
Practical
Highcharts
with Angular

Your Essential Guide to Creating
Real-time Dashboards
—
Sourabh Mishra

www.allitebooks.com

http://www.allitebooks.org

Practical Highcharts
with Angular

Your Essential Guide
to Creating Real-time

Dashboards

Sourabh Mishra

www.allitebooks.com

http://www.allitebooks.org

Practical Highcharts with Angular

ISBN-13 (pbk): 978-1-4842-5743-2 ISBN-13 (electronic): 978-1-4842-5744-9
https://doi.org/10.1007/978-1-4842-5744-9

Copyright © 2020 by Sourabh Mishra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer- sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484257432.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Sourabh Mishra
IECE Digital, Bangalore, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5744-9
http://www.allitebooks.org

This book is dedicated to

My Baba, Amma, Pappa, Mummy and Littile Sister.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Introduction ��xv

Chapter 1: Getting Started with Highcharts ��1

Benefits of Highcharts ��2

History of Highcharts ��3

Basics of Charting ���3

Setup and Configuration ���6

Creating Your First Chart ���8

Summary���14

Chapter 2: Concept of Highcharts ���15

Scalable Vector Graphics ��15

Choosing the Right Chart Type Based on Requirements �������������������������������������16

Bar Charts ��17

Line Charts ��18

Scatter Plots ��18

Maps ��19

Setting Layouts ���20

Alignment ��21

Setting Up Chart Margins ��22

Legends ���22

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

Setting Up Plot Lines ���23

Setting Credits ��25

Summary���25

Chapter 3: Integrating Highcharts with Angular ��������������������������������27

What Is Angular? ���27

Configuring Angular ��28

Setting Up Node�js ���28

Code Editor ��31

Setting Up Angular CLI ���32

TypeScript ���36

Highcharts Angular Wrapper ��36

Summary���45

Chapter 4: Different Charting Types ��47

Pie Charts ��48

Donut Chart ���54

Drilldown Charts ���57

Required Dependencies ��57

Setting Up the Unique Name for a Series ���57

Line Charts ��63

Area Charts ���65

Scatter Charts ���72

Histogram Charts ��76

Heat Map Series Charts ��79

Stacked Bar Charts ���82

Column Pyramid Charts ��86

Gauge Charts ��92

Summary���99

Table of ConTenTsTable of ConTenTs

vii

Chapter 5: Working with Real-Time Data ��101

Web API ���101

What Is REST? ���103

Web API Development Using Visual Studio ��104

Solution Explorer ���106

ConfigureService() ��108

Configure() ��109

Routing ��110

Attribute Routing ���110

Database Creation ���115

Adding Entity Framework ��119

Angular-Highcharts UI Application ��125

Services in Angular ��125

Events in Highcharts ���140

Drilldown Event ���144

LegendItem Click Event ���152

CheckBoxClick Event ���155

Highcharts Wrapper for �NET ���160

LineSeries Chart with a Highcharts Wrapper ���160

Gauge Series Chart with a Highcharts Wrapper ��166

SeriesData Classes ���172

Summary���173

Chapter 6: Themes and Additional Features of Highcharts ��������������175

Themes in Highcharts ���175

Applying a Dash Style Series to a Line Chart ��178

Combinations in Highcharts ��181

Zoom Option in Highcharts ��190

Setting an Image in a Chart Area ���191

Table of ConTenTsTable of ConTenTs

viii

3 D Charts ��193

Cylinder Chart ��198

Funnel 3D ��201

Pyramid 3D ��205

Pie 3D Chart ���209

Exporting and Printing Charts ���214

Additional Chart Features ���216

Radar Chart ���216

Pareto Chart ���219

Bell Curve Chart ���225

Organization Chart ���227

Timeline Chart ���231

Gantt Chart ��234

Summary���238

Chapter 7: Building a Real-Time Dashboard �������������������������������������239

Real-Time Dashboard Application ���239

Features of the App ���240

Creating a Web API ��241

Setting Up a Database ���247

Creating a Database First Approach Using Entity Framework ���������������������250

Routing in an Angular App ���265

Summary���294

Index ���295

Table of ConTenTsTable of ConTenTs

ix

About the Author

Sourabh Mishra is an entrepreneur, developer,

speaker, author, corporate trainer, and

animator. He is a Microsoft guy; he is very

passionate about Microsoft technologies

and is a true .NET warrior. Sourabh started

his career when he was just 15 years old.

He’s loved computers from childhood. His

programming experience includes C/C++,

ASP.NET, C#, VB.NET, WCF, SQL Server, Entity Framework, MVC, web API,

Azure, jQquery, Highcharts, and Angular. Sourabh has been awarded Most

Valuable Professional (MVP) status. He has a zeal to learn new technologies

and share his knowledge on several online community forums.

He is the founder of IECE Digital and Sourabh Mishra Notes, an online

knowledge sharing platform where one can learn new technologies very

easily and comfortably.

He can be reached at

Website: www.sourabhmishranotes.com

YouTube: sourabhmishranotes

Twitter: sourabh_mishra1

Facebook: facebook.com/sourabhmishranotes

Instagram: sourabhmishranotes

Email: sourabh_mishra1@hotmail.com

http://www.sourabhmishranotes.com

Investment in knowledge is the biggest investment

and sharing knowledge is the biggest service to the society.

—Vinay Bharti Jain

xi

About the Technical Reviewer

Kenneth Fukizi is a software engineer, architect, and consultant with

experience in coding on different platforms internationally. Prior to

dedicated software development, he worked as a lecturer for a year and

was then head of IT at different organizations. He has domain experience

working with technology for companies in a wide variety of sectors. When

he’s not working, he likes reading up on emerging technologies and strives

to be an active member of the software community.

xiii

Acknowledgments

Practical Highcharts with Angular has been a very special project, brought

together through the efforts of very special people in my life. I am deeply

thankful to the Apress team and to all those whose enthusiasm and energy

transformed my vision to bring this book into reality, especially my family.

The commitment and sense of mission moves me to the next level.

I express my special thanks to

• My wonderful parents, Shailendra Mishra and Saroj

Mishra, who have supported me in every phase of my

life and guided me from day one and gave me chance to

work on computers in my childhood. My parents taught

me to take challenges in life and come out successfully.

• My lovely and wise sister, Surbhee Mishra, a great

content writer, for her encouragement and support at

every step.

• My uncle, Vinay Bharti Jain, who has always stood with

me like a shield and guided me very well in critical

decision making from the start of my career. My aunt,

Poonam Jain, who has always believed that one day I

will change the world through my knowledge.

• Naveen Verma, a great software architect and my

teacher, who taught me how to write good code and

how to use the right weapon at the right place in the

world of software development.

xiv

• John Ebenezer, a wonderful human being and a true

leader, who knows the art of people management.

I learned from him how to deal with business people

and get the best from the team.

• Welmoed Spahr and the entire Apress team for

immediately evaluating the potential of this book and

for believe in me and for making this book a reality.

I sincerely value her guidance.

• Louise Corrigan, Nancy Chen, and James Markham for

having faith in me, for bringing out this book, and for

giving support, help, and guidance at every step during

the entire journey of writing this book.

• My millions of readers across the globe who have

encouraged me to write technical blogs and have given

their love and affection, and also the people who are

reading this book right now.

• Last but not least, with the deepest gratitude I wish to

thank every person who has come into my life and has

inspired, touched, and illuminated me through their

presence.

Happy Reading!

aCknowledgmenTsaCknowledgmenTs

xv

Introduction

First of all, thank you for picking up this book. Whether you are standing

in a bookshop or reading this at your office or at home, I assume that you

probably have a strong interest in developing stunning and interactive

dashboards for your web product.

Highcharts is a new age tool for developing an interactive dashboard

for your web products. You can easily define and use your data collection

and get stunning graphs based on your requirements. Nowadays, charting

is used in finance, education, entertainment, sports, and real estate

sectors to analyze data. Highcharts is built on top of modern JavaScript

frameworks like jQuery and Angular. Highcharts enables developers to

easily construct charts that will work in all modern browsers with pure

knowledge of HTML, CSS, and JavaScript.

 Who Should Read This Book
Practical Highcharts with Angular is a book mainly for developers. In

this book, developers will learn step by step how to create client-side and

server-side applications with the use of Angular with Highcharts and a

REST-based API.

xvi

 Organization of This Book
Each chapter in this book has been developed to highlight all the good

features of Highcharts. The following is brief summary of each chapter:

• Chapter 1 gives you an introduction to Highcharts.

If you are new to Highcharts, this is the place to start.

You will learn the basics of charting, how to set up and

install Highcharts for your application, and how easily

you can construct your first chart.

• Chapter 2 talks about Scalable Vector Graphics

and how to choose the right chart based on your

requirements, because choosing the right chart and

setting the layout and legends is an art.

• Chapter 3 is the base for the rest of the chapters

because here you will learn to develop an Angular app

from the beginning. You will also learn the basics of

Angular and how easily you can develop interactive

charts using Highcharts.

• Chapter 4 shows how to develop some advanced

charts with Angular and Highcharts, such as

drilldowns, histograms, heatmaps, gauges, stacked

bars, and more.

• Chapter 5 shows how to get real-time data from the

server side using REST-based services and how easily

you can develop a client-side app using Angular and

Highcharts.

InTroduCTIonInTroduCTIon

xvii

• Chapter 6 teaches you how to apply themes and

layouts to a chart so it looks stunning and interactive.

You also learn some advanced concept of Highcharts

like 3D, exporting in different formats, Pareto charts,

combined charts, and more.

• Chapter 7 shows project-based learning. In this

chapter, you will develop a learning project, which

shows how to develop a stunning and interactive

dashboard with multiple charts. Here, you get live

historical data from the stock market using a REST API

and then you develop a dashboard based on a portfolio.

 How to Contact the Author
The author can be contacted as follows:

• Website: www.sourabhmishranotes.com

• YouTube: sourabhmishranotes

• Twitter: sourabh_mishra1

• Facebook: facebook.com/sourabhmishranotes

• Instagram: sourabhmishranotes

• Email: sourabh_mishra1@hotmail.com

InTroduCTIonInTroduCTIon

http://www.sourabhmishranotes.com

1© Sourabh Mishra 2020
S. Mishra, Practical Highcharts with Angular,
https://doi.org/10.1007/978-1-4842-5744-9_1

CHAPTER 1

Getting Started
with Highcharts
Highcharts is a JavaScript-based library. With the use of it, you can develop

professional, high-quality, animated, web-based charting with minimal

coding. Highcharts provides very simple built-in options that are easy

to learn and easy to use; you just have to input data based on your data

collection and it will give you charts based on your requirements.

Highcharts provides fast rendering and quick-to-deliver products. You

can think out of the box and develop your charting very easily. Highcharts

lets you call your services and use it with all modern JavaScript frameworks

like Angular and jQuery. You can export your charts into images, CSV files,

or Excel files very easily. These built-in options are available at the time of

development.

In this chapter, you are going to learn how to configure Highcharts into

your web application. In the next part, you will learn how to implement

charts very quickly.

Highcharts is built in such a way that all you have to do is input a

collection of data and Highcharts will professionally render a chart for you.

2

 Benefits of Highcharts
Highcharts is an excellent product for building charting for real-time

applications. It provides the following rich benefits:

• It’s easy to learn and easy to use. All you need is some

knowledge of HTML, CSS, and JavaScript and you can

develop your charts.

• It works in all modern browsers.

• It works in modern JavaScript libraries like Angular,

Vuejs, Reactjs, and jQuery.

• You can export charts in various formats. Highcharts

provides different charting types like line, bar, column,

map, area, plot, stock, box, heat map, tree map, funnel,

and scatter plot.

• It’s an excellent tool for developing a real-time

informative dashboard for your application.

• Licenses: Highcharts provides two types of licenses:

 1. Non-commercial license:

This type of licensing is for non-profit purposes

and personal use.

 2. Commercial license:

This is for commercial purposes, such as an

organization building products for commercial-

level use.

You can go for a single website, developer

license, High-five license.

Chapter 1 GettinG Started with hiGhChartS

3

A single website license is for traditional

websites. The developer license is for web apps

and SaaS projects, and it comes in single dev,

five dev, ten dev, etc.

 History of Highcharts
Back in 2003, charting was not an easy option. People were doing charting

with the use of an HTML image or Java applet and servlet or Flash-based

animated graphics charts. These products ruled the market. In 2009,

Highsoft, a Norwegian-based company founded by Torstein Hønsi,

developed and introduced a JavaScript-based framework to easily plug

into enterprise products to generate world-class, stunning graphs based on

your requirements.

 Basics of Charting
A graph is a way to represent relationships between two or more related

data. Every graph has two lines, vertical and horizontal (Figure 1-1).

A horizontal graph line is called the x-axis, and the vertical line is

called y-axis. The point where these lines intersect each other is called the

origin point. In the origin point, in the x-axis, the right side of the origin

uses positive numbers and the left side uses negative numbers. The same

thing happens with the y-axis: the value on the top side of origin is positive

and the downside is negative. The origin point value is always 0.

Chapter 1 GettinG Started with hiGhChartS

4

Figure 1-1 clearly shows the x-axis (horizontal) and y-axis (vertical).

The right-hand side of the axis is positive; the left-hand side is negative.

You can see the same for the y-axis.

Whenever you want to connect values of the x-axis and the y-axis, this

point is called a coordinate point. In Figure 1-1, the value of x is 6 and y is 5,

so the x and y coordinate is (6,5).

The following are the essential parts of every graph:

• Title: This describes what the graph is about.

• Independent variable: This part is defined by the

x-axis. It usually indicates things like subject name,

cricket overs, temperatures, etc.

• Dependent variable: This part is defined by the y-axis.

This part is connected with an independent variable,

and it will show you the result because of the value

of the independent variable, such as marks in an

examination, cricket runs, etc.

Figure 1-1. A simple graph presentation for the x-axis and y-axis
with data

Chapter 1 GettinG Started with hiGhChartS

5

• Scales: This part decides where to plot points, which

represent data. The scale always starts with 0 and

increases with intervals, such as 3, 6, 9, 12, 15. It

depends on data values.

• Legends: This is a short description of the graph's data.

Figure 1-2 shows a score by the St. Thomas School cricket team,

including the title, independent variable, dependent variable, and legends.

Figure 1-2. A simple bar graph showing the essential parts of a chart

It’s now time to configure Highcharts into your web application and

then quickly implement it.

Chapter 1 GettinG Started with hiGhChartS

6

 Setup and Configuration
The installation of Highcharts into a web application is straightforward.

You can configure and install Highcharts in three ways into your web

application.

 1. CDN (content delivery network): If you want to

implement Highcharts with jQuery, you can use the

CDN.

Example:

<script src="https://code.jquery.com/jquery-3.4.1.min.js">

</script>

<script src="https://code.highcharts.com/highcharts.js">

</script>

 2. Download the Highcharts.js file: For this method, go

to www.highcharts.com, open the download section,

and download the latest zip file for Highcharts. Unzip

and add a folder into your project file system.

Example: Add the following code based on your

path to a file:

<script src="code/highcharts.js"></script>

The benefit with this method is that, without the Internet,

you can run your project in a localhost environment.

 3. With a NuGet package: If you are developing your

project in Visual Studio or Visual Studio code, you

can download the NuGet package. Here are the

steps: right-click the project and select “Manage

NuGet package” from the menu. You will get a

dialog box. Click the Browse tab, type “Highcharts,”

and press Enter. See Figure 1-3.

Chapter 1 GettinG Started with hiGhChartS

http://www.highcharts.com

7

As seen in Figure 1-3, you get a list in the Browse tab. In this list, select

Highsoft. Highchart and click the Install button.

Click the OK button and select the I Accept button (Figure 1-4).

Figure 1-3. Installing Highcharts from the NuGet package

Chapter 1 GettinG Started with hiGhChartS

8

Now click Reference from Solution Explorer and you will get

Highcharts added into a reference part.

Now you know the three ways to add Highcharts into your project.

 Creating Your First Chart
Now it’s time to do some hands-on with Highcharts. All Highcharts graphs

mostly use the same configuration. Here are some significant properties

that are always required in order to build Highcharts:

• chart: This property applies to the top-level setting.

Example: The type of graph, where to render it in the

page, layout of the chart, animations, etc.

Figure 1-4. Accepting a license for Highcharts from NuGet

Chapter 1 GettinG Started with hiGhChartS

9

• title/subtitle: For the chart title and subtitle

• xAxis/yAxis: For properties like category, title, CSS

style, interval, etc. for an axis

• series: For configuring the data collection to show in

the graph, where you can set single or multiple series

data

For the first example, you will learn how to generate a column graph.

Listing 1-1 is an HTML file that you are going to add jQuery and Highcharts

CDN, and then render a column-type graph into an HTML <div>.

Listing 1-1. Index.html

1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta http-equiv="Content-Type" content="text/html;

charset=utf-8">

5. <meta name="viewport" content="width=device-width,

initial- scale=1">

6. <title>Highcharts Example</title>

7. <script src="https://code.jquery.com/jquery-3.4.1.min.js">

</script>

8. <script src="https://code.highcharts.com/highcharts.js">

</script>

9. </head>

10. <body>

11. <div id="container"style="min-width: 310px; height: 400px;

margin: 0auto"></div>

12. <script type="text/javascript">

13. var charts = new Highcharts.Chart({

14. chart: {

Chapter 1 GettinG Started with hiGhChartS

10

15. renderTo: 'container',

16. type: 'column'

17. },

18. title: {

19. text: 'Monthly Sales Chart Department Wise'

20. },

21. subtitle: {

22. text:'Year 2018'

23. },

24. xAxis: {

25. categories: [

26. 'Jan',

27. 'Feb',

28. 'Mar',

29. 'Apr',

30. 'May',

31. 'Jun',

32. 'Jul',

33. 'Aug',

34. 'Sep',

35. 'Oct',

36. 'Nov',

37. 'Dec'

38.],

39. },

40. yAxis: {

41. min: 0,

42. title: {

43. text: 'Sales in Million $'

44. }

45. },

Chapter 1 GettinG Started with hiGhChartS

11

46. series: [{

47. name: 'Marketing Department',

48. data: [49.9, 51.5, 32.0, 82.0, 75.0, 66.0, 32.0, 25.0,

35.4, 65.1, 58.6, 34.4]

49. },

50. {

51. name: 'Computer Science Department',

52. data: [40.5, 34.5, 84.4, 39.2, 23.2, 45.0, 55.6, 18.5,

26.4, 14.1, 23.6, 84.4]

53. }]

54. });

55. </script>

56. </body>

57. </html>

If you run the above code, you will get the output shown in Figure 1-5.

Figure 1-5. Demo of your first bar chart

Now, let’s take a closer look at the code. This code has three parts. In

the first part, you add jQuery and Highcharts CDN into the <head> portion:

<script src="https://code.jquery.com/jquery-3.4.1.min.js">

</script>

<script src="https://code.highcharts.com/highcharts.js">

</script>

Chapter 1 GettinG Started with hiGhChartS

12

Next, in the <body> section, there is a <div>. The reason for creating

this <div> is that Highcharts will render in it:

<div id="container" style="min-width: 310px; height: 400px;

margin: 0 auto"></div>

The next part of the code is Highcharts and JavaScript code. Let's

understand it line by line.

The following line creates a new Highcharts object, and this object will

define all the required properties, which are helpful to render a graph into

the browser:

var charts = new Highcharts.Chart

In this next line of code there is a property called renderTo, which

indicates in the HTML page which particular <div> id you want to render

this chart. The type property defines what type of graph you want to see, so

in the type property, you can set like line bar, spline, etc.

var charts = new Highcharts.Chart({

chart: {

renderTo: 'container',

type: 'column'

 },

In the next line, you set the title and subtitle, so once your graph has

rendered, your users will see whatever title/subtitle you want to show:

title: {

text: 'Monthly Sales Chart Department Wise'

 },

subtitle: {

text:'Year 2018'

 },

Chapter 1 GettinG Started with hiGhChartS

13

The next line is the categories property of the xAxis. It contains an

array of labels for each data point.

xAxis: {

categories: [

'Jan',

'Feb',

'Mar',

'Apr',

'May',

'Jun',

'Jul',

'Aug',

'Sep',

'Oct',

'Nov',

'Dec'

],

 }

Next is the yAxis. Here the min property is related to setting a minimum

value for a chart, so if you set as 0, Highcharts will never set for negative

numbers. So in the future, if any negative values comes into the series

collection, the chart will not show negative chart data points. If you want

to work with negatives values, you can set min as -50 (or whatever highest

min value you have) or you can remove it. In the yAxis area you can see

negative data points.

The title property is used to set the title for the yAxis.

yAxis: {

min: 0,

title: {

Chapter 1 GettinG Started with hiGhChartS

14

text: 'Sales in Million $'

 }

 }

The next property is series, one of the most essential properties of

Highcharts. First is name and it defines what type of data collection you

are setting. This is also helpful for tooltips; when users hover their mouse

pointer in a graph, it shows that this data point is related to a name. This is

also helpful to set legends about the graph.

The data property refers to the collection of data in the form of an

array, a series you can set as single or multiple. Later chapters will show

you how to pass real-time data into a series section and render the chart.

series: [{

name: 'Marketing Department',

data: [49.9, 51.5, 32.0, 82.0, 75.0, 66.0, 32.0, 25.0, 35.4,

65.1, 58.6, 34.4]

 },

{

name: 'Computer Science Department',

data: [40.5, 34.5, 84.4, 39.2, 23.2, 45.0, 55.6, 18.5, 26.4,

14.1, 23.6, 84.4]

}]

 Summary
Highcharts is a new age tool for developing an interactive dashboard for

your web products. You can easily define your data collection and get

stunning graphs based on your requirements. In this chapter, you saw the

basics of Highcharts and how easy it is to set up Highcharts and create your

first column-type chart.

Chapter 1 GettinG Started with hiGhChartS

15© Sourabh Mishra 2020
S. Mishra, Practical Highcharts with Angular,
https://doi.org/10.1007/978-1-4842-5744-9_2

CHAPTER 2

Concept of Highcharts
In this chapter, you are going to learn the basic concepts of Highcharts

and how Highcharts works. To use Highcharts, you must understand what

type of chart to use based on your requirements. Then I will discuss some

essential properties of Highcharts. So, let's get into the second chapter.

 Scalable Vector Graphics
Scalable Vector Graphics (SVG) is an XML-based vector image format.

Here scalable means that it can be resized up or down in any dimension;

the user will not lose any quality. SVG is designed for two-dimensional

graphics and supports interactive graphics and animation. The behavior

of Scalable Vector Graphics is defined in an XML text file. The benefit with

this is that Scalable Vector Graphics can be searched, scripted, indexed,

and compressed very efficiently. SVG is supported in all modern browsers

like Internet Explorer, Internet Edge, Google Chrome, Safari, Opera, and

Firefox.

In 1999, the World Wide Consortium (W3C) developed SVG as the

language of vector graphics. With the use of SVG, you can create shapes,

example paths, and outlines consisting of lines and curves, text, and bitmap

images. In SVG, you can apply CSS for styling and JavaScript for scripting.

For text, you can apply internationalization and localization for more

accessibility. Highcharts is also SVG driven, and you can generate high-

quality charts with interactive graphics and animations (Figure 2-1).

16

In Figure 2-1, the tooltip hovers and the first option you see is x-axis. In

the x-axis, you draw months; the y-axis is where you populate values based

on department revenue collection.

These are pretty basic things. Then you have the title and subtitle

for the graph, and then you plot a different data series based on revenue

generation of departments. So in the chart each one of the lines is a

separate series. Then you have legends based on departments. There’s a

tooltip, and you can change your tooltip style based on the requirements.

You can export into an image, CSV, or PDF.

 Choosing the Right Chart Type Based
on Requirements
Now let’s talk about how to choose the right chart type. It’s essential to

understand the purpose of each kind of chart so that you can select the

correct chart. Highcharts provides mainly four types of charts: bar charts,

line charts, scatter plots, and maps. In later chapters, I will talk more about

different charting types.

Figure 2-1. SVG-based line chart presentation using Highcharts

Chapter 2 ConCept of highCharts

17

 Bar Charts
Bar charts are a chart type that represents categorical data with rectangular

bars in a proportion of height and length. These bars can plot horizontally

or vertically. In bar charts, one axis may represent the specific categories

being compared and the other axis may represent measured values.

Bar chart can be arranged in any order. In a bar chart, you can

represent multiple data. When you want to represent values from highest

to lowest incidents, these types of charts called Pareto charts. These charts

provide a visual/graphical representation of categorical data. You can

define categories like the age group of students, year, month, animals, shoe

size, etc.

In column bar charts, these categories come in the x-axis horizontal

form, and the height of the graph will generate based on values defined

vertically on the y-axis.

 When to Choose a Bar Chart

Bar charts are good for when you want to compare data based on

categories, such as sales in a specific region, quarterly growth of a

company, etc. (Figure 2-2).

Figure 2-2. Bar chart

Chapter 2 ConCept of highCharts

18

 Line Charts
The line chart is also known as a line plot, line graph, or curve chart. It’s

a type of diagram that displays information in a series of data points.

These data points are called markers, and these markers are connected

by straight lines. The line chart is one of the standard charts used in

many fields. The line chart is useful when you want to show a trend in

data over an interval of time, or a time series; here the lines are drawn

chronologically.

 When to Choose a Line Chart

Line charts are suitable for a time series when you want to represent data

in the form of a graph over time. Here you can define trend lines, and there

are lots of ways to represent data over time and to make it meaningful so

people can understand where things are going (Figure 2-3).

 Scatter Plots
A scatter plot, also known as a scatter graph, scattergram, or scatter chart, is

a type of plot that uses Cartesian coordinate to display typically two variables

for a set of data. Here points are coded and define in color shape/size. Data

is presented in the collection of points, and each point has one value.

Figure 2-3. Line chart

Chapter 2 ConCept of highCharts

19

Scatter plots come in a position of x-axis and y-axis, respectively. These

types of graphs can show distributions very interestingly. A scatter plot

designs for various kinds of correlations between variables with a specific

confidence interval. For example, for weight and height, the weight would

be on the y-axis and height would be on the x-axis.

Suppose a university researcher is studying the capacity of lungs in a

human body, specifically how long people can hold their breath. So lung

capacity is the first variable and time is the second variable. Then the

researcher can plot data into a scatter plot, assigning lung capacity to the

horizontal axis and length of time to the vertical axis.

 Maps
Map charts allow you to represent your data on a geographical map. Here

you can define the chart in two ways:

 1. Graphical points

 2. Geographical area

With geographic points, you can set your marks over geographical

coordinates; these markers use color, shape, and size. The geographical

area defines the colored area on the map. For example, an area could be a

country, state, or city.

For example, in the world map, we can see the United States, India,

and Africa in different colors; each country indicates values. This type of

map chart where we color geographical areas is known as a choropleth. In

Highcharts, you can define detailing over maps, so when you click on the

country you can see the states of a nation and once you click on states, you

can see the cities. In later chapters, I will discuss maps in detail.

Chapter 2 ConCept of highCharts

20

 Setting Layouts
To set up the layout in Highcharts, the first step is to set a border around

the plot area. For this you have five properties: plotBorderWidth,

plotBorderColor, borderColor, borderWidth, and border-radius in the

chart section (Figure 2-4).

chart: {

renderTo: 'container',

type: 'spline',

plotBorderColor: 'red',

plotBorderWidth: 1,

borderColor: 'grey',

borderWidth: 10,

borderRadius: 25

 },

Figure 2-4. Spline chart with a border layout

Chapter 2 ConCept of highCharts

21

 Alignment
In Highcharts, you can set the alignment for labels such as title,

subtitle, xAxis.title, yAxis.title, and credits. For alignment into

Axis, you can set as high, middle, and low. For horizontal labels, you can

set keywords as left, center, and right.

In the world of charting, x is defined for horizontal and y is defined for

vertical. You can set alignment through x and y positioning for the title and

subtitle. For example, if you want the title and subtitle on one line, you can

use the following code:

title: {

text: 'Monthly Sales Chart Department Wise',

align: 'left',

 },

subtitle: {

text: 'Year 2018',

align: 'right',

y: 15,

 }

In the above code, you set left align for the title and right for the subtitle.

The positioning of y is 15, so by default the title position is 15; that's the

reason both are on the same line. You can set the x value for the subtitle. If

you set any value for x to 15, it will move to right more (Figure 2- 5).

Figure 2-5. Setting a Highcharts title and subtitle alignment

Chapter 2 ConCept of highCharts

22

The verticalAlign property is used for setting the title and subtitle in

the mode of the top, middle, and bottom.

title: {

text: 'Monthly Sales Chart Department Wise',

 },

subtitle: {

text: 'Year 2018',

verticalAlign: 'middle',

 }

 Setting Up Chart Margins
You can set chart margins with four properties: marginTop, marginBottom,

marginRight, and marginLeft. This will affect the overall layout of your

chart. By default these properties are not fixed, so you must set them. Once

you set the margin properties, this will affect the plot area. The spacing

effects are spacingTop, spacingBottom, spacingLeft, and spacingRight.

Here marginTop sets the plot area top border, and this will also fix labels

like the title and subtitle of the plot area. spacingLeft and spacingRight

set the spacing areas.

 Legends
You can set the alignment of legends in Highcharts very easily. There are

three properties: align, verticalAlign, and layout.

legend: {

align: 'right',

verticalAlign: 'middle' ,

layout: 'vertical',

 },

Chapter 2 ConCept of highCharts

23

In this code, the layout property is set as vertical, so the values of

the legend are displayed vertically. Here plot area automatically resizes for

legends. verticalAlign is set to middle and align on the right-hand side

(Figure 2-6).

 Setting Up Plot Lines
Every chart has a highest and lowest value. Suppose you must mark the

highest and lowest index values. For this, plot lines are useful. Plot lines

hold an array of objects configuration for each plotline. For example, see

this code and Figure 2-7:

plotLines: [{

width: 1,

value: 84.4,

color: 'red',

label: {

text: 'Highest Sale : 84.4',

style: {

color: 'green'

 }

 }

 },

Figure 2-6. Setting up the Highcharts legend alignment

Chapter 2 ConCept of highCharts

24

 {

width: 1,

value: 14.1,

color: 'red',

label: {

text: 'Lowest Sale : 14.1',

style: {

color: 'green'

 }

 }

 }]

As you can see, the plotLines properties have an array of

configurations, and here you can provide index values. In the first index

plot, you set your highest sale. You can set your labels with style, and then

you have another index for the lowest value.

Figure 2-7. Setting Highcharts plot lines

Chapter 2 ConCept of highCharts

25

 Setting Credits
By default, the credit property is set as HighCharts.com. If you want to

change this label, you can use the credit property. The credit object

supports align and verticalAlign. The following is an example:

credits: {

position: {

align: 'center'

 },

text: 'Sourabh Mishra Notes',

 href: 'http://www.apress.com/'

 }

 Summary
Highcharts supports Scalable Vector Graphics internally so you can resize

your charts very quickly. With the use of Highcharts, you can design

and configure your charts based on your requirements. When you start

developing a chart, you should know what chart type will be best for your

needs. The next chapter will be very interesting because you will learn how

to set up your application for Highcharts with Angular.

Chapter 2 ConCept of highCharts

27© Sourabh Mishra 2020
S. Mishra, Practical Highcharts with Angular,
https://doi.org/10.1007/978-1-4842-5744-9_3

CHAPTER 3

Integrating Highcharts
with Angular
In this chapter, you will learn the basics of Angular, and how you can

configure and integrate Highcharts with Angular. Angular with Highcharts

is a great combination.

 What Is Angular?
Angular is designed to build single page applications. Angular makes your

HTML more powerful and fast. HTML is known for its tags and static web

development, but with Angular, you can apply local variables, loops, and

if-else conditions. Angular provides two-way model data binding. Angular

is a product of Google and is top rated by millions of web developers.

Angular provides validations, routing, and binding, which makes

developer life more comfortable, so you can build your apps faster. You

can easily display your data fields from the data model, track your changes,

and process updates from the user. Angular provides a modular approach

by its design.

Every web app has a set of building blocks, and every app connects with

different modules. Angular makes content easy to develop and you can create

reusable code through components. Angular easily connects with back-end

web services; with the use of this feature, Angular apps easily connect with

HTTP get and HTTP post data to execute server-side business logic.

28

Angular is born for speed and for improving your web apps. It provides

faster initial loads, improved page render times, and quick change

detection. Angular is a modern framework with rich features and the latest

JavaScript standards. Angular supports all modern browsers. Angular is a

simple and rich JavaScript framework, and it provides built-in directives

and two-way data binding. It is easy to learn and easy to use, and this

improves your productivity in your day-to-day work.

You will get productivity improvement when you interact with

Highcharts projects in later chapters.

 Configuring Angular
To configure Angular into your system, you have to set up a development

environment with the following applications:

• Node.js

• Code editor

• Angular CLI

 Setting Up Node.js
Node.js is a free, open source server environment that provides cross-

platform features so you can use Windows, Linux, and macOS. Node.js

uses JavaScript so it's straightforward for the developer to build services

using it. Node.js provides an extensive ecosystem for open source libraries.

Developers prefer Node.js because they can quickly scale up their

development in any direction. Node.js is useful for developing real-time,

complex, single-page applications.

To install Node.js on your system, download it from https://nodejs.

org/en/download/. Once you open this site, you’ll see the screen shown in

Figure 3-1.

Chapter 3 IntegratIng hIghCharts wIth angular

https://nodejs.org/en/download/O
https://nodejs.org/en/download/O

29

Figure 3-1. Download screen from the Node.js website

Figure 3-1 shows how to download Node.js based on your operating

system. Once your download is complete, install the .exe file on your

system (Figures 3-2 and 3-3).

Figure 3-2. Installing Node.js

Chapter 3 IntegratIng hIghCharts wIth angular

30

After your installation is done, you can see the Node.js command

prompt in your system. Click Start ➤ Programs ➤ Node.js command

prompt.

Open the Node.js command prompt with administrator rights, and

type the command npm –v (Figure 3-4).

Figure 3-3. The Node.js installation is complete

Figure 3-4. Node.js command prompt screen

As you can see, after running npm-v, you’ll see the current version of

your npm.

Chapter 3 IntegratIng hIghCharts wIth angular

31

 Code Editor
The code editor is designed to simplify and speed up the writing of

source code via syntax, indentation, auto-complete, and brace matching

functionality. Code editors are responsible for debugging, building, and

compiling your code. These editors also provide code extensions for

different programming languages.

In this book, I will work mostly in Visual Studio code. Visual Studio

code is developed by Microsoft. Visual Studio code provides cross-platform

features so it can run easily on the Windows, macOS, and Linux operating

systems. You can think beyond syntax highlighting and autocomplete

with IntelliSense, which provides smart completion based on function

definitions, variable types, and imported modules. Visual Studio code

provides a rich debugging feature form editor. You can insert a break point,

attach processes very easy for debugging, and understand the system. You

can deploy your code over the cloud very quickly. Visual Studio code also

supports Git and other SCM providers.

It’s a free code editor. You can download it from https://code.

visualstudio.com/download.

Here is a list of other code editors you can download based on your

preference:

• Microsoft Visual Studio IDE: Visual Studio Integrated

Development Environment (IDE) is developed

by Microsoft. It is designed for developing web

applications, console-based applications, mobile

applications, GUIs, services, etc. It supports many

programming languages like C#, Java, C++, VB, Python,

JavaScript, TypeScript, and many more.

• Angular IDE: Angular IDE is designed to develop

Angular-based applications. It supports JavaScript and

TypeScript.

Chapter 3 IntegratIng hIghCharts wIth angular

https://code.visualstudio.com/download
https://code.visualstudio.com/download

32

• WebStorm: WebStorm is a powerful tool for developing

JavaScript-based products. WebStorm fully supports

HTML, CSS, JavaScript, TypeScript, and Angular.

• Bluefish: Bluefish is a code editor for programmers

and web developers. Bluefish is a very lightweight

code editor, and it supports all modern programming

languages. It's fast and supports work on multiple

projects. Bluefish offers auto recovery of code, an inline

spell checker, a character map for Unicode characters,

and site upload features.

 Setting Up Angular CLI
The Angular command-line interface (CLI) is developed for automating

operations for Angular projects. It saves developers time and effort. With

the use of the Angular CLI, you can configure and set up your development

environment. The Angular CLI is helpful for building services,

components, routing, and projects, and it helps them compile and run

faster.

The first step is to set up and install the Angular CLI. To run the

following command in Visual Studio code, click the Terminal menu ➤

New Terminal. Then type the following command (as seen in Figure 3-5):

npm install -g @angular/cli

Figure 3-5. Installing the Angular CLI through the terminal window
of VS code

Chapter 3 IntegratIng hIghCharts wIth angular

33

Here –g stands for global installation. You are using it so in the future

you can call the CLI in Angular projects quickly.

Figure 3-6. Installation completed for the Angular CLI

Once the npm installation for the Angular CLI is completed (Figure 3- 6),

it’s time to create a new Angular application. To create/generate a new

Angular application, type the following command:

ng new application-name

In this demo, you are going to create an application named

myFirstAngularHighChart. So type the following command (Figure 3-7):

ng new myFirstAngularHighChart

Figure 3-7. Creating/generating a new Angular application

Once you press Enter, the CLI will ask you some questions. The first

one is if you would like to add Angular routing. Press Y and press Enter.
When it comes to picking which stylesheet format you would like to

use, here you can set CSS or SCSS based on your requirements. In this

application, you will work with CSS. Press Enter (Figure 3-8).

Chapter 3 IntegratIng hIghCharts wIth angular

34

Now a process will start. It will take a few minutes to install your

Angular application (Figure 3-9).

Figure 3-8. Creating a new Angular application

Figure 3-9. Angular application generation completed screen

Chapter 3 IntegratIng hIghCharts wIth angular

35

If you see the screen shown in Figure 3-9, the Angular creation process

is done. Go to File ➤ Open Folder, select Folder, and click Open. On the

left-hand side, you can see that CLI generated your application folder

structure. Now it’s time to understand the Angular application structure

(Table 3-1).

Table 3-1. Application Structure of an Angular App

Folders/Config Files Use

e2e end-to-end test files. the e2e folder contains a source file

for testing.

node_modules this folder contains npm packages for an entire application.

project dependencies also reside here.

src In this folder, you will get application-level source code like

modules, htMl, components, application-level environment

config files, icon files, the main page index file, etc.

.editorconfig Configuration for code editors

.gitignore this configuration file will intentionally untracked that git

should ignore.

angular.json here you can set the default configuration for a build, serve,

testing, index page, styles, tsconfig, etc.

package.json here you will get all required project dependencies with

their versioning. whenever you add a new dependency for

your project, you will get entries here.

tsconfig.json typescript configuration file for the entire app

tslint.json Default configuration file for tslint

Now I will talk about some essential things that are required to work in

Angular with Highcharts.

Chapter 3 IntegratIng hIghCharts wIth angular

36

 TypeScript
TypeScript is an open-source programming language developed by

Anders Hejlsberg at Microsoft. After compilation internally, TypeScript is

converted to JavaScript. TypeScript is a pure strongly typed and object-

oriented language; here you can create classes and interface like in C# and

Java. Angular with TypeScript is a great combination.

Now it’s time to configure Highcharts with the Angular application. For

this, open a project and go to the Visual Studio code terminal window and

type the following command:

npm install highcharts –save

This command will add Highcharts dependencies into your project.

 Highcharts Angular Wrapper
The Highcharts angular wrapper is open source. It provides vibrant

and dynamic feature visualization for Highcharts within an Angular

application. This wrapper offers browser compatibility for all modern

browsers like IE, Chrome, Safari, and Mozilla. A Highcharts wrapper API is

available and supports TypeScript.

For installing this wrapper, run the following command in the terminal

window:

npm install highcharts-angular –save

Now open the package.json file. You can see in the package list new

entries for Highcharts. This shows that your Highcharts dependencies are

correctly installed, and now you can use them into your application.

Chapter 3 IntegratIng hIghCharts wIth angular

37

In the Angular application, if you go to the src ➤ app folder, you will

get the following files:

• app-routing.module.ts: This file is responsible for

routing.

• app.module.ts: Here, the root module is defined; in

this file, all related components and dependencies will

be added for a module (Listing 3-1).

• app.component.ts: This is a component. Here you

will write business logic and set a selector for HTML

template and models for binding (Listing 3-2).

• app.component.html: This is an HTML page for

components. Here you can call your logic methods and

bind models (Listing 3-3).

• app.component.css: Here you can add your base CSS

style sheet for root code.

• app.component.spec.ts: Here you can set a unit test

for root component.

Start by adding some code into app.module.ts, as shown in Listing 3-1.

Listing 3-1. app.module.ts

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { HighchartsChartComponent } from 'highcharts-angular';

@NgModule({

 declarations: [

 AppComponent,

Chapter 3 IntegratIng hIghCharts wIth angular

38

 HighchartsChartComponent

],

 imports: [

 BrowserModule,

 AppRoutingModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Let’s try to understand the above code line by line:

• import: Angular modules/components are written in

the TypeScript language using the export keyword, so in

order to refer to these components/modules, you must

refer to the import statement. The syntax to import is

import {module/component} from 'path of the file system.'

• BrowserModule: This exports all required infrastructure

for an Angular app.

• @angular/platform-browser: This executes Angular

apps to all supported browsers.

• NgModule: NgModule is a class that contains the

@NgModule decorator. It’s responsible for adding

dependent components.

• @angular/core: This is responsible for implementing

Angular core functionality, utilities, and low-level services.

• AppRoutingModule: This belongs to app-routing.

module.ts and is responsible for routing and

navigation for the Angular app.

Chapter 3 IntegratIng hIghCharts wIth angular

39

• AppComponent: AppComponent is a class declared in app.

component.ts. You can create a class with a different name.

• HighchartsChartComponent: This is for Highcharts.

This is a class, and here you are adding this

dependency into your Angular app.

• @NgModule: The ngmodule configures the module and

injects related dependencies. ngmodule is a decorator

that declares appcomponent and highchartcomponent

and imports modules; bootstrapping the main

component. Here bootstrap is a term for kick-starting

your app, so whenever your application is going to

run, bootstrap will initialize a component, and that

component will run its related HTML into the browser.

• export: In Angular, whenever you define a class, and

you want to use this class into different modules, you

have to define it as export; it’s the same as the public

keyword in Java and C#.

Now copy the code in Listing 3-2 into app.component.ts.

Listing 3-2. app.components.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'myHighChartsApp';

 highcharts = Highcharts;

Chapter 3 IntegratIng hIghCharts wIth angular

40

 chartOptions = {

 chart: {

 type: "column"

 },

 title: {

 text: "Monthly Sales Chart Department Wise"

 },

 subtitle: {

 text: "Year 2018"

 },

 xAxis:{

 categories:["Jan", "Feb", "Mar", "Apr", "May", "Jun",

 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

 },

 yAxis: {

 title:{

 text:"Sales in Million $"

 }

 },

 series: [{

 name: 'Marketing Department',

 data: [49.9, 51.5, 32.0, 82.0, 75.0, 66.0, 32.0, 25.0,

35.4, 65.1, 58.6, 34.4]

 },

 {

 name: 'Computer Science Department',

 data: [40.5, 34.5, 84.4, 39.2, 23.2, 45.0, 55.6, 18.5,

26.4, 14.1, 23.6, 84.4]

 }]

 };

}

Chapter 3 IntegratIng hIghCharts wIth angular

41

In the above code, there is a @Component decorator that helps create

a fundamental building block for the UI. With this decorator, your class

becomes a component. The component of Angular is a subset of directives.

In the next line, you use three metadata properties.

• selector: selector is used to create tags to call in

HTML. In this code, you use app-root so in HTML you

will call this as

<app-root></app-root>

• templateUrl: The template URL is the relative UI path

for the HTML template file.

• styleUrls: Here you can define a component CSS path.

This is an array type. If you have multiple CSS for this

component, you can define them here.

The next line creates a class named AppComponent. And then you call

the Highcharts JavaScript code. in the next step, you move the existing

code into the app.component.html file and copy the code from Listing 3-3

into the app.component.html file.

Listing 3-3. app.component.html

<div class="content" role="main">

 <highcharts-chart [Highcharts]="highcharts"

[options]="chartOptions"

 style="width: 100%; height: 400px; display: block;">

 </highcharts-chart>

</div>

<router-outlet></router-outlet>

Chapter 3 IntegratIng hIghCharts wIth angular

42

Let’s try to understand the Listing 3-3 code. As you can see in the app.

component.html code, you call a highcharts-chart directive in a <div>.

<highcharts-chart [Highcharts]="highcharts" [options]=

"chartOptions"

 style="width: 100%; height: 400px; display: block;">

</highcharts-chart>

Then there are two models, [Highcharts] and [options], so in app.

component.ts, you define highcharts and chartOptions as variables into

the AppComponent class and define their values. In this HTML, you just

bind those models.

So <highcharts-chart></highcharts-chart> is a calling directive,

and you have two models to bind, [Highcharts] and [options].

Listing 3-4 is the main index.html for your project. In it is one directive

tag called <app-root></app-root>. In app.component.ts in the selector

metadata property, you define this as selector: 'app-root'.

Listing 3-4. index.html

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>MyHighChartsApp</title>

 <base href="/">

 <meta name="viewport" content="width=device-width, initial-

scale=1">

 <link rel="icon" type="image/x-icon" href="favicon.ico">

</head>

<body>

 <app-root></app-root>

</body>

</html>

Chapter 3 IntegratIng hIghCharts wIth angular

43

So whenever this Angular app compiles and runs in the browser, it will

check the <app-root> from the component decorator, and from there it

will take template URL of component.html, and then your component page

will render.

To run this Angular app, open a new terminal from VS code, and type

ng serve. Press Enter. By default it gives the URL as localhost:4200. Now

go to a browser and run this URL. Your app will run (Figure 3-10).

Figure 3-10. Running an Angular app in a browser through ng serve

If you want to change the chart type, go to app.component.ts and

change its type (Listing 3-5).

Listing 3-5. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

Chapter 3 IntegratIng hIghCharts wIth angular

44

export class AppComponent {

 title = 'myHighChartsApp';

 highcharts = Highcharts;

 chartOptions = {

 chart: {

 type: "area"

 },

 title: {

 text: "Monthly Sales Chart Department Wise"

 },

 subtitle: {

 text: "Year 2018"

 },

 xAxis:{

 categories:["Jan", "Feb", "Mar", "Apr", "May", "Jun",

 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

 },

 yAxis: {

 title:{

 text:"Sales in Million $"

 }

 },

 series: [{

 name: 'Marketing Department',

 data: [49.9, 51.5, 32.0, 82.0, 75.0, 66.0, 32.0, 25.0,

35.4, 65.1, 58.6, 34.4]

 },

 {

 name: 'Computer Science Department',

Chapter 3 IntegratIng hIghCharts wIth angular

45

 data: [40.5, 34.5, 84.4, 39.2, 23.2, 45.0, 55.6, 18.5,

26.4, 14.1, 23.6, 84.4]

 }]

 };

}

Now run the ng serve command, and you will get the output shown in

Figure 3-11.

Figure. 3-11. The Angular app with an area chart

 Summary
Angular is the superset of JavaScript. Creating, building, compiling, and

running an application through Angular is very easy. Angular provides

faster execution, faster building, and agile development. Using Angular

with Highcharts is a great combination. With Highcharts’ Angular

dependencies, you can develop stunning, beautiful charts very quickly.

For large professional projects, Angular is very popular. In this chapter, you

saw some basic building blocks, which are required to create an Angular

app with Highcharts. In the next chapter, you will see different charting

types, and how you can utilize more of Highcharts with Angular and

jQuery.

Chapter 3 IntegratIng hIghCharts wIth angular

47© Sourabh Mishra 2020
S. Mishra, Practical Highcharts with Angular,
https://doi.org/10.1007/978-1-4842-5744-9_4

CHAPTER 4

Different Charting
Types
In this chapter, you will learn about the different charting types you can

develop with the use of Highcharts. This chapter will cover the different

types of charts in detail and how you can apply them to your web

application using Angular.

You will explore the following charts in this chapter:

• Pie chart

• Donut chart

• Drilldown chart

• Line chart

• Area chart

• Scatter chart

• Histogram chart

• Heatmap series chart

• Stacked bar chart

• Column pyramid chart

• Gauge chart

48

 Pie Charts
In a pie chart, each slice of the pie describes how much data exists for it.

Pie charts are mostly used in business, construction, media, and market

research. For business, a pie chart may help to show business success or

failure based on each product. You can also figure out the diet of a person

with a pie chart. A benefit of the pie chart is there is no axis to configure the

data; only data with categories are required.

Let's start by creating a simple pie chart with Angular and Highcharts.

In earlier chapters, you created the basic Angular configuration and an

application. In this chapter, you will work on the component level only, so

most of the work will be done in app.component.ts. For the creation of this

component, you can refer to Chapter 3.

In this example, you are going to create a pie chart that describes

various programming languages used by developers worldwide. See

Listings 4-1 and 4-2.

Listing 4-1. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. @Component({

4. selector: 'app-root',

5. templateUrl: './app.component.html',

6. styleUrls: ['./app.component.css']

7. })

8. export class AppComponent {

9. title = 'myHighChartsApp';

10. highcharts = Highcharts;

11. chartOptions = {

12. chart: {

13. type: 'pie'

Chapter 4 Different Charting types

49

14. },

15. title: {

16. text: 'Programming Languages used by developers worldwide'

17. },

18. plotOptions: {

19. pie: {

20. allowPointSelect: true,

21. cursor: 'pointer',

22. dataLabels: {

23. enabled: true,

24. format: '{point.name}: {point.percentage:.1f} %'

25. }

26. }

27. },

28. tooltip: {

29. pointFormat: '{series.name}: {point.percentage:.1f}%'

30. },

31. series: [{

32. name: 'Uses',

33. colorByPoint: true,

34. data: [{

35. name: 'C#',

36. y: 55,

37. sliced: true,

38. selected: true

39. }, {

40. name: 'VB',

41. y: 25

42. }, {

43. name: 'J#',

44. y: 10

Chapter 4 Different Charting types

50

45. }, {

46. name: 'VC++',

47. y: 10

48. }]

49. }]

50. };

51. }

Listing 4-2. app.component.html

1. <div class="content" role="main">

2. <highcharts-chart [Highcharts]="highcharts"

[options]="chartOptions"

3. style="width: 100%; height: 400px; display: block;">

4. </highcharts-chart>

5. </div>

6. <router-outlet></router-outlet>

In this chapter, for all examples, the app.component.html code will

be same (Listing 4-2); you only have to change code in app.component.ts

(Listing 4-1).

To run this example, type ng serve and press Enter. You will get the

output shown in Figure 4-1.

Figure 4-1. Simple pie chart

Chapter 4 Different Charting types

51

Now let’s try to understand the code in the app.component.ts file. In

the last chapter, I discuss the basics of Angular. Here I will talk about the

Highcharts code.

In the app.component.ts code, you set the type property as pie so it

creates a pie chart.

Now let’s look at plotOptions. plotOptions is a wrapper object for the

configuration for each series type:

plotOptions: {

 pie: {

 allowPointSelect: true,

 cursor: 'pointer',

 dataLabels: {

 enabled: true,

 format: '{point.name}: {point.

percentage:.1f} %'

 }

 }

 }

Next, allowPointSelect is a Boolean type property. Here it’s set to

true so that the user can click over the chart to select and deselect that

particular series in the chart.

For example, in this chart, if the user clicks C# or VB, that specific slice

will select and deselect based on the click. If set to false, this functionality

will not work.

For cursor, whenever a mouse pointer hovers into a series, the hand

type mouse pointer will appear if you set this as cursor: 'pointer'.

You can see data labels in each series. Here you must enable

dataLabels to true so you can set the format of your data into labels.

Figure 4-2 shows the data lables; in this example, red rectangles define the

data labels.

Chapter 4 Different Charting types

52

If you want to set the legend in this particular pie chart,

add showInLegend: true. You can set this property after the

allowPointSelect property. The following is the code, and the chart is

shown in Figure 4-3:

 pie: {

 allowPointSelect: true,

 showInLegend: true,

 cursor: 'pointer',

 dataLabels: {

 enabled: true,

 format: '{point.name}: {point.percentage:.1f} %'

 }

 }

Figure 4-2. The dataLables property in a pie chart

Chapter 4 Different Charting types

53

The slicedOffset property sets how far you want to move out the

particular section of pie from the chart. By default the value is set to 10, but

you can increase it.

Next, sliced is a Boolean property. If it’s set as true, based on the series

where you are applying this property, it will slice it off from the pie chart

(plus any offset you set) that much distance. Consider the following code:

 pie: {

 allowPointSelect: true,

 showInLegend: true,

 slicedOffset:50,

 cursor: 'pointer',

 dataLabels: {

 enabled: true,

 format: '{point.name}: {point.

percentage:.1f} %'

 }

 }

Figure 4-3. A pie chart with legends

Chapter 4 Different Charting types

54

series: [{

 name: 'Uses',

 data: [{

 name: 'C#',

 y: 55,

 sliced: true,

 selected: true

 }

Run this code to display the chart shown in Figure 4-4.

Figure 4-4. A pie chart with the sliced and slicedOffset properties

 Donut Chart
A donut chart is another type of pie chart. It’s useful when you want detailed

information. The center hole in this chart makes it looks like a donut shape.

The next example shows how a donut chart is helpful for details. In

this example, you will get the details on different JavaScript frameworks

used by developers. This demo is just an example; it’s not real data.

Chapter 4 Different Charting types

55

Here, I wish to show you how to develop a donut chart and make your

life easier. Listing 4-3 shows the code.

Listing 4-3. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. @Component({

4. selector: 'app-root',

5. templateUrl: './app.component.html',

6. styleUrls: ['./app.component.css']

7. })

8. export class AppComponent {

9. title = 'myHighChartsApp';

10. highcharts = Highcharts;

11. chartOptions = {

12. chart: {

13. renderTo: 'container',

14. type: 'pie'

15. },

16. title: {

17. text: 'Javascript framework used by developers worldwide'

18. },

19. plotOptions: {

20. pie: {

21. innerSize: '60%'

22. }

23. },

24. series:

25. [

26. {

27. name:'Uses',

28. data: [

Chapter 4 Different Charting types

56

29. ['AngularJs', 10.2],

30. ['Angular', 20.7],

31. ['JQuery', 10],

32. ['Vue', 3.1],

33. ['ReactJs', 5.4]

34.]

35. }

36.]

37. }

As you can see in Listing 4-3, one property is innerSize:60%; this

property makes a hole in the pie chart, which gives it a donut design. You

can increase or decrease it as per your requirements (Figure 4-5):

 plotOptions: {

 pie: {

 innerSize: '60%'

 }

 }

Figure 4-5. Pie chart with donut feature

Chapter 4 Different Charting types

57

 Drilldown Charts
Drilldown charts provide an in-depth and detailed view of your chart.

Highcharts provides a drilldown effect on the pie chart so you can get more

details into your chart. For adding a drilldown effect into your charts, you

must add some dependencies in your code.

 Required Dependencies
jQuery:

<script src="https://code.highcharts.com/highcharts-more.js">

</script>

<script src="https://code.highcharts.com/modules/drilldown.js">

</script>

Angular:

import More from 'highcharts/highcharts-more';

More(Highcharts);

import Drilldown from 'highcharts/modules/drilldown';

Drilldown(Highcharts);

 Setting Up the Unique Name for a Series
Drilldown charts are basically designed for detailing a chart. In a series,

suppose you have four types of information and on each click you want to

see the details of that particular type, so you require unique names. These

unique names are used to connect with a drilldown event. Listing 4-4

shows the syntax for creating a drilldown series and Listing 4-5 shows how

to use the same unique names in the listing and get detailed information

about the chart.

Chapter 4 Different Charting types

58

Listing 4-4. Creating a Series for a Drilldown Chart

series: [{

 name: 'Series Name',

 data: [

 {

 name: 'name of series',

 y: 62.12,

 drilldown: 'unique-name'

 },

 ['Data 1', value 1],

 ['Data 2', value 2],

 ['Data 3', value 3]

]

 }],

Listing 4-5. Getting the Details on a Click for the Drilldown

drilldown: {

series: [{

name: 'name of drill down series',

id: ' unique-name',

data: [

['Detail 1', value 1],

['Detail 2', value 2],

['Detail 3', value 3],

['Detail 4',value 4],

['Detail 5', value 5]

]

}]

Chapter 4 Different Charting types

59

In the upcoming example, you will draw a drilldown chart, which gives

you in-depth details of JavaScript framework versions. If you click one

framework, such as Angular, it will take you down one more layer in that

particular series. Copy the complete code in Listing 4-6 and paste it into

the app.component.ts file.

Listing 4-6. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. import More from 'highcharts/highcharts-more';

4. More(Highcharts);

5. import Drilldown from 'highcharts/modules/drilldown';

6. Drilldown(Highcharts);

7. @Component({

8. selector: 'app-root',

9. templateUrl: './app.component.html',

10. styleUrls: ['./app.component.css']

11. })

12. export class AppComponent {

13. title = 'myHighChartsApp';

14. highcharts = Highcharts;

15. chartOptions = {

16. chart: {

17. type: 'pie',

18. },

19. title: {

20. text: 'Pie Chart with drill down Feature'

21. },

22. plotOptions: {

23. pie: {

24. innerSize: 100,

Chapter 4 Different Charting types

60

25. }

26. },

27. tooltip: {

28. headerFormat: '{series.

name}
',

29. pointFormat: '{point.

name}: {point.y:.2f}% of total
'

30. },

31. series: [{

32. name: 'JavaScript Frameworks',

33. data: [

34. {

35. name: 'Angular',

36. y: 62.12,

37. drilldown: 'angular-versions'

38. },

39. ['VueJs', 9.35],

40. ['ReactJs', 15.89],

41. ['Jquery', 12.64]

42.]

43. }],

44. drilldown: {

45. series: [{

46. name: 'Angular versions',

47. id: 'angular-versions',

48. data: [

49. ['Angular Js', 17.07],

50. ['Angular 2', 25],

51. ['Angular 5', 30],

52. ['Angular 7', 20.58],

Chapter 4 Different Charting types

61

53. ['Angular 8', 7.35]

54.]

55. }]

56. }

57. }

58. }

Listing 4-6 provides a drilldown feature for the first series array only

for Angular; the rest of the frameworks, like React, don’t get the drilldown

functionality. If you want to provide the drilldown effect, you must set

the series as drilldown: 'uniquename for the drilldown'. This unique

name is required because when you go into detailing this drilldown, the

unique property name should match with the drilldown of the series array.

You can add this drilldown feature into another series array. So always

remember that unique name should be different.

series: [{

 name: 'JavaScript Frameworks',

 data: [

 {

 name: 'Angular',

 y: 62.12,

 drilldown: 'angular-versions'

 },

 ['VueJs', 9.35],

 ['ReactJs', 15.89],

 ['Jquery', 12.64]

]

 }],

Chapter 4 Different Charting types

62

Whenever you run this code, it will first look like Figure 4-6. Now let’s

go to the next level of the code:

drilldown: {

 series: [{

 name: 'Angular versions',

 id: 'angular-versions',

 data: [

 ['Angular Js', 17.07],

 ['Angular 2', 25],

 ['Angular 5', 30],

 ['Angular 7', 20.58],

 ['Angular 8', 7.35]

]

 }]

 }

Figure 4-6. Drilldown with pie feature

Chapter 4 Different Charting types

63

In this code, the drilldown id ('angular-versions') matches your

series drilldown property value; both ids are the same as the Angular

versions. So this way, Highcharts interacts within the features it has to call.

In this example, once you click the Angular part, you will get Figure 4-7.

Figure 4-7. Pie with drilldown detailed effect after you click the series

In Figure 4-7, there is a button that comes automatically label as <Back

to JavaScript Frameworks>. Clicking this button takes you to Figure 4-6.

This is how you can implement drilldown effects into pie charts. I hope

you enjoy this drilldown feature with Highcharts and pie charts.

 Line Charts
The line chart is also known as a line plot, line graph, or curve chart. It’s a

type of diagram that displays information in a series of data points, which

are called markers. These markers connect by straight lines. Let’s create a

simple line chart. See Listing 4-7.

Listing 4-7. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. @Component({

4. selector: 'app-root',

Chapter 4 Different Charting types

64

5. templateUrl: './app.component.html',

6. styleUrls: ['./app.component.css']

7. })

8. export class AppComponent {

9. title = 'myHighChartsApp';

10. highcharts = Highcharts;

11. chartOptions = {

12. chart:{

13. type:'line'

14. },

15. title: {

16. text: 'Industry Growth by Sector, 2014-2019'

17. },

18. xAxis: {

19. categories: [2014, 2015, 2016, 2017, 2018, 2019],

20. },

21. yAxis: {

22. title: {

23. text: 'Revenue Generated in million'

24. }

25. },

26. legend: {

27. layout: 'vertical',

28. align: 'right',

29. verticalAlign: 'middle'

30. },

31. series: [{

32. name: 'IT',

33. data: [400, 489, 354, 180, 785, 293]

34. }, {

35. name: 'Cement',

Chapter 4 Different Charting types

65

36. data: [180, 100, 50, 89, 105,206]

37. }, {

38. name: 'Pharmacy',

39. data: [350, 400, 250, 400, 550,480]

40. }, {

41. name: 'Agriculture',

42. data: [190, 210, 250, 280, 310,500]

43. }],

44. }

45. }

This code is basic line chart code, where you create a chart to see

industry growth with multiple lines. By default, in Highcharts, the chart

type is set as line. If you do not use chart type, it will draw a line chart for

you. See Figure 4-8.

Figure 4-8. Basic multiple line chart

 Area Charts
An area chart represents changes that happen over time; it used to display

quantitative data. At the time of development, the Highcharts chart type

is area. In this chart, the x-axis part is shaded with colors. Let’s create your

first area chart. Copy Listing 4-8 into the app.component.ts file.

Chapter 4 Different Charting types

66

Listing 4-8. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. @Component({

4. selector: 'app-root',

5. templateUrl: './app.component.html',

6. styleUrls: ['./app.component.css']

7. })

8. export class AppComponent {

9. title = 'myHighChartsApp';

10. highcharts = Highcharts;

11. chartOptions = {

12. chart:{

13. type:'area'

14. },

15. title: {

16. text: 'Average scored by students in Computer Science'

17. },

18. xAxis: {

19. categories: ['Quarterly', 'Six Monthly', 'Final Year'],

20. },

21. yAxis: {

22. title: {

23. text: 'Average Scores'

24. }

25. },

26. legend: {

27. layout: 'vertical',

28. align: 'right',

29. verticalAlign: 'middle'

30. },

Chapter 4 Different Charting types

67

31. series: [{

32. name: 'Science Score',

33. data: [45, 75, 80]

34. }],

35. }

36. }

This is just a simple area chart to help you understand how to develop

an area chart with Highcharts. Once you run this code, you will get output

like Figure 4-9.

Figure 4-9. Basic area chart

Listing 4-9 shows how to develop an area chart with negative values.

Listing 4-9. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. @Component({

4. selector: 'app-root',

5. templateUrl: './app.component.html',

6. styleUrls: ['./app.component.css']

7. })

8. export class AppComponent {

9. title = 'myHighChartsApp';

10. highcharts = Highcharts;

Chapter 4 Different Charting types

68

11. chartOptions = {

12. chart:{

13. type:'area'

14. },

15. title: {

16. text: 'Yearly Performance of XYZ Mutual Fund'

17. },

18. xAxis: {

19. categories: [2014,2015, 2016, 2017,2018],

20. },

21. yAxis: {

22. title: {

23. text: 'Absolute Profit in percentage'

24. }

25. },

26. legend: {

27. layout: 'vertical',

28. align: 'right',

29. verticalAlign: 'middle'

30. },

31. series: [{

32. name: 'Large Cap',

33. data: [10, 8, 12, 9, 15]

34. }, {

35. name: 'Mid cap',

36. data: [9, 6.5, 7, -2, 18]

37. }, {

38. name: 'Small cap',

39. data: [5.6, -2, -3, 15, 3]

40. }],

41. }

42. }

Chapter 4 Different Charting types

69

As you can see in Listing 4-9, in different series there are negative

values based on the area chart constructed (Figure 4-10).

Figure 4-10. Area chart with negative values

In the next example, you will learn about the area-spline chart, which

has features of the area and spline charts. Let’s take a look. Copy the

complete code in Listing 4-10 into the app.component.ts file.

Listing 4-10. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. @Component({

4. selector: 'app-root',

5. templateUrl: './app.component.html',

6. styleUrls: ['./app.component.css']

7. })

8. export class AppComponent {

9. title = 'myHighChartsApp';

10. highcharts = Highcharts;

11. chartOptions = {

12. chart: {

13. type: 'areaspline'

14. },

15. title: {

Chapter 4 Different Charting types

70

16. text: 'Number of visitors visited Taj Mahal in a week'

17. },

18. legend: {

19. layout: 'vertical',

20. align: 'left',

21. verticalAlign: 'top',

22. },

23. xAxis: {

24. categories: [

25. 'Monday',

26. 'Tuesday',

27. 'Wednesday',

28. 'Thursday',

29. 'Friday',

30. 'Saturday',

31. 'Sunday'

32.],

33. plotBands: [{ // Design to visualize the weekend

34. from:5,

35. to: 6,

36. color: 'orange'

37. }]

38. },

39. yAxis: {

40. title: {

41. text: 'Number of visitors'

42. }

43. },

44. tooltip: {

45. valueSuffix: ' people'

46. },

Chapter 4 Different Charting types

71

47. plotOptions: {

48. areaspline: {

49. fillOpacity: 0.6

50. }

51. },

52. series: [{

53. name: 'Taj Mahal',

54. data: [5000, 2700, 3200, 3800, 4100, 5600, 6000]

55. }]

56. }

57. }

Listing 4-10 is the example of an area-spline chart, which is the

combination of area and spline charts. This chart demonstrates how many

visitors come to see the Taj Mahal in a week. If you set the code chart

type as areaspline, you can use the plotBands property to highlight the

weekend in the chart (Figure 4-11):

plotBands: [{ // Design to visualize the weekend

 from:5,

 to: 6,

 color: 'orange'

 }]

Here you use two properties, from and to, so from demonstrates where

to start and to describes where to end. The count starts from 0. You want

to start on Saturday, so you set 5 as the from property and 6 as the to

property. See Figure 4-11.

Chapter 4 Different Charting types

72

 Scatter Charts
A scatter plot, also known as a scatter graph, scattergram, or scatter chart,

is a type of plot that uses Cartesian coordinate to display typically two

variables for a set of data. Points are coded and defined using color and

shape/size. Data is presented in the collection of points; each point has

one value. Copy the code in Listing 4-11 into app.component.ts.

Listing 4-11. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. @Component({

4. selector: 'app-root',

5. templateUrl: './app.component.html',

6. styleUrls: ['./app.component.css']

7. })

8. export class AppComponent {

9. title = 'myHighChartsApp';

10. highcharts = Highcharts;

11. chartOptions = {

12. chart: {

13. type: 'scatter',

14. zoomType: 'xy'

Figure 4-11. Area spline chart with plotBands

Chapter 4 Different Charting types

73

15. },

16. title: {

17. text: 'Height V/s Weight of S.T. Thomas Collage by Gender'

18. },

19. xAxis: {

20. title: {

21. enabled: true,

22. text: 'Height (cm)'

23. },

24. startOnTick: true,

25. endOnTick: true,

26. showLastLabel: true

27. },

28. yAxis: {

29. title: {

30. text: 'Weight (kg)'

31. }

32. },

33. legend: {

34. layout: 'vertical',

35. align: 'left',

36. verticalAlign: 'top',

37. x: 150,

38. y: 40,

39. floating: true,

40. borderWidth: 1

41. },

42. plotOptions: {

43. scatter: {

44. marker: {

45. radius: 5,

Chapter 4 Different Charting types

74

46. states: {

 a. hover: {

 b. enabled: true,

 c. lineColor: 'black'

 d. }

47. }

48. },

49. states: {

50. hover: {

 a. marker: {

 b. enabled: false

 c. }

51. }

52. },

53. tooltip: {

54. headerFormat: '{series.name}
',

55. pointFormat: '{point.x} cm, {point.y} kg'

56. }

57. }

58. },

59. series: [{

60. name: 'Female',

61. color: 'red',

62. data: [[151.2, 53.1], [157.3, 51.0], [169.5, 69.2],

[147.0, 50.0], [175.8, 83.6],

63. [150.0, 51.0], [151.1, 57.9], [156.0, 79.8], [146.2,

46.8], [158.1, 74.9],

64.]

65. }, {

66. name: 'Male',

67. color: 'blue',

Chapter 4 Different Charting types

75

68. data: [[172.0, 63.7], [165.3, 72.7], [183.5, 79.2],

[176.5, 75.7], [177.2, 85.8],

69. [171.5, 64.8], [181, 82.4], [174.5, 77.4], [177.0, 61.0],

[174.0, 83.7],

70.]

71. }]

72. }

73. }

Listing 4-11 gives you a chart of the height and weight of students

based on their gender. The code chart type is scatter:

chart: {

 type: 'scatter',

 zoomType: 'xy'

 },

Here zoomType is xy, and it means if you drag your mouse on the x-axis

or y-axis, your graph will automatically zoom. The zoomType property can

be used in any graph in the chart section.

In the plotOptions section, you can set the scatter subproperty as the

radius of a circle line color once a mouse hovers.

plotOptions: {

 scatter: {

 marker: {

 radius: 5,

 states: {

 hover: {

 enabled: true,

 lineColor: 'black'

 }

 }

 },

Chapter 4 Different Charting types

76

 states: {

 hover: {

 marker: {

 enabled: false

 }

 }

 },

 tooltip: {

 headerFormat: '{series.name}
',

 pointFormat: '{point.x} cm, {point.y} kg'

 }

 }

 }

Run this code and you will get the output shown in Figure 4-12.

Figure 4-12. Scatter chart

 Histogram Charts
A histogram chart is the way to put a group of data into a user-specified

range. A histogram looks like a bar chart. This type of chart is used for

statistical analysis to illustrate how many kinds of variables are in a specific

range, such as data in the form of graph, like census data of a state or how

many people are a particular age. See Listing 4-12.

Chapter 4 Different Charting types

77

Listing 4-12. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. @Component({

4. selector: 'app-root',

5. templateUrl: './app.component.html',

6. styleUrls: ['./app.component.css']

7. })

8. export class AppComponent {

9. title = 'myHighChartsApp';

10. highcharts = Highcharts;

11. chartOptions = {

12. chart: {

13. type: 'column'

14. },

15. title: {

16. text: 'Histogram for Rainfall'

17. },

18. xAxis: {

19. categories: [

20. 'Jun',

21. 'Jul',

22. 'Aug',

23. 'Sep',

24. 'Oct',

25.],

26. crosshair: true

27. },

28. yAxis: {

29. title: { text: 'Rain in mm' },

Chapter 4 Different Charting types

78

30. min: 0,

31. },

32. plotOptions: {

33. column: {

34. pointPadding: 0,

35. borderWidth: 0,

36. groupPadding: 0,

37. shadow: false

38. }

39. },

40. series: [{

41. name: 'Month',

42. data: [49.9, 71.5, 106.4, 129.2, 144.0]

43. }]

44. }

45. }

This histogram chart is developed by setting the chart type to column.

For this, you set plotOptions as

plotOptions: {

 column: {

 pointPadding: 0,

 borderWidth: 0,

 groupPadding: 0,

 shadow: false

 }

 },

Once you run this chart, you will get the result shown in Figure 4-13.

Chapter 4 Different Charting types

79

 Heat Map Series Charts
A heat map series chart is the way to represent data values in the form of a

matrix. The matrix is defined by different colors. If you want to implement

a heat map series for your dashboard, you have to configure the following

things:

jQuery: Add this code to the script section:

<script src="https://code.highcharts.com/modules/heatmap.js">

</script>

Angular: Add this code to the app.component.ts file:

import Heatmap from 'highcharts/modules/heatmap';

Heatmap(Highcharts);

Now see Listing 4-13.

Listing 4-13. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. import Heatmap from 'highcharts/modules/heatmap';

4. Heatmap(Highcharts);

5. @Component({

6. selector: 'app-root',

Figure 4-13. Basic histogram chart with chart type as column

Chapter 4 Different Charting types

80

7. templateUrl: './app.component.html',

8. styleUrls: ['./app.component.css']

9. })

10. export class AppComponent {

11. title = 'myHighChartsApp';

12. highcharts = Highcharts;

13. chartOptions = {

14. chart: {

15. type: 'heatmap',

16. plotBorderWidth: 1

17. },

18. title: {

19. text: 'Daily marks obtained per student per weekday'

20. },

21. xAxis: {

22. categories: ['John', 'Dale', 'Jacob', 'Johnson', 'Thomas',

'James', 'Mike', 'Jaeffry', 'Ben', 'Jack']

23. },

24. yAxis: {

25. categories: ['Monday', 'Tuesday', 'Wednesday', 'Thursday',

'Friday'],

26. },

27. colorAxis: {

28. min: 0,

29. minColor: '#FFFFFF',

30. maxColor: Highcharts.getOptions().colors[0]

31. },

32. legend: {

33. align: 'right',

34. layout: 'vertical',

35. margin: 0,

Chapter 4 Different Charting types

81

36. verticalAlign: 'top',

37. y: 25,

38. symbolHeight: 280

39. },

40. series: [{

41. name: 'Marks per student',

42. borderWidth: 1,

43. data: [[0, 0, 10], [0, 1, 19], [0, 2, 8], [0, 3, 24],

[0, 4, 67], [1, 0, 92], [1, 1, 58], [1, 2, 78], [1, 3, 94],

[1, 4, 48], [2, 0, 35], [2, 1, 15], [2, 2, 84], [2, 3, 64],

[2, 4, 52], [3, 0, 72], [3, 1, 78], [3, 2, 98], [3, 3, 19],

[3, 4, 16], [4, 0, 38], [4, 1, 5], [4, 2, 8], [4, 3, 75],

[4, 4, 55], [5, 0, 88], [5, 1, 32], [5, 2, 12], [5, 3, 6],

[5, 4, 50], [6, 0, 13], [6, 1, 44], [6, 2, 88], [6, 3, 98],

[6, 4, 96], [7, 0, 31], [7, 1, 1], [7, 2, 82], [7, 3, 32],

[7, 4, 30], [8, 0, 85], [8, 1, 97], [8, 2, 123], [8, 3, 64],

[8, 4, 84], [9, 0, 47], [9, 1, 24], [9, 2, 31],

[9, 3, 48], [9, 4, 91]],

44. dataLabels: {

45. enabled: true,

46. color: '#000000'

47. }

48. }]

49. }

50. }

In Listing 4-13, the chart type is heatmap. This example shows the

marks of different students over the course of a week, in the form of a

matrix. The x-axis shows student names. If you run this code, you will get

the output in Figure 4-14.

Chapter 4 Different Charting types

82

As you can see, the right-hand side legend is a different kind of legend.

This kind of legend is provided in a heatmap. See the following code:

legend: {

 align: 'right',

 layout: 'vertical',

 margin: 0,

 verticalAlign: 'top',

 y: 25,

 symbolHeight: 280

 },

In the series section, data is written like data:[[0,0,10],[0,1,19]…], so

here it’s defined in the form of the column, row, and marks. This is the way

to define a matrix.

 Stacked Bar Charts
A stacked chart represents different groups on top of each other. The

height of the bar represents the combined result of the group. Stacked bars

are not suitable when some groups have negative values. Let’s take a look.

See Listing 4-14.

Figure 4-14. Heat map series chart

Chapter 4 Different Charting types

83

Listing 4-14. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. @Component({

4. selector: 'app-root',

5. templateUrl: './app.component.html',

6. styleUrls: ['./app.component.css']

7. })

8. export class AppComponent {

9. title = 'myHighChartsApp';

10. highcharts = Highcharts;

11. chartOptions = {

12. chart: {

13. type: 'column'

14. },

15. title: {

16. text: 'Total hours studies in a week'

17. },

18. xAxis: {

19. categories: ['Maths', 'Science', 'History', 'Social

Science', 'English']

20. },

21. yAxis: {

22. min: 0,

23. title: {

24. text: 'Total Hour studied'

25. },

26. stackLabels: {

27. enabled: true,

Chapter 4 Different Charting types

84

28. style: {

 fontWeight: 'bold',

 color: (// theme

 Highcharts.defaultOptions.title.style &&

 Highcharts.defaultOptions.title.style.color

) || 'gray'

29. }

30. }

31. },

32. legend: {

33. align: 'right',

34. x: -30,

35. verticalAlign: 'top',

36. y: 25,

37. floating: true,

38. backgroundColor:

39. Highcharts.defaultOptions.legend.backgroundColor ||

'white',

40. borderColor: '#CCC',

41. borderWidth: 1,

42. shadow: false

43. },

44. plotOptions: {

45. column: {

46. stacking: 'normal',

47. dataLabels: {

 a. enabled: true

48. }

49. }

50. },

Chapter 4 Different Charting types

85

51. series: [{

52. name: 'Rocy',

53. data: [4, 2, 1, 8, 9]},

54. {name: 'Luies',

55. data: [1, 5, 1, 4, 2]},

56. {name: 'Simon',

57. data: [7, 2, 3, 1, 4]

58. }]

59. }

60. }

This code is a perfect example of a stacked chart. This code calculates

the total hours a student spends on a particular subject in a week. The

chart type is column; in Highcharts, there is no stackedchart type, but

you can develop one with a bar column, etc. very quickly if you set the

plotOptions subproperty as stacking: 'normal'. This means this

property is responsible for stacking each series on top of each other.

 plotOptions: {

 column: {

 stacking: 'normal',

 dataLabels: {enabled: true }

 }

}

For better understating, add labels into each series group. For this, see

the following code. In y-axis, you use the stackLabels property, and then

the subproperty, which is

 yAxis: {

 min: 0,

 title: {

 text: 'Total Hour studied'

 },

Chapter 4 Different Charting types

86

 stackLabels: {

 enabled: true,

 style: {

 fontWeight: 'bold',

 color: (// theme

 Highcharts.defaultOptions.title.style &&

 Highcharts.defaultOptions.title.style.

color) || 'gray'

 }

 }

 }

Set enabled: true so the labels are in each series. Then add some

styling for the text of the labels. Figure 4-15 shows the output of Listing 4- 14.

Figure 4-15. Stacked bar chart with columns

 Column Pyramid Charts
A column pyramid chart is a kind of column chart, only it looks like a

pyramid. Pyramid charts are designed for comparing data with discrete

data with values instead of categories.

To develop a simple pyramid chart, these dependencies are required:

For jQuery users:

<script src="https://code.highcharts.com/highcharts-more.js">

</script>

Chapter 4 Different Charting types

87

For Angular users:

import More from 'highcharts/highcharts-more';

More(Highcharts);

Now let’s create a pyramid chart. See Listing 4-15.

Listing 4-15. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. import More from 'highcharts/highcharts-more';

4. More(Highcharts);

5. @Component({

6. selector: 'app-root',

7. templateUrl: './app.component.html',

8. styleUrls: ['./app.component.css']

9. })

10. export class AppComponent {

11. title = 'myHighChartsApp';

12. highcharts = Highcharts;

13. chartOptions = {

14. chart: {

15. type: 'columnpyramid'

16. },

17. title: {

18. text: 'Height of different students in a class'

19. },

20. colors: ['red', 'blue', 'green', 'yellow', 'pink'],

21. xAxis: {

22. type: 'category',

23. crosshair: true,

24. labels: {

Chapter 4 Different Charting types

88

25. style: {

26. fontSize: '10px'

27. }

28. },

29. },

30. yAxis: {

31. min: 0,

32. title: {

33. text: 'Height (cm)'

34. }

35. },

36. tooltip: {

37. valueSuffix: ' cm'

38. },

39. series: [{

40. name: 'Height',

41. colorByPoint: true,

42. showInLegend: true,

43. data: [

44. ['Mohan', 162.56],

45. ['Ram', 177.8],

46. ['John', 157.48],

47. ['Daisy', 160],

48. ['Mike', 175.5]

49.],

50. }]

51. };

52. }

In this code, the chart type is columnpyramid. This code creates a

series of students’ heights. In this code, as you can see, all pyramids are in

a different color.

Chapter 4 Different Charting types

89

For this, in the series section, a subproperty is

colorByPoint: true

If you set this property as false, all series pyramids will be the same

color. Now type ng serve and you will get output shown in Figure 4-16.

Figure 4-16. Simple column pyramid chart

You can also develop a stacked column pyramid chart very quickly

using Highcharts. Listing 4-16 calculates the total hours spent by a student

in a week on a particular subject.

Listing 4-16. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. import More from 'highcharts/highcharts-more';

4. More(Highcharts);

5. @Component({

6. selector: 'app-root',

7. templateUrl: './app.component.html',

8. styleUrls: ['./app.component.css']

9. })

10. export class AppComponent {

11. title = 'myHighChartsApp';

12. highcharts = Highcharts;

Chapter 4 Different Charting types

90

13. chartOptions = {

14. chart: {

15. type: 'columnpyramid'

16. },

17. title: {

18. text: 'Stacked columnpyramid chart'

19. },

20. xAxis: {

21. categories: ['Maths', 'Science', 'History', 'Social

Science', 'English']

22. },

23. yAxis: {

24. min: 0,

25. title: {

26. text: 'Total Hour studied'

27. },

28. stackLabels: {

29. enabled: true,

30. style: {

31. fontWeight: 'bold',

32. color: 'gray'

33. }

34. }

35. },

36. legend: {

37. align: 'right',

38. x: -30,

39. verticalAlign: 'top',

40. y: 25,

41. floating: true,

42. backgroundColor: 'white',

Chapter 4 Different Charting types

91

43. borderColor: '#CCC',

44. borderWidth: 1,

45. shadow: false

46. },

47. tooltip: {

48. headerFormat: '{point.x}
',

49. pointFormat: '{series.name}: {point.y}
Total: {point.

stackTotal}'

50. },

51. plotOptions: {

52. columnpyramid: {

53. stacking: 'normal',

54. dataLabels: {

55. enabled: true,

56. color: 'white'

57. }

58. }

59. },

60. series: [{

61. name: 'Rocy',

62. data: [4, 2, 1, 8, 9]

63. }, { name: 'Luies', data: [1, 5, 1, 4, 2] },

64. {

65. name: 'Simon', data: [7, 2, 3, 1, 4]

66. }]

67. }

68. }

In Listing 4-16, the chart type is columnpyramid, but in plotOptions,

note that stacking: 'normal'. This property helps create a stacked based

chart in Highcharts.

Chapter 4 Different Charting types

92

 plotOptions: {

 columnpyramid: {

 stacking: 'normal',

 dataLabels: {

 enabled: true,

 color: 'white'

 }

 }

 },

If you run the code, you will get Figure 4-17.

Figure 4-17. Stacked column pyramid chart

 Gauge Charts
A gauge chart is also known as a dial chart or a speedometer. These types

of charts read the needle on the dial. These types of charts provide great

visualization for a dashboard. Gauge charts are mostly used by aircraft

pilots. Let’s take a look at how you can implement a gauge chart using

Highcharts and Angular. See Listing 4-17.

Listing 4-17. app.component.ts

1. import { Component } from '@angular/core';

2. import * as Highcharts from 'highcharts';

3. import More from 'highcharts/highcharts-more';

Chapter 4 Different Charting types

93

4. import solidGauge from "highcharts//modules/solid-gauge.js";

5. More(Highcharts);

6. solidGauge(Highcharts);

7. @Component({

8. selector: 'app-root',

9. templateUrl: './app.component.html',

10. styleUrls: ['./app.component.css']

11. })

12. export class AppComponent {

13. title = 'myHighChartsApp';

14. highcharts = Highcharts;

15. chartOptions = {

16. chart: {

17. type: 'gauge',

18. plotBorderWidth: 0,

19. plotShadow: false

20. },

21. title: {

22. text: 'Speedometer'

23. },

24. pane: {

25. startAngle: -150,

26. endAngle: 150,

27. background: [{

28. backgroundColor: {

29. linearGradient: { x1: 0, y1: 0, x2: 0, y2: 1 },

30. stops: [

31. [0, '#FFF'],

32. [1, '#333']

33.]

34. },

Chapter 4 Different Charting types

94

35. borderWidth: 0,

36. outerRadius: '109%'

37. }, {

38. backgroundColor: {

39. linearGradient: { x1: 0, y1: 0, x2: 0, y2: 1 },

40. stops: [

41. [0, '#333'],

42. [1, '#FFF']

43.]

44. },

45. borderWidth: 1,

46. outerRadius: '107%'

47. }, {

48. // default background

49. }, {

50. backgroundColor: '#DDD',

51. borderWidth: 0,

52. outerRadius: '105%',

53. innerRadius: '103%'

54. }]

55. },

56. yAxis: {

57. min: 0,

58. max: 200,

59. minorTickInterval: 'auto',

60. minorTickWidth: 1,

61. minorTickLength: 10,

62. minorTickPosition: 'inside',

63. minorTickColor: '#666',

64. tickPixelInterval: 30,

65. tickWidth: 2,

Chapter 4 Different Charting types

95

66. tickPosition: 'inside',

67. tickLength: 10,

68. tickColor: '#666',

69. labels: {

70. step: 2,

71. rotation: 'auto'

72. },

73. title: {

74. text: 'km/h'

75. },

76. plotBands: [{

77. from: 0,

78. to: 120,

79. color: '#55BF3B' // green

80. }, {

81. from: 120,

82. to: 160,

83. color: '#DDDF0D' // yellow

84. }, {

85. from: 160,

86. to: 200,

87. color: '#DF5353' // red

88. }]

89. },

90. plotOptions: {

91. solidgauge: {

92. dataLabels: {

93. y: 5,

94. borderWidth: 0,

95. useHTML: true

96. }

Chapter 4 Different Charting types

96

97. }

98. },

99. series: [{

100. name: 'Speed',

101. data: [60],

102. tooltip: {

103. valueSuffix: ' km/h'

104. }

105. }]

106. };

107. }

Let’s understand Listing 4-17. The chart type is gauge. The pane

section is

pane: {

 startAngle: -150,

 endAngle: 150,

 background: [{

 backgroundColor: {

 linearGradient: { x1: 0, y1: 0, x2: 0, y2: 1 },

 stops: [

 [0, '#FFF'],

 [1, '#333']

]

 },

 borderWidth: 0,

 outerRadius: '109%'

 }, {

 backgroundColor: {

 linearGradient: { x1: 0, y1: 0, x2: 0, y2: 1 },

 stops: [

Chapter 4 Different Charting types

97

 [0, '#333'],

 [1, '#FFF']

]

 },

 borderWidth: 1,

 outerRadius: '107%'

 }, {

 // default background

 }, {

 backgroundColor: '#DDD',

 borderWidth: 0,

 outerRadius: '105%',

 innerRadius: '103%'

 }]

 },

In the gauge, the startAngle from the start angle of the x-axis is given

in degrees where 0 means north.

In the gauge, the endAngle of the x-axis is given in degrees where 0 is

north.

The y-axis is where you set the minimum and maximum speed for the

gauge:

yAxis: {

 min: 0,

 max: 200,

 minorTickInterval: 'auto',

 minorTickWidth: 1,

 minorTickLength: 10,

 minorTickPosition: 'inside',

 minorTickColor: '#666',

Chapter 4 Different Charting types

98

 tickPixelInterval: 30,

 tickWidth: 2,

 tickPosition: 'inside',

 tickLength: 10,

 tickColor: '#666',

 labels: {

 step: 2,

 rotation: 'auto'

 },

 title: {

 text: 'km/h'

 },

 plotBands: [{

 from: 0,

 to: 120,

 color: '#55BF3B' // green

 }, {

 from: 120,

 to: 160,

 color: '#DDDF0D' // yellow

 }, {

 from: 160,

 to: 200,

 color: '#DF5353' // red

 }]

 },

Now you set plotBands from where to where based on speed and

colors. Then you set your plotOptions, and then you define the series. In

a later chapter, you will see dynamic gauge charts for your dashboard in

detail, but for now, see Figure 4-18.

Chapter 4 Different Charting types

99

 Summary
In this chapter, you learned how to easily create different types of charts

very quickly with the use of Highcharts. These charts are beneficial for

your dashboard based on certain conditions. Some charts required extra

dependencies such as stack bars, pyramids, heatmaps, and so on. Based

on your JavaScript framework, Angular or jQuery, please add those

dependencies first into your project, as mentioned. In the upcoming

chapters, you will see more charting types, which will make your life more

comfortable based on your customer requirements.

Figure 4-18. Simple gauge chart using Highcharts and Angular

Chapter 4 Different Charting types

101© Sourabh Mishra 2020
S. Mishra, Practical Highcharts with Angular,
https://doi.org/10.1007/978-1-4842-5744-9_5

CHAPTER 5

Working with
Real-Time Data
In this chapter, you will learn how to get real-time data from the server

side and render it into Highcharts using Angular. To work on real-time

data, you must configure and send a request to back-end services (such as

a web API, WCF, Web Services, REST Services, etc.), which can fetch data

from the server, and the response will provide data for a Highcharts series.

This chapter will talk about web APIs, and how you can develop a web API

using Visual Studio, which will consume this web API into your single page

application for rendering real-time data.

 Web API
API means application programming interface, and a web API is a kind of

business logic interface where users can consume and access methods

(based on permissions) for specific features. These methods are called

resources, and these methods are in the layer of HTTP verbs. A web API has

four types of common verbs:

• HttpGet

• HttpPost

• HttpPut

• HttpDelete

102

They correspond to

• Read

• Insert (Create)

• Update

• Delete

Figure 5-1 explains in detail this request-response model in web API

services.

For example, you write one method to access and share live market

data, and you host your service. Now, if a different application wants to

access your service for fetching data, it will consume that particular Web

API, the one accessed by the HTTP protocol. As the name suggests, a web

API works over the Web. A web API is an excellent framework because it

reaches many clients; they can be accessed/consumed through browsers,

IoT applications, and mobile devices very quickly.

Figure 5-1 shows three sections:

• Database

• Web API

• Browser and devices

Figure 5-1. Web API framework

Chapter 5 Working With real-time Data

103

The request comes from the browser or mobile app to the web API

services. In a web API, all methods and business logic are written. If a

requested resource is permitted to access a method, in the next step it

will go to the database and fetch information, and the response will be

returned in the form of XML or JSON based on your return type.

 What Is REST?
Rest stands for representational states transfer, and it is an architectural

pattern. Roy Fielding firstly introduced REST in 2000 in his doctoral

presentation. In REST, communication is always stateless. Here stateless

means if you send one request, after getting a response, the relationship will

break, so you must send a new request and get a new response. If you want to

maintain your state, you can keep it on the client side. In REST, you can define

multiple responses for the same resource method, so you can get a response

in the form of JSON, XML, CSV, JPG, PDF, HTML, etc. REST uses the HTTP

methods to operate resources in the form of get, put, post, and delete.

The following is an example of JSON format and it comes from a

response:

{"studentId":1,"studentName":"ram","phone":982641***,"address":

"delhi"}

Here each resource/method has one unique identifier, which will send

a request to access a method and get the responses. For example,

• Get: https://localhost:5001/api/getStudents/

• Post: https://localhost:5001/api/AddStudent/

• Put: https://localhost:5001/api/UpdateStudent/

• Delete: https://localhost:5001/api/DeleteStudent/

Now let’s build a project with Angular and a web API using Highcharts.

Chapter 5 Working With real-time Data

104

 Web API Development Using Visual Studio
This application is pretty simple. You’ll create a line chart based on student

performance in particular subjects. For this application, you have two

different apps.

For the server side, you will write one web API service with a SQL

Server database using Entity Framework. For the other side, you will use

the Angular application you developed in Chapter 3. In this chapter, you

will just enhance this application with a web API.

To create the web API application, open Visual Studio, and go to File ➤

New ➤ Project ➤ Select Asp.Net Core Web Application (Figure 5-2).

Click the Next button. You will get the screen shown in Figure 5-3.

Figure 5-2. Creating a new web API using Visual Studio

Chapter 5 Working With real-time Data

105

Here you can set the project name and location path (which particular

directory you want to save in) of your project. After you fill in these fields,

click the Create button.

Next, you’ll create a web API project (Figure 5-4), so choose an API

and click the Create button. Your new web API will be created. Once your

API has been created, you will see all related files and folders into Solution

Explorer. So let’s try to understand Solution Explorer and what files and

folders comes with the new web API project.

Figure 5-3. Configuring a new project

Chapter 5 Working With real-time Data

106

 Solution Explorer
In Visual Studio, Solution Explorer is the place where you see your project

file structure. In one solution, you can see more than one project. Here you

can add/remove files or projects and include/exclude files for your project.

Figure 5-5 shows Solution Explorer. If you are not able to see this in

your Visual Studio, go to View ➤ Solution Explorer, and you will get the

info shown in Figure 5-5.

Figure 5-4. Project template selection screen

Chapter 5 Working With real-time Data

107

Now, let’s explore all the required files and folders one by one.

• Dependencies: This folder is designed for all project-

related dependencies, such as NuGet related packages,

project analyzer related, and SDK related. As per your

requirements, you can add more dependencies here.

Figure 5-5. Solution Explorer

Chapter 5 Working With real-time Data

108

• Properties: This folder contains the launchSettings.

json file. In this file, you can set project launch-related

settings, which means when you press F5 to run your

project, which particular API you want to run, you can

place an environment variable.

• Controller: This is the most important folder for a web

API because you add all API controllers here and it’s

where you write your methods and business logic.

• appSettings.json: All application-related settings are

set here.

• Program.cs: All ASP.NET core-based projects are

ignited from the console application. Program.cs is the

execution point; you can see here the Main method.

This method is connected with startup.cs and is

required to run the app.

• Startup.cs: This file is responsible for all the

configuration methods for the project. The following

sections describe the required methods.

 ConfigureService()
You can find this method in Startup.cs. It’s where you set all dependency

injection-related kinds of stuff. Note that the .NET core comes with a built-

in IOC container concept. Now no third party containers are required.

But what is dependency injection? In an object-oriented programming

world, you create classes, and whenever you want to use these classes, you

create objects. For example, you have a class called Maths:

Chapter 5 Working With real-time Data

109

public class Maths

{

public int Add(inta,int b)

{

int c=a+b;

}

}

For this Maths class, if you want to access its methods, you must create

an object of the Maths class in this way:

var obj = new Maths();

If you want to access this object method, you must call it like

obj.Add(12,3);

So it is related to the object creation thing. If you don’t want to create

objects in this way, you go for IOC. So when you want to invert object

creational stuff to someone else, it’s called the IOC (inversion of control)

pattern, and dependency injection is the way to implement IOC.

With the use of dependency injection, you don’t need to create

objects all the time. This gets taken care of automatically. One way of

implementing dependency injection is to inject your object into the

constructor level. In the upcoming chapters, you will explore this concept

more.

 Configure()
This is one more method you can find in Startup.cs. In this method, you

can set your application request pipeline, which means what comes first

and what comes next. The .NET core is designed to make your application

lightweight so you only call the required dependencies and requests here.

Chapter 5 Working With real-time Data

110

 Routing
In the browser, whenever you want to open a site, you need a URL. Every

URL has a path, like www.apress.com/in/about. In this URL, /in/about

is the address of a particular page. This is helpful for SEO (search engine

optimization) purposes also. Here you don’t require a map to a file, so

routing is a concept where you send the request to a particular URL route.

It will render a result in the form of a response.

 Attribute Routing
In the ASP.NET web API, you can do attribute routing very easily. This

allows you to handle the exact route the user requested. If you open

ValuesController.cs, you can see code like this:

[Route("api/[controller]")]

Here the Route class is decorating the way for the values controller,

which means whenever you want to use the controller in your app, you

have to call an API/controller name and then the method name and so on.

You can also define this:

[Route("api/values")]

Now open ValuesController.cs, as shown in Listing 5-1.

Listing 5-1. ValuesController.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

Chapter 5 Working With real-time Data

http://www.apress.com/in/about

111

namespace WebApp.Controllers

{

[Route("api/[controller]")]

[ApiController]

public class ValuesController : ControllerBase

{

// GET api/values

[HttpGet]

public ActionResult<IEnumerable<string>> Get()

 {

return new string[] { "value1", "value2" };

 }

// GET api/values/5

[HttpGet("{id}")]

public ActionResult<string> Get(int id)

 {

return "value";

 }

// POST api/values

[HttpPost]

public void Post([FromBody] string value)

 {

 }

// PUT api/values/5

[HttpPut("{id}")]

public void Put(int id, [FromBody] string value)

 {

 }

Chapter 5 Working With real-time Data

112

// DELETE api/values/5

[HttpDelete("{id}")]

public void Delete(int id)

 {

 }

}

}

To understand the ValuesController.cs file in more detail, see the

following list:

• ControllerBase: This is the base class for a controller

without view support. ControllerBase provides

many methods that are very useful for handling HTTP

requests.

• ApiController: Controllers decorated with this

attribute are configured with features and behavior

targeted at improving the developer experience for

building APIs. When decorated on an assembly, all

controllers in the assembly will be treated as controllers

with API behavior.

• ActionResult: ActionResult was introduced in ASP.

NET core 2.1; it is the return type of the API controller

actions. With the use of ActionResult<type>, you can

return the kind of value defined in your method.

ActionResult works based on HTTP methods. The following are the

list of methods used in a web API:

• HttpGet: Used to retrieve data. A successful get method

returns 200 as status code (OK).

Chapter 5 Working With real-time Data

113

• HttpPost: Used for inserting/creating records. The Post

method creates new resources and returns a status

code of 201. If there is no result, it gives a status code

of 204 (No Content). If there are any errors or a client

request sends the wrong data, it will return a status

code of 400, which is for a bad request.

• HttpPut: Used for updating records. It returns 201 as a

status code. Here 204 mean no content in the output.

409 status codes are for a conflict.

• HttpDelete: Used for deleting the record. If the

deletion is successful, it will return a status code of 204.

If the resource does not exist, it will return a status code

of 404 (Not Found).

Now it’s time to create a new web API controller. Open Solution Explorer.

Right-click in the Controller folder ➤ Add ➤ Controller (Figure 5- 6).

Figure 5-6. Adding a new controller

Chapter 5 Working With real-time Data

114

Select API Controller ➤ Empty and click the Add button (Figure 5-7).

You will get the screen in Figure 5-8.

Now it’s time to give your controller a name. For this demo, use

StudentController, and click the Add button (Figure 5-8). Once you click

the Add button, you will get the code shown in Listing 5-2.

Listing 5-2. StudentController.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

Figure 5-7. Adding a new API controller

Figure 5-8. Adding an empty API controller

Chapter 5 Working With real-time Data

115

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

namespace WebApp.Controllers

{

 [Route("api/[controller]")]

 [ApiController]

public class StudentController : ControllerBase

 {

 }

}

Now, it’s time to work on database activity, because you are going to

create real-time data, fetch this data, and render it into Highcharts.

 Database Creation
If you already have a database and tables, you can skip this section.

For database creation, choose your database program as per your

requirements, such as SQL Server, Oracle, MySQL, etc. The only thing you

have to remember is the database server name for connecting and the

database name.

In this chapter, I am going to use SQL Server, which comes with Visual

Studio.

If you want to continue, go to View ➤ Open SQL Server Object Explorer

(Figure 5-9).

 1. Open Local Db.

Chapter 5 Working With real-time Data

116

 2. Right-click Databases, and select Add New

Database.

 3. Set the database path and name, and click the OK

button (Figure 5-10).

 4. You can see your database on the list. Open it. It will

be empty, so let’s create a new table.

 5. To create a new table, right-click in front of the

folder of tables. Add new tables (Figure 5-11).

Figure 5-9. SQL Server Object Explorer

Figure 5-10. The Create Database screen (for setting the database
name and path)

Chapter 5 Working With real-time Data

117

 6. Paste the following code and click the Update

button:

CREATE TABLE [dbo].[StudentMarks](

 [Id] INTIDENTITY (1, 1)NOT NULL,

 [Name] NVARCHAR (50) NULL,

 [English] INT NULL,

 [Maths] INT NULL,

 [Science] INT NULL,

PRIMARY KEY CLUSTERED ([Id] ASC)

);

 7. Once you click the Update button, you will see a

new table called StudentMarks.

 8. Now it’s time to add some data. Right-click in front

of the newly created table, and choose View Data

(Figure 5-12).

Figure 5-11. Creating a table through code

Chapter 5 Working With real-time Data

118

 9. Now you will get a row- and column-based screen

to add records, so add your data in the form of rows

and columns. Your table data will be stored. See

Figure 5-13.

Figure 5-12. Adding a record process into a table

Chapter 5 Working With real-time Data

119

Now it’s time to add Entity Framework to your project.

 Adding Entity Framework
Entity Framework is an ORM (object-relational mapping) framework; it

gives users an automated mechanism for fetching and storing data into the

database. Entity Framework is the extended version of ADO.NET.

In this demo, you already have one database and table so this situation

will use a database first approach. This is the approach developers choose

when their database tables and stored procedures are already there, and

they want to consume them.

So for the database first approach, you must run the Scaffold-

DbContext command in the Package Manager console window. Go to

Tools ➤ NuGet Package Manager ➤ Package Manager Console. Run the

following command:

Scaffold-DbContext "Server=(localdb)\MSSQLLocalDB;Database=

SchoolDb;Trusted_Connection=True;" Microsoft.EntityFrameworkCore.

SqlServer -OutputDir Models

Note that you must change the database name, server name, and

trusted connection based on your requirements.

Figure 5-13. Inserting new records into a table

Chapter 5 Working With real-time Data

120

The following is a description of the above command:

• Scaffold-DbContext: This command produces an

Entity Framework model for an existing database.

• Server: Database server name

• Database: The name of the database at the time of

creation, such as SchoolDb

• Trusted_Connection: This is for using a Windows

security trusted connection. If you want to set your

database id and password, you have to remove this.

• –OutputDir: Name of the folder where you want to add

your model classes and DbContext files

Once you run this command, it will generate two files for you in the

Models folder:

• StudentMarks.cs

• StudentDbContext.cs

StudentMarks.cs is the model class for a table. In this demo, you

created only one table, so you will get only one model class. If you create

more tables based on your requirements, you will get more table files.

StudentDbContext.cs is related to table relationship mappings and a

complete model of the database.

Now it’s time to do some coding in the web API to fetch data from the

table. Open StudentController.cs and copy the code in Listing 5-3 into it.

Listing 5-3. StudentController.cs

using System;

using System.Linq;

using Microsoft.AspNetCore.Mvc;

using WebApp.Models;

Chapter 5 Working With real-time Data

121

namespace WebApp.Controllers

{

 [Route("api/[controller]")]

 [ApiController]

public class StudentController : ControllerBase

 {

SchoolDbContext schoolDbContext = new SchoolDbContext();

public ActionResult GetStudents()

{

var query = schoolDbContext.StudentMarks.ToList();

return Ok(query);

 }

}

}

If you look at the code for StudentController.cs, one object is created

for SchoolDbContext, which is responsible for connecting with the DB and

all tables, views, and stored procedures.

SchoolDbContext schoolDbContext = new SchoolDbContext();

Next, there’s a method called GetStudents(). At the time of calling,

this method will fetch the data from the db.

public ActionResult GetStudents()

 {

var query = schoolDbContext.StudentMarks.ToList();

return Ok(query);

 }

So here you create one variable named query and fetch the

StudentMarks list into this variable. After that, there is a return OK(query),

which means this will return an OK Negotiated Content result.

Chapter 5 Working With real-time Data

122

Now, it’s time to run the web API. If you want to make this student

controller method as your default API, it means whenever you run this

project, it runs automatically, as do the below changes.

Go to Solution Explorer ➤ Properties ➤ Open launchSettings.json file

and add the changes in Listing 5-4 to the launchUrl section.

Listing 5-4. launchSettings.json

{

"$schema": "http://json.schemastore.org/launchsettings.json",

"iisSettings": {

"windowsAuthentication": false,

"anonymousAuthentication": true,

"iisExpress": {

"applicationUrl": "http://localhost:54066",

"sslPort": 44396

 }

 },

"profiles": {

"IIS Express": {

"commandName": "IISExpress",

"launchBrowser": true,

"launchUrl": "api/student",

"environmentVariables": {

"ASPNETCORE_ENVIRONMENT": "Development"

 }

 },

"WebApp": {

"commandName": "Project",

"launchBrowser": true,

"launchUrl": "api/student",

Chapter 5 Working With real-time Data

123

"applicationUrl": "https://localhost:5001;http://localhost:5000",

"environmentVariables": {

"ASPNETCORE_ENVIRONMENT": "Development"

 }

 }

 }

}

In the code for launchSettings.json, note the change from launchUrl

to "api/student".

"launchUrl": "api/student",

The above step is totally up to you. If you want to skip this step, you can

run your web API directly and change it in the browser address bar. To run

your web API, go to Solution Explorer and right-click project ➤ Debug ➤

Start new instance. See Figure 5-14.

Chapter 5 Working With real-time Data

124

Once you click Start new instance, it will run your project. Once you

run the project, you will get the output in Figure 5-15.

Figure 5-14. Running the web API in a Visual Studio project

Chapter 5 Working With real-time Data

125

As you can see in Figure 5-15, you got your response in the JSON

format. Your API is running correctly, so you can fetch your data also.

Now it’s time to develop your Angular app to render the API data into

Highcharts.

 Angular-Highcharts UI Application
In Chapter 3, you created one Angular app. Here you’ll continue with the

same project, but you’ll make some changes. So let’s start to work on the

Angular-Highcharts UI application.

 Services in Angular
Services are code that can be accessed from multiple components. A

service is defined for a purpose. If you want to make your code modularize

and reusable, services are the best option. Services in Angular can be

used as a repository. In the repository pattern, each service class is

responsible for one purpose. For example, StudentService is responsible

for student-related functions like AddStudent(), UpdateStudent(),

GetStudentDetails(), etc.

Let's create a new service in Angular. Open the myFirstAngularHighchart

application you created in Chapter 3. Now run the following command in a

Visual Studio code terminal window to create a service:

ng generate service service/studentservice

Figure 5-15. api/student/getStudent returns data in the form of JSON

Chapter 5 Working With real-time Data

126

This command will generate a new service with the name of

studentService in the service folder (here the service folder is

automatically created by this command).

Open studentservice.service.ts from the service folder and you

will get the code in Listing 5-5.

Listing 5-5. studentservice.service.ts

import { Injectable } from '@angular/core';

@Injectable({

providedIn: 'root'

})

export class StudentserviceService{

constructor() { }

}

Let’s review the code. In the first line, you can see an Injectable

decorator. For this, we are using import for Injectable. import { Injectable }

from ‘@angular/core’.

You can see in the @Injectable decorator I made as a root injector

(providedIn: ‘root’), which means this particular service is accessible from

any component or any service level for this application.

Now you will create one model class to bind the data from the web API

response. To create a model class, run the following command in Visual

Studio:

ng generate class model/marksModel

This command will generate one model class for you. Now paste the

code in Listing 5-6 into the file.

Chapter 5 Working With real-time Data

127

Listing 5-6. marks-model.ts

1. export class MarksModel {

2. english : string;

3. maths:string;

4. science:string;

5. name: string;

6. }

In this code, there’s one class called MarksModel and four properties.

You can add more properties based on your requirements.

Now go back to the Studentservice.service.ts class. You will send a

request to the web API project and get a response in the MarksModel class.

Copy the complete code in Listing 5-7 into studentservice.service.ts.

Listing 5-7. studentservice.service.ts

1. import { Injectable } from '@angular/core';

2. import { HttpClient} from '@angular/common/http';

3. import {MarksModel} from '../model/marks-model';

4. import { Observable } from 'rxjs';

5. @Injectable({

6. providedIn: 'root'

7. })

8. export class StudentserviceService {

9. constructor(private http: HttpClient) {

10. console.log('StudentserviceService called');

11. }

12. Get(url):Observable<MarksModel[]>{

13. return this.http.get<MarksModel[]>(url);

14. }

15. }

Chapter 5 Working With real-time Data

128

Now let’s understand the code. Here you add HttpClient. The

HttpClient module is required for sending the request to the web API, so

you add the following line:

import {HttpClient} from '@angular/common/http'

In the next line, you call MarksModel; as you know, you just created one

Model class. In the next line, you call Observable from RxJs.

Observable helps your application pass messages between publishers

and subscribers. Here a method never executes until consumers subscribe

to it. Observable can handle any type of value like messages, literals,

events, etc.

Observable is used to retrieve data. Observable helps handle

asynchronous data, such as data coming from a back-end database or

service. Here events are treated as a collection.

RxJs stands for Reactive Extensions for JavaScript, and it is used for

asynchronous programming using Observable. With RxJs you can work

on the server side with Node.js or on the browser side. Here asynchronous

means you will call your method and register for notifications when results

are available, so with this approach, your web page will never become

unresponsive.

Now look at the constructor level. You inject HttpClient, (this is the

best example of dependency injection in Angular) so you can send a get

request to the web API.

constructor(private http: HttpClient) {

 }

Then you have a Get method where you send the http.get request.

There is a Get(url) method with one parameter, url. This url comes from

the caller, which is a component in this application.

Once this method gets its url, it will send a http.get request to the

web API. The method return type is MarksModel[] array because from a

web API you get data in the form of a collection, which is why you’re using

Chapter 5 Working With real-time Data

129

an array here. In this case, the URL will be https://localhost:5001/api/

student.

(Note: Your port number may change, so please provide the proper
port number. Refer to Figure 5-15.)

In Figure 5-15, you can see the URL of https://localhost:5001/api/

student. So if you want to access the student API, you have to call this

particular URL.

Get(url):Observable<MarksModel[]>{

return this.http.get<MarksModel[]>(url);

 }

Now it’s time to call httpClient into the app.module.ts level, so add

HttpClientModule because it’s required to access the web API. Copy the

code in Listing 5-8 into the app.module.ts file.

Listing 5-8. app.module.ts

1. import { BrowserModule } from '@angular/platform-browser';

2. import { NgModule } from '@angular/core';

3. import {HttpClientModule} from '@angular/common/http';

4. import { AppRoutingModule } from './app-routing.module';

5. import { AppComponent } from './app.component';

6. import { HighchartsChartComponent } from 'highcharts-

angular';

7. @NgModule({

8. declarations: [

9. AppComponent,

10. HighchartsChartComponent,

11.],

12. imports: [

Chapter 5 Working With real-time Data

130

13. BrowserModule,

14. HttpClientModule,

15. AppRoutingModule

16.],

17. //providers: [StudentserviceService],

18. bootstrap: [AppComponent]

19. })

20. export class AppModule { }

Now, it’s time to work on the component level. Copy the code in

Listing 5-9 into the app.component.ts file.

Listing 5-9. app.component.ts

1. import { Component } from '@angular/core';

2. import { MarksModel } from './model/marks-model';

3. import { StudentserviceService } from './service/

studentservice.service';

4. import * as Highcharts from 'highcharts';

5. @Component({

6. selector: 'app-root',

7. templateUrl: './app.component.html',

8. styleUrls: ['./app.component.css']

9. })

10. export class AppComponent {

11. studentModel: MarksModel[];

12. url: string = 'https://localhost:5001/api/student';

13. studentNames: any;

14. constructor(private studentservice: StudentserviceService) {

15. }

16. public options: any = {

Chapter 5 Working With real-time Data

131

17. chart: {

18. type: 'line',

19. },

20. title: {

21. text: 'Real Time Data Example'

22. },

23. credits: {

24. enabled: false

25. },

26. xAxis: {

27. categories: ['English', 'Maths', 'Science']

28. },

29. yAxis: {

30. title: {

31. text: 'Marks'

32. },

33. },

34. series: [],

35. }

36. ngOnInit() {

37. this.getApiResponse(this.url).then(

38. data => {

39. const subjectMarks = [];

40. const names = [];

41. data.forEach(row => {

42. consttemp_row = [

43. row.english,

44. row.maths,

45. row.science

46.];

47. names.push(row.name);

Chapter 5 Working With real-time Data

132

48. subjectMarks.push(temp_row);

49. });

50. this.studentModel = subjectMarks;

51. this.studentNames = names;

52. var dataSeries = [];

53. for (var i = 0; i<this.studentModel.length; i++) {

54. dataSeries.push({

55. data: this.studentModel[i],

56. name: this.studentNames[i]

57. });

58. }

59. this.options.series = dataSeries;

60. Highcharts.chart('container', this.options);

61. },

62. error => {

63. console.log('Something went wrong.');

64. })

65. }

66. getApiResponse(url) {

67. return this.studentservice.Get(this.url)

68. .toPromise().then(res => {

69. return res;

70. });

71. }

72. }

Let’s try to understand Listing 5-9 line by line. This code is an

enhancement of the component you developed in Chapters 3 and 4. You

import MarksModel and studentserviceService for reference.

Chapter 5 Working With real-time Data

133

import { MarksModel } from './model/marks-model';

import { StudentserviceService } from './service/

studentservice.service';

Next are three variables: studentModel, url, and studentNames.

studentModel is for fetching marks data from service, url is for sending the

request to the web API, and studentNames for collecting names.

studentModel: MarksModel[];

 url: string = 'https://localhost:5001/api/student';

this.studentNames = names;

Then you inject (an example of dependency injection)

studentserviceService into a constructor.

constructor(private studentservice: StudentserviceService) {

 }

Then you write code for Highcharts, where you define all basic

properties for the chart in the options.

In the last section of code, you create one method with the name of

getApiResponse(url); this method is responsible for sending the request

to studentService Get() method. See the following code:

getApiResponse(url) {

returnthis.studentservice.Get(this.url)

 .toPromise().then(res => {

return res;

 });

 }

Now let’s talk about the ngOnInit() function. This function starts to

run in the Angular lifecycle when the component load completes, so you

can say it’s a page load kind of event method. Once app.component.ts

loads, this method will start to execute.

Chapter 5 Working With real-time Data

134

ngOnInit() {

this.getApiResponse(this.url).then(

data => {

const subjectMarks = [];

const names = [];

data.forEach(row => {

consttemp_row = [

row.english,

row.maths,

row.science

];

names.push(row.name);

subjectMarks.push(temp_row);

 });

this.studentModel = subjectMarks;

this.studentNames = names;

var dataSeries = [];

for (var i = 0; i<this.studentModel.length; i++) {

dataSeries.push({

data: this.studentModel[i],

name: this.studentNames[i]

 });

 }

this.options.series = dataSeries;

Highcharts.chart('container', this.options);

 },

error => {

console.log('Something went wrong.');

 })

 }

Chapter 5 Working With real-time Data

135

In the ngOnInit() code, you call the getApiResponse(url) method. So

this method calls studentService and gets a response with the use of the

array.ForEach loop, storing records one by one into temp_row variable.

In the next step, you push this list into the studentNames and

studentMarks array type variables. In the dataSeries, which is the

most important part for constructing a chart, you define the data and

name properties, so the data property will construct in this way. See the

following code:

[{

name: 'StudentName1',

data: [marks1, marks2, marks3]

 }, {

name: 'StudentName2',

data: [marks1, marks2, marks3]

 }, {

name: 'StudentName3',

data: [marks1, marks2, marks3]

 }, {

name: 'StudentName4',

data: [marks1, marks2, marks3]

}],

And then you define options.series, and in the next line, call

Highcharts.chart to construct a 'container <div>'.

Now it’s time to write code into app.component.html. So copy the code

in Listing 5-10 into the app.component.html file.

Listing 5-10. app.component.html

1. <div class="content" id="container" role="main">

2. </div>

3. <router-outlet></router-outlet>

Chapter 5 Working With real-time Data

136

Now type ng serve and press Enter. Type localhost:4200 in your

browser and press Enter. At this point, you will get no output. Press F12 to

troubleshoot this problem. Once you press F12 in your browser, you will

get the screen in Figure 5-16.

Figure 5-16 shows this as an issue of CORS, which stands for cross-

origin resource sharing. Whenever you send the request in two different

resources or projects, you get this problem.

Here two different projects mean one project for Web API and one

project for an Angular app. So CORS is a kind of approach that allows

restricted resources on a web page.

If you see the browser error, it clearly says Access to XMLHttpRequest

at http://localhost:5001/api/student (this URL is from the web API project)

from origin http://localhost:4200 (this is from the Angular app) has been

blocked by CORS policy because no access-control-allow-origin header is

present on the requested resource.

So for the requested resource, which is the web API, you have to add

a CORS policy. For this, you permit localhost:4200 because this is your

Angular app URL. So stop your web API project and open Startup.cs file

and change the code.

First, you change into the ConfigureService(IServiceCollection

service) method. Change the same in your code also.

public void ConfigureServices(IServiceCollection services)

{

services.AddCors();

services.AddMvc()

.SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

}

Figure 5-16. Press F12 to troubleshoot CORS issues

Chapter 5 Working With real-time Data

137

Add the services.AddCors() method as the first step. In the next part,

change your code to the Configure() method.

public void Configure(IApplicationBuilder app,

IHostingEnvironment env)

 {

if (env.IsDevelopment())

 {

app.UseDeveloperExceptionPage();

 }

else

 {

app.UseHsts();

 }

app.UseCors(

options =>options.WithOrigins("http://localhost:4200").

AllowAnyMethod()

);

app.UseHttpsRedirection();

app.UseMvc();

 }

You add app.UseCors, and in the lambda expression, you add a URL

(you can use any URL based on your requirements).

For your complete reference, Listing 5-11 contains the full code of

Startup.cs. If you face any issue, paste in the entire code of Startup.cs.

Chapter 5 Working With real-time Data

138

Listing 5-11. Startup.cs

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

namespace WebApp

{

public class Startup

{

public Startup(IConfiguration configuration)

 {

 Configuration = configuration;

 }

public IConfiguration Configuration { get; }

// This method gets called by the runtime. Use this method to

add services to the container.

public void ConfigureServices(IServiceCollection services)

{

services.AddCors();

services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.

Version_2_1);

}

// This method gets called by the runtime. Use this method to

configure the HTTP request pipeline.

public void Configure(IApplicationBuilder app,

IHostingEnvironmentenv)

 {

Chapter 5 Working With real-time Data

139

if (env.IsDevelopment())

 {

app.UseDeveloperExceptionPage();

 }

else

 {

app.UseHsts();

 }

app.UseCors(

options =>options.WithOrigins("http://localhost:4200").

AllowAnyMethod()

);

app.UseHttpsRedirection();

app.UseMvc();

 }

 }

}

Now run your Web API project again and run the Angular app. You will

get the output shown in Figure 5-17.

Figure 5-17. Real-time line chart with a back-end web API

Chapter 5 Working With real-time Data

140

Current data is coming from a back-end service. To call a back-end

service, it’s not necessary to call the web API. You can send the request to

a PHP service or any web service you prefer; all you need is a URL. If your

URL is correct and if you know the response type, you can fetch data very

easily.

 Events in Highcharts
Events are the essential part of an application. With the use of these events,

the app can react to actions like click events, mouse-over events, load

events, legendItemClicks, etc. In this section, I will talk about events. An

event can be generated in Highcharts. Through an event property, let’s see

an example. This example continues the last example. Once the user clicks

the chart lines series, it will show an alert with the student subject, marks,

and name. Copy the code in Listing 5-12 into the app.component.ts file.

Listing 5-12. app.component.ts

import { Component } from '@angular/core';

import { MarksModel } from './model/marks-mode';

import { StudentserviceService } from './services/

studentservice.service';

import * as Highcharts from 'highcharts';

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

studentModel: MarksModel[];

Chapter 5 Working With real-time Data

141

url: string = 'https://localhost:5001/api/student';

studentNames: any;

constructor(private studentservice: StudentserviceService) {

 }

public options: any = {

chart: {

type: 'line',

 },

title: {

text: 'Real Time Data Example'

 },

credits: {

enabled: false

 },

xAxis: {

categories: ['English', 'Maths', 'Science'],

 },

yAxis: {

title: {

text: 'Marks'

 },

 },

plotOptions: {

series:{

 }

 },

series: [],

 }

Chapter 5 Working With real-time Data

142

ngOnInit() {

this.getApiResponse(this.url).then(

data => {

const subjectMarks = [];

const names = [];

data.forEach(row => {

const temp_row = [

row.english,

row.maths,

row.science

];

names.push(row.name);

subjectMarks.push(temp_row);

 });

this.studentModel = subjectMarks;

this.studentNames = names;

var dataSeries = [];

for (var i = 0; i<this.studentModel.length; i++) {

dataSeries.push({

data: this.studentModel[i],

name: this.studentNames[i],

 });

 }

this.options.series = dataSeries;

this.options.plotOptions.series= {

point: {

events: {

click: function () {

alert('Name: '+this.series.name+', Subject: ' +

this.category + ', Marks: ' + this.y);

Chapter 5 Working With real-time Data

143

 }

 }

 }

 }

Highcharts.chart('container', this.options);

 },

error => {

console.log('Something went wrong.');

 })

 }

getApiResponse(url) {

return this.studentservice.Get(this.url)

 .toPromise().then(res => {

return res;

 });

 }

}

Run Listing 5-12’s code with ng serve, and you will get the output

in Figure 5-18. Click any series and you will get an alert with the name,

subject, and marks of a student.

Figure 5-18. Chart series with a plotOptions series click event

Chapter 5 Working With real-time Data

144

Now, let’s try to understand Listing 5-12’s code. As you know, this is

the continuation of the last demo, but here you add a few new things to

generate click events. First, you add the following code into options area

for creating Highcharts:

plotOptions: {

series:{

 }

 }

Then in the ngOnInit() method area, you add the following code:

this.options.plotOptions.series= {

point: {

events: {

click: function () {

alert('Name: ' + this.series.name +', Subject: ' + this.

category + ', Marks: ' + this.y);

}

}

}

}

In the plot options series, you add a point, and then you add events,

such as a click event. For this click event, you have the method, so once a

user clicks a series point, this function will activate.

So after clicking the series, it will display the name of a student,

subject, and marks in an alert box (Figure 5-18).

 Drilldown Event
A drilldown event fires when you click the chart, and you will get the detailing

of that particular series. You can add this detailing into any chart with the

use of the drilldown event. In the upcoming example, I am going to show

Chapter 5 Working With real-time Data

145

you three series of types of software like operating systems, programming

languages, and browsers. When the user clicks one series, it will show how

much that product is used worldwide. See the code in Listing 5-13 (add this

code to app.component.ts).

Listing 5-13. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

import Drilldown from 'highcharts/modules/drilldown';

Drilldown(Highcharts);

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

chart: {

type: 'column',

events: {

drilldown: function (e) {

if (!e.seriesOptions) {

var chart = this,

drilldowns = {

ProgrammingLanguage: {

name: 'ProgrammingLanguage',

Chapter 5 Working With real-time Data

146

data: [

 ['C#', 60],

 ['Java', 40]

]

 },

OperatingSystem: {

name: 'OperatingSystem',

data: [

 ['Windows', 75],

 ['Dos', 5],

 ['Unix', 20]

]

 },

 Browser: {

name: 'Browser',

data: [

 ['Chrome', 60],

 ['IE', 10],

 ['FireFox', 30]

]

 }

 },

series = drilldowns[e.point.name];

 // Show the loading label

chart.showLoading('drilldown event called, Loading ...');

setTimeout(function () {

chart.hideLoading();

chart.addSeriesAsDrilldown(e.point, series);

 }, 500);

 }

Chapter 5 Working With real-time Data

147

 }

 }

 },

title: {

text: 'Software Products used Worldwide in Percentage'

 },

legend: {

enabled: false

 },

xAxis: {

type: 'category'

 },

plotOptions: {

series: {

borderWidth: 0,

dataLabels: {

enabled: true

 }

 }

 },

series: [{

name: 'Products',

colorByPoint: true,

data: [{

name: 'Browser',

y: 3,

drilldown: true

 }, {

name: 'OperatingSystem',

y: 3,

Chapter 5 Working With real-time Data

148

drilldown: true

 }, {

name: 'ProgrammingLanguage',

y: 2,

drilldown: true

 }]

 }],

drilldown: {

series: []

 }

 };

}

Let’s go through the code. As you know, to work on the drilldown

feature, you must import the Drilldown dependency.

import Drilldown from 'highcharts/modules/drilldown';

Drilldown(Highcharts);

In the next step, you must call a series.

series: [{

name: 'Products',

colorByPoint: true,

data: [{

name: 'Browser',

y: 3,

drilldown: true

 }, {

name: 'OperatingSystem',

y: 3,

drilldown: true

 }, {

Chapter 5 Working With real-time Data

149

name: 'ProgrammingLanguage',

y: 4,

drilldown: true

 }]

 }],

Here you use a name property. This name becomes the id for that

particular series for the detailing part, because in a drilldown you must

show details of that specific chart. Now, you add the events method.

events: {

drilldown: function (e) {

if (!e.seriesOptions) {

var chart = this,

drilldowns = {

ProgrammingLanguage: {

name: 'ProgrammingLanguage',

data: [

 ['C#', 60],

 ['Java', 40]

]

 },

OperatingSystem: {

name: 'OperatingSystem',

data: [

 ['Windows', 75],

 ['Dos', 5],

 ['Unix', 20]

]

 },

Chapter 5 Working With real-time Data

150

 Browser: {

name: 'Browser',

data: [

 ['Chrome', 80],

 ['IE', 30],

 ['FireFox', 50]

]

 }

 },

series = drilldowns[e.point.name];

 // Show the loading label

chart.showLoading('drilldown event called Loading ...');

setTimeout(function () {

chart.hideLoading();

chart.addSeriesAsDrilldown(e.point, series);

 }, 500);

 }

 }

 }

Note that the name property is the same as the series, because in the

series variable, you call drilldownsmethod(). This array provides the

details of that particular series.

series = drilldowns[e.point.name];

Now copy the code in Listing 5-14 into the app.component.html file.

Listing 5-14. app.component.html

<div class="content" role="main">

<highcharts-chart [Highcharts]="highcharts"

[options]="chartOptions"

Chapter 5 Working With real-time Data

151

style="width: 100%; height: 400px; display: block;">

</highcharts-chart>

</div>

<router-outlet></router-outlet>

Type ng serve into a terminal window and your code will start

running. See Figure 5-19.

Now click in the chart. You will get details of the particular series you

clicked. In Figure 5-20, there is a button called <Back to Products>. Once

you click this button, it will redirect to the main chart.

Figure 5-20. Drilldown event detail screen

Figure 5-19. Bar chart with drilldown event

Chapter 5 Working With real-time Data

152

 LegendItem Click Event
The LegendItem click event fires once you click a legend. This action is

passed to the method. You set visibility to true or false in a toggle way.

See the Listing 5-15 code.

Listing 5-15. app.component.ts

plotOptions: {

series: {

events: {

legendItemClick: function () {

var visibility = this.visible ? 'visible' : 'hidden';

if (!confirm('The series is currently ' +

visibility + '. Want to change it ?'))

 {

return false;

 }

 }

 }

 }

 },

As you can see in the Listing 5-15 code, in the plotOptions.series

you add events as legendItemClick().

Once the user clicks the legend, it will check whether the legend for

this particular series is visible or not. The message will generate based on

the visibility of a series.

If the user clicks the OK button, the action will occur. If the user

clicks the Cancel button, nothing will happen. Now copy the full code in

Listing 5-16 into the app.component.ts file.

Chapter 5 Working With real-time Data

153

Listing 5-16. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

chart:{

type:'line'

 },

title: {

text: 'Industry Growth by Sector, 2014-2019'

 },

xAxis: {

categories: [2014, 2015, 2016, 2017, 2018, 2019],

 },

yAxis: {

title: {

text: 'Revenue Generated in million'

 }

 },

legend: {

layout: 'vertical',

align: 'right',

verticalAlign: 'middle'

 },

Chapter 5 Working With real-time Data

154

plotOptions: {

series: {

events: {

legendItemClick: function () {

var visibility = this.visible ? 'visible' :

'hidden';

if (!confirm('The series is currently ' +

visibility + '. Want to change that ?'))

 {

return false;

 }

 }

 }

 }

 },

series: [{

name: 'IT',

data: [400, 489, 354, 180, 785, 293]

 }, {

name: 'Cement',

data: [180, 100, 50, 89, 105,206]

 }, {

name: 'Pharmacy',

data: [350, 400, 250, 400, 550,480]

 }, {

name: 'Agriculture',

data: [190, 210, 250, 280, 310,500]

 }],

 }

}

Chapter 5 Working With real-time Data

155

Run the Listing 5-16 code with ng serve and you will get the output

shown in Figure 5-21.

 CheckBoxClick Event
The CheckBoxClick() event fires once a user clicks the checkbox visible

next to the legend section of a chart. A Checkboxclick event will fire once

user Checked or unchecked. You can write your logic based on your

requirements. See Listing 5-17.

In this example, once the user clicks the legend checkbox, based on

whether it is checked or unchecked, it will display a message in the chart

area about the particular series.

Listing 5-17. app.component.ts

plotOptions: {

series: {

events: {

checkboxClick: function (event) {

var text;

Figure 5-21. LegendItemClick event using HighCharts

Chapter 5 Working With real-time Data

156

if(event.checked==true)

 {

text = 'The checkbox is now checked and Series Label is ' +

this.name;

 }

else

 {

text = 'The checkbox is now unchecked and Series Label is ' +

this.name;

 }

if (!this.chart.lbl) {

this.chart.lbl = this.chart.renderer.label(text, 100, 70)

 .attr({

padding: 10,

r: 5,

fill: Highcharts.getOptions().colors[0],

zIndex: 5

 })

 .css({

color: 'white'

 })

 .add();

 } else {

this.chart.lbl.attr({

text: text

 });

 }

 }

 },

showCheckbox: true

 }

 },

Chapter 5 Working With real-time Data

157

In Listing 5-17, there is a property called showcheckbox: true. This is

the first step to show a checkbox next to a legend.

In the next part, in the event section, you call the checkboxclick()

method event. In event.checked, you get a value of true or false. If the

checkbox is checked, you will get true; otherwise false. Based on that,

I have written the logic.

For the full code, copy Listing 5-18’s code into the app.component.ts

file.

Listing 5-18. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

chart:{

type:'line'

 },

title: {

text: 'Industry Growth by Sector, 2014-2019'

 },

xAxis: {

categories: [2014, 2015, 2016, 2017, 2018, 2019],

 },

Chapter 5 Working With real-time Data

158

yAxis: {

title: {

text: 'Revenue Generated in million'

 }

 },

legend: {

layout: 'vertical',

align: 'right',

verticalAlign: 'middle'

 },

plotOptions: {

series: {

events: {

checkboxClick: function (event) {

var text;

if(event.checked==true)

 {

text = 'The checkbox is now checked and Series Label is ' +

this.name;

 }

else

 {

text = 'The checkbox is now unchecked and Series Label is ' +

this.name;

 }

if (!this.chart.lbl) {

this.chart.lbl = this.chart.renderer.label(text, 100, 70)

 .attr({

padding: 10,

r: 5,

fill: Highcharts.getOptions().colors[0],

Chapter 5 Working With real-time Data

159

zIndex: 5

 })

 .css({

color: 'white'

 })

 .add();

 } else {

this.chart.lbl.attr({

text: text

 });

 }

 }

 },

showCheckbox: true

 }

 },

series: [{

name: 'IT',

data: [400, 489, 354, 180, 785, 293]

 }, {

name: 'Cement',

data: [180, 100, 50, 89, 105,206]

 }, {

name: 'Pharmacy',

data: [350, 400, 250, 400, 550,480]

 }, {

name: 'Agriculture',

data: [190, 210, 250, 280, 310,500]

 }],

 }

}

Chapter 5 Working With real-time Data

160

Once you run the code with ng serve, you will get the output seen in

Figure 5-22.

 Highcharts Wrapper for .NET
The Highcharts wrapper is an API that is available for almost all significant

frameworks like Highcharts IOS, Highcharts Android, Highcharts Angular,

Highcharts React, Highcharts React Native, and HighchartsVue (for Vue.js).

In this section, I will talk about the Highcharts wrapper for .NET; this is

an API that provides full support for the .NET framework. Now developers

can write code without JavaScript. If you are an ASP.NET MVC developer

and you want to develop your charting without JavaScript, you can build

through the Highcharts API.

In this section, I will show you two examples: a LineSeries chart and

GaugeChart with a Highcharts wrapper.

 LineSeries Chart with a Highcharts Wrapper
Follow these steps:

Step 1: Create an ASP.NET MVC application through

Visual Studio.

Figure 5-22. CheckboxClick event using HighCharts

Chapter 5 Working With real-time Data

161

Step 2: Go to Solution Explorer. Right-click the MVC

project and select Manage NuGet packages from the

menu. See Figure 5-23.

Step 3: Click Browse, search Highsoft.Web.Mvc.

Charts ➤ Select Highsoft.Web.Mvc, and click the

Install button (Figure 5-23).

Step 4: Go to Solution Explorer. Open Dependencies

➤ NuGet section. You can see Highsoft.Web.Mvc.

Step 5: Go to the controller, and paste the code in

Listing 5-19 into the Index method. For this demo,

use HomeController.cs.

Figure 5-23. Installing the Highcharts API using NuGet in Visual
Studio

Chapter 5 Working With real-time Data

162

Listing 5-19. HomeController.cs

using Microsoft.AspNetCore.Mvc;

using Highsoft.Web.Mvc.Charts;

using System.Collections.Generic;

namespace MvcApp.Controllers

{

public class HomeController : Controller

 {

public IActionResult Index()

 {

 List<double> marketingDepartmentCollection = new

List<double>{ 49.9, 51.5, 32.0, 82.0, 75.0, 66.0, 32.0,

25.0, 35.4, 65.1, 58.6, 34.4 };

 List<double> CsDepartmentCollection = new List<double>{

40.5, 34.5, 84.4, 39.2, 23.2, 45.0, 55.6, 18.5, 26.4, 14.1,

23.6, 84.4 };

 List<LineSeriesData> marketingData = new

List<LineSeriesData>();

 List<LineSeriesData> CsData = new List<LineSeriesData>();

marketingDepartmentCollection.ForEach(p =>marketingData.

Add(newLineSeriesData { Y = p }));

CsDepartmentCollection.ForEach(p =>CsData.Add(newLineSeriesData

{ Y = p }));

ViewData["marketingData"] = marketingData;

ViewData["CsData"] = CsData;

return View();

 }

 }

}

Chapter 5 Working With real-time Data

163

In this code, you see lists for the Marketing and Computer Science

departments, and you develop a line chart.

So for this demo, you use a LineSeriesData class. If you want to

create an area chart or pie chart, you must call the related classes like

AreaSeriesData or PieSeriesData.

A later section will talk about series data classes for the Highcharts

API. For this LineSeriesData, it gets the collection in the form of series

data; you send this to the ViewBag collection memory. ViewBag is required

when you want to transmit your values from the controller to a view. Now

it will work on the UI side, so open View folder ➤ Home folder ➤ index.

cshtml and paste in the code seen in Listing 5-20.

Listing 5-20. index.cshtml

<script src="https://code.highcharts.com/highcharts.js">

</script>

@using Highsoft.Web.Mvc.Charts

@using Highsoft.Web.Mvc.Charts.Rendering;

@{var chartOptions = new Highcharts

 {

 Title = new Title

 {

 Text = "Monthly Sales Chart Department Wise",

 },

 Legend = new Legend

 {

 Layout = LegendLayout.Vertical,

 Align = LegendAlign.Right,

 VerticalAlign = LegendVerticalAlign.Middle,

 BorderWidth = 0

 },

Chapter 5 Working With real-time Data

164

 Subtitle = new Subtitle

 {

 Text = "Year 2018",

 },

XAxis = new List<XAxis>

{

newXAxis

 {

 Categories = new List<string> { "Jan", "Feb", "Mar", "Apr",

"May", "Jun","Jul", "Aug", "Sep", "Oct", "Nov", "Dec" },

 }

 },

YAxis = new List<YAxis>

{

new YAxis

 {

 Title = newYAxisTitle

 {

 Text = "Sales in Million $"

 },

PlotLines = new List<YAxisPlotLines>

{

new YAxisPlotLines

 {

 Value = 0,

 Width = 1,

Color = "red"

 }

 }

 }

 },

Chapter 5 Working With real-time Data

165

 Series = new List<Series>

{

new LineSeries

 {

 Name = "Marketing Department",

 Data = @ViewData["marketingData"] as

List<LineSeriesData>

 },

new LineSeries

 {

 Name = "Computer Science Department",

 Data = @ViewData["CsData"] as

List<LineSeriesData>

 },

 }

 };

 chartOptions.ID = "chart";

var renderer = new HighchartsRenderer(chartOptions);

}

@Html.Raw(renderer.RenderHtml())

As you can see in the above code, no JavaScript code is required.

You work only with Razor and C# based classes code. Here you have

one variable called chartOptions, and this variable is called to render

Highcharts:

var renderer = new HighchartsRenderer(chartOptions);

Once you run the above code using Visual Studio, you will get the

output seen in Figure 5-24.

Chapter 5 Working With real-time Data

166

 Gauge Series Chart with a Highcharts Wrapper
For developing a gauge, the GaugeSeriesData class is required. For more

understanding, copy Listing 5-21 code into the HomeController.cs file.

Listing 5-21. HomeController.cs

using Microsoft.AspNetCore.Mvc;

using Highsoft.Web.Mvc.Charts;

using System.Collections.Generic;

namespace MvcApp.Controllers

{

public class HomeController : Controller

 {

public IActionResult Index()

 {

List<GaugeSeriesData> gaugeData = new List<GaugeSeriesData>();

gaugeData.Add(newGaugeSeriesData { Y = 60 });

ViewData["gaugeData"] = gaugeData;

Figure 5-24. Highcharts API demo with the .NET Framework

Chapter 5 Working With real-time Data

167

return View();

 }

 }

}

In Listing 5-21, you use the GaugeSeriesData class. As you know, in

a gauge chart you must set a starting value, so here the value is 60. So

whenever you run this code, the starting value will be 60. The next part is

the UI. Copy the code in Listing 5-22 into index.cshtml.

Listing 5-22. index.cshtml

<script src="https://code.highcharts.com/highcharts.js">

</script>

<script src="https://code.highcharts.com/highcharts-more.js">

</script>

@using Highsoft.Web.Mvc.Charts

@using Highsoft.Web.Mvc.Charts.Rendering

@{var chartOptions = new Highcharts

 {

 Chart = new Highsoft.Web.Mvc.Charts.Chart

 {

PlotBorderColor = null,

PlotBackgroundImage = null,

PlotBorderWidth = 0,

PlotShadow = new Shadow

 {

 Enabled = false

 }

 },

Chapter 5 Working With real-time Data

168

 Title = new Title

 {

 Text = "Speedometer"

 },

 Pane = new Pane

 {

StartAngle = -150,

EndAngle = 150

 },

YAxis = new List<YAxis>

 {

newYAxis

 {

 Min = 0,

 Max = 200,

MinorTickWidth = 1,

MinorTickLength = 10,

MinorTickPosition = YAxisMinorTickPosition.Inside,

MinorTickColor = "#666",

TickPixelInterval = 30,

TickWidth = 2,

TickPosition = YAxisTickPosition.Inside,

TickLength = 10,

TickColor = "#666",

 Labels = new YAxisLabels

 {

 Step = 2

 },

 Title = new YAxisTitle

 {

 Text = "km/h"

 },

Chapter 5 Working With real-time Data

169

PlotBands = new List<YAxisPlotBands>

 {

newYAxisPlotBands

 {

 From = 0,

 To = 120,

Color = "#55BF3B"

 },

new YAxisPlotBands

 {

 From = 120,

 To = 150,

 },

new YAxisPlotBands

 {

 From = 150,

 To = 200,

Color = "#DF5353"

 }

 }

 }

 },

 Series = new List<Series>

{

newGaugeSeries

 {

 Name = "Speed",

 Data = @ViewData["gaugeData"] as

List<GaugeSeriesData>,

Chapter 5 Working With real-time Data

170

 Tooltip = newGaugeSeriesTooltip

 {

ValueSuffix = " km/h"

 }

 }

 }

 };

 chartOptions.ID = "chart";

var renderer = new HighchartsRenderer(chartOptions);

}

@Html.Raw(renderer.RenderHtml())

<script type="text/javascript">

window.setTimeout(function () {

var chart = Highcharts.charts[0];

if (!chart.renderer.forExport) {

setInterval(function () {

var point = chart.series[0].points[0],

newVal,

inc = Math.round((Math.random() - 0.7) * 30);

newVal = point.y + inc;

if (newVal< 0 || newVal> 200) {

newVal = point.y - inc;

 }

point.update(newVal);

 }, 1000);

 }

 }, 1000);

</script>

Chapter 5 Working With real-time Data

171

In Listing 5-22, you create a gauge chart using the Highcharts class.

After that, you use JavaScript code to generate a gauge event using the

window.setTimeout, so the value of the gauge chart is changed every

second.

window.setTimeout(function () {

var chart = Highcharts.charts[0];

if (!chart.renderer.forExport) {

setInterval(function () {

var point = chart.series[0].points[0],

newVal,

inc = Math.round((Math.random() - 0.7) * 30);

newVal = point.y + inc;

if (newVal< 0 || newVal> 200) {

newVal = point.y - inc;

 }

point.update(newVal);

 }, 1000);

 }

 }, 1000);

Run the above code and you will get the output seen in Figure 5-25.

The meter changes every second.

Chapter 5 Working With real-time Data

172

 SeriesData Classes
The Highcharts API wrapper is available for different frameworks, and you

have to install those dependencies based on your requirements. Refer to

Table 5-1.

Figure 5-25. Gauge chart with a Highcharts wrapper API for .NET

Chapter 5 Working With real-time Data

173

 Summary
In this chapter, you saw how to develop charting with the use of a web API

and the Angular service with the REST pattern. You can send the request

to any back-end service with an HTTP client; you just need a URL and its

return type. You can add events on your charting script very easily; events

are executed in the browser once any related action happens, such as a

click event, mouse over, mouse up, checked legend click, etc.

The next chapter will talk about themes in Highcharts and additional

features provide by Highcharts to make your dashboard more interactive.

Table 5-1. Chart Type SeriesData Classes for Working with a

Highcharts API in the .NET Framework

Class Name Use

LineSeriesData For drawing line-type charts and generating a series for

line components. You already saw an example of this.

AreaSeriesData For generating an area-type chart with series data for an

area chart

SplineSeriesData For generating a spline-type chart with series data for a

spline chart

BarSeriesData For generating a bar-type chart with series data for a

bar chart

ColumnSeriesData For generating a column-type chart with series data for

a column chart

PieSeriesData For generating a pie-type chart with series data for the

pie chart

ScatterSeriesData For generating a scatter-type chart with series data for a

scatter chart

Chapter 5 Working With real-time Data

175© Sourabh Mishra 2020
S. Mishra, Practical Highcharts with Angular,
https://doi.org/10.1007/978-1-4842-5744-9_6

CHAPTER 6

Themes and
Additional Features
of Highcharts
In this chapter, you are going to learn about themes and styles and

additional features of Highcharts. In this chapter, you will also see how to

export your charts in different formats. You’ll also learn about 3D charting

and Highcharts Gantt. Highcharts Gantt is newly introduced by the

Highcharts team. These features will make your dashboard rich and more

interactive, so let’s begin this chapter.

 Themes in Highcharts
In Computer Science, themes are a set of packages of colors and graphical

representations. In Highcharts, you can define your theme. Here’s how to

set styles and themes for Highcharts:

• Axis: You can add styles to the x-axis and the y-axis.

• alternateGridColor: You can set this property for

the x-axis and the y-axis. This will add a color band

alternatively across the chart plot base on the axis.

See Listing 6-1.

176

Listing 6-1. app.component.ts

yAxis: {

 alternateGridColor: 'red'

 },

 xAxis: {

 alternateGridColor: 'green'

 },

• gridLineColor: This sets a primary grid lineColor for

an axis.

• gridLineDashStyle: With this property, you can

establish a line style as a dash into significant network

lines.

• gridLineWidth: This property is for increasing and

decreasing the width for the primary grid line for a

chart. See Listing 6-2.

Listing 6-2. app.component.ts

yAxis: {

 gridLineDashStyle: 'dash',

 gridLineWidth: 2,

 gridLineColor: 'green'

 },

If you add the code in Listing 6-2 to the y-axis in a

line chart and run it, you will get Figure 6-1.

Chapter 6 themes and additional Features oF highCharts

177

• tickWidth: This property is used to set the width for

major ticks. You can set this for both the x-axis and the

y-axis.

• tickPosition: By default, this property is outside. You

can set it as inside, too; also, this will reflect in major

ticks.

• tickColor: With this property, you can set a major tick

color for the axis.

• tickLength: This will increase/decrease the length of

main ticks in the form of the pixel. See Listing 6-3.

Listing 6-3. app.component.ts

xAxis: {

 categories:['English', 'Science', 'Maths'],

 tickWidth: 1,

 tickLength: 20,

 tickPosition:'inside',

 tickColor:'red',

 },

Figure 6-1. Demo of gridLineDashStyle, gridLineWidth, and
gridLineColor

Chapter 6 themes and additional Features oF highCharts

178

If you add the above code to the x-axis, you will get the output shown

in Figure 6-2.

• lineColor: This sets the axis line color for the chart.

• lineWidth: With this property, you can set the width of

the axis line.

 Applying a Dash Style Series to a Line Chart
Highcharts provides a dash style series for line charts. For this, you have to

set series.dashStyle. You can set the value as LongDash, ShortDot, Dot,

ShortDashDot, Dash, and DotDash. Copy the Listing 6-4 code into the app.

component.ts file.

Listing 6-4. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from "highcharts";

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

Figure 6-2. Major tick-related properties for Highcharts

Chapter 6 themes and additional Features oF highCharts

179

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

chart: {

type: 'line',

 },

title: {

text: 'Marks',

backgroundColor: '#FCFFC5',

borderColor: 'black',

borderRadius: 10,

borderWidth: 3

 },

xAxis: {

categories: ['English', 'Science', 'Maths'],

tickWidth: 1,

tickLength: 20,

tickPosition: 'inside',

tickColor: 'red',

 },

series: [{

name: 'Ram',

data: [40, 45, 50],

dashStyle: 'Dot'

 },

 {

name: 'Jack',

data: [44, 35, 30],

dashStyle: 'ShortDot'

 },

Chapter 6 themes and additional Features oF highCharts

180

 {

name: 'John',

data: [34, 25, 32],

dashStyle: 'Dash'

 },

 {

name: 'kate',

data: [24, 38, 44],

dashStyle: 'ShortDashDot'

 },

 {

name: 'Kelly',

data: [28, 48, 24],

dashStyle: 'DotDash'

 }

]

 };

}

Run the Listing 6-4 code and you will get the output seen in Figure 6-3.

Figure 6-3. dashStyle series in a line chart

Chapter 6 themes and additional Features oF highCharts

181

 Combinations in Highcharts
Highcharts supports multiple charts in one place. Suppose you want to

define a bar and spline in one chart to display a city’s temperatures based

on rainfall. You can do so very easily. Let’s see one example of how you can

set a combination using Highcharts and Angular.

In the upcoming example, you will plot a mutual fund’s performance

for the year against its benchmark index. If you want to perform this kind

of task, you have to use a combination of charts. In this example, you’ll

use a column chart for the mutual fund scheme performance and a spline

chart for the benchmark index. Look at Listing 6-5.

Listing 6-5. app.component.ts

series: [{

name: 'Scheme',

type: 'column',

yAxis: 1,

data: [7.43, 8.5, 5.4, 8.2, 8.97, 6.9, 7.6, 8.5, 8.4, 8.9, 9.6,

10.4],

tooltip: {

valueSuffix: ' %'

 }

 }, {

name: 'Benchmark',

type: 'spline',

data: [4.12, 3.9, 2.68, 3.5, 4.2, 2.5, 3.2, 6.5, 6.3, 7.3, 7.9,

7.6],

tooltip: {

valueSuffix: '%'

 }

 }],

Chapter 6 themes and additional Features oF highCharts

182

In Listing 6-5, in one series array, you use the type property, so here

you have two series, one for Benchmark and one for Scheme performance.

Remember that you should have a good idea what type of series generation

is required for that particular chart. Refer to Chapter 4 where I describe

different charting options in Highcharts. Listing 6-6 contains the full code.

You can copy this code into the app.component.ts file.

Listing 6-6. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

chart: {

zoomType: 'xy'

 },

title: {

text: 'IECE Digital Bluechip Fund (LargeCap Category)'

 },

xAxis: [{

categories: ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',

 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'],

 }],

Chapter 6 themes and additional Features oF highCharts

183

yAxis: [{

labels: {

format: '{value}%',

style: {

color: Highcharts.getOptions().colors[1]

 }

 },

title: {

text: 'Benchmark',

style: {

color: Highcharts.getOptions().colors[1]

 }

 }

 }, { // Secondary yAxis

title: {

text: 'Scheme',

style: {

color: Highcharts.getOptions().colors[0]

 }

 },

labels: {

format: '{value} %',

style: {

color: Highcharts.getOptions().colors[0]

 }

 },

opposite: true

 }],

tooltip: {

shared: true

 },

Chapter 6 themes and additional Features oF highCharts

184

legend: {

layout: 'vertical',

align: 'left',

x: 170,

verticalAlign: 'top',

y: 70,

floating: true,

backgroundColor:

Highcharts.defaultOptions.legend.backgroundColor

 },

series: [{

name: 'Scheme',

type: 'column',

yAxis: 1,

data: [7.43, 8.5, 5.4, 8.2, 8.97, 6.9, 7.6, 8.5, 8.4, 8.9, 9.6,

10.4],

tooltip: {

valueSuffix: ' %'

 }

 }, {

name: 'Benchmark',

type: 'spline',

data: [4.12, 3.9, 2.68, 3.5, 4.2, 2.5, 3.2, 6.5, 6.3, 7.3, 7.9,

7.6],

tooltip: {

valueSuffix: '%'

 }

 }],

 }

}

Chapter 6 themes and additional Features oF highCharts

185

Now copy Listing 6-7’s code into app.component.html.

Listing 6-7. app.component.html

<div class="content" role="main">

<highcharts-chart [Highcharts]="highcharts"

[options]="chartOptions"

style="width: 100%; height: 400px; display: block;">

</highcharts-chart>

</div>

<router-outlet></router-outlet>

Now, type ng serve into the terminal window of Visual Studio and

type your URL in the browser. You will get the output seen in Figure 6-4.

As you can see, there are two y-axes, one for Scheme and one for

Benchmark.

Now let’s see another example of a combination chart. This example

is a combination of pie, spline, and column charts. In this chart, you will

construct a graph for demonstrating the mobile operating systems used by

different countries (Listing 6-8).

Figure 6-4. Combination column/spline chart

Chapter 6 themes and additional Features oF highCharts

186

Listing 6-8. app.component.ts

series: [{

type: 'column',

name: 'India',

data: [25, 55, 10, 5, 5]

 }, {

type: 'column',

name: 'UK',

data: [57, 30, 7, 3, 3]

 }, {

type: 'column',

name: 'US',

data: [50, 30, 15, 3, 2]

 }, {

type: 'spline',

name: 'Average',

data: [44, 38.3, 10.67, 3.67, 3.34],

marker: {

lineWidth: 2,

lineColor: Highcharts.getOptions().colors[4],

fillColor: 'white'

 }

 }, {

type: 'pie', //total

name: 'Total consumption',

data: [{

name: 'India',

y: 100,

color: Highcharts.getOptions().colors[0]

 }, {

name: 'UK',

Chapter 6 themes and additional Features oF highCharts

187

y: 100,

color: Highcharts.getOptions().colors[1]

 }, {

name: 'US',

y: 100,

color: Highcharts.getOptions().colors[2]

 }],

center: [590, 80],

size: 120,

showInLegend: false,

dataLabels: {

enabled: false

 }

 }],

In this code, you have a series based on the chart type, so you have to

generate the series. This will construct a chart with column, spline, and pie.

Listing 6-9 has the complete code, so copy it into the app.component.ts file.

Listing 6-9. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

Chapter 6 themes and additional Features oF highCharts

188

chartOptions = {

chart: {

zoomType: 'xy'

 },

title: {

text: 'Mobile Operating System used by diffrent Countries in

Percentage'

 },

labels: {

items: [{

html: 'Total product used',

style: {

left: '550px',

top: '18px',

color: (

Highcharts.defaultOptions.title.style&&

Highcharts.defaultOptions.title.style.color

) || 'black'

 }

 }]

},

xAxis: {

categories: ['IOS', 'Android', 'Windows', 'Black Berry', 'Symbian']

},

series: [{

type: 'column',

name: 'India',

data: [25, 55, 10, 5, 5]

 }, {

type: 'column',

name: 'UK',

Chapter 6 themes and additional Features oF highCharts

189

data: [57, 30, 7, 3, 3]

 }, {

type: 'column',

name: 'US',

data: [50, 30, 15, 3, 2]

 }, {

type: 'spline',

name: 'Average',

data: [44, 38.3, 10.67, 3.67, 3.34],

marker: {

lineWidth: 2,

lineColor: Highcharts.getOptions().colors[4],

fillColor: 'white'

 }}, {

type: 'pie', //total

name: 'Total consumption',

data: [{

name: 'India',

y: 100,

color: Highcharts.getOptions().colors[0]

 }, {

name: 'UK',

y: 100,

color: Highcharts.getOptions().colors[1]

 }, {

name: 'US',

y: 100,

color: Highcharts.getOptions().colors[2]

 }],

center: [590, 80],

size: 120,

Chapter 6 themes and additional Features oF highCharts

190

showInLegend: false,

dataLabels: {

enabled: false

 }

 }],

 }

}

 Zoom Option in Highcharts
Note in Listing 6-9 the appearance of zoomType: 'xy'. You can set a

chart.zoomType property to the x-axis or y-axis, or if necessary you can

arrange for the “xy” axis. You can zoom by dragging your mouse pointer

based on your setting in the form of x, y, or xy.

Once your zoom is done, on the top right-hand side of your chart area

you will automatically get one button as a Zoom Out option.

In label.item.style, you set style with the left and top property;

this is for changing the position of the “Total product used” label in the

chart area. It’s the same as for a pie chart; here the center and size

properties set the position of the pie chart and size of a pie.

Type ng serve into the terminal window of Visual Studio and you will

get output seen in Figure 6-5.

Figure 6-5. Combination column/spline/pie chart

Chapter 6 themes and additional Features oF highCharts

191

 Setting an Image in a Chart Area
You can set images to make your chart more interactive. In Highcharts, you

have an option to arrange an image in the chart area.

For this, you must use the render.events method; with the use of

the event.renderer method, you can set an image. See Listing 6-10. This

example is only a simple line chart with one image; here you are showing

the yearly temperature of a city in the summer season. On the left-hand

side is an image of a sun.

Listing 6-10. app.component.ts

chart: {

events: {

render: function () {

var chart = this,

renderer = chart.renderer,

bg = chart.plotBackground;

renderer.image('https://www.highcharts.com/samples/graphics/

sun.png', 100, 100, 30, 30).add();

 }

 },

 },

Here you render the event method. In this method, you set a variable

as renderer = chart.renderer and then the renderer.image method is

used to set the path of the image, the image position, and the image size

for the chart. So this is how to place an image in a chart. Listing 6-11 is the

full code, so copy it into the app.component.ts file.

Chapter 6 themes and additional Features oF highCharts

192

Listing 6-11. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

chart: {

events: {

render: function () {

var chart = this,

renderer = chart.renderer,

bg = chart.plotBackground;

renderer.image('https://www.highcharts.com/samples/graphics/

sun.png', 100, 100, 30, 30).add();

 }

 },

 },

title: {

text: 'Yearly Temprature in Summar Season'

 },

xAxis: {

name: 'Year',

Chapter 6 themes and additional Features oF highCharts

193

categories: [2010, 2011, 2012, 2013, 2014, 2015, 2016,

2017, 2018, 2019],

 },

series: [{

name: 'Temprature',

data: [42.5, 41.3, 43.0, 44.0, 41.25, 42.52, 40.25, 44.50,

 48.0, 48.2]

 }]

 }

}

Type ng serve into the terminal window of Visual Studio. Once you

run this code, you will get the output shown in Figure 6-6.

 3D Charts
Highcharts 3D provides 3D support to Highcharts. With this feature, you

can develop an interactive chart. To work with a 3D chart, here are the

required dependencies:

Figure 6-6. Adding an image in a Highchart example

Chapter 6 themes and additional Features oF highCharts

194

jQuery:

<script src="https://code.highcharts.com/highcharts-3d.js">

</script>

Angular:

import * as Highcharts from 'highcharts';

import highcharts3D from 'highcharts/highcharts-3d.src';

highcharts3D(Highcharts);

To implement Highcharts 3D in code, see Listing 6-12.

Listing 6-12. app.component.ts

options3d:

 {

enabled: boolean,

alpha: number,

beta: number,

depth: number,

viewDistance: number,

axisLabelPosition: "auto",

fitToPlot: boolean,

frame: {

bottom: {

size: number,

color: 'color'

 },

back: {

size: number,

color: 'color'

 },

Chapter 6 themes and additional Features oF highCharts

195

side: {

size: number,

color: 'color'

 },

 }

 }

You can use these properties based on your requirements:

• Options3d: Required to develop a 3D chart; this is the

leading property.

• enabled: This is a Boolean property. If true, you will

see a 3D chart. If false, nothing will reflect.

• alpha: Number type of property; it will rotate in the

bottom and top view level.

• beta: Number type of property; it will turn right and

left.

• depth: This is for a total depth of chart.

• viewDistance: This defines how far viewers are from

the chart.

• frame: This is for setting a chart from the bottom, back,

and side.

Listing 6-13 is the full code, so copy it into app.component.ts.

Listing 6-13. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

import highcharts3D from 'highcharts/highcharts-3d.src';

highcharts3D(Highcharts);

Chapter 6 themes and additional Features oF highCharts

196

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

chart: {

renderTo: 'container',

type: 'column',

 options3d:

 {

enabled: true,

alpha: 10,

beta: 45,

depth: 150,

viewDistance: 50,

axisLabelPosition: "auto",

fitToPlot: true,

frame: {

bottom: {

size: 10,

color: 'orange'

 },

back: {

size: 10,

color: 'orange'

 },

Chapter 6 themes and additional Features oF highCharts

197

side: {

size: 10,

color: 'orange'

 },

 }

 }

 },

title: {

text: 'Real Time Data Example'

 },

xAxis: {

categories: ['English', 'Maths', 'Science']

 },

yAxis: {

title: {

text: 'Marks'

 },

 },

plotOptions: {

column: {

depth: 65

 }

 },

series: [{

data: [35, 49, 42]

 }]

 }

}

Chapter 6 themes and additional Features oF highCharts

198

Type ng serve into a terminal window of Visual Studio and you will

get the output shown in Figure 6-7.

 Cylinder Chart
A cylinder chart is another type of 3D chart. If you want to implement a

cylinder, the following dependencies are required:

jQuery:

<script src="https://code.highcharts.com/highcharts-3d.js">

</script>

<script src="https://code.highcharts.com/modules/cylinder.js">

</script>

Angular:

import highcharts3D from 'highcharts/highcharts-3d.src';

highcharts3D(Highcharts);

import cylinder from 'highcharts/modules/cylinder.src'

cylinder(Highcharts);

For implementing cylinder chart, the type should be cylinder. You

must add the dependency as per your JavaScript framework.

Figure 6-7. Highcharts 3D example for a column type chart

Chapter 6 themes and additional Features oF highCharts

199

Copy Listing 6-14’s code into app.component.ts to generate a cylinder

chart.

Listing 6-14. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

import highcharts3D from 'highcharts/highcharts-3d.src';

highcharts3D(Highcharts);

import cylinder from 'highcharts/modules/cylinder.src'

cylinder(Highcharts);

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

chart: {

renderTo: 'container',

type: 'cylinder',

 options3d:

 {

enabled: true,

beta: 15,

alpha: 15,

Chapter 6 themes and additional Features oF highCharts

200

viewDistance: 15,

depth: 50,

 }

 },

title: {

text: 'Real Time Data Example'

 },

xAxis: {

categories: ['English', 'Maths', 'Science']

 },

yAxis: {

title: {

text: 'Marks'

 },

 },

plotOptions: {

series: {

depth: 25,

colorByPoint: true

 }

 },

series: [{

data: [35, 49, 42]

 }],

 }

}

Now type ng serve and you will get the output shown in Figure 6-8.

Chapter 6 themes and additional Features oF highCharts

201

 Funnel 3D
The funnel 3D chart type is another type used for 3D charting in

Highcharts. A funnel chart is used to display different stages in a business

process; the completed process is on the top and the pending process is on

the bottom.

To implement the funnel 3D chart, the following dependencies are

required:

jQuery:

<script src="https://code.highcharts.com/highcharts-3d.js">

</script>

<script src="https://code.highcharts.com/modules/cylinder.js">

</script>

<script src="https://code.highcharts.com/modules/funnel3d.js">

</script>

Angular:

import * as Highcharts from 'highcharts';

import highcharts3D from 'highcharts/highcharts-3d.src';

highcharts3D(Highcharts);

Figure 6-8. Cylinder chart example

Chapter 6 themes and additional Features oF highCharts

202

import cylinder from 'highcharts/modules/cylinder.src';

cylinder(Highcharts);

import funnel3d from 'highcharts/modules/funnel3d.src';

funnel3d(Highcharts);

To create a funnel 3D chart, the chart.type should be funnel3d, and

the next step should be to define the series. See Listing 6-15.

Listing 6-15. app.component.ts

series: [{

name: 'Customers',

data: [

 ['Customer visits Website totally', 8000],

 ['App Downloads', 5150],

 ['Requested price list', 2000],

 ['Proposal sent', 1600],

]

}]

Listing 6-15 shows labels and values for the data series for the funnel.

Next, you require plotOptions; see Listing 6-16.

Listing 6-16. app.component.ts

plotOptions: {

series: {

dataLabels: {

enabled: true,

format: '{point.name} ({point.y:,.0f})',

allowOverlap: true,

 },

height: '50%',

width: '40%',

Chapter 6 themes and additional Features oF highCharts

203

neckWidth: '15%',

neckHeight: '15%',

 }

 },

In plotOptions, you can set height, width, and format-related settings

for funnel3d. Listing 6-17 is the full code to generate funnel3d, so copy

this code into the app.components.ts file.

Listing 6-17. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

import highcharts3D from 'highcharts/highcharts-3d.src';

highcharts3D(Highcharts);

import cylinder from 'highcharts/modules/cylinder.src';

cylinder(Highcharts);

import funnel3d from 'highcharts/modules/funnel3d.src';

funnel3d(Highcharts);

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

title: {

text: 'Highcharts Funnel3D Chart'

 },

Chapter 6 themes and additional Features oF highCharts

204

chart: {

renderTo: 'container',

type: 'funnel3d',

 options3d: {

enabled: true,

alpha: 10,

depth: 50,

viewDistance: 50

 }

 },

series: [{

name: 'Customers',

data: [

 ['Customer visits Website totally', 8000],

 ['App Downloads', 5150],

 ['Requested price list', 2000],

 ['Proposal sent', 1600],

]

 }],

plotOptions: {

series: {

dataLabels: {

enabled: true,

format: '{point.name} ({point.y:,.0f})',

allowOverlap: true,

 },

height: '50%',

width: '40%',

neckWidth: '15%',

neckHeight: '15%',

 }

Chapter 6 themes and additional Features oF highCharts

205

 },

 }

}

Type ng serve and press Enter. You will get the output shown in

Figure 6-9.

 Pyramid 3D
A pyramid chart is a triangle-based chart. The triangle has sections and

these sections work top to bottom. This type of chart is mostly used to

show hierarchy, priorities, steps, or processes.

To work on a pyramid 3D chart, the following dependencies are

required:

jQuery:

<script src="https://code.highcharts.com/highcharts.js">

</script>

Figure 6-9. Funnel 3D chart

Chapter 6 themes and additional Features oF highCharts

206

<script src="https://code.highcharts.com/highcharts-3d.js">

</script>

<script src="https://code.highcharts.com/modules/cylinder.js">

</script>

<script src="https://code.highcharts.com/modules/funnel3d.js">

</script>

<script src="https://code.highcharts.com/modules/pyramid3d.js">

</script>

Angular:

import * as Highcharts from 'highcharts';

import highcharts3D from 'highcharts/highcharts-3d.src';

highcharts3D(Highcharts);

import cylinder from 'highcharts/modules/cylinder.src';

cylinder(Highcharts);

import funnel3d from 'highcharts/modules/funnel3d.src';

funnel3d(Highcharts);

import pyramid3d from 'highcharts/modules/pyramid3d.src';

pyramid3d(Highcharts);

This demo is the same as the one for the funnel 3D. A pyramid 3D

works top to bottom. Copy Listing 6-17’s code into app.component.ts.

Listing 6-17. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

import highcharts3D from 'highcharts/highcharts-3d.src';

highcharts3D(Highcharts);

import cylinder from 'highcharts/modules/cylinder.src';

cylinder(Highcharts);

import funnel3d from 'highcharts/modules/funnel3d.src';

Chapter 6 themes and additional Features oF highCharts

207

funnel3d(Highcharts);

import pyramid3d from 'highcharts/modules/pyramid3d.src';

pyramid3d(Highcharts);

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

title: {

text: 'Pyramid3D Chart Demo'

 },

chart: {

renderTo: 'container',

type: 'pyramid3d',

 options3d: {

enabled: true,

alpha: 10,

depth: 50,

viewDistance: 50

 }

 },

Chapter 6 themes and additional Features oF highCharts

208

series: [{

name: 'Customers',

data: [

 ['Customer visits Website totally', 8000],

 ['App Downloads', 5150],

 ['Requested price list', 2000],

 ['Proposal sent', 1600],

]

 }],

plotOptions: {

series: {

dataLabels: {

enabled: true,

format: '{point.name} ({point.y:,.0f})',

allowOverlap: true,

 },

width: '40%',

height: '60%',

 }

 },

 }

}

Once you run this code you will get the output shown in Figure 6-10.

Chapter 6 themes and additional Features oF highCharts

209

 Pie 3D Chart
With the pie 3D chart, you can add 3D features very easily. Here the chart

type is pie. And you must add the following dependencies:

jQuery:

<script src="https://code.highcharts.com/highcharts.js">

</script>

<script src="https://code.highcharts.com/highcharts-3d.js">

</script>

Angular:

import * as Highcharts from 'highcharts';

import highcharts3D from 'highcharts/highcharts-3d.src';

highcharts3D(Highcharts);

Next, you have to set options3d and plotOptions. See Listing 6-18.

Figure 6-10. Pyramid 3D chart

Chapter 6 themes and additional Features oF highCharts

210

Listing 6-18. app.component.ts

chart: {

type: 'pie',

 options3d: {

enabled: true,

alpha: 65,

 }

 },

Here options3d.enabled is true. Note the use of the alpha

property, which is required for rotating angles of a chart. Next, you need

plotOptions for the depth of the chart for 3D; see Listing 6-19.

Listing 6-19. app.component.ts

plotOptions: {

pie: {

allowPointSelect: true,

cursor: 'pointer',

depth: 65,

dataLabels: {

enabled: true,

format: '{point.name}: {point.percentage:.1f} %'

 }

 }

 },

Paste Listing 6-20’s complete code into the app.component.ts file.

Chapter 6 themes and additional Features oF highCharts

211

Listing 6-20. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

import highcharts3D from 'highcharts/highcharts-3d.src';

highcharts3D(Highcharts);

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

chart: {

type: 'pie',

 options3d: {

enabled: true,

alpha: 65,

 }

 },

plotOptions: {

pie: {

allowPointSelect: true,

cursor: 'pointer',

depth: 65,

dataLabels: {

enabled: true,

Chapter 6 themes and additional Features oF highCharts

212

format: '{point.name}: {point.percentage:.1f} %'

 }

 }

 },

title: {

text: 'Programming Languages used by developers worldwide'

 },

tooltip: {

pointFormat: '{series.name}: {point.percentage:.1f}%'

 },

series: [{

name: 'Uses',

colorByPoint: true,

data: [{

name: 'C#',

y: 55,

sliced: true,

selected: true

 }, {

name: 'VB',

y: 25

 }, {

name: 'J#',

y: 10

 }, {

name: 'VC++',

y: 10

 }]

 }]

 };

}

Chapter 6 themes and additional Features oF highCharts

213

Run the Listing 6-20 code and you will get the output shown in

Figure 6-11.

You can convert the same chart into a donut chart with the use of

plotOptions.pie.innersize: number. See Listing 6-21.

Listing 6-21. app.component.ts

plotOptions: {

pie: {

innerSize: 100,

 }

 }

If you add the code in Listing 6-21 into app.component.ts and run it,

you will get the output shown in Figure 6-12.

Figure 6-11. 3D pie chart

Chapter 6 themes and additional Features oF highCharts

214

 Exporting and Printing Charts
Highcharts also provide export and print features, so a user can print and

download charts easily in the PNG, JPEG, PDF, XLS, CSV, and SVG formats.

For exporting and printing, Highcharts provides different dependencies.

• Exporting.js: This js dependency provides the

following options:

• View in full screen

• Print chart

• Download PNG image

• Download JPEG

• Download PDF

• Download SVG vector

Figure 6-12. 3D donut chart demo

Chapter 6 themes and additional Features oF highCharts

215

• Export-data.js: If you want to add more options

related to exporting to CSV and XLS, this dependency

is required, but you have to add exporting.js with it.

Export-data.js adds the following options:

• Download CSV

• Download XLS

• View in data table

• Open in Highcharts cloud

If you want to add export and print functionality, you must add these

dependencies based on your JavaScript framework:

jQuery:

<script src="https://code.highcharts.com/modules/exporting.js">

</script>

<script src="https://code.highcharts.com/modules/export-data.js">

</script>

Angular:

import * as Highcharts from "highcharts";

import HighchartsExporting from "highcharts/modules/exporting";

import HighchartsExportData from "highcharts/modules/export- data";

HighchartsExporting(Highcharts);

HighchartsExportData(Highcharts);

Once you add the dependency into your code, you will automatically

get the right-hand menu bar. If you click this menu, you will get the export

and print features. See Figure 6-13.

Chapter 6 themes and additional Features oF highCharts

216

 Additional Chart Features
This section covers new charts provided by Highcharts.

 Radar Chart
A radar chart is useful for providing multivariate data, data you get in two

dimensional or more quantitative variables. Radar charts are helpful for

showing a comparison of data or if you want to show ratings for analyzing

a particular product by its features.

In this demo, you will show a comparison of two mobile features so

people can analyze which one is best, based on functionality.

If you want to create a radar polar chart using Highcharts, the first

step is to set chart.polar: true. In the chart.type you can set area,

line, spline, and columns. To develop polar radar charts, the following

dependencies are required:

Figure 6-13. Export and print options in Highcharts

Chapter 6 themes and additional Features oF highCharts

217

jQuery:

<script src="http://code.highcharts.com/highcharts.js">

</script>

<script src="http://code.highcharts.com/highcharts-more.js">

</script>

Angular:

import { Component } from '@angular/core';

import * as Highcharts from "highcharts";

import HighChartMore from 'highcharts/highcharts-more.src';

HighChartMore(Highcharts);

Now copy Listing 6-22’s code into the app.component.ts file.

Listing 6-22. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from "highcharts";

import HighChartMore from 'highcharts/highcharts-more.src';

HighChartMore(Highcharts);

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

chart: {

polar: true,

Chapter 6 themes and additional Features oF highCharts

218

type: 'line',

 },

pane: {

size: '80%'

 },

title: {

text: 'Comparison of Mobile Phones',

 },

tooltip: {

shared: true,

pointFormat: '

{series.name}: {point.y:,.0f}
'

 },

xAxis: {

categories: ['Camera', 'Battery', 'Brand', 'Memory',

 'Display', 'Durable'],

tickmarkPlacement: 'on',

lineWidth: 0

 },

yAxis: {

gridLineInterpolation: 'polygon',

lineWidth: 0,

min: 0

 },

legend: {

align: 'left',

verticalAlign: 'middle'

 },

Chapter 6 themes and additional Features oF highCharts

219

series: [{

name: 'VG Mobiles',

data: [5, 4, 4, 3, 2, 3],

pointPlacement: 'on'

 }, {

name: 'Kiara Mobiles',

data: [4, 3, 5, 1, 5, 4],

pointPlacement: 'on'

 }],

 };

}

Run Listing 6-22’s code and you will get the output shown in Figure 6- 14.

 Pareto Chart
A Pareto chart is a combination of a line and bar graph, where values are

defined in the form of descending order through bars, and the cumulative

total comes as a line. First of all, you have to understand how Pareto works.

Table 6-1 describes hair loss reasons for men.

Figure 6-14. Radar chart demo

Chapter 6 themes and additional Features oF highCharts

220

Table 6-1 shows hair loss reason and frequency. The cumulative

frequency is based on the next value total. For example, genetics +

cosmetic damage = cumulative frequency. Based on totality, you create a

percentage, and the percentage part comes into the Pareto section.

For this example, you’ll convert the information in Table 6-1 into

Highcharts with the Pareto chart.

To generate a Pareto chart, the following dependencies are required:

jQuery:

<script src="https://code.highcharts.com/highcharts.js"></script>

<script src="https://code.highcharts.com/modules/pareto.js">

</script>

Angular:

import { Component } from '@angular/core';

import * as Highcharts from "highcharts";

import Pareto from 'highcharts/modules/pareto.src';

Pareto(Highcharts);

Table 6-1. Hair Loss Reasons for Men

Hair Loss Reason Frequency Cumulative Frequency Percentage

genetics 50 50 57.47%

Cosmetic damage 15 65 74.71%

stress 11 76 87.35%

smoking 6 82 94.25%

Vitamin deficiency 3 85 97.70%

infections 2 87 100%

total 87

Chapter 6 themes and additional Features oF highCharts

221

Next, you must set the y-axis. See Listing 6-23.

Listing 6-23. app.component.ts

yAxis: [{

title: {

text: ''

 }

 }, {

title: {

text: ''

 },

minPadding: 0,

maxPadding: 0,

max: 100,

min: 0,

opposite: true,

labels: {

format: "{value}%"

 }

 }],

In Listing 6-23, you have set a min and max property for Percentage. In the

next part, you have a series for both columns and Pareto. See Listing 6-24.

Listing 6-24. app.component.ts

series: [{

type: 'pareto',

name: 'Pareto',

yAxis: 1, //number of declared yaxis

baseSeries: 1 //index of column series

 },

Chapter 6 themes and additional Features oF highCharts

222

{

name: 'Frequency',

type: 'column',

data: [50, 15, 11, 6, 3, 2],

color: '#FF0000'

 }]

Listing 6-25 is the complete code for generating the Pareto chart, so

copy this code into the app.component.ts file.

Listing 6-25. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from "highcharts";

import Pareto from 'highcharts/modules/pareto.src';

Pareto(Highcharts);

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

chart: {

type: 'column'

 },

title: {

text: 'Haifall Reasons for Men',

 },

Chapter 6 themes and additional Features oF highCharts

223

tooltip: {

shared: true,

 },

xAxis: {

categories: [

 'Genetically',

 'Cosmetic damage',

 'Stress',

 'Smoke',

 'Vitamin Defficiency',

 'Infections',

],

 },

yAxis: [{

title: {

text: ''

 }

 }, {

title: {

text: ''

 },

minPadding: 0,

maxPadding: 0,

max: 100,

min: 0,

opposite: true,

labels: {

format: "{value}%"

 }

 }],

Chapter 6 themes and additional Features oF highCharts

224

series: [{

type: 'pareto',

name: 'Pareto',

yAxis: 1, //number of declared yAxis

baseSeries: 1 //index of column series

 }, {

name: 'Frequency',

type: 'column',

data: [50, 15, 11, 6, 3, 2],

color: '#FF0000'

 }]

 };

}

Run Listing 6-25’s code and you will get the output shown in Figure 6- 15.

Figure 6-15. Pareto Chart

Chapter 6 themes and additional Features oF highCharts

225

 Bell Curve Chart
A bell curve chart is used for distribution of variables. Considering a

normal distribution with a bell shape line, the highest point in the curve

represents the most probable event in the series of data.

To generate a bell curve using Highcharts, the following dependencies

are required:

jQuery:

<script src="https://code.highcharts.com/highcharts.js">

</script>

<script src="https://code.highcharts.com/modules/histogram-

bellcurve.js"></script>

Angular:

import * as Highcharts from 'highcharts';

import Bellcurve from 'highcharts/modules/histogram-bellcurve';

Bellcurve(Highcharts);

In the next step, the chart type should be bellcurve, and the

baseSeries you can define in the form of id or index.

Copy Listing 6-26’s code into the app.component.ts file to generate the

bell curve.

Listing 6-26. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

import Bellcurve from 'highcharts/modules/histogram-bellcurve';

Bellcurve(Highcharts);

@Component({

selector: 'app-root',

templateUrl: 'app.component.html',

Chapter 6 themes and additional Features oF highCharts

226

styleUrls: ['./app.component.css']

})

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

title: {

text: 'Bell Curve'

 },

xAxis: [{

title: { text: 'Data' },

 }, {

title: { text: 'Bell Curve' },

opposite: true

 }],

yAxis: [{

title: { text: 'Data' }

 }, {

title: { text: 'Bell Curve' },

opposite: true

 }],

series: [{

name: 'Bell Curve',

type: 'bellcurve',

xAxis: 1,

yAxis: 1,

baseSeries: 'series1',

zIndex: -1

Chapter 6 themes and additional Features oF highCharts

227

 },

 {

name: 'Data',

type: 'scatter',

data: [5, 5.2, 5.4, 5.5, 5.6, 5.9, 6],

visible: true,

id: 'series1',

 }]

 };

}

If you run Listing 6-26’s code, you will get the output shown in

Figure 6-16.

 Organization Chart
Organization charts are helpful to show organization structure or

hierarchy. You can understand a Reporting To structure very quickly

through a chart.

If you want to develop organization charts using Highcharts, the

following dependencies are required:

Figure 6-16. Bell curve demo

Chapter 6 themes and additional Features oF highCharts

228

jQuery:

<script src="https://code.highcharts.com/highcharts.js">

</script>

<script src="https://code.highcharts.com/modules/sankey.js">

</script>

<script src="https://code.highcharts.com/modules/

organization.js"></script>

Angular:

import * as Highcharts from 'highcharts';

import Sankey from 'highcharts/modules/sankey';

import Organisation from 'highcharts/modules/organization';

Sankey(Highcharts);

Organisation(Highcharts);

Now copy Listing 6-27’s code into the app.component.ts file.

Listing 6-27. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

import Sankey from 'highcharts/modules/sankey';

import Organisation from 'highcharts/modules/organization';

Sankey(Highcharts);

Organisation(Highcharts);

@Component({

selector: 'app-root',

templateUrl: 'app.component.html',

styleUrls: ['./app.component.css']

})

Chapter 6 themes and additional Features oF highCharts

229

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

chart: {

inverted: true,

height: 400,

 },

title: {

text: 'Reporting Structure For IECE Group'

 },

series: [{

type: 'organization',

name: 'IECE',

keys: ['from', 'to'],

data: [

 ['Managing Director', 'CEO'],

 ['CEO', 'CFO'],

 ['CEO', 'CTO'],

 ['CEO', 'HR Head'],

 ['CFO', 'Finance GM'],

 ['CTO', 'Architect'],

 ['HR Head', 'Recruiter'],

 ['Architect', 'Technical Lead'],

 ['Technical Lead', 'Module Lead'],

 ['Module Lead', 'Developer']

],

Chapter 6 themes and additional Features oF highCharts

230

color: 'blue',

dataLabels: {

color: 'white'

 },

borderColor: 'white',

nodeWidth: 25

 }],

tooltip: {

outside: true

 },

 };

}

In the chart type:organization and series sections, there is new

property called key. Here you define [from, to] so you can define

structure. For example, in this demo, you create a structure for the IECE

group, where the CEO reports to the Managing Director, and the CFO, HR

Head, and the CTO all report to the CEO, and so on. Once you run the

above code, you will get the output shown in Figure 6-17.

Figure 6-17. Organization chart using Highcharts

Chapter 6 themes and additional Features oF highCharts

231

 Timeline Chart
The timeline chart is designed to show a journey over time. Here you can

define essential events in the form of the vertical or horizontal line. For

each event, you can set a description for the event so via a tooltip the user

can get details about the event. If you want to perform a timeline chart

using Highcharts, the following dependencies are required:

jQuery:

<script src="https://code.highcharts.com/highcharts.js">

</script>

<script src="https://code.highcharts.com/modules/timeline.js">

</script>

Angular:

import * as Highcharts from 'highcharts';

import TimeLine from 'highcharts/modules/timeline';

TimeLine(Highcharts);

Now copy Listing 6-28’s code into app.component.ts.

Listing 6-28. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

import TimeLine from 'highcharts/modules/timeline';

TimeLine(Highcharts);

@Component({

selector: 'app-root',

templateUrl: 'app.component.html',

styleUrls: ['./app.component.css']

})

Chapter 6 themes and additional Features oF highCharts

232

export class AppComponent {

title = 'myHighChartsApp';

highcharts = Highcharts;

chartOptions = {

chart: {

type: 'timeline',

inverted: true

 },

yAxis: {

visible: false

},

title: {

text: 'Journey of IECE Group'

 },

series: [{

dataLabels: {

connectorColor: 'black',

connectorWidth: 3

 },

data: [{

name: 'Company Founded',

label: '1975: Institute Of Electronics Born',

description: 'In the year 1975, Institute of Electronics found

to provide trainings for Electrical/Electronics Engineers'

 }, {

name: 'IECE founded',

label: '1999: Company Expend into Computer Education',

description: 'With new Name IECE, company starts provide

training into Computer Scienece Students as well'

Chapter 6 themes and additional Features oF highCharts

233

 }, {

name: 'IECE Inventory Controller Launch',

label: '2003: First Software Launch',

description: '4th December 2003, First Software launch with

name IECE Inventory Controller'

 }, {

name: 'IECE Digital launch',

label: '2018: IECE Digital founded',

description: 'IECE Digital launch, to provide world class

animation and VFX.'

 }]

 }]

 };

}

In Listing 6-28, the chart type is timeline. On the next line is a

property called inverted: true, and this means you can see your timeline

in vertical mode. If you want to develop in horizontal mode, make it false.

Then next in the series section is a property called dataLabels; here you

can set colors and width for the connector lines for the labels. Once you

run the above code, you will get the output shown in Figure 6-18.

Figure 6-18. A timeline chart demo using Highcharts

Chapter 6 themes and additional Features oF highCharts

234

 Gantt Chart
A Gantt chart is used to demonstrate project progress. Henry Gantt

introduced the Gantt chart. This type of chart also shows project activities

and current schedule status relationships.

A Gantt chart is a type of bar chart where the vertical axis can define

the task to perform, and the horizontal axis can represent the time interval

and progress.

If you want to develop a Gantt chart, the following dependencies are

required:

jQuery:

<script src="https://code.highcharts.com/ highcharts.js">

</script>

<script src="https://code.highcharts.com/gantt/highcharts-

gantt.js"></script>

Angular:

import * as Highcharts from 'highcharts';

import GanttModule from 'highcharts/modules/gantt';

GanttModule(Highcharts);

Listing 6-29 had the code to show the progress of a software

development project with the use of a Gantt chart. Copy Listing 6-29’s code

into the app.component.ts file.

Listing 6-29. app.component.ts

import { Component } from '@angular/core';

import * as Highcharts from 'highcharts';

import GanttModule from 'highcharts/modules/gantt';

GanttModule(Highcharts);

Chapter 6 themes and additional Features oF highCharts

235

Highcharts.setOptions({

title: {

style: {

color: 'blue'

 }

 },

legend: {

enabled: false

 }

});

@Component({

selector: 'app-root',

templateUrl: 'app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

Highcharts: typeof Highcharts = Highcharts;

chartGantt: Highcharts.Options = {

xAxis: {

min: Date.UTC(2019, 11, 1),

max: Date.UTC(2019, 11, 30)

 },

title: {

text: 'IECE Inventory Controller Project Progress'

 },

series: [{

name: 'IECE Inventory Controller Project',

type: 'gantt',

Chapter 6 themes and additional Features oF highCharts

236

data: [{

name: 'Start Project Requirement Analysis',

start: Date.UTC(2019, 11, 5),

end: Date.UTC(2019, 11, 15),

completed: 0.90

 },

 {

name: 'Development',

start: Date.UTC(2019, 11, 11),

end: Date.UTC(2019, 11, 22),

completed: {

amount: 0.35,

fill: 'green'

 }

 },

 {

name: 'Continuous Testing Software',

start: Date.UTC(2019, 11, 15),

end: Date.UTC(2019, 11, 29)

 }]

 }]

 };

}

In the xAxis section, you set the minimum (start date) and maximum

date (end date) for the project.

In the series section, three new properties are added:

• start: This is the date-time property where you define

the start date for the particular task.

• end: Here you set the end DateTime for the specific task.

• completed: Here you can define how much in

percentage a particular task is complete.

Chapter 6 themes and additional Features oF highCharts

237

You define min and max, where the start date and end date are set; the

completed property is required to fill the value of how much in percentage

this particular part is complete.

Now copy Listing 6-30’s code into app.component.html to display the

page.

Listing 6-30. app.component.html

<div>

<highcharts-chart [Highcharts]="Highcharts" [constructorType]="

'ganttChart'"

[options]="chartGantt" style="width: 100%; display: block;">

</highcharts-chart>

</div>

<router-outlet></router-outlet>

Once you run Listing 6-30’s code, you will get the output shown in

Figure 6-19.

Figure 6-19. Gantt chart demo with Highcharts

Chapter 6 themes and additional Features oF highCharts

238

 Summary
In this chapter, you saw how easily you can set themes and styles and

make your charts more interactive and understandable. You also saw

some additional charts like 3D charts, organizational charts, Gantt charts,

timelines, and bell curves. Highcharts is a stunning tool, and you can

develop any chart based on your requirements. In the next chapter, I will

go over how to build a real-time dashboard using Highcharts.

Chapter 6 themes and additional Features oF highCharts

239© Sourabh Mishra 2020
S. Mishra, Practical Highcharts with Angular,
https://doi.org/10.1007/978-1-4842-5744-9_7

CHAPTER 7

Building a Real-Time
Dashboard
In this chapter, you will learn how to show multiple real-time charts in

a dashboard. To understand better how to easily consume a web API

and develop a real-time dashboard, you will create one sample learning

application. In this chapter, you will also learn some advanced concepts

of Angular routing and the Forms module in order to quickly build your

interactive app with the use of Angular and Highcharts.

 Real-Time Dashboard Application
In this sample learning e-portfolio application, you are going to develop

features that provide live historical data from the stock market. Users can

generate a portfolio of any stock and check their profit/loss. They can also

check top loser and gainer stocks so that they can make better decisions

about their investments. The idea behind developing this app is so you can

understand and learn how easy it is to design interactive apps with the use

of Angular and Highcharts. For this, you’ll have two sections:

• Market radar section

• Dashboard section

240

For the market radar, the user can add their favorite stock into a

database. Then they can select stock names, dates, and periods such as a

daily or monthly basis, and they can see the performance of a particular

stock very quickly.

In the dashboard section, users can analyze how much they invested

and whether they have a profit or loss.

In Chapter 5, I talked about how you can easily consume a web

API with Angular using .NET Core. For this application, you’ll use the

same Angular project, and if you want, you can develop a new Angular

application using the Angular CLI, which I discussed in Chapter 3.

This app is designed with a client-server architecture model where

you have two different projects. One is the UI side, which you developed

in Angular with Highcharts. For the server side, you’ll develop a .NET

Framework-based web API.

 Features of the App
For this app, the user will get three menus:

• Add Stock: Users can add their stocks in a database in

the form of buying price, quantity, etc.

• Market Radar: The user can select whatever stocks you

inserted into the database, from a drop-down list, with

parameters of From Date, End Date, and a period type

in the form of daily and monthly. Once the user clicks

the Search button, the basis of the selected conditions

will generate a chart.

• Dashboard: In this section, the user can check their list

of invested stocks. They can see a profit/loss portfolio

chart and a top gainer/loser investment chart. So this

app will give them a better idea about their investments

using Highcharts.

Chapter 7 Building a real-time dashBoard

241

 Creating a Web API
For this application, you’ll create a web API with the use of Visual Studio.

Go to File ➤ New Project ➤ Select ➤ ASP.NET Web Application (.NET

Framework) (Figure 7-1). In Chapter 5, you saw how to develop a web API

using .NET core, so you’ll use the .NET Framework this time. See Figure 7- 1.

Click the Next button (Figure 7-2).

Figure 7-1. Creating a new project

Chapter 7 Building a real-time dashBoard

242

Here, you must provide the project name and you can choose the .NET

Framework version. Click the Create button to go to the Create a new ASP.

NET Web Application screen (Figure 7-3).

Figure 7-2. Configuring a new project

Chapter 7 Building a real-time dashBoard

243

Click the Next button. You can see that your web API creation has

completed. In the first step, you will call CORS-related dependencies

because this web API will be consumed by the Angular app. So open

Solution Explorer and right-click into the project and choose the Manage

NuGet Package option (Figure 7-4).

Figure 7-3. Creating a new web API application

Chapter 7 Building a real-time dashBoard

244

Now search for Microsoft.AspNet.WebApi.Cors. You will get the same

list, so choose Microsoft.AspNet.WebApi.Cors and click the Install button

(Figure 7-5).

Figure 7-4. Managing the NuGet package for the project

Chapter 7 Building a real-time dashBoard

245

Now click the OK button (Figure 7-6).

Figure 7-5. Installing Microsoft.AspNet.WebApi.Cors

Figure 7-6. Installing the NugetPacakge for the project

Chapter 7 Building a real-time dashBoard

246

Now click the I Accept button. After this step, the NuGet package

installation will complete.

Now it’s time to set CORS, so open Solution Explorer ➤ App_Start

folder ➤ Open WebApiConfig.cs, and copy Listing 7-1’s code.

Listing 7-1. WebApiConfig.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web.Http;

using System.Web.Http.Cors;

namespace StockApi

{

public static class WebApiConfig

 {

public static void Register(HttpConfiguration config)

{

// Web API configuration and services

var cors = new EnableCorsAttribute

("http://localhost:4200", "*", "*");

config.EnableCors(cors);

// Web API routes

config.MapHttpAttributeRoutes();

config.Routes.MapHttpRoute(

name: "DefaultApi",

routeTemplate: "api/{controller}/{action}/{id}",

defaults: new { id = RouteParameter.Optional }

);

 }

 }

}

Chapter 7 Building a real-time dashBoard

247

In this code, you enable CORS and CORS attributes so you can send

a request from the Angular application to the web API very quickly. For

related learning about CORS, please refer to Chapter 5 where I describe

CORS in more detail.

 Setting Up a Database
This learning application requires one database because you want to work

with live data. In this section, you are going to develop a database called

StockDb. StockDb contains one table called StockMaster where you store

your stock-related information. For real-time information, you will get data

from a NuGet service, which is the Yahoo Finance API.

So let’s create the database. Here you’ll use Visual Studio, but you can

also choose a platform per your requirements.

To create a database in Visual Studio, go to View ➤ SQL Server Object

Explorer. Open a connection and right-click into the Database folder and

select Add New Database (Figure 7-7).

Figure 7-7. Adding a new database using Visual Studio

Chapter 7 Building a real-time dashBoard

248

Once you click Add New Database, you will get the screen shown in

Figure 7-8. Set the database name and click the OK button.

Your database has been created. Now it’s time to create the table.

Expand StockDb and right-click the Table folder and choose Add New

Table (Figure 7-9).

Now add the script in Listing 7-2 into the T-Sql Section (Figure 7-10).

Figure 7-8. Create Database screen

Figure 7-9. Add New Table screen

Chapter 7 Building a real-time dashBoard

249

Listing 7-2. StockMaster.sql

CREATE TABLE [dbo].[StockMaster](

 [Id] INT IDENTITY (1, 1)NOT NULL,

 [StockId] NVARCHAR (50)NULL,

 [StockName] NVARCHAR (50)NULL,

 [BuyPrice] INT NULL,

 [Qty] INT NULL,

 [IsActive] BIT NULL,

PRIMARY KEY CLUSTERED ([Id] ASC)

);

Click the Update button. After that, you will get one dialog box so

choose to Update Database and your table will be updated. Right-click into

the StockMaster table and select ViewData. Now you can enter some data

(Figure 7-11).

Figure 7-10. Adding the table script

Chapter 7 Building a real-time dashBoard

250

 Creating a Database First Approach Using Entity
Framework
In this section, you will set up a database first approach. For more detail

about the database first approach and Entity Framework, refer to Chapter 5,

where I talk in detail about this process.

Right-click in Solution Explorer and select Add ➤ New Item (Figure 7- 12).

Figure 7-11. Adding data manually into a table

Figure 7-12. Add New Item screen

Chapter 7 Building a real-time dashBoard

251

Once you click New Item, you will get the Add New Item

screen. Choose the ADO.NET Entity Data Model, provide the name

(StockDbEntity), and click the Add button (Figure 7-13).

Next you’ll see the Entity Data Model Wizard. Here you choose EF

Designer from the database and click the Next button (Figure 7-14).

Figure 7-13. Add New Item screen

Chapter 7 Building a real-time dashBoard

252

In the Choose Your Data Connection screen, click the New Connection

button (Figure 7-15).

Figure 7-14. Entity Data Model wizard screen

Chapter 7 Building a real-time dashBoard

253

In the Connection Properties screen, set the data source, server name,

and database name. Once you set all these, click the Test Connection

Button and then click the OK button (Figure 7-16).

Figure 7-15. Choose Your Data Connection screen

Chapter 7 Building a real-time dashBoard

254

Click the Next button to get to the Choose Your Version screen, where

you’ll select Entity Framework 6.X, and click the Next button (Figure 7-17).

Figure 7-16. Connection Properties screen

Chapter 7 Building a real-time dashBoard

255

In the Choose Your Database Objects and Settings screen, expand the

table and select the table name and then click the Finish button (Figure 7- 18).

Figure 7-17. Choose Your Version screen

Figure 7-18. Choose Your Database Objects and Settings screen

Chapter 7 Building a real-time dashBoard

256

Once you click the Finish button, the Entity Model for the StockDB

database will be added to your Solution Explorer.

In this application, for learning purposes, you will use the Yahoo

Finance API so people can get real data from the stock market. So open

Solution Explorer and right-click in the project area and select Manage

NuGet Packages. On the NuGet Package screen, click the Browse tab,

search for YahooFinanceApi, and press Enter (Figure 7-19).

Select YahooFinanceApi and click the Install button.

After this, you will get the Preview Changes screen dialog box. Click the

Ok button; in the next step, click the I Accept button. Once you click it, this

process will install the API in your project.

Now add the Model class. This will help in future development, so for

this application you’ll create a StockModel class. For this, go to Solution

Explorer and right-Click in the Model class and provide the name for

the class and click the Add button. Now add Listing 7-3’s code to this

StockModel class.

Listing 7-3. StockModel.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

Figure 7-19. Installing the API through a NuGet package

Chapter 7 Building a real-time dashBoard

257

namespace StockApi.Models

{

public class StockModel

 {

public string StockId { get; set; }

public string StockName { get; set; }

public string Date { get; set; }

public decimal Open { get; set; }

public decimal High { get; set; }

public decimal Low { get; set; }

public decimal Close { get; set; }

public decimal Volume { get; set; }

public int? BuyPrice{ get; set; }

public int? Qty{ get; set; }

public bool IsActive { get; set; }

public int? TotalInvested{ get; set; }

public int? CurrentValue{ get; set; }

public int? TotalGain{ get; set; }

 }

}

Now it’s time to create an API controller where you can write your

business logic. Open Solution Explorer, right-click in the Controller folder

and Add ➤ Controller ➤ Select Web API 2 Controller – Empty from the

list (Figure 7-20).

Chapter 7 Building a real-time dashBoard

258

Click the Add button. You will get the Add Controller screen. Provide

your controller name. For this application, use StockController. After this

action, you will see the StockController added into your Controller folder.

This controller will start to add some methods, which will help to fetch and

insert data.

So let’s understand the methods.

• AddStock(): This method is used to add the new stock

into the StockMaster table. In this method, you require

a StockId. In this particular field, you have to provide

a stock short name; every company has an alias in

NASDAQ. For example, Microsoft is MSFT, Infosys is

INFY, Google is GOOGL. You can quickly get these

names from the NASDAQ website (for help, you can

refer Figure 7-11), because the Yahoo Finance API

will track data based on this stock id only, so please

carefully add the stock ids; otherwise data will not

Figure 7-20. Adding a new web API controller

Chapter 7 Building a real-time dashBoard

259

come. Then you need the stock name, buy price, total

stock quantity, and IsActive. You write this method with

the use of the Entity Framework.

• GetStock(): This method will fetch all active records

from the StockMaster table and display the stock

collection in the dropdown list for the market radar

screen.

• GetStockData(): With the use of this method, the user

can search their stock performance based on stock id,

start date, end date, and period. So this method helps

explore stock performance based on time.

• GetActiveStock(): This method provides the list of

stocks where IsActive = true in the StockMaster

table.

• GetDashboardPortfolioData(): This method provides

a list of active stocks, total investment, current value of

shares, and total gain so you can predict and develop

charts very quickly.

• GetGainerLoserStockData(): This method provides

data for the top gainer and top loser stock from the

StockMaster table.

Now copy Listing 7-4’s code into the StockContoller.cs file.

Listing 7-4. StockController.cs

using StockApi.Models;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Net;

Chapter 7 Building a real-time dashBoard

260

using System.Net.Http;

using System.Threading.Tasks;

using System.Web.Http;

using YahooFinanceApi;

namespace StockApi.Controllers

{

public class StockController : ApiController

 {

StockDbEntities _StockDbEntities =null;

[Route("~/api/GetDashboardPortfolioData")]

[HttpGet]

public List<StockModel>GetDashboardPortfolioData()

 {

_StockDbEntities = new StockDbEntities();

var stockmasters = _StockDbEntities.StockMasters

.Where(x =>x.IsActive == true).ToList();

 List<StockModel>stockModels = new

List<StockModel>();

stockmasters.ForEach(x => {

var period = "daily";

var p = Period.Daily;

if (period.ToLower() == "weekly") p = Period.Weekly;

else if (period.ToLower() == "monthly") p = Period.Monthly;

var startDate = DateTime.Now.AddDays(-3);

var endDate = DateTime.Now;

var stockData = Yahoo.GetHistoricalAsync(x.StockId, startDate,

endDate, p).Result;

if (stockData.Count> 0)

 {

StockModel stockModel = new StockModel();

Chapter 7 Building a real-time dashBoard

261

var lastRecord = stockData.LastOrDefault();

stockModel.StockId = x.StockId;

stockModel.StockName = x.StockName;

stockModel.BuyPrice = x.BuyPrice;

stockModel.Qty = x.Qty;

stockModel.TotalInvested = x.Qty * x.BuyPrice;

stockModel.CurrentValue = x.Qty * (int)lastRecord.

AdjustedClose;

stockModel.TotalGain = stockModel.CurrentValue - stockModel.

TotalInvested;

stockModels.Add(stockModel);

 }

 });

return stockModels.OrderBy(c =>c.TotalGain).ToList();

 }

 [Route("~/api/GetStock")]

 [HttpGet]

public List<StockModel>GetStock()

 {

 _StockDbEntities = new StockDbEntities();

 List<StockModel>stockModels = new

List<StockModel>();

var query = _StockDbEntities.StockMasters.ToList();

query.ForEach(x =>

 {

StockModel stockModel = new StockModel();

stockModel.StockId = x.StockId;

stockModel.StockName = x.StockName;

stockModels.Add(stockModel);

 });

Chapter 7 Building a real-time dashBoard

262

return stockModels;

 }

 [HttpPost]

public boolAddStock(StockModel stockModel)

{

 try

 {

 _StockDbEntities = new StockDbEntities();

StockMaster stockMaster = new StockMaster();

stockMaster.StockId = stockModel.StockId;

stockMaster.StockName = stockModel.StockName;

stockMaster.BuyPrice = stockModel.BuyPrice;

stockMaster.Qty = stockModel.Qty;

stockMaster.IsActive = stockModel.IsActive;

 _StockDbEntities.StockMasters.Add(stockMaster);

 _StockDbEntities.SaveChanges();

}

catch (Exception ex)

 {

return false;

 }

return true;

 }

 [HttpGet]

public List<StockMaster>GetActiveStock()

 {

 _StockDbEntities = new StockDbEntities();

var stockmasters = _StockDbEntities.StockMasters.Where(x =>x.

IsActive == true).ToList();

return stockmasters;

 }

Chapter 7 Building a real-time dashBoard

263

 [Route("~/api/GetStockData/{ticker}/{start}/{end}/

{period}")]

 [HttpGet]

public async Task<List<StockModel>>GetStockData(string

ticker = "", string start = "",

string end = "", string period = "")

 {

var p = Period.Daily;

if (period.ToLower() == "weekly") p = Period.Weekly;

else if (period.ToLower() == "monthly") p = Period.Monthly;

var startDate = DateTime.Parse(start);

var endDate = DateTime.Parse(end);

var query = await Yahoo.GetHistoricalAsync(ticker, startDate,

endDate, p);

 List<StockModel> models = new List<StockModel>();

foreach (var r in query)

 {

models.Add(new StockModel

 {

StockName = ticker,

 Date = r.DateTime.ToString("yyyy-MM-dd"),

 Open = r.Open,

 High = r.High,

 Low = r.Low,

 Close = r.Close,

 Volume = r.Volume

 });

 }

return models;

 }

Chapter 7 Building a real-time dashBoard

264

 [Route("~/api/GetGainerLoserStockData/{ticker}/

{period}")]

 [HttpGet]

public async Task<List<StockModel>>GetGainerLoserStockData

(string ticker = "",

string period = "")

 {

var p = Period.Daily;

if (period.ToLower() == "weekly") p = Period.Weekly;

else if (period.ToLower() == "monthly") p = Period.Monthly;

var startDate = DateTime.Now.AddMonths(-11);

var endDate = DateTime.Now;

var query = awaitYahoo.GetHistoricalAsync(ticker, startDate,

endDate, p);

 List<StockModel> models = new List<StockModel>();

foreach (var r in query)

 {

models.Add(new StockModel

 {

StockName = ticker,

 Date = r.DateTime.ToString("yyyy-MM-dd"),

 Open = r.Open,

 High = r.High,

 Low = r.Low,

 Close = r.Close,

 Volume = r.Volume

 });

 }

return models;

 }

 }

}

Chapter 7 Building a real-time dashBoard

265

Press F5 and run the code. Your web API will start running. Now let’s

develop an Angular app using Highcharts. If you want to learn how to

configure the new Angular app, please refer to Chapter 3.

 Routing in an Angular App
For navigation between different pages, routing plays an essential role.

Every application has different pages, and routing is a way for the user

to communicate between different pages. Figure 7-21 describes the

application architecture. For this application, you have index.html, which

calls appComponent. In this part, all menus are configured; when a user

clicks a menu, that respective component is called.

If you want to configure routing in your application, first you must

import RouterModule from '@angular/router' into the app.module.ts

file and then, with the use of .forRoot([]), define the path and

component properties.

• path: Here you can define the URL. For example,

when a user clicks the dashboard, it will redirect to the

localhost/dashboard. Whatever name you specify into

Figure 7-21. Application architecture for the e-portfolio learning app

Chapter 7 Building a real-time dashBoard

266

the path area the same name, you have to define in an

anchor tag in the Html page. In the next example, you

will understand this in more detail.

• component: In this property, you define the name of

the component you want to call at the time of the

menu click.

Example:

import {RouterModule} from '@angular/router'

imports: [

RouterModule.forRoot([

{ path: 'stock', component: StockComponent },

{ path: 'addstock', component: AddstockComponent },

{ path: 'dashboard', component: DashboardComponent },

])

]

In the above example, in the .forRoot method array, you define path

and component for all three menus. Now copy Listing 7-5’s code into the

app.module.ts file so you can enable routing in your application.

Listing 7-5. app.module.ts

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import {HttpClientModule} from '@angular/common/http';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { HighchartsChartComponent } from 'highcharts-angular';

import {RouterModule} from '@angular/router'

import { ReactiveFormsModule } from "@angular/forms";

import { StockComponent } from './stock/stock.component';

Chapter 7 Building a real-time dashBoard

267

import { AddstockComponent } from './addstock/addstock.

component';

import { DashboardComponent } from './dashboard/dashboard.

component';

@NgModule({

declarations: [

AppComponent,

HighchartsChartComponent,

StockComponent,

AddstockComponent,

DashboardComponent,

],

imports: [

BrowserModule,

HttpClientModule,

AppRoutingModule,

ReactiveFormsModule,

RouterModule.forRoot([

{ path: 'stock', component: StockComponent },

{ path: 'addstock', component: AddstockComponent },

{ path: 'dashboard', component: DashboardComponent },

])

],

bootstrap: [AppComponent]

})

export class AppModule { }

Now open app.component.ts and add Listing 7-6’s code.

Chapter 7 Building a real-time dashBoard

268

Listing 7-6. app.component.ts

import { Component } from '@angular/core';

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

styleUrls: ['./app.component.css']

})

export class AppComponent {

constructor() {

 }

ngOnInit() {

 }

}

In this file, nothing is special because app.component.ts only

provides the HTML and CSS; when the user clicks the hyperlinks, it will

redirect to a different component. Now copy Listing 7-7’s code into

app.component.css.

Listing 7-7. app.component.css

.topnav {

background-color: #333;

overflow: hidden;

 }

 /* Style the links inside the navigation bar */

 .topnav a {

float: left;

color: #f2f2f2;

text-align: center;

padding: 14px 16px;

text-decoration: none;

Chapter 7 Building a real-time dashBoard

269

font-size: 17px;

 }

 /* Change the color of links on hover */

 .topnav a:hover {

background-color: #ddd;

color: black;

 }

 /* Add a color to the active/current link */

 .topnava.active {

background-color: rgb(221, 97, 25);

color: white;

 }

Open app.component.html and copy Listing 7-8’s code. Here you

configure your menu hyperlinks.

Listing 7-8. app.component.html

<div class="topnav">

Dashboard

<a [routerLink]="['/stock']">Market Radar

<a [routerLink]="['/addstock']">Add Stocks

</div>

<router-outlet></router-outlet>

In Listing 7-8, the [routerLink] directive is used to open your routing

path at the time of the click. This is directly linked with RouterModule.

forEach([]), which you define in app.module.ts.

Chapter 7 Building a real-time dashBoard

270

Now it’s time to add a model class for your Angular application. The

class name is stockmodel.ts, so open a new terminal window in Visual

Studio and type the following command and press Enter. This command

will add a stockmodel.ts file into the model folder:

ng generate class model/stockmodel

Now copy Listing 7-9’s code into the stockmodel.ts file.

Listing 7-9. stockmodel.ts

export class Stockmodel {

public StockName: string;

public Date: string;

public Open: number;

public High: number;

public Low: number;

public Close: number;

public Volume: number;

public StockId:string;

public BuyPrice:number;

public Qty: number;

public IsActive:boolean;

public TotalInvested:number;

public CurrentValue:number;

public TotalGain:number;

}

You can see that this model class property is the same as you created

in the web API model class. The reason to create this file is, whenever you

send the request to the web API, you will receive data into the stockmodel

at the time of response. After the response, this model will also help

generate data binding into different charts.

Chapter 7 Building a real-time dashBoard

271

Now it’s time to add a service to your Angular application. In this

application, you have only one service file, which will communicate with

the web API to insert and fetch records based on the requirements. To

create a service file, type the following command into the terminal window

of Visual Studio. This command will create a stock.service.ts file in the

services folder.

ng generate service services/stock

Now, copy Listing 7-10’s code into the stock.service.ts file.

Listing 7-10. stock.service.ts

import { Injectable } from '@angular/core';

import { HttpClient } from '@angular/common/http';

import { Stockmodel } from '../model/stockmodel';

import { Observable } from 'rxjs';

import { tick } from '@angular/core/testing';

@Injectable({

providedIn: 'root'

})

export class StockService {

constructor(private http: HttpClient) {

console.log('Stock Service called');

 }

GetStockByTicks(url, ticker:string,start:string,end:string,

period:string): Observable<Stockmodel[]> {

return this.http.get<Stockmodel[]>(url+"/"+ticker+"/"+start+

"/"+end+"/"+"/"+period);

 }

GetGainerLoserStockData(url, ticker:string,period:string):

Observable<Stockmodel[]> {

Chapter 7 Building a real-time dashBoard

272

return this.http.get<Stockmodel[]>(url+"/"+ticker+"/"+

"/"+period);

 }

GetStocks(url): Observable<Stockmodel[]> {

return this.http.get<Stockmodel[]>(url);

 }

addStock(url,stockmodel: Stockmodel) {

return this.http.post(url, stockmodel);

 }

}

If you want to learn more about httpClient, Observable, and

providerIn, please refer to Chapter 5, where I describe how to

communicate with the Angular service in more detail.

Now one by one you will add new components and connect them with

stock.service.ts.

The first section creates an addstock.component.ts file, which is

responsible for inserting stock records into the database.

Type the following command into the terminal window of Visual

Studio to generate the addstock.component.ts file:

ng generate component addstock

Now copy Listing 7-11’s code into the addstock.component.ts file.

Listing 7-11. addstock.component.ts

import { Component, OnInit } from '@angular/core';

import { Stockmodel } from '../model/stockmodel';

import { StockService } from '../services/stock.service';

import {FormBuilder, FormGroup, Validators} from "@angular/

forms";

import { element } from 'protractor';

Chapter 7 Building a real-time dashBoard

273

@Component({

 selector: 'app-addstock',

 templateUrl: './addstock.component.html',

 styleUrls: ['./addstock.component.css']

})

export class AddstockComponent implements OnInit {

 url: string = 'https://localhost:44311/api/Stock/AddStock';

 addForm: FormGroup;

 constructor(private stockService: StockService, private

formBuilder: FormBuilder) { }

 ngOnInit() {

 this.addForm = this.formBuilder.group({

 StockId: ['', Validators.required],

 StockName: ['', Validators.required],

 BuyPrice: ['', Validators.required],

 Qty: ['', Validators.required],

 IsActive: ['', Validators.required],

 });

 }

 postApiResponse(formVal, url) {

 return this.stockService.addStock(this.url, formVal)

 .toPromise().then(res => {

 return res;

 });

 }

 onSubmit() {

 console.log(this.addForm.value)

 this.postApiResponse(this.addForm.value, this.url).then(

 data => {

Chapter 7 Building a real-time dashBoard

274

 if(data==true)

 {

 alert('Stock added Successfully')

 }

 else{

 alert('Stock not added Successfully')

 }

 });

 }

}

In Listing 7-11, you have the onSubmit() method, which will call from

the page Add Stock button click. Once the user fills all the details and clicks

the Add Stock button, this onSubmit() method will send the request to the

postApiResponse() method with its parameter.

This method will forward the request to the stockservice.addStock()

method, and at the time of return, you will get an alert Success message on

the page.

Here you must remember one thing: once you run your web API

application, you will get a port like (:44311) https://localhost:44311/.

So whatever port number you get for your web API, use the same port in the

URL variable in the addstock.component.ts file; otherwise, the request will

never go to the web API. Follow this practice for all upcoming components.

Now copy Listing 7-12’s code into addstock.component.html, where

you define the page for this component for adding stocks.

Listing 7-12. addstock.component.html

<form [formGroup]="addForm" novalidate class="form">

 <h2>Add Stock Portfolio</h2>

 <table>

Chapter 7 Building a real-time dashBoard

275

 <tr>

 <td>Stock Id (Ex. Msft, infy, abb)</td>

 <td>

 <input type="text" id=txtStockId

formControlName="StockId"/>

 </td>

 </tr>

 <tr>

 <td>Stock Name</td>

 <td>

 <input type="text" id=txtStockName

formControlName="StockName"/>

 </td>

 </tr>

 <tr>

 <td>Buy Price</td>

 <td>

 <input type="text" id=txtBuyPrice

formControlName="BuyPrice"/>

 </td>

 </tr>

 <tr>

 <td>Qty</td>

 <td>

 <input type="text" id=txtQty

formControlName="Qty"/>

 </td>

 </tr>

 <tr>

 <td>IsActive into Portfolio</td>

Chapter 7 Building a real-time dashBoard

276

 <td>

 <input type="checkbox" id=txtIsActive

formControlName="IsActive"/>

 </td>

 </tr>

 <tr>

 <td>

 <input type="button" id="btnAdd" value="Add"

(click)="onSubmit()"/>

 </td>

 </tr>

 </table>

</form>

Now it’s time to add stock.component.ts, where you define your

market radar and where users can search for stock performance daily and

monthly based on selected dates. Type the following command into the

terminal window of Visual Studio:

ng generate component stock

This command will add the stock.component.ts file into your folder

structure.

Now copy Listing 7-13’s code into the stock.component.ts file.

Listing 7-13. stock.component.ts

import { Component, OnInit } from '@angular/core';

import {Stockmodel} from '../model/stockmodel';

import { StockService } from '../services/stock.service';

import {FormBuilder, FormGroup, Validators} from "@angular/

forms";

import * as Highcharts from 'highcharts';

import { debug } from 'util';

Chapter 7 Building a real-time dashBoard

277

@Component({

selector: 'app-stock',

templateUrl: './stock.component.html',

styleUrls: ['./stock.component.css']

})

export class StockComponent implements OnInit {

url: string = 'https://localhost:44311/api/GetStockData';

addForm: FormGroup;

start:string

end:string

stockDates: any;

stockModel: Stockmodel[];

SelStockId: string;

SelPeriodId: string;

Stocks:Stockmodel[];

constructor(private stockService: StockService, private

formBuilder: FormBuilder) {

 }

public options: any = {

chart: {

type: 'line',

 },

title: {

text: 'E- Portfolio'

 },

credits: {

enabled: false

 },

xAxis: {

categories: [],

 },

Chapter 7 Building a real-time dashBoard

278

yAxis: {

title: {

text: ''

 },

 },

series: [],

 }

ngOnInit() {

this.StockDDL();

this.addForm = this.formBuilder.group({

 Stock: ['', Validators.required],

 Period: ['', Validators.required],

StartDate: ['', Validators.required],

EndDate: ['', Validators.required],

 });

 }

onSubmit() {

this.stockService.GetStockByTicks(this.url, this.SelStockId,

this.start, this.end, this.SelPeriodId)

 .toPromise().then(data => {

const stockData = [];

const dates = [];

data.forEach(row => {

const temp_row = [

row.High,

];

dates.push(row.Date);

stockData.push(row.High);

 });

this.stockModel = stockData;

this.stockDates = dates;

Chapter 7 Building a real-time dashBoard

279

var dataSeries = [];

for (var i = 0; i<this.stockModel.length; i++) {

dataSeries.push(

this.stockModel[i]

);

 }

this.options.series = [{ data: dataSeries, name: this.

SelStockId }]

this.options.xAxis.categories = this.stockDates

Highcharts.chart('container', this.options);

 },

error => {

console.log('Something went wrong.');

 });

 }

StockDDL()

 {

this.stockService.GetStocks("https://localhost:44311/api/

getstock")

 .toPromise().then(data => {

const stockLData = [];

data.forEach(row => {

stockLData.push({

StockName: row.StockName,

StockId:row.StockId

 });

 });

return this.Stocks = stockLData;

 });

 }

}

Chapter 7 Building a real-time dashBoard

280

In Listing 7-13, you have three methods. The first is StockDDL(), which

is responsible for fetching data from the StockMaster table and binding it

into the dropdown list; this method calls the ngOnInit() method. As you

already know, the ngOninit() method runs automatically at the time of

page load, so whenever this page loads the first time, this will bind active

stock information into the dropdown list.

Next is the onSubmit() method. This method generates an event once

the user clicks the search button. So this method sends all field parameters

to the GetstockByTicks() service method. At the time of response, it

collects information from the Yahoo API service based on data that will

populate the line charts using Highcharts. If you want to learn this process

in more detail, please refer to Chapter 5.

Now copy Listing 7-14’s code into the stock.component.html file.

Listing 7-14. stock.component.html

<form [formGroup]="addForm" novalidate class="form">

<div>

 <hr/>

 <table>

 <tr>

 <td>

 Select Stock*
 </td>

 <td>

 <select class="form- control"

formControlName="Stock" [(ngModel)]="SelStockId">

 <option *ngFor="let Stock of Stocks"
value={{Stock.StockId}}>

 {{Stock.StockName}}

 </option>

 </select>

 </td>

Chapter 7 Building a real-time dashBoard

281

 <td>

 Period*
 </td>

 <td>

 <select class="form- control"

formControlName="Period" [(ngModel)]="SelPeriodId">

 <option selected value="daily">Daily</option>

 <option value="monthly">Monthly</option>

 </select>

 </td>

 <td>

 Start Date*
 </td>

 <td>

 <input type="date" id="txtStartDate"

formControlName="StartDate" [(ngModel)]="start"/>

 </td>

 <td>

 End Date*
 </td>

 <td>

 <input type="date" id="txtEndDate"

formControlName="EndDate" [(ngModel)]="end"/>

 </td>

 <td>

 <input type="button" id="btnAdd" value="Search"

(click)="onSubmit()"/>

 </td>

 </tr>

 </table>

 <hr/>

</div>

Chapter 7 Building a real-time dashBoard

282

<div class="content" id="container" role="main">

</div>

</form>

<router-outlet></router-outlet>

In the Listing 7-14 code, your chart will populate the container <div>

once the user clicks the Search button.

Now, after adding the stock and market radar features, you can start

the development of the dashboard feature. Type the following command

into the terminal window of Visual Studio:

ng generate component dashboard

In the dashboard.component.ts code, there are three sections. In

the top section, you get all the stocks tables, which you added into the

StockMaster table. After that there is a button called Dashboard Chart.

When you click this button, you will get three charts in the dashboard.

 1. Profit/Loss chart: This is a pie chart that tells you

about the profit/loss of the portfolio.

 2. Top Gainer Stock chart: This is a line chart. It finds

and shows the most profitable stock from your

portfolio and its performance.

 3. Top Loser Stock chart: This is a line chart; it finds

the worst performing stock from your portfolio and

displays its performance.

Now copy Listing 7-15’s code into the dashboard.component.ts file.

Listing 7-15. dashboard.component.ts

import { Component, OnInit } from '@angular/core';

import {Stockmodel} from '../model/stockmodel';

import { StockService } from '../services/stock.service';

Chapter 7 Building a real-time dashBoard

283

import {FormBuilder, FormGroup, Validators} from "@angular/

forms";

import * as Highcharts from 'highcharts';

import { debug } from 'util';

@Component({

 selector: 'app-dashboard',

 templateUrl: './dashboard.component.html',

 styleUrls: ['./dashboard.component.css']

})

export class DashboardComponent implements OnInit {

 addForm: FormGroup;

 url: string = 'https://localhost:44311/api/GetStockData';

 Stocks:Stockmodel[];

 PortfolioStocks : Stockmodel[];//For holding Portfolio data

with profit/loss.

 constructor(private stockService: StockService, private

formBuilder: FormBuilder) {

 }

ngOnInit() {

 // this.GetActiveStocks();

 this.GetDashboardPortfolioData();

 }

 GetDashboardPortfolioData()

 {

 this.stockService.GetStocks("https://localhost:44311/api/

GetDashboardPortfolioData")

 .toPromise().then(data => {

 return this.PortfolioStocks = data;

 });

 }

Chapter 7 Building a real-time dashBoard

284

 public profitLossChart: any = {

 chart: {

 type: 'pie',

 },

 title: {

 text: 'Profit/Loss Chart'

 },

 credits: {

 enabled: false

 },

 series: [],

}

 GetProfitLossChart(){

 let totalInvestment:number=0;

 let totalGain:number=0;

 this.PortfolioStocks.forEach(row=>{

 totalInvestment+=row.TotalInvested;

 totalGain += row.CurrentValue;

 });

 this.GetTopGainerChart();

 this.GetTopLoserChart();

 this.profitLossChart.series =[{

 data: [{

 name: 'Total Investment#',

 y: totalInvestment,

 },

 {

 name: 'Current Value',

 y: totalGain,

 }]

 }]

Chapter 7 Building a real-time dashBoard

285

 Highcharts.chart('containerProfitLoss', this.

profitLossChart);

 }

 public topGainerChart: any = {

 chart: {

 type: 'line',

 },

 title: {

 text: 'Top Gainer'

 },

 credits: {

 enabled: false

 },

 xAxis: {

 categories: [],

 },

 yAxis: {

 title: {

 text: ''

 },

 },

 series: [],

}

 GetTopGainerChart() {

 let length = this.PortfolioStocks.length;

 if (length > 0) {

 this.stockService.GetGainerLoserStockData('https://

localhost:44311/api/GetGainerLoserStockData', this.

PortfolioStocks[length - 1].StockId, "Monthly")

 .toPromise().then(data => {

Chapter 7 Building a real-time dashBoard

286

 const stockData = [];

 const dates = [];

 data.forEach(row => {

 const temp_row = [

 row.High,

];

 dates.push(row.Date);

 stockData.push(row.High);

 });

 var dataSeries = [];

 for (var i = 0; i < stockData.length; i++) {

 dataSeries.push(

 stockData[i]

);

 }

 this.topGainerChart.series = [{ data: dataSeries, name:

this.PortfolioStocks[length - 1].StockId }]

 this.topGainerChart.xAxis.categories = dates

 Highcharts.chart('topGainerChart', this.

topGainerChart);

 },

 error => {

 console.log('Something went wrong.');

 });

 }

 }

 public topLoserChart: any = {

 chart: {

 type: 'line',

 },

Chapter 7 Building a real-time dashBoard

287

 title: {

 text: 'Top Loser'

 },

 credits: {

 enabled: false

 },

 xAxis: {

 categories: [],

 },

 yAxis: {

 title: {

 text: ''

 },

 },

 series: [],

 }

 GetTopLoserChart() {

 let length = this.PortfolioStocks.length;

 if (length > 0) {

 this.stockService.GetGainerLoserStockData('https://

localhost:44311/api/GetGainerLoserStockData',

this.PortfolioStocks[0].StockId, "Monthly")

 .toPromise().then(data => {

 const stockData = [];

 const dates = [];

 data.forEach(row => {

 const temp_row = [

 row.High,

];

Chapter 7 Building a real-time dashBoard

288

 dates.push(row.Date);

 stockData.push(row.High);

 });

 var dataSeries = [];

 for (var i = 0; i < stockData.length; i++) {

 dataSeries.push(

 stockData[i]

);

 }

 this.topLoserChart.series = [{ data: dataSeries,

name: this.PortfolioStocks[0].StockId }]

 this.topLoserChart.xAxis.categories = dates

 Highcharts.chart('topLoserChart', this.

topLoserChart);

 },

 error => {

 console.log('Something went wrong.');

 });

 }

 }

}

In Listing 7-15, there are five methods. Let’s explore each one.

 1. GetDashboardPortfolioData(): This method

populates data into a grid. After getting a response

from the service, it stores data into the this.

portfolioStocks variable. This variable is a

stockmodel[] array type variable.

 2. ngOnInit(): Here you call the GetDashboardPort

folioData() method. The idea is that once page load,

this will show a grid.

Chapter 7 Building a real-time dashBoard

289

 3. GetTopGainerChart(): This method sends the

request to the GetGainerLoserStockData() service

method, and at the time of return, generates a data

series for a line chart.

 4. GetTopLoserChart(): This method sends the

request to the GetGainerLoserStockData() service

method. At the time of response, it generates a data

series for a line chart for the worst performing stock

into the portfolio.

 5. GetProfitLossChart(): This method binds a

data series for the pie chart. This is reflected in

the dashboard, after a dashboard button click.

Internally it calls the GetTopGainerChart() and

GetTopLoserChart() methods.

Now copy Listing 7-16’s code into dashboard.component.html.

Listing 7-16. dashboard.component.html

<table border="1" style="border-color: black; border-collapse:

collapse; margin-left: 35%">

 <thead>

 <tr>

 <th>StockId</th>

 <th>Stock Name</th>

 <th>Buy Price</th>

 <th>Qty</th>

 <th>TotalInvested</th>

 <th>CurrentValue</th>

 <th>TotalGain</th>

 </tr>

 </thead>

Chapter 7 Building a real-time dashBoard

290

 <tbody>

 <tr *ngFor="let stock of PortfolioStocks">
 <td class="hidden">{{stock.StockId}}</td>

 <td>{{stock.StockName}}</td>

 <td>{{stock.BuyPrice}}</td>

 <td>{{stock.Qty}}</td>

 <td>{{stock.TotalInvested}}</td>

 <td>{{stock.CurrentValue}}</td>

 <td>{{stock.TotalGain}}</td>

 </tr>

 </tbody>

 </table>

 <div>

 <input style="margin-left: 45%; margin-bottom: 10px;"

type="button" id="btnProfitLoss" value="Dashboard

Chart"

 (click)="GetProfitLossChart()"/>

 </div>

 <table border="1" style="width: 100%; color: black; border-

color: black; border-collapse: collapse;">

 <tr>

 <td style="width: 50%">

 <div class="containerProfitLoss"

id="containerProfitLoss" role="main">

 </div>

 </td>

 <td>

 <div class="topGainerChart" id="topGainerChart"

role="main">

 </div>

 </td>

 </tr>

Chapter 7 Building a real-time dashBoard

291

 <tr>

 <td>

 </td>

 <td>

 <div class="topLoserChart" id="topLoserChart"

role="main">

 </div>

 </td>

 </tr>

 </table>

Now your application is ready to take off. First, run your web API

application and then come to the Angular app and type ng serve in the

terminal window of Visual Studio and press Enter. You will get the output

shown in Figure 7-22.

Figure 7-22. Home page with menus

As you can see in Figure 7-22, whatever hyperlinks you created, the

menus are displaying correctly. Now click the Add Stock menu (Figure 7- 23).

Chapter 7 Building a real-time dashBoard

292

After you fill in all the fields and click the Add button, it will store data

in the StockMaster table. After insertion completes, you will get a Success

alert message. Don’t forget to write the exact stock id or the Yahoo Finance

web API will never return the right results. To get the stock id symbols, you

can refer to the NASDAQ website.

Now click the Market Radar menu. You will get the output shown in

Figure 7-24.

Figure 7-24. Market radar for selected stock

Figure 7-23. Add Stock Portfolio screen

Chapter 7 Building a real-time dashBoard

293

Now it’s time to see the dashboard. On the panel is one table grid, one

pie chart, and two line charts (Figure 7-25).

So you saw how easily you can develop a complete application and

build an interactive dashboard using Angular and Highcharts with

a web API.

Figure 7-25. Dashboard screen

Chapter 7 Building a real-time dashBoard

294

 Summary
In this chapter, you developed an e-portfolio learning application with

the use of a web API, Angular, and Highcharts. In this chapter, you also

learned how to create routing and forms modules so your controls can

communicate with components to service a user very efficiently.

You also learn how to consume the Yahoo Finance API from the NuGet

package so you can get historical stock data.

With the use of Angular and Highcharts, you can develop your charts

more interactive and quickly.

You saw in each chapter, step by step, how easily you can build

a dashboard with the use of Angular and Highcharts. I hope you

enjoyed this journey with me. Thanks for reading and for your support.

Happy programming!

Chapter 7 Building a real-time dashBoard

295© Sourabh Mishra 2020
S. Mishra, Practical Highcharts with Angular,
https://doi.org/10.1007/978-1-4842-5744-9

Index

A
AddStock(), 258
Alignment, 21–22
Angular

CLI configuration
creation, 34
generation, 34
installation, 32
structure, 35

configuration
code editor, 31, 32
Node.js, setting up, 28–30

definition, 27
reusable code, 27
two-way model data binding, 27
validations, routing, and

binding, 27
web apps, 28

Angular-Highcharts UI application
app.component.html, 135
app.component.ts, 130–133
app.module.ts, 129, 130
asynchronous, 128
Configure() method, 137
ConfigureService

(IServiceCollection
service) method, 136

CORS, 136

Get method, 128
getApiResponse(url), 133, 135
injectable decorator, 126
lambda expression, 137
MarksModel[] array, 128
marks-model.ts, 127
myFirstAngularHighchart

application, 125
ngOnInit() code, 135
ngOnInit() function, 133
observable, 128
real-time line chart, 139
RxJs, 128
Startup.cs, 138, 139
studentModel, 133
studentNames and

studentMarks array type
variables, 135

StudentService, 125
studentserviceService into

constructor, 133
studentservice.service.ts,

126, 127
troubleshoot CORS

issues, 136
Angular IDE, 31
Application programming

interface (API), 101

https://doi.org/10.1007/978-1-4842-5744-9

296

Area charts
app.component.ts, 66–71
area-spline chart, 71
display quantitative data, 65
Highcharts, 67
negative values, 67, 69
plotBands property, 71

Area spline chart, 69, 71, 72
Attribute routing

ActionResult, 112
ApiController, 112
API/controller name, 110
ControllerBase, 112
empty API controller, add, 114
methods, web API, 112
StudentController.cs, 114
ValuesController.cs, 110, 112
web API controller, creation, 113

B
Bar charts, 11, 17
Bell curve chart, 225–227
Bluefish, 32

C
Charting, 3–5
Chart margins, 22
Chart Type SeriesData classes, 173
chart.zoomType property, 190
CheckBoxClick() event, 155–160
Code editor, 31, 32
Column bar charts, 17

Column pyramid charts
app.component.ts, 87–91
colorByPoint, 89
dependencies, 86
Highcharts, 89
plotOptions, 91
stacked, 92

Combinations
app.component.html, 185
app.component.ts, 181–184,

186, 187, 189, 190
column chart, 181
column/spline chart, 185
column/spline/pie chart, 190
type property, 182

Command-line interface (CLI), 32
Configure() method, 137
Controller, 108
Credit property, 25
Cross-origin resource sharing

(CORS), 136, 243, 246, 247
Cylinder chart, 198–201

D
Dashboard chart, 282
Database first approach, entity

framework
add new item screen, 250
AddStock(), 258
API controller, 257
API installation, NuGet

package, 256
connection properties screen, 254

INDEX

297

database objects and settings
screen, 255

data connection screen, 253
entity data model wizard

screen, 252
GetActiveStock(), 259
GetDashboardPortfolio

Data(), 259
GetStock(), 259
GetStockData(), 259
StockController.cs, 259–264
StockModel.cs, 256
version screen, choosing, 255
web API controller, adding, 258

Dependency injection, 108, 109,
128, 133

Dial chart, see Gauge charts
Donut chart, 54–56
Drilldown charts

angular versions, 63
app.component.ts, 59–61
coding, 62
creating series, 58
dependencies, 57
detailed information, 57
details, getting, 58
feature, 61
pie with drilldown detailed

effect, 63
unique name, 61
with pie feature, 62

Drilldown event
app.component.html, 150
app.component.ts, 145, 147, 148

bar chart, 151
detail screen, 151
Drilldown dependency, 148
drilldownsmethod(), 150
events method, 149, 150
name property, 149, 150

E
Entity framework, 104

ADO.NET, 119
GetStudents(), 121
launchSettings.json, 122, 123
Scaffold-DbContext

command, 119
StudentController.cs, 120
StudentDbContext.cs, 120
StudentMarks.cs, 120
trusted connection, 119
web API, running, 124

E-portfolio learning application
angular routing

addstock.component.html,
274, 276

addstock.component.ts, 272
add stock portfolio

screen, 292
app.component.css, 268
app.component.html, 269
app.component.ts, 268
app.module.ts, 266, 267
class property, 270
dashboard.component

.html, 289

INDEX

298

dashboard.component.ts
code, 282

dashboard screen, 293
.forRoot method array, 266
GetDashboardPortfolio

Data(), 288
GetProfitLossChart(), 289
GetTopGainerChart(), 289
GetTopLoserChart(), 289
home page with menus, 291
httpClient, Observable, and

providerIn, 272
import RouterModule, 265
market radar, 292
ngOnInit(), 280, 288
onSubmit() method, 274
path and component

properties, 265
postApiResponse()

method, 274
stock and market radar

features, 282
stock.component.html, 280
stock.component.ts, 276,

277, 279
stockmodel.ts, 270
stockservice.addStock()

method, 274
stock.service.ts file, 271, 272

application architecture, 265
database first approach (see

Database first approach,
entity framework)

database setting up
adding new database, 247
add new table screen, 248
creation screen, 248
manual data, add, 250
StockMaster, 247
StockMaster.sql, 249
table script, adding, 249

features
add stock, 240
dashboard, 240
market radar, 240

web API, creation
configuration, project, 242
Microsoft.AspNet.WebApi.

Cors, installation, 245
NugetPacakge,

installation, 245
NuGet package,

management, 244
project creation, 241
WebApiConfig.cs, 246

Events
app.component.ts, 140, 141, 143
chart series, plotOptions series

click event, 143
CheckBoxClick(), 155–160
drilldown (see Drilldown

event)
LegendItem click, 152–155
ngOnInit() method, 144
plot options series, 144

Export and print charts,
214–216

E-portfolio learning application (cont.)

INDEX

299

F
Flash-based animated graphics

charts, 3
.forRoot method array, 266
Funnel 3D chart type, 201–205

G
Gantt chart, 234–237
Gauge charts

aircraft pilots, 92
app.component.ts, 92–94, 96
endAngle, 97
Highcharts and angular, 99
pane section, 96
startAngle, 97

Gauge series chart, 166–171
GaugeSeriesData class, 166
Get method, 128, 133
GetActiveStock(), 259
getApiResponse(url)

method, 133, 135
GetDashboardPortfolio

Data(), 259, 288
GetProfitLossChart(), 289
GetStock(), 259
GetstockByTicks() service

method, 280
GetStockData(), 259
GetStudents(), 121
GetTopGainerChart(), 289
GetTopLoserChart(), 289
Graph, 4, 5
gridLineColor, 176, 177

gridLineDashStyle, 176, 177
gridLineWidth, 176, 177

H
Heat map series charts, 79–82
Highcharts

alignment, 21
bar charts, 17
benefits, 2
chart margins, setting up, 22
creation, 8–14
credit property, 25
export and print features,

214–216
fast rendering, 1
history, 3
JavaScript-based library, 1
legend alignment, 22, 23
licenses, 2
line charts, 18
map charts, 19
plot lines, setting, 23, 24
scatter plot, 18, 19
setting layouts, 20
setup and configuration, 6–8
SVG-based line chart

presentation, 16
themes (see Themes)

Highcharts wrapper for .NET
Gauge Series chart

HomeController.cs, 166
index.cshtml, 167–170
window.setTimeout, 171

INDEX

300

LineSeries chart
demo with.NET

Framework, 166
HomeController.cs, 162
index.cshtml, 163–165
installation, 161

Histogram charts, 76–79
HttpClientModule, 128, 129
HttpDelete, 113
HttpGet, 112
HttpPost, 113
HttpPut, 113

I, J, K
Image setting in chart area

adding image, 193
app.component.ts, 191–193
renderer.image method, 191
render.events method, 191

L
legendItemClick(), 152
LegendItem click event, 152–155
Legends, 5, 22, 23
Line charts, 18, 63–65
lineColor, 178
Line plot, 18, 63
LineSeries chart, Highcharts

wrapper, 160–166
LineSeriesData class, 163, 173
lineWidth, 178

M
Map charts, 19
Matrix, 79, 82
Microsoft Visual Studio IDE, 31

N
ngOnInit() method, 133, 144,

280, 288
Node.js, 28–30

O
Object-relational mapping (ORM)

framework, 119
onSubmit() method, 274, 280
Organization chart, 227–230

P, Q
Pareto chart, 17, 219–224
Pie charts

allowPointSelect, 51, 52
angular and highcharts, 48
app.component.html, 50
app.component.ts, 48–51
creation, 48
dataLables property, 52
description, 48
donut feature, 56
legends, 53
plotOptions, 51
sliced and slicedOffset

properties, 53, 54

Highcharts wrapper for .NET (cont.)

INDEX

301

Pie 3D chart, 209–214
plotBands property, 71, 98
Plot lines, 23, 24
postApiResponse() method, 274
Pyramid 3D chart, 205–209

R
Radar chart, 216–219
Reactive Extensions for JavaScript

(RxJs), 128
Representational states

transfer (REST)
resource/method, 103
response, 103
web API development, VS

creation, 104
project configuration, 105
project template selection

screen, 106
Resources, 101
Routing

attribute (see Attribute routing)
database creation

database screen, 116
record process into table, 118
records into table, insert, 119
SQL Server Object Explorer, 116
table through code, 117

S
Scaffold-DbContext, 120
Scalable vector graphics (SVG), 15, 16

Scatter charts, 18, 72–76
Scatter graph, 72
Scatter plot, 18, 19, 72
SeriesData Classes, 172–173
services.AddCors() method, 137
Solution explorer

Configure(), 109
ConfigureService(), 108, 109
files and folders

appSettings.json, 108
controller, 108
dependencies, 107
Program.cs, 108
properties, 108
Startup.cs, 108

Visual Studio, 106
Speedometer chart, see Gauge

charts
SQL Server database, 104
Stacked bar charts, 82–86
Stacked column pyramid

chart, 89, 92
StockController, 258
StockDb, 247
StockDDL(), 280
stockservice.addStock() method, 274
Studentservice.service.ts

class, 126, 127

T, U, V
Themes

alternateGridColor, 175
app.component.ts, 176, 177

INDEX

302

axis, 175
colors and graphical

representations, 175
combinations (see Combinations)
dash style series to line chart

app.component.ts, 178, 180
gridLineDashStyle,

gridLineWidth, and
gridLineColor, 177

major tick-related properties, 178
tickColor, 177
tickLength, 177
tickPosition, 177
tickWidth, 177

3D charts
app.component.ts, 194–197
column type chart, 198
cylinder chart, 198–201
funnel 3D, 201–205
pie chart, 209–214
properties, 195
pyramid chart, 205–209
required dependencies, 193

3D donut chart, 214
Timeline chart, 233–235
Trusted_Connection, 120
TypeScript

Highcharts angular wrapper
Angular app, area chart, 45

AppComponent, 41
app.component.html, 41
app.components.ts,

39, 40, 43, 45
app.module.ts, 37
code line, 38, 39
@Component

decorator, 41
highcharts and

chartOptions, 42
index.html, 42
installation, 36
metadata properties, 41
ng serve command, 45
running, ng serve, 43

open-source programming
language, 36

W, X, Y
Web API

framework, 102
HTTP verbs, 101
request-response model, 102
verbs, 101

WebStorm, 32

Z
Zoom option, 190

Themes (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with Highcharts
	Benefits of Highcharts
	History of Highcharts
	Basics of Charting
	Setup and Configuration
	Creating Your First Chart
	Summary

	Chapter 2: Concept of Highcharts
	Scalable Vector Graphics
	Choosing the Right Chart Type Based on Requirements
	Bar Charts
	When to Choose a Bar Chart

	Line Charts
	When to Choose a Line Chart

	Scatter Plots
	Maps

	Setting Layouts
	Alignment
	Setting Up Chart Margins
	Legends

	Setting Up Plot Lines
	Setting Credits
	Summary

	Chapter 3: Integrating Highcharts with Angular
	What Is Angular?
	Configuring Angular
	Setting Up Node.js
	Code Editor
	Setting Up Angular CLI

	TypeScript
	Highcharts Angular Wrapper

	Summary

	Chapter 4: Different Charting Types
	Pie Charts
	Donut Chart
	Drilldown Charts
	Required Dependencies
	Setting Up the Unique Name for a Series
	Line Charts
	Area Charts
	Scatter Charts
	Histogram Charts
	Heat Map Series Charts
	Stacked Bar Charts
	Column Pyramid Charts
	Gauge Charts
	Summary

	Chapter 5: Working with Real-Time Data
	Web API
	What Is REST?
	Web API Development Using Visual Studio

	Solution Explorer
	ConfigureService()
	Configure()

	Routing
	Attribute Routing
	Database Creation

	Adding Entity Framework
	Angular-Highcharts UI Application
	Services in Angular

	Events in Highcharts
	Drilldown Event
	LegendItem Click Event
	CheckBoxClick Event

	Highcharts Wrapper for .NET
	LineSeries Chart with a Highcharts Wrapper
	Gauge Series Chart with a Highcharts Wrapper

	SeriesData Classes
	Summary

	Chapter 6: Themes and Additional Features of Highcharts
	Themes in Highcharts
	Applying a Dash Style Series to a Line Chart
	Combinations in Highcharts
	Zoom Option in Highcharts
	Setting an Image in a Chart Area

	3D Charts
	Cylinder Chart
	Funnel 3D
	Pyramid 3D
	Pie 3D Chart

	Exporting and Printing Charts
	Additional Chart Features
	Radar Chart
	Pareto Chart
	Bell Curve Chart
	Organization Chart
	Timeline Chart
	Gantt Chart

	Summary

	Chapter 7: Building a Real-Time Dashboard
	Real-Time Dashboard Application
	Features of the App
	Creating a Web API
	Setting Up a Database
	Creating a Database First Approach Using Entity Framework
	Routing in an Angular App

	Summary

	Index

