
Practical
Domain-Driven
Design in
Enterprise Java

Using Jakarta EE, Eclipse MicroProfile,
Spring Boot, and the Axon Framework
—
Vijay Nair

www.allitebooks.com

http://www.allitebooks.org

Practical Domain-Driven
Design in Enterprise Java

Using Jakarta EE, Eclipse
MicroProfile, Spring Boot, and the

Axon Framework

Vijay Nair

www.allitebooks.com

http://www.allitebooks.org

Practical Domain-Driven Design in Enterprise Java: Using Jakarta EE, Eclipse
MicroProfile, Spring Boot, and the Axon Framework

ISBN-13 (pbk): 978-1-4842-4542-2		     ISBN-13 (electronic): 978-1-4842-4543-9
https://doi.org/10.1007/978-1-4842-4543-9

Copyright © 2019 by Vijay Nair

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484245422. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Vijay Nair
Mountain View, CA, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4543-9
http://www.allitebooks.org

To Tina and Maya

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: Domain Driven Design�� 1

DDD Concepts�� 2

Problem Space/Business Domain�� 2

Sub-Domains/Bounded Contexts�� 4

The Domain Model��� 8

Aggregates/Entity Objects/Value Objects��� 10

Domain Rules��� 11

Commands/Queries�� 12

Events��� 12

Sagas�� 13

Summary��� 15

Chapter 2: Cargo Tracker��� 17

Core Domain�� 17

Cargo Tracker: Sub-Domains/Bounded Contexts��� 18

Cargo Tracker: Domain Model�� 22

Aggregates��� 22

Aggregate Identifiers�� 23

Entities�� 23

Value Objects�� 24

About the Author�� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

Introduction��xv

www.allitebooks.com

http://www.allitebooks.org

vi

Cargo Tracker: Domain Model Operations�� 29

Sagas��� 30

Domain Model Services��� 32

Domain Model Services Design��� 34

Cargo Tracker: DDD Implementations�� 37

Summary��� 37

Chapter 3: Cargo Tracker: Jakarta EE�� 39

The Java EE Platform��� 40

Rebranding to Jakarta EE and the Way Forward�� 40

Jakarta EE Platform Specifications�� 41

Web Application Technologies�� 42

Enterprise Application Technologies��� 45

Web Services in Jakarta EE�� 47

Security Technologies��� 47

Jakarta EE Specification Summary�� 48

Cargo Tracker as a Modular Monolith�� 48

Bounded Context(s) with Jakarta EE�� 50

Implementing the Domain Model with Jakarta EE��� 55

Implementing Domain Model Services with Jakarta EE��� 78

Inbound Services�� 78

RESTful API(s)��� 79

Native Web API(s)�� 79

Application Services��� 81

Application Services: Events�� 84

Outbound Services��� 88

Implementation Summary�� 90

Summary��� 91

Table of Contents

vii

Chapter 4: Cargo Tracker: Eclipse MicroProfile��� 93

Eclipse MicroProfile��� 94

Eclipse MicroProfile: Capabilities��� 96

Eclipse MicroProfile: Core Specifications��� 98

Eclipse MicroProfile: Supporting Specifications��� 101

Eclipse MicroProfile Specification Summary�� 103

Cargo Tracker Implementation: Eclipse MicroProfile��� 104

Implementation Choice: Helidon MP��� 105

Cargo Tracker Implementation: Bounded Context(s)�� 106

Bounded Contexts: Packaging�� 108

Bounded Contexts: Package Structure��� 111

Cargo Tracker Implementation��� 118

Domain Model: Implementation�� 120

Core Domain Model: Implementation��� 120

Domain Model Operations�� 135

Domain Model Services�� 144

Implementation Summary�� 187

Summary��� 188

Chapter 5: Cargo Tracker: Spring Platform�� 189

The Spring Platform��� 190

Spring Boot: Capabilities�� 193

Spring Cloud��� 194

Spring Framework Summary��� 195

Bounded Context(s) with Spring Boot�� 196

Bounded Contexts: Packaging�� 198

Bounded Contexts: Package Structure��� 199

interfaces��� 201

application�� 202

domain�� 203

infrastructure�� 204

Cargo Tracker Implementation��� 207

Table of Contents

viii

Domain Model: Implementation��� 210

Core Domain Model: Implementation��� 210

Domain Model Operations�� 224

Commands��� 224

Queries��� 229

Domain Events�� 229

Domain Model Services��� 236

Inbound Services�� 237

Application Services��� 248

Outbound Services��� 255

Implementation Summary�� 274

Summary��� 276

Chapter 6: Cargo Tracker: Axon Framework�� 277

Event Sourcing��� 278

CQRS�� 281

The Axon Framework��� 285

Axon Components��� 286

Axon Framework Domain Model Components��� 288

Axon Infrastructure Components: Axon Server��� 296

Cargo Tracker with Axon�� 300

Bounded Contexts with Axon�� 300

Bounded Contexts: Artifact Creation��� 303

Bounded Contexts: Package Structure��� 305

Implementing the Domain Model with Axon��� 312

Implementation Summary�� 363

Implementing Domain Model Services with Axon�� 364

Inbound Services�� 364

Application Services��� 370

Summary��� 372

Index�� 373

Table of Contents

ix

About the Author

Vijay Nair is currently Director of Platform Engineering for Oracle’s Banking SaaS

applications. A Domain Driven Design (DDD) and distributed systems enthusiast,

he has around 18 years of experience in architecting, building, and implementing

mission-critical applications for the financial services industry around the world.

He can be reached at his personal web site www.practicalddd.com or via Twitter at

@FusionVJ. He lives in Mountain View, CA with his wife and daughter.

http://www.practicalddd.com/

xi

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic developer and

researcher who enjoys learning new technologies for his

own experiments and creating new integrations. Manuel

won the Springy Award – Community Champion and

Spring Champion 2013. In his little free time, he reads

the Bible and composes music on his guitar. Manuel is

known as dr_pompeii. He has tech-reviewed numerous

books for Apress, including Pro Spring, Fourth Edition

(2014); Practical Spring LDAP (2013); Pro JPA 2, Second

Edition (2013); and Pro Spring Security (2013). Read his

13 detailed tutorials about many Spring technologies, contact him through his blog

site at www.manueljordanelera.blogspot.com, and follow him on his Twitter account,

@dr_pompeii.  

https://www.manueljordanelera.blogspot.com

xiii

Acknowledgments

The first person I would like to wholeheartedly thank for making this book possible

is Jakarta EE (Enterprise Edition) guru Reza Rahman. While at Oracle, he kick-started

the Cargo Tracker initiative as a blueprint for Java EE Patterns based on DDD. The

opportunity that he gave me to participate in the project is something that I will always

be grateful for.

Thanks to fellow DDD and Axon Framework enthusiast Swapnil Surve, an architect

based out of Phoenix, for the content review and suggestions for Chapters 5 and 6.

A special thanks to Allard Buijze (Creator of the Axon Framework) for the content

review for Chapter 6.

Thanks to all the folks at Oracle who helped support the writing of the book, my

senior management (Vikram, Ticks, Chet), and my own team who educate me every day

(Sourabh, Shripad, Hari, Pawan, Dasharath, and Mahendran).

To the City of Mountain View, CA, thank you for providing the sanctuary of a

fabulous library where many an hour has been spent writing this book.

Writing a book with a newborn is something sane people do not do. The support

provided by my family has been immense during this entire journey, and I am eternally

grateful for that.

Thanks to my brothers, Gautam, Rohit, Sumit, and Sachin; to my sister, Vinitha, and

her husband, Madhu; to my other babies, Varun and Arya; and finally to my parents and

my wife’s parents for sacrificing their time to be with us and helping us out.

Last but not the least, to my wife, Tina. Juggling work, taking care of the kid, and

ensuring I got my writing time required a superhuman effort with a lot of personal

sacrifice. This book is as much yours as it is mine. Thank you!

xv

Introduction

Domain Driven Design has never been more relevant than in today’s world of software

development. DDD concepts and patterns help build well-designed enterprise

applications, be it traditional monoliths or new age microservices-based applications.

This book aims to demystify the concepts of Domain Driven Design by providing

a practical approach to its implementation for traditional monolithic applications as

well as for new age microservices applications. Using a reference application – Cargo

Tracker – the book walks through detailed implementations of the various DDD patterns

for both styles of applications utilizing various tools and frameworks from the Enterprise

Java Space (Jakarta EE, Eclipse MicroProfile, Spring Boot, and the Axon Framework).

This gives a complete rounded view to the reader of the book intending to use any of

these frameworks for their DDD journey.

Enjoy reading!

1
© Vijay Nair 2019
V. Nair, Practical Domain-Driven Design in Enterprise Java, https://doi.org/10.1007/978-1-4842-4543-9_1

CHAPTER 1

Domain Driven Design
Domain Driven Design offers a solid, systematic, and comprehensive approach to

software design and development. It provides a set of tools and techniques which

helps break down business complexity while keeping the core business model as the

centerpiece of the approach.

DDD has been a preferred approach for traditional (read monolithic) projects for

a long time, and with the advent of the microservices architecture, DDD concepts are

being increasingly applied even to this new architecture paradigm.

The book is split into two broad parts.

Modeling of DDD Concepts

Implementing DDD starts with a modeling process to identify artifacts (sub-

domains, bounded contexts, domain model, domain rules) that map to DDD concepts.

The book spends the first couple of chapters giving a high-level overview of DDD

concepts and then outlines a complete modeling process to identify and document the

related artifacts walking through the use cases of our reference application.

Implementation of DDD Concepts

The book then deep dives into the implementations of these concepts. Using

Enterprise Java as the fundamental platform, it walks through three different

implementations:

•	 The first implementation details the implementation of the DDD

concepts based on a monolithic architecture using the Java EE/

Jakarta EE platform.

•	 The second implementation details the implementation of the DDD

concepts based on a microservices architecture on the MicroProfile

platform.

•	 Finally, the third implementation details the implementation of the

DDD concepts based on a microservices architecture on the Spring

platform.

2

The implementations cover the three main dominant platforms that are prevalent in

the Enterprise Java space and provide complete details on implementation of the DDD

patterns.

�DDD Concepts
With the intent of the book clear, let us step into the DDD journey by going through a

quick tour of its concepts.

�Problem Space/Business Domain
The first main concept of DDD that we would need to familiarize ourselves with is the

identification of the “Problem Space” or the “Business Domain.” The Problem Space/

Business Domain is the starting point of the DDD journey, and it identifies the main

business problem that you intend to solve using DDD.

Let us elaborate on this concept using some practical examples.

The first example takes a case from the auto finance industry as illustrated in

Figure 1-1. If you are in the auto finance business, you are in the business of managing

auto loans and leases, that is, you as an auto finance provider need to grant loans/

leases to consumers, service them, and finally if problems arise collect them back or

terminate them. The problem space in this case can be classified as Auto Loans/Lease

Management which can also be termed as your core business domain and a business
problem that you would like to solve using Domain Driven Design.

Chapter 1 Domain Driven Design

3

The second example takes a case from the banking industry. Unlike the first

example, in this case there are not one but multiple problem spaces that need to be

solved using Domain Driven Design (Figure 1-2).

Figure 1-1.  The Auto Finance Services Problem Space

Figure 1-2.  Business Domains within a Retail Banking Service

Chapter 1 Domain Driven Design

4

As a bank, you could be offering Retail Banking Services (Figure 1-2) to a general

customer or Corporate Banking Services (Figure 1-3) to a corporate customer. These

services each have multiple problem spaces or core business domains.

Figure 1-3.  Core Business Domains within a Corporate Banking Service

Problem spaces/business domains always invariably translate into the core

business propositions that you offer as a company.

�Sub-Domains/Bounded Contexts
Once we have identified the main Business Domain, the next step is to break the domain

into its sub-domains. The identification of the sub-domains essentially involves the

breaking down of the various business capabilities of your main business domain into

cohesive units of business functionalities.

Again, citing the example of the auto finance business domain, this can be split into

three sub-domains as illustrated in Figure 1-4.

Chapter 1 Domain Driven Design

5

•	 Originations Sub-Domain – This sub-domain takes care of the

business capability of issuing new auto loans/leases to customers.

•	 Servicing Sub-Domain – This sub-domain takes care of the business

capability of servicing (e.g., monthly billing/payments) these auto

loans/leases.

•	 Collections Sub-Domain – This sub-domain takes care of the

business capability of managing these auto loans/leases if something

goes wrong (e.g., customer defaults on payment).

As is evident, the sub-domains are determined in terms of business capabilities of

your main business that are used on a day-to-day basis.

Shown in Figure 1-5 is another example of determining the sub-domains for one of

our Retail Banking Business Domains – Credit Card Management Business Domain.

Figure 1-4.  Sub-Domains within the Auto Finance Business Domain

Chapter 1 Domain Driven Design

6

•	 Products Sub-Domain – This sub-domain takes care of the business

capability of managing all types of credit card products.

•	 Billing Sub-Domain – This sub-domain takes care of the business

capability of billing for a customer’s credit card.

•	 Claims Sub-Domain – This sub-domain takes care of the business

capability of managing any kinds of claims for a customer’s credit card.

Again, emphasizing on the actual business capabilities helps in cleanly identifying

the sub-domains.

So what are Bounded Contexts?

To recap, we started on our journey by identifying our Business Domains. We

further elaborated on our Business Domains by breaking them into various capabilities

to identify our Sub-Domains which mapped out to different capabilities within the

business.

We need to start creating solutions for the corresponding domains/sub-domains

identified earlier, that is, we need to move from the Problem Space area to the Solution

Space area, and that’s where Bounded Contexts play a central role.

Simply put, Bounded Contexts are design solutions to our identified
Business Domains/Sub-Domains.

Figure 1-5.  Sub-Domains within the Credit Card Management Business Domain

Chapter 1 Domain Driven Design

7

The identification of Bounded Contexts is governed primarily by the cohesiveness

that you need within the business domain and between your sub-domains.

Going back to our first example of the Auto Finance Business Domain, we could

choose to have a single solution for the entire domain, that is, a single bounded context

for all the sub-domains; or we could choose to have a bounded context mapped to a

single sub-domain / multiple sub-domains.

Figure 1-6.  Auto Finance Sub-Domains solutioned as a single Bounded Context

The solution in Figure 1-6 for the Auto Loans/Lease Management problem space is a

single bounded context for all the sub-domains.

Another approach is to solution the different sub-domains within the Auto Finance

Domain as separate Bounded Contexts. Figure 1-7 demonstrates that.

Chapter 1 Domain Driven Design

8

There are no restrictions to the choice of deployment as long as the Bounded Context

is treated as a single cohesive unit. You could have a monolithic deployment for the

multiple bounded contexts approach (single Web Archive [WAR] file with multiple JAR

files per Bounded context), you could choose a microservices deployment model with

each bounded context as a separate container, or you could choose a serverless model

with each bounded context deployed as a function.

As part of our implementations in the subsequent chapters, we will examine every

kind of deployment model available.

�The Domain Model
We are now in the most important and critical part of our domain solutioning process,

the establishment of the Bounded Context’s Domain Model. In short, the Domain Model

is the implementation of the core business logic within a specific Bounded Context.

In business language, this involves identifying

•	 Business Entities

•	 Business Rules

•	 Business Flows

Figure 1-7.  Auto Finance Sub-Domains solutioned as separate Bounded Contexts

Chapter 1 Domain Driven Design

9

•	 Business Operations

•	 Business Events

In technical language within the DDD world, this translates into identifying

•	 Aggregates/Entities/Value Objects

•	 Domain Rules

•	 Sagas

•	 Commands/Queries

•	 Events

This is illustrated in Figure 1-8. As depicted, the business language constructs are

mapped to their corresponding DDD technical language constructs.

Figure 1-8.  The Domain Model of a Bounded Context in terms of a business
language and its corresponding technical language within the DDD paradigm

Chapter 1 Domain Driven Design

10

While we will be elaborating in detail about these various concepts in the

subsequent chapters, let us talk about them briefly here. If it does not make a lot of

sense right now, do not worry. The subsequent chapters will ensure that you get a good

grounding of these concepts.

�Aggregates/Entity Objects/Value Objects
The Aggregate (also known as the root aggregate) is the central business object within

your Bounded Context and defines the scope of consistency within that Bounded

context. Every aspect of your Bounded Context begins and ends within your root

aggregate.

Aggregate = Principal identifier of your Bounded Context

Entity Objects have an identity of their own but cannot exist without the root

aggregate, that is, they are created when the root aggregate is created and are destroyed

when the root aggregate is destroyed.

Entity Objects = Secondary identifiers of your Bounded Context

Value Objects have no identity and are easily replaceable within an instance of a root

aggregate or an entity.

As an example, let us take the Originations Bounded Context of our Auto Loans/

Lease Management Domain (Figure 1-9).

Figure 1-9.  Aggregates/Entities/Value Objects within the Originations Bounded
Context

Chapter 1 Domain Driven Design

11

The Loan Application Aggregate is the root aggregate within the Originations

Bounded Context. Without a loan application, nothing exists within this bounded

context, hence no principal identifier within this Bounded Context or the root aggregate.

The Loan Applicant Details Entity Object captures the applicant details for the loan

application (demographics, address, etc.). It has an identifier of its own (Applicant ID)

but cannot exist without the Loan Application, that is, when the loan application is

created, the loan applicant details are created; likewise, when the loan application is

cancelled, the loan applicant details are removed.

The Loan Amount Value Object denotes the loan amount for the loan application. It

has no identity of its own and can be replaced in a Loan Application Aggregate instance.

Our reference application in the next chapter goes through all of these concepts in

more detail, so if it does not make much sense now, do not worry. Just note that we need

to identify Aggregates/Entities and Value Objects.

�Domain Rules
Domain Rules are pure business rule definitions. Modeled as Objects too, they assist the

Aggregate for any kind of business logic execution within the scope of a Bounded Context.

Within our Originations Bounded Context, a good example of a Domain Rule is a

“State Applicant Compliance Validation” Business Rule. The rule basically states that

depending upon the “state” of the Loan Application (e.g., CA, NY), additional validation

checks could be applicable to the loan applicant.

The State Applicant Compliance Validation Domain Rule works with the Loan

Aggregate to validate the Loan Application on the basis of the state where the Loan

Application is created as illustrated in Figure 1-10.

Figure 1-10.  Domain Rules within the Originations Bounded Context

Chapter 1 Domain Driven Design

12

�Commands/Queries
Commands and Queries represent any kind of operations within the Bounded Context

which either affect the state of the aggregate/entity or query the state of the aggregate/

entity.

As illustrated in Figure 1-11, some examples of Commands within the Originations

Bounded Context include “Open a Loan Account” and “Modify Loan Applicant Details,”

while examples of queries include “View Loan Account Details” and “View Loan

Applicant Details.”

Figure 1-11.  Commands/Queries within the Originations Bounded Context

�Events
Events capture any kind of state change either with an aggregate or an entity within the

Bounded Context. This is illustrated in Figure 1-12.

Chapter 1 Domain Driven Design

13

�Sagas
The final aspect of the DDD model is to flush out any kind of business processes/

workflows within your Business Domain. In the DDD terminology, these are termed

as sagas. As stated, sagas are the only artifact that is not restricted to a single Bounded

Context and may span across multiple Bounded Contexts, and in most of the cases it will

span across Bounded Contexts.

The Bounded Context or specifically the aggregate within a Bounded Context acts as

a Saga participant. Sagas react to multiple business events across Bounded Contexts and

“orchestrate the business process” by coordinating interactions among these Bounded

Contexts.

Let us look at an example of a Saga within our Auto Finance Business Domain –

opening a Loan Account.

If we lay out the business process for the opening of a Loan Account

	 1.	 Customer puts in a Loan Application to X Auto Finance Company

to purchase a new auto.

	 2.	 X Auto Finance Company validates the Loan Application details to

determine the best Loan Product for the customer.

Figure 1-12.  Events within the Originations Bounded Context

Chapter 1 Domain Driven Design

14

	 3.	 X Auto Finance Company either approves the Loan Application or

rejects the Loan Application.

	 4.	 If the Loan Application is approved, X Auto Finance Company

presents the Loan Product Terms to the customer including

interest rate, tenure, and so on.

	 5.	 Customer accepts the Loan Product Terms.

	 6.	 X Auto Finance Company approves the Loan Application post

acceptance.

	 7.	 X Auto Finance Company opens a new Loan Account for the customer.

It is quite evident that this business process involves multiple Bounded Contexts,

that is, it starts with the Originations Bounded Context (approving a Loan Application)

and ends within the Servicing Bounded Context (opening of a Loan Account). This is

illustrated within Figure 1-13.

Figure 1-13.  Loan Account Opening Saga

Chapter 1 Domain Driven Design

15

We now have established a Domain model for our Business Domain and are ready

for implementing it.

�Summary
Summarizing our chapter

•	 We started by establishing the main problem space or the business

problem that we intended to solve using DDD.

•	 Once that was established, we split the problem space into multiple

business capabilities or sub-domains. We then started moving into

the solution space by determining Bounded Contexts.

•	 The final part was a deep dive into the solution space by establishing

the Domain Model for the Bounded Context. This involved

identification of Aggregates/Operations/Process Flows within each

Bounded Context.

Chapter 1 Domain Driven Design

17
© Vijay Nair 2019
V. Nair, Practical Domain-Driven Design in Enterprise Java, https://doi.org/10.1007/978-1-4842-4543-9_2

CHAPTER 2

Cargo Tracker
The Cargo Tracker project will serve as the primary reference application for this book.

It has been around the DDD world as a reference for DDD techniques for a long time,

and during the course of this book, we will implement it utilizing the tools/techniques

and capabilities offered by various Enterprise Java platforms.

The Cargo Tracker application is used by enterprises which are in the cargo business.

It provides capabilities to manage the entire lifecycle of cargos including Booking,

Routing, Tracking, and Handling. The application is intended to be used by the business

operators, customers, and port handlers.

We will lay down the groundwork for our subsequent DDD implementations in this

chapter by first establishing a DDD-specific Domain Modeling process. The intent

of the modeling process is to capture a set of high-level and low-level DDD artifacts.

The high-level artifacts have a low degree of implementation required, that is, these are

more design concepts with minimal physical artifacts required. On the other hand, the

low-level artifacts have a high degree of implementation, that is, they will be the actual

physical artifacts of our implementation.

This Domain Modeling process is applicable whether we are embarking on an

architecture based on Monoliths or Microservices.

�Core Domain
To begin with in true DDD spirit, the first thing we state is that our Core Domain/Problem

Space is Cargo Tracking and the Cargo Tracker Reference application addresses this Core

Domain/Problem Space.

18

With the core domain identified, we then establish the DDD artifacts of the Core

Domain. As part of this process, we identify four main artifacts:

•	 Sub-Domains/Bounded Contexts of our core domain

•	 Domain Model

•	 Domain Sagas

•	 Domain Model Services

Figure 2-1 illustrates the Domain Modeling process.

Figure 2-1.  Aggregates within our Bounded Context

�Cargo Tracker: Sub-Domains/Bounded Contexts
To identify the various sub-domains within the Cargo Core Domain/Problem Space,

we split the domain into various business areas with each business area classified as a
Sub-Domain.

In the Cargo Tracker Domain, we have four main business areas:

•	 Booking – This area covers all aspects of Cargo Booking including the

following:

•	 Booking of cargos

•	 Assigning of routes to cargos

Chapter 2 Cargo Tracker

19

•	 Modification of cargos (e.g., change of destination of a

booked cargo)

•	 Cancellation of cargos

•	 Routing – This area covers all aspects of Cargo Itinerary including the

following:

•	 Optimal Itinerary allocation for cargos based on their Route

Specification

•	 Voyage Maintenance for the carriers that will carry cargos

(e.g., addition of new routes)

•	 Handling – As the cargo progresses along its assigned route, it will

need to be inspected/handled at the various ports of transit. This area

covers all operations related to the Handling activity of cargos.

•	 Tracking – Customers need comprehensive, detailed, and up-to-

date information of their booked cargos. The Tracking business area

provides this capability.

Each of these Business Areas can be classified as Sub-Domain(s) within the DDD

paradigm. While identifying Sub-Domains is part of the problem space identification, we

need solutions for them too. As we have seen in the previous chapter, we use the concept

of Bounded Contexts. Bounded Contexts are design solutions to our main problem

space, and each Bounded Context could have a single sub-domain or multiple

sub-domains mapped to it.

For all our implementations, we assume that each Bounded Context is mapped to
a single Sub-Domain.

The need to capture sub-domains is irrespective of the architectural style that

you intend to follow while building out your application, be it a monolithic or a

microservices-based application. The idea of capturing the sub-domains is to ensure

that at the end of the exercise, we have clearly separated our core domain into different

business areas which are independent and can have their own business language

recognizable within that specific business area/sub-domain.

Figure 2-2 illustrates the various sub-domains of our Cargo Tracker Core Domain as

modules within a monolith, that is, the Bounded contexts are solutioned as modules.

Chapter 2 Cargo Tracker

20

Figure 2-3 illustrates the various sub-domains of our Cargo Tracker Core Domain as

separate microservices, that is, the Bounded Contexts are solutioned as microservices.

Figure 2-2.  The sub-domains of the Cargo Tracker application as separate
modules within a monolith

Chapter 2 Cargo Tracker

21

The design solution of these sub-domains is done via Bounded Contexts deployed

either as modules within a monolithic architecture or as separate microservices in
our microservices-based architecture.

To summarize this section, using the concept of Business Areas, we partitioned
our core domain into multiple sub-domains and identified Bounded Contexts as
the solution for them. Bounded Contexts are designed differently depending on the

type of solution we are developing. In the context of a monolithic architecture, they

are implemented as Modules, while in the context of a Microservices architecture,

they are implemented as separate microservices. A point to note here is the design

implementation of our Bounded Contexts is based on our original decision to map

a Bounded Context per sub-domain. It is quite common and necessary in certain

cases to solution multiple modules within the same Bounded Context in the case of

a monolithic architecture and to solution multiple microservices within the same

Figure 2-3.  The sub-domains of the Cargo Tracker application as separate
microservices

Chapter 2 Cargo Tracker

22

Bounded Context in the case of a microservices based architecture. The Bounded

Context is the final solution.

The next step is now to capture the Domain Model for each Bounded Context.

�Cargo Tracker: Domain Model
The Bounded Context’s Domain Model is the foundational piece of any DDD-based

architecture and is used to express the Business Intent of the Bounded Context.

Identification of the Domain Model involves two main sets of artifacts:

•	 Core Domain Model – Aggregates, Aggregate Identifiers, Entities, and

Value Objects

•	 Domain Model Operations – Commands, Queries, and Events

�Aggregates
The most fundamental and important aspect of designing the domain model is the

identification of Aggregates within a Bounded Context. The aggregate defines the scope

of consistency within your Bounded Context, that is, the aggregate consists of a root entity

and a set of entity/value objects. You can consider the aggregate as a single unit wherein

any operation updates the state of the aggregate as a whole. Aggregates are responsible for

capturing all State and Business Rules associated with the Bounded Context.

Figure 2-4 illustrates the Aggregates within the Cargo Tracker’s Bounded Contexts.

Figure 2-4.  Aggregates within the Cargo Tracker’s Bounded Contexts

Chapter 2 Cargo Tracker

23

Identification of aggregates helps establish the scope of each Bounded Context. Let

us identify the Aggregate Identifiers for each of our Aggregates.

�Aggregate Identifiers
Each Aggregate needs to be uniquely identified using an Aggregate Identifier. The

Aggregate Identifier is implemented using a Business key. For the Cargo Tracker

implementation, Figure 2-5 illustrates the business keys for our Aggregates.

Figure 2-5.  Aggregate Identifiers for our Aggregates using Business Keys

Each Bounded Context expresses its Domain Logic through a set of associations on
the Aggregate implemented via Entities and Value Objects. Let us identify those within

the Cargo Tracker application.

�Entities
Entities within a Bounded Context have an identity of their own but cannot exist without

the Aggregate. In addition to that, Entities within an Aggregate cannot be replaced. Let us

look at an example to help define the rules to identify Entities.

Within the Cargo Aggregate (Booking Bounded Context), as part of the Booking

process, the booking clerk needs to specify the origin of the cargo. This is mapped as an

Entity object, that is, Location which clearly has an identity of its own but also cannot

exist on its own without the Cargo Aggregate.

Chapter 2 Cargo Tracker

24

Figure 2-6 illustrates the Entity objects within our Bounded Contexts. The thumb

rule to identify Entities is to ensure that they have an identity of their own and that they

cannot be replaced within the Aggregate.

�Value Objects
Value Objects within a Bounded Context have no identity of their own and are

replaceable in any instance of an aggregate.

Let us look at an example to help define the rules to identify Value Objects.

The Cargo Aggregate has the following Value Objects:

•	 Booking Amount of the cargo.

•	 Route specification (Origin Location, Destination Location,

Destination Arrival Deadline).

•	 Itinerary that the cargo is assigned to based on the Route

Specification. The Itinerary consists of multiple Legs that the cargo

might be routed through to get to the destination.

Figure 2-6.  An example of our Entities

Chapter 2 Cargo Tracker

25

•	 Delivery Progress of the cargo against its Route Specification and

Itinerary assigned to it. The Delivery Progress provides details on

the Routing Status, Transport Status, Current Voyage of the cargo,
Last Known Location of the cargo, Next Expected Activity, and the
Last Activity that occurred on the cargo.

Let us walk through the scenarios and the rationale why we have these as value

objects and not as entities because it is an important domain modeling decision:

•	 When a new cargo is booked, we will have a new Route
Specification, an empty Cargo Itinerary, and no delivery progress.

•	 As the cargo is assigned an itinerary, the empty Cargo Itinerary is

replaced by an allocated Cargo Itinerary.

•	 As the cargo progresses through multiple ports as part of its itinerary,

the Delivery progress is updated and replaced within the Cargo

Aggregate.

•	 Finally, if the customer chooses to change the delivery location of the

cargo or the deadline for delivery, the Route Specification changes,

a new Cargo Itinerary will be assigned, the Delivery is recalculated,
and the Booking Amount changes.

They have no identity of their own, and they are replaceable within the Cargo
Aggregate and thus modeled as Value Objects. That is the thumb rule for identifying
Value Objects.

Figure 2-7 illustrates the complete class diagram for the Cargo Aggregate after

addition of the Value Objects.

Chapter 2 Cargo Tracker

26

Figure 2-7.  Cargo Aggregate Class Diagram

Chapter 2 Cargo Tracker

27

Let us look at abbreviated class diagrams for the other Aggregates, starting with

HandlingActivity (Figure 2-8).

Figure 2-8.  Handling Activity Class Diagram

Chapter 2 Cargo Tracker

28

Finally, Figure 2-10 shows the Tracking activity.

Figure 2-9.  Voyage Aggregate Class Diagram

Figure 2-10.  Tracking Activity Class Diagram

Figure 2-9 shows the Voyage aggregate.

Chapter 2 Cargo Tracker

29

Note  The source code for the book has the Core Domain Model demonstrated
via package segregation. You can view the source code to get a clearer view of
the types of objects within the domain model at www.github.com/apress/
practical-ddd-in-enterprise-java.

�Cargo Tracker: Domain Model Operations
We have outlined the Bounded Contexts of the Cargo Tracker and flushed out the

Core Domain Model for each of them. The next step is to capture the Domain Model

Operations that occur within a Bounded Context.

Operations within a Bounded Context might be

•	 Commands that request a change of state within the Bounded

Context

•	 Queries that request the state of the Bounded Context

•	 Events that notify the state change of the Bounded Context

Figure 2-11 illustrates the systemic operations within the Bounded Context.

Figure 2-11.  Systemic Operations within a Bounded Context

Chapter 2 Cargo Tracker

http://www.github.com/apress/practical-ddd-in-enterprise-java
http://www.github.com/apress/practical-ddd-in-enterprise-java

30

Figure 2-12 illustrates the Domain Model Operations for our Cargo Tracker’s

Bounded Contexts.

Figure 2-12.  Domain Model operations for our Cargo Tracker’s Bounded Contexts

�Sagas
Sagas are used primarily when we adopt the microservices architectural style for

developing our applications. The distributed nature of microservices application

requires us to implement a mechanism to maintain data consistency for use cases that

Chapter 2 Cargo Tracker

31

may span across multiple microservices. Sagas help us implement that. Sagas can be

implemented in two ways either via Event Choreography or via Event Orchestration:

•	 Implementation of choreography-based sagas is straightforward in

the sense that microservices participating in a particular Saga will

raise and subscribe to events directly.

•	 On the other hand, in orchestration-based Sagas, the lifecycle

coordination happens through a central component. This central

component is responsible for Saga creation, coordination of the flow

across the various Bounded Contexts participating in the Saga, and

finally the Saga Termination itself.

Figure 2-13.  Sagas within the Cargo Tracker Application

Chapter 2 Cargo Tracker

32

Figure 2-13 illustrates a couple of Sagas within the Cargo Tracker application.

The Booking Saga involves the business operations within Cargo Booking, Cargo

Routing, and Cargo Tracking. It starts with the cargo being booked to its subsequent

routing and finally ends with the Tracking Identifier allocated to the booked cargo. This

Tracking Identifier is used by the customers to track the progress of the cargo.

The Handling Saga involves the business operations within Cargo Handling,

Inspection, Claims, and Final Settlement. It starts with the cargo being handled at the

ports where it undergoes a voyage and claimed by the customer at the final destination

and ends with the final settlement of the cargo (e.g., penalty for late delivery).

Both these Sagas span across multiple Bounded Contexts/Microservices, and the

transactional consistency needs to be maintained across all these Bounded Contexts at

the end of the Sagas.

�Domain Model Services
Domain Model Services are used for two primary reasons. The first is to enable the

Bounded Context’s Domain Model to be made available to external parties through

well-defined Interfaces. The second is interacting with external parties be it to persist
the Bounded Context’s state to Datastores (Databases), publish the Bounded Context’s
state change events to external Message Brokers, or communicate with other Bounded

Contexts.

There are three types of Domain Model Services for any Bounded Context:

•	 Inbound Services where we implement well-defined interfaces

which enable external parties to interact with the Domain Model

•	 Outbound Services where we implement all interactions with

External Repositories/other Bounded Contexts

•	 Application Services which act as the façade layer between the

Domain Model and both Inbound and Outbound services

Figure 2-14 illustrates the set of Domain Model Services within the Cargo Tracker

Monolith.

Chapter 2 Cargo Tracker

33

Figure 2-15 illustrates the set of Domain Model Services within the Cargo Tracker

Microservices. Unlike the monolith, the microservices do not provide a native web

interface.

Figure 2-14.  Domain Model Services within the Cargo Tracker Monolith

Chapter 2 Cargo Tracker

34

�Domain Model Services Design
So how do we design these services? Which architectural pattern can we follow to

implement these supporting services?

The hexagonal architectural pattern is a perfect fit to help us model/design and

implement the Domain Model supporting services. Figure 2-16 illustrates the Hexagonal

architectural pattern.

Figure 2-15.  Domain Model Services within the Cargo Tracker Microservices

Chapter 2 Cargo Tracker

35

The Hexagonal architecture uses the concept of ports and adaptors to implement

the Domain Model Services. Let us expand on this concept a bit.

A port in the hexagonal architectural pattern could either be an inbound port or an

outbound port:

•	 An inbound port provides an interface to the business operations of

our domain model. This is typically implemented via the Application

Services. Look at (1).

•	 An outbound port provides an interface to the technical operations

required by our domain model. The Domain Model uses these

interfaces to store or publish any kind of state from the sub-domain.

Look at (2) and (3).

Figure 2-16.  Hexagonal Architectural Pattern

Chapter 2 Cargo Tracker

36

An adaptor in the hexagonal architectural pattern could either be an Inbound
Adaptor or an Outbound Adaptor:

•	 An inbound adaptor uses the inbound port to provide the capabilities

for external clients to consume the domain model. These are

implemented through REST API(s), Native Web API(s), or Event

API(s).

•	 An outbound adaptor is an implementation of the outbound port for

that specific repository. Look at Outbound Adaptors in the following.

To summarize, a “Domain Model” needs a set of supporting services also known as

“Domain Model Services.” These supporting services enable external clients to consume

our domain model and at the same time also enable the domain model to store and

publish states of the sub-domain in multiple repositories.

These supporting services are modeled using the Hexagonal Architectural Pattern

wherein these services are mapped either as an “inbound/outbound port” or an

“inbound/outbound adaptor.” The hexagonal architectural pattern enables the “Domain

Model” to be independent of these supporting services.

This rounds up our DDD-specific Design process. We worked out the Sub-
Domains/Bounded Contexts for our problem space, detailed out the Domain Model
for each Bounded Context, detailed out the Domain Model Operations that occur

within the Bounded Context, and finally came up with the Domain Model Supporting
Services required by the Domain Model.

This Design Process is followed irrespective of whether we are going to follow a

Microservices- or a Monolithic-based architecture. We will expand on the design process

and get into more detail as we start implementing the DDD artifacts identified earlier

using the tools and techniques available within the Enterprise Java space.

Chapter 2 Cargo Tracker

37

�Cargo Tracker: DDD Implementations
The subsequent chapters are going to detail the implementation of the Cargo Tracker

application for the DDD artifacts we identified earlier.

As part of the implementations, we will be designing and developing the Cargo

Tracker Application:

–– As a DDD-based Monolith utilizing the Jakarta EE Platform

–– As a DDD-based Microservices application utilizing the Eclipse

MicroProfile Platform

–– As a DDD-based microservices application utilizing the Spring Boot

Platform

–– As a DDD-based microservices application utilizing the Axon

Framework

Let us proceed toward the first implementation of Cargo Tracker as a Monolith.

�Summary
Summarizing our chapter

•	 We did an overview of our Cargo Tracker reference application and

determined the Sub-Domains/Bounded Contexts for the application.

•	 We flushed out the Core Domain Model of the Cargo Tracker

including identification of the Aggregates, Entities, and Value Objects.

We also established the Domain Model operations and the Sagas

associated with the Cargo Tracker application.

•	 We rounded off the chapter by determining the Domain Model

Services required by the Cargo Tracker’s Domain Model using the

Hexagonal architectural pattern.

Chapter 2 Cargo Tracker

39
© Vijay Nair 2019
V. Nair, Practical Domain-Driven Design in Enterprise Java, https://doi.org/10.1007/978-1-4842-4543-9_3

CHAPTER 3

Cargo Tracker: Jakarta EE
We now have a process in place for modeling the various DDD artifacts for any

application and detailed out the same for the Cargo Tracker application.

To quickly recap

We identified Cargo Tracking as the main problem space/core

domain and the Cargo Tracker application as the solution to

address this problem space.

We identified the various sub-domains/bounded contexts for the

Cargo Tracker application.

We detailed out the domain model for each of our bounded contexts

including identification of aggregates, entities, value objects, and

domain rules.

We identified the supporting domain services required within the

bounded contexts.

We identified the various operations within our bounded contexts

(Commands, Queries, Events, and Sagas).

This rounds up the modeling phase for our DDD journey, and we have all the details

in place to start our implementation phase.

Our book walks through four separate DDD implementations with Enterprise Java as

the base for developing these implementations:

•	 A monolithic implementation using Java EE 8/Jakarta EE

•	 A microservices implementation based on Eclipse MicroProfile

•	 A microservices implementation based on Spring Boot

•	 A microservices implementation based on a pure play Command/

Query Responsibility Segregation (CQRS)/Event Sourcing (ES) design

pattern using the Axon Framework

40

The Enterprise Java landscape offers a vast ecosystem of tools, frameworks, and

techniques that will help us in implementing the DDD concepts outlined in the previous

chapters.

This chapter details the first DDD implementation of our Cargo Tracker application

using the Java EE 8 platform as the foundation for the implementation. The Cargo

Tracker application will be designed as a modular monolith, and we will map the DDD

artifacts to the corresponding implementations available within the Java EE 8 platform.

First, here is an overview of the Java EE platform.

�The Java EE Platform
The Java EE (Enterprise Edition) platform has been the standard for enterprise

application development for close to 20 years. The platform proposes a set of

specifications covering a range of technical capabilities required by enterprises for

building applications in a scaleable, secure, robust, and standard way.

The goal of the platform is to simplify the developer experience by enabling them

to build out the business functionalities while the platform does the heavy lifting of the

system services via the implementation of the specifications using an Application Server.

Led by Oracle, the platform has wide acceptance and great community participation

and has close to 15 vendor implementations of the various specifications. The current

version of the platform is Java EE 8 with the Oracle GlassFish Application Server v. 5.0

providing the reference application.

�Rebranding to Jakarta EE and the Way Forward
In 2017, Oracle along with the support of IBM and Red Hat decided to move the Java EE

sources to the Eclipse Foundation under a new project EE4J (Eclipse Enterprise for
Java). The purpose of the movement was to create a nimbler governing process with a

faster release cadence to keep up with the rapidly evolving technological landscape in

the enterprise space.

EE4J is a top-level project within the Eclipse Foundation to which all the Java EE

sources, Reference Implementations, and TCKs (Technology Compatibility Kits) are

being transferred. The Jakarta EE platform is a project under EE4J and aims to be the

future platform that will replace the current Java EE platform.

Chapter 3 Cargo Tracker: Jakarta EE

41

In short, all new specification releases or maintenance specification

releases will now be made on Jakarta EE, and the Java EE 8 would

be the last version of that platform.

Jakarta EE has already seen tremendous momentum with multiple vendors signing

up to the working committees and aims to modernize the stack to be relevant for

traditional enterprise applications and at the same time align with new cloud-native/

microservices-based architectures.

The first version of the Jakarta EE platform aims to be an exact replica of the Java EE

8 platform with the focus primarily on the transfer process of the various specifications

between Oracle and the Eclipse Foundation. The first reference implementation under

the new Jakarta EE Platform brand has been released as Eclipse GlassFish 5.1 which is

certified as Java EE 8 compatible.

This chapter would focus on the release of GlassFish which is Java EE 8 compatible

and the first release on the Jakarta EE platform - Eclipse GlassFish 5.1. Our aim in

this chapter is to implement the DDD concepts within the Cargo Tracker Reference

Application based on a traditional monolithic architectural style.

Let us deep dive into the specifications.

�Jakarta EE Platform Specifications
The Jakarta EE (based on Java EE 8) specifications are vast and aim to provide a standard

set of capabilities that enterprises require to build applications. The specifications

continuously evolve through multiple versions, and capabilities are added or modified

either as new specifications or maintenance specifications.

The specifications are grouped into two profiles – Full Profile or Web Profile.

The concept of profiles was introduced to categorize the capabilities required by

applications. For pure web applications, the Web Profile specification provides the

required set of capabilities (Java Persistence API [JPA], Contexts and Dependency

Injection [CDI], Java API for RESTful Web Services [JAX-RS]), while for larger complex

applications which might require, say, messaging capabilities or have legacy application

integration requirements, the Full Profile provides the additional capabilities.

For our purposes, the Web Profile is more than adequate to help us implement

Cargo Tracker in a monolithic architectural style, so we will expand only on that set of

specifications.

Chapter 3 Cargo Tracker: Jakarta EE

42

The Web Profile set of specifications for Jakarta EE (based on Java EE 8) is illustrated

in Figure 3-1 grouped by the area it covers. The official URL to access these specifications

is www.oracle.com/technetwork/java/javaee/tech/index.html.

Figure 3-1.  Web Profile specifications for Jakarta EE (based on Java EE 8)

�Web Application Technologies
Web application technologies represent all those specifications within the Jakarta EE

platform that cover

–– HTTP protocol request/response processing capabilities

–– HTML components to build browser-based thin client applications

–– JSON data processing capabilities

Chapter 3 Cargo Tracker: Jakarta EE

http://www.oracle.com/technetwork/java/javaee/tech/index.html

43

�Java Servlet

Servlets essentially receive HTTP(s) requests, process them, and send back responses

to the client which is typically a web browser. The servlet specification is one of the

most important specifications existing since Java EE 1.0 and serves as the fundamental

technology for a web application.

A lot of web frameworks (e.g., JavaServer Faces [JSF], Spring Model View Controller

[MVC]) use servlets as the foundational toolkit and abstract their usage, that is, directly

utilizing servlets is pretty uncommon while utilizing a web framework.

In Java EE 8, the latest version of the specification is Servlet 4.0 which introduced a

major feature to the Servlet API – support for HTTP/2. While traditional HTTP requests

had a single request/response, with HTTP/2, you could have a single request but the

server can choose to serve multiple responses at the same time resulting in resource

optimization and an improved user experience.

�JavaServer Faces

JavaServer Faces provides a component-based approach to build web applications.

Based on a server-side rendering aspect, it implements the well-known MVC pattern

with clean separations. Views are generally based on JSF’s Facelets templating

technology, Models are built using JSF Backing Beans, and the Controller is built on top

of the Servlet API.

JSF has wide adoption and is consistently ranked among the top web frameworks

adopted by enterprise customers for their web applications because of its solid design

principles and the stability of the specification. Multiple implementations exist including

Oracle’s ADF Faces, PrimeFaces, and BootsFaces.

The latest version of the specification is JavaServer Faces 2.3.

�JavaServer Pages

JavaServer Pages (JSP) was the first view technology proposed when the Java EE platform

was created. JSPs are translated into servlets at runtime and help create dynamic

web content within Java web applications. JSPs are no longer widely used due to the

preference for JSF as the UI technology for Java web applications, and the specification

has not been updated for a long time.

The latest version of the specification is JavaServer Pages 2.3.

Chapter 3 Cargo Tracker: Jakarta EE

44

�Expression Language

The Expression Language (EL) specification helps in accessing and manipulating data.

This is used by multiple specifications including JSP, JSF, and CDI. The EL is quite

powerful and is adopted widely. Latest improvements include support for lambda

expressions introduced in Java 8.

The latest version of the specification is EL 3.0.

�JSP Standard Tag Library (JSTL)

JSTL offers a collection of utility tags that can be used in JSP pages. These utility tags

cover tasks such as iterations/conditions/SQL access. The specification has not been

updated for a while since the advent of JSF and is not widely used anymore.

The current version of the specification is at 1.2.

�Java API for WebSocket

This specification is provided to enable integration of WebSockets within Java web

applications. The specification details an API that covers both server-side and client-side

implementations of WebSockets.

The specification underwent a maintenance released in Java EE 8, and the latest

version is at 1.1.

�Java API for JSON Binding

A new specification introduced in Java EE 8, it details an API that provides a binding

layer to convert Java Objects to JSON messages and vice versa.

The first version of the specification is at version 1.0.

�Java API for JSON Processing

This specification provides an API that can be used to access and manipulate JSON

objects. The latest version of the specification in Java EE 8 was a major release with

various enhancements such as JSON Pointer, JSON Patch, JSON Merge Patch, and JSON

Collectors.

The current version of the specification is at version 1.1.

Chapter 3 Cargo Tracker: Jakarta EE

45

�Enterprise Application Technologies
Enterprise application technologies represent all those specifications within the Jakarta

EE platform that cover

–– Building of enterprise business components

–– Business Component Dependency Management/Injection

capabilities

–– Validation capabilities

–– Transaction Management

–– ORM (Object Relational Mapping) capabilities

�Enterprise Java Beans (3.2)

Available since v. 1.0 of the Java EE platform, Enterprise Java Beans (EJBs) provide a

standard way of implementing server-side business logic for enterprise applications.

EJBs abstracted the developer from a bunch of infrastructural concerns (e.g.,

Transaction Processing, Lifecycle management) allowing them to focus only on the

business logic. One of the most popular specifications, it does suffer a perception issue

of being too complex and heavyweight to use. The specification has undergone major

transformations to shed these tags. As of the latest version of the specification, it offers

an extremely simple and streamlined programming model for building business objects.

The latest version of the specification is at version 3.2.

�Contexts and Dependency Injection for Java (2.0)

CDIs were introduced in the Java EE specification to build a component and manage

its dependencies via injection. The specification was introduced to restrict EJBs to

peripheral infrastructural responsibilities while having core business logic written in CDI

Beans. With recent releases of the platform, these infrastructural concerns can now be

written within CDI Beans too. CDI has now become the foundational piece of technology

for almost all other parts of the platform with EJBs slowly being pushed out of favor. The

specification had a major release in Java EE 8 with support for asynchronous events,

observer orderings, and alignments with Java 8 streams.

One of the most powerful aspects of CDI is the extension framework it provides to

create capabilities which the standard set of specifications do not support currently.

Chapter 3 Cargo Tracker: Jakarta EE

46

These capabilities could include the following:

–– Integration with new message brokers (e.g., Kafka)

–– Integration with non-relational datastores (e.g., MongoDB,

Cassandra)

–– Integration with new age cloud infrastructure (e.g., AWS S3, Oracle

Object Storage)

Some well-known CDI extensions include Apache DeltaSpike (https://

deltaspike.apache.org/) and Arquillian (http://arquillian.org/).

The latest version of the specification is at version 2.0.

�Bean Validation

This specification provides a Java API to implement validations within applications. This

specification has a major release in Java EE 8 with support for new types of validations,

integration of the new Java Time API, and so on.

The latest version of the specification is at version 2.0.

�Java Persistence API (JPA)

This specification provides a Java API to implement ORM (Object Relational Mapping)

facility between Java Objects and relational datastores. One of the more popular

specifications, it has wide adoption and multiple implementations, the most famous of

them being Hibernate.

The latest version of the specification is at version 2.2.

�Java Transaction API (JTA)

This specification provides a Java API to implement programmatic transactional

capability within your applications. The API supports distributed transactions across

multiple repositories, one of the most important aspects for a monolith which has needs

for high transactional consistencies.

The latest version of the specification is at version 1.2.

Chapter 3 Cargo Tracker: Jakarta EE

https://deltaspike.apache.org/
https://deltaspike.apache.org/
http://arquillian.org/

47

�Common Annotations

This specification provides a set of annotations or rather markers which help the

container in executing common tasks (e.g., Resource Injections, Lifecycle management).

The latest version of the specification is at version 1.3.

�Interceptors

This specification helps developers to write interceptor methods on associated managed

beans (EJBs, CDI). Common uses of interceptors are for centralized crosscutting

concerns such as auditing and logging.

The latest version of the specification is at version 1.2.

�Web Services in Jakarta EE
Web service technologies represent all those specifications within the Jakarta EE

platform that cover building enterprise REST services. For now, there is one main API.

�Java API for RESTful Web Services (JAX-RS)

This specification provides a standard Java API for developers to implement RESTful

web services. Another popular specification, the latest version of the specification had a

major release with support for Reactive Clients and Server-Side events.

The latest version of the specification is at version 2.1.

�Security Technologies
Security technologies represent all those specifications within the Jakarta EE platform

that cover securing enterprise business components.

�Java EE Security API (1.0)

A new specification introduced in Java EE 8, this provides a standard Java API for security

implementations centered around user management. New APIs were introduced

for authentication management, identity store interactions, and security context

implementations (retrieval of user information).

Chapter 3 Cargo Tracker: Jakarta EE

48

�Jakarta EE Specification Summary
This completes our high-level overview of the Jakarta EE platform specifications based

on Java EE 8. As can be seen, these specifications are comprehensive and provide almost

every capability required to build out enterprise applications. The platform also provides

for extension points in case it does not suffice any specific need of the enterprise.

The most important point is that these are standard specifications backed by

multiple vendors to adhere to these standards. This gives enterprises extreme flexibility

in choosing a deployment platform.

With the new governance structure in place under the Eclipse Foundation, the

platform is gearing up itself for the next generation of enterprise applications being built.

�Cargo Tracker as a Modular Monolith
The monolithic architectural style has been the foundation for enterprise projects for a

very long time.

The main focus points for a monolithic architecture are the following:

•	 Strong transactional consistency

•	 Easier maintainability

•	 Centralized data management

•	 Shared responsibilities

With the recent advent of microservices, there is definitely a growing pressure on

monolithic architectures. The microservices architectural style provides teams with

a high degree of independence in terms of development, testing, and deployment of

applications; but due care needs to be taken before you start dismantling a monolith and

move it to a microservices-based architecture. Microservices are essentially distributed

systems which in turn require a lot of investment in automation, monitoring, and

compromises for consistency. Monoliths have considerable value for complex business

applications.

However, architectural approaches toward monoliths have been changing by

borrowing concepts from microservices especially in the area of structuring monolithic

applications. This is where DDD plays a central role. Bounded Contexts as we have

Chapter 3 Cargo Tracker: Jakarta EE

49

seen help us carve the business capabilities of a particular domain into independent

“solution areas.” Structuring these Bounded Contexts as separate modules within a

monolith and using domain events to communicate between them help us achieve loose

coupling enabling “true modularity” or termed “modular monoliths.”
The advantage of going down the path of “true modularity” or “modular

monoliths” using DDD is while it helps us reap the benefits of having a monolithic

architecture, it helps maintain a level of independence which helps us transition to

microservices down the line if required.

In the previous chapters, we have carved out our Business Capabilities/Sub-

Domains for our Cargo Tracker application and solutioned them with Bounded

Contexts. In this chapter, we will structure the Cargo Tracker application as a modular

monolith with each Bounded Context modeled as a separate module.

Figure 3-2 shows the mapping of the Bounded Contexts to the corresponding

modules within the Cargo Tracker monolith.

Figure 3-2.  Bounded Contexts as modules within the Cargo Tracker Monolith on
a centralized DB

Chapter 3 Cargo Tracker: Jakarta EE

50

With the set of specifications outlined and our intent clear for Cargo Tracker to be

architected as a modular monolith based on DDD, let us proceed to implement it on the

Java EE platform.

�Bounded Context(s) with Jakarta EE
The Bounded Context is the starting point of our solution phase for our DDD

implementation of the Cargo Tracker monolith. Each Bounded Context is going to be

structured as a module within the monolith as its own independent deployable artifact.

The Cargo Tracker monolith’s main deployment artifact will be a standard

WAR (Web Archive) file which will be deployed onto an Application Server (Eclipse

GlassFish). As stated previously, the application server provides an implementation for

a specific version of the Jakarta EE specification (in this case, Java EE 8). Each Bounded

Context’s deployment artifact will be a standard JAR (Java Archive) file which will be

bundled within the WAR file.

This WAR file would contain a set of JAR files with each JAR file representing the

module/Bounded Context. The deployment architecture is illustrated in Figure 3-3.

Implementing the Bounded Contexts involves a logical grouping of our DDD

artifacts into a single deployable artifact. The logical grouping involves identifying a

package structure where we place the various DDD artifacts to achieve our overall

solution for the Bounded Context. That is, we do not specifically use any particular Java

EE specification(s) to implement a Bounded Context. We just identify a well-identified

package structure for our DDD artifacts within the Bounded Context.

The package structure needs to mirror the hexagonal architecture that we laid out in

Chapter 2 (Figure 2-16).

The package structure for any of our Bounded Context(s) is illustrated in Figure 3-3.

Chapter 3 Cargo Tracker: Jakarta EE

51

Let us expand on the package structure.

�interfaces

This package contains all the possible inbound services a Bounded Context provides

classified by protocol.

They serve two main purposes:

•	 Protocol negotiation on behalf of the domain model (e.g., REST

API(s), Web API(s), WebSocket(s), FTP(s))

•	 View adapters for data (e.g., Browser View(s), Mobile View(s))

As an example, the Booking Bounded Context provides multiple types of services.

One example is a Web API for the native UI within the Cargo Tracker application to book

a cargo/modify a cargo as well as listing of cargos for a customer. Similarly, the Handling

Bounded Context provides a RESTful API for any kind of handling operations which are

consumed by the Handling Mobile Application. All of these services would be a part of

the “interfaces” package.

Figure 3-3.  Package structure for the Bounded Contexts

Chapter 3 Cargo Tracker: Jakarta EE

52

The package structure is illustrated in Figure 3-4.

Figure 3-4.  Package structure for interfaces

�application

This package contains the Application services a Bounded Context’s domain model

would require.

Application services classes serve multiple purposes:

•	 Act as ports for input interfaces and output repositories

•	 Commands, Queries, Events, and Saga participants

•	 Transaction initiation, control, and termination

•	 Centralized concerns (e.g., Logging, Security, Metrics) for the

underlying domain model

•	 Data transfer object transformation

•	 Callouts to other Bounded Contexts

The package structure is illustrated in Figure 3-5.

Chapter 3 Cargo Tracker: Jakarta EE

53

�domain

This package contains the Bounded Context’s domain model.

The following are the core classes of our Bounded Contexts:

•	 Aggregates

•	 Entities

•	 Value Objects

•	 Domain Rules

The package structure is illustrated in Figure 3-6.

Figure 3-5.  Package structure for Application services

Chapter 3 Cargo Tracker: Jakarta EE

54

�infrastructure

This package contains the infrastructural components required by the Bounded

Context’s domain model to communicate to any external repositories (e.g., Relational

Database(s), NoSQL Databases, Message Queues, Event Infrastructure).

The package structure is illustrated in Figure 3-7.

Figure 3-6.  Package structure for our domain model

Figure 3-7.  Package structure for the infrastructure components

Chapter 3 Cargo Tracker: Jakarta EE

55

�Shared Kernels

Sometimes the domain model may need to be shared across multiple Bounded Contexts.

Shared kernels within DDD offer us a robust mechanism to share domain models

reducing the amount of duplicated code. Shared kernels are easier to implement within

a monolith rather than a microservices-based application which advocates a much

higher level of independency.

It does come up with a fair degree of challenges though as multiple teams need to

agree on what aspect of the domain model would need to be shared across Bounded

Contexts.

In our case within the Cargo Tracker monolith, we will keep all the events (package –

events.cdi) that are raised by the various Bounded Contexts within a shared kernel.

This is illustrated in Figure 3-8.

Figure 3-8.  Shared infrastructure containing all the CDI events

We now have our Bounded Contexts neatly grouped by modules in a package

structure with clearly separated concerns.

�Implementing the Domain Model with Jakarta EE
Our core domain model is the central feature of our Bounded Context and as stated

earlier has a set of artifacts associated with it. Implementation of these artifacts is done

with the help of the tools that Java EE provides.

To quickly summarize, the domain model artifacts that we need to implement are

the following:

•	 Aggregates

•	 Entities

•	 Value Objects

Let’s walk through each of these artifacts and see what corresponding tool(s) Java EE

provides for us to implement these.

Chapter 3 Cargo Tracker: Jakarta EE

56

�Aggregates

Aggregates are at the center of our domain model. To quickly recap, we have four

aggregates within each of our Bounded Contexts as shown in Figure 3-9.

Figure 3-9.  Aggregates within our Bounded Context

Implementation of an Aggregate covers the following aspects:

•	 Aggregate Class Implementation

•	 Domain Richness (Business Attributes, Business Methods)

•	 State Construction

•	 State Persistence

•	 Inter-Aggregate References

•	 Events

Chapter 3 Cargo Tracker: Jakarta EE

57

Aggregate Class Implementation

To implement our root aggregate, we will use JPA (Java Persistence API) from the Java EE

framework as the main tool. Each of our root aggregate classes is implemented as a JPA

entity. There are no specific annotations that JPA provides to annotate a specific class as

a root aggregate, so we use the JPA-provided standard annotation "@Entity".

Listing 3-1 of the Cargo Root aggregate is shown in the following:

Listing 3-1.  Cargo Root Aggregate

package com.practicalddd.cargotracker.booking.domain.model.aggregate;

import javax.persistence.Entity;

@Entity // JPA provided annotation

public class Cargo implements Serializable{

@Id

@GeneratedValue

private Long id; // Surrogate Key

@Embedded �//To retain domain richness use an Embedded class instead of the

direct Java implementation

private BookingId bookingId �// Globally unique identifier of the Cargo Root

Aggregate (Booking Id)

}

Listing 3-2 shows the BookingID aggregate identifier:

Listing 3-2.  Booking ID Aggregate Identifier

@Embeddable

public class BookingId implements Serializable{

@Column(name="booking_id", unique=true,updateable=false)

private String id;

public BookingId(){

}

public BookingId(String id){

 this.id = id;

}

Chapter 3 Cargo Tracker: Jakarta EE

58

public String getBookingId(){

return id;

}

For our aggregate identifier implementation, we choose to have a technical/

surrogate key (Primary Key) and a corresponding business key (Unique Key). The

business key conveys the business intent of the aggregate identifier clear, that is, Booking

Identifier of a newly booked cargo and is the key that is exposed to consumers of the

domain model. The technical key on the other hand is a pure internal representation of

the aggregate identifier and is useful for use cases such as inter-aggregate references.

JPA provides us the @Id annotation to denote the primary key of our root aggregate.

Domain-Rich Aggregate vs. Anemic Aggregates

The basic premise of DDD is to have the domain richness expressed and centralized within

the domain model, and our aggregate forms the centerpiece of our domain model.

The aggregate should be domain rich and convey the intent of the Bounded Context

using clear business concepts.

An aggregate could also end up being anemic, that is, one with only getters and

setters. This is considered to be anti-pattern in the DDD world.

To summarize

•	 Anemic aggregates give no purpose or intent of the domain.

•	 The pattern is intended only to capture the attributes and is most

useful in representing data transfer objects rather than core business

objects.

•	 Anemic aggregates result in domain logic leaking into the

surrounding services which results in polluting the intent of the

surrounding services.

•	 Anemic aggregates result in unmaintainable code over a period of

time.

We should avoid anemic aggregates as far as possible and restrict them to their

intended usage, that is, pure data objects.

Chapter 3 Cargo Tracker: Jakarta EE

59

Domain-rich aggregates on the other hand as the name suggests are rich. They

express clearly the intent of the sub-domain they represent in terms of business

attributes and business methods. Let us explain this in a bit more detail in the sections

that follow.

Business Attribute Coverage

The root aggregate should cover all the business attributes required by the Bounded

Context to function. These attributes should be modeled in business terms rather than

technical terms.

Let us walk through the example of our Cargo root aggregate.

A cargo will have

•	 An Origin Location

•	 A Booking Amount

•	 A Route Specification (Origin Location/Destination Location/

Destination Arrival Deadline)

•	 An Itinerary

•	 Delivery Progress

The Cargo root aggregate class captures these as separate classes within the main

aggregate class.

Listing 3-3 of the Cargo Root aggregate demonstrates these annotations:

Listing 3-3.  Cargo root aggregate - Business attribute coverage

@ManyToOne // JPA Provided annotation

private Location origin;

@Embedded // JPA Provided annotation

private CargoBookingAmount bookingAmount;

@Embedded // JPA Provided annotation

private RouteSpecification routeSpecification;

@Embedded // JPA Provided annotation

private Itinerary itinerary;

@Embedded // JPA Provided annotation

private Delivery delivery;

Chapter 3 Cargo Tracker: Jakarta EE

60

Notice how we use business terms to express these dependent classes which clearly

express the intent of the Cargo root aggregate.

The Java Persistence API (JPA) provides us a set of structural (e.g., Embedded/

Embeddable) and relational (e.g., ManyToOne) annotations which help in defining the

root aggregate class in pure business concepts.

Associated classes are modeled either as Entity Objects or Value Objects. We shall

detail these concepts later; but to quickly summarize, Entity Objects within a Bounded

Context have an identity of their own but always exist within a root aggregate, that is,

they cannot exist independently and they never change during the complete lifecycle

of the aggregate. Value Objects on the other hand have no identity of their own and are

easily replaceable in any instance of an aggregate.

Business Method Coverage

Another important aspect of aggregates is the expression of domain logic via business

methods. This adds to the domain richness aspect that is most important in the DDD world.

Aggregates need to capture the domain logic that is required for the particular

sub-domain to function. For example, when we request for a cargo aggregate to be

loaded, the cargo aggregate should have its delivery progress derived and presented

to the consumer. This should be via domain methods within the aggregate rather than

implement it within the supporting layers.

Business methods are implemented as simple methods within the aggregate and

work with the current state of the aggregate. Listing 3-4 illustrates this concept for a

couple of business methods. Notice how the aggregate handles this domain logic rather

than the supporting layers:

Listing 3-4.  Cargo root aggregate - Business methods

public class Cargo{

 public void deriveDeliveryProgress() {

 //Implementation goes here

 }

 public void assignToRoute(Itinerary itinerary){

 //implementation goes here

 }

}

Please refer to the chapter’s source code for a complete implementation.

Chapter 3 Cargo Tracker: Jakarta EE

61

Aggregate State Construction

Aggregate state construction could be either for a new aggregate or when we have to load

an existing aggregate.

Creating a new aggregate is as simple as using constructors on the JPA Entity class.

Listing 3-5 shows the constructor for creating a new instance of our cargo root aggregate

class:

Listing 3-5.  Cargo root aggregate construction

public Cargo(BookingId bookingId, RouteSpecification routeSpecification) {

 this.bookingId = bookingId;

 this.origin = routeSpecification.getOrigin();

 this.routeSpecification = routeSpecification;

 }

Another mechanism of creating a new aggregate is using the Factory Design Pattern,

that is, utilizing static factories which return us a new aggregate.

In our Handling Bounded Context, we construct the Handling Activity root aggregate

depending upon the type of activity being performed. Certain handling activity types

do not require a voyage. When a customer claims a cargo, the corresponding handling

activity does not require a voyage. However, when a cargo is being unloaded at a port,

the associated handling activity mandates a voyage. Hence, a factory to create various

types of Handling Activity aggregates is the recommended approach here.

Listing 3-6 shows a factory that creates instances of the Handling Activity aggregates.

The factory class is implemented using a CDI Bean, while the aggregate instance is

created using a regular constructor:

Listing 3-6.  Handling Activity root aggregate

package com.practicalddd.cargotracker.handling.domain.model.aggregate;

@ApplicationScoped �// CDI scope of the factory (Application scope indicates

a single instance at the application level)

public class HandlingActivityFactory implements Serializable{

 public HandlingActivity createHandlingActivity(Date registrationTime,

 Date completionTime, BookingId bookingId,

 VoyageNumber voyageNumber, UnLocode unlocode,

Chapter 3 Cargo Tracker: Jakarta EE

62

 HandlingActivity.Type type){

 if (voyage == null) {

 return new HandlingActivity(cargo, completionTime,

 registrationTime, type, location);

 } else {

 return new HandlingActivity(cargo, completionTime,

 registrationTime, type, location, voyage);

 }

 }

}

Loading an existing aggregate, that is, sourcing an aggregate’s state, can be done in

two ways:

•	 Domain Sourced in which we construct the aggregate state by

loading the current state of the aggregate directly from the datastore

•	 Event Sourced in which we construct the aggregate state by loading

an empty aggregate and replaying all the events that occurred on that

particular aggregate

For our monolithic implementation, we will use a state-sourced aggregate.

A state-sourced aggregate is loaded using an infrastructural data repository class that

takes in the primary identifier of the aggregate and loads the entire object hierarchy of

the aggregate including its related entities and value objects from the datastore (e.g., a

relational database or NoSQL database).

Loading of state-sourced aggregates is generally done in the Application services

(see section on Application services in the following).

Loading a state-sourced cargo aggregate is shown in Listing 3-7. This is typically

placed in an Application services:

Listing 3-7.  Cargo root aggregate - loading state via repositories

Cargo cargo = cargoRepository.find(bookingId);

This code piece uses the CargoRepository infrastructure class which takes in

a Cargo Booking ID and loads the object hierarchy of the cargo which includes the

cargo’s Booking Amount, the cargo’s Route Specification, the cargo’s Itinerary, and the

Chapter 3 Cargo Tracker: Jakarta EE

63

cargo’s Delivery progress. As part of this implementation, we will use a JPA-specific

implementation (JPACargoRepository class) which loads the cargo aggregate from a

relational database.

To quickly summarize

•	 New Aggregates can be constructed using regular constructors or

using static factories.

•	 Existing Aggregates are constructed using Domain Sourcing, that is,

loading of the aggregate and its object hierarchy state directly from

the Database using repository classes.

Aggregate State Persistence

The persistence operation of an aggregate should affect the state of that aggregate only.

Generally, the aggregate does not persist itself but relies on repositories to perform these

operations, in this case our JPA repositories. In case multiple aggregates need to be

persisted, this would need to be in one of the Application services classes.

Inter-Aggregate References

Inter-aggregate references are relations that exist between aggregates across bounded

contexts. In a monolithic implementation, these are implemented as associations using

the annotations that JPA provides.

As an example in our Handling Bounded Context’s root aggregate HandlingActivity,

we have a many-to-one association with the cargo via the cargo’s booking id as a join

column.

Listing 3-8 shows the association:

Listing 3-8.  Root Aggregate associations

public class HandlingActivity implements Serializable {

 @ManyToOne

 @JoinColumn(name = "cargo_ id")

 @NotNull

 private Cargo cargo; �// Aggregate reference linked via

association

}

Chapter 3 Cargo Tracker: Jakarta EE

64

So whenever we load a HandlingActivity aggregate from the datastore, its

corresponding cargo association is loaded via the association defined earlier.

There are possibly other ways to design aggregate references, for example, you could

just use the primary key identifier for the cargo aggregate, that is, the booking id, and

retrieve the details of the cargo through a service call. Alternatively, you could store

a subset of the cargo details required within the handling bounded context and get

notified of changes in the cargo aggregate through events fired by the Booking Bounded

context which owns the Cargo aggregate.

The choice of aggregate associations always raises a point of debate. In terms of a

purist DDD approach, this is strictly avoidable since this indicates a leakage and the

boundary of the Bounded Context needs to be relooked at. Sometimes, however, it

is necessary to adopt a pragmatic approach considering the application needs (e.g.,

transactional consistencies) and the capabilities of the underlying platform (e.g., Event

Infrastructure).

Our microservices implementations adopt the purist approach, while for the Cargo

Tracker monolith, we implement aggregate references via JPA associations.

Aggregate Events

As per true DDD, domain events always need to be published by aggregates. If an event

is published by any other part of the application (e.g., Application services class), it is

deemed a technical event rather than a business domain event. While this definition is

up for debate, the definition of a domain event is one that originates from an aggregate

as only it is aware of the state change happening.

Java EE does not offer us any direct capability to publish a domain event from our

aggregate layer built on top of JPA, so we move this part of the implementation to the

Application services layer. In the subsequent chapters, we will see capabilities provided

by the underlying toolkit which does support publishing of domain events from our

aggregate layer (e.g., as part of the Spring Framework, the Spring Data Commons project

provides us the annotation @DomainEvents which we can add to a JPA aggregate). While

theoretically you can use EntityListener classes to listen to lifecycle events of the

underlying aggregate, it represents a change in the Entity data rather than a business

event itself.

A summary of our aggregate implementation using Java EE is shown in Figure 3-10.

Chapter 3 Cargo Tracker: Jakarta EE

65

�Entities

Entities within a Bounded Context have an identity of their own but always exist within a

root aggregate, that is, they cannot exist independently. An Entity object never changes

during the complete lifecycle of the aggregate.

As an example seen in Chapter 2, within our Booking Bounded Context, we have one

Entity Object – the Origin Location of the cargo. The origin location of the cargo never

changes during the entire lifecycle of the cargo and hence is a suitable candidate to be

modeled as an Entity object.

Figure 3-10.  Aggregate implementation summary

Chapter 3 Cargo Tracker: Jakarta EE

66

Implementation of Entity objects covers the following aspects:

•	 Entity Class Implementation

•	 Entity-Aggregate Relationships

•	 Entity State Construction

•	 Entity State Persistence

Entity Class Implementation

Entity classes are implemented separately as JPA Entities using the standard @Entity

annotation provided by JPA.

The Location Entity class, which contains a generated primary key, a United

Nations (UN) Location Code, and the description, is shown in Listing 3-9:

Listing 3-9.  Location Entity Class

package com.practicalddd.cargotracker.booking.domain.model.entities;

import com.practicalddd.cargotracker.booking.domain.model.entities.UnLocode;

@Entity

public class Location implements Serializable {

 @Id

 @GeneratedValue

 private Long id;

 @Embedded

 private UnLocode unLocode;

 @NotNull

 private String name;

}

Entity identifiers utilize the same concept as Aggregate identifiers – a technical/

surrogate key and a business key.

Chapter 3 Cargo Tracker: Jakarta EE

67

Entity-Aggregate Relationships

Entity classes have a strong association with their root aggregates, that is, they cannot

exist without a root aggregate. Modeling the association with the root aggregate is done

using standard JPA association annotations.

Within the Cargo root aggregate, the Location entity class is utilized to denote the

Origin Location of the cargo. The Origin Location within the Booking Bounded Context

cannot exist without a cargo being present.

Listing 3-10 shows the association between the Location Entity class and the Cargo

root aggregate:

Listing 3-10.  Cargo root aggregate associations

public class Cargo implements Serializable {

 @ManyToOne

 �@JoinColumn(name = "origin_id", updatable = false)

//Not the responsibility of Location to update the root aggregate

i.e. Cargo

 private Location origin;

}

Entity State Construction/Persistence

Entities are always constructed/persisted ONLY along with the underlying root aggregate

when these operations are performed on the root aggregate.

The Cargo origin location is always constructed when the Cargo aggregate is

constructed. The same for persistence, when we persist a new cargo booking, we persist

the Origin location along with it.

A summary of our entity implementation using Java EE is shown in Figure 3-11.

Chapter 3 Cargo Tracker: Jakarta EE

68

�Value Objects

Value Objects exist within the scope of a Bounded Context’s aggregate. They have no

identity of their own and are replaceable in any instance of an aggregate.

Repeating our examples seen in Chapter 2, within our Booking Bounded Context, we

have multiple Value Objects that are part of the Cargo root aggregate:

–– The Route Specification of the cargo

–– The Itinerary of the cargo

–– The Delivery Progress of the cargo

Figure 3-11.  Entity Object implementation summary

Chapter 3 Cargo Tracker: Jakarta EE

69

Each of these is easily replaceable in our Cargo root aggregate. Let us walk through

the scenarios and the rationale why we have these as value objects and not as entities

because it is an important domain modeling decision:

–– When a new cargo is booked, we will have a new route specification,

an empty itinerary, and no delivery progress.

–– As the cargo is assigned an itinerary, the empty itinerary value object

is replaced by an allocated itinerary object.

–– As the cargo progresses through multiple ports as part of its itinerary,

the delivery value object is updated and replaced within the root

aggregate.

–– Finally, if the customer chooses to change the delivery location of the

cargo or the deadline for delivery, the route specification changes, a

new itinerary is allocated, and the delivery progress is updated.

In each of these scenarios, it becomes quite obvious that these objects need to be

replaced within the root aggregate, and hence they are modeled as Value Objects.

Implementation of Value Objects covers the following aspects:

•	 Value Object Class Implementation

•	 Value Object-Aggregate Relationship

•	 Value Object Construction

•	 Value Object Persistence

Value Object Class Implementation

Value Objects are implemented as JPA Embeddable objects using the @Embeddable

annotation provided by JPA.

Since Value Objects do not have an identity of their own, they do not have any
primary identifier.

Chapter 3 Cargo Tracker: Jakarta EE

70

Listing 3-11 shows our Value Objects – RouteSpecification, Itinerary, and

Delivery – implemented as JPA Embeddable objects:

Listing 3-11.  Delivery Value Objects

@Embeddable

public class RouteSpecification implements Serializable{

 @ManyToOne

 @JoinColumn(name = "spec_origin_id", updatable = false)

 private Location origin;

 @ManyToOne

 @JoinColumn(name = "spec_destination_id")

 private Location destination;

 @Temporal(TemporalType.DATE)

 @Column(name = "spec_arrival_deadline")

 @NotNull

 private LocalDate arrivalDeadline;

}

@Embeddable

public class Delivery implements Serializable{

 public static final LocalDate ETA_UNKOWN = null;

 �public static final HandlingActivity NO_ACTIVITY = new

HandlingActivity();

 @Enumerated(EnumType.STRING)

 @Column(name = "transport_status")

 @NotNull

 private TransportStatus transportStatus;

 @ManyToOne

 @JoinColumn(name = "last_known_location_id")

 private Location lastKnownLocation;

 @ManyToOne

 @JoinColumn(name = "current_voyage_id")

 private Voyage currentVoyage;

 @NotNull

 private boolean misdirected;

Chapter 3 Cargo Tracker: Jakarta EE

71

 private LocalDate eta;

 @Embedded

 private HandlingActivity nextExpectedActivity;

 @Column(name = "unloaded_at_dest")

 @NotNull

 private boolean isUnloadedAtDestination;

 @Enumerated(EnumType.STRING)

 @Column(name = "routing_status")

 @NotNull

 private RoutingStatus routingStatus;

 @Column(name = "calculated_at")

 @NotNull

 private LocalDateTime calculatedAt;

 @ManyToOne

 @JoinColumn(name = "last_event_id")

 private HandlingEvent lastEvent;

}

@Embeddable

public class Itinerary implements Serializable{

 public static final Itinerary EMPTY_ITINERARY = new Itinerary();

 @OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)

 @JoinColumn(name = "booking_id")

 @OrderBy("loadTime")

 @Size(min = 1)

 private List<Leg> legs = Collections.emptyList();

}

Value Object-Aggregate Relationship

Value Objects cannot exist without the root aggregate, but since they have no identifier,

they are easily replaceable within an aggregate instance.

Associations between Value Objects and Aggregates are implemented using the

@Embedded annotation provided by JPA.

Chapter 3 Cargo Tracker: Jakarta EE

72

Listing 3-12 shows our Value Objects – RouteSpecification, Itinerary, and

Delivery – associated with our Cargo root aggregate as embedded objects:

Listing 3-12.  Cargo root aggregate’s Value Objects

@Embedded

private RouteSpecification routeSpecification;

@Embedded

private Itinerary itinerary;

@Embedded

private Delivery delivery;

Value Object Construction/Persistence

Value Objects are always constructed/persisted ONLY along with the underlying root

aggregate when these operations are performed on the root aggregate.

When we book a new cargo, at that point of time, the aggregate does not have an

itinerary assigned; and if we attempt to derive the delivery progress, it will come up as

empty since it has not been routed yet. Notice how we map these business concepts

within our root aggregate in Listing 3-13. We assign an empty itinerary and a delivery

snapshot based on an empty handling history to our cargo aggregate.

Listing 3-13 shows how value objects Itinerary and Delivery are created when a cargo

root aggregate is constructed:

Listing 3-13.  Value Objects state construction

public Cargo(BookingId bookingId, RouteSpecification routeSpecification) {

 this.bookingId = bookingId;

 this.origin = routeSpecification.getOrigin();

 this.routeSpecification = routeSpecification;

 this.itinerary = Itinerary.EMPTY_ITINERARY; �// Empty Itinerary since

the cargo is not routed yet

 �this.delivery = new Delivery(this.

routeSpecification, this.itinerary,

HandlingHistory.EMPTY); // Delivery

snapshot derived based on an empty handling

history since this is a new cargo booking

 }

Chapter 3 Cargo Tracker: Jakarta EE

73

A summary of our Value Object implementation using Jakarta EE is shown in

Figure 3-12.

Figure 3-12.  Value Object implementation summary

�Domain Rules

Domain rules assist the aggregate in any kind of business logic execution within

the scope of a bounded context. While these rules typically enrich the state of the

aggregate, they do not themselves persist the changes in the state. They present the

new state changes to the Application services which examine the state changes to take

corresponding actions. As seen in the previous chapter, these rules could exist within the

domain model or outside the domain model (within the services layer).

Chapter 3 Cargo Tracker: Jakarta EE

74

A business rule (within the domain model) generally finds its place within a Value

Object as a private routine. Let’s explain this through an example.

The Cargo root aggregate is always associated with a Delivery value object. When

either of these three changes, that is, when a new route is specified for the cargo, the

cargo is assigned to a route; or when the cargo is handled, the delivery progress must be

recalculated. Let’s take a look at the constructor of the Delivery value object in Listing 3-14:

Listing 3-14.  Delivery value object

public Delivery(HandlingEvent lastEvent, Itinerary itinerary,

 RouteSpecification routeSpecification) {

 this.calculatedAt = new Date();

 this.lastEvent = lastEvent;

 this.misdirected = calculateMisdirectionStatus(itinerary);

 this.routingStatus = calculateRoutingStatus(itinerary,

 routeSpecification);

 this.transportStatus = calculateTransportStatus();

 this.lastKnownLocation = calculateLastKnownLocation();

 this.currentVoyage = calculateCurrentVoyage();

 this.eta = calculateEta(itinerary);

 this.nextExpectedActivity = calculateNextExpectedActivity(

 routeSpecification, itinerary);

 �this.isUnloadedAtDestination = calculateUnloadedAtDestination(route

Specification);

 }

These calculations are domain rules which examine the current state of the

aggregate to determine the next state of the aggregate.

Again, as we have seen before, a domain rule within the domain model relies only

on existing aggregate state for its execution. In case this rule requires data other than

aggregate state, the domain rule should be pushed to the services layer.

A summary of our implementation is shown in Figure 3-13.

Chapter 3 Cargo Tracker: Jakarta EE

75

�Commands

A Command within a Bounded Context is any operation that changes the aggregate

state. Java EE does not offer us anything specific for denoting a command operation, so

in our implementation, this is spread across Application services and the domain model.

The domain model part changes the aggregate state, while the Application services

persist the changes.

For the command Change destination, this involves associating the cargo root

aggregate with a new route specification and new delivery status.

Listing 3-15 shows the implementation part within the cargo root aggregate:

Listing 3-15.  Command example within the Cargo root aggregate

public void specifyNewRoute(RouteSpecification routeSpecification) {

 �Validate.notNull(routeSpecification, "Route specification is

required");

 this.routeSpecification = routeSpecification;

 this.delivery = delivery.updateOnRouting(this.routeSpecification,

 this.itinerary);

 }

Figure 3-13.  Domain Rule implementation summary

Chapter 3 Cargo Tracker: Jakarta EE

76

Listing 3-16 shows the implementation part within the booking bounded context’s

Application services:

Listing 3-16.  Command example within the Cargo root aggregate

public void changeDestination(BookingId bookingId, UnLocode unLocode) {

 Cargo cargo = cargoRepository.find(bookingId);

 Location newDestination = locationRepository.find(unLocode);

 RouteSpecification routeSpecification = new RouteSpecification(

 cargo.getOrigin(), newDestination,

 cargo.getRouteSpecification().getArrivalDeadline());

 cargo.specifyNewRoute(routeSpecification); //Call to domain model

 cargoRepository.store(cargo); //Store the State

 }

A summary of our implementation is shown in Figure 3-14.

Figure 3-14.  Command implementation summary

Chapter 3 Cargo Tracker: Jakarta EE

77

�Queries

A Query within a Bounded Context is any operation that retrieves the state of the

aggregate. JPA provides us Named Queries which we can mark on the aggregate JPA

entity to query the state of the aggregate. JPA repositories can use the Named Queries to

retrieve the state of the aggregate.

Listing 3-17 shows the usage of named queries within the Cargo root aggregate. We

got named queries for finding all cargos, finding a cargo by a specific booking id, and

finally getting all booking ids:

Listing 3-17.  Named queries within the Cargo root aggregate

@Entity

@NamedQueries({

 @NamedQuery(name = "Cargo.findAll",

 query = "Select c from Cargo c"),

 @NamedQuery(name = "Cargo.findByBookingId",

 query = "Select c from Cargo c where c.bookingId = :bookingId"),

 @NamedQuery(name = "Cargo.getAllBookingIds",

 query = "Select c.bookingId from Cargo c") })

public class Cargo implements Serializable {}

Listing 3-18 shows the usage of the named query findByBookingId within the Cargo

JPA repository:

Listing 3-18.  Named queries within the Cargo root aggregate

@Override

public Cargo find(BookingId bookingId) {

 Cargo cargo;

try {

 cargo = entityManager.createNamedQuery("Cargo.findByBookingId",

 Cargo.class)

 .setParameter("bookingId", bookingId)

 .getSingleResult();

 } catch (NoResultException e) {

Chapter 3 Cargo Tracker: Jakarta EE

78

 �logger.log(Level.FINE, "Find called on non-existant Booking

ID.", e);

 cargo = null;

 }

 return cargo;

 }

A summary of our implementation is shown in Figure 3-15.

Figure 3-15.  Query implementation summary

�Implementing Domain Model Services with Jakarta EE
As stated before, we have three types of supporting services that the core domain model

requires.

�Inbound Services
Inbound services (or Inbound Adaptors as denoted in the Hexagonal Architectural

Pattern) act as the outermost gateway for our core domain model.

Within the Cargo Tracker, we have implemented two types of inbound services based

on the type of consumers of the domain model:

•	 HTTP API(s) implemented using RESTful web services

•	 Native Web API(s) implemented using JSF (JavaServer Faces)

Managed Beans

Chapter 3 Cargo Tracker: Jakarta EE

79

We could have additional inbound services/adaptors classified by the protocol that

needs to be supported, for example, we could have a WebSocket-based inbound service

for real-time updates or a file-based inbound service for batch uploads. All of these

protocols should be modeled as part of inbound services.

Let us take examples of each type of the inbound services within our Cargo Tracker

application and see how they are implemented using Jakarta EE.

�RESTful API(s)
Jakarta EE provides the capabilities to implement RESTful API(s) using the JAX-RS

specification. This specification is one of the most widely used within the platform.

An example of a RESTful API within the Cargo Tracker Application using JAX-RS is

shown in Listing 3-19:

Listing 3-19.  REST API example

package com.practicalddd.cargotracker.handling.interfaces.rest;

@Path("/handling")

public class HandlingService{

 @POST

 @Path("/reports")

 @Consumes("application/json")

 public void submitReport(@NotNull @Valid HandlingReport handlingReport){

 }

}

This RESTful API is exposed as part of the Handling Bounded Context and processes

the handling of the cargo at the port of transit. The path of the API is at /handling/

reports; it consumes a JSON structure and is a POST request, typical RESTful constructs

which JAX-RS supports.

�Native Web API(s)
The second type of inbound service implemented is via Native Web API(s). The Cargo

Admin Web Interface is a thin browser-based interface implemented using JavaServer

Faces (JSF), the standard for building HTML applications within the Jakarta EE platform.

Chapter 3 Cargo Tracker: Jakarta EE

80

JSF is based on the popular MVC (Model View Controller) with the model

implemented using JSF Managed Beans based on CDI (Component Dependency

Injection). The model acts as the inbound service layer for the web interfaces.

An example of a Native Web API within the Cargo Tracker Application using JSF/CDI

is shown in Listing 3-20:

Listing 3-20.  Web API example

package com.practicalddd.cargotracker.booking.interfaces.web;

@Named //Name of the bean

@RequestScoped //Scope of the bean

public class CargoAdmin {

 public String bookCargo() {

 //Invoke the domain model to book a new cargo

 }

}

The Cargo Admin class is implemented as a Web API using JSF and CDI Beans. It

exposes a set of operations (e.g., bookCargo) to the Cargo Admin Web Interface which

is used by a clerk to perform various operations (e.g., booking of a cargo). The Cargo

Admin Web Interface can invoke the operations on these CDI Beans.

A summary of the implementation is illustrated in Figure 3-16.

Figure 3-16.  Inbound Services implementation summary

Chapter 3 Cargo Tracker: Jakarta EE

81

�Application Services
Application services are built using CDI (Component Dependency Injection) components

available within the Jakarta EE platform. While we have touched upon the topic of CDI

earlier, we did not get into a lot of details around it. Let us cover that aspect now.

Introduced first in Java EE 6.0, CDI has effectively replaced EJBs as the de facto tool

within the Jakarta EE platform to build business components. CDI manages the lifecycle

and interactions of components with support for type safe dependency injection. In

addition, CDI provides a comprehensive SPI (Service Provider Framework) allowing

portable extensions to be built and integrated within the Jakarta EE platform.

Building an Application services using CDI involves the following steps. We will take

the Cargo Booking Application services as an example:

–– Create a regular Java interface with the operations that the

Application services provides. Listing 3-21 demonstrates this:

Listing 3-21.  Booking Application services interface

package com.practicalddd.cargotracker.booking.application;

public interface BookingService {

 BookingId bookNewCargo(UnLocode origin, UnLocode destination, LocalDate

arrivalDeadline);

List<Itinerary> requestPossibleRoutesForCargo(BookindId bookingId);

 void assignCargoToRoute(Itinerary itinerary, BookingId bookingId);

 void changeDestination(BookingId bookingId, UnLocode unLocode);

}

–– Provide an implementation of the interface marked with CDI-specific

annotations. CDI annotations are typically used for giving a scope to

the component along with a name (in case there are multiple

implementations of a specific interface).

We provide an implementation of the Booking Service interface

and give it an Application Scope, that is, a single instance for the

entire application.

Chapter 3 Cargo Tracker: Jakarta EE

82

Listing 3-22 demonstrates this:

Listing 3-22.  Booking Application services implementation

package com.practicalddd.cargotracker.booking.application.internal;

@ApplicationScoped //CDI Annotation to determine scope

public class DefaultBookingService implements BookingService {

 �BookingId bookNewCargo(UnLocode origin, UnLocode destination,

LocalDate arrivalDeadline){

 //Implementation provided here

 }

 �List<Itinerary> requestPossibleRoutesForCargo(BookindId bookingId){

 //Implementation provided here

 }

 �void assignCargoToRoute(Itinerary itinerary, BookingId bookingId){

 //Implementation provided here

 }

 void changeDestination(BookingId bookingId, UnLocode unLocode){

 //Implementation provided here

 }

}

–– An Application services will have a set of dependencies, for example,

it would need to access the repository infrastructure classes to

retrieve the aggregate details as part of a particular operation. Listing

3-6 did briefly touch upon this wherein within the Application

services, we used a Cargo Repository class to load the Cargo aggre-

gate. The Application services class is provided the dependency of

the Cargo Repository class via the CDI “Inject” annotation

Chapter 3 Cargo Tracker: Jakarta EE

83

Listing 3-23 demonstrates this:

Listing 3-23.  Booking Application services dependencies

package com.practicalddd.cargotracker.booking.application.internal;

@Inject //Inject the dependency of the Cargo Repository infrastructure

private CargoRepository cargoRepository;

@ApplicationScoped //CDI Annotation to determine scope

public class DefaultBookingService implements BookingService {

 @Override

 public List<Itinerary> requestPossibleRoutesForCargo(BookingId bookingId) {

 Cargo cargo = cargoRepository.find(bookingId); //Use the Cargo Repository

 //Subsequent implemtnation here.

 }

}

A summary of the implementation is illustrated in Figure 3-17.

Figure 3-17.  Application Services implementation summary

Chapter 3 Cargo Tracker: Jakarta EE

84

�Application Services: Events
As we have stated earlier, domain events within DDD in the true sense have to be

generated by the aggregate. Since Jakarta EE does not provide us a mechanism to

generate domain events by the aggregate, we need to push this capability to the

Application services.

The Event Infrastructure is based on CDI Events. Introduced in CDI 2.0, it offers a

very clean implementation of an event notification/observer model. This results in loose

coupling between the various Bounded Contexts which in turn helps us achieve our

desired design of true modular monoliths.

The CDI eventing model is displayed in Figure 3-18.

Figure 3-18.  CDI Eventing model

The CDI Event bus is not a specialized event bus; it is an internal implementation

of the Observer Pattern implemented within the container with enhanced support

including Transactional Observers, Conditional Observers, Ordering, and both

synchronous and asynchronous events.

Let us walk through an implementation within the Cargo Tracker application.

The Handling Bounded context fires a “Cargo Inspected” event every time a cargo is

inspected as part of the handling activity. The Tracking Bounded Context observes this

event and updates the tracking progress of the cargo accordingly.

The flow is summarized in Figure 3-19.

Chapter 3 Cargo Tracker: Jakarta EE

85

In terms of actual implementation, the following steps are followed:

–– Create an Event Class (via Stereotypes).

Listing 3-24 demonstrates this. We create a “Cargo Inspected”

event class:

Listing 3-24.  Cargo Inspected event class stereotype

package com.practicalddd.cargotracker.handling.infrastructure.events.cdi;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Qualifier // Stereotype annotations

@Retention(RUNTIME) //Stereotype annotations

@Target({FIELD, PARAMETER}) //Stereotype annotations

public @interface CargoInspected { //Event

}

Figure 3-19.  Event flows between the Handling Bounded Context and the
Tracking Bounded Context

Chapter 3 Cargo Tracker: Jakarta EE

86

–– Fire the event.

Listing 3-25 demonstrates the firing of the “Cargo Inspected”

event from the Application services, in this case the Cargo

Inspected Application services:

Listing 3-25.  Firing the cargo inspected event

package com.practicalddd.cargotracker.handling.application.internal;

import javax.enterprise.event.Event;

import javax.inject.Inject;

import com.practicalddd.cargotracker.infrastructure.events.cdi.

CargoInspected; //Import the stereotype event class

public class DefaultCargoInspectionService implements

CargoInspectionService{

@Inject

@CargoInspected

private Event<Cargo> cargoInspected; �//The event that will get fired.

The payload is the Cargo aggregate

 /**

 * �Method which will process the inspection of the cargo and fire a

subsequent event

 */

 public void inspectCargo(BookingId bookingId) {

 //Load the Cargo

 Cargo cargo = cargoRepository.find(bookingId);

 //Process the inspection

 // Fire the event post inspection

 cargoInspected.fire(cargo);

 }

}

Chapter 3 Cargo Tracker: Jakarta EE

87

–– Observe the event.

The Cargo Tracking service within the Tracking Bounded Context

observes the event and accordingly updates the tracking progress

of the cargo.

Listing 3-26 demonstrates this:

Listing 3-26.  Observing the Cargo Inspected event

package com.practicalddd.cargotracker.tracking.application.internal;

import javax.enterprise.event.Event;

import javax.inject.Inject;

import com.practicalddd.cargotracker.infrastructure.events.cdi.

CargoInspected;

public class DefaultTrackingService implements TrackingService{

@Inject

@CargoInspected

private Event<Cargo> cargoInspected; //Subscription to the event

 /**

 * Method which observes the CDI event and processes the payload

 */

 public void onCargoInspected(@Observes @CargoInspected Cargo cargo) {

 //Process the event

 }

}

Chapter 3 Cargo Tracker: Jakarta EE

88

A summary of the implementation is illustrated in Figure 3-20.

Figure 3-20.  Application Services Event implementation summary

�Outbound Services
Within the Cargo Tracker monolith, we use outbound services primarily to communicate

with the underlying database repository. The outbound services are implemented as

“Repository” classes and are part of the infrastructure layer.

Repository classes are built using JPA and use CDI for their lifecycle management.

JPA provides a managed resource named “EntityManager” which abstracts the database

configuration details (e.g., Datasource).

A repository class generally revolves around a specific aggregate and deals with all

database operations for that aggregate including the following:

•	 Persistence of a new aggregate and its associations

•	 Update of an aggregate and its associations

•	 Querying the aggregate and its associations

Listing 3-27 demonstrates an example of a repository class JPACargoRepository:

Chapter 3 Cargo Tracker: Jakarta EE

89

Listing 3-27.  Cargo Repository class implementation

package com.practicalddd.cargotracker.booking.infrastructure.persistence.jpa;

//JPA Annotations

import javax.enterprise.context.ApplicationScoped;

import javax.persistence.EntityManager;

import javax.persistence.NoResultException;

import javax.persistence.PersistenceContext;

@ApplicationScoped

public class JpaCargoRepository implements CargoRepository, Serializable {

@PersistenceContext

 private EntityManager entityManager; //Managed resource used by the

Repository class to interact with the database

// Store a cargo

@Override

 public void store(Cargo cargo) {

 entityManager.persist(cargo);

 }

//Find all cargos. Uses a Named Query defined on the Cargo root aggregate.

See also Queries

@Override

 public List<Cargo> findAll() {

 return entityManager.createNamedQuery("Cargo.findAll", Cargo.class)

 .getResultList();

 }

//Find a specific cargo. Uses a Named Query defined on the Cargo root

aggregate

@Override

 public Cargo find(BookingId bookingId) {

 Cargo cargo;

Chapter 3 Cargo Tracker: Jakarta EE

90

 try {

 cargo = entityManager.createNamedQuery("Cargo.findByBookingId",

 Cargo.class)

 .setParameter("bookingId", bookingId)

 .getSingleResult();

 } catch (NoResultException e) {

 �logger.log(Level.FINE, "Find called on non-existant Booking

ID.", e);

 cargo = null;

 }

 return cargo;

 }

}

The implementation summary is illustrated in Figure 3-21.

Figure 3-21.  Outbound Services implementation summary

This rounds off our implementation of the Cargo Tracker as a modular monolith

using Jakarta EE 8.

�Implementation Summary
We now have a complete DDD implementation of the monolithic Cargo Tracker

application with the various DDD artifacts implemented using the corresponding

specifications available within Java EE.

The implementation summary is denoted in Figure 3-22.

Chapter 3 Cargo Tracker: Jakarta EE

91

�Summary
Summarizing our chapter

•	 We started by establishing the details about the Jakarta EE platform

and the various capabilities it provides.

•	 We then rationalized the decision behind the implementation of

Cargo Tracker as a modular monolith using Domain Driven Design.

•	 We rounded off by deep diving into the development of the various

DDD artifacts – first the domain model and then the domain model

supporting services using the technologies available on the Jakarta

EE platform.

Figure 3-22.  DDD artifact implementation summary using Java EE

Chapter 3 Cargo Tracker: Jakarta EE

93
© Vijay Nair 2019
V. Nair, Practical Domain-Driven Design in Enterprise Java, https://doi.org/10.1007/978-1-4842-4543-9_4

CHAPTER 4

Cargo Tracker: Eclipse
MicroProfile
To quickly recap

We identified Cargo Tracking as the main problem space/core

domain and the Cargo Tracker application as the solution to

address this problem space.

We identified the various sub-domains/bounded contexts for the

Cargo Tracker application.

We detailed out the domain model for each of our bounded contexts

including identification of aggregates, entities, value objects, and

domain rules.

We identified the supporting domain services required within the

bounded contexts.

We identified the various operations within our bounded contexts

(Commands, Queries, Events, and Sagas).

We implemented a monolithic version of Cargo Tracker using

Jakarta EE.

This chapter details the second DDD implementation of our Cargo Tracker

application using the new Eclipse MicroProfile platform. The Cargo Tracker application

will be designed using a microservices-based architecture. As before, we will map

the DDD artifacts to the corresponding implementations available within the Eclipse

MicroProfile platform.

First, here is an overview of the Eclipse MicroProfile platform.

94

�Eclipse MicroProfile
As the Microservices architectural style started gaining rapid traction among

enterprises, there was an urgent need for the Java EE platform to evolve to cater to these

requirements. Handicapped by the release process coupled with the fact that the Java EE

platform was more focused on traditional monolithic applications, a group of existing

Java EE vendors decided to form a more optimized platform suited for Microservices

architecture with an accelerated release cycle.

This new platform, christened as MicroProfile, was first released in 2016 and joined

the Eclipse Foundation, thus getting the name “Eclipse MicroProfile.” The aim of the

MicroProfile platform was to utilize the strong foundational specifications from the

Java EE platform and enhance them with a set of cloud-native/microservices-specific

specifications, thus aiming to be a complete microservices platform powered by

Jakarta EE.

The platform in a short span of time has gained wide acceptance and great

community participation and has close to nine vendor implementations of the various

specifications. The specifications have been extremely well-thought-of, considering both

present and future challenges presented in the microservices landscape.

The Microservices Architectural Style

The microservices architectural style has quickly become the foundation for building

next-generation enterprise applications. The Microservices architectural style promotes

independence along the complete software development and delivery lifecycle

significantly accelerating the delivery velocity for enterprise applications. A quick

summary of the advantages of microservices is illustrated in Figure 4-1.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

95

The microservices architecture does come with its own set of complexities. The

inherent distributed nature of Microservices architecture results in implementation
complexities in the areas of

•	 Transaction Management

•	 Data Management

•	 Application Patterns (e.g., reporting, auditing)

•	 Deployment Architecture

•	 Distributed Testing

As this architectural style becomes more popular, these areas are being addressed in

various ways using open source frameworks as well as proprietary vendor software.

Figure 4-1.  Advantages of a Microservices-based Architecture

Chapter 4 Cargo Tracker: Eclipse MicroProfile

96

�Eclipse MicroProfile: Capabilities
The Eclipse MicroProfile platform provides a very strong foundational platform for

applications planning to move to the microservices architectural style. Coupled with

DDD which offers us well-defined processes and patterns to design and develop

microservices, the combination offers a strong platform to build microservices-based

applications.

Before we deep dive into the technical components of the MicroProfile platform, let

us articulate the requirements of a microservices platform as illustrated in Figure 4-2.

The requirements are split across various areas which cater to the unique

requirements of a microservices platform.

Figure 4-2.  Requirements of a complete microservices platform

Chapter 4 Cargo Tracker: Eclipse MicroProfile

97

The set of specifications that the Eclipse MicroProfile platform provides is illustrated

in Figure 4-3. The specifications are grouped into two categories:

•	 A Core Set which helps in catering to specific requirements of Cloud-

Native/Microservices architectural styles. These specifications

provide solutions in the areas of Configuration, Health Checks,

Communication Patterns, Monitoring, Security, and Resiliency.

•	 A Supporting Set which helps in catering to traditional requirements

of applications, be it Microservices or Monoliths. This includes

capability to build Business Logic, API Design, Data Management,

and Data Processing.

Unlike the main Java EE/Jakarta EE platform, there are no profiles within the

MicroProfile project. There are just a single set of specifications which any vendor needs

to implement to be MicroProfile compliant.

Figure 4-3.  Eclipse MicroProfile specifications

Chapter 4 Cargo Tracker: Eclipse MicroProfile

98

Here are the current set of vendors who implement MicroProfile specifications.

Implementation Name Implementation Version

Helidon (Oracle) MicroProfile 2.2

SmallRye (Community) MicroProfile 2.2

Thorntail (Red Hat) MicroProfile 3.0

Open Liberty (IBM) MicroProfile 3.0

WebSphere Liberty (IBM) MicroProfile 3.0

Payara Server (Payara Services) MicroProfile 2.2

Payara Micro (Payara Services) MicroProfile 2.2

TomEE (Apache) MicroProfile 2.0

KumuluzEE (Kumuluz) MicroProfile 2.2

Let us deep dive into the specifications. We will first walk through the core

specifications followed by the supporting set.

�Eclipse MicroProfile: Core Specifications
The core MicroProfile specifications help implement a set of technical concerns

that cloud-native/Microservices applications mandate. The set of specifications are

designed and thought out to enable developers wanting to adopt the Microservices style

implement these features easily.

From a microservices requirements mapping perspective, the shaded boxes as

illustrated in Figure 4-4 are implemented with the core specifications.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

99

Let us walk through the core specification set of MicroProfile.

�Eclipse MicroProfile Config

The configuration specification defines an easy-to-use mechanism for implementing

application configuration required by microservices. Every microservices would require

some kind of configuration (e.g., Resource Locations such as other service URLs or

Database Connectivity, Business Configurations, Feature Flags). The configuration

information can also be different depending upon which environment the microservices

is being deployed to (e.g., development, testing, production). The microservices artifact

should not be changed to accommodate the different patterns of configuration.

Figure 4-4.  Eclipse MicroProfile core specifications mapped to the microservices
requirements

Chapter 4 Cargo Tracker: Eclipse MicroProfile

100

MicroProfile config defines a standard way of aggregating and injecting configuration

information required by a microservices without the need for repackaging the artifact. It

provides a mechanism for injecting default configuration with mechanisms to override

the defaults via external means (Environment Variables, Java Command Line Variables,

Container Variables).

In addition to injecting configuration information, MicroProfile Config also defines

a standard way of implementing Configuration Sources, that is, the repository where the

configuration information is stored. Configuration Sources could be GIT repositories or

Databases.

The current version of the specification is at v. 1.3.

�Eclipse MicroProfile Health Check

The MicroProfile Health Check specification defines a standard runtime mechanism of

determining the status and visibility of a microservices. It is intended to be used within a

containerized environment via a machine-to-machine mechanism.

The current version of the specification is at v. 2.0.

�Eclipse MicroProfile JWT Authentication

The MicroProfile JSON Web Token (JWT) Authentication specification defines a

standard security mechanism for implementing authentication and authorization

(RBAC [Role-Based Access Control]) for microservices endpoints using JSON Web

Token (JWT).

The current version of the specification is at v. 1.1.

�Eclipse MicroProfile Metrics

The MicroProfile Metrics specification defines a standard mechanism for microservices

to emit metrics that are recognizable by monitoring tools.

The current version of the specification is at v. 2.0.

�Eclipse MicroProfile OpenAPI

The MicroProfile OpenAPI specification defines a standard mechanism for generating

OpenAPI-compliant contracts/documents for microservices.

The current version of the specification is at v. 1.1.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

101

�Eclipse MicroProfile OpenTracing

The MicroProfile OpenTracing specification defines a standard mechanism for

implementing distributed tracing within microservices applications.

The current version of the specification is at v. 1.3.

�Eclipse MicroProfile Type Safe Rest Client

The MicroProfile Rest Client specification defines a standard mechanism for

implementing RESTful invocations between microservices.

The current version of the specification is at v. 1.3.

This rounds off the core set of specifications provided by Eclipse MicroProfile. As can

be seen, the specifications are extremely well-thought-out and offer a comprehensive

and complete set of features to help build standards-based Microservices applications.

�Eclipse MicroProfile: Supporting Specifications
While the core set of specifications help us implement the crosscutting microservices

concerns, the supporting specifications help us build the Business Logic aspects of

microservices. This includes the Domain Model, API(s), Data Processing, and Data

Management.

From a microservices requirements mapping perspective, the boxes in orange as

illustrated in Figure 4-5 are implemented with the supporting specifications.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

102

Next, we’ll see a quick overview of the supporting specifications.

�Contexts and Dependency Injection for Java (2.0)

As stated in the previous chapter, CDI was introduced in the Java EE specification to

build a component and manage its dependencies via injection. CDI has now become

the foundational piece of technology for almost all other parts of the platform with EJBs

slowly being pushed out of favor.

The latest version of the specification is at version 2.0.

�Common Annotations

This specification provides a set of annotations or rather markers which help the runtime

container in executing common tasks (e.g., Resource Injections, Lifecycle management).

The latest version of the specification is at version 1.3.

Figure 4-5.  Eclipse MicroProfile supporting specifications

Chapter 4 Cargo Tracker: Eclipse MicroProfile

103

�Java API for RESTful Web Services (JAX-RS)

This specification provides a standard Java API for developers to implement RESTful

web services. Another popular specification, the latest version of the specification had a

major release with support for Reactive Clients and Server-Side events.

The latest version of the specification is at version 2.1.

�Java API for JSON Binding

A new specification introduced in Java EE 8, it details an API that provides a binding

layer to convert Java Objects to JSON messages and vice versa.

The first version of the specification is at version 1.0.

�Java API for JSON Processing

This specification provides an API that can be used to access and manipulate JSON

objects. The latest version of the specification in Java EE 8 was a major release with

various enhancements such as JSON Pointer, JSON Patch, JSON Merge Patch, and JSON

Collectors.

The current version of the specification is at version 1.1.

As can been seen, the platform does not provide out-of-the-box support for

distributed transaction management using Orchestration-based Sagas. We would need

to implement Distributed Transactions using Event Choreography. The MicroProfile

platform in a future release is planning an implementation of the saga orchestration

patterns as part of the MicroProfile LRA (Long Running Action) specification.

�Eclipse MicroProfile Specification Summary
This completes our high-level overview of the Eclipse MicroProfile platform

specifications. These specifications are comprehensive and provide almost every

capability required to build out enterprise applications that want to adopt a

microservices architectural style. The platform also provides for extension points in case

it does not suffice any specific need of the enterprise.

Just like the Jakarta EE platform, the most important point is that these are standard

specifications backed by multiple vendors. This gives enterprises flexibility in choosing a

microservices platform.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

104

�Cargo Tracker Implementation: Eclipse MicroProfile
To restate, the goal of the chapter is implementation of Cargo Tracker as a Microservices
application utilizing Domain Driven Design and the Eclipse MicroProfile platform.

As part of the implementation, we are going to be using DDD as the foundation

to help us design and develop our microservices. As we navigate through the

implementation, we will map and implement the DDD artifacts with the corresponding

tools available within the Eclipse MicroProfile platform.

The two foundational pieces of any DDD-based architecture are the Domain

Model and the Domain Model services. Figure 4-6 illustrates this. The previous chapter

demonstrated the usage of DDD to help us implement Cargo Tracker as a monolith.

This chapter will demonstrate the usage of DDD to help us achieve our stated goal of

implementing Cargo Tracker as a microservices application.

Figure 4-6.  DDD artifact implementation summary

Chapter 4 Cargo Tracker: Eclipse MicroProfile

105

There might be some repetitions from the previous chapter due to the commonality of

implementations of some of the DDD artifacts. It is suggested that you read this chapter as

you would be implementing a microservices project from scratch using Eclipse MicroProfile.

�Implementation Choice: Helidon MP
The first step is to choose the MicroProfile implementation that we will use to

implement the DDD artifacts. We do have a wide choice of implementations available

as laid out before. For our implementation, we choose to use the Helidon MP project

(https://helidon.io) from Oracle.

The Helidon MP project supports the Eclipse MicroProfile specifications; it is

designed to be simple to use and runs on a fast reactive web server with very little

overhead. In addition to the support for the Core/Supporting set of specifications, it

also provides a set of extensions which include support for gRPC, Jedis (Redis library),

HikariCP (Connection Pool library), and JTA/JPA.

An overview of the capabilities provided by the Helidon MP project is illustrated in

Figure 4-7.

Figure 4-7.  Helidon MP support for the MicroProfile specifications and additional
extensions

Chapter 4 Cargo Tracker: Eclipse MicroProfile

https://helidon.io

106

The current version of Helidon MP is 1.2 which supports Eclipse

MicroProfile 2.2.

�Cargo Tracker Implementation: Bounded Context(s)
Our implementation begins first with splitting the Cargo Tracker monolith into a set

of microservices. For this purpose, we carve the Cargo Tracker Domain into a set of

Business Capabilities/Sub-Domains. Figure 4-8 illustrates the business capabilities of

the Cargo Tracker Domain.

•	 Booking – This business capability/sub-domain is responsible for

all the operations related to the booking of a new cargo, assigning

a route to the cargo, and any updates to the cargo (e.g., change of

destination/cancellation).

•	 Handling – This business capability/sub-domain is responsible

for all operations related to the handling of cargo at the various

ports that are part of the cargo’s voyage. This includes registering of

handling activities on a cargo or inspecting the cargo (e.g., to check if

it is on the correct route).

•	 Tracking – This business capability/sub-domain provides an

interface to the end customer to accurately track the progress of a

cargo.

•	 Routing – This business capability/sub-domain is responsible for all

operations related to schedule and route maintenance.

While sub-domains within DDD operate in what is known as the “problem space,”

we need to come up with solutions for them too. We achieve this in DDD by using the

concept of Bounded Contexts. Simply put, Bounded Contexts operate in the “solution
space,” that is, they represent the actual solution artifact for our problem space.

For our implementation, a Bounded Context is modeled as containing a
single or a set of Microservice(s). This makes sense for obvious reasons since the

independence that Bounded Contexts offer satisfies the fundamental aspect required

of a microservices-based architecture. All the operations that manage the state of the

Bounded Context, be it Commands to change state, Queries to retrieve state, or Events to

publish state, are part of the Microservices.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

107

From a deployment perspective as illustrated in Figure 4-8, each Bounded Context is

a separate self-contained deployable unit. The deployable unit could be packaged in the

form of a fat JAR file or a Docker Container image. Since Helidon MP provides first-

class support for Docker, we will utilize that as our packaging choice.

Microservices will need a DataStore to store their state. We choose to adopt

the Database per service pattern, that is, each of our microservices will have its

own separate DataStore. Just like we have a polyglot choice of technology for our

application tier, we have a polyglot choice for the DataStore too. We could choose to

have a plain Relational Database (e.g., Oracle, MySQL, PostgreSQL), a NoSQL Database

(e.g., MongoDB, Cassandra), or even an in-memory datastore (e.g., Redis). The

choice depends primarily on the scalability requirements and the type of use case the

microservices intends to cater to. For our implementation, we decide to go with MySQL

as the choice of DataStore.

Figure 4-8.  Bounded Context artifacts

Chapter 4 Cargo Tracker: Eclipse MicroProfile

108

Before we proceed further on the implementation, here is a short note on the language

that we will use going further. The Bounded Context terminology is a DDD-specific

terminology, and since this is a book around DDD, it makes sense to use DDD terminologies

primarily. This chapter is also about a microservices implementation. As we have stated,

this implementation models a Bounded Context as a Microservices. So going forward, our

usage of the term Bounded Context essentially denotes the same as a Microservices.

�Bounded Contexts: Packaging
Packaging the Bounded Contexts involves a logical grouping of our DDD artifacts into

a single deployable self-sufficient artifact. Each of our Bounded Context is going to be

built as an Eclipse MicroProfile application. Eclipse MicroProfile applications are

self-sufficient in the sense that they contain all the dependencies, configuration, and
runtime, that is, they do not have any external dependency (like an Application Server)

for them to run.

The anatomy of an Eclipse MicroProfile application is illustrated in Figure 4-9.

Helidon MP offers a Maven archetype (helidon-quickstart-mp) to help us scaffold

an Eclipse MicroProfile application. Listing 4-1 shows the Helidon MP Maven command

that we would use to generate the MicroProfile application for the Booking Bounded
Context:

Figure 4-9.  Anatomy of an Eclipse MicroProfile application

Chapter 4 Cargo Tracker: Eclipse MicroProfile

109

Listing 4-1.  Helidon MP quickstart archetype

mvn archetype:generate -DinteractiveMode=false -DarchetypeGroupId=io.

helidon.archetypes -DarchetypeArtifactId=helidon-quickstart-

mp -DarchetypeVersion=1.2 -DgroupId=com.practicalddd.cargotracker

-DartifactId=bookingms -Dpackage=com.practicalddd.cargotracker.bookingms

The source code generated by the archetype contains a “Main” class. The Main class

contains a main method which brings up the Helidon MP web server when we run the

application. Figure 4-10 illustrates the code generated by the quickstart archetype.

In addition to the main class, it also generates a sample REST resource file (Greeter)

to help test the application, a microprofile configuration file (microprofile-config.
properties) which can be used to set up configuration information for the application,

and a beans.xml file for CDI integration.

Figure 4-10.  Generated project using the Helidon archetype

Chapter 4 Cargo Tracker: Eclipse MicroProfile

110

We can run the application in two ways:

•	 As a JAR file

Building the project will result in a JAR file (bookingms.jar).

Running it as a simple JAR file using the command “java -jar
bookingms.jar” will bring up Helidon MP’s web server on the

configured port (8080) and make the Greeter REST resource

available at http://<<Machine-Name>>:8080/greet.

We can use the curl utility to test the Greeter REST resource using

the command

curl -X GET http://<<Machine-Name>>:8080/greet.

This will display the message “Hello World”. This indicates that the

Booking Microservices Helidon MP application instance is up and

running correctly as a JAR file.

•	 As a Docker image

An alternative that Helidon MP provides is the capability to build

and run the MicroProfile application as a Docker image. This is

keeping in line with the principle of the MicroProfile application

providing capabilities to build cloud-native applications.

Building the Docker image is done using the command

docker build -t bookingms.

Running the Docker image is done using the command

docker run --rm -p 8080:8080 bookingms:latest.

We can use the curl utility again to test the Greeter REST resource

using the command

curl -X GET http://<<Machine-Name>>:8080/greet.

This will display the message “Hello World”. This indicates that the

Booking Microservices Helidon MP application instance is up and

running correctly as a Docker image.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

111

Since our preferred approach is to use containers, we will build and run all the

microservices within the Cargo Tracker application as Docker images.

�Bounded Contexts: Package Structure
With the packaging aspect decided, the next step is to decide the package structure of

each of our Bounded Context, that is, to arrive at a logical grouping of the various DDD

MicroProfile artifacts into a single deployable artifact. The logical grouping involves

identifying a package structure where we place the various DD MicroProfile artifacts to

achieve our overall solution for the Bounded Context.

The high-level package structure for any of our Bounded Context is illustrated in

Figure 4-11.

Let us expand on the package structure a bit.

Figure 4-11.  Package structure for the Bounded Contexts

Chapter 4 Cargo Tracker: Eclipse MicroProfile

112

�interfaces

This package encloses all the inbound interfaces to our Bounded Context classified by

the communication protocol. The main purpose of interfaces is to negotiate the protocol

on behalf of the Domain Model (e.g., REST API(s), WebSocket(s), FTP(s), Custom

Protocol).

As an example, the Booking Bounded Context provides REST APIs for sending State
Change Requests, that is, Commands, to it (e.g., Book Cargo Command, Assign Route

to Cargo Command). Similarly, the Booking Bounded Context provides REST APIs for

sending State Retrieval Requests, that is, Queries, to it (e.g., Retrieve Cargo Booking

Details, List all Cargos). This is grouped into the “rest” package.

It also has Event Handlers which subscribe to the various Events that are generated

by other Bounded Contexts. All Event Handlers are grouped into the “eventhandlers”

package. In addition to these two packages, the interface package also contains the

“transform” package. This is used to translate the incoming API Resource/Event data to

the corresponding Command/Query model required by the Domain Model.

Since we need to support REST, Events, and data transformation, the package

structure is as illustrated in Figure 4-12.

Figure 4-12.  Package structure for interfaces

Chapter 4 Cargo Tracker: Eclipse MicroProfile

113

�application

Application services act as the façade for the Bounded Context’s Domain Model. They

provide façade services to dispatch Commands/Queries to the underlying Domain

Model. They are also the place where we place outbound calls to other Bounded

Contexts as part of the processing of a Command/Query.

To summarize, Application Services

•	 Participate in Command and Query Dispatching.

•	 Invoke infrastructural components where necessary as part of the

Command/Query processing.

•	 Provide Centralized concerns (e.g., Logging, Security, Metrics) for the

underlying Domain Model.

•	 Make callouts to other Bounded Contexts.

The package structure is illustrated in Figure 4-13.

Figure 4-13.  Package structure for Application services

Chapter 4 Cargo Tracker: Eclipse MicroProfile

114

�domain

This package contains the Bounded Context’s Domain Model. This is the heart of the

Bounded Context’s Domain Model which contains the implementation of the core

Business Logic.

The core classes of our Bounded Contexts are as follows:

•	 Aggregates

•	 Entities

•	 Value Objects

•	 Commands

•	 Events

The package structure is illustrated in Figure 4-14.

Figure 4-14.  Package structure for our domain model

Chapter 4 Cargo Tracker: Eclipse MicroProfile

115

�infrastructure

The infrastructure package serves four main purposes:

•	 When a Bounded Context receives an operation related to its

state (Change of State, Retrieval of State), it needs an underlying
repository to process the operation; in our case, this repository

is our MySQL Database instance(s). The infrastructure package

contains all the necessary components required by the Bounded

Context to communicate to the underlying repository. As part of our

implementation, we intend to use either JPA or JDBC to implement

these components.

•	 When a Bounded Context needs to communicate a state change

event, it needs an underlying Event Infrastructure to publish the state

change event. In our implementation, we intend to use a message
broker as the underlying Event Infrastructure (RabbitMQ). The

infrastructure package contains all the necessary components

required by the Bounded Context to communicate to the underlying

message broker.

•	 When a Bounded Context needs to communicate with another

Bounded Context synchronously, it needs an underlying

infrastructure to support a service-to-service communication

via REST. The infrastructure package contains all the necessary

components required by the Bounded Context to communicate to

other Bounded Contexts.

•	 The final aspect that we include in the infrastructural layer is any

kind of MicroProfile-specific configuration.

The package structure is illustrated in Figure 4-15.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

116

A complete summary of the entire package structure for any of our Bounded Context

is illustrated in Figure 4-16.

Figure 4-15.  Package structure for the infrastructure components

Chapter 4 Cargo Tracker: Eclipse MicroProfile

117

This completes the implementation of the Bounded Contexts of our Cargo

Tracker microservices application. Each of our Bounded Contexts is implemented as

a MicroProfile application using the Helidon MP project with a Docker image as an

artifact. The Bounded Contexts are neatly grouped by modules in a package structure

with clearly separated concerns.

Let us step into the implementation of the Cargo Tracker Application.

Figure 4-16.  Package structure for any of our Bounded Context

Chapter 4 Cargo Tracker: Eclipse MicroProfile

118

�Cargo Tracker Implementation
The next section of this chapter is going to detail the implementation of the Cargo

Tracker application as a microservices application utilizing DDD and Eclipse

MicroProfile (Helidon MP).

A high-level overview of the logical grouping of our various DDD artifacts is

illustrated in Figure 4-17. As seen, we need to implement two groups of artifacts:

•	 The Domain Model which will contain our Core Domain/Business Logic

•	 The Domain Model Services which contain supporting services for our
Core Domain Model

Figure 4-17.  Logical grouping of the DDD artifacts

Chapter 4 Cargo Tracker: Eclipse MicroProfile

119

In terms of actual implementation of the Domain Model, this translates to the

various Value Objects, Commands, and Queries of a specific Bounded Context/

Microservices.

In terms of actual implementation of the Domain Model Services, this translates to

the Interfaces, Application Services, and Infrastructure that the Domain Model of the

Bounded Context/Microservices requires.

Going back to our Cargo Tracker application, Figure 4-18 illustrates our

microservices solution in terms of the various Bounded Contexts and the operations it

supports. As seen, this contains the various Commands that each Bounded Context
will process, the Queries that each Bounded Context will serve, and the Events that
each Bounded Context will subscribe/publish. Each of the microservices is a separate

deployable artifact with its own storage.

Figure 4-18.  Cargo Tracker Microservices solution

Chapter 4 Cargo Tracker: Eclipse MicroProfile

120

Note  Certain code implementations will contain only summaries/snippets to help
understand the implementation concepts. The source code for the chapter contains
the full implementation of the concepts.

�Domain Model: Implementation
Our Domain Model is the central feature of our Bounded Context and as stated earlier

has a set of artifacts associated with it. Implementation of these artifacts is done with the

help of the tools that Eclipse MicroProfile provides.

To quickly summarize, the Domain Model artifacts that we need to implement are as

follows:

•	 Core Domain Model – Aggregates, Entities, and Value Objects

•	 Domain Model Operations – Commands, Queries, and Events

Let’s walk through each of these artifacts and see what corresponding tool(s) Eclipse

Microprofile provides us to implement these.

�Core Domain Model: Implementation
The implementation of the Core Domain for any Bounded Context covers the

identification of those artifacts that will express the business intent of the Bounded

Context clearly. At a high level, this includes the identification and implementation of

Aggregates, Entities, and Value Objects.

�Aggregates/Entities/Value Objects

Aggregates are the centerpiece of our Domain Model. To recap, we have four aggregates

within each of our Bounded Contexts as illustrated in Figure 4-19.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

121

Implementation of an Aggregate covers the following aspects:

•	 Aggregate Class Implementation

•	 Domain Richness via Business Attributes

•	 Implementing Entities/Value Objects

Aggregate Class Implementation

Since we intend to use MySQL as our Datastore for each of our Bounded Contexts, we

intend to use JPA (Java Persistence API) from the Java EE specification. JPA provides

a standard way of defining and implementing Entities/Services which interact with

underlying SQL Datastores.

JPA Integration: Helidon MP

Helidon MP provides us support to utilize JPA through an external integration

mechanism. To include this support, we need to add some additional configuration/

dependencies:

pom.xml

Listing 4-2 shows the changes that need to be done in the pom.xml dependencies
file that Helidon MP generates.

Figure 4-19.  Aggregates within our Bounded Context(s)/Microservices

Chapter 4 Cargo Tracker: Eclipse MicroProfile

122

The dependency list includes the following:

–– Helidon MP JPA Integration Support (helidon-integrations-cdi-jpa)

–– Usage of HikariCP for our Datasource connection pooling

mechanism

–– The MySQL driver library for Java (mysql-connector-java)

Listing 4-2.  pom.xml dependencies

<dependency>

 <groupId>io.helidon.integrations.cdi</groupId>

 <artifactId>helidon-integrations-cdi-datasource-hikaricp</artifactId>

</dependency>

<dependency>

 <groupId>mysql</groupId>

 <artifactId>mysql-connector-java</artifactId>

</dependency>

<dependency>

 <groupId>io.helidon.integrations.cdi</groupId>

 <artifactId>helidon-integrations-cdi-jpa</artifactId>

</dependency>

<dependency>

 <groupId>io.helidon.integrations.cdi</groupId>

 <artifactId>helidon-integrations-cdi-jpa-weld</artifactId>

</dependency>

<dependency>

 <groupId>io.helidon.integrations.cdi</groupId>

 <artifactId>helidon-integrations-cdi-eclipselink</artifactId>

</dependency>

<dependency>

 <groupId>jakarta.persistence</groupId>

 <artifactId>jakarta.persistence-api</artifactId>

</dependency>

<dependency>

 <groupId>io.helidon.integrations.cdi</groupId>

 <artifactId>helidon-integrations-cdi-jta</artifactId>

Chapter 4 Cargo Tracker: Eclipse MicroProfile

123

</dependency>

<dependency>

 <groupId>io.helidon.integrations.cdi</groupId>

 <artifactId>helidon-integrations-cdi-jta-weld</artifactId>

</dependency>

<dependency>

 <groupId>javax.transaction</groupId>

 <artifactId>javax.transaction-api</artifactId>

</dependency>

microprofile-config

We need to configure the Connection properties for each of our MySQL Database

instances. Listing 4-3 shows the configuration properties that need to be added. You

would need to replace the values with your MySQL Instance(s) Details as necessary:

Listing 4-3.  Configuration information for the datasource connectivity

javax.sql.DataSource.<<BoundedContext-Name>>.dataSourceClassName=com.mysql.

cj.jdbc.MysqlDataSource

javax.sql.DataSource.<<BoundedContext-Name>>.dataSource.

url=jdbc:mysql://<<Machine-Name>>:<<Machine-Port>>/<<MySQL-Database-

Instance-Name>>

javax.sql.DataSource.<<BoundedContext-Name>>.dataSource.user=

<<MySQL-Database-Instance-UserID>>

javax.sql.DataSource.<<BoundedContext-Name>>.dataSource.password=

<<MySQL-Database-Instance-Password>>

persistence.xml

The final step is to configure a JPA “persistence-unit” mapped to the Datasource

configured in the microprofile-config file as seen in Listing 4-4:

Listing 4-4.  Configuration information for the persistence unit

<persistence version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/

persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence http://xmlns.

jcp.org/xml/ns/persistence/persistence_2_2.xsd">

Chapter 4 Cargo Tracker: Eclipse MicroProfile

124

<persistence-unit name="<<BoundedContext-Name>>" transaction-type="JTA">

 <jta-data-source><<BoundedContext-Datasource>></jta-data-source>

</persistence-unit>

</persistence>

We are now ready to implement JPA within our MicroProfile applications. Unless

stated otherwise, all our Aggregates within all our Bounded Contexts implement the

same mechanism.

Each of our root aggregate classes is implemented as a JPA entity. There are no

specific annotations that JPA provides to annotate a specific class as a root aggregate, so

we take a regular POJO and use the JPA-provided standard annotation @Entity. Taking

the Booking Bounded Context as an example which has Cargo as the root Aggregate,

Listing 4-5 shows the minimalistic code required for a JPA Entity:

Listing 4-5.  Cargo root aggregate implemented as a JPA Entity

package com.practicalddd.cargotracker.bookingms.domain.model.aggregates;

import javax.persistence.∗;
@Entity //JPA Entity Marker

public class Cargo {

}

Every JPA Entity requires an identifier. For our Aggregate Identifier implementation,

we choose to have a technical/surrogate identifier (Primary Key) for our Cargo

Aggregate derived from a MySQL sequence. In addition to the technical identifier, we

also choose to have a Business Key.

The Business key conveys the business intent of the aggregate identifier clear,

that is, Booking Identifier of a newly booked cargo, and is the key that is exposed to

external consumers of the Domain Model (more on this later). The technical key on

the other hand is a pure internal representation of the aggregate identifier and is useful

to maintain relationships within a Bounded Context between the Aggregates and its

Dependent Objects (see Value Objects/Entities in the following).

Continuing with our example of the Cargo Aggregate within the Booking Bounded

Context, we add the Technical and Business Keys to the Class implementation until now.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

125

Listing 4-6 demonstrates this. The “@Id” annotation identifies the primary key on

our Cargo Aggregate. There is no specific annotation to identify the Business Key, so

we just implement it as a regular POJO (BookingId) and embed it within our Aggregate

using the “@Embedded” annotation provided by JPA:

Listing 4-6.  Cargo root aggregate identifier implementation

package com.practicalddd.cargotracker.bookingms.domain.model.aggregates;

import javax.persistence.∗;
@Entity

public class Cargo {

 @Id //Identifier Annotation provided by JPA

 �@GeneratedValue(strategy = GenerationType.AUTO) // Rely on a MySQL

generated sequence

 private Long id;

 �@Embedded //Annotation which enables usage of Business Objects instead

of primitive types

 private BookingId bookingId; // Business Identifier

}

Listing 4-7 shows the implementation of the BookingId Business Key Class:

Listing 4-7.  BookingId business key class implementation

package com.practicalddd.cargotracker.bookingms.domain.model.aggregates;

import javax.persistence.∗;
import java.io.Serializable;

/∗∗
 ∗ Business Key Identifier for the Cargo Aggregate
 ∗/
@Embeddable

public class BookingId implements Serializable {

 @Column(name="booking_id")

 private String bookingId;

 public BookingId(){}

 public BookingId(String bookingId){this.bookingId = bookingId;}

 public String getBookingId(){return this.bookingId;}

}

Chapter 4 Cargo Tracker: Eclipse MicroProfile

126

We now have a bare-bones implementation of an Aggregate (Cargo) using JPA. The

other aggregates have the same mechanism of implementation barring the Handling

Activity Bounded Context. Since it is an event log, we decide to implement only one key

for the Aggregate, that is, the Activity Id.

Figure 4-20 summarizes our bare-bones implementation of all our Aggregates.

Domain Richness: Business Attributes

With the bare-bones implementation ready, let us move onto the meat of the Aggregate –

Domain richness. The Aggregate of any Bounded Context should be able to express
the Business Language of the Bounded Context clearly. Essentially, what it means in

pure technical terms is that our Aggregate should not be anemic, that is, only containing

getter/setter methods.

An anemic aggregate goes against the fundamental principle of DDD since it

essentially would mean the Business Language being expressed in multiple layers of an
application which in turn leads to an unmaintainable piece of software in the long run.

So how do we implement a Domain-Rich Aggregate? The short answer is Business
Attributes and Business Methods. Our focus in this section is going to be on the

Business Attributes aspect while we will cover the Business Methods part as part of the

Domain Model Operations implementation.

Figure 4-20.  Bare-Bones implementation of our Aggregates

Chapter 4 Cargo Tracker: Eclipse MicroProfile

127

Business Attributes of an Aggregate capture the state of an Aggregate as attributes
depicted using Business Terms rather than Technical Terms.

Let us walk through the example of our Cargo aggregate.

Translating state to business concepts, the Cargo Aggregate has the following

attributes:

•	 Origin Location of the cargo.

•	 Booking Amount of the cargo.

•	 Route specification (Origin Location, Destination Location,

Destination Arrival Deadline).

•	 Itinerary that the cargo is assigned to based on the Route

Specification. The Itinerary consists of multiple Legs that the cargo

might be routed through to get to the destination.

•	 Delivery Progress of the cargo against its Route Specification and

Itinerary assigned to it. The Delivery Progress provides details on

the Routing Status, Transport Status, Current Voyage of the cargo,
Last Known Location of the cargo, Next Expected Activity, and the
Last Activity that occurred on the cargo.

Figure 4-21 illustrates the Cargo Aggregate and its relationships with its dependent

objects. Notice how we are able to clearly represent the Cargo Aggregate in pure
Business Terms.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

128

JPA provides us a set of annotations (@Embedded, @Embeddable) to help

implement our Aggregate class using Business Objects.

Listing 4-8 shows the example of our Cargo Aggregate with all the Dependencies
modeled as Business Objects:

Figure 4-21.  Cargo Aggregate and its dependent associations

Chapter 4 Cargo Tracker: Eclipse MicroProfile

129

Listing 4-8.  Business object dependencies for the Cargo root aggregate

package com.practicalddd.cargotracker.bookingms.domain.model.aggregates;

import javax.persistence.∗;

import com.practicalddd.cargotracker.bookingms.domain.model.entities.∗;
import com.practicalddd.cargotracker.bookingms.domain.model.valueobjects.∗;
@Entity

public class Cargo {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 private Long id;

 @Embedded

 private BookingId bookingId; // Aggregate Identifier

 @Embedded

 private BookingAmount bookingAmount; //Booking Amount

 @Embedded

 private Location origin; //Origin Location of the Cargo

 @Embedded

 �private RouteSpecification routeSpecification; //Route Specification of

the Cargo

 @Embedded

 private CargoItinerary itinerary; //Itinerary Assigned to the Cargo

 @Embedded

 �private Delivery delivery; // Checks the delivery progress of the cargo

against the actual Route Specification and Itinerary

}

Dependent classes for an Aggregate are modeled either as Entity Objects or Value
Objects. To recap, Entity Objects within a Bounded Context have an identity of their own

but always exist within a root aggregate, that is, they cannot exist independently, and

they never change during the complete lifecycle of the aggregate. Value Objects on the

other hand have no identity of their own and are easily replaceable in any instance of an

aggregate.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

130

Continuing with our example, within the Cargo Aggregate, we have the following:

•	 “Origin” of the cargo as an Entity Object (Location). This cannot

change within a Cargo Aggregate Instance and hence is modeled as

an Entity Object.

•	 Booking Amount of the cargo, Route Specification of the cargo,

Cargo Itinerary assigned to the cargo, and the Delivery of the
cargo as Value Objects. These objects are replaceable in any Cargo

Aggregate Instance and hence are modeled as Value Objects.

Let us walk through the scenarios and the rationale why we have these as value

objects and not as entities because it is an important domain modeling decision:

•	 When a new cargo is booked, we will have a new Route
Specification, an empty Cargo Itinerary, and no delivery progress.

•	 As the cargo is assigned an itinerary, the empty Cargo Itinerary is

replaced by an allocated Cargo Itinerary.

•	 As the cargo progresses through multiple ports as part of its itinerary,

the Delivery progress is updated and replaced within the root

aggregate.

•	 Finally, if the customer chooses to change the delivery location of the

cargo or the deadline for delivery, the Route Specification changes,

a new Cargo Itinerary will be assigned, the Delivery is recalculated,

and the Booking Amount changes.

They are all replaceable and hence modeled as Value Objects. That is the thumb
rule for modeling Entities and Value Objects within an Aggregate.

Implementing Entity Objects/Value Objects

Entity Objects/Value Objects are implemented as JPA Embeddable objects using the

“@Embeddable” annotation provided by JPA. They are then embedded into the

Aggregate using the “@Embedded” annotation.

Listing 4-9 shows the mechanism of embedding into the Aggregate class.

Let us look at the implementation of the Cargo Aggregate’s Entity Objects/Value

Objects.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

131

Listing 4-9 demonstrates the Location Entity Object. Notice the package name

(grouped under model.entities):

Listing 4-9.  Location entity class implementation

package com.practicalddd.cargotracker.bookingms.domain.model.entities;

import javax.persistence.Column;

import javax.persistence.Embeddable;

/∗∗
 ∗ Location Entity class represented by a unique 5-digit UN Location code.
 ∗/
@Embeddable

public class Location {

 @Column(name = "origin_id")

 private String unLocCode;

 public Location(){}

 public Location(String unLocCode){this.unLocCode = unLocCode;}

 public void setUnLocCode(String unLocCode){this.unLocCode = unLocCode;}

 public String getUnLocCode(){return this.unLocCode;}

}

Listing 4-10 demonstrates examples of the Booking Amount/Route Specification
Value Object(s). Notice the package name (grouped under model.valueobjects):

Listing 4-10.  Booking Amount Value object implementation

package com.practicalddd.cargotracker.bookingms.domain.model.valueobjects;

import javax.persistence.Column;

import javax.persistence.Embeddable;

/∗∗
 ∗ Domain model representation of the Booking Amount for a new Cargo.
 ∗ Contains the Booking Amount of the Cargo
 ∗/
@Embeddable

public class BookingAmount {

 @Column(name = "booking_amount", unique = true, updatable= false)

 private Integer bookingAmount;

Chapter 4 Cargo Tracker: Eclipse MicroProfile

132

 public BookingAmount(){}

 �public BookingAmount(Integer bookingAmount){this.bookingAmount =

bookingAmount;}

 �public void setBookingAmount(Integer bookingAmount){this.bookingAmount =

bookingAmount;}

 public Integer getBookingAmount(){return this.bookingAmount;}

}

Listing 4-11 demonstrates the Route Specification Value Object:

Listing 4-11.  Route Specification Value object implementation

package com.practicalddd.cargotracker.bookingms.domain.model.valueobjects;

import com.practicalddd.cargotracker.bookingms.domain.model.entities.

Location;

import javax.persistence.∗;
import javax.validation.constraints.NotNull;

import java.util.Date;

/∗∗
 ∗ Route Specification of the Booked Cargo
 ∗/
@Embeddable

public class RouteSpecification {

 private static final long serialVersionUID = 1L;

 @Embedded

 �@AttributeOverride(name = "unLocCode", column = @Column(name =

"spec_origin_id"))

 private Location origin;

 @Embedded

 �@AttributeOverride(name = "unLocCode", column = @Column(name =

"spec_destination_id"))

 private Location destination;

 @Temporal(TemporalType.DATE)

 @Column(name = "spec_arrival_deadline")

 @NotNull

 private Date arrivalDeadline;

 public RouteSpecification() { }

Chapter 4 Cargo Tracker: Eclipse MicroProfile

133

 /∗∗
 ∗ @param origin origin location
 ∗ @param destination destination location
 ∗ @param arrivalDeadline arrival deadline
 ∗/
 public RouteSpecification (Location origin, Location destination,

 Date arrivalDeadline) {

 this.origin = origin;

 this.destination = destination;

 this.arrivalDeadline = (Date) arrivalDeadline.clone();

 }

 public Location getOrigin() {

 return origin;

 }

 public Location getDestination() {

 return destination;

 }

 public Date getArrivalDeadline() {

 return new Date(arrivalDeadline.getTime());

 }

}

The remaining Value Objects (RouteSpecification, CargoItinerary, and Delivery)

are implemented in the same way using the “@Embeddable” annotation and embedded

into the Cargo Aggregate using the “@Embedded” annotation.

Note P lease refer to the chapter’s source code for the complete implementation.

Let us look at abbreviated class diagrams for the other Aggregates (HandlingActivity,

Voyage, and Tracking). Figures 4-22, 4-23, and 4-24 illustrate this.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

134

Figure 4-22.  Handling Activity and its dependent associations

Figure 4-23.  Voyage and its dependent associations

Chapter 4 Cargo Tracker: Eclipse MicroProfile

135

This completes the implementation of the Core Domain Model. Let us look at the

implementation of the Domain model operations next.

Note T he source code for the book has the Core Domain Model demonstrated
via package segregation. You can view the source code to get a clearer view of the
types of objects within the domain model at github.com/practicalddd.

�Domain Model Operations
Domain Model operations within a Bounded Context deal with any kind of operations

associated with the state of the Aggregate of the Bounded Context. This includes

operations that change the status of an Aggregate (Commands), retrieve the current

state of the Aggregate (Queries), or notify the Aggregate state change(Events).

�Commands

Commands are responsible for changing the state of the Aggregate within a Bounded

Context.

Figure 4-24.  Tracking Activity and its dependent associations

Chapter 4 Cargo Tracker: Eclipse MicroProfile

http://github.com/practicalddd

136

Implementation of Commands within a Bounded Context involves the following

steps:

•	 Identification/implementation of Commands

•	 Identification/implementation of Command Handlers to process

Commands

Identification of Commands

Identification of Commands revolves around identifying any operation that affects the

state of the Aggregate. For example, the Booking Command Bounded Context has the

following operations or commands:

•	 Book a Cargo

•	 Route a Cargo

Both these operations result in a change of state of the Cargo Aggregate within the

Bounded Context and are hence identified as Commands.

Implementation of Commands

Once identified, implementing the identified Commands within the MicroProfile

implementation is done using regular POJOs. Listing 4-12 demonstrates the

implementation of the BookCargoCommand class for the Book Cargo Command:

Listing 4-12.  BookCargoCommand class implementation

package com.practicalddd.cargotracker.bookingms.domain.model.commands;

import java.util.Date;

/∗∗
 ∗ Book Cargo Command class
 ∗/
public class BookCargoCommand {

 private String bookingId;

 private int bookingAmount;

 private String originLocation;

 private String destLocation;

 private Date destArrivalDeadline;

Chapter 4 Cargo Tracker: Eclipse MicroProfile

137

 public BookCargoCommand(){}

 public BookCargoCommand(int bookingAmount,

 �String originLocation, String destLocation,

Date destArrivalDeadline){

 this.bookingAmount = bookingAmount;

 this.originLocation = originLocation;

 this.destLocation = destLocation;

 this.destArrivalDeadline = destArrivalDeadline;

 }

 public void setBookingId(String bookingId){this.bookingId = bookingId;}

 public String getBookingId(){return this.bookingId;}

 public void setBookingAmount(int bookingAmount){

 this.bookingAmount = bookingAmount;

 }

 public int getBookingAmount(){

 return this.bookingAmount;

 }

 public String getOriginLocation() {return originLocation; }

 �public void setOriginLocation(String originLocation)

{this.originLocation = originLocation; }

 public String getDestLocation() { return destLocation; }

 �public void setDestLocation(String destLocation) { this.destLocation =

destLocation; }

 public Date getDestArrivalDeadline() { return destArrivalDeadline; }

 �public void setDestArrivalDeadline(Date destArrivalDeadline)

{ this.destArrivalDeadline = destArrivalDeadline; }

}

Chapter 4 Cargo Tracker: Eclipse MicroProfile

138

Identification of Command Handlers

Every Command will have a corresponding Command Handler. The purpose of the

Command Handler is to process the input command and set the state of the Aggregate.

Command Handlers are the only place within the Domain Model where Aggregate state
is set. This is a strict rule that needs to be followed to help implement a rich Domain Model.

Implementation of Command Handlers

Since the Eclipse MicroProfile platform does not provide any out-of-the-box capabilities

to implement Command Handlers, our methodology of implementation will be to just
identify the routines on the Aggregates which can be denoted as Command Handlers.

For our first command Book Cargo, we identify the constructor of the Aggregate as
our Command Handler; and for our second command Route Cargo, we create a new

routine “assignToRoute()” as our Command Handler.

Listing 4-13 shows the snippet of code of the constructor of the Cargo Aggregate.

The constructor accepts the BookCargoCommand as an input parameter and sets the

corresponding state of the Aggregate:

Listing 4-13.  BookCargoCommand command handler

 /∗∗
 ∗ Constructor Command Handler for a new Cargo booking
 ∗/
 public Cargo(BookCargoCommand bookCargoCommand){

 this.bookingId = new BookingId(bookCargoCommand.getBookingId());

 this.routeSpecification = new RouteSpecification(

 new Location(bookCargoCommand.getOriginLocation()),

 new Location(bookCargoCommand.getDestLocation()),

 bookCargoCommand.getDestArrivalDeadline()

);

 this.origin = routeSpecification.getOrigin();

 �this.itinerary = CargoItinerary.EMPTY_ITINERARY; //Empty Itinerary

since the Cargo has not been routed yet

 this.bookingAmount = bookingAmount;

 this.delivery = Delivery.derivedFrom(this.routeSpecification,

 this.itinerary, LastCargoHandledEvent.EMPTY);

 }

Chapter 4 Cargo Tracker: Eclipse MicroProfile

139

Listing 4-14 shows the snippet of code for the assignToRoute() Command Handler.

It accepts the RouteCargoCommand class as input and sets the state of the Aggregate:

Listing 4-14.  RouteCargoCommand command handler

 /∗∗
 ∗ �Command Handler for the Route Cargo Command. Sets the state of the

Aggregate and registers the

 ∗ Cargo routed event
 ∗ @param routeCargoCommand
 ∗/
 public void assignToRoute(RouteCargoCommand routeCargoCommand) {

 this.itinerary = routeCargoCommand.getCargoItinerary();

 // Handling consistency within the Cargo aggregate synchronously

 this.delivery = delivery.updateOnRouting(this.routeSpecification,

 this.itinerary);

 }

Figure 4-25 illustrates the class diagram for our Command Handler implementation.

In summary, Command Handlers play a very important role of managing the

Aggregate state within a Bounded Context. The actual invocation of Command Handlers

happens via Application Services which we shall see in the sections that follow.

Figure 4-25.  Class diagram for the Command Handler implementation

Chapter 4 Cargo Tracker: Eclipse MicroProfile

140

�Queries

Queries within the Bounded Context are responsible for providing the state of the
Bounded Context’s Aggregate to external consumers.

To implement Queries, we utilize JPA Named Queries, that is, queries that can be

defined on an Aggregate to retrieve state in various forms. Listing 4-15 demonstrates the

snippet of code from the Cargo Aggregate that defines the queries that need to be made

available. In this case, we have three queries – Find All Cargos, Find a Cargo by its
Booking Identifier, and Final Booking Identifiers for all Cargos:

Listing 4-15.  Named Queries within the Cargo root aggregate

@NamedQueries({

 @NamedQuery(name = "Cargo.findAll",

 query = "Select c from Cargo c"),

 @NamedQuery(name = "Cargo.findByBookingId",

 �query = "Select c from Cargo c where c.bookingId =

:bookingId"),

 @NamedQuery(name = "Cargo.findAllBookingIds",

 query = "Select c.bookingId from Cargo c") })

public class Cargo{}

In summary, Queries play the role of presenting the Aggregate state within a

Bounded Context. The actual invocation and execution of these queries happens via

Application Services and Repository classes which we shall see in the sections that

follow.

This completes the implementation of Queries within the Domain Model. We shall

now see how to implement Events.

�Events

An event within a Bounded Context is any operation that publishes the Bounded
Context’s Aggregate State Changes as Events. Since Commands change the state of an

Aggregate, it is safe to assume that any Command operation within a Bounded Context

will result in a corresponding Event. The subscribers of these events could be either

other Bounded Contexts within the same domain or Bounded Contexts belonging to any

other external domains.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

141

Domain Events play a central role within a microservices architecture, and

it is important to implement them in a robust manner. The distributed nature of

a microservices architecture mandates the usage of Events via a choreography
mechanism to maintain state and transactional consistency between the various

Bounded Contexts of a microservices-based application.

Figure 4-26 illustrates examples of the events that flow between the various Bounded

Contexts of the Cargo Tracker Application.

Let us explain this a bit more using an example Business case.

When a cargo is assigned a route, this means that the cargo can now be tracked

which requires a Tracking Identifier to be issued to the cargo. The assigning of route to

the cargo is handled within the Booking Bounded Context, while issuing the tracking

Figure 4-26.  Flow of Events in a Microservices architecture

Chapter 4 Cargo Tracker: Eclipse MicroProfile

142

identifier is handled within the Tracking Bounded Context. In the monolithic way of

doing things, the process of assigning a route to the cargo and issuing the tracking

identifier happens together since we can maintain the same transactional context
across multiple Bounded Contexts due to the shared model for processes, runtimes,
and Datastores.

However, in a microservices architecture, it is not possible to achieve the same

since it is a shared nothing architecture. When a cargo is assigned a route, the Booking

Bounded Context is only responsible for ensuring that the Cargo Aggregate’s state

reflects the new route. The Tracking Bounded Context needs to know about this change

of state so that it can issue the Tracking Identifier accordingly to complete the business
use case. This is where Domain Events and Event Choreography play an important

role. If the Cargo Bounded Context can raise the event that the Cargo Aggregate has been

assigned a Route, the Tracking Bounded Context can subscribe to that specific event

and issue the tracking identifier to complete this business use case. The mechanism

of raising events and delivering events to various Bounded Contexts to complete a

business use case is the event choreography pattern. In short, Domain Events/Event

Choreography helps in building Event-Driven Microservices applications.

There are four stages to the implementation of a robust event-driven choreography

architecture:

•	 Register the Domain Events that need to be raised from a Bounded

Context.

•	 Raise the Domain Events that need to be published from a Bounded

Context.

•	 Publish the Events that are raised from a Bounded Context.

•	 Subscribe to the Events that have been published from other

Bounded Contexts.

Considering the capabilities provided by the MicroProfile platform, the

implementation is split across multiple areas:

•	 Raising of Events is implemented by the Application Services.

•	 Publishing of Events is implemented by the Outbound Services.

•	 Subscribing to Events is handled by the Interface/Inbound services.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

143

As part of our implementation for Domain Events, we will use CDI Events as the
logical infrastructure for Event publishing/subscribing, while we will use RabbitMQ to
provide us the physical infrastructure to achieve Event choreography.

The only area that we will cover in this section, since we are in the phase of

implementing the Domain Model, is the creation of the Event Classes that participate

in the choreography across multiple Bounded Contexts. The subsequent sections of

the chapter will deal with each of the other aspects (Application Services will cover
the implementation of raising of these Events, Outbound services will cover the
implementation of the publishing of Events, and Inbound Services will cover the
implementation of subscribing to the Events).

Event classes within the Domain Model are created as custom annotations using

the “@interface” annotation. We will see the usages of these Events in the sections that

follow when we implement the other areas of the event choreography architecture.

Listing 4-16 demonstrates the CargoBookedEvent implemented as a custom

annotation:

Listing 4-16.  CargoBookedEvent stereotype annotation

import javax.inject.Qualifier;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

/∗∗
 ∗ �Event Class for the Cargo Booked Event. Implemented as a custom

annotation

 ∗/
@Qualifier

@Retention(RUNTIME)

@Target({FIELD, PARAMETER})

public @interface CargoBookedEvent {

}

Chapter 4 Cargo Tracker: Eclipse MicroProfile

144

Similarly, Listing 4-17 demonstrates the implementation of the CargoRoutedEvent

event class:

Listing 4-17.  CargoRoutedEvent stereotype annotation

import javax.inject.Qualifier;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

/∗∗
 ∗ Event Class for the Cargo Routed Event. Wraps up the Cargo
 ∗/

@Qualifier

@Retention(RUNTIME)

@Target({FIELD, PARAMETER})

public @interface CargoRoutedEvent {

}

This completes the demonstration of concepts to implement the Core Domain
Model. Let us now move onto implementing the Domain Model Services.

�Domain Model Services
Domain Model Services are used for two primary reasons. The first is to enable the

Bounded Context’s state to be made available to external parties through well-defined
Interfaces. The second is interacting with external parties be it to persist the Bounded

Context’s state to Datastores (Databases), publish the Bounded Context’s state change

events to external Message Brokers, or to communicate with other Bounded Contexts.

There are three types of Domain Model Services for any Bounded Context:

–– Inbound Services where we implement well-defined interfaces

which enable external parties to interact with the Domain Model

–– Outbound Services where we implement all interactions with

External Repositories/other Bounded Contexts

Chapter 4 Cargo Tracker: Eclipse MicroProfile

145

–– Application Services which act as the façade layer between the

Domain Model and both Inbound and Outbound services

Figure 4-27 illustrates the Domain Model Services implementation.

�Inbound Services

Inbound services (or Inbound Adaptors as denoted in the Hexagonal Architectural

Pattern) act as the outermost gateway for our Core Domain Model. As stated, it involves

the implementation of well-defined interfaces which enable external consumers to

interact with the core domain model.

The type of inbound services depends upon the types of operations we need to

expose to enable the external consumers of the Domain Model.

Considering that we are implementing the microservices architectural pattern for

our Cargo Tracker application, we provide two types of Inbound Services:

–– An API Layer based on REST which is used by external consumers to

invoke operations on the Bounded Context (Commands/Queries)

–– An Event Handling Layer based on CDI Events which consumes

Events from the Message Broker and processes them

Figure 4-27.  Domain Model Services implementation summary

Chapter 4 Cargo Tracker: Eclipse MicroProfile

146

REST API

The responsibility of the REST API is to receive HTTP requests on behalf of the Bounded

Context from external consumers. This request could be for Commands or Queries. The

responsibility of the REST API layer is to translate it into the Command/Query Model

recognized by the Bounded Context’s Domain Model and delegate it to the Application

Services Layer to further process it.

Looking back at Figure 4-5 which detailed out all the operations for the various

Bounded Contexts (e.g., Book Cargo, Assign Route to Cargo, Handle Cargo, Track
Cargo), all these operations will have corresponding REST APIs which will accept these

requests and process them.

Implementation of the REST API in Eclipse MicroProfile is by utilizing the REST

capabilities provided by Helidon MP based on JAX-RS (Java API for RESTful Web

Services). As the name suggests, this specification provides capabilities to build RESTful

web services. Helidon MP provides an implementation for this specification, and this

capability automatically gets added when we create the scaffold project.

Let us walk through an example of a REST API built using JAX-RS. Listing 4-18

depicts the CargoBookingController class which provides a REST API for our Cargo
Booking Command.

•	 The REST API is available at the URL “/cargobooking”.

•	 It has a single POST method that accepts a BookCargoResource

which is the input payload to the API.

•	 It has a dependency on the CargoBookingCommandService which is

an Application services which acts as a façade (see implementation in

the following). This dependency is injected into the API class utilizing

the “@Inject” annotation. This annotation is available as part of CDI.

•	 It transforms the Resource Data (BookCargoResource) to the

Command Model (BookCargoCommand) using an Assembler utility

class (BookCargoCommandDTOAssembler).

•	 After transforming, it delegates the process to the

CargoBookingCommandService for further processing.

•	 It returns back a Response to the external consumer with the

Booking Identifier of the newly booked cargo with a Response Status
of “200 OK”.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

147

Listing 4-18.  CargoBooking controller class implementation

package com.practicalddd.cargotracker.bookingms.interfaces.rest;

import com.practicalddd.cargotracker.bookingms.application.internal.

commandservices.CargoBookingCommandService;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.

BookingId;

import com.practicalddd.cargotracker.bookingms.interfaces.rest.dto.

BookCargoResource;

import com.practicalddd.cargotracker.bookingms.interfaces.rest.transform.

BookCargoCommandDTOAssembler;

import javax.enterprise.context.ApplicationScoped;

import javax.inject.Inject;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

@Path("/cargobooking")

@ApplicationScoped

public class CargoBookingController {

 �private CargoBookingCommandService cargoBookingCommandService;

// Application Service Dependency

 /∗∗
 ∗ Inject the dependencies (CDI)
 ∗ @param cargoBookingCommandService
 ∗/
 @Inject

 �public CargoBookingController(CargoBookingCommandService

cargoBookingCommandService){

 this.cargoBookingCommandService = cargoBookingCommandService;

 }

Chapter 4 Cargo Tracker: Eclipse MicroProfile

148

 /∗∗
 ∗ POST method to book a cargo
 ∗ @param bookCargoResource
 ∗/

 @POST

 @Produces(MediaType.APPLICATION_JSON)

 public Response bookCargo(BookCargoResource bookCargoResource){

 BookingId bookingId = cargoBookingCommandService.bookCargo(

 �BookCargoCommandDTOAssembler.toCommandFromDTO(book

CargoResource));

 final Response returnValue = Response.ok()

 .entity(bookingId)

 .build();

 return returnValue;

 }

}

Listing 4-19 shows the implementation for the BookCargoResource class:

Listing 4-19.  BookCargo resource class for the controller

package com.practicalddd.cargotracker.bookingms.interfaces.rest.dto;

import java.time.LocalDate;

/∗∗
 ∗ Resource class for the Book Cargo Command API
 ∗/
public class BookCargoResource {

 private int bookingAmount;

 private String originLocation;

 private String destLocation;

 private LocalDate destArrivalDeadline;

 public BookCargoResource(){}

Chapter 4 Cargo Tracker: Eclipse MicroProfile

149

 public BookCargoResource(int bookingAmount,

 �String originLocation, String destLocation,

LocalDate destArrivalDeadline){

 this.bookingAmount = bookingAmount;

 this.originLocation = originLocation;

 this.destLocation = destLocation;

 this.destArrivalDeadline = destArrivalDeadline;

 }

 public void setBookingAmount(int bookingAmount){

 this.bookingAmount = bookingAmount;

 }

 public int getBookingAmount(){

 return this.bookingAmount;

 }

 public String getOriginLocation() {return originLocation; }

 �public void setOriginLocation(String originLocation) {this.

originLocation = originLocation; }

 public String getDestLocation() { return destLocation; }

 �public void setDestLocation(String destLocation) { this.destLocation =

destLocation; }

 public LocalDate getDestArrivalDeadline() { return destArrivalDeadline; }

 �public void setDestArrivalDeadline(LocalDate destArrivalDeadline) {

this.destArrivalDeadline = destArrivalDeadline; }

}

Chapter 4 Cargo Tracker: Eclipse MicroProfile

150

Listing 4-20 shows the implementation for the BookCargoCommandDTOAssembler

class:

Listing 4-20.  DTO Assembler class implementation

package com.practicalddd.cargotracker.bookingms.interfaces.rest.transform;

import com.practicalddd.cargotracker.bookingms.domain.model.commands.

BookCargoCommand;

import com.practicalddd.cargotracker.bookingms.interfaces.rest.dto.

BookCargoResource;

/∗∗
 ∗ �Assembler class to convert the Book Cargo Resource Data to the Book

Cargo Model

 ∗/
public class BookCargoCommandDTOAssembler {

 /∗∗
 ∗ Static method within the Assembler class
 ∗ @param bookCargoResource
 ∗ @return BookCargoCommand Model
 ∗/
 �public static BookCargoCommand toCommandFromDTO(BookCargoResource

bookCargoResource){

 return new BookCargoCommand(

 bookCargoResource.getBookingAmount(),

 bookCargoResource.getOriginLocation(),

 bookCargoResource.getDestLocation(),

 �java.sql.Date.valueOf(bookCargoResource.

getDestArrivalDeadline()));

 }

}

Chapter 4 Cargo Tracker: Eclipse MicroProfile

151

Listing 4-21 shows the implementation for the BookCargoCommand class:

Listing 4-21.  BookCargoCommand class implementation

package com.practicalddd.cargotracker.bookingms.domain.model.commands;

import java.util.Date;

/∗∗
 ∗ Book Cargo Command class
 ∗/
public class BookCargoCommand {

 private int bookingAmount;

 private String originLocation;

 private String destLocation;

 private Date destArrivalDeadline;

 public BookCargoCommand(){}

 public BookCargoCommand(int bookingAmount,

 �String originLocation, String destLocation,

Date destArrivalDeadline){

 this.bookingAmount = bookingAmount;

 this.originLocation = originLocation;

 this.destLocation = destLocation;

 this.destArrivalDeadline = destArrivalDeadline;

 }

 public void setBookingAmount(int bookingAmount){

 this.bookingAmount = bookingAmount;

 }

 public int getBookingAmount(){

 return this.bookingAmount;

 }

Chapter 4 Cargo Tracker: Eclipse MicroProfile

152

 public String getOriginLocation() {return originLocation; }

 �public void setOriginLocation(String originLocation)

{this.originLocation = originLocation; }

 public String getDestLocation() { return destLocation; }

 �public void setDestLocation(String destLocation) { this.destLocation =

destLocation; }

 public Date getDestArrivalDeadline() { return destArrivalDeadline; }

 �public void setDestArrivalDeadline(Date destArrivalDeadline)

{ this.destArrivalDeadline = destArrivalDeadline; }

}

Figure 4-28 demonstrates the class diagram for our implementation.

Figure 4-28.  Class diagram for the REST API implementation

Chapter 4 Cargo Tracker: Eclipse MicroProfile

153

All our inbound REST API implementations follow the same approach which is

illustrated in Figure 4-29.

	 1.	 The inbound request for a Command/Query comes to the REST

API. API classes are implemented using JAX-RS capabilities

provided by Helidon MP.

	 2.	 The REST API class uses a utility Assembler component to convert

the Resource Data format to the Command/Query Data format

required by the Domain Model.

	 3.	 The Command/Query Data is sent to the Application Services for

further processing.

Event Handlers

The other type of interfaces that exist within our Bounded Contexts are the Event

Handlers. Within a Bounded Context, Event Handlers are responsible for processing

Events that the Bounded Context is interested in. These Events are raised by other

Bounded Contexts within the applicationThese. “EventHandlers” are created within the

subscribing Bounded Context which resides within the inbound/interface layer. The

Event Handlers receive the Event along with the Event payload data and process them as

a regular operation.

Listing 4-22 demonstrates the “CargoRoutedEventHandler” which resides within

the Tracking Bounded Context. It observes the “CargoRoutedEvent” and receives the

“CargoRoutedEventData” as the payload:

Figure 4-29.  Inbound Services implementation process summary

Chapter 4 Cargo Tracker: Eclipse MicroProfile

154

Listing 4-22.  CargoRouted event handler implementation

package com.practicalddd.cargotracker.trackingms.interfaces.events;

import com.practicalddd.cargotracker.shareddomain.events.CargoRoutedEvent;

import com.practicalddd.cargotracker.shareddomain.events.

CargoRoutedEventData;

import javax.enterprise.context.ApplicationScoped;

import javax.enterprise.event.Observes;

@ApplicationScoped

public class CargoRoutedEventHandler {

 �public void receiveEvent(@Observes @CargoRoutedEvent

CargoRoutedEventData eventData) {

 //Process the Event

 }

}

All our Event Handler implementations follow the same approach as illustrated in

Figure 4-30.

Figure 4-30.  Implementation process summary for Event Handler
implementations

Chapter 4 Cargo Tracker: Eclipse MicroProfile

155

	 1.	 Event Handlers receive inbound events from a Message Broker.

	 2.	 Event Handlers use a utility Assembler component to convert the

Resource Data format to the Command Data format required by

the Domain Model.

	 3.	 The Command Data is sent to the Application Services for further

processing.

The implementation for mapping the Inbound Events to the corresponding physical

queues of our Message Broker (RabbitMQ) is covered as part of the Outbound Services –
Message Broker implementation.

�Application Services

Application Services act as a façade or a port between the Inbound/Outbound Services

and the Core Domain Model within a Bounded Context.

Within a Bounded Context, Application services are responsible for receiving
requests from the Inbound Services and delegating them to the corresponding services,

that is, Commands are delegated to Command Services, Queries are delegated to Query
Services, and requests to communicate with other Bounded Contexts are delegated to

Outbound Services. As part of the processing of a Command/Query/External Bounded

Context Communication, Application services might be required to communicate with

Repositories, Message Brokers, or other Bounded Contexts. Outbound Services are

used to help in this communication.

Finally, since the MicroProfile specification does not provide the capability to raise

Domain Events directly from the Domain Model, we rely on Application Services to
raise Domain Events. The Domain Events are published onto the message brokers

using Outbound Services.

Application Services classes are implemented using CDI Managed Beans. Helidon
MP provides an implementation for CDI, and this capability automatically gets added

when we create the scaffold project.

Figure 4-31 depicts the responsibilities of the Application Services.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

156

Application Services: Command/Query Delegation

As part of this responsibility, Application services within a Bounded Context receive

requests for processing Commands/Queries. These requests come in typically from the

Inbound Services (API Layer). As part of the processing, Application services first utilize

the CommandHandlers/QueryHandlers (see section on the Domain Model) of the

Domain model to set state or query state. They then utilize the Outbound Services to

persist state or execute queries on the state of the Aggregate.

Let us walk through an example of a Command Delegator Application Services Class,

the Cargo Booking Command Application Services Class, which handles all Commands

related to the Booking Bounded Context. We will also look at one of the Commands in

more detail, the Book Cargo Command, which is an instruction to book a new cargo:

•	 The Application services class is implemented as a CDI Bean with a

scope attached to it (in this case @Application).

•	 The Application services class is provided with the necessary

dependencies via the @Inject annotation. In this case, the

CargoBookingCommandApplicationService class has dependencies

on an outbound service repository class (CargoRepository) which

it uses to persist the newly created cargo. It also has a dependency on

the “CargoBookedEvent” which needs to be raised once the cargo

Figure 4-31.  Responsibilities of the Application Services

Chapter 4 Cargo Tracker: Eclipse MicroProfile

157

is persisted. The CargoBookedEvent is a stereotype class and has the

cargo as its payload event. We will look at Domain events in more

detail in the sections that follow, so for now let us proceed.

•	 The Application Services delegates the processing to the

“bookCargo” method. Before the processing of the method, the

Application services ensures that a new Transaction is opened via the

“@Transactional” annotation.

•	 The Application services class stores the newly booked cargo in

the Booking MySQL Database table (CARGO) and fires the Cargo
Booked Event.

•	 It returns back a response to the inbound interface with the Booking

Identifier of the newly booked cargo.

Listing 4-23 demonstrates the Cargo Booking Command Application Services
Class implementation:

Listing 4-23.  Cargo Booking Command Application services implementation

class

package com.practicalddd.cargotracker.bookingms.application.internal.

commandservices;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.

BookingId;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.

Cargo;

import com.practicalddd.cargotracker.bookingms.domain.model.commands.

BookCargoCommand;

import com.practicalddd.cargotracker.bookingms.domain.model.entities.

Location;

import com.practicalddd.cargotracker.bookingms.domain.model.events.

CargoBookedEvent;

import com.practicalddd.cargotracker.bookingms.domain.model.valueobjects.

BookingAmount;

import com.practicalddd.cargotracker.bookingms.domain.model.valueobjects.

RouteSpecification;

Chapter 4 Cargo Tracker: Eclipse MicroProfile

158

import com.practicalddd.cargotracker.bookingms.infrastructure.repositories.

jpa.CargoRepository;

import javax.enterprise.context.ApplicationScoped;

import javax.enterprise.event.Event;

import javax.inject.Inject;

import javax.transaction.Transactional;

/∗∗
 ∗ Application Service class for the Cargo Booking Command
 ∗/
@ApplicationScoped // Scope of the CDI Managed Bean. Application Scope

indicates a single instance for the service class.

public class CargoBookingCommandService // CDI Managed Bean

{

 @Inject

 �private CargoRepository cargoRepository; // Outbound Service to connect

to the Booking Bounded Context MySQL Database Instance

 @Inject

 @CargoBookedEvent

 �private Event<Cargo> cargoBooked; // Event that needs to be raised when

the Cargo is Booked

 /∗∗
 ∗ Service Command method to book a new Cargo
 ∗ @return BookingId of the Cargo
 ∗/
 @Transactional // Inititate the Transaction

 public BookingId bookCargo(BookCargoCommand bookCargoCommand){

 BookingId bookingId = cargoRepository.nextBookingId();

 RouteSpecification routeSpecification = new RouteSpecification(

 new Location(bookCargoCommand.getOriginLocation()),

 new Location(bookCargoCommand.getDestLocation()),

 bookCargoCommand.getDestArrivalDeadline()

);

Chapter 4 Cargo Tracker: Eclipse MicroProfile

159

 �BookingAmount bookingAmount = new BookingAmount(bookCargoCommand.

getBookingAmount());

 Cargo cargo = new Cargo(

 bookingId,

 bookingAmount,

 routeSpecification);

 cargoRepository.store(cargo); //Store the Cargo

 cargoBooked.fire(cargo); // Fire the Cargo Booked Event

 return bookingId;

 }

 �// All other implementations of Commands for the Booking Bounded

Context

}

Listing 4-24 demonstrates the Cargo Booking Query Application Services Class

implementation which serves all queries related to the Booking Bounded Context. The

implementation is the same as the Cargo Booking Command Application Services Class

except for the fact that it does not raise any Domain Event since it just queries the state

of a Bounded Context and does not change its state:

Listing 4-24.  Cargo Booking Query Application services implementation

package com.practicalddd.cargotracker.bookingms.application.internal.

queryservices;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.

BookingId;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.

Cargo;

import com.practicalddd.cargotracker.bookingms.infrastructure.repositories.

jpa.CargoRepository;

import javax.enterprise.context.ApplicationScoped;

import javax.inject.Inject;

import javax.transaction.Transactional;

import java.util.List;

Chapter 4 Cargo Tracker: Eclipse MicroProfile

160

/∗∗
 ∗ �Application Service which caters to all queries related to the Booking

Bounded Context

 ∗/
@ApplicationScoped

public class CargoBookingQueryService {

 @Inject

 private CargoRepository cargoRepository; // Inject Dependencies

 /∗∗
 ∗ Find all Cargos
 ∗ @return List<Cargo>
 ∗/
 @Transactional

 public List<Cargo> findAll(){

 return cargoRepository.findAll();

 }

 /∗∗
 ∗ List All Booking Identifiers
 ∗ @return List<BookingId>
 ∗/
 public List<BookingId> getAllBookingIds(){

 return cargoRepository.getAllBookingIds();

 }

 /∗∗
 ∗ Find a specific Cargo based on its Booking Id
 ∗ @param bookingId
 ∗ @return Cargo
 ∗/
 public Cargo find(String bookingId){

 return cargoRepository.find(new BookingId(bookingId));

 }

}

Chapter 4 Cargo Tracker: Eclipse MicroProfile

161

Figure 4-32 illustrates the class diagram for the implementation.

All our Application Services implementations (Commands/Queries) follow the same

approach which is illustrated in Figure 4-33.

Figure 4-32.  Class diagram for implementation of Application Services as
Command/Query Delegators

Chapter 4 Cargo Tracker: Eclipse MicroProfile

162

	 1.	 The request for a Command/Query operation comes to the

Application Services of a Bounded Context. This request is

sent from the Inbound Services. Application Services Classes

are implemented as CDI Managed Beans, they have all their

dependencies injected using CDI Injection Annotation, they

have a scope, and finally they are responsible for creating a
transactional context to start processing the operation.

	 2.	 Application Services rely on Command/Query Handlers to set/

query Aggregate state.

	 3.	 As part of the processing of an operation, Application Services

would need to interact with External Repositories. They rely on

Outbound Services to perform these interactions.

Application Services: Raising Domain Events

The other role that Application Services play is to raise the Domain Events generated

whenever the Bounded Context processes a Command.

In the previous chapter, we implemented Domain Events using the CDI 2.0 Eventing

model. Based on an event notification/observer model, the event bus acts as the

coordinator for the Event Producers and Consumers. In the monolithic implementation,

Figure 4-33.  Application Services implementation process summary as
Command/Query Delegators

Chapter 4 Cargo Tracker: Eclipse MicroProfile

163

we used a pure internal implementation of the Event Bus, and Events were being

produced and consumed within the same thread of execution.

In the microservices world, this is something that will not work. Since each

microservices is deployed separately, there needs to be a centralized message broker

which coordinates the events across Event Producers and Consumers across multiple

Bounded Contexts/microservices as illustrated in Figure 4-34. Our implementation will

use RabbitMQ as the centralized message broker.

In the case of Eclipse MicroProfile since we use CDI Events, this basically translates to

•	 Firing of CDI Events and publishing them as messages to RabbitMQ or

•	 Observing CDI Events and consuming them as messages from RabbitMQ

We have spoken about the business use case of the Tracking Bounded Context

requiring to subscribe to the Cargo Routed event from the Booking Bounded Context to

assign a Tracking Identifier to the booked cargo. Let us walk through the implementation

of this business use case to demonstrate the publishing of Events by Application

Services.

Listing 4-25 demonstrates the code section from the CargoBookingCommandService

class that processes the command to assign a route to the cargo and then fires the

“CargoRouted” event:

Figure 4-34.  Domain Events summary

Chapter 4 Cargo Tracker: Eclipse MicroProfile

164

Listing 4-25.  Firing the CargoRouted event from the Application services class

package com.practicalddd.cargotracker.bookingms.application.internal.

commandservices;

import javax.enterprise.event.Event; // CDI Eventing

/∗∗
 ∗ Application Service class for the Cargo Booking Command
 ∗/
@ApplicationScoped

public class CargoBookingCommandService {

 @Inject

 private CargoRepository cargoRepository;

 @Inject

 @CargoRoutedEvent // Custom annotation for the Cargo Routed Event

 �private Event<CargoRoutedEventData> cargoRouted; // Event that needs to

be raised when the Cargo is Routed

 /∗∗
 ∗ Service Command method to assign a route to a Cargo
 ∗ @param routeCargoCommand
 ∗/
 @Transactional

 public void assignRouteToCargo(RouteCargoCommand routeCargoCommand){

 �Cargo cargo = cargoRepository.find(new BookingId(routeCargoCommand.

getCargoBookingId()));

 �CargoItinerary cargoItinerary = externalCargoRoutingService.

fetchRouteForSpecification(new RouteSpecification(

 new Location(routeCargoCommand.getOriginLocation()),

 new Location(routeCargoCommand.getDestinationLocation()),

 routeCargoCommand.getArrivalDeadline()

));

Chapter 4 Cargo Tracker: Eclipse MicroProfile

165

 routeCargoCommand.setCargoItinerary(cargoItinerary);

 cargo.assignToRoute(routeCargoCommand);

 cargoRepository.store(cargo);

 �cargoRouted.fire(new CargoRoutedEventData(routeCargoCommand.

getCargoBookingId()));

 }

}

There are three steps that we need to implement to fire CDI events and their

payloads:

•	 Inject the Application Services with the Event that needs to be

fired. This is done by using the custom annotation for the Event

implemented as part of the Domain Model operations (Events). In

this case, we inject the CargoRoutedEvent custom annotation to the

CargoBookingCommandService.

•	 We create an Event Payload Data object which will be the

payload for the Event that is published. In this case, it is the

CargoRoutedEventData object.

•	 We use the “fire()” method provided by CDI to raise the event and

wrap the payload to be sent along with the event.

Figure 4-35 illustrates the class diagram for the Application Services implementation

raising a Domain Event.

Figure 4-35.  Class diagram for Application Services implementation for raising
Domain Events

Chapter 4 Cargo Tracker: Eclipse MicroProfile

166

All our implementations for Application services responsible for raising domain

Events follow the same approach. This is illustrated in Figure 4-36.

This completes the demonstration of implementation of Raising of Domain
Events. The implementation of raising of Domain Events is still at a logical level. We

still need to publish these events to a physical Message Broker (RabbitMQ in our case)

to complete our eventing architecture. We use Binder Classes to achieve this, and it is

covered as part of our Outbound Services - Broker implementation.

�Outbound Services

Outbound Services provide capabilities to interact with services external to a Bounded
Context. The external service could be the Datastore where we store the Bounded

Context’s Aggregate State, it could be the message broker where we publish the
Aggregate state, or it could be an interaction with another Bounded Context.

Figure 4-37 illustrates the responsibilities of the Outbound Services. They receive

requests to communicate with the external services as part of an operation (Commands,

Queries, Events). They use APIs (Persistence APIs, REST APIs, Broker APIs) based on the

external service type to interact with them.

Figure 4-36.  Process summary for Application Services responsible for raising
Domain Events

Chapter 4 Cargo Tracker: Eclipse MicroProfile

167

Let us look at implementing these Outbound Service types.

Outbound Services: Repositories

The outbound services for Database access are implemented as “Repository” classes.

A repository class is built around a specific aggregate and deals with all database

operations for that aggregate including the following:

•	 Persistence of a new aggregate and its associations

•	 Update of an aggregate and its associations

•	 Querying the aggregate and its associations

Figure 4-37.  Outbound Services

Chapter 4 Cargo Tracker: Eclipse MicroProfile

168

Let us walk through an example of a Repository class, the Cargo Repository Class,
which handles all Database operations related to the Cargo Aggregate:

•	 The Repository class is implemented as a CDI Bean with a scope

attached to it (in this case @Application).

•	 Since we will be using JPA as the mechanism to interact with our

Database Instance, we will provide the Repository class with the

JPA-managed Entity Manager Resource. The Entity Manager Resource

enables interactions with a Database by providing an encapsulation

layer. The Entity Manager is injected using “@PersistenceContext”

annotation. The persistence context annotation relies on a persistence.

xml file which contains the connection information to the actual

physical Database. We have seen the implementation of a persistence.

xml file as part of our Helidon MP project setup process.

•	 The Repository class uses the methods provided by the Entity

Manager (persist()) to persist/update Cargo Aggregate instances.

•	 The Repository class uses the methods provided by the Entity

Manager to create JPA Named Queries (createNamedQueries()) and

run them to return results.

Listing 4-26 shows the implementation of the Cargo Repository class:

Listing 4-26.  Cargo repository class implementation

package com.practicalddd.cargotracker.bookingms.infrastructure.

repositories.jpa;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.

BookingId;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.Cargo;

import javax.enterprise.context.ApplicationScoped;

import javax.persistence.EntityManager;

import javax.persistence.NoResultException;

import javax.persistence.PersistenceContext;

import java.util.ArrayList;

import java.util.List;

Chapter 4 Cargo Tracker: Eclipse MicroProfile

169

import java.util.UUID;

import java.util.logging.Level;

import java.util.logging.Logger;

/∗∗
 ∗ �Repository class for the Cargo Aggregate. Deals with all repository

operations

 ∗ related to the state of the Cargo
 ∗/
@ApplicationScoped

public class CargoRepository {

 private static final long serialVersionUID = 1L;

 private static final Logger logger = Logger.getLogger(

 CargoRepository.class.getName());

 @PersistenceContext(unitName = "bookingms")

 private EntityManager entityManager;

 /∗∗
 ∗ �Returns the Cargo Aggregate based on the Booking Identifier of a Cargo
 ∗ @param bookingId
 ∗ @return
 ∗/
 public Cargo find(BookingId bookingId) {

 Cargo cargo;

 try {

 cargo = entityManager.createNamedQuery("Cargo.findByBookingId",

 Cargo.class)

 .setParameter("bookingId", bookingId)

 .getSingleResult();

 } catch (NoResultException e) {

 �logger.log(Level.FINE, "Find called on non-existant Booking

ID.", e);

 cargo = null;

 }

Chapter 4 Cargo Tracker: Eclipse MicroProfile

170

 return cargo;

 }

 /∗∗
 ∗ Stores the Cargo Aggregate
 ∗ @param cargo
 ∗/
 public void store(Cargo cargo) {

 entityManager.persist(cargo);

 }

 /∗∗
 ∗ Gets next Booking Identifier
 ∗ @return
 ∗/

 public BookingId nextBookingId() {

 String random = UUID.randomUUID().toString().toUpperCase();

 return new BookingId(random.substring(0, random.indexOf("-")));

 }

 /∗∗
 ∗ Find all Cargo Aggregates
 ∗ @return
 ∗/
 public List<Cargo> findAll() {

 return entityManager.createNamedQuery("Cargo.findAll", Cargo.class)

 .getResultList();

 }

 /∗∗
 ∗ Get all Booking Identifiers
 ∗ @return
 ∗/

Chapter 4 Cargo Tracker: Eclipse MicroProfile

171

 public List<BookingId> getAllBookingIds() {

 List<BookingId> bookingIds = new ArrayList<BookingId>();

 try {

 bookingIds = entityManager.createNamedQuery(

 �"Cargo.getAllTrackingIds", BookingId.class).

getResultList();

 } catch (NoResultException e) {

 logger.log(Level.FINE, "Unable to get all tracking IDs", e);

 }

 return bookingIds;

 }

}

All our Repository implementations follow the same approach which is illustrated in

Figure 4-38.

	 1.	 Repositories receive requests to change/query Aggregate state.

	 2.	 Repositories use the Entity Manager to perform database

operations on the Aggregate (storing, querying).

	 3.	 The Entity Manager performs the operation and returns the

results back to the Repository class.

Figure 4-38.  Repository implementation process summary

Chapter 4 Cargo Tracker: Eclipse MicroProfile

172

Outbound Services: REST API(s)

Usage of REST API(s) as a mode of communication between microservices is quite a

common requirement. While we have seen event choreography as one mechanism to do

it, sometimes a synchronous call between Bounded Contexts is all what is required.

Let us explain this through an example. As part of the Cargo Booking process, we

need to allocate the cargo an itinerary depending upon the route specification. The data

required to generate an optimal itinerary is maintained as part of the Routing Bounded

Context which maintains vessel movements, itineraries, and schedules. This requires the

Booking Bounded Context’s Booking Service to make an outbound call to the Routing

Bounded Context’s Routing Service which provides a REST API to retrieve all possible

itineraries depending upon the cargo’s Route Specification.

This is illustrated in Figure 4-39.

This however does pose a challenge in terms of the Domain Model. The Booking

Bounded Context’s Cargo aggregate has a representation of the Itinerary as a

“CargoItinerary” object, while the Routing Bounded Context has a representation of

the Itinerary as a “TransitPath” object. Thus, the invocation between the two Bounded

Contexts will require a translation of sorts between their domain models.

This translation is typically done in the Anti-corruption Layer which acts as a bridge

to communicate between two Bounded Contexts.

This is illustrated in Figure 4-40.

Figure 4-39.  HTTP invocation between two Bounded Contexts

Chapter 4 Cargo Tracker: Eclipse MicroProfile

173

The Booking Bounded Context relies on the MicroProfile Type Safe Rest Client

capabilities provided by Helidon MP to invoke the Routing Service’s REST API.

Let us walk through the complete implementation to understand the concept better:

•	 The first step is to implement the Routing Service REST API. This

is done using the standard JAX-RS capabilities which we have

implemented in the chapter before. Listing 4-27 demonstrates the

Routing Service REST API implementation:

Listing 4-27.  Cargo Routing controller implementation

package com.practicalddd.cargotracker.routingms.interfaces.rest;

import com.practicalddd.cargotracker.TransitPath;

import com.practicalddd.cargotracker.routingms.application.internal.

CargoRoutingService;

import javax.enterprise.context.ApplicationScoped;

import javax.inject.Inject;

import javax.ws.rs.∗;
@Path("/cargoRouting")

@ApplicationScoped

public class CargoRoutingController {

 �private CargoRoutingService cargoRoutingService; // Application Service

Dependency

 /∗∗
 ∗ Provide the dependencies
 ∗ @param cargoRoutingService
 ∗/

Figure 4-40.  Anti-corruption Layer between two Bounded Contexts

Chapter 4 Cargo Tracker: Eclipse MicroProfile

174

 @Inject

 public CargoRoutingController(CargoRoutingService cargoRoutingService){

 this.cargoRoutingService = cargoRoutingService;

 }

 /∗∗
 ∗
 ∗ @param originUnLocode
 ∗ @param destinationUnLocode
 ∗ @param deadline
 ∗ @return TransitPath - The optimal route for a Route Specification
 ∗/
 @GET

 @Path("/optimalRoute")

 @Produces({"application/json"})

 public TransitPath findOptimalRoute(

 @QueryParam("origin") String originUnLocode,

 @QueryParam("destination") String destinationUnLocode,

 @QueryParam("deadline") String deadline) {

 �TransitPath transitPath = cargoRoutingService.findOptimalRoute

(originUnLocode,destinationUnLocode,deadline);

 return transitPath;

 }

}

The Routing Service implementation provides a REST API

available at “/optimalRoute”. It takes in a set of specifications -

Origin Location, Destination Location, and Deadline. It then

uses the Cargo Routing Application Services class to calculate the

optimal route based on these specifications. The Domain model

within the Routing Bounded Context represents the optimal route

in terms of Transit Paths (analogous to Itineraries) and Transit
Edges (analogous to Legs).

Chapter 4 Cargo Tracker: Eclipse MicroProfile

175

Listing 4-28 demonstrates the Transit Path Domain Model class

implementation:

Listing 4-28.  Transit path model implementation

import java.util.ArrayList;

import java.util.List;

/∗∗
 ∗ Domain Model representation of the Transit Path
 ∗/
public class TransitPath {

 private List<TransitEdge> transitEdges;

 public TransitPath() {

 this.transitEdges = new ArrayList<>();

 }

 public TransitPath(List<TransitEdge> transitEdges) {

 this.transitEdges = transitEdges;

 }

 public List<TransitEdge> getTransitEdges() {

 return transitEdges;

 }

 public void setTransitEdges(List<TransitEdge> transitEdges) {

 this.transitEdges = transitEdges;

 }

 @Override

 public String toString() {

 return "TransitPath{" + "transitEdges=" + transitEdges + '}';

 }

}

Chapter 4 Cargo Tracker: Eclipse MicroProfile

176

Listing 4-29 demonstrates the Transit Edge Domain Model class

implementation:

Listing 4-29.  Transit Edge domain model implementation

package com.practicalddd.cargotracker;

import java.io.Serializable;

import java.util.Date;

/∗∗
 ∗ Represents an edge in a path through a graph, describing the route of a
 ∗ cargo.
 ∗/
public class TransitEdge implements Serializable {

 private String voyageNumber;

 private String fromUnLocode;

 private String toUnLocode;

 private Date fromDate;

 private Date toDate;

 public TransitEdge() { }

 public TransitEdge(String voyageNumber, String fromUnLocode,

 String toUnLocode, Date fromDate, Date toDate) {

 this.voyageNumber = voyageNumber;

 this.fromUnLocode = fromUnLocode;

 this.toUnLocode = toUnLocode;

 this.fromDate = fromDate;

 this.toDate = toDate;

 }

 public String getVoyageNumber() {

 return voyageNumber;

 }

 public void setVoyageNumber(String voyageNumber) {

 this.voyageNumber = voyageNumber;

 }

Chapter 4 Cargo Tracker: Eclipse MicroProfile

177

 public String getFromUnLocode() {

 return fromUnLocode;

 }

 public void setFromUnLocode(String fromUnLocode) {

 this.fromUnLocode = fromUnLocode;

 }

 public String getToUnLocode() {

 return toUnLocode;

 }

 public void setToUnLocode(String toUnLocode) {

 this.toUnLocode = toUnLocode;

 }

 public Date getFromDate() {

 return fromDate;

 }

 public void setFromDate(Date fromDate) {

 this.fromDate = fromDate;

 }

 public Date getToDate() {

 return toDate;

 }

 public void setToDate(Date toDate) {

 this.toDate = toDate;

 }

 @Override

 public String toString() {

 return "TransitEdge{" + "voyageNumber=" + voyageNumber

 + ", fromUnLocode=" + fromUnLocode + ", toUnLocode="

 + toUnLocode + ", fromDate=" + fromDate

 + ", toDate=" + toDate + '}';

 }

}

Chapter 4 Cargo Tracker: Eclipse MicroProfile

178

Figure 4-41 illustrates the class diagram for the implementation.

The next step is to implement the client-side implementation for our Routing Rest

service. The client is the CargoBookingCommandService class which is responsible

for processing the “Assign Route to Cargo” command. As part of the processing of the

command, this service class will need to invoke the Routing Service REST API to get the

optimal route based on the cargo’s Route Specification.

The CargoBookingCommandService makes use of an outbound service class –

ExternalCargoRoutingService – to invoke the Routing Service REST API. The

ExternalCargoRoutingService class also translates the data provided by the Routing

Service’s REST API into the format recognizable by the Booking Bounded Context’s

Domain Model.

Listing 4-30 demonstrates the method “assignRouteToCargo” within

the CargoBookingCommandService. This service class is injected with the

ExternalCargoRoutingService dependency which processes the request to invoke

the Routing Service’s REST API and returns the CargoItinerary object which is then

assigned to the cargo:

Figure 4-41.  Class diagram for the Outbound services

Chapter 4 Cargo Tracker: Eclipse MicroProfile

179

Listing 4-30.  Outbound service class dependency

@ApplicationScoped

public class CargoBookingCommandService {

 @Inject

 private ExternalCargoRoutingService externalCargoRoutingService;

 /∗∗
 ∗ Service Command method to assign a route to a Cargo
 ∗ @param routeCargoCommand
 ∗/
 @Transactional

 public void assignRouteToCargo(RouteCargoCommand routeCargoCommand){

 �Cargo cargo = cargoRepository.find(new BookingId(routeCargoCommand.

getCargoBookingId()));

 �CargoItinerary cargoItinerary = externalCargoRoutingService.

fetchRouteForSpecification(new RouteSpecification(

 new Location(routeCargoCommand.getOriginLocation()),

 new Location(routeCargoCommand.getDestinationLocation()),

 routeCargoCommand.getArrivalDeadline()

));

 cargo.assignToRoute(cargoItinerary);

 cargoRepository.store(cargo);

 }

 // All other implementations of Commands for the Booking Bounded Context

}

Listing 4-31 demonstrates the ExternalCargoRoutingService outbound service class.

This class performs two things:

•	 It injects a Rest client “ExternalCargoRoutingClient” using the Type

safe Rest client annotations (@RestClient) provided by MicroProfile.

This client invokes the Routing Service’s REST API using the

RestClientBuilder API provided by MicroProfile.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

180

•	 It also translates the Data provided by the Routing Service’s Rest

API (TransitPath, TransitEdge) to the Booking Bounded Context’s

Domain Model (CargoItinerary/Leg).

Listing 4-31.  Outbound service class implementation

package com.practicalddd.cargotracker.bookingms.application.internal.

outboundservices.acl;

import com.practicalddd.cargotracker.TransitEdge;

import com.practicalddd.cargotracker.TransitPath;

import com.practicalddd.cargotracker.bookingms.domain.model.valueobjects.

CargoItinerary;

import com.practicalddd.cargotracker.bookingms.domain.model.valueobjects.Leg;

import com.practicalddd.cargotracker.bookingms.domain.model.valueobjects.

RouteSpecification;

import com.practicalddd.cargotracker.bookingms.infrastructure.services.

http.ExternalCargoRoutingClient;

import org.eclipse.microprofile.rest.client.RestClientBuilder;

import org.eclipse.microprofile.rest.client.inject.RestClient;

import javax.enterprise.context.ApplicationScoped;

import javax.inject.Inject;

import java.util.ArrayList;

import java.util.List;

/∗∗
 ∗ Anti Corruption Service Class
 ∗/
@ApplicationScoped

public class ExternalCargoRoutingService {

 @Inject

 @RestClient // MicroProfile Type safe Rest Client API

 private ExternalCargoRoutingClient externalCargoRoutingClient;

 /∗∗
 ∗ �The Booking Bounded Context makes an external call to the Routing

Service of the Routing Bounded Context to

Chapter 4 Cargo Tracker: Eclipse MicroProfile

181

 ∗ �fetch the Optimal Itinerary for a Cargo based on the Route Specification
 ∗ @param routeSpecification
 ∗ @return
 ∗/
 �public CargoItinerary fetchRouteForSpecification(RouteSpecification

routeSpecification){

 ExternalCargoRoutingClient cargoRoutingClient =

 RestClientBuilder

 �.newBuilder().build(ExternalCargoRoutingClient.class);

// MicroProfile Type safe Rest Client API

 TransitPath transitPath = cargoRoutingClient.findOptimalRoute(

 routeSpecification.getOrigin().getUnLocCode(),

 routeSpecification.getDestination().getUnLocCode(),

 routeSpecification.getArrivalDeadline().toString()

); // Invoke the Routing Service’s API using the client

 �List<Leg> legs = new ArrayList<Leg>(transitPath.getTransitEdges().

size());

 for (TransitEdge edge : transitPath.getTransitEdges()) {

 legs.add(toLeg(edge));

 }

 return new CargoItinerary(legs);

 }

 /∗∗
 ∗ �Anti-corruption layer conversion method from the routing service's

domain model (TransitEdges)

 ∗ to the domain model recognized by the Booking Bounded Context (Legs)
 ∗ @param edge
 ∗ @return
 ∗/
 private Leg toLeg(TransitEdge edge) {

 return new Leg(

 edge.getVoyageNumber(),

 edge.getFromUnLocode(),

Chapter 4 Cargo Tracker: Eclipse MicroProfile

182

 edge.getToUnLocode(),

 edge.getFromDate(),

 edge.getToDate());

 }

}

Listing 4-32 demonstrates the ExternalCargoRoutingClient Type safe Rest client

implementation. It is implemented as an interface and utilizes the @RegisterRestClient

annotation to mark it as a Rest client. The method signature/method resource details

should be exactly as the service whose API it is invoking (in this case the Routing

Service’s optimalRoute API):

Listing 4-32.  ExternalCargoRoutingClient typesafe implementation

package com.practicalddd.cargotracker.bookingms.infrastructure.services.

http;

import javax.ws.rs.∗;

import com.practicalddd.cargotracker.TransitPath;

import org.eclipse.microprofile.rest.client.inject.RegisterRestClient;

/∗∗
 ∗ Type safe Rest client for the Routing Service API
 ∗/
@Path("cargoRouting")

@RegisterRestClient //Annotation to register this as a Rest client

public interface ExternalCargoRoutingClient {

 �// The method signature / method resource details should be exactly as

the calling service

 @GET

 @Path("/optimalRoute")

 @Produces({"application/json"})

 public TransitPath findOptimalRoute(

 @QueryParam("origin") String originUnLocode,

 @QueryParam("destination") String destinationUnLocode,

 @QueryParam("deadline") String deadline);

}

Chapter 4 Cargo Tracker: Eclipse MicroProfile

183

Figure 4-42 illustrates the class diagram for the implementation.

All our Outbound Service implementations which require to communicate to other

Bounded Contexts follow the same approach which is illustrated in Figure 4-43.

	 1.	 Application Services classes receive Commands/Queries/Events.

	 2.	 As part of the processing, if it requires an interaction with another

Bounded Context’s API using REST, it makes use of an Outbound

Service.

	 3.	 The Outbound service uses a Type safe Rest client to invoke the

Bounded Context’s API. It also performs the translation from the

data format provided by that Bounded Context’s API to the data

model recognized by the current Bounded Context.

Figure 4-42.  Outbound Services (HTTP) implementation process class diagram

Figure 4-43.  Outbound Services (HTTP) implementation process

Chapter 4 Cargo Tracker: Eclipse MicroProfile

184

Outbound Services: Message Broker

The final type of outbound service that needs to be implemented is the interactions with

Message Brokers. Message Brokers provide the necessary physical infrastructure for

publishing/subscribing of Domain Events.

We have seen a couple of our Event classes (CargoBooked, CargoRouted)

implemented using custom annotations. We have also seen the implementation of

publishing them (using the fire() method) as well as subscribing them (using the
observes() method).

Let us look at an implementation of how we can enable the publishing and

subscribing of these events from a RabbitMQ server’s Queues/Exchanges.

Do note that neither the Eclipse MicroProfile platform nor Helidon MP’s extensions

provide capabilities to help CDI Events being published onto RabbitMQ, so we need

to provide our own implementation for this. The source code of the chapter provides a

separate project (cargo-tracker-rabbimq-adaptor). This project provides the following:

•	 Infrastructural capabilities (Connection Factories for RabbitMQ

services, Managed Publishers, and Managed Consumers)

•	 Capabilities to publish AMQP messages for CDI Events to RabbitMQ

exchanges

•	 Capabilities to consume AMQP messages for Events from RabbitMQ

queues

We will not get into the detailed implementation of this project. We will just work

with the APIs provided by this project to help us enable our use case of CDI Events being

integrated with RabbitMQ Exchanges/Queues. To use this project, we would need to add

the following dependency to each of our MicroProfile project’s pom.xml dependency

files:

<dependency>

 <groupId>com.practicalddd.cargotracker</groupId>

 <artifactId>cargo-tracker-rabbimq-adaptor</artifactId>

 <version>1.0.FINAL</version>

</dependency>

Chapter 4 Cargo Tracker: Eclipse MicroProfile

185

The first step in implementing the connectivity is to create a “Binder” class. The

Binder class serves the following purposes:

•	 Bind CDI Events to Exchanges and Routing Keys

•	 Bind CDI Events to Queues

Listing 4-33 demonstrates the “RoutedEventBinder” which is responsible for binding

of the “CargoRouted” CDI Event to the corresponding RabbitMQ exchange. It extends

the “EventBinder” class provided by the adaptor project. We need to override the

“bindEvents()” method where we perform all the bindings for mapping CDI Events to
Exchanges/Queues. Also note that we perform the binding initialization in the

post-construct lifecycle method provided by CDI:

Listing 4-33.  RoutedEventBinder implementation class

package com.practicalddd.cargotracker.bookingms.infrastructure.brokers.

rabbitmq;

import javax.annotation.PostConstruct;

import javax.enterprise.context.ApplicationScoped;

import com.practicalddd.cargotracker.rabbitmqadaptor.EventBinder; //Adaptor

Class

/∗∗
 ∗ �Component which initializes the Cargo Routed Events <-> Rabbit MQ bindings
 ∗/
@ApplicationScoped

public class RoutedEventBinder extends EventBinder {

 /∗∗
 ∗ �Method to bind the Cargo Routed Event class to the corresponding

exchange in Rabbit MQ with

 ∗ the corresponding Routing Key
 ∗/
 �@PostConstruct // CDI Annotation to initialize this in the post

construct lifecycle method of this bean

Chapter 4 Cargo Tracker: Eclipse MicroProfile

186

 public void bindEvents(){

 bind(CargoRoutedEvent.class)

 .toExchange("routed.exchange")

 .withPublisherConfirms()

 .withRoutingKey("routed.key");

 }

}

So every time you fire the Cargo Routed Event, it is delivered as an AMQP message to

the corresponding exchange with the specified routing key.

The same mechanism applies to event subscriptions too. We “bind” CDI events

to the corresponding RabbitMQ queues, and every time you observe a CDI Event, it is

delivered as an AMQP Message from the corresponding queue.

The source code of the chapter has a complete implementation for Event Initializers

for all the Bounded Contexts (see package com.practicalddd.cargotracker.<<bounded_

context_name>>.infrastructure.brokers.rabbitmq).

Figure 4-44 illustrates the class diagram for the implementation.

This rounds off our DDD implementation of Cargo Tracker as a microservices

application using the Eclipse MicroProfile Platform with Helidon MP providing the

implementation.

Figure 4-44.  Event Binder implementation

Chapter 4 Cargo Tracker: Eclipse MicroProfile

187

�Implementation Summary
We now have a complete DDD implementation of the Cargo Tracker application with

the various DDD artifacts implemented using the corresponding specifications available

within Eclipse MicroProfile.

The implementation summary is denoted in Figure 4-45.

Figure 4-45.  DDD artifact implementation summary using Eclipse MicroProfile

Chapter 4 Cargo Tracker: Eclipse MicroProfile

188

�Summary
Summarizing our chapter

•	 We started by establishing the details about the Eclipse MicroProfile

platform and the various capabilities it provides.

•	 We decided to use Helidon MP’s implementation of the MicroProfile

platform to help build Cargo Tracker as a microservices application.

•	 We rounded off by deep diving into the development of the various

DDD artifacts – first the Domain Model and then the Domain Model

Services using the technologies available on the Eclipse MicroProfile

and Helidon MP.

Chapter 4 Cargo Tracker: Eclipse MicroProfile

189
© Vijay Nair 2019
V. Nair, Practical Domain-Driven Design in Enterprise Java, https://doi.org/10.1007/978-1-4842-4543-9_5

CHAPTER 5

Cargo Tracker: Spring
Platform
To quickly recap our journey until now

We identified Cargo Tracking as the main problem space/core

domain and the Cargo Tracker application as the solution to

address this problem space.

We identified the various sub-domains/bounded contexts for the

Cargo Tracker application.

We detailed out the domain model for each of our bounded contexts

including identification of aggregates, entities, value objects, and

domain rules.

We identified the supporting domain services required within the

bounded contexts.

We identified the various operations within our bounded contexts

(Commands, Queries, Events, and Sagas).

We implemented a monolithic version of Cargo Tracker using

Jakarta EE and a microservices version of Cargo Tracker using the

Eclipse MicroProfile platform.

This chapter will detail the third DDD implementation of our Cargo Tracker

application using the Spring platform. The Cargo Tracker application will again be

designed using a microservices-based architecture, and as before we will map the DDD

artifacts to the corresponding implementations available within the Spring Platform.

190

As we progress through this implementation, there will be areas which will have

a repetition from the previous chapters. This is to accommodate readers who might

have an interest only in a specific implementation rather than going through all the

implementations.

With that said, let us first go through an overview of the Spring Platform.

�The Spring Platform
Originally released as an alternative to Java EE, the Spring Platform (https://spring.io/)

has become the leading Java framework to build enterprise applications. The breadth of

functionality offered via its project portfolio is extensive and covers almost every aspect

required to build enterprise applications.

Unlike Jakarta EE or Eclipse MicroProfile wherein there are a set of specifications and

multiple vendors providing implementations for the specifications, the Spring platform

provides a portfolio of projects.

The project portfolio covers the following main areas:

•	 Core Infrastructure Projects which provide a foundational set of

projects to build Spring-based applications

•	 Cloud-Native Projects which provide capabilities to build your

Spring applications with cloud-native capabilities

•	 Data Management Projects which provide capabilities to manage

any kind of data within Spring-based applications

The individual projects within the platform are listed in Figure 5-1.

Chapter 5 Cargo Tracker: Spring Platform

https://spring.io/

191

Figure 5-1.  Spring Platform projects

Chapter 5 Cargo Tracker: Spring Platform

192

As seen, the breadth of projects is large and provides a vast range of capabilities. To

reiterate, the stated goal of this chapter is to implement the Cargo Tracker application

utilizing DDD principles based on a microservices architecture. To that extent, we will

just use a subset of the available projects (Spring Boot, Spring Data, and Spring Cloud
Stream) to help us achieve our goal.

To quickly recap, the requirements of a Microservices platform are illustrated in

Figure 5-2.

Figure 5-2.  Microservices platform requirements

Let us briefly touch upon the capabilities of these projects and map them to the

requirements illustrated earlier.

Chapter 5 Cargo Tracker: Spring Platform

193

�Spring Boot: Capabilities
Spring Boot acts as the foundational piece for any Spring-based microservices

application. A highly opinionated platform, Spring Boot helps build microservices with

REST, Data, and messaging capabilities using a uniform development experience. This

is done by an abstraction/dependency management layer that Spring Boot implements

on top of the actual projects that provide REST, Data, and Messaging capabilities. As

a developer, you want to avoid the hassles of managing the dependencies as well as

the configuration required when you build your microservices application. Spring

Boot abstracts all of these for the developer by providing starter kits. The starter kits

provide the required scaffolding to enable the developers to quickly start developing

microservices which need to expose API(s), process data, and participate in event-driven

architectures. In our implementation, we are going to be relying on three starter projects

provided by Spring Boot (spring-boot-starter-web, spring-boot-starter-data-jpa, and

spring-cloud-starter-stream-rabbit).

We will get into the details of these projects as we proceed with the implementation.

From a microservices requirements mapping perspective, the boxes in green as

illustrated in Figure 5-3 are implemented with Spring Boot.

Chapter 5 Cargo Tracker: Spring Platform

194

�Spring Cloud
While Boot provides the foundational technologies for building microservices

applications, Spring Cloud helps implement the distributed systems patterns that

Spring Boot–based microservices applications require. These include externalized

configuration, service registration and discovery, messaging, distributed tracing, and

API gateways. In addition, this project also provides projects to natively integrate with a

third-party cloud provider like AWS/GCP/Azure.

From a microservices requirements mapping perspective, the

boxes in orange as illustrated in Figure 5-4 are implemented with

Spring Cloud.

Figure 5-3.  Microservices platform components provided by Spring Boot

Chapter 5 Cargo Tracker: Spring Platform

195

The Spring platform does not provide any out-of-the-box

capabilities for Distributed Transaction management using

orchestration-based sagas. We will implement Distributed
Transactions using event choreography with a custom
implementation utilizing Spring Boot and Spring Cloud Stream.

�Spring Framework Summary
We now have a fair idea of what the Spring Platform provides to build microservices

applications with the Spring Boot and the Spring Cloud projects.

Let us proceed to implement Cargo Tracker utilizing these technologies. As part of

the implementation, there may be a fair bit of repetition since certain readers might be

interested only in this implementation.

Figure 5-4.  Microservices platform components provided by Spring Cloud

Chapter 5 Cargo Tracker: Spring Platform

196

�Bounded Context(s) with Spring Boot
The Bounded Context is the starting point of our solution phase for our DDD

implementation of the Cargo Tracker microservices application based on Spring. In

the microservices architectural style, each Bounded Context has to be a self-contained
independent deployable unit with no direct dependency on any other Bounded Context

within our problem space.

The pattern for splitting the Cargo Tracker application into multiple microservices

will be as before, that is, we split the core domain into a set of Business Capabilities/
Sub-Domains and solution each of them as a separate Bounded Context.

Implementing the Bounded Contexts involves a logical grouping of our DDD

artifacts into a single deployable artifact. Each of our Bounded Contexts within the Cargo

Tracker application is going to be built out as a Spring Boot Application. The resultant

artifact of a Spring Boot Application is a self-contained fat JAR file which contains all

the required dependencies (e.g., data access libraries, REST libraries) and configuration.

The fat JAR file also contains an embedded web container (in our case Tomcat) as the

runtime. This ensures that we do not need any external application server to run our fat

JAR. The anatomy of a Spring Boot application is illustrated in Figure 5-5.

Figure 5-5.  Anatomy of a Spring Boot application

Chapter 5 Cargo Tracker: Spring Platform

197

From a deployment perspective as illustrated in Figure 5-6, each microservices is a

separate self-contained deployable unit (fat JAR file).
Microservices will need a DataStore to store their state. We choose to adopt

the Database per service pattern, that is, each of our microservices will have its

own separate DataStore. Just like we have a polyglot choice of technology for our

application tier, we have a polyglot choice for the DataStore too. We could choose to

have a plain Relational Database (e.g., Oracle, MySQL, PostgreSQL), a NoSQL Database

(e.g., MongoDB, Cassandra), or even an in-memory datastore (e.g., Redis). The

choice depends primarily on the scalability requirements and the type of use case the

microservices intends to cater to. For our implementation, we decide to go with MySQL

as the choice of DataStore. The deployment architecture is illustrated in Figure 5-6.

Figure 5-6.  Deployment Architecture for our Spring Boot-based microservices

Chapter 5 Cargo Tracker: Spring Platform

198

�Bounded Contexts: Packaging
To get started with our packaging, the first step is to create a regular Spring Boot

application. We will use the Spring Initializr tool (https://start.spring.io/), a

browser-based tool which helps create Spring Boot applications easily. Figure 5-7

illustrates the creation of the Booking Microservices utilizing the Initializr tool.

Figure 5-7.  Spring Initializr tool used for scaffolding Spring Boot projects with
dependencies

We have created the project with

•	 Group – com.practicalddd.cargotracker

•	 Artifact – bookingms

•	 Dependencies – Spring Web Starter, Spring Data JPA, and Spring

Cloud Stream

Chapter 5 Cargo Tracker: Spring Platform

https://start.spring.io/

199

Click the Generate Project icon. This will generate a ZIP file containing the Booking

Spring Boot application with all the dependencies and the configuration made available.

The main application class for a Spring Boot application is annotated with the

@SpringBootApplication annotation. It contains a public static void main method and

is the entry point for the Spring Boot Application.

The BookingmsApplication class is the main class within our Booking Spring Boot

Application. Listing 5-1 shows the BookingmsApplication class:

Listing 5-1.  Bookingms Application class

package com.practicalddd.cargotracker.bookingms;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication //Main class marker annotation

public class BookingmsApplication {

 public static void main(String[] args) {

 SpringApplication.run(BookingmsApplication.class, args);

 }

}

Building the project will result in a JAR file (bookingms.jar), and running it as a

simple JAR file using the command “java -jar bookingms.jar” will bring up our Spring

Boot application.

�Bounded Contexts: Package Structure
With the packaging aspect decided, the next step is to decide the package structure of

each of our Bounded Contexts, that is, to arrive at a logical grouping of the various DDD

MicroProfile artifacts into a single deployable artifact. The logical grouping involves

identifying a package structure where we place the various DD MicroProfile artifacts to

achieve our overall solution for the Bounded Context.

The high-level package structure for any of our Bounded Context is illustrated in

Figure 5-8.

Chapter 5 Cargo Tracker: Spring Platform

200

Let us expand on the package structure a bit.

An example of the Booking Bounded Context Spring Boot Application’s package

structure is shown in Figure 5-9 with the BookingmsApplication as the main Spring Boot

application class.

Figure 5-8.  Package structure for the Bounded Contexts

Chapter 5 Cargo Tracker: Spring Platform

201

Let us expand on the package structure.

�interfaces
This package encloses all the inbound interfaces to our Bounded Context classified by

the communication protocol. The main purpose of interfaces is to negotiate the protocol

on behalf of the Domain Model (e.g., REST API(s), WebSocket(s), FTP(s), Custom

Protocol).

As an example, the Booking Bounded Context provides REST APIs for sending State
Change Requests, that is, Commands, to it (e.g., Book Cargo Command, Assign Route

to Cargo Command). Similarly, the Booking Bounded Context provides REST APIs for

sending State Retrieval Requests, that is, Queries, to it (e.g., Retrieve Cargo Booking

Details, List all Cargos). This is grouped into the “rest” package.

It also has Event Handlers which subscribe to the various Events that are generated

by other Bounded Contexts. All Event Handlers are grouped into the “eventhandlers”

package. In addition to these two packages, the interface package also contains the

“transform” package. This is used to translate the incoming API Resource/Event data to

the corresponding Command/Query model required by the Domain Model.

Since we need to support REST, Events, and data transformation, the package

structure is as illustrated in Figure 5-10.

Figure 5-9.  Package structure for the Booking Bounded Context using Spring Boot

Chapter 5 Cargo Tracker: Spring Platform

202

�application
Application services act as the façade for the Bounded Context’s Domain Model. They

provide façade services to dispatch Commands/Queries to the underlying Domain

Model. They are also the place where we place outbound calls to other Bounded

Contexts as part of the processing of a Command/Query.

To summarize, Application Services

•	 Participate in Command and Query Dispatching

•	 Invoke infrastructural components where necessary as part of the

Command/Query processing

•	 Provide Centralized concerns (e.g., Logging, Security, Metrics) for the

underlying Domain Model

•	 Make callouts to other Bounded Contexts

The package structure is illustrated in Figure 5-11.

Figure 5-10.  Package structure for interfaces

Chapter 5 Cargo Tracker: Spring Platform

203

�domain
This package contains the Bounded Context’s Domain Model. This is the heart of the

Bounded Context’s Domain Model which contains the implementation of the core

Business Logic.

The core classes of our Bounded Contexts are as follows:

•	 Aggregates

•	 Entities

•	 Value Objects

•	 Commands

•	 Events

Figure 5-11.  Package structure for Application services

Chapter 5 Cargo Tracker: Spring Platform

204

The package structure is illustrated in Figure 5-12.

�infrastructure
The infrastructure package serves three main purposes:

•	 When a Bounded Context receives an operation related to its

state (Change of State, Retrieval of State), it needs an underlying
repository to process the operation; in our case, this repository

is our MySQL Database instance(s). The infrastructure package

contains all the necessary components required by the Bounded

Context to communicate to the underlying repository. As part of our

implementation, we intend to use either JPA or JDBC to implement

these components.

Figure 5-12.  Package structure for our domain model

Chapter 5 Cargo Tracker: Spring Platform

205

•	 When a Bounded Context needs to communicate a state change

event, it needs an underlying Event Infrastructure to publish the state

change event. In our implementation, we intend to use a message
broker as the underlying Event Infrastructure (RabbitMQ available

for download at rabbitmq.com). The infrastructure package contains

all the necessary components required by the Bounded Context to

communicate to the underlying message broker.

•	 The final aspect that we include in the infrastructural layer is any

kind of Spring Boot-specific configuration.

The package structure is illustrated in Figure 5-13.

Figure 5-13.  Package structure for the infrastructure components

Chapter 5 Cargo Tracker: Spring Platform

206

This completes the implementation of the Bounded Contexts of our Cargo Tracker

microservices application. Each of our Bounded Contexts is implemented as a Spring

Boot application with a fat JAR as an artifact. The Bounded Contexts are neatly grouped

by modules in a package structure with clearly separated concerns.

Figure 5-14.  Package structure for any of our Bounded Context

A complete summary of the entire package structure for any of our Bounded Context

is illustrated in Figure 5-14.

Chapter 5 Cargo Tracker: Spring Platform

207

Let us step into the implementation of the Cargo Tracker Application.

�Cargo Tracker Implementation
The next section of our chapter is going to detail the implementation of the Cargo

Tracker application as a microservices application utilizing DDD and Spring Boot/

Spring Cloud. As stated before, some of these sections are a repeat of what we have

already seen, but it would be helpful to go through it again to reinforce the concepts of

DDD.

A high-level overview of the logical grouping of our various DDD artifacts is

illustrated in Figure 5-15. As seen, we need to implement two groups of artifacts:

•	 The Domain Model which will contain our Core Domain/Business
Logic

•	 The Domain Model Services which contain supporting services for
our Core Domain Model

Chapter 5 Cargo Tracker: Spring Platform

208

In terms of actual implementation of the Domain Model, this translates to the

various Commands, Queries, and Value Objects of a specific Bounded Context/

Microservices.

In terms of actual implementation of the Domain Model Services, this translates to

the Interfaces, Application Services, and Infrastructure that the Domain Model of the

Bounded Context/Microservices requires.

Going back to our Cargo Tracker application, Figure 5-16 illustrates our

microservices solution in terms of the various Bounded Contexts and the operations it

supports. As seen, this contains the various Commands that each Bounded Context

Figure 5-15.  Logical grouping of the DDD artifacts

Chapter 5 Cargo Tracker: Spring Platform

209

will process, the Queries that each Bounded Context will serve, and the Events that
each Bounded Context will subscribe/publish. Each of the microservices is a separate

deployable artifact with its own storage.

Note  Certain code implementations will contain only summaries/snippets to help
understand the implementation concepts. The source code for the chapter contains
the full implementation of the concepts.

Figure 5-16.  Cargo Tracker Microservices solution

Chapter 5 Cargo Tracker: Spring Platform

210

�Domain Model: Implementation
Our Domain Model is the central feature of our Bounded Context and as stated earlier

has a set of artifacts associated with it. Implementation of these artifacts is done with the

help of the tools that Spring Boot provides.

To quickly summarize, the Domain Model artifacts that we need to implement

are as follows:

•	 Core Domain Model – Aggregates, Entities, and Value Objects

•	 Domain Model Operations – Commands, Queries, and Events

Let’s walk through each of these artifacts and see what corresponding tool(s) Spring

Boot provides for us to implement these.

�Core Domain Model: Implementation
The implementation of the Core Domain for any Bounded Context covers the

identification of those artifacts that will express the business intent of the Bounded

Context clearly. At a high level, this includes the identification and implementation of

Aggregates, Entities, and Value Objects.

�Aggregates/Entities/Value Objects

Aggregates are the centerpiece of our Domain Model. To recap, we have four aggregates

within each of our Bounded Contexts as illustrated in Figure 5-17 below.

Chapter 5 Cargo Tracker: Spring Platform

211

Implementation of an Aggregate covers the following aspects

•	 Aggregate Class Implementation

•	 Domain Richness via Business Attributes and finally

•	 Implementing Entities/Value Objects

Aggregate Class Implementation

Since we intend to use MySQL as our Datastore for each of our Bounded Contexts, we

intend to use JPA (Java Persistence API) from the Java EE specification which provides

a standard way of defining and implementing Entities/Services which interact with

underlying SQL Datastores.

JPA Integration: Spring Data JPA

Spring Boot provides support for JPA by using the Spring Data JPA project (https://

spring.io/projects/spring-data-jpa) which provides a sophisticated and easy

mechanism to implement JPA-based repositories. Spring Boot provides a starter project

(spring-boot-starter-data-jpa) which automatically configures a set of sensible defaults

(e.g., Hibernate JPA Implementation, Tomcat connection pooling) for Spring Data JPA.

Figure 5-17.  Aggregates within our Bounded Context(s) / Microservices

Chapter 5 Cargo Tracker: Spring Platform

https://spring.io/projects/spring-data-jpa
https://spring.io/projects/spring-data-jpa

212

The dependency for the starter data JPA project is automatically added when we

configure it as a dependency within the Initializr project. In addition to that, we need

to add the MySQL Java driver library to enable connectivity to our MySQL Database

instances:

pom.xml

Listing 5-2 shows the changes that need to be done in the pom.xml dependencies
file that the Spring Initializr project generates:

Listing 5-2.  pom.xml dependency maintainance

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jpa</artifactId>

 </dependency>

 <dependency>

 <groupId>mysql</groupId>

 <artifactId>mysql-connector-java</artifactId>

 </dependency>

application.properties

In addition to the dependencies, we also need to configure the connection

properties for each of our MySQL Instances. This is done in the application.properties

file provided by our Spring Boot application. Listing 5-3 demonstrates the configuration

properties that need to be added. You would need to replace the values with your MySQL

Instance(s) Details as necessary:

Listing 5-3.  MySQL connection configuration

spring.datasource.url=jdbc:mysql://<<Machine-Name>>:<<Machine-

Port>>/<<MySQL-Database-Instance-Name>>

spring.datasource.username=<<MySQL-Database-Instance-UserID>>

spring.datasource.password==<<MySQL-Database-Instance-Password>>

These settings are enough to set up and implement JPA within our Spring Boot

application. As stated before, the Spring Data JPA project configures a set of sensible

defaults which enable us to get started with minimal effort. Unless stated otherwise, all

our Aggregates within all our Bounded Contexts implement the same mechanism.

Chapter 5 Cargo Tracker: Spring Platform

213

Each of our root aggregate classes is implemented as a JPA entity. There are no

specific annotations that JPA provides to annotate a specific class as a root aggregate, so

we take a regular POJO and use the JPA-provided standard annotation @Entity. Taking

the Booking Bounded Context as an example which has Cargo as the root Aggregate,

Listing 5-4 shows the minimalistic code required for a JPA Entity:

Listing 5-4.  Cargo root aggregate as a JPA Entity

package com.practicalddd.cargotracker.bookingms.domain.model.aggregates;

import javax.persistence.*;

@Entity //JPA Entity Marker

public class Cargo {

}

Every JPA Entity requires an identifier. For our Aggregate Identifier implementation,

we choose to have a technical/surrogate identifier (Primary Key) for our Cargo

Aggregate derived from a MySQL sequence. In addition to the technical identifier, we

also choose to have a Business Key.

The Business key conveys the business intent of the aggregate identifier clear,

that is, Booking Identifier of a newly booked cargo, and is the key that is exposed to

external consumers of the Domain Model (more on this later). The technical key on

the other hand is a pure internal representation of the aggregate identifier and is useful

to maintain relationships within a Bounded Context between the Aggregates and its

Dependent Objects (see Value Objects/Entities in the following).

Continuing with our example of the Cargo Aggregate within the Booking Bounded

Context, we add the Technical/Business Keys to the Class implementation until now.

Listing 5-5 demonstrates this. The “@Id” annotation identifies the primary key on

our Cargo Aggregate. There is no specific annotation to identify the Business Key, so

we just implement it as a regular POJO (BookingId) and embed it within our Aggregate

using the “@Embedded” annotation provided by JPA:

Listing 5-5.  Identifier for the Cargo root aggregate

package com.practicalddd.cargotracker.bookingms.domain.model.aggregates;

import javax.persistence.*;

@Entity

public class Cargo {

Chapter 5 Cargo Tracker: Spring Platform

214

 @Id //Identifier Annotation provided by JPA

 �@GeneratedValue(strategy = GenerationType.IDENTITY) // Rely on a MySQL

generated sequence

 private Long id;

 �@Embedded //Annotation which enables usage of Business Objects instead

of primitive types

 private BookingId bookingId; // Business Identifier

}

Listing 5-6 shows the implementation of the BookingId Business Key Class:

Listing 5-6.  Business key implementation for the Cargo root aggregate

package com.practicalddd.cargotracker.bookingms.domain.model.aggregates;

import javax.persistence.*;

import java.io.Serializable;

/**
 * Business Key Identifier for the Cargo Aggregate

 */

@Embeddable

public class BookingId implements Serializable {

 @Column(name="booking_id")

 private String bookingId;

 public BookingId(){}

 public BookingId(String bookingId){this.bookingId = bookingId;}

 public String getBookingId(){return this.bookingId;}

}

We now have a bare-bones implementation of an Aggregate (Cargo) using JPA. The

other aggregates have the same mechanism of implementation barring the Handling

Activity Bounded Context. Since it is an event log, we decide to implement only one key

for the Aggregate, that is, the Activity Id.

Chapter 5 Cargo Tracker: Spring Platform

215

Figure 5-18 summarizes our bare-bones implementation of all our Aggregates.

Figure 5-18.  Bare-Bones implementation of our Aggregates

Domain Richness: Business Attributes

With the bare-bones implementation ready, let us move onto the meat of the Aggregate –

Domain richness. The Aggregate of any Bounded Context should be able to express
the Business Language of the Bounded Context clearly. Essentially, what it means in

pure technical terms is that our Aggregate should not be anemic, that is, only containing

getter/setter methods.

An anemic aggregate goes against the fundamental principle of DDD since it

essentially would mean the Business Language being expressed in multiple layers of
an application which in turn leads to an unmaintainable piece of software in the long

run.

So how do we implement a Domain-Rich Aggregate? The short answer is Business
Attributes and Business Methods. Our focus in this section is going to be on the

Business Attributes aspect while we will cover the Business Methods part as part of the

Domain Model Operations implementation.

Business Attributes of an Aggregate capture the state of an Aggregate as attributes
depicted using Business Terms rather than Technical Terms.

Chapter 5 Cargo Tracker: Spring Platform

216

Let us walk through the example of our Cargo aggregate.

Translating state to business concepts, the Cargo Aggregate has the following

attributes:

•	 Origin Location of the cargo

•	 Booking Amount of the cargo

•	 Route specification (Origin Location, Destination Location,

Destination Arrival Deadline)

•	 Itinerary that the cargo is assigned to based on the Route

Specification. The Itinerary consists of multiple Legs that the cargo

might be routed through to get to the destination

•	 Delivery Progress of the cargo against its Route Specification and

Itinerary assigned to it. The Delivery Progress provides details on

the Routing Status, Transport Status, Current Voyage of the cargo,
Last Known Location of the cargo, Next Expected Activity, and the
Last Activity that occurred on the cargo.

Figure 5-19 illustrates the Cargo Aggregate and its relationships with its dependent

objects. Notice how we are able to clearly represent the Cargo Aggregate in pure
Business Terms.

Chapter 5 Cargo Tracker: Spring Platform

217

JPA provides us a set of annotations (@Embedded, @Embeddable) to help

implement our Aggregate class using Business Objects.

Listing 5-7 shows the example of our Cargo Aggregate with all the Dependencies
modeled as Business Objects:

Figure 5-19.  Cargo Aggregate and its dependent associations

Chapter 5 Cargo Tracker: Spring Platform

218

Listing 5-7.  Cargo root aggregate dependencies as business objects

package com.practicalddd.cargotracker.bookingms.domain.model.aggregates;

import javax.persistence.*;

import com.practicalddd.cargotracker.bookingms.domain.model.entities.*;

import com.practicalddd.cargotracker.bookingms.domain.model.valueobjects.*;

@Entity

public class Cargo {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 @Embedded

 private BookingId bookingId; // Aggregate Identifier

 @Embedded

 private BookingAmount bookingAmount; //Booking Amount

 @Embedded

 private Location origin; //Origin Location of the Cargo

 @Embedded

 �private RouteSpecification routeSpecification; //Route Specification of

the Cargo

 @Embedded

 private CargoItinerary itinerary; //Itinerary Assigned to the Cargo

 @Embedded

 �private Delivery delivery; // Checks the delivery progress of the cargo

against the actual Route Specification and Itinerary

}

Dependent classes for an Aggregate are modeled either as Entity Objects or Value
Objects. To recap, Entity Objects within a Bounded Context have an identity of their own

but always exist within a root aggregate, that is, they cannot exist independently, and

they never change during the complete lifecycle of the aggregate. Value Objects on the

other hand have no identity of their own and are easily replaceable in any instance of an

aggregate

Chapter 5 Cargo Tracker: Spring Platform

219

Continuing with our example, within the Cargo Aggregate, we have the following:

•	 “Origin” of the cargo as an Entity Object (Location). This cannot

change within a Cargo Aggregate Instance and hence is modeled as

an Entity Object.

•	 Booking Amount of the cargo, Route Specification of the cargo,

Cargo Itinerary assigned to the cargo, and the Delivery of the
cargo as Value Objects. These objects are replaceable in any Cargo

Aggregate Instance and hence are modeled as Value Objects.

Let us walk through the scenarios and the rationale why we have these as value

objects and not as entities because it is an important domain modeling decision:

•	 When a new cargo is booked, we will have a new Route
Specification, an empty Cargo Itinerary, and no delivery progress.

•	 As the cargo is assigned an itinerary, the empty Cargo Itinerary is

replaced by an allocated Cargo Itinerary.

•	 As the cargo progresses through multiple ports as part of its itinerary,

the Delivery progress is updated and replaced within the root

aggregate.

•	 Finally, if the customer chooses to change the delivery location of the

cargo or the deadline for delivery, the Route Specification changes,

a new Cargo Itinerary will be assigned, the Delivery is recalculated,
and the Booking Amount changes.

They are all replaceable and hence modeled as Value Objects. That is the thumb
rule for modeling Entities and Value Objects within an Aggregate.

Implementing Entity Objects/Value Objects

Entity Objects/Value Objects are implemented as JPA Embeddable objects using the

“@Embeddable” annotation provided by JPA. They are then embedded into the

Aggregate using the “@Embedded” annotation.

Listing 5-8 shows the mechanism of embedding into the Aggregate class.

Let us look at the implementation of the Cargo Aggregate’s Entity Objects/Value

Objects.

Chapter 5 Cargo Tracker: Spring Platform

220

Listing 5-8 demonstrates the Location Entity Object. Notice the package name

(grouped under model.entities):

Listing 5-8.  Location entity object

package com.practicalddd.cargotracker.bookingms.domain.model.entities;

import javax.persistence.Column;

import javax.persistence.Embeddable;

/**
 * Location Entity class represented by a unique 5-digit UN Location code.

 */

@Embeddable

public class Location {

 @Column(name = "origin_id")

 private String unLocCode;

 public Location(){}

 public Location(String unLocCode){this.unLocCode = unLocCode;}

 public void setUnLocCode(String unLocCode){this.unLocCode = unLocCode;}

 public String getUnLocCode(){return this.unLocCode;}

}

Listing 5-9 demonstrates examples of the Booking Amount/Route Specification
Value Object(s). Notice the package name (grouped under model.valueobjects):

Listing 5-9.  Booking Amount value object implementation

package com.practicalddd.cargotracker.bookingms.domain.model.valueobjects;

import javax.persistence.Column;

import javax.persistence.Embeddable;

/**
 * Domain model representation of the Booking Amount for a new Cargo.

 * Contains the Booking Amount of the Cargo

 */

@Embeddable

public class BookingAmount {

 @Column(name = "booking_amount", unique = true, updatable= false)

 private Integer bookingAmount;

Chapter 5 Cargo Tracker: Spring Platform

221

 public BookingAmount(){}

 �public BookingAmount(Integer bookingAmount){this.bookingAmount =

bookingAmount;}

 �public void setBookingAmount(Integer bookingAmount){this.bookingAmount =

bookingAmount;}

 public Integer getBookingAmount(){return this.bookingAmount;}

}

Listing 5-10 demonstrates the Route Specification Value Object:

Listing 5-10.  Route Specification value object implementation

package com.practicalddd.cargotracker.bookingms.domain.model.valueobjects;

import com.practicalddd.cargotracker.bookingms.domain.model.entities.

Location;

import javax.persistence.*;

import javax.validation.constraints.NotNull;

import java.util.Date;

/**
 * Route Specification of the Booked Cargo

 */

@Embeddable

public class RouteSpecification {

 private static final long serialVersionUID = 1L;

 @Embedded

 �@AttributeOverride(name = "unLocCode", column = @Column(name = "spec_

origin_id"))

 private Location origin;

 @Embedded

 �@AttributeOverride(name = "unLocCode", column = @Column(name = "spec_

destination_id"))

 private Location destination;

 @Temporal(TemporalType.DATE)

 @Column(name = "spec_arrival_deadline")

 @NotNull

 private Date arrivalDeadline;

 public RouteSpecification() { }

Chapter 5 Cargo Tracker: Spring Platform

222

 /**
 * @param origin origin location

 * @param destination destination location

 * @param arrivalDeadline arrival deadline

 */

 public RouteSpecification(Location origin, Location destination,

 Date arrivalDeadline) {

 this.origin = origin;

 this.destination = destination;

 this.arrivalDeadline = (Date) arrivalDeadline.clone();

 }

 public Location getOrigin() {

 return origin;

 }

 public Location getDestination() {

 return destination;

 }

 public Date getArrivalDeadline() {

 return new Date(arrivalDeadline.getTime());

 }

}

The remaining Value Objects (RouteSpecification, CargoItinerary, and Delivery)

are implemented in the same way using the “@Embeddable” annotation and embedded

into the Cargo Aggregate using the “@Embedded” annotation.

Note P lease refer to the chapter's source code for the complete implementation.

Let us look at abbreviated class diagrams for the other Aggregates (HandlingActivity,

Voyage, and Tracking). Figures 5-20, 5-21, and 5-22 illustrate this.

Chapter 5 Cargo Tracker: Spring Platform

223

Figure 5-20.  Handling Activity and its dependent associations

Figure 5-21.  Voyage and its dependent associations

Chapter 5 Cargo Tracker: Spring Platform

224

Figure 5-22.  Tracking Activity and its dependent associations

This completes the implementation of the Core Domain Model. Let us look at the

implementation of the Domain model operations next.

Note T he source code for the book has the Core Domain Model demonstrated
via package segregation. You can view the source code to get a clearer view of the
types of objects within the domain model at github.com/practicalddd.

�Domain Model Operations
Domain Model operations within a Bounded Context deal with any kind of operations

associated with the state of the Aggregate of the Bounded Context. These include

inbound operations (Commands/Queries) and outbound operations (Events).

�Commands
Commands are responsible for changing the state of the Aggregate within

a Bounded Context.

Chapter 5 Cargo Tracker: Spring Platform

225

Implementation of Commands within a Bounded Context involves the following steps:

•	 Identification/implementation of Commands

•	 Identification/implementation of Command Handlers to process

Commands

Identification of Commands

Identification of Commands revolves around identifying any operation that affects

the state of the Aggregate. For example, the Booking Command Bounded Context has

the following operations or commands:

•	 Book a Cargo

•	 Route a Cargo

Both these operations result in a change of state of the Cargo Aggregate within the

Bounded Context and are hence identified as Commands.

Implementation of Commands

Once identified, implementing the identified Commands within the Spring

Boot implementation is done using regular POJOs. Listing 5-11 demonstrates the

implementation of the BookCargoCommand class for the Book Cargo Command:

Listing 5-11.  BookCargoCommand class implementation

package com.practicalddd.cargotracker.bookingms.domain.model.commands;

import java.util.Date;

/**
 * Book Cargo Command class

 */

public class BookCargoCommand {

 private String bookingId;

 private int bookingAmount;

 private String originLocation;

 private String destLocation;

 private Date destArrivalDeadline;

 public BookCargoCommand(){}

 public BookCargoCommand(int bookingAmount,

Chapter 5 Cargo Tracker: Spring Platform

226

 �String originLocation, String destLocation,

Date destArrivalDeadline){

 this.bookingAmount = bookingAmount;

 this.originLocation = originLocation;

 this.destLocation = destLocation;

 this.destArrivalDeadline = destArrivalDeadline;

 }

 public void setBookingId(String bookingId){this.bookingId = bookingId;}

 public String getBookingId(){return this.bookingId;}

 public void setBookingAmount(int bookingAmount){

 this.bookingAmount = bookingAmount;

 }

 public int getBookingAmount(){

 return this.bookingAmount;

 }

 public String getOriginLocation() {return originLocation; }

 �public void setOriginLocation(String originLocation) {this.

originLocation = originLocation; }

 public String getDestLocation() { return destLocation; }

 �public void setDestLocation(String destLocation) { this.destLocation =

destLocation; }

 public Date getDestArrivalDeadline() { return destArrivalDeadline; }

 �public void setDestArrivalDeadline(Date destArrivalDeadline) { this.

destArrivalDeadline = destArrivalDeadline; }

}

Identification of Command Handlers

Every Command will have a corresponding Command Handler. The purpose of the

Command Handler is to process the input command and set the state of the Aggregate.

Command Handlers are the only place within the Domain Model where Aggregate

Chapter 5 Cargo Tracker: Spring Platform

227

state is set. This is a strict rule that needs to be followed to help implement a rich

Domain Model.

Implementation of Command Handlers

Since the Spring Framework does not provide any out-of-the box capabilities to

implement Command Handlers, our methodology of implementation will be to just

identify the routines on the Aggregates which can be denoted as Command Handlers.

For our first command Book Cargo, we identify the constructor of the Aggregate as our

Command Handler; and for our second command Route Cargo, we create a new routine

“assignToRoute()” which acts as our Command Handler.

Listing 5-12 shows the snippet of code of the constructor of the Cargo Aggregate.

The constructor accepts the BookCargoCommand as an input parameter and sets the

corresponding state of the Aggregate:

Listing 5-12.  Command handler for the BookCargo command

/**
 * Constructor Command Handler for a new Cargo booking

 */

public Cargo(BookCargoCommand bookCargoCommand){

 this.bookingId = new BookingId(bookCargoCommand.getBookingId());

 this.routeSpecification = new RouteSpecification(

 new Location(bookCargoCommand.getOriginLocation()),

 new Location(bookCargoCommand.getDestLocation()),

 bookCargoCommand.getDestArrivalDeadline()

);

 this.origin = routeSpecification.getOrigin();

 �this.itinerary = CargoItinerary.EMPTY_ITINERARY; //Empty Itinerary

since the Cargo has not been routed yet

 this.bookingAmount = bookingAmount;

 this.delivery = Delivery.derivedFrom(this.routeSpecification,

 this.itinerary, LastCargoHandledEvent.EMPTY);

}

Chapter 5 Cargo Tracker: Spring Platform

228

Listing 5-13 shows the snippet of code for the assignToRoute() Command Handler.

It accepts the RouteCargoCommand class as input and sets the state of the Aggregate:

Listing 5-13.  Command handler for the route assignment command

/**
 �* Command Handler for the Route Cargo Command. Sets the state of the

Aggregate and registers the

 * Cargo routed event

 * @param routeCargoCommand

 */

public void assignToRoute(RouteCargoCommand routeCargoCommand) {

 this.itinerary = routeCargoCommand.getCargoItinerary();

 // Handling consistency within the Cargo aggregate synchronously

 this.delivery = delivery.updateOnRouting(this.routeSpecification,

 this.itinerary);

}

In summary, Command Handlers play a very important role of managing the

Aggregate state within a Bounded Context. The actual invocation of Command Handlers

happens via Application Services which we shall see in the sections that follow.

Figure 5-23 illustrates the class diagram for our Command Handler implementation.

Figure 5-23.  Class diagram for the Command Handler implementation

This completes the implementation of Commands within the Domain Model. We

shall now see how to implement Queries.

Chapter 5 Cargo Tracker: Spring Platform

229

�Queries
Queries within the Bounded Context are responsible for providing the state of the
Bounded Context’s Aggregate to external consumers.

To implement Queries, we utilize JPA Named Queries, that is, queries that can be

defined on an Aggregate to retrieve state in various forms. Listing 5-14 demonstrates the

snippet of code from the Cargo Aggregate that defines the queries that need to be made

available. In this case, we have three queries – Find All Cargos, Find a Cargo by its
Booking Identifier, and Final Booking Identifiers for all Cargos:

Listing 5-14.  Named queries within the Cargo root aggregate

@NamedQueries({

 @NamedQuery(name = "Cargo.findAll",

 query = "Select c from Cargo c"),

 @NamedQuery(name = "Cargo.findByBookingId",

 �query = "Select c from Cargo c where c.bookingId = :bookingId"),

 @NamedQuery(name = "Cargo.findAllBookingIds",

 query = "Select c.bookingId from Cargo c") })

public class Cargo{}

In summary, Query Handlers play the role of presenting the Aggregate state within

a Bounded Context. The actual invocation and execution of these queries happens via

Application Services and Repository classes which we shall see in the sections that follow.

This completes the implementation of Queries within the Domain Model. We shall

now see how to implement Events.

�Domain Events
An event within a Bounded Context is any operation that publishes the Bounded
Context’s Aggregate State Changes as Events. Since Commands change the state of an

Aggregate, it is safe to assume that any Command operation within a Bounded Context

will result in a corresponding Event.

Domain Events play a central role within a microservices architecture, and it is

critical to implement them in a robust manner. The distributed nature of a microservices

architecture mandates the usage of Events via a choreography mechanism to maintain
state and transactional consistency between the various Bounded Contexts of a

microservices-based application.

Chapter 5 Cargo Tracker: Spring Platform

230

Figure 5-24 illustrates examples of the events that flow between the various Bounded

Contexts of the Cargo Tracker Application.

Let us explain this a bit more using an example Business case.

When a cargo is assigned a route, this means that the cargo can now be tracked

which requires a Tracking Identifier to be issued to the cargo. The assigning of route to

the cargo is handled within the Booking Bounded Context, while issuing the tracking

identifier is handled within the Tracking Bounded Context. In the monolithic way of

doing things, the process of assigning a route to the cargo and issuing the tracking

identifier happens together since we can maintain the same transactional context
across multiple Bounded Contexts due to the shared model for processes, runtimes,
and Datastores.

Figure 5-24.  Flow of Events in a Microservices architecture

Chapter 5 Cargo Tracker: Spring Platform

231

However, in a microservices architecture, it is not possible to achieve the same

since it is a shared nothing architecture. When a cargo is assigned a route, the Booking

Bounded Context is only responsible for ensuring that the Cargo Aggregate’s state

reflects the new route. The Tracking Bounded Context needs to know about this change

of state so that it can issue the Tracking Identifier accordingly to complete the business
use case. This is where Domain Events and Event Choreography play an important

role. If the Cargo Bounded Context can raise the event that the Cargo Aggregate has been

assigned a Route, the Tracking Bounded Context can subscribe to that specific event

and issue the tracking identifier to complete this business use case. The mechanism

of raising events and delivering events to various Bounded Contexts to complete a

business use case is the event choreography pattern.
There are four stages to the implementation of a robust event-driven choreography

architecture:

•	 Register the Domain Events that need to be raised from a Bounded

Context.

•	 Raise the Domain Events that need to be published from a Bounded

Context.

•	 Publish the Events that are raised from a Bounded Context.

•	 Subscribe to the Events that have been published from other

Bounded Contexts.

Considering the complexity of this architecture, the implementation is split across

multiple areas:

•	 Registration of Domain Events is implemented by the Aggregate.

•	 Raising/publishing of Events is implemented by the Outbound
Services.

•	 Subscribing to Events is handled by the Interface/Inbound services.

The only area that we will cover in this section, since we are in the phase of

implementing the Domain Model, is the registration of events by the Aggregate. The

subsequent sections of the chapter will deal with each of the other aspects (Outbound

services will cover the implementation of the raising/publishing of Events, and Inbound

Services will cover the implementation of subscribing to the Events).

Chapter 5 Cargo Tracker: Spring Platform

232

�Registration of Events

To help implement this, we will utilize the template class “AbstractAggregateRoot”

provided by Spring Data. This template class provides the capability to register events

that occur.

Let us take an example to walk us through the implementation. Listing 5-15 shows

the Cargo Aggregate class which extends the AbstractAggregateRoot Template class:

Listing 5-15.  AbstractAggregateRoot template class

package com.practicalddd.cargotracker.bookingms.domain.model.aggregates;

import javax.persistence.*;

import org.springframework.data.domain.AbstractAggregateRoot;

@Entity

public class Cargo extends AbstractAggregateRoot<Cargo> {

}

The next step is to implement the registered Aggregate events whenever the state of
the Aggregate changes. As we have stated and seen earlier, Command Operations on
Aggregates change state and are the most likely place where we would like to register
Aggregate Events. Within the Cargo Aggregate, we have two Command Operations: the

first one when a new cargo is booked and the second one when the cargo is routed. The

Aggregate state changes are placed within the Command Handlers of the Aggregate, the

Cargo Booking within the Constructor method of the Cargo Aggregate, and the Cargo

Routing within the assignToRoute method of the Cargo Aggregate. We will implement

the registration and raising of the Aggregate Events within these two methods using the

registerEvent() method provided by the AbstractAggregateRoot template class.

Listing 5-16 shows the implementation of the Registration of Aggregate Events within

the Command Handler methods of the Cargo Aggregate. We add a new method within

the Aggregate “addDomainEvent()” which is an encapsulation of the “registerEvent()”.

It takes as an input parameter a Generic Event Object which is the event that needs to
be registered. Within the constructor and the assignToRoute() method, we invoke the

addDomainEvent() method with the corresponding Events that need to be registered,

that is, CargoBookedEvent and CargoRoutedEvent:

Chapter 5 Cargo Tracker: Spring Platform

233

Listing 5-16.  Event registration within the Cargo root aggregate

package com.practicalddd.cargotracker.bookingms.domain.model.aggregates;

import javax.persistence.*;

import org.springframework.data.domain.AbstractAggregateRoot;

@Entity

public class Cargo extends AbstractAggregateRoot<Cargo> {

/**
 * Constructor - Used for a new Cargo booking. Registers the Cargo Booked Event

 * @param bookingId - Booking Identifier for the new Cargo

 * @param routeSpecification - Route Specification for the new Cargo

 */

 /**
 �* Constructor Command Handler for a new Cargo booking. Sets the state

 * of the Aggregate and registers the Cargo Booked Event

 *
 */

 public Cargo(BookCargoCommand bookCargoCommand){

 this.bookingId = new BookingId(bookCargoCommand.getBookingId());

 this.routeSpecification = new RouteSpecification(

 new Location(bookCargoCommand.getOriginLocation()),

 new Location(bookCargoCommand.getDestLocation()),

 bookCargoCommand.getDestArrivalDeadline()

);

 this.origin = routeSpecification.getOrigin();

 �this.itinerary = CargoItinerary.EMPTY_ITINERARY; //Empty Itinerary

since the Cargo has not been routed yet

 this.bookingAmount = bookingAmount;

 this.delivery = Delivery.derivedFrom(this.routeSpecification,

 this.itinerary, LastCargoHandledEvent.EMPTY);

 �//Add this domain event which needs to be fired when the new cargo

is saved

 addDomainEvent(new

 CargoBookedEvent(

 new CargoBookedEventData(bookingId.getBookingId())));

Chapter 5 Cargo Tracker: Spring Platform

234

 }

 /**
 * Assigns route to the Cargo. Registers the Cargo Routed Event

 * @param itinerary

 */

 /**
 �* Command Handler for the Route Cargo Command. Sets the state of the

 * Aggregate and registers the Cargo routed event

 * @param routeCargoCommand

 */

 public void assignToRoute(RouteCargoCommand routeCargoCommand) {

 this.itinerary = routeCargoCommand.getCargoItinerary();

 // Handling consistency within the Cargo aggregate synchronously

 this.delivery = delivery.updateOnRouting(this.routeSpecification,

 this.itinerary);

 �//Add this domain event which needs to be fired when the new cargo

is saved

 addDomainEvent(new

 CargoRoutedEvent(

 new CargoRoutedEventData(bookingId.getBookingId())));

 }

/**
 * Method to register the event

 * @param event

 */

 public void addDomainEvent(Object event){

 registerEvent(event);

 }

}

Listing 5-17 shows the implementation of the CargoBookedEvent class. It is a

regular POJO which encapsulates the Event Data, that is, CargoBookedEventData:

Chapter 5 Cargo Tracker: Spring Platform

235

Listing 5-17.  CargoBookedEvent implementation class

/**
 * Event Class for the Cargo Booked Event. Wraps up the Cargo Booked Event

Data

 */

public class CargoBookedEvent {

 CargoBookedEventData cargoBookedEventData;

 public CargoBookedEvent(CargoBookedEventData cargoBookedEventData){

 this.cargoBookedEventData = cargoBookedEventData;

 }

 public CargoBookedEventData getCargoBookedEventData(){

 return cargoBookedEventData;

 }

}

Listing 5-18 shows the implementation of the CargoBookedEventData class. This is

again a regular POJO and contains the Event Data, in this case just the Booking Id:

Listing 5-18.  CargoBookedEventData implementation class

/**
 * Event Data for the Cargo Booked Event

 */

public class CargoBookedEventData {

 private String bookingId;

 public CargoBookedEventData(String bookingId){

 this.bookingId = bookingId;

 }

 public String getBookingId(){return this.bookingId;}

}

The CargoRoutedEvent and the CargoRoutedEventData implementations follow

the same approach as earlier.

Figure 5-25 illustrates the class diagram for our implementation.

Chapter 5 Cargo Tracker: Spring Platform

236

In summary, Aggregates register Domain Events after the processing of a
Command. The registration of these events is always implemented within the
Command Handler methods of the Aggregates.

This completes the implementation of the Domain Model. We shall now proceed
to implement the Domain Model Services for the Domain Model.

�Domain Model Services
Domain Model Services are used for two primary reasons. The first is to enable the

Bounded Context’s state to be made available to external parties through well-defined
Interfaces. The second is interacting with external parties be it to persist the Bounded

Context’s state to Datastores (Databases), publish the Bounded Context’s state change

events to external Message Brokers, or to communicate with other Bounded Contexts.
There are three types of Domain Model Services for any Bounded Context:

–– Inbound Services where we implement well-defined interfaces

which enable external parties to interact with the Domain Model

–– Outbound Services where we implement all interactions with

External Repositories/other Bounded Contexts

–– Application Services which act as the façade layer between the

Domain Model and both Inbound and Outbound services

Figure 5-26 illustrates the Domain Model Services implementation.

Figure 5-25.  Class diagram for the Aggregate Event Registration implementation

Chapter 5 Cargo Tracker: Spring Platform

237

Figure 5-26.  Domain Model Services implementation summary

�Inbound Services
Inbound services (or Inbound Adaptors as denoted in the Hexagonal Architectural

Pattern) act as the outermost gateway for our Core Domain Model. As stated, it involves

the implementation of well-defined interfaces which enable external consumers to

interact with the core domain model.

The type of inbound services depends upon the types of operations we need to

expose to enable the external consumers of the Domain Model.
Considering that we are implementing the microservices architectural pattern for

our Cargo Tracker application, we provide two types of Inbound Services:

–– An API Layer based on REST which is used by external consumers to

invoke operations on the Bounded Context (Commands/Queries)

–– An Event Handling Layer based on Spring Cloud Stream which

consumes Events from the Message Broker and processes them

Chapter 5 Cargo Tracker: Spring Platform

238

�REST API

The responsibility of the REST API is to receive HTTP requests on behalf of the Bounded

Context from external consumers. This request could be for Commands or Queries. The

responsibility of the REST API layer is to translate it into the Command/Query Model

recognized by the Bounded Context’s Domain Model and delegate it to the Application

Services Layer to further process it.

Looking back at Figure 4-5 which detailed out all the operations for the various

Bounded Contexts (e.g., Book Cargo, Assign Route to Cargo, Handle Cargo, Track
Cargo), all these operations will have corresponding REST APIs which will accept these

requests and process them.

Implementation of the REST API in Spring Boot is by utilizing the REST capabilities

provided by the Spring Web MVC Project. The spring-boot-starter-web dependency that

we added to our project provides the required capabilities to build the API(s).

Let us walk through an example of a REST API built using Spring Web. Listing 5-19

depicts the CargoBookingController class which provides a REST API for our Cargo
Booking Command:

•	 The REST API is available at the URL “/cargobooking”.

•	 It has a single POST method that accepts a BookCargoResource

which is the input payload to the API. This is marked with the

annotation “@RequestBody”.

•	 It has a dependency on the CargoBookingCommandService which is

an Application services which acts as a façade (see implementation

in the following). This dependency is injected into the API class

utilizing a Constructor-based Dependency Injection.

•	 It transforms the Resource Data (BookCargoResource) to the

Command Model (BookCargoCommand) using an Assembler utility

class (BookCargoCommandDTOAssembler).

•	 After transforming, it delegates the process to the

CargoBookingCommandService for further processing.

•	 It returns back a Response to the external consumer with the Booking

Identifier of the newly booked cargo.

Chapter 5 Cargo Tracker: Spring Platform

239

Listing 5-19.  CargoBookingController implementation class

package com.practicalddd.cargotracker.bookingms.interfaces.rest;

import com.practicalddd.cargotracker.bookingms.application.internal.

commandservices.CargoBookingCommandService;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.

BookingId;

import com.practicalddd.cargotracker.bookingms.interfaces.rest.dto.

BookCargoResource;

import com.practicalddd.cargotracker.bookingms.interfaces.rest.transform.

BookCargoCommandDTOAssembler;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.*;

@Controller // This means that this class is a Controller

@RequestMapping("/cargobooking") // The URI of the API

public class CargoBookingController {

 �private CargoBookingCommandService cargoBookingCommandService;

// Application Service Dependency

 /**
 * Provide the dependencies

 * @param cargoBookingCommandService

 */

 �public CargoBookingController(CargoBookingCommandService

cargoBookingCommandService){

 this.cargoBookingCommandService = cargoBookingCommandService;

 }

 /**
 * POST method to book a cargo

 * @param bookCargoResource

 */

 @PostMapping

 @ResponseBody

 �public BookingId bookCargo(@RequestBody BookCargoResource

bookCargoResource){

 BookingId bookingId = cargoBookingCommandService.bookCargo(

Chapter 5 Cargo Tracker: Spring Platform

240

 �BookCargoCommandDTOAssembler.toCommandFromDTO(bookCargo

Resource));

 return bookingId;

 }

}

Listing 5-20 shows the implementation for the BookCargoResource class:

Listing 5-20.  CargoBookingResource implementation class

package com.practicalddd.cargotracker.bookingms.interfaces.rest.dto;

import java.time.LocalDate;

/**
 * Resource class for the Book Cargo Command API

 */

public class BookCargoResource {

 private int bookingAmount;

 private String originLocation;

 private String destLocation;

 private LocalDate destArrivalDeadline;

 public BookCargoResource(){}

 public BookCargoResource(int bookingAmount,

 �String originLocation, String destLocation,

LocalDate destArrivalDeadline){

 this.bookingAmount = bookingAmount;

 this.originLocation = originLocation;

 this.destLocation = destLocation;

 this.destArrivalDeadline = destArrivalDeadline;

 }

 public void setBookingAmount(int bookingAmount){

 this.bookingAmount = bookingAmount;

 }

Chapter 5 Cargo Tracker: Spring Platform

241

 public int getBookingAmount(){

 return this.bookingAmount;

 }

 public String getOriginLocation() {return originLocation; }

 �public void setOriginLocation(String originLocation) {this.

originLocation = originLocation; }

 public String getDestLocation() { return destLocation; }

 �public void setDestLocation(String destLocation) { this.destLocation =

destLocation; }

 public LocalDate getDestArrivalDeadline() { return destArrivalDeadline; }

 �public void setDestArrivalDeadline(LocalDate destArrivalDeadline) {

this.destArrivalDeadline = destArrivalDeadline; }

}

Listing 5-21 shows the implementation for the BookCargoCommandDTOAssembler

class:

Listing 5-21.  DTOAssembler implementation class

package com.practicalddd.cargotracker.bookingms.interfaces.rest.transform;

import com.practicalddd.cargotracker.bookingms.domain.model.commands.

BookCargoCommand;

import com.practicalddd.cargotracker.bookingms.interfaces.rest.dto.

BookCargoResource;

/**
 * Assembler class to convert the Book Cargo Resource Data to the Book

Cargo Model

 */

public class BookCargoCommandDTOAssembler {

Chapter 5 Cargo Tracker: Spring Platform

242

 /**
 * Static method within the Assembler class

 * @param bookCargoResource

 * @return BookCargoCommand Model

 */

 �public static BookCargoCommand toCommandFromDTO(BookCargoResource

bookCargoResource){

 return new BookCargoCommand(

 bookCargoResource.getBookingAmount(),

 bookCargoResource.getOriginLocation(),

 bookCargoResource.getDestLocation(),

 �java.sql.Date.valueOf(bookCargoResource.

getDestArrivalDeadline()));

 }

}

Listing 5-22 shows the implementation for the BookCargoCommand class:

Listing 5-22.  BookCargoCommand implementation class

package com.practicalddd.cargotracker.bookingms.domain.model.commands;

import java.util.Date;

/**
 * Book Cargo Command class

 */

public class BookCargoCommand {

 private int bookingAmount;

 private String originLocation;

 private String destLocation;

 private Date destArrivalDeadline;

 public BookCargoCommand(){}

 public BookCargoCommand(int bookingAmount,

Chapter 5 Cargo Tracker: Spring Platform

243

 �String originLocation, String destLocation,

Date destArrivalDeadline){

 this.bookingAmount = bookingAmount;

 this.originLocation = originLocation;

 this.destLocation = destLocation;

 this.destArrivalDeadline = destArrivalDeadline;

 }

 public void setBookingAmount(int bookingAmount){

 this.bookingAmount = bookingAmount;

 }

 public int getBookingAmount(){

 return this.bookingAmount;

 }

 public String getOriginLocation() {return originLocation; }

 �public void setOriginLocation(String originLocation) {this.

originLocation = originLocation; }

 public String getDestLocation() { return destLocation; }

 �public void setDestLocation(String destLocation) { this.destLocation =

destLocation; }

 public Date getDestArrivalDeadline() { return destArrivalDeadline; }

 �public void setDestArrivalDeadline(Date destArrivalDeadline) { this.

destArrivalDeadline = destArrivalDeadline; }

}

Figure 5-27 demonstrates the class diagram for our implementation.

Chapter 5 Cargo Tracker: Spring Platform

244

All our inbound REST API implementations follow the same approach which is

illustrated in Figure 5-28.

Figure 5-27.  Class diagram for the REST API implementation

Figure 5-28.  Inbound Services implementation process summary

Chapter 5 Cargo Tracker: Spring Platform

245

	 1.	 The inbound request for a Command/Query comes to the REST

API. API classes are implemented using the Spring Web MVC

project which gets configured when we add the spring-boot-
starter-web dependency to the project.

	 2.	 The REST API class uses a utility Assembler component to convert

the Resource Data format to the Command/Query Data format

required by the Domain Model.

	 3.	 The Command/Query Data is sent to the Application Services for

further processing.

Event Handlers

The other type of interfaces that exist within our Bounded Contexts are the Event

Handlers. Within a Bounded Context, Event Handlers are responsible for processing

Events that the Bounded Context is interested in. These Events are raised by other

Bounded Contexts within the application. These “EventHandlers” are created within

the subscribing Bounded Context which resides within the inbound/interface layer. The

Event Handlers receive the Event along with the Event payload data and process them as

a regular Command operation.

Implementation of the Event Handlers will be done utilizing the capabilities

provided by Spring Cloud Stream. Our message broker will be RabbitMQ, so our

implementation will assume that we have a RabbitMQ instance up and running. We do

not need to create any specific exchanges, destinations, or queues within RabbitMQ.

We will use the example of the Tracking Bounded Context interested in the

“CargoRouted” event which the Booking Bounded Context publishes after the

processing of the Route Cargo command:

	 1.	 The first step is to implement the Handler Class. The handler

class is implemented as a regular service class with “@Service”

stereotype annotation. We bind the service class to the channel

connection for the message broker using the “@EnableBinding”

annotation. Finally, we mark the event handler method within the

Handler class with the “@StreamListener” annotation with the

target destination details. The annotation marks the method to

receive the stream of events being published onto the destination

that the Handler is interested in.

Chapter 5 Cargo Tracker: Spring Platform

246

Listing 5-23 demonstrates the implementation of the

CargoRoutedEventHandler class:

Listing 5-23.  CargoRoutedEvent handler implementation class

package com.practicalddd.cargotracker.trackingms.interfaces.events;

import com.practicalddd.cargotracker.shareddomain.events.CargoRoutedEvent;

import org.springframework.cloud.stream.annotation.EnableBinding;

import org.springframework.cloud.stream.annotation.StreamListener;

import org.springframework.cloud.stream.messaging.Sink;

import org.springframework.stereotype.Service;

/**
 * Event Handler for the Cargo Routed Event that the Tracking Bounded

Context is interested in

 */

@Service

@EnableBinding(Sink.class) //Bind to the channel connection for the message

broker

public class CargoRoutedEventHandler {

 �@StreamListener(target = Sink.INPUT) //Listen to the stream of messages

on the destination

 public void receiveEvent(CargoRoutedEvent cargoRoutedEvent) {

 //Process the Event

 }

}

	 2.	 We also need to implement broker configuration such as the

broker connection details and the broker target/destination
mappings. Listing 5-24 demonstrates the configuration that needs

to be implemented in the application.properties file of the Spring

Boot application. The properties for the broker configuration have

the default values set by RabbitMQ when we first install it:

Chapter 5 Cargo Tracker: Spring Platform

247

Listing 5-24.  RabbitMQ configuration properties

spring.rabbitmq.host=localhost

spring.rabbitmq.port=5672

spring.rabbitmq.username=guest

spring.rabbitmq.password=guest

spring.cloud.stream.bindings.input.destination=cargoRoutings

spring.cloud.stream.bindings.input.group=cargoRoutingsQueue

The destination is configured with the same value that is used when we publish

the “CargoRouted” event in the Booking Bounded Context (see section on Outbound

Services).

Figure 5-29 demonstrates the class diagram for our implementation.

Figure 5-29.  Class diagram for our Event Handler implementation

All our Event Handler implementations follow the same approach as illustrated in

Figure 5-30.

Chapter 5 Cargo Tracker: Spring Platform

248

	 1.	 Event Handlers receive inbound events from a Message Broker.

	 2.	 Event Handlers use a utility Assembler component to convert the

Resource Data format to the Command Data format required by

the Domain Model.

	 3.	 The Command Data is sent to the Application Services for further

processing.

�Application Services
Application Services act as a façade or a port between the Inbound/Outbound Services

and the Core Domain Model within a Bounded Context.

Within a Bounded Context, Application services are responsible for receiving
requests from the Inbound Services and delegating them to the corresponding
services, that is, Commands are delegated to Command Services and Queries are

delegated to Query Services. As part of a command delegation process, Application

services are responsible for persisting the Aggregate state in the underlying datastore. As

part of a query delegation process, Application services are responsible for retrieving the

Aggregate state from the underlying datastore.

Figure 5-30.  Implementation process summary for Event Handler
implementations

Chapter 5 Cargo Tracker: Spring Platform

249

As part of these responsibilities, Application services rely on outbound services

to complete these tasks. Outbound services provide the necessary infrastructural

components required to connect to the physical datastores. We will deep dive into the

outbound services implementation separately (see section on Outbound Services).

Figure 5-31 illustrates the responsibilities of the Application Services.

Figure 5-31.  Responsibilities of the Application Services

�Application Services: Command/Query Delegation

As part of this responsibility, Application services within a Bounded Context receive

requests for processing Commands/Queries. These requests come in typically from the

Inbound Services (API Layer). As part of the processing, Application services first utilize

the CommandHandlers/QueryHandlers (see section on Domain Model) of the Domain

model to set state or query state. They then utilize the Outbound Services to persist state

or execute queries on the state of the Aggregate.

Let us first walk through an example of a Command Delegator Application Services

Class, the Cargo Booking Command Application Services Class. This class has two

routines - “bookCargo()” and “assignRouteToCargo()” which handle the Cargo
Booking Command and the Route Cargo Command:

Chapter 5 Cargo Tracker: Spring Platform

250

•	 The Application services class is implemented as a regular Spring

Managed Bean with an “@Service” marker annotation attached to it

which indicates that it is a Service class.

•	 The Application services class is provided with the

necessary dependencies via the Constructor Dependency

Injection capabilities of Spring. In this case, the

CargoBookingCommandApplicationService class has dependencies

on an outbound repository class (CargoRepository).

•	 In both the routines, the Application services relies on the

Command Handlers defined on the Cargo Aggregate (Constructor,
assignToRoute) to set its state.

•	 The Application services utilizes the CargoRepository outbound

service to store the state of the Cargo in either of the operations.

Listing 5-25 demonstrates the Cargo Booking Command Application Services
Class implementation:

Listing 5-25.  CargoBookingCommand Application services class implementation

package com.practicalddd.cargotracker.bookingms.application.internal.

commandservices;

import com.practicalddd.cargotracker.bookingms.application.internal.

outboundservices.acl.ExternalCargoRoutingService;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.

BookingId;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.Cargo;

import com.practicalddd.cargotracker.bookingms.domain.model.commands.

BookCargoCommand;

import com.practicalddd.cargotracker.bookingms.domain.model.commands.

RouteCargoCommand;

import com.practicalddd.cargotracker.bookingms.domain.model.entities.Location;

import com.practicalddd.cargotracker.bookingms.domain.model.valueobjects.

CargoItinerary;

import com.practicalddd.cargotracker.bookingms.domain.model.valueobjects.

RouteSpecification;

Chapter 5 Cargo Tracker: Spring Platform

251

import com.practicalddd.cargotracker.bookingms.infrastructure.repositories.

CargoRepository;

import org.springframework.stereotype.Service;

import java.util.UUID;

/**
 * Application Service class for the Cargo Booking Commands

 */

@Service

public class CargoBookingCommandService {

 private CargoRepository cargoRepository;

 private ExternalCargoRoutingService externalCargoRoutingService;

 public CargoBookingCommandService(CargoRepository cargoRepository){

 this.cargoRepository = cargoRepository;

 this.externalCargoRoutingService = externalCargoRoutingService;

 }

 /**
 * Service Command method to book a new Cargo

 * @return BookingId of the Cargo

 */

 public BookingId bookCargo(BookCargoCommand bookCargoCommand){

 String random = UUID.randomUUID().toString().toUpperCase();

 bookCargoCommand.setBookingId(random);

 Cargo cargo = new Cargo(bookCargoCommand);

 cargoRepository.save(cargo);

 return new BookingId(random);

 }

 /**
 * Service Command method to assign a route to a Cargo

 * @param routeCargoCommand

 */

Chapter 5 Cargo Tracker: Spring Platform

252

 public void assignRouteToCargo(RouteCargoCommand routeCargoCommand){

 �Cargo cargo = cargoRepository.findByBookingId(routeCargoCommand.

getCargoBookingId());

 �CargoItinerary cargoItinerary = externalCargoRoutingService.

fetchRouteForSpecification(new RouteSpecification(

 new Location(routeCargoCommand.getOriginLocation()),

 new Location(routeCargoCommand.getDestinationLocation()),

 routeCargoCommand.getArrivalDeadline()

));

 routeCargoCommand.setCargoItinerary(cargoItinerary);

 cargo.assignToRoute(routeCargoCommand);

 cargoRepository.save(cargo);

 }

}

Listing 5-26 demonstrates the Cargo Booking Query Application Services Class

implementation which serves all queries related to the Booking Bounded Context:

Listing 5-26.  CargoBookingQuery Application services implementation

package com.practicalddd.cargotracker.bookingms.application.internal.

queryservices;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.

BookingId;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.Cargo;

import com.practicalddd.cargotracker.bookingms.infrastructure.repositories.

CargoRepository;

import org.springframework.stereotype.Service;

import java.util.List;

/**
 * Application Service which caters to all queries related to the Booking

Bounded Context

 */

Chapter 5 Cargo Tracker: Spring Platform

253

@Service

public class CargoBookingQueryService {

 private CargoRepository cargoRepository; // Inject Dependencies

 /**
 * Find all Cargos

 * @return List<Cargo>

 */

 public List<Cargo> findAll(){

 return cargoRepository.findAll();

 }

 /**
 * List All Booking Identifiers

 * @return List<BookingId>

 */

 public List<BookingId> getAllBookingIds(){

 return cargoRepository.findAllBookingIds();

 }

 /**
 * Find a specific Cargo based on its Booking Id

 * @param bookingId

 * @return Cargo

 */

 public Cargo find(String bookingId){

 return cargoRepository.findByBookingId(bookingId);

 }

}

Figure 5-32 illustrates the class diagram for our implementation.

Chapter 5 Cargo Tracker: Spring Platform

254

All our Application Services implementations which are responsible for

Command/Query delegations follow the same approach which is illustrated in Figure 5-33.

Figure 5-32.  Class diagram for our Application Services Command/Query
delegation

Chapter 5 Cargo Tracker: Spring Platform

255

	 1.	 The request for a Command/Query operation comes to the

Application Services of a Bounded Context typically from the Inbound

Services layer. Application Services Classes are implemented as
Spring Managed Beans with the @Service marker annotation, and

they have all their dependencies injected via the Constructor.

	 2.	 Application Services rely on CommandHandlers/QueryHandlers

defined within the Domain Model to set/query Aggregate state.

	 3.	 Application Services utilize Outbound Services (e.g.,

Repositories) to persist the state of the Aggregate or execute the

query on the Aggregate.

�Outbound Services
As we have seen in the Application Services implementation earlier, during the

processing of a Command/Query, Application services might be required to

communicate with external services such as the following:

•	 Repositories to store/retrieve state of the Bounded Context

•	 Message Brokers to communicate state change of the Bounded Context

•	 Other Bounded Contexts

Figure 5-33.  Application Services implementation process summary

Chapter 5 Cargo Tracker: Spring Platform

256

Application Services rely on Outbound Services to help in this communication.

Outbound Services provide capabilities to interact with these external services.

The external service could be the Datastore where we store the Bounded Context’s

Aggregate State, it could be the message broker where we publish the Aggregate state,
or it could be an interaction with another Bounded Context.

Figure 5-34 illustrates the responsibilities of the Outbound Services. They receive

requests to communicate with the external services as part of an operation (Commands,

Queries, Events). They use APIs (Persistence APIs, REST APIs, Broker APIs) based on the

external service type to interact with them.

Figure 5-34.  Outbound Services

Let us look at implementing these Outbound Service types.

Chapter 5 Cargo Tracker: Spring Platform

257

�Outbound Services: Repository Classes

The outbound services for Database access are implemented as “Repository” classes.
A repository class is built around a specific aggregate and deals with all database

operations for that aggregate including the following:

•	 Persistence of a new aggregate and its associations

•	 Update of an aggregate and its associations

•	 Querying the aggregate and its associations

Spring Data JPA helps us implement JPA repository classes with ease. Let us walk

through an example of a Repository class, the Cargo Repository Class, which handles all

Database operations related to the Cargo Aggregate:

•	 The Cargo Repository is implemented as an interface extending the

JpaRepository<T,ID> interface.

•	 Spring Data JPA automatically implements the default CRUD

operations required for the Cargo Aggregate.

•	 We just add the methods required for any kind of custom queries

which are mapped to the corresponding named queries defined

within the Cargo Aggregate.

Listing 5-27 demonstrates the implementation of the Cargo Repository class:

Listing 5-27.  CargoRepository JPA interface

package com.practicalddd.cargotracker.bookingms.infrastructure.repositories;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.

BookingId;

import com.practicalddd.cargotracker.bookingms.domain.model.aggregates.Cargo;

import org.springframework.data.jpa.repository.JpaRepository;

import java.util.List;

/**
 * Repository class for the Cargo Aggregate

 */

public interface CargoRepository extends JpaRepository<Cargo, Long> {

Chapter 5 Cargo Tracker: Spring Platform

258

 Cargo findByBookingId(String BookingId);

 List<BookingId> findAllBookingIds();

 List<Cargo> findAll();

}

Figure 5-35 illustrates the class diagram for our implementation.

Figure 5-35.  Outbound Services – Repository implementation

All our Repository implementations follow the same approach.

�Outbound Services: Rest API(s)

Usage of REST API(s) as a mode of communication between microservices is quite a

common requirement. While we have seen event choreography as one mechanism to do

it, sometimes a direct call between Bounded Contexts might be a requirement too.

Let us explain this through an example. As part of the Cargo Booking process, we

need to allocate the cargo an itinerary depending upon the route specification. The data

required to generate an optimal itinerary is maintained as part of the Routing Bounded

Context which maintains vessel movements, itineraries, and schedules. This requires the

Booking Bounded Context’s Booking Service to make an outbound call to the Routing

Bounded Context’s Routing Service which provides a REST API to retrieve all possible

itineraries depending upon the cargo’s Route Specification.

This is illustrated in Figure 5-36.

Chapter 5 Cargo Tracker: Spring Platform

259

This however does pose a challenge in terms of the Domain Model. The Booking

Bounded Context’s Cargo aggregate has a representation of the Itinerary as a

“CargoItinerary” object, while the Routing Bounded Context has a representation of

the Itinerary as a “TransitPath” object. Thus, the invocation between the two Bounded

Contexts will require a translation of sorts between their domain models.

This translation is typically done in the Anti-corruption Layer which acts as a bridge

to communicate between two Bounded Contexts.

This is illustrated in Figure 5-37.

Figure 5-36.  HTTP invocation between two Bounded Contexts

Figure 5-37.  Anti-corruption Layer between two Bounded Contexts

The Booking Bounded Context relies on the Rest Template capabilities provided by

Spring Web to invoke the Routing Service’s REST API.

Chapter 5 Cargo Tracker: Spring Platform

260

Let us walk through the complete implementation to understand the concept better:

•	 The first step is to implement the Routing Service REST API. This

is done using the standard Spring Web capabilities which we have

implemented in the chapter before. Listing 5-28 demonstrates the

Routing Service REST API implementation:

Listing 5-28.  CargoRoutingController implementation class

package com.practicalddd.cargotracker.routingms.interfaces.rest;

import com.practicalddd.cargotracker.TransitPath;

import com.practicalddd.cargotracker.routingms.application.internal.

CargoRoutingService;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.*;

@Controller // This means that this class is a Controller

@RequestMapping("/cargorouting")

public class CargoRoutingController {

 �private CargoRoutingService cargoRoutingService;

// Application Service Dependency

 /**
 * Provide the dependencies

 * @param cargoRoutingService

 */

 public CargoRoutingController(CargoRoutingService cargoRoutingService){

 this.cargoRoutingService = cargoRoutingService;

 }

 /**
 *
 * @param originUnLocode

 * @param destinationUnLocode

 * @param deadline

 * @return TransitPath - The optimal route for a Route Specification

 */

Chapter 5 Cargo Tracker: Spring Platform

261

 @GetMapping(path = "/optimalRoute")

 @ResponseBody

 public TransitPath findOptimalRoute(

 @PathVariable("origin") String originUnLocode,

 @PathVariable("destination") String destinationUnLocode,

 @PathVariable("deadline") String deadline) {

 �TransitPath transitPath = cargoRoutingService.findOptimalRoute

(originUnLocode,destinationUnLocode,deadline);

 return transitPath;

 }

}

The Routing Service implementation provides a REST API available at

“/optimalRoute”. It takes in a set of specifications - Origin Location, Destination

Location, and Deadline. It then uses the Cargo Routing Application Services class to

calculate the optimal route based on these specifications. The Domain model within

the Routing Bounded Context represents the optimal route in terms of Transit Paths
(analogous to Itineraries) and Transit Edges (analogous to Legs).

Listing 5-29 demonstrates the Transit Path Domain Model class implementation:

Listing 5-29.  TransitPath Domain model class implementation

import java.util.ArrayList;

import java.util.List;

/**
 * Domain Model representation of the Transit Path

 */

public class TransitPath {

 private List<TransitEdge> transitEdges;

 public TransitPath() {

 this.transitEdges = new ArrayList<>();

 }

 public TransitPath(List<TransitEdge> transitEdges) {

 this.transitEdges = transitEdges;

 }

Chapter 5 Cargo Tracker: Spring Platform

262

 public List<TransitEdge> getTransitEdges() {

 return transitEdges;

 }

 public void setTransitEdges(List<TransitEdge> transitEdges) {

 this.transitEdges = transitEdges;

 }

 @Override

 public String toString() {

 return "TransitPath{" + "transitEdges=" + transitEdges + '}';

 }

}

Listing 5-30 demonstrates the Transit Edge Domain Model class implementation:

Listing 5-30.  TransitEdge Domain model class implementation

package com.practicalddd.cargotracker;

import java.io.Serializable;

import java.util.Date;

/**
 * Represents an edge in a path through a graph, describing the route of a

 * cargo.

 */

public class TransitEdge implements Serializable {

 private String voyageNumber;

 private String fromUnLocode;

 private String toUnLocode;

 private Date fromDate;

 private Date toDate;

 public TransitEdge() { }

 public TransitEdge(String voyageNumber, String fromUnLocode,

 String toUnLocode, Date fromDate, Date toDate) {

 this.voyageNumber = voyageNumber;

 this.fromUnLocode = fromUnLocode;

Chapter 5 Cargo Tracker: Spring Platform

263

 this.toUnLocode = toUnLocode;

 this.fromDate = fromDate;

 this.toDate = toDate;

 }

 public String getVoyageNumber() {

 return voyageNumber;

 }

 public void setVoyageNumber(String voyageNumber) {

 this.voyageNumber = voyageNumber;

 }

 public String getFromUnLocode() {

 return fromUnLocode;

 }

 public void setFromUnLocode(String fromUnLocode) {

 this.fromUnLocode = fromUnLocode;

 }

 public String getToUnLocode() {

 return toUnLocode;

 }

 public void setToUnLocode(String toUnLocode) {

 this.toUnLocode = toUnLocode;

 }

 public Date getFromDate() {

 return fromDate;

 }

 public void setFromDate(Date fromDate) {

 this.fromDate = fromDate;

 }

 public Date getToDate() {

 return toDate;

 }

Chapter 5 Cargo Tracker: Spring Platform

264

 public void setToDate(Date toDate) {

 this.toDate = toDate;

 }

 @Override

 public String toString() {

 return "TransitEdge{" + "voyageNumber=" + voyageNumber

 + ", fromUnLocode=" + fromUnLocode + ", toUnLocode="

 + toUnLocode + ", fromDate=" + fromDate

 + ", toDate=" + toDate + '}';

 }

}

Figure 5-38 illustrates the class diagram for the implementation.

Figure 5-38.  Class diagram for the REST API

Chapter 5 Cargo Tracker: Spring Platform

265

•	 The next step is to implement the client-side implementation

for our Routing Rest service. The client is the

CargoBookingCommandService class which is responsible for

processing the “Assign Route to Cargo” command. As part of the

processing of the command, this service class will need to invoke

the Routing Service REST API to get the optimal route based on the

cargo’s Route Specification.

The CargoBookingCommandService makes use of an outbound service

class – ExternalCargoRoutingService – to invoke the Routing Service

REST API. The ExternalCargoRoutingService class also translates

the data provided by the Routing Service’s REST API into the format

recognizable by the Booking Bounded Context’s Domain Model.

Listing 5-31 demonstrates the method “assignRouteToCargo” within

the CargoBookingCommandService. This service class is injected

with the ExternalCargoRoutingService dependency which processes

the request to invoke the Routing Service’s REST API and returns the

CargoItinerary object which is then assigned to the cargo:

Listing 5-31.  Dependencies for outbound services

@ApplicationScoped

public class CargoBookingCommandService {

 @Inject

 private ExternalCargoRoutingService externalCargoRoutingService;

 /**
 * Service Command method to assign a route to a Cargo

 * @param routeCargoCommand

 */

 @Transactional

 public void assignRouteToCargo(RouteCargoCommand routeCargoCommand){

Chapter 5 Cargo Tracker: Spring Platform

266

 �Cargo cargo = cargoRepository.find(new BookingId(routeCargoCommand.

getCargoBookingId()));

 �CargoItinerary cargoItinerary = externalCargoRoutingService.

fetchRouteForSpecification(new RouteSpecification(

 new Location(routeCargoCommand.getOriginLocation()),

 new Location(routeCargoCommand.getDestinationLocation()),

 routeCargoCommand.getArrivalDeadline()

));

 cargo.assignToRoute(cargoItinerary);

 cargoRepository.store(cargo);

 }

 // All other implementations of Commands for the Booking Bounded Context

}

Listing 5-32 demonstrates the ExternalCargoRoutingService outbound service class.

This class performs two things:

•	 It makes use of the RestTemplate class provided by the Spring Web

project which helps build Rest clients.

•	 It also translates the Data provided by the Routing Service’s Rest

API (TransitPath, TransitEdge) to the Booking Bounded Context’s

Domain Model (CargoItinerary/Leg).

Listing 5-32.  Outbound service implementation class

package com.practicalddd.cargotracker.bookingms.application.internal.

outboundservices.acl;

import com.practicalddd.cargotracker.bookingms.domain.model.valueobjects.

CargoItinerary;

import com.practicalddd.cargotracker.bookingms.domain.model.valueobjects.Leg;

import com.practicalddd.cargotracker.bookingms.domain.model.valueobjects.

RouteSpecification;

Chapter 5 Cargo Tracker: Spring Platform

267

import com.practicalddd.cargotracker.shareddomain.TransitEdge;

import com.practicalddd.cargotracker.shareddomain.TransitPath;

import org.springframework.stereotype.Service;

import org.springframework.web.client.RestTemplate;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

/**
 * Anti Corruption Service Class

 */

@Service

public class ExternalCargoRoutingService {

 /**
 * The Booking Bounded Context makes an external call to the Routing

 * Service of the Routing Bounded Context to fetch the Optimal

 * Itinerary for a Cargo based on the Route Specification

 * @param routeSpecification

 * @return

 */

 �public CargoItinerary fetchRouteForSpecification(RouteSpecification

routeSpecification){

 RestTemplate restTemplate = new RestTemplate();

 Map<String,Object> params = new HashMap<>();

 params.put("origin",routeSpecification.getOrigin().getUnLocCode());

 �params.put("destination",routeSpecification.getDestination().

getUnLocCode());

 �params.put("arrivalDeadline",routeSpecification.

getArrivalDeadline().toString());

 �TransitPath transitPath = restTemplate.getForObject("<<ROUTING_

SERVICE_URL>>/cargorouting/",

 TransitPath.class,params);

Chapter 5 Cargo Tracker: Spring Platform

268

 �List<Leg> legs = new ArrayList<>(transitPath.getTransitEdges().

size());

 for (TransitEdge edge : transitPath.getTransitEdges()) {

 legs.add(toLeg(edge));

 }

 return new CargoItinerary(legs);

 }

 /**
 �* Anti-corruption layer conversion method from the routing service's

 * domain model (TransitEdges) to the domain model recognized by the

 * Booking Bounded Context (Legs)

 * @param edge

 * @return

 */

 private Leg toLeg(TransitEdge edge) {

 return new Leg(

 edge.getVoyageNumber(),

 edge.getFromUnLocode(),

 edge.getToUnLocode(),

 edge.getFromDate(),

 edge.getToDate());

 }

}

Figure 5-39 illustrates the class diagram for the implementation.

Chapter 5 Cargo Tracker: Spring Platform

269

Figure 5-39.  Outbound Services – REST API implementation

Figure 5-40.  Outbound Services (HTTP) implementation process

All our Outbound Service implementations which require to communicate to other

Bounded Contexts follow the same approach which is illustrated in Figure 5-40.

	 1.	 Application Services classes receive Commands/Queries/Events.

	 2.	 As part of the processing, if it requires an interaction with another

Bounded Context’s API using REST, it makes use of an Outbound

Service.

	 3.	 The Outbound service uses the RestTemplate class to create a Rest

client to invoke the Bounded Context’s API. It also performs the

translation from the data format provided by that Bounded Context’s

API to the data model recognized by the current Bounded Context.

Chapter 5 Cargo Tracker: Spring Platform

270

Outbound Services: Message Broker

The final responsibility of outbound services is to raise and publish the Domain Events

registered by the Aggregate during the processing of a Command.

Figure 5-41 illustrates the entire mechanism of the event flow within a Bounded Context.

Figure 5-41.  Event flow mechanism within a Bounded Context

Let us walk through the sequence of events:

	 1.	 Application Services receive requests to process a particular

Command (e.g., Book Cargo, Route Cargo).

	 2.	 The Application services delegates the processing to the Aggregate

Command Handlers.

	 3.	 Command Handlers register the event (e.g., Cargo Booked, Cargo

routed) that needs to be published.

	 4.	 The Application services persists the aggregate state utilizing the

Repositories of the Outbound Services.

Chapter 5 Cargo Tracker: Spring Platform

271

	 5.	 The repository operation triggers Event Listeners within
Outbound services. The Event Listeners collect all pending
registered Domain Events that need to be published.

	 6.	 The Event Listeners publish the Domain Events to the external

Message Broker (i.e., RabbitMQ) within the same transaction.

Implementation of the Event Listeners will be done utilizing the capabilities

provided by Spring Cloud Stream. Our message broker will be RabbitMQ, so our

implementation will assume that we have a RabbitMQ instance up and running. We do

not need to create any specific exchanges, destinations, or queues within RabbitMQ.

We will continue with our example of the Booking Bounded Context where we need

to publish the “Cargo Booked Event” and the “Cargo Routed Event” at the end of the

“Book Cargo Command” and the “Route Cargo Command”:

	 1.	 The first step is to implement the event source. The event source

contains the details of the output channels (logical connections)

for our Events.

Listing 5-33 demonstrates the implementation of the

CargoEventSource. We have created two Output Messaging

Channels (cargoBookingChannel, cargoRoutingChannel):

Listing 5-33.  Event source class implementation

package com.practicalddd.cargotracker.bookingms.infrastructure.brokers.

rabbitmq;

import org.springframework.cloud.stream.annotation.Output;

import org.springframework.messaging.MessageChannel;

/**
 * Interface depicting all output channels

 */

public interface CargoEventSource {

 @Output("cargoBookingChannel")

 MessageChannel cargoBooking();

 @Output("cargoRoutingChannel")

 MessageChannel cargoRouting();

}

Chapter 5 Cargo Tracker: Spring Platform

272

	 2.	 The next step is to implement the event listener. The event source

contains the details of the output channels (logical connections)

for our Events.

Listing 5-34 demonstrates the implementation of the

CargoEventPublisherService. This is the event listener for all

Domain Events registered by the Cargo Aggregate and publishing

them to the Message Broker.

Implementing the event listener involves the following steps:

•	 The event listener is implemented as a regular Spring Managed

bean with the stereotype @Service annotation. Listing 5-34

demonstrates the implementation.

•	 We bind the event listener to the event source that we created in

the first step using the @EnableBinding annotation.

•	 For every Domain Event type that is registered by the Cargo

Aggregate, we have a corresponding handling routine

within the listener, for example, the CargoBookedEvent

will have a handleCargoBooked() routine and similarly the

CargoRoutedEvent will have a handleCargoRouted() routine.

These routines take in the registered Event as the input parameter.

•	 These routines are marked with the @TransactionalEventListener

annotation to indicate that it should be part of the same

transaction of the repository operation.

•	 Finally within the routine, we publish the registered Event to the

corresponding channel of the message broker.

Listing 5-34.  Event listener class implementation

package com.practicalddd.cargotracker.bookingms.application.internal.

outboundservices;

import com.practicalddd.cargotracker.bookingms.infrastructure.brokers.

rabbitmq.CargoEventSource;

import com.practicalddd.cargotracker.shareddomain.events.CargoBookedEvent;

import com.practicalddd.cargotracker.shareddomain.events.CargoRoutedEvent;

import org.springframework.cloud.stream.annotation.EnableBinding;

Chapter 5 Cargo Tracker: Spring Platform

273

import org.springframework.messaging.support.MessageBuilder;

import org.springframework.stereotype.Service;

import org.springframework.transaction.event.TransactionalEventListener;

/**
 * Transactional Event Listener for all Cargo Aggregate Events

 */

@Service

@EnableBinding(CargoEventSource.class) //Bind to the Event Source

public class CargoEventPublisherService {

 CargoEventSource cargoEventSource;

 public CargoEventPublisherService(CargoEventSource cargoEventSource){

 this.cargoEventSource = cargoEventSource;

 }

 �@TransactionalEventListener //Attach it to the transaction of the

repository operation

 public void handleCargoBookedEvent(CargoBookedEvent cargoBookedEvent){

 �cargoEventSource.cargoBooking().send(MessageBuilder.

withPayload(cargoBookedEvent).build()); //Publish the event

 }

 @TransactionalEventListener

 public void handleCargoRoutedEvent(CargoRoutedEvent cargoRoutedEvent){

 �cargoEventSource.cargoRouting().send(MessageBuilder.

withPayload(cargoRoutedEvent).build());

 }

}

	 3.	 In addition to code implementation, we also need to implement

broker configuration such as the broker connection details
and the broker channel/exchange mappings. Listing 5-35

demonstrates the configuration that needs to be implemented in

the application.properties file of the Spring Boot application. The

properties for the broker configuration have the default values set

by RabbitMQ when we first install it:

Chapter 5 Cargo Tracker: Spring Platform

274

Listing 5-35.  RabbitMQ configuration details

spring.rabbitmq.host=localhost

spring.rabbitmq.port=5672

spring.rabbitmq.username=guest

spring.rabbitmq.password=guest

spring.cloud.stream.bindings.cargoBookingChannel.destination=cargoBookings

spring.cloud.stream.bindings.cargoRoutingChannel.destination=cargoRoutings

All outbound services that need to publish Domain Events follow the same approach

as listed earlier.

Figure 5-42 illustrates the class diagram for our implementation.

This completes the implementation of the Outbound services, Domain Model
Services, and the Cargo Tracker application as a microservices application utilizing
DDD principles and the Spring platform.

�Implementation Summary
We now have a complete DDD implementation of the Cargo Tracker microservices

application with the various DDD artifacts implemented using the corresponding

projects available within the Spring platform.

Figure 5-42.  Class diagram for the Event Publisher implementation

Chapter 5 Cargo Tracker: Spring Platform

275

Figure 5-43.  DDD artifact implementation summary using Spring Boot

The implementation summary is denoted in Figure 5-43.

Chapter 5 Cargo Tracker: Spring Platform

276

�Summary
Summarizing our chapter

•	 We started by establishing the details about the Spring platform and

the various capabilities it provides.

•	 We decided to use a subset of the projects (Spring Boot, Spring Web,

Spring Cloud Stream, and Spring Data) from the Spring Platform’s

complete portfolio to help build Cargo Tracker as a microservices

application.

•	 We rounded off by deep diving into the development of the various

DDD artifacts – first the Domain Model and then the Domain Model

Services using the technologies chosen.

Chapter 5 Cargo Tracker: Spring Platform

277
© Vijay Nair 2019
V. Nair, Practical Domain-Driven Design in Enterprise Java, https://doi.org/10.1007/978-1-4842-4543-9_6

CHAPTER 6

Cargo Tracker: Axon
Framework
We have now implemented three variations of the Cargo Tracker:

A DDD implementation based on a monolithic architecture using

Jakarta EE

A DDD implementation based on a microservices architecture

using Eclipse MicroProfile

A DDD implementation based on a microservices architecture

using Spring Boot

Our final DDD implementation is going to be based on an event-driven

microservices architectural pattern using the following:

A pure ES (Event Sourcing) framework

A pure CQRS (Command/Query Responsibility Segregation) approach

We shall implement this with the Axon Framework. Axon is one of the few

frameworks available within the Enterprise Java space that offers an out-of-the-box,

stable, complete, and feature-rich solution to implement a CQRS/ES-based architecture.

Using a pure play CQRS/ES framework like Axon requires a fundamental change in

our thought process on building applications. Every aspect of the state of an application,

be it State Construction, State Change, and State Queries, revolves around Events,

which is fundamentally different from traditional applications. The primary entity that

represents the state of the various Bounded Contexts of the application is its Aggregate,

so our conversation will primarily revolve around Aggregate State.

Before we get into the implementation, let us talk a bit more about the Event

Sourcing/CQRS patterns and approaches to building applications. We shall also examine

the differences with our previous implementations of these patterns.

278

�Event Sourcing
The Event Sourcing pattern adopts a different approach in storing application state,

retrieving application state, and publishing application state changes within the various

Bounded Contexts of an application.

Before we get into the details of event sourcing, let us look at the traditional approach

of state maintenance.

Traditional applications use “Domain Sourcing or State Sourcing” to store/retrieve

Aggregate state. The concept of domain sourcing is that we construct, modify, or query

Aggregate state using a traditional data storage mechanism (e.g., Relational Databases, NoSQL

Database). Only once the Aggregate state has been persisted do we publish the event onto a

message broker. Our previous implementations have all been based on “Domain Sourcing.”
This is illustrated in Figure 6-1.

Figure 6-1.  Domain-sourced applications with storage of application state in
traditional datastores

Chapter 6 Cargo Tracker: Axon Framework

279

Domain-sourced applications are fairly straightforward in usage since they use the

traditional mechanisms of storing and retrieving state. The state of an Aggregate within the

various Bounded Contexts is stored as is whenever there is an operation on the Aggregate,

for example, when we Book a New Cargo, a new cargo is created, and the details of the new

cargo are stored in the corresponding CARGO table in the database (in our case a Database

Schema within the Booking Bounded Context). We raise a New Cargo Booked Event which

is pushed onto a traditional message broker which can be subscribed by any other bounded

context. We use a dedicated message broker onto which these events are published.

On the other hand, Event Sourcing works exclusively with events that occur on

Aggregates. Every change of state of an Aggregate is captured as an event, and only the event

is persisted instead of the whole Aggregate Instance with payload as the Aggregate Instance.

Again to reemphasize, we only store the event and not the
aggregate as a whole.

Let us walk through an example to explain this as illustrated in Figure 6-2.

Figure 6-2.  Cargo Booking use case using Event Sourcing

As depicted, at the end of the “Book New Cargo” operation, we persist only the

“Cargo Booked Event” and not the Cargo Aggregate Instance. The event is persisted in

a specialized purpose-built Event Store. The event store in addition to acting as the

persistence store for events also needs to double up as an Event Router, that is, it should

make the persisted event available to interested subscribers.

Chapter 6 Cargo Tracker: Axon Framework

280

Similarly, when the state of the Aggregate needs to be updated, we utilize a very

different approach. The steps are outlined as follows:

•	 We need to load the set of events that occurred on that particular

Aggregate instance from the event store.

•	 We replay it on the Aggregate instance to get to the current state.

•	 We update (not persist) the Aggregate State based on the operation.

•	 We persist only the updated event.

Let us walk through an example again to explain this as illustrated in Figure 6-3.

Figure 6-3.  Cargo Routing use case using Event Sourcing

As illustrated, when we want to route a cargo, we first retrieve the set of events that

have occurred for a specific cargo based on its identifier (Booking Id), replay the events

that have occurred till date on that specific Cargo Aggregate instance, update the Cargo

Aggregate with the route that it is supposed to take, and finally publish only the Cargo

Routed Event. Again, this is quite a different approach from how traditional applications

would deal with modification of state.

Figure 6-4 depicts the records of the Event store at the end of the two operations on

the Cargo Aggregate.

Chapter 6 Cargo Tracker: Axon Framework

281

Figure 6-4.  Event Store data after two operations on the Cargo Aggregate

The Event Sourcing pattern advocates a radical way of managing Aggregate state

within a Bounded Context using a purely Event-based approach.

So then, how do we generate these Events? If we only persist Events, how do we get

the state of the Aggregate? That is where the CQRS (Command/Query Responsibility
Segregation) principle comes into play.

Event Sourcing is primarily used in conjunction with CQRS with the Command Side

used to generate Aggregate Events and the Query Side used to query Aggregate State.

�CQRS
The Command/Query Responsibility Segregation principle is essentially an application

development pattern that exhorts the segregation between operations that update state

and operations that query state.

Essentially, CQRS advocates usage of

Commands to update the state of various application objects

(Aggregate within a Bounded Context)

Queries to query the state of the various application objects

(Aggregate within a Bounded Context)

We have already implemented variations of the CQRS pattern in our previous

chapters utilizing Jakarta EE, Spring Boot, and Eclipse MicroProfile.

Chapter 6 Cargo Tracker: Axon Framework

282

Figure 6-5 depicts our previous implementations of CQRS.

Figure 6-5.  Our previous CQRS implementations

The implementations were based on a shared approach, that is, Commands and

Queries had a shared model (e.g., the Cargo Aggregate itself processed Commands and

served Queries). We utilized Domain Sourcing, that is, state was persisted and retrieved

as is within a traditional database.

When we need to use CQRS along with Event Sourcing, things get a bit different. In

this approach, Commands and Queries will have

•	 Separate models

•	 Separate code flows

•	 Separate interfaces

•	 Separate logical processes

•	 Separate persistent storage

Chapter 6 Cargo Tracker: Axon Framework

283

This is depicted in Figure 6-6.

Figure 6-6.  CQRS with ES segregated model

As seen in the illustration, within a Bounded Context, Commands/Queries have their

own set of interfaces, models, processes, and storage. The Command side processes
Commands to modify Aggregate State. This results in Events which are persisted and

subscribed by the Query Side to update a Read Model. The Read Model is a projection

of the state of the Application, targeted at a specific audience, with a specific information

requirement. These Events can be subscribed to by other Bounded Contexts.

Figure 6-7 brings CQRS and ES together.

Chapter 6 Cargo Tracker: Axon Framework

284

To summarize, applications built using Event Sourcing and CQRS

•	 Have Events as first-class citizens

•	 Use a Command Model which updates the state of Aggregates and

generates Events

•	 Store Events rather than direct application state in a purpose-built

Event Store.

Figure 6-7.  CQRS with Event Sourcing

Chapter 6 Cargo Tracker: Axon Framework

285

The event store also doubles up as an Event Router which makes the

persisted events available to interested subscribers

•	 Provide a Read Model/Projection of the Aggregate state via a Query
Model which is updated by subscribing to state change events.

Applications utilizing this pattern are tailor-made for building event-driven

microservices applications.

Before we embark on the implementation, here is an introduction to the Axon

Framework.

�The Axon Framework
The framework was first released in 2010 as a pure open source CQRS/ES framework.

The framework has significantly evolved over the past years and in addition to

the core framework offers a server option which includes an Event Store and an

Event Router. Axon’s core framework coupled with the server abstracts the complex

infrastructural concerns required in implementing CQRS/ES patterns and helps

enterprise developers focus only on the business logic.

Implementing an architecture based on Event Sourcing is extremely complex and

difficult to achieve. There seems to be a growing tendency to implement event stores

utilizing streaming platforms (e.g., Kafka). The downside to this is the significant custom

effort involved in implementing event sourcing features which these streaming platforms

do not provide (they were meant to be streaming platforms after all, not event sourcing

platforms!). Axon shines in this area, and its feature set helps applications adopt CQRS/

ES patterns with ease.

The icing on the cake is that it adopts DDD as the fundamental building block

for building out applications. With the recent push among enterprises to adopt a

microservices architectural style, Axon with its approach of combining DDD and CQRS/

ES patterns provides a robust and feature-complete solution for customers to build

event-driven microservices.

Chapter 6 Cargo Tracker: Axon Framework

286

�Axon Components
At a high level, Axon provides the following components:

•	 Axon Framework, Domain Model - A core framework that helps you

build a domain model centered on DDD, Event Sourcing, and CQRS

patterns

•	 Axon Framework, Dispatch Model – Logical infrastructure to

support the domain model mentioned earlier, that is, the routing and

coordination of commands and queries that deal with the state of the

Domain Model

•	 Axon Server – Physical infrastructure to support the Domain/

Dispatch Model mentioned earlier.

This is illustrated in Figure 6-8.

Chapter 6 Cargo Tracker: Axon Framework

287

We could always choose an external infrastructure in place of Axon server as

depicted above, but this would mean implementing a set of features that are available

out of the box with Axon server.

We will take a whirlwind tour of the Axon Framework components in the following.

As part of the implementation of the Domain Model for Cargo Tracker, we will be deep

diving into them again, so for now just read through the section to get a broad idea of

these components.

Figure 6-8.  Axon Framework components

Chapter 6 Cargo Tracker: Axon Framework

288

�Axon Framework Domain Model Components
�Aggregates

The centerpiece of any Bounded Context’s domain model, Axon provides first-

class support for defining and developing DDD Aggregates. In Axon, Aggregates are

implemented as regular POJOs which contain state and methods to alter that state.

The POJOs are marked with a Stereotype Annotation (@Aggregate) to specify them as

Aggregates.

In addition, Axon provides support for Aggregate Identification/Command Handling

(change of state) within the Aggregates and loading of these Aggregates from an Event

Store (Event Sourcing). The support is provided utilizing specific Stereotype Annotations

(@AggregateIdentifier, @CommandHandler, @EventSourcingHandler).

�Commands/Command Handlers

Commands carry the intent to change the state of the Aggregates within the various

Bounded Contexts.

Axon provides first-class support for handling Commands via Command Handlers.

Command Handlers are routines which are placed in an aggregate; and they take a

specific Command, that is, the state change intent as the main input. While the actual

Command classes are implemented as regular POJOs, the Command Handler support

is provided via stereotype annotations (@CommandHandler) which are placed on the

Aggregate. Axon also supports placing of these commands in an external class (External

Command Handler) in case it is required. Command Handlers are also responsible

for raising the domain events and delegating these events to the event store/router

infrastructure of Axon.

�Events/Event Handlers

The processing of Commands on Aggregates always results in the generation of Events.

Events notify the change of state of an Aggregate within the Bounded Context to

interested subscribers. Event classes themselves are implemented as regular POJOs with

no specific annotations required. Aggregates use lifecycle methods that Axon provides

to push the events out to the event store and subsequently the event router after the

processing of a Command.

Chapter 6 Cargo Tracker: Axon Framework

289

Consumption of Events is handled via “Event Handlers” that subscribe to the

events they are interested in. Axon provides a stereotype annotation “@EventHandler”

which is placed on routines within regular POJOs which enables the consumption and

subsequent processing of events.

�Query Handlers

Queries carry the intent to retrieve the state of aggregates within our Bounded Contexts.

Queries in Axon are handled by Query Handlers via the @QueryHandler annotation

which is placed on regular POJOs. Query Handlers rely on the Read Model/Projection

data storage to retrieve Aggregate state. They use traditional frameworks (e.g., Spring

Data, JPA) to execute the Query requests.

�Sagas

The Axon Framework provides first-class support for both Choreography-Based Sagas
and Orchestration-based Sagas. To quickly recap, choreography-based sagas rely on

Events being raised and subscribed by the various Bounded Contexts that participate in

a Saga. On the other hand, orchestration-based Sagas rely on a central component that is

responsible for event coordination among the various Bounded Contexts that participate

in a Saga. Choreography-based sagas are achieved through regular Event Handlers

provided by the Axon Framework. The Axon Framework provides a comprehensive

implementation to support Orchestration-based Sagas.

This includes the following:

•	 Lifecycle Management (Start/End Sagas via corresponding

annotations, Saga Managers)

•	 Event Handling (via @SagaEventHandler annotation)

•	 Saga state storage with support for multiple implementations (JDBC,

Mongo, etc.)

•	 Association Management across multiple services

•	 Deadline Handling

This completes the Domain Model components available within the Axon

Framework. Let us talk a bit about the Dispatch Model components available within

Axon.

Chapter 6 Cargo Tracker: Axon Framework

290

�Axon Dispatch Model Components

The Dispatch Model of Axon is important to understand while building Axon-based

applications. To recap, any Bounded Context participates in four types of operations:

•	 Handle Commands to change state

•	 Handle Queries to retrieve state

•	 Publish Events/consume Events

•	 Saga(s)

Axon’s dispatch model provides the necessary infrastructure to enable Bounded

Contexts to participate in these operations, for example, when a command is sent to

a Bounded Context, it is the dispatch model that ensures that the Command is routed

correctly to the corresponding Command Handler within that Bounded Context.

Let us walk through the Dispatch Model in more detail.

�Command Bus

Commands which are sent to the Bounded Context need to be processed by Command

Handlers. The Command Bus/Command Gateway helps in dispatching of Commands to

their corresponding Command Handlers for processing.

To expand

–– CommandBus – An Axon infrastructure component which routes the

Command to the corresponding CommandHandler.

–– CommandGateway – An Axon infrastructure utility component which is

a wrapper around the CommandBus. Utilizing the CommandBus requires

us to create repeatable code for every command dispatching (e.g.,

CommandMessage creation, CommandCallback routines). Using the

CommandGateway helps in eliminating a lot of the boilerplate code.

We will come back to the implementation in the subsequent sections

of this book.

Chapter 6 Cargo Tracker: Axon Framework

291

Axon provides multiple implementations of the CommandBus:

•	 SimpleCommandBus

•	 AxonServerCommandBus

•	 AsynchronousCommandBus

•	 DisruptorCommmandBus

•	 DistributedCommandBus

•	 RecordingCommandBus

For our implementation, we shall use AxonServerCommandBus, an implementation

which utilizes Axon Server as the dispatching mechanism for the various commands.

A summary of the implementation is shown in Figure 6-9.

Figure 6-9.  Axon Server Command Bus implementation

Chapter 6 Cargo Tracker: Axon Framework

292

�Query Bus

Similar to Commands, Queries which are sent to the Bounded Context need to be

processed by Query Handlers. The Query Bus/Query Gateway helps in dispatching of

Queries to their corresponding Query Handlers for processing:

•	 QueryBus – An Axon infrastructure component which routes the

Query to the corresponding QueryHandler.

•	 QueryGateway – An Axon infrastructure utility component which is a

wrapper around the QueryBus. Utilizing the QueryGateway eliminates

the boilerplate code.

Axon provides multiple implementations of the Query Bus:

•	 SimpleQueryBus

•	 AxonServerQueryBus

For our implementation purpose, we shall use AxonServerQueryBus, an

implementation which utilizes Axon Server as the dispatching mechanism for the

various Queries.

A summary of the implementation is shown in Figure 6-10.

Figure 6-10.  Axon Server Query Bus implementation

Chapter 6 Cargo Tracker: Axon Framework

293

�Event Bus

Event Bus is the mechanism that receives events from Command Handlers and

dispatches them to the corresponding Event Handlers which could be any other

Bounded Context interested in that event. Axon provides three implementations of the

Event Bus:

•	 AxonServerEventStore

•	 EmbeddedEventStore

•	 SimpleEventBus

For our implementation, we will utilize the AxonServerEventStore. Figure 6-11 depicts

the Event Bus mechanism within Axon.

Figure 6-11.  Axon Server Event Bus implementation

Chapter 6 Cargo Tracker: Axon Framework

294

�Sagas

As stated earlier, Axon Framework provides support for both orchestration-based

and choreography-based Sagas. Implementation of choreography-based sagas is

straightforward in the sense that Bounded Contexts participating in a particular Saga will

raise and subscribe to events directly similar to regular event processing.

On the other hand, in orchestration-based Sagas, the lifecycle coordination happens

through a central component. This central component is responsible for Saga creation,

coordination of the flow across the various Bounded Contexts participating in the Saga,

and finally the Saga Termination itself. The Axon Framework provides a component

SagaManager for this. Similarly, orchestration-based sagas require state storage to

store and retrieve Saga instances. There are various storage implementations that the

Axon Framework supports (JPA, In-Memory, JDBC and Mongo, Axon Server). For our

implementation, we will use the Saga storage provided by Axon Server itself. Axon

applies sensible defaults here too and will automatically configure a Saga Manager and

Axon Server as the state storage mechanism when we create a Saga.

Figure 6-12 depicts the Orchestration-Based Saga mechanism within our

implementation.

Chapter 6 Cargo Tracker: Axon Framework

295

Figure 6-12.  Axon’s Orchestration based saga approach

Chapter 6 Cargo Tracker: Axon Framework

296

�Axon Infrastructure Components: Axon Server
Axon Server provides the physical infrastructure necessary to support the Dispatch

Model. Broadly, Axon Server has two main components:

•	 An Event Store based on H2 (used for storage of configuration) and a

file system (used for storage of event data)

•	 A Messaging Router for the Events flowing through the system

Here is a quick summary of its features:

•	 Built-in Messaging Router with support for advanced messaging

patterns (Sticky Command Routing, Message Throttling, QoS)

•	 Purpose-built Event Store with an inbuilt Database (H2)

•	 High Availability/Scalability Capabilities (Clustering)

•	 Security Controls

•	 UI Console

•	 Monitoring/Metrics Capabilities

•	 Data Management Capabilities (Backup, Tuning, Versioning)

Axon Server is built using Spring Boot and is distributed as a regular JAR file (current

version is at axonserver-4.1.2). It utilizes its own file-system based storage engine as the

event store database and is available for download at www.axoniq.io.

Bringing up the server is as simple as running it as a traditional JAR file. Listing 6-1

demonstrates this:

Listing 6-1.  Command to bring up the Axon server

java -jar axonserver-4.1.2.jar

This brings up Axon Server, and its console can be accessed at http://

localhost:8024. Figure 6-13 depicts the Dashboard as part of the UI console provided

by Axon Server.

Chapter 6 Cargo Tracker: Axon Framework

http://www.axoniq.io

297

The Console provides capabilities to monitor and manage your Axon Server. Let us

go through a quick overview of these. As we progress through the implementation, we

will start seeing these in more detail.

Settings – This is the landing page of the Server Dashboard. It contains all the details

of the Configurations, Status of the various operations, and License/Security Details. A

short note here: Axon supports both HTTP and gRPC as inbound protocols.

Overview – This page provides a visual graphic of Axon Server and the application

instances that connect to it. As of now, since we have not built any applications yet, it

depicts only the main server as illustrated in Figure 6-14.

Figure 6-13.  Axon Server Console

Chapter 6 Cargo Tracker: Axon Framework

298

Search – This page provides a visual representation of the underlying Event Store.

Axon also provides a query language to help query the Event Store. Figure 6-15 depicts

this.

Figure 6-15.  Axon Query Console along with a Query DSL

Figure 6-14.  Axon Server visual display

Results of searching are depicted in Figure 6-16.

Chapter 6 Cargo Tracker: Axon Framework

299

Users – This page provides the capability to add/delete users along with their

corresponding roles (ADMIN/USER) to access Axon server. This is depicted in Figure 6-17.

Figure 6-16.  Axon Query Console search results

Figure 6-17.  Axon Query user administration

Chapter 6 Cargo Tracker: Axon Framework

300

To summarize

Axon offers a pure play implementation for applications wanting

to utilize CQRS/Event Sourcing, Event-Driven Microservices, and

DDD as the fundamental architectural patterns.

Axon provides a Domain Model/Dispatch Model (Axon

Framework) and a supporting event store/messaging router

infrastructure (Axon Server) to help build CQRS/ES-based

applications.

Axon puts events and event sourcing as the fundamental blocks for

building event-driven microservices applications utilizing CQRS/ES.

Axon provides an Administrative console to Query, Secure, and

Administer Event Data.

With the capabilities of Axon covered, let us step into the implementation details of

Cargo Tracker.

�Cargo Tracker with Axon
Our implementation of the Cargo Tracker Application will be based on an event-driven

microservices architecture utilizing Axon’s core framework (Axon Framework) and

Axon’s infrastructure (Axon Server).

Axon Framework provides first-class support for Spring Boot as the underlying

technology to build and run the various Axon artifacts. While it is not necessary to use

Spring Boot, with the support that Axon provides, it becomes extremely easy to configure

the components using Spring Boot’s auto-configuration capabilities.

�Bounded Contexts with Axon
For our microservices implementations, we adopt the approach of splitting the Cargo

Tracker application into four Bounded Contexts with each Bounded Context containing

a set of microservices. We adopt the same approach for splitting the Application within

the Axon implementation too.

Figure 6-18 depicts our four Bounded Contexts.

Chapter 6 Cargo Tracker: Axon Framework

301

While the approach of splitting is the same as our previous microservices

implementations, we are going to implement a lot of aspects very differently than what

we have done before. Each of our Bounded Contexts is going to split into a Command

Side and a Query Side. The Command side of a Bounded Context handles any state

change requests for the Aggregate of the Bounded Context. The Command side also

generates and publishes the Aggregate state changes as Events. The Query side of each

Bounded Context provides a Read Model/Projection of the Aggregate’s current state

utilizing a separate persistence storage. This Read Model/Projection is updated by the

Query side by subscribing to the state change events.

An overall summary is depicted in Figure 6-19.

Figure 6-18.  The Bounded Contexts within the Cargo Tracker Application

Chapter 6 Cargo Tracker: Axon Framework

302

Figure 6-19.  Bounded Contexts – Command Side and the Query Side

Chapter 6 Cargo Tracker: Axon Framework

303

�Bounded Contexts: Artifact Creation
Each Bounded Context has its own deployable artifact. Each of these Bounded Contexts

contain a set of microservice(s) which can be developed, deployed, and scaled

independently. Each artifact is built as an Axon + Spring Boot fat JAR file which has all

the required dependencies and the runtime required for it to run independently.

The artifact summary is depicted in Figure 6-20.

Figure 6-20.  Bounded Contexts – mapped to their microservices artifacts

To get started with Axon, the first step is to create a regular Spring Boot application

with the following dependencies: spring-web and spring-data-jpa.

Figure 6-21 depicts the creation of the booking microservices utilizing the Initializr

project from Spring Boot (start.spring.io).

Chapter 6 Cargo Tracker: Axon Framework

304

We have created the project with the following:

•	 Group – com.practicalddd.cargotracker

•	 Artifact – bookingms

•	 Dependencies – Spring Web Starter, Spring Data JPA

Axon leverages Spring Boot’s auto-configuration capabilities to configure its

components. To enable this integration, we simply add the dependency of “axon-
spring-boot-starter” to our Boot project’s pom file. Once this dependency is available,

the axon-spring-boot-starter will automatically configure the dispatch model

(Command Bus, Query Bus, Event Bus) and the Event Store.

The dependency is illustrated in Listing 6-2:

Listing 6-2.  Dependencies for Axon spring boot starter

<dependency>

 <groupId>org.axonframework</groupId>

 <artifactId>axon-spring-boot-starter</artifactId>

 <version>4.1.1</version>

</dependency>

Figure 6-21.  Booking Microservices Spring Boot Project with its dependencies

Chapter 6 Cargo Tracker: Axon Framework

305

Axon uses sensible defaults to configure Axon Server as the dispatch model

infrastructure and the event store. This does not need to be explicitly included in any of

our Spring Boot configuration or source files. Just adding the dependency mentioned in

Listing 6-2 auto-configures Axon Server as the implementation for the dispatch model

infrastructure in addition to it being the event store.

The anatomy of an Axon Spring Boot application is summarized in Figure 6-22.

Figure 6-22.  Anatomy of a Spring Boot application

�Bounded Contexts: Package Structure
The first step in implementing the Bounded Contexts is to arrive at a logical grouping

of the various Axon artifacts into a deployable artifact. The logical grouping involves

identifying a package structure where we place the various Axon artifacts to achieve our

overall solution for the Bounded Context.

The high-level package structure for any of our Bounded Context (Command

Side, Query Side) is depicted in Figure 6-23. As seen, there is no change from our

previous implementations as the CQRS/ES pattern fits in beautifully with the hexagonal

architecture that we laid out in Chapter 2 (Figure 2-9).

Chapter 6 Cargo Tracker: Axon Framework

306

Let us expand the package structure a bit taking our Booking Bounded Contexts

(Booking Command Side Bounded Context, Booking Query Side Bounded Context) as

examples.

�interfaces

This package encloses all the inbound interfaces to our bounded context classified by

the communication protocol. The main purpose of interfaces is to negotiate the protocol

on behalf of the Domain Model (e.g., REST API(s), WebSocket(s), FTP(s), Custom

Protocol).

As an example, the Booking Command Bounded Context provides REST APIs

for sending Commands to it (e.g., Book Cargo Command, Update Cargo Command).

Similarly, the Booking Query Bounded Context provides REST APIs for sending Queries

to it (e.g., Retrieve Cargo Booking Details, List all Cargos). This is grouped into the

“rest” package. It also has Event Handlers which subscribe to the various Events that are

generated by Axon. All Event Handlers are grouped into the “eventhandlers” package.

Figure 6-23.  Bounded Contexts – Package Structure

Chapter 6 Cargo Tracker: Axon Framework

307

In addition to these two packages, the interface package also contains the “transform”

package. This is used to translate the incoming API Resource/Event data to the

corresponding Command/Query model.

The Interface package structure is illustrated in Figure 6-24. It is the same

irrespective of whether it is a Command or Query project.

Figure 6-24.  Interface Package Structure

�application

To quickly recap, Application services act as the façade for the Bounded Context’s

domain model. In addition to acting as the façade, within the CQRS/ES pattern,

Application services are responsible for delegating to Axon’s Dispatch Model (Command

Gateway, Query Gateway) invoking the Dispatch Model.

To summarize, Application Services

•	 Participate in Command Dispatching, Query Dispatching, and

Saga(s)

•	 Provide Centralized concerns (e.g., Logging, Security, Metrics) for the

underlying domain model

•	 Make callouts to other Bounded Contexts

Chapter 6 Cargo Tracker: Axon Framework

308

The Application package structure is illustrated in Figure 6-25.

Figure 6-25.  Application package Structure

�domain

This package contains the Bounded Context’s domain model.

The domain model consists of the following:

•	 Aggregate(s)

•	 Aggregate Projections (Read Model)

•	 Commands

•	 Queries

•	 Events

•	 Query Handlers

The Domain package structure is depicted in Figure 6-26.

Chapter 6 Cargo Tracker: Axon Framework

309

�infrastructure

The infrastructure package serves two main purposes:

•	 Infrastructural components required by the Bounded Context’s

Domain model to communicate to any external repositories, for

example, Query Side Bounded Context communicating to the

underlying Read Model repository like a MySQL Database or a

MongoDB Document Store.

•	 Any Axon-specific configuration, for example, for a quick test, we

might want to use an Embedded Event Store rather than Axon

Server’s Event Store. That configuration would be put in the

infrastructure package classes.

Figure 6-26.  Domain model package Structure

Chapter 6 Cargo Tracker: Axon Framework

310

The infrastructure package structure is illustrated in Figure 6-27.

Figure 6-27.  Infrastructure package Structure

Figure 6-28.  Booking Bounded Context Package Structure

Taking the Booking Bounded Context as an example, Figure 6-28 depicts the layout

of the package structure for the Booking Bounded Context.

Chapter 6 Cargo Tracker: Axon Framework

311

Building the Booking Bounded Context application results in a Spring Boot JAR file

(bookingms-1.0.jar). To bring up the Booking Bounded Context Application, we first

bring up Axon Server. We then run the Booking Bounded Context as a regular Spring

Boot JAR file. This is illustrated in Listing 6-3:

Listing 6-3.  Command to bring up the Booking Bounded Context as a spring

boot application

java -jar bookingqueryms-1.0.jar

The axon-spring-boot dependency within will automatically look for the running

Axon server and automatically connect to it. Figure 6-29 depicts the Axon dashboard

showing the Booking Microservices connected to the running Axon server.

Figure 6-29.  Booking Microservices connected to Axon Server and ready to
process Commands/Queries

Chapter 6 Cargo Tracker: Axon Framework

312

This completes the implementation of the Bounded Contexts of our Cargo Tracker

Application based on Microservices and based on the CQRS/ES patterns utilizing the

Axon Framework. Each of our Bounded Contexts is implemented as an Axon Spring

Boot application. The Bounded Contexts are neatly grouped by modules in a package

structure with clearly separated concerns.

The next two sections of this chapter will deal with the implementation of the Axon

Framework–based DDD artifacts of the Cargo Tracker Application – the Domain Model

and the Domain Model Services. The overall layout of the DDD artifacts is depicted in

Figure 6-30.

Figure 6-30.  Axon Framework–based DDD artifacts

�Implementing the Domain Model with Axon
The domain model is the centerpiece of each of our Bounded Contexts representing

the core business functionality. Our implementation of the Domain Model with Axon is

going to be radically different than our previous implementation considering that Axon

follows the DDD/CQRS/ES doctrine very strictly.

Chapter 6 Cargo Tracker: Axon Framework

313

We are going to implement the following set of artifacts for our Domain Model:

•	 Aggregates/Commands

•	 Aggregate Projections (Read Model)/Queries

•	 Events

•	 Sagas

�Aggregates

Aggregates are the centerpiece of our Domain Model within a Bounded Context. In

our implementation since we have adopted the CQRS pattern, we have two Bounded

Contexts per sub-domain, one for the Command Side and one for the Query Side. We are

going to primarily have Aggregates for the Command Side Bounded Context, while we

will maintain Aggregate Projections for the Query Side Bounded Context.

Figure 6-31 depicts the Aggregates for each of our Command Side Bounded Contexts.

Figure 6-31.  Aggregates for each of our Command Side Bounded Contexts

Chapter 6 Cargo Tracker: Axon Framework

314

Implementation of an Aggregate Class covers the following aspects:

•	 Aggregate Class Implementation

•	 State

•	 Command Handling

•	 Event Publishing

•	 State Maintenance

Axon provides first-class support for building Aggregate classes using Stereotype
Annotations. The first step in implementing the Aggregate is to take a regular POJO and

mark it with the Axon-provided @Aggregate Annotation. This annotation indicates to

the framework that it is the Aggregate class within the Bounded Context.

As before, we will walk through the implementation of the Cargo Aggregate which is

the Aggregate for the Booking Command Side Bounded Context example.

Listing 6-4 shows the first step of implementing the Cargo Aggregate:

Listing 6-4.  Cargo Aggregate using Axon annotations

package com.practicalddd.cargotracker.bookingms.domain.model;

import org.axonframework.spring.stereotype.Aggregate;

@Aggregate //Axon provided annotation for marking Cargo as an Aggregate

public class Cargo {

}

The next step is to provide uniqueness to the Aggregate, that is, the key to identify the

Aggregate instance. Having an Aggregate Identifier is mandatory as the framework utilizes it

to identify which instance of an Aggregate needs to be targeted when a particular Command

needs to be processed. Axon provides a Stereotype Annotation (@AggregateIdentifier) to

identify a particular field of the Aggregate as the Aggregate Identifier.

Continuing with our example of the Cargo Aggregate, the Booking Identifier (or

BookingId) is our Aggregate Identifier as depicted in Listing 6-5:

Listing 6-5.  Aggregate Identifier implementation using Axon annotations

package com.practicalddd.cargotracker.bookingms.domain.model;

import org.axonframework.spring.stereotype.Aggregate;

import org.axonframework.modelling.command.AggregateIdentifier;

Chapter 6 Cargo Tracker: Axon Framework

315

@Aggregate //Axon provided annotation for marking Cargo as an Aggregate

public class Cargo {

 �@AggregateIdentifier //Axon provided annotation for marking the

Booking ID as the Aggregate Identifier

 private String bookingId;

}

The final step in the implementation is to provide a no-args constructor. This is

required by the framework primarily during operations to update the Aggregate. Axon

will use the no-args constructor to create an empty Aggregate Instance and then play

all the past events that occurred on that Aggregate instance to arrive at the current

and latest state. We will touch upon this topic in detail later in the section on State

Maintenance. For now, let us place it in the Aggregate implementation.

Listing 6-6 demonstrates the addition of the no-args constructor to the Aggregate

implementation:

Listing 6-6.  Cargo Aggregate constructor

package com.practicalddd.cargotracker.bookingms.domain.model;

import org.axonframework.spring.stereotype.Aggregate;

import org.axonframework.modelling.command.AggregateIdentifier;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.lang.invoke.MethodHandles;

@Aggregate //Axon provided annotation for marking Cargo as an Aggregate

public class Cargo {

 �private final static Logger logger = LoggerFactory.

getLogger(MethodHandles.lookup().lookupClass());

 �@AggregateIdentifier //Axon provided annotation for marking the

Booking ID as the Aggregate Identifier

 private String bookingId;

 protected Cargo() { //Empty no-args constructor

 logger.info("Empty Cargo created.");

 }

The Aggregate class implementation is depicted in Figure 6-32. The next step is to

Add State.

Chapter 6 Cargo Tracker: Axon Framework

316

�State

We discussed about Domain-Rich Aggregates vs. Anemic aggregates in our Jakarta EE

implementation in Chapter 3. DDD recommends having Domain-Rich Aggregates,

which convey the state of the bounded context using Business Concepts.

Let us walk through the case of our Cargo root aggregate class within the Booking

Command Bounded Context. The essence of DDD is to capture the state of an Aggregate

as attributes depicted using Business Terms rather than Technical Terms.

Translating state to business concepts, the Cargo Aggregate has the following

attributes:

•	 Origin Location of the cargo

•	 Booking Amount

•	 Route specification (Origin Location, Destination Location,

Destination Arrival Deadline)

•	 Itinerary that the cargo is assigned to based on the Route

Specification. The Itinerary consists of multiple Legs that the cargo

might be routed through to get to the destination.

Figure 6-33 depicts the UML class diagram for the Cargo Aggregate with its

corresponding associations.

Figure 6-32.  Aggregate Class implementation

Chapter 6 Cargo Tracker: Axon Framework

317

Let us include these attributes in the Cargo Aggregate. These attributes are

implemented as regular POJOs with a strong associative relationship with the Aggregate.

Listing 6-7 shows the main listing of the Cargo Aggregate Object:

Listing 6-7.  Cargo Aggregate implementation

package com.practicalddd.cargotracker.bookingms.domain.model;

import java.lang.invoke.MethodHandles;

import org.axonframework.modelling.command.AggregateIdentifier;

import org.axonframework.spring.stereotype.Aggregate;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

@Aggregate

public class Cargo {

 �private final static Logger logger = LoggerFactory.

getLogger(MethodHandles.lookup().lookupClass());

 @AggregateIdentifier

 private String bookingId; // Aggregate Identifier

 private BookingAmount bookingAmount; //Booking Amount of the Cargo

Figure 6-33.  Class diagram for the Cargo Aggregate

Chapter 6 Cargo Tracker: Axon Framework

318

 private Location origin; //Origin Location of the Cargo

 private RouteSpecification routeSpecification; �//Route Specification of

the Cargo

 private Itinerary itinerary; //Itinerary Assigned to the Cargo

 protected Cargo() { logger.info("Empty Cargo created);}

}

Listing 6-8 shows the Booking Amount Business Object:

Listing 6-8.  Booking Amount Business Object

package com.practicalddd.cargotracker.bookingms.domain.model;

/**

 * Booking Amount Implementation of the Cargo

 */

public class BookingAmount {

 private int bookingAmount;

 public BookingAmount() {}

 public BookingAmount(int bookingAmount) {

 this.bookingAmount = bookingAmount;

 }

}

Listing 6-9 shows the Location Business Object:

Listing 6-9.  Location Business Object

 package com.practicalddd.cargotracker.bookingms.domain.model;

/**

 * Location class represented by a unique 5-digit UN Location code.

 */

public class Location {

 private String unLocCode; //UN location code

 public Location(String unLocCode){this.unLocCode = unLocCode;}

 public void setUnLocCode(String unLocCode){this.unLocCode = unLocCode;}

 public String getUnLocCode(){return this.unLocCode;}

}

Chapter 6 Cargo Tracker: Axon Framework

319

Listing 6-10 shows the Route Specification Business Object:

Listing 6-10.  Route Specification Business Object

package com.practicalddd.cargotracker.bookingms.domain.model;

import java.util.Date;

/**

 * �Route specification of the Cargo - Origin/Destination and the Arrival

Deadline

 */

public class RouteSpecification {

 private Location origin;

 private Location destination;

 private Date arrivalDeadline;

 �public RouteSpecification(Location origin, Location destination, Date

arrivalDeadline) {

 this.setOrigin(origin);

 this.setDestination(destination);

 this.setArrivalDeadline((Date) arrivalDeadline.clone());

 }

 public Location getOrigin() { return origin; }

 public void setOrigin(Location origin) { this.origin = origin; }

 public Location getDestination() { return destination; }

 �public void setDestination(Location destination) { this.destination =

destination; }

 public Date getArrivalDeadline() { return arrivalDeadline; }

 �public void setArrivalDeadline(Date arrivalDeadline) { this.

arrivalDeadline = arrivalDeadline; }

}

Listing 6-11 shows the Itinerary Business Object of the cargo:

Listing 6-11.  Itinerary Business Object

package com.practicalddd.cargotracker.bookingms.domain.model;

import java.util.Collections;

import java.util.List;

Chapter 6 Cargo Tracker: Axon Framework

320

/**

 * �Itinerary assigned to the Cargo. Consists of a set of Legs that the

Cargo will go through as part of its journey

 */

public class Itinerary {

 private List<Leg> legs = Collections.emptyList();

 public Itinerary() {}

 public Itinerary(List<Leg> legs) {

 this.legs = legs;

 }

 public List<Leg> getLegs() {

 return Collections.unmodifiableList(legs);

 }

}

Listing 6-12 shows the Leg Business Object of the cargo:

Listing 6-12.  Leg Business Object

package com.practicalddd.cargotracker.bookingms.domain.model;

/**

 * Leg of the Itinerary that the Cargo is currently on

 */

public class Leg {

 private String voyageNumber;

 private String fromUnLocode;

 private String toUnLocode;

 private String loadTime;

 private String unloadTime;

 public Leg(

 String voyageNumber,

 String fromUnLocode,

 String toUnLocode,

 String loadTime,

 String unloadTime) {

 this.voyageNumber = voyageNumber;

 this.fromUnLocode = fromUnLocode;

Chapter 6 Cargo Tracker: Axon Framework

321

 this.toUnLocode = toUnLocode;

 this.loadTime = loadTime;

 this.unloadTime = unloadTime;

 }

 public String getVoyageNumber() {

 return voyageNumber;

 }

 public String getFromUnLocode() {

 return fromUnLocode;

 }

 public String getToUnLocode() {

 return toUnLocode;

 }

 public String getLoadTime() { return loadTime; }

 public String getUnloadTime() {

 return unloadTime;

 }

 �public void setVoyageNumber(String voyageNumber)

{ this.voyageNumber = voyageNumber; }

 �public void setFromUnLocode(String fromUnLocode)

{ this.fromUnLocode = fromUnLocode; }

 �public void setToUnLocode(String toUnLocode)

{ this.toUnLocode = toUnLocode; }

 public void setLoadTime(String loadTime) { this.loadTime = loadTime; }

 �public void setUnloadTime(String unloadTime)

{ this.unloadTime = unloadTime; }

 @Override

 public String toString() {

 �return "Leg{" + "voyageNumber=" + voyageNumber + ", from=" +

fromUnLocode + ", to=" + toUnLocode + ", loadTime=" + loadTime + ",

unloadTime=" + unloadTime + '}';

 }

}

Chapter 6 Cargo Tracker: Axon Framework

322

Aggregate state implementation is depicted in Figure 6-34. The next step is to

Handle Commands.

Figure 6-34.  Aggregate State implementation

�Command Handling

Commands instruct the Bounded Context to change its state, specifically the Aggregate

(or any other identified Entities), within the Bounded Context. Implementing Command

Processing involves the following:

•	 Identification/implementation of Commands

•	 Identification/implementation of Command Handlers to process

Commands

Identification of Commands

Identification of Commands revolves around any operation that affects the state of the

Aggregate. For example, the Booking Command Bounded Context has the following

operations or commands:

•	 Book a Cargo

•	 Route a Cargo

•	 Change Destination of a Cargo

All three commands result in a change of state of the Cargo Aggregate within the

Bounded Context.

Implementation of Commands

Implementing the identified Commands within Axon is done using regular POJOs. The

only requirement for an Axon Command object is that while processing the Command,

the Axon Framework needs to know which instance of an Aggregate does this particular

Chapter 6 Cargo Tracker: Axon Framework

323

Command needs to be processed on. This is done by utilizing an Axon Annotation

@TargetAggregateIdentifier. As the name suggests, while processing a Command, the

Axon Framework knows the target Aggregate Instance on which the Command needs to

be processed.

Let’s look at an example. Listing 6-13 shows the BookCargoCommand class which is

the implementation of the Book Cargo Command:

Listing 6-13.  BookCargoCommand implementation

package com.practicalddd.cargotracker.bookingms.domain.commands;

import org.axonframework.modelling.command.TargetAggregateIdentifier;

import java.util.Date;

/**

 * Implementation Class for the Book Cargo Command

 */

public class BookCargoCommand {

 @TargetAggregateIdentifier �//Identifier to indicate on which Aggregate

does the Command needs to be processed on

 private String bookingId; �//Booking Id which is the unique key of the

Aggregate

 private int bookingAmount;

 private String originLocation;

 private String destLocation;

 private Date destArrivalDeadline;

 public BookCargoCommand(String bookingId, int bookingAmount,

 �String originLocation, String destLocation,

Date destArrivalDeadline){

 this.bookingId = bookingId;

 this.bookingAmount = bookingAmount;

 this.originLocation = originLocation;

 this.destLocation = destLocation;

 this.destArrivalDeadline = destArrivalDeadline;

 }

 public void setBookingId(String bookingId){this.bookingId = bookingId;

}

Chapter 6 Cargo Tracker: Axon Framework

324

 �public void setBookingAmount(int bookingAmount){this.bookingAmount =

bookingAmount;}

 public String getBookingId(){return this.bookingId;}

 public int getBookingAmount(){return this.bookingAmount;}

 public String getOriginLocation() {return originLocation; }

 �public void setOriginLocation(String originLocation)

{this.originLocation = originLocation; }

 public String getDestLocation() { return destLocation; }

 �public void setDestLocation(String destLocation)

{ this.destLocation = destLocation; }

 public Date getDestArrivalDeadline() { return destArrivalDeadline; }

 �public void setDestArrivalDeadline(Date destArrivalDeadline)

{ this.destArrivalDeadline = destArrivalDeadline; }

}

The BookCargoCommand Class is a regular POJO which has all the necessary

attributes required for processing of the booking of the cargo (Booking ID, Booking

Amount, Origin and Destination Locations, and finally the Arrival Deadline).

The Booking Id represents the uniqueness of the Cargo Aggregate, that is, the

Aggregate Identifier. We annotate the Booking Id field with the Target Aggregate

Identifier Annotation. So every time a Command is sent to the Booking Command

Bounded Context, it will process the Command on the Aggregate Instance identified by

the Booking ID.

It is mandatory for the Aggregate Identifier to be set before the execution of any
Command within Axon as without it, the Axon Framework will not know which
Aggregate instance it needs to deal with.

Identification of Command Handlers

Every Command will have a corresponding Command Handler which needs to process
the Command. The BookCargoCommand will have a corresponding handler which will

take in the BookCargoCommand as an input parameter and process it. The handlers

are typically placed on routines within Aggregates; however, Axon also allows to place

Command Handlers outside of the Aggregates within the Application Services layer.

Chapter 6 Cargo Tracker: Axon Framework

325

Implementation of Command Handlers

Implementation of Command Handlers as stated before involves identifying the routines

within Aggregates that can process the Commands. Axon provides an aptly named

Annotation “@CommandHandler” which is placed on Aggregate routines identified as

the Command Handlers.

Let’s walk through an example of the Booking Command Handler for the

CargoBookingCommand. Listing 6-14 shows the @CommandHandler annotations

placed on the Aggregate Constructors/Regular Routines:

Listing 6-14.  Command handlers within the Cargo aggregate

package com.practicalddd.cargotracker.bookingms.domain.model;

import java.lang.invoke.MethodHandles;

import com.practicalddd.cargotracker.bookingms.domain.commands.

AssignRouteToCargoCommand;

import com.practicalddd.cargotracker.bookingms.domain.commands.

BookCargoCommand;

import com.practicalddd.cargotracker.bookingms.domain.commands.

ChangeDestinationCommand;

import org.axonframework.commandhandling.CommandHandler;

import org.axonframework.modelling.command.AggregateIdentifier;

import org.axonframework.spring.stereotype.Aggregate;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

@Aggregate

public class Cargo {

 �private final static Logger logger = LoggerFactory.

getLogger(MethodHandles.lookup().lookupClass());

 @AggregateIdentifier

 private String bookingId; // Aggregate Identifier

 private BookingAmount bookingAmount; //Booking Amount

 private Location origin; //Origin Location of the Cargo

 �private RouteSpecification routeSpecification; //Route Specification of

the Cargo

 private Itinerary itinerary; //Itinerary Assigned to the Cargo

 protected Cargo() {

Chapter 6 Cargo Tracker: Axon Framework

326

 logger.info("Empty Cargo created.");

 }

 @CommandHandler //Command Handler for the BookCargoCommand. The first

Command sent to an Aggregate is placed on the Aggregate Constructor

 public Cargo(BookCargoCommand bookCargoCommand) {

 //Process the Command

 }

 @CommandHandler //Command Handler for the Route Cargo Command

 public void handle(AssignRouteToCargoCommand assignRouteToCargoCommand)

{

 //Process the Command

}

 @CommandHandler //CommandHandler for the Change Destination Command

 public void handle(ChangeDestinationCommand changeDestinationCommand){

 //Process the Command

}

}

Typically, the first Command sent to an Aggregate is for the creation of the Aggregate

and is placed on the Aggregate Constructor (or known as Command Handling

Constructor).

Subsequent Commands are placed on regular routines within the Aggregate.

RouteCargoCommand and ChangeCargoDestinationCommand are placed on regular

routines within the Cargo Aggregate.

Command Handlers have the Business Logic/Decision making (e.g., validation of the

Command Data that is being processed) to allow subsequent processing and generation

of Events. This is the only responsibility of the Command Handlers: it should not modify
the state of the Aggregate.

Listing 6-15 shows an example within the BookCargoCommand where we validate

the Booking Amount:

Listing 6-15.  Business Logic/Decision making within the Aggregate commands

@CommandHandler

public Cargo(BookCargoCommand bookCargoCommand) {

 �//Validation of the Booking Amount. Throws an exception if it is

negative

Chapter 6 Cargo Tracker: Axon Framework

327

 if(bookCargoCommand.getBookingAmount() < 0){

 �throw new IllegalArgumentException("Booking Amount

cannot be negative");

}

 }

Figure 6-35 depicts the class diagram for the Cargo Aggregate with the corresponding

Commands/Command Handlers.

Figure 6-35.  Cargo Aggregate class diagram

The Command Handler implementation is depicted in Figure 6-36.

Figure 6-36.  Command Handler implementation

The next step is to Publish Events.

Chapter 6 Cargo Tracker: Axon Framework

328

�Event Publishing

Once the Command is processed and we have completed all the Business/Decision

Logic, we need to publish the Event that the Command has been processed, for example,

BookCargoCommand results in the CargoBookedEvent which we need to publish.

Events are always mentioned in the past tense as it indicates that something has

occurred within the Bounded Context.

Event Publishing involves the following steps:

•	 Identification/implementation of Events

•	 Implementation of Event Publishing

Identification/Implementation of Events

Every Command that is being processed will always result in an Event.

The BookCargoCommand will generate the CargoBookedEvent; similarly,

the AssignRouteToCargoCommand will generate the CargoRoutedEvent.

Events convey the state of the Aggregate after a particular Command has been

processed, so it becomes quite important to ensure that they contain all the required

data. Implementation of Event classes is done as POJOs with no stereotype annotations

required.

Listing 6-16 shows the example of the CargoBookedEvent implementation:

Listing 6-16.  CargoBookedEvent implementation

package com.practicalddd.cargotracker.bookingms.domain.events;

import com.practicalddd.cargotracker.bookingms.domain.model.BookingAmount;

import com.practicalddd.cargotracker.bookingms.domain.model.Location;

import com.practicalddd.cargotracker.bookingms.domain.model.

RouteSpecification;

/**

 * Event resulting from the Cargo Booking Command

 */

public class CargoBookedEvent {

 private String bookingId;

 private BookingAmount bookingamount;

 private Location originLocation;

Chapter 6 Cargo Tracker: Axon Framework

329

 private RouteSpecification routeSpecification;

 public CargoBookedEvent(String bookingId,

 BookingAmount bookingAmount,

Location originLocation,

RouteSpecification routeSpecification){

 this.bookingId = bookingId;

 this.bookingamount = bookingAmount;

 this.originLocation = originLocation;

 this.routeSpecification = routeSpecification;

 }

 public String getBookingId(){ return this.bookingId; }

 public BookingAmount getBookingAmount(){ return this.bookingamount; }

 public Location getOriginLocation(){return this.originLocation;}

 �public RouteSpecification getRouteSpecification(){return this.

routeSpecification;}

}

Implementation of Event Publishing

So where do we publish these events? The place where it gets generated, that is, in
the Command Handler. Going back to our implementation in the previous sections,

Command Handlers process the Commands; and once the processing is complete, they

are responsible for publishing the Event of the Command being processed.

The processing of a Command is part of the lifecycle of an Aggregate instance.

The Axon Framework provides the AggregateLifeCycle class which helps in performing

operations during the lifecycle of an Aggregate. This class provides a static function

“apply()” which helps in publishing generated events.

Listing 6-17 shows the snippet of code within the Command Handler for the

BookCargoCommand. After the completion of processing of the Command, the apply()

method is invoked to publish the Cargo Booked Event with the CargoBookedEvent class

the Event payload:

Listing 6-17.  Publishing of the Cargo Booked Event

@CommandHandler

public Cargo(BookCargoCommand bookCargoCommand) {

 logger.info("Handling {}", bookCargoCommand);

Chapter 6 Cargo Tracker: Axon Framework

330

 if(bookCargoCommand.getBookingAmount() < 0){

 �throw new IllegalArgumentException("Booking Amount

cannot be negative");

 }

//Publish the Generated Event using the apply method

 apply(new CargoBookedEvent(bookCargoCommand.getBookingId(),

 �new BookingAmount(bookCargoCommand.

getBookingAmount()),

 �new Location(bookCargoCommand.

getOriginLocation()),

 new RouteSpecification(

 �new Location(bookCargoCommand.

getOriginLocation()),

 �new Location(bookCargoCommand.

getDestLocation()),

 �bookCargoCommand.

getDestArrivalDeadline())));

}

The Event publishing is depicted in Figure 6-37. The next step is to Maintain State.

Figure 6-37.  Event Publishing implementation

�State Maintenance

The most important and critical part during the Event Sourcing process is to understand

how state is maintained and utilized. This section contains some critical concepts related

to state consistency, so we will explain it through examples instead of just plain literature.

We will again rely on the Cargo Booking Example within the Cargo Booking Bounded

Context. To quickly recap until now, we have identified our Aggregate (Cargo), given it an

Identity, processed Commands, and published Events.

To explain the concept of state maintenance, we will add an attribute to our Cargo

Aggregate.

Chapter 6 Cargo Tracker: Axon Framework

331

RoutingStatus – This determines the Routing Status of a booked cargo:

•	 A newly booked cargo will not have a route assigned to it yet as the

cargo company decides the best optimal route (Routing Status –

NOT_ROUTED).

•	 The cargo company decides on the route and assigns the cargo to

that route (Routing Status – ROUTED).

Listing 6-18 depicts the implementation of the RoutingStatus as an Enum:

Listing 6-18.  Routing Status enum implementation

package com.practicalddd.cargotracker.bookingms.domain.model;

/**

 * Enum class for the Routing Status of the Cargo

 */

public enum RoutingStatus {

 NOT_ROUTED, ROUTED, MISROUTED;

 public boolean sameValueAs(RoutingStatus other) {

 return this.equals(other);

 }

}

Event Handling within Aggregates

When an event is published from an Aggregate, the Axon Framework makes that Event
first available to the Aggregate itself. Since an Aggregate is Event Sourced, it relies on

the Events to help maintain its state. This concept is a bit difficult to grasp at first since

we are used to the traditional way of retrieving and maintaining Aggregate state. Simply

put, an Aggregate depends upon an Event Source instead of a traditional source (e.g.,

Database) to maintain its state.

To process an Event that is supplied to it, an Aggregate utilizes an Axon Framework–

provided annotation “@EventSourcingHandler”. This annotation indicates that an

Aggregate is an Event-sourced aggregate and it relies on the supplied event to maintain

its state.

The mechanism of retrieving and maintaining Aggregate state is different for the

first command received by an Aggregate vis-a-vis the subsequent commands it receives.

We will walk through both of these in the example that follows.

Chapter 6 Cargo Tracker: Axon Framework

332

State Maintenance: The First Command

When an Aggregate receives its first command, the Axon Framework recognizes the

same and does not recreate state as the state of that particular Aggregate does not exist.

Commands placed on the constructor (Command Constructors) indicate that this is the

first Command received by the Aggregate.

Let us see how state is maintained in this case.

Listing 6-19 shows all the attributes representing the state of the Cargo Aggregate:

Listing 6-19.  Aggregate Identifier implementation using Axon annotations

@AggregateIdentifier

private String bookingId; // Aggregate Identifier

private BookingAmount bookingAmount; //Booking Amount

private Location origin; //Origin Location of the Cargo

�private RouteSpecification routeSpecification;

//Route Specification of the Cargo

 private Itinerary itinerary; //Itinerary Assigned to the Cargo

 private RoutingStatus routingStatus; �//Routing Status of the Cargo

After the CargoBookedEvent is published in the BookCargoCommandHandler, the

state attributes need to be set. The Axon Framework provides the CargoBookedEvent to

the Cargo Aggregate first. The Cargo Aggregate processes the event to set and maintain

the state attributes.

Listing 6-20 depicts the Cargo Aggregate processing the CargoBookedEvent supplied

to it using the “@EventSourcingHandler” annotation and setting the corresponding

state attributes. It is a hard requirement to set the Aggregate Identifier value (in this case

Booking Id) in the first event that is processed by the Aggregate:

Listing 6-20.  EventSourcing Handler implementation

@EventSourcingHandler �//Annotation indicating that the Aggregate is Event

Sourced and is interested in the Cargo Booked Event

raised by the Book Cargo Command

public void on(CargoBookedEvent cargoBookedEvent) {

 logger.info("Applying {}", cargoBookedEvent);

Chapter 6 Cargo Tracker: Axon Framework

333

//State Maintenance

 �bookingId = cargoBookedEvent.getBookingId();

//Hard Requirement to be set

 bookingAmount = cargoBookedEvent.getBookingAmount();

 origin = cargoBookedEvent.getOriginLocation();

 �routeSpecification = cargoBookedEvent.getRouteSpecification();

routingStatus = RoutingStatus.NOT_ROUTED;

}

The complete implementation is shown in Listing 6-21:

Listing 6-21.  CommandHandler/EventSourcingHandler within the Cargo Aggregate

package com.practicalddd.cargotracker.bookingms.domain.model;

import java.lang.invoke.MethodHandles;

import com.practicalddd.cargotracker.bookingms.domain.commands.BookCargoCommand;

import com.practicalddd.cargotracker.bookingms.domain.events.

CargoBookedEvent;

import org.axonframework.commandhandling.CommandHandler;

import org.axonframework.eventsourcing.EventSourcingHandler;

import org.axonframework.modelling.command.AggregateIdentifier;

import org.axonframework.spring.stereotype.Aggregate;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import static org.axonframework.modelling.command.AggregateLifecycle.apply;;

@Aggregate

public class Cargo {

 �private final static Logger logger = LoggerFactory.

getLogger(MethodHandles.lookup().lookupClass());

 @AggregateIdentifier

 private String bookingId; // Aggregate Identifier

 private BookingAmount bookingAmount; //Booking Amount

 private Location origin; //Origin Location of the Cargo

 �private RouteSpecification routeSpecification;

//Route Specification of the Cargo

 private Itinerary itinerary; //Itinerary Assigned to the Cargo

 private RoutingStatus routingStatus; //Routing Status of the Cargo

Chapter 6 Cargo Tracker: Axon Framework

334

 protected Cargo() { logger.info("Empty Cargo created."); }

 @CommandHandler //First Command to the Aggregate

 public Cargo(BookCargoCommand bookCargoCommand) {

 logger.info("Handling {}", bookCargoCommand);

 if(bookCargoCommand.getBookingAmount() < 0){

 �throw new IllegalArgumentException("Booking Amount cannot be

negative");

 }

 apply(new CargoBookedEvent(bookCargoCommand.getBookingId(),

 �new BookingAmount(bookCargoCommand.

getBookingAmount()),

 �new Location(bookCargoCommand.

getOriginLocation()),

 new RouteSpecification(

 �new Location(bookCargoCommand.

getOriginLocation()),

 �new Location(bookCargoCommand.

getDestLocation()),

 �bookCargoCommand.

getDestArrivalDeadline())));

 }

@EventSourcingHandler //Event handler for the BookCargoCommand. Also sets

the various state attributes

 public void on(CargoBookedEvent cargoBookedEvent) {

 logger.info("Applying {}", cargoBookedEvent);

 // State being maintained

 bookingId = cargoBookedEvent.getBookingId();

 bookingAmount = cargoBookedEvent.getBookingAmount();

 origin = cargoBookedEvent.getOriginLocation();

 routeSpecification = cargoBookedEvent.getRouteSpecification();

 routingStatus = RoutingStatus.NOT_ROUTED;

 }

 }

A pictorial representation of the flow is shown in Figure 6-38.

Chapter 6 Cargo Tracker: Axon Framework

335

Figure 6-38.  State Maintenance – the first Command

Chapter 6 Cargo Tracker: Axon Framework

336

1 – The Command is routed to its Cargo Command Handler.

2 /3 – The Axon Framework checks if it is the first command on

the Aggregate. If yes, it hands over control back to the Command

Handler to do the Business Checks.

4 – The Command Handler generates the Event.

5 – The Axon Event Router makes the Event available first to the

Aggregate itself via an Event Sourcing Handler.

6 – The Event Sourcing Handler updates the Aggregate state.

7 – The Event is persisted in the Axon Event Store.

8 – The Axon Event Router makes the Event available to other

interested subscribers.

We now have processed the first command (BookCargo), published the event

(CargoBooked), and set the Aggregate (Cargo) state.

Let us now see how this state is retrieved, utilized, and maintained in subsequent

Commands.

State Maintenance: Subsequent Commands

When an Aggregate receives another Command, it needs to process the command

with the current Aggregate state in hand. This essentially means that at the start of

processing of a Command, the Axon Framework will ensure that the current Aggregate

state is available for the Command Handler to do any Business Logic checks. The Axon

Framework does this by loading an empty aggregate instance, sourcing all the events

from the Event store, and replaying all the events that have occurred on that specific

Aggregate instance till date.

Let us walk through this explanation by looking at the two additional Commands

that the Cargo Aggregate needs to handle apart from the Cargo Booking Command, that

is, Route a Booked Cargo and Change Destination of Cargo.

Chapter 6 Cargo Tracker: Axon Framework

337

Listing 6-22 depicts the Command Handlers for the two Commands:

Listing 6-22.  CommandHandler implementation within the Cargo aggregate

/**

 * Command Handler for Assigning the Route to a Cargo

 * @param assignRouteToCargoCommand

 */

 @CommandHandler

 public Cargo(AssignRouteToCargoCommand assignRouteToCargoCommand) {

 if(routingStatus.equals(RoutingStatus.ROUTED)){

 �throw new IllegalArgumentException("Cargo already

routed");

 }

 �apply(new CargoRoutedEvent(assignRouteToCargoCommand.

getBookingId(),

 �new Itinerary(assignRouteToCargo

Command.getLegs())));

 }

/**

* Cargo Handler for changing the Destination of a Cargo

* @param changeDestinationCommand

*/

 @CommandHandler

 public Cargo(ChangeDestinationCommand changeDestinationCommand){

 if(routingStatus.equals(RoutingStatus.ROUTED)){

 �throw new IllegalArgumentException("Cannot change

destination of a Routed Cargo");

 }

 �apply(�new CargoDestinationChangedEvent(changeDestinationCommand.

getBookingId(),

 new RouteSpecification(origin,

 �new Location(changeDestinationCommand.getNewDestination

Location()), routeSpecification.getArrivalDeadline())));

 }

Chapter 6 Cargo Tracker: Axon Framework

338

Let’s look at the “AssignRouteToCommandHandler” first. This command handler

is responsible for processing the command to allocate the route of the cargo. The

handler makes a check to see if the cargo has already been routed. It makes this check

by examining the current routing status of the cargo which is represented by the Cargo

Aggregate’s “routingStatus” attribute. The Axon Framework is responsible for providing

the latest “routingStatus” value to the “AssignRouteToCommandHandler”, that is, it is

responsible for providing the latest Cargo Aggregate status to the Command Handler.

Let us step through the process on how the Axon Framework does it:

•	 Axon recognizes that this is not the first Command on the Aggregate.

Accordingly, it loads an empty instance of the Aggregate by invoking

the protected constructor present on the Aggregate.

Listing 6-23 shows the protected constructor in the Cargo

Aggregate:

Listing 6-23.  Cargo aggregate protected constructor as required by Axon

protected Cargo() {

 logger.info("Empty Cargo created.");

 }

•	 Axon then queries the Event source for all the events that have

occurred on that Aggregate instance based on the Target Aggregate

Identifier Id which we pass in the Command.

Figure 6-39 depicts the general process that the Axon Framework

follows to arrive at the current Aggregate state.

Chapter 6 Cargo Tracker: Axon Framework

339

Figure 6-39.  Axon state retrieval/maintenance process

Figure 6-40 depicts the process that the Axon Framework follows

to arrive at the current Cargo Aggregate state after processing the

Route Cargo Command Handler.

Figure 6-40.  Axon state retrieval/maintenance process – Assign Route to Cargo
Command

Chapter 6 Cargo Tracker: Axon Framework

340

As depicted, when the Assign Route Command is received, the Axon Framework

utilizes the Aggregate Identifier (Booking Id) to load all the events that have occurred

on that particular Aggregate instance till date, in this case CARGO_BOOKED. Axon

instantiates a new Aggregate instance with this Identifier and replays all the Events on

this Aggregate Instance.

Replaying an event essentially means invoking the individual Event Sourcing
Handler methods within the Aggregate that set the individual state attributes.

Let’s go back to our Event Sourcing Handler for the Cargo Booked Event. See Listing 6-24.

Listing 6-24.  Event replays within the EventSourcing handler

@EventSourcingHandler //Event Sourcing Handler for the Cargo Booked Event

 public void on(CargoBookedEvent cargoBookedEvent) {

 logger.info("Applying {}", cargoBookedEvent);

 // State being maintained

 bookingId = cargoBookedEvent.getBookingId();

 bookingAmount = cargoBookedEvent.getBookingAmount();

 origin = cargoBookedEvent.getOriginLocation();

 routeSpecification = cargoBookedEvent.getRouteSpecification();

 routingStatus = RoutingStatus.NOT_ROUTED;

 }

The aggregate state is set out here including the attribute “routingStatus”. When

this Event is replayed during the building of the Aggregate state, this attribute is set

to the value of NOT_ROUTED. This attribute is made available as part of the entire

aggregate state to the Command Handler of the AssignRouteToCargoCommand. Since

its latest value is NOT_ROUTED, all the Command Handler checks are passed, and

the processing continues with the itinerary of the Cargo set and the new value of the

“routingStatus” attribute as ROUTED.

Let us now look at the next Command that is sent, the ChangeDestinationCommand.

Listing 6-25 shows the Command Handler for the Change Destination Command. This

Command intends to change the final destination of the cargo. We implement a business

check within its Command Handler that if the cargo has already been routed, we do

not allow the change of destination. Again, check is done against the “routingStatus”

Aggregate Attribute which needs to be made available to the Command Handler of the

Change Destination Command.

Figure 6-41 depicts the flow for the Change Destination Command.

Chapter 6 Cargo Tracker: Axon Framework

341

In this case, the Axon Framework retrieves two events from the Event store [CARGO_

BOOKED and CARGO_ROUTED] which it replays. Again, the Event replays essentially

mean invoking the Event Sourcing Handlers within the Aggregate for that particular Event.

Let’s go back to our Event Sourcing Handlers for the Cargo Booked Event and the

Cargo Routed Event:

Listing 6-25.  EventSourcing Handlers within the Cargo Aggregate

@EventSourcingHandler //Event Sourcing Handler for the Cargo Booked Event

 public void on(CargoBookedEvent cargoBookedEvent) {

 logger.info("Applying {}", cargoBookedEvent);

 // State being maintained

 bookingId = cargoBookedEvent.getBookingId();

 bookingAmount = cargoBookedEvent.getBookingAmount();

 origin = cargoBookedEvent.getOriginLocation();

 routeSpecification = cargoBookedEvent.getRouteSpecification();

 routingStatus = RoutingStatus.NOT_ROUTED;

 transportStatus =

 }

Figure 6-41.  Axon state retrieval/maintenance process – Change Destination
Command after Route Cargo Command

Chapter 6 Cargo Tracker: Axon Framework

342

@EventSourcingHandler //Event Sourcing Handler for the Cargo Routed Event

 public void on(CargoRoutedEvent cargoRoutedEvent) {

 itinerary = cargoRoutedEvent.getItinerary();

 routingStatus = RoutingStatus.ROUTED;

 }

Just focusing on the Aggregate attribute “routingStatus”. At the end of the first event

replay (CARGO_BOOKED), the value is set as NOT_ROUTED. At the end of the second

event replay (CARGO_ROUTED), the value is set as ROUTED. This is the latest and

current value of this attribute and is supplied as part of the overall Aggregate state to the

Change Destination Command Handler. Since the Command Handler checks that the

Cargo should not be ROUTED, it does not allow the processing to continue and raises an

Exception.

On the other hand, if we had invoked the Change Destination Command before

we had invoked the Assign Route to Cargo Command, the Command Handler would

have allowed the processing to continue, since we would have only one Event replayed

against the Cargo Aggregate instance (CARGO_BOOKED Event). Figure 6-42 depicts

the scenario when we invoke the Change Destination Command after the Book Cargo

Command and before the Assign Route to Cargo Command.

Figure 6-42.  Axon state retrieval/maintenance process – Change Destination
Command before Route Cargo Command

Chapter 6 Cargo Tracker: Axon Framework

343

A complete pictorial representation of the flows is depicted in Figure 6-43.

Figure 6-43.  Axon State Retrieval Process – first/subsequent Commands

Chapter 6 Cargo Tracker: Axon Framework

344

Figure 6-44 depicts the class diagram for the Cargo Aggregate with the corresponding

Events/Event Handlers.

Figure 6-44.  Cargo Aggregate class diagram with Events/Event Handlers

This completes the implementation of Aggregates for the Booking Bounded Context.

�Aggregate Projections

We have seen a complete implementation of the Aggregate on the Command Side of the

Bounded Context. As we have demonstrated and seen, we do not store the Aggregate

state directly in a Database, but we just store the Events that have occurred on the

Aggregate within a purpose-built event store.

Chapter 6 Cargo Tracker: Axon Framework

345

Commands are not the only operations within a Bounded Context. We are going

to have Query operations too which would intend to get to the. We are bound to have

requirements where we would like to query the Aggregate state, for example, a web

screen which shows the Cargo Summary for the operator. Querying the event store and

trying to replay the events to get to the current state is not optimal and is definitely not

recommended. Imagine an Aggregate which has undergone multiple Events as part of

its lifecycle. Replaying each and every event on this Aggregate to get to the current state

would be prohibitively expensive. We need another mechanism to be able to get the

Aggregate state optimally and directly.

We use “Aggregate Projections” to help us achieve this. Simply put, an Aggregate

Projection is a representation or view of the Aggregate state in various forms, that is, a

Read Model of the Aggregate state. We could have multiple Aggregate Projections for an

Aggregate depending upon the type of use case that the Projection needs to accomplish.

An Aggregate Projection is always backed by a Datastore which contains the Projection

Data. This Datastore could be a traditional relational database (e.g., MySql), a NoSQL

Database (e.g., MongoDB), or even an in-memory store (e.g., Elastic). The Datastore is

also dependent upon the type of use case that the Projection needs to accomplish.

The Projection’s Datastore is always kept up to date by subscribing to the Events

that the Command side generates and accordingly updates itself (see Event Handler

Interfaces in the following). The Projection offers a Query layer which can be used by

external consumers to get the Projection Data.

A summary of the projection flow is depicted in Figure 6-45.

Chapter 6 Cargo Tracker: Axon Framework

346

Implementation of an Aggregate Projection covers the following aspects:

•	 Aggregate Projection Class Implementation

•	 Query Handler

•	 Projection State Maintenance

The implementation of the Aggregate Projection Class depends upon the type

of Datastore that we decide to implement to store the Projection state. In our Cargo

Tracking application, we have decided to store the Projection state in a traditional SQL

Database, that is, MySQL.

Each of our Bounded Contexts will have a Projection Datastore which is based

on MySQL. Each database could have multiple tables which contain various types

of Projection Data depending upon the use case we need to satisfy. We build the

Aggregate Projection classes on top of this projection data.

This is depicted in Figure 6-46.

Figure 6-45.  Axon Projections

Chapter 6 Cargo Tracker: Axon Framework

347

Since our Datastore is going to be a SQL Database, our implementation for the

Aggregate Projection Class would be based on JPA (Java Persistence API).

Let us walk through an implementation of an Aggregate Projection Class, the “Cargo
Summary” projection. This projection uses the “cargo_summary_projection” table

which is maintained in a MySql Database named “bookingprojectiondb”.

The Projection needs to provide the following details of a booked cargo:

–– Booking ID

–– Routing Status (whether the cargo has been routed or not)

–– Transport Status (whether the cargo is at port or on a vessel)

–– Origin Location

–– Destination Location

–– Arrival Deadline

Again, the projection needs can differ based on the use case. The Cargo Summary

projection is used by external consumers to get a quick snapshot of what is going on with

a cargo.

Figure 6-46.  Bounded Contexts – Projection Database on top of a MySQL Database

Chapter 6 Cargo Tracker: Axon Framework

348

Listing 6-26 depicts the Cargo Summary Projection implemented as a regular JPA

Entity. We keep it within the domain model within the “projections” package:

Listing 6-26.  Cargo Aggregate JPA Entity

package com.practicalddd.cargotracker.bookingms.domain.projections;

import javax.persistence.*;

import java.util.Date;

/**

 * Projection class for the Cargo Aggregate implemented as a regular JPA

Entity. Contains a summary of the Cargo Aggregate

 */

@Entity //Annotation to mark as a JPA Entity

@Table(name="cargo_summary_projection") //Table Name Mapping

@NamedQueries({ //Named Queries

 @NamedQuery(name = "CargoSummary.findAll",

 query = "Select c from CargoSummary c"),

 @NamedQuery(name = "CargoSummary.findByBookingId",

 query = "Select c from CargoSummary c where c.booking_id =

:bookingId"),

 @NamedQuery(name = "Cargo.getAllBookingIds",

 query = "Select c.booking_id from CargoSummary c") })

public class CargoSummary {

 @Id

 private String booking_id;

 @Column

 private String transport_status;

 @Column

 private String routing_status;

 @Column

 private String spec_origin_id;

 @Column

 private String spec_destination_id;

 @Temporal(TemporalType.DATE)

 private Date deadline;

 protected CargoSummary(){

Chapter 6 Cargo Tracker: Axon Framework

349

 this.setBooking_id(null);

 }

 public CargoSummary(String booking_id,

 String transport_status,

 String routing_status,

 String spec_origin_id,

 String spec_destination_id,

 Date deadline){

 this.setBooking_id(booking_id);

 this.setTransport_status(transport_status);

 this.setRouting_status(routing_status);

 this.setSpec_origin_id(spec_origin_id);

 this.setSpec_destination_id(spec_destination_id);

 this.setDeadline(new Date());

 }

 public String getBooking_id() { return booking_id;}

 �public void setBooking_id(String booking_id) {this.booking_id =

booking_id;}

 public String getTransport_status() {return transport_status; }

 �public void setTransport_status(String transport_status) { this.

transport_status = transport_status;}

 public String getRouting_status() {return routing_status;}

 �public void setRouting_status(String routing_status) {this.routing_

status = routing_status; }

 public String getSpec_origin_id() { return spec_origin_id; }

 �public void setSpec_origin_id(String spec_origin_id) {this.spec_origin_

id = spec_origin_id; }

 public String getSpec_destination_id() {return spec_destination_id;}

 �public void setSpec_destination_id(String spec_destination_id) {this.

spec_destination_id = spec_destination_id; }

 public Date getDeadline() { return deadline;}

 public void setDeadline(Date deadline) {this.deadline = deadline;}

}

Figure 6-47 depicts the UML diagram for the Cargo Summary Aggregate Projection

Class.

Chapter 6 Cargo Tracker: Axon Framework

350

With the Projection class mapped to a JPA Entity and a corresponding table, let us

move to the Query layer.

�Query Handlers

Queries are sent to a Bounded Context to retrieve the Aggregate state of the Bounded

Context via Aggregate Projections. Implementing Query Handling involves the following:

Identification/implementation of Queries

Identification/implementation of Query Handlers to process Commands

Identification of Queries

To recap, Aggregate Projections represent the state of an Aggregate. An Aggregate

Projection needs a Query Layer to enable external parties to consume the Projection

Data. Identification of Queries revolves around any operations that are interested in the

Aggregate Projection Data.

For example, the Booking Bounded Context has the following requirements from

external consumers via the Cargo Summary Projection which has the required data to

satisfy these requirements:

•	 Summary for an individual cargo

•	 List of summaries for all cargos

•	 List of Booking Identifiers for all cargos

Implementation of Queries

Implementing the identified Queries within Axon is done using regular POJOs. For every

identified query, we would need to implement a Query class and a Query Result class.

The Query class is the actual query that needs to be executed along with the criteria of

execution, while the Query Result class is the result of the execution of the query.

Figure 6-47.  Class diagram for the Cargo Summary Aggregate Projection class

Chapter 6 Cargo Tracker: Axon Framework

351

Let us look at examples to explain this further. Consider the query that we have identified

for getting the summary for an individual cargo. We will name it as “CargoSummaryQuery”

and the result of the Query Execution class “CargoSummaryResult”.

Listing 6-27 depicts the CargoSummaryQuery class. The name of the class conveys

the intent, and it has a single constructor which takes in the Booking Id, that is, the

criteria for executing the query:

Listing 6-27.  CargoSummaryQuery implementation

package com.practicalddd.cargotracker.bookingms.domain.queries;

/**

 * �Implementation of Cargo Summary Query class. It takes in a Booking Id

which is the criteria for the query

 */

public class CargoSummaryQuery {

 private String bookingId; //Criteria of the Query

 public CargoSummaryQuery(String bookingId){

 this.bookingId = bookingId;

 }

 @Override

 �public String toString() { return "Cargo Summary for Booking Id" +

bookingId; }

}

There are no complications here – simple POJO which carries the intent and the

criteria of the Query.

We then implement the “CargoSummaryResult” class which contains the result of

the execution, in this case the CargoSummaryProjection.

Listing 6-28 depicts the same:

Listing 6-28.  CargoSummaryResult implementation

package com.practicalddd.cargotracker.bookingms.domain.queries;

import com.practicalddd.cargotracker.bookingms.domain.projections.CargoSummary;

/**

 * �Implementation of the Cargo Summary Result class which contains the

Chapter 6 Cargo Tracker: Axon Framework

352

 * results of the execution of the CargoSummaryQuery. The result contains

 * data from the CargoSummary Projection

 */

public class CargoSummaryResult {

 private final CargoSummary cargoSummary;

 �public CargoSummaryResult(CargoSummary cargoSummary) { this.

cargoSummary = cargoSummary; }

 public CargoSummary getCargoSummary() { return cargoSummary;}

}

We now have implemented the Query Class (Cargo Summary) which has the Query
Intent (Get the Cargo Summary) along with the Query Criteria (The Cargo’s Booking Id).

Let us look at how to implement the handling of the Query.

Implementation of Query Handlers

As we had Command Handlers to handle Commands, similarly we have Query Handlers

to handle Query instructions. Implementation of Query Handlers involves identifying

Components which can handle Queries. Unlike Commands which were placed on the

Aggregates itself, Query Handlers are placed on routines within regular Spring Boot

components. Axon provides an aptly named Annotation “@QueryHandler” to help

annotate routines within components marked as Query handlers.

Listing 6-29 depicts the “CargoAggregateQueryHandler” which handles all the

queries against the Cargo Summary Projection for the Cargo Aggregate. We have two

Query Handlers within this component, one for handling the CargoSummaryQuery and

the other for the ListCargoSummariesQuery.

The query handlers

•	 Take the Queries (CargoSummaryQuery, ListCargoSummariesQuery)

as input

•	 Execute named JPA queries against the CargoSummaryProjection

JPA Entity

•	 Return back the results (CargoSummaryResult,

ListCargoSummaryResult)

Listing 6-29 demonstrates the implementation of the Cargo Aggregate Query Handler:

Chapter 6 Cargo Tracker: Axon Framework

353

Listing 6-29.  CargoAggregateQueryHandler implementation

package com.practicalddd.cargotracker.bookingms.domain.queryhandlers;

import com.practicalddd.cargotracker.bookingms.domain.projections.

CargoSummary;

import com.practicalddd.cargotracker.bookingms.domain.queries.

CargoSummaryQuery;

import com.practicalddd.cargotracker.bookingms.domain.queries.

CargoSummaryResult;

import com.practicalddd.cargotracker.bookingms.domain.queries.

ListCargoSummariesQuery;

import com.practicalddd.cargotracker.bookingms.domain.queries.

ListCargoSummaryResult;

import org.axonframework.queryhandling.QueryHandler;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.stereotype.Component;

import javax.persistence.EntityManager;

import javax.persistence.Query;

import java.lang.invoke.MethodHandles;

/**

 * �Class which acts as the Query Handler for all queries related to the

Cargo Summary Projection

 */

@Component

public class CargoAggregateQueryHandler {

 �private final static Logger logger = LoggerFactory.

getLogger(MethodHandles.lookup().lookupClass());

 private final EntityManager entityManager;

 public CargoAggregateQueryHandler(EntityManager entityManager){

 this.entityManager = entityManager;

 }

 /**

 * Query Handler Query which returns the Cargo Summary for a Specific Query

Chapter 6 Cargo Tracker: Axon Framework

354

 * @param cargoSummaryQuery

 * @return CargoSummaryResult

 */

 @QueryHandler

 public CargoSummaryResult handle(CargoSummaryQuery cargoSummaryQuery) {

 logger.info("Handling {}", cargoSummaryQuery);

 �Query jpaQuery = entityManager.createNamedQuery("CargoSummary.

findByBookingId", CargoSummary.class).setParameter("bookingId",

cargoSummaryQuery.getBookingId());

 �CargoSummaryResult result = new CargoSummaryResult((CargoSummary)

jpaQuery.getSingleResult());

 logger.info("Returning {}", result);

 return result;

 }

 /**

 * Query Handler for the Query which returns all Cargo summaries

 * @param listCargoSummariesQuery

 * @return CargoSummaryResult

 */

 @QueryHandler

 �public ListCargoSummaryResult handle(ListCargoSummariesQuery

listCargoSummariesQuery) {

 logger.info("Handling {}", listCargoSummariesQuery);

 �Query jpaQuery = entityManager.createNamedQuery("CardSummary.

findAll", CargoSummary.class);

 jpaQuery.setFirstResult(listCargoSummariesQuery.getOffset());

 jpaQuery.setMaxResults(listCargoSummariesQuery.getLimit());

 �ListCargoSummaryResult result = new

ListCargoSummaryResult(jpaQuery.getResultList());

 return result;

 }

}

Chapter 6 Cargo Tracker: Axon Framework

355

Figure 6-48 depicts the UML diagram for the Cargo Aggregate Query Handler Class.

Figure 6-48.  Class diagram for the Cargo Aggregate Query Handler class

Here is a short note about queries before we round up the implementation of

Aggregate projections.

Axon provides three types of Query implementations:

•	 Point to Point – Our examples above have been based on Point-to-

Point queries where each query has a corresponding Query Handler.

The result classes are actually wrapped into a CompletableFuture<T>

by Axon, but it is abstracted from the developer.

•	 Scatter Gather Queries - In this type, the query is sent to all the

handlers subscribed to this query, and a Stream of results is returned

which is then composed and sent to the client.

•	 Subscription Queries - This is an advanced query handling option

provided by the Axon Framework. It enables the client to get the initial

state of the Aggregate Projection it wants to query and stay up to date

with the changes the projection data undergoes over a period of time.

This rounds up the implementation of Aggregate Projections.

Chapter 6 Cargo Tracker: Axon Framework

356

�Sagas

The final aspect of implementing the Domain Model is the implementation of Sagas. As

explained before, Sagas can be implemented in two ways – via Choreography of Events

or via Orchestration of Events.

Before we step into the implementation details, let us look back at a simplistic view

of the various business flows within the Cargo Tracker Application and the Sagas that

they fall within.

Figure 6-49 depicts the Business Flows and the Sagas that they are part of.

Figure 6-49.  Business Flows and the Sagas they are part of

Chapter 6 Cargo Tracker: Axon Framework

357

The Booking Saga involves the business operations within Cargo Booking, Cargo

Routing, and Cargo Tracking. It starts with the cargo being booked and its subsequent

routing and finally ends with the Tracking Identifier allocated to the booked cargo.

This Tracking Identifier is used by the customers to track the progress of the cargo.

The Handling Saga involves the business operations within Cargo Handling,

Inspection, Claims, and Final Settlement. It starts with the cargo being handled at the

ports where it undergoes a voyage and claimed by the customer at the final destination

and ends with the final settlement of the cargo (e.g., penalty for late delivery).

Both these sagas can be implemented either via Choreography or Orchestration.

We will implement the Booking Saga which by example can be used to implement the

Handling Saga too with the focus on the orchestration implementation using the Axon

Framework’s built-in support.

Before we step into the implementation, let us detail out the various Commands,

Events, and Event Handlers of the Booking Saga.

Figure 6-50 depicts this.

Figure 6-50.  The Booking Saga

This is essentially a representation of the implementation using a choreography

approach wherein we have Commands being Invoked, Events being raised, and Event

Handlers processing events in a chain until the final event is handled.

Chapter 6 Cargo Tracker: Axon Framework

358

The implementation of the Orchestration approach differs significantly wherein

we have a central component that handles the events and subsequent invocation of

Commands. In other words, we move the responsibility of handling events and invoking

commands away from individual event handlers to a central component which performs

the same.

Figure 6-51 depicts the orchestration approach.

Figure 6-51.  The orchestration approach

Chapter 6 Cargo Tracker: Axon Framework

359

Let us walk through the implementation steps followed by the code:

•	 We denote the name of our Saga, that is, in this case, we denote our

Saga as the Booking Saga.

•	 After the processing of the Book Cargo Command, the Cargo
Booked Event is raised.

•	 The Booking Saga subscribes to the Cargo Booked Event and kick-

starts the Saga process.

•	 The Booking Saga sends an instruction to process the Assign Route
to Cargo Command. This command raises the Cargo Routed Event.

•	 The Booking Saga subscribes to the Cargo Routed Event and then

sends an instruction to process the Assign Tracking Details to Cargo
Command. This command raises the Tracking Details Assigned
Event.

•	 The Booking Saga subscribes to the Tracking Details Assigned Event

and since there are no more Commands to be processed decides to

end the saga.

As seen, the centralized Saga component now takes over the responsibility of the

entire coordination and sequencing of Commands and Events across multiple Bounded

Contexts. None of the Domain Model Objects within the Bounded Contexts are aware

that they are participating in a Saga process. In addition, they do not need to subscribe

to events from other Bounded Contexts to participate in a transaction. They rely on the

Saga to do so centrally.

The orchestration-based saga is a very powerful way of implementing distributed

transactions in a microservices architecture due to its inherent delinked nature which

helps in

•	 Isolating Distributed Transactions to a dedicated component

•	 Monitoring and tracing the flow of Distributed Transactions

•	 Fine-tuning and improving the flow of Distributed Transactions

Chapter 6 Cargo Tracker: Axon Framework

360

The code for a Saga is implemented through the various annotations that Axon

provides. The steps are outlined as follows:

•	 We take a regular POJO and mark it with a Stereotype annotation

(@Saga) which denotes that this class acts as a Saga component.

•	 As stated, the Saga responds to Events and invokes Commands.

The Axon Framework provides a saga-specific event handler

annotation to handle events (@SagaEventHandler). Just like regular

event handlers, these are placed on routines within the Saga class.

Every Saga Event Handler needs to be provided with an association
property. This property helps the Axon Framework to map the Saga

to a particular instance of the Aggregate which is participating in

the Saga.

•	 Invoking of Commands is done the standard Axon way, that is,

utilizing the Command Gateway to invoke the Command.

•	 The final part is to implement the lifecycle methods to the Saga

component (Start Saga, Stop Saga). The Axon Framework provides

the “@StartSaga” annotation to denote the start of the Saga and

“SagaLifecycle.end()” to end the Saga.

Listing 6-30 depicts the implementation of the Booking Saga:

Listing 6-30.  Booking Saga implementation

package com.practicalddd.cargotracker.booking.application.internal.

sagaparticipants;

import com.practicalddd.cargotracker.booking.application.internal.

commandgateways.CargoBookingService;

import com.practicalddd.cargotracker.booking.domain.commands.

AssignRouteToCargoCommand;

import com.practicalddd.cargotracker.booking.domain.commands.

AssignTrackingDetailsToCargoCommand;

import com.practicalddd.cargotracker.booking.domain.events.

CargoBookedEvent;

import com.practicalddd.cargotracker.booking.domain.events.

CargoRoutedEvent;

Chapter 6 Cargo Tracker: Axon Framework

361

import com.practicalddd.cargotracker.booking.domain.events.

CargoTrackedEvent;

import org.axonframework.commandhandling.gateway.CommandGateway;

import org.axonframework.modelling.saga.SagaEventHandler;

import org.axonframework.modelling.saga.SagaLifecycle;

import org.axonframework.modelling.saga.StartSaga;

import org.axonframework.spring.stereotype.Saga;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.lang.invoke.MethodHandles;

import java.util.UUID;

/**

 * The Booking Saga Manager is the implementation of the Booking saga.

 * The Saga starts when the Cargo Booked Event is raised

 * The Saga ends when the Tracking Details have been assigned to the Cargo

 */

@Saga //Stereotype Annotation depicting this as a Saga

public class BookingSagaManager {

 private final static Logger logger = LoggerFactory.

getLogger(MethodHandles.lookup().lookupClass());

 private CommandGateway commandGateway;

 private CargoBookingService cargoBookingService;

 /**

 * Dependencies for the Saga Manager

 * @param commandGateway

 */

 public BookingSagaManager(CommandGateway commandGateway,CargoBooking

Service cargoBookingService){

 this.commandGateway = commandGateway;

 this.cargoBookingService = cargoBookingService;

 }

Chapter 6 Cargo Tracker: Axon Framework

362

 /**

 �* Handle the Cargo Booked Event, Start the Saga and invoke the Assign

Route to Cargo Command

 * @param cargoBookedEvent

 */

 @StartSaga //Annotation indicating the Start of the Saga

 �@SagaEventHandler(associationProperty = "bookingId")

// Saga specific annotation to handle an Event

 public void handle(CargoBookedEvent cargoBookedEvent){

 logger.info("Handling the Cargo Booked Event within the Saga");

 //Send the Command to assign a route to the Cargo

 �commandGateway.send(�new AssignRouteToCargoCommand(cargoBookedEvent.

getBookingId(),

 �cargoBookingService.getLegs

ForRoute(cargoBookedEvent.

getRouteSpecification())));

 }

 /**

 �* Handle the Cargo Routed Event and invoke the Assign Tracking Details

to Cargo Command

 * @param cargoRoutedEvent

 */

 @SagaEventHandler(associationProperty = "bookingId")

 public void handle(CargoRoutedEvent cargoRoutedEvent){

 logger.info("Handling the Cargo Routed Event within the Saga");

 �String trackingId = UUID.randomUUID().toString();

// Generate a random tracking identifier

 SagaLifecycle.associateWith("trackingId",trackingId);

 //Send the COmmand to assign tracking details to the Cargo

 commandGateway.send(new AssignTrackingDetailsToCargoCommand(

 cargoRoutedEvent.getBookingId(),trackingId));

 }

Chapter 6 Cargo Tracker: Axon Framework

363

 /**

 * Handle the Cargo Tracked Event and end the Saga

 * @param cargoTrackedEvent

 */

 @SagaEventHandler(associationProperty = "trackingId")

 public void handle(CargoTrackedEvent cargoTrackedEvent) {

 SagaLifecycle.end(); �// End the Saga as this is the last Event to

be handled

 }

}

�Implementation Summary
This completes the implementation of the Domain Model with the Axon Framework.

Figure 6-52 depicts the summary of the implementation.

Figure 6-52.  Domain Model implementation summary

Chapter 6 Cargo Tracker: Axon Framework

364

�Implementing Domain Model Services with Axon
To recap, Domain Model services provide supporting services to the Domain Model

(e.g., to facilitate external parties to consume the Domain Model, to help the Domain

Model to communicate to External Repositories). The implementations are done using a

combination of the capabilities provided by Spring Boot and what the Axon Framework

provides. We need to implement the following types of Domain Model Services:

•	 Inbound Services

•	 Application Services

�Inbound Services
Inbound services (or Inbound Adaptors as denoted in the Hexagonal Architectural

Pattern) act as the outermost gateway for our core Domain Model.

Within our Cargo Tracker application, we provide the following inbound services:

–– An API Layer based on REST which is used by external consumers to

invoke operations on the Bounded Context (Commands/Queries)

–– An Event Handling Layer implemented by Axon which consumes

Events from the Event Bus and processes them

�REST API

The responsibility of the REST API is to receive HTTP requests on behalf of the Bounded

Context from external consumers. This request could be for Commands or Queries. The

responsibility of the REST API layer is to translate it into the Command/Query Model

recognized by the Bounded Context’s Domain Model and delegate it to the Application

Services Layer to further process it.

Figure 6-53 depicts the REST API flows/responsibilities.

Chapter 6 Cargo Tracker: Axon Framework

365

Implementation of the REST API is utilizing the REST capabilities provided by Spring

Web. To recap earlier in the chapter, we added this dependency for our Spring Boot

applications.

Let us walk through an example of a REST API. Listing 6-31 depicts the REST API/

Controller for our Cargo Booking Command:

•	 It has a single POST method that accepts a BookCargoResource

which is the input payload to the API.

•	 It has a dependency on the CargoBookingService which is an

Application services (see later).

•	 It transforms the Resource Data (BookCargoResource) to the

Command Model (BookCargoCommand) using an Assembler utility

class (BookCargoCommandDTOAssembler).

•	 After transforming, it delegates the process to the

CargoBookingService for further processing.

Figure 6-53.  REST API flows/responsibilities

Chapter 6 Cargo Tracker: Axon Framework

366

Listing 6-31.  CargoBookingController implementation

package com.practicalddd.cargotracker.bookingms.interfaces.rest;

import com.practicalddd.cargotracker.bookingms.interfaces.rest.transform.

assembler.BookCargoCommandDTOAssembler;

import com.practicalddd.cargotracker.bookingms.interfaces.rest.transform.

dto.BookCargoResource;

import com.practicalddd.cargotracker.bookingms.application.internal.

commandgateways.CargoBookingService;

import org.springframework.http.HttpStatus;

import org.springframework.web.bind.annotation.*;

/**

 * REST API for the Book Cargo Command

 */

@RestController

@RequestMapping("/cargobooking")

public class CargoBookingController {

 private final CargoBookingService cargoBookingService;

// Application Service Dependency

 /**

 * Provide the dependencies

 * @param cargoBookingService

 */

 public CargoBookingController(CargoBookingService cargoBookingService){

 this.cargoBookingService = cargoBookingService;

 }

 /**

 * POST method to book a cargo

 * @param bookCargoCommandResource

 */

 @PostMapping

 @ResponseStatus(HttpStatus.CREATED)

 �public void bookCargo(@RequestBody final BookCargoResource

bookCargoCommandResource){

Chapter 6 Cargo Tracker: Axon Framework

367

 �cargoBookingService.bookCargo(BookCargoCommandDTOAssembler.toComman

dFromDTO(bookCargoCommandResource));

 }

}

This rounds up the implementation of the REST API Inbound Services.

�Event Handler

Event Handlers within a Bounded Context are responsible for handling Events that are

subscribed by that Bounded Context. Event Handlers are responsible for transforming

the Event Data to a model recognizable for further processing. Event Handlers generally

delegate to an Application Services to process the event post-transformation.

Figure 6-54 depicts the Event Handler flows/responsibilities.

Figure 6-54.  Event Handler flows/responsibilities

Implementation of Event Handlers is done by utilizing the Axon Framework

Stereotype annotations (@EventHandler). These annotations are placed on routines

within Regular Spring Services and contain the specific Event that the Event Handler is

going to handle.

Chapter 6 Cargo Tracker: Axon Framework

368

Let us walk through an example of an Event Handler. Listing 6-32 depicts the

Event Handler CargoProjectionsEventHandler. This Event Handler subscribes to state

change events from the Cargo Aggregate and accordingly updates the Cargo Aggregate

Projections (e.g., CargoSummary):

•	 The Event Handler class is annotated with a @Service annotation.

•	 It has a dependency on the CargoProjectionService which is an

Application services (see later).

•	 It handles the CargoBookedEvent by marking the

handleCargoBookedEvent() method within the handler class with

the @EventHandler annotation.

•	 The handleCargoBookedEvent() uses the CargoBookedEvent as the

Event payload.

•	 It transforms the Event Data (CargoBookedEvent) to the Aggregate

Projection Model (CargoSummary).

•	 After transforming, it delegates the process to the

CargoProjectionService for further processing.

Listing 6-32.  CargoProjectionsEventHandler implementation

package com.practicalddd.cargotracker.bookingms.interfaces.events;

import com.practicalddd.cargotracker.bookingms.application.internal.

CargoProjectionService;

import com.practicalddd.cargotracker.bookingms.domain.events.

CargoBookedEvent;

import com.practicalddd.cargotracker.bookingms.domain.projections.

CargoSummary;

import org.axonframework.eventhandling.EventHandler;

import org.axonframework.eventhandling.Timestamp;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.stereotype.Service;

import javax.persistence.EntityManager;

import java.lang.invoke.MethodHandles;

import java.time.Instant;

Chapter 6 Cargo Tracker: Axon Framework

369

/**

 * Event Handlers for all events raised by the Cargo Aggregate

 */

@Service

public class CargoProjectionsEventHandler {

 �private final static Logger logger = LoggerFactory.

getLogger(MethodHandles.lookup().lookupClass());

 private CargoProjectionService cargoProjectionService; //Dependencies

 �public CargoProjectionsEventHandler(CargoProjectionService

cargoProjectionService) {

 this.cargoProjectionService = cargoProjectionService;

 }

 /**

 �* EVent Handler for the Cargo Booked Event. Converts the Event Data to

 * the corresponding Aggregate Projection Model and delegates to the

 * Application Service to process it further

 * @param cargoBookedEvent

 * @param eventTimestamp

 */

 @EventHandler

 �public void cargoBookedEventHandler(CargoBookedEvent cargoBookedEvent,

@Timestamp Instant eventTimestamp) {

 logger.info("Applying {}", cargoBookedEvent.getBookingId());

 �CargoSummary cargoSummary = new CargoSummary(cargoBookedEvent.

getBookingId(),"","",

 "","",new java.util.Date());

 cargoProjectionService.storeCargoSummary(cargoSummary);

 }

}

This rounds up the implementation of the Inbound Services.

Chapter 6 Cargo Tracker: Axon Framework

370

�Application Services
Application Services act as a façade or a port between the Inbound Services and the Core

Domain Model. Within an Axon Framework application, Application services within

a Bounded Context are responsible for receiving requests from the Inbound Services

and delegating them to the corresponding Gateways, that is, Commands are delegated

to the Command Gateway, while Queries are delegated to the Query Gateway. Events

are processed, and the results are persisted depending upon the output desired (e.g.,

Projections are persisted into a datastore).

Figure 6-55 depicts the responsibilities of the Application Services.

Figure 6-55.  The responsibilities of the Application services

Listing 6-33 depicts the Cargo Booking Service class which is responsible for

handling all Commands sent to the Booking Bounded Context:

Listing 6-33.  Cargo Booking Service implementation

package com.practicalddd.cargotracker.bookingms.application.internal.

commandgateways;

import com.practicalddd.cargotracker.bookingms.domain.commands.

AssignRouteToCargoCommand;

Chapter 6 Cargo Tracker: Axon Framework

371

import com.practicalddd.cargotracker.bookingms.domain.commands.

BookCargoCommand;

import com.practicalddd.cargotracker.bookingms.domain.commands.

ChangeDestinationCommand;

import org.axonframework.commandhandling.gateway.CommandGateway;

import org.springframework.stereotype.Service;

/**

 * Application Service Class to Book a Cargo, Route a Cargo and Change the

 * Destination of a Cargo All Commands to the Cargo Aggregate are grouped

 * into this sevice class

 */

@Service

public class CargoBookingService {

 private final CommandGateway commandGateway;

 public CargoBookingService(CommandGateway commandGateway){

 this.commandGateway = commandGateway;

 }

 /**

 * Book a Cargo

 * @param bookCargoCommand

 */

 public void bookCargo(BookCargoCommand bookCargoCommand){

 commandGateway.send(bookCargoCommand); �//Invocation of the Command

gateway

 }

 /**

 * Change the Destination of a Cargo

 * @param changeDestinationCommand

 */

 �public void changeDestinationOfCargo(ChangeDestinationCommand

changeDestinationCommand) {

 commandGateway.send(changeDestinationCommand); �//Invocation of the

Command gateway

 }

Chapter 6 Cargo Tracker: Axon Framework

372

 /**

 * Assigns a Route to a Cargo

 * @param assignRouteToCargoCommand

 */

 �public void assignRouteToCargo(AssignRouteToCargoCommand

assignRouteToCargoCommand){

 commandGateway.send(assignRouteToCargoCommand); �//Invocation of the

Command gateway

 }

}

This rounds up the implementation of our Application Services and our Domain

Model Services.

�Summary
Summarizing our chapter

•	 We started by establishing the details about the Axon Platform

including the Axon Framework and Axon Server.

•	 We did a deep dive into the development of the various DDD

artifacts – first the domain model including Aggregates, Commands,

and Queries using Spring Boot and the Axon Framework.

•	 We dove into details of the Event Sourcing pattern adopted by Axon.

•	 We rounded off by implementing the Domain Model Services using

the capabilities provided by the Axon Framework.

Chapter 6 Cargo Tracker: Axon Framework

373
© Vijay Nair 2019
V. Nair, Practical Domain-Driven Design in Enterprise Java, https://doi.org/10.1007/978-1-4842-4543-9

Index

A
Aggregate identifiers, 23
AggregateLifeCycle class, 329
Aggregate projections

bookingprojectiondb, 347
Cargo Summary, 348, 349
Datastore, 345
flow, 345, 346
projection data, 346
query, 345
read model, 345

Aggregate/root aggregate, 10
Aggregates, 22
Application services, 32

Cargo Booking Service, 370–372
command/query delegation

bounded context, 156
Cargo Booking Command, 157, 158
Cargo Booking Query, 159, 160
class diagram, 161
implementation process, 162

commands services, 155
domain events

CargoBookingCommandService
class, 163, 165

CDI, 163
class diagram, 165, 166
observer model, 162

query services, 155
responsibilities, 156, 370

Axon dispatch model
choreography-based sagas, 294
CommandBus, 290, 291
CommandGateway, 290
event bus, 293
operations, 290
orchestration-based sagas, 294
QueryBus, 292
QueryGateway, 292

Axon framework
components, 286, 287
DDD, 285
Domain Model/Dispatch Model, 300

Aggregates, 288
choreography-based sagas, 289
commands/command

handlers, 288
events/event handlers, 288
orchestration-based sagas, 289
query handlers, 289

server option, 285
Axon server

components, 296
console, 297
features, 296
search, 298, 299
Spring Boot, 296
users, 299
visual graphic, 297, 298

AxonServerCommandBus, 291

https://doi.org/10.1007/978-1-4842-4543-9

374

B
Binder class, 185
Bounded Context

anatomy, 196
application services, 202, 203
Cargo tracker implementation, 207–209
definition, 196
deployment architecture, 197
domain model, 9, 203, 204
infrastructure, 204–206
interfaces, 201, 202
package structure, 199, 200

application, 113
domain model, 114
Eclipse MicroProfile applications,

108, 110, 111
Helidon MP web server, 109
infrastructure

components, 115–117
interfaces, 111, 112
quickstart archetype, 109

packaging, 198, 199
Business attributes

anaemic aggregate, 126
Cargo aggregate, 127, 128
dependent classes, 128–130
domain richness, 126
entity object, 130
getter/setter methods, 126

C
Cargo aggregate class diagram, 26
Cargo Repository class, 168–171
Cargo tracker

application, 39
EE4J, 40
implementations, 39

Jakarta EE platform (see Jakarta
EE platform specifications,
cargo tracker)

Java EE platform, 40
modular monolith (see Modular

monolith, cargo tracker)
Cargo Tracker Domain

business areas, 18, 19
DD implementations, 37
microservices, 21
model services, 32, 34
operations, 29, 30
sub-domains, 20

Cargo Tracker implementation
bounded contexts, 106–108
business capabilities, 106
DDD artifact, 104, 105
docker container image, 107
Eclipse MicroProfile, 104
Helidon MP, 105
logical grouping, 118
microservices solution, 119
relational database, 107

Cargo Tracker with Axon
bounded contexts, 300, 301

artifact, 303
Axon Server, 305
booking microservice, 303, 304
command side, 301, 302
package structure (see Package

structure, bounded contexts)
Query side, 301, 302
Spring Boot application, 305

DDD artifacts, 312
Command Handlers, 288

Book Cargo Command, 323, 324
Cargo Aggregate, 327
CargoBookingCommand, 325

INDEX

375

@CommandHandler, 325, 326
identification, 322, 324
POJOs, 322

Command/Query responsibility
segregation (CQRS) principle, 39

commands, 281
queries, 281
event sourcing, 282, 284, 285

Commands/Queries, 12
Contexts and dependency injection

(CDIs), 45, 46
Core domain artifacts, 18
Core domain model

aggregate class implementation, 121
business attributes, 126
entities/value objects, 120, 121, 130
implementation, 120
JPA integration, 121

Corporate banking service, 4
CQRS/ES framework, 277
Credit card management, 6

D
Domain model

aggregates, 56, 210, 211
business attribute

coverage, 59, 60
business method coverage, 60
class implementation, 57, 58
domain rich vs. anaemic, 58, 59
events, 64, 65
inter aggregrate references, 63, 64
state construction, 61–63
state persistence, 63

application services
commands/queries, 249–255
responsibilities, 249

artifacts, 210
bare-bones implementation, 214
location entity object, 220
Route Specification Value

Object, 221, 222
dependent associations, 222–224
domain richness, 215–217, 219
entities, 65

aggregrate relationships, 67
class implementation, 66
construction/persistence, 67, 68

events
choreography pattern, 142
command operation, 140
custom annotation, 143, 144
flow, 141
MicroProfile platform, 142, 143
microservices

architecture, 141
identification

command handlers, 138
commands, 136

implementation, 120
command handlers, 138, 139
commands, 136, 137

inbound services, 237
event handlers, 245–248
REST API, 238–244

JPA, 211–213
operations, 135

command handlers, 226–228
commands, 224, 226
events, 229–231
events, registration, 232–235
queries, 229

outbound services
DDD implementation, 274, 275
message broker, 270, 272–274

Index

376

repository, 257, 258
REST API(s), 258–269

queries, 140
services, 32, 364

application, 155
implementation, 145
inbound, 145
outbound, 166

value objects, 68, 69
aggregate relationship, 71, 72
class implementation, 69–71
construction/persistence, 72, 73

Domain model with Axon
Aggregates

class implementation, 315
command side, 313
identifier, 314
no-args constructor, 315
stereotype annotations, 314

commands (see Command
Handlers)

event publishing
AggregateLifeCycle class, 329
implementation, 330
steps, 328

identification/implementation of
events, 328, 329

implementation summary, 363
state

Booking Amount Business
Object, 318

business concepts, 316
Cargo Aggregate, 316, 317
implementation, 322
Itinerary Business Object, 319
Location Business Object, 320, 321
Route Specification, 319

state maintenance (see State
maintenance, Axon domain model)

Domain rules, 11

E, F, G
Eclipse MicroProfile

capabilities, 96–98
configuration, 99, 100
core specifications, 97–99
Health Check, 100
JWT authentication, 100
metrics, 100
microservices

advantages, 95
applications, 96
architecture, 94
landscape, 94

monolithic applications, 94
OpenAPI, 100
OpenTracing, 101
rest client, 101
supporting specifications

annotations, 102
dependency injection, 102
enterprise applications, 103
implementation, 101, 102
JSON binding, 103
JSON processing, 103
RESTful web services, 103

@Embeddable annotation, 222
@EnableBinding annotation, 245, 272
Enterprise Java Beans (EJBs), 45
Entities, 23
Entity Objects, 10
Entity/value objects

activity tracking, 135
demonstration, location, 131

Domain model (cont.)

INDEX

377

dependent associations, 134
implementation, 130
route specification, 131–133

Event choreography, 103
Event-driven choreography

architecture, 231
Eventhandlers package, 112, 245
Events, 12
Event sourcing

aggregates, 279
domain sourcing, 278
Cargo Aggregate, 280, 281
Cargo Booking, 279
Cargo Routing, 280
domain sourcing, 278

Event sourcing (ES), 39
Expression language (EL), 44

H
Handling activity class diagram, 27
Hexagonal architectural pattern, 35, 36

I
Inbound services, 32

Cargo Tracker application, 364
Event Handlers

Bounded Context, 367
CargoProjectionsEventHandler,

368, 369
@EventHandler, 367
flows/responsibilities, 367

REST API
BookCargoCommandDTO

Assembler class, 150–152
BookCargoResource class, 148, 149
Cargo Booking command, 365, 366

CargoBookingController
class, 146, 147

class diagram, 152, 153
flows/responsibilities, 364, 365
HTTP requests, 146, 364
implementation, 146
scaffold project, 146

J, K
Jakarta EE platform specifications,

cargo tracker
enterprise application

technologies, 45
annotations, 47
bean validation, 46
CDIs, 45
EJBs, 45
interceptors, 47
JPA, 46
JTA, 46

Java EE Security API (1.0), 47
JAX-RS, 47
web application

technologies, 42
EL, 44
faces, 43
JSON binding, 44
JSON processing, 44
JSTL, 44
pages, 43
servlets, 43
websocket, 44

web profile, 41, 42
Java API for RESTful Web Services

(JAX-RS), 47
Java Persistence API (JPA), 41, 211
JavaServer Faces (JSF), 43

Index

378

Java transaction API (JTA), 46
JPA integration

aggregate identifier, 124, 125
bare-bones implementation, 126
business key class, 125
configuration properties, 123
datasource configuration, 123
dependency list, 122, 123
JPA entity, 124
minimalistic code, 124

JSON Web Token (JWT), 100
JSP standard tag library (JSTL), 44

L
Loan amount value object, 11
Loan application aggregate, 11

M, N
MicroProfile Health Check, 100
Microservices architectural style, 94
Model View Controller (MVC), 43
Modular monolith, cargo tracker

advantage, 49
application services, 81–83
architecture, 48
bounded contexts, 49–51

applications, 52, 53
domain model, 53, 54
infrastructure, 54
interfaces, 51, 52
shared kernels, 55

CDI eventing model, 84, 86–88
commands, 75, 76
DDD artifact implementation, 91
domain model (see Domain model)
domain rules, 73–75

inbound services, 78, 79
native web API(s), 79, 80
outbound services, 88, 90
queries, 77, 78
RESTful API(s), 79

O
Object relational mapping (ORM), 46
Outbound services, 32

implementation, 166, 167
message broker, 184–186
repository classes, 167–171
REST API(s)

anti-corruption layer, 173
assignRouteToCargo

method, 178, 179
class diagram, 178
ExternalCargoRoutingService,

179–181
HTTP invocation, 172, 183
optimalRoute API, 182
routing service, 173, 174
Transit Edge, 176, 177
TransitPath object, 172, 175

P
Package structure, bounded contexts

application, 307, 308
CQRS/ES, 305, 306
domain model, 308, 309
infrastructure, 309, 310

Axon dashboard, 311
Booking Bounded Context, 310

interface, 307
logical grouping, 305

Problem Space/business domain, 2–4

INDEX

379

Q
@QueryHandler annotation, 289
Query handlers, domain model with Axon

@QueryHandler, 352
Cargo Aggregate, 352, 354, 355
queries

Aggregate projections, 350
Bounded Context, 350
CargoSummaryQuery class, 351
CargoSummaryResult class, 351, 352
point-to-point, 355
POJOs, 350
scatter gather queries, 355
subscription queries, 355

R
Retail banking services, 4

S
SagaManager, 294
Sagas, 13, 15, 30–32
Sagas, domain model with Axon

Booking Saga, 357, 360, 361, 363
business flows, 356
choreography approach, 357
code, implementation, 360
handling, 357
orchestration approach, 358, 359

Separate Bounded Contexts, 7, 8
@Service annotation, 272
@Service marker annotation, 255
Single bounded context, 7
@SpringBootApplication annotation, 199
Spring Cloud, 194
Spring platform

capabilities, 193
cloud, 194, 195

components, 194
contexts (see Bounded context)
core domain (see Domain model)
project portfolio, 190, 191
requirements, 192

State maintenance, Axon domain model
Aggregate, 331
Assign Route Command, 340
AssignRouteToCommandHandler, 338
Cargo Aggregate, 332, 339, 344
ChangeDestinationCommand, 340–342
command handlers, 337
@EventSourcingHandler, 331, 332, 341
first command, 333–336
process, Axon framework, 338, 339
RoutingStatus, 331, 338
state retrieval process, 343

@StreamListener annotation, 245
Sub-Domains/bounded contexts, 4

billing, 6
claims, 6
collections, 5
originations, 5
products, 6
servicing, 5

T, U
@TargetAggregateIdentifier, 323
Technology compatibility kits (TCKs), 40
Tracking activity class diagram, 28
@TransactionalEventListener

annotation, 272
Transform package, 112

V, W, X, Y, Z
Value Objects, 10, 24
Voyage aggregate class diagram, 28

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Domain Driven Design
	DDD Concepts
	Problem Space/Business Domain
	Sub-Domains/Bounded Contexts

	The Domain Model
	Aggregates/Entity Objects/Value Objects
	Domain Rules
	Commands/Queries
	Events
	Sagas

	Summary

	Chapter 2: Cargo Tracker
	Core Domain
	Cargo Tracker: Sub-Domains/Bounded Contexts
	Cargo Tracker: Domain Model
	Aggregates
	Aggregate Identifiers
	Entities
	Value Objects

	Cargo Tracker: Domain Model Operations
	Sagas
	Domain Model Services
	Domain Model Services Design
	Cargo Tracker: DDD Implementations
	Summary

	Chapter 3: Cargo Tracker: Jakarta EE
	The Java EE Platform
	Rebranding to Jakarta EE and the Way Forward
	Jakarta EE Platform Specifications
	Web Application Technologies
	Java Servlet
	JavaServer Faces
	JavaServer Pages
	Expression Language
	JSP Standard Tag Library (JSTL)
	Java API for WebSocket
	Java API for JSON Binding
	Java API for JSON Processing

	Enterprise Application Technologies
	Enterprise Java Beans (3.2)
	Contexts and Dependency Injection for Java (2.0)
	Bean Validation
	Java Persistence API (JPA)
	Java Transaction API (JTA)
	Common Annotations
	Interceptors

	Web Services in Jakarta EE
	Java API for RESTful Web Services (JAX-RS)

	Security Technologies
	Java EE Security API (1.0)

	Jakarta EE Specification Summary

	Cargo Tracker as a Modular Monolith
	Bounded Context(s) with Jakarta EE
	interfaces
	application
	domain
	infrastructure
	Shared Kernels

	Implementing the Domain Model with Jakarta EE
	Aggregates
	Aggregate Class Implementation
	Domain-Rich Aggregate vs. Anemic Aggregates
	Business Attribute Coverage
	Business Method Coverage
	Aggregate State Construction
	Aggregate State Persistence
	Inter-Aggregate References
	Aggregate Events

	Entities
	Entity Class Implementation
	Entity-Aggregate Relationships
	Entity State Construction/Persistence

	Value Objects
	Value Object Class Implementation
	Value Object-Aggregate Relationship
	Value Object Construction/Persistence

	Domain Rules
	Commands
	Queries

	Implementing Domain Model Services with Jakarta EE
	Inbound Services
	RESTful API(s)
	Native Web API(s)
	Application Services
	Application Services: Events
	Outbound Services
	Implementation Summary

	Summary

	Chapter 4: Cargo Tracker: Eclipse MicroProfile
	Eclipse MicroProfile
	Eclipse MicroProfile: Capabilities
	Eclipse MicroProfile: Core Specifications
	Eclipse MicroProfile Config
	Eclipse MicroProfile Health Check
	Eclipse MicroProfile JWT Authentication
	Eclipse MicroProfile Metrics
	Eclipse MicroProfile OpenAPI
	Eclipse MicroProfile OpenTracing
	Eclipse MicroProfile Type Safe Rest Client

	Eclipse MicroProfile: Supporting Specifications
	Contexts and Dependency Injection for Java (2.0)
	Common Annotations
	Java API for RESTful Web Services (JAX-RS)
	Java API for JSON Binding
	Java API for JSON Processing

	Eclipse MicroProfile Specification Summary

	Cargo Tracker Implementation: Eclipse MicroProfile
	Implementation Choice: Helidon MP
	Cargo Tracker Implementation: Bounded Context(s)
	Bounded Contexts: Packaging
	Bounded Contexts: Package Structure
	interfaces
	application
	domain
	infrastructure

	Cargo Tracker Implementation
	Domain Model: Implementation
	Core Domain Model: Implementation
	Aggregates/Entities/Value Objects
	Aggregate Class Implementation
	JPA Integration: Helidon MP
	Domain Richness: Business Attributes
	Implementing Entity Objects/Value Objects

	Domain Model Operations
	Commands
	Identification of Commands
	Implementation of Commands
	Identification of Command Handlers
	Implementation of Command Handlers

	Queries
	Events

	Domain Model Services
	Inbound Services
	REST API
	Event Handlers

	Application Services
	Application Services: Command/Query Delegation
	Application Services: Raising Domain Events

	Outbound Services
	Outbound Services: Repositories
	Outbound Services: REST API(s)
	Outbound Services: Message Broker

	Implementation Summary

	Summary

	Chapter 5: Cargo Tracker: Spring Platform
	The Spring Platform
	Spring Boot: Capabilities
	Spring Cloud
	Spring Framework Summary

	Bounded Context(s) with Spring Boot
	Bounded Contexts: Packaging
	Bounded Contexts: Package Structure
	interfaces
	application
	domain
	infrastructure
	Cargo Tracker Implementation

	Domain Model: Implementation
	Core Domain Model: Implementation
	Aggregates/Entities/Value Objects
	Aggregate Class Implementation
	JPA Integration: Spring Data JPA
	Domain Richness: Business Attributes
	Implementing Entity Objects/Value Objects

	Domain Model Operations
	Commands
	Queries
	Domain Events
	Registration of Events

	Domain Model Services
	Inbound Services
	REST API
	Event Handlers

	Application Services
	Application Services: Command/Query Delegation

	Outbound Services
	Outbound Services: Repository Classes
	Outbound Services: Rest API(s)
	Outbound Services: Message Broker

	Implementation Summary

	Summary

	Chapter 6: Cargo Tracker: Axon Framework
	Event Sourcing
	CQRS
	The Axon Framework
	Axon Components
	Axon Framework Domain Model Components
	Aggregates
	Commands/Command Handlers
	Events/Event Handlers
	Query Handlers
	Sagas
	Axon Dispatch Model Components
	Command Bus
	Query Bus
	Event Bus
	Sagas

	Axon Infrastructure Components: Axon Server

	Cargo Tracker with Axon
	Bounded Contexts with Axon
	Bounded Contexts: Artifact Creation
	Bounded Contexts: Package Structure
	interfaces
	application
	domain
	infrastructure

	Implementing the Domain Model with Axon
	Aggregates
	State
	Command Handling
	Identification of Commands
	Implementation of Commands
	Identification of Command Handlers
	Implementation of Command Handlers

	Event Publishing
	Identification/Implementation of Events
	Implementation of Event Publishing

	State Maintenance
	Event Handling within Aggregates
	State Maintenance: The First Command
	State Maintenance: Subsequent Commands

	Aggregate Projections
	Query Handlers
	Identification of Queries
	Implementation of Queries
	Implementation of Query Handlers

	Sagas

	Implementation Summary
	Implementing Domain Model Services with Axon
	Inbound Services
	REST API
	Event Handler

	Application Services

	Summary

	Index

