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Preface

The explosive growth of big data imposes a heavy burden on computation, stor-
age, and communication resources in today’s infrastructure. To efficiently exploit
the bulk cloud resources for big data processing, many different parallel cloud
computing programming frameworks, such as Apache Hadoop, Spark, and Twitter
Storm, have been proposed and widely applied. However, all these programming
paradigms mainly focus on data storage and computation, while still treating the
communication issue as blackbox. How data are transmitted in the network is
transparent to the application developers. Although such paradigm makes applica-
tion development easy, an increasing concern to manipulate the data transmission
in the network according to the application requirements emerges and asks for
flexible, customizable, secure, and efficient networking control. The gap between
the computation programming and communication programming shall be filled
up. Fortunately, the recent development in some newly emerging technologies
such as software-defined networking (SDN) and network function virtualization
(NFV) stimulates cloud networking innovation towards big data processing. We are
motivated to present the concept of cloud networking for big data in this monograph.

Based on the understanding of cloud networking technology, we further present
two case studies to provide high-level insights on how cloud networking technology
can benefit big data application on the perspective of cost-efficiency. With the
rising number of data centers all over the world, the electricity consumption
and communication cost have been increasing drastically as the main operational
expenditure (OPEX) to data centers. Therefore, cost minimization has become
an emergent issue for data centers in big data era. Different from conventional
cloud services, one of the main features of big data services is the tight coupling
between data and computation as computation tasks can be conducted only when
the corresponding data is available. As a result, three factors, i.e., task assignment,
data placement, and data movement, deeply influence OPEX of geo-distributed data
centers. Thanks to cloud networking, we are able to pursue cost minimization via
joint optimization of these three factors for big data applications in geo-distributed
data centers. We first characterize the data processing procedure using a two-
dimensional Markov chain and derive the expected completion time in closed-form,
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based on which the joint optimization is formulated as a mixed-integer nonlinear
programming (MINLP) problem. To tackle the high computational complexity
of solving our MINLP, we linearize it into a mixed-integer linear programming
(MILP) problem. Experiment results show that our joint-optimization solution has
substantial advantage over the approach by two-step separate optimization.

We further notice that processing large numbers of continuous data streams,
i.e., big data stream processing (BDSP), has become a crucial requirement for
many scientific and industrial applications in recent years. Public cloud service
providers usually operate a number of geo-distributed data centers across the globe.
Different data center pairs are with different inter-data center network costs due
to the different locations and distances. While inter-data center traffic in BDSP
constitutes a large portion of a cloud provider’s traffic demand over the Internet
and incurs substantial communication cost, which may even become the dominant
OPEX factor. As the data center resources are provided in a virtualized way, the
virtual machines (VMs) for stream processing tasks can be freely deployed onto
any data centers, provided that the service level agreement (SLA, e.g., quality-
of-information) is obeyed. This raises the opportunity, but also a challenge, to
explore the inter-data center network cost diversity to optimize both VM placement
and load balancing towards network cost minimization with guaranteed quality-
of-information. Fortunately, cloud networking makes such optimization possible.
We first propose a general modeling framework that can transform the VM
placement into VM selection problem and describe all representative inter-task
relationship semantics in BDSP. Based on our novel framework, we then formulate
the communication cost minimization problem for BDSP into a MILP problem and
prove it to be NP-hard. We then propose a computation-efficient solution based on
MILP. The high efficiency of our proposal is also validated by extensive simulation-
based studies.
Keywords: Cloud networking, Software-defined networking, Network function
virtualization, Cloud computing, Geo-distributed data centers, Cost efficiency, Big
data, Resource management and optimization.

Waterloo, ON, Canada Xuemin Sherman Shen
Wuhan, Hubei, China Deze Zeng
Wuhan, Hubei, China Lin Gu
Aizu-Wakamatsu City, Japan Song Guo

www.allitebooks.com

http://www.allitebooks.org


Acknowledgements

We first would like to express our heartfelt gratitude to Dr. Xuemin (Sherman) Shen,
who reviewed and offered professional and constructive comments to improve this
monograph. We are equally grateful to Susan Lagerstrom-Fife and Jennifer Malat
who provided support in the process of editing. Without their generous help, this
monograph would have been hardly possible. We also would like to thank all the
readers who are interested in this newly emerging area and our monograph. Last but
not least: I beg forgiveness of all those who have helped a lot and whose names I
have failed to mention.

vii

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Contents

Part I Network Evolution Towards Cloud Networking

1 Background Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Networking Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Infrastructure as a Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Platform as a Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Software as a Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Big Data Batch Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Big Data Stream Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Software Defined Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Floodlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 OpenDaylight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Ryu SDN Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Network Function Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 NFV in Data Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 NFV in Telecommunications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Relationship Between SDN and NFV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Big Data Batch Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 DIYAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Big Data Stream Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 Storm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.2 HAMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ix

www.allitebooks.com

http://www.allitebooks.org


x Contents

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Cloud Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Motivation: Fill the Gap Between Application and Network . . . . . . . . . 33
3.2 Cloud Networking Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Parser and Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Network Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Cloud Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Language Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Performance Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Energy and Cost Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Flexible Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.5 Stream Processing Aware Network Resource Management . . 40
3.3.6 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Cloud Networking and Big Data Related Work Review . . . . . . . . . . . . . . 41
3.4.1 Energy and Cost Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 VM Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Big Data Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.4 Big Data Stream Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.5 Big Data Aware Traffic Cost Optimization . . . . . . . . . . . . . . . . . . . . 45
3.4.6 SDN Aware Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.7 Network Function Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Part II Cost Efficient Big Data Processing in Cloud
Networking Enabled Data Centers

4 Cost Minimization for Big Data Processing
in Geo-Distributed Data Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Task Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Constraints of Data and Task Placement . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Constraints of Data Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.3 Constraints of QoS Satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.4 An MINLP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



Contents xi

5 A General Communication Cost Optimization Framework
for Big Data Stream Processing in Geo-Distributed Data Centers . . . . . 79
5.1 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Geo-Distributed DCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.2 BDSP Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.1 VM Placement Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.2 Flow Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.3 A Joint MILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101





Acronyms

ARPANet Advanced Research Project Agency Network
AWS Amazon Web Service
BDBP Big Data Batch Processing
BDSP Big Data Stream Processing
BSP Backward Speculative Placement
CAPEX Capital Expenditure
CBD Cut-Based Decomposition
DARD Distributed Adaptive Routing for Data Centers
DC Data Center
DCR Data Center Resizing
DNS Domain Name Service
DPI Deep Packet Inspection
EMS Element Management System
HDFS Hadoop Distributed File System
IaaS Infrastructure as a Service
ILP Integer Linear Programming
JVM Java Virtual Machine
MILP Mixed-integer Linear Programming
MINLP Mixed-integer Nonlinear Programming
NaaS Network as a Service
NAT Network Address Translation
NBI Northbound Interface
NCP Network Control Program
NF Network Function
NFV Network Function Virtualization
NFVI Network Function Virtualization Infrastructure
NPI Network programming Interface
NSFNet National Science Foundation Network
ONF Open Networking Foundation
OPEX Operational Expenditure
PaaS Platform as a Service

xiii



xiv Acronyms

PBD Pivot Bit Decomposition
PM Physical Machine
QoS Quality of Service
SaaS Software as a Service
SBI Southbound Interface
SDN Software Defined Networking or Software Defined Network
SLA Service Level Agreement
TCAM Ternary Content Addressable Memory
TCP Transmission Control Program
VM Virtual Machine
VNF Virtualized Network Function
VoD Video-on-Demand
WWW World Wide Web



Part I
Network Evolution Towards Cloud

Networking



Chapter 1
Background Introduction

Like any other technology, cloud networking is a natural evolution due to the
technology development and requirement stimulation. In this chapter, let us first
briefly review the networking history to understand how it evolves to cloud
networking. We then introduce cloud computing and big data as its enabling
technology and driving force, respectively.

1.1 Networking Evolution

Computer networking traces its beginnings back to 1960s. It is widely agreed
that today’s global Internet started from the Advanced Research Projects Agency
Network (ARPANet) of the U.S. Department of Defense in 1969, based on the
concept published in 1967. Initially, it has only 4 official nodes at UCLA (University
of California, Los Angeles), Standford Research Institute (SRI), UCSB (University
of California, Santa Barbara), and the University of Utah. The initial purpose of
ARPANet was to share computer resources among scientists in these four connected
institutions. The concept of packet as information transmission unit that is able
to be routed on different paths and reconstructed at the intended destination was
invented then. Accordingly, Network Control Program (NCP) [1] was introduced as
a symmetric computer-to-computer networking protocol for network participation,
data flow routing, host addressing. Thanks to NCP, the world’s first node-to-node
message was successful sent from UCLA to SRI and more nodes were able to join
the network. The number of hosts was increased to 15 in 1971. ARPANet even
become international in 1973 with the involvement of the University of London and
Norway’s Royal Radar Establishment.

In 1970s, the construction of ARPANet stimulated the development of many new
networking technologies. For example, in 1974, Ethernet allowing intra-connection
within Xerox company (i.e., local area networks) was created and demonstrated by

© Springer International Publishing Switzerland 2015
D. Zeng et al., Cloud Networking for Big Data, Wireless Networks,
DOI 10.1007/978-3-319-24720-5_1
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4 1 Background Introduction

Robert Metcalfe and David Boggs, who were therefore listed as Ethernet inventors
in the patent application. In the same year, Vinton Cerf and Robert Kahn, who later
were recognized as “the fathers of the Internet,” published “A Protocol for Packet
Network Interconnection” [2] and engaged in the development of Transmission
Control Program (TCP) to incorporate both connection-oriented and datagram
transmission services. This protocol later replaced NCP and became the standard
for ARPANet. On January 1st, 1983, NCP was officially abandoned and eventually
replaced by TCP/IP in the ARPANET, marking the start of the modern Internet [3].
With the adoption of Ethernet and TCP/IP protocol, data transmission in network
became more quickly and efficiently. The network size also increased. It was
reported that the total number of connected computers in ARPANet increased to
1000 by 1984. With the development and incorporation of personal computer (PC),
the total number of network hosts broke 10,000 by 1987 and the number was
suddenly ten timed to reach 100,000 by 1989.

In contrary to the openness of TCP/IP, the government funded background made
ARPANet only available to authorized enterprises and research agencies. Individual
unauthorized users were excluded from ARPANet. This more or less constrained the
development and popularity of ARPANet. To deal with the ever-growing demands
for public data communication services, a wide-area network, National Science
Foundation Network (NSFNet), replaced ARPANet as the backbone network for
connecting universities and research facilities in 1991 and finally developed into a
major part of the Internet backbone. The year of 1991 is also regarded as the flag
year of World Wide Web (WWW) as Tim Berners-Lee developed and released it
in this year. WWW is an information system of interlinked hypertext documents
that are accessible through the Internet. Since then, the development of Internet and
WWW was ignited. In 1994, the WWW burst all over the world with an annual
growth of 341,634 % [4]. The success of WWW also drove the development of
Internet as the latter performs as the communication backbone to support the former.

Today’s Internet is populated with several billions of hosts worldwide. According
to a recent survey, around 40 % of the world population enjoy the Internet
connection in 2013 while the number was less than 1 % in 1995 [5]. Figure 1.1
shows the growth of global Internet users since 1993. We can see that the number
of Internet users has increased more than tenfold since 1993 by 2014.

What is astonishing is that the TCP/IP protocol suite initially designed for
only few connected devices still functions well in today’s large-scale Internet.
This is attributed to the simpleness, distribution, and blackbox design principles
of TCP/IP. Simpleness means that the protocol suite only provides the functions
of transmitting and routing between hosts while all other intelligences are put in
the hosts. Distribution indicates that there is no central network administration
or control. The whole network operates in a distributive, self-learning, and self-
management manner. Blackbox design principle refers to that the internal changes
and operations are standardized and invisible. Programmers do not need to concern
the details in the underlying network behaviors. But in this case, programmers also
do not have the privilege to control the network even if there are such demands.
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Fig. 1.1 Number of Internet users

The success of Internet practically proves that TCP/IP is really a brilliant design.
However, with the recent development of information and communication technolo-
gies, the limitations and shortcomings of this general one-fit-all TCP/IP solution are
increasingly exposed. Different applications may have different demands and highly
dynamic communication, consequently requiring different networking resources.
Current network devices lack the flexibility to deal with different application needs
because of the underlying hardwired implementation of routing rules [6]. It is also
hugely labor-intensive to reprogrammed traditional network devices [7, 8]. It is
an obvious and urgent need that further amendment to enable dynamic, flexible,
customizable, cost-effective, and adaptive networking paradigm must be made. This
raises the proposal of Software-Defined Networking (SDN) technology (Fig. 1.2).

In contrast to the distributed management of traditional network architecture,
SDN provides a centralized management and controlling of network services
through an abstraction of the hardware-level functionalities via decoupling data
plane from control plane. By such means, it is able to control the behaviors
of entire network through a software program, enabling network administrators
to build highly scalable, flexible, and adaptive networks, according to the data
transmission needs. Data plane is mainly in charge of the data flow delivery
between communication end hosts while control plane refers to the logical controller
integrated with both network and service controller components responsible for
network and service management. Control plane also provides APIs to allow
application developers and network administrators to easily customize the network
(e.g., routing rule, flow priority settings, topology control, etc.) and manage the
services (e.g., service replica creation, load balancing, etc.). Programmers do not
need to replace or reprogram hardware components in the core network. To achieve
such vision, OpenFlow is proposed as a standardized protocol with strong industry
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Fig. 1.2 Concept of SDN

support to ensure the secure and effective communication between control plane
and data plane. The importance of SDN also urged the establishment of Open
Networking Foundation (ONF) [9] in 2011 as a non-profit industry consortium to
promote and standardize SDN and OpenFlow.

Today’s computer networks consist of a large and growing variety of proprietary
dedicated hardware devices while the hardware life cycle is becoming shorter and
shorter due to the technology development and service innovation acceleration
requirements. Meanwhile, to launch new networking services usually requires
re-designing the underlying hardware or even new hardware purchasing. The variety
of user demands makes it necessary to design, integrate, and operate increas-
ingly complex hardware-based appliances, bringing increasing capital expenditure
(CAPEX) and OPEX to our network-centric connected world.

Network Function Virtualization (NFV) is proposed to address this problem
by leveraging present standard IT virtualization technology to consolidate various
network equipment types onto virtualized standard high volume servers, switches
and storage in data centers, network nodes and end hosts, as shown in Fig. 1.3. NFV
virtualizes the network services such as network address translation (NAT), firewall,
intrusion detection, and domain name service (DNS), which are presently carried
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Fig. 1.3 Concept of NFV

out by proprietary and dedicated hardware. NFV aims to significantly reduce the
amount of proprietary hardware needed to implement and operate network services.
To approach this goal, NFV decouples network functions from dedicated hardware
devices and virtualizes network functions carried out by dedicated hardware devices
such as routers and firewalls to be hosted on virtual machines (VMs). All these
network functions then can be performed on standard servers under the control of
a hyper-visor without traditional dedicated hardware devices. In other words, NFV
enables the possibility to leverage low-cost industry-standard commodity hardware,
e.g., X86 servers, with independently developed networking software. Instead of
managing and maintaining various complex hardware devices, network administra-
tors now only need to simply deploy and schedule the network function VMs onto
uniformed standard servers using NFV technology. Moreover, implementation of
network functions in VMs running on standard servers can be moved to, or merged
in, various locations in the network as required without purchasing new hardware
devices.
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1.2 Cloud Computing

The initial concept of cloud computing appeared long before it actually started.
The history of cloud computing goes back even farther than 1960 with John
McCarthy, who believed that computation should one day be organized as a
public utility. Later, Douglas Parkhill, a Canadian technologist and former research
minister, wrote a book in the mid-1960s describing detailed future computing as
a utility. As expected, cloud computing now can deliver services such as storage
and computation like delivering gas and water as long as users are connected to
the Internet, without consideration of the localization of computer hardware and
software resources.

All such benefits result from the virtualization technology, which can create
a virtual version of physical infrastructures and act like a real computer to
provide needed platforms for any software. The first commercial cloud computing
service Amazon Web Services (AWS) was released in 2006 by Amazon, who
therefore played a vital role in the history of cloud computing. By adopting cloud
computing technology, Amazon is able to lease out their hardware resources through
the Internet in a pay-as-you-go way according to the consumed resources, e.g., CPU,
storage, bandwidth, energy, etc. Such idea exactly satisfies the needs of users who
require a large scalable resource while unwilling to deal with the complex hardware
deployment, management, and maintenance. They can simply rent the desired cloud
resources according to their needs.

Witness the great success of cloud computing, Amazon was then followed by
other large enterprises such as Google, Microsoft, and IBM. In 2005, Google built
the first modern data center on 30 acres of land in the Dalles of Oregon along
the Columbia River. Promoted by these new cloud servers, social media was able
to boom afterwards and delivered cloud computing services to more and more
people as is seen today. To support all cloud services above, large-scale data centers
have been constructed all over the world. Nowadays as shown in Fig. 1.4, many
enterprises as infrastructure providers have all released various cloud computing
services supported by large-scale data centers to the public. These data centers are
usually deployed in a geographically distributed manner. By now, Google already
has 36 data centers across the globe. With 150 racks per data center, Google
has more than 200,000 servers, running 24 h a day, 7 days a week [10]. Service
providers, including both third-party companies who rent the cloud resources and
those who own their own data centers, provide users with various services such
as consulting, education, communications, storage, and processing. For reliability,
security and expenditure benefits, more and more end users, both individuals and
organizations, are moving their data and services from local to Internet data centers.
To meet different requirements from users, cloud computing providers offer their
services mainly in the following three paradigms. Their relationship is illustrated
in Fig. 1.5.
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Fig. 1.4 Cloud computing

Fig. 1.5 Cloud service
paradigms
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1.2.1 Infrastructure as a Service

Typical cloud providers of Infrastructure as a Service (IaaS) offer hardware
resources in the form of VMs. The VMs run as guests by a hyper-visor, e.g., Xen,
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Oracle VirtualBox, KVM, VMware, or Hyper-V. To deploy applications, cloud users
can install their customized operating system images and application software on the
rent cloud resources. Since virtualized resources in IaaS are still in their raw format,
e.g., computation, storage, bandwidth, users still need to maintain their operating
systems and the application softwares. Nevertheless, users are freed from tedious
tasks such as physical server maintenance, equipment upgrade, machine retrofit,
and so on. IaaS is utility computing basis that users are charged by the amount of
resources allocated or consumed. Representative IaaS services include IBM Cloud
[11], Google Computer Engine [12], and Amazon EC2 [13].

Traditional IaaS usually only includes hardware resources as storage, computa-
tion, and bandwidth. Recently, with the development of SDN and NFV technologies,
the concept of Network as a Service (NaaS) is proposed to provide API for network
controlling and management. It is appealing concept to users since it can reduce the
cost on network hardware such as routers and switches. In addition, SDN and NFV
technologies enable elastic network management from any place at any time. This
makes the network management as easy as we used to manage the computation
and storage resources. Furthermore, the virtualization technology can provide an
abstraction of the network to lower the management complexity.

1.2.2 Platform as a Service

Platform as a Service (PaaS) model offers a platform including basic hardware and
software tools of application development, instead of only bare virtual resources like
in IaaS. For example, in IaaS model, users still need to deploy all development tool
like operating systems, databases, and so on. What is more, to guarantee the quality
of service, users also need to maintain and allocate all of these resources according
to the feedbacks of application performance monitoring tools. PaaS provider, on the
other hand, supports all the underlying computing and software, such as operating
system, database, programming environment, and web server. Users only need to log
in to use the platform to develop or deploy their applications through an interface,
without specifying the operating system and hardware requirement. This frees users
from complex installation and configuration of local hardware and software for
application development because the platform’s computer and storage resources
can scale dynamically to match users’ demands, instead of manual allocation. PaaS
users thus can run their softwares using this platform without worrying about the
management of both underlying hardware and software layers.

1.2.3 Software as a Service

Software as a Service (SaaS) describes on-demand cloud software services which
are provided to users through the Internet. Traditional software applications require
users to first purchase and then install them onto local computers. Another problem
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in this manner is that the number of users and locations of software installation
are limited. Specially for organization users, to deploy a software for all employees
could lead to a considerable cost. Worse, after installation, users still need to worry
about the updates and patches. Fortunately, in SaaS model, users, both individuals
and organizations, are able to rent or access cloud software applications which are
hosted in remote data centers, rather than buying and installing them on local PC.
Typical SaaS services, like Google search, Dropbox, and Facebook, can be accessed
via any Internet connected devices. There is no strong requirement on resources.
The device could be a PC, laptop, or smart phones. Cloud applications outperform
traditional ones in their scalability achieved by cloning tasks onto multiple VMs in
various locations to meet dynamic work demands. For example, we can use Google
search in any place by connecting to any local data center of Google. Moreover,
applications are used online with files saved in the cloud rather than on individual
local servers. This also frees the users from buying storage devices. Representative
cloud storage services include DropBox [14], iCloud [15], and GoogleDrive [16].
Different software applications are provided online for a wide range of needs,
including computing, tracking sales, performance monitoring, analysis, decision
making, and communication. Similar to other cloud based services, the price of
SaaS applications is typically charged monthly or yearly, scalable and adjustable
for users to add in or cancel at any time.

1.3 Big Data

Today, there are approximately 1.5 trillion devices in the world (including PCs, TVs,
tablets, smart phones, etc) and most of them are connected, and are continuously
generating data, to the Internet. Cisco expects a 25 % increasement in connectivity
every year and that means we can expect 50 billion connected devices by 2020 with
50 % connections booming during 2018–2020, as shown in Fig. 1.6. According to
IBM, the growing connectivity to the Internet has led to 90 % of the total data in
the world created in the last 2 years [17]. IDC predicts the number will reach 40
Zettabytes (ZB, 270B) by the year of 2020, 50 times the amount of information and
75 times the number of information containers of today [18], as shown in Fig. 1.7.
Without doubt that we have entered the “big data” era. It can be envisioned that
with the increasing number of connected devices, the amount of new created data
will continue to skyrocket.

Big data is famous for its 3V characteristics:

• Volume: Big data includes large volume of data from billions of devices and
users.

• Variety: Large amount of data are loose-structured and distributed with
inter-connections and sequences between them.

• Velocity: Data usually involves time-stamped events. Certain data must be
processed within a delay constraint; otherwise, they will vanish into thin air.
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These characteristics make big data processing as a challenging task and raises
many interests in both academia and industry. Big data solutions have tremendous
momentum, and they are rapidly gaining more. Big data is making an increasing
impact on academic world and moving into industry including IT campaniles, large
chain stores, and wall street. The reason is clear. Big data delivers the opportunity
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to create positive changes. Generally, big data processing can be classified into two
types of methods in terms of required processing latency. One is pre-stored batch
processing and the other is real time stream processing.

1.3.1 Big Data Batch Processing

Batch processing has been associated with earliest mainframe computers since
1950s. There were a variety of reasons why batch processing dominated early
computing. Firstly, the data volume back to then was small and computers were
mainly used by large companies to do primarily accounting problems such as
billing, which is a typical batch processing. Secondly, computing resources were
expensive and the processing ability of computers was limited at that time. So
sequential processing of batch jobs was a good choice for the resource constraints
at the time. Even today, with powerful personal computers, smart phones and large-
scale data centers, batch processing such as page ranking and credit card billing is
still pervasive, especially with the recent emerging of big data. One representative
example of big data batch processing is credit card billing. The customer does not
receive a bill for each separate credit card purchase but one monthly bill for all of
that month’s purchases.

An overview of batch processing system, including three major components, is
presented in Fig. 1.8. One input component in charge of collecting data from one
or more sources, usually databases; a processing component performs computations
using these inputs; and an output component generates results to be written back to
databases.

In batch processing, the data are pre-stored in databases. In credit card billing,
before actually processing the bills, all the related data must be collected and held
until the bill is processed as a batch at the end of each month.

Fig. 1.8 Batch processing
Process

Input Output

ResultData

Read Write

Database
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The performance of batch processing can be optimized by scheduling the
sequences of job use different priorities, so users can keep a high overall utilization
of computing resources. The simplicity of batch system also allows parallel
processing, e.g., Hadoop. Rather than running one program multiple times, Hadoop
runs the program once in many computation units, significantly reducing processing
latency.

1.3.2 Big Data Stream Processing

In today’s world, computing resources are comparatively cheap and cloud services
are available around the clock. As a result, the delay expectation of users is
significantly reduced. Many tasks shall be completed instantly like stock data
analysis, immediate action shall be taken based on analysis results. This forces
the concept of big data stream processing. We are generating an estimated 2.5
quintillion bytes of new information every day. To gain the greatest value from big
data, data should be processed as soon as they arrive meanwhile data quality should
also be maintained. That is to say, we have to process huge volumes of data fast
enough to produce real time strategies for the largest competitive advantages. The
biggest challenge is how to leverage available resources to handle such huge data
volumes effectively. Imagine a continuous stream with new data arrives in 24 h a
day, 7 days a week. We need to capture, process, and turn these data into immediate
actions as soon as possible. It is obvious that traditional batch processing techniques
are not suitable for stream data processing. The new technology shall allow the
collection, integration, analysis of stream data, all in real time, without disrupting
the activities in data sources, storage, and user systems.

Effective stream processing can solve a wide variety of real-world problems. For
example, stream can be utilized as an online solution for fraud detection. As stream
data are produced and received, system administrator can observe system status at
any time and make quick reaction when a fraud is detected. This is very important
in large-scale industry networks. Another important usage is decision making, e.g.,
stock purchase decision. Stream data provides real time system status based on
which users can predict some future trends. For example, by cross-referencing
customer purchasing lists, sellers can learn current customer buying patterns and
make decision on future stock.

A sensor stream processing example is shown in Fig. 1.9. In this example, we
have two sensor networks locate in different places of one area. Both continuously
generate data streams including various information, e.g., sensing data, sensor
status. By processing these data, we can monitor the status of all sensors and conduct
globe online network optimization accordingly. At the same time, we can implement
a disaster prediction application by analyzing sensing data streams from either
sensor network. A stream processing application can be described as a directed
acyclic graph (DAG) like Fig. 1.9.
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Batch and stream data processing both have their advantages and disadvantages.
How to select the best data processing system for a specific job depends on the
types and sources of data, processing time requirements. There is a big demand for
obtaining knowledge/regularity from the big data to create business values or make
daily life more convenient and efficient. To store and process this large amount
of data has become a heavy burden to service providers. Big data brings us big
advantages along with big challenges.

1.4 Summary

In this chapter, we mainly introduce the background of this monograph. We first
briefly review the history of computer networks to expose the evolution to cloud
networking. After that, some representative cloud computing paradigms (e.g., IaaS,
PaaS, and SaaS) and the two main types of big data, i.e., batch big data and stream
big data, are introduced.
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Chapter 2
Fundamental Concepts

2.1 Software Defined Networking

2.1.1 Architecture

Today’s computer networking is growing ever larger and more complex everyday.
This leads to a critical issue on how to manage and control the network devices. SDN
is a dynamic, programmable, and scalable framework proposed to provide effective
solutions for network behavior management. SDN decouples data plane and control
plane, allowing direct programmable controlling and abstraction of the underlying
infrastructures. Due to its many advantages, SDN has drawn significant attention
from both academical community [1] and industries. For example, Google is
building an SDN-based infrastructure to support their Internet services [2]. Many
companies like Huawei have already released their SDN products and solutions.

Figure 2.1 gives an overview of SDN architecture. SDN application plane pro-
vides APIs for users to directly program and communicate with SDN to customize
the network behaviors. An SDN application specifies the network behavior logic,
e.g., routing, according to user requirements. The application will be passed down
through northbound interface (NBI) between SDN applications and controllers.
NBI also provides the abstraction of the networks to SDN controllers to lower
the complexity of managing the underlying hardwares. For example, programmers
can obtain network status via the provided APIs to enable dynamic provision and
management of network resources.

As a logically centralized component, the SDN controllers works as the “brain”
of an SDN-based network. SDN control logic may have many different network
functions such as network device management, network status monitoring. SDN
controller is also editable and accepts new functionalities to support new demands
from users. For example, network administrators can implant their self-developed
algorithms for globe optimization of SDN networks. As a bridge between the
application plane and underling data plane, SDN controller continues to deliver the
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low-level requirements of SDN applications from the control plane down to the data
plane to change data forwarding behaviors through the data plane southbound inter-
face (SBI). SBI provides the programmatic control for data forwarding operation,
network statistics report, and event notification.

The functionalities of network elements in the data plane can be changed
according to the requirements received from the controller through the SBI. The data
packet processing behaviors, e.g., forwarding, header alternation, etc., can be
altered by updating the flow table in switches and routers. To ensure the secure
communication channel between control plane and data plane, OpenFlow protocol
is proposed and widely used.

2.1.1.1 OpenFlow

OpenFlow is an open standard proposed and managed by ONF. It specifies a
protocol allowing SDN controllers to modify the behavior of networking elements
(e.g., OpenFlow switches) through a set of pre-defined instructions or interfaces via
a secure channel. A typical OpenFlow switch maintains a flow table for data packet
lookup and forwarding.
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The flow table contains a set of flow entries including header information to
recognize packets and a set of actions that shall be applied to packets. For example,
we may define a DDoS prevention scheme by specifying dropping the DDoS attack
packets while normal forwarding operation shall be applied to the regular data
packets according to the pre-defined actions. The action that shall be applied to
a packet can be found out by looking up the flow table. Upon receiving a data
packet, OpenFlow switches compare the packet header to the entries in its flow
table. If a matching entry is found, OpenFlow switches will perform corresponding
actions, in most cases, forwarding the packet to a predetermined port according
to the routing scheme. Otherwise, the packet is forwarded to the SDN controller for
further decision. In this case, the controller will determine what to do with the packet
and add new flow entries to the switches for further actions. The controllers can also
update the switch flow tables, e.g., adding new entries and removing existing ones,
to meet the SDN application requirements.

2.1.1.2 Ternary Content Addressable Memory

Note that we shall first look up the flow table according to the packet header
information to determine what kind of actions shall be applied to the received flow.
Consequently, fast lookup is the key to enable fast packet processing. To this end,
Ternary Content Addressable Memory (TCAM) is introduced. TCAM is a speci-
fied content addressable memory to deal with high-speed searching applications.
In OpenFlow switches, it is usually used to store the forwarding tables for fast
action lookup. In this case, OpenFlow switches with TCAM can quickly find out
the action that shall be applied to the received packet according to its packet header.
However, TCAM is notorious for its considerably expensiveness (US$350 for a
1 M-bit chip) and high energy consumption (about 15 Watt/1 Mbit). The TCAM
capacity on OpenFlow switch is usually limited and therefore a limited number
of forwarding entries can be stored. Most commercial OpenFlow switches, e.g.,
Broadcom chipset, are with TCAM that can accommodate 750 to 2000 OpenFlow
rules. While, modern data centers may have up to 10,000 network flows per second
per server rack [3]. Obviously, the limited TCAM size imposes a challenging issue
that shall be overcome.

Based on the SDN and OpenFlow technologies, several new projects listed
below are proposed to accelerate the network response time and simplify network
management.

2.1.2 Floodlight

Floodlight [4] project provides an enterprise-class, Apache-licensed, Java-based
OpenFlow controller framework. Many developer and professional engineers have
devoted their efforts in the development of Floodlight. It is a user-friendly controller
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specified to help to manage the increasing switches, routers, virtual switches, and
access points. Users without much SDN knowledge can also communicate with the
controller and manage the network devices using simple Java programs.

Floodlight has several advantages:

1. It supports mixed network environment with both OpenFlow and non-OpenFlow
switches and performs simple and effective management on physical and virtual
network devices.

2. It provides user-friendly APIs for SDN controller management using Java
language.

Specially, Floodlight has reached a download number of over 6000 times,
including large companies like IBM, Arista Networks, Brocade, Dell, Fujitsu, HP,
Intel, Juniper Networks, Citrix, and Microsoft [5]. They all actively participate in
the development of Floodlight.

2.1.3 OpenDaylight

OpenDaylight [6] is an open source project developed by a group of engineers
from different enterprises such as Cisco, IBM, RedHat, and Ericsson. It provides a
robust SDN platform allowing further third-party development and innovation. As a
main component of SDN, OpenDaylight controller supports flexible management
of both physical and virtual networks. Actually, OpenDaylight itself is a powerful
SDN platform. Furthermore, the community members are now trying to integrate
OpenDaylight with OpenStack Neutron so that both OpenFlow and OpenStack
administrators can use this platform. This will provide a powerful SDN-based
networking solution for any type of cloud infrastructures.

The main advantages of OpenDaylight are as follows:

1. It supports both OpenFlow and non-OpenFlow switches in physical and virtual
forms.

2. It runs within its own Java Virtual Machine (JVM) and therefore can be deployed
on any platform that supports Java.

3. It supports REST-style NBIs. That is to say, the OpenDaylight SDN applications
can run on different machines from the controller through a web based API.

2.1.4 Ryu SDN Framework

Different from conventional SDN frameworks, Ryu [7] is a component-based
framework. Instead of making a full-function heavy controller, Ryu uses a more
flexible and lightweighted way, i.e., application component based. Some pre-defined
components useful for SDN applications are already implemented and provided in
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this framework. Users can directly use these existing ones, or combine them to
build their own new applications or even implant their self-developed components
to realize convenient and more fruitful control of the network devices.

To achieve the component-based application development, Ryu provides user-
friendly API for easy creation of new network management and control applications.
In addition, Ryu also supports various protocols for managing network devices.
Besides OpenFlow, other protocols like Netconf, OF-config, and so on are also
supported.

Ryu outperforms other proposals in the following aspects:

1. It has a well-predefined library of components including many frequently used
components, e.g., OpenFlow, OpenStack, and firewall.

2. Ryu components are separated and hence it is easier to edit them. Users do not
need to read and understand thousands of lines of codes.

3. By reusing different built-in components or even integrating the self-developed
new ones, user can easily build new components.

2.2 Network Function Virtualization

In traditional networks, most network functions, such as firewall, deep packet
inspection (DPI), gateways, domain name service, are provided by specific hardware
in the consideration of fast packet process. With the recent development on the
commercial servers, researchers notice that we can still archive fast packet process
by the off-the-shelf computers (e.g., X86 servers). This motivates the proposal of
Network Function Virtualization (NFV). Via abstracting the purpose-built hardware
into software module, traditional network functions can be deployed on a standard
computing platform. NFV is applicable to data plane packet processing and control
plane function in various types of networks to provide flexible and user customized
network functions such as switching elements, tunnelling gateway elements, traffic
analysis and scheduling, service assurance.

Figure 2.2 shows an overview of NFV architecture. In essence, a virtualized
network function (VNF) is realized by virtualizing the corresponding network
function (NFs) (e.g., firewalls, gateways, DNS) as a VM that can apply the same
processing logic to the packet going through it. The functions and behaviors of
an NF shall not be changed after virtualization. In other words, a physical NF
and its corresponding VNF shall have exactly the same functionalities, behaviors,
and operational interfaces. Similar to SDN controller, element management systems
(EMSs) work as the controlling unit for VNFs.

Both VNF and EMS are built on the NFV infrastructure (NFVI), including both
hardware and software. The NFVI can be located in different locations as long
as they are connected, e.g., geo-distributed data centers. The physical hardware
resources including computing, storage, and network are connected to VNFs in
the virtualization layer, which is in charge of abstracting and partitioning hardware
resources into virtualized ones.
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Fig. 2.2 Overview of the NFV architecture

NFV offers many benefits and the most important one is that it can significantly
simplify the network as well as the user management. This also further reduces
the network CAPEX and OPEX as users do not need to buy expensive purpose-
built hardware or no longer need to worry about the multi-version and multi-vendor
dedicated hardware with NFV technology. A single general-purpose computing
platform is enough for different applications, users, and vendors. This allows
network users to share resources across various services and different locations,
enabling more network innovations.

NFV technology is mainly applied to two fields, data center and telecommunica-
tion. In the next two sections, we briefly introduce how they are adopted and how
they benefit the two sectors.

2.2.1 NFV in Data Centers

Today’s data centers are facing two challenges: the significantly high OPEX and
elastic scalability requirements from users. NFV, as a newly emerging proposal
aiming to solve these problems by transforming geo-distributed data centers from
IT-centric model to harmonized networking and IT domain model.

NFV makes data centers much more dynamic and even delivers additional bene-
fits such as service innovation acceleration, energy, and cost reduction. Therefore, it
is a widely recognized choice for data center infrastructure providers. NFV helps
to create efficient data centers to satisfy the demands of service providers and
tell them how, where, and when to deploy the services. This creates a reliable,
open, and flexible networking environment and makes it easier to manage big data
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applications. The NFV-based data centers can provide new network functionalities
such as policy control and application orchestration for other cloud services. Many
network companies like AT&T and Ericsson [8] are now using them for easier and
more flexible cloud network management.

Additionally, NFV and data centers also provide an opportunity to better
telecommunication services by implementing NFV and moving telecommunication
services to the NFV-based IT infrastructures.

2.2.2 NFV in Telecommunications

How to provide fastest and most seamless media experience to users is a key issue
to telecommunication service providers. The old solutions cannot satisfy the needs
of today’s data booming and faster speed demands.

NFV emerges as a promising solution for the telecommunication because it can
significantly lower both infrastructure and service costs. By combining with SDN
technology, NFV even brings more great economic advantages across all service
platforms. For example, Dell [9] is providing NFV solutions for telecommunications
providers, cable and mobile operators by leveraging SDN and NFV technologies
on their standard X86 servers. This provides an open and vendor-free platform for
telecommunication service providers and third-party developers to create their own
customized services.

2.3 Relationship Between SDN and NFV

NFV and SDN technologies have much in common. For example, they both
provide direct programmability and aim at providing customized controlling and
management of the network logically. Moreover, the essential concept of SDN
and NFV is the decoupling of the underling infrastructure hardware and software
functionality in the network.

Although NFV and SDN technologies share so many features in common, they
can be also separately deployed and are even considered as highly complementary to
each other as shown in Fig. 2.3. For example, network functions can be virtualized
and deployed without an SDN-based network environment. NFV goals can be
achieved using non-SDN mechanisms. However, it is without doubt that these two
solutions can be combined together. Potentially, greater advantages can be achieved
by their marriage. For example, decoupling control and data planes via SDN
can improve the performance of NFV by simplifying compatibility in deploying,
operation, and maintenance. On the other hand, NFV can provide the standard and
uniform infrastructure, where SDN can be installed to manage commodity network
elements. Furthermore, NFV can also be applicable to any data plane packet
processing and control plane functionalities in SDN-based networks. Potential
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examples include switches, mobile networks, functions contained in home routers,
tunneling gateways, and so on. SDN also provides NFV the opportunity of replacing
traditional routing controlling, enabling flexible routing and traffic optimization.

Nevertheless, SDN and NFV together can enable users to optimize their network
resources, increase network reliability, accelerate service speed, and create dynamic,
user-oriented NaaS.

2.4 Big Data Batch Processing

Like traditional batch processing, big data batch processing solutions also follow
the “read-process-write” sequence. Data shall be first read from databases or
file systems. They are then processed in computation units. Finally, the obtained
results will be written back to databases or file systems. To catch up with the
ever-increasing “big data” needs, it is widely agreed that parallelism in big data
processing shall be explored to provide faster and scalable services. As a result,
many cloud computing oriented parallel computing paradigms have been proposed
or even adopted. The most widely used frameworks are listed as follows.

2.4.1 Hadoop

Apache Hadoop [10] is a framework that supports processing of large data sets
across clusters of computers using simple programming models. It is designed to
leverage the resources of distributed data centers with thousands of machines, offer-
ing powerful computation and storage abilities. Many companies and organizations
are using Hadoop framework to processing large volume of data every day [11]. The
main modules included in this project are Hadoop distributed file system (HDFS)
and MapReduce.
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2.4.1.1 HDFS

Hadoop is capable of storing large data set by using a distributed file system
HDFS which provides high-throughput access to application data. HDFS allows
you to store data in distributed storage nodes such as personal computers within
one cluster and access them as a seamless system. By storing data to distributed
nodes, HDFS frees service providers from purchasing and maintaining their own
storage hardware. This not only lowers the data management complexity but also
reduces the cost for big data management. HDFS can be applied to heterogeneous
hardware and operating systems and has strong reliability since it can detect faults
and apply quick, automatic recovery. HDFS also supports parallel processing of the
distributed data in different nodes and can place the computation units near the data
location to lower the I/O cost. This provides a great opportunity for effective big
data processing via careful data placement and task scheduling.

HDFS replicates files for fault tolerance and reliability. Users can customize
the number of replicas of a file when it is created and change this number at any
time to satisfy their new needs. Usually, three replicas are stored for the same
data set. An intelligent replica placement model for reliability and performance
is used in HDFS, where a name node controls and optimizes the placement
of all replica. A typical HDFS usually consists of large numbers of distributed
nodes. The communication costs between them varies according to the physical
locations. For example, communication cost between two data nodes in different
racks is typically higher than those within the same rack. The name node will try
to minimize the communication cost by scheduling the placement of all replica.
This significantly simplifies the file management work of users and reduces the
communication cost. Figure 2.4 gives a simple example of the modern HDFS with
5 data chunks, each of which has 3 copies stored in different racks.

Compared to other distributed file systems, HDFS has the following noticeable
features:

• HDFS uses a “place computation near data” strategy, which greedily places the
computation units near the data location. This saves lots of data traffic than
traditional moving the data to the computation location.

• HDFS also uses a write-once-read-many model. Once data chunks are written in
the storage, they cannot be modified anymore. All the processing will not affect

Fig. 2.4 Hadoop file system
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the original data. This not only simplifies data coherency but also enables high-
throughput data access and fits perfectly for MapReduce applications.

• HDFS always uses one writer at a time for result writing. By such means, the
results can be written into the database in orders.

• The replica optimization and rack-aware replica placement policies make HDFS
more effective than most other distributed file systems, saving both storage and
bandwidth resources.

2.4.1.2 MapReduce

MapReduce is a programming model to distribute the data processing and result
generating to the large number of computation nodes (e.g., cloud servers) with a
parallel algorithm.

A MapReduce program includes two main phases: map() and reduce() as shown
in Fig. 2.5. The map() filters and sorts data chunks. Take credit card billing data
processing as an example. The mappers, the workers who execute map() function,
of credit card billing may sort clients’ information by their names into queues.
After that, these information will be processed in multiple computation units to
derive the wanted knowledge for each data split. These inter-mediate results will be
stored in the database later. The reducers who execute reduce() function provide a
summary operation, e.g., merging the billing information of each client. MapReduce
system accelerates big data processing by leveraging the resources in distributed
computation units, usually servers. It can run various tasks in parallel, managing
communications and data transfers between them, and provide redundancy for fault
tolerance.
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Fig. 2.5 MapReduce
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The most important contribution of MapReduce is its scalability and fault-
tolerance for different applications. Moreover, MapReduce provides libraries sup-
porting often-used functions written in many programming languages, with different
levels of optimization.

However, the MapReduce framework also faces a lot of challenges. Among them,
the most critical one is the high communication cost caused by the intermediate
result read and merging actions. The MapReduce system can significantly outper-
form the traditional ones when the network communication cost is minimized.

MapReduce is simple and effective at one-step batch processing. However, it
still leads to a lot of I/O processing and is inefficient for multi-step tasks. That is
because MapReduce produces a considerable amount of I/O writing and reading
in its distributed file system between phases. For example, all intermediate results
of present step need to be merged into one and stored in the file system and then
these results shall be read from the file system for the next step. To tackle this
issue, frameworks supporting multi-step tasks have been proposed, e.g., DIYAD
and Spark.

2.4.2 DIYAD

Different from Hadoop, which builds their own new management capabilities,
Dryad [12] chooses to leverage the existing cluster management capabilities in
Windows HPC servers. Dryad aims to making big data processing easier for
application developers using existing resources and knowledge. Unlike Hadoop
using a new file system HDFS, Dryad is based on the daily-used and mature
New Technology File System (NTFS), which is much easier to use for developers.
Additionally, to deal with complex applications, users do not need to carefully join
together a sequence of map() and reduce() actions one by one manually. Dryad, on
the other hand, allows users to join the complex sequence of MapReduce steps using
a simple query language similar to SQL. This greatly reduces the programming load
and complexity of developers.

2.4.3 Spark

Apache Spark [13] is an open-source framework developed by the AMPLab at UC
Berkeley. Different from Dryad and MapReduce, Spark allows users to load data
into a cluster’s memory and process it according to users’ needs. For example, Spark
may perform multiple steps for a single task without writing operations. Spark is
well suited to machine learning algorithms and may provide performance up to 100
times faster for some tasks compared to MapReduce.
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Spark supports many cluster manager for cluster management, e.g., standalone
(native Spark cluster), Hadoop YARN, or Apache Mesos. In the consideration
of applicability, Spark also exhibits interfaces targeting for different file systems
or databases such as HDFS, Cassandra, OpenStack Swift, and Amazon S3. It is
reported that Spark is also the most active big data open source project in
Apache software foundation with over 465 contributors in 2014 [14]. Spark core
provides distributed task dispatching, scheduling, and basic I/O functionalities.
To simplify programming complexity, resilient distributed datasets (RDD) [15], a
logical collection of data partitioned across machines, is introduced. Using RDD,
users can access the distributed data like local ones. Spark also consists of a
streaming component, which leverages Spark core’s fast scheduling capability to
perform streaming analytics. It divides the stream data as mini-batches and allows
RDD transformations on those mini-batches. With Spark streaming, users can apply
the old application for batch data to stream ones on the same platform, without
changing the source code.

Spark is the first framework to take into consideration stream processing but it
is still a general-purpose engine for large-scale data processing and not specifically
proposed for stream processing. It allows multiple step processing between data
read and result writing actions. However, to read and write data is still very time-
consuming and cannot catch up with the speed of stream processing. To deal with the
ever-growing demands on real time stream processing, more solutions are proposed
specifically for big data stream processing.

2.5 Big Data Stream Processing

Researchers have been attracted by the value of stream processing for big data
and some industry companies also try to take advantage of stream data for better
strategies and decision making. Unlike big data batch processing, stream processing
cannot be simply split and processed in the parallel manner like MapReduce model
due to the task sequences and inter-connections. The biggest difference between
big data stream processing and the batch ones is that source data are not stored in
local file system or database but flow into computation unit in a very fast speed. The
stream flow therefore must be processed immediately. Another notable feature of
big data stream processing is that it usually requires a sequence of processing steps.
In this case, if we continue to use the “process-write” model in batch processing, the
I/O communication cost will be extremely high due to the intermediate result writing
and read operations. Recent development of in-memory computing motivates us to
find solutions for these problems. Via carefully addressing these challenging issues,
users including retailers, banks, and large chain stores now can analyze massive data
volumes on the fly and perform their actions quickly. The most typical and popular
ones are Twitter’s Storm and HAMR.
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2.5.1 Storm

Twitter Storm [16] is a free and open-source distributed real time computation
system for stream data. Potential use cases include real time analytic, online
machine learning, and so on. Storm is fast, scalable, fault-tolerant, and easy to set up.
Specially, Storm can be used with any programming language. The basic primitives
Storm provides for doing stream processing are “spouts” and “bolts” with interfaces
for users to implement their own customized logic.

Storm provides spouts for transforming the raw stream data into a new stream in
a distributed and reliable way. A new stream in Storm system is a sequence of steps.
For example, a spout may receive sensing data from a sensor network and emit them
as a new stream. It can also connect directly to the APIs, e.g., Facebook, and emits
their raw data as a new stream.

The bolt works as the consumer of streams, performs operations, and then
produces result streams for the next bolt without writing them back to file system or
database. Bolts can perform various operations such as computation, filter, and data
aggregations. As we mentioned, stream processing usually requires multiple steps.
For example, for disaster prediction, the sensing data should first be sampled and
filtered. The output shall be then sent to a prediction algorithm as input.

An example of spouts and bolts working to process stream data is shown in
Fig. 2.6. A processing structure is called as a “topology” in Storm. For different
tasks, we shall have different topologies defined by the developers. Each topology
can be expressed using a directed acyclic graph (DAG), where a vertex can be a
spout or bolt and each edge indicates data flow relationship between the vertices.
A spout or bolt producing streams will send the output stream to next step bolt
subscribed to them if there is an edge between them. Of course, to deal with the
large data volume, both spouts and bolts can execute as many tasks as possible in
parallel across data center to explore the bulk cloud computing resources.
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2.5.2 HAMR

HAMR [17] is also a promising solution for big stream data, specially designed
for in-memory real time analytics. HAMR’s target users are large enterprises,
whose business can benefit from its easy to use in-memory and real time process-
ing (Fig. 2.7).

HAMR provides APIs for users to develop their own workflow of stream
processing. A client node is provided to handle users’ submission of the application
workflows. The workflow then is executed through masters and slaves. A master
node defines the stream main routine, customized by developer themselves. Once
a function is invoked, the workflow will be sent to each slave for processing and
transferred back to the master node after completion.

Each slave is only in charge of a part of the workflow, i.e., flowlets. A flowlet can
be also divided into a number of partitions to be processed on various processors
within one slave, whose behaviors are defined according to corresponding flowlet.
To deal with the relationships between flows, HARM uses key/value pairs to define
where are the next step destination partitions for each flowlet. When the key/value
pairs are defined in a flowlet, the HAMR network layer will find the slaves with
corresponding destination partitions and send the key/value pairs to those slaves.
By such means, the whole network knows where to send every stream flow.
HARM provides many pre-defined flowlets with useful functionalities to simplify
user programming and allows users to design more complex processing to satisfy
different needs on multiple platforms.

2.6 Summary

In this chapter, we present the main cloud networking enabling technologies,
i.e., SDN and NFV, which allow flexible and customizable networking control-
ling and management. Recent industrial products related to the two technologies
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(e.g., OpenFlow, Floodlight, OpenDaylight, Ryu Framework, etc.) are also intro-
duced. Representative big data batch processing frameworks (e.g., MapReduce,
DIYAD) and stream processing frameworks (e.g., Storm, HAMR) are then intro-
duced, respectively.
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Chapter 3
Cloud Networking

3.1 Motivation: Fill the Gap Between Application
and Network

In the last chapter, we have seen the prosperousness in various big data programming
frameworks for either batch data or stream data processing. However, these frame-
works still operate on the infrastructure principle in end-to-end fashion evolved from
traditional Internet networking where transparent end-to-end transmission services
are provided. How data packets are routed in the intermediary devices (e.g., routers)
is invisible and uncontrollable. For example, a server in a data center may use either
UDP datagrams or TCP sockets as the primary interface to interact with the other
servers or to retrieve data from a remote server. On the other hand, the application
itself is also almost invisible to the underlying networks. In other words, network
and applications reciprocally treat each other as black-boxes. Applications have
little controllability via setting few parameters. Actually, this is the design principle
of TCP/IP protocol suite. Bearing such concept, an application simply injects a
packet and the network just forwards it according to its destination address.

Although such black-box design principle made a huge success in the Internet,
the recent rapid development in cloud computing and big data processing expose
its shortcomings. It is shown that the inflexibility of black-box design seriously
obstructs the efficiency of big data processing in geo-distributed data centers. For
example, some recent studies show that data transfer in MapReduce occupies a
large portion of the overall job completion time or even becomes the performance
bottleneck [1–5]. A recent analysis of MapReduce traces from Facebook reveals
that 33 % of the running time of jobs is spent for shuffling data between successive
MapReduce stages [1]. It is also reported that 26 % of Facebook’s MapReduce
jobs are with reduced tasks and the shuffle phase accounts for more than 50 % of
the job completion time. In addition, it even accounts for more than 70 % of the
running time in 16 % of jobs. This confirms that communication indeed is a non-
ignorable issue in MapReduce based big data processing, besides computation and

© Springer International Publishing Switzerland 2015
D. Zeng et al., Cloud Networking for Big Data, Wireless Networks,
DOI 10.1007/978-3-319-24720-5_3

33



34 3 Cloud Networking

storage. Poor and unpredictable network performance is particularly detrimental for
MapReduce job completion time because MapReduce has some implicit barriers
that depend directly on the performance of individual transfers.

Modern data centers intend to promote the inter-server communication efficiency
by providing high-capacity bisection links and alternative multiple paths. Neverthe-
less, traditional general network oriented protocols fail to explore such advantages.
For example, TCP/IP usually assumes a single path between the communication
end hosts and uses other alternative paths only in case of failure. This is a
direct outcome of end-to-end black-box design principle. In spite of its success in
traditional networks with only a few paths between hosts, the potential of modern
data center networks is under-utilized. To address this issue, some new forwarding
protocols like ECMP (Equal Cost Multi-path) [6] are proposed. Although with
improved efficiency, these new forwarding protocols essentially are still limited
due to the obliviousness of individual application’s traffic characteristics, leading
to performance degradation. Therefore, it is highly desiderated that the network
can be programmed at runtime such that communications can be optimized for
faster, service-aware, and more resilient application execution, specially for the
communication-intensive applications such as big data processing. This creates a
strong motivation for a new networking paradigm that fills the gap between applica-
tions and underlying networks. Fortunately, with the recent progress in networking
technologies as reviewed in the last chapter, solid foundation has been built for
creating new networking paradigm to overcome these limitations.

3.2 Cloud Networking Architecture

With the consideration of big data processing requirements and the enabling
technologies such as SDN and NFV, we envision a three-layer cloud network-
ing architecture shown in Fig. 3.1. The application layer provides a programming
interface between end users and underlying physical resources. The middle control
layer performs as a middlebox for resource abstraction and management. Infrastruc-
ture refers to physical resources, including physical computation, communication,
storage, and energy resources. The main functions of the components in control
layers are detailed as follows.

3.2.1 Parser and Scheduler

Parser is in charge of analyzing the application requirements on various kinds of
resources. Different resource provision policies can be specified by programmers
through the networking programming interfaces (NPIs) provided by the parser. For
example, we may incorporate SDN’s NBIs as a subset of NPIs to enable SDN-based
network control and management. We may also use the OpenStack’s APIs to acquire



3.2 Cloud Networking Architecture 35

Application
Plane Parser

Scheduler

Network Manager

Monitor

Flow Entry
Update

VM
Migration

New NF

Cloud Manager

Req. 1 Req. 2 Req. n

VMNFFlow

Flow
Scheduler

Task
Scheduler

VM ManagerNF Installer

Network
Abstraction

Cloud Data
Aggregator

Data
Plane

Control
Plane

Fig. 3.1 Cloud networking

desired network of VMs for building cloud applications. The parser then interprets
these high-level specifications into the commands that can be executed by scheduler
module component, which is responsible for resource allocation. It receives the
requirements from the parser and reacts according to the real time information from
the monitoring components to make the decisions such as where a VM shall be
placed or migrated, which path a flow shall be routed, and what kind of network
function shall be instantiated.
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In particular, different optimization algorithms can be implemented in the
scheduler. These algorithms provide the scheduler the plan on the VM placement,
routing and network function instantiation according to the knowledge from the
parser and the monitoring components. Besides, scheduler can also aggregate
the information from the monitors and make rescheduling decisions accordingly.
The scheduling and rescheduling decisions are passed up to both network manager
and cloud manager for actual realization. By such means, not only big data process-
ing oriented virtual architecture can be deployed beforehand, it can also dynamically
updated according to the on-demand information, making the architecture flexible
enough to meet the changing resource requirement in big data processing.

3.2.2 Network Manager

Network manager takes the routing scheduling and network function instantiation
commands from the scheduler and conducts necessary network operations to realize
the defined activities such as virtual network construction, bandwidth reservation,
packet processing policy formulation, routing path scheduling, and so on, by taking
advantages of the recent evolved SDN and NFV technologies. For example, by
the integrated SDN controller, network manager shall install flow forwarding rules
into the flow tables on network switches according to the scheduler’s routing
decision. It may also deactivate some unused switches and links for energy saving.
Besides SDN controller for network flow management, NFV controller shall also
be integrated for network management. For example, an application developer may
want all the packets to go through a DPI for security concern. A DPI therefore
shall be instantiated in the cloud. Meanwhile, SDN controller shall cooperate with
the decision to redirect all network flows first going through the server hosting the
corresponding DPI function. In addition, network manager also aggregates the data
from the monitor module to provide global and abstracted network view to the
scheduler for real time network planning.

3.2.3 Cloud Manager

As an important part of the network manager, cloud manager is in charge of
task and server resource (i.e., computation and storage) management. It acts as
a bridge to realize operations, such as task construction, task deconstruction, VM
placement, VM migration, data placement, data migration, and so on, in response
to the commands from the scheduler. It enables dynamic cloud resource provision
and further makes cloud resources response to ever-changing demands easily and
quickly as developers can reschedule virtual servers using given interfaces. Many
issues jointly affect the system performance and efficiency. For example, to enable
high quality-of-experience for a cloud service, we may deploy as many VMs as
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we can and assign corresponding tasks on these VMs. Task scheduler and VM
manager shall be responsible for such issues. In addition, we may also dynamically
change the virtualized service infrastructure to react to the changing workloads.
Therefore, similar to the network manager, the cloud manager also checks status of
all the servers, virtual machines, and tasks, then reports relevant information back
to the scheduler during runtime for rescheduling.

3.2.4 Monitor

Monitor component monitors the running status of tasks, flow statistics at routers,
server and router statuses in the cloud computing platform. It is of great importance
to dynamic resource provision. It may periodically polling both the routers and
servers to obtain the required information or asks the routers and servers to actively
report their statuses. For example, both the servers and routers track the ingress
and egress network traffic over their network interfaces. These data are reported
to the network manager. We may also implement Hadoop runtime monitor for
collecting the application-level information at each server. Besides actual monitor-
ing, monitoring component is also able to predict the future resource requirements
according to the past and present information of the request pattern, task processing
statuses, server statuses, etc. All the monitoring information, either from actual
sampling or machine-learning based prediction, is essential for the scheduler to
make appropriate management decisions to the underlying infrastructure according
to the application needs.

3.3 Design Issues

3.3.1 Language Abstractions

To fill the gap between the application and the network, the first requirement is
on the programming issue. Uniform and high level description of the infrastructure
resources and user requirements is needed, making programmers not worry about
the low-level details in the infrastructure hardware, including both servers and
routers. Developers can easily write programs using the specified language to
acquire needed resources and capture intended operation behavior of underlying
hardware. A compiler that is able to transform these specifications into code
segments for both servers and network devices is needed. To support orchestration
on the infrastructure according to the big data processing requirements, fruitful
language abstractions shall be provided, such as:

1. System query abstractions: As we have known, the monitor module can provide
various monitoring information about runtime statuses of both the servers and
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the network devices. To enable the developers to easily get these information
for user-defined scheduling and rescheduling, system query abstractions must be
provided. For example, an OpenFlow switch may store the counters associated
with different forwarding rules or flows, making the programmers able to
understand the networking behavior in fine grain.

2. Virtual network topology construction: It is desirable that the underlying
architecture can be customized according to the big data processing needs.
One of the main principles of cloud computing is sharing. Besides virtualization
technology enabled server sharing, via cloud networking, the network hardware
resources shall be shared among the users, who are with different demands.
Network virtualization is a key technology to pursue such requirement.
Abstraction to enable virtual network topology construction shall be constructed.

3. Network function instantiation. With cloud computing, besides constructing the
virtual network topology according to the big data processing requirements, we
shall also allow the programmers to instantiate different network functions, e.g.,
network address translation, firewall, DNS, DPI, etc., in the network. High-level
network function abstraction therefore shall be provided.

4. VM operation abstraction. Cloud networking does not only focus on the net-
working itself, it is highly recommended that the computation, storage, and
communication can be considered in a joint manner. Therefore, abstraction to
the VM operation shall also be provided. Via such abstraction, programmers can
jointly orchestrate all hardware resources in one control program, enabling more
innovations.

3.3.2 Performance Optimization

System performance is always of the first concern in any system. In big data
processing, especially the big data stream processing, speed is critical to the quality
of data processing. Cloud networking enables flexible control of various network
resources. Further with the server abstraction, it is possible that we can optimize
the overall system performance by jointly consideration of task allocation, VM
placement, data placement, routing scheduling, and network function deployment.
Together with the hardware abstractions, all resources can be rescheduled according
to the application requirement. System-level resource management mechanism
and processing system control shall be established for big data. This radically
changes the vision of resource allocation and scheduling towards performance
promotion. For example, there is no pure end-to-end traffic engineering any more.
All computation, storage, and communication resources shall be jointly considered
towards performance optimization.

Besides static optimization, we may also require runtime optimization according
to the statistics from the monitor module. Therefore, we shall be able to quickly and
dynamically modify previous configurations of the infrastructure to accommodate
new demands. Direct hardware reconfiguration is slow, difficult, and expensive,
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failing to catch up with the “velocity” of big data. The “software definable” cloud
networking provides a promising solution and we shall elaborately leverage such
technology to dynamically optimize the system performance to catch up with the
increasing needs of big data.

3.3.3 Energy and Cost Optimization

Besides the performance issue, the system efficiency is also non-ignorable. System
efficiency directly affects the energy consumption and expenditure. Gartner predicts
that the total CAPEX on hardware investment worldwide on data centers will
surpass 177 billion dollars by 2015. Besides the CAPEX, the OPEX is also
considerably high, specially due to the extremely high energy consumption of large-
scale data centers. As shown in [7], electricity cost has become the dominant OPEX,
even surpassing the CAPEX to service providers and is rising every year. With
the increasing data volume and analytical demands, the processing, storage, and
transmission of big data will inevitably consume more and more electric energy.
As show in this figure form a white book of Intel, the cost of data centers increases
every year. Gartner predicts that by 2015, 71 % of worldwide data center hardware
spending will come from the big data processing, which will surpass $126.2 billion.
Big data nowadays is equivalent to big cost (Fig. 3.2). Lowering data center cost has
therefore become a major concern. Obviously, similar to the performance issue, the
energy and cost efficiency requires a heavy consolidation of both computing and
network resources meanwhile deeply related to the performance issue as we must
guarantee the predetermined quality of service (QoS).
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3.3.4 Flexible Data Management

The significant increasing data deluge in the big data era requires new solutions
on data access, storage, and management. To support storage and management
of large data chunks, distributed file systems like HDFS have been proposed and
widely used. However, existing file systems are strictly designed with a lack of
scalability and flexibility, hence could not satisfy the required performance to obey
SLA. More flexible user-definable data storage system is advocated. For example,
in HDFS, certain redundancy of data chunks is required to ensure the data security.
However, how to utilize these redundancy is not regulated. Via cloud networking,
we shall freely balance the workload by orienting the access paths to leverage these
redundancy. By such means, not only the data security is guaranteed, the system
may also become more efficient. Of course, to achieve this goal, many issues like
redundancy level, load balancing solution, data access route, and data placement
need to be addressed as they directly affect both system performance and efficiency.

3.3.5 Stream Processing Aware Network Resource
Management

Different from the relatively slow change of pre-storage data systems, real time
stream data, e.g., sensor streams, stock market data streams, chain store sales
streams, etc., are continuously generated at unprecedented rates. Present batch
data oriented data processing framework is not suitable any more. Although some
specific stream processing frameworks are proposed and implemented. These
frameworks hide many low-level details for general purpose use. Although such
manner makes programming easier, it is not flexible enough for programmers to effi-
ciently use the underlying infrastructure resources in an application-oriented way.
In stream processing, a stream may go through a number of different processing
units with different semantics. Allowing developers to determine the number of
processing units and where they shall be deployed is significant to promote the
system performance and efficiency. By such means, an inevitable issue is how
to route the stream flows among these processing units. Thanks to the seamless
integration of application and networking via cloud networking, we can carefully
plan this and program it according to the application characteristics. Besides the
processing units, stream processing may have multiple cooperative data sources,
infrastructure providers, and service providers. For example, chain store customer
purchasing pattern analysis needs to collect data from many geo-distributed stores.
A comprehensive stream processing architecture must be established to carefully
orchestrate the available data sources and infrastructure resources.
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3.3.6 Security

Data security is essential in big data processing. Cloud networking allows users to
customize any network topology integrated with different network functions in one
shared physical network. It delivers optimization opportunities but also a challenge
how to ensure the data security of big data processing. For example, the credit
card billing data contain some sensitive personal information and the details of
customers’ purchasing. The challenge comes from the fact that the developers shall
be responsible for data security guaranteeing since the networks are programmable.
On the other hand, fortunately, cloud networking is a promising technology for
adding network level intelligence in the consideration of data security. For example,
we can freely deploy DPI functions or firewalls via NFV technology as needed.
We may also apply SDN to customize the routing paths, monitor data traffic,
diagnose threats, and migrate security challenges.

3.4 Cloud Networking and Big Data Related Work Review

With the recent networking technology evolution and emerging big data pro-
cessing requirements, many efforts have been devoted to develop these emerging
technologies and leverage these technologies to achieve various optimization goals.
These studies provide us precious results and experiences on how to improve the
cloud networking and how to leverage cloud networking for big data processing
optimizations. We summarize some recent representative work in different areas as
follows.

3.4.1 Energy and Cost Reduction

A large number of data centers are being operated by cloud service providers such
as Google, Microsoft, and Amazon. According to [8], a data center may consist
of thousands of servers and consume megawatts of power. Millions of dollars on
electricity cost have posed a heavy burden on the OPEX to data center providers.
Therefore, reducing the electricity cost has received significant attention from both
academia and industry, and many technologies and schemes have been proposed to
decrease the energy consumption and electricity cost in data centers [8–11]. Among
the mechanisms that have been proposed so far for data center energy management,
the techniques that attract lots of attention is data center resizing (DCR). DCR is
a mechanism to reduce energy consumption by changing the numbers of activated
servers in each data center. By DCR, the unused servers are put into sleeping state
or even shutdown to save energy and hence the electricity cost. Although DCR
mainly refers to the activation/deactivation of servers, it is also highly correlated
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with communications as DCR is usually jointly investigated with task (or request)
dispatching. The tasks can be only distributed to the activated servers. In 2010,
Rao et al. [12] publish their work on how to reduce electricity cost by routing user
requests to geo-distributed data centers with accordingly updated sizes that match
the requests. Later, Liu et al. [13] re-examine the same problem by taking network
delay into consideration.

With the possibility of dynamic workload distribution and scheduling, we can
also explore the electricity price heterogeneity for OPEX reduction. Geo-distributed
data centers have various electricity prices and processing abilities. Distributing
more workloads to data centers with lower price and higher processing abilities
can potentially reduce the total electricity cost, provided that the predefined QoS is
guaranteed. Request mapping dynamically dispatches workloads across all available
data centers to exploit electricity price heterogeneities. Gao et al. [14] propose
optimal workload control and balancing by taking account of access latency, carbon
footprint, and electricity costs. In the same year, Liu et al. [15] published their work
on reducing electricity cost and environmental impact using a holistic approach
of workload balancing that integrates renewable supply, dynamic pricing, and
cooling supply. Later, Delimitrou et al. [16] present Paragon, a heterogeneity- and
interference-aware online DC scheduler, which is derived from robust analytical
methods, instead of by profiling each application.

To reduce the energy consumption and lower the OPEX, dynamic workload
distribution is inevitably needed. Cloud networking technique is quite helpful to
enable service developers to program the network according to the optimization
objectives. As we have known, load balancing can be easily realized via controlling
the routing behaviors to balance the workloads.

3.4.2 VM Placement

With virtualization technology, physical machines (PMs) in data centers, i.e.,
servers, are organized as VMs with specific types, to meet requirements of various
cloud service providers. User requests can be only distributed to these types of
VMs that are deployed by the corresponding service provider. In modern data
centers, servers are virtualized into several types of VMs with corresponding
physical resources to process different user requests. VMs in data centers have
been widely investigated in the literature. For example, Liu et al. [17] propose
GreenCloud architecture which enables comprehensive online-monitoring, live VM
migration, and VM placement optimization towards energy minimization. Besides
the consideration on the energy efficiency issue, Meng et al. [18] improve the
network scalability by optimizing the traffic-aware VM placement according to
the traffic patterns among VMs. Cohen et al. [19] also study the problem of VM
placement for the traffic intense data centers, but with a goal of maximizing the
benefit (i.e., demand satisfaction) from the overall communication sent by the VMs
to a single designated point in the data center.
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Task distribution and VM placement are two mostly used methods to improve the
data center performance and utility. Xu et al. [20] propose a two-level control system
to manage the mappings of workloads to VMs and VMs to physical resources.
They treat the VM placement problem as a multi-objective optimization problem in
order to simultaneously minimize total resource wastage, power consumption, and
thermal dissipation cost. Jiang et al. [21] study joint tenant (e.g., server or virtual
machine) placement and routing problem to minimize traffic costs and propose an
efficient online algorithm in a dynamic environment under changing traffic loads.
Later, Zeng et al. [22] address the problem of VM placement to minimize the
aggregated communication cost within a data center under the consideration of both
architectural and resource constraints.

It can be seen that workload distribution shall also be considered in VM
placement and migration. Via cloud networking, we can control the workload
distribution in a fine-grained manner. Today’s data centers host online services on
multiple servers, with a front-end load balancer directing each client request to a
particular replica. Dedicated load balancers are expensive and quickly become a
single point of failure and congestion. Wang et al. [23] propose a proactive server
load balancing approach by leveraging SDN to proactively install wildcard rules
in the switches to direct requests for large groups of clients, without involving
the controller. A binary tree representation of IP prefix is used to implement their
design. Besides, from these related studies, we can see that VM placement or
migration has deep influence on many communication issues, e.g., service response
latency, communication cost, traffic congestion, etc. Therefore, we shall investigate
VM placement/migration with the consideration of networking. We can specify
the network policy via cloud networking, together with VM placement/migration,
to achieve various performance and efficiency goals.

3.4.3 Big Data Placement

Big data services are characterized by its large storage and communication resource
requirements. The first key issue in big data management is reliable and effective
data placement. To achieve this goal, Sathiamoorthy et al. [24] present a novel
family of erasure codes that are efficiently repairable and offer higher reliability
compared to Reed-Solomon codes. They also analytically show that their codes
are optimal on an identified tradeoff between locality and minimum distance. Yazd
et al. [25] make use of flexibility in the data block placement policy to increase
energy efficiency in data centers and propose a scheduling algorithm, which takes
into account energy efficiency in addition to fairness and data locality properties.
Hu et al. [26] propose a mechanism allowing linked open data to take advantage of
existing large-scale data stores to meet the requirements on distributed and parallel
data processing. Moreover, how to allocate the computation resources to tasks
has also drawn much attention. Cohen et al. [27] present new design philosophy,
techniques, and experience providing a new magnetic, agile, and deep data analysis
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for one of the world’s largest advertising networks at Fox Audience Network, using
the Greenplum parallel database system. Kaushik et al. [28] propose a novel, data-
centric algorithm to reduce energy costs and with the guarantee of thermal-reliability
of the servers. Chen et al. [29] consider the problem of jointly scheduling all three
phases, i.e., map, shuffle, and reduce, of the MapReduce process and propose a
practical heuristic to combat the high scheduling complexity. Agarwal et al. [30]
propose an automated data placement mechanism Volley for geo-distributed cloud
services with the consideration of WAN bandwidth cost, data center capacity limits,
data inter-dependencies, etc. Cloud services make use of Volley by submitting logs
of datacenter requests. Volley analyzes the logs using an iterative optimization
algorithm based on data access patterns and client locations, and outputs migration
recommendations back to the cloud service. Shachnai et al. [31] investigate how
to determine a placement of Video-on-Demand (VoD) file copies on the servers
and the amount of load capacity assigned to each file copy so as to minimize the
communication cost while ensuring the user experience. Cidon et al. [32] invent
MinCopysets, a data replication placement scheme that decouples data distribution
and replication to improve the data durability properties in distributed data centers.
Recently, Jin et al. [33] propose a joint optimization scheme that simultaneously
optimizes VM placement and network flow routing to maximize energy savings.

Data placement also has deep impact on the network performance and effi-
ciency, especially those data-intensive big data applications. Similar to VM place-
ment/migration, it is not an independent issue either. A service provider shall
jointly consider both data placement and network management. Again, cloud
networking provides such possibility to program the network simultaneously with
data placement specification.

3.4.4 Big Data Stream Processing

Besides big batch data processing, big data stream processing is a new challenge
which is attracting researchers’ attention in the literature from different aspects.
The study on stream data processing started from many years ago. In 2002,
Humphreys et al. [34] gave examples of real-world applications that use Chromium
to achieve good scalability on clusters of workstations, and describe other poten-
tial uses of this stream processing technology. Cherniack et al. [35] propose a
centralized stream processor “Aurora,” in which for each ad hoc query there is
a deterministic flow graph. Tian et al. [36] study a resource allocation problem
in stream environment with the goal of network utility maximization but the
dependency between nodes in the stream workflow is not considered. He et al. [37]
reveal strong temporal and spatial correlations among queries and propose Comet
that is able to significantly eliminate I/O redundancies and temporal load imbalance.
Zhao et al. [38] propose a unified modeling framework for distributed fork and
join processing, based on which they formulate resource allocation problem into an
optimization problem and solve it using a distributed back-pressure based algorithm.



3.4 Cloud Networking and Big Data Related Work Review 45

Task placement (also referred to as operator placement) has attracted significant
interests in the distributed stream processing systems community. Lakshmanan
et al. [39] propose a placement strategy for stateless tasks in order to improve the
performance of the message processing.

Different from conventional stream processing studies, big data stream pro-
cessing is characterized by its big data volume and fast data rate. Therefore,
public clouds, or geo-distributed data centers, are explored to provide computation
and communication resources. One of the leading elements of IBM portfolio in
stream processing is InfoSphere Streams [40], a versatile, high-performance, and
cost effective solution that manages and analyzes massive volume, variety, and
velocity of data that consumers and businesses create every day. [41] is an Apache-
based Storm processing handler with fully certified component of Hortonworks
data platform. It provides customers with stream processing for real time analysis
of some of the most common new types of data such as sensor and machine
data. Amazon also provides Kinesis [42], by which users can call for large-scale,
real time data ingestion and processing in any situation. Logs for servers and
other IT infrastructure, social media or market data feeds, web clickstream data,
and the like are all great candidates for processing with Kinesis. Another famous
framework called Spark [13] is an open source, parallel data processing framework
that complements Apache Hadoop to make it easy to develop fast, unified big data
applications combining batch, stream, and interactive analytics. Data Torrent [43] is
a next-generation in-memory stream framework that can process huge amounts of
data in a reliable, enterprise-worthy manner.

Without doubt that stream processing has a strong relationship with the network-
ing issue as large volume of data may be transferred between different processors.
How the communication performs directly affects the overall performance and
efficiency. However, existing frameworks, like Storm and Spark, they still treat
the network as a blackbox, leaving no space for developers to optimize the
communications. Cloud computing fills such gap by providing NPIs such that the
network can be programmed according to the stream processing needs, together
with the actual application development.

3.4.5 Big Data Aware Traffic Cost Optimization

Cloud networking can be applied in geo-distributed data centers. There are many
recent studies on traffic cost minimization in geo-distributed data centers focusing
on routing strategies and resource optimization. Regarding cloud providers’ opera-
tional costs on network traffic, Zhang et al. [44] design a routing algorithm using
the flow-based model to optimize the costs on DC-to-client traffic in each time
interval. Laoutaris et al. [45] propose NetStitcher, which explores the under-utilized
bandwidth at night to transfer bulk data among data centers through store-and-
forward approach to reduce inter-DC traffic cost. Feng et al. [46] propose Postcard
to minimize the network cost of multiple source-destination traffic pairs. Postcard is
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also in the concept of store-and-forward via leveraging the intermediate data centers.
Fang et al. [47] present a novel approach, called VMPlanner, for network power
reduction in the virtualization-based data centers. The basic idea of VMPlanner
is to jointly optimize virtual machine placement and traffic flow routing so as
to turn off as many unneeded network elements as possible for power saving.
Lee et al. [48] propose an architecture that adopts a “what if” methodology to
guide allocation decisions taken by the IaaS. The architecture uses a prediction
engine with a lightweight simulator to estimate the performance of a given resource
allocation and a genetic algorithm to find an optimized solution in the large search
space. Corradi et al. [49] focus on it from a more practical viewpoint, with specific
attention on the consolidation aspects related to power, CPU, and networking
resource sharing using OpenStack. Moreover, they propose a cloud management
platform to optimize VM consolidation along three main dimensions, namely power
consumption, host resources, and networking. A virtual execution environment,
consisting of VMs interconnected with virtual networks, provides opportunities
to dynamically optimize, at run-time, the performance of existing, unmodified
distributed applications without any user or programmer intervention is proposed
by Sundararaj et al. [50]. Lange et al. [51] propose VTL which is a framework
for packet modification and creation whose purpose is to modify network traffic to
and from a VM, doing so transparently to the VM and its applications. Calcavecchia
et al. [52] provide a practical model of cloud placement management under a stream
of requests and present a novel technique called Backward Speculative Placement
(BSP) that projects the past demand behavior of a VM to a candidate target host. [53]
focus on satisfying the traffic demands of the VMs in addition to CPU and memory
requirements. This is a much more complex problem both due to its quadratic nature
(being the communication between a pair of VMs) and since it involves many factors
beyond the physical host, like the network topologies and the routing scheme.

It can be seen that most traffic optimization studies mentioned above more or less
are related to VMs. This falls into the design concept of cloud networking that the
networking shall not be treated as a blackbox, but shall be jointly considered with the
computation hosts, e.g., VMs. According to our cloud networking architecture, it is
possible to put all these resources in one pool such that programmers or developers
can easily manages using the given APIs. This potentially promotes the flexibility
and hence the efficiency.

3.4.6 SDN Aware Optimization

As a key enabling technology to cloud networking, SDN plays an important role
and has also been attracting much attention in the research communication. Many
studies have been proposed from different aspects. We briefly summarize some of
them as follows.
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3.4.6.1 SDN-Based Routing Optimization

Some recent initiatives leverage SDN to optimize data flow routing and perform
load balancing among the available multiple paths. For example, Agarwal et al. [54]
show how to leverage the centralized controller to get significant improvements in
network utilization as well as to reduce packet losses and delays. The core concept is
to manipulate the network traffic that passes through the SDN forwarding element in
hybrid SDN networks where the SDN switches and conventional switches coexist,
as SDN switches are incrementally deployed. Jain et al. [55] explain key reasons
for virtualization and briefly explain several of the networking technologies that
have been developed recently or are being developed in various standard bodies. In
particular, they illustrate SDN’s applicability with their own research on OpenADN
application delivery in a multi-cloud environment. Hong et al. [56] present SWAN
that boosts the utilization of inter-data center networks by centrally controlling the
network traffic load according to the traffic demand. They leverage a small amount
of scratch capacity on links to apply multi-stage updates in a provably congestion-
free and order-oblivious manner. They also classify the cloud services into three
types: interactive, elastic, and background, with different traffic characteristics.
Besides applying SDN to the backbone networks or data center networks, recently,
Lee et al. [57] propose meSDN that extends SDN capability to mobile end devices
so as to provide true end-to-end software-defined solutions for network problems.

To big data processing, systems such as Hedera [58], MicroTE [59], Mahout [60]
and DARD [61] are proposed. They all implement a flow scheduler and use current
network load statistics to estimate traffic demands and dynamically redistribute
flows among the available paths.

Hedera [58] dynamically schedule flows among the multipaths in data center
networks with the goal of maximizing aggregated network utilization. Hedera is
motivated by the observation that the large elephant flows may cause network
bottlenecks and severely degrade the system performance if they are not well
scheduled. Hedera leverages a global view of the routing and traffic demands.
A flow-level information is proposed to enable the scheduler to detect elephant flow
whose rate is beyond a predefined threshold. By estimating how much bandwidth
the elephant needs, the controller computes the available nonconflicting paths and
instructs the associated switches to re-route the detected elephant flows according
to ease the burden on the congested paths.

Mahout [60] relies on the same ideas behind Hedera to maximize the aggregate
network utilization. However, it overcomes Hedera’s performance limitations by
pushing the large flow detection to the end-hosts and using an inband signaling
mechanism. A key idea of the Mahout system is to monitor end-host’s socket buffers
for elephant flow detection. It relies on the fact that applications fill the TCP buffers
at a rate much higher than the observed network rate. Once one or more elephant
flows are detected, a central controller uses placement algorithms to compute good
paths for them and instructs switches to reroute traffic accordingly. This is similar to
Hedera, but with the difference that in Mahout the elephant flow detection happens
sooner and in the end-host.
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Beson et al. [59] propose MicroTE relying on fact that many flows in a data
center are with predictable traffic demands. MicroTE is a fine-grained multipath
flow scheduling approach that leverages short-term traffic prediction and a global
view of the network to reschedule flows so as to mitigate the congestion caused by
the unpredictable traffic.

DARD (Distributed Adaptive Routing for Data centers) [61] is a flow scheduling
system that allows each end-host to move traffic from overloaded to underloaded
paths. Unlike the other systems described earlier, DARD does not require central
coordination. Instead, it lets end-hosts select paths based only on their local
knowledge and uses a game theory inspired algorithm to achieve global optimization
goals. Once an elephant flow is detected, DARD has to decide if this flow should be
moved to a different path or not.

3.4.6.2 SDN Aware Energy Optimization

Via SDN, we can flexibly orchestrate the available networking resources to promote
the system performance. Besides, it is also possible to leverage it for energy
optimization and many efforts have been already devoted to this area.

Wang et al. [62] propose CARPO, a correlation-aware power optimization
algorithm that dynamically consolidates traffic flows onto a small set of links and
switches in a data center networks and then shuts down unused network devices for
energy savings. CARPO is designed based on a key observation by analyzing real
data center network traces that the bandwidth demands of different flows do not peak
at exactly the same time. As a result, if the correlations among flows are considered
in consolidation, more energy savings can be achieved. In addition, CARPO
integrates traffic consolidation with link rate adaptation to further maximize energy
savings.

Wang et al. [63] propose a novel energy saving model for data center networks
by scheduling and routing “deadline-constrained flows” where the transmission of
every flow has to be accomplished before a rigorous deadline. They characterize
the energy optimization problem with a time-aware model and solve it by assigning
VMs to servers to reduce the amount of traffic and to generate favorable conditions
for traffic engineering for reducing the number of active switches and balancing
traffic flows.

Li et al. [64] propose an SDN-based energy-aware routing called exclusive
routing (EXR) for data center networks. Instead of letting the flows fairly share
the bandwidth, EXR sets different priorities of flows and makes them exclusively
occupy the communication links in order to promote the link utilizations and hence
the energy efficiency.
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3.4.6.3 Programming and Abstraction

PaaS eases cloud deployment by automating placement decisions, scaling, and
maintenance of the infrastructure. Yet, most PaaS offers limited network support to
HTTP and application development needs other protocols that can hardly be used.
To address this problem, Kachele et al. [65] propose COSCAnet as a PaaS-cloud
network layer that virtualizes socket interfaces for UDP and TCP. In [66], Jain et al.
present the design, implementation, and evaluation of B4, a private WAN connecting
Google’s data centers across the planet. It can be seen that a new form of network
programming is demanded the big data era. Nunes et al. [67] survey the state-of-
the-art in programmable networks, with an emphasis on SDN. Many OpenFlow
standard compliant software switch (e.g., Open vSwitch [68], Pantou/OpenWRT
[69] etc.) and controller (e.g., POX [70], OVS-Controller [68], etc.) implementations
are summarized and compared.

To SDN programming, how to specify the rules in the programmable switches
plays a key role. Consequently, some studies are also devoted to programming
abstraction and optimization on rule specification. In SDN, the controller responds
for installing flow-based rules at switches in either reactive or proactive approach.
The reactive approach allows controller applications to dynamically manage net-
work flows at runtime according to realtime traffic demands and network conditions.
However, it performs worse than the proactive one due to the involvement of
controller. In the proactive approach, the controller installs rules in switches
beforehand for all the flows going through these switches. However, the proactive
approach requires a priori knowledge of traffic shapes and network conditions at all
switches. Obviously, reactive approach is more flexible and elastic than the proactive
one. To reduce the controller involvement in reactive approach for performance
promotion, many studies recognize the limitations of flow-based rules and have
proposed data plane oriented optimizations. DevoFlow [71] reduces the controller
overhead by introducing rule cloning and measurement triggers. OpenFlow 1.3
supports rate limiting by allowing switches to track flow rates and tag/drop excess
traffic without the controller involvement. Open vSwitch [68] allows software
switches to install new rules when traffic matches an old rule. Moshref et al. [72]
propose FAST (Flow-level State Transitions) as a switch abstraction that allows
the controller to proactively program state transitions, and allows switches to run
dynamic actions based on local information.

3.4.6.4 SDN Rule Management

Forwarding table in an SDN-enabled switch often relies on TCAM memory, which
is expensive and limited. To address this problem and efficiently use these limited
TCAM memory, many methods have been proposed in the literature.

It is highly recommended that multipath routing shall be used in data center
networks to explore the potential of multiple coexisting paths between communica-
tion ends. However, when SDN is incorporated, although it takes in many benefits,
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some new constraints are also added in. Giroire et al. [73] notice that if we use
15-shortest paths between each pair of switches (as in MPLS) for fully network
capacity exploration, installing these tunnels needs up to 20K rules at switches while
off-the-shelf Broadcom Trident2 chipset supports only 16K OpenFlow rules. They
present an ILP formulation on the SDN-based energy-aware routing via minimizing
the number of activated links and specially address the issue that the OpenFlow
switch can hold a finite number of rules. Nguyen et al. [74] argue that it is essential
to respect the endpoint policy (i.e., reach the desired set of egress points for an
ingress point). They therefore study rule placement strategy to maximize the value
of the traffic that respects the endpoint policy in SDNs via trading routing for
better efficiency. The switch memory capacity constraints are considered. Cohen
et al. [75] investigate the effect of forwarding table size on the network utilization.
They formulate the problem into a bounded path-degree max-flow problem which
is described using LP. They describe the rule capacity constraints on each switch as
path-degree constraints and assume pre-known paths between communication pairs.
The available paths that can be selected for traffic routing are limited by forwarding
table sizes.

Yu et al. [76] propose DIFANE, a scalable and efficient solution that keeps
all traffic in the data plane by selectively directing packets through intermediate
switches that store the necessary rules. DIFANE relegates the controller to simply
partition these rules among the managed switches. DIFANE uses auxiliary TCAMs
as secondary caches to the switches already in the network.

Kanizo et al. [77] introduce Palette distribution framework for decomposing
large SDN tables into small ones and distributing these subtables onto appropriate
switches so as to balance the sizes of tables across the network and reduce the
total number of entries. Two table decomposing algorithms, Pivot Bit Decompo-
sition (PBD) and Cut-Based Decomposition (CBD), are proposed. The subtable
distributing problem is modelled into a rainbow path problem to decide the colors
(equivalent to subtables) that shall be allocated to a node (equivalent to switch). Each
path traverses all tables at least once (requirement). Later, Kang et al. [78] propose
a method that can minimize the number of rules needed to realize the end point
policy. They propose a rectangular representation of the endpoint policy and a rule
allocation scheme based on LP. They also advocate that three-tier abstraction for
SDN as (1) high-level SDN applications should define their end-point connectivity
policy on top of switch abstraction; (2) a mid-level SDN infrastructure layer should
decide on the hop-by-hop routing policy; and (3) a compiler should synthesize an
effective set of forwarding rules that obey the user-defined policies and adhere to
the resource constraints of the underlying hardware.

Katta et al. [79] think that any infinite SDN switch must satisfy four core
criteria: (1) elasticity (combining the best of hardware and software switches),
(2) transparency (supporting native OpenFlow semantics faithfully), (3) fine-grained
rule caching (placing popular rules in the TCAM, despite dependencies on less-
popular rules), and (4) malleability (to enable incremental changes to rule caching
as traffic demands change). They propose CacheFlow that supports all these four
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properties while rewriting, reordering, and caching important switch rules using a
novel set of algorithms specifically tailored for the challenges and opportunities
in SDN.

3.4.7 Network Function Virtualization

It is widely agreed that network virtualization is the key to the current and future
success of cloud computing. As a result, there is a recent trend towards NFV,
which essentially transforms existing network devices or physical entities into
software-based, virtualized ones. Towards this goal, Martins et al. [80] introduce
a high-performance, virtualized software middlebox platform called ClickOS. Each
ClickOS VM has only 5MB and can boot in about 30 milliseconds. It is also reported
that only 45 microseconds are added and over one hundred of them can be run
concurrently to saturate a 10Gb link on a commodity server. By implementing a
wide range of middleboxes including firewall, network address translation (NAT),
load balance, they show that ClickOS can handle millions of packets in 1 s. Via
the concept of NFV, Riggio et al. [81] present an experimental testbed called
EmPOWER, which aims at providing an open platform for new networking idea
testing. The EmPOWER testbed consists of 30 nodes and is currently used by both
undergraduate and graduate students at the University of Trento and by the research
staff at CREATE-NET.

Besides data center networks, NFV can be also applied to wireless access
networks. Pentikousis et al. [82] argue that carrier networks can benefit from
advances in computer science and pertinent technology trends by incorporating
a new way of thinking in their current toolbox. They introduce a blueprint for
implementing current as well as future network architectures based on an SDN
approach. Their proposed architecture enables operators to capitalize on a flow-
based forwarding model and fosters a rich environment for innovation inside the
mobile network. Their proposal is validated in their wireless network research
laboratory. The programmability and flexibility of the architecture are demonstrated.

3.5 Summary

In this chapter, we propose a three-layer cloud networking architecture to fill the
gap between application and network for big data processing. Besides the basic
architecture, we further discuss many design issues (e.g., language abstraction, big
data processing oriented network resource management, performance and efficiency
optimization, etc.) that shall be addressed in cloud networking. Some related work
on cloud networking and big data, with an emphasis on those which are related to
the design issues of cloud networking, are also reviewed and summarized.
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Chapter 4
Cost Minimization for Big Data Processing
in Geo-Distributed Data Centers

As we have known, cloud networking provides the possibility of orchestrating all
resources towards different optimisation goals. For data transferring between the
storage units and the processing units in big batch data (e.g., credit billing data)
processing, SDN enables the programmers to customize the data routing as needed.
Communication cost of large volume data transferring is non-ignorable and shall be
carefully addressed in the consideration of cost efficiency. In this chapter, we discuss
how to explore communication cost diversity in geo-distributed data centers towards
big batch data processing cost efficiency and propose a scheduling algorithm that
can be incorporated into the scheduler module in cloud networking [1].

4.1 Motivation and Problem Statement

Data explosion in recent years leads to a rising demand for big data processing
in modern data centers that are usually distributed at different geographic regions,
e.g., Google’s 13 data centers over 8 countries in 4 continents [2]. Big data analysis
has shown its great potential in unearthing valuable insights of data to improve
decision-making, minimize risk, and develop new products and services. On the
other hand, big data has already translated into big price due to its high demand
on computation and communication resources [3]. Therefore, it is imperative to
study the cost minimization problem for big data processing in geo-distributed data
centers.

Many proposals have been made to lower the computation or communication
cost of data centers. Data center resizing (DCR) has been proposed to reduce
the computation cost by adjusting the number of activated servers via task place-
ment [4]. Based on DCR, some studies have explored the geographical distribution
nature of data centers and electricity price heterogeneity to lower the electricity
cost [5–8]. Big data service frameworks, e.g., [9], comprise a distributed file system
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underneath, which distributes data chunks and their replicas across the data centers
for fine-grained load-balancing and high parallel data access performance. To reduce
the communication cost, a few recent studies make efforts to improve data locality
by placing jobs on the servers where the input data reside to avoid remote data
loading [8, 9].

Although the above solutions have obtained some positive results, they are far
from achieving the cost-efficient big data processing because of the following
weaknesses:

• The data locality may result in a waste of resources. For example, most
computation resource of a server with less popular data may stay idle. The low
resource utility further causes more servers to be activated and hence higher
operating cost.

• The links in networks vary on the transmission rates and costs according to
their unique features [10], e.g., the distances and physical optical fiber facilities
between data centers. However, the existing routing strategy among data centers
fails to exploit the link diversity of data center networks.Due to the storage and
computation capacity constraints, not all tasks can be placed onto the same server,
on which their corresponding data reside. It is unavoidable that certain data must
be downloaded from a remote server. In this case, routing strategy matters on
the transmission cost. As indicated by Jin et al. [11], the transmission cost, e.g.,
energy, nearly proportional to the number of network link used. The more link
used, the higher cost will be incurred. Therefore, it is essential to lower the
number of links used while satisfying all the transmission requirements.

• The Quality-of-Service (QoS) of big data tasks has not been considered in
existing work. Similar to conventional cloud services, big data applications also
exhibit Service-Level-Agreement (SLA) between a service provider and the
requesters. To observe SLA, a certain level of QoS, usually in terms of task
completion time, shall be guaranteed. The QoS of any cloud computing tasks is
first determined by where they are placed and how many computation resources
are allocated. Besides, the transmission rate is another influential factor since
big data tasks are data-centric and the computation task cannot proceed until the
corresponding data are available.

Existing studies, e.g., [4], on general cloud computing tasks mainly focus on the
computation capacity constraints, while ignoring the constraints of transmission
rate. To conquer above weaknesses, we study the cost minimization problem for
big data processing via joint optimization of task assignment, data placement, and
routing in geo-distributed data centers. Specifically, we consider the following issues
in our joint optimization. Servers are equipped with limited storage and computation
resources. Each data chunk has a storage requirement and will be required by big
data tasks. The data placement and task assignment are transparent to the data users
with guaranteed QoS. Our objective is to optimize the big data placement, task
assignment, routing and DCR such that the overall computation and communication
cost is minimized.
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4.2 System Model

In this section, we introduce the system model. For the convenience of the readers,
the major notations used in this paper are listed in Table 4.1.

4.2.1 Network Model

We consider a geo-distributed data center topology as shown in Fig. 4.1, in which
all servers of the same data center (DC) are connected to their local switch, while
data centers are connected through switches. There are a set I of data centers, and
each data center i 2 I consists of a set Ji of servers that are connected to a switch
mi 2 M with a local transmission cost of CL. In general, the transmission cost CR for
inter-data center traffic is greater than CL, i.e., CR > CL. Without loss of generality,
all servers in the network have the same computation resource and storage capacity,
both of which are normalized to one unit. We use J to denote the set of all severs,
i.e., J D J1

S
J2 � � �S JjIj.

Table 4.1 Notations Constants

Ji The set of servers in data center i

mi The switch in data center i

w.u;v/ The weight of link .u; v/

�k The size of chunk k

�k The task arrival rate for data chunk k

P The number of data chunk replicas

D The maximum expected response time

Pj The power consumption of server j

�.u;v/ The transmission rate of link .u; v/

Variables

xj A binary variable indicating if server j is activated

or not

yjk A binary variable indicating if chunk k is placed

on server j or not

z.u;v/
jk A binary variable indicating if link .u; v/ is used

for flow for chunk k on server j

�jk The request rate for chunk k on server j

�jk The CPU usage of chunk k on server j

�jk The CPU processing rate of chunk k on server j

f .u;v/
jk The flow for chunk k destined to server j through

link .u; v/
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Fig. 4.1 Data center topology

The whole system can be modeled as a directed graph G D .N; E/. The vertex
set N D M

S
J includes the set M of all switches and the set J of all servers, and

E is the directional edge set. All servers are connected to, and only to, their local
switch via intra-data center links while the switches are connected via inter-data
center links determined by their physical connection. The weight of each link w.u;v/,
representing the corresponding communication cost, can be defined as

w.u;v/ D
(

CR; if u; v 2 M;

CL; otherwise:
(4.1)

4.2.2 Task Model

We consider big data tasks targeting on data stored in a distributed file system that
is built on geo-distributed data centers. The data are divided into a set K of chunks.
Each chunk k 2 K has the size of �k.�k � 1/, which is normalized to the server
storage capacity. P-way replica [12] is used in our model. That is, for each chunk,
there are exactly P copies stored in the distributed file system for resiliency and
fault-tolerance.

It has been widely agreed that the tasks arrival at data centers during a time period
can be viewed as a Poisson process [10, 13]. In particular, let �k be the average
task arrival rate requesting chunk k. Since these tasks will be distributed to servers
with a fixed probability, the task arrival in each server can be also regarded as a
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Poisson process. We denote the average arrival rate of task for chunk k on server
j as �jk.�jk � 1/. When a task is distributed to a server where its requested data
chunk does not reside, it needs to wait for the data chunk to be transferred. Each
task should be responded in time D.

Moreover, in practical data center management, many task predication mech-
anisms based on the historical statistics have been developed and applied to the
decision making in data centers [12]. To keep the data center settings up-to-date,
data center operators may make adjustment according to the task predication period
by period [4, 5, 14]. This approach is also adopted in this paper.

4.3 Problem Formulation

In this section, we first present the constraints of data and task placement, remote
data loading, and QoS. Then, we give the complete formulation of the cost
minimization problem in a mixed-integer nonlinear programming form.

4.3.1 Constraints of Data and Task Placement

We define a binary variable yjk to denote whether chunk k is placed on server j as
follows:

yjk D
(

1; if chunk k is placed on server j;

0; Otherwise:
(4.2)

In the distributed file system, we maintain P copies for each chunk k 2 K, which
leads to the following constraint:

X

j2J

yjk D P; 8k 2 K: (4.3)

Furthermore, the data stored in each server j 2 J cannot exceed its storage
capacity, i.e.,

X

k2K

yjk � �k � 1; 8j 2 J: (4.4)

As for task distribution, the sum rates of task assigned to each server should be
equal to the overall rate,

�k D
X

j2J

�jk; 8k 2 K: (4.5)
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Finally, we define a binary variable xj to denote whether server j is activated, i.e.,

xj D
(

1; if this server is activated,

0; otherwise.
(4.6)

A server shall be activated if there are data chunks placed onto it or tasks assigned
to it. Therefore, we have

P
k2K yjk C P

k2K �jk

K C P
k2K �k

� xj �
X

k2K

yjk C A
X

k2K

�jk; 8j 2 J; (4.7)

where A is an arbitrarily large number.

4.3.2 Constraints of Data Loading

Note that when a data chunk k is required by a server j, it may cause internal and
external data transmissions. This routing procedure can be formulated by a flow
model. All the nodes N in graph G, including the servers and switches, can be
divided into three categories:

• Source nodes u.u 2 J/. They are the servers with chunk k stored in it. In this
case, the total outlet flows to destination server j for chunk k from all source
nodes shall meet the total chunk requirement per time unit as �jk � �k.

• Relay nodes mi.mi 2 M/. They receive data flows from source nodes and forward
them according to the routing strategy.

• Destination node j.j 2 J/. When the required chunk is not stored in the
destination node, i.e., yjk D 0, it must receive the data flows of chunk k at a
rate �jk � �k.

Let f .u;v/
jk denote the flow over the link .u; v/ 2 E carrying data of chunk k 2 K

and destined to server j 2 J. Then, the constraints on the above three categories of
nodes can be expressed as follows, respectively.

f .u;v/
jk � yuk � �k � �k; 8.u; v/ 2 E; u; j 2 J; k 2 K (4.8)

X

.u;v/2E

f .u;v/
jk �

X

.v;w/2E

f .v;w/
jk D 0; 8v 2 M; j 2 J; k 2 K (4.9)

X

.u;j/2E

f .u;j/
jk D .1 � yjk/�jk � �k; 8j 2 J; k 2 K (4.10)

Note that a non-zero flow f .u;v/
jk emitting from server u only if it keeps a copy of

chunk k, i.e., yuk D 1, as characterized in (4.8). The flow conservation is maintained
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Fig. 4.2 Two-dimensional Markov Chain

on each switch as shown in (4.9). Finally, the destination receives all data �k � �k

from others only when it does not hold a copy of chunk k, i.e., yik D 0. This is
guaranteed by (4.10).

4.3.3 Constraints of QoS Satisfaction

Let �jk and �jk be the processing rate and loading rate for data chunk k on server j,
respectively. The processing procedure then can be described by a two-dimensional
Markov chain as Fig. 4.2, where each state .p; q/ represents p pending tasks and q
available data chunks.

We let �jk denote the amount of computation resource (e.g., CPU) that chunk k
occupies. The processing rate of tasks is proportional to its computation resource
usage, i.e.,

�jk D ˛j � �jk; 8j 2 J; k 2 K; (4.11)

where ˛j is a constant relying on the speed of server j.
Furthermore, the total computation resource allocated to all chunks on each

server j shall not exceed its total computation resource, i.e.,

X

k2K

�jk � 1; 8j 2 J: (4.12)
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The loading rate of �jk is constrained by the rate on any link .u; v/ denoted as

�.u;v/, if a non-zero flow f .u;v/
jk goes through it. This condition can be described by a

binary variable z.u;v/
jk as

f .u;v/
jk � z.u;v/

jk � Af .u;v/
jk ; 8.u; v/ 2 E; j 2 J; k 2 K: (4.13)

Finally, the constraints on �jk is given as

�jk � �.u;v/ � z.u;v/
jk C 1 � z.u;v/

jk ; 8.u; v/ 2 E; j 2 J; k 2 K: (4.14)

Note that we consider sufficient bandwidth on each link such that �.u;v/ can
be handled as a constant number, which is mainly determined by I/O and switch
latency [14].

By denoting �jk.p; q/ as the steady state probability that the Markov chain stays
at .p; q/, we can describe the transition process by a group of ODEs as follows.
According to the transition characteristics, the whole figure can be divided into three
regions.

Region-I: all states in the first line. In Region-I, except state .0; 0/, state
.p; 0/.p > 1/ transits to two neighboring states .p C 1; 0/ and .p; 1/. These can
be described as:

� 0jk.0; 0/ D ��jk�jk.0; 0/ C �jk�jk.1; 1/; 8j 2 J; k 2 K: (4.15)

� 0jk.p; 0/ D � �jk.�jk.p; 0/ � �jk.p � 1; 0//

C �jk�jk.p C 1; 1/ � ��jk.p; 0/; 8j 2 J; k 2 K:
(4.16)

Region II: all states in the diagonal line except .0; 0/. In this region, all the
pending tasks have already obtained their needed data chunk to proceed. Therefore,
each state .p; q/ in Region-II will transit to .p � 1; q � 1/ after processing one data
chunk. Then, we have:

� 0jk.p; p/ D � �jk�jk.p; p/ C �jk.�jk.p C 1; p C 1/�
�jk.p; p// C ��jk.p; p � 1/; 8j 2 J; k 2 K:

(4.17)

Region-III: all remaining states in the central region. Each state .p; q/ in
Region-III relies on its three neighboring states and also will transit to the other
three neighboring states. As shown in Fig. 4.2, the transition relationship can be
written as:
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� 0jk.p; q/ D � �jk.�jk.p; q/ � �jk.p � 1; q � 1//

C �jk.�jk.p C 1; q C 1/ � �jk.p; q//

� �.�jk.p; q/ � �jk.p � 1; q � 1//;

8j 2 J; k 2 K:

(4.18)

By solving the above ODEs, we can derive the state probability �jk.p; q/ as:

�jk.p; q/ D .�jk/
p.�jk/

B�q.�jk/
B�pCq

PB
qD0

PB
pD0.�jk/p.�jk/B�q.�jk/B�pCq

;

8j 2 J; k 2 K;

(4.19)

where B is the task buffer size on each server. When B goes to infinity, the mean
number of tasks for chunk k on server j Tjk is

Tjk D lim
B!1

PB
qD0

PB
pD0 p.�jk/

p.�jk/
B�q.�jk/

B�pCq

PB
qD0

PB
pD0.�jk/p.�jk/B�q.�jk/B�pCq

;

8j 2 J; k 2 K:

(4.20)

By applying the multivariate l’Hospital’s rule, (4.20) can be simplified to

Tjk D �jk

�jk�jk � �jk
; 8j 2 J; k 2 K: (4.21)

According to the Little’s law, the expected delay djk of user requests for chunk k
on server j is

djk D Tjk

�jk
D 1

�jk�jk � �jk
; 8j 2 J; k 2 K: (4.22)

According to the QoS requirement, i.e., djk � D, we have

�jk�jk � �jk � ujk

D
; 8j 2 J; k 2 K; (4.23)

where

ujk D
(

1; if �jk ¤ 0,

0; otherwise.
(4.24)



68 4 Cost Minimization for Big Data Processing in Geo-Distributed Data Centers

The binary variable of ujk can be described by constraints:

�jk � ujk � A�jk; 8j 2 J; k 2 K; (4.25)

where A is an arbitrary large number, because of 0 < �jk < 1 and ujk 2 f0; 1g.

4.3.4 An MINLP Formulation

The total energy cost then can be calculated by summing up the cost on each server
across all the geo-distributed data centers and the communication cost, i.e.,

Ctotal D
X

j2J

xj � Pj C
X

j2J

X

k2K

X

.u;v/2E

f .u;v/
jk � w.u;v/; (4.26)

where Pj is the cost of each activated server j.
Our goal is to minimize the total cost by choosing the best settings of

xj; yjk; z.u;v/
jk ; �jk; �jk and f .u;v/

jk . By summarizing all constraints discussed above,
we can formulate this cost minimization as a mixed-integer nonlinear programming
(MINLP) problem as:

MINLP:

min W (4.26);

s.t. W (4.3) � (4.5); (4.7) � (4.14); (4.23); (4.25);

xj; yjk; zjk; ujk 2 f0; 1g; 8j 2 J; k 2 K

4.4 Linearization

We observe that the constraints (4.8) and (4.10) are nonlinear due to the products of
two variables. To linearize these constraints, we define a new variable ıjk as follows:

ıjk D yjk�jk; 8j 2 J; 8k 2 K; (4.27)

which can be equivalently replaced by the following linear constraints:

0 � ıjk � �jk; 8j 2 J; 8k 2 K; (4.28)

�jk C yjk � 1 � ıjk � yjk; 8j 2 J; 8k 2 K: (4.29)
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The constraints (4.8) and (4.10) can be written in a linear form as:

f .u;v/
jk � ıuk�k; 8.u; v/ 2 E; u; j 2 J; k 2 K; (4.30)
X

.u;j/2E

f .u;j/
jk D .�jk � ıjk/ � �k; 8j 2 J; k 2 K: (4.31)

We then consider the remaining nonlinear constraints (4.14) and (4.23) that can
be equivalently written as:

�.u;v/�jkz.u;v/
jk C 1 � �jkz.u;v/

jk � �jk � ujk

D
;

8.u; v/ 2 E; 8j 2 J; 8k 2 K:

(4.32)

In a similar way, we define a new variable �jk as:

�
.u;v/
jk D �jkz.u;v/

jk ; (4.33)

such that constraint (4.32) can be written as:

�.u;v/�
.u;v/
jk C �jk � �

.u;v/
jk � �jk � ujk

D
;

8.u; v/ 2 E; 8j 2 J; 8k 2 K:

(4.34)

The constraint (4.33) can be linearized by:

0 � �
.u;v/
jk � �jk; 8.u; v/ 2 E; 8j 2 J; 8k 2 K; (4.35)

�jk C z.u;v/
jk � 1 � �

.u;v/
jk � z.u;v/

jk ; 8j 2 J; 8k 2 K: (4.36)

Now, we can linearize the MINLP problem into a mixed-integer linear program-
ming (MILP) as

MILP:

min W (4.26);

s.t. W (4.3) � (4.5); (4.7); (4.9); (4.11) � (4.13);

(4.25); (4.28) � (4.31); (4.34) � (4.36);

xj; yjk; zjk; ujk 2 f0; 1g; 8j 2 J; k 2 K:
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4.5 Performance Evaluation

In this section, we present the performance results of our joint-optimization
algorithm (“Joint”) using the MILP formulation. We also compare it against a
separate optimization scheme algorithm (“Non-joint”), which first finds a minimum
number of servers to be activated and the traffic routing scheme using the network
flow model as described in Sect. 4.3.2.

In our experiments, we consider jJj D 3 data centers, each of which is with the
same number of servers. The intra- and inter-data center link communication costs
are set as CL D 1 and CR D 4, respectively. The cost Pj on each activated server j
is set to 1. The data size, storage requirement, and task arrival rate are all randomly
generated. To solve the MILP problem, commercial solver Gurobi [15] is used.

The default settings in our experiments are as follows: each data center with a size
20, the number of data chunks jKj D 10, the task arrival rates �k 2 Œ0:01; 5	; 8k 2
K, the number of replicas P D 3, the data chunk size �k 2 Œ0:01; 1	; 8k 2 K, and
D D 100. We investigate how various parameters affect the overall computation,
communication and overall cost by varying one parameter in each experiment group.

Figure 4.3 shows the server cost, communication cost, and overall cost under
different total server numbers varying from 36 to 60. As shown in Fig. 4.3a, we
can see that the server costs always keep constant on any data center size. As
observed from Fig. 4.3b, when the total number of servers increases from 36 to 48,
the communication costs of both algorithms decrease significantly. This is because
more tasks and data chunks can be placed in the same data center when more servers
are provided in each data center. Hence, the communication cost is greatly reduced.
However, after the number of server reaching 48, the communication costs of both
algorithms converge. The reason is that most tasks and their corresponding data
chunks can be placed in the same data center, or even in the same server. Further
increasing the number of servers will not affect the distributions of tasks or data
chunks any more. Similar results are observed in Fig. 4.3c.

Then, we investigate how the task arrival rate affects the cost via varying its
value from 29:2 to 43:8. The evaluation results are shown in Fig. 4.4. We first notice
that the total cost shows as an increasing function of the task arrival rates in both
algorithms. This is because, to process more requests with the guaranteed QoS, more
computation resources are needed. This leads to an increasing number of activated
servers and hence higher server cost, as shown in Fig. 4.4a. An interesting fact
noticed from Fig. 4.4a is that “Joint” algorithm requires sometimes higher server
cost than “Non-joint.” This is because the first phase of the “Non-joint” algorithm
greedily tries to lower the server cost. However, “Joint” algorithm balances the
tradeoff between server cost and communication cost such that it incurs much lower
communication cost and thus better results on the overall cost, compared to the
“Non-joint” algorithm, as shown in Fig. 4.4b and c, respectively.

Figure 4.5 illustrates the cost as a function of the total data chunk size from 8:4

to 19. Larger chunk size leads to activating more servers with increased server cost
as shown in Fig. 4.5a. At the same time, more resulting traffic over the links creates
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Fig. 4.3 On the effect of the number of servers. (a) Server cost. (b) Communication cost.
(c) Overall cost
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Fig. 4.5 On the effect of data size. (a) Server cost. (b) Communication cost. (c) Overall cost

higher communication cost as shown in Fig. 4.5b. Finally, Fig. 4.5c illustrates the
overall cost as an increasing function of the total data size and shows that our
proposal outperforms “Non-joint” under all settings.
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Fig. 4.6 On the effect of expected task completion delay. (a) Server cost. (b) Communication cost.
(c) Overall cost

Next we show in Fig. 4.6 the results when the expected maximum response time
D increases from 20 to 100. From Fig. 4.6a, we can see that the server cost is a
non-increasing function of D. The reason is that when the delay requirement is very
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small, more servers will be activated to guarantee the QoS. Therefore, the server
costs of both algorithms decrease as the delay constraint increases. A looser QoS
requirement also helps find cost-efficient routing strategies as illustrated in Fig. 4.6b.
Moreover, the advantage of our “Joint” over “Non-joint” can be always observed
in Fig. 4.6c.

Finally, Fig. 4.7 investigates the effect of the number of replicas for each data
chunk, which is set from 1 to 6. An interesting observation from Fig. 4.7c is
that the total cost first decreases and then increases with the increasing number
of replicas. Initially, when the replica number increases from 1 to 4, a limited
number of activated servers are always enough for task processing, as shown in
Fig. 4.7a. Meanwhile, it improves the possibility that task and its required data
chunk are placed on the same server. This will reduce the communication cost, as
shown in Fig. 4.7b. When the replica number becomes large, no further benefits to
communication cost will be obtained while more servers must be activated only for
the purpose of providing enough storage resources. In this case, the server and hence
the overall costs shall be increased, as shown in Fig. 4.7a and c, respectively.

Our discovery that the optimal number of chunk replicas is equal to 4 under the
network setting above is verified one more time by solving the formulation given in
Sect. 4.4 that is to minimize the number of replicas with the minimum total cost.
Additional results are given under different settings via varying the task arrival
rate and chunk size in the ranges of [0.1, �U] and [�L, 1.0], respectively, where
a number of combinations of .�U; �L/ are shown in Fig. 4.8. We observe that the
optimal number of replica a non-decreasing function of the task arrival rate under
the same chunk size while a non-increasing function of the data chunk size under
the same task arrival rate.

4.6 Summary

In this chapter, we try to minimize the overall operational cost in large-scale
geo-distributed data centers for big data applications by jointly studying the
data placement, task assignment, data center resizing and routing. The big data
processing is characterized using a two-dimensional Markov chain and the expected
completion time in closed-form is derived. This cost minimization problem is then
formulated as an MINLP problem. To deal with the high computational complexity,
we linearize the MILP problem. Through extensive experiments, we show that our
joint-optimization solution has substantial advantage over the approach by two-step
separate optimization.
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Chapter 5
A General Communication Cost Optimization
Framework for Big Data Stream Processing
in Geo-Distributed Data Centers

For a big data stream processing (BDSP) application, we may have many different
processing units in the form of VMs. These VMs are highly correlated by the data
streams as one’s output may be another one’s input. Consequently, the networking
shall have a deeper impact to the performance and efficiency of BDSP, compared
to batch data processing. Besides, virtualized network functions (VNF), also in the
form of VMs, can also be added in stream processing. For example, we may require
all the data streams first go through deep packet inspection (DPI) VM before actual
processing. How to manage these VMs as well as the communications between them
in data centers is critical to the cost-efficiency BDSP. In this chapter, we propose a
general communication cost optimization framework and algorithm for BDSP in
geo-distributed data centers. The algorithm, which leverages SDN to customize the
flow routing, can also be integrated into the Scheduler module [1].

5.1 Motivation and Problem Statement

Big data streams are becoming prevalent at increasing rates, e.g., social media
streams, sensor data streams, log streams, stock exchanges streams, etc. Processing
and analyzing these data in real-time, i.e., BDSP, has shown its great potential
in unearthing valuable insights of data to improve decision-making, minimize
risk, develop new products and services. For example, each store of supermarket
chains may generate a large number of continuous data covering commodity,
sales, customer information, environment information, etc. All these data shall be
processed in a real-time manner for efficient supermarket management. In contrast
to traditional databases, stream processing systems perform continuous queries
and handle data on-the-fly. Much effort from both academia and industries has
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been devoted to BDSP. Several dataflow-based programming architectures, e.g.,
Twitter’s Storm [2, 3] and Spark [4], have been developed to support big data stream
processing.

On the other hand, public cloud providers such as Amazon, Google, and
Microsoft, have also released various public cloud services supported by large-
scale data centers (DCs) to tenants. These DCs are usually distributed at different
geographic regions across the globe. For example, Google owns 13 data centers
over 8 countries in 4 continents. The rapid development of public cloud has been
increasingly attracting individuals and organizations to move their data and services
from local to Internet for reliability, security, and expenditure benefits. Modern DCs
are virtualization-based and a tenant can rent a handful of virtual resources, e.g.,
virtual machines (VMs). In the popular approach Infrastructure-as-a-Service (IaaS)
cloud model, virtual computing resources can be acquired and released on demand.
Public cloud appears to be the perfect infrastructure for realizing the BDSP service,
by dynamically adjusting the virtual resources to the current conditions.

With the consideration of ever-growing resource demands of BDSP, it is natural
to build BDSP services on the geo-distributed DCs. Big data stream is first
characterized by its large data volume. After deploying BDSP onto public cloud,
the data explosion will result in a rising of data traffic between DCs. Since most
public clouds today rely on Internet Service Providers (ISPs) to connect their
geo-distributed DCs, inter-DC traffic is usually significantly more expensive than
intra-DC one [5–7]. For example, Amazon’s EC2 [8] charges $0.120–0.200/GB for
inter-DC transfer across geographic regions, $0.01/GB in the same region, and free-
of-charge for intra-DC traffic. Greenberg et al. [9] have revealed that communication
costs amount to around 15 % of operational expenditure incurred to a cloud provider.
In particular, Chen et al. [10] have pointed out that inter-DC traffic accounts for
up to 45 % of the total traffic going through DC egress routers. Undoubtedly, the
emergence of BDSP in public cloud will aggravate such situation and make big
data equivalent to “big price.” It is significant to investigate how to lower the
communication cost for BDSP.

Different from conventional stream processing [11, 12] (e.g., queries processing
in wireless sensor networks) where each task is attached to a single server
(i.e., one-to-one), cloud based BDSP is characterized by that each task can be
supported by multiple replicated VMs (i.e., one-to-many) and the locations of
VMs are also optional. This provides a new opportunity, but also a challenge, to
optimize the BDSP communication cost. If the BDSP VMs are judiciously placed,
the communication cost can be potentially minimized. Although VM placement
for communication cost minimization has been widely addressed in the literature
[13–18], none of them can be applied to BDSP due to the facts that (1) they fail to
capture the task semantics in stream processing and (2) most of them are based on
an assumption that the number of VMs is fixed and the inter-VM traffic is known.

A typical stream processing task consists a number of inter-dependent intermedi-
ate tasks with different join and fork semantics, i.e., synchronous join, asynchronous
join, synchronous fork, and asynchronous fork. A unified modelling framework
suitable for cloud based BDSP has not been available yet in the literature.
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Furthermore, as each task can be supported by a number of replicated VMs, load
balancing among these VMs shall be considered without violating the task semantic.
In this paper, we are motivated to investigate the communication cost minimization
problem with joint consideration of VM placement and load balancing for BDSP in
geo-distributed DCs.

To show the limitation of existing studies and illustrate the motivation of our
work, we consider a simple example shown in Fig. 5.1, where a BDSP described
as a task flow graph in Fig. 5.1a is to be deployed into a public cloud with diverse
inter-DC network costs in Fig. 5.1b.

2

1

d1 d2

DC 1 DC 2

S1 S2

t3

t3

t1

t1

t1 t3 t1' t2 t4

t2

t2

t4

t4

DC 1

DC 1

Placement 1

Placement 2

Placement 3

DC 2

DC 2

DC 1

*

DC 2

t3

2/3
1/3

1/3
2/3

2

21

1 1

2

t1' t2

d1 d2

t4

DC1

t1

S1 S2

*

DC2

S1

t1

t3

d1 d2

t4

t2

S2

2

2

21

1 1

11

a

b

d

c

Fig. 5.1 Motivation example. (a) Task flow. (b) DCs with diverse inter-DC network cost.
(c) Placement strategies. (d) Flow graph for placement 3
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As shown in Fig. 5.1a, there are two producers (i.e., s1 and s2) as sources, two
consumers (i.e., d1 and d2) as destinations, and four VMs for four different tasks
(i.e., t1 to t4) as operators for intermediate processing. To ensure the SLA, certain
throughput must be achieved at each consumer. The values on the directed edges
denote an example setting of data rates that can ensure the required throughput at
each consumer. In BDSP, each task can have multiple replicated VMs with the same
processing function.

Two DCs with inter-DC network cost of 2 per data unit are considered, as shown
in Fig. 5.1b. Specially, these two DCs are with different network costs between
producers and consumers. For example, the cost from s1 to DC1 is 1 while the one
from s1 to DC2 is 3. Both producers and consumers are pinned to certain locations.
Note that tasks may have different semantics. For example, t1 requires data flow
from either source (indicated by

L
) and its generated data are sent to both t3 and t4

(indicated by
N

); t4 requires data flows from both t1 and t2.
We are interested in how to place the task VMs with various semantics into DC1

and DC2 with balanced flows between the task VMs such that the communication
cost can be minimized. Figure 5.1c shows three different placement strategies with
different communication costs.

Let us first examine how the VM placement will influence the cost via comparing
“Placement 1” and “Placement 2.” In Placement 1, VM t3 is placed in DC1 and VMs
t1, t2, and t4 are all placed in DC2. It is straightforward to get that the cost is 13. If we
move VM t1 to DC1, i.e., Placement 2, we can see that the cost drops to 11. From
this simple example, we can see that better VM placement strategies will effectively
reduce the communication cost.

Next, we show how to further reduce the communication cost using multiple
VMs. A feasible solution is shown in “placement 3.” Two identical VMs t�1 and t01
are placed on DC1 and DC2 to deal with the data from s1 and s2, respectively. Note
that VMs t�1 and t01 have the same semantic and flow relationship inherited from t1.
In this case, the original task flow graph in Fig. 5.1a can be transformed to the one
shown in Fig. 5.1d. VM t�1 only receives data flow with rate 2 from s1 and replicates
two flows with rate 2

3
to t3 and t4, while VM t01 receives flow with rate 1 from s2

and produces two output flow with the same rate 1
3

to t3 and t4. It can be observed
that all the semantics and flow relationships are still reserved while there are only
inter-DC traffic flows from t�1 to t4 and t01 to t3 with rates of 2

3
and 1

3
, respectively.

By such means, the cost is further cut to 9.
From the above motivation example, we can see that both VM placement and

flow balancing influence the communication cost of BDSP. It is significant to jointly
investigate these two issues to explore the network cost diversities in geo-distributed
DCs for the communication cost minimization.
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5.2 System Model

In this section, we introduce the system model. For the convenience of the readers,
the major notations used in this paper are listed in Table 5.1.

5.2.1 Geo-Distributed DCs

The geo-distributed DCs are denoted by a graph Gd D .Vd; Ed/ consisting of geo-
distributed DC set Vd and their inter-connections Ed. An edge emn 2 Ed; m; n 2 Vd

is weighted with Pmn denoting inter-DC network cost per data unit between DCs m
and n. Specially, we assume that intra-DC cost is negligible compared to inter-DC
cost and can be viewed as 0, i.e., Pmm D 0; 8m 2 Vd. A DC m 2 Vd is with limited
resource capacity Rm.

5.2.2 BDSP Task

5.2.2.1 Task Flow Graph

A BDSP service is modeled by a directed acyclic graph (DAG) Gt D .Vt; Et/, where
vertex set Vt includes all the tasks and edge set Et denotes the data flow links among

Table 5.1 Notations Constants

Gt Gt D .Vt; Et/, the DAG of task flow graph

Gd Gd D .Vd; Ed/, the DC topology graph

Pmn The 1 unit data network cost from

DC m to n

Au The maximum number of VMs of task u

Gv Gv D .Vv; Ev/, the DAG of VM flow graph

Ri The resource requirement of VM i

Ge Ge D .Ve; Ee/, the DAG of extended flow graph

sp The parent vertexes of s; s 2 Vs in Ge

sc The child vertexes of s; s 2 Vs in Ge

oij The output circle vertex, of which the present

and the child VMs are i and j

Rm The maximum resource of DC m

˛sc The scaling factor of flow from s to c in Ge

Variables

xi A binary variable indicating if VM i for task 
.i/

in DC ı.i/ or not

foij The data rate of the links connected to oij; oij 2 Vc

fc The data rate of the links connected to c; c 2 Vc
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these tasks. The vertices in Vt are classified into three categories, producer, operator,
and consumer, according to their roles in the BDSP. Data streams enter the system at
the producers and exit at the consumers. A producer s 2 Vt generates a type of data
with rate Fs. For a consumer d 2 Vt, certain throughput Fd is required to ensure the
SLA. An operator receives “join” flows from its parent tasks and generates “fork”
flows to its child tasks. Producers and consumers can be viewed as special operators
without join and fork flows, respectively. euv 2 Et; u; v 2 Vt denotes a link with a
certain weight going from tasks u to v.

For each operator task u 2 Vt, at most Au.Au � jVdj/ replicated VMs are
available to be freely placed onto any DCs.

5.2.2.2 Task Semantics

In stream processing, task semantics indicate relationships between join flows (i.e.,
input streams), and fork flows (i.e., output streams), that can be classified in four
types “add-join-and-fork,” “add-join-or-fork,” “or-join-and-fork,” and “or-join-or-
fork” [19].

As shown in Fig. 5.2, the meanings of symbols
N

and
L

on both join and fork
flows are summarized as follows.

• And-join (
N

-join): And-join requires data from all join flows simultaneously at
some fixed rate. An and-join example is the movie-merging-task that requires
synchronized audio and video streams.

• Or-join (
L

-join): Or-join processes data independently from each join flow, not
necessarily from both simultaneously. A sampling filter from multiple sources is
a typical or-join task.

• And-fork (
N

-fork): And-fork produces multiple fork flows simultaneously with
the same stream to each output link. For example, an and-fork task may send a
multimedia stream to several different users simultaneously.

• Or-fork (
L

-fork): Or-fork distributes the generated flow over one or multiple
output links. Or-fork is common in multi-path routing where packets can be sent
to any path link.

Flow constraints are also given in Fig. 5.2 for each semantic type. For example, in
Fig. 5.2b, the flow relationship of “and-join-or-fork” described as

˛1f1 � f3 C f4

˛2f2 � f3 C f4;

means that the total or-fork flow rate, i.e., f3 C f4, is upper-bounded by the rate of
each and-join flow, i.e., ˛1f1 and ˛2f2, where parameter ˛1 and ˛2 are the scaling
factors describing the expansion/shrinkage relationship between the join flows and
fork flows.
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Fig. 5.2 Four types of task semantics. (a) And-join-and-fork. (b) And-join-or-fork. (c) Or-join-
and-fork. (d) Or-join-or-fork

5.3 Problem Formulation

In this section, we present Virtual VM Graph (VVMG) and Extended VM Graph
(EVMG) such that the flow relationships of any task semantic shown in Fig. 5.2 can
be described using a unified modeling framework. After that, the communication
cost minimization problem is formulated into an MILP problem.

5.3.1 VM Placement Constraints

In BDSP, the streams are actually processed by the VMs of each task. As discussed
in Sect. 5.1, VM placement has a deep influence on the communication cost.
Traditionally, communication cost aware VM placement is usually formulated as
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Algorithm 1 Virtual VM graph construction algorithm
Require: Task Flow Graph Gt D .Vt; Et/, Data Center Graph Gd D .Vd; Ed/

Ensure: Virtual VM Graph Gv D .Vv; Ev/

1: for all u 2 Vt do
2: if u is producer or consumer then
3: add a virtual VM vertex i into Vv where ı.i/ is the pinned DC and 
.i/ D u
4: else
5: for m 2 Vd do
6: add a virtual VM vertex i into Vv where ı.i/ D m and 
.i/ D u
7: end for
8: end if
9: end for

10: for all u 2 Vt do
11: for all associated VM i of u do
12: for all parent node up of u do
13: for all associated VM j of up do
14: add an edge eij into Ev

15: end for
16: end for
17: end for
18: end for

a quadratic optimization problem (e.g., [18, 20]), which is with high computation
complexity. In BDSP, we notice that the VM placement problem can be transformed
into a VM selection problem by exploring the flow relationship between VMs.

5.3.1.1 Virtual VM Graph

To tackle this issue, we model and construct the VVMG Gv D .Vv; Ev/ as
shown in Algorithm 1. Note that, the location of a producer or a consumer is
pre-determined. Only one virtual VM vertex in Gv is created for a producer or a
consumer (lines 2–3). Recall that each task in BDSP can be supported by multiple
replicated VMs with the same processing functions, which can be placed in any DC
in the network. In other words, each DC can accommodate a virtual VM for each
operator task.

Hence, for each operator task, we create a virtual VM vertex in Gv corresponding
to each DC m 2 Vd (lines 5–7). The host DC and the corresponding task of a virtual
VM i 2 Vv are marked as ı.i/ 2 Vd and 
.i/ 2 Vt, respectively. The communication
cost per data unit between any two virtual VMs i and j is denoted as Pı.i/ı.j/; 8i;
j 2 Vt. Based on the task flow, the connectivities among virtual VMs are constructed
accordingly, as shown in lines 10–18. An edge eij 2 Ev; i; j 2 Vv indicates a possible
flow link from virtual VM i to j and is determined by their corresponding tasks.

Each VM’s processing semantic is inherited from its corresponding task.
Therefore, we construct the connections between virtual VMs according to
their corresponding tasks’ connections, as shown in lines 10–18. An edge
eij 2 Ev; i; j 2 Vv indicates a possible flow from virtual VM i to j and is determined
by their corresponding tasks.
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Fig. 5.3 Virtual VM graph for the task flow graph in Fig. 5.1a

Figure 5.3 gives the VVMG constructed base on the task flow graph in Fig. 5.1a
and data center graph in Fig. 5.1b. For example, virtual VMs 3 and 4 are constructed
for task t1 in DC1 and DC2, respectively, i.e., ı.3/ D DC1; ı.4/ D DC2 and 
.3/ D

.4/ D t1.

5.3.1.2 VM Placement Constraints Formulation

To place a VM into a DC is equivalent to selecting one corresponding virtual VM
in set Vv . That is, if virtual VM i 2 Vv is selected, it means that a VM for task 
.i/
is placed in DC ı.i/. We define a binary variable xi to denote whether a virtual VM
i 2 Vv is selected or not as

xi D
(

1; if virtual VM i is selected,

0; otherwise.
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Although we create jVdj virtual VMs for each task, the number of virtual VMs
that can be selected for task u is limited by Au, i.e.,

X

i2Vv ;
.i/Du

xi � Au; 8u 2 Vt: (5.1)

Note that, the values of xi for producers and consumers are pre-determined.
The total resource requirement of all virtual VMs selected in DC m shall not

exceed DC resource capacity Rmh. Hence, we have

X

i2Vv ;ı.i/Dm

xi � rih � Rmh; 8m 2 Vd; h 2 H; (5.2)

where rih is the requirement of VM i for resource h.

5.3.2 Flow Constraints

5.3.2.1 Extended VM Graph

As the VM semantics are inherited from the corresponding tasks, the process
semantics vary in different virtual VMs in VVMG and hence the inter-VM flow
relationships also differ in the semantics. To describe these inter-VM flow relation-
ships, a naive way is to emanate all VMs and build the relationship descriptions
with respect to their semantics. Zhao et al. [19] have proposed a unified inter-task
flow description framework but it is restricted to the case that each task has only one
server (or equivalently VM in BDSP). While in VVMG, there are jVdj VMs for each
operator task, the framework is not applicable for flow description in cloud-based
BDSP. To address this issue, We further propose Extended VM Graph (EVMG)
Ge D .Ve; Ee/ that can be applied to describe the flow relationships for cloud-based
BDSP in a uniform manner.

Figure 5.4 illustrates the basic vertex structure in EVMG Ge D .Ve; Ee/ for the
four types of task semantics in Fig. 5.2. Each EVMG vertex has four layers, i.e.,
input-layer, producing-layer, distributing-layer, and output-layer. Therefore, Ve can
be divided into four subsets, i.e., Ve D Vi

S
Vp

S
Vd

S
Vo, denoting the input vertex

set, producing vertex set, distributing vertex set, and output vertex set, respectively.
In Fig. 5.4, the input and distributing vertices are denoted by squares while the
producing and output vertices are by circles. For simplicity, hereafter we call them
as square vertex and circle vertex, respectively.

Algorithm 2 briefly summarizes the EVMG construction. Let us first have a look
at the basic EVMG vertex construction rules. Each basic EVMG vertex structure is
related to one VM in VVMG.
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Fig. 5.4 Basic extended vertex structure for four task semantics. (a) And-join-and-fork. (b) And-
join-or-fork. (c) Or-join-and-fork. (d) Or-join-or-fork

• Input vertex The input vertex is determined by the join semantics. For and-join,
an input vertex is created for each parent task vertex in task flow graph Gt (line 6),
as shown in Fig. 5.4a and b. For or-join, one input vertex is created (line 8), as
shown in Fig. 5.4c and d.

• Producing vertex The producing vertex is determined by the fork semantics. For
and-fork, one producing vertex is created (line 11), as shown in Fig. 5.4a and c.
For or-fork, a producing vertex is created for each child task vertex (line 16), as
shown in Fig. 5.4b and d.

• Distributing vertex The distributing vertex is correlated to the child task,
regardless of the task semantics. For each child task, one distributing vertex is
created (line 14).

• Output vertex The output vertex is determined by the virtual VMs of each child
task. Similarly, it is also irrelevant to the task semantics. For each virtual VM of
each child task, one output vertex is created (line 22). Specially, we shall see that
for each inter-VM connection, there is a corresponding output vertex.

Note that producer and consumer are with only “fork” and “join” semantics,
respectively. Therefore, the basic structures for producer and consumer are with
three and two layers, respectively. The rest of construction is similar as above.
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Next, let us set the edge construction rules:

• Input ! Producing For each input vertex, an edge is created for each producing
vertex (lines 26–30).

• Producing ! Distributing The edge from producing vertex to distributing
vertex is determined by the fork semantics. For and-fork, there is only one
producing vertex and all distributing vertices are connected to this producing
vertex (line 19). For or-fork, for each child task, there is a producing vertex and
a distributing vertex, an edge is created from the corresponding producing vertex
to the distributing vertex (line 17).

• Distributing ! Output A distributing vertex relating to a task is connected to
all the output vertices corresponding to the VMs of the task (line 23).

• Output ! Input Each output vertex refers to an inter-VM edge, e.g., eij 2
Ev; i; j 2 Vv . Task 
.i/ shall have a corresponding input vertex in the basic EVMG
vertex structure for VM j, according to the vertex construction rule. We create an
edge connecting each output vertex to its corresponding input vertex (line 34).

In EVMG, to reserve the original flow relationship, each edge is associated with a
weight. We set the weight of “input-producing” edge according to the scaling factor
˛ in the corresponding task. For example, consider the “and-join-and-fork” case in
Fig. 5.4a. The weight of the “producing-input” edge for join flow f1 and f2 shall be
set as ˛1 and ˛2, respectively. For all other edges, their weights are all set as one.
Figure 5.5 shows an EVMG example constructed by Algorithm 2 for the VVMG
in Fig. 5.3.

Figure 5.5 shows an EVMG example constructed by Algorithm 2 for the VVMG
in Fig. 5.3. It can be observed that two producers and two consumers are with three-
layer and two-layer structure, respectively, while every virtual VM i 2 Vv (dashline
box) is translated into a four-layer structure.

5.3.2.2 Flow Constraints Formulation

In EVMG Ge, the flow constraints of all VMs can be represented by the relationships
between square vertexes Vs D Vi

S
Vd and circle vertexes Vc D Vp

S
Vo. For

each square vertex s 2 Vs, we denote its parent and child vertex sets as sp and
sc, respectively, which both include circle vertexes only.

We associate each circle vertex c 2 Vc in EVMG with a value fc to denote the
data flow rate. All links connected to circle vertex c share the same flow rate fc.
Note that the flow rates for the producing vertices of consumers are pre-determined
according to the required throughputs. The flow rates for the other vertices are
variables to be solved. By such means, the flow relationships in EVMG can be
uniformly expressed as

X

c2sp

˛cs � fc �
X

c2sc

˛sc � fc; 8s 2 Vs; (5.3)

where ˛cs and ˛sc are the weights of edges from c to s and s to c, respectively.
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Fig. 5.5 EVMG for VVMG in Fig. 5.3

5.3.3 A Joint MILP Formulation

Whether a virtual VM is selected or not is determined by the corresponding fork
flows. For example, if the total fork flow rate of a virtual VM is 0, it shall not be
selected; otherwise, it shall be selected. Let oij 2 Vc be the output vertex, of which
the present and the child VMs are i and j, respectively. According to the basic vertex
construction rules, the rate of a fork flow from VM i to VM j is equivalent to the
corresponding output vertex value foij . The relationship between xi and the fork flow
rate foij can be described as

P
j2Vv

foij

L
� xi �

X

j2Vv

foij � L;

8i; j 2 Vv; oij 2 Vc;

(5.4)
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Algorithm 2 Extended graph construction algorithm
Require: Task Flow Graph Gt D .Vt; Et/, Virtual VM Graph Gv D .Vv; Ev/

Ensure: Extended Graph Ge D .Ve; Ee/

1: Vi  ;, Vo  ;
2: for all vv 2 Vv do
3: vt  
.vv/, vt 2 Vt

4: Ui  ;, Up  ;, Ud  ;, Uo  ;
5: if vv is with “and-join” then
6: create an input vertex for each parent task of vt into Ui

7: else if vv is with “or-join” then
8: create an input vertex into Ui

9: end if
10: if vv is with “and-fork” then
11: create a producing vertex into Up

12: end if
13: for all child task c of vt do
14: create a distributing vertex ud into Ud

15: if vv is with “or-fork” then
16: create a producing vertex vt into Up

17: create an edge from vt to ud and set the weight as 1
18: else if vv is with “and-fork” then
19: create an edge from producing vertex to ud and set the weight as 1
20: end if
21: for all VM v of task c do
22: create an output vertex uo into Uo

23: create an edge from ud to uo and set the weight as 1
24: end for
25: end for
26: for all input vertex ui 2 Ui do
27: for all producing vertex up 2 Up do
28: create an edge from ui to up and set the weight as according to the scaling factor in

the task flow graph
29: end for
30: end for
31: Vi  Vi

S
Ui, Vo  Vo

S
Uo

32: end for
33: for all output vertex vo in Vo do
34: create an edge from vo to its corresponding input vertex set the weight as 1
35: end for

where L is an arbitrary large number. Note that (5.4) can be equivalently expressed
using the input vertex values by considering the total join flow rate.

Based on the definition of xi, we can express the communication cost between
any two VMs i; j 2 Vv as foij � Pı.i/ı.j/; 8ı.i/; ı.j/ 2 Vd; eij 2 Ev . In the consideration
of all above constraints, we can formulate the problem with objective of minimizing
the overall communication cost in a form of mixed integer linear programming as:
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MILP:

min W
X

eij2Ev

X

m2Vd

X

n2Vd

foij � Pı.i/ı.j/;

s.t. W (5.1); (5.2); (5.3) and (5.4):

Next we analyze the computational complexity of this formulated problem.

Theorem 1. The communication cost minimization VM placement problem for
BDSP is NP-hard.

Proof. We consider a special case of the problem that each task is with only one
VM, i.e., Au D 1, and all task semantics are “and-join” and “and-fork.” In this
case, the inter-VM flow values foij ; 8eij 2 Ev are predetermined by the producing
rates at the producers and the required throughputs at the consumers. We only need
to consider how to place the jVtj VMs onto jVdj DCs without violating capacity
constraints. This is exactly a generalized quadratic assignment problem (GQAP),
which has been proved as strongly NP-hard in [21]. �

5.4 Algorithm Design

Since it is computationally prohibitive to solve the MILP problem to get the optimal
solution in large-scale cases, we propose a computation-efficient heuristic algorithm
in this section. We observe that the objective function in MILP only includes one
binary variable xi. If we relax xi into a real variable in the range of Œ0; 1	, the MILP
becomes a linear programming (LP) problem which can be solved in polynomial-
time. Therefore, our basic idea is to first solve a relaxed MILP problem, and
then use the solution to construct a feasible VM placement. Finally, we solve the
original MILP problem under this VM placement solution, which is essentially an
LP problem because all integer variables disappear.

The MILP-based algorithm is presented in Algorithm 3. We first relax all integer
variables and solve the resulting LP problem. Note that all the solutions are float
values, including the VM placement values xi; 8i 2 Vv . Next, we try to find the VM
placement for each task u 2 Vt. Intuitively, the one with the highest value shall be
converted with the highest priority. Therefore, we first sort all xi; 8i 2 Vv; 
.i/ D u
in a decreasing order. The ordered list is denoted as X in line 3. Since task u can
have up to Au VMs, we convert the first Au elements in X into 1 and the rest as 0
in lines 4 and 5, respectively. After that, we obtain the VM placement solution, i.e.,
the values of xi, which are then taken into MILP. The resulting problem is an LP
with variables fij; 8i; j 2 Vv . We finally solve this LP problem to derive the flow
balancing solution in line 7.
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Algorithm 3 ILP-based algorithm
1: Relax the integer variables in the MILP, and solve the resulting linear programming
2: for all task vertex u 2 Vt do
3: Sort xi;8
.i/ D u decreasingly into set X
4: XŒk	 1;8k D Œ1; Au	, if XŒk	 > 0

5: XŒk	 0;8k D ŒAu C 1; jVdj	
6: end for
7: Take the values of xis into the MILP, and solve the resulting linear programming

Theorem 2. The LP-based algorithm in Algorithm 3 converges to optimal when
Au ! jVdj; 8u 2 Vt and Rm ! 1.

Proof. Note that in MILP, the integer variables xi; 8i 2 Vv are only related
to (5.1), (5.2), and (5.4) . There are Vd virtual VMs for task 
.i/. The total number
of actually selected VMs shall not exceed jVdj, i.e.,

P
i2Vv ;
.i/Du xi � jVdj.

When Au D jVdj; 8u 2 Vt, (5.1) will always be satisfied under all values of xi.
In this case, (5.1) is always satisfied, imposing no constraints on xi; 8i 2 Vv .

When Rm ! 1, (5.2) can be rewritten as

X

i2Vv ;ı.i/Dm

xi � ri � 1; 8m 2 Vd: (5.5)

Obviously, (5.5) is always valid.
For (5.4), without constraints (5.1) and (5.2), xi can be freely adjusted according

to the values of foij . �
From above, we can conclude that when Au ! jVdj; 8u 2 Vt and Rm ! 1, all

the constraints related to xi are always satisfied and will not effect the flow variable
foij as well as the objective in the MILP. As a result, the MILP can be written as

LP:

min W
X

eij2Ev

X

m2Vd

X

n2Vd

foij � Pı.i/ı.j/;

s.t. W (5.3);

which is a linear programming (LP) problem itself. Therefore, when Au !
jVdj; 8u 2 Vt and Rm ! 1, solving a relaxed MILP in our “MVP” Algorithm 3
is equivalent to solving the LP and optimal solution can be obtained. A DC in the
cloud is deployed with hundreds of thousands of servers [22]. Compared with the
resource requirement of one VM for BDSP, it can be considered as 1. The cloud
service provider can offer sufficient resource in one DC and a task can have as many
VMs as needed in the cloud. In practice, our MVP algorithm provides an optimal-
approaching solution.
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5.5 Performance Evaluation

In this section, we present the performance results of our MILP-based multiple VM
placement algorithm (“MVP”) by comparing it against the optimal result (“OPT”)
and the traditional single VM algorithm (“SV”), i.e., one VM for each task.

In our experiments, we consider a realistic network topology of US NSFNET
[23] for our DC network, as shown in Fig. 5.6. Each DC is with the same resource
capacity and network cost between two DCs is set according to their shortest path
length. For example, the cost between “CA1” and “CA2” is one while the cost
between “CA1” and “MI” is two. A DAG generator is implemented to generate
random task flow graphs. The locations of producers and consumers, producing
rates, required throughput, task semantics, VM resource requirements, etc., are all
randomly generated as well. The default settings in our experiments are as follows.
The required throughputs are all uniformly distributed within the range of Œ0:1; 3	.
All types of resource requirements of VMs for each task are normalized to the DC
resource capacity and uniformly distributed within the range of Œ0:01; 0:1	. In each
task flow graph, there are 4 producers, 4 consumers, and 30 task operators, each
of which is performed by up to 3 VMs. To solve the MILP problem as well as
the LP problem involved in the MVP algorithm, commercial solver Gurobi is used.
We investigate how our algorithm performs and how various parameters affect the
communication cost by varying the settings in each experiment group.

Figure 5.7 firstly shows the communication cost under different maximum
number of VMs Au varying from 1 to 9. We compare the results of the “OPT”
and our “MVP” algorithm with 30 and 40 operators, respectively. As observed from
Fig. 5.7, the communication cost shows as a decreasing function of the number of
VMs Au when 1 � Au � 5. This is because as Au increases, more VMs are available
for each task, such that the inter-DC traffic can be significantly lowered by flow
balancing.

Fig. 5.6 NSFNET



96 5 A General Communication Cost Optimization Framework for Big Data Stream. . .

2 4 6 8 10

20

30

40

50

60

Number of VMs

C
om

m
un

ic
at

io
n 

C
os

t

OPT (40)

MVP (40)

OPT (30)

MVP (30)

Fig. 5.7 The effect of the number of VM available
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Fig. 5.8 The effect of the number of producers

After the maximum number of VMs reaching 6, both “MVP” and the optimal
results converge. The reason is that the required VMs for each task is determined
by its connections with other tasks or consumers. Hence further increasing the
number of VMs may not affect the total traffic and communication cost any more.
In addition, an important observation is that as the maximum number of VMs
increases, the gap between “MVP” and “OPT” shrinks and “MVP” even achieves
the same performance as “OPT” when Au � 6. This verifies the conclusion of
Theorem 2.

Next, we investigate how the number of producers and consumers affect the
communication cost via varying their values from 1 to 9 for each. The evaluation
results are shown in Figs. 5.8 and 5.9, respectively. The advantage of our “MVP”
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algorithm over “SV” can always be observed under any number of producers and
consumers. Furthermore, we also notice that the communication cost shows as
an increasing function of the number of producers, as shown in Fig. 5.8. This is
because, more producers result in more task flows, which potentially increases the
inter-DC traffic as well as the communication cost. Similar phenomenon can also be
observed in Fig. 5.9 when the number of consumers increases.

Figure 5.10 shows the performances of three algorithms as the number of
operators varying from 5 to 30. An interesting observation is that the cost first
decreases and then increases with the number of operators. When the number of
operators is small, e.g., from 5 to 20, increasing the number of operators provides
more optimization space for VM placement and flow balancing. Hence, the results
of all three algorithms decrease. However, as the operator number grows, e.g., from
20 to 30, the total flow volume of all operators also increases, even surpassing
the benefits mentioned above. This leads to a larger inter-DC traffic, i.e., the
communication cost. Under any number of operators, we can always see from
Fig. 5.10 that “MVP” outperforms “SV” and performances close to “OPT.”

Finally, we study how the three algorithms perform under different required
throughputs of consumers, which are all randomly set within the range between 0.1
and a value from 1 to 8 on x-axis of Fig. 5.11. We observe that the communication
cost is an increasing function of the throughput. This is because raising the
throughputs of consumers will enlarge the task flows over all producers, operators,
and consumers, leading to a higher inter-DC traffic and the communication cost.
Once more, “MVP” algorithm always outperforms “SVP” significantly.
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5.6 Summary

We investigate the communication cost minimization for BDSP in geo-distributed
DCs via exploring the inter-DC traffic cost diversities in this chapter. An MILP
formulation is proposed to solve this problem, where VM placement and flow
balancing are jointly studied. We then propose a low-complexity algorithm based on
the MILP formulation. Finally, we show that our “MVP” algorithm performs very
close to the optimal solution and significantly outperforms the single-VM based
BDSP.
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Chapter 6
Conclusion

Big data is pervasive today and the volume of newly generated data is exploding
every day. How to analyze these large data sets (i.e., big data) effectively has become
a key issue of business competition, academic research, and industry innovation.
The extreme explosion of big data imposes a heavy burden on computation, storage,
and networking resources. Cloud, with sufficient resources in large-scale data
centers, is widely regarded as an ideal platform for big data processing. How to
explore these resources has become the first concern in big data.

Many different big data processing programming frameworks such as
MapReduce, Spark, and Storm have been proposed and widely adopted. We have
reviewed several representative frameworks for batch data and stream data,
respectively. We can see that these frameworks provide convenient ways to
explore the bulk cloud resources, especially to the big data processing with high
parallelism. However, the underlying networking is still treated as a blackbox and
the programmers do not have the privilege to control the network behaviors, besides
specifying few parameters. This is because traditional purpose-built networking
hardware is not flexible enough to satisfy the dynamic networking demands of
big data processing. Fortunately, the newly emerging SDN and NFV technologies
enable flexible management of the network by decoupling the controller layer
from the underlying hardware. This motivates us to propose cloud networking
architecture that is able to manage all resources in a uniform manner. Via cloud
networking, different resource scheduling and management algorithms can be
specified by the programmers for either performance or efficiency consideration.

Based on the cloud networking framework, we further discuss two case studies on
cost-efficiency big data processing. Firstly, we jointly study the data placement, task
assignment, data center resizing, and routing to minimize the overall operational
cost in large-scale geo-distributed data centers for big data batch applications.
We characterize the data processing process using a two-dimensional Markov chain
and derive the expected completion time in closed-form, based on which the joint
optimization is formulated as an MINLP problem. To tackle the high computational
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102 6 Conclusion

complexity of solving our MINLP, we linearize it into an MILP problem. In the
second case study, we investigate the communication cost minimization for BDSP
in geo-distributed data centers via exploring the inter-DC traffic cost diversity. VM
placement and flow balancing are jointly considered. For computation efficiency,
we propose VVMG and transform the VM placement problem into a VM selection
problem. We then further invent EVMG that enables uniform description of the
flow relationships for different subtask semantics. An MILP formulation is built
for the communication cost problem. To tackle the high computational complexity
of solving MILP, we then propose “MVP” algorithm by relaxing the MILP
formulation. Both algorithms can be incorporated into the Scheduler module in
cloud networking. We also have evaluated the efficiency of our proposals via
extensive simulations.
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