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Preface

The life of people has changed tremendously in view of the rapid growth of mobile

and wireless communication. Channel coding is the heart of digital communication

and data storage. The traditional block codes and conventional codes are commonly

used in digital communications. To approach the theoretical limit for Shannon’s

channel capacity, the length of a linear block code or constant lengths of convo-

lutional codes have to be increased, which in turn makes the decoder complexity to

become high and may render it physically unrealizable. The powerful turbo and

LDPC codes approach the theoretical limit for Shannon’s channel capacity with

feasible complexity for decoding. MIMO communications is a multiple antenna

technology which is an effective way for high speed or high reliability communi-

cations. The MIMO can be implemented by space-time coding. However, a single

book which can serve as a textbook for Bachelor and Master students on this topic

is lacking in the market.

In this book, many illustrative examples are included in each chapter for easy

understanding of the coding techniques. An attractive feature of this book is the

inclusion of MATLAB-based examples with codes to encourage readers to

implement on their personal computers and become confident of the fundamentals

and gain more insight into coding theory. In addition to the problems that require

analytical solutions, MATLAB exercises are introduced to the reader at the end of

each chapter.

The book is divided into 11 chapters. Chapter 1 introduces the basic elements of

a digital communication system, statistical models for wireless channels, capacity

of a fading channel, Shannon’s noisy channel coding theorem and the basic idea of

coding gain. Chapter 2 gives an overview of the performance analysis of different

modulation techniques, and also deals with the performance of different diversity

combining techniques in a multi-channel receiver. Chapter 3 introduces Galois

fields and polynomials over Galois fields. Chapter 4 covers linear block codes

including RS codes because of their popularity in burst error correction in wireless

networks. Chapter 5 discusses the design of a convolutional encoder and Viterbi

decoding algorithm for the decoding of convolutional codes, as well as the

performance analysis of convolutional codes over AWGN and Rayleigh fading
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channels. In this chapter, punctured convolutional codes are also discussed.

Chapter 6 provides a treatment of the design of turbo codes, BCJR algorithm for

iterative decoding of turbo codes, and performance analysis of turbo codes. Chapter

7 focuses on the design and analysis of Trellis-coded modulation schemes using

both the conventional and turbo codes. Chapter 8 describes the design of low parity

check codes (LDPC), decoding algorithms and performance analysis of LDPC

codes. The erasure correcting codes like Luby transform (LT) codes and Raptor

codes are described in Chap. 9. Chapter 10 provides an in-depth study of multiple-

input multiple-output (MIMO) systems in which multiple antennas are used both at

the transmitter and at the receiver. The design of space-time codes and imple-

mentations of MIMO systems are discussed in Chap. 11.

Salient features of this book are as follows:

• Provides comprehensive exposure to all aspects of coding theory for wireless

channels with clarity and in an easy way to understand

• Provides an understanding of the fundamentals, design, implementation and

applications of coding for wireless channels

• Presents illustration of coding techniques and concepts with several fully worked

numerical examples

• Provides complete design examples and implementation

• Includes PC-based MATLAB m-files for the illustrative examples are included in

the book.

The motivation in writing this book is to include modern topics of increasing

importance such as turbo codes, LDPC codes and space-time coding in detail, in

addition to the traditional RS codes and convolutional codes, and also to provide a

comprehensive exposition of all aspects of coding for wireless channels. The text is

integrated with MATLAB-based programs to enhance the understanding of the

underlying theories of the subject. These MATLAB codes are free to download

from the book’s page on Springer.com.

This book is written at a level suitable for undergraduate and master students in

electronics and communication engineering, electrical and computer engineering,

computer science, and applied physics as well as for self-study by researchers,

practicing engineers and scientists. Depending on the chapters chosen, this text can

be used for teaching a one or two semester course on coding for wireless channels.

The prerequisite knowledge of the readers in principles of digital communication is

expected.

K. Deergha Rao
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Chapter 1

Introduction

In this chapter, a digital communication system with coding is first described.

Second, various wireless communication channels, their probability density func-

tions, and capacities are discussed. Further, Shannon’s noisy channel coding the-

orem, channel coding principle, and channel coding gain are explained. Finally,

some application examples of channel coding are included.

1.1 Digital Communication System

A communication system is a means of conveying information from one user to

another user. The digital communication system is one in which the data are

transmitted in digital form. A digital communication system schematic diagram is

shown in Fig. 1.1. The source coding is used to remove redundancy from source

information for efficient transmission. The transmitted signal power and channel

bandwidth are the key parameters in the design of digital communication system.

Using these parameters, the signal energy per bit Ebð Þ to noise power spectral

density N0ð Þ ratio is determined. This ratio is unique in determining the probability

of bit error, often referred to as bit error rate (BER). In practice, for a fixed Eb=N0,

acceptable BER is possible with channel coding. This can be achieved by adding

additional digits to the transmitted information stream. These additional digits do

not have any new information, but they make it possible for the receiver to detect

and correct errors thereby reducing the overall probability of error.

1.2 Wireless Communication Channels

1.2.1 Binary Erasure Channel (BEC)

Erasure is a special type of error with known location. The BEC transmits one of

the two binary bits 0 and 1. However, an erasure ‘e’ is produced when the receiver

receives an unreliable bit. The BEC channel output consists of 0, 1, and e as shown

© Springer India 2015
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in Fig. 1.2. The BEC erases a bit with probability ε, called the erasure probability of

the channel. Thus, the channel transition probabilities for the BEC are

P y ¼ 0jx ¼ 0ð Þ ¼ 1� e;

P y ¼ ejx ¼ 0ð Þ ¼ e;

P y ¼ 1jx ¼ 0ð Þ ¼ 0;

P y ¼ 0jx ¼ 1ð Þ ¼ 0;

P y ¼ ejx ¼ 1ð Þ ¼ e;

P y ¼ 1jx ¼ 1ð Þ ¼ 1� e:

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

ð1:1Þ

1.2.2 Binary Symmetric Channel (BSC)

The BSC is discrete memoryless channel that has binary symbols both in the input

and output. It is symmetric because the probability for receiving 0 when 1 is

transmitted is same as the probability for receiving 1 when 0 is transmitted. This
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Fig. 1.1 Digital communication system with coding
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probability is called the crossover probability of the channel denoted by P as shown

in Fig. 1.3. The probability for no error, i.e., receiving the same as transmitted, is

1� P. Hence, the channel transition probabilities for the BSC are

P y ¼ 0jx ¼ 0ð Þ ¼ 1� P;

P y ¼ 0jx ¼ 1ð Þ ¼ P;

P y ¼ 1jx ¼ 0ð Þ ¼ P;

P y ¼ 1jx ¼ 1ð Þ ¼ 1� P;

9

>

>

>

=

>

>

>

;

ð1:2Þ

1.2.3 Additive White Gaussian Noise Channel

In an AWGN channel, the signal is degraded by white noise g which has a constant

spectral density and a Gaussian distribution of amplitude. The Gaussian distribution

has a probability density function (pdf) given by

Pdf gð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2pr2
p exp � g2

2r2

� �

ð1:3Þ

where r2 is the variance of a Gaussian random process.

1.2.4 Gilbert–Elliott Channel

For bursty wireless channels, the Gilbert–Elliott (GE) channel [1, 2] is one of the

simplest and practical models. The GE channel is a discrete-time stationary model

as shown in Fig. 1.4 with two states: one bad state or burst state ‘2’ wherein a BSC

resides with high error probabilities ð1� P2Þ and the other state is a good state ‘1’

wherein a BSC resides with low error probabilities ð1� P1Þ.

11

0  0 

Fig. 1.3 Binary symmetric channel
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Another common GE example is that the BEC resides in a bad state with e close

to unity and assigns erasures to all of the bits transmitted during the high-error-rate

(bad) state.

1.2.5 Fading Channel

In the radio channel, the received power is affected by the attenuations due to the

combinations of the following effects:

1. The Path loss: It is the signal attenuation. The power received by the receiving

antenna decreases when the distance between transmitter and receiver increases.

The power attenuation is proportional to (distance)α, where α values range from

2 to 4. When the distance varies with time, the path loss also varies.

2. The Shadowing loss: It is due to the absorption of the radiated signal by scat-

tering structure. It is derived from a random variable with lognormal

distribution.

3. The Fading loss: The combination of multipath propagation and the Doppler

frequency shift produces the random fluctuations in the received power which

gives the fading losses.

1 2

Bad  Channel
11

00

Good Channel

11

00

Fig. 1.4 A two-state channel
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1.2.6 Fading

Fading gives the variations of the received power along with the time. It is due to

the combination of multipath propagation and the Doppler frequency shift which

gives the time-varying attenuations and delays that may degrade the communication

system performance. The received signal is a distorted version of the transmitted

signal which is a sum of the signal components from the various paths with different

delays due to multipath and motion.

Let Ts be the duration of a transmitted signal and Bx be the signal bandwidth.

The fading channel can be classified based on coherence time and coherence

bandwidth of the channel. The coherence time and coherence bandwidth of a

channel are defined as follows:

Doppler spread: The significant changes in the channel occur in a time Tc whose

order of magnitude is the inverse of the maximum Doppler shift BD among the

various paths, called the Doppler spread of the channel.

The coherence time of the channel Tc is

Tc ,
1

BD

ð1:4Þ

Delay spread: The maximum among the path delay differences, a significant

change occurs when the frequency change exceeds the inverse of TD, called the

delay spread of the channel.

The coherence bandwidth of the channel Bc is as follows:

Bc ,
1

TD
ð1:5Þ

The classification fading channels is shown in Fig. 1.5.

The fast fading causes short burst errors which are easy to correct. The slow fading

will affect many successive symbols leading to long burst errors. Due to energy

absorption and scattering in physical channel propagation media, the transmitted

signal is attenuated and becomes noisy. The attenuation will vary in mobile com-

munications based on the vehicle speed, surrounding trees, buildings, mountains, and

Slow fading     Fast fading             Frequency flat    Frequency selective

Fading Channel Classification

s c s c x c x c

Fig. 1.5 Classification of fading channels
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terrain. Based on the receiver location, moving receiver signals interfere with one

another and take several different paths. As such, the wireless channels are called

multipath fading channels. Hence, the additive white Gaussian noise (AWGN)

assumption for wireless channels is not realistic. Thus, the amplitudes in wireless

channel are often modeled using Rayleigh or Rician probability density function.

The most common fading channel models are as follows:

1. Flat independent fading channel

2. Block fading channel

In flat independent fading channel, the attenuation remains constant for one

symbol period and varies from symbol to symbol. Whereas in block fading channel,

the attenuation is constant over a block of symbols and varies from block to block.

1.3 Statistical Models for Fading Channels

1.3.1 Probability Density Function of Rician Fading Channel

When the received signal is made up of multiple reflective rays plus a significant

line of sight (non-faded) component, the received envelope amplitude has a Rician

probability density function (PDF) as given in Eq. (1.6), and the fading is referred

to as Rician fading.

Pdf xð Þ ¼ x

r2
exp � x2 þ A2ð Þ

2r2

� �

I0
xA

r2

� �

for x� 0;A� 0

¼ 0 otherwise

ð1:6Þ

where x is the amplitude of the received faded signal, I0 is the zero order modified

Bessel function of the first kind, and A denotes the peak magnitude of the non-faded

signal component called the specular component. The Rician PDF for different

values of sigma and A ¼ 1 is shown in Fig. 1.6.

1.3.2 Probability Density Function of Rayleigh Fading

Channel

Rayleigh fading occurs when there are multiple indirect paths between the transmitter

and the receiver and no direct non-fading or line of sight (LOS) path. It represents the

worst case scenario for the transmission channel. Rayleigh fading assumes that a

received multipath signal consists of a large number of reflected waves with

independent and identically distributed phase and amplitude. The envelope of the

received carrier signal is Rayleigh distributed in wireless communications [3].
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As the magnitude of the specular component approaches zero, the Rician PDF

approaches a Rayleigh PDF expressed as follows:

Pdf xð Þ ¼ x

r2
exp � x2

2r2

� �

for x� 0

¼ 0 otherwise

ð1:7Þ

The Rayleigh PDF for different values of sigma is shown in Fig. 1.7.

Additive white Gaussian noise and Rician channels provide fairly good per-

formance corresponding to an open country environment, while Rayleigh channel,

which best describes the urban environment fading, provides relatively worse

performance.

1.3.3 Probability Density Function of Nakagami Fading

Channel

The Nakagami model is another very popular empirical fading model [4]

Pdf rð Þ ¼ 2

CðmÞ
m

2r2

� �m

r2m�1e
�m r2

2r2 ð1:8Þ
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Fig. 1.6 Probability density of Rician fading channel
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where r2 ¼ 1
2
E½r2�, Cð:Þ is the gamma function, m� 1

2
is the fading figure.

The received instantaneous power r2 satisfies a gamma distribution. The phase

of the signal is uniformly distributed in [0, 2π). The Nakagami distribution is a

general model obtained from experimental data fitting, and its shape is very similar

to that of the Rice distribution. The shape parameter ‘m’ measures the severity of

fading.

When

m ¼ 1, it is Rayleigh fading.

m ! 1, it is AWGN channel; that is, there is no fading.

m[ 1, it is close to Rician fading.

However, due to lack of the physical basis, the Nakagami distribution is not as

popular as the Rician and Rayleigh fading models in mobile communications.

Many other fading channel models are discussed in Kuhn [5].

1.4 Channel Capacity

Channel capacity can be defined as the maximum rate at which the information can

be transmitted over a reliable channel.
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Spectral or Bandwidth Efficiency =
Transmission rate

Channel Band width
¼ RsH

B
bits/s/Hz

ð1:9Þ

where Rs is the symbol rate, and H is the entropy.

The channel capacity is also known as Shanon’s capacity can be defined as the

average mutual information for a channel with energy constraint.

1.4.1 Channel Capacity of Binary Erasure Channel

The channel capacity of BEC is

CBEC ¼ 1� e ð1:10Þ

e is the probability of a bit erasure, which is represented by the symbol e.

1.4.2 Channel Capacity of Binary Symmetric Channel

The Channel capacity of BSC is as follows:

CBSC ¼ 1�HðPÞ ð1:11Þ

HðPÞ is the binary entropy function given by Ryan and Lin [6]

H Pð Þ ¼ �P log2 Pð Þ � 1� Pð Þ log2 1� Pð Þ ð1:12Þ

P is the probability of a bit error.

1.4.3 Capacity of AWGN Channel

An AWGN channel can be expressed by the following input–output relationship

y ¼ xþ g ð1:13Þ

where x is the transmitted source signal, y denotes the output of the channel, and g

is a real Gaussian process with zero mean, variance r2g ¼ E½g2�, and two sided

power spectral density N0

2
. The mutual information I x; yð Þ with constraint on the

energy of the input signal can be expressed as follows:

1.4 Channel Capacity 9



I x; yð Þ ¼ H yð Þ � HðgÞ ð1:14Þ

where H yð Þ is the entropy of the channel output, and HðgÞ is the entropy of the

AWGN. Since r2y ¼ r2x þ r2g, the entropy H yð Þ is bounded by 1
2
log2 peðr2x þ r2gÞ

and thus

I x; yð Þ� 1

2
log2 peðr2x þ r2gÞ �

1

2
log2 per

2
g

¼ 1

2
log2ð1þ

r2x
r2g
Þ

ð1:15Þ

The mutual information I x; yð Þ is maximum when the input x is a real Gaussian

process with zero mean and variance r2x . The capacity of the channel is the max-

imum information that can be transmitted from x to y by varying the PDF Pdf of the

transmit signal x. The signal-to-noise ratio (SNR) is defined by

SNR,
r2x
r2g

ð1:16Þ

Thus, the capacity of an AWGN channel is given by

C ¼ 1

2
log2ð1þ SNRÞ bits/s/Hz ð1:17Þ

Since r2x ¼ BEs and r2g ¼ B N0

2
, Eq. (1.17) can be rewritten as follows:

C ¼ 1

2
log2 1þ 2

Es

N0

� �

bits/s/Hz ð1:18Þ

where B is the bandwidth, Es denotes the symbol energy, and N0 represents the

noise spectral density.

If x and g are independent complex Gaussian processes, the channel capacity can

be expressed as follows:

C ¼ log2ð1þ SNRÞ bits/s/Hz ð1:19Þ

Since r2x ¼ BEs and r2g ¼ BN0 for complex Gaussian process, Eq. (1.19) can be

rewritten as follows:

C ¼ log2 1þ Es

N0

� �

bits/s/Hz ð1:20Þ
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Example 1.1 What is the capacity of a channel with an SNR of 20 dB.

Solution C ¼ log2 1þ 20ð Þ ¼ 6:65 bits/s/Hz.

The capacity is increasing as a log function of the SNR, which is a slow increase.

Clearly, increasing the capacity by any significant factor takes an enormous amount

of power.

1.4.4 Channel Capacity of Gilbert–Elliott Channels

The channel capacity of GE Channel is given by Ryan and Lin [6]

CGE ¼
X

S

s¼1

PsCs ð1:21Þ

where Ps is the probability of being state in s state, and Cs is the capacity of the

channel in s state.

1.4.5 Ergodic Capacity of Fading Channels

A slow flat fading channel with AWGN can be expressed by the following input–

output relationship

y ¼ hxþ g ð1:22Þ

where x is the transmitted source signal, y denotes the output of the channel, g is the

AWGN, and h is a Gaussian random variable with Rician or Rayleigh PDF.

The fading channel model given in Eq. (1.22) can be seen as a Gaussian channel

with attenuation h. If h is assumed to be an ergodic process, the capacity of the

fading channel is the Ergodic capacity computed by the following expression

C ¼ E½log2 1þ h2SNR
� �

� bits/s/Hz ð1:23Þ

where the expectation E[·] is with respect to random variable h. If E h2½ � ¼ 1,

Eq. (1.23) is always less than AWGN channel capacity since E f ðXÞ½ � � f E X½ �ð Þ
according to Jensen inequality. If h has Rayleigh PDF, computation of Eq. (1.24)

yields [5]

C ¼ log2 e � exp
1

SNR

� �

� expint 1

SNR

� �

bits/s/Hz ð1:24Þ
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where

expint xð Þ,
Z

1

x

et

t
dt

which is the capacity of the independent Rayleigh fading channel with no constraint

on the constellation of the input signal. The following MATLAB program is written

and used to compute the AWGN channel capacity in AWGN and the ergodic

capacity of a Rayleigh fading channel.

Program 1.1: MATLAB program to compute capacity of AWGN channel and

ergodic capacity of Rayleigh fading channel with channel state information (CSI).

The SNR versus capacity plot obtained from the above MATLAB program is

shown in Fig. 1.8. From Fig. 1.8, it can be observed that there is a much lower

performance difference between the capacities of AWGN and Rayleigh channels.

This is highly indicative that the coding of fading channels will yield considerable

coding gain for large SNR.

Example 1.2 For large SNR’s, verify that the SNR required to obtain the same

ergodic capacity for the AWGN channel and the independent Rayleigh fading

channel differs by 2.5 dB.

Solution AWGN channel capacity is given by C ¼ log2ð1þ SNRÞ bits/s/Hz.
For large SNRs, the above equation can be approximated as follows:

C ¼ log2ðSNRÞ bits/s/Hz

The ergodic capacity in Rayleigh fading channel is given by

C ¼ log2 e � exp
1

SNR

� �

� expint 1

SNR

� �

% capacity of AWGN channel and ergodic capacity of Rayleigh fading 

channel with %channel state information (CSI).  

clear all 

close all 

SNRdB = [-10:0.1:30]; 

SNRlin = 10.^(SNRdB/10); 

C_AWGN = log2 (1 + SNRlin);% AWGN 

C_Rayleigh = log2(exp(1)) * exp (1 ./ SNRlin ) .* expint( 1 ./ SNRlin);% 

Rayleigh 

plot(SNRdB, C_AWGN, '-', SNRdB, C_Rayleigh, '--'); 

xlabel(' SNR(dB)'), ylabel('{\it Capacity} (bit/s/Hz)'); 
legend('AWGN', 'Rayleigh fading' );
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For large SNRs, the above equation can be rewritten as follows:

CRayleigh ¼ log2ðSNRÞ � 0:8327

Since the capacity of an AWGN channel for large SNRs can be approximated as

log2ðSNRÞ, the above relation can be rewritten as follows:

CRayleigh ¼ CAWGN � 0:8327

Thus, the capacity for AWGN channel and the Rayleigh fading channel differs

by 0.8327. The difference in dB can be expressed as follows:

10 log10 20:8327
� �

¼ 2:5 dB

1.4.6 Outage Probability of a Fading Channel

A mobile user will experience rapid changes in SNR as fading channels lead to an

oscillating SNR at different locations. As such, the channel can be characterized by

an average SNR and BER can be computed by using this. If BER is below a
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Fig. 1.8 Capacity of AWGN channel and ergodic capacity of independent Rayleigh fading

channel
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threshold, then it is not the primary concern for many applications. A more

meaningful measure is outage probability, which is the percentage of time that an

acceptable quality of communication is not available.

The outage probability of a fading channel is the probability with which the

information outage occurs when the transmission rate exceeds the capacity.

The outage probability for a Rayleigh fading channel with the same SNR as that

of AWGN is given by Du and Swamy [3]

Pout ¼ 1� exp
1� 2Cout

SNR

� �

ð1:25Þ

1.4.7 Outage Capacity of Fading Channels

The outage capacity of a fading channel is the maximum rate supported by the

channel for a given outage probability of the channel. The Cout can be expressed as

follows:

Cout ¼ log2 1� SNR log 1� Poutð Þð Þ ð1:26Þ

The following MATLAB program is written and used to compute outage

capacity of Rayleigh fading channels for different outage probabilities.

Program 1.2: MATLAB program to compute outage capacities of the Rayleigh

fading channel

%   outage capacities of  Rayleigh fading channel 

clear all 

close all 
SNRdB = [-10:0.1:30]; 

SNRlin = 10.^(SNRdB/10); 

C_AWGN = log2 (1 + SNRlin );% AWGN 

C_Rayleigh = log2(exp(1)) * exp (1./ SNRlin ) .* expint( 1./ SNRlin);% 

Rayleigh 

P_out = 25e-2; 

C_out_25 = log2(1 - SNRlin * log(1-P_out) ); 

P_out = 68e-2; 

C_out_68 = log2(1 - SNRlin * log(1-P_out) ); 

plot(SNRdB, C_AWGN, '-', SNRdB, C_Rayleigh, '--', SNRdB, 

C_out_68, ':',SNRdB, C_out_25, ':'); 

xlabel('{\itE}_s/{\itN}_0 (dB)'), ylabel('{\itC} (bit/s/Hz)'); 
legend('AWGN', 'Rayleigh fading','{\itC}_{out}')%, 'C_{out}, 4%', 

'C_{out}, 46%', 'C_{out}, 64%' ); 
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The outage capacity of Rayleigh fading channel for different outage probabilities

obtained from the above program is shown in Fig. 1.9.

It is observed from Fig. 1.6 that at pout ¼ 68% ;Cout is greater than the capacity

of AWGN channel.

1.4.8 Capacity of Fading Channels with CSI

at the Transmitter and Receiver

The ergodic capacity of a Rayleigh fading channel with channel state information

(CSI) at the transmitter and receiver is given by Goldsmith [7]

C ¼
Z

1

c0

Blog2
c

c0

� �

Pdf cð Þdc bits/s/Hz ð1:27Þ

where c is the signal-to-noise ratio (SNR), c0 is the cutoff SNR, Pdf cð Þ is the PDF of

c due to the fading channel.
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1.5 Channel Coding for Improving the Performance

of Communication System

1.5.1 Shannon’s Noisy Channel Coding Theorem

Any channel affected by noise possesses a specific ‘channel capacity’ C, a rate of

conveying information that can never be exceeded without error, but in principle, an

error-correcting code always exists such that information can be transmitted at rates

less than C with an arbitrarily low BER.

1.5.2 Channel Coding Principle

The channel coding principle is to add redundancy to minimize error rate as

illustrated in Fig. 1.10.

1.5.3 Channel Coding Gain

The BER is the probability that a binary digit transmitted from the source received

erroneously by the user. For required BER, the difference between the powers

required for without and with coding is called the coding gain. A typical plot of

BER versus Eb=N0 (bit energy to noise spectral density ratio) with and without

channel coding is shown in Fig. 1.11. It can be seen that coding can arrive at the

same value of the BER at lower Eb=N0 than without coding. Thus, the channel

coding yields coding gain which is usually measured in dB. Also, the coding gain

usually increases with a decrease in BER.

Transmitter Receiver

Channel

01 0 1  111 0

Source

1 1 0 1

Channel

Encoder

1 1 0 1

00 0 1111 1

Sink

Channel

Decoder

Fig. 1.10 Illustration of channel coding principle
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1.6 Some Application Examples of Channel Coding

1.6.1 Error Correction Coding in GSM

Each speech sample of 20 ms duration is encoded by RPE-LPC as 260 bits with

total bit rate of 13 kbps. The 260 bits are classified into three types based on their

sensitiveness as shown in Fig. 1.12.
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Fig. 1.11 Illustration of coding gain
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Fig. 1.12 Classification of

speech sample 3 in GSM
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The 50 bits in Type Ia are the most sensitive to bit errors, the next 132 bits in

Type Ib are moderately sensitive to bit errors, and the other 78 bits in Type II do not

need any protection. The Type Ia bits are encoded using a cyclic encoder. The Type

Ib bits and the encoded Type Ia bits are encoded using convolutional encoder. The

Type II bits are finally added to the convolution encoder output bits.

1.6.2 Error Correction Coding in W-CDMA

The W-CDMA standard has defined two error correction coding schemes as shown

in Fig. 1.13 for different quality of services. The W-CDMA standard uses convo-

lutional encoding for voice and MPEG4 applications and uses turbo encoding for

data applications with longer time delays. The convolutional encoding gives a BER

of up to 10−3, and turbo encoding yields a BER of up to 10−6 with computational

complexity. In Fig. 1.13:

CRC = cyclic redundancy check

DAC = digital-to-analog convertor

NCO = numerically controlled oscillator

OVSF = orthogonal variable spreading factor

RRC = root raised cosine

1.6.3 Digital Video Broadcasting Channel Coding

Convolutional codes concatenated with a Reed-Solomon (RS) code are adopted as

physical layer FEC codes in digital video broadcast terrestrial/handheld (DVB-T/H).
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Fig. 1.13 Error correction coding in W-CDMA
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Turbo codes are used in digital video broadcast satellite services to handhelds/

terrestrial (DVB-SH). Low-density parity-check (LDPC) codes concatenated with a

Bose-Chaudhuri-Hochquenghem (BCH) code are adopted as physical layer FEC in

digital video broadcast second generation satellite (DVB-S2) and digital video

broadcast second generation terrestrial (DVB-T2).

1.6.4 Error Correction Coding in GPS L5 Signal

A block diagram of the simplified GPS satellite L5 signal generator [8] is shown in

Fig. 1.14. The navigation data is coded in a CRC block coder with a long block of

150 bits or 3 s at 50 bps and provides a 24-bit parity check word for low probability

of undetected error. This bit stream is then rate ½ coded using a K = 7 convolu-

tional coder for error correction with a soft decision Viterbi decoder in the receiver.

This FEC decoding provides approximately 5 dB of coding gain.

SV codes, 10.23 

MHz chip rate, 

10230 period

10.23

Mcps

Quadri-

phase

Modula

tor

Invert

Parity

CRC

Block

Coder

(150, 

126)

Rate

½

k=7

Conv.

code

10-bit

Neuman

Hoffman

code

Pairs of

24 bit words

Provides 24 parity bits

50 bps 100

bps

1 kcps

Navigation

Data

carrier

Q

data

I

Fig. 1.14 Error correction coding in GPS L5 signal (copy right: 1999 ION)
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Chapter 2

Performance of Digital Communication

Over Fading Channels

In this chapter, bit error rate (BER) performance of some of digital modulation

schemes and different wireless communication techniques is evaluated in additive

white Gaussian noise (AWGN) and fading channels. Further, the BER performance

of different diversity techniques such as selective diversity, EGC, and MRC is also

evaluated in Rayleigh fading channel.

2.1 BER Performance of Different Modulation Schemes

in AWGN, Rayleigh, and Rician Fading Channels

In this section, the effect of fading is evaluated on different modulation schemes.

The bit error probability Pb often referred to as BER is a better performance

measure to evaluate a modulation scheme. The BER performance of any digital

modulation scheme in a slow flat fading channel can be evaluated by the following

integral

Pb ¼
Z

1

0

Pb;AWGN cð ÞPdf ðcÞdc ð2:1Þ

where Pb;AWGN cð Þ is the probability of error of a particular modulation scheme in

AWGN channel at a specific signal-to-noise ratio c ¼ h2 Eb

N0
. Here, the random

variable h is the channel gain, Eb

N0
is the ratio of bit energy to noise power density in a

non-fading AWGN channel, the random variable h2 represents the instantaneous

power of the fading channel, and Pdf ðcÞ is the probability density function of c due

to the fading channel.
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2.1.1 BER of BPSK Modulation in AWGN Channel

It is known that the BER for M-PSK in AWGN channel is given by [1]

BERM�PSK ¼ 2

max log2 M; 2ð Þ
X

maxðM=4;1Þ

k¼1

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Eb log2 M

N0

r

sin
2k � 1ð Þp

M

� �

ð2:2Þ

For coherent detection of BPSK, Eq. (2.2) with M ¼ 2 reduces to

BERBPSK ¼ Q

ffiffiffiffiffiffiffiffi

2Eb

N0

r
� �

ð2:3Þ

where

Q xð Þ ¼ 1
ffiffiffiffiffiffi

2p
p

Z

1

x

exp � y2

2

� �

dy

Equation (2.3) can be rewritten as

BERBPSK;AWGN ¼ 1

2
erfc

ffiffiffiffiffiffi

Eb

N0

r
� �

ð2:4Þ

where erfc is the complementary error function and Eb

N0
is the bit energy-to-noise

ratio. The erfc can be related to the Q function as

Q xð Þ ¼ 1

2
erfc

x
ffiffiffi

2
p
� �

ð2:5Þ

For large Eb

N0
and M[ 4, the BER expression can be simplified as

BERM�PSK ¼ 2

log2 M
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Eb log2 M

N0

r

sin
p

M

� �

ð2:6Þ

2.1.2 BER of BPSK Modulation in Rayleigh Fading Channel

For Rayleigh fading channels, h is Rayleigh distributed, h2 has chi-square distri-

bution with two degrees of freedom. Hence,
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Pdf cð Þ ¼ 1

�c
exp � c

�c

� �

ð2:7Þ

where �c ¼ Eb

N0
E h2½ � is the average signal-to-noise ratio. For E h2½ � ¼ 1;�c corresponds

to the average Eb

N0
for the fading channel.

By using Eqs. (2.1) and (2.3), the BER for a slowly Rayleigh fading channel

with BPSK modulation can be expressed as [2, 3]

BERBPSK;Rayleigh ¼
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffi

�c

1þ �c

r� �

ð2:8Þ

For E h2½ � ¼ 1; Eq. (2.8) can be rewritten as

BERBPSK;Rayleigh ¼
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffi

Eb

N0

1þ Eb

N0

v

u

u

t

0

@

1

A ð2:9Þ

2.1.3 BER of BPSK Modulation in Rician Fading Channel

The error probability estimates for linear BPSK signaling in Rician fading channels

are well documented in [4] and is given as

Pb;Rician ¼ Q1 a; bð Þ � 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffi

d

d þ 1

r

" #

exp � a2 þ b2

2

� �

I0ðabÞ ð2:10Þ

where

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
r 1þ 2d � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðd þ 1Þ
p� �

2ðd þ 1Þ

s
2

4

3

5; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
r 1þ 2d þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d d þ 1ð Þ
p� �

2ðd þ 1Þ

s
2

4

3

5

Kr ¼
a2

2r2
; d ¼ r2

Eb

N0

:

The parameter Kr is the Rician factor. The Q1 a; bð Þ is the Marcum Q function

defined [2] as

Q1 a; bð Þ ¼ exp � a2 þ b2

2

� �

X

1

l¼0

a

b

� �l

I0 abð Þ; b� a[ o

Q1 a; bð Þ ¼ Q b� að Þ; b � 1 and b � b� a

ð2:11Þ
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The following MATLAB program is used to illustrate the BER performance of

BPSK in AWGN, Rayleigh, and Rician fading channels.

Program 2.1 Program for computing the BER for BPSK modulation in AWGN,

Rayleigh, and Rician fading channels

The BER performance resulted from the above MATLAB program for BPSK in

the AWGN, Rayleigh, and Rician (K = 5) channels is depicted in Fig. 2.1.

From Fig. 2.1, for instance, we can see that to obtain a BER of 10−4, using

BPSK, an AWGN channel requires Eb

N0
of 8.35 dB, Rician channel requires Eb

N0
of

20.5 dB, and a Rayleigh channel requires Eb

N0
of 34 dB. It is clearly indicative of the

large performance difference between AWGN channel and fading channels.

2.1.4 BER Performance of BFSK in AWGN, Rayleigh,

and Rician Fading Channels

In BPSK, the receiver provides coherent phase reference to demodulate the received

signal, whereas the certain applications use non-coherent formats avoiding a phase

reference. This type of non-coherent format is known as binary frequency-shift

keying (BFSK).

The BER for non-coherent BFSK in slow flat fading Rician channel is expressed

as [3]
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Pb;BFSKðRicÞ ¼
1þ Kr

2þ 2Kr þ �c
exp � Kr�c

2þ 2Kr þ �c

� �

ð2:12Þ

where Kr is the power ratio between the LOS path and non-LOS paths in the Rician

fading channel.

Substituting Kr ¼ 1 in Eq. (2.8), the BER in AWGN channel for non-coherent

BFSK can be expressed as

Pb;AWGN ¼ 1

2
exp � Eb

2N0

� �

ð2:13Þ

whereas substitution of Kr ¼ 0 leads to the following BER expression for slow flat

Rayleigh fading channels using non-coherent BFSK modulation

Pb;BFSKðRayÞ ¼
1

2þ �c
ð2:14Þ

The following MATLAB program is used to illustrate the BER performance of

non-coherent BFSK modulation in AWGN, Rayleigh, and Rician fading channels.
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Fig. 2.1 BER performance of BPSK in AWGN, Rayleigh, and Rician fading channels
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Program 2.2 Program for computing the BER for BFSK modulation in AWGN,

Rayleigh and Rician fading channels

The BER performance resulted from the MATLAB program 2.2 for non-coherent

BFSK in the AWGN, Rayleigh, and Rician (K = 5) channels is depicted in Fig. 2.2.

2.1.5 Comparison of BER Performance of BPSK, QPSK,

and 16-QAM in AWGN and Rayleigh Fading Channels

The BER of gray-coded M-QAM in AWGN channel can be more accurately

computed by [5]

BER16QAM;AWGN � 4

log2M
1� 1

ffiffiffiffiffi

M
p

� �

X

ffiffiffi

M
p

2

i¼1

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3log2MEb

M � 1ð ÞN0

s !

ð2:15Þ

In Rayleigh fading, the average BER for M-QAM is given by [6]

BERMQAM;AWGN � 2

log2 M
1� 1

ffiffiffiffiffi

M
p

� �

X

ffiffiffi

M
p

2

i¼1

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:5ð2i� 1Þ2�c log2 M
M � 1þ 1:5ð2i� 1Þ2�c log2 M

s
 !

ð2:16Þ
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The following MATLAB program 2.3 is used to compute theoretic BER per-

formance of 4-QAM, 8-QAM, and 16-QAM modulations in AWGN and Rayleigh

fading channels.

Program 2.3 Program for computing theoretic BER for 4-QAM, 8-QAM and 16-

QAM modulations in AWGN and Rayleigh fading channels

The BER performance obtained from the above program is depicted in Fig. 2.3.
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2.2 Wireless Communication Techniques

The most known wireless communication techniques are:

Direct sequence code division multiple access (DS-CDMA)

Frequency hopping CDMA (FH-CDMA)

Orthogonal frequency division multiplexing (OFDM)

Multicarrier CDMA (MC-CDMA)

2.2.1 DS-CDMA

In code division multiple access (CDMA) systems, the narrow band message signal

is multiplied by a very high bandwidth signal, which has a high chip rate, i.e., it

accommodates more number of bits in a single bit of message signal. The signal

with a high chip rate is called as spreading signal. All users in the CDMA system

use the same carrier frequency and transmit simultaneously. The spreading signal or

pseudo-noise code must be random so that no other user could be recognized.
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Fig. 2.2 BER performance of BFSK in AWGN, Rayleigh, and Rician fading channels
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The intended receiver works with same PN code which is used by the corre-

sponding transmitter, and time correlation operation detects the specific desired

codeword only and all other code words appear as noise. Each user operates

independently with no knowledge of the other users.

The near-far problem occurs due to the sharing of the same channel by many

mobile users. At the base station, the demodulator is captured by the strongest

received mobile signal raising the noise floor for the weaker signals and decreasing

the probability of weak signal reception. In most of the CDMA applications, power

control is used to combat the near-far problem. In a cellular system, each base

station provides power control to assure same signal level to the base station

receiver from each mobile within the coverage area of the base station and solves

the overpowering to the base station receiver by a nearby user drowning out the

signals of faraway users.

In CDMA, the actual data are mixed with the output of a PN coder to perform

the scrambling process. The scrambled data obtained after scrambling process are

then modulated using BPSK or QPSK modulator as shown in Fig. 2.4. The BPSK

or QPSK modulated data are then transmitted.
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2.2.1.1 BER Performance of DS-CDMA in AWGN and Rayleigh

Fading Channels

Let us consider a single cell with K users with each user having a PN sequence

length N chips per message symbol. The received signal will consist of the sum of

the desired user, K − 1 undesired users transmitted signals and additive noise.

Approximating the total multiple access interference caused by the K − 1 users as a

Gaussian random variable, the BER for DS-CDMA in AWGN channel is given [3]

by

Pb;CDMA ðAWGNÞ ¼ Q
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K�1
3N

þ N0

2Eb

q

0

B

@

1

C

A
ð2:17Þ

The BER for DS-CDMA in Rayleigh fading channel can be expressed [7] as

Pb;CDMAðRayÞ ¼
1

2
1� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ N0

2Ebr2
þ K�1

3N

q

0

B

@

1

C

A
ð2:18Þ

where r2 is the variance of the Rayleigh fading random variable.

The following MATLAB program is used to compute theoretic BER of DS-

CDMA in AWGN and Rayleigh fading channels.

Program 2.4 Program to compute BER performance of DS-CDMA in AWGN, and

Rayleigh fading channels
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The BER performance from the above program for DS-CDMA in the AWGN

and Rayleigh channels for N = 31, r2 ¼ 1, and Eb

N0
¼ 20 dB is depicted in Fig. 2.5.

From Fig. 2.5, it is observed that the BER performance of DS-CDMA is better in

AWGN channel as compared to Rayleigh fading channel. Further, with an

increased number of users, the BER performance decreases in both the channels.

RF output
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Stream
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Mod-2 
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Fig. 2.4 Scrambler system using BPSK modulation
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Fig. 2.5 BER performance of DS-CDMA in AWGN and Rayleigh fading channels for

N ¼ 31; r2 ¼ 1, and Eb

N0
¼ 10 dB
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2.2.2 FH-CDMA

In FH-CDMA, each data bit is divided over a number of frequency-hop channels

(carrier frequencies). At each frequency-hop channel, a complete PN sequence of

length N is combined with the data signal. Applying fast frequency hopping (FFH)

requires a wider bandwidth than slow frequency hopping (SFH). The difference

between the traditional slow and FFH schemes can be visualized as shown in

Fig. 2.6. A slow hopped system has one or more information symbols per hop or

slot. It is suitable for high-capacity wireless communications. A fast hopped system

has the hopping rate greater than the data rate. During one information symbol, the

system transmits over many bands with short duration. It is more prevalent in

military communications.

In FH-CDMA, modulation by some kind of the phase-shift keying is quite

susceptible to channel distortions due to several frequency hops in each data bit.

Hence, an FSK modulation scheme is to be chosen for FH-CDMA.

The hop set, dwell time, and hop rate with respect to FHCDMA are defined as

Hop set It is the number of different frequencies used by the system.

Dwell time It is defined as the length of time that the system spent on one

frequency for transmission.

Hop rate It is the rate at which the system changes from one frequency to

another.

t

t

t
Fast hopping 3hops/bit

1f

2f

3f

1f

2f

3f

Slow hopping 3bits/hop

Fig. 2.6 Slow and fast

hopping
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2.2.2.1 BER Expression for Synchronous SFH-CDMA

Consider a SFH-CDMA channel with K active users and q (frequency) slots. The hit

probability is the probability that a number of interfering users are transmitting on

the same frequency-hop channel as the reference user. This probability will be

referred to as PhðKÞ where K is the total number of active users.

The probability of hitting from a given user is given by [8]

P ¼ 1

q
1þ 1

Nb

� �

ð2:19Þ

where Nb is the number of bits per hop and q stands for the number of hops. The

primary interest for our analysis is the probability Ph of one or more hits from the

K � 1 users is given by

Ph ¼ 1� 1� Pð ÞK�1 ð2:20Þ

By substituting “P” value from Eq. (2.19) in Eq. (2.20), we get the probability of hit

from K � 1 users as

Ph Kð Þ ¼ 1� 1� 1

q
1þ 1

Nb

� �� �K�1

ð2:21Þ

If it is assumed that all users hop their carrier frequencies synchronously, the

probability of hits is given by

Ph ¼ 1� 1� 1

q

� �K�1

ð2:22Þ

For large q,

Ph Kð Þ ¼ 1� 1� 1

q

� �K�1

� K � 1

q
ð2:23Þ

The probability of bit error for synchronous MFSK SFH-CDMA when the

K number of active users is present in the system can be found by [9]

PSFH Kð Þ ¼
X

K

k¼1

K � 1

k

� �

Pk
h 1� Phð ÞK�1�k

PMFSK Kð Þ ð2:24Þ

where PMFSKðKÞ denotes the probability of error when the reference user is hit by

all other active users. Equation (2.24) is the upper bound of the bit error probability

of the SFH-CDMA system. The PMFSKðKÞ for the AWGN and flat fading channels

can be expressed as [10]
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PMFSK Kð Þ ¼

P

M�1

i¼1

�1ð Þiþ1

iþ1

M � 1

i

� �

exp � i
Eb
N0

iþ1

� �

AWGN

P

M�1

i¼1

�1ð Þiþ1

1þiþi
Eb
N0

M � 1

i

� �

Rayleigh fading

8

>

>

<

>

>

:

ð2:25Þ

The following MATLAB program computes theoretic BER of SFH-CDMA in

AWGN and Rayleigh fading channels.

Program 2.5 Program to compute BER performance of SFH-CDMA in AWGN,

and Rayleigh fading channels

The BER performance from the above program for SFH-CDMA in the AWGN

and Rayleigh channels with q = 32 and M = 2 (BFSK) at Eb

N0
¼ 10 dB is depicted in

Fig. 2.7.
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2.2.3 OFDM

The block diagram of OFDM transmitter is shown in Fig. 2.8. In OFDM, the input

data are serial-to-parallel converted (the S/P block). Then, the inverse fast Fourier

transform (IFFT) is performed on the N parallel outputs of the S/P block to create an

OFDM symbol.

The complex numbers in the output of the IFFT block are parallel-to-serial

converted (P/S). Then, the cyclic prefix is inserted in order to combat the
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Fig. 2.7 BER performance of SFH-CDMA in AWGN and Rayleigh fading channels with q = 32

and M = 2(BFSK) at Eb

N0
¼ 10 dB
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Fig. 2.8 Schematic block diagram of OFDM transmitter
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intersymbol interference (ISI) and intercarrier interference (ICI) caused by the

multipath channel. To create the cyclic prefix, the complex vector of length at the

end of the symbol duration T is copied and appended to the front of the signal block

as shown in Fig. 2.9. The schematic block diagram of the OFDM receiver is shown

in Fig. 2.10. It is the exact inverse of the transmitter shown in Fig. 2.8.

2.2.4 MC-CDMA

MC-CDMA is a combination of OFDM and CDMA having the benefits of both

OFDM and CDMA. In MC-CDMA, frequency diversity is achieved by modulating

symbols on many subcarriers instead of modulating on one carrier like in CDMA.

In MC-CDMA, the same symbol is transmitted through many subcarriers in par-

allel, whereas in OFDM, different symbols are transmitted on different subcarriers.

The block diagram of the MC-CDMA system transmitter is shown in Fig. 2.11.

The block diagram of the MC-CDMA system receiver is shown in Fig. 2.12. In the

Fig. 2.9 Inserting cyclic prefix
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ADCDown
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P/SFFT

Fig. 2.10 Schematic block diagram of OFDM receiver
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receiver, the cyclic prefix is removed and FFT is performed to obtain the signals in the

frequency domain.

2.2.4.1 BER Expression for Synchronous MC-CDMA

Assuming a synchronous MC-CDMA system with K users, N subcarriers, and

binary phase-shift keying (BPSK) modulation, the BER for MC-CDMA in slowly

varying Rayleigh fading channel can be calculated using the residue method by [11]

PMC�CDMA;Rayleigh Kð Þ ¼ ð2cÞNc

Nc � 1ð Þ!½ �2
X

Nc�1

k¼0

Nc � 1

k

� �

Nc � 1� kð Þ!

Nc � 1� kð Þ! cþ dð Þ� Nc�kð Þ
2dð Þ� Ncþkð Þ ð2:26Þ

where k stands for the number of users, Nc denotes the number of subcarriers, and

the parameters c and d are defined by

OFDM Modulator

Fig. 2.11 Block diagram of MC-CDMA transmitter

OFDM Demodulator

Fig. 2.12 Block diagram of MC-CDMA receiver
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1

2c
¼ Nc

4Eb=N0

þ k þ 1

4
; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ 2c
p

ð2:27Þ

A theoretical BER performance comparison of DS-CDMA, SFH-CDMA, and

MC-CDMA in Rayleigh fading channels at Eb

N0
¼ 10 dB is shown in Fig. 2.13.

From Fig. 2.13, it is observed that MC-CDM outperforms both the DS-CDMA

and SFH-CDMA.

2.3 Diversity Reception

Two channels with different frequencies, polarizations, or physical locations

experience fading independently of each other. By combing two or more such

channels, fading can be reduced. This is called diversity.

On a fading channel, the SNR at the receiver is a random variable, the idea is to

transmit the same signal through r separate fading channels. These are chosen so as

to provide the receiver with r independent (or close-to-independent) replicas of the

same signal, giving rise to independent SNRs. If r is large enough, then at any time

instant, there is a high probability that at least one of the signals received from the
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r “diversity branches” is not affected by a deep fade and hence that its SNR is above

a critical threshold. By suitably combining the received signals, the fading effect

will be mitigated (Fig. 2.14).

Many techniques have been advocated for generating the independent channels

on which the diversity principle is based, and several methods are known for

combining the signals y1, …, yr obtained at their outputs into a single channel y
^
.

Among the categorized techniques, the most important ones are as follows:

1. Space diversity

2. Polarization diversity

3. Frequency diversity

4. Time diversity

5. Cooperative diversity

Space diversity: To obtain sufficient correlation, the spacing between the r

separate antennas should be wide with respect to their coherent distance while

receiving the signal. It does not require any extra spectrum occupancy and can be

easily implemented.

Polarization diversity: Over a wireless channel, multipath components polar-

ized either horizontally or vertically have different propagation. Diversity is pro-

vided when the receiving signal uses two different polarized antennas. In another

way, two cross-polarized antennas with no spacing between them also provide

diversity. Cross-polarized are preferred since they are able to double the antenna

numbers using half the spacing being used for co-polarized antennas. Polarized

diversity can achieve more gain than space diversity alone in reasonable scattering

areas, and hence, it is deployed in more and more BSs.

Frequency diversity: In order to obtain frequency diversity, the same signal

over different carrier frequencies should be sent whose separation must be larger

than the coherence bandwidth of the channel.

Time diversity: This is obtained by transmitting the same signal in different time

slots separated by a longer interval than the coherence time of the channel.

Cooperative diversity: This is obtained by sharing of resources by users or

nodes in a wireless network and transmits cooperatively. The users or nodes act like

an antenna array and provide diversity. This type of diversity can be achieved by

combining the signals transmitted from the direct and relay links.

x

r
y

1y

Fig. 2.14 Diversity and combining
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2.3.1 Receive Diversity with N Receive Antennas in AWGN

The received signal on the ith antenna can be expressed as

yi ¼ hixþ gi ð2:28Þ

where

yi is the symbol received on the ith receive antenna,

hi is the channel gain on the ith receive antenna,

x is the input symbol transmitted, and

gi is the noise on the ith receive antenna.

The received signal can be written in matrix form as

y ¼ hxþ n

where

y ¼ ½y1y2. . .yN �T is the received symbol from all the receive antenna,

h ¼ ½h1h2. . .hN �T is the channel on all the receive antenna,

x is the transmitted symbol, and

g ¼ ½g1g2. . .gN �T is the AWGN on all the receive antenna.

Effective Eb

N0
with N receive antennas is N times Eb

N0
for single antenna. Thus, the

effective Eb

N0
for N antennas in AWGN can be expressed as

Eb

N0

	 


eff;N

¼ NEb

N0

ð2:29Þ

So the BER for N receive antennas is given by

Pb ¼
1

2
erfc

ffiffiffiffiffiffiffiffiffi

NEb

N0

r
� �

ð2:30Þ

2.4 Diversity Combining Techniques

The three main combining techniques that can be used in conjunction with any of

the diversity schemes are as follows:

1. Selection combining

2. Equal gain combining (EGC)

3. Maximal ratio combining
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2.4.1 Selection Diversity

In this combiner, the receiver selects the antenna with the highest received signal

power and ignores observations from the other antennas.

2.4.1.1 Expression for BER with Selection Diversity

Consider N independent Rayleigh fading channels, each channel being a diversity

branch. It is assumed that each branch has the same average signal-to-noise ratio

�c ¼ Eb

N0

E h2
� �

ð2:31Þ

The outage probability is the probability that the bit energy-to-noise ratio falls

below a threshold (c). The probability of outage on ith receive antenna can be

expressed by

Pout;ci ¼ P ci\c½ � ¼
Z

c

0

1

�c
e�

ci
�cdci ¼ 1� e�

ci
�c ð2:32Þ

The joint probability is the product of the individual probabilities if the channel

on each antenna is assumed to be independent; thus, the joint probability with

N receiving antennas becomes

Pout ¼ P c1\c½ �P c2\c½ � � � �P cN\c½ �

¼ 1� e�
ci
�c

h iN ð2:33Þ

where c1; c2; � � � ; cN are the instantaneous bit energy-to-noise ratios of the 1st, 2nd,

and so on till the nth receive antenna.

Equation (2.33) is in fact the cumulative distribution function (CDF) of c. Then,

the probability density function (PDF) is given by the derivate of the CDF as

P cð Þ ¼ dPout

dc
¼ N

�c
e�

ci
�c 1� e�

ci
�c

h iN�1

ð2:34Þ

Substituting Eq. (2.34) in Eq. (2.1), BER for selective diversity can be expressed

by

BERSEL ¼
Z

1

0

1

2
erfc

ffiffiffi

c
pð ÞN

�c
e�

ci
�c 1� e�

ci
�c

h iN�1

dc ð2:35Þ
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Assuming a2 ¼ 1, the above expression can be rewritten as [12]

BERSEL ¼ 1

2

X

N

k¼0

�1ð Þk N

k

� �

1þ k

Eb

N0

� �

0

@

1

A

�1
2

ð2:36Þ

2.4.2 Equal Gain Combining (EGC)

In EGC, equalization is performed on the ith receive antenna at the receiver by

dividing the received symbol yi by the a priori known phase of channel hi. hij jejhi
represents the channel hi in polar form. The decoded symbol is obtained by

ŷ ¼
X

i

yi

ejhi
¼
X

i

hij jejhixþ gi
ejhi

¼
X

i

hij jxþ gi
� ð2:37Þ

where

ŷ is the sum of the phase compensated channel from all the receiving

antennas and

gi
� ¼ gi

ejhi
is the additive noise scaled by the phase of the channel coefficient.

2.4.2.1 Expression for BER with Equal Gain Combining

The BER with EGC with two receive antennas can be expressed with BPSK and

BFSK modulations as [13]

BEREGC;BPSK ¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eb=N0 Eb=N0 þ 2ð Þ
p

Eb=N0 þ 1

" #

ð2:38Þ

BEREGC;BFSK ¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eb=N0 Eb=N0 þ 4ð Þ
p

Eb=N0 þ 2

" #

ð2:39Þ

2.4.3 Maximum Ratio Combining (MRC)

2.4.3.1 Expression for BER with Maximal Ratio Combining (MRC)

For channel hi, the instantaneous bit energy-to-noise ratio at ith receive antenna is

given by

ci ¼
hij j2Eb

N0

; ð2:40Þ
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If hi is a Rayleigh distributed random variable, then h2i is a chi-squared random

variable with two degrees of freedom. Hence, the pdf of ci can be expressed as

Pdf cið Þ ¼ 1

ðEb=N0Þ
e

�ci
ðEb=N0Þ ð2:41Þ

Since the effective bit energy-to-noise ratio c is the sum of N such random vari-

ables, the pdf of c is a chi-square random variable with 2N degrees of freedom.

Thus, the pdf of c is given by

Pdf cð Þ ¼ 1

N � 1ð Þ!ðEb=N0ÞN
cN�1e

�c

ðEb=N0Þ; c� 0 ð2:42Þ

Substituting Eq. (2.42) in Eq. (2.1), BER for maximal ratio combining can be

expressed by

BERMRC ¼
Z

1

0

1

2
erfc

ffiffiffi

c
pð ÞPdf pðcÞdc

¼
Z

1

0

1

2
erfc

ffiffiffi

c
pð Þ 1

N � 1ð Þ!ðEb=N0ÞN
cN�1e

�c

ðEb=N0Þdc

ð2:43Þ

The above expression can be rewritten [12] as

BERMRC ¼ PN
X

N�1

k¼0

N � 1þ k

k

� �

ð1� PÞk ð2:44Þ

where

P ¼ 1

2
� 1

2
1þ 1

Eb=N0

� ��1=2

The following MATLAB program computes the theoretic BER for BPSK

modulation in Rayleigh fading channels with selective diversity, EGC, and MRC.
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Program 2.6 Program for computing the theoretic BER for BPSK modulation in a

Rayleigh fading channel with selection diversity, EGC and MRC

The BER performance from the above program with two receive antennas is

shown in Fig. 2.15. From Fig. 2.15, it is observed that the BER with MRC is better

than selective diversity and EGC and outperforms the single antenna case.

Example 2.1 What is the BER for Eb=N0 ¼ 8 dB at the receiver output in an

AWGN channel if coherently demodulated BPSK modulation is used and if no

error control coding is used.

Solution For BPSK modulation in AWGN channel, BER is given by

BERBPSK;AWGN ¼ 1

2
erfc

ffiffiffiffiffiffi

Eb

N0

r
� �

Eb

N0

¼ 10ð8=10Þ ¼ 6:3096

Thus,

BERBPSK;AWGN ¼ 1

2
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:3096
p� �

¼ 0:0001909:

Example 2.2 Using the system in the problem1, compute the coding gain that will

be necessary if the BER is to be improved to 10�6.
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Solution Here,

0:000001 ¼ 1

2
erfc

ffiffiffiffiffiffi

Eb

N0

r
� �

ffiffiffiffiffiffi

Eb

N0

r

¼ erfcinv 0:000002ð Þ ¼ 3:3612

Eb

N0

¼ 3:3612ð Þ2¼ 11:29;
Eb

N0

dBð Þ ¼ 10 log10ð11:29Þ ¼ 10:5269

Hence, necessary coding gain = 10.5269 − 8.0 = 2.5269 dB.

Example 2.3 Determine the coding gain required to maintain a BER of 10�4 when

the received Eb/No is fixed, and the modulation format is changed from BPSK to

BFSK.

0 2 4 6 8 10 12 14 16 18 20
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No, dB

B
E

R

Rayleigh

selection(nRx=2)

EGC(nRx=2)

MRC(nRx=2)

Fig. 2.15 Theoretic BER for BPSK modulation in a Rayleigh fading channel with selection

diversity, EGC, and MRC
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Solution For BPSK in AWGN channel,

0:0001 ¼ 1

2
erfc

ffiffiffiffiffiffi

Eb

N0

r
� �

ffiffiffiffiffiffi

Eb

N0

r

¼ erfcinv 0:0002ð Þ ¼ 2:2697

Eb

N0

¼ 2:2697ð Þ2¼ 6:9155;
Eb

N0

dBð Þ ¼ 10 log10ð6:9155Þ ¼ 8:3982

For BFSK in AWGN channel:

BERBFSK;AWGN ¼ 0:0001 ¼ 1

2
exp � Eb

2N0

� �

Eb

N0

¼ �2 lnð0:0002Þ ¼ 17:0344;
Eb

N0

dBð Þ ¼ 10 log10ð17:0344Þ ¼ 12:3133

Hence, necessary coding gain ¼ 12:3133� 8:3982 ¼ 3:9151 dB:

Example 2.4 Determine the coding gain required to maintain a BER of 10�3 when

the received Eb/No remains fixed and the modulation format is changed from BPSK

to 8-PSK in AWGN channel.

Solution For BPSK in AWGN channel,

0:001 ¼ 1

2
erfc

ffiffiffiffiffiffi

Eb

N0

r
� �

ffiffiffiffiffiffi

Eb

N0

r

¼ erfcinv 0:002ð Þ ¼ 2:1851

Eb

N0

¼ 2:1851ð Þ2¼ 4:7748;
Eb

N0

dBð Þ ¼ 10 log10ð4:7748Þ ¼ 6:7895

From Eq. (2.6), for 8-PSK in AWGN channel,

BER8�PSK ¼ 2

3
Q sin

p

8

� �

ffiffiffiffiffiffiffiffi

6Eb

N0

r
� �

0:001 ¼ 2

3
Q sin

p

8

� �

ffiffiffiffiffiffiffiffi

6Eb

N0

r
� �

¼ 2

3
Q 0:3827

ffiffiffiffiffiffiffiffi

6Eb

N0

r
� �
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Since,

Q xð Þ ¼ 1

2
erfc

x
ffiffiffi

2
p
� �

0:003

2
¼ 1

2
erfc

0:3827
ffiffiffi

2
p

ffiffiffiffiffiffiffiffi

6Eb

N0

r
� �

0:003 ¼ erfc 0:6629

ffiffiffiffiffiffiffiffi

6Eb

N0

r
� �

ffiffiffiffiffiffi

Eb

N0

r

¼ 1

0:6629
erfcinv 0:003ð Þ ¼ 2:0985

0:6629
¼ 3:1656

Eb

N0

¼ 3:1656ð Þ2¼ 10:0210;
Eb

N0

dBð Þ ¼ 10 log10ð10:0210Þ ¼ 10:0091

Hence, necessary coding gain ¼ 10:0091� 6:7895 ¼ 3:2196 dB.

2.5 Problems

1. An AWGN channel requires Eb

N0
¼ 9:6 dB to achieve BER of 10�5 using BPSK

modulation. Determine the coding gain required to achieve BER of 10�5 in a

Rayleigh fading channel using BPSK.

2. Using the system in Problem 1, determine the coding gain required to maintain a

BER of 10�5 in Rayleigh fading channel when the modulation format is

changed from BPSK to BFSK.

3. Determine the necessary Eb

N0
for a Rayleigh fading channel with an average BER

of 10�5 in order to detect (i) BPSK and (ii) BFSK.

4. Determine the necessary Eb

N0
in order to detect BFSK with an average BER of

10�4 for a Rician fading channel with Rician factor of 5 dB.

5. Determine the probability of error as a function of Eb

N0
for 4-QAM. Plot Eb

N0
vs

probability of error and compare the results with BPSK and non-coherent BFSK

on the same plot.

6. Obtain an approximations to the outage capacity in a Rayleigh fading channel:

(i) at low SNRs and (ii) at high SNRs.

7. Obtain an approximation to the outage probability for the parallel channel with

M Rayleigh branches.

8. Assume three-branchMRC diversity in a Rayleigh fading channel. For an average

SNR of 20 dB, determine the outage probability that the SNR is below 10 dB.
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2.6 MATLAB Exercises

1. Write a MATLAB program to simulate the BER versus number of users per-

formance of SFH-CDMA in AWGN and Rayleigh fading channels at different Eb

N0
.

2. Write a MATLAB program to simulate the performance of OFDM in AWGN

and Rayleigh fading channels.

3. Write a MATLAB program to simulate the BER versus number of users per-

formance of MC-CDMA in AWGN and Rayleigh fading channels for different

number of subcarriers at different Eb

N0
.

4. Write a MATLAB program to simulate the performance of selection diversity,

equal gain combiner, and maximum ratio combiner and compare the perfor-

mance with the theoretical results.
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Chapter 3

Galois Field Theory

A small portion of linear algebra and combinatorics are used in the development of

Hamming codes, the first generation error control codes. The design of error control

codes such as BCH codes and Reed Solomon codes relies on the structures of Galois

fields and polynomials over Galois fields. This chapter presents briefly algebraic

tools for understanding of Galois field theory used in error-correcting codes design.

3.1 Set

A set is defined as an arbitrary collection of objects or elements. The presence of an

element X in the set S is denoted by X 2 S, and if X is certainly not in S, it is

denoted by X 62 S. An empty set contains zero elements. A set Y is called a subset of

a set X if and only if every element Y is in X. Y is a subset of X and is often denoted

by Y � X which reads “Y is containing in X.”

Consider two sets, S1 and S2, the new set S1 [ S2 is called the union of S1 and S2
having the elements in either S1 or S2, or both. Another set S1 \ S2 is called the

intersection of S1 and S2 having the common elements in S1 and S2. If the inter-

section of two sets is empty, they are said to be disjoint.

3.2 Group

A group is a set on which a binary multiplication operation “·” is defined such that

the following requirements satisfied

1. For any elements a and b in G, a· b is an element in G

2. For any elements a, b, and c in G, the following associative law

a � b � cð Þ ¼ a � bð Þ � c
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3. There is an element e in G such that for every a in G

a � e ¼ e � a ¼ a identityð Þ

4. For any elements a in G, there is an element a�1 in G such that

a � a�1 ¼ a�1 � a ¼ e inverseð Þ

3.3 Field

If the addition and multiplication operations are defined on a set of objects F, then

F is said to be a field if and only if

1. F forms a commutative group under addition

2. F forms a commutative group under multiplication

3. Addition and multiplications are distributive.

a � ðbþ cÞ ¼ ða � bÞ þ ða � cÞ

The elements F ¼ f1; 2; 3; . . .; p� 1g forms a commutative group of order ðp� 1Þ
under modulo p multiplication if and only if p is a prime integer.

All elements of a field form an additive commutative group, whereas all the

nonzero elements of a field form a multiplicative commutative group. It is very

useful to construct the finite fields. A Galois field that is particularly interesting to

the coding theory is a field of finite order.

A Galois field of order q is usually denoted by GF(q). The simplest of the Galois

fields is GF(2). GF(2) can be represented by the two-element set {0, 1} under

standard binary addition and multiplication. The modulo 2 addition and multipli-

cation are shown in Table 3.1.

Galois fields of size p, p a prime, can be constructed by modulo addition and

multiplication. If these two operations are allowed to distribute, then a field is

formed. The integers f0; 1; 2; . . .; p� 1g; form the field GF pð Þ under modulo

p addition and multiplication. The field GF(3) has the elements {0, 1, 2}. Finite

fields GFðqÞ do not exist for all values of q. The value of q must be equal to pm,

Table 3.1 Addition and

multiplication for GF(2)
Modulo 2 addition Modulo 2 multiplication

+ 0 1 · 0 1

0 0 1 0 0 0

1 1 0 1 0 1
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where p is a prime positive integer and m is a positive integer. The finite fields of

order pm can be constructed as vector spaces over the prime order field GF pð Þ.

Example 3.1 Construct addition and multiplication tables over GF(7).

Solution Here, p equals to 7; therefore, the elements of the GF are

ð0; 1; 2; 3; 4; 5; 6Þ. The addition and multiplication over GF(7) will be modulo 7 as

shown in Table 3.2.

3.4 Vector Spaces

Let V be a set of vector elements on which a binary addition operation is defined.

Let F be a field with scalar elements, and a scalar multiplication operation is defined

between the elements of V and the scalar elements of F. V forms a vector space over

F if the following properties are satisfied.

Vector spaces

1. V is a commutative group under addition operation on V

2. For any element a 2 F and any element v 2 V ; a � v 2 V

3. For any elements a; b 2 F and any element v 2 V ; the following associativity

law is satisfied

ða � bÞ � v ¼ a � ðb � vÞ ð3:1Þ

4. For any elements a; b 2 F and any elements u; v 2 V , the following distributive

law is satisfied

a � uþ vð Þ ¼ a � uþ a � v ð3:2Þ

aþ bð Þ � v ¼ a � vþ b � v ð3:3Þ

5. If 1 is the unit element 2 F, for any element v 2 V , 1 � v ¼ v.

Table 3.2 Addition and multiplication for GF(7)

Modulo 7 addition Modulo 7 multiplication

+ 0 1 2 3 4 5 6 · 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6 0 0 0 0 0 0 0 0

1 1 2 3 4 5 6 0 1 0 1 2 3 4 5 6

2 2 3 4 5 6 0 1 2 0 2 4 6 1 3 5

3 3 4 5 6 0 1 2 3 0 3 6 2 5 1 4

4 4 5 6 0 1 2 3 4 0 4 1 5 2 6 3

5 5 6 0 1 2 3 4 5 0 5 3 1 6 4 2

6 6 0 1 2 3 4 5 6 0 6 5 4 3 2 1
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In the case of vector spaces over the scalar field GF(2), V is a collection of binary n-

tuples such that if v1; v2 2 V , then v1 þ v2 2 V , where þ stands for component-wise

exclusive-or operation. If v1 ¼ v2, 0 2 V :

Theorem 3.1 Let v1; v2; . . .; vk is a set of vectors in a vector space V over a finite

field F with dimension k scalars, there is a unique representation of every vector v

in V is

v ¼ a1v1 þ a2v2 þ � � � þ akvk ð3:4Þ

3.5 Elementary Properties of Galois Fields

1. Let a be an element in GFðqÞ. The order of a is the smallest positive integer n

such that an ¼ 1:
2. The order q of a Galois field GFðqÞ must be a power of a prime.

3. Every GFðqÞ has at least one element α of order ðq� 1Þ, which is called a

primitive element and that exists in a GFðqÞ such that a q�1ð Þ ¼ 1:
4. All nonzero elements in GFðqÞ are represented by the ðq� 1Þ consecutive

powers of a primitive element a:
5. Let a be a nonzero element in a Galois field GFðqÞ and n be the order of a, then

n divides q� 1:

3.6 Galois Field Arithmetic

Finite field arithmetic is different from standard integer arithmetic. In finite field

arithmetic, all operations performed on limited number of elements and resulted in

an element within the same field.

3.6.1 Addition and Subtraction of Polynomials

In standard integer arithmetic, addition and subtraction of polynomials are per-

formed by adding or subtracting together, whereas in finite field, addition and

subtraction are accomplished using the XOR operator and they are identical.

Example 3.2 Add the polynomials x6 þ x4 þ xþ 1
� �

and x7 þ x6 þ x3 þ x
� �

in GF(2).
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Solution

x6 þ x4 þ xþ 1
� �

þ x7 þ x6 þ x3 þ x
� �

¼ x7 þ x4 þ x3 þ 1:

The normal algebraic sum and the modulo 2 finite field sum of a few polynomials

are tabulated in Table 3.3.

3.6.2 Multiplication of Polynomials

Multiplication of polynomials in Galois field is same as integer arithmetic, but the

addition performed after multiplication is similar to Galois field.

Example 3.3 Multiply the polynomials x6 þ x4 þ xþ 1
� �

and x7 þ x6 þ x3 þ x
� �

.

Solution

x6 þ x4 þ xþ 1
� �

x7 þ x6 þ x3 þ x
� �

¼ x13 þ x12 þ x9 þ x7 þ x11 þ x10 þ x7 þ x5 þ x8 þ x7 þ x4

þ x2 þ x7 þ x6 þ x3 þ x

¼ x13 þ x12 þ x9 þ x11 þ x10 þ x5 þ x8 þ x4 þ x2 þ x6 þ x3 þ x

¼ x13 þ x12 þ x11 þ x10 þ x9 þ x8 þ x6 þ x5 þ x4 þ x3 þ x2 þ x

3.6.3 Multiplication of Polynomials Using MATLAB

The following MATLAB command computes the multiplication of polynomial p1
and polynomial p2 in GF(2).

p3 ¼ gfconvðp1; p2Þ

The degree of the resulting GF(2) polynomial p3 equals the sum of degree of the

polynomial p1 and degree of the polynomial p2. For example, the following

Table 3.3 Computation of polynomials in normal algebra and Galois field

p1 p2 p1 þ p2 (normal algebra) p1 þ p2 (GF)

x3 þ x2 þ xþ 1 x3 þ x2 2x3 þ 2x2 þ xþ 1 xþ 1

x4 þ x3 þ x2 x5 þ x2 x5 þ x4 þ x3 þ 2x2 x5 þ x4 þ x3

x2 þ 1 x3 þ 1 x3 þ x2 þ 2 x3 þ x2

3.6 Galois Field Arithmetic 53



commands result in the multiplication of the polynomials 1þ xþ x3 and

1þ xþ x2 þ x4:

p1 ¼ 1 1 0 1½ �%1þ xþ x3

p2 ¼ 1 1 1 0 1½ �%1þ xþ x2 þ x4

p3 ¼ gfconvðp1; p2Þ; %ð1þ xþ x3Þ � ð1þ xþ x2 þ x4Þ

The output p3 for the above commands is

p3 ¼ 1 0 0 0 0 0 0 1½ �%1þ x7

3.6.4 Division of Polynomials

Suppose that aðxÞ and b xð Þ 6¼ 0 are polynomials over GF(2). There are unique pair

of polynomial called the quotient and remainder, qðxÞ and rðxÞ over GF(2), such

that

aðxÞ ¼ qðxÞ bðxÞ þ rðxÞ ð3:5Þ

Example 3.4 Divide f1 xð Þ ¼ 1þ x2 þ x3 þ x5 by f2ðxÞ ¼ 1þ x3 þ x4.

Solution

It can easily be verified that

1þ x2 þ x3 þ x5 ¼ ð1þ x3 þ x4Þð1þ xÞ þ xþ x2
� �

:

If the remainder rðxÞ is zero, aðxÞ is divisible by bðxÞ and bðxÞ is a factor of aðxÞ:

Example 3.5 Check whether f1 xð Þ ¼ x2 þ xþ 1ð Þ is a factor of f2 xð Þ ¼ x5 þ x4 þ 1.
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Solution

The remainder is zero, and hence, f2ðxÞ is divisible by f1 xð Þ, and f1 xð Þ is a factor

of f2ðxÞ.

3.6.5 Division of Polynomials Using MATLAB

The following MATLAB command computes the quotient q and remainder r of the

division of polynomial p2 by polynomial p1 in p1 GF(2).

½q; r� ¼ gfdeconvðp2; p1Þ

For example, the following commands divide polynomial 1þ x7 by polynomial

1þ xþ x3

p1 ¼ 1 1 0 1½ �%1þ xþ x3

p2 ¼ 1 0 0 0 0 0 0 1½ �%1þ x7

q; r½ � ¼ gfdeconv ðp2; p1Þ; %1þ x7=1þ xþ x3

The output q and r for the above commands are

q = [1 1 1 0 1 ]%1 + x + x2 + x4

r = 0.

3.7 Polynomials Over Galois Fields

A polynomial over GF(q) is of the following form

a0 þ a1xþ a2x
2 þ � � � þ anx

n ð3:6Þ

of degree nðwith an 6¼ 0Þ and with coefficients aif g in the finite field GFðqÞ.
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3.7.1 Irreducible Polynomial

A polynomial pðxÞ is said to be irreducible in GFðqÞ, if pðxÞ has no divisor poly-

nomials in GFðqÞ of degree less than m but greater than zero.

Examples

1. x3 þ x2 þ 1 is irreducible in GF(2) as it is not factorable having degree of less

than 3.

2. x4 þ x2 þ 1 is not irreducible in GF(2), since the polynomial is divisible by the

polynomial x2 þ xþ 1 with coefficients in GF(2) and with degree of 2 less than

4.

3. x4 þ x3 þ x2 þ xþ 1 is irreducible in GF(2) as it is not factorable having factors

of degree less than 4.

4. x5 þ x4 þ 1 is not irreducible in GF(2) since the polynomial is divisible by

polynomials of degree less than 5.

3.7.2 Primitive Polynomials

An irreducible polynomial pðxÞ 2 GFð2Þ of degree m is said to be primitive if the

smallest positive integer n for which p(x) divides xn � 1 is n ¼ 2m � 1.

The roots aj
� �

of an mth degree primitive polynomial pðxÞ 2 GF(2) have order

2m � 1. All primitive polynomials are irreducible polynomials, but all irreducible

polynomials are not primitive.

Examples

1. x2 þ xþ 1 is primitive. The smallest polynomial of the form xn � 1 for which it

is a divisor is x3 � 1 ð3 ¼ 22 � 1Þ.

2. x3 þ x2 þ 1 is primitive. The smallest polynomial of the form xn � 1 for which it

is a divisor is x7 � 1 ð7 ¼ 23 � 1Þ.

3. x6 þ x5 þ x4 þ x3 þ x2 þ xþ 1 is not primitive since it is not irreducible. It can

be factorized as product of the polynomials x3 þ x2 þ 1 and x3 þ xþ 1.

3.7.3 Checking of Polynomials for Primitiveness Using

MATLAB

The following MATLAB command can be used to check whether the degree- m

GF(2) polynomial p is primitive.

ck ¼ gfprimck pð Þ;
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The output ck is as follows:

ck ¼ �1 p is not an irreducible polynomial

ck ¼ 0 p is irreducible but not a primitive polynomial

ck ¼ 1 p is a primitive polynomial:

For example, the following MATLAB commands determine whether the polyno-

mial p xð Þ ¼ x6 þ x5 þ x4 þ x3 þ x2 þ xþ 1 is primitive or not

p ¼ 1 1 1 1 1 1 1½ �%1þ xþ x3 þ x3 þ x4 þ x5 þ x6

ck ¼ gfprimck(pÞ;

The output ck for the above commands is −1 indicating that the polynomial is not

irreducible and hence not primitive.

3.7.4 Generation of Primitive Polynomials Using MATLAB

Primitive polynomials of degree m can be generated using the following MATLAB

command primpoly as follows:

p ¼ primpoly m;0 all0ð Þ

For example, the primitive polynomials generated using the above m file for m = 3,

4, 5, and 6 are tabulated in Table 3.4.

Table 3.4 Primitive

polynomials for m = 3, 4, 5,

and 6

m Primitive polynomial pðxÞ

3 p xð Þ ¼ x3 þ xþ 1

p xð Þ ¼ x3 þ x2 þ 1

4 p xð Þ ¼ x4 þ xþ 1

p xð Þ ¼ x4 þ x3 þ 1

5 p xð Þ ¼ x5 þ x2 þ 1

p xð Þ ¼ x5 þ x3 þ 1

p xð Þ ¼ x5 þ x3 þ x2 þ xþ 1

p xð Þ ¼ x5 þ x4 þ x2 þ xþ 1

p xð Þ ¼ x5 þ x4 þ x3 þ xþ 1

p xð Þ ¼ x5 þ x4 þ x3 þ x2 þ 1

6 p xð Þ ¼ x6 þ xþ 1

p xð Þ ¼ x6 þ x4 þ x3 þ xþ 1

p xð Þ ¼ x6 þ x5 þ 1

p xð Þ ¼ x6 þ x5 þ x2 þ xþ 1

p xð Þ ¼ x6 þ x5 þ x3 þ x2 þ 1

p xð Þ ¼ x6 þ x5 þ x4 þ xþ 1
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3.8 Construction of Galois Field GF(2m) from GF(2)

The 2m elements of GF(2mÞ can be written as 0; 1; a; a2; a3; . . .; a2
m�2

� �

. All the

nonzero elements of GF(2mÞ are generated by the powers of the primitive element a

that satisfies the condition a2
m�1 ¼ 1.

The polynomial representation of the elements of GF(2mÞ is given by the

remainder of xn upon division by the polynomial pðxÞ which is primitive in GF(2).

an ¼ Remainder xn=pðxÞf g ð3:7Þ

Example 3.6 Construct GF(8) as a vector space over GF(2).

Solution Let us consider the construction of GF(8) based on the polynomial

p xð Þ ¼ x3 þ xþ 1 which is primitive in GF(2). Let a be a root of pðxÞ: This implies

that a3 þ aþ 1 ¼ 0 or equivalently a3 ¼ aþ 1. The distinct powers of a must have

23 � 1ð Þ distinct nonzero polynomial representations of a of degree 2 or less with

the coefficients from GF(2). The set 1; a; a2
� �

is used as a basis for the vector space

representation of GF(8).

Since every field must contain zero and one element, we have

0 ¼ 0

a0 ¼ 1

Since the reminders of x and x2 upon division by the primitive polynomial p xð Þ ¼

x3 þ xþ 1 are themselves, the other two possible assignments are as follows:

a1 ¼ x

a2 ¼ x2

However, the polynomial representation of x3 can be derived by the following

polynomial division:

The remainder is � xþ 1ð Þ: Hence, a3 ¼ aþ 1
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For x4

The remainder is � x2 þ xð Þ: Hence, a4 ¼ a2 þ a

For x5

The remainder is � x2 þ xþ 1ð Þ: Hence, a5 ¼ a2 þ aþ 1: Similarly, x6 and x7

follow the same procedure to get the polynomial representations. All the above

values are tabulated in the following Table 3.5.

Example 3.7 Construct GF(16) as a vector space over GF(2).

Solution Let us consider the construction of GF(16) based on the polynomial

p xð Þ ¼ x4 þ xþ 1 which is primitive in GF(2). We know that

0 ¼ 0

a0 ¼ 1

Table 3.5 Representation of

elements of GF(8)
Zero and

powers of a

Polynomial

representation

Vector space over

GF(2) 1aa2

0 0 0 0 0

a0 1 1 0 0

a1 a 0 1 0

a2 a2 0 0 1

a3 1þ a 1 1 0

a4 aþ a2 0 1 1

a5 1þ aþ a2 1 1 1

a6 1þ a2 1 0 1

a7 1 1 0 0
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Since the reminders of x, x2, and x3 upon division by the primitive polynomial

p xð Þ ¼ x4 þ xþ 1 are themselves, the other three possible assignments are as

follows:

a1 ¼ x

a2 ¼ x2

a3 ¼ x3

However, the polynomial representation of x4 can be derived by the following

polynomial division:

The remainder is � xþ 1ð Þ: Hence, a4 ¼ aþ 1.

Similarly, for the values from x
5 to x

15, follow the same procedure to get the

polynomial representations. The above values are tabulated in the following

Table 3.6.

Table 3.6 Representation of

elements of GF(16)
Zero and

powers of a

Polynomials over

GF(2)

Vector space over

GF(2) 1aa2a3

0 0 0 0 0 0

a0 1 1 0 0 0

a1 a 0 1 0 0

a2 a2 0 0 1 0

a3 a3 0 0 0 1

a4 1þ a 1 1 0 0

a5 aþ a2 0 1 1 0

a6 a2 þ a3 0 0 1 1

a7 1þ aþ a3 1 1 0 1

a8 1þ a2 1 0 1 0

a9 aþ a3 0 1 0 1

a10 1þ aþ a2 1 1 1 0

a11 aþ a2 þ a3 0 1 1 1

a12 1þ aþ a2 þ a3 1 1 1 1

a13 1þ a2 þ a3 1 0 1 1

a14 1þ a3 1 0 0 1

a15 1 1 0 0 0
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Example 3.8 Construct GF(32) as a vector space over GF(2).

Solution Let us consider the construction of GF(32) based on the polynomial

p xð Þ ¼ x5 þ x2 þ 1 which is primitive in GF(2).

We know that

0 ¼ 0

a0 ¼ 1

Since the reminders of x, x2, x3, and x4 upon division by the primitive polynomial

p xð Þ ¼ x5 þ x2 þ 1 are themselves, the other four possible assignments are as

follows:

a1 ¼ x

a2 ¼ x2

a3 ¼ x3

a4 ¼ x4

However, the polynomial representation of x5 can be derived by the following

polynomial division:

The remainder is � x2 þ 1ð Þ: Hence, a5 ¼ a2 þ 1.

Similarly, for the values from x6 to x31, follow the same procedure to get the

polynomial representations. All the above values are tabulated in the following

Table 3.7.

Example 3.9 Construct GF(64) as a vector space over GF(2).

Solution Let us consider the construction of GF(64) based on the polynomial

p xð Þ ¼ x6 þ xþ 1 which is primitive in GF(2).

We know that

0 ¼ 0

a0 ¼ 1
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Since the reminders of x; x2; x3; x4 and x5 upon division by the primitive polynomial

p xð Þ ¼ x6 þ xþ 1 are themselves, the other five possible assignments are as

follows:

Table 3.7 Representation of elements of GF(32)

Zero and powers of a Polynomials over GF(2) Vector space over GF(2) 1aa2a3a4

0 0 0 0 0 0 0

a0 1 1 0 0 0 0

a1 a 0 1 0 0 0

a2 a2 0 0 1 0 0

a3 a3 0 0 0 1 0

a4 a4 0 0 0 0 1

a5 1þ a2 1 0 1 0 0

a6 aþ a3 0 1 0 1 0

a7 a2 þ a4 0 0 1 0 1

a8 1þ a2 þ a3 1 0 1 1 0

a9 aþ a3 þ a4 0 1 0 1 1

a10 1þ a4 1 0 0 0 1

a11 1þ aþ a2 1 1 1 0 0

a12 aþ a2 þ a3 0 1 1 1 0

a13 a2 þ a3 þ a4 0 0 1 1 1

a14 1þ a2 þ a3 þ a4 1 0 1 1 1

a15 1þ aþ a2 þ a3 þ a4 1 1 1 1 1

a16 1þ aþ a3 þ a4 1 1 0 1 1

a17 1þ aþ a4 1 1 0 0 1

a18 1þ a 1 1 0 0 0

a19 aþ a2 0 1 1 0 0

a20 a2 þ a3 0 0 1 1 0

a21 a3 þ a4 0 0 0 1 1

a22 1þ a2 þ a4 1 0 1 0 1

a23 1þ aþ a2 þ a3 1 1 1 1 0

a24 aþ a2 þ a3 þ a4 0 1 1 1 1

a25 1þ a3 þ a4 1 0 0 1 1

a26 1þ aþ a2 þ a4 1 1 1 0 1

a27 1þ aþ a3 1 1 0 1 0

a28 aþ a2 þ a4 0 1 1 0 1

a29 1þ a3 1 0 0 1 0

a30 aþ a4 0 1 0 0 1

a31 1 1 0 0 0 0
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a1 ¼ x

a2 ¼ x2

a3 ¼ x3

a4 ¼ x4

a5 ¼ x5

However, the polynomial representation of x6 can be derived by the following

polynomial division:

The remainder is � xþ 1ð Þ: Hence, a6 ¼ aþ 1.

Similarly, for the values from x7 to x63, follow the same procedure to get the

polynomial representations. All the above values are tabulated in the following

Table 3.8.

3.8.1 Construction of GF(2m), Using MATLAB

To construct GF(2m), the following MATLAB function can be used

field = gftuple([-1:2^m-2]’,m,2);

For example, the GF(8) generated using the above m file for m = 3 is as follows:

field =

0 0 0

1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 1 1

1 0 1
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Table 3.8 Representation of elements of GF(64)

Zero and powers of a Polynomials over GF(2) Vector space over GF(2) 1aa2a3a4a5

0 1 0 0 0 0 0 0

α
0 1 1 0 0 0 0 0

α
1

α 0 1 0 0 0 0

α
2

α
2 0 0 1 0 0 0

α
3

α
3 0 0 0 1 0 0

α
4

α
4 0 0 0 0 1 0

α
5

α
5 0 0 0 0 0 1

α
6 1 + α 1 1 0 0 0 0

α
7

α + α
2 0 1 1 0 0 0

α
8

α
2 + α

3 0 0 1 1 0 0

α
9

α
3 + α

4 0 0 0 1 1 0

α
10

α
4 + α

5 0 0 0 0 1 1

α
11 1 + α + α

5 1 1 0 0 0 1

α
12 1 + α

2 1 0 1 0 0 0

α
13

α + α
3 0 1 0 1 0 0

α
14

α
2 + α

4 0 0 1 0 1 0

α
15

α
3 + α

5 0 0 0 1 0 1

α
16 1 + α + α

4 1 1 0 0 1 0

α
17

α + α
2 + α

5 0 1 1 0 0 1

α
18 1 + α + α

2 + α
3 1 1 1 1 0 0

α
19

α + α
2 + α

3 + α
4 0 1 1 1 1 0

α
20

α
2 + α

3 + α
4 + α

5 0 0 1 1 1 1

α
21 1 + α + α

3 + α
4 + α

5 1 1 0 1 1 1

α
22 1 + α

2 + α
4 + α

5 1 0 1 0 1 1

α
23 1 + α

3 + α
5 1 0 0 1 0 1

α
24 1 + α

4 1 0 0 0 1 0

α
25

α + α
5 0 1 0 0 0 1

α
26 1 + α + α

5 1 1 1 0 0 0

α
27

α + α
2 + α

3 0 1 1 1 0 0

α
28

α
2 + α

3 + α
4 0 0 1 1 1 0

α
29

α
3 + α

4 + α
5 0 0 0 1 1 1

α
30 1 + α + α

4 + α
5 1 1 0 0 1 1

α
31 1 + α

2 + α
5+ 1 0 1 0 0 1

α
32 1 + α

3 1 0 0 1 0 0

α
33

α + α
4 0 1 0 0 1 0

α
34

α
2 + α

5 0 0 1 0 0 1

α
35 1 + α + α

3 1 1 0 1 0 0

α
36

α + α
2 + α

4 0 1 1 0 1 0

α
37

α
2 + α

3 + α
5 0 0 1 1 0 1

α
38 1 + α + α

3 + α
4 1 1 0 1 1 0

α
39

α + α
2 + α

4 + α
5 0 1 1 0 1 1

(continued)
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3.9 Minimal Polynomials and Conjugacy Classes of GF(2m)

3.9.1 Minimal Polynomials

Definition 3.1 Suppose that α is an element in GF(2m). The unique minimal

polynomial of α with respect to GF(2) is a polynomial /ðxÞ of minimum degree

such that / að Þ ¼ 0.

3.9.2 Conjugates of GF Elements

Let a be an element in the Galois field GF(2m). The conjugates of a with respect to

the subfield GF(q) are the elements a; a2; a2
2

; a2
3

; . . .:

Table 3.8 (continued)

Zero and powers of a Polynomials over GF(2) Vector space over GF(2) 1aa2a3a4a5

α
40 1 + α + α

2 + α
3 + α

5 1 1 1 1 0 1

α
41 1 + α

2 + α
3 + α

4 1 0 1 1 1 0

α
42

α + α
3 + α

4 + α
5 0 1 0 1 1 1

α
43 1 + α + α

2 + α
4 + α

5 1 1 1 0 1 1

α
44 1 + α

2 + α
3 + α

5 1 0 1 1 0 1

α
45 1 + α

3 + α
4 1 0 0 1 1 0

α
46

α + α
4 + α

5 0 1 0 0 1 1

α
47 1 + α + α

2 + α
5 1 1 1 0 0 1

α
48 1 + α

2 + α
3 1 0 1 1 0 0

α
49

α + α
3 + α

4 0 1 0 1 1 0

α
50

α
2 + α

4 + α
5 0 0 1 0 1 1

α
51 1 + α + α

3 + α
5 1 1 0 1 0 1

α
52 1 + α

2 + α
4 1 0 1 0 1 0

α
53

α + α
3 + α

5 0 1 0 1 0 1

α
54 1 + α + α

2 + α
4 1 1 1 0 1 0

α
55

α + α
2 + α

3 + α
5 0 1 1 1 0 1

α
56 1 + α + α

2 + α
3 + α

4 1 1 1 1 1 0

α
57

α + α
2 + α

3 + α
4 + α

5 0 1 1 1 1 1

α
58 1 + α + α

2 + α
3 + α

4 + α
5 1 1 1 1 1 1

α
59 1 + α

2 + α
3 + α

4 + α
5 1 0 1 1 1 1

α
60 1 + α

3 + 43 + α
5 1 0 0 1 1 1

α
61 1 + α

4 + α
5 1 0 0 0 1 1

α
62 1 + α

5 1 0 0 0 0 1

α
63 1 1 0 0 0 0 0
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The conjugates of a with respect to GF(q) form a set called the conjugacy class

of a with respect to GF(q).

Theorem 3.2 (Conjugacy Class) The conjugacy class of a 2 GFð2mÞ with respect

to GF(2) contains all the elements of the form a2
i

for 0� i� l� 1 where l is the

smallest positive integer such that a2
l

¼ a.

3.9.3 Properties of Minimal Polynomial

Theorem 3.3 The minimal polynomial of an element of a of GF(2m) is an irre-

ducible polynomial.

Proof Suppose the minimal polynomial, /ðxÞ, is not irreducible.
Then, /ðxÞ can be expressed as a product of two other polynomials

/ xð Þ ¼ /1ðxÞ/2ðxÞ

As / að Þ ¼ /1 að Þ/2 að Þ ¼ 0, either /1 að Þ ¼ 0 or /2 að Þ ¼ 0.

It is contradictory with the minimality of the degree /ðxÞ. h

Theorem 3.4 Let f(x) be a polynomial over GF(2) and / xð Þ be the minimal poly-
nomial of an element a in GF(2m). If a is a root of f(x), then f(x) is divisible by / xð Þ.

Proof The division of f(x) by / xð Þ gives

f xð Þ ¼ / xð Þq xð Þ þ rðxÞ

Since a is a root of f(x), f að Þ ¼ 0 and / að Þ ¼ 0, it follows that r að Þ ¼ 0. As the

degree of rðxÞ is less than that of / xð Þ,r að Þ ¼ 0 only when r xð Þ ¼ 0. Hence,

f xð Þ ¼ / xð Þq xð Þ; therefore, f xð Þ is divisible by / xð Þ. h

Theorem 3.5 The nonzero elements of GF(2m) form all the roots of x2
m�1 � 1

Proof Let a be a nonzero elements in the field GF(2m). Then, it follows that

a2
m�1 ¼ 1; or a2

m�1 þ 1 ¼ 0. This implies that a is a root of the polynomial x2
m�1 þ

1: Hence, every nonzero element of GF(2m) is a root of x2
m�1 þ 1: Since the degree

of x2
m�1 þ 1 is 2m � 1, the 2m � 1 nonzero elements of GF(2m) form all the roots of

x2
m�1 þ 1: h

Theorem 3.6 Let a be an element in the Galois field F(2m). Then, all its conjugates

a; a2; . . .; a2
l�1

have the same minimal polynomial.

A direct consequence of Theorem 3.5 is that x2
m�1 � 1 is equal to the product of

the distinct minimal polynomials of the nonzero elements of GF(2
m
).
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Theorem 3.7 Suppose that / xð Þ be the minimal polynomial of an element a of

GF(2m) and l be the smallest positive integer such that a2
l

¼ a, and then, / xð Þ of
degree m or less is given by

/ xð Þ ¼
Y

l�1

i¼0

x� a2
i

� �

ð3:8Þ

3.9.4 Construction of Minimal Polynomials

The stepwise procedure for the construction of the Galois field is as follows

Step 1: Generate the Galois field GF(2m) based on the primitive polynomial cor-

responding to m.

Step 2: Find the groups of the conjugate roots.

Step 3: The construction of minimal polynomial of each elements is by using

Eq. (3.8).

Using the above procedure, the following examples illustrate the construction of the

minimal polynomial for GF(8), GF(16), and GF(32) with respect to GF(2).

Example 3.10 Determine the minimal polynomials of the elements of GF(8) with

respect to GF(2).

Solution The eight elements in GF(8) are arranged in conjugacy classes and their

minimal polynomials computed as follows

Conjugacy class Associated minimal polynomial

0f g /� xð Þ ¼ x

1f g /0 xð Þ ¼ xþ 1

a; a2; a4
� �

/1 xð Þ ¼ x� að Þ x� a2ð Þ x� a4ð Þ ¼ x3 þ xþ 1

a3; a6; a5
� �

/3 xð Þ ¼ x� a3ð Þ x� a6
� �

x� a5
� �

¼ x3 þ x2 þ 1

From the Theorem 3.5, it is known that the minimal polynomials of the nonzero

elements in the field GF(8) provide the complete factorization of x7 � 1. Hence,

x7 � 1 ¼ xþ 1ð Þ x3 þ xþ 1ð Þ x3 þ x2 þ 1ð Þ.

Example 3.11 Determine the minimal polynomials of the elements of GF(16) with

respect to GF(2).
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Solution The 16 elements in GF(24) are arranged in conjugacy classes and their

associated minimal polynomials computed as follows:

Conjugacy class Associated minimal polynomial

0f g /� xð Þ ¼ x

1f g /0 xð Þ ¼ xþ 1

a; a2; a4; a8
� �

/1 xð Þ ¼ x� að Þ x� a2
� �

x� a4
� �

x� a8
� �

¼ x4 þ xþ 1

a3; a6; a12; a9;
� �

/3 xð Þ ¼ x� a3
� �

x� a6
� �

x� a12
� �

x� a9
� �

¼ x4 þ x3 þ x2 þ xþ 1

a5; a10
� �

/5 xð Þ ¼ x� a5
� �

x� a10ð Þ ¼ x2 þ xþ 1

a7; a14; a13; a11
� �

/9 xð Þ ¼ x� a7
� �

x� a14
� �

x� a13
� �

x� a11
� �

¼ x4 þ x3 þ 1

As a consequence of the Theorem 3.5, the following factorization holds good for

GF(16)

x15 � 1 ¼ xþ 1ð Þ x4 þ xþ 1
� �

x4 þ x3 þ x2 þ xþ 1
� �

x2 þ xþ 1
� �

x4 þ x3 þ 1
� �

Example 3.12 Determine the minimal polynomials of the elements of GF(32) with

respect to GF(2).

Solution The 32 elements in GF(32) are arranged in conjugacy classes and their

minimal polynomials computed as follows:

Conjugacy class Associated minimal polynomial

0f g /� xð Þ ¼ x

1f g /0 xð Þ ¼ xþ 1

a; a2; a4; a8; a16
� �

/1 xð Þ ¼ x� að Þ x� a2
� �

x� a4
� �

x� a8
� �

x� a16
� �

¼ x5 þ x2 þ 1

a3; a6; a12; a24; a17
� �

/3 xð Þ ¼ x� a3
� �

x� a6
� �

x� a12
� �

x� a24
� �

x� a17
� �

¼ x5 þ x4 þ x3 þ x2 þ 1

a5; a10; a20; a9; a18
� �

/5 xð Þ ¼ x� a5
� �

x� a10
� �

x� a20
� �

x� a9
� �

x� a18
� �

¼ x5 þ x4 þ x2 þ xþ 1

a7; a14; a28; a25; a19
� �

/9 xð Þ ¼ x� a7
� �

x� a14
� �

x� a28
� �

x� a25
� �

x� a19
� �

¼ x5 þ x3 þ x2 þ xþ 1

(continued)
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According to the Theorem 3.5, the following factorization is valid for GF(32)

x31 � 1 ¼ xþ 1ð Þ x5 þ x2 þ 1
� �

x5 þ x4 þ x3 þ x2 þ 1
� �

x5 þ x4 þ x2 þ xþ 1
� �

x5 þ x3 þ x2 þ xþ 1
� �

x5 þ x4 þ x3 þ xþ 1
� �

x5 þ x3 þ 1
� �

3.9.5 Construction of Conjugacy Classes Using MATLAB

cst = cosets(m)

The MATLAB command can be used to find the conjugacy classes for the nonzero

elements in GF(8).

For example, for m = 3, the conjugacy classes are generated using the above

MATLAB command that is given as follows

c = cosets(3);

c{1}′

c{2}′

c{3}′

c{1}′ displays the conjugacy class a0
� �

which indicates the nonzero element 1 that

represents a0.

c{2}′ displays the conjugacy class a2; a4; a6
� �

which indicates the nonzero ele-

ments 2, 4, and 6 that represent a; a2 and a2 þ a, respectively.

c{3}′ displays the conjugacy class a3; a5; a7
� �

which indicates the nonzero ele-

ments 3, 5, and 7 that represent aþ 1; a2 þ aþ 1 and 1, respectively.

3.9.6 Construction of Minimal Polynomials Using MATLAB

The conjugacy classes of the elements of GF(2m) and associated minimal poly-

nomials can be constructed using the MATLAB commands cosets and minpol. For

example, for GF(24), the following MATLAB program constructs the minimal

polynomial of the conjugacy class in which α
7 is an element.

(continued)

Conjugacy class Associated minimal polynomial

a11; a22; a13; a26; a21
� �

/11 xð Þ ¼ x� a11
� �

x� a22
� �

x� a13
� �

x� a26
� �

x� a21
� �

¼ x5 þ x4 þ x3 þ xþ 1

a15; a30; a29; a27; a23
� �

/15 xð Þ ¼ x� a15
� �

x� a30
� �

x� a29
� �

x� a27
� �

x� a23
� �

¼ x5 þ x3 þ 1
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Primitive polynomial(s) =

x^4 + x^1 + 1

pol = GF(2) array.

Array elements =

1 1 0 0 1

1 1 0 0 1

1 1 0 0 1

1 1 0 0 1

From the output, array elements indicate the coefficients of the minimal polyno-

mials in the descending order for four elements in the conjugacy class. Hence, the

minimal polynomial for the conjugacy class which α
7 is an element is given by

/ xð Þ ¼ x4 þ x3 þ 1:

3.10 Problems

1. Construct modulo- 5 addition and multiplication tables for GF(5).

2. Divide the polynomial f ðxÞ ¼ 1þ xþ x4 þ x5 þ x6 by the polynomial gðxÞ ¼

1þ xþ x3 in GF(2).

3. Find whether each of the following polynomial is irreducible in GF (2).

(a) p xð Þ ¼ x2 þ xþ 1

(b) p xð Þ ¼ x11 þ x2 þ 1

(c) p xð Þ ¼ x21 þ x2 þ 1

4. Find whether each of the following polynomial is primitive in GF (2).

(a) p xð Þ ¼ x4 þ x3 þ x2 þ xþ 1

(b) p xð Þ ¼ x8 þ x4 þ x3 þ x2 þ 1

(c) p xð Þ ¼ x12 þ x6 þ x4 þ xþ 1
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5. Construct GF(128) as a vector space over GF(2).

6. When the 64 elements in GF(26) are arranged in conjugacy classes and their

associated minimal polynomials. Find the minimal polynomial of the conjugacy

class in which α
7 is an element.
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Chapter 4

Linear Block Codes

This chapter deals with linear block codes covering their fundamental concepts,

generator and parity check matrices, error-correcting capabilities, encoding and

decoding, and performance analysis. The linear block codes discussed in this

chapter are Hamming codes, cyclic codes, binary BCH codes, and Reed–Solomon

(RS) codes.

4.1 Block Codes

The data stream is broken into blocks of k bits, and each k-bit block is encoded into

a block of n bits with n > k bits as illustrated in Fig. 4.1. The n-bit block of the

channel block encoder is called the code word. The code word is formed by adding

ðn� kÞ parity check bits derived from the k message bits.

Some important Properties of block codes are defined as

Block Code Rate

The block code rate (R) is defined as the ratio of k message bits and length of the

code word n.

R ¼ k=n ð4:1Þ

Code Word Weight

The weight of a code word or error pattern is the number of nonzero bits in the code

word or error pattern. For example, the weight of a code word c ¼
ð1; 0; 0; 1; 1; 0; 1; 0Þ is 4.

Hamming Distance

The Hamming distance between two blocks v and w is the number of coordinates in

which the two blocks differ.

Electronic supplementary material The online version of this chapter (doi:10.1007/978-81-
322-2292-7_4) contains supplementary material, which is available to authorized users.

© Springer India 2015

K. Deergha Rao, Channel Coding Techniques for Wireless Communications,

DOI 10.1007/978-81-322-2292-7_4

73

http://dx.doi.org/10.1007/978-81-322-2292-7_4
http://dx.doi.org/10.1007/978-81-322-2292-7_4


dHammingðv;wÞ ¼ dðv;wÞ ¼ ijvi 6¼ wi; i ¼ 0; 1; . . .; n� 1f gj j ð4:2Þ

Example 4.1 Consider the code words v ¼ ð00100Þ and w ¼ ð10010Þ; then, the
Hamming distance dHammingðv;wÞ ¼ 3: Hamming distance allows for a useful

characterization of the error detection and error-correction capabilities of a block

code as a function of the code’s minimum distance.

The Minimum Distance of a Block Code

The minimum distance of a block code C is the minimum Hamming distance

between all distinct pairs of code words in C.

A code with minimum distance dmin can thus detect all error patterns of weight

less than or equal to ðdmin � 1Þ:
A code with minimum distance dmin can correct all error patterns of weight less

than or equal to ðdmin � 1Þ=2½ �:

Example 4.2 Consider the binary code C composed of the following four code

words.

C ¼ 00100ð Þ; 10010ð Þ; 01001ð Þ; 11111ð Þf g

Hamming distance of ð00100Þ and ð10010Þ ¼ 3

Hamming distance of ð10010Þ and ð01001Þ ¼ 4

Hamming distance of ð00100Þ and ð01001Þ ¼ 3

Data Blocks

Channel Block Encoder

( )parity check bits          

Coded Data Blocks

Fig. 4.1 Coded data stream
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Hamming distance of ð10010Þ and ð11111Þ ¼ 3

Hamming distance of ð00100Þ and ð11111Þ ¼ 4

Hamming distance of ð01001Þ and ð11111Þ ¼ 3

Therefore, the minimum distance dmin ¼ 3:

4.2 Linear Block Codes

A block code C consisting of n-tuples c0; c1; . . .; cn�1ð Þf g of symbols from GF(2) is

said to be binary linear block code if and only if C forms a vector subspace over GF

(2). The code word is said to be systematic linear code word, if each of the 2k code

words is represented as linear combination of k linearly independent code words.

4.2.1 Linear Block Code Properties

The two important properties of linear block codes are

Property 1: The linear combination of any set of code words is a code word.

Property 2: The minimum distance of a linear block code is equal to the

minimum weight of any nonzero word in the codeThe two well-

known bounds on the minimum distance are

1. Singleton Bound

The minimum distance of a (n, k) linear block code is bounded

by

dmin � n� k þ 1 ð4:3aÞ

2. Hamming Bound

An (n, k) block code can correct up to tec errors per code word,

provided that n and k satisfy the Hamming bound.

2n�k �
X

tec

i¼0

n

i

� �

ð4:3bÞ

The relation is the upper bound on the dmin and is known as the

Hamming bound. Where

n

i

� �

¼
n!

n� 1ð Þ!i!
; tec ¼ ðdmin � 1Þ=2
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4.2.2 Generator and Parity Check Matrices

Let g0; g1; . . .; gk�1f g be a basis of code words for the (n, k) linear block code C and

m ¼ m0;m1; . . .;mk�1ð Þ the message to be encoded. It follows from Theorem 3.1

that the code word c ¼ c0; c1; . . .; cn�1ð Þ for the message is uniquely represented by

the following linear combination of g0; g1; . . .; gk�1

c ¼ m0g0 þ � � � þ mk�1gk�1 ð4:4Þ

for every code word c 2 C: Since every linear combination of the basis elements

must also be a code word, there is a one-to-one mapping between the set of k-bit

blocks a0; a1; . . .; ax�1ð Þ over GF(2) and the code words in C. A matrix G is

constructed by taking the vectors in the basis as its rows.

G ¼

g0
g1

..

.

gk�1

2

6

6

6

4

3

7

7

7

5

¼

g0;0 g0;1 � � � g0;n�1

g1;0 g1;1 � � � g1;n�1

..

. ..
. . .

. ..
.

gk�1;0 gk�1;1 . . . gk�1;n�1

2

6

6

6

4

3

7

7

7

5

ð4:5Þ

This matrix is a generator matrix for the code C. It can be used to directly encode

k-bit blocks in the following manner.

mG ¼ m0;m1; . . .;mk�1ð Þ

g0
g1

..

.

gk�1

2

6

6

6

4

3

7

7

7

5

¼ m0g0 þ m1g1 þ � � � þ mk�1gk�1 ¼ c

The dual space of a linear block code C is the dual code of C, and a basis

h0; h1; . . .; hn�k�1f g can be found for dual code of C, and the following parity check
matrix can be constructed.

H ¼

h0
h1

..

.

hn�k�1

2

6

6

6

4

3

7

7

7

5

¼

h0;0 h0;1 � � � h0;n�1

h1;0 h1;1 � � � h1;n�1

..

. ..
. . .

. ..
.

hn�k�1;0 hn�k�1;1 . . . hn�k�1;n�1

2

6

6

6

4

3

7

7

7

5

ð4:6Þ

In a systematic linear block code, the last k bits of the code word are the message

bits, that is,

ci ¼ mi�ðn�kÞ; i ¼ n� k; . . .; n ð4:7Þ

The last n� k bits in the code word are check bits generated from the k message

bits according to
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c0 ¼ p0;0m0 þ p1;0m1 þ � � � þ pk�1;0mk�1

c1 ¼ p0;1m0 þ p1;1m1 þ � � � þ pk�1;1mk�1

..

.

cn�k�1 ¼ p0;n�k�1m0 þ p1;n�k�1m1 þ � � � þ pk�1;n�k�1mk�1

The above equations can be written in matrix form as

c0; c1; . . .; cn½ � ¼ m0;m1; . . .;mk�1½ �

p0;0 p0;1 . . . p0;n�k�1 1000 . . . 0

p1;0 p1;1 . . . p1;n�k�1 0100 . . . 0

..

. ..
. ..

. ..
.

pk�1;0 pk�1;1 . . . pk�1;n�k�1 0000 . . . 1

2

6

6

6

6

4

3

7

7

7

7

5

k�n

ð4:8Þ

or

c ¼ mG ð4:9Þ

where G is the matrix on the right-hand side of Eq. (4.8). The k × n matrix G is

called the generator matrix of the code, and it has the form

G ¼ ½P ..
.
Ik�k�n ð4:10Þ

The matrix Ik is the identity matrix of order k and p is an orbitrary k by n� k

matrix. When p is specified, it defines the ðn; kÞ block code completely. The parity

check matrix H corresponding to the above generator matrix G can be obtained as

H ¼

1 0 0 0 . . . 0 p0;0 p1;0 � � � pk�1;0

0 1 0 0 . . . 0 p0;1 p1;1 � � � pk�1;1

..

. ..
. ..

. ..
.

0 0 0 0 . . . 1 p0;n�k�1 p1;n�k�1 � � � pk�1;n�k�1

2

6

6

6

4

3

7

7

7

5

ð4:11Þ

H ¼ In�k
..
.
PT

� �

ð4:12Þ

The Parity Check Theorem

The parity check theorem states that “For an (n, k) linear block code C with

ðn� kÞ � n parity check matrix H; a code word c 2 C is a valid code word if and

only if cHT ¼ 0:”
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Example 4.3 Consider the following generator matrix of (7,4) block code. Find the

code vector for the message vector m ¼ ð1110Þ, and check the validity of code

vector generated.

G ¼

1 1 0 1j 0 0 0

0 1 1 0j 1 0 0

1 1 1 0j 0 1 0

1 0 1 0j 0 0 1

2

6

6

4

3

7

7

5

Solution The code vector for the message block m ¼ ð1110Þ is given by

c ¼ mG ¼ 1 1 1 0ð Þ

1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1

2

6

6

6

4

3

7

7

7

5

¼ 0 1 0 1 1 1 0ð Þ

H ¼

1 0 0 1j 0 1 1

0 1 0 1j 1 1 0

0 0 1 0j 1 1 1

2

6

4

3

7

5

cHT ¼ 0 1 0 1 1 1 0½ �

1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 1 1

1 0 1

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

¼ 0 0 0½ �

Hence, the generated code vector is valid.

4.2.3 Weight Distribution of Linear Block Codes

An ðn; kÞ code contains 2k code words with the Hamming weights between 0 and

n. For 0� i� n; let Wj be the number of code words in C with Hamming weight j:

The w0;w1; . . .;wn�1 are the weight distribution of C so that w0 þ w1 þ w2 þ
� � � þ wn ¼ 2k: The weight distribution can be written as the polynomial W xð Þ ¼
w0 þ w1xþ w2x

2 þ � � � þ wn�1x
n�1 which is called as weight enumerator. The

weight distribution of a linear block code is related to the parity check matrix H by

the following theorem,
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“The minimum weight (or minimum distance) of an ðn; kÞ linear block code with
a parity check matrix H is equal to the minimum number of nonzero columns in H

whose vector sum is a zero vector.”

4.2.4 Hamming Codes

Hamming code is a linear block code capable of correcting single errors having a

minimum distance dmin ¼ 3: It is very easy to construct Hamming codes. The parity

check matrix H must be chosen so that no row in HT is zero and the first ðn� kÞ
rows of HT form an identity matrix and all the rows are distinct.

We can select 2n�k � 1 distinct rows of HT : Since the matrix HT has n rows, for

all of them to be distinct, the following inequality should be satisfied

2n�k � 1� n ð4:13Þ

implying that

n� kð Þ� log2ðnþ 1Þ

n� k þ log2ðnþ 1Þ
ð4:14Þ

Hence, the minimum size n for the code words can be determined from

Eq. (4.14).

Example 4.4 Design a Hamming code with message block size of eleven bits.

Solution It follows from Eq. (4.14) that

n� 11þ log2ðnþ 1Þ

The smallest n that satisfies the above inequality is 15; hence, we need a (15,11)

block code. Thus, the transpose of the parity check matrix H will be 4 by 15 matrix.

The first four rows of HT will be 4 × 4 identity matrix. The last eleven rows are

arbitrarily chosen, with the restrictions that no row is zero, and all the rows are

distinct.

H ¼

1 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 1 0 0 1 1 1 0 0 0 0 1 1 1 1

0 0 1 0 0 1 1 1 0 1 1 0 0 1 1

0 0 0 1 1 0 1 1 1 0 1 0 1 0 1

2

6

6

4

3

7

7

5
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HT ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

. . . . . . . . . . . .

0 1 0 1

0 1 1 0

0 1 1 1

0 0 1 1

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼
In�k

. . .

PT

2

4

3

5

Then, the generator matrix G is

G ¼

0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 1 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 1 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 1 0 0 0

1 1 0 1 0 0 0 0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 1 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Example 4.5 Construct parity check and generator matrices for a (7,4) Hamming

code.

Solution The parity check matrix (H) and generator matrix (G) for a (7,4)

Hamming code are

H ¼

1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1

2

6

4

3

7

5

G ¼

1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1

2

6

6

6

4

3

7

7

7

5
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4.2.5 Syndrome Table Decoding

Consider a valid code word c for transmission, and let e be an error pattern

introduced by the channel during transmission. Then, the received vector r can be

written as

r ¼ cþ e ð4:15aÞ

Multiplying the r by the transpose of the parity check matrix gives the syndrome

S which can be expressed as

S ¼ rHT

¼ ðcþ eÞHT

¼ cHT þ eHT

¼ 0þ eHT

¼ eHT

ð4:15bÞ

Thus, the syndrome vector is independent of the transmitted code word c and is

only a function of the error pattern e: Decoding is performed by computing the

syndrome of a received vector, looking up the corresponding error pattern, and

subtracting the error pattern from the received word.

Example 4.6 Construct a syndrome decoding table for a (7,4) Hamming code.

Solution For a (7,4) Hamming code, there are 2 7�4ð Þ error patterns (e) as follows

0 0 0 0 0 0 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 0 0 0 0 1

The syndrome for (7,4) Hamming code is computed using the parity check

matrix H as given in solution of Example 4.4 as follows

s ¼ e � HT

Thus, the syndrome decoding table for a (7,4) Hamming code is as follows

(Table 4.1).
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4.2.5.1 Hamming Codes Decoding

Syndrome table is used to decode the Hamming codes. The syndrome table gives

the syndrome value based on the simple relationship with parity check matrix. The

single error-correcting codes, i.e., Hamming codes, are decoded by using syndrome

value. Consider a code word c corrupted by e an error pattern with a single one in

the jth coordinate position results a received vector r. Let h0; h1; . . .; hn�1f g be the

set of columns of the parity check matrix H. When the syndrome is computed, we

obtain the transposition of the jth column of H.

s ¼ rHT ¼ eHT ¼ 0; . . .; 0; 1; 0; . . .; 0ð Þ

hT0
hT1

..

.

hTn�1

2

6

6

6

4

3

7

7

7

5

¼ hTj ð4:16Þ

The above-mentioned process can be implemented using the following

algorithm.

1. Compute the syndrome s for the received word. If s ¼ 0, the received code word

is the correct code word.

2. Find the position j of the column of H that is the transposition of the syndrome.

3. Complement the jth bit in the received code word to obtain the corrected code

word.

Example 4.7 Decode the received vector r ¼ 010000000000000ð Þ using the

(15,11) parity check matrix.

Solution

H ¼

1 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 1 0 0 1 1 1 0 0 0 0 1 1 1 1

0 0 1 0 0 1 1 1 0 1 1 0 0 1 1

0 0 0 1 1 0 1 1 1 0 1 0 1 0 1

2

6

6

4

3

7

7

5

Table 4.1 Syndrome

decoding table for a (7,4)

Hamming code

Error pattern Syndrome

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1 1 0

0 0 0 0 1 0 0 0 1 1

0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 1 0 1
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The received vector is r ¼ 010000000000000ð Þ
The corresponding syndrome s ¼ r � HT is

s ¼ 0100ð Þ

The syndrome is the transposition of 1st column of H. Inverting the 1st coor-

dinate of r, the following code word is obtained

c ¼ 000000000000000ð Þ

Example 4.8 Decode the received vector r ¼ 001100011100000ð Þ vector using the

(15,11) parity check matrix vector.

Solution The received vector is r ¼ 001100011100000ð Þ. The corresponding

syndrome s ¼ r � HT is s ¼ 0011ð Þ. The syndrome is the transposition of 7th

column of H. Inverting the 7th coordinate of r, the following code word is obtained

c ¼ 001100001100000ð Þ

4.3 Cyclic Codes

An ðn; kÞ linear block code C is said to be a cyclic code if for every codeword

c ¼ c0; c1; . . .; cn�2; cn�1ð Þ �C; there is also a codeword c1 ¼
cn�1; c0; c1; . . .; cn�2ð Þ obtained by shifting c cyclically one place to the right is

also code word in C.

4.3.1 The Basic Properties of Cyclic Codes

Property 1: In an ðn; kÞ cyclic code, there exists a unique polynomial called

generator polynomial g xð Þ of minimal degree ðn� kÞ of the

following form:

g xð Þ ¼ g1xþ g2x
2 þ � � � þ gn�k�1x

n�k�1 þ gn�kx
n�k ð4:17Þ

Property 2: Every code polynomial in an ðn; kÞ cyclic code is multiple of g xð Þ.
Thus, it can be expressed as c xð Þ ¼ m xð Þg xð Þ, where m xð Þ is a

polynomial over GF(2) of degree k � 1 or less.

Property 3: The generator polynomial g xð Þ of an ðn; kÞ cyclic code over GF(2)

divides xn þ 1:
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Property 4: The generator polynomial g xð Þ and the parity check matrix hðxÞ are
factor of the polynomial 1þ xn:

In modulo-2 arithmetic 1þ xn has the same value 1� xn.

Example 4.9 Let C1 be the binary cyclic code of length 15 generated by

g xð Þ ¼ x5 þ x4 þ x2 þ 1. Compute the code polynomial in C1 and the associated

code word for the message polynomial m xð Þ ¼ x9 þ x4 þ x2 þ 1 using the poly-

nomial multiplication encoding technique.

Solution Here

m xð Þ ¼ x9 þ x4 þ x2 þ 1; g xð Þ ¼ x5 þ x4 þ x2 þ 1

code polynomial

c xð Þ ¼ m xð Þg xð Þ ¼ x14 þ x13 þ x11 þ x8 þ x7 þ x5 þ x4 þ 1

Code word = (100011011001011).

Example 4.10 Let C1 be the binary cyclic code of length 15 generated by

g xð Þ ¼ x5 þ x4 þ x2 þ 1. Determine the dimensions of C1, and compute the number

of code words in C1.

Solution Since the order of the generator polynomial is 5, the C1 has dimension

(15,10) with k ¼ ð15� 5Þ ¼ 10 and contains 215−5 code words.

Example 4.11 Let C1 be the binary cyclic code of length 15 generated by

g xð Þ ¼ x5 þ x4 þ x2 þ 1. Compute the parity check polynomial for C1, and show

that g xð Þ is a valid generator polynomial.

Solution g xð Þ ¼ x5 þ x4 þ x2 þ 1. The parity check polynomial for C1 is

h xð Þ ¼
x15 þ 1

gðxÞ
¼ x10 þ x9 þ x8 þ x6 þ x5 þ x2 þ 1

gðxÞ is valid generator polynomial since it has the minimum polynomials x4 þ xþ 1

and xþ 1 as factors, i.e., g xð Þ ¼ x4 þ xþ 1ð Þ xþ 1ð Þ.

4.3.2 Encoding Algorithm for an ðn; kÞ Cyclic Codes

In an ðn; kÞ cyclic code C with generator polynomial gðxÞ; let m ¼
ðm0;m1; . . .; mk�1Þ is the message block. By multiplying the message polynomial
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mðxÞ by xn�k , we obtain a polynomial xn�km xð Þ ¼ m0x
n�k þ m1x

n�kþ1 þ � � � þ
mk�1x

n�1 of degree n� 1 or less. Now, dividing xn�km xð Þ by gðxÞ yields

xn�km xð Þ ¼ q xð Þg xð Þ þ p xð Þ ð4:18Þ

where qðxÞ and pðxÞ are the quotient and remainder, respectively.

Equation (4.18) can be rearranged as

p xð Þ þ xn�km xð Þ ¼ q xð Þg xð Þ ð4:19Þ

Equation (4.19) shows that p xð Þ þ xn�km xð Þ is divisible by gðxÞ. Hence, it must

be a valid code polynomial c xð Þ ¼ p xð Þ þ xn�km xð Þ of the ðn; kÞ cyclic code C with

generator polynomial gðxÞ. The n-tuple representation of the code polynomial cðxÞ
is

c ¼ p0; p1; . . .; pn�k�1;m0;m1; . . .; mk�1ð Þ ð4:20Þ

The systematic encoding algorithm is summarized as

Step 1: Multiply the message polynomial mðxÞ by xn�k

Step 2: Divide the result of Step 1 by the generator polynomial gðxÞ. Let dðxÞ be the
remainder.

Step 3: Set c xð Þ ¼ xn�km xð Þ � dðxÞ.

Example 4.12 Let C1 be the binary cyclic code of length 15 generated by

g xð Þ ¼ x5 þ x4 þ x2 þ 1. Compute the code polynomial in C1 and the associated

code word for the message polynomial m xð Þ ¼ x8 þ x7 þ x6 þ x5 þ x4 using the

systematic encoding technique. Verify that the message has been systematically

encoded.

Solution

g xð Þ ¼ x5 þ x4 þ x2 þ 1; m xð Þ ¼ x8 þ x7 þ x6 þ x5 þ x4

Step 1: x5m xð Þ ¼ x5 x8 þ x7 þ x6 þ x5 þ x4
� �

¼ x13 þ x12 þ x11 þ x10 þ x9
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Step 2

:

x8 þ x6 þ x5 þ x2 þ 1

x5 þ x4 þ x2 þ 1
�

x13 þ x12 þ x11 þ x10 þ x9

x13 þ x12 þ x10 þ x5

x11 þ x9 þ x8

x11 þ x10 þ x8 þ x6

x10 þ x9 þ x6

x10 þ x9 þ x7 þ x5

x7 þ x6 þ x5

x7 þ x6 þ x4 þ x2

x5 þ x4 þ x2

x5 þ x4 þ x2 þ 1

1 ¼ dðxÞ
Step 3: cm xð Þ ¼ x13 þ x12 þ x11 þ x10 þ x9 þ 1 $ cm ¼ 10000011111110ð Þ:

Example 4.13 Construct parity check and generator matrices for binary cyclic code

of length 15 generated by g xð Þ ¼ x5 þ x4 þ x2 þ 1.

Solution The systematic generator matrix is obtained by selecting as rows those

code words associated with the message blocks (1000000000), (0100000000),

(0010000000), (0001000000), (0000100000), (0000010000), (0000001000),

(0000000100), (0000000010), and (1000000001).

mðxÞ Code polynomial cðxÞ Codeword

1 1þ x2 þ x4 þ x5 $ ð101011000000000Þ

x 1þ xþ x2 þ x3 þ x4 þ x6 $ ð111110100000000Þ

x2 1þ xþ x3 þ x7 $ ð110100010000000Þ

x3 xþ x2 þ x4 þ x8 $ ð011010001000000Þ

x4 1þ x3 þ x4 þ x9 $ ð100110000100000Þ

x5 1þ xþ x2 þ x10 $ ð111000000010000Þ

x6 xþ x2 þ x3 þ x11 $ ð011100000001000Þ

x7 x2 þ x3 þ x4 þ x12 $ ð001110000000100Þ

x8 1þ x2 þ x3 þ x13 $ ð101100000000010Þ

x9 xþ x3 þ x4 þ x14 $ ð010110000000001Þ
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The generator matrix Gð Þ and parity check matrix Hð Þ for the cyclic code are

G ¼

1 0 1 0 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 1 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 1 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 1 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 1 1 1 0 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 0 0 0 0 0 1 0

0 1 0 1 1 0 0 0 0 0 0 0 0 0 1

2
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6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7
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7

7

7

7

7

7

7

7

7

5

The corresponding parity check matrix is

H ¼

1 0 0 0 0 1 1 1 0 1 1 0 0 1 0

0 1 0 0 0 0 1 1 1 0 1 1 0 0 1

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

0 0 0 0 1 1 1 0 1 1 0 0 1 0 1

2

6

6

6

6

4

3

7

7

7

7

5

4.3.3 Encoder for Cyclic Codes Using Shift Registers

The systematic encoder for cyclic codes is shown in Fig. 4.2. The rectangular boxes

represent flip-flops which reside either in 0 or 1 state. The encoder operation is as

follows.

1. The switches are placed in position in 1. The k message bits are sent to the

modulator and placed at the end of the systematic code word. As soon as the kth

message bit is fed into the shift register, the flip-flops of the shift register contain

ðn� kÞ parity bits.

2. The switches are moved to the position 2 to break the feedback connection.

3. The parity bits in the shift register are shifted out into the transmitter to form the

parity bits of the systematic code word.

Example 4.14 Construct the shift register encoder for a cyclic code of length 7

generated by g xð Þ ¼ x4 þ x3 þ x2 þ 1, and obtain the code word for message

m ¼ ð010Þ:

Solution The shift register for encoding the (7,3) cyclic code with generator

polynomial gðxÞ ¼ x4 þ x3 þ x2 þ 1 is shown in Fig. 4.3. The given message bits

are 010. The contents of the shift register are shown in Table 4.2. Hence, the four

parity check bits are 0111. Therefore, the code word output is 0111010.
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Code Word 

Output 

--
c c c c ++ +

1 2 

1 2 

Message  

Block Input 

gg

Fig. 4.2 Encoding circuit for (n, k) cyclic code

Code Word Output

Message Block Input

Fig. 4.3 Encoder for an (7,3) cyclic code generated by gðxÞ ¼ x4 þ x3 þ x2 þ 1

Table 4.2 Contents of the

shift register in the encoder of

Fig. 4.3 for message sequence

(010)

Shift Input Register code words

0 0 0 0

1 0 0 0 0 0

2 1 1 0 1 0

3 0 0 1 1 1
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4.3.4 Shift Register Encoders for Cyclic Codes

Suppose the code word c0; c1; . . .; cn�1ð Þ is transmitted over a noisy channel

resulting in the received word r0; r1; . . .; rn�1ð Þ. Let the received word be repre-

sented by a polynomial of degree n� 1 or less as

r xð Þ ¼ r0 þ r1xþ � � � þ rn�1x
n�1 ð4:21Þ

Dividing the rðxÞ by gðxÞ results in the following

r xð Þ ¼ q xð Þg xð Þ þ s xð Þ ð4:22Þ

where qðxÞ is the quotient and sðxÞ is the remainder known as syndrome. The sðxÞ is
a polynomial of degree n� k � 1 or less, and its coefficients make up the n� 1ð Þ-
by-1 syndrome s: An error in the received word is detected only when the syndrome

polynomial s xð Þ is nonzero.

Syndrome Calculator

The syndrome calculator shown in Fig. 4.4 is similar to the encoder shown in the

Fig. 4.2. The only difference is that the received bits are fed from left into the

ðn� kÞ stages of the feedback shift register. At the end of the last received bit

shifting, the contents of the shift register contain the desired syndrome s. If the

syndrome is zero, there are no transmission errors in the received word or else the

received code word contains transmission error. By knowing the value of syn-

drome, we can determine the corresponding error pattern and also make the

appropriate correction.

Example 4.15 Consider the (7,4) Hamming code generator polynomial gðxÞ ¼
x3 þ xþ 1 and the transmitted code word 1100101. Show the fifth bit of the

received word is an error (Table 4.3).

Fig. 4.4 Syndrome calculator
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Solution Given gðxÞ ¼ x3 þ xþ 1

Transmitted code word = 1100101

By considering the fifth bit as an error, the received word = 1110101.

At the end of the seventh shift, the contents of the shift register (syndrome) is

001. The nonzero value of the syndrome indicates the error, and the error pattern for

the syndrome 001 is 0010000 from the Table 4.1. This shows that the fifth bit of the

received word is an error.

4.3.5 Cyclic Redundancy Check Codes

Cyclic redundancy check (CRC) code is a cyclic code used for error detection. CRC

codes are implemented from cyclic codes and hence the name, even when they are

generally not cyclic. The following three CRC codes given in Table 4.4 have

become international standard.

Received 

bits

Flip-flop Modulo-2 

adder

+ +

Gate

Fig. 4.5 Syndrome calculator of Example 4.15

Table 4.3 Contents of the

shift register in the encoder of

Fig. 4.5

Shift Input bit Contents of shift register

000

1 1 100

2 0 010

3 1 101

4 0 100

5 1 110

6 1 111

7 1 001
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4.4 BCH Codes

BCH codes are a subclass of cyclic codes. The BCH codes are introduced inde-

pendently by Bose, Ray-Chauduri, and Hocquenghem. For m[ 3 and tec\2m�1;
there exists a BCH code with parity check bits ðn� kÞ�mtec and dmin � 2tec þ 1:

4.4.1 BCH Code Design

If a primitive element a of GFð2mÞ is chosen, then the generator polynomial gðxÞ of
the tec error-correcting binary BCH code of length 2m � 1 is the minimum degree

polynomial over GFð2Þ having a; a2; a3; . . .; a2tc as roots. Suppose /iðaÞ be the

minimal polynomial of ai; 1� i� 2tec for tec error-correcting binary BCH code.

Table 4.4 International standard CRC codes

CRC code Description Error detection capability Burst error

detection

capability

CRC-12 gðxÞ ¼ x12 þ x11 þ x3 þ x2 þ xþ 1

¼ ðx11 þ x2 þ 1Þðxþ 1Þ
Code length: 2047

Number of parity bits: 12

dmin ¼ 4

One-bit errors, two- and

three-bit errors of length

up to 2047. All error

pattern with an odd

number of error if the

generator polynomial g

(x) for the code has an

even number of nonzero

coefficients

All burst

errors up to

length 12

CRC-16 gðxÞ ¼ x16 þ x15 þ x2 þ 1

¼ ðx15 þ xþ 1Þðxþ 1Þ
Code length: 32767

Number of parity bits: 16

dmin ¼ 4

All one-bit errors, two-

and three-bit errors of

length up to 32767. All

error pattern with an odd

number of error if the

generator polynomial g

(x) for the code has an

even number of nonzero

coefficients

All burst

errors up to

length 16

CRC-CCITT gðxÞ ¼ x16 þ x12 þ x5 þ 1

¼ ðx15 þ x14 þ x13 þ x12 þ x4

þ x3 þ x2 þ xþ 1Þðxþ 1Þ
Code length: 32767

Number of parity bits: 16

dmin ¼ 4

All one-bit errors, two-

and three-bit errors of

length up to 32767.

All error pattern with an

odd number of error if the

generator polynomial g

(x) for the code has an

even number of nonzero

coefficients

All burst

errors up to

length 16
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Then, the generator polynomial g xð Þ is the least common multiple (LCM) of

/1 að Þ;/2ðaÞ; . . .; /2tec
ðaÞ, i.e.,

g xð Þ ¼ LCM /1 að Þ;/2ðaÞ; . . .; /2tec
ðaÞ

� 	

ð4:23Þ

Let c xð Þ ¼ c0 þ c1a
i þ c2a

2i þ � � � þ c2m�2a
2m�2ð Þi be a code polynomial. Since

c xð Þ is divisible by g xð Þ, a root of g xð Þ is also a root of c xð Þ. Hence, for 1� i� 2tec;

c ai
� �

¼ c0 þ c1a
i þ c2a

2i þ � � � þ c2m�2a
2m�2ð Þi ¼ 0 ð4:24Þ

Equation (4.24) can be rewritten in matrix form as

c0; c1; . . .; c2m�2ð Þ �

1

ai

a2i

..

.

a 2m�2ð Þi

0

B

B

B

B

@

1

C

C

C

C

A

¼ 0 ð4:25Þ

It follows that c � HT ¼ 0 for every code word c ¼ ðc0; c1; . . .; c2m�2Þ in the tec
error-correcting BCH code of length 2m � 1 generated by gðxÞ: Hence, for gðxÞ, the
corresponding 2t � ð2m � 1Þ matrix over GF(2m) can be formed as

H ¼

1 a a2 . . . a 2m�2ð Þ

1 a2 a2ð Þ
2

. . . a2ð Þ
2m�2

1 a3 a3ð Þ
2

. . . a3ð Þ
2m�2

..

. ..
. ..

. . .
. ..

.

1 a2i a2tð Þ
2

. . . a2tð Þ
2m�2

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð4:26Þ

If / xð Þ is the minimal polynomial of an element b of the GFð2mÞ and lðl�mÞ is

the smallest positive integer such that b2
l

¼ b, then from Theorem 3.7, / xð Þ of

degree m or less is given by

/ xð Þ ¼
Y

l�1

i¼0

X � b2
i


 �

ð4:27Þ

The conjugates of b are the roots of Ub xð Þ of the form b2
i

, 1\i\l� 1.

From Theorem 3.6, the roots of Ub xð Þ having the conjugacy class will have the

same minimal polynomial.

The stepwise procedure to find the minimal polynomial Ub xð Þ is as follows:

Step 1: Determine the conjugates class of b

Step 2: Obtain Ub xð Þ using Eq. (4.27)
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The design procedure of tec-error-correcting binary BCH code of length n is as

follows:

1. Choose a primitive root a in a field GF 2mð Þ.
2. Select 2tec consecutive powers of a.

3. Obtain the minimal polynomials for all the 2tec consecutive powers of a having

the same minimal polynomial for the roots in the same conjugacy class.

4. Obtain the generator polynomial gðxÞ by taking the LCM of the minimal

polynomials for the 2tec consecutive powers of a:

The construction of BCH codes are illustrated through the following examples.

Example 4.16 Compute a generator polynomial for a binary BCH code of length 15

and minimum distance 3, and find the code rate.

Solution Since 15 is of the form 2m � 1, the BCH codes are primitive. Let α be a

primitive element in the field GF(16) generated by the primitive polynomial 1þ
xþ x4: The elements of the field GF(16) are given in Table 3.3. Since the code is to

be single error correcting (minimum distance = 3), the generator polynomial thus

must have α and α2 as roots. The a and a2 are conjugate elements and have the same

minimal polynomial, which is 1þ xþ x4. The generator polynomial is thus

g xð Þ ¼ 1þ xþ x4

Since the degree of g xð Þ is 4, the BCH code generator by g xð Þ is a (15,11) code.
The rate of the code is

R ¼
k

n
¼

11

15

Example 4. 17 Design a double-error-correcting binary BCH code of length 15.

Solution Since 15 is of the form 2m � 1, the BCH codes are primitive. Let α be a

primitive element in the field GF(16) generated by the primitive polynomial 1þ
xþ x4: The elements of the field GF(16) are given in Table 3.3.

Since the code is to be double error correcting, the generator polynomial thus

must have a; a2; a3; a4 as roots.

The a; a2 and a4 are conjugates and have the same minimal polynomial, which is

1þ xþ x4: Thus,

/a xð Þ ¼ /a2 xð Þ ¼ /a4 xð Þ ¼ 1þ xþ x4

By letting b ¼ a3

b2
4

¼ a3
� �16

¼ a48 ¼ a45a3 ¼ 1 � a3 ¼ a3

4.4 BCH Codes 93

http://dx.doi.org/10.1007/978-81-322-2292-7_3
http://dx.doi.org/10.1007/978-81-322-2292-7_3


Therefore, l ¼ 4, and from Eq. (4.28), the minimal polynomial /a3 xð Þ is given
by

/a3 xð Þ ¼
Y

l�1

i¼0

x� b2
i


 �

¼
Y

4�1

i¼0

x� b2
i


 �

¼ x� a3
� �

x� a6
� �

x� a12
� �

x� a24
� �

/a3 xð Þ ¼ x� a3
� �

x� a6
� �

x� a12
� �

x� a9
� �

¼ 1þ xþ x2 þ x3 þ x4

Hence,

g xð Þ ¼ g xð Þ ¼ ð1þ xþ x4Þ 1þ x4 þ x6 þ x7 þ x8
� �

¼ 1þ x4 þ x6 þ x7 þ x8

Since the degree of g xð Þ is 8, the BCH code generator by g xð Þ is a (15,7) code

with minimum distance 5.

Example 4.18 Design a triple-error-correcting binary BCH code of length 63.

Solution Let α be a primitive element in the field GF(16) generated by the primitive

polynomial 1þ xþ x4. The elements of the field GF(16) are given in Table 3.3.

Since the code is to be triple error correcting, the generator polynomial thus must

have a; a2; a3; a4; a5; a6 as roots. a; a2 and a4 are conjugate elements and have the

same minimal polynomial, which is 1þ xþ x6:
Thus,

/a xð Þ ¼ /a2 xð Þ ¼ /a4 xð Þ ¼ 1þ xþ x6

The elements a3 and a6 are conjugates and have the same minimal polynomial.

By letting b ¼ a3

b2
6

¼ a3
� �64

¼ a192 ¼ a63a63a63a3 ¼ 1 � a3 ¼ a3

Therefore, l ¼ 6, and from Eq. (4.28), the minimal polynomials /a3 xð Þ and

/a6 xð Þ are the same and are given by

/a3 xð Þ ¼ /a6 xð Þ ¼
Y

l�1

i¼0

x� b2
i


 �

¼
Y

6�1

i¼0

x� b2
i


 �

¼ x� a3
� �

x� a6
� �

x� a12
� �

x� a24
� �

x� a48
� �

x� a96
� �

¼ x� a3
� �

x� a6
� �

x� a12
� �

x� a24
� �

x� a48
� �

x� a33
� �

¼ 1þ xþ x2 þ x4 þ x6
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By letting b ¼ a5

b2
6

¼ a5
� �64

¼ a320 ¼ a63a63a63a63a63a3 ¼ 1 � a5 ¼ a5

Therefore, l ¼ 6, and from Eq. (4.28), the minimal polynomial /a3 xð Þ is given
by

/a5 xð Þ ¼
Y

l�1

i¼0

x� b2
i


 �

¼
Y

6�1

i¼0

x� b2
i


 �

¼ x� a5
� �

x� a10
� �

x� a20
� �

x� a40
� �

x� a80
� �

x� a160
� �

¼ x� a5
� �

x� a10
� �

x� a20
� �

x� a40
� �

x� a17
� �

x� a34
� �

¼ 1þ xþ x2 þ x5 þ x6

It follows from Eq. (4.24) that the generator polynomial of the triple-error-

correcting BCH code of length 63 is given by

g xð Þ ¼ 1þ xþ x6
� �

1þ xþ x2 þ x4 þ x6
� �

1þ xþ x2 þ x5 þ x6
� �

¼ 1þ xþ x2 þ x3 þ x6 þ x7 þ x9 þ x15 þ x16 þ x17 þ x18

Since the degree of g xð Þ is 18, the BCH code generator by g xð Þ is a (63,45) code
with minimum distance 7.

Example 4.19 Construct generator and parity check matrices for a single-error-

correcting BCH code of length 15.

Solution A parity check matrix for this code is obtained by using Eq. (4.27) as

H ¼
1 a a2 . . . a13 a14

1 a2 a4 . . . a11 a13

� �

This parity check matrix has redundancy because a and a2 conjugates. Hence,

the parity check matrix without redundancy is

H ¼ 1 a a2 . . . a13 a14
� 


Note that the entries of H are elements in GF(24). Each element in GF(24) can be

represented by 4 tuples over GF(2). If each entry of H is replaced by its corre-

sponding 4 tuples over GF(2) arranged in column form, we obtain a binary parity

check matrix for the code as follows:
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H ¼

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
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7

5

The corresponding generator matrix is

G ¼

1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 1 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 1 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 1

2
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6

6

6

6

6

6

6

6

6

6

6

6

6

6
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7

7

7

7

7
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4.4.2 Berlekamp’s Algorithm for Binary BCH Codes

Decoding

Let code polynomial c xð Þ ¼ cn�1x
n�1 þ cn�2x

n�2 þ � � � þ c1xþ c0, an error poly-

nomial e xð Þ ¼ en�1x
n�1 þ en�2x

n�2 þ � � � þ e1xþ e0, and received polynomial

r xð Þ ¼ rn�1x
n�1 þ rn�2x

n�2 þ � � � þ r1xþ r0.

Then, r xð Þ can be written as

r xð Þ ¼ c xð Þ þ e xð Þ ð4:28Þ

Let S ¼ S1S2. . .S2tec½ � be syndrome sequence with 2tec known syndrome com-

ponents. Then, the syndrome polynomial can be written as

S xð Þ ¼ S2tecx
2tec þ S2tec�1x

2tec�1 þ � � � þ S1x ð4:29Þ

where tec stands for error-correcting capability. By evaluating the received poly-

nomial at 2tec zeros, the syndromes S1S2. . .S2tec can be obtained. Thus,

Si ¼ r ai
� �

¼ rn�1 ai
� �n�1

þrn�2 ai
� �n�2

þ � � � þ r1 ai
� �

þ r0 for 1� i� 2tec ð4:30Þ
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The syndrome sequence S1S2. . .S2tec can be rewritten as

Si ¼ e ai
� �

¼ en�1 ai
� �n�1

þen�2 ai
� �n�2

þ � � � þ e1 ai
� �

þ e0 for 1� i� 2tec
ð4:31Þ

Assuming that the received word r has v errors in positions j1; j2; . . .; jv, the
error locator polynomial can be expressed as

K xð Þ ¼ Kvx
v þ Kv�1x

v�1 þ � � � þ K1xþ 1

¼ 1� aj1x
� �

1� aj2x
� �

. . . 1� ajvx
� �

ð4:32Þ

The error magnitude polynomial is defined as

X xð Þ ¼ K xð Þ 1þ S xð Þð Þmod x2tecþ1 ð4:33Þ

This is useful in non-binary decoding.

Berlekamp’s algorithm proceeds for binary decoding of BCH codes iteratively

by breaking down into a series of smaller problems of the form

1þ S xð Þ½ �K 2nð Þ xð Þ 	¼ 1þ X2x
2 þ X4x

4 þ � � � þ X2nx
2n

� �

mod x2nþ1 ð4:34Þ

where n runs from 1 to tec. The flowchart of the Berlekamp’s iterative algorithm is

shown in Fig. 4.6.

4.4.3 Chien Search Algorithm

A Chien search is shown in Fig. 4.7. The Chien search is a systematic means of

evaluating the error locator polynomial at all elements in a field GF 2mð Þ. Each
coefficient of the error locator polynomial is repeatedly multiplied by ai, where a is

primitive in GFð2mÞ. Each set of products is then summed to obtain Ai ¼ K aið Þ � 1.

If ai is a root of K xð Þ, then Ai ¼ K aið Þ � 1 and an error is indicated at the coor-

dinate associated with a�i ¼ an�i:

Example 4.20 Let the transmission code be the triple-error-correcting binary BCH

code of length 15. The generator polynomial is g xð Þ ¼ 1þ xþ x2 þ x4 þ x5þ
x8 þ x10. Use Berlekamp’s algorithm to decode the following received vector

r ¼ 000101000000100ð Þ.
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Solution For double error correction, the generator polynomial g xð Þ ¼ 1þ xþ
x2 þ x4 þ x5 þ x8 þ x10 has roots which include six consecutive powers of

a: a; a2; a3; a4; a5; a6
� �

, where a is primitive in GF(16).

The received vector is r ¼ 000101000000100ð Þ $ r xð Þ ¼ x3 þ x5 þ x12

The syndrome polynomial is written as

Fig. 4.6 Berlekamp iterative algorithm for decoding binary BCH codes
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S xð Þ ¼ S1xþ S2x
2 þ S3x

3 þ S4x
4 þ S5x

5 þ S6x
6

S1 ¼ r að Þ ¼ a3 þ a5 þ a12 ¼ 1

S2 ¼ r a2
� �

¼ a6 þ a10 þ a24 ¼ 1

S3 ¼ r a3
� �

¼ a9 þ a15 þ a36 ¼ a10

S4 ¼ r a4
� �

¼ a12 þ a20 þ a48 ¼ 1

S5 ¼ r a5
� �

¼ a15 þ a25 þ a60 ¼ a10

S6 ¼ r a6
� �

¼ a18 þ a30 þ a72 ¼ a5

Since a15 ¼ 1;

a24 ¼ a15a9 ¼ a9;

a36 ¼ a15a15a6 ¼ a6;

a20 ¼ a15a5 ¼ a5;

a48 ¼ a15a15a15a3 ¼ a3

a25 ¼ a15a10 ¼ a10;

a60 ¼ a15a15a15a15 ¼ 1;

a30 ¼ a15a15 ¼ 1;

a72 ¼ a15a15a15a15a12 ¼ a12

Fig. 4.7 Chien search circuit
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S xð Þ ¼ xþ x2 þ a10x3 þ x4 þ a10x5 þ a5x6

Applying Berlekamp algorithm, we obtain the following

n K xð Þ 2nð Þ
B xð Þ 2nð Þ D 2nð Þ

0 1 1 1

1 1þ x x a5

2 1þ xþ a5x2 x 1þ xð Þ=a5 a10

3 1þ xþ a5x3 . . . . . .

The error locator polynomial is then

K xð Þ ¼ 1þ xþ a5x3 ¼ 1þ a3x
� �

1þ a5x
� �

1þ a12x
� �

indicating errors at the positions corresponding to a3; a5 and a12. The corrected

received word with the corrected positions is then

c ¼ 000000000000000ð Þ
l

c xð Þ ¼ 0

Example 4.21 Let the transmission code be the double-error-correcting, narrow-

sense, binary BCH code of length 15. The generator polynomial is

g xð Þ ¼ 1þ x4 þ x6 þ x7 þ x8. Use Berlekamp’s algorithm to decode the following

received vector r ¼ 000110001100000ð Þ.

Solution For double error correction, the generator polynomial g xð Þ ¼ 1þ x4 þ
x6 þ x7 þ x8 has roots which include four consecutive powers of a: a; a2; a3; a4ð Þ,
where a is primitive in GF(16). The received vector is

r ¼ 000110001100000ð Þ
l

r xð Þ ¼ x3 þ x4 þ x8 þ x9:

The syndrome polynomial is written as

S xð Þ ¼ S1xþ S2x
2 þ S3x

3 þ S4x
4

S1 ¼ r að Þ ¼ a3 þ a4 þ a8 þ a9 ¼ a2

S2 ¼ r a2
� �

¼ a6 þ a8 þ a16 þ a18 ¼ a4

S3 ¼ r a3
� �

¼ a9 þ a12 þ a24 þ a27 ¼ 0

S4 ¼ r a4
� �

¼ a12 þ a16 þ a32 þ a36 ¼ a8
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Since a15 ¼ 1;

a16 ¼ a15a1 ¼ a1;

a18 ¼ a15a3 ¼ a3;

a24 ¼ a15a9 ¼ a9

a28 ¼ a15a12 ¼ a12;

a32 ¼ a15a15a2 ¼ a2;

a36 ¼ a15a15a6 ¼ a6

S xð Þ ¼ a2xþ a4x2 þ a8x4

Applying Berlekamp algorithm, we obtain the following

n K xð Þ 2nð Þ
B xð Þ 2nð Þ D 2nð Þ

0 1 1 a2

1 1þ a2x a13x a6

2 1þ a2xþ a19x2 . . . . . .

The error locator polynomial is then

K xð Þ ¼ 1þ a2xþ a19x2 ¼ 1þ a7x
� �

1þ a12x
� �

indicating errors at the positions corresponding to a7 and a12. The corrected

received word with the corrected positions is then

c ¼ 000110011100100ð Þ
l

c xð Þ ¼ x3 þ x4 þ x7 þ x8 þ x9 þ x12

4.5 Reed–Solomon Codes

The RS codes are the most powerful non-binary block codes which have seen

widespread applications. These codes work with symbols that consist of several

bits. A common symbol size for non-binary codes is 8 bits or a byte. The RS codes

are good at correcting burst errors because the correction of these codes is done on

the symbol level.

A given Reed–Solomon code is indicated by referring to it as an ðn; kÞ code.

The parameter n indicates the code word length in terms of the number of symbols

in the code word. The parameter k indicates the number of message symbols in the
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code word. The number of parity symbols added is thus ðn; kÞ. The error-correcting
capability of the code is tec ¼ ðn� kÞ=2. The minimum distance of Reed–Solomon

code is ðn� k þ 1Þ:

4.5.1 Reed–Solomon Encoder

Generator Polynomial

A general form of the polynomial gðxÞ used in RS code generation is

g xð Þ ¼ x� ai
� �

x� aiþ1
� �

. . . x� aiþ2tec
� �

ð4:35Þ

where a is a primitive element of the Galois field.

The code word c xð Þ is constructed using

c xð Þ ¼ g xð Þ � iðxÞ ð4:36Þ

where i xð Þ is the information polynomial.

The code word cðxÞ is exactly divisible by the generator polynomial g xð Þ. The
remainder obtained by dividing i xð Þ � xn�k by g xð Þ gives the parity polynomial pðxÞ
as

p xð Þ ¼ i xð Þ � xn�k=g xð Þ ð4:37Þ

The parity symbols are computed by performing a polynomial division using GF

algebra. The steps involved in this computation are as follows:

Step 1: Multiply the message symbols by xn�k (This shifts the message symbols to

the left to make room for the ðn� kÞ parity symbols).

Step 2: Divide the message polynomial by the code generator polynomial using

GF algebra.

Step 3: The parity symbols are the remainder of this division. These steps are

accomplished in hardware using a shift register with feedback. The

architecture for the encoder is shown in Fig. 4.8.

gðxÞ is the generator polynomial used to generate parity symbols pðxÞ: The number

of registers used is equal to n� k. Parity symbols are generated by serial entry of

the information symbols into iðxÞ:
The resultant code word is given by

c xð Þ ¼ i xð Þ � xn�k þ pðxÞ ð4:38Þ

102 4 Linear Block Codes



Example 4.22 Construct a generator polynomial for a (15,11) Reed–Solomon code

with elements in GF(24).

Solution A (15,11) Reed–Solomon code has minimum distance 5. Thus, the

(15,11) Reed–Solomon code is double error corrections. It must have 4 consecutive

powers of α as zeros.

The generator polynomial is constructed as follows using the representation for GF

(16) over GF(2).

g xð Þ ¼ x� að Þ x� a2
� �

x� a3
� �

x� a4
� �

¼ x2 þ a2 þ a
� �

xþ a3
� �

x2 þ a3 þ a4
� �

xþ a7
� �

¼ x2 þ a5xþ a3
� �

x2 þ a7xþ a7
� �

¼ x4 þ a5 þ a7
� �

x3 þ a3 þ a12 þ a7
� �

x2 þ a10 þ a12
� �

xþ a10
� �

¼ x4 þ a13x3 þ a6x2 þ a3xþ a10
� �

Example 4.23 Compute a generator polynomial for a double-error-correcting

Reed–Solomon code of length 31.

Solution Let α be a root of the primitive binary polynomial x5 þ x2 þ 1 and thus a

primitive 31st of unity. The resulting code is to be a double-error-correcting code; it

must have 4 consecutive powers of α as zeros. A narrow-sense generator is con-

structed as follows using the representation for GF(32).

Fig. 4.8 Reed–Solomon encoder
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g xð Þ ¼ x� að Þ x� a2
� �

x� a3
� �

x� a4
� �

¼ x2 þ a2 þ a
� �

xþ a3
� �

x� a3
� �

x� a4
� �

¼ x2 þ a19xþ a3
� �

x� a3
� �

x� a4
� �

¼ x3 þ a19x2 þ a3x2 þ a3xþ a22xþ a6
� �

x� a4
� �

¼ x3 þ a19 þ a3
� �

x2 þ a3 þ a22
� �

xþ a6
� �

x� a4
� �

¼ x3 þ a12x2 þ a14xþ a6
� �

x� a4
� �

¼ x4 þ a12x3 þ a4x3 þ a14x2 þ a16x2 þ a6xþ a18xþ a10

¼ x4 þ a12 þ a4
� �

x3 þ a14 þ a16
� �

x2 þ a6 þ a18
� �

xþ a10

¼ x4 þ a24x3 þ a19x2 þ a29xþ a10

Example 4.24 Compute a generator polynomial for a triple-error-correcting Reed–

Solomon code of length 15.

Solution

g xð Þ ¼ xþ að Þ xþ a2
� �

xþ a3
� �

xþ a4
� �

xþ a5
� �

xþ a6
� �

¼ x2 þ a2 þ a
� �

xþ a3
� �

x2 þ a3 þ a4
� �

xþ a7
� �

x2 þ a6 þ a5
� �

xþ a11
� �

¼ x2 þ a5xþ a3
� �

x2 þ a7xþ a7
� �

x2 þ a9xþ a11
� �

¼ x4 þ a5 þ a7
� �

x3 þ a3 þ a12 þ a7
� �

x2 þ a10 þ a12
� �

xþ a10
� �

x2 þ a9xþ a11
� �

¼ x4 þ a13x3 þ a6x2 þ a3xþ a10
� �

x2 þ a9xþ a11
� �

¼ x6 þ a9 þ a13
� �

x5 þ a11 þ a22 þ a6
� �

x4 þ a24 þ a15 þ a3
� �

x3
�

þ a10 þ a17 þ a12
� �

x2 þ a14 þ a19
� �

xþ a21
�

¼ x6 þ a10x5 þ a14x4 þ a4x3 þ a6x2 þ a9xþ a6
� �

Basic Properties of Reed–Solomon Codes

1. Non-binary BCH codes are referred to as Reed–Solomon codes.

2. The minimum distance of Reed–Solomon code is ðn� k þ 1Þ:
3. RS codes are maximum distance separable (MDS). The singleton bound implies

that dmin � n� k þ 1ð Þ. RS ðn; kÞ code is called MDS if the singleton bound is

satisfied with equality.

4. The weight distribution polynomial of RS code is known. The weight distri-

bution of an RS code with symbols from GF(q) and with block length n ¼ q� 1

and minimum distance dmin is given by
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Wi ¼
n

i

� �

n
X

1�dmin

j¼0

�1ð Þ j
i� 1

j

� �

nþ 1ð Þi�j�dmindmin � i� n ð4:39Þ

4.5.2 Decoding of Reed–Solomon Codes

The locations of the errors can be found from the error locator polynomial K xð Þ.
Once the locations of the errors are known, the magnitudes of the errors are found

by the Forney’s algorithm given by [1]

ek ¼
�xkX x�1

k

� �

K0 x�1
k

� � ð4:40Þ

where ek represents the error magnitude at the kth location and K0 xkð Þ stands for

formal derivative of the error locator polynomial K xð Þ. If locator polynomial

K xð Þ ¼ Kvx
v þ Kv�1x

v�1 þ � � � þ K1xþ 1 is a polynomial with coefficients in

GF qð Þ, the formal derivative K0 xð Þ is defined as

K0 xð Þ ¼ vKvx
v�1 þ v� 1ð ÞKv�1x

v�3 þ � � � þ K1 ð4:41Þ

The decoding of a RS code has to go through the following six steps:

Step 1: Compute Syndromes from the received polynomial rðxÞ
Step 2: Apply Berlekamp–Massey algorithm to compute error location polynomial

K xð Þ
Step 3: Compute error magnitude polynomial

X xð Þ ¼ K xð Þ 1þ S xð Þð Þmod x2tecþ1

Step 4: Find the roots of K xð Þ, the inverse of the roots indicates the locations of the
errors

Step 5: Compute the error magnitudes and determine the error polynomial eðxÞ
Step 6: Subtract eðxÞ from the received polynomial to correct the errors.

Syndrome generation is similar to parity calculation. A Reed–Solomon code

word has 2tec syndromes that depend only on errors (not on the transmitted code

word).

The syndrome sequence can be computed for the received word polynomial rðxÞ
by substituting the 2tec roots of the generator polynomial gðxÞ into rðxÞ. The

Berlekamp–Massey algorithm or Euclid’s algorithm can be used to find error

locator polynomial. The Euclid’s algorithm is widely used in practice as it is easy

for implementation. However, hardware and software implementations of the
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Berlekamp–Massey algorithm are more efficient [2, 3]. Once the error locator

polynomial is known, the error locations can be found by using the Chien search

algorithm [4].

The Berlekamp–Massey Decoding Algorithm

The problem of decoding RS codes can be viewed as finding a linear feedback shift

register (LFSR) of minimal length so that the first 2tec elements in the LFSR output

sequence are the syndromes S1S2. . .S2tec : The error locator polynomial K xð Þ is

provided by the taps of the LFSR.

The flowchart of the Berlekamp–Massey iterative algorithm is shown in Fig. 4.9.

Here, K nð Þ xð Þ is the error location polynomial at the nth iteration step, B xð Þ stands
for the connection polynomial, Ln represents the length of LFSR at indexn, and dn

is the discrepancy. Consider the error location polynomial KðnÞ xð Þ of length n. The

coefficients of the polynomial specify the taps of a length n LFSR. The Berlekemp–

Massey algorithm initially (i.e., n ¼ 0) sets the tap coefficient and the length of the

LFSR to 1 and 0, respectively, to indicate that the computed error locator poly-

nomial K 0ð Þ xð Þ, and its length is set to 1 and 0, respectively, and also sets B xð Þ ¼ x

at every iteration, or a new syndrome component, and the discrepancy dn is com-

puted by subtracting the nth output of the LFSR defined by Kðn�1Þ xð Þ from the nth

syndrome. If the discrepancy is not equal to zero, a modified error locator poly-

nomial is constructed using discrepancy and connection polynomial BðxÞ. Then, the
length of the LFSR is to be tested. If 2Ln is greater than or equal to n, the length of

the LFSR and connection polynomial BðxÞ are to be updated. Otherwise, if 2Ln is

less than n, the connection polynomial BðxÞ is to be reset as xBðxÞ.
If the discrepancy is equal to zero, then the connection polynomial BðxÞ is to be

reset as xBðxÞ and the previous error locator polynomials are used for the next

iteration. The process is continued, and the algorithm stops at the end of the

iteration n ¼ 2tec and K 2tecð Þ xð Þ is taken as the error locator polynomial K xð Þ.

Example 4.25 Let the transmission code be the double-error-correcting RS code of

length 7. Use the Berlekamp–Massey algorithm to decode the following received

vector r ¼ 00a51a20a2
� �

.

Solution

Step 1: The received polynomial is

r xð Þ ¼ a5x2 þ x3 þ a2x4 þ a2x6; i.e, r ¼ 00a51a20a2
� �

For double-error-correcting code, the syndrome polynomial is

S xð Þ ¼ S1xþ S2x
2 þ S3x

3 þ S4x
4
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Fig. 4.9 Berlekamp–Massey iterative algorithm
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The syndromes S1; S2; S3 and S4 for the above-mentioned received polynomial are

computed using the representation for GF(8) as

S1 ¼ r að Þ ¼ a6

S2 ¼ r a2
� �

¼ a3

S3 ¼ r a3
� �

¼ a4

S4 ¼ r a4
� �

¼ a3

Thus, the

S xð Þ ¼ a6xþ a3x2 þ a4x3 þ a3x4:

Step 2: Berlekamp–Massey algorithm proceeds as follows:

n Sn K nð Þ xð Þ dn Ln BðxÞ

0 . . . 1 . . . 0 x

1 a6 1þ a6x S1 � 0 ¼ a6 1 ax

2 a3 1þ a6 þ a3
� �

x

¼ 1þ a4x

S2 � a6a6

¼ S2 � a5 ¼ a2
1 ax2

3 a4 1þ a4xþ a5ax2

¼ 1þ a4xþ a6x2

S3 � a4a3

¼ S3 � 1 ¼ a5
2 1þa4x

a5


 �

x ¼

a2xþ a6x2
� �

4 a3 1þ a2xþ ax2 S4 � ða4a4 þ a6a3Þ
¼ S4 � ðaþ a2Þ
¼ S4 � a4 ¼ a6

. . . . . .

The error locator polynomial is then

K xð Þ ¼ 1þ a2xþ ax2

Step 3: The error magnitude polynomial is

X xð Þ ¼ K xð Þ 1þ S xð Þð Þmod x2tecþ1

¼ 1þ a2xþ ax2
� �

1þ a6xþ a3x2 þ a4x3 þ a3x4
� �

mod x5

¼ 1þ xþ a3x2

Step 4:

K xð Þ ¼ 1þ a2xþ ax2 ¼ 1þ a3x
� �

1þ a5x
� �

¼ 0

The factorization of the error locator polynomial indicates that there are errors in the

third and fifth positions of the received vector.
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Hence, the error polynomial eðxÞ is

e xð Þ ¼ e3x
3 þ e5x

5

Step 5: From the error locator polynomial, it is known that error positions are in

locations 3 and 5. Now, the error magnitudes can be computed by using

error evaluator polynomial X xð Þ and derivative of the error locator poly-

nomial K xð Þ. The error magnitudes are given by

ek ¼
�xkX x�1

k

� �

K0 x�1
k

� �

The magnitudes of errors are found to be

e3 ¼
�x3X x�1

3

� �

K0 x�1
3

� �

Since K0 x�1
3

� �

¼ a2

e3 ¼
�x3 1þ x�1

3 þ a3x�2
3

� �

a2

where x3 ¼ a3

Thus,

e3 ¼
a3 þ 1þ 1ð Þ

a2
¼ a

Similarly,

e5 ¼
�x5 1þ x�1

5 þ a3x�2
5

� �

a2

where x5 ¼ a5

Hence,

e5 ¼
a5 þ 1þ a�2
� �

a2
¼ a5

Thus, the error pattern

e xð Þ ¼ ax3 þ a5x5
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Step 6:

c xð Þ ¼ r xð Þ � e xð Þ ¼ a5x2 þ x3 þ a2x4 þ a2x6 þ ax3 þ a5x5

Example 4.26 Consider a triple-error-correcting RS code of length 15. Decode the

received vector r ¼ 000a700a300000a400ð Þ using Berlekamp–Massey algorithm.

Solution

Step 1: The received polynomial is

r xð Þ ¼ a7x3 þ a3x6 þ a4x12; i.e, r ¼ 000a700a300000a400
� �

The following syndromes are computed using the representation of GF(16) over GF

(2). For triple error correction, the roots of the generator polynomial include

a; a2; a3; a4; a5; a6.
Thus,

S1 ¼ r að Þ ¼ a10 þ a9 þ a ¼ a12

S2 ¼ r a2
� �

¼ a13 þ 1þ a13 ¼ 1

S3 ¼ r a3
� �

¼ aþ a6 þ a10 ¼ a14

S4 ¼ r a4
� �

¼ a4 þ a12 þ a7 ¼ a10

S5 ¼ r a5
� �

¼ a7 þ a3 þ a4 ¼ 0

S6 ¼ r a6
� �

¼ a10 þ a9 þ a ¼ a12

:

S xð Þ ¼ a12xþ x2 þ a14x3 þ a10x4 þ a12x6

Step 2: Berlekamp–Massey algorithm proceeds as follows:

n Sn K nð Þ xð Þ dn Ln BðxÞ

0 . . . 1 . . . 0 x

1 a12 1þ a2x S1 � 0 ¼ a2 1 a3x

2 1 1þ a3x S2 � a9 ¼ a7 1 a3x2

3 a14 1þ a3xþ a3x2 S3 � a3 ¼ 1 2 xþ a3x2

4 a10 1þ a4xþ a12x2 S4 � a6 ¼ a7 2 x2 þ a3x3

5 0 1þ a4xþ a3x2 þ a13x3 S5 � a10 ¼ a10 3 a5xþ a9x2 þ a2x3

6 a12 1þ a7xþ a4x2 þ a6x3 S6 � a ¼ a13 . . . . . .
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The error locator polynomial is then

K xð Þ ¼ 1þ a7xþ a4x2 þ a6x3 ¼ 1þ a3x
� �

1þ a6x
� �

1þ a12x
� �

Step 3: The error magnitude polynomial is

X xð Þ ¼ K xð Þ 1þ S xð Þð Þ ¼ 1þ a7xþ a4x2 þ a6x3
� �

1þ a12xþ x2
�

þ a14x3 þ a10x4 þ a12x6
�

mod x7

¼ 1þ a2xþ x2 þ a6x3 þ x7 þ ax8 þ a3x9
� �

mod x7

¼ 1þ a2xþ x2 þ a6x3
� �

Step 4:

K xð Þ ¼ 1þ a7xþ a4x2 þ a6x3 ¼ 1þ a3x
� �

1þ a6x
� �

1þ a12x
� �

¼ 0

The factorization of the error locator polynomial indicates that there are errors in the

positions 3, 6, and 12 of the received vector.

Hence, the error polynomial eðxÞ is

e xð Þ ¼ e12x
12 þ e6x

6 þ e3x
3

Step 5: From the error locator polynomial, it is known that error positions are at

locations 3, 6, and 12. Now, the error magnitudes can be computed by

using error evaluator polynomial X xð Þ and derivative of the error locator

polynomial K xð Þ. The error magnitudes are given by

ek ¼
�xkX x�1

k

� �

K0 x�1
k

� �

The magnitudes of errors are found to be

e3 ¼
�x3X x�1

3

� �

K0 x�1
3

� �

Since K0 x�1
3

� �

¼ a7 þ a6x�2
3

e3 ¼
�x3 1þ a2x�1

3 þ x�2
3 þ a6x�3

3

� �

a7 þ a6x�2
3

where x3 ¼ a3.
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Thus,

e3 ¼
a3 1þ a2 � a12 þ a9 þ a12ð Þ

1þ a7
¼

a3 1þ a14 þ a9 þ a12ð Þ

1þ a7
¼

a3 � a13

a9
¼ a7

Similarly,

e6 ¼ a3; e12 ¼ a4:

Thus, the error pattern

e xð Þ ¼ a7x3 þ a3x6 þ a4x12

Step 6: The corrected received word is c xð Þ ¼ r xð Þ � e xð Þ ¼ 0

c ¼ 000000000000000ð Þ

Example 4.27 Let the transmission code be the triple-error-correcting RS code of

length 31. Decode the received vector r ¼ 00a800a20000a000000000000000000ð
00Þ using Berlekamp–Massey algorithm.

Solution

Step 1: The received polynomial is

r xð Þ ¼ a8x2 þ a2x5 þ ax10;

i:e, r ¼ 00a800a20000a00000000000000000000
� �

The following syndromes are computed using the representation of GF(16) over GF

(2). For triple error correction, the roots of the generator polynomial include

a; a2; a3; a4; a5; a6.
Thus,

S1 ¼ r að Þ ¼ a10 þ a9 þ a11 ¼ a

S2 ¼ r a2
� �

¼ a12 þ a12 þ a21 ¼ a21

S3 ¼ r a3
� �

¼ a14 þ a17 þ a31 ¼ a23

S4 ¼ r a4
� �

¼ a16 þ a22 þ a20 ¼ a15

S5 ¼ r a5
� �

¼ a18 þ a27 þ a20 ¼ a2

S6 ¼ r a6
� �

¼ a20 þ aþ a30 ¼ a13

S xð Þ ¼ axþ a21x2 þ a23x3 þ a15x4 þ a2x5 þ a13x6:
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Step 2: Berlekamp–Massey algorithm proceeds as follows:

n Sn K nð Þ xð Þ dn Ln BðxÞ

0 . . .. . . 1 . . . 0 x

1 a 1þ ax S1 � 0 ¼ a 1 a30x

2 a21 1þ a20x S2 � a2 ¼ a13 1 a30x2

3 a23 1þ a20xþ a23x2 S3 � a10 ¼ a24 2 a7xþ a27x2

4 a15 1þ a20xþ a23x2 þ a15xþ a4x2

¼ 1þ a17xþ a15x2

S4 � a12 � a13 ¼ a8 2 a7x2 þ a27x3

5 a2 1þ a17xþ a22x2 þ a26x3 S5 � a� a7 ¼ a30 3 a16x3 þ a18x2 þ ax

6 a13 1þ a17xþ a22x2 þ a26x3 þ a2x3

þ a18xþ a4x2 ¼ 1þ a4xþ a5x2 þ a17x3

S6 � a19 � a6 � a18 ¼ a17 . . . . . .

The error locator polynomial is then

K xð Þ ¼ 1þ a4xþ a5x2 þ a17x3 ¼ 1þ a21x
� �

1þ a26x
� �

1þ a29x
� �

Step 3: The error magnitude polynomial is

X xð Þ ¼ K xð Þ 1þ S xð Þð Þ ¼ 1þ a4xþ a5x2 þ a17x3
� �

1þ axþ a21x2 þ a23x3
�

þ a15x4 þ a2x5 þ a13x6
�

mod x7

¼ 1þ a30xþ a21x2 þ a23x3
� �

Step 4:

K xð Þ ¼ 1þ a4xþ a5x2 þ a17x3 ¼ 1þ a2x
� �

1þ a5x
� �

1þ a10x
� �

¼ 0

The factorization of the error locator polynomial indicates that there are errors in the

second, fifth, and tenth positions of the received vector.

Hence, the error polynomial eðxÞ is

e xð Þ ¼ e10x
10 þ e5x

5 þ e2x
2

Step 5: From the error locator polynomial, it is known that error positions are at

locations 2, 5, and 10. Now, the error magnitudes can be computed by

using error evaluator polynomial X xð Þ; and derivative of the error locator

polynomial K xð Þ. The error magnitudes are given by

ek ¼
�xkX x�1

k

� �

K0 x�1
k

� �
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The magnitudes of errors are found to be

e2 ¼
�x2X x�1

2

� �

K0 x�1
2

� �

Since K0 x�1
2

� �

¼ a4 þ a17x�2
2

e2 ¼
�x2 1þ a2x�1

2 þ x�2
2 þ a6x�3

2

� �

a4 þ a17x�2
2

where x3 ¼ a3

Thus,

e2 ¼
a2 1þ a30 � a�2 þ a21 � a�4 þ a23 � a�6
� �

a4 þ a13
¼

a2 þ a30

a20
¼

a28

a20
¼ a8

Similarly,

e5 ¼ a2; e10 ¼ a:

Thus, the error pattern

e xð Þ ¼ a8x2 þ a7x5 þ ax10

Step 6: The corrected received word is c xð Þ ¼ r xð Þ � e xð Þ ¼ 0

c ¼ 000000000000000ð Þ

4.5.3 Binary Erasure Decoding

For binary linear codes, erasure decoding is done by the following three steps:

Step 1: Replace all erasures with zeros in a received word, and decode it to a code

word c0.

Step 2: Replace all erasures with ones in a received word, and decode it to a code

word c1.

Step 3: Choose the final code word either c0 or c1 that is closest to the received

word in the Hamming distance.
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4.5.4 Non-binary Erasure Decoding

Suppose that a received word has v errors and f erasures. An erasure locator

polynomial can be written as

C xð Þ ¼
Y

f

l¼1

1� Ylxð Þ ð4:42Þ

where Yl stands for erasure locators. Now, the decoding has to find out error

locations and compute the error magnitudes of the error locators and erasure

magnitudes of the erasure locators. To find the error locator polynomial, a modified

syndrome polynomial is to be formulated and Berlekamp–Massey algorithm is to be

applied on the modified syndrome coefficients.

The modified syndrome polynomial is given by

SM xð Þ 	 C xð Þ 1þ S xð Þ½ � � 1ð Þx2tþ1 ð4:43Þ

where the coefficients of the syndrome polynomial S xð Þ are computed using the

following

Sl ¼ r al
� �

ð4:44Þ

replacing all the erasures with zeros in the received polynomial rðxÞ:
After finding the error locator polynomial K xð Þ; obtain error magnitude poly-

nomial and error/erasure locator polynomial as

X xð Þ ¼ K xð Þ 1þ SM xð Þ
� 


x2tþ1 ð4:45Þ

w xð Þ ¼ K xð ÞC xð Þ ð4:46Þ

Then, using the modified Forney’s algorithm, compute the error and erasure

magnitudes as given by

ek ¼
�XkX X�1

k

� �

W0 X�1
k

� � ð4:47aÞ

fk ¼
�YkX Y�1

k

� �

W0 Y�1
k

� � ð4:47bÞ

Knowing the magnitudes of the error locators and erasure locators, an error/

erasure polynomial can be constructed and subtracted from the received polynomial

to arrive at the desired code polynomial.
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The stepwise procedure using Berlekamp–Massey algorithm for error/erasure

decoding is as follows:

Step 1: Formulate the erasure polynomial C xð Þ using the erasures in the received

vector.

Step 2: Obtain the syndrome polynomial S xð Þ replacing the erasures with zeros.

Step 3: Compute the modified syndrome polynomial using Eq. (4.43).

Step 4: Apply the Berlekamp–Massey on modified syndrome coefficients to find

the error correction polynomial K xð Þ.
Step 5: Find the roots of K xð Þ, to determine the error locations.

Step 6: Compute the error magnitudes using Eq. (4.47a), and determine the error

polynomial e xð Þ.
Step 7: Compute the erasure magnitudes using Eq. (4.47b), and determine the

erasure polynomial f ðxÞ.
Step 8: Subtract eðxÞ and f(x) from the received polynomial to correct the errors.

Example 4.28 Let the transmission code be the double-error-correcting RS code of

length 7. Use the Berlekamp–Massey algorithm to decode the following received

vector r ¼ 00a301f 1ð Þ.

Solution

Step 1: The received polynomial is r xð Þ ¼ a3x2 þ x4 þ fx5 þ x6;

The f indicates an erasure. This erasure gives the erasure polynomial

C xð Þ ¼ 1þ a5x

Step 2: Place a zero in the erasure location, and compute the syndromes.

For double-error-correcting code, the syndrome polynomial is

S xð Þ ¼ S1xþ S2x
2 þ S3x

3 þ S4x
4

Sl ¼ a3 al
� �2

þ al
� �4

þ al
� �6

The syndromes S1; S2; S3 and S4 for the above-mentioned received polynomial are

computed using the representation for GF(8) as

S1 ¼ r að Þ ¼ a5 þ a4 þ a6 ¼ a2

S2 ¼ r a2
� �

¼ a7 þ a8 þ a12 ¼ a2

S3 ¼ r a3
� �

¼ a9 þ a12 þ a18 ¼ a6

S4 ¼ r a4
� �

¼ a11 þ a16 þ a24 ¼ a4
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Thus, the

S xð Þ ¼ a2xþ a2x2 þ a6x3 þ x4:

Step 3: Compute the modified syndrome polynomial,

1þ SMðxÞ 	 C xð Þ 1þ SðxÞ½ �mod x2tþ1

	 1þ a5x
� �

1þ a2xþ a2x2 þ a6x3 þ x4
� �

mod x5

	 1þ a3xþ a6x2 þ a2x3 þ a5x4 mod x5

SMðxÞ is thus a3xþ a6x2 þ a2x3 þ a5x4.

Step 4: Berlekamp–Massey algorithm proceeds as follows:

n SMn K nð Þ xð Þ dn Ln BðxÞ

0 . . . 1 . . . 0 x

1 a3 1þ a3x a3 1 a4x

2 a6 1þ a3x 0 1 a4x2

3 a2 1þ a3x 0 1 a4x3

4 a5 1þ a3x 0 . . . . . .

Step 5: K xð Þ ¼ 1þ a3x, indicating a single error at X1 ¼ a3.

Step 6: The error magnitude polynomial is

X xð Þ ¼ K xð Þ 1þ S xð Þð Þ ¼ 1þ a3x
� �

1þ a2xþ a2x2 þ a6x3 þ x4
� �

mod x5

¼ 1þ a2 þ a3
� �

xþ a2 þ a5
� �

x2 þ a6 þ a5
� �

x3
�

þ 1þ a9
� �

x4 þ a3x5
�

mod x5

¼ 1þ a5xþ a3x2 þ ax3 þ a6x4 þ a3x5
� �

mod x5

¼ 1þ a5xþ a3x2 þ ax3 þ a6x4

The error/erasure locator polynomial

W xð Þ ¼ K xð ÞC xð Þ

¼ 1þ a3x
� �

1þ a5x
� �

¼ 1þ a2xþ ax2
� �

The error magnitude

ek ¼
�XkX X�1

k

� �

W0 X�1
k

� � ¼
�Xk 1þ a5X�1

k þ a3X�2
k þ aX�3

k þ a6X�4
k

� 


a2
¼ a3

e3 ¼ a3
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and erasure magnitude

fk ¼
�YkX Y�1

k

� �

W0 Y�1
k

� �

f5 ¼ a

The corrected code word is

c xð Þ ¼ r xð Þ þ e xð Þ þ f ðxÞ

¼ a3x2 þ x4 þ x6
� �

þ a3x3 þ ax5

4.6 Performance Analysis of RS Codes

A RS n; kð Þ code with minimum distance dmin ¼ n� k þ 1 is able to correct tec ¼
n� kð Þ=2 symbol errors. The bit error probability for RS codes using hard-decision

decoding is often approximated by [5]

Pb 

1

n

X

t

i¼tecþ1

i
n

i

� �

Pi 1� Pð Þn�i ð4:48Þ

4.6.1 BER Performance of RS Codes for BPSK Modulation

in AWGN and Rayleigh Fading Channels

The redundancy introduced by RS code increases the channel symbol transmission

rate, reducing the received Eb

N0
. For a code with rate R, for BPSK in AWGN channel

and Rayleigh fading channel, Eqs. (2.3) and (2.6) becomes

P ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffi

2R
Eb

N0

r
� �

P ¼
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R�c

1þ R�c

s
 ! ð4:49Þ

where R ¼ k=n.
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The following MATLAB program is used to compare the theoretical decoding

error probability of different RS codes with BPSK modulation in AWGN channel.

Program 4.1 Program to compare the decoding error probability of different RS

codes
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Fig. 4.10 Decoding error probability for RS codes using coherent BPSK over an AWGN channel
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The decoding error probability obtained from the above program for RS (127,106)

and for RS code of length 31 with different dimensions k is shown in Fig. 4.10.

From Fig. 4.10, it can be observed that the decoder error probability approach

increasingly lowers as the Eb/N0 and code dimension decrease. This can be

attributed to the highly imperfect nature of RS codes.

The following MATLAB program compares the theoretical BER performance of

(127,63) RS code with BPSK modulation in AWGN and Rayleigh fading channels

Program 4.2 Program to compare the decoding error probability of an RS code in

AWGN and Rayleigh fading channels using coherent BPSK modulation

The decoding error probability obtained from the above program for RS

(127,63) is shown in Fig. 4.11.
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From Fig. 4.11, it is seen that the coded AWGN and Rayleigh fading channels

exhibit much better BER performance than the uncoded AWGN and Rayleigh

fading channels.

4.6.2 BER Performance of RS Codes for Non-coherent

BFSK Modulation in AWGN and Rayleigh Fading

Channels

From Eq. (2.25), for BFSK (M = 2), the probability of bit error P for AWGN and

Rayleigh fading channels can be expressed as

P ¼
1

2
exp �

REb

2No

� �

AWGN

P ¼
1

2þ R�c
Rayleigh fading ð4:50Þ
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Fig. 4.11 Decoding error probability for (127,63) RS codes using coherent BPSK over an AWGN

channel and Rayleigh fading channel
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Program 4.3 Program to compare the decoding error probability of an RS code in

AWGN and Rayleigh fading channels using non-coherent BFSK modulation

The decoding error probability obtained from the above program for RS

(127,63) is shown in Fig. 4.12.

From Fig. 4.12, it is seen that the coded AWGN and Rayleigh fading channels

exhibit much better BER performance than the uncoded AWGN and Rayleigh

fading channels. However, the performance is not better as compared to that of

BPSK modulation.
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4.7 Problems

1. Construct encoder circuit using shift register for (15,7) cyclic codegenerated by

g xð Þ ¼ 1þ x4 þ x6 þ x7 þ x8y; and find the code word corresponding to the

information sequence (1001011).

2. Construct a shift register decoder for the (15,11) cyclic Hamming code gen-

erated by g xð Þ ¼ 1þ xþ x4, and decode the received word r ¼ 1111000001ð
00100Þ:

3. Design a four-error-correcting binary BCH code of length 15.

4. Let the transmission code be the triple-error-correcting binary BCH code of

length 31. The generator polynomial is g xð Þ ¼ 1þ xþ x2 þ x3 þ x5 þ x7þ
x8 þ x9 þ x10 þ x11 þ x15. Use Berlekamp’s algorithm to decode the following

received vector r ¼ 0100000000001000000000000100000ð Þ:
5. Let the transmission code be the double-error-correcting binary BCH code of

length 15. The generator polynomial is g xð Þ ¼ 1þ x4 þ x6 þ x7 þ x8. Use

Berlekamp’s algorithm to decode the following received vector r ¼ 00f 00000ð
0000000Þ. The f indicates erasure.
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Fig. 4.12 Decoding error probability for (127,63) RS codes using non-coherent BPSK
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6. Construct a generator polynomial for a double-error-correcting Reed–Solomon

code of length 7, and determine the number of code words it does have.

7. Determine the weight distribution for the RS code of problem 1.

8. Compute a generator polynomial for a triple-error-correcting Reed–Solomon

code of length 31.

9. Construct a generator polynomial for a (63,57) RS code, and determine the

code words it does have.

10. Let the transmission code be the double-error-correcting RS code of length 7.

Use the Berlekamp–Massey algorithm to decode the following received vector

r ¼ 00010a0ð Þ.
11. Let the transmission code be the double-error-correcting RS code of length 7.

Use the Berlekamp–Massey algorithm to decode the following received vector

r ¼ 1010000ð Þ.
12. Let the transmission code be the double-error-correcting RS code of length 7.

Use the Berlekamp–Massey algorithm to decode the following received vector

r ¼ a3a1aa200ð Þ.
13. Let the transmission code be the triple-error-correcting RS code of length 15.

Decode the received vector r ¼ 000a7000000a110000ð Þ using Berlekamp–

Massey algorithm.

14. Let the transmission code be the double-error-correcting RS code of length 15.

Use the Berlekamp–Massey algorithm to decode the following received vector

r ¼ 100100000000000ð Þ.
15. Let the transmission code be the triple-error-correcting RS code of length 31.

Decode the following received vector r ¼ a200000000000a210000000a7ð
000000000Þ using the Berlekamp–Massey algorithm.

16. Let the transmission code be the double-error-correcting RS code of length 7.

Use the Berlekamp–Massey algorithm to decode the following received vector

r ¼ 00a3f 101ð Þ.

4.8 MATLAB Exercises

1. Write a MATLAB program to simulate the performance of BPSK modulation in

AWGN and Rayleigh fading channels and compare with theoretical results

shown in Chap. 2.

2. Write a MATLAB program to simulate the performance of RS-coded SFH-

CDMA using BFSK modulation and compare with the uncoded theoretical

results shown in Chap. 2.

3. Write a MATLAB program to simulate the BER performance of an RS code in

AWGN and Rayleigh fading channels using BPSK modulation and compare

with the theoretical results shown in Fig. 4.4.
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4. Write a MATLAB program to simulate the BER performance of an RS code in

AWGN and Rayleigh fading channels using BFSK modulation and compare

with the theoretical results shown in Fig. 4.5.

5. Write a MATLAB program to simulate the BER performance of an RS code in

AWGN and Rayleigh fading channels using MFSK modulation for M > 2.
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Chapter 5

Convolutional Codes

In the convolutional coding, the message bits come in serially instead of large

blocks. The name convolutional codes are due to the fact that the redundant bits are

generated by the use of modulo-2 convolutions in a convolutional encoder.

The convolutional encoder can be considered as finite-state machine consisting of

an M-stage shift register and modulo-2 adders multiplexers. The rate of a convo-

lutional encoder with k inputs and n outputs is k=n. Often the manufacturers of

convolutional code chips specify the code by parameters n; k; Lð Þ: The quantity L is

called the constraint length of the code that represents the maximum number of bits

in a single-output stream that can be affected by any input bit.

5.1 Structure of Non-systematic Convolutional Encoder

Consider a rate 1/3 convolutional encoder as shown in Fig. 5.1. The binary data

stream x nð Þ ¼ x 0ð Þ; x 1ð Þ; x 2ð Þ; . . .ð Þ is fed into shift register containing a series of

memory elements. The contents of the memory elements are tapped and added

according to modulo-2 addition to create the coded output data streams

y1 nð Þ ¼ y1 0ð Þ; y1 1ð Þ; y1 2ð Þ; . . .ð Þ;
y2 nð Þ ¼ y2 0ð Þ; y2 1ð Þ; y2 2ð Þ; . . .ð Þ and
y3 nð Þ ¼ y3 0ð Þ; y3 1ð Þ; y3 2ð Þ; . . .ð Þ:

Then, these output coded data streams are multiplexed to create a single-coded

output data stream

Y ¼ y1 0ð Þ; y2 0ð Þ; y3 0ð Þ; y1 1ð Þ; y2 1ð Þ; y3 1ð Þ; y1 2ð Þ; y2 2ð Þ; y3 2ð Þ; . . .ð Þ
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The output streams y1 nð Þ; y2 nð Þ and y3 nð Þ can be represented as follows:

y1 nð Þ ¼ xðnÞ þ xðn� 1Þ
y2 nð Þ ¼ xðnÞ þ xðn� 2Þ
y3 nð Þ ¼ x nð Þ þ x n� 1ð Þ þ xðn� 2Þ

Example 5.1 Prove the encoder shown in Fig. 5.1 is linear convolutional encoder.

Proof Let the input x1 nð Þ ¼ ð11101Þ. Then, the corresponding coded output

sequences

y1 nð Þ ¼ 1001110ð Þ
y2 nð Þ ¼ 1101001ð Þ
y3 nð Þ ¼ 1010011ð Þ

The convolutional code word corresponding to x1 nð Þ ¼ ð11101Þ is then

Y1 ¼ 111; 010; 001; 110; 100; 101; 011ð Þ

Let the input x2ðnÞ ¼ ð10010Þ
The corresponding coded output sequences are

y1 nð Þ ¼ 1101100ð Þ
y2 nð Þ ¼ 1011010ð Þ
y3 nð Þ ¼ 1111110ð Þ

Fig. 5.1 A rate 1/3 linear convolutional encoder
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The convolutional code word corresponding to x2 nð Þ ¼ ð10010Þ is

Y2 ¼ 111; 101; 011; 111; 101; 011; 000ð Þ

Let the input x nð Þ ¼ x1 nð Þ þ x2 nð Þ ¼ 01111ð Þ:
The corresponding coded output sequences are given as

y1 nð Þ ¼ 0100010ð Þ
y2 nð Þ ¼ 0100010ð Þ
y3 nð Þ ¼ 0101101ð Þ

The convolution code word corresponding to x nð Þ ¼ ð01111Þ is given as

follows:

Y ¼ 000; 111; 010; 001; 001; 110; 011ð Þ
Y1 þ Y2 ¼ 111; 010; 001; 110; 100; 101; 011ð Þ þ 111; 101; 011; 111; 101; 011; 000ð Þ

¼ 000; 111; 010; 001; 001; 110; 011ð Þ
¼ Y

“A convolutional encoder is linear, if Y1 and Y2 are the code words corre-

sponding to inputs x1 nð Þ and x2 nð Þ, respectively, then Y1 þ Y2ð Þ is the code word

corresponding to the input x1 nð Þ þ x2 nð Þ.” Hence, the convolutional encoder in the

problem is proved to be linear.

5.1.1 Impulse Response of Convolutional Codes

The impulse response stream giðnÞ for the input xðnÞ ¼ ð1000 . . .Þ for the encoder
shown in Fig. 5.1 can be represented as follows:

The impulse response g1 nð Þ can be represented by

g1 nð Þ ¼ x nð Þ þ xðn� 1Þ

The impulse response g2 nð Þ can be represented by

g2 nð Þ ¼ x nð Þ þ xðn� 2Þ

The impulse response g3 nð Þ can be represented by

g3 nð Þ ¼ x nð Þ þ xðn� 1Þ þ xðn� 2Þ

5.1 Structure of Non-systematic Convolutional Encoder 129



Thus, the impulse responses for the encoder are

g1 nð Þ ¼ 110ð Þ
g2 nð Þ ¼ 101ð Þ
g3 nð Þ ¼ 111ð Þ

Since there are two memory elements in the shift register of the encoder, each bit

in the input data stream can effect at most 3 bits, hence the length of the above

impulse response sequence is 3.

Since the convolutional encoder can be described by discrete convolutional

operation, if the information sequence xðnÞ is input to the encoder, the three outputs

are given by

y1 nð Þ ¼ xðnÞ � g1 nð Þ
y2 nð Þ ¼ xðnÞ � g2 nð Þ
y3 nð Þ ¼ xðnÞ � g3 nð Þ

where � represents the convolution operation. In the D-transform domain, the three

outputs can be represented as

Y1 Dð Þ ¼ X Dð ÞG1ðDÞ
Y2 Dð Þ ¼ X Dð ÞG2 Dð Þ
Y3 Dð Þ ¼ X Dð ÞG3ðDÞ

The D denotes the unit delay introduced by the memory element in the shift

register. The use of D transform is most common in the coding literature. The delay

operator D is equivalent to the indeterminate z�1 of the z-transform. The D trans-

forms of the impulse responses of the above encoder are

G1 Dð Þ ¼ 1þ D

G2 Dð Þ ¼ 1þ D2

G3 Dð Þ ¼ 1þ Dþ D2

Hence, the encoder shown in Fig. 5.1 can be described by a generator matrix

G Dð Þ ¼ G1 Dð Þ G2 Dð Þ G3 Dð Þ½ �

The transform of the encoder output can be expressed as

Y Dð Þ ¼ X Dð ÞGðDÞ
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where

Y Dð Þ ¼ ½ Y1 Dð Þ Y2 Dð Þ Y3 Dð Þ �:

The G(D) is called the transfer function matrix of the encoder shown in Fig. 5.1.

Example 5.2 Determine the output code word of the encoder shown in Fig. 5.1

using the transfer function matrix if the input sequence X ¼ 11101ð Þ.
Solution The D transform of the input sequence x is given by

X Dð Þ ¼ 1þ Dþ D2 þ D4

The D transform of the encoder output follows as

YðDÞ ¼ ½1þ Dþ D2 þ D4�½1þ D 1þ D2 1þ D þ D2�
¼ 1þ D3 þ D4 þ D5 1þ Dþ D3 þ D6 1þ D2 þ D5 þ D6

� �

Inverting the D transform, we get

y1 nð Þ ¼ 1001110ð Þ
y2 nð Þ ¼ 1101001ð Þ
y3 nð Þ ¼ 1010011ð Þ

Then, the output code word y is

y ¼ 111; 010; 001; 110; 100; 101; 011ð Þ

5.1.2 Constraint Length

The constraint length “L” of a convolutional code is the length of longest input shift

register with maximum number of memory elements plus one.

5.1.3 Convolutional Encoding Using MATLAB

The following MATLAB program illustrates the computation of the output code

word of the encoder shown in Fig. 5.1 for input sequence x2 ¼ ð10010Þ
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Program 5.1 MATLAB program to determine the output codeword of the encoder

shown in Fig. 5.1

The above program outputs the following codeword

Y ¼ ½1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0 0�

5.2 Structure of Systematic Convolutional Encoder

A convolutional code in which the input data appear as a part of the code sequence

is said to be systematic. A rate 1/3 systematic convolutional encoder is shown in

Fig. 5.2.

5.3 The Structural Properties of Convolutional Codes

5.3.1 State Diagram

The contents of memory elements of a convolutional encoder provide mapping

between the input bits and the output bits. An encoder with j memory elements can

assume any one of 2j possible states. The encoder can only move between states.

Fig. 5.2 A rate 1/3 systematic convolutional encoder
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Each branch in the state diagram has a label of the form X=YYY . . .; where X is the

input bit that causes the state transition and YYY . . . is the corresponding output bits.

The encoder shown in Fig. 5.1 consists of two memory elements and hence the two

binary elements can assume any one of the four states designated by

S0 � 00; S1 � 10; S2 � 01; S3 � 11:
For the encoder shown in Fig. 5.1, the state diagram is shown in Fig. 5.3.

5.3.2 Catastrophic Convolutional Codes

A convolutional code is said to be catastrophic if its encoder generates all zero

output sequence for a nonzero input sequence. A catastrophic code can cause an

unlimited number of data errors for a small number of errors in the received code

word. The following Theorem [1] can be used to verify whether a convolutional

code is catastrophic.

Theorem 5.1 A rate 1/n convolutional code with transfer function matrix GðDÞ
with generated sequences having the transforms G0 Dð Þ;G1 Dð Þ; . . .;Gn�1ðDÞf g is

not catastrophic if and only if

GCD G0 Dð Þ;G1 Dð Þ; . . .;Gn�1ðDÞð Þ ¼ Dl

for some non-negative integer l.

Example 5.3 Determine whether the encoder shown in Fig. 5.4 generates a cata-

strophic convolutional code or not.

Solution From the encoder diagram shown in Fig. 5.4, the impulse responses are

g1 ¼ ð1110Þ and g2 ¼ 1001ð Þ.

Fig. 5.3 State diagram of

non-systematic convolutional

encoder shown in Fig. 5.1
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The transform of the generator sequence g1 ¼ ð1110Þ is G1 Dð Þ ¼ 1þ Dþ D2

The transform of the generator sequence g2 ¼ ð1001Þ is G2 Dð Þ ¼ 1þ D3

GCD G1 Dð Þ;G2 Dð Þ½ � ¼ GCD 1þ Dþ D2; 1þ D3
� �

¼ 1þ Dþ D2

6¼ Dl

Thus, the code is catastrophic for any integer l, where GCD stands for greatest

common divisor.

5.3.3 Transfer Function of a Convolutional Encoder

The signal flow graph for a convolutional encoder can be obtained by splitting the

state S0 into a source node and sink node by modifying the labels of the branches.

For a given branch, we label Y iX j where j is the weight of the input vector X and i is

the weight of the output vector Y(the number of nonzero coordinates).

Example 5.4 Determine the transfer function of the systematic convolutional

encoder shown in Fig. 5.2.

Solution The state diagram of the systematic convolutional encoder is shown in

Fig. 5.5.

The signal flow graph of the above state diagram is shown in Fig. 5.6. In this

signal flow graph, the self loop at node S0 is eliminated as it contributes nothing to

the distance properties of a code relative to the all zero code sequence. Now, by

using the signal flow graph reduction techniques and Mason’s formula, the transfer

function can be obtained.

Fig. 5.4 A rate −1/2 convolutional encoder
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By using reduction techniques, the above signal flow graph can be simplified as

Fig. 5.5 State diagram of systematic convolutional encoder shown in Fig. 5.2

Fig. 5.6 Signal flow graph of the above state diagram is shown in Fig. 5.5
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Further, the parallel branches with gains Y2 and Y2X
1�Y2X

can be combined as a

single branch with gain Y2 þ Y2X
1�Y2X

¼ Y2XþY2�Y4X
1�Y2X

as follows:

Further, the loop can be replaced by a branch with gain

Y2XþY2�Y4X
1�Y2X

1� Y2X Y2XþY2�Y4X
1�Y2X

¼ Y2X þ Y2 � Y4X

1� Y2X � Y4X2 � Y4X þ Y6X2

Thus, the transfer function is given by

T Yð Þ ¼ Y3X
Y2X þ Y2 � Y4X

1� Y2X � Y4X2 � Y4X þ Y6X2
Y

¼ Y6X2 þ Y6X � Y8X2

1� Y2X � Y4X2 � Y4X þ Y6X2

Example 5.5 Consider the following non-systematic convolutional encoder and

determine its transfer function (Fig. 5.7).

Fig. 5.7 Encoder for a rate −1/3 convolutional code
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Solution The state diagram of the non-systematic convolutional encoder is shown

in Fig. 5.8.

The signal flow graph of the above state diagram is shown in Fig. 5.9.

Fig. 5.8 State diagram of non-systematic convolutional encoder shown in Fig. 5.7

Fig. 5.9 Signal flow graph of the state diagram shown in Fig. 5.8
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By using reduction techniques, the above signal flow graph can be simplified as

follows:

Further, the parallel branches with gains Y2 and Y2X
1�Y2X

can be combined as a

single branch with gain Y2 þ Y2X
1�Y2X

¼ Y2�Y4XþY2X
1�Y2X

as follows:

Further, the loop can be replaced by a branch with gain

Y2�Y4XþY2X
1�Y2X

1� X Y2�Y4XþY2X
1�Y2X

¼ Y2 � Y4X þ Y2X

1� 2Y2X þ Y4X2 � Y2X2

Thus, the transfer function is given by

T Y ;Xð Þ ¼ Y3X
Y2 � Y4X þ Y2X

1� 2Y2X þ Y4X2 � Y2X2
Y3

¼ Y8X � Y10X2 þ Y8X2

1� 2Y2X þ Y4X2 � Y2X2
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5.3.4 Distance Properties of Convolutional Codes

An upper bound on the minimum free distance of a rate 1=n convolutional code is

given by [2]

df � max
l[ 1

2l�1

2l � 1
Lþ l� 1ð Þn

� �

ð5:1Þ

where xb c denotes the largest integer contained in x.

The transfer function also yields the distance properties of the code. The mini-

mum distance of the code is called the minimum free distance denoted by df. The df
is the lowest power in the transfer function.

In Example 5.4, since the lowest power in the transfer function is 6, the df for the

systematic convolutional encoder considered in this example is 6, whereas in

Example 5.5, the lowest power in the transfer function is 8. Hence, the minimum

free distance for the non-systematic encoder considered in this example is 8.

From the above two examples, it is observed that the minimum free distance for

non-recursive systematic convolutional code is less than that of a non-recursive

non-systematic convolutional codes of the same rate and constraint length. The

bounds on the minimum free distance for various codes are developed in [3, 4].

The bounds on the free distance for various systematic and non-systematic codes of

the same rate and constraint length are tabulated in Table 5.1.

5.3.5 Trellis Diagram

The state diagram does not contain time information required in decoding. Hence,

trellis diagram is developed to overcome the disadvantage. The trellis diagram is an

expansion of state diagram by adding a time axis for time information. In the trellis

Table 5.1 The bounds on the

free distance for various

systematic and non-

systematic codes of the same

rate and constraint length

Rate Constraint

length

Systematic

codes

maximum free

distance

Non-systematic

codes maximum

free distance

1/3 2 5 5

3 6 8

4 8 10

5 9 12

1/2 2 3 3

3 4 5

4 4 6

5 5 7
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diagram, the nodes are arranged vertically representing the states of the encoder and

each node corresponding to a state of the encoder after a transition from the pre-

vious node for an input bit, the horizontal axis represents time, and the labels on the

branches represent the encoder output bits for a state transition and the input bit

causing the transition.

For a ðn; kÞ convolutional code with memory order m, there are 2m nodes at each

time increment t and there are 2k branches leaving each node for t�m. For t[m,

there are also 2k branches entering the node.

For an encoder with single input sequence of B bits, the trellis diagram must

have Bþ m stages with the first and last stages starting and stopping, respectively,

in state S0. Thus, there are 2
B distinct paths through trellis each corresponding to the

code word of the length nðBþ mÞ.
Example 5.6 The impulse responses of a convolutional encoder are given by

g1 ¼ ½1 0 1�; g2 ¼ ½1 1 1�
1. Draw the encoder

2. Draw the state diagram

3. Draw the trellis diagram for the first three stages.

Solution

1. From the impulse responses g1 ¼ ½1 0 1�; g2 ¼ ½1 1 1�, the output stream y1ðnÞ
can be represented as follows:

y1 nð Þ ¼ x nð Þ þ xðn� 2Þ

The output stream y2ðnÞ can be represented as follows:

y2 nð Þ ¼ x nð Þ þ x n� 1ð Þ þ xðn� 2Þ

Hence, the corresponding encoder is as follows:
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2. This rate −1/2 encoder has two memory cells. So, the associated state diagram

has four states as shown below.

3. The trellis diagram is an extension of the state diagram that explicitly shows the

passage of time. The first three stages of the trellis diagram corresponding to the

encoder is as follows:

Example 5.7 The impulse responses of a convolutional encoder are given by

g1 ¼ ½1 1 1�; g2 ¼ ½1 1 1�; g3 ¼ ½1 1 0�
1. Draw the encoder

2. Draw the state diagram

3. Draw the trellis diagram for the length 3 input sequence.
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Solution

1. From the impulse responses g1 ¼ 1 1 1½ �; g2 ¼ 1 1 1½ �; g3 ¼ 1 1 0½ �, the output

stream y1ðnÞ can be represented as follows:

y1 nð Þ ¼ x nð Þ þ xðn� 1Þ þ xðn� 2Þ

The output stream y2ðnÞ can be represented as follows:

y2 nð Þ ¼ x nð Þ þ x n� 1ð Þ þ xðn� 2Þ

The output stream y3ðnÞ can be represented as follows:

y3 nð Þ ¼ x nð Þ þ x n� 1ð Þ

Hence the corresponding encoder is as follows:

2. This rate −1/3 encoder has three memory cells. So, the associated state diagram

has four states as shown below.

142 5 Convolutional Codes



3. The trellis diagram is an extension of the state diagram that explicitly shows the

passage of time. The first five stages of the trellis diagram corresponding to the

encoder are as follows:

.

.
.

.

.
.

.
.

.

. .. .

.

time

t=4t=3t=2t=1t=0 t=5

110 110110

001001
001

001 001001

111111111111

111111111111

000000000

110110110

000000000000000

111

000

S1

S2

S3

. . . . .

S0

5.4 Punctured Convolutional Codes

The computational complexity is an issue for implementation of Viterbi decoder for

high-rate convolutional codes. This issue can be avoided by using punctured

convolutional codes. The puncturing process deletes periodically selected coded

bits from one or more of the output streams of a convolutional encoder. For a given

fixed low rate convolutional encoder structure, high-rate codes can be achieved by

puncturing the output of low rate convolutional encoder. The puncturing pattern is

specified by a puncturing matrix P of the form
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P ¼

P11 P12 . . . P1P
P21 P22 . . . P2P
.
.

.
.
.

.
.
.

.
.
.

.

Pn1 Pn2 . . . PnP

2

6

6

6

4

3

7

7

7

5

ð5:2Þ

The puncturing matrix will have n rows, one for each output stream in an

encoder with n output bits. The number of columns in the puncturing matrix is the

number of bits over which the puncturing pattern repeats. The encoder transmits the

bit corresponding to Pij ¼ 1 and detects the bit corresponding to Pij ¼ 0. The

search for optimum punctured codes has been done by [5–7].

Example 5.8 Construct a rate 2/3 code by puncturing the output of the rate 1/2,

non-systematic convolutional encoder of Example 5.6.

Solution To generate rate 2/3 code from the rate 1/2 convolutional code with

constraint length 3, the puncturing matrix is given as follows:

P ¼ 1

1

0

1

� �

The zero entity in the second column of the second row indicates that every

second bit in the output y1ðnÞ is to be punctured. The generation of rate 2/3 code

from a rate ½ convolutional code is shown in Fig. 5.10. The punctured encoder

generates 6 code bits for every 4 message bits and thus the punctured code rate is 2/3.

Fig. 5.10 Generation of rate 2/3 code from a rate ½ convolutional code
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5.5 The Viterbi Decoding Algorithm

The Viterbi algorithm is a maximum likelihood decoding algorithm for convolutional

codes involve in finding the path largest metric through the trellis by comparing the

metrics of all branch paths entering each state with the corresponding received vector

r iteratively. Let Sj;t be the node corresponding to the state Sj at time t, and with an

assigned value Mj;tðrnyÞ. Let m be the memory order. A distance between the

received pair of bits and branch output bits is defined as branch metric and sum of

metrics of all the branches in a path is defined as path metric.

Partial path metric for a path is obtained by summing the branch metrics for the

first few branches that the path traverses. For example, consider the trellis diagram

of Example 5.7, the beginning of the trellis is as follows:

Each node in the trellis is assigned a number. This number is the partial path

metric of the path that starts at state S0 at time t ¼ 0 and terminates at that node.

Let Mj;tðrnyÞ be the partial path metric entering the node corresponding to the

state j at time t. For example, in the accompanying drawing, the label Y corresponds

to the two-branch path that terminates at state S1 at time t ¼ 2. Given that the output

bits corresponding to this path consist of three zeros followed by three ones, and the

received sequence r with received bits of the form rk tð Þ indicating the kth bit in the

sequence at time t.

M0;1 r=yð Þ ¼ Mðr1 1ð Þ=0Þ þMðr2 1ð Þ=0Þ þMðr3 1ð Þ=0Þ
M1;1 r=yð Þ ¼ Mðr1 1ð Þ=1Þ þMðr2 1ð Þ=1Þ þMðr3 1ð Þ=1Þ
M0;2 r=yð Þ ¼ M0;1 r=yð Þ þMðr1 2ð Þ=0Þ þMðr2 2ð Þ=0Þ þMðr3 2ð Þ=0Þ
M1;2 r=yð Þ ¼ M0;1 r=yð Þ þMðr1 2ð Þ=1Þ þMðr2 2ð Þ=1Þ þMðr3 2ð Þ=1Þ

The flowchart for the iterative decoding Viterbi algorithm is shown in Fig. 5.11.
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Fig. 5.11 Viterbi algorithm
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5.5.1 Hard-decision Decoding

In hard-decision decoding, we will examine each received signal and make a “hard”

decision to decide whether the transmitted signal is zero or one. These decisions

form the input to the Viterbi decoder. From the decoder’s perspective and by

considering the channel to be memory less, the compilation of the likelihood

functions in a table is the primary step in defining the bit metrics for the channel.

These conditional probabilities are first converted into log likelihood functions and

then into bit metrics.

For the BSC case shown in Fig. 1.3 of Chap. 1, the path metric is simply a

Hamming distance between code word y and received word r.

Then, the bit metric for BSC case is as follows:

M r=yð Þ r ¼ 0 r ¼ 1

y ¼ 0 1 0

y ¼ 1 0 1

5.5.2 Soft-decision Decoding

In soft-decision decoding, “side information” is generated by the receiver bit

decision circuitry and the receiver utilizes this. Instead of assigning zero or one to

each received noisy binary signal as in hard-decision decoding, four regions,

namely “strong-one,” “weak-one,” “strong-zero,” and “weak-zero, are established

for soft-decision decoding. Intermediate values are given to signals for which the

decision is less clear. An increase in coding gain of 2–3 dB over the hard-decision

Viterbi decoder is provided by soft-decision decoding for an additive white

Gaussian noise channel.

Figure 5.12 shows a discrete symmetric channel where the underlined zero and

one indicate the reception of a clear, strong signal, while the non-underlined pair

denotes the reception of a weaker signal and the receiver will assigns one of the four

values to each received signal.

A hard limiter makes the bit decisions in a hard-decision receiver, whereas a

multiple-bit analog-to-digital converter (ADC) is used in soft-decision receivers for

this purpose. The channel model shown in Fig. 5.12 uses a 2-bit ADC in the

decision circuitry. The soft-decision decoding is almost similar to the hard-decision

decoding but uses the increased number (and resolution) of the bit metrics

Consider the following values for the conditional probabilities

p r=yð Þ r ¼ 0 r ¼ 0 r ¼ 1 r ¼ 1

y ¼ 0 0.50 0.25 0.15 0.05

y ¼ 1 0.05 0.15 0.25 0.50
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They provide the following log likelihood functions.

Using the expression below, we obtain a set of bit metrics that can be easily

implemented in digital hardware.

M r=yð Þ ¼ 1:5½log2 M r=yð Þ � log2 M 0:05ð Þ�

Example 5.9 Consider the encoder shown in Fig. 5.1.

1. Construct the Trellis diagram for the length 3 input sequence.

2. If a code word from the encoder is transmitted over a BSC and that the received

sequence is r ¼ ð110; 110; 110; 111; 010Þ; find the maximum likelihood code

using Viterbi hard-decision decoding algorithm.

.

1

P(1|0)
P(1|1)

P(0|0)

0

P(0|1)

1

0

.

P(1|1)

Transmitted 

Symbol

P(1|0)

P(0|1)

P(0|0)

1

0

.

.

Received 

Symbol

.

.

Fig. 5.12 A discrete

symmetric channel model

log2 p r=yð Þ r ¼ 0 r ¼ 0 r ¼ 1 1

y ¼ 0 −0.73 −2 −2.73 −4.32

y ¼ 1 −4.32 −2.73 −2 −0.73

M r=yð Þ r ¼ 0 r ¼ 0 r ¼ 1 r ¼ 1

y ¼ 0 5 6 2 0

y ¼ 1 0 2 6 5
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Solution

1. From the state diagram shown in Fig. 5.1, for the encoder of Fig. 5.1, the

following trellis diagram is constructed.

2. For BSC, the bit metrics chosen for hard decision are as follows:

Using the above bit metrics and following the Viterbi decoding algorithm pro-

cedure shown in Fig. 5.11, the results of the decoding operation using hard-decision

decoding are shown in following figure.

M r=yð Þ r ¼ 0 r ¼ 1

y ¼ 0 1 0

y ¼ 1 0 1
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In the above figure, the maximum likelihood code word is the word corre-

sponding to the ML path denoted by thick line in the above trellis diagram. Thus,

the maximum likelihood code word is given as follows:

Y ¼ ð111; 010; 110; 011; 000Þ

Example 5.10 Considering the convolutional encoder of Example 5.5.

When the convolutional code is transmitted over a symmetric memoryless channel

with the following bit metrics shown below in the table, find the transmitted code

word for the following received code word (10; 01; 10; 11; 00; 10; 11; 00Þ using

soft-decision decoding.

M r=yð Þ r ¼ 0 r ¼ 0 r ¼ 1 r ¼ 1

y ¼ 0 0 1 3 6

y ¼ 1 6 3 1 0

150 5 Convolutional Codes



Solution Using the above bit metrics and following the Viterbi decoding algorithm

procedure shown in Fig. 5.11, the results of the decoding operation using soft-

decision decoding are shown in the below figure.

In the above figure, the maximum likelihood code word is the word corre-

sponding to the ML path denoted by thick line in the above trellis diagram. Thus,

the maximum likelihood code word is Y ¼ ð00; 11; 10; 01; 01; 10; 11; 00Þ.

5.6 Performance Analysis of Convolutional Codes

5.6.1 Binary Symmetric Channel

The lower bound on the bit-error rate in the convolutional codes on the binary

symmetric channel with a crossover probability P is given by [8]

Pb ¼

1
k

P

df

k¼ dfþ1ð Þ=2

df
k

� 	

Pk 1� Pð Þdf�k
d odd

1
2k

df
df=2

� 	

pdf=2 1� Pð Þdf=2þ 1
k

P

df

k¼df=2þ1

df
k

� 	

Pk 1� Pð Þdf�k; d even

8

>

>

>

<

>

>

>

:

ð5:3Þ
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whereas the upper bound on bit-error rate is given by [5]

Pb\
1

k

@T Y ;Xð Þ
@X













Y¼2
ffiffiffiffiffiffiffiffiffiffiffi

P 1�Pð Þ
p

;X¼1

ð5:4Þ

Example 5.11 Consider the convolutional encoder from Example 5.6. Compute the

upper bound and lower bound on BER for a binary symmetric channel with

crossover probability P ¼ 0:01:

Solution The signal flow graph of the encoder considered in Example 5.6 can be

represented as follows:

By using reduction techniques, the signal flow graph can be simplified as

follows:

The transfer function is given by

TðY ;XÞ ¼ Y5X

1� 2YX
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@T Y ;Xð Þ
@X













X¼1

¼ Y5

1� 2Yð Þ2

Upper bound on bit-error probability:

P\
1

k

@T X;Yð Þ
@y













Y¼2
ffiffiffiffiffiffiffiffiffiffiffi

P 1�Pð Þ
p

;X¼1

¼ 1

k

Y5

1� 2Yð Þ2
















Y¼2
ffiffiffiffiffiffiffiffiffiffiffi

P 1�Pð Þ
p

;

Since k = 1 for this example

Pb\
Y5

1� 2Yð Þ2
















Y¼0:198997

¼ 8:61� 10�4

Lower bound on bit-error probability: df ¼ 5

pb ¼
X

5

k¼3

5kð Þpk 1� pð Þ5�k¼ 10p3 1� pð Þ2þ5p4 1� pð Þ þ p5

¼ 9:8501� 10�6

5.6.2 AWGN Channel

The upper and lower bounds on the bit-error rate at the output of the decoder in

AWGN channel with BPSK for the unquantized soft decoding is given by

Pb �
1

k
edfEb=N0Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dfRcEb

N0

r
� 	

@T Y ;Xð Þ
@X













Y¼e�Eb=N0 ;X¼1

ð5:5Þ

Since the received signal is converted to a sequence of zeros and ones before it is

sent to the decoder, for hard-decision decoding AWGN channel with BPSK

modulation can be seen as BSC crossover probability p given by

P ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Rc

2Eb

N0

r
� 	

ð5:6Þ

Substitution of the above P in Eq. (5.4) yields upper bound for the hard-decision

decoding in AWGN channel with BPSK modulation.

The coding gain of a convolutional code over an uncoded BPSK or QPSK

system is upper bounded by [7]
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Coding gain ¼ 10 log10
Rdf

2

� 	

dB for hard-decision ð5:7aÞ

¼ 10 log10 Rdfð ÞdB for soft-decision ð5:7bÞ

Hence, the soft-decision decoding introduces 3 dB increases in the coding gain

over the hard-decision decoding.

The BER performance of soft-decision and hard-decision decoding is compared

through the following example.

Example 5.12 Consider the encoder used in the Example 5.10, and compare the

BER performance of soft-decision and hard-decision decoding in an AWGN

channel with BPSK modulation.

Solution The following MATLAB program is written and used for comparison of

BER performance for different Eb=N0 using soft-decision and hard-decision

decoding. The comparison of BER performances with an encoder used in the

Example 5.10 for hard-decision and soft-decision decoding over an AWGN channel

is shown in Fig. 5.13
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From Fig. 5.13, it is observed that soft-decision decoding offers 3 dB increasing

coding gain in over hard decision which satisfies the Eqs. (5.7a) and (5.7b).

5.6.3 Rayleigh Fading Channel

The union upper bound on the bit-error probability for better BER estimate for

convolutional codes is given by [9]

Pb\

X

1

d¼df

cdPd ð5:8Þ

where cd is the information error weight for error events of distance d, and df is the

free distance of the code. Pd is the pairwise error probability. For an AWGN

channel, Pd is given by [9]

4 5 6 7 8 9 10 11 12
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Eb/No, dB

B
it
 E

rr
o

r 
R

a
te

Uncoded

Soft decision Upper bound

Hard decision Upper bound

Fig. 5.13 BER performance comparisons of hard-decision and soft-decision decoding over an

AWGN channel
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Pd ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dR
Eb

N0

r
� 	

ð5:9Þ

where R is the code rate, Eb is received energy per information bit, and N0 is the

double-sided power spectral density of the noise.

The pair wise error probability in a Rayleigh fading channel is given by [9]

Pd ¼ Peð Þd
X

d�1

k¼0

d � 1þ k

k

� 	

1� Peð Þk ð5:10Þ

where Pe ¼ 1
2

1�
ffiffiffiffiffiffiffiffiffiffi

cbR

1þcbR

q� 


where cb is the average of Eb

N0

A comparison of the upper bound on the BER in the AWGN and flat Rayleigh

fading channels for ODS convolutional codes [9] with R = 1/4 and constraint length

of seven is shown in Fig. 5.14.
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Fig. 5.14 A comparison of the upper bound on the BER in the AWGN and flat Rayleigh fading

channels ODS convolutional codes with R = 1/4 and constraint length of 7
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5.7 Problems

1. Consider the encoder shown in Fig. 5.15 and determine the output code word

using D transform for the input sequence x nð Þ ¼ ð1001Þ.
2. Consider the encoder shown in Figure 5.15 and

i. Draw the state diagram for the encoder.

ii. Draw the trellis diagram for the encoder.

iii. Find the transfer function and the free distance of the encoder.
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3. Consider the encoder shown in Fig. 5.16

i. Find impulse response

ii. Find the transfer function matrix

iii. Use the transfer function matrix to determine the code word associated

with the input sequence x ¼ 11; 10; 01ð Þ
4. Consider an encoder with impulse responses g1 ¼ ð1111Þ and g2 ¼ ð1111Þ.

Determine whether the encoder generates a catastrophic convolutional code.

5. Construct a rate ¾ code by puncturing the output of the rate 1/3, for systematic

convolutional encoder shown in Fig. 5.2. And draw the trellis diagram of the

punctured code.

6. If a code word from the encoder of Example 5.6 is transmitted over a BSC and

that the received sequence is r ¼ ð101; 100; 001; 011; 111; 101; 111; 110Þ, find
the maximum likelihood code using Viterbi hard-decision decoding algorithm.

Fig. 5.15 A rate −1/2 convolutional encoder

Fig. 5.16 A rate −2/3 convolutional encoder
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7. If a code word from the encoder of Example 5.6 is transmitted over a BSC and

that the received sequence is r ¼ ð101; 100; 001; 011; 110; 110; 111; 110Þ, find
the maximum likelihood code using Viterbi soft-decision decoding algorithm.

5.8 MATLAB Exercises

1. Write a MATLAB program to simulate BER performance of a convolutional

encoder of your choice using hard-decision and soft-decision decoding over an

AWGN channel and comment on the results.

2. Write a MATLAB program to simulate BER performance of a convolutional

encoder of your choice using soft-decision decoding over an AWGN and

Rayleigh Fading channel and comment on the results.

References

1. Massey, J.L., Sain, M.K.: Inverse of linear sequential circuits. IEEE Trans. Comput. C-17,

330–337 (1968)

2. Heller, J.A.: Short constraint length convolutional codes, Jet Propulsion Laboratory, California

Institute of Technology, Pasadena, CA Space Program Summary 37–54, Vol. 3, pp. 171–174,

December (1968)

3. Costello, D.J.: Free distance bounds for convolutional codes. IEEE Trans. Inf. Theory IT-20(3),

356–365 (1974)

4. Forney Jr, G.D.: Convolutional codes II: maximum likelihood decoding. Inf. Control 25, 222–

266 (1974)

5. Cain, J., Clark, G., Geist, J.: Punctured convolutional codes of rate (n-1)/n and simplified

maximum likelihood decoding. IEEE Trans. Inf. Theory IT-25(1), 97–100 (1979)

6. Yasuda, Y., Kashiki, K., Hirata, Y.: High-rate punctured convolutional codes for soft decision

Viterbi decoding. IEEE Trans. Commun. 3, 315–319 (1984)

7. Hole, K.: New short constraint length rate (N-1)/N punctured convolutional codes for soft

decision Viterbi decoding. IEEE Trans. Commun. 9, 1079–1081 (1988)

8. Wicker, S.B.: Error Control Systems for Digital Communication and Storage. Prentice Hall,

New Jersey (1995)

9. Franger, P., Orten, P., Ottosson, T.: Convolutional codes with optimum distance spectrum.

IEEE Commun. Lett. 3(11), 317–319 (1999)

MðrjyÞ r ¼ 0 r ¼ 0 r ¼ 1 r ¼ 1

y ¼ 0 5 4 2 0

y ¼ 1 0 2 4 5

5.7 Problems 159



Chapter 6

Turbo Codes

The groundbreaking codes called turbo codes are introduced in [1, 2]. The best-known

convolutional codes are mostly non-systematic. However, in turbo encoders,

systematic convolutional codes are used. Turbo codes are generated by using the

parallel concatenation of two recursive systematic convolutional (RSC) encoders.

This chapter discusses turbo encoding, iterative turbo decoding, and performance

analysis of turbo codes.

6.1 Non-recursive and Recursive Systematic Convolutional

Encoders

A convolutional code is said to be systematic if the input sequence is reproduced

unaltered in the output code word. The following rate-1/2 convolutional encoder is

an example for a systematic convolutional encoder (Fig. 6.1).

6.1.1 Recursive Systematic Convolutional (RSC) Encoder

Consider the conventional convolutional encoder with rate 1/2 and constraint length

3 as shown in Fig. 6.2.

The generator sequences of the above non-recursive non-systematic encoder are

g1 ¼ ½111� and g2 ¼ ½101�.
The state diagram representation of the above non-recursive encoder is shown in

Fig. 6.3.
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The equivalent RSC encoder of the non-recursive non-systematic encoder of

Fig. 6.2 is shown in Fig. 6.4. It is obtained by feeding back the contents of the

memory elements to the input with the generator function G ¼ 1 g2
g1

� �

¼
1 1þD2

1þDþD2

h i

:

The state diagram of the RSC encoder is shown in Fig. 6.5.

Fig. 6.1 Non-recursive systematic convolutional (SC) encoder

Fig. 6.2 Non-recursive non-

systematic convolutional

(NSC) encoder

0/00

1/10

0/01

0/11

0/10

1/00

1/11

1/01

S1

S0

S2

S3

Fig. 6.3 NSC encoder state

diagram
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From Figs. 6.3 and 6.5, it is clear that the state diagrams of the NSC and RSC

encoders are very similar. Further, both the codes have the same minimum free

distance and trellis structure. Hence, the first event error probability is same for both

the codes; however, bit error rates (BERs) are different as BER depends on the

encoder’s input–output correspondence. At low signal-to-noise ratios Eb=No, the

BER for a RSC code is lower than that of the corresponding NSC code.

6.2 Turbo Encoder

A turbo encoder structure consists of two identical RSC encoders in parallel con-

catenation as shown in Fig. 6.6. It is a rate 1/3 encoder.

The two RSC encoders work synergistically in parallel. The RSC encoder 1

takes the data bits x and produces a low-weight parity bits ðp1kÞ from them. The

RSC encoder 2 gets the data bits x scrambled by an interleaver and computes high-

weight parity bits ðp2kÞ from the scrambled input bits. Thus, moderate weight turbo

Fig. 6.4 Recursive systematic convolutional (RSC) encoder
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1/10

0/00

1/11

0/01

S1

S0
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S3

Fig. 6.5 RSC encoder state

diagram
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code is generated with combined low-weight code from encoder 1 and high-weight

code from encoder 2. Finally, the original input sequence x along with the two

strings of parity bits is transmitted over the channel.

6.2.1 Different Types of Interleavers

The BER performance of turbo codes can be improved significantly by using

interleaver as it affects the distance properties of the code by avoiding low-weight

code words [3].

Block Interleaver

The block interleaver is one of the most frequently used types of interleavers in

communication systems. It fills a matrix with the input data bit stream row-by-row

and then sends out the contents column-by-column. A block interleaver is shown in

Fig. 6.7. It writes in [0 0 … 1 0 1 … 0 … 1 … 1 0 1 … 0 1] and reads out [0 1 … 1

0 0 … 1 … 1 … 0 0 0 … 1 1].

Pseudo-random Interleaver

A random interleaver maps the input sequence according to the permutation order

using a fixed random permutation. A random interleaver with input sequence of

length 8 is shown in Fig. 6.8.

Fig. 6.6 Turbo encoder

Fig. 6.7 Block interleaver
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6.2.2 Turbo Coding Illustration

We consider the following numerical examples to illustrate turbo coding. The

operation of the encoders used in these examples is characterized by the corre-

sponding trellis diagram.

Example 6.1 For the turbo encoder shown in Fig. 6.9, find the output code word for

the input data sequence x ¼ f1 1 0 0g assuming the RSC encoder 1 trellis is ter-

minated. Let the interleaver be f5; 2; 4; 0; 1; 3g.

Read Out

Write In

Fixed

Random 

Permutation

1 3 6 8 2 7 4 5

0 1 0 1 1 0 0 1

0 1 1 0 1 0 0 1

Fig. 6.8 Random interleaver

Fig. 6.9 Turbo encoder of Example 6.1

6.2 Turbo Encoder 165



Solution The two binary memory elements can assume any one of four states

S0 � 00; S1 � 10; S2 � 01; S3 � 11 as shown in Table 6.1. The trellis diagram

corresponding to Table 6.1 is shown in Fig. 6.10.

The input sequence is fed to the RSC encoder 1. The resultant path through the

trellis is shown in Fig. 6.11.

Now, the input is fed through the following pseudo-random interleaver shown in

Fig. 6.12

The block of permuted data bits is then fed into RSC encoder 2 resulting in the

path through the trellis is shown in Fig. 6.13.

The encoder output data bits and the parity bits are mapped to symbols as shown

in 6.2.

Example 6.2 The UMTS (universal mobile telecommunications system) standard

turbo encoder with RSC encoder generator function G ¼ 1� 1þDþD3

1þD2þD3

h i

is shown in

Fig. 6.14, find the output codeword for the input data sequence x = {1 1 0 0} assuming

RSC encoder 1 trellis is terminated. Let the interleaver be {2, 6, 4, 5, 0, 1, 3}.

Table 6.1 Transitions for

turbo encoder of Example 6.1
x(n) State at n State at nþ 1 P1ðnÞ
0 S0 (00) S0 0

1 S1 1

0 S1 (10) S3 1

1 S2 0

0 S2 (01) S1 0

1 S0 1

0 S3 (11) S2 1

1 S3 0

Fig. 6.10 Trellis diagram for

encoder of Example 6.1
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Solution The two binary memory elements can assume any one of four states

S0 � 000; S1 � 100; S2 � 010; S3 � 110; S4 � 001; S5 � 101; S6 � 011; S7 � 111:
as shown in Table 6.3. The trellis diagram corresponding to Table 6.3 is shown in

Fig. 6.15.

The input sequence is fed to the RSC encoder 1. The resultant path through the

trellis is shown in Fig. 6.16.

S1     

S3    

S0     

S2     

10

11

01

00

11

01

Fig. 6.11 Trellis path corresponding to input sequence of Example 6.1

Fig. 6.12 Pseudo-random interleaver of Example 6.1
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Now, the input is fed through the following pseudo-random interleaver shown in

Fig. 6.17.

The block of permuted data bits is then fed into RSC encoder 2 resulting in the

path through the trellis is shown in Fig. 6.18.

The encoder output data bits and the parity bits are mapped to symbols as shown

in 6.4.

6.2.3 Turbo Coding Using MATLAB

Example 6.3 Consider the turbo encoder given in [1] using the RSC encoders with

the generator function.

Table 6.2 Output of encoder of Example 6.1

S1     

S3    

S0     

S2     

11

01

1111

01

01

Fig. 6.13 Trellis path corresponding to interleaved input sequence of Example 6.1
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Fig. 6.14 Turbo encoder of Example 6.2

Table 6.3 Transitions for

turbo encoder of Example 6.2
xðnÞ State at n State at nþ 1 P1ðnÞ
0 S0 (000) S0 0

1 S1 1

0 S1 (100) S2 1

1 S3 0

0 S2 (010) S5 1

1 S4 0

0 S3 (110) S7 0

1 S6 1

0 S4 (001) S1 0

1 S0 1

0 S5 (101) S3 1

1 S2 0

0 S6 (011) S4 1

1 S5 0

0 S7 (111) S6 0

1 S7 1
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G ¼ 1 1þD4

1þDþD2þD3þD4

h i

(a) Assuming RSC encoder 1 trellis is terminated and determine the code word

produced by the unpunctured encoder for the message x ¼ ½1 0 0 1 1 0� using
MATLAB. Let the interleaver be ½3; 7; 6; 2; 5; 10; 1; 8; 9; 4�:

(b) Repeat (a) for punctured encoder with rate 1/2

The puncturing patterns are Pu1 ¼
1 1

1 0

� �

; Pu2 ¼
0 0

0 1

� �

:

Fig. 6.15 Trellis diagram for

encoder of Example 6.2
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S0     

S7    

S5    

S1     

S4     

S6   

S3    

S2   

11

10

00

00

01

11

00

Fig. 6.16 Trellis path corresponding to input sequence of Example 6.2

Fig. 6.17 Pseudo-random interleaver of Example 6.2
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t=0         t=1 t=2 t=3 t=4 t=5       t=6    t=7

S7    

S5    

S1     

S4     

S6   

S3    

S2   

S0     
00 00

11

10

00

11
01

Fig. 6.18 Trellis path corresponding to interleaved input sequence of Example 6.2

Table 6.4 Output of the encoder of Example 6.2
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(c) Assuming RSC encoder 1 trellis is unterminated and determine the code word

produced by the unpunctured encoder for the message x ¼ ½1 0 0 1 1 0 1 0 1 0�
using MATLAB. Let the interleaver be ½3; 7; 6; 2; 5; 10; 1; 8; 9; 4�:

(d) Repeat (c) for punctured encoder with rate 1/2 with the puncturing patterns

same as in (b).

Solution The following MATLAB program and MATLAB functions are written

and used to find the code words produced by the unpunctured and punctured

encoders. For (a) and (b), the program is to be run with ip ¼ ½1 0 0 1 1 0� and
term1 ¼ 1, whereas for (c) and (d), the program is to be run with ip ¼
½1 0 0 1 1 0 1 0 1 0� and term1 ¼ �1.

(a) The unpunctured turbo code obtained by running the MATLAB program and

functions is

x ¼ ½1 0 0 1 1 0 1 1 0 0�;
p1 ¼ 1 1 0 1 1 1 0 1 0 0½ �; p2 ¼ 0 1 1 0 1 0 1 1 0 1½ �

(b) The punctured turbo code obtained is

x ¼ ½1 0 0 1 1 0 1 1 0 0�; p1 ¼ 1 0 1 0 0½ �; p2 ¼ 1 0 0 1 1½ �

Since for every 10 information bits, there are 20 code word bits (10

information bits and five parity bits for each RSC encoder; thus, the rate of the

punctured turbo code is 1/2).

(c) The unpunctured turbo code obtained is

x ¼ 1 0 0 1 1 0 1 0 1 0½ �;
p1 ¼ 1 1 0 1 1 1 0 0 0 1½ �; p2 ¼ 0 1 1 0 1 0 1 0 0 0½ �

(d) The punctured turbo code obtained is

x ¼ 1 0 0 1 1 0 1 0 1 0½ �; p1 ¼ 1 0 1 0 0½ �; p1 ¼ 1 0 0 0 0½ �
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Program 6.1 MATLAB program to find output code word
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MATLAB function encodedbit.m

MATLAB function turboencode.m
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6.3 Turbo Decoder

The iterative decoding turbo decoder block diagram is shown in Fig. 6.19.

During the first iteration, no extrinsic information is available from decoder 2,

hence the a priori information is set to zero. Then, the decoder outputs the estimate

of the systematic bit as the log-likelihood ratio (LLR)

L1 x̂ðnÞð Þ ¼ P xðnÞ ¼ 1ð Þjx0; p01; La x̂ð Þ
P xðnÞ ¼ 0ð Þjx0; p01; La x̂ð Þ

� �

n ¼ 1; 2; . . .;N ð6:1Þ

It is assumed that the message bits are statistically independent. Thus, the total LLR

is given by

L1 x̂ð Þ ¼
X

N

n¼1

L1 x̂ðnÞð Þ ð6:2Þ

Hence, the message bits extrinsic information obtained from the first decoder is

given as follows:

Le1ðxÞ ¼ L1ðxÞ � LaðxÞ � Lcx
0 ð6:3Þ

Fig. 6.19 The iterative decoding turbo decoder block diagram
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The term Lcx
0 is the information provided by the noisy observation. The extrinsic

information Le1ðxÞ and x0 are interleaved before applying it as input to the BCJR

algorithm in the second decoder. The noisy parity check bits p02 are also an addi-

tional input to the BCJR algorithm. The extrinsic information obtained from the

BCJR algorithm is de-interleaved to produce the total log-likelihood ratio

L2ðxÞ ¼
X

N

n¼1

P xðnÞ ¼ 1ð Þjx0; p02; Le1ðxÞ
P xðnÞ ¼ 0ð Þjx0; p02; Le1ðxÞ

� �

ð6:4Þ

is hard limited to estimating the information bit based only on the sign of the de-

interleaved LLR, at the output of the decoder as expressed by

x̂ ¼ sgn L2ðxÞð Þ ð6:5Þ

The extrinsic information

LaðxÞ ¼ L2ðxÞ � Le1ðxÞ þ Lcx
0ð Þ ð6:6Þ

is fed back to the decoder 1. The extrinsic information of one decoder is used as the

a priori input to the other decoder, and thus in the turbo decoder iterations, the

extrinsic information ping-ponged back and forth between maximum a posteriori

(MAP) decoders.

After a certain number of iterations, the log-likelihood L2(x) at the output of

decoder 2 is de-interleaved and delivered to the hard decision device, which esti-

mates the input.

If it is assumed that xðnÞ ¼ �1 is transmitted over a Gaussian or fading channel

using BPSK modulation, the probability of the matched filter output yðnÞ is given
by Hanzo et al. [4]

P yðnÞjxðnÞ ¼ þ1ð Þ ¼ 1

r
ffiffiffiffiffiffi

2p
p exp � Eb

2r2
yðnÞ � að Þ2

� �

ð6:7aÞ

where Eb is the transmitted energy per bit, r2 is the noise variance, and a is the

fading amplitude. Similarly,

P yðnÞjxðnÞ ¼ �1ð Þ ¼ 1

r
ffiffiffiffiffiffi

2p
p exp � Eb

2r2
yðnÞ þ að Þ2

� �

ð6:7bÞ
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Therefore, when we use BPSK over a (possibly fading) Gaussian channel, the term

Lcx
0ðnÞ can be expressed as follows:

Lc x0ðnÞjxðnÞð Þ ¼ log
P x0ðnÞjxðnÞ ¼ þ1ð Þ
P x0ðnÞjxðnÞ ¼ �1ð Þ

� �

¼ log
exp � Eb

2r2
x0ðnÞ � að Þ2

	 


exp � Eb

2r2
x0ðnÞ þ að Þ2

	 


0

@

1

A

¼ � Eb

2r2
x0ðnÞ � að Þ2

� �

� � Eb

2r2
x0ðnÞ þ að Þ2

� �

¼ Eb

2r2
4a � x0ðnÞ

¼ Lcx
0ðnÞ

ð6:8Þ

where

Lc ¼ 4a
Eb

2r2

is defined as the channel reliability value.

6.3.1 The BCJR Algorithm

The BCJR algorithm was published in 1974. It is named after its inventors: Bahl,

Cocke, Jelinek, and Raviv. It is for MAP decoding of codes defined on trellises [5].

It was not used in practical implementations for about 20 years due to more

complexity than the Viterbi algorithm. The BCJR algorithm was reborn vigorously

when the turbo code inventors Berrou et al. [1] used a modified version of the BCJR

algorithm in 1993. Consider a trellis section with four states like the one presented

in Fig. 6.20.

In the trellis section, the branches generated by input message bits 1 and −1 are

represented by a dashed line and a solid line, respectively. The variable cðnÞ rep-
resents the branch probabilities at time n, and the variables aðnÞ and bðnÞ are the

forward and backward estimates of the state probabilities at time n based on the past

and future data, respectively. Now the log-likelihood ratios expressed by Eqs. (6.2)

and (6.4) can be computed, using branch probabilities, forward, and backward error

probabilities of the states, as follows:

L1 x̂ð Þ ¼ log

P

R1
as0 n� 1ð Þ � cs0;sðnÞ � bsðnÞ

P

R0
ak�1 s0ð Þ � ck s0; sð Þ � bk sð Þ

" #

ð6:9Þ

178 6 Turbo Codes



where s represents the state at time n and s0 stands for the previous state, i.e., the

state at time instant n� 1 as in a typical trellis section shown in Fig. 6.20. The R1

indicates the summation computed over all the state transitions from s0 to s due to

message bits xðnÞ ¼ þ1 (i.e., dashed branches). The denominator R0 is the set of all

branches originated by message bits xðnÞ ¼ �1.

For a given state transition, the transmitted signal is the data bit and parity check

bit pair. Also, for a given starting state, the data bit value determines the next state.

Using the Bayes theorem, the branch probability can be expressed as [6]

cs0;s ¼ Pr xðnÞð Þ Pr y0ðnÞ yðnÞjð Þ ð6:10Þ

The probability of the data bit xðnÞ in terms of the a priori probability ratio can be

written as follows:

Pr xðnÞð Þ ¼ exp 1
2
La xðnÞð Þ

� �

1þ exp La xðnÞð Þ½ � � exp
1

2
xkLa xðnÞð Þ

� �

¼ Bn � exp
1

2
xðnÞLa xðnÞð Þ

� �

ð6:11Þ

La xðnÞð Þ ¼ log
Pr xðnÞ ¼ þ1ð Þ
Pr xðnÞ ¼ �1ð Þ

� �

ð6:12Þ

Fig. 6.20 Typical trellis section with a; b; c as labels
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The probability of the noisy data bit x0ðnÞ and parity bits p0ðnÞ can be expressed in

terms of Gaussian probability distributions as follows:

Pr y0ðnÞ yðnÞjð Þ ¼ Pr x0ðnÞ xðnÞjð Þ � Pr p0ðnÞ pðnÞjð Þ

¼ 1
ffiffiffiffiffiffiffiffiffiffi

2pr2
p � exp � x0ðnÞ � xðnÞð Þ2

2r2

" #

� D

� 1
ffiffiffiffiffiffiffiffiffiffi

2pr2
p � exp � p0ðnÞ � pðnÞð Þ2

2r2

" #

� D

¼ An � exp
x0ðnÞxðnÞ � p0ðnÞpðnÞ

r2

� �

ð6:13Þ

Since cs0;s appears in the numerator (where xðnÞ ¼ þ1) and denominator (where

xðnÞ ¼ �1) of Eq. (6.9), the AnBn factor will get canceled as it is independent of

xðnÞ. Thus, the branch probability cs0;sðnÞ can be expressed as

cs0;sðnÞ ¼ exp
1

2
xðnÞLaxðnÞ þ xðnÞLcx0ðnÞ þ pðnÞLcp0ðnÞð Þ

� �

ð6:14Þ

The forward recursion is computed as

asðnÞ ¼
X

s0
as0 n� 1ð Þcs0;sðnÞ ð6:15Þ

The backward recursion is computed as

bs0 n� 1ð Þ ¼
X

s0
cs0;sðnÞ � bsðnÞ ð6:16Þ

a0ðnÞ ¼ a0 n� 1ð Þc0;0ðnÞ þ a0 n� 1ð Þc2;0ðnÞ ð6:17aÞ

b0ðnÞ ¼ b1 nþ 1ð Þc0;1 nþ 1ð Þ þ b0 nþ 1ð Þc0;0 nþ 1ð Þ ð6:17bÞ

The recursive calculation of a0ðnÞ and b0ðnÞ as in Eqs. (6.17a) and (6.17b) is

illustrated in Fig. 6.21.

The following simple example illustrates the recursive computation of forward

and backward state error probabilities.

Example 6.4 Consider the following trellis diagram shown in Fig. 6.22 with the

following probabilities.

c00 1ð Þ ¼ 0:48; c00 2ð Þ ¼ 0:485; c00 3ð Þ ¼ 0:6;
c01 1ð Þ ¼ 0:09; c01 2ð Þ ¼ 0:1
c10 2ð Þ ¼ 0:1; c10 3ð Þ ¼ 0:7 c11 2ð Þ ¼ 0:485

Compute the forward and backward state error probabilities of the trellis.
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Fig. 6.21 Illustration of recursive calculation of a0 nð Þ and b0 nð Þ

Fig. 6.22 Trellis diagram of Example 6.4
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Solution With the initial value a0 0ð Þ ¼ 1; the forward recursion yields the values

a0 1ð Þ ¼ a0 0ð Þc00 1ð Þ ¼ 0:48

a1 1ð Þ ¼ a0 0ð Þc01 1ð Þ ¼ 0:09

a0 2ð Þ ¼ a0 1ð Þc00 2ð Þ þ a1 1ð Þc10 2ð Þ ¼ 0:2418

a1 2ð Þ ¼ a0 1ð Þc01 2ð Þ þ a1 1ð Þc11 2ð Þ ¼ 0:0916

a0 3ð Þ ¼ a0 2ð Þc00 3ð Þ þ a1 2ð Þc10 3ð Þ ¼ 0:2092

With the initial value b0 3ð Þ ¼ 1; the backward recursion yields the values

b0 2ð Þ ¼ b0 3ð Þc00 3ð Þ ¼ 0:6

b1 2ð Þ ¼ b0 3ð Þc10 3ð Þ ¼ 0:7

b0 1ð Þ ¼ b0 2ð Þc00 2ð Þ þ b1 2ð Þc01 2ð Þ ¼ 0:3510

b1 1ð Þ ¼ b0 2ð Þc10 2ð Þ þ b1 2ð Þc11 2ð Þ ¼ 0:3995

b0 0ð Þ ¼ b0 1ð Þc00 1ð Þ þ b1 1ð Þc01 1ð Þ ¼ 0:2044

6.3.2 Turbo Decoding Illustration

Example 6.5 Assume the channel adds unity variance Gaussian noise to the code

generated by the turbo encoder considered in Example 6.1, decode the received

sequence.

Solution For a random run with unity variance Gaussian noise, the received code is

given as follows:

x0ðnÞ p01ðnÞ p02ðnÞ
0.9039 0.1635 1.2959

−0.3429 −0.2821 2.6317

−1.6952 −0.1377 2.2603

−2.6017 −0.4482 1.5740

−1.4019 1.6934 1.8197

1.7155 2.2967 1.6719
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Using the trellis diagram shown in Fig. 6.1, the branch probabilities for the first

stage are computed as

c0;0 1ð Þ ¼ exp �x0 0ð Þ � p01ð0Þ
� �

¼ exp �0:9039� 0:1635ð Þ ¼ 0:34390149993822

c0;1 1ð Þ ¼ exp x0 0ð Þ þ p01ð0Þ
� �

¼ exp 0:9039þ 0:1635ð Þ ¼ 2:90780935872520

c1;2 1ð Þ ¼ exp x0 0ð Þ � p01ð0Þ
� �

¼ exp 0:9039� 0:1635ð Þ ¼ 2:09677405639736

c1;3 1ð Þ ¼ exp �x0 0ð Þ þ p01ð0Þ
� �

¼ exp �0:9039þ 0:1635ð Þ ¼ 0:47692310811885

c2;0 1ð Þ ¼ exp x0 0ð Þ þ p01ð0Þ
� �

¼ exp 0:9039þ 0:1635ð Þ ¼ 2:90780935872520

c2;1 1ð Þ ¼ exp �x0 0ð Þ � p01ð0Þ
� �

¼ exp �0:9039� 0:1635ð Þ ¼ 0:34390149993822

c3;2 1ð Þ ¼ exp �x0 0ð Þ þ p01ð0Þ
� �

¼ exp �0:9039þ 0:1635ð Þ ¼ 0:47692310811885

c3;3 1ð Þ ¼ exp x0 0ð Þ � p01ð0Þ
� �

¼ exp 0:9039� 0:1635ð Þ ¼ 2:09677405639736

Repeating the branch probabilities computation for other stages of the trellis, the

branch probabilities for all stages of the trellis for this example are given as follows:

The forward state probabilities are computed using Eq. (6.15), and the resulting

normalized forward state probabilities are given as follows:

n c0;0ðnÞ=c2;1ðnÞ c0;1ðnÞ=c2;0ðnÞ c1;2ðnÞ=c3;3ðnÞ c1;3ðnÞ=c3;2ðnÞ
1 0.34390149993822 2.90780935872520 2.09677405639736 0.47692310811885

2 1.86824595743222 0.53526142851899 0.94101142324168 1.06268635566092

3 6.25199116868593 0.15994904231610 0.21066206860156 4.74693905095638

4 21.11323299367156 0.04736366052038 0.11607717585511 8.61495804522538

5 0.74714201360297 1.33843363349046 0.04526143199369 22.0938657031320

6 0.01809354561793 55.26832723205136 0.55922689149115 1.78818296332918

n a0ðnÞ a1ðnÞ a2ðnÞ a3ðnÞ
0 1.00000000000000 0 0 0

1 0.10576017207126 0.89423982792874 0 0

2 0.09657271753492 0.02766854681958 0.41128905912021 0.46446967652529

3 0.11754442548550 0.45413087700815 0.38808965080132 0.04023504670503

4 0.16649906702111 0.54604949205154 0.02659440531342 0.26085703561394

5 0.00875863686136 0.01328728572633 0.31685999430997 0.66109408310235

6 0.89416277694224 0.02500892891120 0.06073869015360 0.02008960399296
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The backward state probabilities are computed using Eq. (6.16), the resulting

normalized backward probabilities for this example are given as follows:

Now, using Eq. (6.9), we compute the L1ðxÞ the LLR from the decoder 1 as

follows:

L1 xðnÞð Þ

¼
a0 n� 1ð Þb1ðnÞc0;1ðnÞ þ a1 n� 1ð Þb2ðnÞc1;2ðnÞ þ a1 n� 1ð Þb0ðnÞc2;0ðnÞ þ a1 n� 1ð Þb3ðnÞc3;3ðnÞ
a0 n� 1ð Þb0ðnÞc0;0ðnÞ þ a1 n� 1ð Þb3ðnÞc1;3ðnÞ þ a1 n� 1ð Þb1ðnÞc2;1ðnÞ þ a1 n� 1ð Þb2ðnÞc3;2ðnÞ

ð6:18Þ

The resulting LLR from the decoder 1 is

L1ðxÞ ¼

5:00794986257243
4:52571043846903
�5:03587871714769
�6:73223129201010
�5:45139857004191
11:61281973458293

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

and LcðxÞ ¼

1:80780000000000
�0:68580000000000
�3:39040000000000
�5:20340000000000
�2:80380000000000
3:43100000000000

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

The soft and hard decisions are given as:

n b0ðnÞ b1ðnÞ b2ðnÞ b3ðnÞ
6 0.45530056303648 0.09512620145755 0.07905302691388 0.37052020859209

5 0.02546276878415 0.09512620145755 0.01580448043695 0.50822864080378

4 0.02462941844490 0.01001105352469 0.96125810870846 0.00410141932195

3 0.00003769540412 0.98178511456649 0.00492923752535 0.01324795250404

2 0.00001104782103 0.00204434600799 0.00001979111732 0.99792481505365

1 0.00032726925280 0 0.99967273074720 0

0 1.00000000000000 0 0 0

L1 x̂ðnÞð Þ x̂ðnÞ ¼ sign L1 x̂ðnÞð Þð Þ
5.0079 1

4.5257 1

−5.035 0

−6.732 0

−5.451 0

11.61 1
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When compared to the trellis path of decoder 1 shown in Fig. 6.11, it is observed

that the decoder has correctly estimated all data bits. Since a priori information for

the first iteration is zero, the extrinsic information Le1ðxÞ is given as

Le1ðxÞ ¼ L1ðxÞ � LcðxÞ

¼

5:00794986257243

4:52571043846903

�5:03587871714769

�6:73223129201010

�5:45139857004191

11:61281973458293

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

�

1:8078

�0:6858

�3:3904

�5:2034

�2:8038

3:4310

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

3:20014986257242

5:21151043846903

�1:64547871714763

�1:52883129201010

�2:64759857004191

8:18181973458293

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

The extrinsic information Le1ðxÞ from the decoder 1 and the noisy information bits

x0ðnÞ are to be interleaved before feeding as inputs to the BCJR algorithm of the

decoder 2. After relabeling, the following are the inputs to BCJR of the decoder 2.

Using the trellis diagram shown in Fig. 6.1, the branch probabilities for the first

stage are computed as

c0;0 1ð Þ ¼ exp �0:5 � Le1ðxÞ � x0 0ð Þ � p01 01ð Þ
� �

¼ exp �0:5 � 8:18181973458293� 1:7155� 1:2959ð Þ
¼ 0:00082320123987

c0;1 1ð Þ ¼ exp 0:5 � Le1ðxÞ þ x0 0ð Þ þ p01 01ð Þ
� �

¼ exp 0:5 � 8:18181973458293þ 1:7155þ 1:2959ð Þ
¼ 1214:7697933:438

c1;2 1ð Þ ¼ exp 0:5 � Le1ðxÞ þ x0 0ð Þ � p01 01ð Þ
� �

¼ exp 0:5 � 8:18181973458293þ 1:7155� 1:2959ð Þ
¼ 90:9681883921071

Le1ðxÞ x0ðnÞ p02ðnÞ
8.18181973458293 1.7155 1.2959

−1.64547871714769 −1.6952 2.6317

−2.64759857004191 −1.4019 2.2603

3.20014986257242 0.9039 1.574

5.21151043846903 −0.3429 1.8197

−1.52883129201010 −2.6017 1.6719
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c1;3 1ð Þ ¼ exp �0:5 � Le1ðxÞ � x0 0ð Þ þ p01 01ð Þ
� �

¼ exp �0:5 � 8:1818197345829 � 1:7155þ 1:2959ð Þ
¼ 0:01099285385007

c2;0 1ð Þ ¼ exp 0:5 � Le1ðxÞ þ x0 0ð Þ þ p01 01ð Þ
� �

¼ exp 0:5 � 8:18181973458293þ 1:7155þ 1:2959ð Þ
¼ 1214:7697933:438

c2;1 1ð Þ ¼ exp �0:5 � Le1ðxÞ � x0 0ð Þ � p01 01ð Þ
� �

¼ exp �0:5 � 8:18181973458293� 1:7155� 1:2959ð Þ
¼ 0:00082320123987

c3;2 1ð Þ ¼ exp �0:5 � Le1ðxÞ � x0 0ð Þ þ p01 01ð Þ
� �

¼ exp �0:5 � 8:1818197345829 � 1:7155þ 1:2959ð Þ
¼ 0:01099285385007

c3;3 1ð Þ ¼ exp 0:5 � Le1ðxÞ þ x0 0ð Þ � p01 01ð Þ
� �

¼ exp 0:5 � 8:18181973458293þ 1:7155� 1:2959ð Þ
¼ 90:9681883921071

Repeating the branch probabilities computation for other stages of the trellis, the

branch probabilities for all stages of the trellis for this example are given as follows:

n c0;0ðnÞ=c2;1ðnÞ c0;1ðnÞ=c2;0ðnÞ c1;2ðnÞ=c3;3ðnÞ c1;3ðnÞ=c3;2ðnÞ
1 0.00082320123987 1214.76979330438 90.96818839210695 0.010992853850

2 0.89247155103612 1.12048389536 0.00580149660962 172.369315590337

3 1.59264998322900 0.62788435032 0.00683294655359 146.349747090304

4 0.01694173912378 59.02581740243 2.53444564152908 0.394563601450

5 0.01686431851993 59.29679274132 1.55761408724524 0.642007547433

6 5.44237554167172 0.18374329231 0.00648660728077 154.163795758670
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The forward recursion can be calculated using Eq. (6.15). The resulting nor-

malized values are as follows:

The backward recursion can be calculated according to Eq. (6.16). The resulting

normalized values are as follows:

Now, we compute the LLR from the decoder 2 using Eq. (6.18). The resulting

LLR from the decoder 2 is

L2ðxÞ ¼

25:71127513129983
�19:85060333367479
�16:52345972282743
12:59341638166602
11:21364990579842
�10:0677959239041

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

By slicing the soft decisions, we get the hard decisions 1 0 0 1 1 0. Comparing this

with the encoder 2 trellis path in Fig. 6.13, it is observed that the decoder has

correctly estimated all data bits.

n a0ðnÞ a1ðnÞ a2ðnÞ a3ðnÞ
0 1.00000000000000 0 0 0

1 0.00000067765982 0.99999932234018 0 0

2 0.00000000350858 0.00000000440497 0.00003365622987 0.99996633585658

3 0.00000014443156 0.00000036627375 0.99995279793500 0.00004669135969

4 0.99971058159622 0.00028708385150 0.00000032776038 0.00000200679189

5 0.00028464899198 0.99970462721982 0.00000756282988 0.00000316095832

6 0.00001006025926 0.00000060639718 0.00004523543737 0.99994409790619

n b0ðnÞ b1ðnÞ b2ðnÞ b3ðnÞ
6 0.99998080264562 0.00000062587196 0.00001074035175 0.00000783113066

5 0.00001006166024 0.99987703069337 0.00000834425763 0.00010456338877

4 0.00013868974158 0.00143501008710 0.00007080225952 0.99835549791180

3 0.01189148350941 0.00173100215279 0.98500767914419 0.00136983519361

2 0.93003760467044 0.01096095473547 0.03420391063551 0.02479752995857

1 0.01760402234259 0.48239597765741 0.01760402234259 0.48239597765741

0 0.25000000000000 0.25000000000000 0.25000000000000 0.25000000000000
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6.3.2.1 Turbo Decoding Using MATLAB

The following example illustrates the turbo decoding using MATLAB.

Example 6.6 When the code generated by the turbo encoder shown in Fig. 6.9 is

transmitted over an AWGN channel with channel reliability factor L2 ¼ 2,

sequence is received. Then, decode the received sequence using MATLAB.

Solution The following MATLAB program and MATLAB functions are written

and used to decode the received sequence. After the first iteration, the received

sequence becomes as follows:

After the second iteration, the received sequence becomes as follows:

n x0ðnÞ p01ðnÞ p01ðnÞ
1 3.01 3.13 −1.7

2 −0.23 −1.45 −1.7

3 −0.25 −0.18 1.82

4 0.83 0.91 2.0

5 −0.26 −0.45 −3.0

6 −0.8 1.3 1.46

7 0.43 1.98 2.1

8 −0.74 −0.54 0.3

L1 x̂ðnÞð Þ x̂ðnÞ ¼ sign L1 x̂ðnÞð Þð Þ L1 x̂ðnÞð Þ x̂ðnÞ ¼ sign L1 x̂ðnÞð Þð Þ
11.3900 1 11.9775 1

3.7217 1 7.1019 1

0.3753 1 −5.1767 0

0.4850 1 −4.5544 0

0.4167 0 4.8071 1

−4.4225 0 −11.0942 0

3.7418 1 5.7408 1

−3.8245 0 −11.3693 0

L1 x̂ðnÞð Þ x̂ðnÞ ¼ sign L1 x̂ðnÞð Þð Þ L1 x̂ðnÞð Þ x̂ðnÞ ¼ sign L1 x̂ðnÞð Þð Þ
20.9509 1 20.9633 1

13.5723 1 28.2036 1

15.2116 0 −23.1493 0

−14.6617 0 −17.3413 0

13.4480 1 21.2953 1

−19.1687 1 −30.6052 0

15.5069 0 18.3074 1

−21.0533 1 −33.4231 0
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Thus the transmitted input sequence xðnÞ ¼ ð1 1 0 0 1 0 1 0Þ.

Program 6.2 MATLAB program to decode the received sequence of Example 6.6

6.3 Turbo Decoder 189



MATLAB function trellis.m
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MATLAB function turbodec.m
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6.3.3 Convergence Behavior of the Turbo Codes

A typical BER curve for a turbo code is shown in Fig. 6.23. Three regions, namely

low Eb=No region, waterfall region, and error floor region, can be identified. In the

low Eb=No region, BER decreases slowly as Eb=No increases. For intermediate

values of Eb=No, the BER decreases rapidly in the waterfall region with an increase

in Eb=No. In this region, the coding gain approaches the theoretical limit. For large

Eb=No, error floor occurs where the performance is dependent on the minimum

Hamming distance of the code. The error floor is due to the weight distribution of

turbo codes. Normally, turbo codes do not have large minimum distances. Hence,

lowering the error floor results in better codes, which in some cases may result in

faster convergence in decoding. One effective way of lowering the error floor is to

use appropriate interleaver.

6.3.4 EXIT Analysis of Turbo Codes

Extrinsic information transfer (EXIT) chart [7] can be used as a tool to aid the

construction of turbo codes. An EXIT chart is the reunion of two curves that

characterize the two decoders used in a turbo decoder. Each curve represents a

relation between the input and the output of one decoder. This relation is the mutual

information between the output of the decoder (Le: the extrinsic information) and

the initial message that was encoded before passing through the channel, with

Fig. 6.23 Typical BER curve of turbo codes
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respect to the mutual information between the input of the decoder (La: the a priori

information) and the message:

In a turbo decoder, the extrinsic information of the first decoder (Le1) is used as

the a priori information of the second decoder (La2) and vice versa. It is suggested

in [6] that a priori input to the constituent decoder can be modeled by

La ¼ la � xþ ga ð6:19Þ

where x is the known transmitted systematic bits, ga is the Gaussian noise and

la ¼ r2a
2
.

For each La, the mutual information IA and IE are computed as [6]

IA ¼ 1

2

Z

e�E

X

x��1
pA e xjð Þ log2

2pA e xjð Þ
pA e xj ¼ 1ð Þ þ pA e x ¼ �1jð Þ

� �

de

0� IA � 1

ð6:20aÞ

where pA is the probability density function of La. For Gaussian noise, Eq. (6.20a)

can be rewritten as

IA ¼ 1�
Z

exp
�1

2r2a
y� r2a

2

� �2
 !

log2 1þ e�yð Þ
ffiffiffiffiffiffiffiffiffiffi

2pra
p dy ð6:20bÞ

IE ¼ 1

2

Z

e�E

X

x��1

pE e xjð Þ log2
2pE e xjð Þ

pE e xj ¼ 1ð Þ þ pE e x ¼ �1jð Þ

� �

de

0� IE � 1

ð6:21Þ

where pE is the probability density function of Le. Viewing IE as a functions of IE

and Eb

No
, the EXIT characteristics are defined as

IE ¼ T IA;
Eb

No

� �

ð6:22Þ

For fixed Eb

No
, the above transfer characteristic can be rewritten as follows:

IE ¼ T IAð Þ ð6:23Þ

Once IA1 and IE1 for decoder 1 and IA2 and IE2 for decoder 2 are obtained using

Eqs. (6.20a and 6.20b) and (6.21), they are drawn on a single chart that is IA1 on the

x axis and IE1 on the y axis for decoder 1, and for decoder 2, IE2 on the x axis and

IA2 on the y axis resulting in EXIT chart for the turbo decoder.
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The steps involved in obtaining EXIT curve can be summarized as follows:

1. Specify the turbo code rate R and interested Eb

No
and determine AWGN No=2:

2. Specify la of interest and determine r2a ¼ 2la.

3. Run the turbo code simulator which yields encoded bits y ¼ ½x p1 p2�;
4. Find La using Eq. (6.19) and probability density function pA e xjð Þ using a his-

togram of La. Then, find mutual information IA using Eq. (6.20a).

5. Run the BCJR decoder using the model r ¼ yþ g with g ¼ @ 0; r2ð Þ
r2 ¼ No=2. In addition to the r, the decoder has Lc ¼ 2r

r2
; and La given by

Eq. (6.19).

6. Find Le and then determine the probability density function pE e xjð Þ from the

histogram of Le and calculate mutual information IE using Eq. (6.21).

7. If all values for la of interest are exhausted, then stop and plot IA versus IE.

Otherwise, go to step 2.

The EXIT charts at Eb

No
¼ 0:5 dB and �0:2 dB are shown in Fig. 6.24 for rate 1/3

turbo encoder considered in [1].

From Fig. 6.24, it is observed that the curves cross for the EXIT chart at
Eb

No
¼ �0:2 dB and the turbo decoder does not converge. Hence, the ensemble

threshold for rate 1/3 turbo encoder [1] must be at around �0:2 dB.
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Fig. 6.24 EXIT charts for the rate 1/3 turbo encoder [1] at Eb

No
¼ 0:5 dB and � 0:2 dB
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The EXIT charts at Eb

No
¼ �5 dB and �4 dB are shown in Fig. 6.25 for rate 1/3

UMTS turbo encoder considered in Example 6.2.

From Fig. 6.25, it is observed that the curves cross for the EXIT chart at
Eb

No
¼ �5 dB and the turbo decoder does not converge. Hence, the ensemble

threshold for rate 1/3 UMTS turbo encoder must be at around �5 dB.

For a given code and channel, the decoding correctness of turbo decoder can

check by examining whether the decoders EXIT curves cross. The ensemble

threshold can be estimated by finding the Eb

No
for which the EXIT curves of the

decoders cross. The speed of the decoder can be obtained from EXIT curves. The

wider the gap between the EXIT curves of the two decoders, fewer the number of

iterations required for convergence.

6.4 Performance Analysis of the Turbo Codes

6.4.1 Upper Bound for the Turbo Codes in AWGN Channel

Assuming that the transmitted data symbols are BPSK modulated which are

coherently demodulated at the receiver, Bit error probability bounds for turbo codes

on AWGN channels can be upper bounded by the union bound [8, 9].
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Fig. 6.25 EXIT charts for the rate 1/3 UMTS turbo encoder at Eb

No
¼ �4 dB and � 5 dB
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BERub �
X

N

w¼1

X

1

d¼df

Aðw; dÞ w
N
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � d � R � Eb

No

r
� �

ð6:24Þ

where Aðw; dÞ is the number of code word of input weight w and the total weight d.

The code’s block size is given by the number of information bits N and the code

rate R. Ignoring the effect of the tail (assuming that the tail length N), we can use

our usual definition of N as being the length of the whole source sequence,

including the tail. Thus, changing the order of summation:

BERub �
X

1

d¼df

X

N

w¼1

Aðw; dÞ w
N

" #

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � d � R � Eb

No

r
� �

�
X

1

d¼df

Ad � Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � d � R � Eb

No

r
� �

ð6:25Þ

where Ad is the total information weight of all code words of weight d divided by

the number of information bits per code word, as defined by

Ad ¼
X

N

w¼1

Aðw; dÞw
N

ð6:26Þ

Now, define Nd to be the number of code words of the total weight d and wd to

be their average information weight. Thus,

Nd � wd ¼
X

N

w¼1

A w; dð Þ � w ð6:27Þ

Ad ¼ wd

Nd

N
ð6:28Þ

where Nd

N
is called the effective multiplicity of code words of weight d. Substituting

Eq. (6.28) in Eq. (6.25), we obtain

BERub �
X

1

d¼df

wd

Nd

N
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � d � R � Eb

No

r
� �

: ð6:29Þ
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6.4.2 Upper Bound for Turbo Codes in Rayleigh Fading

Channel

In MRC, the receiver weights the incoming signals on antennas by the respective

conjugates of the complex fading random variables. The pair-wise bit error prob-

ability with MRC in a Rayleigh fading channel for BPSK case is given by [10]

Pd;MRC ¼ 1

p

Z

p
2

h¼0

sin2h

sin2hþ Eb

No

" #Ld

dh ð6:30Þ

Recalling the result in [11]

1

p

Z

p
2

h¼0

sin2h

sin2hþ c

� �n

dh ¼ p Pe½ �n
X

n�1

k¼0

n� k þ 1

k

� �

1� Peð Þk ð6:31Þ

where

Pe ¼
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffi

Eb

No

1þ Eb

No

v

u

u

t

0

@

1

A

Using Eq. (6.31) in Eq. (6.30), in closed form, we obtain

Pd;MRC ¼ Pe½ �Ld
X

Ld�1

k¼0

Ld � 1þ k

k

� �

1� Peð Þk ð6:32Þ

Then, the upper bound on the BER performance of turbo codes in Rayleigh

fading channel with MRC diversity can be expressed as

BERRayleigh;MRC �
X

1

d¼df

AdPd;MRC ð6:33Þ

If there is no diversity, i.e., L = 1, the upper bound on the BER performance of

turbo codes in Rayleigh fading channel can be expressed as

BERRayleigh �
X

1

d¼df

AdPd ð6:34Þ
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where

Pd ¼ Pe½ �d
X

d�1

k¼0

d � 1þ k

k

� �

1� Peð Þk

Example 6.7 Consider a turbo encoder using the following RSC encoder shown in

Fig. 6.26 with free distance 5, plot the upper bound BER versus Eb

No
performance of

the turbo encoder for interleaver length of 100 in AWGN, Rayleigh fading channel

with MRC diversity for L = 2.

Solution The set of coefficients Ad used to compute the bound for interleaver

length of 100 as quoted in [8] are given as follows:

The following MATLAB program is written and used to plot the Eb

No
versus upper

bound BER Performance of the turbo encoder with an interleaver length of 100

(Fig. 6.27).

Fig. 6.26 RSC encoder of Example 6.7

d Ad d Ad

8 0.039881 22 33.31

9 0.079605 23 54.65

10 0.1136 24 91.23

11 0.1508 25 154.9

12 0.1986 26 265.5

13 0.2756 27 455.6

14 0.4079 28 779

15 0.6292 29 1327

16 1.197 30 2257

17 2.359 31 3842

18 4.383 32 6556

19 7.599 33 11221

20 12.58 34 19261

21 20.46 35 33143
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Program 6.3 MATLAB program to compute upper bound BER for different Eb

No
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6.4.3 Effect of Free Distance on the Performance

of the Turbo Codes

The BER performance of turbo codes for ML decoding is upper bounded by

Eq. (6.29). Since the BER performance of the code is dominated by the free

distance term (for d ¼ df ) for moderate and high SNRs, for AWGN channel,

Eq. (6.29) can be written as given below [12]

BERdf ;AWGN 	 wf �
Nf

N
� Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � df � R � Eb

No

r
� �

ð6:35Þ

where Nf and wf correspond to Nd and wd for d ¼ df .
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Fig. 6.27 Upper bound BER performance of turbo encoder of Example 6.7 with interleaver length

of 100
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BERdf ;Rayleigh 	 wf �
Nf

N
�
X

df�1

k¼0

df � 1þ k

k

� �

1� 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eb

No
R

1þ Eb

No
R

v

u

u

t

0

@

1

A

0

@

1

A

k

ð6:36Þ

For a turbo code considered in [13], the BER performance is evaluated in

AWGN and Rayleigh fading channels with a pseudo-random interleave of length

with 65536 with Nf ¼ 3; df ¼ 6; wf ¼ 2 and a 120� 120 rectangular window

with Nf ¼ 28;900; df ¼ 12; wf ¼ 4.

The following MATLAB program is written and used to evaluate the perfor-

mance in AWGN and Rayleigh fading channels.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

E
b
/N

o
 (dB)

B
E

R

pseudorandom, AWGN

pseudorandom, Rayleigh fading

rectangular, AWGN

rectangular, Rayleigh fading

Fig. 6.28 Free distance asymptotes for turbo codes in AWGN and Rayleigh fading channels with

two different interleavers

6.4 Performance Analysis of the Turbo Codes 201



Program 6.4 MATLAB Program for free distance asymptotes in AWGN and

Rayleigh fading channels for two different interleavers
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The free distance asymptotes for pseudo-random and rectangular interleavers in

AWGN and Rayleigh fading channels obtained from the above MATLAB program

are shown in Fig. 6.28.

From Fig. 6.28, it can be observed that the rectangular window exhibits rela-

tively poor performance. It is due to the fact that the rectangular window has large

effective multiplicity as compared to the effective multiplicity of the pseudo-random

interleaver.

6.4.4 Effect of Number of Iterations on the Performance

of the Turbo Codes

The BER performance of UMTS turbo codes for frame length of 40 is shown in

Fig. 6.29. It can be seen that as the number of iterations increases, there is a

significant improvement in BER performance. However, for certain number itera-

tions, no improvement can be observed. For complexity reasons, in turbo decoding,

4–10 iterations are used.

-6 -5 -4 -3 -2 -1 0 1 2
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E
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Eb/No(in dB)

iteration 2

iteration 4

iteration 1

Fig. 6.29 Effect of number of iterations on the BER performance of turbo codes
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6.4.5 Effect of Puncturing on the Performance of the Turbo

Codes

The BER performance comparison of the unpunctured and the punctured turbo

codes is shown in Fig. 6.30. For this, a turbo encoder is considered that uses RSC

encoders with the generating function.

G ¼ 1 1þD2

1þDþD2

h i

A random interleaver of length 1,000 with odd–even separation is used. An

AWGN channel with BPSK modulation assumed. In the decoding, Log BCJR

algorithm for 3 iterations is used.

From Fig. 6.30, it can be observed that the unpunctured turbo codes give a gain

of about 0.6 dB over the punctured turbo codes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Fig. 6.30 Effect of puncturing on the BER performance of turbo codes
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6.5 Problems

1. For the encoder shown in Fig. 6.31

(a) Find the impulse response

(b) Draw the state diagram

(c) Obtain its equivalent recursive encoder

(d) Find the impulse response of the recursive encoder obtained

(e) Draw the state diagram of the recursive encoder obtained

2. Draw the equivalent RSC encoder of the convolutional encoder with generator

sequences g1 ¼ 1 1 1 1 1½ �; g1 ¼ 1 0 0 0 1½ �
3. For the turbo encoder shown in Fig. 6.14, find the code word for the input

sequence x ¼ f1 1 0 1 0 1 0g. Let the interleaver be f5 3 4 0 6 2 1g
4. For the turbo encoder shown in Fig. 6.9, find the code word for the input

sequence x ¼ f1 1 0 0 1 0 1 0g. Let the interleaver be f7 5 1 2 4 3 6 0g
5. Consider the CDMA2000 standard encoder shown in Fig. 6.32. Find the code

word for the input sequence x ¼ f1 0 1 1 0 0g assuming that the encoders trellis

is terminated. Let the interleaver be f0 3 1 5 2 4g.
6. Decode the following received sequence when the turbo code generated in

Example 6.2 was transmitted over an AWGN channel with unity noise variance

x0ðnÞ p01ðnÞ p01ðnÞ
1.3209 2.4883 −1.3369

0.8367 −2.5583 −3.0404

−1.8629 −0.6555 −1.6638

−2.6356 0.3157 0.1266

−1.0138 0.999 −1.3059

1.4864 0.6762 −1.0409

−2.262 −0.7018 −0.5412

Fig. 6.31 Non-recursive systematic convolutional encoder
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6.6 MATLAB Exercises

1. Write a MATLAB program to construct an EXIT chart for turbo codes.

2. Write a MATLAB program to simulate the performance of unpunctured and

punctured turbo codes.
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Chapter 7

Bandwidth Efficient Coded Modulation

The block codes, convolutional, and turbo codes discussed in the previous chapters

achieve performance improvement expanding the bandwidth of the transmitted

signal. However, when coding is tp being applied to bandwidth limited channels,

coding gain is to be achieved without signal bandwidth expansion. The coding gain

for bandwidth limited channels can be achieved by a scheme called trellis coded

modulation (TCM). The TCM is a combined coding and modulation technique that

increases the number of signals over the corresponding uncoded system to com-

pensate for the redundancy introduced by the code for digital transmission over

band-limited channels. The term “trellis” is due to the fact that the trellis diagram

for the TCM schemes is similar to the trellis diagrams of binary convolutional

codes. In TCM schemes, the trellis branches are labeled with redundant non-binary

modulation signals rather than with binary code symbols. The TCM schemes

employ multilevel amplitude and phase modulation, such as PAM, PSK, DPSK, or

QAM, in combination with a finite-state encoder which governs the selection of

modulation signals to generate coded signal sequences. In the receiver, the received

noisy signals are decoded using soft-decision Viterbi or BCJR decoder.

In the TCM, the “free distance” (minimum Euclidean distance) between the

coded modulation signals exceeds the minimum distance between the uncoded

modulation signals, at the same information rate, bandwidth, and signal power.

The basic principle of the TCM and further descriptions of it were published in

[1–5]; the TCM has seen rapid transition from the research to the practical use in

1984, when the international telegraph and telephone consultative committee

(CCITT) has adopted the TCM scheme with a coding gain of 4 dB for use in the

high-speed voice band modems for 9.6/12.4 kbps standard [4, 6, 7].

The main idea in the TCM is to devise an effective method that perform mapping

of the coded bits into the signal symbols so as to maximize the free distance between

coded signal sequences. A method based on the principle of mapping by set parti-

tioning was developed by Ungerboeck in [1]. This chapter describes the classical
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bandwidth efficient TCM, turbo TCM (TTCM), bit-interleaved coded modulation

(BICM), bit-interleaved coded modulation iterative decoding (BICM-ID), and

comparison of their BER performance.

7.1 Set Partitioning

Set partitioning divides a signal set into the smaller sets with maximally increasing

smallest intra-set distances. Finally, the obtained small signal constellations will be

referred to as the “subsets.” Every constellation point is used only once, and if the

subsets are used with equal probability, then the constellation points all appear with

equal probability. The following two examples illustrate the set partitioning. The

signal constellation is partitioned into the subsets that Euclidean minimum distance

between signal symbols in a subset is increased with the each partition.

Example 7.1 Set partitioning of 4-PSK signal Euclidian distance in a signal con-

stellation is the distance between different points in the constellation diagram with

respect to reference point.

The 4-PSK signal constellation shown in Fig. 7.1 is partitioned as shown in

Fig. 7.2. In the 4-PSK signal set, the signal symbols are located on a circle of radius

1 and having a minimum distance separation of D0 ¼ 2sin p
4

� �

¼
ffiffiffi

2
p

.

Finally, the last stage of the partition leads to 4 subsets and each subset contains

a single signal symbol.

Example 7.2 Set partitioning of 8-PSK signal The 8-PSK signal constellation

shown in Fig. 7.3 is partitioned as shown in Fig. 7.4. In the 8-PSK signal set, the

signal symbols are located on a circle of radius 1 and having a minimum distance

separation of D0 ¼ 2sin p
8

� �

¼ 0:765. The eight symbols are subdivided into two

subsets of four symbols each in the first partition with the minimum distance

between two symbols increases to D1 ¼ 2sin p
4

� �

¼
ffiffiffi

2
p

.

Finally, the last stage of the partition leads to 4 subsets and each subset contains

a single signal symbol.

∆ =2sin =2

∆ =2sin =

0

1

3

2

Fig. 7.1 Signal constellation diagram for the 4-PSK
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7.2 Design of the TCM Scheme

The general structure of a TCM scheme is shown in Fig. 7.5. In an operation,

k information bits are transmitted. The ~k ~k\k
� �

bits are encoded by binary con-

volutional encoder. The encoder output bits are used to select one of the possible

subsets in the partitioned signal set—partition of the signal—while the remaining

2 0

20

1

1

3

0

1

3

2

3

Fig. 7.2 4-PSK set partitioning

∆ =2sin  = 0.765

∆ =2sin =√

∆ =2sin =2
6

7

0

1
2

3

4

5

Fig. 7.3 Signal constellation diagram for the 8-PSK
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∆ =2sin =0.765

∆ =2sin =2

∆ =2sin =√2

Fig. 7.4 8-PSK set partitioning
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k� ~k bits are used to select one of 2m�~m signal symbols in each subset. When
~k ¼ k, all the k information bits are encoded.

In the encoder short designing, Ungerboeck summarized the following rules that

were to be applied to the assigned channel signals.

1. Transmission originating, or merging into any of the same state should receive

signals from the subsets having maximum Euclidean distance between them.

2. Parallel state transitions are assigned the signal symbols separated by the largest

Euclidean distance.

3. All the subsets are to be used with equal probability in trellis diagram.

The following examples illustrate the design of different TCM encoders.

Example 7.3 2-state 4-PSK TCM Encoder A simple 2-state 4-PSK TCM encoder is

shown in Fig. 7.6a. In this encoder, a rate 1=2 convolutional encoder is used in

which both the information bits are encoded. The output of the convolutional

encoder is used to select from among the second level partitions of 4-PSK, wherein

each partition contains only a single signal. Thus, it does not require an uncoded bit

to complete the signal selection process. The two-state trellis diagram of the 4-PSK

TCM encoder is shown in Fig. 7.6b, which has no parallel transitions.

The signal flow graph of the trellis diagram of Fig. 7.6b is shown in Fig. 7.7.

Now, the transfer function can be obtained by using the signal flow graph tech-

niques and Mason’s formula. In the graph, the branch labels superscripts indicate

the weight (SED) of the corresponding symbol of the transition branch in the trellis

diagram.

Signal 

Symbol

k

.

.

.

.

.

.

Signal  

Selection 

within 

Partition

Signal

Partition

Selection

Rate

k (/ k )1+

Convolutional

Encoder
1

2

k

Fig. 7.5 General structure of a TCM scheme
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By using reduction techniques, the above signal flow graph can be simplified as

follows:

Output 

Input 
− 1

4-PSK Constellation 

Mapping

0 0 1 1 
(a)

(b)

0 1 0 1 

0 1 2 3 

Symbol  number

3

1

2

S1     

S0     0

S1     

S0     

Fig. 7.6 a 2-State QPSK TCM encoder. b 2-state QPSK TCM encoder trellis diagram

Y
2

Y
2Y

4

S0 S0S1

Fig. 7.7 Signal flow graph of the trellis shown in Fig. 7.6b
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Thus, the transfer function is given by

Example 7.4 4-State 8-PSK TCM Encoder The Ungerboeck 4-state 8-PSK TCM

encoder is shown in Fig. 7.8a. In this encoder, a rate 1/2 convolutional encoder

partitions the 8-PSK constellation into four subconstellations {(0, 4), (1, 5), (2, 6),

(3, 7)}. The unique two bit output from the convolutional encoder corresponds to a

label assigned to each subconstellation. The output of the convolutional encoder

selects one of the subconstellations, and the uncoded bit selects one of the two

signals in the selected subconstellation.

The four-state trellis diagram of the TCM encoder is shown in Fig. 7.8b. In the

trellis diagram, the states correspond to the contents of the memory elements in the

convolutional encoder of the TCM encoder. The branch labels are the signals

selected from the partitioned subconstellations for transmission associated with the

given state transition. For example, if the convolutional encoder has to move from

state S0 to S1, then only signal 2 or 6 from subconstellation (2, 6) only may be

selected for transmission.

The signal flow graph of the trellis diagram of Fig. 7.8b is shown in Fig. 7.8c.

The transfer function can be obtained by using the signal flow graph techniques and

Mason’s formula.

The various distinct squared intersignal distances are as follows:

D0;1 ¼ 2sin
p

8

� �

¼ 0:7654;D2 0; 1ð Þ ¼ D2 000; 001ð Þ ¼ 0:586

D0;2 ¼ 2sin 2 � p
8

� �

¼ 1:4142;D2 0; 2ð Þ ¼ D2 000; 010ð Þ ¼ 2:000

D0;3 ¼ 2sin 3 � p
8

� �

¼ 1:8478;D2 0; 3ð Þ ¼ D2 000; 011ð Þ ¼ 3:414

D0;4 ¼ 2sin 4 � p
8

� �

¼ 2:0000;D2 0; 4ð Þ ¼ D2 000; 100ð Þ ¼ 4:000

By using the signal flow graph reduction techniques and Mason’s formula, we

obtain the following transfer function.

TðYÞ ¼ 4
ðY4:586 þ Y7:414Þ

1� 2Y0:586 � 2Y3:414 � Y4:586 � Y7:414

Example 7.5 8-State 8-PSK TCM Encoder The Ungerboeck 8-state 8-PSK TCM

encoder is shown in Fig. 7.9a. In this encoder, a rate 2=3 convolutional encoder is

used in which the both information bits are encoded. The output of the
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Fig. 7.8 a 4-State 8-PSK TCM encoder. b 4-state 8-PSK TCM encoder trellis. c Signal flow graph

of the trellis shown in (b)
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convolutional encoder is used to select from among the third level partitions of

8-PSK, wherein each partition contains only a single signal. Thus, it does not

require an uncoded bit to complete the signal selection process.

The 8-state trellis diagram of the 8-PSK TCM encoder is shown in Fig. 7.9b,

which has no parallel transitions.

7.3 Decoding TCM

In general, a subconstellation of the signals is assigned to each branch in the TCM

trellis. The decoding of the TCM is performed using the soft-decision Viterbi

algorithm in two steps.

1. Determine the best signal point within each subset by comparing the received

signal to each of the signals allowed for a branch. The signal closest in distance

to the received signal is considered as the best signal point and the corre-

sponding branch metric is proportional to the distance between the best signal

subset signal point and the received signal.

2. The signal point is selected from each subset and its squared distance is the

signal path through the code trellis that has the minimum sum of squared

distances from the received sequence.

( )x n
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z
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z
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8-PSK

Constellations

Mapping

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7

Symbol number

z
-1

Fig. 7.9 a 8-state 8-PSK TCM encoder. b 8-state 8-PSK TCM encoder trellis
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Fig. 7.9 (continued)
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7.4 TCM Performance Analysis

The performance of a TCM scheme can be evaluated by the following performance

measures.

7.4.1 Asymptotic Coding Gain

The coded system performance improvement relative to the uncoded system is

measured in terms of asymptotic coding gain. The asymptotic coding gain is

defined as follows:

Asymtotic coding gain ¼ Euncoded

Ecoded

� �

d2
f =coded

d2
f =uncoded

 !

ð7:1Þ

where

Euncoded is the normalized average received energy of an uncoded system,

Ecoded is the normalized average received energy of the coded system,

d2
f =uncoded

is the squared minimum free distance of an uncoded system, and

d2
f =coded

is the squared minimum free distance of the coded system

7.4.2 Bit Error Rate

A general lower bound for BER in an AWGN channel is given as follows:

WQ

ffiffiffiffiffiffiffiffiffi

d2f Es

2N0

s0

@

1

A ð7:2Þ

The distance structure is independent of the transmitted sequence for the uniform

TCM and

W ¼ 1

A closed form upper bound on BER can be expressed by

BERUB ¼ TðYÞjY¼expð�ES=4N0Þ ð7:3Þ

7.4 TCM Performance Analysis 219



or in a tighter form as

BERUB ¼ Q

ffiffiffiffiffiffiffiffiffi

d2f Es

2N0

s0

@

1

A � exp
d2f Es

4N0

 !

TðYÞjY¼expð�ES=4N0Þ ð7:4Þ

where TðYÞ is the transfer function.

The following example illustrates the performance of a TCM scheme.

Example 7.6 Consider the following 2-state encoder and the 8-AM constellation to

construct a TCM scheme that provides 2 bits/sec/Hz. Determine the asymptotic

coding gain for the TCM relative to the uncoded 4-AM system

-7          -5          -3          -1 1 3 5 7 (Fig. 7.10).

Solution

Label 0 1 2 3 4 5 6 7

For a 2m-ary AM constellation with the same minimum free distance as BPSK, the

normalized average energy is given by average signal energy

E ¼ 4m � 1ð Þ
m

¼ 43 � 1ð Þ
3

¼ 63

3
¼ 21

or

¼ 1

8
12 þ 32 þ 52 þ 72 þ �1ð Þ2þ �3ð Þ2þ �5ð Þ2þ �7ð Þ2
� �

¼ 21

-7          -5          -3          -1          1          3          5          7

z
-1

0 0 1 1 

0 1 0 1 

0 1 2 3 

Symbol  number

Fig. 7.10 2-state 8-AM TCM encoder
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8-AM Set partitioning (Fig. 7.11)

Trellis Diagram

S0

S1

S0

S1

C2

C1

C3

C0

df =uncoded ¼ 2

df =uncoded ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D
2
0 þ D

2
1

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

22 þ 42
p

¼
ffiffiffiffiffi

20
p

since N-AM signal sets results in

Euncoded ¼
4m � 1ð Þ

3
¼ 42 � 1ð Þ

3
¼ 5

coding gain ¼ Euncoded

Ecoded

� �

d2
f =coded

d2
f =uncoded

 !

¼ 5

21

20

4
¼ 1:19 � 0:76 dB

(-7,-3,1,5)

A0

(-5,-1,3,7)

B1B0

(-3,5)

(2,6)

C2

(-7,1)

(0,4)

C0

(-1,7)

(3,7)

C3

(-5,3)

(1,5)

C1

Fig. 7.11 8-AM set partitioning
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Example 7.7 Evaluate coding gain and the BER performance of a 4-state 4-PSK

TCM with the following Trellis diagram.

The signal flow graph of the trellis diagram of Fig. 7.12 is shown in Fig. 7.13.

Now, by using the signal flow graph reduction techniques and Mason’s formula, the

transfer function can be obtained.

0

2

3

1

3

1

2

0

S3    

S2     

S1     

S0     

S3    

S2    

S1    

S0    

Fig. 7.12 Trellis diagram

1

S0S0 S2

S3

S1

Fig. 7.13 Signal flow graph
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By using reduction techniques, the above signal flow graph can be simplified as

given below

1

Further, the parallel branches with gains Y2 and Y4

1�Y2 can be combined as a single

branch with gain

Y2 þ Y4

1� Y2
¼ Y2 � Y4 þ Y4

1� Y2
¼ Y2

1� Y2
as follows:

Further, the loop can be replaced by a branch with gain

Y2

1�Y2

1� Y2

1�Y2

¼ Y2

1� 2Y2
as follows:
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Thus, the transfer function is given by

TðYÞ ¼ Y4 Y2

1� 2Y2
Y4 ¼ Y10

1� 2Y2

Computation of df (Fig. 7.14)

Since there are np parallel transitions in this trellis, only non-parallel paths are to be

examined to determine minimum free distance of the code. At state S0, the symbol

path 2 is chosen with the SED of 4, from there it leads us to state 1. From state S1,

the symbol path 1 with the SED 2 is taken which takes to state S2. From state S2, we

return to state S0 via the symbol path 2 with SED of 4. There is no other path that

can take us back to state S0 with a smaller total SED.

Hence,

d2f =uncoded ¼ sum of the SEDs of the paths shown in bold

¼ 4þ 2þ 4 ¼ 10:

Asymptotic coding gain of the 4-state 4-PSK TCM

0-1 1

0

2

3

1

3

1

2

0
4

0

2

2

0

4

2

2

Fig. 7.14 Computation of df
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Since BPSK constellation is with antipodal signals +1 and −1 as shown in above

figure. Thus

d2f =uncoded ¼ 4

Hence, the asymptotic coding gain is given by

Asymtotic coding gain ¼ Euncoded

Ecoded

� �

d2
f =coded

d2
f =uncoded

 !

¼ 10

4
¼ 2:5

BER Performance of the 4-state 4-PSK TCM

The transfer function bounded for the BER for the 4-state 4-PSK TCM in an

AWGN channel from Eq. (7.3) is given by

BER ¼ TðYÞjY¼expð�Eb=4N0Þ ¼
Y10

1� 2Y2

	

	

	

	

Y¼expð�Eb=4N0Þ

¼ expð�10Eb=4N0Þ
1� 2expð�2Eb=4N0Þ

The distance structure is independent of transmitted sequence for the uniform

TCM and

w ¼ 1

Since d2f ¼ 10 for the 4-state 4-PSK TCM, the lower bound for BER from

Eq. (7.2) can be written as

BERLB ¼ Q

ffiffiffiffiffiffiffiffi

5Eb

N0

s
 !

The following MATLAB program illustrates the BER performance of 4-state

4-PSK TCM in comparison with uncoded BPSK (Fig. 7.15).
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Program 7.1 MATLAB program for BER performance of 4-state 4-PSK TCM

clear all;clc; 

Eb_N0_dB=[3:1:10]; 

EbN0Lin = 10.^(Eb_N0_dB/10); 

BER_BPSK_AWGN = 0.5* erfc ( sqrt( EbN0Lin ) ) ; 

BER_QPSK_LB = 0.5* erfc ( sqrt(2.5* EbN0Lin ) ) ; 

BER_QPSK =exp(-2.5*EbN0Lin)./(1-2*exp(-0.5*EbN0Lin )) ; 

semilogy(Eb_N0_dB,BER_BPSK_AWGN,'-+') 

hold on 

semilogy(Eb_N0_dB,BER_QPSK ,'-') 

semilogy(Eb_N0_dB,BER_QPSK_LB,'--') 

legend('Uncoded BPSK   ','4-state QPSK TCM ','Lower bound'); 

xlabel('Eb/No (dB)'); 

ylabel('BER'); 
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10
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Eb/No (dB)

B
E

R
Uncoded BPSK

4-state QPSK TCM

Lower bound

Fig. 7.15 BER performance comparison
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Example 7.8 Evaluate coding gain of a 4-state 8-PSK TCM scheme of Example 7.7

Solution

Computation of df
In the Trellis diagram shown in Fig. 7.16, symbols originating from a state are

replaced with their SEDs.

Since there are np parallel transitions in this trellis, both the parallel and the non-

parallel transitions are to be examined to determine the minimum free distance of

the code. The minimum free distance for the parallel transitions is the minimum free

distance for the signals of the partition in the parallel transitions. For this encoder,

the minimum free distance for the parallel transitions is the minimum free distance

among {(0, 4), (1, 5), (2, 6), (3, 7)}.

Hence,

df =parallel ¼ 2

To compute df =parallel, the minimum distance path is found by following from

each state the path with the smallest squared distance but not 0. At state S0, the

symbol path 2 is chosen as it has the SED of 2, from there it leads us to state 1.
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0.586

4

0

2

2

3.414
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0 0

Fig. 7.16 Trellis diagram
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From state 1, the symbol path 1 with the SED of 0.586 is taken which takes to state

S0 via the symbol path 2 with SED of 2.

There is no other path that can take us back to state S0 with a smaller total SED.

Thus, the total minimum squared Euclidean distance (MSED) is 2þ 0:586þ 2 ¼
4:586 and hence the df =nonparallel ¼

ffiffiffiffiffiffiffiffiffiffiffi

4:586
p

¼ 2:14. The minimum free distance for

the TCM encoder is the minimum of df =parallel and df =nonparallel. Thus, the

df =coded ¼ min df =parallel; df =nonparallel
� �

¼ min 2; 2:14ð Þ ¼ 2:

The minimum free distance for the uncoded 4-PSK is
ffiffiffi

2
p

and so the d2f ¼ 2 for

the uncoded 4-PSK. Therefore, the asymptotic coding gain for the 4-state 8-PSK

TCM is given by

coding gain ¼ 10 log10
d2
f =coded

d2
f =uncoded

 !

¼ 10 log10
4

2
¼ 3:01 dB

Example 7.9 Evaluate coding gain of the 8-state 8-PSKTCM scheme of Example 7.5.

Solution

Computation of df
In the Trellis diagram shown in Fig. 7.17, symbols originating from a state are

replaced with their SEDs. Ungerboeck encoder of Example 7.8, we have to com-

pute df of this code in order to determine the asymptotic coding gain. The minimum

distance path is found by following from each state the path with the smallest

squared distance but not 0. At state S0, the symbol path 6 is chosen as it has the

SED of 2, from there it leads us to state S3. From state S3, the symbol path 7 with

the SED of 0.586 is taken which takes to state S6: From state S6, we return to state

S0 via the symbol path 6 with SED of 2.

There is no other path that can take us back to state S0 with a smaller total SED.

Thus, the totalminimum squared Euclidean distance (MSED) is 2 + 0.586 + 2= 4.586,

and hence, the d2f ¼ 4:586 for the coded system. The minimum free distance for

uncoded 4-PSK is
ffiffiffi

2
p

and so the d2free ¼ 2 for the uncoded 4-PSK. Therefore, the

asymptotic coding gain for the 8-state 8-PSK TCM is given by

coding gain ¼ 10 log10
d2
f =coded

d2
f =uncoded

 !

¼ 10 log10
4:586

2
¼ 3:6 dB
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Fig. 7.17 Trellis diagram for Ungerboeck encoder shown in Fig. 7.16 replacing symbols with

their SEDs
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7.4.3 Simulation of the BER Performance of a 8-State 8-PSK

TCM in the AWGN and Rayleigh Fading Channels

Using MATLAB

The following MATLAB Program 7.2 and MATLAB functions given in Appendix

A are used to simulate the BER performance of Ungerboeck 8-State 8-PSK TCM of

Fig. 7.18 in both the AWGN and Rayleigh fading channels.

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
10

-6

10
-5

10
-4
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-3
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-2

10
-1

Eb/No in dB

B
E

R

Uncoded QPSK  Rayleigh

Uncoded QPSK AWGN

8-state 8-PSK Rayleigh

8-state 8-PSK AWGN

Fig. 7.18 BER performance
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Program 7.2

%MATLAB program to simulate BER performance of 8-state 8_PSK TCM in 

AWGN%and Rayleigh fading channels 

clear all; clc; close all; 

global n k L  nis M N S smap nl bps;     global Cw Nes Prs 

n=2;k=3;L=3;nis=512;  

[Cw, Nes, Prs]=genpoly(n,k,L);%Generation of Trellis% 

%Cw=codeword,Prs=previous state,Nes=next state  

M=bitshift(1,n); N=nis; S=bitshift(1,L);      [smap,bps,nl] = PSKmodSP(k); 

Ec=1; EbN0dB=5; i=1; EbN0dB_stop=10; 

nib=nis*n;% number of information bits 

ncb=nis*k;% number of coded bits 

    while (EbN0dB <= EbN0dB_stop) 

     errorsa=0; bitsa=0;  errorsr=0; 

     bitsr=0; frame=0;EbN0=10^(EbN0dB/10); 

            while (errorsa < 1000 && frame<=100)  

            Eb=Ec/((nib/ncb)*bps); %Eb =energy per bit 

            N0=Eb*(EbN0^-1);%N0=variance 

            inb=round(rand(1,nib));%inb=input bits 

symbols =bits2symbol(n,nis,inb); 

[Os,Ts]=tcmenc(symbols,Cw,Nes,smap);%Os=output sym-

bols,Ts=Transmitted signal  

Rsa=Ts+ sqrt(N0/2)*(randn(size(Ts))+1i*randn(size(Ts))); %Rs=received 

signal in AWGN channel

Rsr=Ts+sqrt(1/2)*0.3635*(randn(size(Ts))+1i*randn(size(Ts)))+ 

sqrt(N0/2)*(randn(size(Ts))+1i*randn(size(Ts))); %Rs=received signal Ray-

leigh fading  channel 

         Pra=demodsymbols(Rsa,N0);Prr=demodsymbols(Rsr,N0); 

        decbitsa=bitsdecode(Pra);%decoded bits for AWGN 

        decbitsr=bitsdecode(Prr);%decoded bits for Rayleigh 

        errora=sum(decbitsa ~= inb);errorsa=errorsa+errora; 

        errorr=sum(decbitsr ~= inb);errorsr=errorsr+errorr;    

        bitsa=bitsa+sum(decbitsa ~= inb)+sum(decbitsa == inb); 

        bitsr=bitsr+sum(decbitsr ~= inb)+sum(decbitsr == inb);frame=frame+1;   

    end 

         EbN0dB=EbN0dB+1; 

         berawgn(i)=errorsa/bitsa; berray(i)=errorsr/bitsr; i=i+1;      end 

figure, 

EbN0dB=[ 5 6 7 8 9 10]; 

berqpskawgn=BERAWGN(EbN0dB, 'psk', 4,'nondiff' ); 

berqpskfad=BERFADING(EbN0dB, 'psk', 4,1 ); 

semilogy(EbN0dB,berqpskfad ,'-*') 

hold on 

semilogy(EbN0dB,berqpskawgn,'-+') 

semilogy(EbN0dB,berray,'-v') 

semilogy(EbN0dB,berawgn,'-d') 

legend('Uncoded QPSK  Rayleigh ','Uncoded QPSK AWGN ','8-state 8-PSK 

Rayleigh','8-state 8-PSK AWGN');   xlabel('Eb/No in dB');ylabel('BER'); 
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The BER performance obtained by using the programs for frame length of 512

bits for both the AWGN and the Rayleigh fading channels is shown in Fig. 7.18.

The performance of the TCM in the AWGN channel is much better than the

performance in the Rayleigh fading channel. The uncoded QPSK BER performance

is also shown in Fig. 7.18 for both AWGN and Rayleigh fading channels, which

will serve as reference to compare the performance of the coded modulation scheme

in terms of coding gain.

7.5 Turbo Trellis Coded Modulation (TTCM)

Robertson has introduced the concept of the “Turbo Trellis Coded Modulation

(TTCM)” in [8] by using two recursive TCM encoders in parallel concatenation.

The system overview for TTCM is shown in Fig. 7.19.

7.5.1 TTCM Encoder

TTCM encoder contains the parallel concatenation of two TCM encoders as shown

in Fig. 7.20. Let the size of the interleaver be N. The number of modulated symbols

per block is N � n, with n ¼ D=2, where D is the signal set dimensionality. The

number of information bits transmitted per block is N � m. The encoder is clocked

in steps of n � T . Where T is the symbol duration of each transmitted 2 mþ1ð Þ=nð Þ-ary
symbol. In each step, m information bits are input and n symbols are transmitted,

yielding a spectral efficiency of m=n bits per symbol usage. The first TCM encoder

normally operates with the original bit sequence while the second encoder works

with the interleaved version of the input bit sequence.

Channel

TTCM  

Encoder
Interleaver

Signal 

Mapper

TTCM  

Decoder

De-

interleaver

Signal 

Demapper

Fig. 7.19 System overview for TTCM
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A simple example will now serve to clarify the operation of the TTCM encoder

for the case of the following 8-state 8-PSK TCM with code rate 2/3 used in the

TTCM encoder structure depicted in Fig. 7.21. A sequence of length 6 information

bit pairs (00, 01, 11, 10, 00, 11) is encoded by the first encoder to yield the 8-PSK

sequence (0, 2, 7, 5, 1, 6). The information bits are interleaved on a pair wise basis

using a random interleaver (3, 6, 5, 2, 1, 4) and encoded again into the sequence

(6, 7, 0, 3, 0, 4) by the second encoder. We de-interleave the second encoder’s

output symbols to ensure that the ordering of the two information bits partly

defining each symbol corresponds to that of the first encoder, i.e., we now have the

sequence (0, 3, 6, 4, 0, 7). Finally, we transmit the first symbol of the first encoder,

TCM Encoder

Interleaver

TCM Encoder

Deinterleaver

Fig. 7.20 TTCM encoder structure

8PSK

Constellation

Mapping

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7

Symbol number

Fig. 7.21 TCM encoder used in TTCM encoder structure
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the second symbol of the second encoder, the third of the first encoder, the fourth

symbol of the second encoder, and so on (0, 3, 7, 4, 1, 7). Thus, the transmitted

signal will be of the symbols (0, 3, 7, 4, 1, 7).

7.5.2 TTCM Decoder

A block diagram of turbo decoder is shown in Fig. 7.22. The TTCM decoder is

much similar to that of binary turbo codes, except the difference in the nature of the

information passed from one decoder to other decoder, respectively, and the

treatment of the very first decoding step. In symbol-based non-binary TTCM

scheme, the systematic bit as well as the parity bits are transmitted together as in the

form of complex enveloped symbol and cannot be separated from the extrinsic

components, since the noise and the fading that effect the parity components will

also affects the corresponding systematic components. Hence, in TTCM, the

symbol-based information can be split into two components:

1. The a-priori component of the non-binary symbol provided by the alternative

decoders.

2. The inseparable extrinsic information as well as the systematic components of

the non-binary symbol.

In the first step of TTCM decoding, the received symbols are separated into two

different symbols such that upper decoder receives only the symbols encoded by the

upper encoder and vice versa for the second decoder. Next, based on log-based

BCJR algorithms, each decoder produces its symbol-based probabilities and gen-

erates a priori and extrinsic information. Next to make sure that each of the decoder

does not receive the same information more than once, the decoders provides the

corresponding a posteriori which is subtracted with incoming a priori information.

By the random interleavers, the extrinsic information is then interleaved/de-inter-

leaved to become a priori information and made to iterate between them. Then, a

posteriori information is de-interleaved from the decoder-2 and uses the hard

decision for selecting the maximum a-posteriori probability associated with the

information word during the final decoding. In the first iteration, the a priori input of

the first decoder is initialized with the missing systematic information. Details of the

iterative decoder computations are given in the paper by [13].

7.5.3 Simulation of the BER Performance of the 8-State

8-PSK TTCM in AWGN and Rayleigh Fading Channels

The schematic for the TTCM is illustrated in Fig. 7.20. The 8-state 8-PSK TCM

encoder shown in Fig. 7.21 is used in this scheme for both the AWGN and Rayleigh

fading channels. The source here will be producing some random information bits,
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which is then encoded by one of the respective encoders and consecutively inter-

leaved by random interleavers. The interleaved bits/symbols are then modulated

according to symbol rule for each of the corresponding modulation schemes. The

channel discussed here for the coded modulation schemes is that of the AWGN and

Rayleigh-distributed flat fading.

Output m bits

Per step2
m
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*
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Fig. 7.22 TTCM decoder structure [from Robertson and Worz (1998); 9© 1998 IEEE.]
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The relationship between AWGN and Rayleigh fading channel can be expressed

as follows:

yt ¼ atxt þ nt ð7:5Þ

where xt is the transmitted discrete signal and yt is received signal. at is the

Rayleigh-distributed fading having an expected squared value of E a2t
� �

, and nt is

the complex AWGN having a noise variance of No=2 per dimension.

For an AWGN channel at ¼ 1. The receiver side consists of demodulator or

de-mapper followed by a de-interleaver and a TCM or TTCM decoder, which has

been explained in the previous chapter. A comparison of the BER performance of

8-state 8PSK TTCM in the AWGN and Rayleigh fading channel is shown in

Fig. 7.23.

A comparison of the BER performance of 8-state 8-PSK TCM and 8-state

8-PSK turbo TCM in AWGN channel is shown in Fig. 7.24.

An additional coding gain of about 1.7 dB has been achieved by the use of a

turbo TCM compared to the conventional TCM, at error rates in the vicinity of

10−4. This means that turbo TCM achieves a performance close to the Shannon

information capacity on an AWGN channel.
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Fig. 7.23 Comparison of the BER performance of the 8-state 8-PSK TTCM in AWGN and

Rayleigh fading channel
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7.6 Bit-interleaved Coded Modulation

Bit-interleaved coded modulation (BICM) was the idea proposed by Zehavi [9] in

order to improve the diversity order of TCM scheme. Zehavi’s idea was to render

the code’s diversity equal to that smallest number of different bits by employing the

bit-based interleaving as shown in Fig. 7.25. The bit-based interleaving purpose is:

Fig. 7.24 Comparison of the BER performance of 8-state 8-PSK TCM and 8-state 8-PSK turbo

TCM in AWGN channel
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Fig. 7.25 BICM principle
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• To maximize the diversity order of the system and to disperse the bursty error

introduced by the correlated fading channel.

• To render the bit with respect to the Transmitted symbol uncorrelated or

independent of each other.

7.6.1 BICM Encoder

The BICM encoder as shown in Fig. 7.26 uses Paaske’s non-systematic eight-state

code [10] of a rate 2/3 having a free bit-based hamming distance of four for

optimum performance over Rayleigh fading channels. Initially, all the three shift

registers contents are set to zero. After the bits are encoded, the each encoded bits

will be interleaved by three individual parallel random interleavers of the length

equal to each incoming coded bits resulting in a binary vector. These groups of

three bits are then mapped to the 8-PSK signal set according to that of Gray

Mapping.

The content of the three memory elements represents the state of the encoder at

an instant. Denoting the state by S ¼ ðs2s1s0Þ as shown in Fig. 7.27, there are eight

possible states S0 to S7.

Figure 7.28 shows the trellis diagram with all possible transitions for the encoder

shown in Fig. 7.27.

The two-bit information b1 and b2 the encoded code word and next states is

given by

s0 ¼ b1; s1 ¼ s2; s2 ¼ b2 ð7:6Þ

Convolutional Encoder

Bit 1

Bit 2

Bit 0

Bit 1

Bit 2
Interleaver

Interleaver

Interleaver

8-PSK 

Modu-

lator

Fig. 7.26 BICM Encoder with Paaske’s non-systematic convolutional encoder
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C0 ¼ b1 � s1; C1 ¼ b2 � s0; C2 ¼ b1 � s0 � s1 � s2 � b2 ð7:7Þ

for the given set of the information bits b1 and b2; all possible combinations of the

code words, present, and next states are tabulated in Table 7.1.

7.6.2 BICM Decoder

The BICM decoder is shown in Fig. 7.29. The received faded noisy signal will be

demodulated into six-bit metric associated with three bit positions, each having

binary values of 0 and 1, from each received symbol. These bit metrics are then de-

interleaved by the three independent bit de-interleavers to form the estimated code

words. Then, the BCJR decoder is invoked for decoding these code words to

generate the best possible estimate of the original information bits.

7.7 Bit-interleaved Coded Modulation Using Iterative

Decoding

Li and Ritcey [11, 12] have proposed a new scheme of bit-interleaved coded

modulation using iterative decoding for further improvement of Zehavi’s BICM

scheme. The BICM-ID employs set partitioning signal labeling system as that of

Ungerboeck TCM and introduces soft-decision feedback from the decoder’s output

to the de-mapper/demodulator input to iterate between them. This is advantageous,

since it improves the reliability of the soft information passed to the de-mapper/

demodulator at each iteration.

Fig. 7.27 Paaske’s non-systematic convolutional encoder
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7.7.1 BICM-ID Encoder and Decoder

The BICM-ID’s encoder is similar to that BICM encoder explained in Fig. 7.26.

The BICM-ID’s decoder is almost similar to that of the BICM’s encoder except that

the iterative process is used to achieve global optimum through a step-by-step local

search.

00

11

22

33

55

44

77

66

00

01

10

11

Fig. 7.28 Trellis diagram of the encoder shown in Fig. 7.27
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Figure 7.30 shows the BICM-ID decoder. At the initial step, the received signal r

is demodulated and generates the extrinsic information of the coded bits P �c;Oð Þ
which is interleaved by corresponding de-interleavers to become the a priori

information P c; Ið Þ to the log-based BCJR decoders to generate a posteriori bit

probabilities for the information and the coded word.

Table 7.1 Code word table for the Paaske’s 8-state convolutional encoder shown in Fig. 7.27

Present

states

s2s1s0ð Þ

Information bits

00 01 10 11

Next

state

Code

word

Next

state

Code

word

Next

state

Code

word

Next

state

Code

word

000 000 000 001 101 100 110 101 011

001 000 110 001 011 100 000 101 101

010 000 101 001 000 100 011 101 110

011 000 011 001 110 100 101 101 000

100 010 100 011 001 110 010 111 111

101 010 010 011 111 110 100 111 001

110 010 001 011 100 110 111 111 010

111 010 111 011 010 110 001 111 100

Estimate of 

information 

bit sequence

Channel 

Received 

faded noisy 

signal

Channel 

BCJR

Decoder

Deinterleaver

Deinterleaver

Deinterleaver

8-PSK 

DeMapper

Fig. 7.29 BICM decoder

r

Interleaver 

Deinterleaver Demodulator BCJR

Decoder

Fig. 7.30 BICM-ID
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On the second pass the extrinsic, a posteriori vectors are interleaved as a priori

information to the demodulator assuming that all the bits are independent of each

other (by a design of a good interleaver) and will again iterate the above-said steps

until the final step is reached. The total a posteriori probabilities of the information

bits can be computed to make the hard decisions at the output of the decoder after

the each iteration.

The SISO channel decoder uses the MAP algorithm similar to decoding of turbo

codes; here, the demodulator and the channel decoder exchange the extrinsic

information of the coded bits P �c;Oð Þ and P c;Oð Þ through an iterative process. After
being interleaved, P �c;Oð Þ and P c;Oð Þ become a priori information P c; Ið Þ and

P �c; Ið Þ at the input of the BCJR decoder and the demodulator, respectively.

7.7.2 Simulation of the BER Performance of 8-State 8-PSK

BICM and BICM-ID in AWGN and Rayleigh Fading

Channels

Simulations are carried out for BICM and BICM-ID with the 8-state 8-PSK

encoders. The interleavers used here are three parallel independent random inter-

leavers. The BER performance of BICM in an AWGN channel for three parallel

512 bits interleavers and three parallel 3,000 bits interleavers is shown in Fig. 7.31.
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BICM with 3-parallel 512 bit interleaver

BICM with 3-parallel 3000 bit interleaver

Fig. 7.31 BER performance of BICM in an AWGN channel
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Fig. 7.32 BER performances of BICM and BICM-ID in AWGN channel
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Fig. 7.33 BER performance of BICM and BICM-ID in Rayleigh fading channel
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From Fig. 7.31, it is observed that the BER performance of BICM does not sig-

nificantly depends on the frame length. The BER performance of BICM and BICM-

ID (with 2 iterations and 4 iterations) in an AWGN channel for three parallel 512

bits interleavers is shown in Fig. 7.32. It is seen from Fig. 7.32 that the BER

performance improves with the increased number of iterations. The BER perfor-

mance of BICM and BICM-ID (with 4 iterations) in Rayleigh fading channel for

three parallel 1,000 bits interleavers is shown in Fig. 7.33.

7.8 Problems

1. Obtain the set partition for 16 QAM.

2. Draw the Trellis diagram for the following 16-state 8-PSK TCM encoder and

find the asymptotic coding gain.

( )

8-PSK 

Constellation 

Mapping

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7

Symbol  number

3. Compute the output symbols of the 8-state 8-PSK TTCM encoder shown in

figure for the input information bit pairs {00, 01, 11, 10, 00, 11}. Let the

interleaver be {3, 6, 5, 2, 1, 4}.

4. Construct the schematic diagram for the 8-state 16-QAM TTCM encoder.
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Appendix A

function [Codeword,Nextstate, Previousstate]= genpoly(k,n,L) 

%Init the shift register for the TCM

L=L+1;      cpoly=getgenpoly(k,L-1); 

H=zeros(k+1,L);   K=zeros(1,k+1);   D=zeros(1,L); 

Codeword=zeros(2^(L-1),2^k);    Nextstate=zeros(2^(L-1),2^k); 

Previousstate=zeros(2^(L-1),2^k);    h=0; 

for i=1:L 

h=mod(h,3); 

if (h==0) 

for m=1:k+1 

            K(1,m)=mod(cpoly(1,m),10);  cpo-

ly(1,m)=floor(cpoly(1,m)/10);

end; end

    h=h+1; 

for m=1:k+1 

        H(m,i)=mod(K(1,m),2);   K(1,m)=floor(K(1,m)/2);     end;end

if (H(1,1)~=1) 

    error('TCM: the feedback poly is inacceptable'); 

end

for s=1:2^(L-1) 

    h=s-1; 

for i=1:L-1 

        D(1,i) = mod(h,2);         h = floor(h/2);    end

for m=1:2^k 

        h=m-1; 

for i=2:k+1 

           K(1,i) = mod(h,2);     h=floor(h/2);  end

        h=D(1,1); 

for i=2:k   

            h =  mod((h+ K(1,i)*H(i,1)),2);        end

        Codeword(s,m) = 2*(m-1) + h; 

        K(1,1) = h;       c = 1;Nextstate(s,m) = 0;    %///* compute new state */  

for j=1:L-1 

%/* bit from previous reg. */

if(j < (L-1)) 

                h=D(1,j+1); 

else

                h=0;    end

for i=1:k+1                                    % /* input and feedback bits */

                h = mod(h +K(1,i)*H(i,j+1),2);   end

            Nextstate(s,m)=Nextstate(s,m)+(h*c);            %/* add to state */

            c=c*2;   end; end; end

for i=1:2^(L-1) %/Compute Pevious State/

for j= 1:2^k 

        Previousstate((Nextstate(i,j)+1),j)=(i-1);   end; end
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function [GenPoly] = getgenpoly(k,L) 

switch(k) 

case 1 

switch (L) 

case 1 

                    GenPoly(1,1) = 1;  GenPoly(1,2) = 2;                      

case 3 

                     GenPoly(1,1) = 13;  GenPoly(1,2) = 6;         

case 4 

                      GenPoly(1,1) = 23;  GenPoly(1,2) = 6;         

case 6 

                     GenPoly(1,1) = 117;  GenPoly(1,2) = 26;       

case 7 

                     GenPoly(1,1) = 217;  GenPoly(1,2) = 110;                     

case 8 

                     GenPoly(1,1) = 427;  GenPoly(1,2) = 230;       

case 9 

                     GenPoly(1,1) = 1017;  GenPoly(1,2) = 120;      

otherwise

                    error('no generator for such code yet for 4QAM'); 

end

case 2 

switch(L)  

case 3 

                     GenPoly(1,1) = 11;  GenPoly(1,2) = 2; GenPoly(1,3) = 4;             

case 4 

                     GenPoly(1,1) = 23;  GenPoly(1,2) = 2; GenPoly(1,3) = 10;           

case 6 

                    GenPoly(1,1) = 103;  GenPoly(1,2) = 30; GenPoly(1,3) = 66;        

case 7 

                    GenPoly(1,1) = 277;  GenPoly(1,2) = 54; GenPoly(1,3) = 122;      

case 8 

                    GenPoly(1,1) = 435;  GenPoly(1,2) = 72; GenPoly(1,3) = 130;      

otherwise

                    error('no generator for such code yet for 8 PSK');           

end

end

end

function [smap,bps,nl] =PSKmodSP(varargin) 

        n=varargin{1}; 

    nl=bitshift(1,n); 

    M=nl; 

    smap=zeros(1,nl); 

    bps=n; 

for j=1:M 

            smap(1,j)=complex((cos(2*pi*(j-1)/M)),(sin(2*pi*(j-1)/M))); 

end
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function [ symbols ] = bits2symbol(word_length,block_lenght,bits_seq) 

    N=block_lenght*word_length; 

    symbols=zeros(1,block_lenght); 

if (N ~= length(bits_seq)) 

        error('bits_seq_to_symbol: check bits_seq.length()'); 

end

    k=1; 

for j=1:block_lenght 

for i=1:word_length 

            symbols(1,j)= symbols(1,j)+ (bits_seq(1,(k))*bitshift(1,(i-1))); 

            k=k+1; 

end

end

end

function [ Output_symbols,Tx_signals ] = tcmenc(symbols,Codeword, 

Nextstate,Smap) 

        Output_symbols=zeros(1,length(symbols)); 

        s=1; 

for i=1:length(Output_symbols) 

        m=symbols(1,i)+1; 

        Output_symbols(1,i)=Codeword(s,m); 

        s=Nextstate(s,m)+1; 

end

      Tx_signals=zeros(1,length(Output_symbols)); 

for i=1:length(Tx_signals) 

        Tx_signals(1,i)=Smap(Output_symbols(1,i)+1); 

end

end

function [ Pr ] = demodsymbols(varargin) 

global M N smap nl nis; 

        recevied_signals= varargin{1}; 

    sigma= varargin{2}; 

%Channel Matrix

    Pr=zeros(N,2*M); 

for k=1:nis 

for i=1:nl 

dist=hypot((real(recevied_signals(1,k))- real(smap(1,i))), (imag (rec-

vied_signals(1,k))- imag(smap(1,i)))); 

            Pr(k,i)=-(dist*dist)/(sigma); 

end

end

end
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function [ b_decoded_bits ] = bitsdecode(Pr) 

global M N S Cw Nes Prs MINF Interleave_mode_in;      

   MINF=-100000; %// define Minimum Log probability (-infinity)

    Apr=zeros(N,M); Apo=zeros(N,M);  OPr=zeros(N,2*M); Ip1=zeros(S,M,N);   

if (strcmp(Interleave_mode_in,'ON')) 

         y=de_interleave(Pr); Pr=y;   end

for j=1:N 

for m=1:M 

            Apr(j,m)=-log(M);      for i=1:S 

                    Ip1(i,m,j)=Pr(j,Cw(i,m)+1);      end; end; end

    Alpha=zeros(N+1,S+1);Beta=zeros(N+1,S+1);   for i=2:S 

        Alpha(1,i)=MINF; %/* compute Alpha*/ end

for k=2:(N+1) 

        max=MINF;   for i=1:S 

            Alpha(k,i)=jacobianlog(Alpha(k-1,Prs(i,1)+1) + Ip1(Prs(i,1)+1,1,(k-

1))+Apr(k-1,1),Alpha(k-1,Prs(i,2)+1) + Ip1(Prs(i,2)+1,2,(k-1))+Apr(k-1,2));       

for m=3:M 

            Alpha(k,i)=jacobianlog(Alpha(k,i),Alpha((k-

1),Prs(i,m)+1)+Ip1(Prs(i,m)+1,m,(k-1))+Apr(k-1,m));  end

if (max < Alpha(k,i)) 

                max=Alpha(k,i);             end; end

for i=1:S 

            Alpha(k,i)=Alpha(k,i)-max; 

end end for i=1:S 

        Beta(N+1,i)=0; %/* compute beta */

end for k=N:-1:1 

        max=MINF;for i=1:S 

         Beta(k,i)=jacobianlog(Beta(k+1,Nes(i,1)+1) + 

Ip1(i,1,k)+Apr(k,1),Beta(k+1,Nes(i,2)+1) + Ip1(i,2,k)+Apr(k,2));      

for m=3:M 

            Beta(k,i)=jacobianlog(Beta(k,i),Beta(k+1,Nes(i,m)+1)+Ip1(i,m,k)+Apr(k,m)); 

end

if (max < Beta(k,i)) 

                    max=Beta(k,i);         end; end

for i=1:S 

                Beta(k,i)=Beta(k,i)-max; 

end end %/* compute apo */

for k=1:N 

          max=MINF; max_QPr=MINF; 

for m=1:(2*M) 

              OPr(k,m)=MINF; 

End for m=1:M 

              Apo(k,m)=MINF; for i=1:S 

                  abc=Alpha(k,Prs(i,m)+1)+ Beta(k+1,i)+Ip1(Prs(i,m)+1,m,k);

Apo(k,m)=jacobianlog(Apo(k,m),abc); 

OPr(k,Cw(Prs(i,m)+1,m)+1)=jacobianlog(OPr(k,Cw(Prs(i,m)+1,m)+1),abc+Apr(k,m

)); 

end

              Apo(k,m)=Apo(k,m)+Apo(k,m); if (max < Apo(k,m)) 

                max=Apo(k,m); 

end end

for m=1:M 

              Apo(k,m)=Apo(k,m)- max; 

end end
decoded_symbols=decode_symbols(Apo)   

b_decoded_bits=symbol2bits(decoded_symbols); end
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function [ r ] = jacobianlog( x,y ) 

%/*------ jacobian logarithm ------------------ */

if (x > y) 

        r=x + log (1 + exp(y-x)); 

else

        r=y + log (1 + exp(x-y)); 

end

end

function [ output_symbols ] = decode_symbols(Apo) 

global N M   

    output_symbols=zeros(1,N);   

for k=1:N 

        i=0; 

        max=Apo(k,1); 

for m=2:M 

if (Apo(k,m) > max) 

                max=Apo(k,m); 

                i=m-1; 

end

end

        output_symbols(1,k)=i; 

end

end

function [ bits ] = symbol2bits( symbols)       

global n;            

        N=n*length(symbols); 

        bits=zeros(1,N);                 

if(N ~= length(bits))  

            msgbox(N,length(bits)) 

end

        h=1; 

for j=1:length(symbols) 

for i=1:n 

                bits(h)=bitand(bitshift(symbols(1,j),-(i-1)),1); 

                h=h+1; 

end

end

end
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Chapter 8

Low Density Parity Check Codes

Low density parity check (LDPC) codes are forward error-correction codes,

invented by Robert Gallager in his MIT Ph.D. dissertation, 1960. The LDPC codes

are ignored for long time due to their high computational complexity and domi-

nation of highly structured algebraic block and convolutional codes for forward

error correction. A number of researchers produced new irregular LDPC codes

which are known as new generalizations of Gallager’s LDPC codes that outperform

the best turbo codes with certain practical advantages. LDPC codes have already

been adopted in satellite-based digital video broadcasting and long-haul optical

communication standards. This chapter discusses LDPC code properties, con-

struction of parity check matrix for regular and irregular LDPC codes, efficient

encoding and decoding of LDPC codes, and performance analysis of LDPC codes.

8.1 LDPC Code Properties

LDPC code is a linear error correction code that has a parity check matrixH, which is

sparse, i.e., with less nonzero elements in each row and column. LDPC codes can be

categorized into regular and irregular LDPC codes. When the parity check matrix

Hðn�kÞ�k has the same number wc of ones in each column and the same number wr of

once in each row, the code is a regular wc;wrð Þ. The original Gallager codes are

regular binary LDPC codes. The size of H is usually very large, but the density of

nonzero element is very low. LDPC code of length n can be denoted as an

n;wc;wrð Þ LDPC code. Thus, each information bit is involved with wc parity checks,

and each parity check bit is involved with wr information bits. For a regular code, we

have n� kð Þwr ¼ nwc, thus wc\wr. If all rows are linearly independent, the code

rate is
wr�wcð Þ
wr

; otherwise, it is k=n. Typically, wc � 3 a parity check matrix

with minimum column weight wc will have a minimum distance dmin �wc þ 1:
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When wc � 3, there is at least one LDPC code whose minimum distance dmin grows

linearly with the block length n [1]; thus, a longer code length yields a better coding

gain. Most regular LDPC codes are constructed with wc and wr on the order of 3 or 4.

8.2 Construction of Parity Check Matrix H

8.2.1 Gallager Method for Random Construction

of H for Regular Codes

In this method, the transpose of regular (n;wc;wrÞ parity check matrix H has the

form

HT ¼ HT
1 ;H

T
2 ; . . .. . .;H

T
wc

h i

ð8:1Þ

The matrix H1 has n columns and n=wr rows. The H1 contains a single 1 in each

column and contains 1s in its ith row from column ði� 1Þwr þ 1 to column iwr.

Permuting randomly the columns of H1 with equal probability, the matrices H2 to

Hwc
are obtained.

The parity check matrix for n ¼ 20;wc ¼ 3;wr ¼ 4ð Þ code constructed by

Gallager [1] is given as

H ¼

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð8:2Þ

The following MATLAB program can be used to generate Gallager regular

parity check matrix H with different code rates.
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Program 8.1 MATLAB program to generate Gallager regular parity check matrix

8.2.2 Algebraic Construction of H for Regular Codes

The construction of the parity check matrix H using algebraic construction as

follows [2, 3]. Consider an identity matrix Ia where a[ wc � 1ð Þ wr � 1ð Þ and

obtain the following matrix by cyclically shifting the rows of the identity matrix Ia
y one position to the right.

A ¼

0 1 0 0 � � � � � � 0

0 0 1 0 � � � � � � 0

0 0 0 1 � � � � � � 0

0 0 0 0 � � � � � � 1

1 0 0 0 � � � � � � 0

2

6

6

6

6

4

3

7

7

7

7

5

ð8:3Þ
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Defining A0 ¼ Ia the parity check matrix H can be constructed as

H ¼

A0 A0 A0 . . . A0

A0 A1 A2 . . . A wr�1ð Þ

A0 A2 A4 . . . A2 wr�1ð Þ

. . .

A0 A wc�1ð Þ A2 wc�1ð Þ . . . A wc�1ð Þ wr�1ð Þ

2

6

6

6

6

4

3

7

7

7

7

5

ð8:4Þ

The constructed H matrix has wca rows and wra columns, and it is of a regular

wra;wc;wrð Þ having the same number of wr ones in each row and the same number

of wc ones in each column. It is four-cycle free construction. The algebraic LDPC

codes are easier for decoding than random codes. For intermediate n, well-designed

algebraic codes yield a low BER [4, 5].

Example 8.1 Construct H matrix with wc ¼ 2 and wr ¼ 3 using algebraic con-

struction method.

Solution Since wc � 1ð Þ wr � 1ð Þ ¼ 2

A ¼
0 1 0

0 0 1

1 0 0

2

4

3

5;

H ¼
A0 A0 A0

A0 A1 A2

� �

¼

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1
1 0 0

0 1 0

0 0 1

0 1 0

0 0 1

1 0 0

0 0 1

1 0 0

0 1 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

8.2.3 Random Construction of H for Irregular Codes

In the random construction of the parity check matrix H, the matrix is filled with

ones and zeros randomly satisfying LDPC properties. The following MATLAB

program generates rate 1/2 irregular parity check matrix H with ones distributed

uniformly at random within the column.
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Program 8.2MATLAB program to generate rate 1/2 irregular parity check matrixH

An example of parity check matrix for irregular LDPC code is

H ¼

1 1 0 1 1 0 0 1 0 0

0 1 1 0 1 1 1 0 0 0

0 0 0 1 0 0 0 1 1 1

1 1 0 0 0 1 1 0 1 0

0 0 1 0 0 1 0 1 0 1

2

6

6

6

6

4

3

7

7

7

7

5

ð8:5Þ

8.3 Representation of Parity Check Matrix Using Tanner

Graphs

The Tanner graph of the parity check matrix H is a bipartite graph. It has bit nodes

or variable nodes (VN) equal to the number of columns of H, and check nodes

(CNs) equal to the number of rows of H. If Hji ¼ 1; i.e., if variable i participates in
the jth parity check constraint, then check node j is connected to variable node i.
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Example 8.2 Construct Tanner graph for the following parity check matrix

1 1 0 0 1 1 1 1 0 0

1 0 1 1 0 1 0 1 0 1

0 1 0 1 1 0 0 1 1 1

1 0 1 0 1 0 1 0 1 1

0 1 1 1 0 1 1 0 1 0

2

6

6

6

6

4

3

7

7

7

7

5

Solution The H matrix has 10 columns and 5 rows. Hence, the associated tanner

graph with 10 bit nodes and 5 CNs is shown in Fig. 8.1.

8.3.1 Cycles of Tanner Graph

Consider the following parity check matrix

H ¼

1 1 0 1 0 0

1 1 0 0 1 0

0 0 1 0 1 1

0 0 1 1 0 1

2

6

6

4

3

7

7

5

ð8:6Þ

The Tanner graph of the H matrix is shown in Fig. 8.2. A sequence of connected

nodes starting and ending at the same node with no node more than once is a cycle

of a Tanner graph. The number of edges in a cycle is called cycle length and the

smallest size of the cycle in a graph represents the girth of the graph. Cycles of

length 4 situations arise where pairs of rows share 1s in a particular pair of columns

of the above H matrix. A cycle of length 4 is shown in bold in Fig. 8.2.

Bit node

Check node

Fig. 8.1 Tanner graph of H matrix of Example 8.2
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The minimum lower bound distance for four-cycle-free wc;wrð Þ regular LDPC
code parity check matrix with girth g is given by [6]

dmin �
1þ wc þ wc wc � 1ð Þ þ wc wc � 1ð Þ2þ � � � þ wc wc � 1ð Þðg�6Þ=4

for odd g=2

1þ wc þ wc wc � 1ð Þ þ wc wc � 1ð Þ2þ � � � þ wc wc � 1ð Þ
g�8

4 otherwise

(

ð8:7Þ

Thus, the minimum distance can be increased by increasing the girth or the

column weight.

8.3.2 Detection and Removal of Girth 4 of a Parity Check

Matrix

If the Tanner graph of a parity check matrix contains no loops, then this decoding is

quickly computable. Unfortunately, LDPCs have loopy graphs, and so the algo-

rithm needs to be repeatedly iterated until it converges to a solution. The effect of

girth on the performance of LDPC codes can be reduced by choosing the codes

having Tanner graphs with longer girths. However, longer girths are not helpful for

finite length codes. A girth of 6 is sufficient, and hence, the removal of girth 4 is a

required. A lemma in [7] states that the H matrix has no girth 4, if and only if all the

entries of the matrix HTH½ � are 1s except the diagonal line.

A standard approach [8] is to search the parity check matrix H forming a

rectangle of four 1s in the matrix. Eliminating the rectangle by reshuffling some

elements around while preserving the other relevant properties of the matrix is

equivalent to removing a girth 4 from the Tanner graph.

The detection and removal of girth 4 is illustrated through the following

numerical example using MATLAB.

Bit nodes

Check nodes

Fig. 8.2 A Tanner graph with a cycle of length 4
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Example 8.3 Consider the following (10, 3, 6) regular parity check matrix

H ¼

1 1 1 1 0 1 1 0 0 1

0 0 1 1 1 1 1 1 0 0

0 1 0 1 0 1 0 1 1 1

1 0 1 0 1 0 0 1 1 1

1 1 0 0 1 0 1 0 1 1

2

6

6

6

6

4

3

7

7

7

7

5

The following MATLAB program can be used for detection and removal of girth

of the given H matrix.

Program 8.3 MATLAB program for detection and removal of girth 4 of a given

parity check matrix H

The results obtained from the above MATLAB program are shown in Figs. 8.3

and 8.4.
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Fig. 8.3 Entries of H with girth 4
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Fig. 8.4 Entries of girth 4 free H
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From Fig. 8.3, it is observed that all the entries of the matrix HTH½ � except
diagonal line are not 1s. Hence, the given H matrix has girth 4, whereas Fig. 8.4

shows girth 4 free H.

8.4 LDPC Encoding

8.4.1 Preprocessing Method

For coding purposes, we may derive a generator matrix G from the parity check

matrix H for LDPC codes by means of Gaussian elimination in modulo-2 arith-

metic. Since the matrix G is generated once for a parity check matrix, it is usable in

all encoding of messages. As such this method can be viewed as the preprocessing

method.

1-by-n code vector c is first partitioned as

C ¼ b : m½ � ð8:8Þ

where m is k by 1 message vector, and b is the n� k by 1 parity vector corre-

spondingly the parity check matrix H is partitioned as

HT ¼
H1

� � �
H2

2

4

3

5 ð8:9Þ

where H1 is a square matrix of dimensions ðn� kÞ � ðn� kÞ, and H2 is a rectan-

gular matrix of dimensions k � ðn� kÞ transposition symbolized by the superscript

T is used in the partitioning of matrix H or convenience of representation.

Imposing the constraint CHT ¼ 0.

We may write

b : m½ �
H1

� � �
H2

2

4

3

5 ¼ 0 ð8:10Þ

or equivalently,

bH1 þ mH2 ¼ 0 ð8:11Þ

The vectors m and b are related by

b ¼ mP ð8:12Þ
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where P is the coefficient matrix. For any nonzero message vector m, the coefficient

matrix of LDPC codes satisfies the condition.

PH1 þ H2 ¼ 0 ð8:13Þ

which holds for all nonzero message vectors and, in particular, in the form

½0 . . . 0 1 0 . . . 0� that will isolate individual rows of the generator matrix. Solving

Eq. (8.13) for matrix P, we get

P ¼ H2H
�1
1 ð8:14Þ

where H�1
1 is the inverse matrix of H1, which is naturally defined in modulo-2

arithmetic. Finally, the generator matrix of LDPC codes is defined by

G ¼ P : Ik½ � ¼ H2H
�1
1 : Ik

� �

ð8:15Þ

where Ik is the k by k identity matrix. The code word can be generated as

C ¼ mG ð8:16Þ

Example 8.4 Construct generator matrix G for the following (10, 3, 5) regular

parity check matrix.

1 1 0 1 0 1 : 0 0 1 0

0 1 1 0 1 0 : 1 1 0 0

1 0 0 0 1 1 : 0 0 1 1

0 1 1 1 0 1 : 1 0 0 0

1 0 1 0 1 0 : 0 1 0 1

0 0 0 1 0 0 : 1 1 1 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

Solution
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H1 ¼

1 0 1 0 1 0

1 1 0 1 0 0

0 1 0 1 1 0

1 0 0 1 0 1

0 1 1 0 1 0

1 0 1 1 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

H2 ¼

0 1 0 1 0 1

0 1 0 0 1 1

1 0 1 0 0 1

0 0 1 0 1 1

2

6

6

4

3

7

7

5

Letting mH2 ¼ u, the following relation can be written from Eq. (8.11)

b0 b1 b2 b3 b4 b5½ �

1 0 1 0 1 0

1 1 0 1 0 0

0 1 0 1 1 0

1 0 0 1 0 1

0 1 1 0 1 0

1 0 1 1 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼ u0 u1 u2 u3 u4 u5½ �

The above relation between b and u leads to the following equations:

b0 þ b1 þ b3 þ b5 ¼ u0

b1 þ b2 þ b4 ¼ u1

b0 þ b4 þ b5 ¼ u2

b1 þ b2 þ b3 þ b5 ¼ u3

b0 þ b2 þ b4 ¼ u4

b3 ¼ u5

Solving the above equations, using modulo-2 arithmetic, we obtain

b0 ¼ u1 þ u2 þ u3 þ u5

b1 ¼ u2 þ u3 þ u4 þ u5

b2 ¼ u0 þ u1 þ u2 þ u5

b3 ¼ u5

b4 ¼ u0 þ u3 þ u4

b5 ¼ u0 þ u1 þ u4 þ u5

Since b ¼ uH�1
1 , the above equations can be write in matrix form as

b ¼ ½u�

0 0 1 0 1 1

1 0 1 0 0 1

1 1 1 0 0 0

1 1 0 0 1 0

0 1 0 0 1 1

1 1 1 1 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5
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Thus,

H�1
1 ¼

0 0 1 0 1 1

1 0 1 0 0 1

1 1 1 0 0 0

1 1 0 0 1 0

0 1 0 0 1 0

1 1 1 1 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

H2H
�1
1 ¼

0 1 0 1 0 1

0 1 0 0 1 1

1 0 1 0 0 1

0 0 1 0 1 1

2

6

6

6

4

3

7

7

7

5

0 0 1 0 1 1

1 0 1 0 0 1

1 1 1 0 0 0

1 1 0 0 1 0

0 1 0 0 1 1

1 1 1 1 1 1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

1 0 0 1 1 0

0 0 0 1 1 1

0 0 1 1 1 1

0 1 0 1 1 0

2

6

6

6

4

3

7

7

7

5

The generator matrix G ¼ H2H
�1
1 Ik

� �

Example 8.5 Construct LDPC code word for the following parity check matrix

with the message vector m ¼ ½1 0 0 0 1�.

H ¼

1 1 0 0 1 1 1 1 0 0

1 0 1 1 0 1 0 1 0 1

0 1 0 1 1 0 0 1 1 1

1 0 1 0 1 0 1 0 1 1

0 1 1 1 0 1 1 0 1 0

2

6

6

6

6

4

3

7

7

7

7

5
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Solution The parity check matrix H is of the order 5 × 10. We know that

HT ¼
H1

H2

� �

; then,

HT ¼

1 1 0 1 0

1 0 1 0 1

0 1 0 1 1

0 1 1 0 1

1 0 1 1 0

1 1 0 0 1

1 0 0 1 1

1 1 1 0 0

0 0 1 1 1

0 1 1 1 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

H1 ¼

1 1 0 1 0

1 0 1 0 1

0 1 0 1 1

0 1 1 0 1

1 0 1 1 0

2

6

6

6

6

4

3

7

7

7

7

5

and H2 ¼

1 1 0 0 1

1 0 0 1 1

1 1 1 0 0

0 0 1 1 1

0 1 1 1 0

2

6

6

6

6

4

3

7

7

7

7

5

Letting mH2 ¼ u, the following relation can be written from Eq. (8.11)

½ b0 b1 b2 b3 b4 �

1

1

0

0

1

1

0

1

1

0

0

1

0

1

1

1

0

1

0

1

0

1

1

1

0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼ ½ u0 u1 u2 u3 u4 �

The above relation between b and u leads to the following equations

b0 þ b1 þ b4 ¼ u0

b0 þ b2 þ b3 ¼ u1

b1 þ b3 þ b4 ¼ u2

b0 þ b2 þ b4 ¼ u3

b1 þ b2 þ b3 ¼ u4

Solving the above equations, we obtain

b0 ¼ u2 þ u3 þ u4

b1 ¼ u1 þ u2 þ u3

b2 ¼ u0 þ u1 þ u2

b3 ¼ u0 þ u3 þ u4

b4 ¼ u0 þ u1 þ u4
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Since b ¼ uH�1
1 , the above equations can be written in matrix form as

b ¼ ½u�

0 0 1 1 1

0 1 1 0 1

1 1 1 0 0

1 1 0 1 0

1 0 0 1 1

2

6

6

6

6

4

3

7

7

7

7

5

Thus,

H�1
1 ¼

0 0 1 1 1

0 1 1 0 1

1 1 1 0 0

1 1 0 1 0

1 0 0 1 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

H2H
�1
1 ¼

1 1 0 0 1

1 0 0 1 1

1 1 1 0 0

0 0 1 1 1

0 1 1 1 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

0 0 1 1 1

0 1 1 0 1

1 1 1 0 0

1 1 0 1 0

1 0 0 1 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼

1 1 0 0 1

0 1 1 1 0

1 0 1 1 0

1 0 1 0 1

0 1 0 1 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

The generator matrix G ¼ H2H
�1
1 Ik

� �

G ¼

1 1 0 0 1 1 0 0 0 0

0 1 1 1 0 0 1 0 0 0

1 0 1 1 0 0 0 1 0 0

1 0 1 0 1 0 0 0 1 0

0 1 0 1 1 0 0 0 0 1

2

6

6

6

6

4

3

7

7

7

7

5

The code word can be generated as C ¼ mG.

C ¼ 1 0 0 0 1½ �

1 1 0 0 1 1 0 0 0 0

0 1 1 1 0 0 1 0 0 0

1 0 1 1 0 0 0 1 0 0

1 0 1 0 1 0 0 0 1 0

0 1 0 1 1 0 0 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

C ¼ 1 0 0 1 0 1 0 0 0 1½ �
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CHT ¼ 1 0 0 1 0 1 0 0 0 1½ �

1 1 0 1 0

1 0 1 0 1

0 1 0 1 1

0 1 1 0 1

1 0 1 1 0

1 1 0 0 1

1 0 0 1 1

1 1 1 0 0

0 0 1 1 1

0 1 1 1 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼ 0 0 0 0 0½ �

8.5 Efficient Encoding of LDPC Codes

The preprocessing method discussed in Sect. 8.4.1 for finding a generator matrix G

for a given H can be used for encoding any arbitrary message bits vector of size

1� m. However, it has a complexity of Oðn2Þ [9]. LDPC code can be encoded

using the parity check matrix directly by using the efficient encoding method [6]

which has a complexity of OðnÞ. The stepwise procedure of efficient coding of

LDPC coding [10] is as follows:

Step 1: By performing row and column permutations, the non-singular parity check

matrix H is to be brought into a lower triangular form indicates in Fig. 8.5.

More precisely, the H matrix is brought into the form

Ht ¼
A B T

C D E

� �

ð8:17Þ

with a gap g as small as possible. Where A is m� gð Þ � n� mð Þ matrix, B is

m� gð Þ � g matrix, T is m� gð Þ � m� gð Þ matrix, C is g� ðn� mÞ matrix, D is

g� g matrix and E is g� m� gð Þ matrix. All of these matrices are sparse and T is

lower triangular with ones along the diagonal.

Step 2: Premultiply Ht by
Im�g 0

�ET�1 Ig

� �
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Im�g 0

�ET�1 Ig

� �

A B T

C D E

� �

¼
A B T

�ET�1Aþ C �ET�1Bþ D 0

� �

ð8:18Þ

In order to check that �ET�1Bþ D is non-singular. It is to be ensured by per-

forming column permutations further.

Step 3: Obtain p1 using the following

pT1 ¼ �;�1 �ET�1Aþ C
� �

sT ð8:19Þ

where

; ¼ �ET�1Bþ D and s is message vector.

Step 4: Obtain p2 using the following

pT2 ¼ �T�1 AsT þ BpT1
� �

ð8:20Þ

Step 5: Form the code vector c as

c ¼ s p1 p2½ � ð8:21Þ

p1 holds the first g parity and p2 contains the remaining parity bits.

Example 8.6 Construct LDPC code word for the following parity check matrix

with the message vector m ¼ ½1 0 0 0 1�.

Fig. 8.5 The parity check matrix in approximate lower triangular form
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H ¼

1 1 0 0 1 1 1 1 0 0

1 0 1 1 0 1 0 1 0 1

0 1 0 1 1 0 0 1 1 1

1 0 1 0 1 0 1 0 1 1

0 1 1 1 0 1 1 0 1 0

2

6

6

6

6

4

3

7

7

7

7

5

Solution

Step 1: Second and third rows and third and tenth columns are swapped to obtain

Step 2:

T�1 ¼
1 0 0

1 1 0

1 0 1

2

4

3

5 E ¼
0 1 1

0 1 1

� �

Step 3:

pT1 ¼ � �ET�1Bþ D
� ��1

�ET�1Aþ C
� �

sT ¼
0

0

� �

Step 4:

pT2 ¼ �T�1 AsT þ BpT1
� �

¼
0

1

1

2

4

3

5
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Step 5:

c ¼ s p1 p2½ � ¼ 1 0 0 0 1 0 0 0 1 1½ �:

8.5.1 Efficient Encoding of LDPC Codes Using MATLAB

The following example illustrates the efficient encoding of LDPC codes using

MATLAB.

Example 8.7 Write a MATLAB program to encode a random message vector with

the following parity check matrix.

H ¼

1 1 0 1 1 0 0 1 0 0

0 1 1 0 1 1 1 0 0 1

0 0 0 1 0 0 0 1 1 1

1 1 0 0 0 1 1 0 1 0

0 0 1 0 0 1 0 1 0 1

2

6

6

6

6

4

3

7

7

7

7

5

Program 8.4 MATLAB program for efficient encoding of LDPC Codes

u
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u

8.6 LDPC Decoding

In the LDPC decoding, the notation Bj is used to represent the set of bits in the

parity check equation of H, and the notation Ai is used to represent the parity check

equations for the ith bit of the code. Consider the following parity check matrix

H ¼

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

2

6

6

4

3

7

7

5

ð8:22Þ

For the above parity check matrix, we get

B1 ¼ 1; 2; 3f g; B2 ¼ 1; 4; 5f g; B3 ¼ 2; 4; 6f g; B4 ¼ 3; 5; 6f g;

A1 ¼ 1; 2f g; A2 ¼ 1; 3f g; A3 ¼ 1; 4f g; A4 ¼ 2; 3f g; A5 ¼ 2; 4f g; A6 ¼ 3; 4f g
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8.6.1 LDPC Decoding on Binary Erasure Channel Using

Message-Passing Algorithm

The message-passing algorithms are iterative decoding algorithms which passes the

messages back and forward between the bit and CN iteratively until the process is

stopped. The message-labeled Mi indicates 0 or 1 for known bit values and e for

erased bit the stepwise procedure for LDPC decoding on BEC is as follows:

Step 1: Set M ¼ y, find Bj and Ai of H

Step 2: iter ¼ 1

Step 3: If all messages into check j other than Mi are known, compute all check

sums by using the following expression

Ej;i ¼
X

i02Bj;i0 6¼i

Mi0 mod 2ð Þ

else Ej;i¼ e

Step 4: If Mi ¼ e and if j 2 Ai subject to Ej;i 6¼ e; set Mi ¼ Ej;i:
Step 5: If all Mi are known or iter ¼ itermax, stop, else

Step 6: iter ¼ iter þ 1, go to Step 3.

Example 8.8 For the parity check matrix given by Eq. (8.22), c ¼ ½1 0 1 1 0 1� is a
valid code word since cHT ¼ 0. If the code word is sent through BEC, the received

vector is y ¼ ½1 0 e e e 1�. Decode the received vector to recover the erased bits using
message-passing algorithm.

Solution For Step 3 of the algorithm, the first check node is joined to the first,

second, and third bit nodes having incoming messages 1, 0, and e, respectively.

This check node has one incoming e message from the third bit node. Hence, we

can calculate the outgoing message E1;3 on the edge from the first check node to the

third bit node:

E1;3 ¼ M1 þM2

¼ 1� 0

¼ 1:

The second check node is joined to the first, fourth, and fifth bit nodes having

incoming messages 1, e, and e, respectively. As this check node has two e mes-

sages, the outgoing messages from this check node are all e.

The third check node is joined to the second, fourth, and sixth bits receiving

incoming messages 0, e, and 1, respectively. This check node has one incoming e
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message from the fourth bit node. Hence, the outgoing message E1;3 on the edge

from the third check node to the fourth bit node is given by

E3;4 ¼ M2 þM6

¼ 0� 1

¼ 1:

The fourth check node includes the third, fifth, and sixth bits and receives e, e,

and 1 messages, respectively. Since this check node receives two e messages, the

outgoing messages from this check node are all e.

In Step 4 of the algorithm, each bit node with an unknown value to updates its

value uses its incoming messages. The third bit is unknown and has incoming

messages 1 (E1;3) and e (E4;3) and hence the third bit value becomes 1. The fourth

bit is not known and it is set to 1 as it has incoming messages 1 (E2;4) and e (E3;4).

The fifth bit is also unknown but its value cannot be changed because has e (E2;5)

and e (E4;5) as incoming messages. Thus, at the end of the Step 4,

M ¼ 1 0 1 1 e 1½ �:

Since the fifth bit is remaining unknown and hence the algorithm is to be

continued. In the second iteration, in the Step 3 of the algorithm, the second check

node is joined to the first, fourth and fifth bit nodes and so this check node has one

incoming e message, M5. Hence, the outgoing message from this check node

becomes

E2;5 ¼ M1 þM4

¼ 1� 1

¼ 0:
The fourth check node is joined to the third, fifth, and sixth bit nodes having one

incoming e message, M5. The outgoing message from this check to the sixth bit

node, E4;6, is the value of the sixth code word bit:

E4;5 ¼ M3 þM6

¼ 1� 1

¼ 0:

In the second iteration, in the Step 4, the unknown fifth bit is changed to 0 as it

has E2;5 and E4;5 as incoming messages with value 0. The algorithm is stopped and

the decoded code word is
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Bit nodes

Bit nodes
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Fig. 8.6 Decoding of received vector y ¼ ½1 0 e e e 1� using message passing. The dark line

corresponds to message bit 1, solid line corresponds to message bit 0, and the broken line

corresponds to erasure bit e
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ĉ ¼ M ¼ 1 0 1 1 0 1½ �

as the decoded code word Fig. 8.6 shows the graphical representation of message-

passing decoding.

8.6.2 LDPC Decoding on Binary Erasure Channel Using

MATLAB

The following example illustrates decoding of LDPC codes on BEC using

MATLAB.

Example 8.9 Write a MATLAB program to implement LDPC decoding on BEC by

assuming received vector y ¼ 1 e e e e 1 0 0 0 1 e 1 e e e 1½ � when the following parity

is used to encode the code word.

H ¼

1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0

1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Solution The following MATLAB program decodes the received vector y. In this

program, known bit values are indicated by 1 or 0 and erased bit is indicated by −1.
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Program 8.5 MATLAB program Decoding of LDPC Codes on BEC

8.6.3 Bit-Flipping Decoding Algorithm

The received symbols are hard decoded into 1s and 0s to form a binary received

vector y. In each iteration, it computes all check sums, as well as the number of

unsatisfied parity checks involving each of the n bits of the vector y. Next, the bits

of y are flipped if they involve in the largest number of unsatisfied parity checks.

The process is to be repeated until all check sums are satisfied or reaches a
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predetermined number of iterations. The stepwise procedure of the Bit-flipping

decoding algorithm is as follows:

Step 1: Set M ¼ y, define Bj to represent the jth parity check equation of H

Step 2: l ¼ 0

Step 3: Compute all check sums by using the following expression

Ej;i ¼
X

i02Bj;i0 6¼i

Mi0 mod 2ð Þ ð8:23Þ

Step 4: Compute the number of unsatisfied parity checks involving each of n bits of

message

Step 5: Flip the bits of message when they are involved in largest number of

unsatisfied parity checks. The flipping on ith bit can be performed by using

Mi ¼ yi þ 1mod 2ð Þ ð8:24Þ

Step 6: Compute s as follows

s ¼ MHT
� �

mod 2 ð8:25Þ

Step 7: If s ¼ 0 or l ¼ lmax, stop, else

Step 8: l ¼ lþ 1, go to Step 3.

Example 8.10 For the parity check matrix given by Eq. (8.22), c ¼ ½1 0 1 1 0 1� is a
valid code word since cHT ¼ 0. If the code word is sent through AWGN channel,

the received vector after a detector hard decision is y ¼ ½0 0 1 1 0 1�. Decode the

received vector using bit-flipping algorithm.

Solution The decoder makes a hard decision on each code word bit and returns

y ¼ 0 0 1 1 0 1½ �:

Step 1: Initializing Mi ¼ yi, so

M ¼ 0 0 1 1 0 1½ �:

Step 2: l ¼ 0

Step 3: The check messages are calculated. The first check node is joined to the

first, second, and third bit nodes B1 ¼ 1; 2; 3f g and so that the messages

from the first check node are
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E1;1 ¼ M2 �M3 ¼ 0� 1 ¼ 1;

E1;2 ¼ M1 �M3 ¼ 0� 1 ¼ 1;

E1;3 ¼ M1 �M2 ¼ 0� 0 ¼ 0;

The second check includes the first, fourth, and fifth bits, B2 ¼ 1; 4; 5f g and so the

messages from the second check are

E2;1 ¼ M4 �M5 ¼ 1� 0 ¼ 1;

E2;4 ¼ M1 �M5 ¼ 0� 0 ¼ 0;

E2;5 ¼ M1 �M4 ¼ 0� 1 ¼ 1:

The third check includes the second, fourth, and sixth bits, B3 ¼ 2; 4; 6f g, and so

the messages from the second check are

E3;2 ¼ M4 �M6 ¼ 1� 1 ¼ 0;

E3;4 ¼ M2 �M6 ¼ 0� 1 ¼ 1;

E3;6 ¼ M2 �M4 ¼ 0� 1 ¼ 1;

The fourth check includes the third, fifth, and sixth bits, B4 ¼ 3; 5; 6f g, and so the

messages from the second check are

E4;3 ¼ M5 �M6 ¼ 0� 1 ¼ 1;

E4;5 ¼ M3 �M6 ¼ 1� 1 ¼ 0:

E4;6 ¼ M3 �M5 ¼ 1� 0 ¼ 1:

Step 4: The first bit has messages 1 and 1 from the first and second checks,

respectively, and 0 from the channel. Thus, the majority of the messages

into the first bit node indicate a value different from the received value.

The second bit has messages 1 and 0 from the first and third checks,

respectively, and 0 from the channel, so it retains its received value. The

third bit has messages 0 and 1 from the first and fourth checks, respec-

tively, and 1 from the channel, so it retains its received value. The fourth

bit has messages 0 and 1 from the second and third checks, respectively,

and 1 from the channel, so it retains its received value. The fifth bit has

messages 1 and 0 from the second and fourth checks, respectively, and 0

from the channel, so it retains its received value. The sixth bit has mes-

sages 1 and 1 from the third and fourth checks, respectively, and 1 from

the channel, so it retains its received value. Thus, the majority of the

messages into the first bit node indicate a value different from the received

value.
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Step 5: Hence, the first bit node flips its value. The new bit node to check node

messages is thus given by

M ¼ 1 0 1 1 0 1½ �:

Step 6: Compute s ¼ MHTð Þmod 2

s ¼ 1 0 1 1 0 1½ �

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

mod 2 ¼ 0 0 0 0½ �

there are thus no unsatisfied parity check equations, and so the algorithm halts and

returns

ĉ ¼ M ¼ 1 0 1 1 0 1½ �

as the decoded code word. The received vector has therefore been correctly decoded

without requiring an explicit search over all possible code words. Hence the process

is stopped.

8.6.4 Bit-Flipping Decoding Using MATLAB

The following example illustrates the bit-flipping decoding of LDPC codes using

MATLAB

Example 8.11 Write a MATLAB program to implement bit flipping decoding by

assuming received vector y ¼ ½0 1 1 0 1 1� when the following parity check matrix

H ¼

1 1 0 1 0 0

0 1 1 0 1 0

1 0 0 0 1 1

0 0 1 1 0 1

2

6

6

4

3

7

7

5

is used to encode the code word.

Solution The following MATLAB program decodes the received vector y.
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Program 8.6 MATLAB program for Bit Flipping Decoding of LDPC Codes

The output of the above program gives the decoded vector

ĉ ¼ yd ¼ 0 0 1 0 1 1½ �

Example 8.12 A valid code word is c ¼ 0 0 1 0 0 1½ � for the following parity check

matrix

H ¼

1 1 0 1 0 0

1 1 0 0 1 0

0 0 1 0 1 1

0 0 1 1 0 1

2

6

6

4

3

7

7

5

If the code word is transmitted over AWGN channel, the received vector after

detector hard decision is y ¼ 1 0 1 0 0 1½ �. Decode the received vector by bit-flipping
using MATLAB and comment on the result.
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Solution The Program 8.6 is run with the H matrix and the received vector. The

output of the program gives the decoded vector ĉ ¼ yd ¼ 0 1 1 0 0 1½ �. The received
vector is not decoded correctly due to the girth 4 in the H matrix.

8.7 Sum–Product Decoding

The sum–product algorithm is similar to the bit-flipping algorithm as described in

the previous section, but the messages representing each decision (whether the bit

value is 1 or 0) are now probabilities. Bit-flipping decoding accepts an initial hard

decision on the received bits as input, and the sum–product algorithm is a soft-

decision message-passing algorithm which accepts the probability of each received

bit as input. The input channel or received bit probabilities are known in advance

before the LDPC decoder was operated, and so they are also called as the a priori

probabilities of the received bit. In the sum–product decoder, the extrinsic infor-

mation passed between nodes is also probabilities. The extrinsic information

between check node j and bit node i is denoted by Ej;i. The Ej;i gives the probability

for the bit ci to be 1 that causes the parity check equation j is satisfied. The Ej;i

cannot be defined if the bit i is not included in j as there will be no extrinsic

information between check node j and bit node i.

The probability that an odd number of the bits in that parity check equation are

1s is given by

Pext
j;i ¼

1

2
�
1

2

Y

i02Bj;i0 6¼i

1� 2Pj;i0
� �

ð8:26Þ

which is the probability that a parity check equation is satisfied for the bit ci to be 1.

The probability that the parity check equation is satisfied for the bit ci to be 0

becomes 1� Pext
j;i .

The metric for a binary variable is represented by the following log likelihood

ratio (LLR)

L xð Þ ¼ log
p x ¼ 0ð Þ

p x ¼ 1ð Þ
ð8:27Þ

where by log we mean loge. The sign of L xð Þ provides a hard decision on x and

magnitude L xð Þj j is the reliability of this decision. Translating from LLRs back to

probabilities,

p x ¼ 1ð Þ ¼
e�L xð Þ

1þ e�L xð Þ
ð8:28Þ
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p x ¼ 0ð Þ ¼
eL xð Þ

1þ e�L xð Þ
ð8:29Þ

when probabilities need to be multiplied, LLRs need only be added and by this the

complexity of the sum–product decoder is reduced. This makes the benefits of the

logarithmatic representation of probabilities. The extrinsic information from check

node j to bit node i is expressed as a LLR,

Ej;i ¼ L Pext
j;i

� 	

¼ log
1� Pext

j;i

Pext
j;i

ð8:30Þ

Now

Ej;i ¼ log

1
2
þ 1

2

Q

i02Bj;i0 6¼i 1� 2Pj;i0
� �

1
2
� 1

2

Q

i02Bj;i0 6¼i 1� 2Pj;i0
� �

¼ log

1þ
Q

i02Bj;i0 6¼i 1� 2 e�M
j;i0

1þe
�M

j;i
0


 �

1�
Q

i02Bj;i0 6¼i 1� 2 e�M
j;i0

1þe�M
j;i0

� 	

¼ log
1þ

Q

i02Bj;i0 6¼i
1�e�M

j;i0

1þe�M
j;i0

� 	

1�
Q

i02Bj;i0 6¼i
1�e�M

j;i0

1þe�M
j;i0

� 	

ð8:31Þ

where Mj;i0 , L Pj;i0
� �

¼ log
1�Pj;i0

Pj;i0
:

Using the relationship

tanh
1

2
log

1� p

p


 �

¼ 1� 2p ð8:32Þ

gives

Ej;i ¼ log
1þ

Q

i02Bj;i0 6¼i tanh Mj;i0=2
� �

1�
Q

i02Bj;i0 6¼i tanh Mj;i0=2
� � ð8:33Þ

Alternatively, using the relationship

2 tanh�1 p ¼ log
1þ p

1� p
ð8:34Þ
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Then,

Ej;i ¼ 2 tanh�1
Y

i02Bj;i0 6¼i

tanh Mj;i0=2
� �

ð8:35Þ

The above equation is numerically challenging due to the presence of the

product of the tanh and tanh−1 functions. Following Gallager, we can improve the

situation as follows. First, factor Mji into its sign and magnitude (or bit value and bit

reliability);

Mji ¼ ajibji ð8:36Þ

aji ¼ sign Mji

� �

ð8:36aÞ

bji ¼ Mji

�

�

�

� ð8:36bÞ

So that Eq. (8.35) may be rewritten as

tanh
1

2
Mji


 �

¼
Y

i0

aji0 �
Y

i02Bj;i0 6¼i

tanh
1

2
bji0


 �

ð8:37Þ

We then have

Eji ¼
Y

i0

aji0 � 2 tanh
�1

Y

i0

tanh
1

2
bji0


 �

 !

¼
Y

i0

aji0 � 2 tanh
�1 log�1 log

Y

i0

tanh
1

2
bji0


 �

 !

¼
Y

i0

aji0 � 2 tanh
�1 log�1

X

i0

log tanh
1

2
bji0


 �
 �

ð8:38Þ

This yields a new form for Eq. (8.38) as

Eji ¼
Y

i0

aji0 � /
X

i0

/ bji0
� �

 !

ð8:39Þ

where / xð Þ is defined as

/ xð Þ ¼ � log tanh x=2ð Þ½ � ¼ log
ex þ 1

ex � 1


 �

ð8:40Þ

Using the fact that /�1 xð Þ ¼ / xð Þ when x[ 0:
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Each bit node has access to the input LLR, Li, and to the LLRs from every

connected check node. The total LLR of the ith bit is the sum of these LLRs:

Ltotali ¼ Li þ
X

j2Ai

Eji ð8:41Þ

The hard decision on the received bits is simply given by the signs of the Ltotali .

Check whether the parity check equations are satisfied (thus, ĉHT ¼ 0 is also a

stopping criterion for sum–product decoding); if not satisfied, update Mji

Mji ¼
X

j02Ai;j0 6¼j

Ej0i þ Li ð8:42Þ

The algorithm outputs the estimated a posteriori bit probabilities of the received

bits as LLRs.

The sum–product decoder immediately stops whenever a valid code word has

been found by a checking of whether the parity check equations are satisfied (i.e.,

ĉHT ¼ 0) or allowed maximum number of iterations achieved. The decoder is

initialized by setting all VN messages Mji equal to

Li ¼ L ci yijð Þ ¼ log
Pr ci ¼ 0 yijð Þ

Pr ci ¼ 1 yijð Þ


 �

ð8:43Þ

For all j; i for which hij ¼ 1. Here, yj represents the channel value that was

actually received, that is, it is not a variable here. The Li for different channels can

be computed as [10].

BEC

In this case, yj 2 0; 1; ef g

Li ¼ L ci yijð Þ ¼
þ1 yj ¼ 0;
�1 yj ¼ 1;
0 yj ¼ e:

8

<

:

ð8:44Þ

BSC

In this case, yj 2 0; 1f g; we have

Li ¼ L ci yijð Þ ¼ �1ð Þyj log
1� P

P


 �

ð8:45Þ

The knowledge of crossover probability P is necessary.
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BI-AWGNC

The ith received sample is yi ¼ xi þ ni where the ni are independent and normally

distributed as N 0; r2ð Þ. r2 ¼ N0

2
where N0 is the noise density.

Then, we can easily show that

Pr xi ¼ x yijð Þ ¼
1

1þ exp �4yix=N0ð Þ
ð8:46Þ

where x 2 f�1g and, from this, that

L ci yijð Þ ¼ 4yi=N0 ð8:47Þ

An estimate of N0 is necessary in practice.

Rayleigh

The model for Rayleigh fading channel is similar to that of the AWGNC: yi ¼
aixi þ ni where aif g are independent Rayleigh random variable with unity variance.

The channel transition probability can be expressed by

P xi ¼ x yijð Þ ¼
1

1þ exp �4aiyix=N0ð Þ

Then,

L cijyið Þ ¼ 4aiyi=N0 ð8:48Þ

The estimates of ai and r2 are necessary in practice.

Now, the stepwise procedure for the log domain sum–product algorithm is given

in the following Sect. 8.8.

8.7.1 Log Domain Sum–Product Algorithm (SPA)

Step 1: Initialization: for all i, initialize Li according to Eq. (8.44) for the appro-

priate channel model. Then, for all i; j for which hi;j ¼ 1 set Mji ¼ Li; and
l = 0. Define Bj to represent the set of bits in the jth parity check equation

of H and Ai to represent the parity check equations for the ith bit of the

code.

Step 2: CN update: compute outgoing CN message Eji for each CN using

Eqs. (8.36), (8.39), and (8.40).
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Mji ¼ ajibji

aji ¼ sign Mji

� �

;

bji ¼ Mji

�

�

�

�

Eji ¼
Y

i0

aji0 � /
X

i0

/ bji0
� �

 !

/ xð Þ ¼ � log tanh x=2ð Þ½ � ¼ log
ex þ 1

ex � 1


 �

Step 3: LLR total: For i ¼ 0; 1; . . .;N � 1 compute total LLR using Eq. (8.41)

Ltotali ¼ Li þ
X

j2Ai

Eji

Step 4: Stopping criteria: For i ¼ 0; 1; . . .;N � 1, set

ĉi ¼
1 if Ltotali \0;
0 else,




To obtain ĉ. If ĉHT ¼ 0 or the number of iterations equals the maximum

limit (l = lmax,) stop;

else

Step 5: VN update: compute outgoing VN message Mji for each VN using

Eq. (8.42)

Mji ¼ Li þ
P

j02Ai;j0 6¼j

Ej0i � l ¼ lþ 1 go to Step 2

8.7.2 The Min-Sum Algorithm

Consider Eq. (8.39) for Eji. It can be noted from the shape of / xð Þ that the largest
term in the sum corresponds to the smallest bji: Hence, assuming that this term

dominates the sum, the following relation is obtained [10]

/
X

i0

/ bji0
� �

 !

’ / / mini0bji0
� �� �

¼ mini0bji0 ð8:49Þ
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Thus, themin-sum algorithm is simply the log domain SPAwith Step 2 replaced by

Mji ¼ ajibji

aji ¼ sign Mji

� �

;

bji ¼ Mji

�

�

�

�

Eji ¼
Y

i0

aji0 �min
i0

bji0

It can also be shown that, in the AWGNC case, the initialization Mji ¼ 4yi=N0

may be replaced by Mji ¼ yi when the simplified log domain sum–product algo-

rithm is employed. The advantage, of course, is that an estimate of the noise power

N0 is unnecessary in this case.

Example 8.13 A code word generated using the parity check matrix H ¼

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

2

6

6

4

3

7

7

5

is sent through AWGN channel with No = 0.3981, the

received vector is y = [−0.9865 0.3666 0.4024 0.7638 0.2518 −1.6662]. Decode

the received vector using the sum–product algorithm.

Solution

L ¼ �4
y

N0

¼ 9:9115 �3:6830 �4:0430 �7:6738 �2:5295 16:7415½ �

To begin decoding, we set

Mj;i ¼ Li

The first bit is included in the first and second checks, and so M1;1 and M2;1 are

initialized to L1:

M1;1 ¼ L1 ¼ 9:9115 and M2;1 ¼ L1 ¼ 9:9115:

Repeating this for the remaining bits gives,

For i = 1, M1;2 ¼ L2 ¼ �3:6830; M3;2 ¼ R2 ¼ �3:6830;
For i = 2, M1;3 ¼ R3 ¼ �4:0430; M4;3 ¼ R3 ¼ �4:0430;
For i = 4, M2;4 ¼ R4 ¼ �7:6738; M3;4 ¼ R4 ¼ �7:6738;
For i = 5, M2;5 ¼ R5 ¼ �2:5295; M4;5 ¼ R5 ¼ �2:5295;
For i = 6, M3;6 ¼ R6 ¼ �16:7415; M4;6 ¼ R6 ¼ �16:7415;
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Now the extrinsic probabilities are calculated for the check to bit messages, the

first parity check includes the first, second, and fourth bits, and so the extrinsic

probability from the first check node to the first bit node depends on the proba-

bilities of the second and fourth bits:

E1;1 ¼ log
1þ tanh M1;2

�

2
� �

tanh M1;3

�

2
� �

1� tanh M1;2

�

2
� �

tanh M1;3

�

2
� �

¼ log
1þ tanh �3:6830=2ð Þ tanh �4:0430=2ð Þ

1� tanh �3:6830=2ð Þ tanh �4:0430=2ð Þ
¼ 3:1542

Similarly, the extrinsic probability from the first check node to the second bit

node depends on the probabilities of the first and fourth bits:

E1;2 ¼ log
1þ tanh M1;1

�

2
� �

tanh M1;3

�

2
� �

1� tanh M1;1

�

2
� �

tanh M1;3

�

2
� �

¼ log
1þ tanh 9:9115=2ð Þ tanh �4:0430=2ð Þ

1� tanh M1;1

�

2
� �

tanh M1;3

�

2
� � ¼ �4:0402

And the extrinsic probability from the first check node to the 4th bit node

depends on the LLRs sent from the first and second bit nodes to the first check

node:

E1;3 ¼ log
1þ tanh M1;1

�

2
� �

tanh M1;2

�

2
� �

1� tanh M1;1

�

2
� �

tanh M1;2

�

2
� �

¼ log
1þ tanh 9:9115=2ð Þ tanh �3:6830=2ð Þ

1� tanh 9:9115=2ð Þ tanh �3:6830=2ð Þ
¼ �3:681

Next, the second check node connects to the second, third, and fifth bit nodes

and so the extrinsic LLRs are

E2;1 ¼ log
1þ tanh M2;4

�

2
� �

tanh M2;5

�

2
� �

1� tanh M2;4

�

2
� �

tanh M2;5

�

2
� �

¼ log
1þ tanh �7:6738=2ð Þ tanh �2:5295=2ð Þ

1� tanh �7:6738=2ð Þ tanh �2:5295=2ð Þ
¼ 2:5237

E2;4 ¼ log
1þ tanh M2;1

�

2
� �

tanh M2;5

�

2
� �

1� tanh M2;1

�

2
� �

tanh M2;5

�

2
� �

¼ log
1þ tanh 9:9115=2ð Þ tanh �2:5295=2ð Þ

1� tanh 9:9115=2ð Þ tanh �2:5295=2ð Þ
¼ �2:5289

E2;5 ¼ log
1þ tanh M2;1

�

2
� �

tanh M2;4

�

2
� �

1� tanh M2;1

�

2
� �

tanh M2;4

�

2
� �

¼ log
1þ tanh 9:9115=2ð Þ tanh �7:6738=2ð Þ

1� tanh 9:9115=2ð Þ tanh �7:6738=2ð Þ
¼ �7:5724
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Similarly for the remaining CNs

E3;2 ¼ �7:6737; E3;4 ¼ �3:6830; E3;6 ¼ 3:6647;

E4;3 ¼ �2:5295; E4;5 ¼ �4:0430; E4;6 ¼ �4:0430:

To check for a valid code word, we calculate the estimated posterior probabil-

ities for each bit, make a hard decision and check the syndrome s. The first bit has

extrinsic LLRs from the first and second checks and an intrinsic LLR from the

channel the total LLR is their sum:

L1 ¼ L1 þ E1;1 þ E2;1 ¼ 9:9115þ 3:1542þ 2:5237 ¼ 15:5894:

Thus even though the LLR from the channel is negative, indicating that the first

bit is a 1, both the extrinsic LLRs are positive, indicating that the bit is 0. The

extrinsic LLRs are large enough to make the total LLR positive, and so the decision

on the first bit has effectively been changed. Repeating for the second to sixth bits

gives:

L2 ¼ L2 þ E1;2 þ E3;2 ¼ �3:6830� 4:0402� 7:6737 ¼ �15:3969;

L3 ¼ L3 þ E1;3 þ E4;3 ¼ �4:0430� 3:681� 2:5295 ¼ �10:2535;

L4 ¼ L4 þ E2;4 þ E3;4 ¼ �7:6738� 2:5289� 3:6830 ¼ �13:8857;

L5 ¼ L5 þ E2;5 þ E4;5 ¼ �2:5295� 7:5724� 4:0430 ¼ �14:1449;

L6 ¼ L6 þ E3;6 þ E4;6 ¼ 16:7415þ 3:6647� 4:0430 ¼ 16:3632:

The hard decision on the LLRs gives

ĉ ¼ 0 1 1 1 1 0½ �:

To check whether ĉ is a valid code word, consider

s ¼ ĉH0 ¼ 0 1 1 1 1 0½ �

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼ 0 0 0 0½ �

The decoding stops because s ¼ 0 and the returned c is a valid code word.
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8.7.3 Sum–Product and Min-Sum Algorithms for Decoding

of Rate 1/2 LDPC Codes Using MATLAB

The following MATLAB program and functions are written and used to decode the

rate ½ LDPC codes using sum–product and min-sum algorithms for different SNRs.

Program 8.7 MATLAB program for LDPC decoding using log domain sum-

product algorithm
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Step 2 of min-sum algorithm

The MATLAB function min-sum is same as the log sum–product function

program with the Step 2 in logsumproduct is replaced by the following MATLAB

program segment has yielded.

For example, consider the parity check matrix of Example 8.11. c ¼ ½0 1 1 1 1 0�
is a valid code word for the parity check matrix. When this code word is sent over

an AWGN channel at Eb

No
= 2 dB, decoding of the received vector using the above

MATLAB program and functions has yielded ĉ ¼ 0 1 1 1 1 0½ �.

8.8 EXIT Analysis of LDPC Codes

8.8.1 Degree Distribution

An irregular parity check matrix of LDPC codes has columns and rows with

varying weights, i.e., a Tanner graph has bit nodes and CNs with varying degrees.

Let Dv be the number of different variable node degrees, Dc be the number of

different check node degrees. Then, the following functions can be defined as
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k xð Þ ¼
X

Dv

i¼2

kix
i�1 ¼ k2xþ k3x

2 þ � � � þ kDv
xDv�1 ð8:50Þ

qðxÞ ¼
X

Dc

i¼2

qix
i�1 ¼ q2xþ q3x

2 þ � � � þ qDc
xDc�1 ð8:51Þ

where ki is the fraction of edges that are connected to degree-i variable (bit) nodes,

and qi is the fraction of edges that are connected degree-i CNs. It should be noted

that ki and qi must satisfy that

X

Dv

i¼2

ki ¼ 1 and
X

Dc

i¼2

qi ¼ 1

The code rate can be expressed as

r ¼ 1�

R 1

0
qðxÞdx

R 1

0
kðxÞdx

ð8:52Þ

Example 8.14 Find degree distribution of the following irregular code parity check

matrix

H ¼

0 1 0 0 1 0 1 1 0 0

1 0 1 1 0 1 0 0 0 1

0 1 0 0 1 0 0 1 1 0

1 0 0 0 1 0 1 0 0 1

0 1 1 1 0 1 0 0 1 0

2

6

6

6

6

4

3

7

7

7

7

5

:

Solution k2 = the fraction of edges connected to degree 2 bit nodes ¼ 16
22
¼ 0:7273

k3 = the fraction of edges connected to degree 3 bit nodes ¼ 6
22
¼ 0:2727

q4 = the fraction of edges connected to degree 4 CNs ¼ 12
22
¼ 0:5455

q5 = the fraction of edges connected to degree 5 bit nodes ¼ 10
22
¼ 0:4545

Thus, the irregular code has degree distribution

k xð Þ ¼ 0:7273xþ 0:2727x2

q xð Þ ¼ 0:5455x4 þ 0:4545x5
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8.8.2 Ensemble Decoding Thresholds

The decoding threshold in terms of the noise standard deviation r	ð Þ of a given

degree distribution for iterative sum–product or min-sum decoding is defined as the

supreme of the channel noises for which the probability of decoding error goes to

zero as the number of iterations tends to infinity. Thus, the threshold can be

expressed as

r	 ¼ sup r[ 0 : lim
i!1

pib rð Þ ¼ 0


 �

ð8:53Þ

If r
 r	; pib rð Þ converges to zero, otherwise converges to a value greater than

zero.

The stability condition for AWGN channel is given by [11]

k0 0ð Þq0ð1Þ\ exp
1

2r2


 �

ð8:54Þ

whereas the stability condition for uncorrelated Rayleigh fading channel with SI is

given by

k0 0ð Þq0 1ð Þ\1þ
1

2r2
ð8:55Þ

The threshold value r	 and the maximum allowed value rmax and the corre-

sponding Eb

No
s on the binary AWGN channel for various regular code parameters are

given in Table 8.1 [12].

Table 8.1 Thresholding values on binary AWGN channel for Various regular code parameters

dv dc Rate r	 Eb

No

� 		
dB rmax Eb

No

� 	

max
dB

3 6 0.5 0.88 1.1103 0.979 0.1843

3 5 0.4 1.0 0 1.148 −1.1988

3 4 0.25 1.26 −2.0074 1.549 −3.8010

4 8 0.5 0.83 1.6184 0.979 0.1843

4 6 0.333 1.01 −0.0864 1.295 −2.2454

5 10 0.5 0.79 2.0475 0.979 0.1843
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8.8.3 EXIT Charts for Irregular LDPC Codes in Binary

Input AWGN Channels

Under the consistent Gaussian assumption, the mutual information IA;V
� �

between

the VN (a priori) inputs and the code bit associated with that VN can be computed

by using the following approximation [11] for Eq. (6.20b). Thus,

IA;V ¼ J rð Þ ¼
�0:0421061r3 þ 0:209252r2 � 0:00640081r 0
 r\1:6363

1� exp 0:00181491r3 � 0:142675r2 � 0:0822054rþ 0:0549608ð Þ 1:6363
 r\10

1 r� 10

8

<

:

ð8:56Þ

The approximation for inverse function r ¼ J�1 IA;V
� �

is

r ¼ J�1ðIA;VÞ �
1:09542I2A;V þ 0:214217IA;V þ 2:33727

ffiffiffiffiffiffiffiffi

IA;V
p

0
 IA;V 
 0:3646

�0:706692loge0:386013 1� IA;V
� �

� 1:75017IA;V 0:3646IA;V\1




ð8:57Þ

Using J rð Þ, the EXIT chart of an irregular code IE;V describing the variable node

function can be computed as follows.

IE;V ¼
X

Dv

i¼2

kiJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i� 1ð Þ J�1 IA;V
� �� �2

þr2ch

q

 �

ð8:58Þ

where i is the variable node degree, IA;V is the mutual information of the message

entering the variable node with the transmitted code word, r2ch ¼ 8R Eb

N0
.

The EXIT chart of an irregular code IE;C describing the check node function can

be computed as follows:

IE;C ¼
X

Dc

i¼2

qi 1� J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i� 1ð Þ
p

J�1 1� IA;C
� �

� 	� 	

ð8:59Þ

where i is the check node degree, IA;C is the mutual information of the message

entering the check node with the transmitted code word.

In order for the decoding to converge to a vanishingly small probability of error,

the EXIT chart of the VN has to lie above the inverse of the EXIT chart for the CNs.

Example 8.15 Consider the following rate 1/2 irregular LDPC codes with good

degree distributions for a binary AWGN channel given in [13].
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Code 1

k xð Þ ¼ 0:33241xþ 0:24632x2 þ 0:11014x3 þ 0:31112x5

q xð Þ ¼ 0:76611x5 þ 0:234389

with a decoding EXIT threshold of Eb

No
= 0.6266 dB.

Code 2

kðxÞ ¼ 0:19606xþ 0:24039x2 þ 0:00228x5 þ 0:05516x6

þ 0:16602x7 þ 0:04088x8 þ 0:01064x9 þ 0:00221x27 þ 0:28636x29

q xð Þ ¼ 0:00749þ 0:99101x8 þ 0:0015

with a decoding EXIT threshold of Eb

No
= 0.2735 dB.

The EXIT charts of the two codes are shown in Fig. 8.7. From Fig. 8.7, it can be

observed that the code 2 with lower threshold has better fit between variable node

and check node EXIT curves.

The good degree distributions for rate 1/2 and 1/3 irregular LDPC codes for

uncorrelated Rayleigh fading channels can be found in [14].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IAV, IEC

I E
V
,I

A
C

-- Code1

- Code2

Fig. 8.7 EXIT charts for two irregular LDPC codes with different degree distributions on a binary

AWGN channel
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8.9 Performance Analysis of LDPC Codes

8.9.1 Performance Comparison of Sum–Product and Min-

Sum Algorithms for Decoding of Regular LDPC Codes

in AWGN Channel

The BER performance of the sum–product and min-sum LDPC decoding algo-

rithms is evaluated through a computer simulation assuming that the channel adds

white Gaussian noise to the code generated by a (256, 3, 6) regular parity check

matrix. In this simulation, four hundred frames of each of length 256 and three

iterations are used. The BER performance of the sum–product and min-sum

algorithms is shown in Fig. 8.8.

8.9.2 BER Performance Comparison of Regular

and Irregular LDPC Codes in AWGN Channel

The performance of rate 1/2 regular and irregular codes having the same length is

evaluated through a computer simulation. The BER performance of the two codes is

shown in Fig. 8.9.

0 0.5 1 1.5 2 2.5 3
10

-2

10
-1

10
0

Eb/No (dB)

B
E

R
Sum-Product decoding algorithm

Min-Sum decoding algorithm

Fig. 8.8 BER performance of sum–product and min-sum decoding algorithms
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From Fig. 8.9, it is observed that there is no significant difference between the

BER performance of the sum–product and the min-sum algorithms.

The irregular codes can have improved thresholds for long codes but with an

error floor at higher BER than for regular codes of the same rate and length.

8.9.3 Effect of Block Length on the BER Performance

of LDPC Codes in AWGN Channel

The effect of block length on the performance of LDPC codes is illustrated through

a computer simulation. In this experiment, two 1/2 rate irregular codes of block

lengths 256 and 512 are considered and added white Gaussian noise to them, and

the noisy codes are decoded using min-sum decoding algorithm with 10 iterations.

The BER performance of the two codes is shown in Fig. 8.10.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No (dB)

B
E

R
Rate 1/2 (256,3,6) regular

Rate 1/2 irregular,

Fig. 8.9 BER performance of rate 1/2 regular and irregular LDPC codes using min-sum decoding

algorithms
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8.9.4 Error Floor Comparison of Irregular LDPC Codes

of Different Degree Distribution in AWGN Channel

The error floor of an LDPC code is characterized by the phenomenon that as the SNR

continues to increase, the error probability suddenly drops at a rate much slower

than that in the region of low-to-moderate SNR can be approximated by [15].

BERef �
2

N

k2qð1Þ
0� �2

4
Q

ffiffiffiffiffiffiffiffiffiffiffi

4REb

No

r

 �

ð8:60Þ

with the constraint k2q 1ð Þ0 
E exp 1
2r2

� �

: where E varies from 0 to 1, E ¼ 1 for the

traditional optimized degree distributions, E is greater than zero but less than 1 for

constrained degree distributions, N is the length of the code and R is the code rate.

A trade-off between the threshold and error floor can be achieved with the con-

strained distributions.

Example 8.16 Consider the following rate 1/4 irregular LDPC codes with optimal

degree distribution and constrained degree distributions given in [15].

0 0.5 1 1.5 2 2.5 3
10

-3

10
-2

10
-1

10
0

Eb/No (dB)

B
E

R
128x256, iterations=10

256x512, iterations=10

Fig. 8.10 BER performance of two 1/2 rate irregular LDPC codes using min-sum logarithm for

decoding in AWGN channel

298 8 Low Density Parity Check Codes



Code 1: Traditional code with optimal degree distribution with E ¼ 1.

k xð Þ ¼ 0:431xþ 0:2203x2 þ 0:0035x3 þ 0:0324x5 þ 0:1587x6 þ 0:1541x9

q xð Þ ¼ 0:0005x2 þ 0:9983x3 þ 0:0012x4

Code 2: Code with constrained degree distribution with E ¼ 0:19.

k xð Þ ¼ 0:0872xþ 0:865x2 þ 0:0242x3 þ 0:0032x5 þ 0:0027x6 þ 0:0127x9

q xð Þ ¼ 0:0808x2 þ 0:8945x3 þ 0:0247x4

Code 3: Code with constrained degree distribution with E ¼ 0:02:

k xð Þ ¼ 0:0086xþ 0:9711x2 þ 0:0006x3 þ 0:0059x5 þ 0:011x6 þ 0:0028x9

q xð Þ ¼ 0:0118x2 þ 0:9332x3 þ 0:055x4

The error floor BER of the three codes is evaluated using Eq. (8.60) and shown

in Fig. 8.11 along with the error floor region.

From Fig. 8.11, it can be observed that the codes with constrained degree

distributions have yielded improved error floor performance. It indicates that a

balance between threshold and error floor BER can be obtained.
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Code 2
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Fig. 8.11 The error floor BER of the three codes
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8.10 Problems

1. Plot the Tanner graph for the following parity check matrix H. Show that the

girth of the Tanner graph is 6

H ¼

1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

2. Find the girth of the Tanner graph given below

Bit nodes

Check nodes

H ¼

0 0 1 0 0 1 1 1 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 1 1 1 0

0 1 0 0 0 1 1 0 0 1 0 0

1 0 1 0 0 0 0 1 0 0 1 0

0 0 0 1 1 0 0 0 1 0 0 1

1 0 0 1 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 1 1

0 1 1 0 0 0 0 0 1 1 0 0

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

3. Determine the code word for LDPC code with following parity check matrix

using efficient encoding method when the message sequence s ¼ 1 0 0 0 0 0 0½ �

H ¼

1 1 1 0 0 1 1 0 0 0 1 0

1 1 1 1 1 0 0 0 0 0 0 1

0 0 0 0 0 1 1 1 0 1 1 1

1 0 0 1 0 0 0 1 1 1 0 1

0 1 0 1 1 0 1 1 1 0 0 0

0 0 1 0 1 1 0 0 1 1 1 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5
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4. A code word is generated using the following parity check matrix

H ¼

1 1 0 1 0 0

0 1 1 0 1 0

1 0 0 0 1 1

0 0 1 1 0 1

2

6

6

4

3

7

7

5

When the code word is sent through a BEC, the received signal is

y ¼ 0 0 1 e e e½ �

Decode the received vector to recover the erased bits.

5. Consider the code word generated in Example 8.5. If it is sent through AWGN

channel, the received vector after detector hard decision is

y ¼ 1 1 0 1 0 1 0 0 0 1½ �. Decode the received vector using bit-flipping algorithm

and comment on the result.

6. A code word is generated with following parity check matrix

H ¼

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

2

6

6

4

3

7

7

5

When the code word is sent through a BSC with crossover probability � ¼ 0:2;
the received signal is

y ¼ 0 0 1 0 0 0½ �

Decode the received vector using log domain sum–product algorithm.

7. Consider the code word generated in Example 8.6. If it is sent through AWGN

channel with noise density No = 0.3981, the received vector is y ¼ ½0:7271
�2:0509 � 0:9209 � 0:8185 0:2766 � 0:2486 � 0:2497 � 1:0237 1:2065
1:1102�. Decode the received vector using sum–product algorithm and com-

ment on the result.

8. Repeat the problem 6 using min-sum decoding algorithm and comment on the

result

9. Find the degree distribution of the following irregular code parity check matrix
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H ¼

0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0

0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 1

0 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0

0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1

0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0

1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0

0 1 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

10. Obtain an EXIT chart for a rate 0:49303 irregular LDPC code with the fol-

lowing degree distribution at r2 ¼ 0:97869:

k xð Þ ¼ 0:135xþ 0:2816x2 þ 02576x3 þ 0:0867x33

q xð Þ ¼ x10

8.11 MATLAB Exercises

1. Write MATLAB program to generate parity check matrix H having a normal-

ized degree distribution (from node perspective) defined as

k xð Þ ¼
X

kmax

i¼1

kix
i and q xð Þ ¼

X

qmax

i¼1

qix
i;

with k ¼ 0 0:4994 0:3658 0 0 0 0:0581 0 0 0 0 0 0:0767½ �;
q ¼ 0 0 0 0 0 0 1½ �;

2. Write a MATLAB program to compare the performance of LDPC codes in

AWGN and Rayleigh fading channels.
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Chapter 9

LT and Raptor Codes

To partially compensate the inefficiency of random codes, we can use Reed–Solomon

codes, these codes can be decoded from a block with the maximum possible number

of erasures in time quadratic in the dimension. But in practice, these algorithms are

often too complicated and quadratic running times are still too large for many

applications. Hence, a new class of codes is needed to construct robust and reliable

transmission schemes and such a class of codes is known as fountain codes. This

fountain codes should possess a fast encoder and decoder to work in practice. Luby

invented the first class of universal fountain codes [1], in which the decoder is capable

of recovering the original symbols from any set of output symbols whose size is close

to optimal with high probability. The codes in this class are called LT codes. It is

important to construct universal Fountain codes to many applications which have fast

decoding algorithms and the average weight of an output symbol is a constant, such a

class of Fountain codes are called as Raptor codes [2] and the basic idea behind

Raptor codes is a pre-coding of the input symbols prior to the application of an

appropriate LT code. This chapter discusses the encoding and decoding of LT and

Raptor codes.

9.1 LT Codes Design

The rateless LT codes generate the limitless number of output symbols by using the

encoding of a finite number of message symbols.

By receiving a given number of output symbols, each receiver can decode them

successfully. The LT codes are the first universal erasure-correcting codes that pro-

vide successful communication over a binary erasure channel (BEC) for any erasure

probability. The LT codes have a various types of applications and advantages.
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In particular, a transmitter having a LT code uses a single code for efficient trans-

mission in broadcast networks, where a single transmitter transferring a message to

multiple receivers simultaneously over different channels.

The transmitter with information message u consisting of k source symbols

generates an infinite number of encoding symbols, which are broadcasted succes-

sively. Due to the property of an ideal Fountain code, the receiver is able to

reconstruct the entire source message reliably from any k received encoding

symbols. If symbols are erased, an ideal Fountain code receiver will just wait for k

encoding symbols before reconstruct the information message.

In the practical implementations of LT code, random number generator was

employed to determine the degree and neighbors of an encoding symbol. However,

the key to make LT code work well is the degree distribution used in the encoding

procedure.

9.1.1 LT Degree Distributions

Choosing a good degree distribution is the key to make LT code work well in

practice and a couple of them are as follows:

A good degree distribution should meet the following two requirements: First, as

few encoding symbols as possible on average are required to ensure successful

recovery of source symbols; Secondly, the average degree of the encoding symbols

shall be as low as possible.

Ideal Solition Distribution [1]

Addition of input symbols to the ripple at the same rate as they are processed is the

basic property required for a good degree distribution and hence the name Soliton

distribution, as a soliton wave balances dispersion and refraction perfectly. The

ideal solition distribution is given by

lISD ið Þ ¼ 1=k i ¼ 1

1=i i� 1ð Þ i ¼ 2; 3; . . .; k

�

ð9:1Þ

Ideal solition distribution ensures that at each subsequent step, all the release

probabilities are identical to 1=k. When the number of encoding symbols is equal,

there is one expected ripple generated at each processing step and the source

symbols can be ideally recovered after k processing step. In practice, ideal solition

distribution works poorly.
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Robust Solition Distribution [1]

Define RSD ¼ c � ln k=eð Þ
ffiffiffi

k
p

. In this distribution, we computed lRSD as follows:

s ið Þ ¼
RSD=ik i ¼ 1; 2; . . .; round ðk=RSDÞ � 1

RSD ln RSD=eð Þ=k i ¼ roundðk=RSDÞ
0 else

8

<

:

ð9:2Þ

b ¼
X

k

i¼1

lISD ið Þ þ s ið Þ

lRSD
ið Þ ¼ lISD ið Þ þ s ið Þð Þ=b; i ¼ 1; 2; . . .; k ð9:3Þ

Robust solition distribution is an improvement of the ideal solition distribution

which is not only viable but practical too.

The term RSD is used for the RSD above is thought as the size of the ripple.

RSD is simply understood as the number of information symbols, and at each

decoding step, its degree is one. The ripple is the set of covered input symbols that

have not yet been processed. By following relation, we can predetermined this

value

RSD ¼ c � ln k=eð Þ
ffiffiffi

k
p

; ð9:4Þ

where c and e are two parameters. c controls the mean of degree distribution and e is

the allowable failure probability of the decoder to recover the source symbols. The

smaller the value of c, the greater the probability of low degrees.

In the encoding for LT codes, the degree distribution of information symbols and

output symbols should be a uniform distribution and a RSD, respectively.

Luby suggested that the number of received encoded symbols be bk. Then, the

corresponding decoding overhead is

e ¼ n=k � 1

¼ 1=RSD � 1

¼ b� 1 ð9:5Þ

The average degree increases logarithmically versus the code dimension. As the

code dimension k is getting larger, the overhead decreases; this is because b is a

decreasing function with k, but the sparseness of the generator matrix becomes

lower and lower.
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9.1.2 Important Properties of the Robust Soliton Distribution

Property 1: The number of encoding symbols is n ¼ k þ O
ffiffiffi

k
p

� ln2 k=eð Þ
� �

:

Property 2: The average degree of an encoding symbol is D ¼ Oðlnðk=�ÞÞ:
Property 3: The decoder fails to recover the data with probability at most e from a

set of n encoding symbols.

One can refer [1] for proofs of these properties.

9.1.3 LT Encoder

The stepwise procedure to produce infinite output symbols, from k input symbols

S1; S2; . . .; Skf g is as follows:

Step 1: Consider an output degree d randomly from a degree distribution q dð Þ
Step 2: Select d district input symbols uniformly at random from S1; S2; . . .; Skf g
Step 3: Perform exclusive-OR of these d input symbols to obtain the output symbol

ci ¼ Si;1 � Si;2 � � � � � Si;d

A generator matrix G also can be defined such that the output symbols can be

expressed as follows:

c ¼ s � G; ð9:6Þ

where s denotes the input vector. Modulus-2 addition is used during the matrix

multiplication.

The following MATLAB function generates the matrix G by using robust soliton

density.

308 9 LT and Raptor Codes



Program 9.1 MATLAB function to generate G using robust soliton density
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9.1.4 Tanner Graph of LT Codes

The Tanner Graph of LT codes is similar to the Tanner graph used in LDPC codes,

whereas the check nodes and variable nodes usually used in LDPC codes are

replaced with input nodes and output nodes of LT codes as shown in Fig. 9.1.

9.1.5 LT Decoding with Hard Decision

The decoder uses the Decoder recovery rule [1] to repeatedly recover input sym-

bols. The Decoder recovery rule is as follows:

If there is at least one encoding symbol that has exactly one neighbor then the neighbor can

be recovered immediately since it is a copy of the encoding symbol. The value of the

recovered input symbol is exclusive-ORed into any remaining encoding symbols that also

have that input symbol as a neighbor, the recovered input symbol is removed as a neighbor

from each of these encoding symbols and the degree of each such encoding symbol is

decreased by one to reflect this removal.

Based on the above rule, the stepwise decoding process can be described as

follows:

Step 1: Find an output symbol yi connected to only one input symbol mj.

Step 2: Set mj ¼ yi.

Step 3: Exclusive-OR mj to all the output symbols connected to mj.

Step 4: Remove all the edges connected to mj.

Step 5: Repeat step 1 to 4 until all input symbols are recovered.

Output 

Nodes
Input 

Nodes

Fig. 9.1 Tanner graph of LT

codes
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The output degree distribution is a critical part of LT codes. If there is no output

symbol with degree one during the iteration, the decoding process will halt, which

indicates a decoding failure. Thus, optimal output degree is required to ensure a

successful decoding. In Luby’s paper, two output degree distributions, i.e., ideal

soliton distribution and robust soliton distribution, are presented [1].

Ideal soliton distribution adds only one input node to the ripple each iteration

round, consuming the fewest output symbols to recover all of the input symbols.

However, it performs poorly in practice because the probability of ripple vanishing,

i.e., the error probability or the decoding failure rate is high. Robust soliton dis-

tribution attempts to lower the error probability by slightly increasing the proba-

bility of degree one. The following example illustrates the decoding process.

Example 9.1 Consider the following Tanner graph of a LT code

1 2 3 4

321

and if the received bits vector y ¼ 1 0 1 1½ �. Decode the received bits vector

to obtain the message bits.

Solution The boxes represent the message bits, while circles represent output bits.

An output bit is the factor graph. There are three message bits and four output bits,

which have values y1y2y3y4 ¼ 1 0 1 1½ �. During the first iteration, the only

output bit that is connected to one message bit is the first output bit (see Fig. a). This

value is copied to m1, delete the output bit (see Fig. b), and then the new value of

m1 gets added to y2 and y4. This disconnects m1 from the graph (see Fig. c). At the

start of the second iteration, y4 is connected to the single message bit m2. Now one

sets m2 equal to y4 (see Fig. d), and then adds this value to y2 and y3. This

disconnects m2 from the graph (see Fig. e). Finally, one sees that the output bits

connected to m3 are equal as expected and can be used to restore m3 (see Fig. f).
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For success of the LT decoder with high probability, decoding graph of LT

codes needs to have at least k lnðkÞ edges. In [2], Raptor codes are introduced to

relax this lower bound on the number of edges in the decoding graph.

9.1.6 Hard-Decision LT Decoding Using MATLAB

The following example illustrates decoding of LT codes using MATLAB.

(c)

011

1 (d) 0

11

1

(e) 01

11

0 11(f)

(a)

1101

(b)

110

1
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Example 9.2 Write a MATLAB program to implement hard-decision LT decoding

assuming received vector y ¼ 1 0 1 1 0 1 1½ � when the following gen-

erator matrix is used to encode the code word.

G ¼
1 1 0 1 0 0 0

0 0 1 1 0 0 1

1 0 0 1 1 0 0

0 0 1 0 1 1 1

2

6

6

4

3

7

7

5

Solution The following MATLAB program decodes the received vector y. The

output of the program gives the decoded vector 0 0 1 1½ �.

Program 9.2 MATLAB program for Hard Decision LT Decoding
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9.1.7 BER Performance of LT Decoding over BEC Using

MATLAB

At the receiving end, a receiver collects n = k(1 + ǫ) output symbols. Here, ǫ is

called the overhead. Note that several erasures need to be discarded till n unerased

output symbols are obtained. The following MATLAB program illustrates the BER

performance of LT codes over BEC for different overheads and for different erasure

probabilities.

Program 9.3 MATLAB program for the BER Performance of LT Decoding over

BEC

The overhead versus BER performance of LT decoding obtained from the above

program for three different erasure probabilities is shown in Fig. 9.2.
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From Fig. 9.2, it is observed that the BER decreases as overhead increases for a

fixed erasure probability and further the BER for low erasure probability is less than

that the high erasure probability.

9.2 Systematic LT Codes

Many researchers endeavored to improve the performance of LT codes to protect

the data over the wireless Internet, where fading, noise, and packet erasures are

encountered. For the sake of improving, the error correction capability of LT codes

and the complexity of these schemes tend to be increased. The soft decoding of LT

codes is using the probabilistic decoding technique of low density parity check

codes (LDPC) [3].

Hence, to improve the LT code’s performance in hostile wireless channels, a

systematic LT code as shown in Fig. 9.3 has been suggested in [4] by expanding LT

code’s K � N½ � generator matrix with the aid of a unity matrix having a size of

K � K½ �.
The relation between the systematic LT generator matrix G and the parity check

matrix H is as follows:

Consider a generator matrix GK�N ¼ IK�K=AK�M½ �, where I is an identity matrix

having a size of ½K � K� and A is a non-singular matrix having a size of ½K �M�.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Overhead

B
E

R
Pe=0.1

Pe=0.2

Pe=0.3

Fig. 9.2 BER performance of LT decoding over BEC
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Then, the parity check matrix is calculated as H ¼ ½AT=I 0�; where AT is the

transpose of A and I 0 is an identity matrix having a size of ½M �M� [5], where
N ¼ K þM is the number of columns in G and K is the number of rows in G.

9.2.1 Systematic LT Codes Decoding

The implementation of the LT decoding process is similar to that of the classic LDPC

decoding procedure. The LT decoder’s soft values are set to a value corresponding to

the demodulator’s soft output. The decoder’s soft values which denote the log

likelihood ratios (LLRs) are passed from the check nodes to the variable nodes and

vice versa are then iteratively updated after each decoding iteration.

The LT decoder outputs its tentative hard decision and checks after each iteration

whether the product of the corresponding code word and the transpose of the PCM

H is equal to zero, if not, the LT decoding process will be continued iteratively until

the output code word becomes legitimate or the maximum affordable number of

iterations is exhausted.

9.2.2 BER Performance Analysis of Systematic LT Codes

Using MATLAB

9.2.2.1 BER Performance of Systematic LT Codes Over BEC

The performance of the systematic LT(1000, 3000) code on BEC channel with

erasure probabilities 0:1 0:2 0:4 0:6 0:8½ � is illustrated using the following

MATLAB program. In this, the Robust Soliton degree distribution with parameters

c ¼ 0:1 and e ¼ 0:5 is used.

Figure 9.4 shows the performance analysis of the systematic LT code over the

BEC having different erasure probabilities qe.

Fig. 9.3 The systematic LT generator matrix
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Program 9.4 MATLAB program for the BER Performance of systematic LT code

in BEC channels

erasure probability e 

y = x; 

function [y] = bec_channel(x, e) %BEC_CHANNEL Simulates binary erasure channel with  

y( rand(size(abs(x)))<e ) =-1;% = erasure, otherwise 0s and 1s are bits

end

function M=becebest(xHat1b,H1,iter)

H=H1;

M=xHat1b;

[N1 N2]=size(H);

for i=1:iter

for j=1:N1

    ci = find(H(j, :));

     d=find(M(ci)~=-1);

   d1=find(M(ci)==-1);

    if ((length(d)>=2) & (length(d1)==1))

       E(j,ci(d1))=mod(sum(M(ci(d))),2);

    else 

        E(j,ci(d1))=-1;

    end

end

for j=1:N2

    ri = find(H(:,j));

    if(M(j)==-1)

        for ii=1:length(ri)

        if( E(ri(ii),j)~=-1)

            M(j)=E(ri(ii),j);

        end

    end

    end

end

end
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9.2.2.2 BER Performance of Systematic LT Codes Over AWGN

Channel

The performance of the systematic LT(1000, 2000) code on AWGN channel is

illustrated using the following MATLAB program. In this, the Robust Soliton

degree distribution with parameters c ¼ 0:1 and e ¼ 0:5 is used.

Figure 9.5 shows the performance analysis of the systematic LT code over the

AWGN having different Eb=N0s.
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Program 9.5 MATLAB program for the BER Performance of systematic LT code

in AWGN channels using BPSK modulation
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Fig. 9.4 BER versus 1-Pe performance of the systematic LT code in BEC channels
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Fig. 9.5 BER versus Eb=N0 performance of the systematic LT code in AWGN channels using

BPSK modulation
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9.2.2.3 BER Performance of Systematic LT Codes Over

AWGN-Contaminated BEC

The schematic of the encoding and decoding of the LT coding over AWGN-

contaminated BEC is shown in Fig. 9.6.

The performance of the systematic LT(1000, 3000) code on AWGN-contami-

nated BEC with erasure probability 0.1 is shown in Fig. 9.7. In this, the Robust

Soliton degree distribution with parameters c ¼ 0:1 and e ¼ 0:5 is used.

Encoder Decoder

Fig. 9.6 LT encoding and decoding over AWGN-BEC
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Systematic LT(1000,2000),AWGN-BEC, Pe=0.1,iterations=1

Systematic LT(1000,2000),AWGN-BEC, Pe=0.1, iterations=2

Systematic LT(1000,2000),AWGN-BEC, Pe=0.1, iterations=4

Systematic LT(1000,2000),AWGN-BEC, Pe=0.1, iterations=6

Fig. 9.7 BER versus Eb/N0 performance of the systematic LT code in AWGN-contaminated

BEC channel

9.2 Systematic LT Codes 321



9.3 Raptor Codes

Raptor codes are concatenation of an erasure-correcting pre-code and an LT code

[2]. Figure 9.8 shows a graphical presentation of a Raptor code. The output symbols

of the Raptor code are sampled independently from the distribution. Low density

parity check (LDPC) codes and Tornado codes are examples of the pre-code. The

decoding graph of the LT code with k-symbol message block should have at least k

ln(k) edges, which results in large overhead or higher complexity of encoding and

decoding. The raptor codes reduce the lower bound on the number of edges in the

bipartite graph, and hence, recover message symbols at a lower overhead at almost

linear complexity. The pre-code of the raptor code recovers the Message symbols

that are left undecoded by the LT decoders due to lower head.

Raptor codes are being used in commercial systems of Digital Fountain, For

example, a Silicon Valley-based startup specializing in fast and reliable delivery of

data over heterogeneous networks.

The k symbols are input symbols of a Raptor code which are used to construct

the code word in C consisting of n intermediate symbols and output symbols are the

symbols generated by the LT code from the n intermediate symbols.

Raptor code encoding algorithm is as follows: an encoding algorithm for C is

used to generate a code word in C corresponding to the given k input symbols.

Then, an encoding algorithm for the LT code with distribution X xð Þ is used to

generate the output symbols.

Raptor code decoding algorithm of length m can recover the k input symbols

from any set of m output symbols and errors with probability which is at most 1=kC

for some positive constant.

Redundant nodes

Precoding

LT-coding

Fig. 9.8 Raptor codes
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9.4 Problems

1. Suppose the generator matrix G of the LT code is

G ¼
1 1 0 1 0 1 0

1 0 1 1 0 0 1

1 0 0 1 1 1 1

0 0 1 0 1 1 1

2

6

6

4

3

7

7

5

and the received encoded symbols are 1 0 1 1 0 0 0½ �. Decode the

received vector to obtain message symbols.

2. Show that the number of encoding symbols is n ¼ k þ O
ffiffiffi

k
p

� ln2 k=eð Þ
� �

:

3. Show that the average degree of an encoding symbol is D ¼ Oðlnðk=�ÞÞ
4. Show that the decoder fails to recover the data with probability at most e from a

set of N encoding symbols.

9.5 MATLAB Exercises

1. Write a MATLAB program for LT encoding and decoding with non-binary

message symbols using robust Soliton distribution.

2. Write a MATLAB program to generate H matrix for a systematic LT code with

k message symbols and 0.5 overhead.
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Chapter 10

MIMO System

10.1 What Is MIMO?

A channel with multiple antennas at the transmitter and multiple antennas at the

receiver is called as a multiple-in-multiple-out (MIMO) channel, whereas the SISO

channel has single antenna at the transmitter and a single antenna at the receiver.

A MIMO channel representation is shown in Fig. 10.1.

The key advantages of MIMO system are increased reliability obtained through

diversity and higher data rate obtained through spatial multiplexing [1]. These two

concepts are used together in MIMO systems.

In a diversity system, the same information is transmitted through multiple

transmit antennas and received at multiple receive antennas simultaneously. Since

the fading for each link between a pair of transmit and receive antennas is con-

sidered to be independent and the same information travels through diverse paths

and if one path is weak, a copy of information received through the other path may

be good, and hence, the probability for accurate detection of the information

increases.

In a spatial multiplexing, different information can be transmitted simultaneously

over multiple antennas, similar to the idea of an OFDM signal, thereby boosting the

system throughput or capacity of the channel.
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10.2 MIMO Channel Model

10.2.1 The Frequency Flat MIMO Channel

Let hji be a complex number represents the channel gain between ith transmit

antenna and jth receive antenna. At a certain time instant, if the symbols

fs1; s2; . . .; sNT
g are transmitted via NT antennas, then the received signal at antenna

j can be expressed as

yj ¼
XNT

i¼1

hjisj þ gi ð10:1Þ

With i ¼ 1; 2; . . .;NT transmitter antennas and j ¼ 1; 2; . . .;NR receiver antennas,

Eq. (10.1) can be represented in matrix form as

y1
y2

..

.

yNR

2

6664

3

7775 ¼

h11 h12 � � � h1NT

h21 h22 � � � h2NT

..

. ..
. . .

.

hNR1 hNR2 . . . hNRNT

2

6664

3

7775

s1
s2

..

.

sNT

2

6664

3

7775þ

g1
g2

..

.

gNR

2

6664

3

7775 ð10:2Þ

or more compactly as

y ¼ Hsþ g ð10:3Þ

The fading coefficients H are independent (with respect to both i and j) and

identically distributed (i.i.d). The additive noise at receiver antenna is independent

ReceiverTransmitterFig. 10.1 A MIMO channel

326 10 MIMO System



(with respect to g), identically distributed. It is assumed that the signaling is subject

to the average power constraint

E s2
�� ��� �

�P ð10:4Þ

The H matrix contains the channel coefficients that distort the transmitted signal

amplitude and phase in time domain. The channel matrix H is estimated at the

receiver and transmitter transmits blindly without any idea of channel information.

If the receiver sends back the channel information to the transmitter, then the

transmitter is able to adjust the powers allocated to the antennas.

One attractive merit of MIMO systems is the increased antenna diversity, which

can alleviate the detrimental effect of flat fading. In a MIMO system with NT

transmit antennas and NR receive antennas, if the channels for any pair of transmit–

receive antennas are independent and experience flat fading, the maximum or full

diversity gain is NTNR. A common way of achieving the full diversity is through

space–time (ST) coding, which is discussed in the next chapter.

10.2.2 The Frequency-Selective MIMO Channel

In MIMO systems where any transmit–receive link is subject to multipath fading

independently and the channel impulse response is characterized by L resolvable

paths, the full diversity gain is NTNRL [2, 3]. In frequency-selective MIMO

channels, OFDM is usually applied to eliminate the ISI and ICI. To achieve full

diversity, coding is used across OFDM subchannels, OFDM blocks, and transmit

antennas.

10.2.3 MIMO–OFDM System

In broadband wireless systems, the MIMO channels are severely affected by the

frequency-selective fading or potential multipath fading. This fading effect com-

plicates the design of ST codes because of ISI. To overcome this problem, MIMO

can be combined with OFDM system, which is referred to as MIMO–OFDM. The

combination of MIMO and OFDM has the potential of meeting this stringent

requirement since MIMO can improve the capacity and the diversity gain and

OFDM can mitigate the detrimental effects due to multipath fading. The schematic

block diagram of the MIMO–OFDM system is shown in Fig. 10.2.

The schematic block diagram of MIMO–OFDM system with NT transmit, NR

receive antennas, and N-tone OFDM is illustrated in Fig. 10.2. The incoming bit
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stream is first mapped into a number of data symbols by using modulation tech-

niques such as BPSK, QPSK, and QAM. Then, a block of data symbols is encoded

into a code word matrix of size NT � NT; and transmitted through NT transmit

antennas in T OFDM blocks, each block having N subchannels. After appending

the cyclic prefix on each OFDM block, the blocks will be transmitted through NT

transmit antennas. After passing through the MIMO channels, first the received

signals will be sent to the reverse OFDM (cyclic prefix removal, DFT) and then sent

to the decoder. If the channel state information (CSI) is available at the receiving

side, the optimal ML detection will be performed.

10.3 Channel Estimation

In training-based channel estimation, the used training symbols or pilot tones are

known to both the transmitter and the receiver. The knowledge of transmitted pilot

symbols at the receiver is exploited to estimate the channel. The block-type pilot
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Fig. 10.2 MIMO OFDM system
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Fig. 10.3 a Block pilot. b Comb pilot
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arrangement is shown in Fig. 10.3a in which pilot symbols are transmitted peri-

odically for channel estimation. The comb-type pilot arrangement is shown in

Fig. 10.3b, where the pilots are transmitted at all times but with an even spacing on

the subcarriers for channel estimation.

The estimation can be performed by using LS [4–7]. The training symbols for N

subcarriers can be represented by the following diagonal matrix assuming that all

subcarriers are orthogonal.

S ¼

sð0Þ 0 � � � 0

0 sð1Þ h
..
.

..

.
h

. .
.

0

0 � � � 0 s N � 1ð Þ

2

66664

3

77775
ð10:5Þ

where sðkÞ denotes a pilot tone at the kth subcarrier, with EfsðkÞg ¼ 0;

Varf sðkÞg ¼ r2s ; k ¼ 0; 1; 2; . . .;N � 1. For a given channel gain HðkÞ corre-

sponding to the kth subcarrier, the received training signal YðkÞ can be represented

as

Y ,

Y 0ð Þ

Y 1ð Þ

..

.

Y N � 1ð Þ

2

66664

3

77775
¼

sð0Þ 0 � � � 0

0 sð1Þ h
..
.

..

.
h

. .
.

0

0 � � � 0 s N � 1ð Þ

2

666664

3

777775

H 0ð Þ

H 1ð Þ

..

.

H N � 1ð Þ

2

66664

3

77775
þ

g 0ð Þ

g 1ð Þ

..

.

g N � 1ð Þ

2

66664

3

77775

¼ SH þ g

ð10:6Þ

where g is a noise vector with EfgðkÞg ¼ 0; VarfgðkÞg ¼ r2g; and k ¼ 0; 1; 2; . . .;N � 1.

10.3.1 LS Channel Estimation

The LS is a well-known method and widely used for estimation due to its sim-

plicity. LS channel estimate is represented by

bHLS ¼ S�1Y ð10:7Þ

The pilot subcarriers are interpolated to estimate the channel for data symbols.
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10.3.2 DFT-Based Channel Estimation

The DFT-based channel estimation technique improves the performance of LS

channel estimation by removing the effect of noise outside the maximum channel

delay [8].

The IDFT of the channel estimate bH kð Þ
n oN¼1

k¼0
is written as

IDFT bH kð Þ
n o

¼ h nð Þ þ g nð Þ, bh nð Þ; n ¼ 0; 1; . . .;N � 1 ð10:8Þ

where bH kð Þ is the estimate of the channel H at the kth subcarrier, obtained by LS,

and g nð Þ denotes the noise component. If the maximum channel delay is dCd, then

bhDFT nð Þ ¼
h nð Þ þ g nð Þ; n ¼ 0; 1; . . .; dCd � 1

0; otherwise

�
ð10:9Þ

and transformed back to the frequency domain as follows:

bHDFT nð Þ ¼ DFT bhDFT nð Þ
n o

ð10:10Þ

10.3.3 MIMO–OFDM Channel Estimation

Using Eq. (10.7), the LS estimate of the channel between jth transmitter and ith

receiver antenna for MIMO–OFDM system can be expressed as

bH j;ið Þ

LS ¼ s jð Þ
� ��1

Y ið Þ ð10:11Þ

s jð Þ is an N � N diagonal matrix with the pilots of the jth transmit antenna as

diagonal elements, and Y ið Þ is received vector of length N at receiver antenna i.
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10.3.4 Channel Estimation Using MATLAB

The following MATLAB program is written using built-in MATLAB function

“interpolation” to evaluate the MSE performance of LS and LS-DFT methods for

channel estimation. For different Eb=N0
0s, the mean square errors (MSE) for LS and

LS-DFT are shown in Fig. 10.4. From Fig. 10.4, it is observed that LS-DFT

performs better than the LS method for channel estimation.

0 5 10 15 20 25 30
10

-3

10
-2

10
-1

10
0

10
1

Eb/N0 (dB)

M
S

E

LS-linear

LS-linearDFT

Fig. 10.4 Eb=N0 versus MSE for channel estimation using LS and LS-DFT
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Program 10.1 MATLAB program for Channel Estimation Using LS and LS-DFT

methods
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10.4 MIMO Channel Decomposition

A MIMO channel can be looked as a set of independent SISO channels using the

singular value decomposition (SVD). The process requires precoding at the trans-

mitter and receiver shaping at the receiver as shown in Fig. 10.5. This requires

knowledge of the channel at the transmitter. The H matrix can be written in SVD

form as

H ¼ URVH ð10:12Þ

where U and V are unitary matrices (UHU ¼ INR
and VHV ¼ INT

) and R is a NR �
NT diagonal matrix of the singular values ðrjÞ of H matrix. If H is a full-rank

matrix, there are min ðNR;NTÞ of nonzero singular values and hence with the same

number of independent channels.

The received signal ~y is given by

~y ¼ UHy ð10:13Þ

The above equation can be rewritten as

~y ¼ UH Hsþ gð Þ ð10:14Þ

Now, substituting Eq. (10.12) in the above equation, we obtain

~y ¼ UH URVHsþ g
� 	

ð10:15Þ

Since s ¼ V~s; Eq. (10.15) can be rewritten as

~y ¼ UH URVHV~sþ g
� 	

¼ UHURVHV~sþ UHg

¼ R~sþ ~g

ð10:16Þ

From Eq. (10.16), it can be observed that the output is the product of precoded

input signal ~s and the singular value matrix R. The distribution of the noise does not

change by multiplying the noise g by the unitary matrix UH .

Precoding Receive shaping

∼
∼ Η

Fig. 10.5 Decomposition of a MIMO channel with full CSI
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Example 10.1 Find a parallel channel model for a MIMO system, the H matrix of

which is given by

H ¼
0:4þ j0:6 j 2

�0:8 0:4þ j0:2 1:5� j0:6
j0:6 �0:7 �0:1þ j1:1

2

4

3

5

Solution The SVD decomposition using MATLAB gives

U ¼

�0:4390� j0:6062 0:2203þ j0:3263 0:2389� j0:4773

�0:4426� j0:2417 �0:8023� j0:0633 �0:2637þ j0:1685

0:3571� j0:2408 0:0817þ j0:4366 �0:7817� j0:0777

2

64

3

75

R ¼

3:0659 0 0

0 1:2785 0

0 0 0:0748

2

64

3

75

V ¼

�0:1075 0:9289 �0:3543

�0:3528þ j0:1955 �0:0505� j0:3056 �0:0252� j0:8607

�0:5537� j0:7206 �0:1978� j0:0449 �0:3505þ j0:1011

2

64

3

75

The center matrix R contains the singular values ðrjÞ of the H matrix. The rank

of the matrix is equal to the number of singular values. This process decomposes

the matrix channel into three independent SISO channels, with gains of

3:0659; 1:2785 and 0:0748, respectively, as shown in Fig. 10.6. The number of

significant eigenvalues specifies the maximum degree of diversity. The larger a

particular eigenvalue, the more reliable is that channel. The most important benefit

of the SVD approach is that it allows for enhanced array gain—the transmitter can

send more power over the better channels and less (or no) power over the worst

ones. Thus, the first channel with the gain of 3:0659 will have better performance

than the other two. The number of principle components is a measure of the

maximum degree of diversity that can be realized in this way.

H

H

H

∼

∼

∼

∼

∼

∼ ∼

∼

∼ ∼

∼

∼

∼

∼

∼

Fig. 10.6 SVD

decomposition of a matrix

channel into three

independent SISO channels
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10.5 MIMO Channel Capacity

Let s and y be NT and NR length vectors containing the transmitted and received

symbols, respectively, for a MIMO system with NT transmit and NR receive

antennas. Then, the received signal y can be rewritten in a matrix form as follows:

y ¼

ffiffiffiffiffiffi
Es

NT

r
Hsþ g ð10:17Þ

where

y ¼ y1 y2 . . . yNR
½ �

s ¼ s1 s2 . . . sNT
½ �

g ¼ g1 g2 . . . gNR

� �

Es is the total energy of NT symbols transmitted.

10.5.1 Capacity of Deterministic MIMO Channel When CSI

Is Known to the Transmitter

The capacity of a deterministic channel is defined by Shannon as

C ¼ max
f ðsÞ

I s; yð Þ bits/channel use ð10:18Þ

Iðs; yÞ is called the mutual information of s and y. The capacity of the channel is the

maximum information that can be transmitted from s to y by varying the channel

probability density function (pdf). f ðsÞ is the pdf of the transmit signal s. From

information theory, we get the relationship of mutual information between two

random variables as a function of their entropy as

I s; yð Þ ¼ H yð Þ � H yjsð Þ ð10:19Þ

H yjsð Þ ¼ H gð Þ ð10:20Þ

Using Eq. (10.20), Eq. (10.19) can be rewritten as

I s; yð Þ ¼ H yð Þ � H gð Þ ð10:21Þ

The second term is constant for a deterministic channel because it is a function

of noise. Hence, mutual information is maximum only when the term HðyÞ is

maximum.
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Using Eq. (10.17), the autocorrelation matrix of y can be written as

Ryy ¼ E yyH
� �

¼ E

ffiffiffiffiffiffi
Es

NT

r
Hsþ g

� � ffiffiffiffiffiffi
Es

NT

r
Hsþ g

� �H
" #

¼ E
Es

NT

HssHHH þ ggH
� �
 �

¼
Es

NT

E HssHHH þ ggH
� �

¼
Es

NT

HE ssH
� �

HH þ E ggH
� �

¼
Es

NT

HRssH
H þ NoINR

ð10:22Þ

where Rss is the autocorrelation of the transmitted signal vector s and No is the

power spectral density of the additive noise gif gNR

i¼1. The entropy HðyÞ is maxi-

mized when both s and y are zero-mean circular symmetric complex Gaussian

(ZMCSCG) random variables. Then, the HðyÞ and HðgÞ are given by

H yð Þ ¼ log2 det peRyy

� 	� �
ð10:23Þ

HðgÞ ¼ log2 det peNoINR
ð Þf g ð10:24Þ

Using Eqs. (10.23) and (10.24), it is shown in [9] that the mutual information

given by Eq. (10.21) can be expressed as

I s; yð Þ ¼ log2 det INR
þ

Es

NTNo

HRssH
H

� �
bits=s=Hz ð10:25Þ

Since SNR ¼ Es

No
, Eq. (10.25) can be rewritten as

I s; yð Þ ¼ log2 det INR
þ
SNR

NT

HRssH
H

� �
bits=s=Hz ð10:26Þ

From the above equation, we can write the expression for capacity as

C ¼ I s; yð Þ ¼ max
Tr Rssð Þ¼NT

log2 det INR
þ
SNR

NT

HRssH
H

� �
ð10:27Þ

It should be noted here that trace of Rss matrix is Tr Rssð Þ ¼ NT, when the

transmission power for each transmit antenna is assumed to be 1.
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10.5.2 Deterministic MIMO Channel Capacity When CSI

Is Unknown at the Transmitter

When H is not known at the transmitter side, we can assume equal power distri-

bution among the transmitters, Rss is an identity matrix, that is, Rss ¼ INT
, and

Eq. (10.27) becomes

C ¼ log2 det INT
þ
SNR

NR

HHH

� �
ð10:28Þ

This is the capacity equation for the MIMO channels with equal power. It should

be noted that for a large number of transmit antennas and a fixed number of receive

antennas, the law of large numbers yields

lim
NT!1

1

NR

HHH ¼ INT
ð10:29Þ

Thus, the MIMO channel capacity for large NT becomes

C ¼ NR log2 det INT
þ SNRf g ð10:30Þ

Example 10.2 Given the following (3� 3 MIMO) channel, find the capacity of this

channel, when CSI is known at the receiver and unknown at the transmitter, SNR ¼
10 dB and bandwidth equal to 1 kHz. Compare this capacity calculation to that

using SVD.

H ¼
0:4þ j0:6 j 2

�0:8 0:4þ j0:2 1:5� j0:6
j0:6 �0:7 �0:1þ j1:1

2

4

3

5

Solution

HHH ¼
5:52 2:88þ j1:12 0:16� j3:14

2:88� j1:12 3:45 �1:09� j1:25
0:16þ j3:14 �1:09þ j1:25 2:07

2

4

3

5

C ¼ B log2 det INR
þ
SNR

NT

HHH

� �� �

¼ 7:7306 kbps

The singular values are equal to 3:0659; 1:2785 and 0:0748.
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The sum of the capacity of the three independent channels is equal to the same

quantity as above equation.

C ¼ B log 2 1þ 3:06592 � 3:33
� 	

þ log 2 1þ 1:27852 � 3:33
� 	�

þ log 2 1þ 0:07482 � 3:33
� 		

¼ 7:7306 kbps

10.5.3 Random MIMO Channel Capacity

10.5.3.1 Random MIMO Channel Capacity with CSI Known

at the Transmitter

It is assumed in Sect. 10.5.1 that the MIMO channels are deterministic. In general,

the MIMO channels are varying randomly. Hence, H is a random matrix and its

channel capacity is also randomly time-varying. In practice, assuming that the

random channel is an ergodic process, the MIMO channel capacity can be

expressed by

Cerg ¼ E max
Tr Rssð Þ¼NT

log2 det INR
þ
SNR

NT

HRssH
H

� �
 �
ð10:31Þ

where the subscript erg stands for ergodic.

If r is the rank of the matrix H and kiði ¼ 1; 2; . . .; rÞ are the eigenvalues

(positive real numbers) obtained by the eigen decomposition of HHH and if the

transmit power for the ith transmit antenna is given by pi ¼ E sij j2
h i

; Eq. (10.31)

can be rewritten [8] as

Cerg ¼ E log2 det INR
þ
SNR

NT

p
opt
i ki

� �
 �
ð10:32Þ

p
opt
i ¼ l�

NT

SNR

1

ki

� �þ

ð10:33Þ

Xr

i¼1

p
opt
i ¼ NT ð10:34Þ

338 10 MIMO System



where μ is a constant and xð Þþ is defined by

xð Þþ ¼ x for x� 0

xð Þþ ¼ 0 for x\0
ð10:35Þ

Equation (10.33) satisfying the constraint in Eq. (10.34) is the well-known

water-filling power allocation algorithm, which is illustrated in Fig. 10.7.

Figure 10.7 shows that more power must be allocated to the channel with higher

SNR. Furthermore, if an SNR is below the threshold given in terms of μ, no power

is allocated to the corresponding channels. As can be seen from Fig. 10.7, power is

not allocated to the channels 3 and 6.

10.5.3.2 Random MIMO Channel Capacity with CSI Unknown

at the Transmitter

When CSI is unknown at the transmitter, from Eq. (10.31), the ergodic capacity of

the random MIMO channel is given by

Cerg ¼ E log2 det INR
þ
SNR

NT

HHH

� �
 �
ð10:36Þ

Equation (10.36) can be written in terms of the positive eigenvalues as [8]

Cerg ¼ E log2 det INR
þ
SNR

NT

ki

� �
 �
ð10:37Þ

which is frequently known as an ergodic channel capacity.

1 2 3 4 5 6 7 8

Power level

Noise level 

Number of Channels

Fig. 10.7 Water-filling

power allocation algorithm
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The following MATLAB programs illustrate the ergodic capacity of i.i.d random

MIMO channel with CSI unknown at the transmitter.

Program 10.2 MATLAB program for ergodic capacity

Program 10.3 MATLAB Function program for ergcap

The ergodic capacity of i.i.d random MIMO channel with CSI unknown at the

transmitter with different transmitting and receiving antennas is shown in Fig. 10.8.

From Fig. 10.8, it is observed that the number of the transmitting and the

receiving antennas increases, the ergodic capacity increases.

10.5.3.3 Capacity of Correlated Random MIMO Channel

In general, the elements of H are correlated by an amount that depends on the

propagation environment as well as the polarization of the antenna elements and

spacing between them [10]. One possible model for H that takes the fading
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correlation into account splits the fading correlation into two independent com-

ponents called receive correlation and transmit correlation, respectively [11, 12].

This amounts to modeling H as follows

H ¼ R1=2
r HwR

1=2
t ð10:38Þ

where Rt and Rr are the transmit correlation and the receive correlation matrices,

respectively, Hw is a matrix with independent Gaussian elements with unity vari-

ance, and the superscript ½ stands for the Hermitian square root of a matrix. The

matrix Rr determines the correlation between the rows of H, and the matrix Rt

determines the correlation between the columns of H. The diagonal entries of Rt

and Rr are constrained to be unity. The correlation matrices Rt and Rr can be

measured or computed by assuming the scattering distribution around the transmit

and receive antennas. For uniform linear array at the transmitter and the receiver,

the correlation matrices Rt and Rr can be calculated according to two different

methods given in [13, 14]. From [14], we have the following Toeplitz structure

correlation matrices:
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Fig. 10.8 Ergodic capacity of i.i.d random MIMO channel with CSI unknown at the transmitter
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Rt ¼

1 rt � � � r
NT�1ð Þ2

t

rt 1 � � � � � �

..

. ..
. ..

.

r
NT�1ð Þ2

t � � � � � � 1

2

6664

3

7775; Rr ¼

1 rr � � � r
NR�1ð Þ2

r

rr 1 � � � � � �

..

. ..
. ..

.

r
NR�1ð Þ2

r � � � � � � 1

2

6664

3

7775

ð10:39Þ

where Rt and Rr represent r dtð Þ and r drð Þ; respectively, and r dð Þ is the approxi-

mation for the fading correlation between two adjacent antenna elements averaged

over all possible orientations of the two antennas in a given wave field which can be

expressed as [15]

r dð Þ � exp �23K2d2
� 	

ð10:40Þ

where d is the distance in wavelengths between two antennas and K is the angular

spread.

From Eq. (10.28), then, the MIMO channel capacity is given as

C ¼ log2 det INR
þ
SNR

NT

R1=2
r HwRtH

H
wR

H=2
r

� �
ð10:41Þ

The following examples demonstrate the performance of the correlated random

MIMO channels with and without CSI known at the transmitter using MATLAB.

Example 10.3 Compare the capacity of spatially correlated random 4� 4 channels

with unknown CSI at the transmitter for a non-uniform antenna array structure with

the following correlation matrices [14]

Rt ¼

1 0:3169 0:3863 0:0838
0:3169 1 0:7128 0:5626
0:3863 0:7128 1 0:5354
0:0838 0:5626 0:5354 1

2

664

3

775;

Rr ¼

1 0:1317 0:1992 0:2315
0:1317 1 0:1493 0:1907
0:1992 0:1493 1 0:1996
0:2315 0:1907 0:1996 1

2

664

3

775

and an uniform antenna array structure with rt ¼ rr ¼ 0:2:
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Program 10.4 MATLAB program for random MIMO channel capacity

The capacity of the random MIMO channels without CSI with uniform and non-

uniform correlated matrices is shown in Fig. 10.9.

From Fig. 10.9, it is observed that the capacity of a random MIMO channel

without CSI and with uniform correlated matrices gives the better performance than

the non-uniform correlated matrices.
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Example 10.4 Compare the capacity of spatially correlated random 4� 4 channels

with known and unknown CSI at the transmitter for an uniform antenna array

structure with rt ¼ rr ¼ 0:2:

0 5 10 15 20 25
0

5

10

15

20

25

30

SNR(dB)

b
p
s
/H

z
with non-uniform correlation matrices

with uniform correlation matrices

Fig. 10.9 Random MIMO channel capacity without CSI with uniform and non-uniform correlated

matrices
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Program 10.5 MATLAB program for spatially correlated 4� 4 channel capacity
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Program 10.6 MATLAB function program for water filling

The comparison of the capacity of spatially correlated 4� 4 channels with

known and unknown CSI at the transmitter is shown in Fig. 10.10.

From Fig. 10.10, it is observed that the capacity of spatially correlated 4� 4

channels with known CSI at the transmitter gives better performance than with

unknown CSI at the transmitter.

When NT ¼ NR and SNR is high, Eq. (10.41) can be approximated as

C ¼ log2 det INR
þ
SNR

NT

HwH
H
w

� �
þ log2 det Rtð Þ þ log2 det Rrð Þ ð10:42Þ

From Eq. (10.42), it can be observed that the MIMO channel capacity is reduced

due to the correlation between the transmit and receive antennas and the reduction

is

log2 det Rtð Þ þ log2 det Rrð Þ ð10:43Þ

It is shown in [8] that the value in Eq. (10.43) is always negative by the fact that

log2 det Rtð Þ� 0 for any correlation matrix R.
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The following example illustrates how correlation reduces the channel capacity

using MATLAB.

Example 10.5 Compare the capacity of i.i.d and correlated random 2� 2 channels

with CSI unknown at the transmitter assuming Rt ¼
1 0:76exp 0:17jpð Þ

0:76exp 0:17jpð Þ 1


 �
; Rr

is a 2� 2 identity matrix, i.e., no correlation exists between the receive antennas.

0 5 10 15 20 25
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SNR(dB)

b
p
s
/H

z
with unknown CSI at the transmitter

with known CSI at the transmitter

Fig. 10.10 Comparison of the capacity of spatially correlated 4� 4 channels with known and

unknown CSI at the transmitter
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Program 10.7 MATLAB program for i.i.d and correlated MIMO channels capacity

A comparison of the capacity of i.i.d and correlated 2� 2 channels is shown in

Fig. 10.11. From Fig. 10.11, it is observed that the capacity of the i.i.d with

unknown CSI at the transmitter gives the better performance than correlated random

2� 2 channels with unknown CSI at the transmitter.

10.6 MIMO Channel Equalization

Consider a wireless communication system in which the transmitter contains NT

antennas and the receiver possesses NR antennas. Let us consider a 2� 2 MIMO

channel NT ¼ 2; NR ¼ 2ð Þ as shown in Fig. 10.12. The received signal for the

2� 2 MIMO channel can be expressed as

yj ¼
X2

i¼1

hj;isi þ gj ð10:44Þ

where hj;i i ¼ 1; 2; j ¼ 1; 2ð Þ are independent and identically distribute (i.i.d) com-

plex random variables, representing the channel coefficients from the ith transmitter

antenna to the jth receiver antenna, xi are transmitted symbols, and gj are noise

samples and i.i.d complex AWGN variables.
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The Eq. (10.44) can be represented in matrix form as

y1
y2


 �
¼

h1;1
h2;1

h1;2
h2;2


 �
s1
s2


 �
þ

g1
g2


 �
ð10:45Þ

equivalently,

y ¼ Hsþ g

Fig. 10.12 A 2� 2 MIMO

channel
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Fig. 10.11 The comparison of the capacity of i.i.d and correlated 2� 2 channels
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10.6.1 Zero Forcing (ZF) Equalization

To solve for s, we know that we need to find a matrix W which satisfies WH ¼ I.

The zero forcing (ZF) linear detector for meeting this constraint is given by,

W ¼ HHH
� 	�1

HH ð10:46Þ

This matrix is also known as the pseudo-inverse for a general m� n matrix. The

term

HHH ¼
h	1;1 h	2;1

h	1;2 h	2;2

" #
h1;1 h1;2

h2;1 h2;2


 �

¼
h1;1
�� ��2þ h2;1

�� ��2 h	1;1h1;2 þ h	2;1h2;2

h	1;2h1;1 þ h	2;2h2;1 h1;2
�� ��2þ h2;2

�� ��2

2

4

3

5

10.6.2 Minimum Mean Square Error (MMSE) Equalization

The minimum mean square error (MMSE) approach tries to find W which mini-

mizes the criterion Ef Wy�s

� �
Wy�s

� �H
g. Solving W ¼ HHH þ N0I½ �

�1
HH when the

noise term is zero, the MMSE equalizer reduces to zero forcing equalizer.

10.6.3 Maximum Likelihood Equalization

ML detection shows the best performance in all the MIMO detection algorithms. It

finds the bs, which minimizes

J ¼ y� Hŝj j2 ð10:47Þ

J ¼
y1
y2


 �
�

h1;1
h2;1

h1;2
h2;2


 �
ŝ1
ŝ2


 �����

����
2

ð10:48Þ

If the modulation is BPSK, the possible value of s1 is þ1 or �1. Similarly, s2
also take values þ1 or �1. So, to find the maximum likelihood estimate, we need to

find the minimum from the all four combinations of s1 and s2 with J defined for the

four combinations as
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Jþ1;þ1 ¼
y1
y2


 �
�

h1;1 h1;2
h2;1 h2;2


 �
þ1

þ1


 �����

����
2

ð10:49Þ

Jþ1;�1 ¼
y1
y2


 �
�

h1;1 h1;2
h2;1 h2;2


 �
þ1

�1


 �����

����
2

ð10:50Þ

J�1;þ1 ¼
y1
y2


 �
�

h1;1 h1;2
h2;1 h2;2


 �
�1

þ1


 �����

����
2

ð10:51Þ

J�1;�1 ¼
y1
y2


 �
�

h1;1 h1;2
h2;1 h2;2


 �
�1

�1


 �����

����
2

ð10:52Þ

In case of 4� 4 MIMO, the Eq. (10.44) can be written as

y1
y2
y3
y4

2

664

3

775 ¼

h1;1 h1;2 h1;3 h1;4
h2;1 h2;2 h2;3 h2;4
h3;1 h3;2 h3;3 h3;4
h4;1 h4;2 h4;3 h4;4

2

664

3

775

s1
s2
s3
s4

2

664

3

775þ

g1
g2
g3
g4

2

664

3

775 ð10:53Þ

ML detection minimizes

J ¼

y1
y2
y3
y4

2

664

3

775�

h1;1 h1;2 h1;3 h1;4
h2;1 h2;2 h2;3 h2;4
h3;1 h3;2 h3;3 h3;4
h4;1 h4;2 h4;3 h4;4

2

664

3

775

ŝ1
ŝ2
ŝ3
ŝ4

2

664

3

775

��������

��������

2

ð10:54Þ

with BPSK modulation for maximum likelihood estimate, we need to calculate

minimum from all sixteen combinations of s1; s2; s3 and s4.

The performance comparison of MIMO channel equalization using ZF, MMSE,

and ML is shown in Fig. 10.13. From Fig. 10.13, it is observed that the performance

of MMSE is better than ZF and the performance of ML is better than both the

MMSE and ZF.

10.7 Problems

1. Find a parallel channel model for a MIMO system, the H matrix of which is

given by

H ¼
0:8 0:5� j0:2 0:3þ j0:6

0:4� j0:6 1:0� j0:1 0:2� j0:9
0:5þ j0:3 0:5þ j1:5 0:6þ j1:2

2

4

3

5
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2. Given the following (3� 3 MIMO) channel, find the capacity of this channel,

with known CSI at the receiver, unknown CSI at the transmitter, SNR ¼ 20 dB,

and bandwidth equal to 2 kHz. Compare this capacity calculation to that using

SVD.

H ¼
0:8 0:5 0:3
0:4 1:0 0:2
0:5 0:5 0:6

2

4

3

5

3. Consider a MIMO channel with two transmit antennas and one receive antenna.

Assume zero-mean unit variance AWGN and an average power constraint of

one per antenna. The path gains from the first and second transmit antennas to

the receiver antenna are h1 ¼ 0:5 and h2 ¼ 0:5þ j1:5, respectively.

(a) What is the channel capacity?

(b) What is the channel capacity if CSI is known at the transmitter and the

average power constraint is 2 over sum of the transmission powers from

both the antennas?

4. Assuming total power is 1 W, noise power is equal to 0.1 W, and the signal

bandwidth is 50 kHz, find the channel capacity and optimal power allocation for

MIMO channel, the H matrix of which is given by

0 5 10 15
10

-4

10
-3

10
-2

10
-1

10
0

Eb/No(dB)

B
E

R
ZF

MMSE

ML

Fig. 10.13 Performance comparison of MIMO channel equalization using ZF, MMSE, and ML
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H ¼
0:8 0:5� j0:2 0:3þ j0:6

0:4� j0:6 1:0� j0:1 0:2� j0:9
0:5þ j0:3 0:5þ j1:5 0:6þ j1:2

2

4

3

5

10.8 MATLAB Exercises

1. Write a MATLAB program for the simulations to estimate the achievable

information capacity for BPSK input and QPSK input over a MIMO system, the

H matrix of which is given by

H ¼
0:8 0:5� j0:2 0:3þ j0:6

0:4� j0:6 1:0� j0:1 0:2� j0:9
0:5þ j0:3 0:5þ j1:5 0:6þ j1:2

2

4

3

5

2. Write a MATLAB program to plot the ergodic channel capacity of a 2� 2

MIMO system over ergodic Rayleigh fading channel with transmit correlation

matrix Rt ¼
1 r

r 1


 �
and receive correlation matrix Rr ¼ Rt for

r ¼ 0; 0:5; 0:6; 0:8.
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Chapter 11

Space–Time Coding

In MIMO systems, diversity can be achieved by repetition coding in which different

antennas at the transmitter transmit the same information at different time slots. The

space–time (ST) coding is more bandwidth-efficient coding scheme, which trans-

mits an information symbol block in a different order from each antenna. The

diverse copies of the data transmitted are received with multiple receiving antennas.

All the copies of the received signal are combined in an optimal way to extract

information from each of them. This chapter describes different space–time coding

schemes and analyzes their performance in Rayleigh fading.

11.1 Space–Time-Coded MIMO System

A ST-coded MIMO system with NT transmit antennas and NR receive antennas is

shown in Fig. 11.1. In this MIMO system, the bit stream is mapped into a symbol

stream Si; i ¼ 1; . . .;N. The N symbols are ST encoded into sij; i ¼
1; 2; . . .;NT; j ¼ 1; 2; . . .; T , where i represents antenna index and j stands for the

symbol time index. Thus, sij; i ¼ 1; 2; . . .;NT; j ¼ 1; 2; . . .; T forms a ST code word

with the number of symbols N = NT · T.

Space–time codes are categorized as space–time block codes (STBC) and ST

trellis codes (STTC). Sections 11.2 through 11.5 discuss these codes. The perfor-

mance of STTCs is better than that of STBCs. However, STTCs’ complexity is

more due to the maximum likelihood (ML) decoder in the receiver.
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11.2 Space–Time Block Code (STBC)

An STBC is represented by the following code matrix S, in which each row rep-

resents one antenna’s transmissions over time and each column represents a time

slot.

S ¼

s11 s12 � � � s1T
s21 s22 � � � s2T

..

. ..
. ..

.

sNT1 sNT2 � � � sNTT

2

6

6

6

4

3

7

7

7

5

ð11:1Þ

where sij is the modulated symbol to be transmitted from antenna i in time slot j. T

and NT represent time slots and transmit antennas, respectively. The code rate of an

STBC is defined as how many symbols per time slot it transmits on average. If k

symbols are transmitted over T time slots, the code rate of STBC is

r ¼
k

T
ð11:2Þ

The matrix of STBC is to be designed so that it achieves highest possible

diversity of NT NR and highest possible code rate with minimum complexity of the

decoder.

Space-

time 

decoder 

Space-

time  

encoder 

Fig. 11.1 Space–time-coded MIMO system
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11.2.1 Rate Limit

It is proved in [1] that a code with NT transmit antennas will yield the highest rate

given by

rmax ¼
a0 þ 1

2a0
ð11:3Þ

where NT ¼ 2a0 or NT ¼ 2a0 � 1

11.2.2 Orthogonality

STBC is to be designed such that any pair of columns taken from the code matrix is

orthogonal in order to make the decoding process at the receiver to be simple,

linear, and optimal. However, a code that satisfies this criterion must sacrifice a part

of its rate.

11.2.3 Diversity Criterion

Orthogonal STBCs can be shown to achieve the maximum diversity allowed by

diversity criterion derived in [2]. Consider a code word

c ¼ c11c21; . . .; cNT1 c12c22; . . .; cNT2 . . . c1Tc2T ; . . .; cNTT ð11:4Þ

and let the corresponding erroneously decoded code word

~c ¼ ~c11~c21; . . .;~cNT1 ~c12~c22; . . .;~cNT2 . . . ~c1T~c2T ; . . .;~cNTT ð11:5Þ

Then, the NT � T difference matrix E c;~cð Þ can be defined as

E c;~cð Þ ¼

~c11 � c11 ~c12 � c12 � � � ~c1T � c1T
~c21 � c21 ~c22 � c22 � � � ~c2T � c1T

..

. ..
. . .

. ..
.

~cNT1 � cNT1 ~cNT2 � cNT2 � � � ~cNTT � cNTT

2

6

6

6

4

3

7

7

7

5

ð11:6Þ

Rank and determinant criteria

Let qðq�NTÞ be the rank of difference matrix E c;~cð Þ. The E c;~cð Þ should be full-

rank matrix for any pair of distinct code words c and ~c to yield maximum possible

diversity order of NTNR. Instead, if E c;~cð Þ has minimum rank q over the set distinct

11.2 Space–Time Block Code (STBC) 357



code word pairs, then diversity order is qNR [2]. Consider the following distance

matrix

A c;~cð Þ ¼ E c;~cð ÞE� c;~cð Þ ð11:7Þ

where E� c;~cð Þ denotes the transpose conjugate of E c;~cð Þ.

The determinant criterion states that the minimum determinant of A ci; c jð Þ ¼

E ci; c jð Þ
H
E ci; c jð Þ among all i 6¼ j should be large to achieve high coding gains.

Trace criterion

A good design criterion is to maximize the minimum distance j E c;~cð Þj jjF for all

i 6¼ j. This is called the trace criterion because j E c;~cð Þj jj2F ¼ Tr A c;~cð Þ½ �. The metric

j E c;~cð Þj jjF provides all the good properties of a distance measure.

11.2.4 Performance Criteria

The rank of A is q, the kernel of A has a minimum dimension NTx � q, and exactly

NTx � q eigenvalues of A are zero. The nonzero eigenvalues of A can be denoted by

k1; k2; k3; . . .; kq. Assuming perfect channel state information (CSI), the probability

of transmitting c and deciding in favor of ~c at the decoder is given by [3, 4]

P c ! ~c hij; i ¼ 1; 2; . . .;NTx; j ¼ 1; 2; . . .;NRx

�

�

� �

� exp �d2 c;~cð Þ
Es

4N0

� �

ð11:8Þ

where N0

2
is the noise variance per dimension and

d2 c;~cð Þ ¼
X

NRx

j¼1

X

T

t¼1

X

NTx

i¼1

hij c
i
t � ~cit

� �

�

�

�

�

�

�

�

�

�

�

2

ð11:9Þ

is the Euclidean distance.

It follows from [3] that the pairwise error bound is given by

P c ! ~cð Þ�
Y

q

i¼1

ki

 !�NRx

Es

4N0

� ��qNRx

ð11:10Þ

To achieve the best performance for a given system, the rank and determinant

criteria should be satisfied [4].
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11.2.5 Decoding STBCs

One particular attractive feature of orthogonal STBCs is that ML decoding can be

achieved at the receiver with only linear processing. In order to consider a decoding

method, a model of the wireless communication system is needed.

At time t, the signal yjt received at antenna j is

yjt ¼
X

NT

i¼1

hijsit þ gjt ð11:11Þ

where hij is the path gain from transmit antenna i to receive antenna j, sit is the

signal transmitted by transmit antenna i, and gjt is the additive white Gaussian noise

(AWGN).

The decision variables are formed by the maximum likelihood detection rule [7]

Yi ¼
X

NT

t¼1

X

NR

j¼1

yjth�k ið Þjdk ið Þ ð11:12Þ

where dkðiÞ is the sign of si in the kth row of the coding matrix, �k pð Þ ¼ q denotes

that sp is (up to a sign difference), the ðk; qÞ element of the coding matrix, for

i ¼ 1; 2; . . .; nT and then decides on constellation symbol si that satisfies

si ¼ argmin
s�A

Yi � sj j2þ �1þ
X

k;l

hklj j2
 !

sj j2
 !

ð11:13Þ

with A the constellation alphabet. Despite its appearance, this is a simple, linear

decoding scheme that provides maximal diversity.

11.3 Alamouti Code

The very first and well-known STBC is the Alamouti code [6]. In the Alamouti

encoder, two consecutive symbols s1 and s2 are encoded with the following ST

code word matrix:

S ¼
s1 �s�2
s2 s�1

� �

ð11:14Þ

This indicates that during the first time slot, signals s1 and s2 are transmitted from

antenna 1 and antenna 2, respectively. During the next time slot, antenna 1 and

antenna 2 transmit �s�2 and s�1, respectively. It is only STBC in which maximum

diversity can be achieved without sacrificing its data rate because Alamouti code has

rate 1 as it takes two time slots to transmit two symbols.
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11.3.1 2-Transmit, 1-Receive Alamouti STBC Coding

For Alamouti Scheme with two transmit and one receive antennas shown in

Fig. 11.2, if y1 and y2 denote the signals received at first time slot and second time

slot, respectively, we have

y1 y2½ � ¼ h1 h2½ �
s1 �s�2

s2 s�1

� �

g1 g2½ �

¼ h1s1 þ h2s2 þ g1 �h1s
�
2 þ h2s

�
1 þ g2½ � ð11:15Þ

where s1; s2 are the transmitted symbols, h1 is the channel from first transmit

antenna to receive antenna, h2 is the channel from second transmit antenna to

receive antenna, and g1; g2 are the noise at time slot 1 and time slot 2.

The combiner generates [2].

~s1 ¼ h�1y1 þ h2y
�
2 ð11:16Þ

and

~s2 ¼ h�2y1 � h1y
�
2 ð11:17Þ

To decode, the ML decoder minimizes the following decision metric (for

decoding) s1 and s2, respectively [5].

~s1 � s1j j2þn s1j j2 ð11:18Þ

~s2 � s2j j2þn s2j j2 ð11:19Þ

Tx1 

Rx

Tx2 

T
r
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n
s
m
i
t
t
e
r 

C

o

m

b

i

n

e

r 

Fig. 11.2 Alamouti scheme with two transmit and one receive antennas
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where

n ¼ �1þ
X

Nt

i¼1

hij j2
 !

ð11:20Þ

BER with Alamouti (2 × 1) STBC

From Eq. (2.44), BER for a 2-branch MRC (i.e., with one transmitting and two

receiving antennas) with BPSK modulation can be expressed as

BERMRCð1�2Þ ¼ p2MRC 1þ 2 1� pMRCð Þ½ � ð11:21Þ

where

pMRC ¼
1

2
�
1

2
1þ

1

Eb=N0

� ��1=2

ð11:22Þ

Then, the BER for the Alamouti 2-transmit, 1-receive antenna STBC case with

BPSK modulation can be written as

BERAlamoutið2�1Þ ¼ p2Alamouti 1þ 2 1� pAlamoutið Þ½ � ð11:23Þ

where

pAlamouti ¼
1

2
�
1

2
1þ

2

Eb=N0

� ��1=2

ð11:24Þ

It can be easily shown [6] that the performance of the Alamouti scheme with two

transmitters and a single receiver is identical to that of the two-branch MRC pro-

vided that each transmit antenna in the Alamouti scheme radiates the same energy

as the single transmit antenna for MRC.

11.3.2 2-Transmit, 2-Receive Alamouti STBC Coding

For Alamouti Scheme with two transmit and two receive antennas shown in

Fig. 11.3, if y11, y12, y21, and y22 denote the signals received by antenna 1 at first

time slot, by antenna 1 at second time slot, by antenna 2 at first time slot, and by

antenna 2 at second time slot, respectively, we have

y11 y12
y21 y22

� �

¼
h11 h12
h21 h22

� �

s1 �s�2
s2 s�1

� �

þ
g11 g12
g21 g22

� �

ð11:25Þ
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¼
h11s1 þ h12s2 þ g11 �h11s

�
2 þ h12s

�
1 þ g21

h21s1 þ h22s2 þ g21 �h21s
�
2 þ h22s

�
1 þ g22

� �

ð11:26Þ

where hij is the channel from ith transmit antenna to jth receive antenna, s1; s2 are

the transmitted symbols,
g11
g12

� �

are the noise at time slot 1 on receive antennas 1

and 2, respectively, and
g21
g22

� �

are the noise at time slot 2 on receive antennas 1 and

2, respectively.

The combiner generates [2]

~s1 ¼ h�11y11 þ h12y
�
12 þ h�21y21 þ h22y

�
22 ð11:27Þ

and

~s2 ¼ h�12y11 � h11y
�
12 þ h�22y21 � h22y

�
22 ð11:28Þ

To decode, the ML decoder minimizes the following decision metric (for

decoding) s1 and s2, respectively [5].

~s1 � s1j j2þn s1j j2 ð11:29Þ

~s2 � s2j j2þn s2j j2 ð11:30Þ

where

n ¼ �1þ
X

Nr

i¼1

X

Nt

j¼1

hi;j
�

�

�

�

2

 !

ð11:31Þ
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Fig. 11.3 Alamouti scheme with two transmit and two receive antennas
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BER with Alamouti ð2� 2Þ STBC
From Eq. (2.44), BER for 4-branch MRC (i.e., with one transmitting and four

receiving antennas) with BPSK modulation can be expressed as

BERMRCð1�4Þ ¼ p4MRc 1þ 4 1� pMRCð Þ þ 10 1� pMRCð Þ2þ20 1� pMRCð Þ3
h i

ð11:32Þ

BER for Alamouti (2 × 2) STBC case with BPSK modulation can be written as

BERAlamoutið2�2Þ ¼ p4Alamouti 1þ 4 1� pAlamoutið Þ þ 10 1� pAlamoutið Þ2þ20 1� pAlamoutið Þ3
h i

ð11:33Þ

11.3.3 Theoretical BER Performance of BPSK Alamouti

Codes Using MATLAB

The following MATLAB program illustrates the BER performance of uncoded

coherent BPSK for MRC and Alamouti STBC in Rayleigh fading channel.

Program 11.1 BER performance of MRC and Alamouti coding

BER performance obtained by using Program 11.1 is shown in Fig. 11.4.
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From Fig. 11.4, the performance of Alamouti 2� 1 STBC and Alamouti 2� 2

STBC is 3 dB worse as compared to 1� 2 MRC and 1� 4 MRC, respectively. The

3-dB penalty is due to the assumption that each transmit antenna in the Alamouti

STBC scheme radiates half the energy in order to ensure the same total radiated

power as with one transmit antenna of MRC. If each transmit antenna in Alamouti

scheme radiates the same energy as the single transmit antenna for MRC, then the

performance of Alamouti scheme and MRC is identical.

11.4 Higher-Order STBCs

The Alamouti scheme discussed in Sect. 11.3 is part of a general class of STBCs

known as orthogonal space–time block codes (OSTBCs) [2]. It is proved in [5, 7]

that no code for more than 2 transmit antennas can achieve full rate. This section

briefly discusses the full diversity complex orthogonal codes for NT [ 2:

3 transmit antennas

The full diversity, rate 1/2 code for NT ¼ 3 is given by [5, 7]: This code transmits 4

symbols every 8 time intervals and therefore has rate 1/2.
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Fig. 11.4 BER performance comparison of coherent BPSK with MRC and Alamouti STBC
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G3 ¼
S1 �S2 �S3 �S4 S�1 �S�2 �S�3 �S�4
S2 S1 S4 �S3 S�2 S�1 S�4 �S�3
S3 �S4 S1 S2 S�3 �S�4 S�1 S�2

2

4

3

5 ð11:34Þ

4 transmit antennas

In the case of 4 transmit antennas, the rate 1/2 code block is given by [5, 7], where

similar to Eq. (11.34) has rate 1/2 as 4 symbols are transmitted in 8 time intervals

G4 ¼

s1 �s2 �s3 �s4 s�1 �s�2 �s�3 �s�4
s2 s1 s4 �s3 s�2 s�1 s�4 �s�3
s3 �s4 s1 s2 s�3 �s�4 s�1 s�2
s4 s3 �s2 s1 s�4 s�3 �s�2 s�1

2

6

6

4

3

7

7

5

ð11:35Þ

11.4.1 3-Transmit, 4-Receive STBC Coding

A STBC scheme with three transmit and four receive antennas is shown in

Fig. 11.5. If y11; y12; . . .; y18, y21; y22; . . .; y28, y31; y32; . . .; y38, and y41; y42; . . .; y48
denote the signals received by antenna 1, antenna 2, antenna 3, and antenna 4 at
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Fig. 11.5 STBC scheme with three transmit and four receive antennas
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time slots 1, 2, …, 8, respectively, and hijði ¼ 1; 2; 3; j ¼ 1; 2; 3; 4Þ are path gains

from antenna i to antenna j, we have

y11 y12 y13 y14 y15 y16 y17 y18

y21 y22 y23 y24 y25 y26 y27 y28

y31 y32 y33 y34 y35 y36 y37 y38

y41 y42 y43 y44 y45 y46 y47 y48
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7

7
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5
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g41 g42 g43 g44 g45 g46 g47 g48
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7
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ð11:36Þ

The Decoding Algorithm

ML decoding of any space–time block code can be achieved using only linear

processing at the receiver, and we illustrate this by example. The space–time block

code G3 has s1; s2; s3 and s4 and their conjugates. These symbols are transmitted

simultaneously from antennas one, two, and three, respectively. Then, ML detection

amounts to minimizing the decision metric

X

m

j¼1

y1j � h1js1 � h2js2 � h3js3
�

�

�

�

2
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�
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þ y8j þ h1js

�
4 þ h2js

�
3 � h3js

�
2

�

�
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ð11:37Þ

over all possible values of s1; s2; s3 and s4. Note that due to the quasi-static nature of
the channel, the path gains are constant over transmissions. The minimizing values

are the receiver estimates of s1; s2; s3 and s4, respectively. We expand the above

metric and delete the terms that are independent of the code word and observe that

the above minimization is equivalent to minimizing
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The above metric decomposes into four parts; the function of s1 is
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The function of s2 is
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The function of s3 is
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The function of s4 is
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Thus, the minimization of (11.38) is equivalent to minimizing these four parts

separately. This in turn is equivalent to minimizing; the decision metric for

detecting s1 is
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The decision metric for detecting s2 is
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The decision metric for detecting s3 is
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The decision metric for detecting s4 is
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11.4.2 Simulation of BER Performance of STBCs Using

MATLAB

The following MATLAB Program 11.2 and MATLAB function Programs 11.3,

11.4, 11.5, and 11.6 are used to simulate the BER performance of QPSK and 16-

QAM for STBC 3� 4ð Þ, Alamouti 2� 2ð Þ, and Alamouti 2� 1ð Þ.

Program 11.2 “STBC simulation.m” for BER performance comparison of STBC

3� 4ð Þ, Alamouti 2� 2ð Þ, and Alamouti 2� 1ð Þ in Rayleigh fading channel
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Program 11.3 MATLAB function for stbc2by1

Program 11.4 MATLAB function for stbc2by2
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Program 11.5 MATLAB function for stbc3by4
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Program 11.6 MATLAB function for BPSK, QPSK and 16-QAM mapping

The BER performance obtained by using above programs for QPSK and 16-

QAM with STBC 3� 4ð Þ, Alamouti 2� 2ð Þ, and Alamouti 2� 1ð Þ are shown in

Figs. 11.6 and 11.7, respectively.

From Figs. 11.6 and 11.7, it can be seen that the BER performance of STBC

3� 4ð Þ is better than Alamouti 2� 2ð Þ and Alamouti 2� 1ð Þ.

11.5 Space–Time Trellis Coding

In contrast to STBCs, STTCs provide both coding gain and diversity gain and have

a better bit error rate performance. However, STTCs are more complex than STBCs

to encode and decode.

In [2], Tarokh et al. derived the design criteria for STTCs over slow-frequency

non-selective fading channels. The design criteria were shown to be determined by

the distance matrices constructed from pairs of distinct code words. The minimum

rank of the distance matrices was used to determine the diversity gain, and the

minimum distance of the distance matrices was used to determine the coding gain

[3]. The system model for STTC modulation is shown in Fig. 11.8.
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11.5.1 Space–Time Trellis Encoder
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denote input data symbol of m ¼ log2 M bits, which is input to the

encoder at time t ¼ 0; 1; 2; . . .; then, a sequence of input data symbols is repre-
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ð11:47Þ

0 2 4 6 8 10 12 14 16 18 20
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No(dB)

B
E

R

Alamouti(2x1)

Alamouti(2x2)

STBC(3x4)

Fig. 11.6 BER performance for QPSK with STBC (3 × 4), Alamouti (2 × 2), and Alamouti

(2 × 1)
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Fig. 11.7 BER performance for 16-QAM with STBC (3 × 4), Alamouti (2 × 2), and Alamouti
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Fig. 11.8 Space–time trellis code system model
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The STTC encoder can be considered as a convolutional encoder with the

memory size of vk delay units for the kth branch for each output symbol. Let vkf gmk¼1

denote the size of memory used to store the kth branch metrics that is calculated as

vk ¼
vþ k � 1

log2 M

� �

ð11:48Þ

where xb c denotes the largest integer smaller than x. v is the size of total required

memory for the ST trellis code, that is,

v ¼
X

m

k¼1

vk ð11:49Þ

Then, the output of the STTC encoder is specified by the following generator

polynomials:

a1 ¼ a10;1; a
1
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1
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1
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h i
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h i
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h i

ð11:50Þ

where akj;i denotes M-PSK symbols, k ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; vk; i ¼ 1; 2; . . .;NT.

Let yit denote the outputs of the STTC encoder for the ith transmit antenna at time t,

i ¼ 1; 2; . . .:;NT; which are given as

X i
t ¼

X

m

k¼1

X

vk

j¼0

akj;iI
k
tj modM ð11:51Þ

Space–time trellis-encoded M-PSK symbols are now expressed as
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ð11:52Þ

where Xt ¼ ½x1t x
2
t . . .x

NT
t �T is the output of the encoder that is composed of NT M-

PSK symbols, t ¼ 0; 1; 2; . . .. Figure 11.9 shows an example of the STTC encoder

for NT ¼ 2, m ¼ 3, and v ¼ 3.

Some of the coefficients for 4-PSK STTC and 8-PSK STTC codes [8] are

summarized in Tables 11.1 and 11.2, respectively.
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The Viterbi algorithm can be used for decoding the space–time trellis-coded

systems. In the Viterbi algorithm, the branch metric is given by the following

squared Euclidian distance:

a
a

a

a

I

a

a

aa

I

a
a

a

aI

Fig. 11.9 8-state, 8-PSK encoder structure

Table 11.1 Coefficient pairs for 4PSK, 4-, 8-, and 16-state STTC

V ða10;1; a
1
0;2Þ ða11;1; a

1
1;2Þ ða12;1; a

1
2;2Þ ða20;1; a

2
0;2Þ ða21;1; a

2
1;2Þ ða22;1; a

2
2;2Þ det(v) tr(v)

2 (0, 2) (2, 0) – (0, 1) (1, 0) – 4 4

3 (0, 2) (2, 0) – (0, 1) (1, 0) (2, 2) 12 8

4 (0, 2) (2, 0) (0, 2) (0, 1) (1, 2) (2, 0) 12 8

Table 11.2 Coefficient pairs for 8PSK, 8-state STTC

V ða10;1; a
1
0;2Þ ða11;1; a

1
1;2Þ ða20;1; a

2
0;2Þ ða21;1; a

2
1;2Þ ða30;1; a

3
0;2Þ ða31;1; a

3
1;2Þ det(v) tr(v)

3 (0, 4) (4, 0) (0, 2) (2, 0) (0, 1) (5, 0) 2 4
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where y
j
t is the received signal at the jth receive antenna during tth symbol period

and hj;i is the channel gain between the ith transmit antenna and jth receive antenna.

Using the branch metric in Eq. (11.53), a path with the minimum accumulated

Euclidian distance is selected for the detected sequence of transmitted symbols.

11.5.1.1 4-State QPSK Space–Time Trellis Encoder

STTCs can be represented and analyzed in their trellis form or by their generator

matrix, G. For example, consider the 4-PSK signal constellation shown in

Fig. 11.10a, where the signal points are labeled as 0, 1, 2, and 3.

The 4-State trellis structure is shown in Fig. 11.10b for a rate of 2 b/s/Hz.

The input signal can take on any value from the signal constellation (in this case

0, 1, 2, or 3); they are shown on the trellis diagram on the transition branches. In

general, for each state, the first transition branch to state 0 results from input 0, the

Fig. 11.10 a 4PSK signal

constellation, b 4-state,

4-PSK trellis diagram
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second transition branch to state 1 results from input 1, and so on. The output

depends on the input and on the current state. The states are labeled on the right.

The labels on the left of the trellis represent the possible outputs from that state. The

leftmost output is assumed to be the output for the first trellis branch for that

particular state, and the second leftmost label is assumed to be the output for the

second trellis branch for the same state, and so on. These assumptions were verified

to be correct and can be manually traced through the encoder structure.

It was proved in [2] that the above code provides a diversity gain of 2 (assuming

one receive antenna), and has a minimum determinant of 2 [4].

The encoder structure for the 4-state ðv ¼ 2Þ trellis, QPSK scheme with two

transmit antennas is shown in Fig. 11.11.

At time t, two binary inputs I1t and I2t are fed into the branches of the encoder

with I1t being the MSB. The memory order of the upper and lower branches is V1

and V2, respectively, where V ¼ V1 þ V2, and hence, the number of states is 2V . Vi

is calculated as

Vi ¼
V þ i� 1

2

� �

; i ¼ 1; 2 ð11:54Þ

where Xb c denotes the largest integer smaller than or equal to X. For each branch,

the output is the sum of the current input scaled by a coefficient and the previous

input scaled by another coefficient. Each of the different coefficients in the coeffi-

cient pairs, (0, 2), (2, 0), (0, 1), and (1, 0), applied to I1t and I2t , respectively.

0 

1

0 1 

0 
2 0 

2

Fig. 11.11 4-state, 4-PSK encoder structure
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By using Eq. (11.52), we can get the output values as follows

X1
t ¼ 2I1t�1 þ I2t�1

� �

mod 4 ð11:55Þ

X2
t ¼ 2I1t þ I2t

� �

mod 4 ð11:56Þ

X1
t and X2

t are transmitted simultaneously on the first and second antennas,

respectively. From Eqs. (11.55) and (11.56), it can be seen that X1
t ¼ X1

t�1; that is,

the signal transmitted from the first antenna is a delayed version of the transmitted

signal from the second transmit antenna. Note that the output X2
t at time t becomes

the encoder state at time ðt þ 1Þ in this particular example.

Example 11.1 Consider the STTC encoder shown in Fig. 11.11 and determine the

trellis-encoded symbol stream if the two input bit sequences are

I1t

I2t

" #

¼
1 0

0 0

1 0

1 1

0

0

" #

Figure 11.11 shows a structure of the STTC encoder for this example. The

encoder state at time t is I1t�1I
2
t�1

� �

or 2I1t�1 þ I2t�1. The output for the ith transmit

antenna at time t is calculated as

X1
t ¼ 2I1t�1 þ I2t�1

� �

mod 4

and

X2
t ¼ 2I1t þ I2t

� �

mod 4

Y ¼
X1
t

X2
t

" #

¼
0 2

2 0

0 3

3 1

1

0

" #

Figure 11.12 shows the corresponding trellis diagram, in which the branch labels

indicate two output symbols, X1
t and X2

t .

At time t ¼ 1, we have x1t ¼ 0 and x2t ¼ 2. Therefore, 1 and �1 are transmitted

from first and second antennas, respectively.

At time t ¼ 2, we have x1t ¼ 2 and x2t ¼ 0. Therefore, �1 and 1 are transmitted

from first and second antennas, respectively.

At time t ¼ 3, we have x1t ¼ 0 and x2t ¼ 3. Therefore, 1 and �j are transmitted

from first and second antennas, respectively.
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At time t ¼ 4, we have x1t ¼ 3 and x2t ¼ 1. Therefore, �j and j are transmitted

from first and second antennas, respectively.

At time t ¼ 5, we have x1t ¼ 1 and x2t ¼ 0. Therefore, j and 1 are transmitted

from first and second antennas, respectively.

11.5.1.2 8-State 8-PSK Space–Time Trellis Encoder

The 8-state 8-PSK signal constellation and trellis diagram are shown in Figs. 11.13

and 11.14, for a rate of 3 b/s/Hz.

31 

03 

20 

10 

02 

Fig. 11.12 4-state, 4-PSK encoder’s output for Example 11.1

Fig. 11.13 8-PSK signal

constellation
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11.5.2 Simulation of BER Performance of 4-State QPSK

STTC Using MATLAB

The following MATLAB Program 11.7 and MATLAB function Programs 11.8

through 11.15 are used to simulate the BER performance of 4-state QPSK STTC.

Program 11.7 for space–time trellis code (STTC) for 4-state QPSK

00 01 02 03 04 05 06 07

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

0

1

2

3

4

5

6

7

Fig. 11.14 8-state 8-PSK

trellis diagram
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Program 11.8 MATLAB function for qpsksttc
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Program 11.9 MATLAB function for sttcenc
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Program 11.10 MATLAB function for symbolmap

Program 11.11 MATLAB function for MaxLike
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Program 11.12 MATLAB function for viterbi
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Program 11.13 MATLAB function for gen2trellis
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Program 11.14 MATLAB function for getbits

Program 11.15 MATLAB function for bit2num

The BER performance obtained by using above programs for 4-state QPSK

STTC is shown in Fig. 11.15.

From Fig. 11.15, it is observed that the STTC with four receiving antennas

outperforms the STTC with one and two receiving antennas.

11.6 MIMO-OFDM Implementation

A MIMO-OFDM system is shown in Fig. 11.16 where OFDM utilizes NT transmit

antennas, NR receive antennas, and Nc subcarriers per antenna. MIMO-OFDM can

be implemented as ST-coded OFDM (ST-OFDM), space–frequency-coded OFDM

(SF-OFDM), and ST-frequency-coded OFDM (STF-OFDM). Let xln ið Þ be the data
symbol transmitted on the ith subcarrier (frequency bin) from the lth transmit

antenna during the nth OFDM symbol interval. Then, the difference among these

coded systems lies in how xln ið Þ are generated from the information symbols Sn [9].
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Fig. 11.15 BER performance of 4-state QPSK STTC
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Fig. 11.16 A MIMO-OFDM system
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11.6.1 Space–Time-Coded OFDM

The ST coding for a MIMO-OFDM with two transmit antennas is illustrated in

Fig. 11.17. Two information symbols s1 and �s�2 are sent through subchannel k of

antenna 1 in OFDM blocks n and nþ 1, respectively. Meanwhile, s2 and s�1 are sent

through subchannel k of antenna 2 in OFDM blocks n and nþ 1, respectively.

Antenna 1 

n 

k 

OFDM block 

OFDM Subchannel 

n+1 

Antenna 2 

n+1 

l 

k 

OFDM block 

OFDM Subchannel 

n 

Fig. 11.17 ST coding
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11.6.2 Space–Frequency-Coded OFDM

In space–time-coded OFDM, the frequency diversity and the correlation among

different subcarriers are ignored. The strategy that consists of coding across antennas

and different subcarriers of OFDM is called SF-coded OFDM [10]. The schematic

diagram of SF-coded OFDM is shown in Fig. 11.18. The STBC encoder generates

Nc � NT symbols for each OFDM block (time slot). One data burst therefore consists

of Nc vectors of size NT � 1 or equivalently one spatial OFDM symbol. The channel

is assumed to be constant over at least one OFDM symbol. The interleaver transmits

the ðl; nÞ symbol on the lth subcarrier of the nth antenna [11].

The SF coding for two transmit antennas can be realized in a straightforward

way by spreading directly the Alamouti code over two subchannels in one OFDM

block. An example of SF coding for two transmit antennas is shown in Fig. 11.19.

The two symbols S1 and �S�2 are sent from subchannels k and l of the same OFDM

block n at antenna 1, respectively, where k and l denote the indices of two separated

subchannels. Meanwhile, S2 and S�1 are sent from subchannels k and l of the same

OFDM block n at antenna 2, respectively [12].

11.6.3 Space–Time–Frequency-Coded OFDM

In STF coding, each xln ið Þ is a point in 3D as shown in Fig. 11.20; STF code word

can be defined [9] as the collection of transmitted symbols within the

S

T

B

C 

E

n

c

o

d

e

r 

IFFT 

&CP.add 

IFFT&CP

.add 

IFFT 

&CP.add 

IFFT 

&CP.add 

Interleaver 

Interleaver 

Interleaver 

Interleaver 

SFBC Encoder 
Fig. 11.18 Block diagram of

SFBC-coded OFDM
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parallelepiped, spanned by NT transmit antennas, Nx OFDM symbol intervals, and

Nc subcarriers. Thus, one STF code word contains NTNxNc transmitted symbols

xln ið Þ; l ¼ 1; . . .;NT; n ¼ 0; . . .;Nx�1; i ¼ 0; . . .;Nc�1


 �

Antenna 2 

n 

l 

k 

OFDM block 

OFDM Subchannel 

Antenna 1 

n 

l 

k 

OFDM block 

OFDM Subchannel 
Fig. 11.19 SF coding

11.6 MIMO-OFDM Implementation 391



11.7 Problems

1. Consider Alamouti STBC with 2 transmit antennas. If the input bit stream is

11011110001001, determine the transmitted symbols from each antenna for

each symbol interval with (i) QPSK modulation and (ii) 16-QAM modulation.

2. A code matrix for STBC is given by

S1 S2 S3 S4
�S�2 S�1 �S�4 S�3
�S�3 �S�4 S�1 S�2
S4 �S3 �S2 S1

2

6

6

4

3

7

7

5

(i) Check for Orthogonality of the code

(ii) Find the diversity order achieved by this code.

3. Consider a MIMO system with AWGN employing Alamouti STBC with two

transmit and one receiving antennas. Determine the outage probabilities for the

system

(i) When the channel is known at the receiver

(ii) When the channel is known at the transmitter

Time 

Frequency (sub-carrier)

Space(Transmit antenna q)

X(0) 

Fig. 11.20 STF-coded OFDM
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4. Consider a 4-state QPSK STTC system. Determine the trellis-encoded symbol

stream if the two input bit sequences are

I1t

I2t

" #

¼
1 0

0 1

1 0

1 0

0 . . .

1 . . .

" #

5. Consider a 4-state QPSK STTC system. Determine the trellis-encoded symbol

stream if the two input bit sequences are

I1t

I2t

" #

¼
1 1

0 0

0 0

1 1

1 . . .

0 . . .

" #

6. Consider a STTC 4-PSK system where the transmitted code word is C ¼
220313; and a possible erroneous code word is c ¼ 330122. Determine the

diversity gain of the system.

7. Consider the same data from the Problem 11.5, determine the coding gain

11.8 MATLAB Exercises

1. Write a MATLAB program to simulate the BER performance of 2-transmit 1-

receive antenna Alamouti scheme using MMSE detection.

2. Write a MATLAB program to simulate the BER performance of 2-transmit 2-

receive antenna Alamouti scheme using MMSE detection.

3. Write a MATLAB program to simulate the BER performance of MRC diversity

technique with 4 receiving antennas and compare with the result of problem 2.

4. Write a MATLAB program to simulate the performance of 8-state QPSK STTC.

5. Write a MATLAB program to simulate the BER performance of STBC OFDM.
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