
Clean Ruby
A Guide to Crafting Better Code
for Rubyists
—
Carleton DiLeo

www.allitebooks.com

http://www.allitebooks.org

Clean Ruby
A Guide to Crafting Better

Code for Rubyists

Carleton DiLeo

www.allitebooks.com

http://www.allitebooks.org

Clean Ruby: A Guide to Crafting Better Code for Rubyists

ISBN-13 (pbk): 978-1-4842-5545-2		 ISBN-13 (electronic): 978-1-4842-5546-9
https://doi.org/10.1007/978-1-4842-5546-9

Copyright © 2019 by Carleton DiLeo

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484255452.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Carleton DiLeo
Boulder, CO, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5546-9
http://www.allitebooks.org

iii

Chapter 1: The Qualities of Clean Code��1

Readability���2

Extensibility��3

Simplicity���5

Chapter 2: Naming Things���9

Variables��10

Naming Conventions��10

The Data���14

Length��16

Avoid Unnecessary Information��17

Avoid Conjunctions���19

Only Alpha Characters��20

Methods���21

Use Verbs��22

Return Value���24

Bang Methods��25

Classes���26

Purpose��26

Role��29

Modules���30

Table of Contents
About the Author���vii

Foreword��ix

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 3: Creating Quality Methods���33

Parameters��33

Use Fewer Parameters���34

Parameter Order���39

Return Values���40

Guard Clause��43

Length��44

How to Shorten a Method���44

Too Short��46

Comments��47

Quality Comments��49

Stale Comments���50

Comments and Refactoring��51

Limit Nesting��52

Chapter 4: Using Boolean Logic���55

Using a Variable���55

Using a Method��59

Unless��63

Ternary Operator��64

Double Negative���65

Truthy and Falsy���68

Truthy Values��68

Falsy Values��69

& vs. &&���69

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 5: Classes���73

Initialize Method���73

Keep It Simple��73

Avoiding Errors���75

Too Many Parameters���76

Class Methods vs. Instance Methods���78

Instance variables��79

Private Methods���83

Method Order���84

Moving Methods to a Module���87

Limiting Inheritance���89

Chapter 6: Refactoring���91

No Change Too Small���92

Single Responsibility Principle���98

Chapter 7: Test-Driven Development (TDD)���������������������������������������101

Start with Tests��101

Implement Our Code��104

More Tests��104

Clean Tests���106

Afterword: Wrapping Up��109

Index��111

Table of ContentsTable of Contents

vii

About the Author

Carleton DiLeo has been writing code ever since he built his first

computer from parts in a dumpster. He has written code for high-traffic

web sites to backend big data system to video games. This wide base of

knowledge provides Carleton with a unique perspective when writing

Ruby code.

ix

Foreword

I have wanted to create software from the moment I first used a computer.

The PC was so magical. Armed with a keyboard, I had access to a new

digital world with endless possibilities. Not owning a PC, I got access

to a computer by riding my bike for miles to a library, or convincing my

relatives to let me poke around on their computers. This wasn’t enough,

I had to have my own. Using parts scavenged from dumpsters in my

hometown, I built myself a computer. My greatest find by far was a 500 MB

hard drive I stumbled upon in the woods. Taking a walk, I spotted a trail

of magnetic tape leading into the bushes, which I followed. At the end, I

discovered a hard drive lying there. When I plugged it into my computer, it

worked!

After my “new” PC was operational, I spent nights in my bedroom

uncovering the secrets it contained. One night, I found a program called

QBasic that enabled me to type words into an ugly blue screen and create

applications. I was hooked and knew what I wanted to do with my life;

in the following years, I read many books to learn more about this new

world. Fast-forward over 20 years and the computing landscape looks very

different, but the allure is the same.

�Who Should Read This Book?
In the past, there were limited options available to become a computer

programmer; you went to college and got a degree, or you taught yourself

through trial and error. Both required much time and effort. These

still exist today, but new boot camp schools keep popping up to satisfy

the appetite of a new generation of people hungry to code, with many

x

specializing in Ruby on Rails. They’re designed to take a person with little

to no coding experience and make them a full-fledged developer in a short

period. Quality varies, but they are an excellent way for anyone new to

programming to get started; a boot camp provides a sense of direction in a

vast ocean of information.

Most students finish a boot camp with a general understanding

of programming and skills to create web applications using Ruby on

Rails. But few complete the course with the skills needed to craft quality

software. There are plenty of resources available that cover this topic in

great detail, such as Clean Code1 and Code Complete2, but they aren’t for

Ruby developers. As a mentor for The Firehose Project3, I referred these

books to my students, but found the language barrier was too high. It was

too hard to understand the examples or translate ideas to what they spent

months learning.

This book is an invaluable guide for developers looking to write good,

clean Ruby code. You will learn how to find parts of your code you can

improve, and how to start new code the right way. We cover a wide variety

of topics; along the way, you will learn how to craft the best variables,

methods, modules, and classes. By the time you finish, you’ll know what

it means to write code that improves productivity and the morale of your

team.

1�Clean Code by Robert Cecil Martin is an excellent handbook for any developer.
Using real-world examples written in Java, Robert demonstrates how to improve
code step by step using real-world Java examples.

2�Code Complete by Steve McConnell is the manual for writing better code. It’s a
monster of a book with every page filled with great tips. Topics are not relevant
to Ruby since the examples are C#, Java, and C++. I still recommend it as a great
reference.

3�The Firehose Project is an online boot camp. Students take part weekly in 1-hour
sessions with mentors.

ForewordForeword

1© Carleton DiLeo 2019
C. DiLeo, Clean Ruby, https://doi.org/10.1007/978-1-4842-5546-9_1

CHAPTER 1

The Qualities of
Clean Code
So what is clean code? If you ask three different developers, you will get

three different answers. It’s a hard concept to define. You know clean code

when you see it, as if written by a programming wizard from a distant land.

We all want to write good code that others admire. Sometimes we don’t

know where to start. How do we take our messy, unorganized code and

turn it into something beautiful?

Many factors determine clean code, but we will focus on these:

•	 Readable

•	 Easy to change

•	 Straightforward

Examine code you’ve written. How many of those questions can you

answer yes? It’s unlikely you said yes to all of them. It’s more realistic you

said no to at least one or more. Even the most experienced developers have

a hard time achieving this, so don’t worry. The skills required to create

clean code take time and patience to learn. As you learn new techniques,

try them in your code and pick the ones that work for you. There is trial

and error involved, but this book will be your guide along the way.

2

�Readability
Code readability describes the effort required to understand what a piece

of code does. Readable code should be like a well-written book; it doesn’t

expect you to dig into the details to discover its purpose. It should be

easy to understand a variable’s meaning, or what a method will do when

[^^Invoked]. With unreadable code, you must read multiple times before

you get the meaning. After reading unreadable code, you have many

questions. You will spend more time understanding it than changing it.

Let’s start with a simple code example of code that is not readable:

1 def method1(t, b)

2 c = t + b

3 return c

4 end

Examine the code and ask yourself the following questions:

•	 Is the code easy to understand?

•	 What does this code do?

Several design decisions have made this small method hard to read. The

method name is ambiguous, and the variable names are vague. These issues

prevent us from understanding what the code is trying to do. This example

may be extreme, but finding unreadable code like this in the wild is possible.

It’s OK because with a little effort, this code will be so much better.

Before we continue, let’s talk about variables. They are the storage

containers of our application, which allow us to keep bits of information

in memory for computation. A single application can have thousands of

variables, but none should be superfluous. The earlier example has an

extra variable, c, which is both nondescript and unnecessary; it decreases

the readability of the method because it adds bloat. Code bloat is bad

because a developer has to read more code than necessary.

Chapter 1 The Qualities of Clean Code

3

This is how we could rewrite the earlier example:

1 def sum(a, b)

2 a + b

3 end

This example is much easier to read. It does the same thing, but it has

a better method name and better variable names that give clues on the

code’s intent. The name sum tells the reader it will calculate the sum of

its parameters, a and b. The method arguments, a and b, are short, but

descriptive enough in this context. We removed the c variable and instead

returned the result of our operation to the calling code. Ruby returns the

last expression of a method, which means storing the result of a + b in a

separate variable is redundant and unnecessary.

What did we accomplish with this refactor? The new method is easy to

read and comprehend with little effort. As a result, you spend less energy

trying to understand the code and more effort adding new functionality.

Next time you are programming, make sure you take the time to proofread

what you wrote. Does the code need much effort to understand? Do variable

names describe the data they represent and method names inform the

reader of their intent? Make sure you don’t leave any room for doubt.

�Extensibility
Code can change for various reasons: new product requirements, gems

need upgrading to fix bugs, and old code gets refactored. As developers,

we must adapt because code we are writing now will change. It’s

important to prepare. The steps we take to make our code extensible will

pay dividends later.

During my career, I’ve used shortcuts to “save” time. I’ve convinced

myself there wasn’t enough time to do it the right way. I often regretted my

decision later. Taking more time to design an extensible solution, I would

Chapter 1 The Qualities of Clean Code

4

have produced code that was not so fragile and hard to change. Don’t

make the same mistakes I’ve made. Think how your code might change

and plan for it.

The following example of a logging method isn’t extensible:

1 def log(message, level)

2 if level.to_s == 'warning'

3 puts "WARN: #{message}"

4 elsif level.to_s == 'error'

5 puts "ERROR: #{message}"

6 end

7 end

8

9 log("An error occurred", :error)

This example defines the method log, which pre-pends either “WARN”

or “ERROR” to the message argument depending on the logging level. The

method displays the message to the console using puts. It’s simple and

easy to read, but an issue remains.

Let’s add another logging level to the log method:

 1 def log(message, level)

 2 if level.to_s == 'warning'

 3 puts "WARN: #{message}"

 4 elsif level.to_s == 'info'

 5 puts "INFO: #{message}"

 6 elsif level.to_s == 'error'

 7 puts "ERROR: #{message}"

 8 end

 9 end

10

11 log("Something happened", :info)

Chapter 1 The Qualities of Clean Code

5

Notice the elsif added to handle the new info logging level. The change

is trivial because the method is short. Imagine adding more logging

levels to the log method. If left unchecked, each new log level increases

complexity until making even trivial changes becomes impossible. This is

something we can prevent by designing our code to be extensible.

Here is another example where we changed the log method to handle

new log levels:

1 def log(message, level)

2 puts "#{level.to_s.upcase}: #{message}"

3 end

4

5 log("An error occurred", :error)

Instead of an if/else statement to control how we format the message,

we use built-in Ruby features to simplify the logic. To avoid string literals

like “WARN” and “ERROR”, we use String#upcase to convert the argument

level from a symbol :error to a string “ERROR”. Next, we use string

interpolation to pre-pend the log level to the message argument.

Not only was a lot of code removed, but adding a new level requires zero

changes to the log method. This is great because we won’t need to touch it

again unless we want to add more features. There is little chance to introduce

bugs since the method rarely changes, and fewer bugs is always good.

�Simplicity
There are many ways to solve a problem. A team of developers can argue

for hours on the best approach to solve even the most trivial issue. Clever

solutions are designed, often ignoring simple ones. But they are hard to

understand, even by the person who created them. It’s difficult to create a

simple solution. It requires you to stow your ego and be comfortable with

building code that is straightforward instead of showing your skill.

Chapter 1 The Qualities of Clean Code

6

The source code for the 1993 game Doom by id Software is an excellent

example. Video games contain much data that represents level layouts,

player stats, and computer graphics. Doom was revolutionary on game

design, but the developers kept things simple by storing most of the game’s

data in arrays. After the release of the source code, other developers

pointed out how wrong this approach was because other data structures

could have performed better. What most of these developers didn’t realize

is that by using simple data structures, Doom’s source code was easy to

work with and less error-prone. The simplicity of the code required fewer

brain cells to understand. It freed up id Software to focus on pushing the

boundaries of game design and not getting tripped up by complexity.

What does simple code look like? Here is an example of code that is

not simple:

 1 def log_to_console(args)

 2 if args.length > 1

 3 if args[1] == 'warn'

 4 puts 'WARN: ' + args[0]

 5 elsif args[1] == 'error'

 6 puts 'ERROR: ' + args[0]

 7 else

 8 puts args[0]

 9 end

10 end

11 end

12

13 args = ['A message', 'warn']

14 log_to_console(args)

Chapter 1 The Qualities of Clean Code

7

This method might be familiar because it’s like the earlier section.

I have added more code that complicates the logic, but the purpose of the

method remains the same: print a message with the associated log level

to the console. Although it works as intended, we’ll now look at a more

straightforward approach.

First, we will change the method definition to use two explicit

parameters instead of an array.

 1 def log_to_console(message, level = :info)

 2 if level == :warn

 3 puts 'WARN: ' + message

 4 elsif level == error

 5 puts 'ERROR: ' + message

 6 else

 7 puts message

 8 end

 9 end

10

11 log_to_console('A message', :warn)

Reduce the number of if statements.

1 def log_to_console(message, level)

2 puts "#{level}: " + message

3 end

4

5 log_to_console('A message', :warn)

Use built-in Ruby methods to simplify the code.

1 def log_to_console(message, level = :info)

2 puts "#{level.to_s.upcase}: #{message}"

3 end

4

Chapter 1 The Qualities of Clean Code

8

5 log_to_console('A message', :warn)

6 log_to_console('Another message', :anything_we_want)

7 log_to_console('Another message')

There is much less code, but with the same functionality. It’s easier

to understand how to use it without looking at the internals. We change

the method definition, removed the if statements, and used string

interpolation instead. If we want another log level, we won’t need to add

any more code. We leveraged a method on the String class to handle

capitalizing the log level. We used optional arguments to offer flexibility.

If you want to write clean code, consider simple solutions first. Avoid

using complicated solutions unless you can’t solve your problem with a

simple one. If you still get lost, just remember K.I.S.S or “Keep it simple,

stupid.”

Chapter 1 The Qualities of Clean Code

9© Carleton DiLeo 2019
C. DiLeo, Clean Ruby, https://doi.org/10.1007/978-1-4842-5546-9_2

CHAPTER 2

Naming Things
Coming up with names for the variables, classes, and methods in a

program is not an easy task. We must be gurus to think of a name at a

moment’s notice. It’s part of our everyday coding lives, and we can’t let

down our guard. Choosing the wrong name has significant implications

and can determine whether code is easy to read or confusing and cryptic.

It doesn’t end there, because poor-quality names have a compounding

effect. One bad name encourages creating more bad names; those bad

names promote even more bad names. Progress crawls to a halt because

these bad names make our code impossible to understand.

Why create a bad name? They make our code harder to work with.

Nobody wants to make their job harder, but it’s not so simple. Most bad

names happen due to lack of knowledge and misplaced priorities. Consider

the last time you created a variable or method name that didn’t make you

proud. Most likely you didn’t intentionally choose that inferior name. There

may have been a deadline to meet, and sacrifices were needed.

How do we avoid being caught in these situations? First you must

understand that the time spent creating a good class, method, or variable

name is worth it. Don’t wait until later to choose a better name because it

never comes, and there will always be something more pressing.

The second step is to acquire the knowledge needed to make informed

decisions. Knowledge is a programmer’s best friend. Without it, we must

guess and assume, but computers don’t understand assumptions. They

need us to give exact commands to work. It’s essential we know the systems

10

we are working with to make informed decisions. Picking names are no

different. There are skills and knowledge we can learn to make it easier. It’s

iterative and that takes time to master, but worth it. Let’s get started.

�Variables
The first stop on our journey is variable naming. Variables are the building

blocks of a Ruby program. Without them, we have nowhere to store data.

Since variables play such an essential role in our application, the name you

choose will play a fundamental role in creating clean code. Picking a good

name allows the reader to understand what data the variable has. A good

name takes away the guesswork. There is no risk of the reader making

assumptions and making changes that introduce bugs.

There is much to consider when selecting variable names, with length

and word types playing a crucial role. Avoid pitfalls that make our names

ambiguous. The most important thing is to trust your instincts. Sometimes,

a developer will pick a good name only to second-guess themselves and

change it to something of lesser quality.

�Naming Conventions
Coding conventions are guidelines for developers to follow. They make

it possible for a team to write code using a single voice, as if written by a

single developer. Naming conventions make variable names consistent.

This is important because constantly changing variable formats makes

code confusing. Your team should pick a naming convention and stick

with it. Just imagine if you visited a place where everyone spoke a different

dialect of the same language. After the second or third dialect change, your

brain would be struggling to understand.

Chapter 2 Naming Things

11

Consider the pros and cons of each variable naming convention. No

matter which one you pick, don’t change it after you’ve written code.

It’s better to have a suboptimal naming convention than multiple. Let’s

examine some variations.

�Hungarian Notation

Most programming languages have a preferred convention based on the

language’s strengths and weaknesses. Code from an application written in

the C programming language will most likely use Hungarian notation.

Look at this example:

1 # Example of Hungarian notation in C

2 int iUserId = 1;

Notice the i pre-pended to the variable name UserId. This extra prefix

character i is a hint to the data stored in the variable, informing us that the

type is an integer. The added information can be useful in a C program

where data is passed between functions. Knowing the variable data type

saves us time. We won’t need to go digging to find the original variable

definition, since the variable has the information we need.

These advantages might sound enticing, but this extra information is

overkill for Ruby applications. Providing hints is unnecessary since most

variables have a short scope. Locating the original variable definition is not

time-consuming. Ruby is an object-oriented programming language with

long-lived and complex data encapsulated in a class. Instead of passing

argument data from method to method, we can wrap common methods

and variables in a class.

Instead of this code:

1 def state_tax(total)

2 total * 0.2

3 end

4

Chapter 2 Naming Things

12

5 def federal_tax(total)

6 total * 0.1

7 end

We can do better.

 1 class Tax

 2 def initialize(total)

 3 # Total is now an instance variable

 4 # and can be accessed by all methods

 5 @total = total

 6 end

 7

 8 def state

 9 @total * 0.2

10 end

11

12 def federal

13 @total * 0.1

14 end

15 end

Ruby is a dynamically typed language, so data types can change at run

time. This means a data type hint that was once correct could end up being

incorrect if the variable’s data type changes. A variable that contained an

Integer in one part of our code might be a string somewhere else. I’m not

recommending you write your code this way. I just want you to be aware of

the possibility.

Pre-pending more information can be detrimental to the reader. When

reading a variable name that uses Hungarian notation, our brain has to

comprehend what i means every time. This may be inconsequential, but

when you’re reading hundreds or thousands of lines of code, it requires

more brain cycles. Every time you read the variable name, you will ask

Chapter 2 Naming Things

13

yourself “What does i mean? Does it mean index or integer or maybe

something else?” It’s easy to get fatigued by the added work. Programming

is taxing mentally, so let’s not make it any harder.

�Camel Case

The camel case naming convention is popular among curly bracket

languages such as Java, C++, and C#. This convention capitalizes the first

letter of each word in a variable, so it resembles humps on a camel’s back.

1 # All words capitalized. Good for public properties.

2 int UserId = 1;

3

4 �# �Capitalize starting with second word. Good for local or

private variables.

5 int userId = 1;

Camel casing has two different variants. The first variant capitalizes

the first letter of every word, and the second variant capitalizes every word

after the first word. Combining the first and second variants can offer

visual cues on variable scope.

Ruby doesn’t allow variable names to start with an uppercase letter. We

can use camel case, but can only use the variant which capitalizes words in

a variable name beginning with the second word.

�Snake Case

The final naming convention we will cover is snake case, the preferred

convention for Ruby programs. It separates each word of a variable name

with an underscore.

1 user_id = 1

Chapter 2 Naming Things

14

It doesn’t have the constraints we saw with camel case and doesn’t

clutter the code with unnecessary information as Hungarian notation. You

should use snake case, unless you have a good reason. If you’re working in

a codebase that has an established naming convention, switching to snake

case convention might be more work than it’s worth. It’s more important to

be consistent then pick the perfect naming convention.

�The Data
When choosing a variable name, it’s critical to understand the contained

value. We often overlook this when creating names, and most good names

are obvious. For example, say we have a variable that stores the number

of steps needed to complete a process. There are many names we could

select, but the underlined phrase is exact. The name number_of_steps

tells readers what data the variable contains. We could add more words to

improve accuracy, but that makes our name too long. Besides, the variable

will be inside a method or class that gives more information. If the variable

number_of_steps was located in the method start() that was in the class

Process, a developer could assume the variable number_of_steps is the

number of steps of a process.

Look at these examples:

1 # Bad example

2 user = 'bob'

3

4 # Good example

5 first_name = 'bob'

In the “bad” example, we have the variable user which should contain

a user. Upon closer inspection, we see that the variable has the first name

of a user. The variable name user doesn’t tell the reader enough. Readers

Chapter 2 Naming Things

15

understand that the variable has user data, but they won’t know it is the

user’s first name. Also user is misleading since the reader might think it’s

an instance of the User class.

In the “good” example, we change the variable name to first_name to

be more specific. Our new name doesn’t tell the reader that first_name has

a user’s first name, but that’s okay. Method and class names should offer

more context. If for whatever reason the method or class name doesn’t

help, then we need to change the variable name to give more context.

Since the variable has the first name of a user, we might pre-pend the word

user. We get user_first_name, which is longer but clear.

Here is one more example.

1 # Bad example

2 start_data = { players: 4, score_to_win: 5 }

3

4 # Good example

5 game_config = { players: 4, score_to_win: 5 }

The next example is more complicated since the “bad” example has

a hash variable start_data with data for a game. The reader assumes it

is used when the application starts, but doesn’t know the purpose. Only

through closer examination, do they realize that the hash defines the

configuration of a game.

In the “good” example, we change the name to something more

descriptive. The new name, game_config, tells the reader that the hash is

a game configuration. This is better because it provides more information

about the value, and the name is explicit without being too wordy. The

name game_config is flexible enough to allow new hash keys without

requiring us to change to the variable name. As long as any new hash key is

a game configuration, we are good.

Chapter 2 Naming Things

16

�Length
When we name a variable, we want that name to be as descriptive as possible.

A descriptive name allows the reader to understand your intent without

having to spend time reading other parts of your code. Be careful since it’s

possible for a name to be too descriptive. When variable names grow too

long, it becomes hard for the eyes to follow, more difficult to understand, and

readers get lost. For comparison, a long variable name is similar to a run-on

sentence in a book. The reader has to keep information in their head while

trying to comprehend the sentence. Understanding its meaning becomes

difficult the longer the sentence is. Short descriptive sentences are easier to

digest. Our variables should follow the same guidelines: be short and to the

point. Remember, less code is easier to read than tons of code.

One of the first things you can do to keep your variable names short is

to avoid adding unnecessary information. It’s okay to leave out words if the

reader can still interpret the meaning. We want our variable names to read

like English, but it’s okay to be broken English. Most people reading your

code will be smart enough to figure out what you meant with little effort.

Avoid storing too much data in a single variable. It’s easy to create

names that are too long because we want to share so much information.

Breaking a single variable into multiple variables can simplify your code

and make it much easier to follow.

These are more examples.

1 # Bad example

2 purchase_final_sale_total = 300

3

4 # Good example

5 sale_total = 300

The “bad” example is hard to read at first glance because of its length,

and not easy to understand how it’s used. There are just too many words.

We need to figure out what each word means in context of the others.

Chapter 2 Naming Things

17

Now look at the “good” example, where we simplified the name greatly

by removing words. The new variable name is only two words, but these

two words give enough information to communicate what data the

variable is storing. The extra words from the original name, purchase

and final, were redundant. These words add nothing to the reader’s

understanding of the variable. Removing these words doesn’t take away

anything and adds clarity.

�Avoid Unnecessary Information
A common pitfall for most developers when naming variables is relying on

naming crutches. A developer will add extra words to the beginning or end

of a variable name to help readers understand the contents. The problem

is, these words end up diluting the clarity of the name. They are useless

additions that do more harm than good. Usually an alternate name could

be more descriptive.

�Naming Crutches

Naming crutches are easy to spot, starting with this small list. Knowing

these words will make it easy to locate other similar crutches.

•	 Manager

•	 Data

•	 Info

•	 List

Although not exhaustive, you should get the idea. These types of words

are generic and hurt reader understanding of the variable. In the next

example, we include the class name as part of our discussion of variable

names. The ideas discussed for class names very much apply to variable

names.

Chapter 2 Naming Things

18

1 # Bad example

2 class PlayerManager

3 def spawn(player_id)

4 @players << Player.new(player_id)

5 end

6 end

7

8 player_manager = PlayerManager.new

9 player_manager.spawn(1)

In this example, we have the class PlayerManager that we instantiate

and store in a variable named player_manager. This combines the two

words of player and manager, where “manager” implies it’s managing

something and “player” indicates players. The problem with this name is

the word “manage” can mean many things. Is the PlayerManager going to

manage a player’s location, or their stats?

Having the word manager added to the end of a variable or class name

creates ambiguity. The reader won’t know its responsibility. This confusion

might cause them to misuse your variable, or think it’s okay to add just

about anything. The class will become a super class1 and be a constant

sore spot in your codebase.

Change the names to be more descriptive. If the class only handles

player spawning, then the name should show that. When we create a

variable or class, we should pick a name that is simple and describes what

the class does now. Don’t be a fortune teller and predict the future. We

can always create more variables and classes to fulfill future requirements.

Let’s look at how we might change the example to drop the word manager

from the variable and class name.

1�Super classes are classes with the most lines of code in your entire

application. They try to do everything for a concept and are extremely hard to

support. Any other classes that need these methods can do the same thing.

Chapter 2 Naming Things

19

1 # Good example

2 class PlayerSpawner

3 def spawn(player_id)

4 @players << Player.new(player_id)

5 end

6 end

7

8 player_spawner = PlayerSpawner.new

9 player_spawner.spawn(1)

We changed our class and variable names from PlayerManager

and player_manager to PlayerSpawner and player_spawner. This

clarifies that the PlayerSpawner class handles player spawning, and the

player_spawner variable is an instance of this class. The role of these two

elements is described in their names.

What if we plan to add more functionality? Say we want

PlayerSpawner to handle scoring. If the class was named PlayerManager,

adding logic to manage player scores makes sense. Since we changed our

code to follow the Single Responsibility Principle2, adding scoring logic

makes little sense. We would need to create a new class that handles this

role. A class name like PlayerScore fits this responsibility.

�Avoid Conjunctions
Using conjunctions in your variable names shows we are attempting to

store too much data in a single variable. The English language defines

conjunction as a word (e.g., words like and, or, but) that connects two

clauses into the single phrase. If you spot a conjunction in a variable name,

2�Single Responsibility Principle is a concept that dictates our code should only be
responsible for one thing.

Chapter 2 Naming Things

20

it should raise a red flag that something is wrong. Let’s look at an example

where a variable uses a conjunction.

1 # Bad example

2 score_and_player_count = { score: 100, player_count: 2 }

Here we have a variable that contains a hash with two data points:

current score and player count. While the name score_and_player_count

is descriptive, the word “and” shows that the variable is holding data for

two different purposes. This means we are trying to do too much with one

variable which will lead to problems.

If we added more key/value pairs to the hash, the variable name might

need to change, so it continues to describe the data. Changing a variable

name because its data changed is bad. If the variable name changes, any

places in the code that references the variable will need to change. This

workflow will lead to bugs and extra work.

Also, as the variable name grows in size, it will become harder to read.

Let’s look at a better approach.

1 # Good example

2 score = 100

3 player_count = 2

Here we split our single variable into two. Each variable only holds a

single data point, and the names show this. Both variables are short and easy

to read. Now that each variable holds a specific data point, future developers

will be less likely to append unrelated data to it. Since the variables contain

precise data, it’s also unlikely we will need to change the name.

�Only Alpha Characters
We want to avoid numeric characters in our variable names, if possible.

Using a number often detracts from the variable’s meaning, and usually

there is a better way. This is an example of two different variables that hold

the same data.

Chapter 2 Naming Things

21

1 # Bad example

2 year_1985 = '1985'

3

4 # Good example

5 start_of_grunge = '1985'

The variable in the “bad” example informs the reader it has the year

1985. This is correct, but it doesn’t tell us what the year 1985 means to the

code. Also, if the value of the variable changes to anything besides 1985,

then the name will be misleading. The variable name start_of_grunge in

the “good” example tells us what the year 1985 represents. If we need to

change the year to 1986, the variable name can stay the same because it

reflects what the data represents and not the data itself.

Tracking versions is a special case that might justify having numbers

in your variable name. It would be reasonable to store the first version

of something in a variable named version1 and the second version in

version2. Use your best judgment in situations like this. Decide if having

the numeric character in your variable name is necessary.

�Methods
Methods are the building blocks of reusable code. Without them,

we would have to copy and paste the same code repeatably. It’s vital

that our methods give hints about what they do. Vague or incorrect

method names can confuse. Confusion can cause headaches for other

developers and bugs in our code. Let’s look at some techniques you can

use to avoid this.

Chapter 2 Naming Things

22

�Use Verbs
Methods are the doers of our application. They authenticate users for a

web application and send emails to customers after they made a purchase.

Methods contain the behavior that makes our software what it is. Since

methods perform the actions in our application, we should use verbs to

name them.

Our code should read like a phrase or a sentence in a book. Creating

method names that are the inverse of a well-written sentence can make

our code hard to read. How do you converse with other people? Telling

a coworker “I’m going to money the customer’s account” would be

confusing. This is because we used a noun instead of a verb to describe

an action. If you said “I’m going to bill the customer’s account,” then your

coworker would know you will send a customer a bill. These rules apply to

method naming. Look at this example:

 1 class Account

 2 def initialize(customer)

 3 @customer = customer

 4 end

 5

 6 # Bad method

 7 def money(amount)

 8 @customer.balance -= amount

 9 end

10 end

Here we used the noun money for our method name, but that

only provides context without telling what it’s doing with the money.

It’s possible to guess that it will add or subtract the amount from the

customer’s account but it’s unclear. Now let’s change the method to use a

verb.

Chapter 2 Naming Things

23

 1 class Account

 2 def initialize(customer)

 3 @customer = customer

 4 end

 5

 6 # Good method

 7 def pay_bill(amount)

 8 @customer.balance -= amount

 9 end

10 end

Now the method name has the verb pay. The word pay tells the reader

the action the method will perform. Paired with the noun bill, we know

that intent of the method is to pay a bill. Since this method is part of the

Account class, we can assume that the method is paying a bill for an

account. Let’s see another bad and good example in action.

1 # Bad Example

2 account = Account.new(current_user)

3 account.money(100)

4

5 # Good Example

6 account = Account.new(current_user)

7 account.pay_bill(100)

In the “bad” example, we are creating an instance of Account. When

we call the money method, it’s unclear what will happen to the value we

passed. In the “good” example, we create an instance of the improved

Account class. On the next line, we call the pay_bill method. It’s clear that

the value passed to the method will pay a bill.

Chapter 2 Naming Things

24

�Return Value
Another item to consider when choosing a name is the data type returned

by the method. If the method returns a boolean value, our method should

have a question mark appended to the end.

1 def equal?(a, b)

2 a == b

3 end

In this example, our method takes two values and determines if they

are equal. The question mark in the method name shows that the method

will return a true or false value. Since we know that the method returns a

boolean value, we can use the method like this:

1 if equal?('test', 'test')

2 puts 'test is equal to test'

3 end

This code checks if the two values are equal using our method and

prints a message to the console. The ? tells the reader that the method will

cause a true or false result. It’s a small, but helpful, addition to our method

name.

It’s possible to use a linking verb instead of a question mark to achieve

the same effect.

1 # We pre-pended the word is to the method name

2 if is_equal('test', 'test')

3 puts 'test is equal to test'

4 end

This code is very readable, but Ruby convention recommends that we

use the question instead. Most Ruby developers will use the question mark

convention; I suggest you adopt this.

Chapter 2 Naming Things

25

�Bang Methods
Bang methods are unique methods that change the data of the called

object. You can spot bang methods because they end with a !. The

exclamation point tells the reader that calling this method is dangerous,

and the effects are irreversible. If you create a method that changes the

data of an object, mark it with an exclamation point to avoid confusion.

Bang methods also exist in the Ruby core library, so it’s important to

understand how they work.

Find the Array class in your favorite Ruby documentation web site.

Notice how methods have versions with and without an exclamation mark.

The logic for each method is the same, but one method will make a copy

leaving the original data intact, while the other method will change the

original array.

Let’s see how this looks:

1 class User

2 attr_accessor :friends

3

4 def remove_friend!(friend)

5 @friends.delete(friend)

6 end

7 end

Here we have a class with a single method. The method remove_friend!

changes the friends collection (and causing real-life turmoil). The ! warns

the reader of the ramifications of calling this method.

Like we mentioned earlier, Ruby’s core library uses this convention.

Methods like the sort method on the Array class have a version that sorts

the called instance and another version that returns a sorted copy.

Chapter 2 Naming Things

26

1 numbers = [2,3,1]

2 numbers.sort! # <= This will sort the numbers array

3 numbers = [2,3,1]

4 �new_numbers = numbers.sort # <= new_numbers will contain

the sorted copy of numbers

�Classes
The power of object-oriented programming shines when we group

similar data and behavior into classes. Classes make our code easy to

comprehend and prevent code duplication. They are the foundation of

Ruby applications, so it’s important we take care when naming them. Bad

class names make even a simple application hard to understand.

Choosing a class name is like choosing a variable name. The name you

pick for a class should show the data and behavior it encapsulates. This is

not a trivial task though. Finding the right word that describes what your

class can take time and many iterations. It’s common to change a class

name several times before settling on one that fits. In this chapter, we will

discuss techniques that will help you find a good name for your classes.

�Purpose
Developers don’t make classes just for the fun of it. There are many

reasons to create a class. Maybe several methods and variables are related,

and it made sense to group them into a reusable component. Working on

a new feature can create the need for new classes to wrap business logic.

While the reason may vary, we create classes to fulfill a purpose. That

purpose can be described in a word or phrase.

Let’s look at an example where a group methods and data fulfill a

common purpose.

Chapter 2 Naming Things

27

 1 def new_user_add_coins

 2 # code

 3 end

 4

 5 def email_new_user_welcome(email)

 6 # send an email

 7 end

 8

 9 user_email = 'example@example.com'

10 new_user_add_coins

11 email_new_user_welcome(user_email)

Here we have two methods and a variable, acting on behalf of a new

user. If you look closer, you see that the variable and method names also

repeat the word new and user many times. When you look at patterns like

this where methods or variables pre-pend a familiar word to their name,

it’s a sign that introducing a new class would help simplify the code.

Now that we identified code that is a good candidate for a new class,

we need a name. Before we pick a class name, we need to know its purpose

in our application. Both methods being added perform user setup. I

highlighted the two words User and Setup because these words offer a

good description of what our new class will do. If we combine these two

words, it creates a very nice class name, UserSetup. Look at the following

example, where we define the new class.

 1 class UserSetup

 2 def initialize(user)

 3 @user = user

 4 end

 5

 6 def execute

 7 add_coins

Chapter 2 Naming Things

28

 8 send_welcome

 9 end

10

11 private

12 def add_coins

13 # add coins to their account

14 end

15

16 def send_welcome

17 email = @user.email

18 # send an email

19 end

20 end

21

22 user_setup = UserSetup.new(user)

23 user_setup.execute

Our new class has a single public method named execute that calls two

private methods, which should look familiar. They are the two methods

from the prior example, but the names have changed. We removed new_
user_ from add_coins and changed email_new_user_welcome to send_
welcome. Since our class name UserSetup provides context to the purpose

of the class, the method names can be shorter and nonspecific. Also, the

methods in the class no longer need any arguments because the new class

requires a user upon instantiation.

Below the class definition, we created an instance of UserSetup and

called the execute method. Even in isolation from the class definition, it’s

easy to understand what these last two lines do. The class name UserSetup

does a great job informing the reader that the logic in the class handles

the setup process for a user. We need not know the specifics of the setup

process to use the class.

Chapter 2 Naming Things

29

�Role
Some classes perform a particular role. For example, some encapsulate

ActiveRecord queries, while others handle requests to external APIs. These

types of classes have names that inform the reader of their specific job.

In a Rails application, it’s common to see queries like this in a

controller class.

1 �inactive_users = User.where(last_login: 6.months.ago,

paid_account: false)

This query fetches inactive users from a database. The state “inactive”

for this example means users have not logged in for six months and are not

paying customers. The query itself is simple, but we need to find how to

make it easy to test and reuse.

In the next example, we move the query code to a new class:

 1 class InActiveUserQuery

 2 def initialize(relation = User)

 3 @relation = relation

 4 end

 5

 6 def all

 7 �@relation.where(

 8 last_login: 6.months.ago,

 9 paid_account: false

10)

11 end

12 end

13

14 inactive_user_query = InActiveUserQuery.new(User)

15 inactive_users = inactive_user_query.all

Chapter 2 Naming Things

30

First, we will break the class name into two parts. The first part of the

name represents the resource being queried: InActiveUser. The second

part represents the role the class is performing: Query. The class name

InActiveUserQuery tells readers that this class will query the database for

inactive users. Without the word Query in our name, the class would look

like an ordinary model class. Specifying a role lets readers know what the

class can do without having to guess.

The Query class is just one of the many types we might create. Other

role-specific classes like Presenter, Controller, and Helper offer the same

benefit as the Query, but for different roles.

�Modules
A module is like a class except you can’t instantiate it. Instead, the include

keyword injects them into other parts of our code. Why would we create

this instead of a class? Modules exist because not everything we code

makes sense as a class. Specific concepts are a grouping of shared ideas

rather than a concrete object. To show this, the next example defines the

class Math. It has two methods: add and subtract.

 1 class Math

 2 def add(a, b)

 3 a + b

 4 end

 5

 6 def subtract(a, b)

 7 a - b

 8 end

 9 end

10

11 math = Math.new

12 sum = math.add(2, 2)

Chapter 2 Naming Things

31

The class is simple but awkward to use. To use the methods in the

class, we need to create an instance of Math. This makes little sense

because “creating a math” is a nonsensical statement, but that’s what

the sample is doing. Math is an abstract collection of concepts used to

compute numbers, but a class isn’t a good fit. Grouping the add and

subtract methods together and making it easy to use in other classes is

still desirable. This is where modules come in handy. The next example

changes use a module instead of a class.

 1 module Math

 2 def add(a, b)

 3 a + b

 4 end

 5

 6 def subtract(a, b)

 7 a - b

 8 end

 9 end

10

11 class CashRegister

12 include Math

13

14 def calculate_change(total_cost, amount_paid)

15 subtract(amount_paid, total_cost)

16 end

17 end

Instead of a class, we used a module to encapsulate the two

methods. Next, we include it in the class CashRegister, which now has

access to methods defined in the Math module. Any other classes can

do the same thing.

Chapter 2 Naming Things

32

When you are thinking about what to name a module, think about

what functionality the module is grouping. If you find more than a single

concept, split the module into multiple modules until the grouping

becomes clear.

Chapter 2 Naming Things

33© Carleton DiLeo 2019
C. DiLeo, Clean Ruby, https://doi.org/10.1007/978-1-4842-5546-9_3

CHAPTER 3

Creating Quality
Methods
A method is the smallest block of code in an application. Methods can be

reused, which helps prevent duplication. A method hides the details of an

operation, so refactoring will not affect the calling code. This takes careful

planning to achieve. In this chapter, we will discuss different techniques

used to create quality methods: parameters, return values, guard clauses,

length, comments, and nesting.

�Parameters
Without parameters, there would be no way to manipulate method

outcome. Parameters make methods flexible, which creates opportunities

for reuse and helps prevent code duplication. Instead of copying and

altering an existing method to fit a different need, we use a parameter. Less

code to write and support saves us time.

Parameters are a valuable addition to our programming toolbox, but

they pose a risk. When misused, they increase code complexity and make a

method hard to understand. Use caution when introducing parameters to

a method.

34

�Use Fewer Parameters
The more parameters you define for a method, the harder it is to

understand and support. Noticing the increased complexity isn’t easy

when we are dealing with only one or two parameters. The difference in

complexity becomes clearer with each added parameter.

This is a method with no parameters:

1 def greeting

2 "Hello"

3 end

The calling code can’t manipulate the method outcome since it will

only return the string “Hello”.

Let’s add one parameter.

1 def greeting(name)

2 "Hello #{name}"

3 end

We added a single parameter to allow the calling code to specify a

name to append after the greeting. This simple addition introduces new

things to consider. Since we do not control it, the name being passed to the

method can be any of the following values:

•	 string

•	 nil

•	 string with multiple words

The current implementation only considers the first value. A nil value

produces less than an optimal return value.

1 => "Hello "

This return value has extra spaces. We improve the method by calling

rstrip to remove any spaces to the right of Hello.

Chapter 3 Creating Quality Methods

35

1 def greeting(name)

2 "Hello #{name}".rstrip

3 end

If the calling code passes a nil value, now the method returns “Hello”

with no extra spaces.

The other possible value is a string that has multiple words. The

method doesn’t account for this. If we were to pass the string “Jane is

learning Ruby”, the result is:

1 "Hello Jane is learning Ruby"

The return value is okay, but not expected. We need to make a decision

how to handle this type of input. The following example is a simple

solution that only uses the first word in the string.

1 def greeting(name)

2 "Hello #{name.split.first}".rstrip

3 end

This splits the name parameter into an array of string values. By

default, the split method uses a space to split the string. The string “Jane

is learning Ruby” from the earlier example will become an array of four

words: ["Jane", "is", "learning", "Ruby"]. Next, we pick the first

element of the array, “Jane”.

Now the method returns the following string:

1 "Hello Jane"

Our return value looks better. We could continue to poke holes in

the greeting method, but adding one additional parameter introduced

complexity. Imagine adding another one to specify whether the greeting

is formal or informal. You will need to consider how this affects the name

parameter. More parameters just multiply their effects.

Chapter 3 Creating Quality Methods

36

So what does this mean? Fewer parameters are usually a good thing,

which simplifies our methods and makes them easier to understand and

test. How do we handle existing methods with too many parameters?

1 �def start_game(num_players, start_score, number_of_rounds,

score_to_win, network_game)

2 # confirm the parameters provided are correct

3 # start a new game

4 end

The method start_game has many parameters. As you scan the

method definition, you notice that the shear number of parameters makes

the method hard to comprehend. Each parameter has a relationship

with another. The parameter network_game affects the valid values for

num_players. A local game might only have a max player count of 4, while

a network game could have 64. These parameter interactions can be an

enormous mental strain, so grouping them into a single class is a great

start to help.

Now see this example:

 1 class Config

 2 �attr_accessor :num_players, :start_score, :number_of_

rounds, :score_to_win, :network_game

 3

 4 �def initialize(num_players, start_score, number_of_

rounds, score_to_win, network_game)

 5 # Confirm the parameters provided are correct

 6

 7 # Assign instance variables

 8 @num_players = num_players

 9 @start_score = start_score

10 @number_of_rounds = number_of_rounds

Chapter 3 Creating Quality Methods

37

11 @score_to_win = score_to_win

12 @network_game = network_game

13 end

14 end

15

16 # separate method that starts the game

17 def start_game(game_config)

18 # start a new game

19 end

20

21 # config values

22 player_count = 4

23 score = 0

24 rounds = 2

25 winning_score = 10

26 is_network_game = false

27

28 # create a config

29 �game_config = Config.new(player_count, score, rounds,

winning_score, is_network_game)

30

31 # start the game using the config

32 start_game(game_config)

By encapsulating the parameters with a class used in the start_game

method definition, the number of parameters decreases from 5 to 1.

In addition, the responsibility of validating the config data now falls to

the Config class instead of the start_game method. The clarity of the

method definition improved with only a single parameter. The reader

can investigate the Config class if they need more information, but not to

understand the start_game method.

Chapter 3 Creating Quality Methods

38

With configuration values wrapped in a Config class, other methods

can use that class without duplicating associated validation and logic. The

addition and removal of configuration items doesn’t force the method

definition to change. Invoking the method stays untouched, but any place

that initializes Config will still need to change. We can fix this by taking our

parameter refactor one step further.

 1 class Game

 2 def initialize(config)

 3 @config = config

 4 end

 5

 6 # Formerly the start_game method

 7 def start

 8 # start a new game using @config

 9 end

10 end

11

12 # config values

13 player_count = 4

14 score = 0

15 rounds = 2

16 winning_score = 10

17 is_network_game = false

18

19 # create a config

20 �game_config = Config.new(player_count, score, rounds,

winning_score, is_network_game)

21

22 game = Game.new(game_config)

23 game.start

Chapter 3 Creating Quality Methods

39

I have moved the start_game method to a new class Game (renamed

start). An instance of the Config class passed to Game initialization

eliminates the need for passing to start. Every time a new game is started,

it reuses the config. Several refactors have reduced the original start_game

from 5 to 0 parameter. The result is a simple method definition that is easy

to understand.

You improve method definitions by limiting the number of parameters.

This doesn’t mean you need to drop parameters altogether, but just watch

how you use them. Although it might be easy to add one more parameter

to a method you’re changing, it’s better to evolve your code to meet your

needs. Challenge yourself to consider different approaches to solve a

problem and not take shortcuts.

�Parameter Order
The order parameters appear in a method definition plays a role how

other developers understand that method. Think how you describe a

cake recipe to a friend. Your friend expects to receive the baking steps in

a specific order. If you deliver the recipe in an order counter to what your

friend expects, this will confuse them. Here is an example of steps in the

wrong order:

•	 Bake time

•	 Icing ingredients

•	 Mix instructions for the cake batter

Chapter 3 Creating Quality Methods

40

Now they have the steps, but your friend would need to reorder them

before starting. Parameters carry a similar expectation. Parameter order

counter to common expectations will confuse future developers.

Here’s an example:

1 def login(password, username)

2 # do user login

3 end

The method defines password before username. Most developers

would expect them to be reversed. This expectation is so ingrained that

many people would call the method in the manner they’re used to without

looking at the method definition.

Consider the next example:

1 login(username, password)

We call the login method using the expected parameter order of

username and then password. This method usage looks legitimate. Both

parameters are strings so the method will execute, but the user can never

login. This bug can be hard to spot since the expectation for the method

differs from the actual method definition. More complex methods with

many parameters add to the confusion.

When you create a method, consider the order of the parameters and

how they relate to each other. The most important parameters should be

first. Make sure the next parameter makes sense in the order presented.

Try calling the method and see if the parameter order makes sense.

�Return Values
Ruby doesn’t restrict the values you return from a method. A method can

return a string as well as a hash. This flexibility is powerful but may cause

other problems. Methods encapsulate behavior, hiding details from other

Chapter 3 Creating Quality Methods

41

parts of the code. Creating a method that returns multiple types of values

creates a coupling between the method and the calling code. To use the

method, the calling code has to understand how the method works. I now

expose the details that were hidden. If I introduce more return types, the

calling code will need to be changed. This is not ideal.

 1 class User

 2 attr_accessor :id, :name

 3

 4 def initialize(id, name)

 5 self.id = id

 6 self.name = name

 7 end

 8 end

 9

10 def find_by_name(users, name)

11 users.each do |user|

12 if user.name == name

13 return user

14 end

15 end

16

17 return { message: "Unable to find user with name #{name}" }

18 end

19

20 users = []

21 users << User.new(1, "Alice")

22 users << User.new(2, "Joe")

23

24 find_by_name(users, 'Alice')

Chapter 3 Creating Quality Methods

42

Here we have a method that finds a user by name. The code iterates

through the collection of users and returns the user with the matching

name. If the method finds no user, it returns a Hash with a message.

The method has two possible value types: instance of the User class or a

Hash. The calling code will need to check which type of value is returned

to avoid issues.

1 user = find_by_name(users, "Jane")

2 if user.is_a?(Hash) && !user[:message].nil?

3 puts user[:message]

4 else

5 puts user.id

6 end

Changing the return value type creates distrust in a method. The

reader won’t know if the method returns two types of values or more? Nor

will they know if the number of return types will change? We don’t want

developers asking such questions about our code.

In the next example, we remove the last line that returns a Hash.

 1 def find_by_name(users, name)

 2 users.each do |user|

 3 if user.name == name

 4 return user

 5 end

 6 end

 7 end

 8

 9 users = []

10 users << User.new(1, "Alice")

11 users << User.new(2, "Joe")

12

Chapter 3 Creating Quality Methods

43

13 user = find_by_name(users, "Jane")

14

15 if user.nil?

16 puts "No user found"

17 else

18 puts user.id

19 end

Since the return value can only be an instance of a User, the

calling code need not check the return type. The calling code takes the

responsibility of crafting a message to display if it finds no user, but that is a

reasonable choice.

The original find_by_name is frustrating to work with, because

you’re never sure what type of value will be return. Each developer who

uses the method will end up needing to read the method to make sure

they haven’t missed something. Returning a single value type eliminates

the need to do this.

�Guard Clause
The data provided to a method may not be valid. If a method expects a

string, the calling code might accidentally pass a numeric value. A guard

clause at the top of a method creates a safe environment for the rest of the

method to work.

1 def clear(items)

2 return if items.nil? || !items.is_a?(Array)

3 items.each do |item|

4 # clear the item

5 end

6 end

Chapter 3 Creating Quality Methods

44

The first line in the method checks that items is not nil and is of type

Array. The rest of the method is free to use items with no need to check it.

This can remove much code and prevent ugly nesting. The code is easier

to read since the expectations of the items parameter are at the top of the

method and not hidden throughout.

�Length
Most methods have humble beginnings, but they grow larger. Any method

should not take on too much responsibility. How do you decide when a

method is doing too much? The method length is a good sign. If you create

a method with hundreds of lines of Ruby code, we can say with certainty

that the method is doing too much. Short, succinct methods often have a

single role.

How do we know if a method is too long? This isn’t an exact science.

Your method is too long, if it has hundreds of lines of code. A method of

about 20 lines might be harder to figure whether it’s too long. Ruby is a

high-level language that can do much in a single line, with less need for

boilerplate code to do simple tasks such as creating a network connection

to another server. You should be able to carry out most tasks with few lines

of code. Methods with more than five lines of code should be investigated

further to find if a problem exists.

�How to Shorten a Method
What happens when you find a method that is too long? What do you

do? One technique is to find any logical grouping of statements that have

a common purpose and use them to form new methods. The original

method then calls the new methods. After refactoring, the original method

no longer needs to know the details of the code we’ve moved. Any change

to the new methods doesn’t affect the original method.

Chapter 3 Creating Quality Methods

45

 1 # Too long example

 2 def create_user(first_name, last_name)

 3 if first_name.nil? || first_name == "

 4 raise ArgumentError, 'first_name is required'

 5 end

 6

 7 if last_name.nil? || first_name == "

 8 raise ArgumentError, 'first_name is required'

 9 end

10

11 User.create(

12 first_name: first_name,

13 last_name: last_name

14)

15 end

In this example, we start with a single method. The method has just

seven lines of code, but further examination shows a Single Responsibility

Principle violation. The method has two responsibilities: confirm input

parameters, and create a user. Validation shouldn’t be in the create_user

method; let’s refactor.

 1 # Shorter example

 2 def create_user(first_name, last_name)

 3 validate_input(first_name, last_name)

 4 User.create(

 5 first_name: first_name,

 6 last_name: last_name

 7)

 8 end

 9

10 def validate_input(first_name, last_name)

Chapter 3 Creating Quality Methods

46

11 if first_name.nil? || first_name == "

12 raise ArgumentError, 'first_name is required'

13 end

14

15 if last_name.nil? || last_name == "

16 raise ArgumentError, 'last_name is required'

17 end

18 end

In the second example, I move the validation code to a new method

called validate_input. The new method has one responsibility to

confirm parameters used to create a user. The create_user method now

calls validate_input and just creates the user, since validation is the

responsibility of another method. As an added benefit, future changes to

the validation logic do not need a change to the create_user method.

�Too Short
A method should be short and concise, but you can make a method too

short, where understanding can be challenging. Short methods pack too

much information on a single line.

1 # Multiple Lines

2 def qualified_users

3 active_users = User.where(active: true)

4 qualified_users = active_users.select(&:qualified?)

5 qualified_users.sort(&:last_login)

6 end

The example method qualified_users fetches a list of qualified users

from the database. I do this using three lines of code. The first line retrieves

the active users. The second line selects users marked as qualified.

The third line sorts the qualified users by their last login date. Breaking

complex operations into smaller digestible pieces makes the method

easier to follow.

Chapter 3 Creating Quality Methods

47

Now this example has the same steps but is written as a single line of

code.

1 # Single Line

2 def qualified_users

3 �User.where(active: true).select(&:qualified?).sort(&:last_

login)

4 end

We’ve eliminated the variables qualified_users and active_users

and placed the select and sort statement inline. Reading the single line

requires the reader to keep track of everything at once. As the line of code

gets longer, the reader must keep more information in their head, and they

won’t be able to understand it. Keep your lines short.

If you must chain your method calls, break the call chain into multiple

lines.

1 # Single Line

2 def qualified_users

3 User.where(active: true)

4 .select(&:qualified?)

5 .sort(&:last_login)

6 end

Chaining method calls using this syntax is easier to follow since each

call is on its on line.

�Comments
Much thought goes into writing a line of code. In an ideal world, our code

expresses these thoughts concisely. That isn’t always the case. Existing

code and third-party libraries can introduce hacks and workarounds that

are hard to communicate with code alone. After solving a difficult problem,

Chapter 3 Creating Quality Methods

48

we don’t want to lose the gained knowledge. This is where code comments

are helpful. A comment provides more information and communicates

assumptions for one or more lines of code. When another developer reads

the comment, they won’t have to rediscover and solve the problems you

encountered.

Comments sound great, so why not use them everywhere? While

comments are helpful, it’s possible to overuse them:

 1 def change_role(user_id, new_role)

 2 # find a user by id

 3 user = User.find(user_id)

 4

 5 # check that current role does not equal the new role

 6 if user.role != new_role

 7 # assign new role to the user

 8 user.role = new_role

 9 end

10 # end of method

11 end

Every line has a comment. Each comment describes a line of code, but

the code already does this. Consider the first line:

1 user = User.find(user_id)

The statement is straightforward; it finds a user with an id, and a

comment gives no new information. It’s redundant and only doubles

the lines of code the reader has to parse. Do the other comments

communicate something you can’t understand from the code alone? The

next example removes all comments:

1 def change_role(user_id, new_role)

2 user = User.find(user_id)

3

Chapter 3 Creating Quality Methods

49

4 if user.role != new_role

5 user.role = new_role

6 end

7 end

The method is the same minus comments. By removing the comments,

the method hasn’t suffered in its readability. In fact, the method might

even be more readable. If you discover comments in an existing codebase,

ask yourself if deleting them removes important information. If you

want to add comments, ask yourself if that adds more information not

communicated by the code.

�Quality Comments
A good comment provides knowledge that’s important for the developer

attempting to understand the code. Comments don’t need exact syntax

because Ruby does not interpret them. It’s still important to treat

comments with respect. Spelling mistakes and misleading information can

do more harm than not having a comment. So what is a good comment?

See this next example.

 1 def change_role(user_id, new_role)

 2 user = User.find(user_id)

 3

 4 role_service = RoleService.new(user)

 5

 6 �# Roles cannot be downgraded so the role service will

 7 # return false if the new role is 'less' then the

 8 # current role

 9 return unless role_service.can_assign(new_role)

10

Chapter 3 Creating Quality Methods

50

11 if user.role != new_role

12 user.role = new_role

13 end

14 end

It adds a new line:

1 return unless role_service.can_assign(new_role)

This line of code includes a comment that provides added information.

The comment informs the reader of the RoleService limitations, which

might be difficult to communicate in code alone. If we removed the

comment, the reader loses valuable information. So it’s a good comment.

�Stale Comments
Comments can cause problems if someone does not keep them up to date.

Changing a line of code can make a comment no longer valid. Deleting

code without removing associated comments will cause problems.

1 def fullname(first_name, last_name)

2 # Confirm last_name is not blank or nil

3 "#{first_name} #{last_name}".strip

4 end

The method fullname takes two values and concatenates them

to create a string that is a full name. The comment in the method

accompanied a line of code that validated the last_name parameter.

Someone removed the validation code, but not the comment. The first

thing a developer reads is an incorrect comment. In a larger method, this

can add mental overhead.

Don’t allow comments to go stale. If you refactor code, make sure you

remove or update any comments you find.

Chapter 3 Creating Quality Methods

51

�Comments and Refactoring
Comments can group related statements. For longer methods, this kind

of comment offers a guide. Each comment explains what the group of

statements do. While helpful, it’s a clear sign that the method needs

refactoring, as shown here.

 1 def accounts_from_file(file_path)

 2 # read lines from file

 3 file = File.new(file_path)

 4 lines = file.readlines

 5

 6 # Create an account for each line

 7 accounts = lines.collect do |line|

 8 # Parse name and email

 9 account_info = line.parse(',')

10 name = account_info[0]

11 email = account_info[1]

12

13 # Create an account using the parsed data

14 Account.create(name: name, email: email)

15 end

16 end

Each comment explains an operation. The first group of statements

reads a file. Then the method creates an account for each line in the file.

Inside the collect block, we parse a single line and an account created

using the attributes. Each comment is an opportunity to refactor. Let’s use

the comments to create new methods.

 1 def accounts_from_file(file_path)

 2 lines = read_file(file_path)

 3 create_accounts(lines)

 4 end

Chapter 3 Creating Quality Methods

52

 5

 6 def read_file(file_path)

 7 file = File.new(file_path)

 8 file.readlines

 9 end

10

11 def create_accounts(lines)

12 accounts = lines.collect do |line|

13 account_params = account_params_from_line(line)

14 Account.create(account_params)

15 end

16 end

17

18 def account_params_from_line(line)

19 account_info = line.parse(',')

20 { name: account_info[0], email: account_info[1] }

21 end

We’ve turned each comment into a method. Instead of relying on

comments to tell a story, we use the code. The original method had too

many responsibilities. It reads the file, parsed each line, and created

accounts using the data. Each responsibility has no relation to another

besides being used for account creation. The new example divides

responsibilities into multiple methods. Each method handles one task and

is independent of one another. The independence provides room for code

reuse beyond the original intent.

�Limit Nesting
Nested statements in a method are often a sign of complexity. You can spot

them because too many nested statements make the method resemble a

wave, or a greater-than symbol (>).

Chapter 3 Creating Quality Methods

53

1 MAX_PROMO_RATE = 5

2

3 def send_promo_email(user)

4 if user.email.present?

5 if user.promos_sent < MAX_PROMO_RATE

6 UserMailer.promo_email(user).deliver

7 end

8 end

9 end

This code sends a promo email to the specified user. The method has

two “if” statements, one nested inside the other. The first “if” statement

checks whether the user has an email. The second “if” statement checks

if we exceeded the promo threshold. If all boolean tests are true, we

send a promo email. There are only two levels of nesting, but even this

level of nesting makes the method hard to understand. This code needs

refactoring:

 1 MAX_PROMO_RATE = 5

 2

 3 def send_promo_email(user)

 4 if can_send?(user)

 5 UserMailer.promo_email(user).deliver

 6 end

 7 end

 8

 9 def can_send?(user)

10 user.email.present? && user.promos_sent < MAX_PROMO_RATE

11 end

Chapter 3 Creating Quality Methods

54

I have abstracted the boolean tests to a new method “can_send?”.

It encapsulates the boolean logic in one method. This eliminates the

nesting and makes the method easier to understand. If you read the

“send_promo_email” method, you don’t have to understand how

“can_send?” works to comprehend what the method does. If we need to

add a condition, send_promo_email won’t need to be changed.

Chapter 3 Creating Quality Methods

55© Carleton DiLeo 2019
C. DiLeo, Clean Ruby, https://doi.org/10.1007/978-1-4842-5546-9_4

CHAPTER 4

Using Boolean Logic
Software consists mostly of testing data and determining whether certain

conditions are true or false. Every program makes thousands of these

decisions. Since boolean logic is so vital to an application, it’s important

to take care when programming them. A single boolean statement is easy

to understand, but complex logic with two or more boolean statements

can be hard to understand, making it hard to maintain and the source

of bugs. Even small improvements to boolean logic can help prevent

misunderstandings. In this chapter, we will discuss different techniques

you can use. Each method has pros and cons. Check each option before

choosing the one correct for a situation.

�Using a Variable
As we learned in earlier chapters, we use variables to store data. They

describe data, so other developers know what it is. Boolean values, like

numbers and strings, gain context when stored in a variable. A boolean

variable helps future readers understand what the boolean represents.

This is useful for complex logic needed to determine if something is true

or false. Storing the result of a boolean statement in a variable removes the

need for other developers to parse the complex logic. The variable name

provides the information they need. Look at this example.

56

 1 class Player

 2 attr_accessor :time_until_spawn, :health

 3 end

 4

 5 # Boolean logic directly in an IF statement

 6 def respawn(player)

 7 if player.time_until_spawn <= 0 && player.health == 0

 8 respawn_at_base

 9 end

10 end

11

12 def respawn_at_base

13 puts 'Player respawned at base'

14 end

15

16 player = Player.new

17 player.time_until_spawn = 0

18 player.health = 0

19

20 respawn(player)

The example has the method respawn. It has two boolean statements

that check if the player’s time until spawn is less than or equal to 0 and if

the player’s health is equal to 0. If both statements are true, we respawn the

player at their base. The logic isn’t difficult, but might not be clear to the

reader. This isn’t ideal since we want the reader to comprehend our code

with minimal effort. Let’s improve the example by introducing a variable.

 1 class Player

 2 attr_accessor :time_until_spawn, :health

 3 end

 4

Chapter 4 Using Boolean Logic

57

 5 # Boolean logic stored in a variable

 6 def respawn(player)

 7 �ready_to_spawn = player.time_until_spawn <= 0 &&

 8 player.health == 0

 9 respawn_at_base if ready_to_spawn

10 end

11

12 def respawn_at_base

13 puts 'Player respawned at base'

14 end

15

16 player = Player.new

17 player.time_until_spawn = 0

18 player.health = 0

19

20 respawn(player)

The second example takes the results of the boolean statement and

stores it in the variable ready_to_respawn. The name of the variable tells

the reader why the boolean statement exists. While the reader can parse

the boolean statement in its entirety, it’s not required. The variable name

provides enough detail. The purpose of the boolean statement is clear: it

checks if the player is “ready to spawn.”

Using a variable provides useful hints but can have unintended side

effects. The next example determines if we allow a user to edit articles.

 1 class User

 2 attr_accessor :type, :enabled

 3

 4 def initialize(type, enabled)

 5 @type = type

 6 @enabled = enabled

 7 end

Chapter 4 Using Boolean Logic

58

 8

 9 def editor?

10 type == :editor

11 end

12

13 def disabled?

14 !enabled

15 end

16 end

17

18 user = User.new(:editor, true)

19

20 if !user.nil? && user.editor? && !user.disabled?

21 puts 'The user is allowed to edit articles'

22 end

The first boolean statement ensures that the user object is not nil
before performing more checks. If the user is nil, then we will evaluate

none of the following tests. It avoids the possibility of an error due if the

user is nil. We call this concept “short-circuiting.” The next example splits

the boolean logic and stores the result into two variables.

1 def enable_editing

2 user_exists = !user.nil?

3 can_edit = user.editor? && !user.disabled?

4

5 if user_exists && can_edit

6 # code to enable editing

7 end

8 end

Chapter 4 Using Boolean Logic

59

The new code reads nicely but will cause an error if the “user” object is

nil. Even if the user is nil, the second line will still execute. It’s possible to

fix this by adding a guard statement.

 1 def enable_editing

 2 user_exists = !user.nil?

 3 return if user_exists

 4

 5 can_edit = user.editor? && !user.disabled?

 6

 7 if user_exists && can_edit

 8 # code to enable editing

 9 end

10 end

Be careful if you use this approach when refactoring boolean logic. If

used correctly, it can be the first step to making your logic more readable.

�Using a Method
The last section used a variable to store a boolean value, but this doesn’t

always work. Some code requires you to do boolean checks in order. Using

a variable isn’t the only way to refactor boolean logic. Methods offer a great

way to abstract the details of our code.

 1 class Order

 2 attr_accessor :items, :purchase_date

 3

 4 def initialize(items, purchase_date)

 5 @items = items

 6 @purchase_date = purchase_date

 7 end

 8 end

Chapter 4 Using Boolean Logic

60

 9

10 class Item

11 attr_accessor :delivered

12

13 def initialize(delivered)

14 @delivered = delivered

15 end

16

17 def delivered?

18 delivered

19 end

20 end

21

22 def send_order_followup_email(order)

23 all_items_delivered = true

24 order.items.each do |item|

25 if !item.delivered?

26 all_items_delivered = false

27 break

28 end

29 end

30

31 �order_delivered = all_items_delivered && order.purchase_

date < Time.now

32

33 if order_delivered

34 # Send follow up email

35 puts "Sent follow up email"

36 else

37 puts "Not all items delivered"

Chapter 4 Using Boolean Logic

61

38 end

39 end

40

41 # Here we run the code

42 items = [Item.new(false), Item.new(true)]

43 order = Order.new(items, Time.now)

44

45 send_order_followup_email(order)

In this example, the method send_order_followup_email uses a

variable to store whether or not an order was delivered. Using a variable

helps make the code more readable, but it is better to move the boolean

logic to a separate method.

 1 class Order

 2 attr_accessor :items, :purchase_date

 3

 4 def initialize(items, purchase_date)

 5 @items = items

 6 @purchase_date = purchase_date

 7 end

 8 end

 9

10 class Item

11 attr_accessor :delivered

12

13 def initialize(delivered)

14 @delivered = delivered

15 end

16

17 def delivered?

Chapter 4 Using Boolean Logic

62

18 delivered

19 end

20 end

21

22 def send_order_followup_email(order)

23 if order_delivered?(order)

24 # Send follow up email

25 puts "Sent follow up email"

26 else

27 puts "Not all items delivered"

28 end

29 end

30

31 def order_delivered?(order)

32 all_items_delivered = true

33

34 order.items.each do |item|

35 if !item.delivered?

36 all_items_delivered = false

37 break

38 end

39 end

40

41 all_items_delivered && order.purchase_date < Time.now

42 end

43

44 # Here we run the code

45 items = [Item.new(false), Item.new(true)]

46 order = Order.new(items, Time.now)

47

48 send_order_followup_email(order)

Chapter 4 Using Boolean Logic

63

The new method order_delivered? determines if we delivered an

order. The send_order_follow_up_email method calls order_delivered?.

The name of the new method informs the reader what the result of the

boolean logic is. Also, we can change the logic that determines if we

delivered an order with no need to touch send_order_follow_up_email.
We can reuse the code, if needed. An additional method allows for easier

and better unit testing.

�Unless
The unless statement is the inverse of an If statement. An if statement

tests whether a statement is true, where unless tests if a statement is false.

When used correctly, it can make your code more readable, but using

unless can be difficult.

1 if !user_authenticated?

2 # do something

3 end

The if statement checks whether a user is not authenticated. Using

unless eliminates the need to use an exclamation point.

1 unless user_authenticated?

2 # Do something

3 end

At first glance, this seems easier to read. For some readers, it can be

difficult to understand the code inside the unless block only executes if

the statement to the right of the unless is false. If the unless statement

has multiple boolean statements, the reader might need to use a pen

and paper to figure out what’s happening. We should avoid any code that

requires this level of analysis. We want other developers to understand our

code with little thought. I recommend not using unless, if possible.

Chapter 4 Using Boolean Logic

64

�Ternary Operator
Less code is better. More code means more to read and more chances for

mistakes. Turning lines of code into a single statement can create tight,

readable code.

1 if a > b

2 result = "A is greater"

3 else

4 result = "B is greater"

5 end

This example is easy to read, but verbose. Shortening it would be less

code. Ternary operators change such boolean statements into a single line.

Instead of using an If statement, we place the boolean logic on a single line

with a variable assignment. The statement before “?” is the boolean check;

the two strings to its right are values assigned to variable “result” depending

on whether the statement is true. We will assign the first string if the boolean

statement equals true; we will assign the second value if false.

1 result = a > b ? "A is greater": "B is greater"

Using the ternary operator condenses the code into a single line of

code. We also removed duplication and made the variable assignment

clearer.

While ternary operators can improve your code, they also create hard-

to-read code, since complicated boolean statements will be confusing.

1 �result = logged_in? && admin? ? "Admin logged In": "Admin

is not logged In"

This example is hard to read. There are multiple conditions that

determine if an admin is logged in. This is an example where using the

ternary operate places too much information on a single line:

Chapter 4 Using Boolean Logic

65

1 if logged_in? && admin?

2 result = "Admin logged In"

3 else

4 result = "Admin is not logged In"

5 end

Using an if statement is more verbose but will be easier to read. Like

most tools in Ruby, be cautious and use good judgment when using the

ternary operator. Use ternary operators when the boolean statement is

short. Opt for the longer if syntax, when the boolean statement is long.

�Double Negative
Our brains are good at understanding boolean statements that are true

or false. Problems arise when the boolean logic has double negatives,

with statements where the value must be not not false. Even the sentence

describing a double negative is hard to understand. Let’s use an example

to make it clearer.

 1 class Book

 2 attr_accessor :name

 3

 4 def initialize(name)

 5 self.name = name

 6 end

 7 end

 8

 9 class Library

10 attr_accessor :books

11

Chapter 4 Using Boolean Logic

66

12 def initialize(books)

13 self.books = books

15 end

16

17 def is_not_found(book)

18 found = self.books.include?(book)

19 !found

20 end

21 end

22

23 book1 = Book.new('Ready Player One')

24 book2 = Book.new('Armada')

25

26 books = [book1, book2]

27 library = Library.new(books)

28

29 if !library.is_not_found(book2)

30 puts "#{book2.name} is in the library"

31 end

This example has two classes: Book and Library. We create two books

and add them to the library. We check if the library does not not contain

book2 and display a message only if the statement is true. The if statement

is using a double negative, turning what should be a simple statement

into one hard to understand. Coding boolean logic this way is like asking

someone if they “wouldn’t not” like you to pass the salt. Untangling the

logic in the example is difficult. The solution is simple:

 1 class Book

 2 attr_accessor :name

 3

 4 def initialize(name)

 5 self.name = name

Chapter 4 Using Boolean Logic

67

 6 end

 7 end

 8

 9

10 class Library

11 attr_accessor :books

12

13 def initialize(books)

14 self.books = books

15 end

16

17 def is_found(book) # <= We change the method

18 self.books.include?(book)

19 end

20 end

21

22 book1 = Book.new('Ready Player One')

23 book2 = Book.new('Armada')

24

25 books = [book1, book2]

26 library = Library.new(books)

27

28 if library.is_found(book2) # <= This is much clearer

29 puts "#{book2.name} is in the library"

30 end

We’ve made two changes. The first is changing is_not_found to

is_found inside the Library class. Then we updated the if statement to

use the new method. The only thing we’ve done is reversing the boolean

statement. Instead of using a double negative, we check if we find the

book. The result is a boolean statement that is much easier to follow.

Chapter 4 Using Boolean Logic

68

�Truthy and Falsy
Boolean values aren’t the only values that are true and false. In Ruby, all

data has an associated true or false value. It considers values like nil falsy,

while it deems others truthy. What are “truthy” and “falsy”? When we say a

value is truthy, we are saying Ruby considers it true in a boolean statement

even though not explicitly true. For example, it considers the number 4 as

true, so it is truthy, while it treats nil as false, or falsy.

1 name = "Carleton"

2 if name

3 puts "My first name is #{name}"

4 end

In this example, we check if name is true and display “My first name is

Carleton”, if it is. Since name is a string with characters, Ruby evaluates it

as true.

1 last_name = nil

2 if last_name

3 puts "My last name is #{last_name}"

4 end

This example checks if last_name is true. Since last_name is nil, Ruby

considers it as false. Knowing which values are truthy and falsy can help

you write code that’s shorter and more expressive. The following is a list of

truthy and falsy values for Ruby.

�Truthy Values
•	 0

•	 20

•	 “ ”

Chapter 4 Using Boolean Logic

69

•	 “Value”

•	 true

•	 TRUE

•	 [3,4,5]

•	 { first: ‘one’ }

�Falsy Values
•	 nil

•	 false

•	 FALSE

�& vs. &&
Sometimes you will see boolean statements that use a single “&” instead

of two. At first glance, there doesn’t seem to be a difference between the

two operators. Deeper examination uncovers a small, but significant,

difference that can be useful and a source of bugs. Knowing the difference

will help you make the right choice when coding a boolean statement. This

example uses a single “&.”

 1 class User

 2 attr_accessor :type

 3

 4 def initialize(type)

 5 @type = type

 6 end

 7 end

 8

Chapter 4 Using Boolean Logic

70

 9 first_user = User.new(:regular)

10 second_user = nil

11

12 if first_user.type == :admin & second_user.type == :admin

13 puts 'Both users are an admin'

14 else

15 puts 'Both users are not admin'

16 end

Here we have a User with an attribute that signifies its type, such as an

admin. Next, we create an instance of User and set it as type :regular. We

also create a second_user as nil. The if statement checks if first_user and

second_user are of type admin. Since second_user is nil, the result of the

code should be “Both users are not admin” being printed to the screen.

Running the code uncovers an error.

1 SyntaxError: (irb):11: syntax error, unexpected ==

2 first_user.type == :admin & second_user.type == :admin

The single “&” evaluates both statements regardless of the outcome of

the first statement. This can be useful, but it creates a bug here.

 1 class User

 2 attr_accessor :type

 3

 4 def initialize(type)

 5 @type = type

 6 end

 7 end

 8

 9 first_user = User.new(:regular)

10 second_user = nil

11

Chapter 4 Using Boolean Logic

71

12 if first_user.type == :admin && second_user.type == :admin

13 puts 'Both users are an admin'

14 else

15 puts 'Both users are not admin'

16 end

We’ve changed the statement from a single “&” to a double “&&”. Since

the first statement first_user.type == :admin is false, the double &&

won’t evaluate the second statement because the second statement won’t

make the combined result true.

As a general rule, use double “&&” when you want to prevent

evaluating the second boolean statement, if the first statement is false.

If you want both statements evaluated regardless of whether the first

statement is true, use a single “&”.

Chapter 4 Using Boolean Logic

73© Carleton DiLeo 2019
C. DiLeo, Clean Ruby, https://doi.org/10.1007/978-1-4842-5546-9_5

CHAPTER 5

Classes
In this chapter, we cover several techniques you can use to make

high-quality classes.

�Initialize Method
When instantiating a class in Ruby, the new class method calls the

initialize instance method. Any parameters passed to the new method

will be passed to the initialize method. The initialize method is a setup

method for a class. It’s called before any other method defined in the

class. If we have steps to perform before using the class, we place them in

the initialize method. Let’s look at techniques we can use to improve our

initialize methods.

�Keep It Simple
The initialize method should be simple, which means limiting operations

to things such as assignments. Move complex operations outside of the

initialize method and call after class creation. Keeping the initialize

method simple avoids surprises. Let’s look at an example:

 1 class BankAccount

 2 def initialize(number)

 3 @number = number

 4 external_account = ExternalBankAccount.new

74

 5 external_account.load_balances(@number)

 6 external_account.sync_transactions

 7 end

 8 end

 9

10 bank_account = BankAccount.new("1234")

In this example, there is a BankAccount class with an initialize

method which performs several tasks. First, we assign the value of the

parameter number to the instance variable number. Next, we load

external account bank data using the ExternalBankAccount class, and we

sync transactions from the bank account. We don’t know the exact details

of the External-BankAccount class, but it’s implied that it will fetch data

from an external data source.

External data calls are slow and error-prone. These operations are not

the responsibility of the initialize method. It will catch other developers

offguard when initializing BankAccount, and we never want to surprise

people with our code.

Let’s move the BankAccount code to a separate method and call it

after we instantiate the class.

 1 class BankAccount

 2 def initialize(number)

 3 @number = number

 4 end

 5

 6 def load_bank_account

 7 external_account = ExternalBankAccount.new

 8 external_account.load_balances(@number)

 9 external_account.sync_transactions

10 end

11 end

Chapter 5 Classes

75

12

13 bank_account = BankAccount.new("1234")

14 bank_account.load_external_accounts

We created a new method called load_bank_account and moved

the code that loads the bank account. We call the new method after

instantiating our class. Even though we introduced another step, the

intention is much clearer. Creating an instance of the BankAccount class

only stores data from parameters. An added method performs more

complex operations. This change makes the class more flexible. We can

call load_external_accounts right after creating our class, or later if

needed. Besides flexibility, it will not surprise other developers.

�Avoiding Errors
We touched upon this in the last section. It’s best to avoid error-prone

code in the initialize method. An initialize method that throws an

exception because of a database connection failure is not an expected

outcome. Since we usually don’t wrap object creation in begin/rescue, the

exception will go unhandled and cause unexpected problems.

While we should avoid creating initialize methods that throw errors,

exceptions are acceptable if the resulting object will be malformed and

unusable. For example, you might raise an ArgumentError when the

initialize method receives invalid data. This avoids the need for nil value

checks or type checking every time we use the value. It removes duplicate

code and allows the calling code to know that the object is invalid sooner.

Look at this example.

1 class BankAccount

2 def initialize(number)

3 �raise ArgumentError, 'number cannot be nil' if number.nil?

Chapter 5 Classes

76

4 @number = number

5 end

6 end

Here we check if the number provided is not nil. If the number is

nil, we raise an error because a nil value causes problems. The calling

code should rescue the ArgumentError and give a new value. Sometimes

we might want object creation to fail, but we should do so only because

continuing to use the object causes further errors.

�Too Many Parameters
Any method using too many parameters is more complex and difficult

to change. We call the initialize method every time we create an object,

and that happens often in an application. This means any changes to the

initialize method will have a ripple effect throughout the code. Let’s look at

an example:

1 class Property

2 def initialize(street, street2, city, state, zipcode)

3 @street = street

4 @street2 = street2

5 @city = city

6 @state = state

7 @zipcode = zipcode

8 end

9 end

Here we have the class Property. The initialize method for this class

accepts many parameters. This isn’t ideal for many reasons. Having this

many parameters makes initializing a class hard to understand. Also,

Chapter 5 Classes

77

remembering the order in which we need to provide the parameters can

be tough. Let’s improve the code by moving parameters to a new class.

We will then change the initialize method to accept the class instead of a

bunch of parameters. This provides more context to the data and makes

the code cleaner.

 1 class Address

 2 def initialize(street, street2, city, state, zipcode)

 3 @street = street

 4 @street2 = street2

 5 @city = city

 6 @state = state

 7 @zipcode = zipcode

 8 end

 9 end

10

11 class Property

12 def initialize(address)

13 @address = address

14 end

15 end

We’ve moved all the parameters to a new class called Address.

Now the Property class requires only a single parameter. As an added

advantage, we hide the details of the address from the Property class,

which helps reduces its responsibilities. Even though we only moved the

parameters from one class to another, we can now reuse the Address class

in other parts of the code. We can test this new class and add functionality

without affecting the Property class.

Chapter 5 Classes

78

�Class Methods vs. Instance Methods
Not all methods should be instance methods. When defining a method,

you have two options, an instance method and a class method. A class

method exists within the context of a class, but cannot interact with a

class’s data and is not callable by an instance of the class. These methods

perform actions related to the class itself, not an instance of the class.

 1 class Car

 2 def initialize(year, make, model)

 3 @year = year

 4 @make = make

 5 @model = model

 6 end

 7 end

 8

 9 def create_car(make, model)

10 current_year = Time.now.year

11 Car.new(current_year, make, model)

12 end

13

14 car = create_car('Nissan', 'Altima')

In this example, the Car class has the attributes; make, model, and

year. Next, the method create_car creates an instance of Car for the

current year using the provided make and model. The method is defined

outside of the Car class even though executing it only makes sense in a Car

context. If the method is placed in a different file, it will be hard to find.

Converting the method into a class method will fix that.

 1 class Car

 2 def initialize(year, make, model)

 3 @year = year

Chapter 5 Classes

79

 4 @make = make

 5 @model = model

 6 end

 7

 8 def self.create

 9 current_year = Time.now.year

10 new(current_year, make, model)

11 end

12 end

13

14 car = Car.create('Nissan', 'Altima')

The create_car method is moved into the Car class and renamed

create. Since the method is inside the Car class, other developers will see

it and most likely use it in their code. This means it’s less likely they will

duplicate the code present in another method.

�Instance variables
Instance variables have class-level scope. Instead of having scope limited

to a single method, they stay in memory for the life of an object. This

means an instance variable is accessible from any method in a class. We

could make all variables in a class instance variables, but this will cause

problems. Since instance variables are accessible throughout a class,

we wouldn’t be able to prevent methods from stepping over each other.

Calling one method might change a variable used in another. Choosing

when to use instance variables is an important part of defining a class, and

will help limit the need to pass around data between methods.

How do we decide when to use an instance variable? Let’s look at the

following example to find out.

Chapter 5 Classes

80

 1 require 'date'

 2

 3 class WelcomeMailer

 4 def self.send(email)

 5 puts "Sending welcome email to #{email}..."

 6 end

 7 end

 8

 9 class User

10 attr_accessor :email, :subscription_expired_at

11 def initialize(email)

12 @email = email

13 @subscription_expired_at = DateTime.now

14 end

15

16 def login

17 puts "Logging #{@email} in..."

18 end

19 end

20

21 class UserSetup

22 def start_trial(user)

23 user.subscription_expired_at = DateTime.now + 30

24 end

25

26 def send_welcome_email(user)

27 WelcomeMailer.send(user.email)

28 end

29

30 def login(user)

31 user.login

32 end

Chapter 5 Classes

81

33 end

34

35 user = User.new('test@tester.com')

36 user_setup = UserSetup.new

37 user_setup.start_trial(user)

38 user_setup.send_welcome_email(user)

39 user_setup.login(user)

The UserSetup class has three methods that take a single parameter,

user. Since these methods require a user, we can say the entire UserSetup

class depends on user. We can remove the need to pass an instance of user

over and over by introducing an instance variable to the class.

 1 require 'date'

 2

 3 class WelcomeMailer

 4 def self.send(email)

 5 puts "Sending welcome email to #{email}..."

 6 end

 7 end

 8

 9 class User

10 attr_accessor :email, :subscription_expired_at

11

12 def initialize(email)

13 @email = email

14 @subscription_expired_at = DateTime.now

15 end

16

17 def login

18 puts "Logging #{@email} in..."

19 end

20 end

Chapter 5 Classes

82

21

22 class UserSetup

23 def initialize(user)

24 @user = user

25 end

26

27 def start_trial

28 @user.subscription_expired_at = DateTime.now + 30

29 end

30

31 def send_welcome_email

32 WelcomeMailer.send(@user.email)

33 end

34

35 def login

36 @user.login

37 end

38 end

39

40 user = User.new('test@tester.com')

41 user_setup = UserSetup.new(user)

42 user_setup.start_trial

43 user_setup.send_welcome_email

44 user_setup.login

The initialize method now accepts an instance of user and stores it

in an instance variable. We removed the user parameter from the other

three methods. Each method uses the instance variable instead of having

it passed as a parameter. The calling code passes an instance of a user to

UserSetup.

This ends up being much cleaner since we pass the user instance once,

not three times.

Chapter 5 Classes

83

�Private Methods
A class can have many methods, but not all methods should be available

from outside code. Those methods are applicable only to methods inside

the class. Making every method public can confuse other developers.

When defining a class, it’s best to offer a small set of public operations

while leaving other details hidden. This is one of the main benefits of

OOP. Hiding the inner workings of a class prevents tight coupling between

classes, and your code will be more flexible. Making non-essential

methods private prevents overloading the reader with too many choices.

It’s our job to consider the class we are building. Picking the correct

accessibility for a method will yield dividends in the long run. Look at this

example.

 1 class BankAccount

 2 def initialize(starting_balance)

 3 @balance = starting_balance

 4 end

 5

 6 def display_balance

 7 format_for_display

 8 end

 9

10 def format_for_display

11 "Account Balance: #{@balance}"

12 end

13 end

Here the BankAccount class has two methods: display_balance

and format_for_display. The method display_balance uses the method

format_for_display to format the balance for display. In this example,

format_for_display only applies within the BankAcount class. We don’t

Chapter 5 Classes

84

want another developer using format_for_display, instead of display_
balance. To prevent this, we place the keyword private before the format_
for_display method.

 1 class BankAccount

 2 def initialize(starting_balance)

 3 @balance = starting_balance

 4 end

 5

 6 def display_balance

 7 format_for_display

 8 end

 9

10 private

11 def format_for_display

12 "Account Balance: #{@balance}"

13 end

14 end

If another developer attempts to use format_for_display outside the

class, they will receive an error. It is now very clear, instead of relying on

others to guess our intentions. Since format_for_display is private, we

don’t want it used outside the class. As a bonus, we can change format_
for_display as much as we want, and be confident our change only affects

the code inside of BankAccount. This will make refactoring much easier.

�Method Order
Developers read code from top to bottom and left to right. If we place

methods in a random order, other developers will jump around the class

definition, making it hard to follow. Imagine you were reading a book

with a random page order. While it’s possible to navigate the book since it

Chapter 5 Classes

85

numbers the pages, you need to page back and forth to do so. After a while,

the mental drain from reading will become too much, and you will become

lost. Look at this example.

 1 class AudioPlayer

 2 def play_song(song_path)

 3 song = load_song(song_path)

 4 determine_output_device

 5 start(song)

 6 end

 7

 8 private

 9 def determine_output_device

10 # Figure out which audio output device to use

11 end

12

13 def start(song)

14 # Start playing the song

15 end

16

17 def load_song(path)

18 # Load the song from the specified path

19 end

20 end

Here the class AudioPlayer has a single public method, play_song,

along with three private methods. play_song calls load_song first, and

is defined at the bottom of the class. Next, we call determine_output_
device, which is defined at the top of the class. Finally, we call start, which

is defined in the middle of the class. Reading through the class requires

you to skip around, which makes it hard to keep focus. If our class were

longer (not recommended, but happens in legacy code), it’s much easier

for the reader to become lost. Let’s reorder the methods.

Chapter 5 Classes

86

 1 class AudioPlayer

 2 def play_song(song_path)

 3 song = load_song(song_path)

 4 determine_output_device

 5 start(song)

 6 end

 7

 8 private

 9 def load_song(path)

10 # Load the song from the specified path

11 end

12

13 def determine_output_device

14 # Figure out which audio output device to use

15 end

16

17 def start(song)

18 # Start playing the song

19 end

20 end

We’ve reordered the private methods to their call order by play_song.

When the reader looks at play_song, each method is below the next

making it easier to follow, without the need to jump around the class

definition.

Consider the order of your methods. Don’t place them randomly

throughout the class. Your fellow developers will thank you.

Chapter 5 Classes

87

�Moving Methods to a Module
A class is a great way to group related methods, but sometimes a class makes

little sense. Mathematical operations are a good example. Math isn’t a physical

object you can hold, but collects formulas used to manipulate numbers. A

“Math” class makes little sense, because creating an instance of math doesn’t.

We still want the ability to reuse these operations throughout our code.

Moving them to a module is a great alternative. Let’s look at an example:

 1 class BankAccount

 2 def initialize(balance, interest_rate)

 3 @balance = balance

 4 @interest = interest_rate

 5 end

 6

 7 def add_to_balance(amount)

 8 @balance = add(@balance, amount)

 9 end

10

11 def calculate_interest

12 multiply(@balance, @interest_rate)

13 end

14

15 private

16 def add(a, b)

17 a + b

18 end

19

20 def multiply(a, b)

21 a * b

22 end

23 end

Chapter 5 Classes

88

In this example, BankAccount has two public and two private methods.

The public methods use the private methods to perform mathematical

operations. The private methods, add and multiply, are math operations

that don’t belong in the BankAccount class. Let’s move them to a module

and use the include operator to add them in to BankAccount.

 1 module Math

 2 def add(a, b)

 3 a + b

 4 end

 5

 6 def multiply(a, b)

 7 a * b

 8 end

 9 end

10

11 class BankAccount

12 include Math

13

14 def initialize(balance, interest_rate)

15 @balance = balance

16 @interest = interest_rate

17 end

18

19 def add_to_balance(amount)

20 @balance = add(@balance, amount)

21 end

22

23 def calculate_interest

24 multiply(@balance, @interest_rate)

25 end

26 end

Chapter 5 Classes

89

We created a Math module and moved the add and multiply

methods there. We can’t create an instance of Math, but we can include

it in the BankAccount class. The two methods are now available for the

BankAccount class. As a result, the BankAccount class is shorter and easier

to read. Any classes that need these operations can include them as well.

�Limiting Inheritance
Creating parent classes to share data and behavior is a great way to remove

code duplication. While inheritance can create clean, beautiful code, it’s

possible to abuse it and wreak havoc on our code. Since we widely use

classes, correcting these problems after the fact can be difficult. Three

levels of inheritance should be enough most of the time. Once you go

beyond this number, you will have several issues.

First, locating code you need will become cumbersome. Each level of

inheritance can contain much data or behavior. Since they are so many

levels, knowing which class has the code you are looking for might be

unclear.

Second, too many levels of inheritance will create many classes.

Working with a codebase with hundreds of class files is difficult. We can

try to organize these classes using folders and namespaces, but other

developers will spend time getting accustomed to the code before they can

become efficient.

If you create too many levels of inheritance, try a different technique.

Create a separate class that has the common code, instead of creating a

parent class.

 1 class Accountant

 2 def file_taxes

 3 end

 4 end

 5

Chapter 5 Classes

90

 6 class SuperMarket

 7 def initialize(accountant)

 8 @accountant = accountant

 9 end

10 end

11

12 class ToyStore

13 def initialize(accountant)

14 @accountant = accountant

15 end

16 end

17

18 accountant = Accountant.new

19 toy_store = ToyStore.new(accountant)

20 super_market = SuperMarket.new(accountant)

This example has two classes: SuperMarket and ToyStore. Both

classes represent businesses, and all businesses need to file taxes. We

could have created a Business class that held the common method file_
taxes; instead, we created the class Accountant, which will file the taxes

for each business. This concept is called “composition over inheritance.”

Instead of thinking what a class “is” (inheritance), we think what a class

“has” (composition). In our example, the SuperMarket and ToyStore

classes “have” an accountant.

Composition isn’t better than using inheritance. Like all the tools

available to you, each has its place. Evaluate each situation to determine

which one you should use. It will be obvious once you define your class if

you chose wisely.

Chapter 5 Classes

91© Carleton DiLeo 2019
C. DiLeo, Clean Ruby, https://doi.org/10.1007/978-1-4842-5546-9_6

CHAPTER 6

Refactoring
Every new application starts with the purest intentions. A new codebase

means an opportunity to create simple, clean code and avoid past

mistakes. Even with our best efforts, deadlines and platform constraints

will impede these goals and give way to suboptimal solutions and hacks.

It’s not anyone’s fault, it’s just something developers do.

As a program gets older, it’s inevitable that it will incur “technical

debt,” which is code we will need to rewrite due to poor design choices and

shortcuts used to finish quickly. It’s fragile and breaks easily. Technical

debt is in the dark corners of an application that no one touches for fear

of breaking the application. However, there’s a limit, and eventually we

need to “pay off” this debt in the form of refactoring, or, in extreme cases,

rewriting the entire application.

Since we never want to build up too much debt, we need to be

proactive. Every code change to an application is an opportunity to

refactor. Refactoring doesn’t have to change a large amount of code. It

can be small changes that add up to much bigger changes later. If we

consistently make changes to improve our code, then the code is always

getting better instead of gradually worse.

This chapter covers how to approach refactoring, including various

techniques you can use to get started.

92

�No Change Too Small
One of the most important mindsets to have when approaching refactoring

is no change that improves your code is too small. If you get in the habit of

making small changes, it will become part of your routine. You will become

comfortable refactoring and start making bigger changes. This mindset is

contagious. Once you start, it will inspire other developers to follow your

example. It begins with a small positive change.

Let’s improve some code.

 1 class Address

 2 attr_accessor :street, :zip

 3

 4 def initialize(street, zip)

 5 @street = street

 6 @zip = zip

 7 end

 8 end

 9

10 a1 = Address.new("123 Street", 12345)

11 a2 = Address.new("321 Street", nil)

12

13 def prep(a_list)

14 # remove addresses with no zip

15 a_list.reject! { |a| a.zip.nil? }

16

17 # sort addresses by zip

18 a_list.sort_by { |a| a.zip }

19 end

20

21 s_list = prep([a1, a2])

Chapter 6 Refactoring

93

In this example, we have a method that prepares a list of addresses by

filtering and sorting them. There are several issues with the code, but we

will start by making small improvements. Eventually, we will refactor the

entire example.

 1 class Address

 2 attr_accessor :street, :zip

 3

 4 def initialize(street, zip)

 5 @street = street

 6 @zip = zip

 7 end

 8 end

 9

10 address1 = Address.new("123 Street", 12345)

11 address2 = Address.new("321 Street", nil)

12

13 def prep(addresses)

14 # remove addresses with no zip

15 addresses.reject! { |address| address.zip.nil? }

16

17 # sort addresses by zip

18 addresses.sort_by { |address| address.zip }

19 end

20

21 addresses = prep([address1, address2])

The first change is renaming variables. Many of the original variable

names were nondescriptive, providing little information of their purpose.

We changed variables a1 and a2 to address1 and address2, and parameter

a_list was changed to addresses. The block parameter for reject and sort_

by, a, was changed to address. Finally, we renamed the variable that stores

the result of prep from s_list to addresses.

Chapter 6 Refactoring

94

Each name change spelled out the name instead of using

abbreviations. Abbreviating a variable name makes it shorter but often

removes useful information. Most Ruby applications don’t have program

size requirements, so using full-length names only benefits the codebase.

On another note, we could have renamed s_list to sorted_addresses,

but that doesn’t give any useful information to the reader. Knowing the list

is sorted won’t change how they use the list later in the code. The result

of prep is a collection of addresses. Keeping our variable names simple is

ideal.

Next, we will change the name of the prep method.

 1 class Address

 2 attr_accessor :street, :zip

 3

 4 def initialize(street, zip)

 5 @street = street

 6 @zip = zip

 7 end

 8 end

 9

10 address1 = Address.new("123 Street", 12345)

11 address2 = Address.new("321 Street", nil)

12

13 def prepare_addresses(addresses)

14 # remove addresses with no zip

15 addresses.reject! { |address| address.zip.nil? }

16

17 # sort addresses by zip

18 addresses.sort_by { |address| a.zip }

19 end

20

21 addresses = prepare_addresses([address1, address2])

Chapter 6 Refactoring

95

The original method name, prep, was an abbreviation of prepare.

As mentioned earlier, abbreviations save keystrokes but need brain cycles

to understand. Changing prep to prepare isn’t much more typing but

prevents adding ambiguity. We appended “_addresses” to the end of the

method name for added clarity, and now you know what the method is

doing and to what.

Next we’ll move the logic from prepare_addresses to new methods.

The earlier example had two lines of code that performed two different

operations, whose details are not important and should be hidden in a

method.

 1 class Address

 2 attr_accessor :street, :zip

 3

 4 def initialize(street, zip)

 5 @street = street

 6 @zip = zip

 7 end

 8 end

 9

10 address1 = Address.new("123 Street", 12345)

11 address2 = Address.new("321 Street", nil)

12

13 def prepare_addresses(addresses)

14 remove_nil_zips(addresses)

15 sort_by_zip(addresses)

16 end

17

18 def remove_nil_zips(addresses)

19 addresses.reject! { |address| address.zip.nil? }

20 end

21

Chapter 6 Refactoring

96

22 def sort_by_zip(addresses)

23 addresses.sort_by { |address| address.zip }

24 end

25

26 prepare_addresses([address1, address2])

There are two new methods, remove_nil_zips and sort_by_zip, each

performing a specific task on the address collection. We can improve these

methods without affecting prepare_addresses. We removed the comments

since the methods clearly give the intentions of the code, and the comments

don’t offer any more information than just reading the code.

The final change moves the code into a class, which will group the

functionality together in a single container. We will remove code and

simplify how it’s used. Let’s make that change:

 1 class Address

 2 attr_accessor :street, :zip

 3

 4 def initialize(street, zip)

 5 @street = street

 6 @zip = zip

 7 end

 8 end

 9

10 class AddressCleaner

11 def initialize(addresses)

12 @addresses = addresses

13 end

14

15 def clean

16 remove_nil_zips

17 sort_by_zip

18 end

Chapter 6 Refactoring

97

19

20 private

21

22 def remove_nil_zips

23 @addresses.reject! { |address| address.zip.nil? }

24 end

25

26 def sort_by_zip

27 @addresses.sort_by { |address| address.zip }

28 end

29 end

30

31 address1 = Address.new("123 Street", 12345)

32 address2 = Address.new("321 Street", nil)

33

34 address_cleaner = AddressCleaner.new([address1, address2])

35 addresses = address_cleaner.clean

We have introduced a class, AddressCleaner, which takes an array of

addresses and provides a single method, clean. Also, we moved remove_
nil_zips and sort_by_zip to private methods since we do not want them

being used outside the class. The method name, clean, describes the

task without providing unnecessary details. Knowing how we clean the

addresses isn’t important to the calling code or the reader, they only

need to know they are getting clean addresses from the method. Since

we encapsulate the clean logic, we can add more cleaning logic without

updating the calling code.

We will stop there with our refactoring changes. Each small change we

made got us closer to better code. In this chapter, we made these changes

one after another, but that isn’t necessary. Stopping anywhere along the

refactoring process is okay. Any improvement leaves the code better than

you found it. If making a large refactoring is intimidating, make a small one

and come back later. Small improvements are better than none.

Chapter 6 Refactoring

98

�Single Responsibility Principle
It’s tough to know if a method is only “doing one thing”, since people

might interpret that differently. Even if you have a handle on it, it’s easy

to convince yourself otherwise. Generic class names can give developers

clearance to add methods that should otherwise be in a new more specific

class. A mistake new Rails developers make is using a model class as a

catchall for related logic.

Here is an example:

1 class User < ApplicationRecord

2 def trail_user?

3 self.trail_end_date <= Date.today

4 end

5 end

Here we have an ActiveRecord model class with a method that handles

user licensing. The developer who wrote trail_user? related the method to

a user, and decided it belonged in the User class. While trail_user? uses

trail_end_date, which belongs to the User class, licensing is not specific

to a user. The application might start licensing by user and later change so

it’s associated with a company. This is a common story for applications as

they mature and try to reach different customer types.

On top of this, the User class already is responsible for retrieving

data from the database and storing it in an object. Adding a method for

licensing adds a role and breaks SRP (Single Responsibility Principle).

After you violate the rule once, it becomes easier to do it again. Eventually,

you will end up with a very large class that has many roles and thousands

of lines of code. The class will become a problem because it’s very hard to

support and test.

If the licensing code doesn’t belong in the User class, where does

it belong? The answer is simple: a new class with the role of managing

licenses.

Chapter 6 Refactoring

99

 1 class User < ApplicationRecord

 2 end

 3

 4 class License

 5 def initialize(user)

 6 @user = user

 7 end

 8

 9 def trail?

10 @user.trail_end_date <= Date.today

11 end

12 end

Our new class License takes an instance of User and exposes a single

method, trail?. The new method checks to see if the user’s trail end date

is past the current date. If not, then we still consider it a trail license;

otherwise, the trial license has expired.

The class License has a single role; it handles the details of how licensing

works for the application. In its current form, we tie the licensing to the user.

Since the method is separate from the User class, we can add new methods

and even change licensing to use a company instead of a user without

affecting code that uses the User class. We have more flexibility in testing. We

can use an instance of the User class, or avoid the database call and create a

mock of the user class. This flexibility can help speed up unit tests.

Chapter 6 Refactoring

101© Carleton DiLeo 2019
C. DiLeo, Clean Ruby, https://doi.org/10.1007/978-1-4842-5546-9_7

CHAPTER 7

Test-Driven
Development (TDD)
Test-driven development is a scary topic for many new developers, but the

concepts are simple. Once you get the hang of TDD, the benefits become

clear. Your code will be simpler, cleaner, and easier to refactor. With TDD,

we only write the code we need to write, and avoid adding unnecessary

fluff. It will no longer be a scary prospect to make changes to your code.

You have tests to verify that your changes won’t break existing code. If

something goes wrong, you’ll know where the break occurred.

Our goal for this chapter is to create a Calculator class that has a single

method. That method will return the sum of two values. This is the only

requirement. How we implement the method is up to us. This represents day-

to-day development. When working with a team, you will often receive work

from non-technical people. It’s your responsibility to decide how your code

works. Unit tests will confirm your assumptions and will continue to work.

�Start with Tests
The TDD method states we should create our tests first before writing

any real code. We will follow this approach. We will create our own mini

“testing framework.” This is an exaggeration since the framework will only

contain a single method to test equality. The concept is the same; a full-

fledged testing framework provides more options to validate our code.

102

To start, create a class named CalculatorTest with a single private

method named equal?. This method will test the equality of two values. If

they are equal, the method will print the word PASS to the console; if not,

it will print the word FAIL.

 1 class CalculatorTest

 2 private

 3 # Test if two values are equal

 4 def equal?(a, b)

 5 if a == b

 6 puts 'PASS'

 7 else

 8 puts 'FAIL'

 9 end

10 end

11 end

Now, let’s create the first test. At the beginning of the chapter, we stated

the following: create a class with a method that returns the sum of two

values. Our first test will test this requirement.

 1 class CalculatorTest

 2 def should_add_two_values()

 3 �# This is the value we expect to be returned by the add

method expected = 5

 4

 5 calc = Calculator.new

 6 # Call the add method with two values that equal 5

 7 result = calc.add(3, 2)

 8

Chapter 7 Test-Driven Development (TDD)

103

 9 # Check if result equals the expected value

10 equal?(result, expected)

11 end

12

13 private

14 # Test if two values are equal

15 def equal?(a, b)

16 if a == b

17 puts 'PASS'

18 else

19 puts 'FAILS'

20 end

21 end

22 end

23

24 tests = CalculatorTest.new

25 tests.should_add_two_values

The first line of our test sets our expected value to 5. I chose the value

at random, but we could use any number. Then we create an instance of

our future Calculator class and call the add() method passing two values

that should equal our expected value of 5. We defined what our Calculator

class will look like. As we write more tests, we will make more decisions

how we compose our code. The tests will become a checklist of features

our code must complete.

We check to see if the result of the add method is equal to the expected

value. If you run this code as is, it will fail because we haven’t defined our

Calculator class. Let’s define that class now.

Chapter 7 Test-Driven Development (TDD)

104

�Implement Our Code
1 class Calculator

2 def add(a, b)

3 a + b # The most simple way to make our test pass

4 end

5 end

Our new Calculator class comprises a single method, add, that

takes two values and returns the sum of those values. This is the simplest

solution to get our test to pass. That is an important concept when

following TDD; only write the code required to make your test pass. It helps

us avoid the fluff we mentioned before and having code that isn’t tested.

�More Tests
If we run our code, we will see PASS displayed in our terminal. Now we

have one test completed, we should consider other ways someone might

use our code. What if someone tried to pass two nil values to our method?

Let’s create a test to see what happens.

 1 # This method should be added to our CalculatorTest class

 2 def should_add_two_nil_values

 3 �# We need to decide what we expect the result of nil +

nil is expected = 0

 4

 5 calc = Calculator.new

 6 result = calc.add(nil, nil)

 7

 8 equal?(result, expected)

 9 end

Chapter 7 Test-Driven Development (TDD)

105

10 ...

11 tests.should_add_two_nil_values

The second test is like the first test. We changed the expected value to

0, and the two values passed to the add method to nil. For the expected

value, I decided I wanted the add method to return 0 if we pass it two nil
values, but you might decide you want your method to return nil. These

choices might be up to you, or you may need to ask the person who

requested the feature. It’s possible they might not have thought about it.

You need to make sure your test validates your assumptions.

If you run our test, we would get the following error:

1 undefined method '+' for nil:NilClass (NoMethodError)

We’ve discovered it’s not possible to add to nil values together. This

means we need to change our method to handle nil values. A simple

solution casts parameters to integers, regardless of type. For NilClass,1 this

will result in the value 0. So that means instead of nil + nil, we get 0 + 0

which equals 0.

1 class Calculator

2 def add(a, b)

3 a.to_i + b.to_i

4 end

5 end

If we rerun our tests, all should pass. We should continue this line of

thinking until it satisfies us we have thought of all ways someone might

use our code. If we want our code to be robust, then we need to think

about how future developers might use it. By doing this, we can use our

code knowing that if someone else makes changes, our tests will act as a

warning alarm.

1�https://ruby-doc.org/core-2.4.0/NilClass.html#method-i-to_i

Chapter 7 Test-Driven Development (TDD)

https://ruby-doc.org/core-2.4.0/NilClass.html#method-i-to_i

106

TTD using other frameworks like Rspec2 isn’t much different from

what we’ve done here. The concepts are the same; we have more ways

to write our tests. Try not to get overwhelmed by the number of features

available in your testing framework. It’s more important we write tests

than to find the best way to write them. Just like our production code,

we can refactor tests.

�Clean Tests
Unit tests are an important part of software development. Tests verify

assumptions and protect against future breakage. It’s important to give

our tests the love and attention they deserve. If your tests are hard to

read, other developers won’t understand what you are testing. They

will have difficulty finding gaps in your tests during pull request code

reviews.3 Changes to the test code will result in further problems.

What is the difference between a good and bad test? Let’s look at some

examples.

1 class Calculator

2 def add(a, b)

3 a + b

4 end

5

6 def subtract(a, b)

7 a - b

8 end

9 end

2�http://rspec.info/
3�https://help.github.com/articles/about-pull-request-reviews/

Chapter 7 Test-Driven Development (TDD)

http://rspec.info/
https://help.github.com/articles/about-pull-request-reviews/
https://help.github.com/articles/about-pull-request-reviews/
http://rspec.info/
https://help.github.com/articles/about-pull-request-reviews/

107

The class has two methods, add and subtract. Now look an example of

poorly written tests (I’m using Rspec4).

 1 RSpec.describe Calculator do

 2 it "returns added value" do

 3 c = Calculator.new

 4 expect(c.add(2,2)).to eq(4)

 5 end

 6

 7 it "returns subtracted value" do

 8 c = Calculator.new

 9 expect(c.subtract(2,2)).to eq(4)

10 end

11 end

The Rspec file has two tests. First, we verify the functionality of the

add method; then we check the subtract method. These tests have several

problems.

	 1.	 Test descriptions are vague.

	 2.	 Not using Rspec features to simplify tests.

	 3.	 Unclear test expectations.

	 4.	 Difficult to understand how the test verifies the

method it tests.

Now let’s see an example of well-written tests. We should write several

additional tests, but we will leave them out for simplicity.

 1 RSpec.describe Calculator do

 2 context '#add' do

 3 it "returns sum of two values" do

 4 expected = 4

4�http://rspec.info/

Chapter 7 Test-Driven Development (TDD)

http://rspec.info/
http://rspec.info/

108

 5 actual = subject.add(2, 2)

 6 expect(actual).to eq(expected)

 7 end

 8 end

 9

10 context '#subtract' do

11 it "returns difference of two values" do

12 expected = 1

13 actual = subject.subtract(3, 2)

14 expect(actual).to eq(expected)

15 end

16 end

17 end

The test file has several changes that improve readability.

	 1.	 Rspec context groups relevant tests. We also append

“#” to the method name to identify an instance

method. If the method were a class method, we

would append “::” to the method name.

	 2.	 Better descriptions for each test.

	 3.	 Explicitly declaring a variable for the expected and

actual values.

	 4.	 Instead of creating the Calculator class manually, we

use the implicitly defined subject.5

We should place additional tests for each method inside their

respective context. The improved structure and readability of the test code

makes it easier for other developers to review and contribute. Better test

coverage means fewer bugs, and that’s always good.

5�https://relishapp.com/rspec/rspec-core/v/3-7/docs/subject/
implicitly-defined-subject

Chapter 7 Test-Driven Development (TDD)

https://relishapp.com/rspec/rspec-core/v/3-7/docs/subject/implicitly-defined-subject
https://relishapp.com/rspec/rspec-core/v/3-7/docs/subject/implicitly-defined-subject
https://relishapp.com/rspec/rspec-core/v/3-7/docs/subject/implicitly-defined-subject
https://relishapp.com/rspec/rspec-core/v/3-7/docs/subject/implicitly-defined-subject

109© Carleton DiLeo 2019
C. DiLeo, Clean Ruby, https://doi.org/10.1007/978-1-4842-5546-9

�AFTERWORD

Wrapping Up
Writing clean, beautiful code is a career-long pursuit for any developer.

As you improve your code, you will find new and better ways to write

code. There are so many approaches and methodologies for writing code.

The concept of “clean code” is highly debated within any programming

community.

It’s easy to become overwhelmed trying to make your code perfect.

Don’t get stuck on finding the optimal technique. Remember that chasing

dreams of perfect code can prevent you from finishing tasks or entire

projects. A complete working application is much more valuable to a user

than an incomplete application with perfect code.

Make informed decisions when you program. Use the tools you’ve

learned in this book to make your code a little better each time you sit

down to write it. Take a single idea and try focusing on it until it becomes

second nature. Eventually, you will incorporate the idea without a thought.

Finally, keep up with changes to Ruby. Each new version introduces

changes that will make your life easier. Take the time to learn the classes

and methods available to you in the Ruby language. You will discover

hidden tools that will surprise you.

Good luck on your journey; never stop learning.

https://doi.org/10.1007/978-1-4842-5546-9

111© Carleton DiLeo 2019
C. DiLeo, Clean Ruby, https://doi.org/10.1007/978-1-4842-5546-9

Index

A
add() method, 103

B
Bang methods, 25
Boolean logic

& vs. && statements, 69, 70
double negatives, 65, 66
ternary operators, 64
true/false values

example, 68
false values, 69
truth values, 68

unless statement, 63
using method, 59, 61, 63
variable

adding guard statement, 59
example, 55
method respawn, 56
ready_to_respawn, 57
splits/stores the result, 58
user to edit articles, 57

C, D, E, F
Classes

initialize method

avoid error-prone code, 75, 76
example, 73–75
using too many

parameters, 76, 77
instance methods, 78
instance variables, 79, 81
limiting inheritance, 89, 90
method order, 84–86
moving method to module, 87–89
private methods, 83

Class naming
module, 30–32
purpose, 26–28
role, 29, 30

Code extensibility
example, 4, 5
reasons, 3

Code readability, 2, 3
Code simplicity

Doom, 6
example, 6–8
K.I.S.S, 8

Coding conventions, 10
Comments

defined, 48
quality, 49, 50
refactoring, 51, 52
stale, 50

https://doi.org/10.1007/978-1-4842-5546-9

112

G, H
Guard clause, 43

I, J
if/else statement, 5

initialize method, 74

K
Keep it simple, stupid (K.I.S.S), 8

L
Length

logical grouping, 44

shorten, method, 44–46

short methods, 46, 47
too long, 44

M
Math module, 31
Method naming

bang methods, 25
returns value, 24

verbs, 22, 23

Methods, reusable code, 21

N, O
Naming conventions, 10

Nesting, limits, 52, 54

P, Q
Parameters, 33

configuration values, 38
fewer parameters, 36
grouping class, 36, 37
limiting, 39
order, 39, 40
return value, 34

prep method, 94
Private methods, 83

R
Rails application, 29
Refactoring

AddressCleaner, 97
change name of prep

method, 94
example, 92
move logic from

prepare_addresses, 95
prepares list of addresses, 93
principles, 98, 99
remove comments, 96

respawn method, 56
Return values

hash, 42
string, 40
type of value, 42, 43

RoleService limitations, 50

S
Single responsibility principle, 19, 45

INDEX

113

T
Ternary operators, 64
Test-Driven Development (TDD)

clean test
example, 106
to improve

readability, 108
problems, 107
Rspec file, 107
unit, 106

create a test, 104
create CalculatorTest,

102, 103
definition, 101
implement code, 104
run test, 105

Tracking versions, 21

U
Unit tests, 106

V, W, X, Y, Z
variable naming

alpha characters only, 20, 21
camel case, 13
conjunctions, avoid, 19, 20
crutches naming, avoid, 17–19
data

example, 15
number_of_steps, 14

Hungarian notation, 11, 12
length, 16, 17
snake case, 13, 14

Variables, 10

INDEX

	Table of Contents
	About the Author
	Foreword
	Chapter 1: The Qualities of Clean Code
	Readability
	Extensibility
	Simplicity

	Chapter 2: Naming Things
	Variables
	Naming Conventions
	Hungarian Notation
	Camel Case
	Snake Case

	The Data
	Length
	Avoid Unnecessary Information
	Naming Crutches

	Avoid Conjunctions
	Only Alpha Characters

	Methods
	Use Verbs
	Return Value
	Bang Methods

	Classes
	Purpose
	Role

	Modules

	Chapter 3: Creating Quality Methods
	Parameters
	Use Fewer Parameters
	Parameter Order

	Return Values
	Guard Clause
	Length
	How to Shorten a Method
	Too Short

	Comments
	Quality Comments
	Stale Comments
	Comments and Refactoring

	Limit Nesting

	Chapter 4: Using Boolean Logic
	Using a Variable
	Using a Method
	Unless
	Ternary Operator
	Double Negative
	Truthy and Falsy
	Truthy Values
	Falsy Values

	& vs. &&

	Chapter 5: Classes
	Initialize Method
	Keep It Simple
	Avoiding Errors
	Too Many Parameters

	Class Methods vs. Instance Methods
	Instance variables
	Private Methods
	Method Order
	Moving Methods to a Module
	Limiting Inheritance

	Chapter 6: Refactoring
	No Change Too Small
	Single Responsibility Principle

	Chapter 7: Test-Driven Development (TDD)
	Start with Tests
	Implement Our Code
	More Tests
	Clean Tests

	Afterword: Wrapping Up
	Index

