so that any HTML tags, such as line breaks, will be rendered.

Listing 7-20. HTML Markup for the view-ticket.html File

<div class="oj-flex oj-sm-padding-4x oj-sm-flex-direction-column">

 <!-- Ticket staus, rating and buttons -->

 <div class="oj-flex oj-sm-padding-2x-bottom">

 <span class="oj-sm-5 oj-sm-padding-4x-end oj-text-sm" data-

bind="text: ticketStatus(status())">

 <oj-button class="oj-flex-item oj-sm-padding-1x-end">Reply</oj- button>

 <oj-button class="oj-flex-item oj-sm-padding-1x-end">Escalate

Priority</oj-button>

 <oj-button class="oj-flex-item oj-sm-padding-1x-end">Close Ticket

</oj-button>

 </div>

 <!-- Ticket staus, rating and buttons -->

 <!-- Ticket header information -->

 <div class="oj-flex oj-sm-padding-4x-vertical">

Chapter 7 Viewing tiCkets

130

 <div class="oj-sm-1 oj-sm-padding-3x-top">

 <oj-avatar role="img" aria-label="Author Avatar" size="xs">

 </oj-avatar>

 </div>

 <div class="oj-sm-8 oj-sm-flex-direction-column">

 <h2 data-bind="text: title"></h2>

 <div data-bind="text: author"></div>

 </div>

 <div class="oj-sm-2 oj-text-sm oj-sm-padding-2x-vertical">

 <div data-bind="text: dateDifference(dateCreated())"

 :title="[[formatDate(dateCreated())]]">

 </div>

 </div>

 <div class="oj-sm-1"></div>

 </div>

 <!-- Ticket header information -->

 <!-- Ticket message -->

 <div class="oj-flex oj-sm-padding-2x-vertical">

 <div class="oj-sm-1"></div>

 < div class="oj-sm-9 oj-sm-padding-4x-bottom" data-bind="html:

message"></div>

 <div class="oj-sm-2"></div>

 </div>

 <!-- Ticket message -->

</div>

Running the application should output a screen similar to that shown in Figure 7-3,

and clicking through the items in the list should show the different tickets.

Chapter 7 Viewing tiCkets

131

 Ticket Replies
We will be using the Oracle JET List View component again for showing the ticket replies.

As outlined in the mock-ups in Chapter 3, the ticket replies alternate the positioning. The

authors comments will be positioned on the left, and those of the support representative

on the right. The logic for the alternation will be handled in the View.

For the ticket replies, we will be using a collection, and an API call to retrieve the

replies for the selected ticket. The collection is structured differently from the one that we

implemented in the previous chapter. Instead of using the standard url parameter, we are

extending the oj.Collection class, so that we can build a custom URL (Listing 7-21). The

custom URL attibute is needed as we will be appending the ticket ID to the service end point.

Listing 7-21. Ticket Replies Model and Collection

 /* List View Collection and Model */

 self.ticketRepliesDataSource = ko.observable();

 self.ticketReplyModel = oj.Model.extend({

 idAttribute: 'id'

 });

 var ticketRepliesCollection = oj.Collection.extend({

 customURL: function () {

 var retObj = {};

Figure 7-3. Initial view ticket functionality

Chapter 7 Viewing tiCkets

132

 retObj['url'] = "http://localhost:8080/tickets/replies/" + self.

ticketId()

 return retObj

 },

 model: self.ticketReplyModel

 });

 self.ticketReplies = new ticketRepliesCollection();

 self.ticketRepliesDataSource(new oj.CollectionTableDataSource(self.

ticketReplies));

 self.ticketId.subscribe(function(){

 self.ticketReplies.fetch();

 })

 Within the View below the ticket message, add the List View component and its

template (Listing 7-22). The css and style bindings are being used in the template to

alternate the positioning of the tickets. We are able to check if the comment is from the

original author, and then use the flex-direction attribute to specify the direction of the

flex-items.

Listing 7-22. List View Component and Template

<!-- List to render ticket replies -->

 <oj-list-view

 id="reply-list-view"

 aria-label="ticket reply list"

 class="oj-sm-12"

 data="[[ticketRepliesDataSource]]"

 item.renderer="[[oj.KnockoutTemplateUtils.getRenderer('ticket-replies-

template', true)]]">

 </oj-list-view>

 <!-- List to render ticket replies -->

 <!-- List Template -->

 <script type="text/html" id="ticket-replies-template">

 <li data-bind="attr: {id: $data['id']}">

Chapter 7 Viewing tiCkets

133

 <!-- First row of list item, sets up the item header -->

 <div class="oj-flex oj-sm-padding-4x-vertical"

 data-bind="style: { flexDirection: author !== $parent.

author() ? 'row-reverse' : “ }">

 <div class="oj-flex-item oj-sm-1 oj-sm-padding-2x-top"

 data-bind="css: author !== $parent.author() ?

'oj-sm- padding-4x-start' : 'oj-sm-padding-4x-end'">

 <oj-avatar

 role="img"

 aria-label="User Avatar"

 size="xs">

 </oj-avatar>

 </div>

 <div class="oj-sm-8 oj-sm-flex-direction-column">

 <h2 data-bind="text: 'RE: ' + $parent.title(),

 style: { textAlign: author !== $parent.

author() ? 'right' : “ }">

 </h2>

 <div data-bind="text: author,

 style: { textAlign: author !== $parent.

author() ? 'right' : “ }">

 </div>

 </div>

 <div class="oj-sm-2 oj-text-sm oj-sm-padding-2x-vertical">

 <div

 data-bind="text: $parent.dateDifference(timestamp)"

 :title="[[$parent.formatDate(timestamp)]]">

 </div>

 </div>

 <div class="oj-sm-1">

 </div>

 </div>

Chapter 7 Viewing tiCkets

134

 <!-- Second row in list item, outputs the message content -->

 <div class="oj-flex oj-sm-padding-2x-vertical">

 <div class="oj-sm-1"></div>

 <div class="oj-sm-10 oj-sm-padding-4x-bottom"

 data-bind="html: note"></div>

 <div class="oj-sm-1"></div>

 </div>

 </script>

 <!-- List Template -->

 Tidying Up and Styling
There are a few extra tweaks we can make to tidy up the design of the view ticket and

replies. First, there is a hover background on list view items. Let’s remove this, so that

you don’t get a hover background on ticket replies. Add the following into the list-view

SASS partial:

.oj-listview {

 .oj-hover {

 background-color: transparent;

 }

}

Next, add a height to the view ticket container, to keep everything nicely aligned.

Add the following class to the containers partial, which will calculate the height and uses

overflow-y to apply a scrollbar vertically only:

.view-ticket-container {

 height: calc(100vh - 161px);

 overflow-y: scroll

}

Then add the following placeholder class for the support representative area that we

will create in the next section, also in the containers partial.

.support-rep-container {

 background-color: $neutral-color;

}

Chapter 7 Viewing tiCkets

135

Finally, the Selected Ticket View section within the ticket-desk.html file should

be replaced with the following, to include the new classes and a new div placeholder for

the support representatives:

<!-- Selected Ticket View -->

 <div class="oj-flex">

 <div class="oj-sm-9 view-ticket-container">

 <div data-bind="ojModule: { name: 'view-ticket',

 params: {ticketModel: selectedTicketModel}

 }" class="oj-sm-padding-4x">

 </div>

 </div>

 <div class="oj-sm-3 support-rep-container"></div>

 </div>

<!-- Selected Ticket View -->

The expected outcome is illustrated in Figure 7-4.

Figure 7-4. Ticket view with comments

Chapter 7 Viewing tiCkets

136

 Support Representative
 We will now include one more Oracle JET module, which will be responsible for

displaying information about the support representative. Create a new View and

ViewModel called view-representative. Within the ViewModel, include the code

from Listing 7-23.

Similar to the view ticket module, the new module will also have a parameter

(repId in this case) passed in. This repId is then used when calling the

representative-information end point. The Oracle JET Gauge (ojGauge) UI

component is imported here, as it will be used for the representatives rating.

Listing 7-23. Code to Display Information About the Representative

define(['ojs/ojcore',

 'knockout',

 'jquery',

 'ojs/ojgauge'],

 function (oj, ko, $) {

 function RepresentativeViewModel(params) {

 var self = this;

 self.name = ko.observable();

 self.role = ko.observable();

 self.bio = ko.observable()

 self.ratingValue = ko.observable();

 self.repId = ko.computed(function () {

 return params.repId;

 });

 $.ajax({

 type: "GET",

 url: "http://localhost:8080/representative-information/" + self.repId(),

 crossDomain: true,

 success: function (res) {

 self.name(res.name)

 self.role(res.role)

Chapter 7 Viewing tiCkets

137

 self.bio(res.bio)

 self.ratingValue(res.ratingValue)

 },

 error: function (jqXHR, textStatus, errorThrown) {

 console.error(jqXHR)

 }

 });

 }

 return RepresentativeViewModel;

 }

);

Add the code from Listing 7-24 into the view. The Gauge component takes in a

numeric value from 1 to 5, and the selected-state.color attribute sets the color of the

stars. This gauge is read-only.

Listing 7-24. Representative View

<div class="oj-flex oj-sm-flex-direction-column oj-sm-align-items-center

oj-sm-padding-4x">

 <oj-avatar role="img" aria-label="Representative Avatar"

size="md"></oj-avatar>

 <strong data-bind="text: role" class="oj-sm-padding-2x-vertical">

 Average Rating

 <oj-rating-gauge

 id="ticket-rating"

 value="[[ratingValue]]"

 readonly

 selected-state.color="#E74C3C"

 style="width:120px;height:25px;">

 </oj-rating-gauge>

</div>

Chapter 7 Viewing tiCkets

138

Finally, within with ticket desk View, add the following module into the support-

rep- container div that we added in the previous section.

 <div data-bind="ojModule: {

 name: 'view-representative',

 params: { repId: selectedTicketRepId() }

 }" class="oj-sm-padding-4x">

</div>

The final output from this chapter should look like Figure 7-5 and contain the

functionality to navigate all tickets and see all the information about them.

Figure 7-5. Chapter 7 expected outcome

Chapter 7 Viewing tiCkets

139

 Summary
Chapter 7 has taken you from having an application that was in its infancy to one that is

suddenly starting to take shape and demonstrates a read-only view of all the tickets. A

number of new components have been used, and the addition of a utility file shows how

easy it can be to move common functions into utility files that can be reused across an

application.

Passing parameters through to components and tracking any changes to the

parameters has also been used, which is really important when breaking an application

into smaller chunks, ensuring that the right data is passed between them.

Finally, we extended the tabs components to open the correct tickets and keep the

state of the open tickets between the list view.

Chapter 7 Viewing tiCkets

141
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6_8

CHAPTER 8

Replying to Tickets
A common requirement of an application is to provide a user with the ability to input

longer portions of text. Unfortunately, in many cases, a standard HTML text area will not

meet that requirement, as richer functionality is needed. Even a simple line break will

mean looking elsewhere for a richer text editor.

In this chapter, we are going to use a text editor called Trumbowyg, which is a

lightweight What You See Is What You Get (WYSIWYG) editor. The editor comes with

a lot of great features, but we are mainly using it to offer line breaks and a few extra

formatting options to the user.

You can find more information about the editor at its web site: https://alex-d.

github.io/Trumbowyg/.

In this chapter, the following elements and classes will be used:

• ojModule

• ojCollection

• ojButton

• ojFilePicker

• ojBindIf

• Trumbowyg (third-party library)

• FontAwesome (third-party library)

 API Setup
This chapter will include some new API requests when posting a ticket reply. Therefore,

some new mock files must be created. The POST requests won’t be doing anything other

than returning a successful response. Therefore, we can use the same file for all ticket

IDs. The mockserver plug-in has a wildcard function, and by creating a directory with

two underscores (__), mockserver will match any requests, for any ticket ID.

https://alex-d.github.io/Trumbowyg/
https://alex-d.github.io/Trumbowyg/

142

Listings 8-1 and 8-2 are the mocks for ticket replies. Add these in the same way you have

added the mock files previously and follow the directory structure outlined for each listing.

Listing 8-1. API/mocks/tickets/replies/__/OPTIONS.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept

Listing 8-2. API/mocks/tickets/replies/__/POST.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept

Access-Control-Allow-Methods: GET, POST, PUT

{}

We will also need to create a successful response for a file upload. Add Listing 8-3 to

the directory structure listed.

Listing 8-3. API/mocks/tickets/upload/__/POST.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept

Access-Control-Allow-Methods: GET, POST, PUT

{}

 Setting Up
To begin, make sure that you have the trumbowyg library installed. You should have

installed this in Chapter 4, but here is a reminder of how to add it. First, run the following

command in your UI directory:

npm install trumbowyg

Chapter 8 replying to tiCkets

143

Then add Listing 8-4 into the path_mappings.json file, so that the Oracle JET tooling

will copy over all the files required during build.

Listing 8-4. trumbowyg Setup

"trumbowyg": {

 "cdn": "3rdparty",

 "cwd": "node_modules/trumbowyg/dist",

 "debug": {

 "src": ["trumbowyg.min.js", "ui/icons.svg", "plugins/cleanpaste/**"],

 "path": "libs/trumbowyg/trumbowyg.min.js"

 },

 "release": {

 "src": ["trumbowyg.min.js", "ui/icons.svg", "plugins/cleanpaste/**"],

 "path": "libs/trumbowyg/trumbowyg.min.js"

 }

},

Include the library reference within the configuration block in main.js.

'trumbowyg': '',

Finally, make sure that the library import is included within the define block for

view-ticket.js.

 Copying over the CSS
The trumbowyg library requires some CSS classes to render. We can use the oraclejet-

build.js tooling file explored in Chapter 4 to copy over the CSS into the theme

mosTheme. First, create a new directory in the theme called third-party (src/themes/

mosTheme/web/third-party).

Next, navigate to scripts/config and open oraclejet-build.js. Within this

file, navigate to the sass section and replace the commented out sass object with

Listing 8-5.

Chapter 8 replying to tiCkets

144

Listing 8-5. sass Object within oraclejet-build.js

sass: {

 fileList: [

 {

 cwd: 'node_modules/trumbowyg/dist/ui/sass',

 src: ['*'],

 dest: 'src/themes/mosTheme/web/third-party'

 }

],

 options: {}

},

The code in Listing 8-5 will copy over the contents of the sass directory within the

trumbowyg installation folder into the new third-party folder created within the theme.

It will also compile the SASS into CSS.

Finally, import the third-party/trumbowyg.css file in the mosTheme.scss file, as

shown in Figure 8-1.

 Initializing the Editor
Within view-ticket.html, add the following elements below the list template at the

bottom of the file (but ensure that they are still within the container div):

<h3 class="oj-sm-padding-4x">Reply</h3>

<div id="ticket-reply-area"></div>

Figure 8-1. Importing third-party CSS

Chapter 8 replying to tiCkets

145

Now, add trumbowyg to the end of the define block, within the view-ticket.js file.

You do not have to pass this into the callback function.

The div we created previously with the ID of ticket-reply-area will be replaced

with the trumbowyg editor, once we initialize it. Initializing the editor is straightforward.

You hook onto the ticket-reply-area and call the trumbowyg method, as follows:

$('#ticket-reply-area').trumbowyg()

However, if you include the preceding within the ViewModel and serve the

application, you will notice that it does not work, as the element will not be present in

the DOM at the time that it is trying to initialize. To understand this further, we must look

at the ojModule life cycle.

The ojModule binding comes with some listeners that provide the ability to execute

code at different points in the module’s life cycle. There are eight of these listeners in

total, and it is useful to understand what they are and how they can be used. Here’s the

rundown:

 1. handleAttached: Will run after the View has been inserted into

the DOM

 2. handleActivated: Will run before the View is about to use the

ViewModel. It is typically used to fetch data before the View

transitions.

 3. handleBindingsApplied: Will run after the bindings have been

applied to the View. Note that if the current view is retrieved from

the cache, the bindings will not be reapplied, and the function will

not be run.

 4. handleDeactivated: Will run after the View and ViewModel

become inactive, when everything has been run and there is no

more user interaction

 5. handleDetached: Will run after the View is removed from the DOM

 6. handleTransitionCompleted: Will run after a View transitions,

and any animation between the old and new view is complete

 7. Dispose: Will run before module is destroyed. Should be used to

perform any clean- up tasks

Chapter 8 replying to tiCkets

146

 8. Initialize: Will run when the ViewModel is created (but not

when it is retrieved from the cache). It will also run only when the

ViewModel is returned as an instance, rather than a constructor

function.

Note oracle Jet currently offers both an oracle Jet Module Component (which is
used in the index.html file to load the router modules) and an ojModule binding
(or namespace). here, we are working with the ojModule binding and using it
instead of the component, as it has more support for the functionality we are trying
to achieve. the two module variations have different life cycle methods, so make
sure not to get them confused.

The life cycle event that we need to initialize the editor is going to be handleAttached.

This is because all we are waiting on is for the DOM to finish loading and the div that we

need to latch on to being present. Therefore, at this point in the life cycle, the element will

be present.

To implement the listener and activate the editor, add the following into the

view- ticket.js file:

self.handleAttached = function () {

 $('#ticket-reply-area').trumbowyg()

};

It is possible to restrict the options a user has access to and apply options that are

not available by default. If you were working with a system that had different user roles,

you would be able to initialize the editor with different available options, by checking the

user’s roles and then altering the buttons or parameters available to that role.

The resetCss parameter prevents any page CSS interfering with the editor, and the

removeformatPasted parameter prevents any pasted formatting from being applied.

Expand the editor initialization by including the options shown in Listing 8-6.

Listing 8-6. Initialize Editor with Options

self.handleAttached = function () {

 $('#ticket-reply-area').trumbowyg(

 {

Chapter 8 replying to tiCkets

147

 btns: ['bold', 'italic', 'underline'],

 resetCss: true,

 removeformatPasted: true

 }

);

}

If you now rebuild and serve the application, you should see the editor initialized,

and you should be able to type into the editor and use the formatting options, as

illustrated in Figure 8-2.

 File Picker
To allow users to add attachments onto replies, we will be using the Oracle JET File

Picker component. Import the file picker component (ojs/ojfilepicker) into the

define block within view-ticket.js.

Figure 8-2. Ticket reply editor initialized

Chapter 8 replying to tiCkets

148

The file picker component will use the following attributes:

• on-oj-selected: References a function to call when a user has

selected a file

• accept: An array of accepted file types

• selection-mode: Specifies whether the picker allows single or

multiple file uploads in one go. We are allowing single only.

The Oracle JET flex-bar classes will be used to position the file upload and reply

buttons to the start and the end of the container. Flex bar has the following classes

available:

• oj-flex-bar-start: Class for the start section; will resize to the size

of the content

• oj-flex-bar-end: Class for the end section; will resize to the size of

the content

• oj-flex-bar-middle: Class for the middle section; will stretch to

meet the start and end

An Oracle JET BindText component is used to bind the file name to the view. This

component has only a single attribute of value, and the component is removed from the

DOM after the bindings have been applied.

The ojBindIf component is used to check if a file has been uploaded before

initializing the ojBindText.

Under the text editor, include the code from Listing 8-7.

Listing 8-7. File Picker and Ticket Reply Button

<div class="oj-flex-bar">

 <div class="oj-flex-bar-start oj-sm-align-items-center">

 <oj-file-picker class='oj-filepicker-custom oj-sm-padding-2x-end'

 id="fileUpload"

 selectOn='click'

 on-oj-select='[[fileSelectionListener]]'

 accept="[[allowedFileTypes]]"

 selection-mode='single'>

 <oj-button slot='trigger'>

Chapter 8 replying to tiCkets

149

 < span slot='startIcon' class='oj-fwk-icon oj-fwk-icon-

arrowbox-n'>

 Upload

 </oj-button>

 </oj-file-picker>

 <oj-bind-if test='[[uploadedFile()[0]]]'>

 < oj-bind-text value="[[uploadedFile()[0].name]]"></oj-bind-

text>

 </oj-bind-if>

 </div>

 <div class="oj-flex-bar-end">

 <oj-button id='reply-button' on-oj- action='[[ticketReply]]'>Reply

</oj-button>

 </div>

</div>

Then create two new variables to hold the selected file and the allowed file types.

Add these into the variable section of the view-ticket ViewModel.

self.uploadedFile = ko.observableArray([]);

self.allowedFileTypes = ko.observableArray(['image/*']);

Add the fileSelectionListener and a placeholder ticketReply function. (We

will add to this in the next section.) The listener will assign the selected file the

uploadedFile variable.

self.fileSelectionListener = function(event){

 var file = event.detail.files;

 self.uploadedFile(file)

}

self.ticketReply = function (){

}

Make sure that the application is running and check that the new file picker and flex

bar look similar to those in Figure 8-3.

Chapter 8 replying to tiCkets

150

 Sending the Reply
Even though there is no data is being sent to a database, it is still possible to handle the

reply and apply it to the collection locally. To process ticket replies, we must create an

object of the reply data and use the collection methods to create a new record.

A separate function will be created to handle sending uploaded attachments to the

server. The upload request will use a promise, as we will be handling two requests being

initiated in the same action. A promise is needed to wait for the file to be uploaded

before applying a new model to the collection.

 What Is a Promise?
You may have heard the term callback when working with JavaScript. A callback function

is a function that is executed when another function has finished executing. This is

common across all JavaScript applications, owing to JavaScript’s asynchronous non-

blocking I/O model. The model means that operations (AJAX calls) can occur in parallel

to the application code running.

Figure 8-3. File picker

Chapter 8 replying to tiCkets

151

Therefore, when waiting for an asynchronous response, any code that is dependent

on that response must be placed in a callback function, which will be called after the

result is returned. This works well when you have one callback but can get messy when

you have multiple callbacks and end up in what is known as “callback hell.”

Promises were formally introduced in ES6, and they are essentially an object that

contains an asynchronous task. The promise will notify the user when the task has

finished, with information about the result.

As the reply action can potentially send out two asynchronous requests, a promise

will be required in order for the first request to wait for the result before the second

request is called.

 Creating a Promise
Let’s create the promise to upload a file. The promise will call the upload API and return

a resolve message, if the service call is successful, or a reject message, if not. Add

Listing 8-8 into the view-ticket ViewModel.

Listing 8-8. uploadFile Function

/* Promise to call the file upload function */

self.uploadFile = function () {

 return new Promise(

 function (resolve, reject) {

 var file = $("#fileUpload").find("input")[0].files[0];

 var data = new FormData();

 data.append("file", file);

 $.ajax({

 type: "POST",

 url: "http://localhost:8080/tickets/upload/" +

self.ticketId(),

 contentType: false,

 processData: false,

 data: data,

 success: function (result) {

 resolve("success")

 console.log("File uploaded successfully!");

Chapter 8 replying to tiCkets

152

 },

 error: function (err, status, errorThrown) {

 reject(err);

 console.error("Error")

 }

 });

 }

)

}

Next, update the empty ticketReply function, as shown in Listing 8-9. The function

will check if a file has been selected by the user. If it has, it calls the promise and specifies

the actions to run if the promise resolves.

Listing 8-9. ticketReply Function

self.ticketReply = function() {

 var date = new Date();

 var attachment = [];

 if(self.uploadedFile()[0] != null){

 self.uploadFile()

 .then(function (success){

 attachment = [{

 "filePath": self.uploadedFile()[0].name,

 "fileSize": bytesToSize(self.uploadedFile()[0].size),

 "timestamp": date.toISOString(),

 }]

 self.addTicketReplytoCollection(attachment, date);

 })

 .catch(function(error){

 console.error('Error uploading file')

 })

 } else {

 self.addTicketReplytoCollection(attachment, date);

 }

}

Chapter 8 replying to tiCkets

153

Add the following utility function, to convert the bytes into a file size:

/* Function to convert bytes to size

Source: http://codeaid.net/javascript/convert-size-in-bytes-to-human-

readable-format-(javascript)#comment-1

*/

function bytesToSize(bytes) {

 var sizes = ['Bytes', 'KB', 'MB', 'GB', 'TB'];

 if (bytes == 0) return 'n/a';

 var i = parseInt(Math.floor(Math.log(bytes) / Math.log(1024)));

 return Math.round(bytes / Math.pow(1024, i), 2) + ' ' + sizes[i];

};

Now we must create the function addTicketReplytoCollection from Listing 8-10.

This function is responsible for adding the new reply to the ticketReplies collection

using the create method on an ojCollection. The create method will add a new model

to the collection and call the data service.

Getting the value (or HTML) from the Trumbowyg editor is achieved by initializing

the .trumbowyg method on the element and passing in html as the parameter.

Note the wait:true parameter in the create method. this is quite an
important parameter to add when working with collections. it prevents the new
item from being added to the local collection until a successful response has been
received from the data service. if the api call fails but the model is added locally,
the application could be in an inconsistent state.

Listing 8-10. addTicketReplytoCollection Function

/* Function to build up the ticket reply and add it to the collection */

self.addTicketReplytoCollection = function(attachment, date){

 var newReply = {

 "author": "Charlotte Illidge",

 "timestamp": date.toISOString(),

 "note": $('#ticket-reply-area').trumbowyg('html'),

 "attachment": attachment

 }

Chapter 8 replying to tiCkets

154

 self.ticketReplies.create(newReply, {

 wait: true,

 success: function(model, response, options){

 console.log("Success")

 },

 error: function(err, status, errorThrown){

 console.error("Error")

 }

 })

 $('#ticket-reply-area').trumbowyg('empty');

 self.uploadedFile('');

}

Update the ticketReplyModel function to include the customURL attribute, as shown

in Listing 8-11. This is required, so the model knows which end point to call when

adding a new item.

Listing 8-11. Updated ticketReplyModel

self.ticketReplyModel = oj.Model.extend({

 idAttribute: 'id',

 customURL: function () {

 var retObj = {};

 retObj['url'] = "http://localhost:8080/tickets/replies/" +

self.ticketId()

 return retObj

 }

});

Finally, to ensure that the contents of the editor and any selected file is cleared when

switching between tickets, add the following into the subscribe method for ticketId:

$('#ticket-reply-area').trumbowyg('empty');

self.uploadedFile('');

If you now serve the application, you should be able to type a reply into the text area,

and upon submit, the response will appear straightaway, as shown in Figure 8-4.

Chapter 8 replying to tiCkets

155

 Reply Toolbar Button
In the button toolbar at the top of the ticket, there is a reply button. The purpose of this

button is to navigate users to the reply editor, to prevent them having to scroll in cases of

long tickets. First, add the on-oj-action attribute to the reply button component in the

view-ticket.html file, which should call a scrollToReply function when a user clicks

the button. Then add the scrollToReply function in the view-ticket.js file and use the

scrollIntoView JavaScript method on the ticket reply area element.

<oj-button class="oj-flex-item oj-sm-padding-1x-end" on-oj-

action='[[scrollToReply]]'>Reply</oj-button>

/* Function to automatically scroll the user to the reply editor */

 self.scrollToReply = function(){

 document.getElementById('ticket-reply-area').scrollIntoView();

}

Figure 8-4. Ticket reply

Chapter 8 replying to tiCkets

156

 Installing FontAwesome
In the next section, we are going to show file attachments within tickets. Before we do

that, we will install a new library called FontAwesome. Until now, the application has

used a default icon set that comes bundled with Oracle JET. This icon set is limited, so we

must install a third-party library to get the icons we need.

First, install the FontAwesome library by running the following command in the UI

directory: npm install @fontawesome/fontawesome-free.

Then we must copy FontAwesome into the project, by using the

copyCustomLibsToStaging build task. Open oraclejet-build.js and replace the

commented out copyCustomLibsToStaging object with Listing 8-12.

Listing 8-12. copyCustomLibsToStaging Object

copyCustomLibsToStaging: {

 fileList: [

 {

 cwd: 'node_modules/@fortawesome/fontawesome-free/',

 src: ['css/*', 'webfonts/*'],

 dest: 'web/css/fontawesome'

 }

]

},

Then include the style sheet within head of the index.html file.

<!-- This contains the fontawesome import -->

<link rel="stylesheet" href="css/fontawesome/css/all.css" type="text/css"/>

If you rebuild the application, you will notice the fontawesome directory appear in

web/css, as illustrated in Figure 8-5.

Chapter 8 replying to tiCkets

157

 Displaying File Attachments
As it is possible for tickets and their replies to contain attachments, we must add the

display logic to show these.

Within view-ticket.html, add Listing 8-13 directly below the ticket author’s name.

Listing 8-13. File Attachment Display

<oj-bind-if test='[[attachment()[0]]]'>

 <div class="oj-flex oj-sm-padding-2x-top">

 < div class="oj-sm-padding-1x-horizontal" data-

bind="text: attachment()[0].filePath"></div>

 (<div data-bind="text: attachment()[0].fileSize"></div>)

 </div>

</oj-bind-if>

The ojBindIf component checks whether there are any attachments associated

with this ticket, and if there are, show the attachment. The span element contains the

classes fas fa-paperclip, which will load the paperclip FontAwesome icon. A full list of

available classes and icons is available on the FontAwesome web site.

Users can also add attachments to ticket replies. Therefore, the attachment display

logic has to be added to the replies list. The code for this is similar; only the binding

references are different. Add Listing 8-14 into the ticket-replies-template and again

below the author name.

Figure 8-5. FontAwesome library

Chapter 8 replying to tiCkets

158

Listing 8-14. File Attachment Display for Replies

<oj-bind-if test='[[attachment[0]]]'>

 <div class="oj-flex oj-sm-padding-2x-top" data-

bind="style: { textAlign: author !== $parent.

author() ? 'right' : '' }">

 <div class="oj-sm-padding-1x-horizontal" data-

bind="text: attachment[0].filePath"></div>

 (<div data-bind="text: attachment[0].

fileSize"></div>)

 </div>

</oj-bind-if>

An example of how attachments are displayed on tickets can be seen in Figure 8-6.

Figure 8-6. Ticket with attachment

Chapter 8 replying to tiCkets

159

 Adding Icons to Buttons
It is possible to add icons to buttons, by using component functionality called ‘slots’.

A slot can be used to insert code into a component at certain positions. In this example,

we can use the startIcon slot to include an icon within the button component.

Within the upload button, replace the existing slot icon (which is an Oracle JET icon)

with a FontAwesome icon.

Then add in a slot for the reply button.

The buttons should then look like the buttons within Figure 8-7.

Figure 8-7. Buttons with FontAwesome icons

Chapter 8 replying to tiCkets

160

 Summary
After completing this chapter, the application will now be more interactive. You have

installed a third-party library to render a WYSIWYG editor and learned the module life

cycle methods. You have also used the Oracle JET Collection create method to add a

new ticket reply, as well as implementing a promise to handle asynchronous responses.

You have used the Oracle JET File Picker component to select a file and send it to

the server and displayed the file picker and reply button, using the CSS flex-bar classes.

Finally, you will have included the FontAwesome library and applied some of the icons

on the tickets.

Chapter 8 replying to tiCkets

161
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6_9

CHAPTER 9

Ticket Management
This chapter walks through the creation of management tasks that can be performed

on a ticket. These include ticket closure, escalating priority, and rating responses. The

buttons that will action these management tasks are situated within the view ticket

module, and any actions on these buttons will be communicated to the parent module

(ticket desk), in order to perform methods directly on the ticket’s model and collection.

To handle this communication, we are going to look at JS signals. Within the main.js

file, you may have already noticed that there is a library included called js-signals,

as shown in Figure 9-1. The signals library comes bundled with every new Oracle JET

application and is used as a way of managing events between Oracle JET modules.

Figure 9-1. Signals import

162

 API Setup
This chapter will introduce some new API requests when closing and escalating a ticket.

Therefore, some new mock files must be created.

Just as you have done in previous chapters, create the two mock files shown in

Listings 9-1 and 9-2. These two listings use the wildcard feature (__) of mockserver to

capture any PUT requests for all the tickets.

Listing 9-1. API/mocks/tickets/__/OPTIONS.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type,

Accept

Access-Control-Allow-Methods: GET, POST, PUT

Listing 9-2. API/mocks/tickets/__/PUT.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

[]

 Understanding Signals
Events outline something that has happened on an HTML element. An event can be the

result of a user action (e.g., clicking a button) or something the browser has done (e.g.,

finished loading a page). It is possible to create and listen to custom events, using the

JavaScript event dispatch/listener system. A new event can be created with a custom

string-based identifier that can be picked up by a listener elsewhere in the application.

Signals are similar to events, except that signals have a central controller. This use

of a central controller has the benefit of not relying on string-based event listeners

scattered across the application that could be incorrectly spelled. Signals accept multiple

parameters being passed into the central controller when dispatching, whereas events

accept only a single parameter.

Chapter 9 tiCket ManageMent

163

The purpose of signals is to communicate between different modules, and in this

case, we will be sending signals from the view ticket module to the parent ticket desk

module. These signals will inform the ticket desk module of any changes to tickets (if

they are closed, or if they have had their priority escalated).

The js-signal library comes with several methods that are described in the following

subsections. Not all methods are described, only the more commonly used ones.

 add
The add method will add a listener to the signal object and accepts three parameters:

 1. Listener: The function that will be executed once the listener

detects a dispatch signal

 2. ListenerContext: An optional parameter that specifies the

context in which the listener will be executed

 3. Priority: An optional parameter that specifies the priority of

the listener. The higher the priority, the higher up the order the

listener will be executed. The default value is zero.

Note Use addOnce instead of add, if you want to remove the listener after the
first execution.

 dispatch
The dispatch method is used to broadcast a signal to all listeners. It allows for multiple

parameters to be passed in, but parameters are not required.

 dispose
Invoking the dispose method destroys the signal object. Calling any method on the

instance following a dispose will cause errors.

 remove
Call the remove method to remove a listener. The listener to remove should be passed as

a parameter. Use removeAll to remove all listeners.

Chapter 9 tiCket ManageMent

164

 Ticket Closure and Priority Update
Before we begin, you must include the signals library within the define block in both

the ticket-desk and view-ticket ViewModels. Then make sure that the signals library

is also passed into the callback function. As an example, the start of the ticket-desk.js

should look like the following:

define(['ojs/ojcore',

'knockout',

'jquery',

'appUtils',

'signals',

'ojs/ojlistview',

'ojs/ojinputtext',

'ojs/ojcollectiontabledatasource',

'ojs/ojmodel',

'ojs/ojvalidation-datetime',

'ojs/ojconveyorbelt'],

function(oj, ko, $, appUtils, signals) {

We will be setting up two signals: one for ticket closures and another for updating

the ticket priority. Both signal controllers should be added to the variables section in

ticket-desk.js. For example:

self.closeTicketSignal = new signals.Signal();

self.updatePrioritySignal = new signals.Signal();

Next, update the parameters being passed into the view ticket module so that the

signals are shared with the view ticket module. The module binding within ticket-desk.

html should look as follows:

<div data-bind="ojModule: { name: 'view-ticket',

 params: {ticketModel: selectedTicketModel,

closeTicketSignal: closeTicketSignal, updatePrioritySignal:

updatePrioritySignal}

 }" class="oj-sm-padding-4x">

</div>

Chapter 9 tiCket ManageMent

165

Within view-ticket.js, assign the signal parameters to variables and create a new

priority observable to store the tickets’ priority. The closureReason variable is also

needed, to hold the reason for ticket closures.

self.closeTicketSignal = params.closeTicketSignal;

self.updatePrioritySignal = params.updatePrioritySignal;

self.priority = ko.observable();

self.closureReason = ko.observable();

Ensure that the priority observable is populated when the ticket is loaded. Do that by

adding the following to the ticketModel computed function:

self.priority(params.ticketModel().get('priority'));

Create the functions from Listing 9-3. The closeTicket and escalatePriority

functions will initialize the dispatch method on the respective signals. The dialog

functions are used to handle the interaction, with a confirmation dialog created within

the next section.

Listing 9-3. Closure and Escalation Functions

/* Functions to close a ticket via a signal to the ticket desk VM */

self.confirmCloseDialog = function (event) {

 document.getElementById('close-confirmation-dialog').open();

}

self.closeDialog = function (event) {

 document.getElementById('close-confirmation-dialog').close();

}

self.closeTicket = function() {

 self.closeTicketSignal.dispatch(self.ticketId(),

 self.closureReason());

 self.closeDialog();

}

Chapter 9 tiCket ManageMent

166

/* Function to escalate a ticket via a signal to the ticket desk VM */

self.escalatePriority = function() {

 // Only send the signal if the priority is lower than 1

 if(self.priority() > 1){

 self.updatePrioritySignal.dispatch(self.ticketId());

 }

}

Update the buttons within view-ticket.html to include a FontAwesome icon

and oj-action events. Ensure that the disabled attribute is set on the Escalate Priority

button. This will disable the button if the priority of the ticket is already at its highest

(which is 1). Listing 9-4 shows how these buttons should now look.

Listing 9-4. Updated Ticket Management Buttons

<oj-button

 class="oj-flex-item oj-sm-padding-1x-end"

 on-oj-action='[[scrollToReply]]'>

 Reply

</oj-button>

<oj-button

 class="oj-flex-item oj-sm-padding-1x-end"

 on-oj-action='[[escalatePriority]]'

 disabled="[[priority() === 1]]">

 Escalate Priority

</oj-button>

<oj-button

 class="oj-flex-item oj-sm-padding-1x-end"

 on-oj-action='[[confirmCloseDialog]]'>

 Close Ticket

</oj-button>

Chapter 9 tiCket ManageMent

167

 Ticket Closure Dialog
Before a user is able to close a ticket, he or she must first confirm the closure and provide

a reason for closing the ticket. For this, an Oracle JET Dialog component will be opened

as soon as the user clicks the Close Ticket button.

Add ojs/ojselectcombobox, ojs/ojlabel, and ojs/ojdialog to the define block

within view-ticket.js and then add Listing 9-5 to the end of the view-ticket.html file.

Listing 9-5. Closure Confirmation Dialog

<oj-dialog style="display:none" id="close-confirmation-dialog"

title="Confirm Closure">

 <div slot="body">

 Are you sure you wish to close this ticket?

 <oj-label for="closure-reason" class="oj-sm-padding-4x-top">

Reason for closure</oj-label>

 <oj-select-one id="closure-reason" value="{{closureReason}}">

 <oj-option value="Ticket Answered">Ticket answered

</oj- option>

 <oj-option value="Workaround Provided">Workaround

Provided</oj-option>

 <oj-option value="No longer an issue">No longer an

issue</oj-option>

 <oj-option value="Other">Other</oj-option>

 </oj-select-one>

 </div>

 <div slot="footer">

 <oj-button id="cancel-close" on-oj-action="[[closeDialog]]">Cancel

 </oj-button>

 <oj-button id="confirm-close" class='oj-button-confirm'

on-oj- action="[[closeTicket]]">Close

 </oj-button>

 </div>

</oj-dialog>

Within the dialog, a Select One Choice component is used for the reason drop-down

list, as well as a button component to confirm or cancel the closure.

Chapter 9 tiCket ManageMent

168

 Signal Listeners
Next, we will add the listeners to the ticket-desk.js file. Both listener functions will

implement the save method that comes with the ojModel class. The save method will

call the API end point with the PUT HTTP method. The first parameter into the save

method should be the attributes to be changed, followed by a second parameter of

options. The options parameter may include the following:

• Success: Callback when the save has been successful.

• Error: Callback when the save has failed.

• contentType: Change the content type to something other than the

default (application/json).

• validate: Specifies whether validation should be run

• wait: Wait for a success before updating the model.

• patch: Change the call to be a PATCH.

• attrs: Pass attributes to control those that are saved to the server.

Add the updatePrioritySignal listener from Listing 9-6. The ticketId parameter

(which is passed into the signals by the dispatch event) will contain the ticket ID and

will be used to form the updatedData object. The new updatedData object is used when

calling the save method.

Listing 9-6. updatePrioritySignal

/* Priority update listener, when a dispatch signal is sent, the priority

is increased and the model item updated */

self.updatePrioritySignal.add(function(ticketId) {

 var newPriority;

 var modelItem = self.ticketList().get(ticketId);

 var modelData = modelItem.attributes;

 newPriority = modelData.priority - 1;

 var updatedData = {

 id: modelData.id,

 priority: newPriority

 };

Chapter 9 tiCket ManageMent

169

 modelItem.save(updatedData, {

 wait: true,

 success: function (model, response, options) {

 console.log('Success');

 self.selectedTicketModel(self.ticketList().get(self.

selectedTicket()[0]))

 },

 error: function (jqXHR) {

 console.log('Error');

 }

 });

});

The next signal listener to add is for closeTicketSignal. This signal will accept two

parameters, both ticketId and closureReason. Add Listing 9-7 into ticket-desk.js.

Listing 9-7. closeTicketSignal

/* Close ticket listener, when a dispatch signal is sent, the new object

with closed status is created and the model item is updated */

self.closeTicketSignal.add(function(ticketId, closureReason) {

 var modelItem = self.ticketList().get(ticketId);

 var modelData = modelItem.attributes;

 var updatedData = {

 id: modelData.id,

 status: 'Closed',

 closureReason: closureReason

 };

 modelItem.save(updatedData, {

 wait:true,

 success: function (model, response, options) {

 console.log('Success');

 self.selectedTicketModel(self.ticketList().get(self.

selectedTicket()[0]))

 },

Chapter 9 tiCket ManageMent

170

 error: function (jqXHR) {

 console.log('Error');

 }

 });

})

Figure 9-2 illustrates the new buttons with FontAwesome icons, as well as a disabled

Escalate Priority button, as the priority is at 1 and cannot go any higher.

 Adding Ticket Ratings
When a ticket has been closed, we should hide the ticket management buttons and give

the user the option to rate his/her experience. The ojRatingGauge component will be

used for the rating functionality, so be sure to add ojs/ojgauge to the define block of

view-ticket.js.

First, hide the three ticket management buttons in view-ticket.html by wrapping

them in an ojBindIf component, so that the buttons only show if the ticket is not closed.

<oj-bind-if test="[[status() != 'Closed']]">

</oj-bind-if>

Figure 9-2. Ticket Management buttons with icons and disabled Escalate Priority

Chapter 9 tiCket ManageMent

171

Then again, using ojBindIf, check if a ticket is closed and render the ojRatingGauge

component. The component will use the closedTicketRatingValue variable as its value.

If the value is -1, the ticket has not yet been rated, and the component is taken out of

read-only mode.

If the component is not in read-only mode, a user is able to select a star to specify a

rating. Selecting a star will fire a value change event, and the attribute on-value-change

binds to the ratingValueChanged function that sets the rating value.

<oj-bind-if test="[[status() == 'Closed']]">

 <div class="oj-sm-6 oj-flex oj-sm-justify-content-flex-end">

 <oj-rating-gauge

 id="closed-ticket-rating"

 class="oj-sm-6 oj-flex-item"

 value="{{closedTicketRatingValue}}"

 on-value-changed="[[ratingValueChanged]]"

 selected-state.color="#E74C3C"

 readonly="[[closedTicketRatingValue() > 0]]"

 style="height:30px;">

 </oj-rating-gauge>

 </div>

</oj-bind-if>

Within the ViewModel, add the new variable and the event listener:

self.closedTicketRatingValue = ko.observable();

self.ratingValueChanged = function(event) {

 self.closedTicketRatingValue(event.detail['value']);

}

Ensure that the closedTicketRatingValue variable is populated with a value

returned from the API, by adding the following into the computed ticketModel function:

self.closedTicketRatingValue(params.ticketModel().get('ticketRating'));

Chapter 9 tiCket ManageMent

172

Finally, when a ticket is closed, we should disable the Reply button at the bottom of

a ticket. To do this, set the disabled attribute on the Reply button, so that it looks like the

following:

<oj-button id='reply-button' on-oj-action='[[ticketReply]]'

 disabled="[[status() === 'Closed']]">

 Reply

</oj-button>

Now when running the application and clicking the close button for ticket 10006, you

should be presented with the confirmation dialog similar to that in Figure 9-3.

Figure 9-3. Ticket closure confirmation

Chapter 9 tiCket ManageMent

173

After clicking Close on the confirmation, the ticket should have a status of closed,

and you are able to rate the ticket using the rating gauge, as shown in Figure 9-4.

Figure 9-4. Closed ticket with a five-star rating

 Summary
With the completion of this chapter, you have used the Signals library that comes

bundled with an Oracle JET application. Two new signals have been created, one for

closing a ticket and one for updating the ticket priority. Both signals communicate

with the parent module (ticket desk) that uses the ojModel save method to submit the

changes to the service. The save method updates the model locally, meaning we can see

the updated application state instantly.

You also have used an Oracle JET Dialog and Select One Choice component for

creating a closure confirmation step.

Finally, you have used the Oracle JET Rating Gauge visualization again, this time for

providing the ability to rate tickets after they have been closed.

Chapter 9 tiCket ManageMent

175
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6_10

CHAPTER 10

Search Component
In this chapter, we are going to explore the Oracle JET Custom Web Component

Architecture and use it to build a search component. The component will automatically

filter down the ticket list as the user is typing, to instantly show the results and reduce

the amount of actions required by the user. This aspect of showing results while the user

types will be achieved easily, thanks to the component’s writeback properties facilitating

the communication between the component and the consuming ViewModel.

The topic of JET Web Components is quite extensive, and within the use case that

follows, I will be covering only some of the features that the architecture provides. I

recommend that you spend time reviewing the JET Web Components documentation, to

really understand the full architecture.

 Why Components?
As a developer, you should already be familiar with the concept of components. They

are a defined set of properties, methods, and events associated with a piece of code.

Components offer the benefit of reusability (both within the same application or across

multiple applications), encapsulation, and easy-to-consume functionality. To achieve all

this, a certain set of standards must be in place. Web Components in Oracle JET follows

the standards set out within the W3C Web Component Specification.

As web applications have become more complex, the amount of markup and

backing logic has too. Increasing amounts of markup and logic result in pages that

are crowded with various widgets that cannot be easily reused in different areas of an

application. Take a carousel as an example. A carousel is a common web site feature and

could have the following markup:

<div id='main-carousel'>

 <!-- Carousel Panels -->

 <div class='carousel-panel'>

176

 Jupiter

 </div>

 <div class='carousel-panel'>

 Mars

 </div>

 <div class='carousel-panel'>

 Saturn

 </div>

 <!-- Controls -->

</div>

Now imagine all this markup packaged into a simple Web Component.

<main-carousel panels="[[panels]]"></main-carousel>

The carousel is just one example, and often, web applications have multiple different

widgets, combined to achieve the complete functionality. It is clear to see that moving

widgets into separate components is a good idea for cleaning up the markup of a

page, but Web Components offer more than that, they make available events, full API

definition, and much more.

Note If you come from an ADF background, you may be familiar with the ADF flavor
of components: declarative components. In Oracle JET, we have Web Components.

 Creating Your First Component
Creating a JET component for the first time is relatively straightforward. The Oracle JET

tooling will do all the hard work for you. The tooling will scaffold all the files you need to

get started. Run the following command in the UI directory:

ojet create component inline-search

ChApTEr 10 SEArCh COmpOnEnT

177

Note It is best practice to apply a namespace to your components, to avoid
any naming collisions. All Oracle JET components are prefixed with the
namespace oj-.

Once that command has finished, you should now see a new jet-composites

directory appear within the js folder, with your newly created component inside. See

Figure 10-1 for what that result looks like.

Figure 10-1 shows a number of files. Let’s take a look at what the roles of each of

these files are. The following subsections offer a little bit of detail about each one.

 loader.js
Figure 10-2 shows the contents of the loader.js file. Think of this file as the entry

point into the component. It loads all the libraries required to register the component

(View, ViewModel, and metadata), so that the component can be initialized later

within your consuming module. We will be including this file into the ticket desk

ViewModel shortly.

Figure 10-1. New Oracle JET Web Component

ChApTEr 10 SEArCh COmpOnEnT

178

 component.json
Next comes component.json. This file is responsible for defining the component

API. The file will define the properties, methods, and events that the component will

support. Also defined in the file are the metadata elements, such as name, version, and

description.

There will be some automatically generated content in the file. Replace that default

content with the following:

{

 "name": "inline-search",

 "displayName": "inline-search",

 "description": "A search component for searching through a collection",

 "version": "1.0.0",

 "jetVersion": "^6.0.0",

 "properties": {

 "data": {

 "description": "Collection passed into the component that can be

filtered down.",

 "type": "oj.Collection",

 "writeback": true

 },

Figure 10-2. loader.js file

ChApTEr 10 SEArCh COmpOnEnT

179

 "models": {

 "description": "An array of models passed to the component used to

reset the collection.",

 "type": "Array"

 },

 "filterAttribute": {

 "description": "The attribute that the search string will be matched

against.",

 "type": "string"

 }

 },

 "methods" : {

 "resetSearch" : {

 "description" : "A function to clear the search value",

 "internalName" : "_resetSearch"

 }

 }

}

Now we have set the name of the component, its description, and versioning

information. Also included are three properties:

• data: This is the collection object that is used for the ticket list. The

collection will be filtered down if a user specifies a search term, and

the new collection will be written back to the consuming module.

• models: This is a list of the persisting models. This list will never

change during a search and will be used to reset the collection to its

original state, once a search term is removed.

• filterAttribute: The attribute that the search term will match against

There are several notable extra options that you can set on component properties.

These are

• description: A description for the property

• type: The type of the property: string, number, Boolean, array, or object

ChApTEr 10 SEArCh COmpOnEnT

180

• value: Default value for the property

• readOnly: Boolean value to determine if a property can be updated

outside of the ViewModel

• writeback: Boolean value to determine whether any variables bound

to the property could be written back to

• enumValues: An array of valid enumeration values used for when

the property type is string. An error is thrown if a property value is

mismatched with this list.

A method has been defined within the components.json file. Methods are a way of

creating functions within the component that can be accessible outside the component

during runtime.

 Built-in Events
All properties for Web Components come with “built-in” events. These events are

triggered whenever a property’s value changes and are known as property changed

events. There are two ways to hook onto property changed events: within the component

itself or within the consuming ViewModel.

From within the component, you can create an event listener, using the naming

standard of dataChanged (appending Changed to the end of the property name).

From within the consuming module, the attribute on-data-changed can be added to

the component element, to handle the event listening from the consuming side. We will

be using the on-data-changed attribute shortly.

 Events and Slots
There are two other attributes (in addition to properties and methods) that you can

define within components.json. They are not used for this example, but here is a quick

overview of what they are:

• events: As well as the built-in events mentioned, it is also possible to

create custom events. You have full control over when these events

are raised and can define exactly what detail values are passed as part

of the event.

ChApTEr 10 SEArCh COmpOnEnT

181

• slots: We have already explored the concept of slots when adding

an icon to a button. To recap, a slot is a predefined area within a

component in which you can “slot” in your own markup. It is possible

to create custom slot areas within a Web Component.

 inline-search-viewModel.js
The bulk of the component logic will go within the inline-search-viewModel.js

file. Upon opening the file, your first task is to change the name of the function from

ExampleComponentModel to InlineSearchModel, and ensure that you update the return

statement to reflect this change.

Now replace the sample observable 'messageText' with the following variables:

// Variable Setup

self.collectionToBeFiltered = ko.observable(context.properties.data);

self.persistentModels = [];

self.filterAttribute = ko.observable(context.properties.filterAttribute);

self.searchTerm = ko.observable();

When the component is initialized, we want to populate the

collectionToBeFiltered and filterAttribute variables with the properties that we

will be passing into the component. These can be accessed using the context object that

is passed into the InlineSearchModel function.

The other variable that must be populated is the persistentModels array. The array

will be populated after the fact, because as you will see shortly, the models are loaded

in after the collection has resolved on the consuming ViewModel, meaning they are not

available upon initialization of the component. To access this property, we must use a

life cycle event available on Web Components. Add the propertyChanged life cycle event

into the ViewModel, and it will be automatically triggered when the models are assigned.

/* Wait for models to be passed in and when they are assign them to the

persistentModels variable */

self.propertyChanged = function(event){

 if(event.property === 'models'){

 self.persistentModels = event.value;

 }

}

ChApTEr 10 SEArCh COmpOnEnT

182

Now we must implement the search logic, which will be carried out by two functions.

The first of the two functions is valueFilter, which is responsible for checking if the

entered value matches with one of the models. The valueFilter function is invoked by

a comparator when searching through the collection. Insert the following code into the

inline-search-viewModel.js file:

/* Filter for checking if the entered values matches with one of the model

attributes */

self.valueFilter = function (model, attr, value) {

 var name = model.get(attr);

 return (name.toLowerCase().indexOf(value.toLowerCase()) > -1);

};

The second of the two functions will be placed within a subscribe method on the

searchTerm observable. The subscribe method in Knockout will listen on an observable

and notify the callback function of any changes anytime a user types into the search box.

The callback function is responsible for the following:

• Checking whether the length of the term is zero (ie, there is no search

term), closing the collection and resetting the clone to its original state

using the persistentModels variable. The reset method on a collection

accepts an array of models and resets the collection object to this new

array of models. The cloned collection will then be passed back into

the data property, and because the data property has the 'writeback'

attribute set, the changed data will be written back to the consuming

ViewModel.

• Checking whether the length of the term is more than zero. If so, the

function will create an object using the filteredAttribute value

that we populated earlier, then the where method will be used on

the collection to find matching model objects. The collection will be

cloned and the cloned collection will be reset with the new filtered

models. The clone will be passed back to the consuming ViewModel.

ChApTEr 10 SEArCh COmpOnEnT

183

Add the following code below the valueFilter function created earlier:

 /* Function to handle the filtering of the collection when a user enters a

value into the search box */

self.searchTerm.subscribe(function (newValue) {

 if (newValue.length == 0) {

 var clonedCollection = self.collectionToBeFiltered().clone()

 clonedCollection.reset(self.persistentModels);

 context.properties.data = clonedCollection

 } else {

 self.collectionToBeFiltered().reset(self.persistentModels);

 var filterObject = {}

 filterObject[self.filterAttribute()] = { value: newValue, comparator:

self.valueFilter };

 var ret = self.collectionToBeFiltered().where(filterObject);

 var clonedCollection = self.collectionToBeFiltered().clone()

 clonedCollection.reset(ret);

 context.properties.data = clonedCollection

 }

});

We now want to use the Knockout extend method to set a rate limit. A rate limit

is used to delay the Knockout observable propagation (and, therefore, the subscribe

notification) by a set period of time. This will prevent the search code from running too

many times when a user types quickly. To set a rate limit, add the following line below

the variable declaration for searchTerm:

self.searchTerm.extend({ rateLimit: 500 });

 resetSearch method

Within the API, we defined the method resetSearch, which will be used to reset the

search box and remove the search term when a user navigates to a ticket that is no longer

present in the ticket list. To implement, add the following code in the components

ViewModel, but outside the InlineSearchModel function:

 InlineSearchModel.prototype._resetSearch = function () {

 this.searchTerm('')

 };

ChApTEr 10 SEArCh COmpOnEnT

184

To use the method, you simply have to hook onto the component and call the

resetSearch method, as defined within the components.json API. Replace the

tabSelectionChanged function within ticket-desk.js with the following:

self.tabSelectionChanged = function () {

 if(self.ticketList().get(self.selectedTabItem()) === undefined){

 document.getElementById("search-component").resetSearch();

 }

 oj.Context.getContext(document.getElementById("search-component"))

 .getBusyContext()

 .whenReady()

 .then(function () {

 self.selectedTicketModel(self.ticketList().get(self.selectedTabItem()))

 self.selectedTicket([self.selectedTabItem()])

 })

}

The conditional statement will check if the selected tab item exists within the

ticketList collection, and if it doesn’t, reset the ticket list.

You also need to update the conditional check that surrounds the logic within the

deleteTab function. Replace the first line to the following:

if(id != self.persistentModels()[0].get('id')){

 inline-search-view.html
Open the inline-search-view.html file. This file holds all the View markup for the

component. In our case, it will be a relatively straightforward file that contains an Oracle

JET Input Text Component bound to the searchTerm variable.

Note It is possible to access the component properties directly in the View, if
needed. For example, if you wanted to access the data property, you can do so by
using the props object ($props.data).

ChApTEr 10 SEArCh COmpOnEnT

185

Replace the contents of the View with the following Input Text Component:

<oj-input-text

 class="oj-sm-12 oj-sm-padding-3x-vertical oj-sm-padding-2x-horizontal"

 value="{{searchTerm}}"

 raw-value="{{searchTerm}}"

 autocomplete="off">

</oj-input-text>

Both the value and raw-value attributes are being used here. The raw-value

attribute will update as a user types, whereas the value attribute is only updated when

the focus is moved away from the component.

Note that the autocomplete attribute has been added. This attribute gets passed

directly to the HTML input element, to prevent the browser from trying to automatically

suggest or complete a user’s input.

 inline-search-styles.css
Use the inline-search-styles.css file to add any custom styling related to the

component. As we are not styling the search box at all (other than using the predefined

flex classes on the component), no changes are needed on this file.

 Consuming the New Component
Now that the new component has been created, it is time to consume the component

within the ticket-desk.js ViewModel. First, include the new component in the

RequireJS config block in the main.js file, by adding the following line:

'inline-search': 'jet-composites/inline-search/1.0.0'

Then include the new component within the ticket-desk.js define block:

'inline-search/loader'

Next, add the following new variables into ticket-desk.js. One will hold

persistentModels once they have been extracted from the collection; the second

will hold the attribute that will be used to match the search against. Finally the

selectionRequired variable is needed to help us out with a workaround for a bug in the

list component, more on this shortly.

ChApTEr 10 SEArCh COmpOnEnT

186

self.persistentModels = ko.observableArray();

self.filterAttribute = 'title';

self.selectionRequired = ko.observable(true);

Then extract the models from the collection, using the fetch method, as shown

in the following snippet of code. This is required, as it is not possible to populate

persistentModels until after the collection has called the data service. Therefore, we

must use the success callback to assign the model values.

self.ticketList().fetch({

 success: function success(data) {

 self.persistentModels(data.models);

 }

});

Add the following function into the ViewModel. The function will be called when

the data property is changed from within the search component, and will update the

datasource with the updated collection containing the filtered models. Normally we

would not need to do this, but unfortunately at time of writing there is a bug in the Oracle

JET ListView component that means we must disable the selection-required attribute

and then reassign the datasource again. The alternative if the bug was not present would

be to just perform the reset directly on the collection within the search component

(without doing the clone), and then allowing the write back functionality take care of

updating the ListView for us. The bug should be fixed as part of JET version 6.2.

self.updateDataSource = function(event){

 self.selectionRequired(false);

 self.ticketListDataSource(new oj.CollectionTableDataSource(self.

ticketList()));

 var busyContext = oj.Context.getPageContext().getBusyContext();

 busyContext.whenReady().then(function () {

 self.selectionRequired(true);

 });

}

ChApTEr 10 SEArCh COmpOnEnT

187

You will also need to update the 'selection-required' attribute on the list

view within ticket-desk.html, so that it references the 'selectionRequired'

variable. Finally, replace the temporary input text component within ticket-desk.html

with the newly created component. Here is how you should define the component:

<!-- Search functionality -->

<inline-search

 id="search-component"

 data="{{ticketList}}"

 on-data-changed="[[updateDataSource]]"

 models="[[persistentModels]]"

 filter-attribute='[[filterAttribute]]'>

</inline-search>

<!-- Search functionality -->

Note The kebab case attribute for naming components, filter-attribute,
will translate to camel case, filterAttribute, within the component properties.
This is because hTmL markup is not case-sensitive, whereas the property names are.

Now, if you re-serve the application, you will be able to use the search functionality

to search through all the tickets within the list instantly. Figure 10-3 provides an example,

showing a ticket about a web site being unavailable.

ChApTEr 10 SEArCh COmpOnEnT

188

 Summary
In this chapter, you have created your first component and implemented the search

functionality, so that it is possible to search through the ticket list. You have done this

using Oracle JET Custom Web Components and have learned what features make up this

architecture.

Oracle JET Custom Web Components is a crucial part of JET development and

should always be at the forefront of your mind. Where possible, you should be

considering using Web Components.

Figure 10-3. Search functionality using a Web Component

ChApTEr 10 SEArCh COmpOnEnT

189
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6_11

CHAPTER 11

Ticket Creation
This chapter covers the functionality to create new tickets, using several Oracle JET

components that we have already used (plus some new ones). The Oracle JET Common

Model will be used to create new tickets, and we will be using Signals once again to

handle the intermodular communication.

Animations will be introduced to alter the way that elements are loaded into a page,

which can enrich a user’s experience.

The components/libraries used within this chapter are

• ojBindIf

• ojInputText

• ojSelectOne

• ojModule

• AnimationUtils

• ojFilePicker

• ojButton

• ojLabel

• FontAwesome

 API Setup
For this chapter, we must create new mock API end points. These end points will be

responsible for the creation of new tickets and returning replies for any new tickets

created. To that end, create the files shown in Listings 11-1 through 11-3.

190

Listing 11-1. API/mocks/tickets/replies/__/GET.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

{

 "notes": []

}

Listing 11-2. API/mocks/tickets/POST.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept

Access-Control-Allow-Methods: GET, POST, PUT

{}

Listing 11-3. API/mocks/tickets/OPTIONS.mock

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Access-Control-Allow-Origin: *

Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept

 Create a Ticket Module
Throughout the chapter, we will be working on a new module that will hold all

the markup and logic for creating a new ticket. Add two files to define the module:

viewModels/create-ticket.js and views/create-ticket.html. Within the view,

include some placeholder text, such as “This is the create ticket module!”

The new module definition should be included within the ticket-desk.html

file, between the tab bar section and the selected ticket section. This module will not

always be visible, so it should be wrapped within an ojBindIf component, as shown in

Listing 11-4.

Chapter 11 tiCket Creation

191

Listing 11-4. Create New Ticket Module

<!-- Create New Ticket Module -->

<oj-bind-if test="[[createVisible]]">

 <div data-bind="ojModule: { name: 'create-ticket',

 params: {createNewTicketSignal: createNewTicketSignal,

 newTicketId: newTicketId}

 }">

 </div>

</oj-bind-if>

<!-- Create New Ticket Module -->

The visibility of the new module will be controlled by a button, which should be

included at the end of the tab bar container (there should be three columns available at

the end of the tab bar for the button to occupy). Add Listing 11-5 just before the closing

div for the tab bar container, within the ticket-desk.html file.

Listing 11-5. Create New Ticket Button

<div class="oj-flex oj-sm-3 oj-sm-justify-content-flex-end oj-sm-padding- 4x-end">

 <oj-bind-if test="[[!createVisible()]]">

 <oj-button on-oj-action="[[toggleCreateTicket]]">

 Create New Ticket

 </oj-button>

 </oj-bind-if>

 <oj-bind-if test="[[createVisible]]">

 <oj-button on-oj-action="[[toggleCreateTicket]]">

 Cancel

 </oj-button>

 </oj-bind-if>

</div>

Within ticket-desk.js, add the following two variables:

self.createVisible = ko.observable(false)

self.newTicketId = '';

Chapter 11 tiCket Creation

192

The createVisible variable is responsible for holding the visible state of the create

ticket module, and newTicketId will hold the unique identifier for new tickets. I will

address why holding the unique identifier is needed, shortly.

A new signal is also required, and this signal will be responsible for notifying the

ticket desk module when a new ticket must be added to the ticket list collection. Include

the following in the variables section:

self.createNewTicketSignal = new signals.Signal();

Create a new function named toggleCreateTicket to handle the showing and

hiding of the module. For now, this will only show the module, and we will build on

the functionality later in the chapter. Create the function using the following code as its

definition:

/*

 Toggle the state of the create ticket module

*/

self.toggleCreateTicket = function () {

 self.createVisible(true)

}

By running the application, you should now see the create ticket button at the top

right of the tab bar, as shown in Figure 11-1. Clicking the button will cause the button

to change state and the create ticket module to appear directly above the ticket content.

Chapter 11 tiCket Creation

193

 Adding Animation
Animation can be great for improving user experience when used correctly in enterprise

applications. By using animation, you can create a sense of transition between tasks

and give the user a little perspective on the way that the application is structured and

navigated through.

Instead of just having the ticket creation module appear, we are going to implement

a sliding-down animation, to give the effect of the module sliding and pushing the rest of

the content farther down the page. A user is then aware that the rest of the ticket content

is still visible farther down the page, if he/she wants to scroll down and access it.

Oracle JET comes with a built-in library for handling animations. It provides the

ability to hook onto elements and configure various different animation options. To

include an animation for the create ticket module, we are going to take advantage of the

life cycle listeners that were explored in Chapter 8.

Figure 11-1. Show/hide create ticket module

Chapter 11 tiCket Creation

194

Open the create ticket ViewModel file and create the standard define block and

ViewModel function, as shown following:

define(['ojs/ojcore',

 'knockout',

 'jquery'

],

 function (oj, ko, $) {

 function CreateTicketViewModel (params) {

 var self = this;

 }

 return CreateTicketViewModel;

 }

);

Update the create-ticket view to wrap the existing placeholder in a div with the ID

of create-new-ticket, so that the create-ticket.html file looks like the following:

<div id="create-new-ticket" class="oj-sm-padding-4x">

 This is the create ticket module!

</div>

In Chapter 8, I discussed life cycle events. Next, we are going to be using

the handleAttached life cycle method, which is executed when the module has

been attached to the DOM. Within the handleAttached function, we will call the

animationsUtils method, to initialize the animation on the create-new-ticket

element. Here’s the code to include within create-ticket.js:

self.handleAttached = function () {

 oj.AnimationUtils['slideIn']($('#create-new-ticket')[0], {

'direction': 'bottom' });

}

There are several different animations available, including fade, flip, slide, zoom,

expand/collapse, and ripple. There are two parameters that can be passed into

animationUtils, the first is the element that will be animated, and the second is an options

object. The options parameter accepts an object of different configurations to apply to the

animation. The options vary with the different animation types, but some common ones are

delay, duration, and direction. In the preceding example, the direction property is being set.

Chapter 11 tiCket Creation

195

The sliding-in animation is now taken care of. However, the sliding-out animation

will have to be implemented differently, as it must be executed before the module is

closed. The animation should be run from within the ticket-desk.js file instead of

using the handleAttached event within create-ticket.js. Open the file and replace the

contents of the toggleCreateTicket function with the following:

if (self.createVisible() === true) {

 oj.AnimationUtils['slideOut']($('#create-new-ticket')[0], {

'direction': 'top' }).then(function () {

 self.createVisible(false);

 });

 }

 else {

 self.createVisible(true);

}

Now, when clicking the button, you should see the module animate when opening

and closing. Unfortunately, it is not possible to include a GIF in this book, to show this in

action. Maybe one day!

 Building the Creation Form
It is time to build the functionality and create the form to capture new ticket details.

This will include the ticket title, priority, and summary of the issue. The form will be

made up of ojLabel components for specifying field labels, an ojInputText component

for the ticket title, an ojSelectOne component for the priority selection, and, finally, the

trumbowyg editor.

An ojSelectOne component provides the functionality for a LOV (list of values)

selection. The component can have a list of options attached to it that a user is able to

select. These options can either be hard-coded into the markup (as we will be doing

shortly), or they can be dynamically data-driven from the ViewModel. The component

comes with a bunch of other features too, such as the ability to group options, add

images to options, and it even provides the functionality to search through the

available options.

Chapter 11 tiCket Creation

196

Include the following code in Listing 11-6 inside the create-new-ticket element in

the create-ticket View:

Listing 11-6. Create New Ticket Form

<div class="oj-sm-padding-4x">

 <h2>Create a new ticket</h2>

 <oj-label for="title" class="oj-sm-padding-2x-top">Title:</oj- label>

 <oj-input-text id="title" value="{{newTicketTitle}}"></oj-input- text>

 <oj-label for="pirority" class="oj-sm-padding-2x-top">Priority:

</oj-label>

 <oj-select-one id="pirority" value="{{newTicketPriority}}">

 <oj-option value="1">1 - Blocker</oj-option>

 <oj-option value="2">2 - Critical</oj-option>

 <oj-option value="3">3 - High</oj-option>

 <oj-option value="4">4 - Medium</oj-option>

 <oj-option value="5">5 - Low</oj-option>

 </oj-select-one>

 <oj-label for="new-ticket-area" class="oj-sm-padding-2x-

top">Issue Summary:</oj-label>

 <div id="new-ticket-area"></div>

</div>

Note the for attribute on the ojLabel component should match the iD of the
element that the label corresponds to.

Within the create-ticket.js file, add ojs/ojselectcombobox and trumbowyg in the

define block, then add the following two variables:

self.newTicketTitle = ko.observable();

self.newTicketPriority = ko.observable();

Chapter 11 tiCket Creation

197

Within the handleAttached function, add the initialization for the editor, with the

same configuration that was used for the ticket replies, as follows:

$('#new-ticket-area').trumbowyg(

 {

 btns: ['bold', 'italic', 'underline'],

 resetCss: true,

 removeformatPasted: true

 }

);

Create a new CSS class in the containers SASS partial (base/containers.scss), to set

the background color on the create-new-ticket element.

#create-new-ticket {

 background-color: $neutral-color;

}

When opening the create ticket module, the form should look similar to that in

Figure 11-2.

Figure 11-2. Create New Ticket Form

Chapter 11 tiCket Creation

198

 Adding Attachments and Form Submission
In the same way that an attachment can be added to ticket replies, new tickets creation

will allow for attachment uploading. Therefore, we will be doing some refactoring, to

make the file upload code reusable across both creation and replies.

First, include Listing 11-7 within the create-ticket View, under the new-ticket-

area element. Other than label updates, this remains unchanged from the reply ticket

markup.

Listing 11-7. File Attachments and Form Submission

 <div class="oj-flex-bar oj-sm-padding-2x-top">

 <div class="oj-flex-bar-start oj-sm-align-items-center">

 <oj-file-picker class='oj-filepicker-custom oj-sm-padding-

2x-end' id="fileUpload" selectOn='click'

 on-oj-select='[[fileSelectionListener]]'

accept="[[allowedFileTypes]]" selection-mode='single'>

 <oj-button slot='trigger'>

 File Upload

 </oj-button>

 </oj-file-picker>

 <oj-bind-if test='[[uploadedFile()[0]]]'>

 <oj-bind-text value="[[uploadedFile()[0].name]]">

</oj- bind- text>

 </oj-bind-if>

 </div>

 <div class="oj-flex-bar-end">

 <oj-bind-if test="[[createInProgress() === false]]">

 <oj-button id='reply-button' on-oj- action='[[createTicket]]'

class="oj-button-confirm" disabled="[[createInProgress]]">

 Create Ticket

 </oj-button>

 </oj-bind-if>

Chapter 11 tiCket Creation

199

 <oj-bind-if test="[[createInProgress]]">

 <oj-button id='create-button' class="oj-button-confirm"

disabled="true">

 <span slot='startIcon' class="fas fa-circle-notch

fa-spin">

 Creating Ticket

 </oj-button>

 </oj-bind-if>

 </div>

</div>

Before building the ViewModel, we are going to create some reusable functions

within the appUtils file. The purpose of Listing 11-8 is the same as when it was

implemented on the ticket replies; however, there are a couple of differences in how we

achieve that end goal.

The first is how the function returns the result to the consuming ViewModel. A

promise is used here because we are dealing with an anyscronous request and we need

to wait for a response before assigning the value.

Second, we are passing in ticketId from the ticket-desk.js file. At the time of

creating a new ticket there will not yet be an ID, and the upload API requires a ticket

ID to know which ticket the upload relates to. Assuming the ticket ID value is always

incremented by 1, we can take the latest ticketId value and increment it by 1, and the

back end can handle linking the ticket and attachment and clearing out attachments that

do not link to a ticket.

Finally, return the attachment object back to the consuming ViewModel, so that it

can be appended to the ticket request. To implement, open the appUtils.js file and

include the new uploadAttachment function (Listing 11-8).

Listing 11-8. uploadAttachment Function

/* Function to upload the new attachment and return a promise */

 self.uploadAttachment = function (ticketId, uploadedFile) {

 var date = new Date();

 var attachment = [];

Chapter 11 tiCket Creation

200

 return new Promise(

 function (resolve, reject) {

 var file = $("#fileUpload").find("input")[0].files[0];

 var data = new FormData();

 data.append("file", file);

 $.ajax({

 type: "POST",

 url: "http://localhost:8080/tickets/upload/" +

ticketId,

 contentType: false,

 processData: false,

 data: data,

 success: function (result) {

 attachment = [{

 "filePath": uploadedFile.name,

 "fileSize": self.bytesToSize

(uploadedFile.size),

 "timestamp": date.toISOString()

 }]

 resolve(attachment)

 },

 error: function (err, status, errorThrown) {

 reject(err);

 console.error("Error")

 }

 });

 }

);

 }

Add the bytesToSize function created previously into the appUtils file.

/*

 Source: http://codeaid.net/javascript/convert-size-in-bytes-to-human-

readable-format-(javascript)#comment-1

*/

Chapter 11 tiCket Creation

201

self.bytesToSize = function (bytes) {

 var sizes = ['Bytes', 'KB', 'MB', 'GB', 'TB'];

 if (bytes == 0) return 'n/a';

 var i = parseInt(Math.floor(Math.log(bytes) / Math.log(1024)));

 return Math.round(bytes / Math.pow(1024, i), 2) + ' '

+ sizes[i];

};

Now return to the create new ticket ViewModel and ensure that the appUtils library

is included within the define block and passed into the callback function.

Create the following new variables:

self.uploadedFile = ko.observableArray([]);

self.allowedFileTypes = ko.observableArray(['image/*']);

self.createNewTicketSignal = params.createNewTicketSignal;

self.newTicketId = params.newTicketId;

self.createInProgress = ko.observable(false);

The createTicket function will build a new object (newTicket) and pass it as part of

the signal dispatch, so that it can be used to create the new ticket within ticket-desk.

js, which we will set up shortly. The function also calls the uploadAttachment utility

function if an attachment has been added.

The fileSelectionListener is executed when a user has selected a file to upload

and will assign the file details to the uploadedFile variable.

Add Listing 11-9 into create-ticket.js.

Listing 11-9. createTicket Function

/* Function to create a new ticket */

self.createTicket = function () {

 var date = new Date();

 var messageArea = $('#new-ticket-area').trumbowyg('html');

 self.createInProgress(true);

 var newTicket = {

 "id": self.newTicketId,

 "title": self.newTicketTitle(),

 "author": "Charlotte Illidge",

Chapter 11 tiCket Creation

202

 "representativeId": "1",

 "priority": self.newTicketPriority(),

 "service": "stylearchive",

 "dateCreated": date.toISOString(),

 "status": "New",

 "message": messageArea,

 "attachment": [],

 "ticketRating": -1

 }

 if (self.uploadedFile()[0] != null) {

 appUtils.uploadAttachment(self.newTicketId,

self.uploadedFile()[0])

 .then(function (attachment) {

 newTicket['attachment'] = attachment;

 self.createNewTicketSignal.dispatch(newTicket);

 });

 }

 else {

 self.createNewTicketSignal.dispatch(newTicket);

 }

 }

 self.fileSelectionListener = function (event) {

 var file = event.detail.files

 self.uploadedFile(file)

 }

Like ticket replies, the create method on a collection will be used to add the new

model onto the ticket list collection. In the following code, the at attribute is passed into

the callback, and this adds the new model to index 0 in the collection array. This will

ensure that the newest ticket created will be at the top of the ticket list.

Once the new ticket creation has been a success, the listener will then also push the

new model to the persistentModels array, so that the new ticket will be searchable, and

it will also increment the newTicketId by 1, ready for the next new ticket.

Chapter 11 tiCket Creation

203

Create the new signal listener by adding the following code into ticket-desk.js:

/* New ticket creation listener, when a dispatch signal is sent */

self.createNewTicketSignal.add(function (newModel) {

 self.ticketList().create(newModel, {

 wait: true,

 at: 0,

 success: function (model, response, options) {

 self.toggleCreateTicket();

 self.persistentModels.push(model)

 self.newTicketId = self.ticketList().models[0].id + 1;

 console.log('Success')

 },

 error: function (err, status, errorThrown) {

 console.error("Error")

 }

 })

})

When the ticket list is initially loaded, the newTicketId variable must be set after the

collection has been initialized. To do this, add the following line of code within the fetch

method for the ticket list collection:

self.newTicketId = data.models[0].id + 1;

Now, when creating a new ticket, you should first see the creation button change to a

loading animation, and once the creation has succeeded, the new ticket will be added to

the ticket list. Figure 11-3 shows a ticket creation in progress, while Figure 11-4 shows a

newly created ticket.

Chapter 11 tiCket Creation

204

Figure 11-3. Ticket creation in progress

Figure 11-4. New ticket created

Chapter 11 tiCket Creation

205

 New Status and Zero Replies
You may notice a couple of issues when viewing a newly created ticket, the first being

that there is no status message to the left of the ticket buttons, and the second that there

are no replies to the ticket yet, so the message “No items to display” is shown. Let’s tidy

this up a little.

Within view-ticket.js, find the ticketStatus function and add the following

conditional statement to the end:

else if (status === "New") {

 return "This is a new ticket that will be looked into

shortly by a member of the team. Please check back soon."

}

Then change the text that is displayed when there are zero items. To do this, add the

following attribute to the list component within view-ticket.html:

translations.msg-no-data="There are currently no replies to this ticket. If

you need to add extra information please reply to the ticket below."

Figure 11-5 illustrates how new tickets should now look, and you can interact with

the new ticket in the same way you could with the existing tickets. Try searching, closing,

or replying to the new ticket.

Figure 11-5. Updated new ticket view

Chapter 11 tiCket Creation

206

 Refactor Ticket Replies
As the upload functionality is common between create and reply, we must now refactor

the reply area to use the common utility function for uploading attachments. Within

view-ticket.js remove the uploadFile function, then replace the old promise call

within the ticketReply function with the new appUtils upload. The ticketReply

function should now look like Listing 11-10.

Listing 11-10. ticketReply Function

self.ticketReply = function () {

 var date = new Date();

 var attachment = [];

 if (self.uploadedFile()[0] != null) {

 appUtils.uploadAttachment(self.ticketId(), self.uploadedFile()[0])

 .then(function (attachment) {

 attachment = attachment;

 self.addTicketReplytoCollection(attachment, date);

 })

 .catch(function (error) {

 console.log(error)

 })

 } else {

 self.addTicketReplytoCollection(attachment, date);

 }

}

Be sure to remove the bytesToSize function too, as this is no longer required. After

refactoring the upload functionality on ticket replies, retest the ticket replies, to make

sure that it still works as expected.

Chapter 11 tiCket Creation

207

 Summary
In this chapter, you have set up ticket creation within the application, and to do this, you

have used Oracle JET animations, combined with life cycle listeners to hide/show the

ticket creation area. As well as this, you have also built upon the skills and components

used in previous chapters to upload files and add new models to a collection.

Refactoring existing code is often needed in any type of development, and here

you’ve seen how easy it is to refactor existing code when it is required in multiple places,

by moving functions into a common utility file.

Chapter 11 tiCket Creation

209
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6_12

CHAPTER 12

Logging, Messages,
and Validation
With the core functionality of the application complete, we will now look at three areas

that have not yet been explored: logging, messages, and validation. Until now, all log

entries have used the built-in browser logging tools, and in this chapter, we will look at

how this can be enhanced using components available with the JET toolkit.

Two other areas that have not been considered are messages and validation.

We will explore how to provide message feedback to users when they interact with the

application and how to use the validation utilities within JET.

The following components will be explored:

• ojLogger

• ojMessages

• ojValidation

• ojLabel

• ojInputText

 Logging
Browser console logging is a way to log messages to the browser console, to aid with the

testing and debugging of a web site. Browser logging provides a simple option to see

what is happening at certain points within the application.

The standard browser logging is useful when quickly trying to log an output, but

as with using System.out.println in Java, it shouldn’t really be used in production

environments, as it can lack the support of features such as global logging levels.

210

Oracle JET comes with its own logging component, with different levels of logging.

In JET applications, it is advised to use the Oracle JET logger instead of the built-in

browser console loggers. The output will still be logged to the console by default.

The logging levels available to use are the following:

• Error: Will write an error message to the console

• Info: Will write an information message to the console

• Warn: Will write a warning message to the console

• Log: Will write a general message to the console

To use the JET logging component, you must first set the logging level. To do this,

navigate to the appController.js file and set the logging level as “info.” For production,

you should set the level to “error,” to reduce the number of messages cluttering the

console. Following is the line of code to add to appController.js:

oj.Logger.option("level", oj.Logger.LEVEL_INFO);

Next, find all the occurrences of log messages and replace them with the Oracle JET

logger instead. To find all the instances, you can use the built-in search within Visual

Studio Code (or your IDE of choice).

For example, within the createNewTicketSignal listener in the ticket-desk

ViewModel, there is a console message in both the success and error blocks when

creating the new collection item. Replace the console message in the success block with

the following:

oj.Logger.info('New ticket successfully created: ' + model.id);

Then replace the console message in the error block with the following. Ensure that

the err parameter is passed into the callback. This will hold the information about the

error’s cause.

oj.Logger.error('Error creating new ticket: ' + err.status + ' ' + err.

statusText);

To see an error in action, we can fake an error response from the API. Navigate to and

open API/mocks/tickets/POST.mock and change the header response code to “404 Not

Found” instead of “200 OK,” as follows:

HTTP/1.1 404 Not Found

Chapter 12 Logging, Messages, and VaLidation

211

With the web console open, try creating a new ticket (press F12). You should see

something like the error message in Figure 12-1. Don’t forget to change the header

response code back to 200 afterward.

 Messages
When a user performs an action within an application, often you will want to provide

some sort of feedback to let him or her know whether the action has been successful.

Oracle JET has a component available to achieve this: ojMessages.

The ojMessages component has a variety of different options to position the

messages, change the messages type, and handle properties of the message, such as type

and time-outs.

In the following examples, we will be using notification messages positioned at the

bottom right-hand corner of the application. There are three actions that we will be

specifying events for: ticket closing, escalating priority, and creating a new ticket.

Open ticket-desk.html and include Listing 12-1 at the bottom of the file. It doesn’t

matter too much where this is positioned in the markup, as the messages will always

display in the same position.

Listing 12-1. Message Component Declaration

<!-- Start Messages Component -->

 <oj-messages

 id="application-messages"

 messages="{{applicationMessages}}"

Figure 12-1. Console error message using ojLogger

Chapter 12 Logging, Messages, and VaLidation

212

 display="notification"

 position='{

 "my": {"vertical" : "bottom", "horizontal": "end"},

 "at": {"vertical": "bottom", "horizontal": "end"},

 "of": "window"

 }'>

 </oj-messages>

<!-- End Messages Component -->

Next, open the ticket-desk ViewModel and ensure that ojs/ojmessages is included

within the define block. Then add the following variable, which is responsible for

holding any application messages:

self.applicationMessages = ko.observableArray([]);

Now find the listener for the createNewTicketSignal, and in the success callback

function, add the following:

self.applicationMessages.push(

 {

 severity: 'confirmation',

 summary: 'New ticket created',

 detail: 'The new ticket ' + model.id + ' has been created'

 }

)

Add the following into the error callback:

self.applicationMessages.push(

 {

 severity: 'error',

 summary: 'Error creating ticket',

 detail: 'Error trying to create new ticket'

 }

)

By pushing the objects to the applicationMessages array, the ojMessages

component will automatically display the messages when the service either succeeds

or fails. Figure 12-2 shows an example of the ticket creation being successful and the

message component showing a success message.

Chapter 12 Logging, Messages, and VaLidation

213

 Ticket Priority Escalation and Closure
Once the messages are implemented for ticket creation, add the same for the priority

updates within the updatePrioritySignal listener, by including the following within the

success block:

self.applicationMessages.push(

 {

 severity: 'confirmation',

 summary: 'Priority increased',

 detail: 'The ticket ' + model.id + ' has had its priority

increased to ' + newPriority

 }

)

Then include the following message within the error block:

self.applicationMessages.push(

 {

Figure 12-2. Success message using ojMessages component

Chapter 12 Logging, Messages, and VaLidation

214

 severity: 'error',

 summary: 'Error updating ticket',

 detail: 'Unable to increase priority for ticket ' +

modelData.id

 }

)

Next within closeTicketSignal listener, add the following into the success block:

self.applicationMessages.push(

 {

 severity: 'confirmation',

 summary: 'Ticket Closed',

 detail: 'The ticket ' + model.id + ' has been successfully

closed'

 }

)

Also, add the following message within the error block:

self.applicationMessages.push(

 {

 severity: 'error',

 summary: 'Error closing ticket',

 detail: 'Unable to close ticket ' + modelData.id

 }

)

Navigate to and open API/mocks/tickets/__/PUT.mock and change the header

response code to “404 Not Found” instead of “200 OK,” as follows:

HTTP/1.1 404 Not Found

Now, when trying to close ticket 10002, an error should appear instead of a success

message, as shown within Figure 12-3. Don’t forget to change the header response code

back to 200 afterward.

Chapter 12 Logging, Messages, and VaLidation

215

 Ticket Replies
Messages should also be set up for ticket replies, but as this functionality is within a

different module from the one in which the applicationMessages array is defined, we

must use a signal to inform the ticket-desk ViewModel of any activity.

First, open view-ticket.js and add the following variable for the new signal:

self.ticketReplyFailure = params.ticketReplyFailure

Next, dispatch an event within the catch block situated inside the ticketReply

function, by including the following line of code:

self.ticketReplyFailure.dispatch();

Include the same line of code within the error block inside the addTicketReply

ToCollection function.

Figure 12-3. Error message when closing a ticket

Chapter 12 Logging, Messages, and VaLidation

216

Then, within ticket-desk.js, declare the signal and create the listener to push the new

message onto the messages array:

self.ticketReplyFailure = new signals.Signal();

/* Ticket Reply Failure listener */

self.ticketReplyFailure.add(function () {

 self.applicationMessages.push(

 {

 severity: 'error',

 summary: 'Error replying to ticket',

 detail: 'Unable to reply to ticket, please try again.'

 }

)

})

Finally, pass the new signal into the view ticket module component within the

ticket-desk.html file as a parameter, as you have done previously with other signals.

Navigate to and open API/mocks/tickets/replies/__/POST.mock and change the

header response code to “404 Not Found” instead of “200 OK,” as follows:

HTTP/1.1 404 Not Found

Don’t forget to change the header response code back to 200 after you have tested

the fake error response.

 Validation
Validation can often be a difficult area to get right, with larger applications having

complicated validation rules that must be written. Oracle JET provides various

mechanisms for handling client-side validation, from a simple required field to more

complex regex validators. In this section, we are going to look into the basic validation

of checking that required fields are populated and also writing our own validation

check for the text editor, as, unfortunately, the text editor API does not come with any

validation capabilities.

Chapter 12 Logging, Messages, and VaLidation

217

First, open the create ticket View and find the ojLabel component for the ticket title.

On this label, add the show-required attribute and set its value to true. Setting this value

to true will visually indicate to the user that the field is required, by setting an asterisk

next to the label.

Next, add a required attribute to the ojInputText for the title and set the value of the

attribute to true. Doing so will set the standard HTML required attribute on the input,

and, implicitly, an Oracle JET validator is created.

The required attributes have now been set for the title, but we still have to run the

validation when a user clicks the ticket creation button. To do this, head over to the

createTicket function in the ViewModel and add the following code:

var titleInputBox = document.getElementById('title');

titleInputBox.validate();

The preceding code will fetch the input component and run the validate method

on that component. The method will run any validations attached to the component,

and in this case, it will validate that a value has been entered. It is then possible to check

the valid attribute on the component, to see if it has passed validation. We don’t want

to create a ticket if the validation has failed; therefore, you should wrap the rest of the

createTicket function in a conditional check and only run the create ticket logic if the

validation has passed. For example:

if (titleInputBox.valid === 'valid'){

 // Your ticket creation logic should be here

}

There are two more fields to validate when creating a ticket: priority and issue

summary. Priority is an LOV (List of Values), in which a value must be selected, so all

that must be done is to set the show-required attribute to true on the label.

The other field, issue summary, is a little different. This is not an Oracle JET

component, and we cannot use the JET component validation. Instead, we will create

our own validation check. To do this, first set the show-required field on the label for the

new-ticket-area and then, below the new-ticket-area element, add Listing 12-2.

Chapter 12 Logging, Messages, and VaLidation

218

Listing 12-2. Issue Summary Validation

<oj-bind-if test="[[messageTextEmpty]]">

 <div class="oj-messaging-inline-container">

 <div class="oj-message oj-message-error">

 <span class="oj-component-icon oj-message-status-icon

oj-message-error-icon" title="Error" role="img">

 <div class="oj-message-summary">Value is required.</div>

 <div class="oj-message-detail">You must enter

a value.

 </div>

 </div>

 </div>

</oj-bind-if>

This code will replicate the look and feel of the error message that is shown when the

Oracle JET components fail validation, so that it looks consistent to the user, despite the

components not being JET components.

Next, create a new variable in the create ticket ViewModel, which is used to

determine whether the message text is displayed.

self.messageTextEmpty = ko.observable(false);

Within the createTicket function before the validation conditional check, include

the following :

if ($('#new-ticket-area').trumbowyg('html') === '') {

 $('#new-ticket-area').parent().addClass("trumbowyg-invalid");

 self.messageTextEmpty(true)

} else {

 self.messageTextEmpty(false)

}

Chapter 12 Logging, Messages, and VaLidation

219

This piece of code will check for a value within the ticket area, and if there is

no value, it will set a new class on the area, to change the border to red and set the

messageTextEmpty value to true, so that the error message is shown to the user.

If the value is empty, we should also prevent the ticket from being submitted.

The conditional statement already created previously should be updated to look like

the following, which checks for the empty value and, if it is not empty, will reset the

messageText empty value to false and remove the invalid class:

if (titleInputBox.valid === 'valid' && !self.messageTextEmpty()) {

 self.messageTextEmpty(false)

 $('#new-ticket-area').parent().removeClass("trumbowyg-

invalid");

 // Your ticket creation logic should be here

}

Finally, create a new SASS partial called _forms.scss within the base directory and

add the following classes into it. Don’t forget to import the new partial within mosTheme.

scss too.

.trumbowyg-box {

 margin:0px !important;

}

.trumbowyg-invalid {

 border: 2px solid $accentColorDanger3;

}

Once this has been done, you can rerun the application and see the validation

in action, as shown in Figure 12-4. You should also now go and apply the trumboyg

validation to the ticket reply area, as you have done previously for the ticket creation.

Chapter 12 Logging, Messages, and VaLidation

220

 Summary
In this chapter, you have explored three different subjects: logging, messages, and

validation. By using the built-in Oracle JET logger, you have gone back and changed any

standard console logging with the JET logger and seen how you can set a default logging

level for the whole application. The messages component is used to provide feedback to

the user when actions are performed, in the form of success or error messages for ticket

creation, closing, priority updates, and replies.

Finally, validators were attached to the input components, to check if the field has

been populated, and custom validation was built for the text editor.

Figure 12-4. Required field validation on ticket creation

Chapter 12 Logging, Messages, and VaLidation

221
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6_13

CHAPTER 13

Automated Unit Testing
Ah, unit testing! It takes a multitude of things coming together to ensure that a team

of developers write good automated unit tests for their work. One of these things is

deciding on a unit test framework to use (it’s a bit of a maze out there). Another is

making it really easy for developers to write their tests.

Unit testing can tend to be an afterthought, and the last thing you want to worry

about when you are facing tight deadlines is having to learn a new testing framework

on top of the pile of other tasks you likely have on your backlog. This chapter will walk

through getting a skeleton unit test framework working in your project—ready for those

important automated tests to be written. The examples in the chapter uses the Jasmine

testing framework (with Karma as a test runner) within an Oracle JET project. However,

you are free to use any unit testing framework you want with Oracle JET, such as QUnit.

 Installing Karma and Jasmine
To begin, the necessary libraries must be installed into the project. Run the following

command within the UI directory, to install the dependencies for Karma and Jasmine:

npm install karma karma-jasmine karma-chrome-launcher jasmine-core karma-

coverage karma-requirejs

Next, install the Karma Command Line Interface (CLI) globally:

npm install -g karma-cli

 Karma Setup
Now that the libraries are installed, we can set up the Karma configuration. There is

a command (karma init) that can set up this configuration file up with wizard-like

questions. However, for this example, we will create and set up the file ourselves, to

better understand what it is doing.

222

Create a new file called karma.conf.js within the UI directory. Inside the file, there

are multiple options that we should configure. Let’s walk though these now, and the full

code will be included just afterward.

The first option is the basePath, which is the initial starting point for any directory

paths within the Karma runner. Leave the basePath as blank.

basePath: ''

Then there are the frameworks that Karma will require. We want to specify these as

Jasmine and RequireJS:

frameworks: ['jasmine', 'requirejs']

When Karma runs, it will spin up web browser instances to run the tests, and the files

that Karma will be loading into the browser can be set using the files attribute. These

patterns are resolved using glob and will have the basePath appended to the beginning.

The included: false attribute is required on some of the files, to prevent Karma

loading them into a script tag within the browser, and, instead, they will get loaded by

RequireJS.

In the following example, we are also excluding the main.js file, as we do not need it

to run for our tests. Instead, we will shortly be creating a new main.js file specifically for

the test runner.

 files: [

 {pattern: 'web/js/libs/jquery/jquery-3.3.1.js'},

 {pattern: 'web/js/**/*.js', included: false},

 {pattern: 'web/js/jet-composites/**/*', included: false },

 {pattern: 'web/js/viewModels/*.js', included: false},

 {pattern: 'tests/fixtures/**/*.json', included: false},

 {pattern: 'tests/**/*-spec.js', included: false},

 'tests/test-main.js'

]

 exclude: [

 'web/js/main.js'

],

Chapter 13 automated unit testing

223

Next, we want to set up the coverage reporting. We are going to use the karma-

coverage library, which uses the Istanbul code coverage tool. Add the following

preprocessor block, as well as specifying the reporters and the location to store the

reports:

preprocessors: {

 'src/js/viewModels/*.js':['coverage']

},

reporters: ['progress','coverage'],

coverageReporter:{

 type:'html',

 dir:'reports/'

}

Then there are a couple more configurations to set, including port, colors (which

enables or disables colors in the reporter and logs), the log level, and whether the files

should be auto-watched.

port: 9876,

colors: true,

logLevel: config.LOG_INFO,

autoWatch: true,

Finally, we must specify what browsers the tests should run on. There are a bunch

of different browsers and browser launchers that can be used, and it is also possible to

run some of the browsers in “headless” mode. Headless mode will open and run the

tests in the browser but not obstruct your work by popping open in front of your other

windows. It will quietly run in the background. To run in headless mode, you should

append Headless to the end of the browser name. For example, Chrome would become

ChromeHeadless. I will be using the Chrome browser for my testing, but feel free to

change this to your preferred browser.

browsers: ['Chrome'],

That is everything set up for the karma.conf.js file, and the full file should look like

Listing 13-1.

Chapter 13 automated unit testing

224

Listing 13-1. The Full karma.conf.js File

// Karma configuration

module.exports = function(config) {

 config.set({

 // base path that will be used to resolve all patterns (eg. files, exclude)

 basePath: '',

 // frameworks to use

 // available frameworks: https://npmjs.org/browse/keyword/karma-adapter

 frameworks: ['jasmine', 'requirejs'],

 // list of files / patterns to load in the browser

 files: [

 {pattern: 'web/js/libs/jquery/jquery-3.3.1.js'},

 {pattern: 'web/js/**/*.js', included: false},

 {pattern: 'web/js/jet-composites/**/*', included: false },

 {pattern: 'web/js/viewModels/*.js', included: false},

 {pattern: 'tests/fixtures/**/*.json', included: false},

 {pattern: 'tests/**/*-spec.js', included: false},

 'tests/test-main.js'

],

 // list of files / patterns to exclude

 exclude: [

 'web/js/main.js'

],

 // preprocess matching files before serving them to the browser

 // available preprocessors: https://npmjs.org/browse/keyword/karma-

preprocessor

 preprocessors: {

 'web/js/viewModels/*.js':['coverage']

 },

Chapter 13 automated unit testing

225

 // test results reporter to use

 // possible values: 'dots', 'progress'

 // available reporters: https://npmjs.org/browse/keyword/karma-reporter

 reporters: ['progress','coverage'],

 coverageReporter:{

 type:'html',

 dir:'reports/'

 },

 // web server port

 port: 9876,

 // enable / disable colors in the output (reporters and logs)

 colors: true,

 // level of logging

 // possible values: config.LOG_DISABLE || config.LOG_ERROR || config.

LOG_WARN || config.LOG_INFO || config.LOG_DEBUG

 logLevel: config.LOG_INFO,

 // enable / disable watching file and executing tests whenever any file changes

 autoWatch: true,

 // start these browsers

 // available browser launchers: https://npmjs.org/browse/keyword/karma- launcher

 browsers: ['Chrome'],

 })

}

 test-main Setup
Now, we can move on to the test-main.js file, which is the replacement for the

standard main.js file we include in the application. The test-main.js file will be

responsible for finding and loading all of the ViewModels and test files within the

application. (Test files must be named as the ViewModel name followed by -spec.)

Chapter 13 automated unit testing

226

Create a new folder called tests in the UI directory and create test-main.js within

that new directory. Listing 13-2 shows the file for our example.

Listing 13-2. The test-main.js File

var TEST_REGEXP = /(spec)\.js$/i;

var VIEWMODEL_REGEXP = /viewModels\//

var allTestFiles = [];

var allModules = [];

var normalizedTestModule = function(file) {

 return file.replace(/\.js$/, '');

}

// Get a list of all the test files to include

Object.keys(window.__karma__.files).forEach(function(file) {

 if (TEST_REGEXP.test(file)) {

 allTestFiles.push(file);

 } else if(VIEWMODEL_REGEXP.test(file)){

 allModules.push(normalizedTestModule(file))

 }

});

require.config({

 // Karma serves files under /base, which is the basePath from your config file

 baseUrl: '/base/web/js',

 // example of using a couple of path translations (paths), to allow us to

refer to different library dependencies, without using relative paths

 paths:

 {

 knockout: 'libs/knockout/knockout-3.4.2.debug',

 jquery: 'libs/jquery/jquery-3.3.1',

 'jqueryui-amd': 'libs/jquery/jqueryui-amd-1.12.1',

 promise: 'libs/es6-promise/es6-promise',

 hammerjs: 'libs/hammer/hammer-2.0.8',

 ojdnd: 'libs/dnd-polyfill/dnd-polyfill-1.0.0',

 ojs: 'libs/oj/v6.0.0/debug',

Chapter 13 automated unit testing

227

 ojL10n: 'libs/oj/v6.0.0/ojL10n',

 ojtranslations: 'libs/oj/v6.0.0/resources',

 text: 'libs/require/text',

 signals: 'libs/js-signals/signals',

 customElements: 'libs/webcomponents/custom-elements.min',

 css: 'libs/require-css/css',

 appUtils: 'utils/appUtils',

 Dragibility: 'libs/draggability/draggabilly.pkgd',

 bridget: 'libs/bridget/jquery-bridget',

 'touchr': 'libs/touchr/touchr',

 'trumbowyg': 'libs/trumbowyg/trumbowyg.min',

 'appUtils': 'utils/app-utils',

 'inline-search': 'jet-composites/inline-search/1.0.0'

 },

 // example of using a shim, to load non AMD libraries (such as underscore)

 shim:

 {'jquery':

 {

 exports: ['jQuery', '$']

 }

 },

 // dynamically load all test files

 deps: allTestFiles,

 // we have to kickoff jasmine, as it is asynchronous

 callback: require(allModules, function () {

 window.__karma__.start()

 })

});

Try running karma start within a new terminal window in the UI directory, to

check that everything is running. Chrome should open a new browser window and show

results similar to those in Figure 13-1.

Chapter 13 automated unit testing

228

 Writing a Test
With the framework in place, it is now possible to start writing tests. To create your first

test, add a new file called ticket-desk-spec.js within the UI/tests directory. Inside

the new file, add the following code shown in Listing 13-3:

Listing 13-3. The ticket-desk-spec.js File

define(['viewModels/ticket-desk'], function (TicketDeskViewModel) {

 describe('Ticket Desk Module - ', function () {

 var viewModel;

 beforeEach(function () {

 viewModel = new TicketDeskViewModel();

 });

 describe('Example Test for onTabRemove Function - ', function () {

 it('Check onTabRemove function runs and passes the tab ID to

the delete tab function', function () {

 const deleteTabSpy = spyOn(viewModel, 'deleteTab');

 const event = {

 detail: {

 key: 1

 },

 preventDefault() { },

Figure 13-1. Karma successfully running

Chapter 13 automated unit testing

229

 stopPropagation() { }

 }

 viewModel.onTabRemove(event);

 expect(deleteTabSpy).toHaveBeenCalledWith(1);

 });

 });

 });

});

This is a really simple test for the onTabRemove function with ticket-desk.js. The

code begins by loading the ticket-desk ViewModel within the define block, so that

we can run tests against it. The ViewModel instance is initialized before each test from

within the beforeEach function. The it block sets up a new test to check whether the

deleteTab method is called from within the onTabRemove function, with the correct ID

passed into it.

To run the tests, make sure the Karma CLI is still running and that the application

is running too. When the files are changed, the Karma CLI should automatically detect

changes. All being well, you should receive a success message in the Karma CLI and

changing the key value in the event object to another number should fail the test.

When you begin to write more tests for your application, the reports are generated

and stored within the UI/reports directory. These reports will give a breakdown of code

coverage per ViewModel.

Figure 13-2 shows an overall coverage percentage for all the ViewModels.

Figure 13-2. Overall coverage statistics for all ViewModels

Figure 13-3 shows the functions within a ViewModel that have been covered by the

tests. In this figure, you can see that onTabRemove has been covered by our preceding

test, but the tabSelectionChanged function has not yet been tested.

Chapter 13 automated unit testing

230

Figure 13-3. Code-level coverage report for ticket-desk.js

 Summary
In this, the final chapter of Practical Oracle JET, you have explored Jasmine and Karma.

You have installed the relevant libraries and set the confirmation of Jasmine and Karma

to support a JET application. Finally, you have created your first simple test and should

now be in a position to write further tests for the application.

Chapter 13 automated unit testing

231
© Daniel Curtis 2019
D. Curtis, Practical Oracle JET, https://doi.org/10.1007/978-1-4842-4346-6

Index

A
add method, 163
addTicketReplytoCollection function,

153–154
Animation, 193–194
animationsUtils method, 194
Application structure, set up

avatar component, 103
dashboard module files, 92
list component in view, 94–95
list ViewModel, creation, 96–98
ojModule component, 94
tab View, creation, 99–102
ticket-desk.html file, 93

Asynchronous module definition (AMD), 8
Automatic dependency propagation

KnockoutJS, 17
ko.observable function, 17

B
Backbone JS, JET

JSFiddle workspace, 25
models and collections, 24
RequireJS configuration, 26–27
template, creation, 29–30
ViewModel function, 27–28

beforeEach function, 229
Browser logging, 209

error message, 210

err parameter, 210
general message, 210
information message, 210
levels, 210
ojLogger, 211
testing and debugging, 209
warning message, 210

Built-in hook points, 57
bytesToSize function, 206

C
Callback function, 145, 150, 164
Closed source usability, 4
Close ticket confirmation

mock-up, 41–42
Closure confirmation dialog, 167
Cloud computing, 4
Command Line Interface (CLI), 50
Container height, 104–105
copyCustomLibsToStaging

object, 56, 156
create-ticket.html file, 194
createVisible variable, 192
customURL attribute, 154

D
Declarative bindings

attributes, 18
CSS classes, 18

https://doi.org/10.1007/978-1-4842-4346-6

232

custom bindings, creation, 17
data-bind attributes, 18
KnockoutJS, 17
ViewModel code, 19

deleteTab method, 229
dispatch method, 163
dispose method, 163

E
Editor initialization, 144–147
Enterprise applications

architecture limitations, 2–3
client-server model, 5
closed source systems, 4
designer and developer harmony, 5
open source, 5
user experience, 1–2

.extend method, 25

F
factory function ($), 9
File attachments, 157–158
File picker, 147–150
Flex bar, 148
Flexbox

align-items, 89
attribute, properties, 89
flex-direction, 90
flex-wrap, 91
justify-content, 90

Flex container, 88
Flex, Oracle JET, 91–92
FontAwesome library, 156–157
Form creation, 195

G
Gauge component, 137
GIT integration, 50
Glob/minimatch library, 60
Gruntfile, 56

H
handleAttached function, 194
Header padding, 104
Hooks directory, 57

I
inline-search-styles.css file, 185
inline-search-view.html file, 184–185
Integrated Development Environment

(IDE), 50–51
Istanbul code coverage tool, 223

J
JavaScript Extension Toolkit (JET), 7
JavaScript’s asynchronous non-blocking

I/O model, 150
jet-composites directory, 177
JET tooling, 56
JET web components

built-in events, 180
carousel, 176
component.json file, 178–180
events and slots, 180
loader.js file, 177–178
search functionality, 185,

187–188
W3C specification, 175

js-signal library, 161–163

Declarative bindings (cont.)

Index

233

K
Karma

CLI, 221
Istanbul code coverage

tool, 223
Jasmine and RequireJS, 222
running process, 228
set up, 221

karma.conf.js file, 222–225
Karma-coverage library, 223
KnockoutJS

bindings, 21
data-bind attribute, 21
Google polymer syntax, 21
shadow DOM, 21
user interfaces, 16
ViewModel code, 23
web components, 22–23

L
List of values (LOV), validation, 217–218

M
Management tasks, creation

API requests, 162
closure and priority update, 164–166
events, 162
signals import, 161
ticket ratings, 170–173

Menu bar, 36
Messages

component declaration, 211
ojMessages component, 213
ticket-desk ViewModel, 212
ticket replies, 215–216

Mixins, 80–81
Mobile Application Framework

(MAF), 76
Mock API setup

folder structure, 65
tickets GET response file, 66–70

Mock API, tickets
creation, 189–190
reply payloads, 112
representative information, 116

Mock-server tool, 34
Model-view-controller (MVC) pattern

advantages, 16
model, 15
ViewModel, 15

Model-View-ViewModel (MVVM),
Oracle JET

architecture, 15
data binding, 14

N
Nesting, 78–79
Node.js, installation, 48
Node Package Manager (NPM), 47–50
Notifications mock-up, 43–44

O
ojBindIf component, 148, 157, 190
ojet-cli module, 50
ojModule, 58, 145–146
ojRatingGauge component, 170
One-way binding, 21
on-oj-action attribute, 155
onTabRemove function, 229
Oracle Alta theme, 75–77

Index

234

Oracle JET
application structure, 53–56
Backbone JS 24, (see also

Backbone JS, JET)
build command, 62
CLI (see Command Line Interface (CLI))
CSS custom properties, 77
default theming, 74
dialog component, 167
front-end application, 34
functionality, 34–35
Gauge (ojGauge), 136
IDE (see Integrated Development

Environment (IDE))
libraries, 36
module, 31, 87
SASS (see Syntactically Awesome Style

Sheets (SASS))
Scaffolding, 51–52
scripts directory, 56–57
serve command, 63–65
source directory, 57–61
tab bar, 102
theme builder, 81
themes, 74–77
theming application, 73–74
tooling, 176
web components, 35–36
Webpack, 24

oraclejetconfig.json file, 54
Oracle Skyros theme, 74–75
Oracle Technology Network (OTN), 24

P, Q
Package vs. package-lock files, 54–56
Page Skeleton, 36–37
PostageCost variable, 23

Property changed events, 180
PUT HTTP method, 168

R
Refactor ticket replies, 206
remove method, 163
Replying to tickets

API requests, 141–142
trumbowyg setup, 142–143

Representative information, 136
RequireJS

AMD
definition, 9
specification, 8

block skeleton, 10
vs define function, 11
HTML script tags, 10

resetSearch method, 183–184

S
SASS object, 143–144
scrollIntoVIew JavaScript

method, 155
scrollToReply function, 155
Searching mock-up, 44–45
Server-side web applications, 3
Signal listeners

closeTicketSignal, 169
escalate priority, 170
save method, 168
updatePrioritySignal, 168

Single-page applications (SPAs), 58
Slot icon, 159
Source directory, Oracle JET

index.html, 58–59
js/appController.js, 61

Index

235

js/main.js, 60–61
js/path_mapping.json, 59–60
js/views, models, 61

subscribe method, 182
support-rep-container div, 138
Syntactically awesome style

sheets (SASS)
features, 79–80
mixins, 80–81
nesting, 78–79
partial file, 83–84
theme creation, 81–84
variables and importing partials, 78

T
Tab component, 37
Tabs functionality

BusyContext, 123
closing open tickets, 122
define block, 122
tabSelectionChanged Function,

121, 229
_tabs.scss, 108

ticket-desk.html, 121
Template

KnockoutJS, 19
ViewModel code, creation, 20

test-main.js file, 225–227
text binding, 17
Theme

color, 105–106
component styling, 107–108
container classes, 106
container height, 104–105
footer element, 108
header padding, 104
oracle logo removal, 104

Theme builder, Oracle JET, 81
third-party/trumbowyg.css file,

import, 144
Three-step theme process, 84–85
ticket-desk.js, code-level coverage

report, 230
ticket-desk-spec.js file, 228–229
TicketDeskViewModel

function, 97
Ticket list mock-up, 37–38
Ticket module creation, 190
Ticket Replies

custom URL, 131
list view component and

template, 132–134
model and collection, 131
oj.Collection class, 131

ticketReply function, 152, 206
Ticket replying mock-up, 39–40
ticketReplyModel function, 154
Ticket section, creation, 42–43
ticketStatus function, 205
Ticket view model

app-utils.js File, 126
dateDifference

Function, 128
.get method, 125
initial view ticket, 131
path_mapping.json file, 126
tidying up and styling, 134–135
view-ticket.html File, 129, 130
view-ticket.js, 127

toggleCreateTicket, 192
Trumbowyg, 142

library, 59
method, 153
validation, 219

Two-way binding, 22

Index

236

U
uploadFile function, 151–152
User experience, definition, 1

V
Validation

createTicket function, 217
LOV, 217
ojLabel component, 217
required attribute, 217

valueFilter function, 182–183
ViewModel function, 96, 194

ViewModels, statictics, 229
view-ticket.js file, 145–146
View ticket mock-up, 38–39
View ticket module, 123
ViewTicketViewModel function,

124–125, 128
Visual Builder Cloud Service (VBCS), 7
Visual Studio Code (VSC), 50–51

W, X, Y, Z
What You See Is What You Get

(WYSIWYG), 35–36, 39, 141

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: User Experience in Enterprise Applications
	Technology Architecture Limitations
	Closed Source Usability
	Improving Usability
	Summary

	Chapter 2: Oracle JET As a Solution
	RequireJS
	define Example
	Under the Hood of RequireJS
	require vs. define

	Using RequireJS in JET
	Configuration
	require Block

	Architecture Pattern
	MVVM
	Model
	View
	ViewModel
	Advantages of MVVM over MVC

	KnockoutJS
	Automatic Dependency Propagation
	Declarative Bindings
	View Code Example
	ViewModel Code Example

	Templating
	View Example
	ViewModel Example

	What Are Web Components?

	Using KnockoutJS Within JET
	View Code Example
	ViewModel Code Example

	Oracle JET Webpack Support
	BackboneJS (Common Model)
	Oracle JET Modules
	Summary

	Chapter 3: Support Ticket Application
	Scope
	Page Skeleton
	Ticket List
	Viewing a Ticket
	Replying to Tickets
	Closing and Rating Tickets
	Creating a New Ticket
	Notifications
	Searching for Tickets
	Summary

	Chapter 4: Hello World
	Environment Setup
	Oracle JET CLI
	Integrated Development Environment (IDE)

	Scaffolding an Application
	Application Structure
	oraclejetconfig.json
	package.json and package-lock.json
	package vs. package-lock

	Gruntfile

	scripts Directory
	config
	hooks

	Source Directory (src)
	index.html
	js/path_mapping.json
	js/main.js
	js/appController.js
	js/views and js/viewModels

	Oracle JET Build Tools
	Building
	Serving

	Mock API Setup
	Summary

	Chapter 5: Theming
	Why Is Theming Important?
	Use of Default Theming
	Oracle-Supplied Themes
	Oracle Skyros Theme
	Oracle Alta Theme

	SASS and CSS Custom Properties
	Working in SASS
	Variables and Importing Partials
	Nesting
	Extend
	Mixins

	Theme Builder
	Creating a New Theme
	Including Custom SASS Partials

	The Three-Step Theme Process
	Summary

	Chapter 6: Creating the Page Skeleton
	Flexbox
	The Flex Attribute
	align-items
	justify-content
	flex-direction
	flex-wrap

	Flex Within Oracle JET
	Setting Up the Application Structure
	Including List Component in View
	Creating the List ViewModel
	Adding a Search Placeholder
	Creating a Tab View
	Welcome Message and Avatar

	Theming
	Header Padding
	Removal of Oracle Logo
	Setting List Container Height
	Adding Color
	Further Container Classes
	Component Styling
	Footer

	Summary

	Chapter 7: Viewing Tickets
	API Setup
	List View Selections
	Extending Tab Functionality
	Closing Open Tickets
	Busy Context

	Creating the View Ticket Module
	Implementing Ticket View
	Ticket Replies
	Tidying Up and Styling

	Support Representative
	Summary

	Chapter 8: Replying to Tickets
	API Setup
	Setting Up
	Copying over the CSS
	Initializing the Editor
	File Picker
	Sending the Reply
	What Is a Promise?
	Creating a Promise

	Reply Toolbar Button
	Installing FontAwesome
	Displaying File Attachments
	Adding Icons to Buttons
	Summary

	Chapter 9: Ticket Management
	API Setup
	Understanding Signals
	add
	dispatch
	dispose
	remove

	Ticket Closure and Priority Update
	Ticket Closure Dialog

	Signal Listeners
	Adding Ticket Ratings
	Summary

	Chapter 10: Search Component
	Why Components?
	Creating Your First Component
	loader.js
	component.json
	Built-in Events
	Events and Slots
	inline-search-viewModel.js
	resetSearch method

	inline-search-view.html
	inline-search-styles.css

	Consuming the New Component
	Summary

	Chapter 11: Ticket Creation
	API Setup
	Create a Ticket Module
	Adding Animation
	Building the Creation Form
	Adding Attachments and Form Submission
	New Status and Zero Replies
	Refactor Ticket Replies
	Summary

	Chapter 12: Logging, Messages, and Validation
	Logging
	Messages
	Ticket Priority Escalation and Closure
	Ticket Replies

	Validation
	Summary

	Chapter 13: Automated Unit Testing
	Installing Karma and Jasmine
	Karma Setup
	test-main Setup
	Writing a Test
	Summary

	Index

