
www.allitebooks.com

http://www.allitebooks.org

CodeIgniter Web Application

Blueprints

Develop full-featured dynamic web applications using

the powerful CodeIgniter MVC framework

Rob Foster

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

CodeIgniter Web Application Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1140115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-709-3

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Rob Foster

Reviewers

Aafrin

Alexandros Dallas

Sharafat Ibn Mollah Mosharraf

Commissioning Editor

Amarabha Banerjee

Acquisition Editor

Nikhil Karkal

Content Development Editor

Rohit Kumar Singh

Technical Editor

Taabish Khan

Copy Editors

Stuti Srivastava

Laxmi Subramanian

Project Coordinator

Mary Alex

Proofreaders

Samuel Redman Birch

Stephen Copestake

Ameesha Green

Clyde Jenkins

Indexer

Rekha Nair

Graphics

Sheetal Aute

Valentina D'silva

Production Coordinator

Melwyn D'sa

Cover Work

Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Rob Foster has been working in the ield of web development for almost 10 years,
working for various IT sectors. He has interests in CodeIgniter, Laravel, and iOS
programming.

While not hunched over a computer ruining his eyesight, he enjoys drinking good
quality wine, appreciates varieties of ine cheese, and has a liking for a pair of
comfortable, elastic slacks!

Rob has also written CodeIgniter 2 Cookbook, Packt Publishing, and was a technical
editor for SUSE Linux 10 Bible, Wiley.

I would like to thank Lucy once again for putting up with all those
weekends spent not outside in the lovely summer but inside or for
being otherwise bored while I worked on the book—sadly, no Skyrim
to entertain you this time as that's still in Chloe's garage but you're
gunning for top marks on those Bejeweled type games so, er, best of
luck with that!

Thank you, Rohit at Packt for all your kind help, Taabish for your
help with the technical editing—your keen eye for detail caught the
errors I missed—and all the reviewers and other editors who helped
with this book.

Lastly, thank you friends and family for putting up with me.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Aafrin is a self-taught programmer from a cyber security and digital forensic
background. He has been actively developing and prototyping web applications
since 2003. He codes in various programming languages, including C++, Java, PHP,
ASP, VB, VB.NET, and has also worked with frameworks such as EXTJS, CakePHP,
CodeIgniter, and Yii. In his free time, he blogs at http://www.aafrin.com and
researches on computer security and computer forensics.

Alexandros Dallas studied Applied Informatics in Management and Economy
and is now a software test engineer based in Athens.

He has a solid software development background in using PHP, mostly with
Codeigniter, and Java. Whenever possible, he spends his time contributing to open
source projects. He is well aware of RESTFul Web Services concepts and libraries,
such as Jersey and Dropwizard, and has experience in the development, integration,
and testing of web APIs.

Alexandros has authored RESTFul Web Services with Dropwizard, Packt Publishing
(https://www.packtpub.com/web-development/restful-web-services-
dropwizard).

www.allitebooks.com

http://www.allitebooks.org

Sharafat Ibn Mollah Mosharraf graduated from the University of Dhaka in
Computer Science and Engineering. He is currently working as a senior software
engineer at Therap Services, LLC. He has expertise and experience in architecting,
designing, and developing enterprise applications in Java, PHP, Android, and
Objective-C. He loves researching as well as training people on state-of-the-art
technologies for the purpose of designing, developing, securing, and maintaining
web and mobile applications. He also provides coaching for various teams
participating in national software development contests. His areas of interest
include user experience, application security, application performance, and designing
scalable applications. He loves passing his free time with his family and friends.

I'd like to thank the author for writing such a wonderful book on
advanced CodeIgniter applications. I'd also like to thank Mary Alex,
the project coordinator of the book. It was a pleasure to work with
her. Last but not least, I would like to thank my wife, Sadaf Ishaq, for
bearing with me while I dedicated my busy time reviewing the book.
It's always been great to have you by my side!

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers,
and more
For support iles and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print, and bookmark content

• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: Introduction and Shared Project Resources 7

Common resources 8

Twitter Bootstrap 8

Headers and footers 8

Downloading CodeIgniter 8

CodeIgniter on newer versions of PHP 9

Installing Twitter Bootstrap 10
Removing index.php from the address bar 12

Installing and using Sparks 12

Creating a shared header and footer view 14

Common language items 16

Creating the MY_Controller ile 17
Autoloading common system resources 18

Security considerations 18

Moving the system folder 18

Error messages 19

Query binding 20

Summary 20
Chapter 2: A URL Shortener 21

Design and wireframes 22

File overview 23

Creating the database 24

Adjusting the routes.php ile 26
Creating the model 27

Creating views 29

Creating the view ile–views/create/create.php 30
Creating the view ile–views/nav/top_nav.php 31

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Creating controllers 32

Creating the controller ile–controllers/create.php 32
Creating the controller ile–controllers/go.php 34

Creating the language ile 37
Putting it all together 38

Creating a shortened URL 38

Retrieving a URL 38

Summary 39

Chapter 3: Discussion Forum 41

Design and wireframes 42

The View All Discussions page 44
The View Discussion/Add Comment page 45
The New Discussion page 46
The admin Dashboard page 47
File overview 48

Creating the database 50
Adjusting the conig.php ile 54
Adjusting the routes.php ile 55
Creating the models 55

Creating the model ile – models/discussions_model.php 55
Creating the model ile – comments_model.php 60
Creating the model ile – admin_model.php 63

Creating views 66

Discussions 67
Comments 68
New discussion 70
The top_nav ile 72
The login view 73
The login_header ile 74
Dashboard 75
The signin.css ile 77

Creating the controllers 78

The discussions controller 79
The comments controller 82

The admin controller 88

Creating the language ile 92
Putting it all together 93

A user creates a discussion forum 93

A user comments on a discussion forum 94

Table of Contents

[iii]

A user dislikes a comment and lags it for moderation 95
A moderator reviews comments awaiting moderation 96

Summary 97

Chapter 4: Creating a Photo-sharing Application 99

Design and wireframes 100
The create item 101

The do_upload item 102
The go item 102

File overview 103

Creating the database 104
Adjusting the conig.php and autoload.php iles 105
Adjusting the routes.php ile 106
Creating the model 106
Creating the views 109
Creating the controllers 111

Creating the language ile 119
Putting it all together 119

Summary 121

Chapter 5: Creating a Newsletter Signup 123

Introduction 123

Design and wireframes 124

The Home – index() and Signup – index() items 125
Settings/Unsubscribe – settings() 126
File overview 127

Creating the database 128

Adjusting the routes.php ile 129
Creating the model 129

Creating the views 132

Creating the controllers 134

Creating the language ile 138
Putting it all together 139

User subscribes 139

User updates their settings 140
User unsubscribes 140

Summary 141

Chapter 6: Creating an Authentication System 143

Introduction 144

Design and wireframes 144

Me – editing details 146

Table of Contents

[iv]

Viewing all users 147
Creating users 148
Editing the user details 148
Deleting a user 149
Sign in 150
Register 150
File overview 151

Creating the database 154

Adjusting the conig.php ile 157
Adjusting the routes.php ile 158
Creating the models 158

Creating the views 164

Creating the controllers 179

Creating the language ile 204
Putting it all together 206

User registration 206
Ensuring correct access 207

Summary 207
Chapter 7: Creating an E-Commerce Site 209

Introduction 209
Design and wireframes 210

Home – index() 211
Add to cart – add() 212
Cart – display_cart() 213
User Details – user_details() 214
File overview 215

Creating the database 216

Adjusting the conig.php ile 220
Adjusting the routes.php ile 221
Creating the model 222

Creating the views 225

Creating the controllers 230
Creating the language ile 237
Putting it all together 238

Filtering a search 238

Adding to cart 239

Altering the product quantity 240
Summary 241

Table of Contents

[v]

Chapter 8: Creating a To-do List 243

Introduction 243

Design and wireframes 244

View All/Create 245
Delete 246
File overview 246

Creating the database 247

Adjusting the conig.php ile 249
Adjusting the routes.php ile 250
Creating the model 250
Creating views 253

Creating the controller 257

Creating the language ile 261
Putting it all together 262

User adds a task 262
User changes the task status 263

Summary 264

Chapter 9: Creating a Job Board 265
Introduction 265

Design and wireframes 266

Job/Search 267
Detail/Apply 268
Create 268
File overview 269

Creating the database 270
Adjusting the conig.php ile 274
Adjusting the routes.php ile 275
Creating the model 276

Creating views 279

Creating the controller 289

Creating the language ile 298
Putting it all together 299

User creates a job advert 299

User looks at a job 300

User searches for a job 300

User applies for a job 301

Summary 302
Index 303

Preface
This book comprises eight projects. These projects are deliberately made with
extension and modiication in mind, that is, as much as possible, I've tried to build
each project in such a way that you can apply your own requirements easily and
you don't have to study the code for weeks on end to work out how it functions.

Following each chapter as they currently are will give you a perfectly functioning
project, of course, but there is always room to expand and should you choose to
extend and add functionality, you can do so easily.

Conversely, each project can be disassembled and speciic sections of code can be
lifted out and used in completely different projects that are totally separate to this
book. I've done this in several ways—as much as possible, the code is kept verbose
and simple. The code is kept in small, manageable blocks; I've tried to keep all
code as close to the examples of code used in the CodeIgniter documentation
(so hopefully, it will follow a familiar low and appearance).

I've also tried to document each project. The beginning of each chapter will contain
wireframes, sitemaps, ile tree layouts, and data dictionaries of every table in each
project, and in the code itself, I have added explanations of the code.

I try to discuss why something is there rather than just a stale explanation of what
something is; this is done in the hope that explaining why something is there will
help you understand how relevant the code is to whatever change or amendment
you might have in mind.

What this book covers
Chapter 1, Introduction and Shared Project Resources, introduces you to this book
and documents an initial development environment—installing Twitter Bootstrap,
installing CodeIgniter, and developing a few shared common resources used by all
chapters throughout the book.

Preface

[2]

Chapter 2, A URL Shortener, talks about creating an application that allows a user to
enter a URL. The application will encode this URL and generate a new, shorter URL
with a unique code appended to it—this will then be saved to a database. This URL
will be offered to the user for them to distribute and use. Once it is clicked on, the
application we will develop will look at the URL, ind the unique code in that URL,
and look for it in the database. If found, the application will load the original URL
and redirect the user to it.

Chapter 3, Discussion Forum, talks about creating an application that will allow users
to create an initial question or proposition. This question will be displayed on a type
of notice board; this is the beginning of a discussion thread. Other users are able to
click on these users' discussions and reply to them should they wish.

Chapter 4, Creating a Photo-sharing Application, talks about creating a small application
that will allow a user to upload an image. A unique URL is then generated and saved
to the database along with details of the uploaded ile. It is offered to the user for
them to distribute. Once the URL is clicked on, the uploaded image is fetched from
the ilesystem and displayed to the user.

Chapter 5, Creating a Newsletter Signup, contains a project that allows a user to register
to a database of contacts, in this case, a database of newsletter signups. The user
can amend their settings (the settings can be anything you wish: the type of e-mail
content they wish to receive or whether they wish to receive HTML or text-only
e-mails). The application even supports unsubscribing from future newsletters.

Chapter 6, Creating an Authentication System, contains an application to manage users
in a system you might develop and is perhaps the largest chapter in the book. A
simple CRUD environment is supplied, allowing you to add, edit, and delete users.
In turn, users can register themselves and even reset their password should they
forget it.

Chapter 7, Creating an E-Commerce Site, talks about a small but concise e-commerce
application that utilizes CodeIgniter's Cart class to support a simple shop. Users can
ilter products via different categories, add products to their cart, amend items in the
carts (adjust item quantities), or remove items from their cart altogether.

Chapter 8, Creating a To-do List, talks about creating an application that allows a user
to create tasks that they need to complete. Tasks can be given a due date, that is, a
kind of deadline date. The tasks are displayed in an HTML table. The rows of late
tasks are given a red background color to indicate their importance. Complete tasks
can be set as done and are indicated as being done by being struck through. Finally,
tasks can be deleted to remove old and unwanted items.

Preface

[3]

Chapter 9, Creating a Job Board, talks about creating a job board. Users are encouraged
to post an advert on the job board by illing in an HTML form. The contents of the
form are validated and added to a database of current available jobs. Other users
looking for work can search for these jobs. These users can search through all jobs
or enter a search query to see whether a speciic job exists.

What you need for this book
The following is what you need:

• You'll need a computer and an *AMP environment (MAMP, WAMP, LAMP,
and so on)

• A copy of the CodeIgniter framework

Who this book is for
In short, this book is anyone; you don't have to have previous CodeIgniter
experience—however, this will obviously help. That said, this book isn't really
aimed at the beginner, but that is by no means a barrier; don't forget, CodeIgniter
is an easy-to-use framework and can be picked up quite easily.

Conventions
In this book, you will ind a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Create or open a .htaccess ile."

A block of code is set as follows:

$this->load->model('Urls_model');

if ($res = $this->Urls_model->save_url($data)) {

 $page_data['success_fail'] = 'success';

 $page_data['encoded_url'] = $res;

} else {

 $page_data['success_fail'] = 'fail';

}

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

if ($this->form_validation->run() == FALSE) {

 // Set initial values for the view

$page_data = array('success_fail' => null,

 'encoded_url' => false);

Any command-line input or output is written as follows:

user@server:/path/to/codeigniter$ php tools/spark install -v1.0.0
 example-spark

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Enter
the following command and click on OK."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code iles from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are veriied, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search ield. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.allitebooks.org

Introduction and Shared

Project Resources
What is this chapter for? I hope to use this irst chapter to act as a primer for all
other chapters and projects in the book. I would like you to use the introduction as
a common resource containing all of the resources shared by the projects in the book.

The introduction will cover the installation of third-party software, libraries, helpers,
and so on, that are required by the projects in the later chapters. By keeping these
resources in this chapter, the projects aren't swamped with repetitive code and the
project code can be kept as clean and concise as possible.

In this chapter, we will cover the following topics:

• An overview of the book

• Downloading CodeIgniter

• Downloading and installing Twitter Bootstrap

• Creating common header and footer iles used for all projects
• Installing Sparks

• Common language items

Introduction and Shared Project Resources

[8]

Common resources
The common resources used in this book are discussed in upcoming sections.

Twitter Bootstrap
Every project in the chapters in this book uses Twitter Bootstrap. We will download
Bootstrap and ind a good place for it in our ilesystem. We will then create the header
and the footer iles. All projects in the book will call these header and footer iles (using
the CodeIgniter function $this->load->view() to display views). However, these
projects will not actually contain the code for the header and footer—only the working
code between the header and footer (what you might think of as the stuff in between
the <body> and </body> tags) will be detailed in each project.

Headers and footers
The menus will be different for individual projects. In the header ile, we will include
the code to display the menu, but the actual HTML contents for the menu will be
included in each project's chapter. The footer ile contains the closing HTML markup
for each page.

Downloading CodeIgniter
We'll need a copy of CodeIgniter to start with. This book isn't really aimed at
the beginner, so the chances are reasonably high that you already have a copy of
CodeIgniter installed or at least know your way around enough to skip this part;
however, it does make sense to briely go through the installation of CodeIgniter
so that we have something to talk about in later chapters!

First things irst, go to https://ellislab.com/codeigniter/user-guide/
installation/downloads.html. You'll see something similar to what is shown
in the following screenshot. This is the CodeIgniter download page. At the time
of writing, the current CodeIgniter version is 2.2.0; this is why the screenshot says
Current version next to version 2.2.0; however, whichever version is the latest when
you're reading this book is the version you want to use.

Chapter 1

[9]

Click on the Current version link, and CodeIgniter will begin to download.

Once it's downloaded, navigate to where you have saved the ile; this will be a
compressed archive. Unpack it and move the contents of that ile to a folder within
your web root.

Speciic details of routing, coniguration, and database use are in each chapter
(these details are speciic to that particular chapter).

CodeIgniter on newer versions of PHP
You may experience errors if you run CodeIgniter on newer versions of PHP.
There is a hack for this that is explained at https://ellislab.com/forums/
viewthread/244510/. A poster called milan.petrak has described a work around.
It can be summed up as follows:

1. Open the /path/to/codeigniter/system/core/common.php ile and ind
the line 257.

2. Find the following line:

$_config[0] =& $config;

with

return $_config[0];

return $_config[0] =& $config;

3. Save the common.php ile.

This will likely be permanently ixed in later releases of CodeIgniter, but for now,
this is the ix.

Introduction and Shared Project Resources

[10]

Installing Twitter Bootstrap
Twitter Bootstrap is a frontend HTML5 framework that allows anyone to easily
construct reliable interfaces. At the time of writing, the version of Bootstrap
used is version 3.1.1.

We will use Twitter Bootstrap throughout this book to provide the framework for
all view iles and templates. We will look at how to download Twitter Bootstrap and
how to install it in the CodeIgniter ilesystem.

Firstly, we will need to download the Twitter Bootstrap iles. To do that, perform the
following steps:

1. Open your web browser and go to the Bootstrap download link at
http://getbootstrap.com/getting-started. You'll see something
similar to what is shown in the following screenshot:

2. Find the Download Bootstrap link and click on it (as indicated in the
preceding screenshot); the download will start automatically.

Chapter 1

[11]

Once the download is inished, go to its location on your machine and unpack the
archived ile. Inside the unpacked ile, you should see something similar to what is
shown in the following structure:

bootstrap/

├── css/

│ ├── bootstrap-theme.css

│ ├── bootstrap-theme.css.map

│ ├── bootstrap-theme.min.css

│ └── bootstrap.css

│ └── bootstrap.css.map

│ └── bootstrap.min.css

├── js/

│ ├── bootstrap.js

│ └── bootstrap.min.js

└── fonts/

 ├── glyphicons-halflings-regular.eot

 ├── glyphicons-halflings-regular.svg

 ├── glyphicons-halflings-regular.ttf

 └── glyphicons-halflings-regular.woff

Move the bootstrap folder to your CodeIgniter installation so that the ile hierarchy
looks like the following:

/path/to/web/root/

├── application/

└── views/

 ├── common

 ├── header.php

 ├── footer.php

├── system/

├── bootstrap/

├── index.php

├── license.txt

In the preceding tree structure, the application and system directories are to
do with CodeIgniter, as are the index.php and license.txt iles; however, the
bootstrap directory contains the contents of your Bootstrap download.

I have also indicated the location of the common header.php and footer.php iles.
These iles are used throughout the book and act as a wrapper for every other
view ile.

Introduction and Shared Project Resources

[12]

Removing index.php from the address

bar
It is possible to remove index.php from the web browser address bar when
CodeIgniter is running. This can be done by following these steps:

1. Create or open a .htaccess ile. If a .htaccess ile does not already exist,
you can create one using the following:

 ° Linux/Mac: Open a terminal window and type the following:

touch /path/to/CodeIgniter/.htaccess

 ° Windows: Create a text file in your CodeIgniter root, naming it file.
htaccess. Hold down the Windows key and then press R to open the
Run dialogue. Enter the following command and click on OK:

ren "C:\path\to\CodeIgniter\file.htaccess" .htaccess

2. Once your .htaccess ile is opened, write the following lines at the top
of the ile:
<IfModule mod_rewrite.c>

RewriteEngine on

RewriteCond $1 !^(index\.php|images|robots\.txt)

RewriteRule ^(.*)$ index.php/$1 [L]

</IfModule>

Installing and using Sparks
For a long time, you had to search the Internet and download code from various
places—blogs, code repositories, and so on—to ind and use extensions, libraries,
and other useful snippets of code for CodeIgniter. Useful installations for
CodeIgniter were spread across the Internet; as such, they might have been hard to
locate. Sparks acts as a single point of reference for extensions of CodeIgniter. It's
simple to install and use and contains thousands of useful add-ons for CodeIgniter:

• If you are using a Mac or Linux, then the command-line interface is open to
you. Using the terminal application on your system, navigate to the root of
your CodeIgniter application and enter the following line:

php -r "$(curl -fsSL http://getsparks.org/go-sparks)"

Chapter 1

[13]

If your installation was successful, you should see something similar to
the following:

user@server:/path/to/codeigniter$ php -r "$(curl -fsSL http://
getsparks.org/go-sparks)"

Pulling down spark manager from http://getsparks.org/static/
install/spark-manager-0.0.9.zip ...

Pulling down Loader class core extension from http://getsparks.
org/static/install/MY_Loader.php.txt ...

Extracting zip package ...

Cleaning up ...

Spark Manager has been installed successfully!

Try: `php tools/spark help`

• If you are using Windows, then you will need to download Sparks and
unpack it manually; to do that, follow these instructions or check out the
instructions on the GetSparks website for the latest version:

1. Create a folder called tools in the top level (root) or in your
CodeIgniter directory.

2. Go to http://getsparks.org/install.

3. Go to the Normal Installation section and download the
Sparks package.

4. Unpack the download into the tools folder you created in step 1.

5. Download the Loader class extension from http://getsparks.org/
static/install/MY_Loader.php.txt.

6. Rename the file MY_Loader.php.txt to MY_Loader.php and move
it to the application/core/MY_Loader.php location in your
CodeIgniter instance.

Now that Sparks is installed in your CodeIgniter instance, you can begin to install
extensions and packages.

To install a package from Sparks, type the following in the command-line window:

php tools/spark install [Package Version] Spark Name

Introduction and Shared Project Resources

[14]

Here, Package Version is the speciic version of the Spark you wish to install.
You are not required to state the version and, if you it out, Sparks will download the
latest version by default. Spark Name is the name of the Spark you wish to install;
for example, to install example-spark (version 1.0.0), which comes with the default
installation, type the following in the command-line window:

php tools/spark install -v1.0.0 example-spark

If the installation was successful, you should see something similar to the following:

user@server:/path/to/codeigniter$ php tools/spark install -v1.0.0
example-spark

[SPARK] Retrieving spark detail from getsparks.org

[SPARK] From Downtown! Retrieving spark from Mercurial repository at
https://url/of/the/spark/repo

[SPARK] Spark installed to ./sparks/example-spark/1.0.0 - You're on
fire!

Creating a shared header and footer view
Every project throughout this book will use the common header and footer iles that
we will create here; navigation menus will be different for each project and, as such,
we will build these in the project's chapter themselves. But for now, let's look at the
common header and footer iles:

1. Create the header.php ile at /path/to/codeigniter/application/
views/common/ and add the following code to it:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width,
 initial-scale=1">

 <meta name="description" content="">

 <meta name="author" content="">

 <link rel="shortcut icon" href="<?php echo
 base_url('bootstrap/ico/favicon.ico'); ?>">

 <title><?php echo $this->lang-
 >line('system_system_name'); ?></title>

 <!-- Bootstrap core CSS -->

Chapter 1

[15]

 <link href="<?php echo base_url
 ('bootstrap/css/bootstrap.min.css'); ?>"
 rel="stylesheet">

 <!-- Bootstrap theme -->

 <link href="<?php echo base_url
 ('bootstrap/css/bootstrap-theme.min.css'); ?>"
 rel="stylesheet">

 <!-- Custom styles for this template -->

 <link href="<?php echo base_url
 ('bootstrap/css/theme.css');?>" rel="stylesheet">

 <!-- HTML5 shim and Respond.js IE8 support of HTML5
 elements and media queries -->

 <!--[if lt IE 9]>

 <script src="https://oss.maxcdn.com/libs/
 html5shiv/3.7.0/html5shiv.js"></script>

 <script src="https://oss.maxcdn.com/libs/
 respond.js/1.4.2/respond.min.js"></script>

 <![endif]-->

 </head>

 <body role="document">

<!-- END header.php -->

 <div class="container theme-showcase" role="main">

The preceding view ile contains the HTML for the head of a document. This
is to say that this HTML is used throughout the book for every project, and
it contains the HTML markup for everything from the opening html tag,
opening and closing head tags, and the opening body tag.

2. Create the footer.php ile at /path/to/codeigniter/application/
views/common/ and add the following code to it:

 </div> <!-- /container -->

 <link href="<?php echo base_url('bootstrap/css/bootstrap.min.
css'); ?>" rel="stylesheet">

 <!-- Bootstrap core JavaScript

 == -->

 <!-- Placed at the end of the document so the pages
 load faster -->

 <script src="https://ajax.googleapis.com/ajax/
 libs/jquery/1.11.0/jquery.min.js"></script>

www.allitebooks.com

http://www.allitebooks.org

Introduction and Shared Project Resources

[16]

 <script src="<?php echo base_url
 ('bootstrap/js/bootstrap.min.js');?>"></script>

 <script src="<?php echo base_url
 ('bootstrap/js/docs.min.js');?>"></script>

 </body>

</html>

The preceding block of code contains the HTML markup for the footer view
ile used for every project throughout this book.

Common language items
In each project throughout the book, we will create a speciic language ile containing
speciic language items that are relevant to that particular project. However, there are
also common language elements that we won't repeat in each project (as there's no
need); thus, we can have them here instead.

The language items mostly cover screen elements such as general navigation, general
error and success messages, and CRUD actions (edit, delete, and so on).

With that in mind, let's go ahead and create the base language ile that will serve as a
template for the chapters in this book.

Create the en_admin_lang.php ile at /path/to/codeigniter/application/
language/english/ and add the following code to it:

// Common form elements

$lang['common_form_elements_next'] = "Next...";

$lang['common_form_elements_save'] = "Save...";

$lang['common_form_elements_cancel'] = "Cancel";

$lang['common_form_elements_go'] = "Go...";

$lang['common_form_elements_go_back'] = "Go back";

$lang['common_form_elements_submission_error'] = "There were
 errors with the form:";

$lang['common_form_elements_success_notifty'] = "Success:";

$lang['common_form_elements_error_notifty'] = "Error:";

$lang['common_form_elements_actions'] = "Actions";

$lang['common_form_elements_action_edit'] = "Edit";

$lang['common_form_elements_action_delete'] = "Delete";

$lang['common_form_elements_active'] = "Active";

$lang['common_form_elements_inactive'] = "Inactive";

$lang['common_form_elements_seccessful_change'] = "Your changes have
been saved";

$lang['common_form_elements_seccessful_delete'] = "The item has
 been deleted";

Chapter 1

[17]

$lang['common_form_elements_yes'] = "Yes";

$lang['common_form_elements_no'] = "No";

$lang['common_form_elements_to'] = "to";

$lang['common_form_elements_from'] = "from";

$lang['common_form_elements_history'] = "History";

The preceding language items are mostly for HTML forms and tables of data, such as
the text for the Submit, Edit, Delete, and History buttons. Also included are general
error or success messages. Feel free to add to them if you wish.

Creating the MY_Controller ile
All projects in this book make use of the MY_Controller ile; this is the same for
all projects.

Create the MY_Controller.php ile at /path/to/codeigniter/application/core/
and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed');

class MY_Controller extends CI_Controller {

 function __construct() {

 parent::__construct();

 $this->load->helper('form');

 $this->load->helper('url');

 $this->load->helper('security');

 $this->load->helper('language');

 // Load language file

 $this->lang->load('en_admin', 'english');

 }

}

As you can see, we load helpers that are common to all projects, such as the form
helper and the language helper, among others. The language ile is also loaded here.

All the controllers in the project extend from this MY_Controller ile rather than the
default CI_Controller ile.

Introduction and Shared Project Resources

[18]

Autoloading common system resources
We also are autoloading various resources such as support for database access and
session management. We need to specify that we're using these resources.

Open the autoload.php ile from /path/to/codeigniter/application/config/
in your text editor and ind the following line:

$autoload['libraries'] = array();

Replace this line with the following:

$autoload['libraries'] = array('database', 'session');

This will ensure that the resources that are required in order to access the database
and to manage sessions are always with us.

Security considerations
Whatever you are programming, your two main priorities are security and
maintainability; this is to say that your application should be as secure as is necessary
and should be written in such a way that someone else can easily program and extend
on what you're doing. I can't discuss maintainability—that's up to you—but I can give
you guidance on CodeIgniter and security.

However, I should say that no security is 100 percent foolproof. Even banks and
security agencies that spend hundreds of millions on systems still get hacked, so
what chance do we have? Well, the best we can do is try to reduce the opportunity
that someone might do something that could compromise our code or database.

Moving the system folder
You should move your system folder out of your web root. This is to make it as hard
as possible for anything other than the web server to access. Take a look at the line in
the main index.php ile:

$system_path = 'system';

Make sure that you amend the preceding line to this:

$system_path = '../system';

So, if we moved the system folder out of the web root one level higher, we would
use the../ convention, prepending it to system.

Chapter 1

[19]

Error messages
Obviously you don't want to actually display error messages to the outside world.
Over time, everyone will gain an understanding of the architecture of your site and
where its weaknesses are, especially if you allow SQL errors to be displayed in a
production environment.

For this reason, you should change the environment variable in the main index.php
ile from development to production. This will suppress the reporting errors; 404
and 500 errors will still be caught and displayed normally but SQL errors and other
similar errors will be suppressed.

For this, look at the following code in the index.php ile:

define('ENVIRONMENT', 'development');

/*

 *---

 * ERROR REPORTING

 *---

 *

 * Different environments will require different levels of error
reporting.

 * By default development will show errors but testing and live will
hide them.

 */

if (defined('ENVIRONMENT'))

{

 switch (ENVIRONMENT)

 {

 case 'development':

 error_reporting(E_ALL);

 break;

 case 'testing':

 case 'production':

 error_reporting(0);

 break;

 default:

 exit('The application environment is not set correctly.');

 }

}

Introduction and Shared Project Resources

[20]

Look at the line in bold (the irst line). This line has set CodeIgniter to run in
development mode; to change to anything else (speciically, a live mode), change
the line in bold to the following:

define('ENVIRONMENT', 'production');

All errors will now be suppressed.

Query binding
Query binding is a good idea; it makes your queries easier to read; queries that use
the CodeIgniter binding are automatically escaped, leading to more secure queries.
The syntax is simple; for example, consider the following query:

$query = "SELECT * FROM `users` WHERE user_email = ? AND user_level =
?";

Look at the end of the query; you can see that we use a question mark where we
would normally use a variable; this is something that would normally look like this:

$query = "SELECT * FROM `users` WHERE user_email = $user_email AND
user_level = $user_level";

How does CodeIgniter know what the question mark means, and how does
CodeIgniter put the correct value in the query? Take a look at this second line:

$this->db->query($query, array($user_email, $user_level));

This is how it matches the value to the correct question mark. We use the $this-
>db->query()CodeIgniter function, passing to it two arguments. The irst is the
$query variable (containing the actual query), and the second is an array. Each
position in the array matches the position of the question marks in the SQL string.

Summary
Now, you will discover that we are ready to start the book and are all set to tackle
each chapter.

Remember that the code for each chapter is available at the Packt website, as is the
SQL for each chapter; this will save you from having to type in all this stuff.

A URL Shortener
There are quite a few URL shorteners out there on the Internet; however, there's
always room for a little fun and sometimes people or companies require their own
solutions rather than just using an external provider. The project in this chapter covers
just that—developing a URL shortener in CodeIgniter that can be used by anyone.

To make this app, we'll need to do a few things: we'll create two controllers, one to
create a shortened URL and one to redirect a shortened URL to its actual location on
the Web.

We'll create language iles to store text, creating a foundation for multiple language
support should you wish to implement it.

We will also make amends to the config/routes.php ile—this is to ensure that the
shortened URL is as short as it can be.

However, this app, along with all the others in this book, relies on the basic setup
we did in Chapter 1, Introduction and Shared Project Resources; although you can take
large sections of the code and drop it into pretty much any app you may already
have, bear in mind that the setup we did in Chapter 1, Introduction and Shared Project
Resources, acts as a foundation for this chapter.

In this chapter, we will cover the following topics:

• Design and wireframes

• Creating the database

• Adjusting the routes.php ile
• Creating the model

• Creating the views

• Creating the controllers

• Putting it all together

So without further ado, let's get on with it.

A URL Shortener

[22]

Design and wireframes
Before we start building, we should always take a look at what we plan to build.

Firstly, a brief description of our intent: we plan to build an app that will display a
simple form to the user. The user will be encouraged to enter a URL into the form
and submit that form.

A unique code will be generated and associated with the URL entered by the user.
This URL and unique code will be saved to a database.

A new URL will be shown to the user containing the unique code we just generated.
That unique code will be appended to the URL of the app we're building. Should
the user (or anyone else) click on that link, the app will look up the unique code in
the database. If the unique code exists, it will redirect the user to the original URL
associated with that unique code.

So, let's take a look at some wireframes to help us understand what this might look
like on screen:

Codelgniter Blueprints-URL Shortener

Go

Logo or Name Create

URL Shortener
Enter your URL below

Chapter 2

[23]

This is the irst page that the user will see. The user is invited to enter a URL into the
textbox and hit the Go button.

The page will be submitted and code will be generated. Both this code and the
original URL will be saved to the database. The user will then see the new URL
we've just created for them. They can copy that URL to their clipboard (for pasting
into an e-mail and so on) or click on it there and then if they wish. This is shown in
the following screenshot:

Codelgniter Blueprints-URL Shortener

Go

Logo or Name Create

URL Shortener

Enter your URL below

Your URL is: http://www.domain.com/url_code

File overview
We're going to create six iles for this application, as follows:

• /path/to/codeigniter/application/models/urls_model.php: This
ile provides access to the database and allows us to create the url_code,
save the record to the database, and also retrieve the original URL from
the database.

• /path/to/codeigniter/application/views/create/create.php: This
ile provides us with our interface, the user facing form, and any messages
needed to inform the user of their actions or the system's actions.

A URL Shortener

[24]

• /path/to/codeigniter/application/views/nav/top_nav.php: This ile
provides a navigation bar at the top of the page.

• /path/to/codeigniter/application/controllers/create.php: This
ile performs validation checks on the URL inputted by the user, calls any
helpers, and so on.

• /path/to/codeigniter/application/controllers/go.php: This ile
provides support for shortened URLs. It gets the unique code parameter
from the URI (irst segment), sends it to the Urls_model, and redirects the
user to the associated url_address if it exists.

• /path/to/codeigniter/application/language/english/en_admin_

lang.php: This ile provides language support for the application.

The ile structure of the preceding six iles is as follows:

application/

├── controllers/

│ ├── create.php

│ ├── go.php

├── models/

│ ├── urls_model.php

├── views/create/

│ ├── create.php

├── views/nav/

│ ├── top_nav.php

├── language/english/

 ├── en_admin_lang.php

Downloading the example code

You can download the example code iles from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the iles
e-mailed directly to you.

Creating the database
Okay, you should have already set up CodeIgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources. If not, then you should know that
the code in this chapter is speciically built with the setup from Chapter 1, Introduction
and Shared Project Resources, in mind. However, it's not the end of the world—the
code can easily be applied to other situations.

Chapter 2

[25]

Firstly, we'll build the database. Copy out the following MySQL code into
your database:

CREATE DATABASE `urls`;

USE `urls`;

CREATE TABLE `urls` (

 `url_id` int(11) NOT NULL AUTO_INCREMENT,

 `url_code` varchar(10) NOT NULL,

 `url_address` text NOT NULL,

 `url_created_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 PRIMARY KEY (`url_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

You don't have to call the database urls if you don't want to. Feel
free to rename to something else if you wish; just be sure to update
the config/database.php ile accordingly.

Let's take a look at what each item in the database means:

Elements Description

url_id This is the primary key.

url_code This contains the unique code generated by the save_url()
function of urls_model.php. This is the code that is appended to
the shortened URL.

url_address This is the actual URL the user entered in the form in the create.
php view file. It will be the URL that the user is redirected to.

url_created_at This is the MySQL timestamp created when the record was added.
It is necessary so that we have an idea of when a record was created;
also, it gives us a method of clearing old records from the database
using a cron script should you wish.

We'll also need to make amends to the config/database.php ile—namely setting
the database access details, username password, and so on.

Open the config/database.php ile and ind the following lines:

$db['default']['hostname'] = 'localhost';

$db['default']['username'] = 'your username';

$db['default']['password'] = 'your password';

$db['default']['database'] = 'urls';

www.allitebooks.com

http://www.allitebooks.org

A URL Shortener

[26]

Edit the values in the preceding lines. Ensure you substitute those values with the
ones that are more speciic to your setup and situation—so enter your username,
password, and so on.

Adjusting the routes.php ile
We want short URLs—in fact the shorter the better. The user clicking on a URL
would be better served if the URL were as short as possible; for that reason, it would
be a good idea if we removed certain things from the URL to make it shorter—for
example, the controller name and function name. We will use CodeIgniter's routing
functionality to achieve this. This can be done as follows:

1. Open the config/routes.php ile for editing and ind the following lines
(near the bottom of the ile):
$route['default_controller'] = "welcome";

$route['404_override'] = '';

2. Firstly, we need to change the default controller. Initially, in a CodeIgniter
application, the default controller is set to welcome. However, we don't need
that; instead we want the default controller to be create. So, consider the
following line:

$route['default_controller'] = "welcome";

Replace it with the following code:

$route['default_controller'] = "create";

3. We will also need to set up a route rule for the go controller. We will need
to remove the controller and function names (usually the irst and second
parameters in the URI). The following are two lines of code (highlighted in
bold); add these two lines below the 404_override route, so that the ile now
looks like the following:

$route['default_controller'] = "create";

$route['404_override'] = '';

$route['create'] = "create/index";

$route['(:any)'] = "go/index";

Now, the eagle-eyed among you will have looked at that last line and seen the
(:any) type; some of you may have wondered what all that was about.

CodeIgniter supports a simple type of regex that makes routing for unknown URLs
much easier. The (:any) type says to CodeIgniter that any URI pattern not otherwise
deined (we're also deining create) is to be routed to go/index.

Chapter 2

[27]

Creating the model
The Urls_model contains three functions; obviously it contains our __construct()
function but we're not focusing on that at the moment as it's not doing anything
except referencing its parent.

Instead, let's look at the two functions save_url() and fetch_url(). As their names
suggest, one saves information to the database and the other fetches information
from it. For now, let's go and create the code and we'll discuss in detail what each
function does later:

Create the urls_model.php model ile and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed');

class Urls_model extends CI_Model {

 function __construct() {

 parent::__construct();

 }

 function save_url($data) {

 /*

 Let's see if the unique code already exists in

 the database. If it does exist then make a new

 one and we'll check if that exists too.

 Keep making new ones until it's unique.

 When we make one that's unique, use it for our url

 */

 do {

 $url_code = random_string('alnum', 8);

 $this->db->where('url_code = ', $url_code);

 $this->db->from('urls');

 $num = $this->db->count_all_results();

 } while ($num >= 1);

 $query = "INSERT INTO `urls` (`url_code`, `url_address`) VALUES
(?,?) ";

 $result = $this->db->query($query, array($url_code, $data['url_
address']));

 if ($result) {

 return $url_code;

 } else {

A URL Shortener

[28]

 return false;
 }
 }

 function fetch_url($url_code) {
 $query = "SELECT * FROM `urls` WHERE `url_code` = ? ";
 $result = $this->db->query($query, array($url_code));
 if ($result) {
 return $result;
 } else {
 return false;
 }
 }
}

Let's take a look at save_url(). Notice the PHP construct do...while; it looks
something like the following:

do {

// something

} while ('…a condition is not met');

So that means do something while a condition is not met.

Now, with that in mind, think about our problem. We have to associate the URL that
the user has entered in the form with a unique value. We will use this unique value
to represent the real URL.

Now there's no point using a sequential number (1, 2, 3, … 1000) as our unique value
as someone can come along and iterate up through the numbers and get access to
everyone's URLs. This may not be such a dreadful security risk as presumably all
pages are accessible from the Internet anyway, but it's still not a good idea. So the
unique value must not only be unique, it must be random and not easily guessed by
passersby. Also, this unique value must only exist once in the database.

To ensure this, we will have to check if the unique value already exists and, if it does
exist, make a new unique code and check in the database again.

So, let's look at the do while construct in the save_url() function in a bit more
detail. The following is the code:

do {

 $url_code = random_string('alnum', 8);

 $this->db->where('url_code = ', $url_code);

 $this->db->from('urls');

 $num = $this->db->count_all_results();

 } while ($num>= 1);

Chapter 2

[29]

We use CodeIgniter's String helper and its random_string() function (make sure
you include the String helper using $this->load->helper('string'); in your
controllers' constructor). The random_string() function will create (as the name
suggests) a random string of characters that we will use for our unique code.

In this case, we're asking random_string() to give us a string of characters made up
of numbers and uppercase and lowercase letters; that string should be no more that 8
digits in length.

We then look into the database to see if the code random_string() has made for
us already exists. We'll use the $this->db->count_all_results(); CodeIgniter
function to count up the number of matching results.

If the unique string already exists, then the number returned by $this->db->count_
all_results(); will be equal to 1 (as it already exists). If this happens, we will loop
back to the beginning of the do while construct and start again by generating a
new code.

We keep doing this until we ind a code that does not exist in the database. When
we do, we break out of the do while loop and save that unique code, along with the
original URL to the database.

Now let's look at fetch_url(). We want to see if there is a record in the database
that corresponds to the $url_code entered by the user (in this case, they have clicked
on a URL). The fetch_url() function accepts $url_code as a function argument
passed to it by the controller and looks for it in the database. If it is found, the entire
record (table row) is returned to the controller; if not, it returns false. The controller
handles the false result accordingly (it displays an error).

Creating views
We're going to create two view iles in this section, as follows:

• /path/to/codeigniter/application/models/views/create/create.php

• /path/to/codeigniter/application/models/views/nav/top_nav.php

Don't forget that the navigation ile (views/nav/top_nav.php) is unique to each
chapter in this book.

A URL Shortener

[30]

Creating the view ile–views/create/create.php
The create.php ile is the view ile that the user creating the shortened URL will
see; it contains the HTML form the user will enter the original URL into and any
interactive elements such as error or success messages.

Create the create/create.php view ile and add the following code to it:

 <div class="page-header">

 <h1><?php echo $this->lang->line('system_system_name'); ?></
h1>

 </div>

 <p><?php echo $this->lang->line('encode_instruction_1'); ?></p>

 <?php if (validation_errors()) : ?>

 <?php echo validation_errors(); ?>

 <?php endif ; ?>

 <?php if ($success_fail == 'success') : ?>

 <div class="alert alert-success">

 <?php echo $this->lang->line('common_form_elements_
success_notifty'); ?> <?php echo $this->lang->line('encode_
encode_now_success'); ?>

 </div>

 <?php endif ; ?>

 <?php if ($success_fail == 'fail') : ?>

 <div class="alert alert-danger">

 <?php echo $this->lang->line('common_form_elements_
error_notifty'); ?> <?php echo $this->lang->line('encode_
encode_now_error'); ?>

 </div>

 <?php endif ; ?>

 <?php echo form_open('create') ; ?>

 <div class="row">

 <div class="col-lg-12">

 <div class="input-group">

 <input type="text" class="form-control" name="url_
address" placeholder="<?php echo $this->lang->line('encode_type_url_
here'); ?>">

 <button class="btn btn-default" type="submit"><?php
echo $this->lang->line('encode_encode_now'); ?></button>

Chapter 2

[31]

 </div><!-- /input-group -->

 </div><!-- /.col-lg-6 -->

 </div><!-- /.row -->

 <?php echo form_close() ; ?>

 <?php if ($encoded_url == true) : ?>

 <div class="alert alert-info">

 <?php echo $this->lang->line('encode_encoded_url');
?>

 <?php echo anchor($encoded_url, $encoded_url) ; ?>

 </div>

 <?php endif ; ?>

Creating the view ile–views/nav/top_nav.php
Each project in this book has its own navigation bar at the top of the page. This
chapter is no exception although the actual navigation options for this project are
limited—mostly because the app we're building only really does one thing. So create
the nav/top_nav.php view ile and add the following code to it:

<!-- Fixed navbar -->

<div class="navbarnavbar-inverse navbar-fixed-top" role="navigation">

<div class="container">

<div class="navbar-header">

<button type="button" class="navbar-toggle" data-toggle="collapse"
data-target=".navbar-collapse">

Toggle navigation

</button>

<?php echo $this->lang->line('system_
system_name'); ?>

</div>

<div class="navbar-collapse collapse">

<ul class="navnavbar-nav">

<li class="active"><?php echo anchor('create', 'Create') ; ?>

</div><!--/.navbar-collapse -->

</div>

</div>

<div class="container theme-showcase" role="main">

A URL Shortener

[32]

Creating controllers
There are two controllers in this project. The irst one create is responsible for
displaying the initial form to the user and validating the input. The second one go
will redirect the user to the original URL.

Don't forget that the controllers extend the core/MY_Controller.php ile and
inherit the helpers loaded there.

Creating the controller ile–controllers/create.
php
The create controller in this project is responsible for the initial contact with the
user; that is to say, it loads the view ile views/create.php (that displays the form to
the user) and processes the input—validation and more. We'll look at it in a second,
but irst let's create the controller:

Create the controller ile create.php and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

class Create extends MY_Controller {

function __construct() {

 parent::__construct();

 $this->load->helper('string');

 $this->load->library('form_validation');

 $this->form_validation->set_error_delimiters('<div
 class="alert alert-danger">', '</div>');

 }

public function index() {

 $this->form_validation->set_rules('url_address', $this->
 lang->line('create_url_address'),
 'required|min_length[1]|max_length[1000]|trim');

if ($this->form_validation->run() == FALSE) {

 // Set initial values for the view

 $page_data = array('success_fail' => null,

 'encoded_url' => false);

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('create/create', $page_data);

Chapter 2

[33]

 $this->load->view('common/footer');

 } else {

 // Begin to build data to be passed to database

 $data = array(

 'url_address' => $this->input->
 post('url_address'),

);

 $this->load->model('Urls_model');

if ($res = $this->Urls_model->save_url($data)) {

 $page_data['success_fail'] = 'success';

 $page_data['encoded_url'] = $res;

 } else {

 // Some sort of error, set to display error
 message

 $page_data['success_fail'] = 'fail';

 }

 // Build link which will be displayed to the user

 $page_data['encoded_url'] = base_url() . '/' . $res;

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('create/create', $page_data);

 $this->load->view('common/footer');

 }

 }

}

So, the create controller does the following things for us:

• Form validation, where it checks to see if the input is what we expect

• Packaging up the url_address ready for the Urls_model

• Handling any error and success messages

Let's go through the controller by taking a look at what happens when the controller
is loaded. As we're using CodeIgniter's form validation processes, you'll be aware
that ($this->form_validation->run() == FALSE) will trigger the view iles to be
displayed, as shown here:

if ($this->form_validation->run() == FALSE) {

 // Set initial values for the view

$page_data = array('success_fail' => null,

 'encoded_url' => false);

A URL Shortener

[34]

 $this->load->view('common/header');
 $this->load->view('nav/top_nav');
 $this->load->view('create/create', $page_data);
 $this->load->view('common/footer');
} else {
 ...

Before we display the view iles, we set some variable values for the view ile
create/create.php. These values govern how the success and error messages
are displayed. These are stored in the $page_data array (see the bold text in the
preceding code).

Assuming there were no errors from the form validation, we grab the url_address
from the post array and package it into an array, as follows:

$data = array(

 'url_address' => $this->input->post('url_address'),

);

We then load the Urls_model and send the $data array to the save_url()function
of Urls_model:

$this->load->model('Urls_model');
if ($res = $this->Urls_model->save_url($data)) {
 $page_data['success_fail'] = 'success';
 $page_data['encoded_url'] = $res;
} else {
 $page_data['success_fail'] = 'fail';
}

I have removed the comments to make it more legible
for this explanation.

When successful, the model will return the url_code that we store in
$page_data['encoded_url'].

This is then passed the create/create.php view ile, which will display a success
message to the user and their now shortened URL.

Creating the controller ile–controllers/go.php
The go controller is the other end of the process. That is to say, the create.php
controller creates the shortened URL and saves it to the database, and the go.php
controller is responsible for taking a URL, inding the $url_code in the uri segments,
looking in the database to see if it exists, and, if so, redirecting the user to the actual
web address associated with it. Sounds simple, and in truth it is.

Chapter 2

[35]

Create the go.php controller ile and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
allowed');

class Go extends MY_Controller {

function __construct() {

 parent::__construct();

 $this->load->helper('string');

 }

public function index() {

if (!$this->uri->segment(1)) {

redirect (base_url());

 } else {

 $url_code = $this->uri->segment(1);

 $this->load->model('Urls_model');

 $query = $this->Urls_model->fetch_url($url_code);

if ($query->num_rows() == 1) {

foreach ($query->result() as $row) {

 $url_address = $row->url_address;

 }

redirect (prep_url($url_address));

 } else {

 $page_data = array('success_fail' => null,

 'encoded_url' => false);

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('create/create', $page_data);

 $this->load->view('common/footer');

 }

 }

 }

}

The go controller really only gets going after the following lines:

if (!$this->uri->segment(1)) {

redirect (base_url());

 } else {

 ...

www.allitebooks.com

http://www.allitebooks.org

A URL Shortener

[36]

The preceding lines check to see if there is a 1st segment in the URL. Normally, the
irst and second segments are taken up by the controller and function name (as the
order in the URL usually goes controller/function/parameter). However, as we want
the URL to be short (or at least that's the idea), we're taking our unique code from the
irst parameter. Think of it as shifting what would normally be in the third parameter
to the left. So, two levels higher up means that what was in the third segment is now
at the irst.

How do we do this? How do we have a parameter (our unique code) as the 1st
parameter instead of the controller name? Where did the controller and function
names go and why does it still work when they're removed?

We alter the routes.php ile, of course; this is explained earlier in this chapter.

Anyway, let's return to our code. If there is no item in the URL, then there isn't really
anything for this controller to do. Thus, we'll redirect the user to the base_url()
function, which will load the default controller (set as autoload.php); in this case,
the default controller is the create.php ile.

Now, assuming that there was a 1st parameter, we'll move on to the next part of the
controller, the bit that works out the $url_code, as shown in the following code:

$url_code = $this->uri->segment(1);

$this->load->model('Urls_model');

$query = $this->Urls_model->fetch_url($url_code);

if ($query->num_rows() == 1) {

foreach ($query->result() as $row) {

 $url_address = $row->url_address;

 }

 redirect (prep_url($url_address));

} else {

 ...

Take a look at the preceding code. We grab the 1st uri segment and assign it to the
$url_code variable. We need to check if this code exists in the database, so we load
the Urls_model and call the fetch_url() function of Urls_model, passing to it
$url_code.

The fetch_url() method will look in the database for a record corresponding to the
value in $url_code. If nothing is found, it'll return false, causing the controller to
load the create/create.php view.

Chapter 2

[37]

However, if a record is found, fetch_url() returns the Active Record object. We
now loop over the object, picking out the url_address, and storing it as the local
variable $url_address, as shown here:

 foreach ($query->result() as $row) {

 $url_address = $row->url_address;

 }

Now, we have the original URL in the $url_address variable. We simply pass this
directly to the redirect()CodeIgniter function, which will, as the name suggests,
redirect the user to the original URL.

Notice the use of the prep_url() CodeIgniter function from within the redirect()
function. This can be done as follows:

redirect (prep_url($url_address));

The prep_url() function will ensure that there is http:// at the beginning of the
URL, if it does not already have it

Creating the language ile
Taking text out of the HTML or storing text in other iles such as controllers can
make maintaining applications or adding multiple languages a nightmare. Keeping
languages in a separate dedicated ile is always a good idea. With that in mind, we
will create a language ile for this app.

Create the language ile en_admin_lang.php and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
allowed');

// General
$lang['system_system_name'] = "URLs a Swinger";

// Encode
$lang['encode_instruction_1']= "Enter a URL in the text box below and
we'll shorten it";
$lang['encode_encode_now']= "Shorten Now";
$lang['encode_encode_now_success']= "Your URL was successfully
shortened - check it out below";
$lang['encode_encode_now_error']= "We could not shorten your url, see
below for why";
$lang['encode_type_url_here']= "Write the URL here";
$lang['create_url_address'] = "Write the URL here";
$lang['encode_encoded_url']= "Hey look at this, your shortenedurl
is:";

A URL Shortener

[38]

Putting it all together
Now that we have made all the amendments to coniguration iles, created the
database, and created all the iles necessary for the app to work (controllers, models,
views, and so on) let's run through a few scenarios briely, just to make sure we
know how the app functions.

Creating a shortened URL
Let's consider an example where Lucy visits the URL Shortener app and the create
controller is called by CodeIgniter, displaying the create/create.php view ile.
The following is the sequence of events:

1. Lucy enters a URL in the text input and clicks on Shorten Now.

2. Upon submitting the form, the controller validates the URL. The URL is
successfully validated and the validation returns no errors.

3. The URL entered by Lucy is then sent to the save_url()function of Urls_
model that creates a unique code. The save_url() function uses the PHP
construct do while and an Active Record database query to create a unique
code that doesn't already exist in the database.

4. Once a code has been created that doesn't already exist, it is saved to the
database along with a MySQL timestamp.

5. The app then displays a success message to Lucy, informing her that the
URL was saved correctly. It also displays the URL for her to either click on
or (more likely) copy-and-paste elsewhere.

Retrieving a URL
Let's consider an example where Jessica receives an e-mail from Lucy containing the
shortened URL. The following is the sequence of events:

1. Jessica opens the e-mail and clicks on the URL in that e-mail.

2. Her computer opens a browser and takes her to our app. As the create
controller is not the 1st uri segment, the go controller is run (we set this in
the routes.php ile).

3. The go controller loads the Urls_model, passing it the url_code (that was
in the irst segment of uri). The fetch_url() function of Urls_model looks
in the database for the code and, if found, it returns the actual web address
associated with that code to the go controller.

4. The go controller redirects the browser to the URL supplied by the model.

5. Jessica is happy as she can look at the cute cat video Lucy sent her! Awww!

Chapter 2

[39]

Summary
So there you are! We've got ourselves a fairly good URL shortener application.
It's certainly not feature-rich or the most advanced, but it works and is ready to be
expanded upon should you wish. Perhaps you could add user accounts or payment
for advanced features?

It currently uses Twitter Bootstrap for the frontend so it probably could do with an
individual face-lift, a different style, look and feel, but it's currently user-friendly and
responsive to mobile devices.

In the next chapter, we will create a discussion forum, allowing someone to create
a discussion and then letting people comment and reply.

A simple admin moderation system will be provided to help prevent any untoward
shenanigans such as naked pictures of celebrities or signals intelligence being posted
up, or something like that—unless of course you're into that sort of thing, in which
case I hear that the Ecuadorian embassy in London do a terribly good lunch; you
might get fed up of it after a few months, though!

Discussion Forum
A discussion forum can be quite a useful resource to have on internal company
projects or to allow clients to interact on projects, for example.

Discussion forums are a great way to create a community around a particular
subject or topic, acting as a type of wiki. They are a store of knowledge of something
or a record of a discussion, containing a history of changes of ideas and concepts and
recording the evolution of thinking around a topic or subject. They can also be used
to talk about cats.

To create this app, we'll create three controllers: one to handle discussions,
one to handle comments, and one to handle any admin functionality that we
might need, such as moderating comments and discussions.

We'll create a language ile to store text, allowing you to have multiple language
support, should that be required.

We will make amendments to the config.php ile to allow for encryption support,
which is necessary for sessions and password support.

We'll create all the necessary view iles and even a .css ile to help Bootstrap
with some of the views.

This app, along with all the others in this book, relies on the basic setup we did
in Chapter 1, Introduction and Shared Project Resources, although you can take large
sections of the code and drop it into pretty much any app you might already have;
please keep in mind that the setup done in the irst chapter acts as the foundation
for this chapter.

Discussion Forum

[42]

It is worth mentioning the limits of the application. This application contains the
most basic discussion forum functionality. We create users on our way; however,
there is no user management—to include that would be a large extension of the
application code and slightly out of scope of a discussion forum.

Users are created when someone creates a comment or discussion using an e-mail
address that is not currently stored in the users table. A password is generated for
them and a hash is created based on that password.

As this application creates a password for them automatically, you might wish to
tell them what that password is—perhaps by sending them an e-mail. However,
you might not wish them to be able to log in at all. It's up to you—the functionality
is there should you wish to expand upon it.

In this chapter, we will cover:

• Design and wireframes

• Creating the database

• Creating the models

• Creating the views

• Creating the controllers

• Putting it all together

So, without further ado, let's get on with it.

Design and wireframes
As always, before we start building, we should take a look at what we plan to build.

Firstly, we need to give a brief description of our intent; we plan to build an app that
will let a user view any pre-existing discussion pages and then allow that user to
comment on a page if they wish. The user can also create new discussions and other
users can comment on them.

Chapter 3

[43]

Let's take a look at a site map:

Home

View All
Discussions

View Discussion/
Add Comment

New Discussion Admin Login

Moderator Dashboard

1

2 3 4 5

6

Now, let's go over each item and get a brief idea of what it does:

• Home: Imagine this as the index—the routing start point. The user will
visit the Home page and will be redirected to point 2 (the View All
Discussions page).

• View All Discussions: This will display all discussions in a list format.
We'll have some iltering going on as well (the most recent irst, most popular
next, and so on). The user will be able to click on a discussion title and be
redirected to the View Discussion page.

• View Discussion/Add Comment: This page displays the initial comment
(written by the person who created the discussion) and all subsequent
comments and contributions added by other users. A user is able to join in
a discussion by illing in a form at the bottom of the View Discussion page.

• New Discussion: A user can create a new discussion. This discussion will
then appear on the View All Discussions page as a new discussion.

Discussion Forum

[44]

We now begin to look at the admin-only functions (largely, discussion and comment
moderation), which are as follows:

• Admin Login: This is just a simple login script. It is separate from the one
used in Chapter 6, Creating an Authentication System.

• Moderator Dashboard: This displays all discussions and comments awaiting
moderation and options in a list format, in order to allow or reject them.

Now that we have a fairly good idea of the structure and form of the site, let's take
a look at some wireframes of each page.

The View All Discussions page
The following screenshot shows a wireframe of point 2 (the View All Discussions
page) in the preceding diagram. The user is able to see all current discussions, the
initial text written by the discussion creator (this acts as a brief introduction to the
discussion subject), the total number of comments so far, the methods to sort the
discussions into newest/oldest, and so on.

CodeIgniter Blueprints-Discussion Forum

Sort Newest Asc/Desc

Discussion Title

This is a paragraph of text. It is the initial text written by the person
who created the discussion

Discussion Title

This is a paragraph of text. It is the initial text written by the person
who created the discussion

Discussion Title

This is a paragraph of text. It is the initial text written by the person
who created the discussion

Forum Home New Discussion Login

Chapter 3

[45]

The View Discussion/Add Comment page
The following screenshot shows a wireframe from point 3 (the View Discussion/Add
Comment page). You can see that this page displays the initial discussion text and all
the replies. At the bottom of the list of replies, there is a form that allows the user to
join the discussion. There is also a New Discussion link at the top; this will take the
user to point 4 (the New Discussion page).

Notice the lag link next to each comment title. If a user clicks this, then the comment
is immediately lagged for review by the admin. For example, let's say someone wrote
something about a famous Hollywood actor or, something loony such as spaceships
that might be considered potentially libelous; this comment can be lagged for review.
If it is considered safe, it can be set as such; however, if it is not considered safe, it can
be removed to prevent the writer of the comment from being followed everywhere
by people in vans, turning up at their work, talking to their neighbors, and so on—a
purely hypothetical, non-real-world, and completely made up example of something
that has never happened ever, not even once.

Codelgniter Blueprints-Discussion Forum

Forum Home New Discussion Login

Discussion Title

This is a paragraph of text. It is the written by a person
who contributed to the discussion.

Comment Title flag

This is a paragraph of text. It is the initial text written by the person
who created the discussion.

Comment Title flag

This is a paragraph of text. It is the written by a person
who contributed to the discussion.

Comment Title flag
This is a paragraph of text. It is the written by a person
who contributed to the discussion.

Submit

Your Name Your Email

Your Comment...

www.allitebooks.com

http://www.allitebooks.org

Discussion Forum

[46]

The New Discussion page
The following screenshot shows a wireframe from point 4 (the New Discussion
page). You can see the form where the user can create a new discussion. The user is
invited to enter the discussion title, their name, and the initial discussion text. Once
the user has entered all relevant information into the form, they press the Go button,
and the form is validated by the create() discussion controller function.

CodeIgniter Blueprints-Discussion Forum

Forum Home New Discussion Login

Go...

Your Name Your Email

Discussion Title

Create discussion below

Discussion Intro Text

Chapter 3

[47]

The admin Dashboard page
The following screenshot shows you the admin dashboard from point 6
(the Moderator Dashboard page). From this area, the admin can view any
discussions and comments that have been lagged and moderate them,
approving them or agreeing with the lag and deleting them.

CodeIgniter Blueprints-Discussion Forum

Forum Home New Discussion Login

Dashboard

Discussions

Comment

Discussion Title
Discussion Body Text

Discussion Title
Discussion Body Text

Discussion Title
Discussion Body Text

Actions

Allow Block|

Allow Block|

Allow Block|

Comments

Comment
Actions

Allow Block|

Allow Block|

Allow Block|

Comment Body Text

Comment Body Text

Comment Body Text

Discussion Forum

[48]

File overview
We're going to create 15 iles for this application; these iles are as follows:

• /path/to/codeigniter/application/models/discussions_model.php:
This ile provides read/write access to the database table discussions.

• /path/to/codeigniter/application/models/comments_model.php:
This ile provides read/write access to the database table comments.

• /path/to/codeigniter/application/models/admin_model.php:
This ile provides read/write access to the database, enabling an admin
to moderate discussions and comments.

• /path/to/codeigniter/application/views/discussions/new.php:
This ile provides an interface to display a form, allowing the user to create a
new discussion; it also displays any error or success messages to the user.

• /path/to/codeigniter/application/views/discussions/view.php:
This ile provides us with an interface, allowing the user to view all active
discussions. It also provides iltering interface options (for example, sorting).

• /path/to/codeigniter/application/views/comments/view.php: This
ile provides us with an interface to display an individual discussion with all
the comments other users have written to the user. There is also a form at the
bottom of this view ile that allows the user to join the discussion by creating
a comment. Any validation or success messages related to adding a comment
will be displayed in this view ile as well.

• /path/to/codeigniter/application/views/admin/dashboard.php: This
ile displays a list of comments and/or discussions that require moderating.

• /path/to/codeigniter/application/views/admin/login.php: This ile
provides a login form for admins.

• /path/to/codeigniter/application/views/nav/top_nav.php: This ile
provides a navigation bar at the top of the page.

• /path/to/codeigniter/application/controllers/discussions.php:
The discussions controller manages the creation of new discussions and
displays a list of discussions to normal users.

• /path/to/codeigniter/application/controllers/comments.php: The
comments controller manages the creation of new comments and links them
to discussions. It also displays a list of comments to normal users.

• /path/to/codeigniter/application/controllers/admin.php: The
admin controller handles the logging in of admins, the display of discussions
and comments awaiting moderation, and the moderation of those discussions
and comments.

Chapter 3

[49]

• /path/to/codeigniter/application/language/english/en_admin_

lang.php: This ile provides language support for the application.
• /path/to/codeigniter/application/views/common/login_header.php:

This ile contains speciic HTML markup to display the login form correctly.
• /path/to/codeigniter/bootstrap/css/signin.css: This is a css script

containing speciic css code to display the login form correctly.

The ile structure of the preceding 15 iles is as follows:

application/

├── controllers/

│ ├── discussions.php

│ ├── comments.php

│ ├── admin.php

├── models/

│ ├── comments_model.php

│ ├── discussions_model.php

│ ├── admin_model.php

├── views/discussions/

│ ├── view.php

│ ├── new.php

├── views/comments/

│ ├── view.php

├── views/admin/

│ ├── login.php

│ ├── dashboard.php

├── views/nav/

│ ├── top_nav.php

├── views/common/

│ ├── login_header.php

├── language/english/

│ ├── en_admin_lang.php

bootstrap/

├── css/

 ├── signin.css

Note the last item in the list: signin.css. This sits in the bootstrap/css/ folder,
which is at the same level as CodeIgniter's application folder. We installed Twitter
Bootstrap in Chapter 1, Introduction and Shared Project Resources. In this chapter, we
will go through placing the bootstrap folder at this folder level and location.

Discussion Forum

[50]

Creating the database
Okay, you should have already set up CodeIgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources. If not, then you should know that
the code in this chapter is speciically built with the setup from the irst chapter in
mind. However, it's not the end of the world if you haven't—the code can easily be
applied to other situations.

Firstly, we'll build the database. Copy the following MySQL code to your database:

CREATE DATABASE 'discuss_forum';

USE 'discuss_forum';

DROP TABLE IF EXISTS 'ci_sessions';

CREATE TABLE 'ci_sessions' (

 'session_id' varchar(40) COLLATE utf8_bin NOT NULL DEFAULT '0',

 'ip_address' varchar(16) COLLATE utf8_bin NOT NULL DEFAULT '0',

 'user_agent' varchar(120) COLLATE utf8_bin DEFAULT NULL,

 'last_activity' int(10) unsigned NOT NULL DEFAULT '0',

 'user_data' text COLLATE utf8_bin NOT NULL,

 PRIMARY KEY ('session_id'),

 KEY 'last_activity_idx' ('last_activity')

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin;

DROP TABLE IF EXISTS 'comments';

CREATE TABLE 'comments' (

 'cm_id' int(11) NOT NULL AUTO_INCREMENT,

 'ds_id' int(11) NOT NULL,

 'cm_body' text NOT NULL,

 'cm_created_at' timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 'usr_id' int(11) NOT NULL,

 'cm_is_active' int(1) NOT NULL,

 PRIMARY KEY ('cm_id')

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

DROP TABLE IF EXISTS 'discussions';

CREATE TABLE 'discussions' (

 'ds_id' int(11) NOT NULL AUTO_INCREMENT,

 'usr_id' int(11) NOT NULL,

 'ds_title' varchar(255) NOT NULL,

 'ds_body' text NOT NULL,

 'ds_created_at' timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 'ds_is_active' int(1) NOT NULL,

 PRIMARY KEY ('ds_id')

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

DROP TABLE IF EXISTS 'users';

Chapter 3

[51]

CREATE TABLE 'users' (

 'usr_id' int(11) NOT NULL AUTO_INCREMENT,

 'usr_name' varchar(25) NOT NULL,

 'usr_hash' varchar(255) NOT NULL,

 'usr_email' varchar(125) NOT NULL,

 'usr_created_at' timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 'usr_is_active' int(1) NOT NULL,

 'usr_level' int(1) NOT NULL,

 PRIMARY KEY ('usr_id')

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

You don't have to call the database discuss_forum if you don't
want to. Feel free to rename it to something else if you wish; just be
sure to update config/database.php accordingly.

You'll see that the irst table that we create is ci_sessions; we need this in order to
allow CodeIgniter to manage sessions, speciically, logged-in users. However, this
is just the standard session table that is available from CodeIgniter User Guide, so I'll
not include a description of the table as it's not technically speciic to this application.
However if you're interested, there's a description at http://ellislab.com/
codeigniter/user-guide/libraries/sessions.html.

Right, let's take a look at each item in each table and see what it means. The following
table describes the comments table:

Table: comments

Element Description

cm_id This is the primary key.

ds_id This is the foreign key from the discussions table; it links
the comments table to the discussions table. The link is
discussions.ds_id = comments.cm_id.

cm_body This is the body text of a comment.

cm_created_at This is the MySQL timestamp that is created when the record is
created.

usr_id This is the foreign Key from the users table. A user is created when
someone enters an e-mail address (when creating a discussion or
comment) that doesn't already exist in the users table.

cm_is_active This indicates whether the comment is active (1) or inactive (0);
inactive means that a comment is not displayed in a forum but is
displayed to an admin in the admin dashboard for moderation.

http://ellislab.com/codeigniter/user-guide/libraries/sessions.html
http://ellislab.com/codeigniter/user-guide/libraries/sessions.html

Discussion Forum

[52]

The following table describes the discussions table:

Table: discussions

Element Description

ds_id This is the primary key.

usr_id This is the foreign key from the users table. A user is created
when someone enters an e-mail address (when creating a
discussion or comment) that doesn't already exist in the users table.

ds_title This is the title of a discussion forum.

ds_body This is the body element of a discussion forum; it is the initial
text—usually a question—that the creator of a discussion writes
to entice people to comment.

ds_created_at This is the MySQL timestamp that is created when the record
is created.

ds_is_active This indicates whether the discussion forum is active (1) or
inactive (0); inactive means that a discussion is not displayed
on the page but is displayed to an admin in the admin dashboard
for moderation.

The following table describes the users table:

Table: users

Element Description

usr_id This is the primary key.

usr_name This is the username of an individual once they're in the
database.

usr_hash This is the hashed value of their password. The password is
generated in the new_comment() function of comments_model
and the create() function of discussions_model and
is passed to the $this->encrypt->sha1()CodeIgniter
function to create a hash. The hash is stored in the database
in users.usr_hash; however, the password is not stored
(as you would expect).

Chapter 3

[53]

Table: users

Element Description

usr_email This is the e-mail of the person writing a comment or creating a
discussion forum. The application will look in the users table to
see whether the e-mail already exists. If it does, the primary key
(usr_id) for that record is assigned to a comment or discussion
forum. If the e-mail does not already exist, then a row is created
in the users table and the primary key is then assigned to the
comment or discussion.

usr_created_at This is the MySQL timestamp that is created when the record
 is created.

usr_is_active This indicates whether the user is active (1) or inactive (0).
Currently, there is no functionality to handle active or inactive
users; this is something you can implement yourself should
you wish.

usr_level This indicates the permission level of the user. Standard users are
given the integer value 1, and admins (that is, those who can log
in) are given the integer value 2. There is no functionality to use
this usr_level element; however, it is there should you wish to
expand upon it.

At this early stage, it's important to discuss the concept of users in this application.
We're not really going to employ any detailed user management, and users will only
be created when someone enters their e-mail address when they add a comment or
create a discussion. We're creating users here because it'll be easy for you to extend
this functionality in your own time to manage users, should you wish.

We'll also need to make amendments to the config/database.php ile—namely
setting the database access details, username password, and so on. The steps are
as follows:

1. Open the config/database.php ile and ind the following lines:
$db['default']['hostname'] = 'localhost';

$db['default']['username'] = 'your username';

$db['default']['password'] = 'your password';

$db['default']['database'] = 'urls';

2. Edit the values in the preceding lines, ensuring you replace these values
with values that are more speciic to your setup and situation. Enter your
username, password, and so on.

Discussion Forum

[54]

Adjusting the conig.php ile
There are a few things in this ile that we'll need to conigure to support sessions
and encryption. So, open the config/config.php ile and make the changes
described in this section.

We will need to set an encryption key. Both sessions as well as CodeIgniter's
encryption functionality require an encryption key to be set in the $config array,
so perform the following steps:

1. Find the following line:

$config['encryption_key'] = '';

Change it to the following:

$config['encryption_key'] = 'a-random-string-of-alphanum-
characters';

Now, don't actually change this value to literally a-random-string-
of-alphanum-characters obviously, but change it to, er, a random
string of alphanum characters—if that makes sense. Yeah, you
know what I mean.

2. Find the following lines:

$config['sess_cookie_name'] = 'ci_session';

$config['sess_expiration'] = 7200;

$config['sess_expire_on_close'] = FALSE;

$config['sess_encrypt_cookie'] = FALSE;

$config['sess_use_database'] = FALSE;

$config['sess_table_name'] = 'ci_sessions';

$config['sess_match_ip'] = FALSE;

$config['sess_match_useragent'] = TRUE;

$config['sess_time_to_update'] = 300;

Change them to the following:

$config['sess_cookie_name'] = 'ci_session';

$config['sess_expiration'] = 7200;

$config['sess_expire_on_close'] = TRUE;

$config['sess_encrypt_cookie'] = TRUE;

$config['sess_use_database'] = TRUE;

$config['sess_table_name'] = 'ci_sessions';

$config['sess_match_ip'] = TRUE;

$config['sess_match_useragent'] = TRUE;

$config['sess_time_to_update'] = 300;

Chapter 3

[55]

Adjusting the routes.php ile
We want to redirect the user to the discussions controller rather than the default
CodeIgniter welcome controller. To do this, we will need to amend the default
controller setting in the routes.php ile to relect this, which can be done as follows:

1. Open the config/routes.php ile for editing and ind the following lines
(near the bottom of the ile):
$route['default_controller'] = "welcome";

$route['404_override'] = '';

2. Firstly, we need to change the default controller. Initially in a CodeIgniter
application, the default controller is set to welcome; however, we don't need
this. We want the default controller to be discussions instead. So, ind the
following line:

$route['default_controller'] = "welcome";

Change it to the following:

$route['default_controller'] = "discussions";

Creating the models
We're going to create three models for this application; these are as follows:

• discussions_model.php: This helps in managing interactions with the
discussions table

• comments_model.php: This helps in managing interactions with the
comments table

• admin_model.php: This helps in managing interactions with the users table

Creating the model ile – models/
discussions_model.php
The discussions_model.php model ile has three functions; these are fetch_
discussions(), fetch_discussion(), and flag(). The fetch_discussions()
function fetches many discussions, the fetch_discussion() function fetches a
single discussion, and the flag() function sets a discussion as one that requires
moderation by an admin.

www.allitebooks.com

http://www.allitebooks.org

Discussion Forum

[56]

The steps to create this model ile are as follows:

Create the /path/to/codeigniter/application.models/discussion_model.php
ile and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed');

class Discussions_model extends CI_Model {

 function __construct() {

 parent::__construct();

 }

Let's irst look at the fetch_discussions() function. The fetch_discussions()
function will return the result of a database query to the discussions controller's
index() function. It takes two arguments that are set to null by default. These are
$filter and $direction, and they are used to add iltering and sorting to the
query string.

The following query will only return active discussions—that is, any discussions
whose ds_is_active value is not set to 0. The flag() function of discussions_
model (discussed later) sets a discussion to inactive:

function fetch_discussions($filter = null, $direction =
 null) {

 $query = "SELECT * FROM 'discussions', 'users'

 WHERE 'discussions'.'usr_id' =
 'users'.'usr_id'

 AND 'discussions'.'ds_is_active' != '0' ";

If the filter variable is initially null, then we will need to order the results to
ascending. In the following code, we test whether $filter equals null; if not,
$dir = 'ASC' sets the direction to ascending. If, however, $filter is not null,
then we go into the PHP if statement and look at the value of $direction. We
perform a PHP switch case procedure to quickly ascertain whether the value of
$direction is ASC or DESC, writing the value of $dir to ASC or DESC accordingly:

if ($filter != null) {

 if ($filter == 'age') {

 $filter = 'ds_created_at';

 switch ($direction) {

 case 'ASC':

 $dir = 'ASC';

 break;

 case 'DESC':

Chapter 3

[57]

 $dir = 'DESC';

 break;

 default:

 $dir = 'ASC';

 }

 }

} else {

 $dir = 'ASC';

}

Next, the query is executed and its return value is analyzed. If the query was
successful, then $result is returned to the index() function of the discussions
controller. The index() function of the discussions controller then stores
this query result in the $page_data['query'] array item and passes it to the
discussions/view.php view ile. This is shown here:

$query .= "ORDER BY 'ds_created_at' " . $dir;

$result = $this->db->query($query, array($dir));

if ($result) {

 return $result;

} else {

 return false;

}

}

function fetch_discussion($ds_id) {

 $query = "SELECT * FROM 'discussions', 'users' WHERE
 'ds_id' = ?

 AND 'discussions'.'usr_id' = 'users'.'usr_id'";

 return $result = $this->db->query($query, array($ds_id));

}

Now, let's look at the create($data) function. The function takes an array
(named $data) as its only argument. The $data array contains the following items:

• usr_email: This is populated from the form in views/discussions/new.php

• usr_id: This is populated by the model itself by looking in the database

• usr_name: This is populated from the form in views/discussions/new.php

• ds_title: This is populated from the form in views/discussions/new.php

• ds_body: This is populated from the form in views/discussions/new.php

Discussion Forum

[58]

We want to associate this discussion forum with a user. Although we don't really
manage users in this application, we still want to do this as it might be useful for us
in the future. To associate a discussion with a user, we'll need to ind an existing user
ID (users.usr_id) or create a new user and assign that ID instead.

This function begins by looking at the users table to see whether the e-mail address
in $data['usr_email'] already exists in the database. If it does, then usr_id is
pulled out of the users table and written to $data['usr_id']; this will be stored
until we update to the discussions table:

function create($data) {

 // Look and see if the email address already exists in the users

 // table, if it does return the primary key, if not create them

 // a user account and return the primary key.

 $usr_email = $data['usr_email'];

 $query = "SELECT * FROM 'users' WHERE 'usr_email' = ? ";

 $result = $this->db->query($query,array($usr_email));

 if ($result->num_rows() > 0) {

 foreach ($result->result() as $rows) {

 $data['usr_id'] = $rows->usr_id;

 }

 } else {

If the e-mail address doesn't exist in the users table, then a record is created.
A password is generated using the random_string() CodeIgniter function.
The password is stored in the $password variable and is passed to the sha1
CodeIgniter function to generate a hash string:

$password = random_string('alnum', 16);

$hash = $this->encrypt->sha1($password);

The $hash value along with usr_email and usr_name, submitted by the user,
is added to the $user_data array. Also added to the $user_data array are some
admin lags such as usr_is_active and usr_level.

The usr_is_active lag is set to 1 by default; this can be set to any other value you
wish should you want to add user management functions. The usr_level lag is set
to 1 by default; this can be set to any other value you wish should you want to add
user management functions:

$user_data = array('usr_email' => $data['usr_email'],

 'usr_name' => $data['usr_name'],

 'usr_is_active' => '1',

 'usr_level' => '1',

 'usr_hash' => $hash);

Chapter 3

[59]

The $user_data array is inserted to the database. Should you wish, you could send
the user an e-mail containing their password; this will only be because you want
to add user management functionality. The newly created user ID is returned by
$this->db->insert_id() and stored in $data['usr_id']. This is shown here:

 if ($this->db->insert('users',$user_data)) {

 $data['usr_id'] = $this->db->insert_id();

 // Send email with password???

 }

}

Once the user ID is stored in the $data array, we create a new array,
$discussion_data. The $discussion_data array contains all the data
required for the creation of a discussion, as follows:

• ds_title: This is populated from the form in views/discussions/new.php

• ds_body: This is populated from the form in views/discussions/new.php

• usr_id: This is populated by a database lookup

• ds_is_active: This is set when we create the $discussion_data array

Once the $discussion_data array is created, we write the record to the
discussion table:

$discussion_data = array('ds_title' => $data['ds_title'],

 'ds_body' => $data['ds_body'],

 'usr_id' => $data['usr_id'],

 'ds_is_active' => '1');

If the insertion was successful, we return TRUE; if it wasn't successful, we return FALSE.

This model also contains the flag() function. The flag() function uses an
UPDATE command to set the ds_is_active column to 0. This means that the
discussion will not be displayed to users, as the fetch_discussions() function
of discussions_model will only return discussions that have ds_is_active set to 1.
This is shown here:

 if ($this->db->insert('discussions',$discussion_data)) {

 return $this->db->insert_id();

 } else {

 return false;

 }

}

Discussion Forum

[60]

The flag() function accepts one argument—that is, the primary key of the
discussion passed by the discussions controller. When the user clicks on the lag
link next to a discussion title in the views/discussions/view.php ile, the flag()
function of the discussions controller is called. The third uri segment in the lag
link is the primary key of the discussion.

We use CodeIgniter's Active Record functionality to update the discussions record in
the database, setting ds_is_active to 0. Setting ds_is_active to 0 will immediately
prevent the discussion from being viewed in views/discussions/view.php and
make it appear in the admin section for moderation:

 function flag($ds_id) {

 $this->db->where('ds_id', $ds_id);

 if ($this->db->update('discussions', array('ds_is_active' =>
 '0'))) {

 return true;

 } else {

 return false;

 }

 }

}

Creating the model ile – comments_model.
php
The comments_model.php model ile contains three functions; these are fetch_
comments(), new_comment(), and flag(). The fetch_comments() function fetches
all comments that belong to a discussion forum and are active. The new_comment()
function adds a comment to the database associated with a discussion forum by
means of a foreign key. Finally, the flag() function will set a comment as one that
requires moderation.

Create the /path/to/codeigniter/application/models/comments_model.php
ile and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed');

class Comments_model extends CI_Model {

 function __construct() {

 parent::__construct();

 }

Chapter 3

[61]

There are three functions in this model. These are as follows:

• fetch_comments(): This fetches all active comments that are associated
with the current discussion from the comments table .

• new_comments(): This creates a new record in the comments table.
The comment is associated with users.usr_id and discussions.ds_id.

• flag(): This sets a comment as being lagged for moderation by setting
comments.cm_is_active to 0.

The fetch_comments() function accepts one argument—$ds_id—that is the
primary key of the discussion in the database. We take this primary key and look
in the database for comments belonging to that discussion, and users belonging to
the comments, as shown here:

function fetch_comments($ds_id) {

 $query = "SELECT * FROM 'comments', 'discussions', 'users'

 WHERE 'discussions'.'ds_id' = ?

 AND 'comments'.'ds_id' = 'discussions'.'ds_id'

 AND 'comments'.'usr_id' = 'users'.'usr_id'

 AND 'comments'.'cm_is_active' = '1'

 ORDER BY 'comments'.'cm_created_at' DESC " ;

 $result = $this->db->query($query, array($ds_id));

These comments are then returned as an Active Record database result object.
Or, the Boolean value false is returned if an error occurred, as shown here:

 if ($result) {

 return $result;

 } else {

 return false;

 }

}

The new_comment() function takes one argument, the $data array. This is populated
in the comments controller, as shown here:

function new_comment($data) {

 // Look and see if the email address already exists in the
 users

 // table, if it does return the primary key, if not create
 them

 // a user account and return the primary key.

Discussion Forum

[62]

First off, we check whether the e-mail address used by the person who is
commenting already exists in the database; we do this as we might want to add
functionality to ban particular users later, delete posts from speciic users, or
even develop functionality to allow users to log in and view their previous posts:

 $usr_email = $data['usr_email'];

 $query = "SELECT * FROM 'users' WHERE 'usr_email' = ? ";

 $result = $this->db->query($query,array($usr_email));

 if ($result->num_rows() > 0) {

If we arrive here in the code, then the e-mail address is obviously already in the
database, so we grab the users' primary key and store it in $data['usr_id']; later,
we will save it to the comment:

 foreach ($result->result() as $rows) {

 $data['usr_id'] = $rows->usr_id;

 }

} else {

If we get here, then the user doesn't exist, so we create them in the users table,
returning the primary key using the $this->d->insert_id()CodeIgniter function:

 $password = random_string('alnum', 16);

 $hash = $this->encrypt->sha1($password);

 $user_data = array('usr_email' => $data['usr_email'],

 'usr_name' => $data['usr_name'],

 'usr_is_active' => '1',

 'usr_level' => '1',

 'usr_hash' => $hash);

 if ($this->db->insert('users',$user_data)) {

 $data['usr_id'] = $this->db->insert_id();

 }

}

$comment_data = array('cm_body' => $data['cm_body'],

 'ds_id' => $data['ds_id'],

 'cm_is_active' => '1',

 'usr_id' => $data['usr_id']);

Chapter 3

[63]

Now we save the comment to the comments table using the CodeIgniter Active
Record function $this->db->insert(). This is shown here:

 if ($this->db->insert('comments',$comment_data)) {

 return $this->db->insert_id();

 } else {

 return false;

 }

 }

 function flag($cm_id) {

 $this->db->where('cm_id', $cm_id);

 if ($this->db->update('comments', array('cm_is_active' =>
 '0'))) {

 return true;

 } else {

 return false;

 }

 }

}

Creating the model ile – admin_model.php
There are four functions in the admin_model.php model, and these are as follows:

• dashboard_fetch_comments(): This fetches comments from the databases
that have been lagged for moderation.

• dashboard_fetch_discussions(): This fetches discussions from the
databases that have been lagged for moderation.

• update_comments(): This updates a comment based on the decision of
the moderator, changing the value of cm_is_active to 1 if the comment
is approved or deleting it if is unapproved.

• update_discussions(): This updates a discussion based on the decision
of the moderator, changing the value of cm_is_active to 1 if approved
or deleting it if is unapproved. If a discussion is deleted, then all comments
associated with that discussion will also be deleted.

Discussion Forum

[64]

Create the /path/to/codeigniter/application/models/admin_model.php
ile and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed');

class Admin_model extends CI_Model {

 function __construct() {

 parent::__construct();

 }

The following function will fetch all comments for moderation from the database.
Comments are for moderation if comments.cm_is_active is set to 0. The database
is queried and all comments for moderation are returned to the admin controller.
This result will eventually be looped over in the views/admin/dashboard.php ile:

function dashboard_fetch_comments() {

 $query = "SELECT * FROM 'comments', 'users'

 WHERE 'comments'.'usr_id' = 'users'.'usr_id'

 AND 'cm_is_active' = '0' ";

 $result = $this->db->query($query);

 if ($result) {

 return $result;

 } else {

 return false;

 }

}

The following function will fetch all discussions for moderation from the
database. Discussions are for moderation if discussions.ds_is_active is set to 0.
The database is queried and all discussions for moderation are returned to the
admin controller. This result will eventually be looped over in the views/admin/
dashboard.php ile:

function dashboard_fetch_discussions() {

 $query = "SELECT * FROM 'discussions', 'users'

 WHERE 'discussions'.'usr_id' = 'users'.'usr_id'

 AND 'ds_is_active' = '0' ";

 $result = $this->db->query($query);

 if ($result) {

Chapter 3

[65]

 return $result;

 } else {

 return false;

 }

}

function does_user_exist($email) {

 $this->db->where('usr_email', $email);

 $query = $this->db->get('users');

 return $query;

}

The following function is called by the admin controller function when an
admin is moderating comments. If a comment is deemed to be ine, then
comments.cm_is_active is updated and set to 1. However, if it is not ine,
then the comment is deleted from the comments table:

function update_comments($is_active, $id) {

 if ($is_active == 1) {

 $query = "UPDATE 'comments' SET 'cm_is_active' = ? WHERE
 'cm_id' = ? " ;

 if ($this->db->query($query,array($is_active,$id))) {

 return true;

 } else {

 return false;

 }

 } else {

 $query = "DELETE FROM 'comments' WHERE 'cm_id' = ? " ;

 if ($this->db->query($query,array($id))) {

 return true;

 } else {

 return false;

 }

 }

}

The following function is called by the admin controller function when an admin
is moderating discussions. If a discussion is deemed to be ine, then discussions.
ds_is_active is updated and set to 1. However, if it is not ine, then the discussion
is deleted from the discussions table. Any comments belonging to that discussion
are also deleted from the comments table:

 function update_discussions($is_active, $id) {

 if ($is_active == 1) {

Discussion Forum

[66]

 $query = "UPDATE 'discussions' SET 'ds_is_active' = ?
 WHERE 'ds_id' = ? " ;

 if ($this->db->query($query, array($is_active,$id))) {

 return true;

 } else {

 return false;

 }

 } else {

 $query = "DELETE FROM 'discussions' WHERE 'ds_id' = ?
 " ;

 if ($this->db->query($query,array($id))) {

 $query = "DELETE FROM 'comments' WHERE 'ds_id' = ?
 " ;

 if ($this->db->query($query,array($id))) {

 return true;

 }

 } else {

 return false;

 }

 }

 }

}

Creating views
There are six view iles in this application, and these are as follows:

• discussions/view.php: This displays all active discussions

• discussions/new.php: This displays a form to the user, allowing them to
create a discussion

• comments/view.php: This displays all active comments within a discussion

• nav/top_nav.php: This contains the top navigation links

• admin/login.php: This displays a login form for the user; don't forget to add
the signin.css script, which you can ind later in this chapter

• common/login_header.php: The views/admin/login.php view requires
different resources from the rest of the application, which is supported by
this header

Chapter 3

[67]

Discussions
The discussions/view.php view ile displays a list of all active discussions as well
as sorting options.

Create the /path/to/codeigniter/views/discussions/view.php ile and add the
following code to it:

SORT: <?php echo anchor('discussions/index/sort/age/' . (($dir
 == 'ASC') ? 'DESC' : 'ASC'),'Newest '
 . (($dir == 'ASC') ? 'DESC' : 'ASC'));?>

<table class="table table-hover">
 <thead>
 <tr>
 <th><?php echo $this->lang->line('discussions_title') ;
 ?></th>
 </tr>
 </thead>
 <tbody>

 <?php foreach ($query->result() as $result) : ?>
 <tr>
 <td>
 <?php echo anchor('comments/index/'.$result-
 >ds_id,$result->ds_title) . ' '
 . $this->lang->line('comments_created_by') .
 $result->usr_name; ?>

 <?php echo anchor('discussions/flag/'.$result-
 >ds_id,
 $this->lang->line('discussion_flag')) ; ?>

 <?php echo $result->ds_body ; ?>
 </td>
 </tr>
 <?php endforeach ; ?>

 </tbody>
</table>

Take a look at the irst few lines. We open with a CodeIgniter anchor() statement.
Let's take a closer look at the code for the link:

SORT: <?php echo anchor('discussions/index/sort/age/' . (($dir ==
 'ASC') ? 'DESC' : 'ASC'),'Newest ' . (($dir == 'ASC') ? 'DESC' :
 'ASC'));?>

Discussion Forum

[68]

Let's break this down into smaller sections:

• anchor('discussions/index/age/sort/' .: This sets the link for the
discussions controller, index() function, and sorting by age (the created
date—discussions.ds_created_at), but what is the direction? Well…

• (($dir == 'ASC') ? 'DESC' : 'ASC'),: The value of $dir comes from the
index() function of the discussions controller. It is the current direction of
the sort. We then use a PHP ternary operator to switch between the directions.
It's a bit like an if/else statement but is more compact. It works like this: if a
variable is equal (or not equal) to a variable, then execute A, otherwise execute B. For
example, as an if/else statement, the code would be as follows:

if ($dir == 'ASC') {
 return 'DESC';
} else {
 return 'ASC';
}

So, the second part of the link will lip-lop between ASC and DESC depending
on the value held in $dir. Now, let's look at the rest.

• 'Newest ' . (($dir == 'ASC') ? 'DESC' : 'ASC'));?>: This is the
text that users will see as their link. You can see that we again make use of
the ternary operator to display the text, lipping between Newest ASC and
Newest DESC.

The rest of the view is fairly undramatic; all we do is loop over the database result
from the discussions' index() function, displaying all active discussions as we go.

Comments
The comments view displays a list of all valid comments to the user for a
selected discussion.

Create the /path/to/codeigniter/application/views/comments/view.php ile
and add the following code to it:

<!-- Discussion - initial comment -->

<?php foreach ($discussion_query->result() as $discussion_result)
 : ?>

 <h2>

 <?php echo $discussion_result->ds_title; ?>

Chapter 3

[69]

 <small><?php echo $this->lang->line('comments_created_by') .
 $discussion_result->usr_name . $this->lang-
 >line('comments_created_at') . $discussion_result-
 >ds_created_at; ?></small>

 </h2>

 <p class="lead"><?php echo $discussion_result->ds_body; ?></p>

<?php endforeach ; ?>

<!-- Comment - list of comments -->

<?php foreach ($comment_query->result() as $comment_result) : ?>

 <li class="media">

 <img class="media-object" src="<?php echo base_url() ;
 ?>img/profile.svg" />

 <div class="media-body">

 <h4 class="media-heading"><?php echo $comment_result-
 >usr_name . anchor('comments/flag/'.$comment_result->ds_id
 . '/' . $comment_result->cm_id,$this->lang-
 >line('comments_flag')) ; ?></h4>

 <?php echo $comment_result->cm_body ; ?>

 </div>

<?php endforeach ; ?>

<!-- Form - begin form section -->

<p class="lead"><?php echo $this->lang-
 >line('comments_form_instruction');?></p>

<?php echo validation_errors(); ?>

<?php echo form_open('comments/index','role="form"') ; ?>

 <div class="form-group col-md-5">

 <label for="comment_name"><?php echo $this->lang-
 >line('comments_comment_name');?></label>

 <input type="text" name="comment_name" class="form-control"
 id="comment_name" value="<?php echo
 set_value('comment_name'); ?>">

 </div>

 <div class="form-group col-md-5">

 <label for="comment_email"><?php echo $this->lang-
 >line('comments_comment_email');?></label>

 <input type="email" name="comment_email" class="form-
 control" id="comment_email" value="<?php echo
 set_value('comment_email'); ?>">

Discussion Forum

[70]

 </div>

 <div class="form-group col-md-10">

 <label for="comment_body"><?php echo $this->lang-
 >line('comments_comment_body');?></label>

 <textarea class="form-control" rows="3" name="comment_body"
 id="comment_body"><?php echo set_value('comment_body');
 ?></textarea>

 </div>

 <div class="form-group col-md-11">

 <button type="submit" class="btn btn-success"><?php echo
 $this->lang->line('common_form_elements_go');?></button>

 </div>

 <?php echo form_hidden('ds_id',$ds_id) ; ?>

<?php echo form_close() ; ?>

Note the following line in the form:

<button type="submit" class="btn btn-success"><?php echo $this-
 >lang->line('common_form_elements_go');?></button>

You will see that we use a line from the lang ile that is not in the code example;
this is because the common_form_elements_go line is to be found in Chapter 1,
Introduction and Shared Project Resources.

New discussion
The New Discussion view displays a form to the user and any validation error
messages that might need to be conveyed.

Create the /path/to/codeigniter/application/views/discussions/new.php
ile and add the following code to it:

<!-- Form - begin form section -->

<p class="lead"><?php echo $this->lang->line('discussion_form_
instruction');?></p>

<?php echo validation_errors(); ?>

<?php echo form_open('discussions/create','role="form"') ; ?>

 <div class="form-group col-md-5">

 <label for="usr_name"><?php echo $this->lang-
 >line('discussion_usr_name');?></label>

Chapter 3

[71]

 <input type="text" name="usr_name" class="form-control"
 id="usr_name" value="<?php echo set_value('usr_name');
 ?>">

 </div>

 <div class="form-group col-md-5">

 <label for="usr_email"><?php echo $this->lang-
 >line('discussion_usr_email');?></label>

 <input type="email" name="usr_email" class="form-control"
 id="usr_email" value="<?php echo set_value('usr_email');
 ?>">

 </div>

 <div class="form-group col-md-10">

 <label for="ds_title"><?php echo $this->lang-
 >line('discussion_ds_title');?></label>

 <input type="text" name="ds_title" class="form-control"
 id="ds_title" value="<?php echo set_value('ds_title');
 ?>">

 </div>

 <div class="form-group col-md-10">

 <label for="ds_body"><?php echo $this->lang-
 >line('discussion_ds_body');?></label>

 <textarea class="form-control" rows="3" name="ds_body"
 id="ds_body"><?php echo set_value('ds_body');
 ?></textarea>

 </div>

 <div class="form-group col-md-11">

 <button type="submit" class="btn btn-success"><?php echo
 $this->lang->line('common_form_elements_go');?></button>

 </div>

<?php echo form_close() ; ?>

Note the following line in the form:

<button type="submit" class="btn btn-success"><?php echo $this-
 >lang->line('common_form_elements_go');?></button>

You will see that we use a line from the lang ile that is not in the code example;
this is because the common_form_elements_go line is to be found in Chapter 1,
Introduction and Shared Project Resources.

We provide options to the user to create a new discussion. We display form
elements for them to enter their username, e-mail, discussion title, and the text
of their discussion.

The form is submitted to the create() function of the discussion controller,
where is it validated with any validation errors being displayed.

Discussion Forum

[72]

The top_nav ile
Every project in this book has its own navigation ile, and this is no exception.
The top_nav ile is standard Bootstrap navigation code; however, there are
a few Codeigniter anchor() functions that provide the URL links and text.

Create the /path/to/codeigniter/application/views/common/top_nav.php
ile and add the following code to it:

<!-- Fixed navbar -->

<div class="navbar navbar-inverse navbar-fixed-top"
 role="navigation">

 <div class="container">

 <div class="navbar-header">

 <button type="button" class="navbar-toggle" data-
 toggle="collapse" data-target=".navbar-collapse">

 Toggle navigation

 </button>

 <?php echo $this->lang-
 >line('system_system_name'); ?>

 </div>

 <div class="navbar-collapse collapse">

 <ul class="nav navbar-nav">

 <li <?php if ($this->uri->segment(1) == '') {echo
 'class="active"';} ; ?>><?php echo anchor('/',
 $this->lang->line('top_nav_view_discussions')) ;
 ?>

 <li <?php if ($this->uri->segment(1) == 'discussions')
 {echo 'class="active"';} ; ?>><?php echo
 anchor('discussions/create', $this->lang-
 >line('top_nav_new_discussion')) ; ?>

 <ul class="nav navbar-nav navbar-right">

 <?php echo anchor('admin/login', $this->lang-
 >line('top_nav_login')) ; ?>

 </div><!--/.nav-collapse -->

 </div>

</div>

<div class="container theme-showcase" role="main">

Chapter 3

[73]

The login view
The login view displays the form and any errors to the admin user when he/she
wants to log in.

Create the /path/to/codeigniter/application/views/admin/login.php ile
and add the following code to it:

<?php if (isset($login_fail)) : ?>

 <div class="alert alert-danger"><?php echo $this->lang-
 >line('admin_login_error') ; ?></div>

<?php endif ; ?>

<?php echo validation_errors(); ?>

<div class="container">

 <?php echo form_open('admin/login', 'class="form-signin"
 role="form"') ; ?>

 <h2 class="form-signin-heading"><?php echo $this->lang-
 >line('admin_login_header') ; ?></h2>

 <input type="email" name="usr_email" class="form-control"
 placeholder="<?php echo $this->lang-
 >line('admin_login_email') ; ?>" required autofocus>

 <input type="password" name="usr_password" class="form-
 control" placeholder="<?php echo $this->lang-
 >line('admin_login_password') ; ?>" required>

 <button class="btn btn-lg btn-primary btn-block"
 type="submit"><?php echo $this->lang-
 >line('admin_login_signin') ; ?></button>

 <?php echo form_close() ; ?>

</div>

There's not too much to get into here—everything is as you would expect.
We display a form to the user, giving them text ields to enter their e-mail
address and password, and errors are displayed above the form.

The form is submitted to the login() function of the admin controller, which
will handle the technical process of logging the user in. If the login is successful,
the user is directed to the dashboard() function of the admin controller.

Discussion Forum

[74]

The login_header ile
The admin/login.php ile requires different iles and resources from the rest of the
discussion forum application. For this reason, we're going to create a header ile
that's speciic to the login page.

Create the /path/to/codeigniter/application/common/login_header.php ile
and add the following code to it:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-
 scale=1">

 <meta name="description" content="">

 <meta name="author" content="">

 <link rel="shortcut icon" href="<?php echo
 base_url('bootstrap/ico/favicon.ico'); ?>">

 <title><?php echo $this->lang->line('system_system_name');
 ?></title>

 <!-- Bootstrap core CSS -->

 <link href="<?php echo base_url
 ('bootstrap/css/bootstrap.min.css'); ?>" rel="stylesheet">

 <!-- Bootstrap theme -->

 <link href="<?php echo base_url('bootstrap/css/bootstrap-
 theme.min.css'); ?>" rel="stylesheet">

 <!-- Custom styles for this template -->

 <link href="<?php echo base_url
 ('bootstrap/css/signin.css');?>" rel="stylesheet">

 <!-- Just for debugging purposes. Don't actually copy this
 line! -->

 <!--[if lt IE 9]><script src="../../assets/js/ie8-responsive-
 file-warning.js"></script><![endif]-->

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements
 and media queries -->

 <!--[if lt IE 9]>

Chapter 3

[75]

 <script src="https://oss.maxcdn.com/libs/html5shiv/
 3.7.0/html5shiv.js"></script>

 <script src="https://oss.maxcdn.com/libs/respond.js/
 1.4.2/respond.min.js"></script>

 <![endif]-->

 </head>

 <body>

Dashboard
The dashboard view is able to display to the admin user (in this case, a moderator)
all discussion forums and comments that are awaiting moderation. These are
displayed in a table in a list format, each item having two options for the moderator:
Allow and Disallow.

Clicking on Allow will set the active status of the discussion (discussions.ds_is_
active) or comment (comments.cm_is_active) to 1, making them appear once
more for general users to see. However, Disallow will delete them from the database.
If it is a discussion forum being disallowed, then all comments associated with that
discussion will also be deleted.

Create the /path/to/codeigniter/application/views/admin/dashboard.php
ile and add the following code to it:

 <h1 id="tables" class="page-header">Dashboard</h1>

<table class="table">

 <thead>

 <tr>

 <th>#</th>

 <th>Name</th>

 <th>Email</th>

 <td>Actions</td>

 </tr>

 </thead>

 <tbody>

 <?php if ($discussion_query->num_rows() > 0) : ?>

 <?php foreach ($discussion_query->result() as $row) :
 ?>

 <tr>

 <td><?php echo $row->ds_id ; ?></td>

 <td><?php echo $row->usr_name ; ?></td>

Discussion Forum

[76]

 <td><?php echo $row->usr_email ; ?></td>

 <td><?php echo anchor('admin/update_item/
 ds/allow/'.

 $row->ds_id,$this->lang->line('
 admin_dash_allow')) .

 ' ' . anchor('admin/update_item/ds/disallow/'.

 $row->ds_id,$this->lang->line('
 admin_dash_disallow')) ; ?>

 </td>

 </tr>

 <tr>

 <td colspan="3"><?php echo $row->ds_title;
 ?></td>

 <td></td>

 </tr>

 <tr>

 <td colspan="3"><?php echo $row->ds_body;
 ?></td>

 <td></td>

 </tr>

 <?php endforeach ; ?>

 <?php else : ?>

 <tr>

 <td colspan="4">No naughty forums here, horay!</td>

 </tr>

 <?php endif; ?>

 </tbody>

</table>

<table class="table">

 <thead>

 <tr>

 <th>#</th>

 <th>Name</th>

 <th>Email</th>

 <td>Actions</td>

 </tr>

 </thead>

 <tbody>

 <?php if ($comment_query->num_rows() > 0) : ?>

 <?php foreach ($comment_query->result() as $row) : ?>

 <tr>

 <td><?php echo $row->cm_id ; ?></td>

Chapter 3

[77]

 <td><?php echo $row->usr_name ; ?></td>

 <td><?php echo $row->usr_email ; ?></td>

 <td><?php echo anchor('admin/update_item/
 cm/allow/'.

 $row->cm_id,$this->lang->line('
 admin_dash_allow')) .

 ' ' . anchor('admin/update_item/cm/disallow/'.

 $row->cm_id,$this->lang->line('
 admin_dash_disallow')) ; ?>

 </td>

 </tr>

 <tr>

 <td colspan="3"><?php echo $row->cm_body;
 ?></td>

 <td></td>

 </tr>

 <?php endforeach ; ?>

 <?php else : ?>

 <tr>

 <td colspan="4">No naughty comments here,
 horay!</td>

 </tr>

 <?php endif; ?>

 </tbody>

</table>

The signin.css ile
The signin.css ile is required to display the login form correctly; this is the same
signin.css ile as the one that is available from the Twitter Bootstrap resource.

Create the /path/to/codeigniter/bootstrap/css/signin.css ile and add the
following code to it:

body {

 padding-top: 40px;

 padding-bottom: 40px;

 background-color: #eee;

}

.form-signin {

 max-width: 330px;

 padding: 15px;

Discussion Forum

[78]

 margin: 0 auto;
}
.form-signin .form-signin-heading,
.form-signin .checkbox {
 margin-bottom: 10px;
}
.form-signin .checkbox {
 font-weight: normal;
}
.form-signin .form-control {
 position: relative;
 height: auto;
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
 padding: 10px;
 font-size: 16px;
}
.form-signin .form-control:focus {
 z-index: 2;
}
.form-signin input[type="email"] {
 margin-bottom: -1px;
 border-bottom-right-radius: 0;
 border-bottom-left-radius: 0;
}
.form-signin input[type="password"] {
 margin-bottom: 10px;
 border-top-left-radius: 0;
 border-top-right-radius: 0;
}

Creating the controllers
We're going to create three controllers for this application. These are as follows:

• discussions.php: This fetches discussions from the discussions table
in the database and allows the user to create a new discussion

• comments.php: This fetches comments from the comments table in the
database and allows the user to join a discussion by adding a comment
to a discussion forum

• admin.php: This contains basic admin functions, login functionalities,
and moderation options

Chapter 3

[79]

The discussions controller
The discussions.php controller is responsible for the display of all valid
discussions, processing the creation of new discussions and lagging any discussion
for moderation. The discussions controller contains three functions, and these are
as follows:

• index(): This displays all valid discussions

• create(): This creates a new discussion, handling any form validation

• flag(): This processes a discussion for moderation by calling the flag()
function of discussions_model.php, setting discussions.ds_is_active
to 0

Create the /path/to/codeigniter/application/controllers/discussions.php
ile and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
allowed');

class Discussions extends MY_Controller {

 function __construct() {

 parent::__construct();

 $this->load->helper('string');

 $this->load->library('encrypt');

 $this->load->model('Discussions_model');

 $this->load->library('form_validation');

 $this->form_validation->set_error_delimiters('<div
 class="alert alert-danger">', '</div>');

 }

 public function index() {

 if ($this->uri->segment(3)) {

 $filter = $this->uri->segment(4);

 $direction = $this->uri->segment(5);

 $page_data['dir'] = $this->uri->segment(5);

 } else {

 $filter = null;

 $direction = null;

 $page_data['dir'] = 'ASC';

 }

 $page_data['query'] = $this->Discussions_model
 ->fetch_discussions($filter,$direction);

Discussion Forum

[80]

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('discussions/view', $page_data);

 $this->load->view('common/footer');

 }

 public function create() {

 public function create() {

 $this->form_validation->set_rules('usr_name', $this->lang-
 >line('discussion_usr_name'),
 'required|min_length[1]|max_length[255]');

 $this->form_validation->set_rules('usr_email', $this-
 >lang->line('discussion_usr_email'),
 'required|min_length[1]|max_length[255]');

 $this->form_validation->set_rules('ds_title', $this->lang-
 >line('discussion_ds_title'),
 'required|min_length[1]|max_length[255]');

 $this->form_validation->set_rules('ds_body', $this->lang-
 >line('discussion_ds_body'),
 'required|min_length[1]|max_length[5000]');

 if ($this->form_validation->run() == FALSE) {

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('discussions/new');

 $this->load->view('common/footer');

 } else {

 $data = array('usr_name' => $this->input-
 >post('usr_name'),

 'usr_email' => $this->input-
 >post('usr_email'),

 'ds_title' => $this->input-
 >post('ds_title'),

 'ds_body' => $this->input-
 >post('ds_body')

);

 if ($ds_id = $this->Discussions_model->create($data)) {

 redirect('comments/index/'.$ds_id);

 } else {

 // error

 // load view and flash sess error

 }

 }

 }

Chapter 3

[81]

 public function flag() {

 $ds_id = $this->uri->segment(3);

 if ($this->Discussions_model->flag($ds_id)) {

 redirect('discussions/');

 } else {

 // error

 // load view and flash sess error

 }

 }

}

Taking each function one by one, we'll begin with index(). The index() function
is responsible for displaying all active discussions to the user.

The code begins by checking to see whether there is a value in the third uri
segment or not.

If there is a value present, then this indicates that the user has pressed the sort's
ascending or descending link; we'll discusses this in a moment but, for now,
we'll assume that there is no value in the third segment.

As there is no value present, we set $filter and $direction to NULL, but we set
$page_data['dir'] to ASC (short for ascending). This is set because, initially, the
discussion forums are displayed in descending order of their created date; however,
the sorting link needs to be written in the opposite direction from what is currently
being displayed. Setting $page_data['dir'] to ASC (ascending) will enable the
URL in the sort link to be ready for us should we need to click it.

We then ask the fetch_discussions() function of discussions_model.php to
get all active discussions, passing to it two variables as arguments: $filter and
$direction. These are set to null by default. The fetch_discussions() function
will know not to apply these ilters.

The direction of the sort link will lip-lop between ascending and descending—always
being the opposite of what is currently displayed. This lip-lopping is done in the view
ile (this might not be the best place for it if you're being strict, but I thought that this
was a location that you would ind obvious, so there you go).

Check out the code and explanation for the discussions/view.php
view ile earlier in this chapter for a full explanation of how the
lip-lopping functions.

Discussion Forum

[82]

Let's now look at the create() function; we initially set the validation rules
and check to see whether the form has been submitted (or has been submitted
with errors). Assuming that it has been submitted without errors, we save the
post data in the $data array:

$data = array('usr_name' => $this->input->post('usr_name'),

 'usr_email' => $this->input->post('usr_email'),

 'ds_title' => $this->input->post('ds_title'),

 'ds_body' => $this->input->post('ds_body'));

Once all the form elements are packaged into the $data array, we send it off to the
create() function of discussions_model to write to the database.

If the insert operation was successful, the model will return the primary key of the
new discussion but will return false if there was an error.

We test the return value of the insert operation. If the insert was successful, we
redirect the user to the index() function of the comments controller, passing to it the
$ds_id value that was returned by the model. The user can then see their discussion,
which is ready to be commented on:

if ($ds_id = $this->Discussions_model->create($data)) {

 redirect('comments/index/'.$ds_id);

} else {

 ...

If there was an error, then we have no new primary key, so we can't redirect the user.
This has been left blank in this project; you can implement your own policy for this
behavior; perhaps you can send them an e-mail informing them about this or write
an error to the screen.

The comments controller
The comments controller manages all matters related to the lagging (for moderation)
and creation of comments on discussions from users. The comments controller has
two functions, and these are as follows:

• index(): This displays all comments for a speciic discussion forum and
handles the submission—that is, the validation of a user's comment.

• flag(): This allows a user to lag a comment for moderation by the admin.
The comments.cm_is_active value in the database is set to 0 for the
speciic comment.

Chapter 3

[83]

Create the /path/to/codeigniter/application/controllers/comments.php ile
and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

class Comments extends MY_Controller {

 function __construct() {

 parent::__construct();

 $this->load->helper('string');

 $this->load->library('form_validation');

 $this->load->model('Discussions_model');

 $this->load->model('Comments_model');

 $this->form_validation->set_error_delimiters('<div
 class="alert alert-danger">', '</div>');

 }

 public function index() {

 if ($this->input->post()) {

 $ds_id = $this->input->post('ds_id');

 } else {

 $ds_id = $this->uri->segment(3);

 }

 $page_data['discussion_query'] = $this->Discussions_model-
 >fetch_discussion($ds_id);

 $page_data['comment_query'] = $this->Comments_model-
 >fetch_comments($ds_id);

 $page_data['ds_id'] = $ds_id;

 $this->form_validation->set_rules('ds_id', $this->lang-
 >line('comments_comment_hidden_id'),
 'required|min_length[1]|max_length[11]');

 $this->form_validation->set_rules('comment_name', $this-
 >lang->line('comments_comment_name'),
 'required|min_length[1]|max_length[25]');

 $this->form_validation->set_rules('comment_email', $this-
 >lang->line('comments_comment_email'),
 'required|min_length[1]|max_length[255]');

 $this->form_validation->set_rules('comment_body', $this-
 >lang->line('comments_comment_body'),
 'required|min_length[1]|max_length[5000]');

Discussion Forum

[84]

 if ($this->form_validation->run() == FALSE) {

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('comments/view', $page_data);

 $this->load->view('common/footer');

 } else {

 $data = array('cm_body' => $this->input-
 >post('comment_body'),

 'usr_email' => $this->input-
 >post('comment_email'),

 'usr_name' => $this->input-
 >post('comment_name'),

 'ds_id' => $this->input->post('ds_id')

);

 if ($this->Comments_model->new_comment($data)) {

 redirect('comments/index/'.$ds_id);

 } else {

 // error

 // load view and flash sess error

 }

 }

 }

 public function flag() {

 $cm_id = $this->uri->segment(4);

 if ($this->Comments_model->flag($cm_id)) {

 redirect('comments/index/'.$this->uri->segment(3));

 } else {

 // error

 // load view and flash sess error

 }

 }

}

Let's start with the index() function. The index() function will begin by displaying
all comments for a speciic discussion. To do this, it needs to know what discussion
to look at. So, let's go a step back. The discussions controller will display a list of
active discussions.

The following is a section of code from discussions/view.php that we looked at in
greater detail earlier. This code will loop through a set of database results, displaying
each active discussion in table rows.

Chapter 3

[85]

Check out the line highlighted in bold:

<!-- Comment - list of comments -->

<?php foreach ($comment_query->result() as $comment_result) : ?>

 <li class="media">

 <img class="media-object" src="<?php echo base_url() ;
 ?>img/profile.svg" />

 <div class="media-body">

 <h4 class="media-heading"><?php echo $comment_result->
 usr_name . anchor('comments/flag/'.$comment_result->ds_id .
 '/' . $comment_result->cm_id,$this->lang-
 >line('comments_flag')) ; ?></h4>

 <?php echo $comment_result->cm_body ; ?>

 </div>

<?php endforeach ; ?>

This line displays the URL that enables the user to view the discussion and any
comments associated with it by clicking on a discussion title link, which looks like
the following:

comments/index/id-of-discussion

We can pass id-of-discussion as the third parameter of the link to the index()
function of the comments controller. This is where we pick up the story. The index()
function of the comments controller checks whether there is a third uri segment
(if not, then it is possible that the form to create a comment has been submitted
and would not exist in the uri segment).

It will grab the ID of the discussion and store it as the $ds_id variable:

if ($this->input->post()) {

 $ds_id = $this->input->post('ds_id');

} else {

 $ds_id = $this->uri->segment(3);

}

We then deine some validation rules for CodeIgniter to apply to the Add A
Comment form at the bottom of the comments/view.php ile.

The comments/view.php ile contains not only a foreach() loop to display the
current comments on the selected discussion, but also a form with a name and
e-mail text ield and a body text area. This is where the user can enter their name,
e-mail, and comment text and then submit the comment.

Discussion Forum

[86]

There is also a hidden ield, named ds_id, that contains the primary key of the
selected discussion. We need it in the form as a hidden element as, when the form
is submitted, the third uri segment will disappear. Having the discussion ID as a
hidden form element will allow index() to maintain a relationship between the
comment and the discussion when the new comment form is submitted.

Assuming that there were no errors with the form and it is submitted without the
need to report anything requiring the user's attention, the index() function attempts
to write the comment to the comments table in the database.

Before we do that, however, we need to package all our data into an array that will
be passed to Comments_model. Take a look at the following code:

$data = array('cm_body' => $this->input->post('comment_body'),

 'usr_email' => $this->input->post('comment_email'),

 'usr_name' => $this->input->post('comment_name'),

 'ds_id' => $this->input->post('ds_id')

);

Here, you can see that we've got all the post elements including ds_id (highlighted
in bold). This is now ready to be sent to the new_comment()model function for
insertion into the database:

if ($this->Comments_model->new_comment($data)) {

 redirect('comments/index/'.$ds_id);

} else {

 // error

 // load view and flash sess error

}

The new_comment()model function will return true on a successful insertion and
false otherwise. If it was successful, then we redirect the user to the comments
controller's index() function and pass $ds_id as the third parameter where the
index() function will begin, displaying all active comments associated with the
selected discussion.

Now, let's move on to the flag() function. The flag() function will enable the user
to indicate that a comment requires moderation by an admin.

Stepping back to the discussions controller, the discussions controller will
display a list of active discussions.

Chapter 3

[87]

The following is a section of code from comments/view.php that we looked at in
greater detail earlier. This code will loop through a set of database results, displaying
each active comment in a table of rows:

<!-- Comment - list of comments -->

<?php foreach ($comment_query->result() as $comment_result) : ?>

 <li class="media">

 <img class="media-object" src="<?php echo base_url() ;
 ?>img/profile.svg" />

 <div class="media-body">

 <h4 class="media-heading"><?php echo $comment_result->
 usr_name . anchor('comments/flag/'.$comment_result->ds_id
 . '/' . $comment_result->cm_id,$this->lang-
 >line('comments_flag')) ; ?></h4>

 <?php echo $comment_result->cm_body ; ?>

 </div>

<?php endforeach ; ?>

Take a look at the line highlighted in bold:

anchor('comments/flag/'.$comment_result->ds_id . '/' .
 $comment_result->cm_id,$this->lang->line('comments_flag'))

This line contains a CodeIgniter anchor() statement with the comments/flag/id-of-
comment URL. It is this line of code that creates the lag link next to each comment.

Look at the third and fourth parameters. The third parameter is the discussion ID
(discussions.ds_id) and the fourth is the comment ID (comments.cm_id); both are
used in the flag() function of comments_model. The code for this looks as follows:

public function flag() {

 $cm_id = $this->uri->segment(4);

 if ($this->Comments_model->flag($cm_id)) {

 redirect('comments/index/'.$this->uri->segment(3));

 } else {

 // error

 // load view and flash sess error

 }

}

If the insert operation returns true, then we redirect the user to the comments
controller's index() function along with the discussion forum ID.

Discussion Forum

[88]

The admin controller
The admin controller contains all the functions required to run the moderation of
comments and discussions and to log users in. It contains the following functions:

• index(): Every controller needs an index function and this is it.
The index() function will check whether a user is logged in and
redirect them elsewhere if not.

• login(): The login() function handles the process of logging a user into
the system.

• dashboard(): This is responsible for displaying all comments and
discussions that require moderation.

• update_item(): This is responsible for applying the decision of the
moderator, whether to approve or delete a comment or discussion.

Create the /path/to/codeigniter/application/controllers/admin.php ile
and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

class Admin extends MY_Controller {

 function __construct() {

 parent::__construct();

 $this->load->helper('string');

 $this->load->library('form_validation');

 $this->load->model('Admin_model');

 $this->form_validation->set_error_delimiters('<div
 class="alert alert-danger">', '</div>');

 }

 public function index() {

 if ($this->session->userdata('logged_in') == FALSE) {

 redirect('admin/login');

 }

 redirect('admin/dashboard');

 }

 public function login() {

 $this->form_validation->set_rules('usr_email', $this-
 >lang->line('admin_login_email'),
 'required|min_length[1]|max_length[255]');

Chapter 3

[89]

 $this->form_validation->set_rules('usr_password', $this-
 >lang->line('admin_login_password'),
 'required|min_length[1]|max_length[25]');

 if ($this->form_validation->run() == FALSE) {

 $this->load->view('common/login_header');

 $this->load->view('nav/top_nav');

 $this->load->view('admin/login');

 $this->load->view('common/footer');

 } else {

 $usr_email = $this->input->post('usr_email');

 $usr_password = $this->input->post('usr_password');

 $query = $this->Admin_model->
 does_user_exist($usr_email);

 if ($query->num_rows() == 1) { // One matching row
 found

 foreach ($query->result() as $row) {

 // Call Encrypt library

 $this->load->library('encrypt');

 // Generate hash from a their password

 $hash = $this->encrypt->sha1($usr_password);

 // Compare the generated hash with that in the
 database

 if ($hash != $row->usr_hash) {

 // Didn't match so send back to login

 $page_data['login_fail'] = true;

 $this->load->view('common/login_header');

 $this->load->view('nav/top_nav');

 $this->load-
 >view('admin/login',$page_data);

 $this->load->view('common/footer');

 } else {

 $data = array(

 'usr_id' => $row->usr_id,

 'usr_email' => $row->usr_email,

 'logged_in' => TRUE

);

 // Save data to session

Discussion Forum

[90]

 $this->session->set_userdata($data);

 redirect('admin/dashboard');

 }

 }

 }

 }

 }

 public function dashboard() {

 if ($this->session->userdata('logged_in') == FALSE) {

 redirect('admin/login');

 }

 $page_data['comment_query'] = $this->Admin_model-
 >dashboard_fetch_comments();

 $page_data['discussion_query'] = $this->Admin_model-
 >dashboard_fetch_discussions();

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('admin/dashboard',$page_data);

 $this->load->view('common/footer');

 }

 public function update_item() {

 if ($this->session->userdata('logged_in') == FALSE) {

 redirect('admin/login');

 }

 if ($this->uri->segment(4) == 'allow') {

 $is_active = 1;

 } else {

 $is_active = 0;

 }

 if ($this->uri->segment(3) == 'ds') {

 $result = $this->Admin_model->update_discussions
 ($is_active, $this->uri->segment(5));

 } else {

 $result = $this->Admin_model->update_comments
 ($is_active, $this->uri->segment(5));

 }

 redirect('admin');

 }

}

Chapter 3

[91]

Let's tackle this by irst looking at the index() function. As the admin controller is
only to be used by those logged in, the index() function will check to see whether
an item called logged_in exists in the session. If logged_in is equal to FALSE, then it
means that the user is not logged in, so they are redirected to the login() function.

This is very simple and we won't spend more time on it; however, a more
complicated function is login(). The login() function is responsible for—as
the name suggests—managing the login process for the admin moderator.

The irst thing login() does is deine form validation rules for the usr_email and
usr_pwd form elements. These will govern how the data submitted by the user in
the admin/login.php view ile is validated.

We immediately test to see whether the form has been submitted:

if ($this->form_validation->run() == FALSE) {

 ...

If the form hasn't been submitted, we'll load the view iles to display the login form
and wait for a response from the user.

However, if it has been submitted, then the form is validated against the validation
criteria; if it passes validation, we try to work out whether the user exists in the
database currently:

$query = $this->Admin_model->does_user_exist($usr_email);

 if ($query->num_rows() == 1) {

 ...

If exactly one matching e-mail address has been found, then we will try to work
out whether the users' password is correct. We load the CodeIgniter library using
$this->load->library('encrypt') and generate a hash from the password
that the user supplied in the login form:

$hash = $this->encrypt->sha1($usr_password);

We then compare that hash with the hash stored in the database belonging to
the user:

if ($hash != $row->usr_hash) {

 ...

Discussion Forum

[92]

If it does not match, then we load the login form and display an error message.
However, if it does match, then the user must have typed the correct password;
so we log them in by creating a CodeIgniter session for them:

$data = array(

 'usr_id' => $row->usr_id,

 'usr_email' => $row->usr_email,

 'logged_in' => TRUE

);

// Save data to session

$this->session->set_userdata($data);

redirect('admin/dashboard');

The user is then redirected to the dashboard. The dashboard will display any
comments and discussions that are required for moderation.

Creating the language ile
As with all the projects in this book, we're making use of the language ile to serve
text to users. This way, you can enable multiple region/multiple language support.

Create the /path/to/codeigniter/application/language/english/en_admin_
lang.php ile and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
allowed');

// General

$lang['system_system_name'] = "Forum";

// Top Nav

$lang['top_nav_view_discussions'] = "Home";

$lang['top_nav_new_discussion'] = "New Discussion";

$lang['top_nav_login'] = "Login";

// Discussions

$lang['discussions_title'] = "Discussions";

$lang['discussions_num_comments'] = 'Comments';

// Comments

$lang['comments_form_instruction'] = "Join in, add your comment
below.";

Chapter 3

[93]

$lang['comments_flag'] = ' [Flag]';

$lang['comments_created_by'] = 'Created by ';

$lang['comments_created_at'] = ' at ';

$lang['comments_comment_name'] = 'Your name';

$lang['comments_comment_email'] = 'Your email';

$lang['comments_comment_body'] = 'Comment';

// Discussions

$lang['discussion_form_instruction'] = "Create your own discussion,
fill in the form below";

$lang['discussion_flag'] = ' [Flag]';

$lang['discussion_usr_name'] = 'Your name';

$lang['discussion_usr_email'] = 'Your email';

$lang['discussion_ds_title'] = 'Discussion title';

$lang['discussion_ds_body'] = 'Your question, point etc';

// Admin - login

$lang['admin_login_header'] = "Please sign in";

$lang['admin_login_email'] = "Email";

$lang['admin_login_password'] = "Password";

$lang['admin_login_signin'] = "Signin...";

$lang['admin_login_error'] = "Whoops! Something went wrong - have
another go!";

$lang['admin_dash_allow'] = "Allow";

$lang['admin_dash_disallow'] = "Disallow";

Putting it all together
Now that we've created each ile and resource necessary for the app, let's run
through a few scenarios so that we can get a good idea of how it all works together.

A user creates a discussion forum
Let's consider an example where David visits the discussion forum in his browser.
The following is the sequence of steps:

1. David clicks on the New Discussion link in the top navigation bar.

2. CodeIgniter loads the create() function in the discussions controller.

3. The create() function displays the discussions/new.php view ile,
which displays a form to users, enabling them to enter their name,
e-mail, discussion title, and discussion body text.

Discussion Forum

[94]

4. David presses the Go button to submit the form. The form is submitted to the
discussion controller's create() function.

5. The discussion controller's create() function validates the form. Assuming
there were no errors, the create() function packages the post data into an
array and sends it to the create() function of discussions_model.

6. The create() model function looks in the users database table to see
whether the e-mail address already exists. If it does, the primary key of the
user is returned and added to the Active Record insertion for the discussion.
However, if the e-mail address doesn't exist, then the model function creates
it. Instead, the primary key of this insertion is returned.

7. A password is created and a hash is generated from it. However, the
password is not stored and David is not told what it is; this is perhaps a
functionality you might not wish for, but you can easily add code to send
David his password in an e-mail, should you wish.

A user comments on a discussion forum
Let's consider an example where Ed visits the discussion forum in his browser.
The following is the sequence of events:

1. CodeIgniter loads the default controller—in this case, the discussion
controller.

2. The discussion controller uses the fetch_discussions() function of
discussions_model to get the latest discussions from the discussions
database table and passes them to the discussions/view.php view ile
where they are displayed.

3. Ed likes the sound of one of the discussion forums and clicks on the name
of the forum.

4. CodeIgniter loads the comments controller's index() function.
The index() function takes the third uri segment (the discussion forum
ID—discussions.ds_id) and passes it to the fetch_comments() function
of comments_model.

5. The comments are displayed in the comments/view.php view ile.
6. Ed reads the comment history and decides that the world would beneit

from his opinion.

Chapter 3

[95]

7. Ed scrolls to the bottom of the page where the form to add a comment is
present. Ed enters his name, e-mail, and comment and clicks on Go.

8. The form is submitted to the create() function of comments. The create()
function will validate the form. Assuming there were no errors, the create()
function packages the post data into an array and sends it to the create()
function of comments_model.

9. The create() model function looks in the users database table to see
whether the e-mail address already exists. If it does, the primary key of the
user is returned and added to the Active Record insertion for the comment.
However, if the e-mail address doesn't exist, then the model function creates
it. Instead, the primary key of this insertion is returned.

10. A password is created and a hash is generated from it. However, the password
is not stored and Ed is not told what it is; this is perhaps a functionality you
might not wish for, but you can easily add code to send Ed his password in an
e-mail, should you wish.

11. Ed is redirected to the discussion forum where he can see his comment.

A user dislikes a comment and lags it for
moderation
Let's consider an example where Nigel is looking through a discussion and
sees a comment that he feels is necessary for moderation. The sequence of steps
is as follows:

1. Outraged, he presses the lag link next to the comment.

2. CodeIgniter loads the flag() function of comments. The URL that is used
to access this is comments/flag/id-of-discussion/id-of-comment.

3. CodeIgniter passes id-of-comment to the flag() function of
comments_model, which will set comments.cm_is_active to 0. This removes
the comment from the discussion and places it in the moderation dashboard.

4. If the update of the comment was successful, CodeIgniter will redirect Nigel
to the discussion he was looking at.

Discussion Forum

[96]

A moderator reviews comments awaiting

moderation
Let's consider an example where Nick logs in to his admin account. The sequence of
steps is as follows:

1. The admin controller loads the dashboard() function.

2. The dashboard() function loads a list of comments and discussions waiting
for moderation.

3. Nick sees the full text of comments and discussions along with two options:
Allow and Disallow.

4. Nick sees that there are two comments that require moderation.

5. Nick reads the irst comment and decides that it is ine; he clicks on the
Allow link. The structure of the link is admin/update_item/cm/allow/id-
or-comment.

6. CodeIgniter loads the update_item() function of admin.

7. The update_item() function gets the type of thing that needs to be updated
(comment: cm and discussion: ds); in this case, Nick is updating a comment
to the irst segment in uri, which is cm. The second uri segment is allow and
the third uri segment is the ID of the comment (comments.cm_id).

8. The update_comments() function of admin_model is called, setting
comments.cm_is_active to 1. This allows the comment to be displayed
once more.

9. Nick also notices the one remaining comment waiting for moderation.
He reads the comment and decides that it's probably not the best comment
and he wishes to remove it.

10. He clicks on the Disallow link. The structure of the link is admin/update_
item/cm/disallow/id-or-comment.

11. CodeIgniter loads the update_item() function of admin.

12. The update_item() function gets the type of thing that needs to be updated
(comment: cm and discussion: ds); in this case, Nick is updating a comment
to the irst segment in uri, which is cm. The second uri segment is disallow
and the third uri segment is the ID of the comment (comments.cm_id).

13. The update_comments() function of admin_model is called. As $is_active
is set to 0, we will not allow the comment to be displayed but will delete it.
A PHP if/else statement works out the value of $is_active, the else section
is executed, and a MySQL DELETE command is called, deleting the comment
from the database permanently.

Chapter 3

[97]

Summary
We have done a lot in this chapter; we've created many iles and there's a lot to
take in. However, this project gives you the base system for a discussion forum.
You might wish to add user management (particularly when it comes to sending the
user their password), assuming you want people to log in? What would they do once
they are logged in? These are for you to deine, but you now have the base system;
this allows you to build more.

Creating a Photo-sharing

Application
There are quite a few image-sharing websites around at the moment. They all share
roughly the same structure: the user uploads an image and that image can be shared,
allowing others to view that image. Perhaps limits or constraints are placed on the
viewing of an image, perhaps the image only remains viewable for a set period of
time, or within set dates, but the general structure is the same. And I'm happy to
announce that this project is exactly the same.

We'll create an application allowing users to share pictures; these pictures are
accessible from a unique URL. To make this app, we will create two controllers:
one to process image uploading and one to process the viewing and displaying
of images stored.

We'll create a language ile to store the text, allowing you to have support for
multiple languages should it be needed.

We'll create all the necessary view iles and a model to interface with the database.

However, this project along with all the others in this book relies on the basic setup
we did in Chapter 1, Introduction and Shared Project Resources, although you can take
large sections of the code and drop it into pretty much any project you may already
have. Keep in mind that the setup done in the irst chapter acts as a foundation for
this chapter.

In this chapter, we will cover:

• Design and wireframes

• Creating the database

• Creating the models

Creating a Photo-sharing Application

[100]

• Creating the views

• Creating the controllers

• Putting it all together

So without further ado, let's get on with it.

Design and wireframes
As always, before we start building, we should take a look at what we plan to build.

First, a brief description of our intent: we plan to build an app to allow the user to
upload an image. That image will be stored in a folder with a unique name. A URL
will also be generated containing a unique code, and the URL and code will be
assigned to that image. The image can be accessed via that URL.

The idea of using a unique URL to access that image is so that we can control access
to that image, such as allowing an image to be viewed only a set number of times,
or for a certain period of time only.

Anyway, to get a better idea of what's happening, let's take a look at the following
site map:

create

1

go

3

do_upload

2

So that's the site map. The irst thing to notice is how simple the site is. There are
only three main areas to this project. Let's go over each item and get a brief idea of
what they do:

• create: Imagine this as the start point. The user will be shown a simple form
allowing them to upload an image. Once the user presses the Upload button,
they are directed to do_upload.

Chapter 4

[101]

• do_upload: The uploaded image is validated for size and ile type. If it
passes, then a unique eight-character string is generated. This string is then
used as the name of a folder we will make. This folder is present in the main
upload folder and the uploaded image is saved in it. The image details
(image name, folder name, and so on) are then passed to the database model,
where another unique code is generated for the image URL. This unique
code, image name, and folder name are then saved to the database.

The user is then presented with a message informing them that their image
has been uploaded and that a URL has been created. The user is also
presented with the image they have uploaded.

• go: This will take a URL provided by someone typing into a browser's
address bar, or an img src tag, or some other method. The go item will look
at the unique code in the URL, query the database to see if that code exists,
and if so, fetch the folder name and image name and deliver the image back
to the method that called it.

Now that we have a fairly good idea of the structure and form of the site, let's take a
look at the wireframes of each page.

The create item
The following screenshot shows a wireframe for the create item discussed in the
previous section. The user is shown a simple form allowing them to upload an image.

Web Application Blueprints

http://www.domain.com/

Image Share Upload

Image Share

Upload your image to share it

Upload File...

Upload

Creating a Photo-sharing Application

[102]

The do_upload item
The following screenshot shows a wireframe from the do_upload item discussed in
the previous section. The user is shown the image they have uploaded and the URL
that will direct other users to that image.

Web Application Blueprints

http://www.domain.com/create/do_upload

Image Share Upload

Image Share

Hey look at this, here’s your image x6pxLEEo

The go item
The following screenshot shows a wireframe from the go item described in the
previous section. The go controller takes the unique code in a URL, attempts to ind
it in the database table images, and if found, supplies the image associated with it.
Only the image is supplied, not the actual HTML markup.

Chapter 4

[103]

Web Application Blueprints

http://www.domain.com/H2Z89LA/2.jpg

File overview
This is a relatively small project, and all in all we're only going to create seven iles,
which are as follows:

• /path/to/codeigniter/application/models/image_model.php:
This provides read/write access to the images database table. This model
also takes the upload information and unique folder name (which we
store the uploaded image in) from the create controller and stores this
to the database.

• /path/to/codeigniter/application/views/create/create.php: This
provides us with an interface to display a form allowing the user to upload
a ile. This also displays any error messages to the user, such as wrong ile
type, ile size too big, and so on.

• /path/to/codeigniter/application/views/create/result.php: This
displays the image to the user after it has been successfully uploaded, as well
as the URL required to view that image.

• /path/to/codeigniter/application/views/nav/top_nav.php: This
provides a navigation bar at the top of the page.

Creating a Photo-sharing Application

[104]

• /path/to/codeigniter/application/controllers/create.php: This
performs validation checks on the image uploaded by the user, creates
a uniquely named folder to store the uploaded image, and passes this
information to the model.

• /path/to/codeigniter/application/controllers/go.php: This
performs validation checks on the URL input by the user, looks for the
unique code in the URL and attempts to ind this record in the database.
If it is found, then it will display the image stored on disk.

• /path/to/codeigniter/application/language/english/en_admin_

lang.php: This provides language support for the application.

The ile structure of the preceding seven iles is as follows:

application/

├── controllers/

│ ├── create.php

│ ├── go.php

├── models/

│ ├── image_model.php

├── views/create/

│ ├── create.php

│ ├── result.php

├── views/nav/

│ ├── top_nav.php

├── language/english/

│ ├── en_admin_lang.php

Creating the database
Okay, you should have already set up CodeIgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources; if you have not, then you should
know that the code in this chapter is speciically built with the setup from Chapter
1, Introduction and Shared Project Resources, in mind. However, it's not the end of
the world if you haven't. The code can easily be applied to other projects and
applications you may have developed independently.

First, we'll build the database. Copy the following MySQL code into your database:

CREATE DATABASE `imagesdb`;

USE `imagesdb`;

DROP TABLE IF EXISTS `images`;

CREATE TABLE `images` (

 `img_id` int(11) NOT NULL AUTO_INCREMENT,

Chapter 4

[105]

 `img_url_code` varchar(10) NOT NULL,

 `img_url_created_at` timestamp NOT NULL DEFAULT
 CURRENT_TIMESTAMP,

 `img_image_name` varchar(255) NOT NULL,

 `img_dir_name` varchar(8) NOT NULL,

 PRIMARY KEY (`img_id`)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

Right, let's take a look at each item in every table and see what they mean:

Table: images

Element Description

img_id This is the primary key.

img_url_code This stores the unique code that we use to identify the image
in the database.

img_url_created_at This is the MySQL timestamp for the record.

img_image_name This is the filename provided by the CodeIgniter upload
functionality.

img_dir_name This is the name of the directory we store the image in.

We'll also need to make amends to the config/database.php ile, namely setting
the database access details, username, password, and so on.

Open the config/database.php ile and ind the following lines:

$db['default']['hostname'] = 'localhost';

$db['default']['username'] = 'your username';

$db['default']['password'] = 'your password';

$db['default']['database'] = 'imagesdb';

Edit the values in the preceding code ensuring you substitute those values for the
ones more speciic to your setup and situation—so enter your username, password,
and so on.

Adjusting the conig.php and autoload.
php iles
We don't actually need to adjust the config.php ile in this project as we're not
really using sessions or anything like that. So we don't need an encryption key
or database information.

Creating a Photo-sharing Application

[106]

So just ensure that you are not autoloading the session in the config/autoload.
php ile or you will get an error, as we've not set any session variables in the config/
config.php ile.

Adjusting the routes.php ile
We want to redirect the user to the create controller rather than the default
CodeIgniter welcome controller. To do this, we will need to amend the default
controller settings in the routes.php ile to relect this. The steps are as follows:

1. Open the config/routes.php ile for editing and ind the following lines
(near the bottom of the ile):
$route['default_controller'] = "welcome";

$route['404_override'] = '';

2. First, we need to change the default controller. Initially, in a CodeIgniter
application, the default controller is set to welcome. However, we don't
need that, instead we want the default controller to be create, so ind the
following line:

$route['default_controller'] = "welcome";

Replace it with the following lines:

$route['default_controller'] = "create";

$route['404_override'] = '';

3. Then we need to add some rules to govern how we handle URLs coming in
and form submissions.

Leave a few blank lines underneath the preceding two lines of code (default
controller and 404 override) and add the following three lines of code:

$route['create'] = "create/index";

$route['(:any)'] = "go/index";

$route['create/do_upload'] = "create/do_upload";

Creating the model
There is only one model in this project, image_model.php. It contains functions
speciic to creating and resetting passwords.

Chapter 4

[107]

Create the /path/to/codeigniter/application/models/image_model.php ile
and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed');

class Image_model extends CI_Model {

 function __construct() {

 parent::__construct();

 }

 function save_image($data) {

 do {

 $img_url_code = random_string('alnum', 8);

 $this->db->where('img_url_code = ', $img_url_code);

 $this->db->from('images');

 $num = $this->db->count_all_results();

 } while ($num >= 1);

 $query = "INSERT INTO `images` (`img_url_code`,
 `img_image_name`, `img_dir_name`) VALUES (?,?,?) ";

 $result = $this->db->query($query, array($img_url_code,
 $data['image_name'], $data['img_dir_name']));

 if ($result) {

 return $img_url_code;

 } else {

 return flase;

 }

 }

function fetch_image($img_url_code) {

 $query = "SELECT * FROM `images` WHERE `img_url_code` = ? ";

 $result = $this->db->query($query, array($img_url_code));

 if ($result) {

 return $result;

 } else {

 return false;

 }

 }

}

Creating a Photo-sharing Application

[108]

There are two main functions in this model, which are as follows:

• save_image(): This generates a unique code that is associated with
the uploaded image and saves it, with the image name and folder name,
to the database.

• fetch_image(): This fetches an image's details from the database according
to the unique code provided.

Okay, let's take save_image() irst. The save_image() function accepts an array
from the create controller containing image_name (from the upload process) and
img_dir_name (this is the folder that the image is stored in).

A unique code is generated using a do…while loop as shown here:

$img_url_code = random_string('alnum', 8);

First a string is created, eight characters in length, containing alpha-numeric characters.
The do…while loop checks to see if this code already exists in the database, generating
a new code if it is already present. If it does not already exist, this code is used:

do {

 $img_url_code = random_string('alnum', 8);

 $this->db->where('img_url_code = ', $img_url_code);

 $this->db->from('images');

 $num = $this->db->count_all_results();

} while ($num >= 1);

This code and the contents of the $data array are then saved to the database using
the following code:

$query = "INSERT INTO `images` (`img_url_code`, `img_image_name`,
 `img_dir_name`) VALUES (?,?,?) ";

$result = $this->db->query($query, array($img_url_code,
 $data['image_name'], $data['img_dir_name']));

The $img_url_code is returned if the INSERT operation was successful, and false if
it failed. The code to achieve this is as follows:

if ($result) {

 return $img_url_code;

} else {

 return false;

}

Chapter 4

[109]

Creating the views
There are only three views in this project, which are as follows:

• /path/to/codeigniter/application/views/create/create.php:
This displays a form to the user allowing them to upload an image.

• /path/to/codeigniter/application/views/create/result.php: This
displays a link that the user can use to forward other people to the image, as
well as the image itself.

• /path/to/codeigniter/application/views/nav/top_nav.php: This
displays the top-level menu. In this project it's very simple, containing a
project name and a link to go to the create controller.

So those are our views, as I said, there are only three of them as it's a simple project.
Now, let's create each view ile.

1. Create the /path/to/codeigniter/application/views/create/create.
php ile and add the following code to it:
<div class="page-header">

 <h1><?php echo $this->lang->line('system_system_name');
 ?></h1>

</div>

<p><?php echo $this->lang->line('encode_instruction_1');
 ?></p>

 <?php echo validation_errors(); ?>

<?php if (isset($success) && $success == true) : ?>

 <div class="alert alert-success">

 <?php echo $this->lang->line('
 common_form_elements_success_notifty'); ?>
 <?php echo $this->lang->
 line('encode_encode_now_success'); ?>

 </div>

<?php endif ; ?>

<?php if (isset($fail) && $fail == true) : ?>

 <div class="alert alert-danger">

 <?php echo $this->lang->line('
 common_form_elements_error_notifty'); ?>
 <?php echo $this->lang->line('encode_encode_now_error
 '); ?>

 <?php echo $fail ; ?>

 </div>

Creating a Photo-sharing Application

[110]

<?php endif ; ?>

<?php echo form_open_multipart('create/do_upload');?>

 <input type="file" name="userfile" size="20" />

 <input type="submit" value="upload" />

<?php echo form_close() ; ?>

<?php if (isset($result) && $result == true) : ?>

 <div class="alert alert-info">

 <?php echo $this->lang->line('
 encode_upload_url'); ?>

 <?php echo anchor($result, $result) ; ?>

 </div>

<?php endif ; ?>

This view ile can be thought of as the main view ile; it is here that the user
can upload their image. Error messages are displayed here too.

2. Create the /path/to/codeigniter/application/views/create/result.
php ile and add the following code to it:
<div class="page-header">

 <h1><?php echo $this->lang->line('system_system_name');
 ?></h1>

</div>

<?php if (isset($result) && $result == true) : ?>

 <?php echo $this->lang->line('
 encode_encoded_url'); ?>

 <?php echo anchor($result, $result) ; ?>

 <img src="<?php echo base_url() . 'upload/' .
 $img_dir_name . '/' . $file_name ;?>" />

<?php endif ; ?>

This view will display the encoded image resource URL to the user (so they
can copy and share it) and the actual image itself.

3. Create the /path/to/codeigniter/application/views/nav/top_nav.php
ile and add the following code to it:
<!-- Fixed navbar -->

<div class="navbar navbar-inverse navbar-fixed-top"
 role="navigation">

 <div class="container">

 <div class="navbar-header">

Chapter 4

[111]

 <button type="button" class="navbar-toggle" data-
 toggle="collapse" data-target=".navbar-collapse">

 Toggle navigation

 </button>

 <?php echo $this-
 >lang->line('system_system_name'); ?>

 </div>

 <div class="navbar-collapse collapse">

 <ul class="nav navbar-nav">

 <li class="active"><?php echo anchor('create',
 'Create') ; ?>

 </div><!--/.nav-collapse -->

 </div>

</div>

<div class="container theme-showcase" role="main">

This view is quite basic but still serves an important role. It displays an
option to return to the index() function of the create controller.

Creating the controllers
We're going to create two controllers in this project, which are as follows:

• /path/to/codeigniter/application/controllers/create.php: This
handles the creation of unique folders to store images and performs the
upload of a ile.

• /path/to/codeigniter/application/controllers/go.php: This fetches
the unique code from the database, and returns any image associated with
that code.

These are two of our controllers for this project, let's now go ahead and create them.

Create the /path/to/codeigniter/application/controllers/create.php ile
and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

class Create extends MY_Controller {

 function __construct() {

Creating a Photo-sharing Application

[112]

 parent::__construct();

 $this->load->helper(array('string'));

 $this->load->library('form_validation');

 $this->load->library('image_lib');

 $this->load->model('Image_model');

 $this->form_validation->set_error_delimiters('<div
 class="alert alert-danger">', '</div>');

 }

 public function index() {

 $page_data = array('fail' => false,

 'success' => false);

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('create/create', $page_data);

 $this->load->view('common/footer');

 }

 public function do_upload() {

 $upload_dir = '/filesystem/path/to/upload/folder/';

 do {

 // Make code

 $code = random_string('alnum', 8);

 // Scan upload dir for subdir with same name

 // name as the code

 $dirs = scandir($upload_dir);

 // Look to see if there is already a

 // directory with the name which we

 // store in $code

 if (in_array($code, $dirs)) { // Yes there is

 $img_dir_name = false; // Set to false to begin again

 } else { // No there isn't

 $img_dir_name = $code; // This is a new name

 }

 } while ($img_dir_name == false);

 if (!mkdir($upload_dir.$img_dir_name)) {

 $page_data = array('fail' => $this->lang->
 line('encode_upload_mkdir_error'),

 'success' => false);

 $this->load->view('common/header');

Chapter 4

[113]

 $this->load->view('nav/top_nav');
 $this->load->view('create/create', $page_data);
 $this->load->view('common/footer');
 }

 $config['upload_path'] = $upload_dir.$img_dir_name;
 $config['allowed_types'] = 'gif|jpg|jpeg|png';
 $config['max_size'] = '10000';
 $config['max_width'] = '1024';
 $config['max_height'] = '768';

 $this->load->library('upload', $config);

 if (! $this->upload->do_upload()) {
 $page_data = array('fail' => $this->upload->
 display_errors(),
 'success' => false);
 $this->load->view('common/header');
 $this->load->view('nav/top_nav');
 $this->load->view('create/create', $page_data);
 $this->load->view('common/footer');
 } else {
 $image_data = $this->upload->data();
 $page_data['result'] = $this->Image_model->save_image(
 array('image_name' => $image_data['file_name'],
 'img_dir_name' => $img_dir_name));
 $page_data['file_name'] = $image_data['file_name'];
 $page_data['img_dir_name'] = $img_dir_name;

 if ($page_data['result'] == false) {
 // success - display image and link
 $page_data = array('fail' => $this->lang->
 line('encode_upload_general_error'));
 $this->load->view('common/header');
 $this->load->view('nav/top_nav');
 $this->load->view('create/create', $page_data);
 $this->load->view('common/footer');
 } else {
 // success - display image and link
 $this->load->view('common/header');
 $this->load->view('nav/top_nav');
 $this->load->view('create/result', $page_data);
 $this->load->view('common/footer');
 }
 }
 }

}

Creating a Photo-sharing Application

[114]

Let's start with the index() function. The index() function sets the fail and
success elements of the $page_data array to false. This will suppress any initial
messages from being displayed to the user. The views are loaded, speciically the
create/create.php view, which contains the image upload form's HTML markup.

Once the user submits the form in create/create.php, the form will be submitted
to the do_upload() function of the create controller. It is this function that will
perform the task of uploading the image to the server.

First off, do_upload() deines an initial location for the upload folder. This is stored
in the $upload_dir variable.

Next, we move into a do…while structure. It looks something like this:

do {

// something

} while ('…a condition is not met');

So that means do something while a condition is not being met. Now with that in mind,
think about our problem—we have to save the image being uploaded in a folder.
That folder must have a unique name. So what we will do is generate a random
string of eight alpha-numeric characters and then look to see if a folder exists with
that name. Keeping that in mind, let's look at the code in detail:

do {

 // Make code

 $code = random_string('alnum', 8);

 // Scan uplaod dir for subdir with same name

 // name as the code

 $dirs = scandir($upload_dir);

 // Look to see if there is already a

 // directory with the name which we

 // store in $code

 if (in_array($code, $dirs)) { // Yes there is

 $img_dir_name = false; // Set to false to begin again

 } else { // No there isn't

 $img_dir_name = $code; // This is a new name

 }

} while ($img_dir_name == false);

Chapter 4

[115]

So we make a string of eight characters, containing only alphanumeric characters,
using the following line of code:

$code = random_string('alnum', 8);

We then use the PHP function scandir() to look in $upload_dir. This will store all
directory names in the $dirs variable, as follows:

$dirs = scandir($upload_dir);

We then use the PHP function in_array() to look for the value in $code in the list
of directors from scandir().

If we don't ind a match, then the value in $code must not be taken, so we'll go with
that. If the value is found, then we set $img_dir_name to false, which is picked up
by the inal line of the do…while loop:

...

} while ($img_dir_name == false);

Anyway, now that we have our unique folder name, we'll attempt to create it. We
use the PHP function mkdir(), passing to it $upload_dir concatenated with $img_
dir_name. If mkdir() returns false, the form is displayed again along with the
encode_upload_mkdir_error message set in the language ile, as shown here:

if (!mkdir($upload_dir.$img_dir_name)) {

 $page_data = array('fail' => $this->lang->
 line('encode_upload_mkdir_error'),

 'success' => false);

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('create/create', $page_data);

 $this->load->view('common/footer');

}

Once the folder has been made, we then set the coniguration variables for the
upload process, as follows:

$config['upload_path'] = $upload_dir.$img_dir_name;

$config['allowed_types'] = 'gif|jpg|jpeg|png';

$config['max_size'] = '10000';

$config['max_width'] = '1024';

$config['max_height'] = '768';

Creating a Photo-sharing Application

[116]

Here we are specifying that we only want to upload .gif, .jpg, .jpeg, and .png
iles. We also specify that an image cannot be above 10,000 KB in size (although you
can set this to any value you wish—remember to adjust the upload_max_filesize
and post_max_size PHP settings in your php.ini ile if you want to have a really
big ile).

We also set the minimum dimensions that an image must be. As with the ile size,
you can adjust this as you wish.

We then load the upload library, passing to it the coniguration settings, as
shown here:

$this->load->library('upload', $config);

Next we will attempt to do the upload. If unsuccessful, the CodeIgniter function
$this->upload->do_upload() will return false. We will look for this and reload
the upload page if it does return false. We will also pass the speciic error as a
reason why it failed. This error is stored in the fail item of the $page_data array.
This can be done as follows:

 if (! $this->upload->do_upload()) {

 $page_data = array('fail' => $this->upload-
 >display_errors(),

 'success' => false);

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('create/create', $page_data);

 $this->load->view('common/footer');

 } else {

...

If, however, it did not fail, we grab the information generated by CodeIgniter from
the upload. We'll store this in the $image_data array, as follows:

$image_data = $this->upload->data();

Then we try to store a record of the upload in the database. We call the save_image
function of Image_model, passing to it file_name from the $image_data array, as
well as $img_dir_name, as shown here:

$page_data['result'] = $this->Image_model->
 save_image(array('image_name' => $image_data['file_name'],
 'img_dir_name' => $img_dir_name));

We then test for the return value of the save_image() function; if it is successful,
then Image_model will return the unique URL code generated in the model. If it is
unsuccessful, then Image_model will return the Boolean false.

Chapter 4

[117]

If false is returned, then the form is loaded with a general error. If successful, then
the create/result.php view ile is loaded. We pass to it the unique URL code (for
the link the user needs), and the folder name and image name, necessary to display
the image correctly.

Create the /path/to/codeigniter/application/controllers/go.php ile and
add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
allowed');

class Go extends MY_Controller {

 function __construct() {

 parent::__construct();

 $this->load->helper('string');

 }

 public function index() {

 if (!$this->uri->segment(1)) {

 redirect (base_url());

 } else {

 $image_code = $this->uri->segment(1);

 $this->load->model('Image_model');

 $query = $this->Image_model->fetch_image($image_code);

 if ($query->num_rows() == 1) {

 foreach ($query->result() as $row) {

 $img_image_name = $row->img_image_name;

 $img_dir_name = $row->img_dir_name;

 }

 $url_address = base_url() . 'upload/' . $img_dir_name .'/' .
$img_image_name;

 redirect (prep_url($url_address));

 } else {

 redirect('create');

 }

 }

 }

}

The go controller has only one main function, index(). It is called when a user clicks
on a URL or a URL is called (perhaps as the src value of an HTML img tag). Here we
grab the unique code generated and assigned to an image when it was uploaded in
the create controller.

Creating a Photo-sharing Application

[118]

This code is in the irst value of the URI. Usually it would occupy the third
parameter—with the irst and second parameters normally being used to specify
the controller and controller function respectively. However, we have changed this
behavior using CodeIgniter routing. This is explained fully in the Adjusting the routes.
php ile section of this chapter.

Once we have the unique code, we pass it to the fetch_image() function of
Image_model:

$image_code = $this->uri->segment(1);

$this->load->model('Image_model');

$query = $this->Image_model->fetch_image($image_code);

We test for what is returned. We ask if the number of rows returned equals exactly 1.
If not, we will then redirect to the create controller.

Perhaps you may not want to do this. Perhaps you may want to do nothing if the
number of rows returned does not equal 1. For example, if the image requested is
in an HTML img tag, then if an image is not found a redirect may send someone
away from the site they're viewing to the upload page of this project—something
you might not want to happen. If you want to remove this functionality, remove the
following lines in bold from the code excerpt:

....

 $img_dir_name = $row->img_dir_name;

 }

 $url_address = base_url() . 'upload/' . $img_dir_name .'/'
 . $img_image_name;

 redirect (prep_url($url_address));

 } else {

 redirect('create');

 }

 }

 }

}

....

Anyway, if the returned value is exactly 1, then we'll loop over the returned database
object and ind img_image_name and img_dir_name, which we'll need to locate the
image in the upload folder on the disk. This can be done as follows:

foreach ($query->result() as $row) {

 $img_image_name = $row->img_image_name;

 $img_dir_name = $row->img_dir_name;

}

Chapter 4

[119]

We then build the address of the image ile and redirect the browser to it, as follows:

$url_address = base_url() . 'upload/' . $img_dir_name .'/'
 . $img_image_name;

redirect (prep_url($url_address));

Creating the language ile
As with all the projects in this book, we're making use of the language ile to serve
text to users. In this way, you can enable multiple region/multiple language support.

Create the /path/to/codeigniter/application/language/english/en_admin_
lang.php ile and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

// General

$lang['system_system_name'] = "Image Share";

// Upload

$lang['encode_instruction_1'] = "Upload your image to share it";

$lang['encode_upload_now'] = "Share Now";

$lang['encode_upload_now_success'] = "Your image was uploaded, you
 can share it with this URL";

$lang['encode_upload_url'] = "Hey look at this, here's your
 image:";

$lang['encode_upload_mkdir_error'] = "Cannot make temp folder";

$lang['encode_upload_general_error'] = "The Image cannot be saved
 at this time";

Putting it all together
Let's look at how the user uploads an image. The following is the sequence of events:

1. CodeIgniter looks in the routes.php conig ile and inds the following line:
$route['create'] = "create/index";

It directs the request to the create controller's index() function.

2. The index() function loads the create/create.php view ile that displays
the upload form to the user.

3. The user clicks on the Choose ile button, navigates to the image ile they
wish to upload, and selects it.

Creating a Photo-sharing Application

[120]

4. The user presses the Upload button and the form is submitted to the create
controller's index() function.

5. The index() function creates a folder in the main upload directory to store
the image in, then does the actual upload.

6. On a successful upload, index() sends the details of the upload (the new
folder name and image name) to the save_image() model function.

7. The save_model() function also creates a unique code and saves it in the
images table along with the folder name and image name passed to it by the
create controller.

8. The unique code generated during the database insert is then returned to the
controller and passed to the result view, where it will form part of a success
message to the user.

Now, let's see how an image is viewed (or fetched). The following is the sequence
of events:

1. A URL with the syntax www.domain.com/226KgfYH comes into the
application—either when someone clicks on a link or some other call (<img
src="">).

2. CodeIgniter looks in the routes.php conig ile and inds the following line:
$route['(:any)'] = "go/index";

3. As the incoming request does not match the other two routes, the preceding
route is the one CodeIgniter applies to this request.

4. The go controller is called and the code of 226KgfYH is passed to it as the 1st
segment of uri.

5. The go controller passes this to the fetch_image() function of the Image_
model.php ile. The fetch_image() function will attempt to ind a matching
record in the database. If found, it returns the folder name marking the saved
location of the image, and its ilename.

6. This is returned and the path to that image is built. CodeIgniter then redirects
the user to that image, that is, supplies that image resource to the user that
requested it.

Chapter 4

[121]

Summary
So here we have a basic image sharing application. It is capable of accepting a
variety of images and assigning them to records in a database and unique folders in
the ilesystem. This is interesting as it leaves things open to you to improve on. For
example, you can do the following:

• You can add limits on views. As the image record is stored in the database,
you could adapt the database. Adding two columns called img_count and
img_count_limit, you could allow a user to set a limit for the number of
views per image and stop providing that image when that limit is met.

• You can limit views by date. Similar to the preceding point, but you could
limit image views to set dates.

• You can have different URLs for different dimensions. You could add
functionality to make several dimensions of image based on the initial
upload, offering several different URLs for different image dimensions.

• You can report abuse. You could add an option allowing viewers of images
to report unsavory images that might be uploaded.

• You can have terms of service. If you are planning on offering this type of
application as an actual web service that members of the public could use,
then I strongly recommend you add a terms of service document, perhaps
even require that people agree to terms before they upload an image.

In those terms, you'll want to mention that in order for someone to use
the service, they irst have to agree that they do not upload and share any
images that could be considered illegal. You should also mention that you'll
cooperate with any court if information is requested of you.

You really don't want to get into trouble for owning or running a web
service that stores unpleasant images; as much as possible you want to make
your limits of liability clear and emphasize that it is the uploader who has
provided the images.

In the next chapter, we will create a newsletter signup system. You'll be able to get
people to sign up and have their details in a database. People will be allowed to
unsubscribe and opt-in and opt-out of various settings.

Creating a Newsletter Signup
A newsletter signup is quite a handy application; you can adapt it quite easily
to it most applications without much fuss. It enables you to have a database of
subscribers and manage them, editing their settings and removing them from the
database should they choose to unsubscribe.

In this chapter, we will cover:

• Design and wireframes

• Creating a database

• Creating models

• Creating views

• Creating controllers

• Putting it all together

Introduction
In this project, we will create an application that will allow users to sign up for a
newsletter. A form will be displayed, inviting a user to enter their e-mail address,
and then it will deine a couple of settings to submit that form. It will also let
subscribers alter their settings and even unsubscribe entirely.

To create this app, we will create one controller. This will handle all parts of the
project: subscribing, editing settings, and unsubscribing.

We'll create a language ile to store text, allowing you to have multiple language
support should that be required.

We'll create all the necessary view iles and a model to interface with the database.

Creating a Newsletter Signup

[124]

However, this app, along with all the others in this book, relies on the basic setup we
did in Chapter 1, Introduction and Shared Project Resources. Although you can take large
sections of the code and drop it into pretty much any app you might already have,
please keep in mind that the setup done in the irst chapter acts as a foundation for
this chapter.

So, without further ado, let's get on with it.

Design and wireframes
As always, before we start building, we should take a look at what we plan to build.

First, let's look at a brief description of our intent: we plan to build an app that will
allow people to sign up for a database of contacts that will be used as a newsletter
signup database. We will enable users to subscribe by registering their e-mail
address and some options. These will be saved in a database.

We will also enable people to amend their settings and even unsubscribe should they
wish to.

Anyway, to get a better idea of what's happening, let's take a look at the following
site map:

Home (index)

Setting/Unsubscribe (settings())

1

3

Signup (index())

2

So, that's the site map; the irst thing to notice is how simple the site is. There are
only three main areas in this project. Let's go over each item and get a brief idea of
what they do:

• Home: This is the initial landing area. The index() function is responsible
for displaying a form to the user, inviting them to subscribe.

• Signup: This processes the validation of the form input and passes that data
(if validated successfully) to the add() model function.

Chapter 5

[125]

• Settings/Unsubscribe: This accepts the users' e-mail address as the third
and fourth uri parameters and displays a form to the subscriber. This form
contains the settings assigned to the e-mail address supplied. The user is able
to amend these settings and unsubscribe should they wish to.

Now that we have a fairly good idea of the structure and form of the site, let's take a
look at some wireframes of each page.

The Home – index() and Signup – index()
items
The following screenshot shows you a wireframe from point 1 (the Home (index())
item) and point 2 (the Signup (index()) item) in the preceding diagram. The user
is shown a textbox named signup_email in the HTML and two checkboxes named
signup_opt1 and signup_opt2 in the HTML.

These options are just an example; they can be removed or amended
should you wish. They are intended to act as a ilter to the newsletters.
For example, you could include frequency options giving weekly,
monthly, or quarterly options. When you come to send your newsletters,
you would only send the subscriber a newsletter based on those options—
as I say, you can change them, add more, or have none if you wish.

The user can enter their e-mail address as shown in the following screenshot, apply
any options they might wish to add, and submit the form. The form is submitted
to the signup controller's index() function, which will then validate that data. On
passing the validation, the add() function of Signup_model will create the record in
the signups database table.

Web Application Blueprints

Signup Home

Go

Your Email

http://www.domain.com/

Option 1

Option 2

Creating a Newsletter Signup

[126]

Settings/Unsubscribe – settings()
The following screenshot shows you a wireframe from point 3 (the Settings/
Unsubscribe (settings()) item) in the site map diagram. The user is presented
with a form that is pre-populated with their settings.

Web Application Blueprints

Signup Home

Go

name@domain.com

singup/settings/name/domain.com

Option 1

Option 2

Unsubscribe

We were able to fetch the correct details because of the URL. The user's e-mail
address is in the URL as the third and fourth segments.

The page is loaded when a user clicks on an unsubscribe link—perhaps in an e-mail.
The URL for this link would take the http://www.domain.com/signup/settings/
name/domain.com format.

You'll notice that we don't use the http://www.domain.com/signup/settings/
name@domain.com format.

In the second URL, you can see the @ character; in the irst, you can see that character
replaced with a forward slash. In effect, we have turned the irst part of the e-mail
address (everything before @) into the third uri parameter, and the fourth parameter
of the uri comes from the second part of the e-mail address (everything after @).

For security reasons, we are unable to use the @ character in the URL, so we cannot
have http://www.domain.com/signup/settings/name@domain.com as the URL.
This is default CodeIgniter behavior: certain characters are disallowed from URLs in
an effort to reduce the chances of malicious scripts or commands being run.

Chapter 5

[127]

File overview
This is a relatively small project, and all in all, we're only going to create six iles.
These are as follows:

• /path/to/codeigniter/application/models/signup_model.php: This
provides read/write access to the database.

• /path/to/codeigniter/application/views/signup/signup.php: This
displays a small form to the user, inviting them to enter their e-mail address
and to check two checkboxes: Option 1 and Option 2. You can amend these
options, adding more or removing them completely. The options are there to
help the person who is signing up deine what information they want from
the application.

• /path/to/codeigniter/application/views/signup/settings.php: This
displays a small form to the user, showing their current settings with the
application.

• /path/to/codeigniter/application/views/nav/top_nav.php: This
provides a navigation bar at the top of the page.

• /path/to/codeigniter/application/controllers/signup.php: This
contains all functions necessary to sign up new subscribers and amend their
account details. This controller also handles any unsubscribe requests.

• /path/to/codeigniter/application/language/english/en_admin_

lang.php: This provides language support for the application.

The ile structure of the preceding six iles is as follows:

application/

├── controllers/

│ ├── signup.php

├── models/

│ ├── signup_model.php

├── views/signup/

│ ├── signup.php

│ ├── settings.php

├── views/nav/

│ ├── top_nav.php

├── language/english/

│ ├── en_admin_lang.php

Creating a Newsletter Signup

[128]

Creating the database
Okay, you should have already set up CodeIgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources. If not, then you should know that
the code in this chapter is speciically built with the setup from Chapter 1, Introduction
and Shared Project Resources, in mind. However it's not the end of the world if you
haven't; the code can easily be applied to other situations.

First, we'll build the database. Copy the following MySQL code to your database:

CREATE DATABASE `signupdb`;

USE DATABASE `signupdb`;

CREATE TABLE `signups` (

 `signup_id` int(11) NOT NULL AUTO_INCREMENT,

 `signup_email` varchar(255) NOT NULL,

 `signup_opt1` int(1) NOT NULL,

 `signup_opt2` int(1) NOT NULL,

 `signup_active` int(1) NOT NULL,

 `signup_created_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 PRIMARY KEY (`signup_id`)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

Right, let's take a look at each item in the table and see what it means:

Table: signups

Element Description

signup_id This is the primary key.

signup_email This shows you the users' e-mail addresses.

signup_opt1 This stores the users option for option 1 in the views/
signup/signup.php file.

signup_opt2 This stores the users option for option 2 in the views/
signup/signup.php file.

signup_active This is a sort of soft delete. It's not currently supported in the
application in this chapter, but is there should you wish to use
it.

signup_created_at This is a MySQL timestamp for the date on which the row was
created in the table.

Chapter 5

[129]

We'll also need to make amends to the config/database.php ile, namely, setting
the database access details, username password, and so on:

1. Open the config/database.php ile and ind the following lines:
$db['default']['hostname'] = 'localhost';

$db['default']['username'] = 'your username';

$db['default']['password'] = 'your password';

$db['default']['database'] = 'signupdb';

2. Edit the values in the preceding lines, ensuring you substitute these values
with ones more speciic to your setup and situation—so enter your username,
password, and so on.

Adjusting the routes.php ile
We want to redirect the user to the signup controller rather than the default
CodeIgniter welcome controller. To do this, we will need to amend the default
controller setting in the routes.php ile.

Open the config/routes.php ile to edit and ind the following lines (near the
bottom of the ile):

$route['default_controller'] = "welcome";

$route['404_override'] = '';

First, we need to change the default controller. Initially, in a CodeIgniter application
the default controller is set to welcome. However, we don't need this, instead we
want the default controller to be signup. So, ind the following line:

$route['default_controller'] = "welcome";

Replace the preceding line with the following:

$route['default_controller'] = "signup";

$route['404_override'] = '';

Creating the model
There is only one model in this project—signup_model.php that contains functions
that are speciic to adding a subscriber to the database, amending their settings and
processing the removal of a subscriber should they unsubscribe.

This is our one and only model for this project. Let's briely go over each function
in it to give us a general idea of what it does, and then we will go into more details
of the code.

Creating a Newsletter Signup

[130]

There are four main functions in this model, which are as follows:

• add(): This accepts one argument: the $data array sent by the signup
controller's index() function when a user successfully submits the form in
views/signup/signup.php. The add() function takes the array and using
the $this->db->insert()CodeIgniter Active Record function, it inserts the
user's signup data in the signups table.

• edit(): This accepts one argument: the $data array sent by the signup
controller's settings() function. This function is called only if the user is
editing their settings rather than unsubscribing. The edit() function will
update a user's proile.

• delete(): This accepts one argument: the $data array sent by the signup
controller's settings() function. This function is called only if the user is
unsubscribing rather than editing their settings. The function will return
true if the delete was successful and false if not.

• get_settings(): This accepts one argument: the $data array sent by
the signup controller's settings() function. The settings form needs to
be populated with the correct data for the required e-mail address, and
get_settings() supplies this information.

That's a quick overview, so let's create the model and discuss how it functions.

Create the /path/to/codeigniter/application/models/signup_model.php ile
and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
 allowed');

class Signup_model extends CI_Model {

 function __construct() {

 parent::__construct();

 }

The following code snippet adds a subscriber to the database using the $this->db-
>insert() CodeIgniter Active Record function. This function is called by the signup
controller's index() function. It accepts an array called $data; this array is the
validated form input submitted by the user in the views/signup/signup.php form.
On successfully writing to the database, it will return true; it will return false if an
error occurs:

 public function add($data) {

 if ($this->db->insert('signups', $data)) {

 return true;

 } else {

Chapter 5

[131]

 return false;

 }

 }

The following code snippet performs an update procedure on the signups database
table using the $this->db->update() CodeIgniter Active Record function. It accepts
an array called $data. This array is the validated form input submitted by the user in
the views/signup/settings.php form. On a successful update, it will return true;
it will return false if an error occurs:

public function edit($data) {

 $this->db->where('signup_email', $data['signup_email']);

 if ($this->db->update('signups', $data)) {

 return true;

 } else {

 return false;

 }

}

The following code snippet performs a delete procedure on the signups database
table using the $this->db->delete() CodeIgniter Active Record function. It accepts
an array called $data. This array is the validated form input submitted by the user
in the views/signup/settings.php form and contains the subscribers' e-mail
addresses only. On a successful deletion, it will return true; it will return false
if an error occurs:

public function delete($data) {

 $this->db->where('signup_email', $data['signup_email']);

 if ($this->db->delete('signups')) {

 return true;

 } else {

 return false;

 }

}

The following code snippet performs a select procedure on the signups database
table using the $this->db->get() CodeIgniter Active Record function. It accepts a
variable called $email. This is the formatted e-mail address of the subscriber. This
function returns a subscriber's database record. It is required by the signup controller's
settings() function in order to pre-populate form items. On a successful selection, it
will return a database result object; it will return false if an error occurs:

 public function get_settings($email) {

 $this->db->where('signup_email', $email);

 $query = $this->db->get('signups');

Creating a Newsletter Signup

[132]

 if ($query) {

 return $query;

 } else {

 return false;

 }

 }

}

As you can see, the model is fairly straightforward and concise, so let's now take a
look at the views.

Creating the views
There are three views in this project, and these are as follows:

• /path/to/codeigniter/application/views/signup/signup.php:
This displays a form to the user, allowing them to sign up their e-mail
address to the project.

• /path/to/codeigniter/application/views/signup/settings.php:
This displays a form to the user, allowing them to amend their preferences
and also unsubscribe should they wish.

• /path/to/codeigniter/application/views/nav/top_nav.php: This
displays the top-level menu. In this project, this ile is very simple, and as
such it just contains a link to return to the index() function.

This is a good overview of the views. Now let's go over each one, build the code,
and discuss how they function:

1. Create the /path/to/codeigniter/application/views/signup/signup.
php ile and add the following code to it:
<div class="row row-offcanvas row-offcanvas-right">

 <div class="col-xs-12 col-sm-9">

 <div class="row">

 <?php echo validation_errors(); ?>

 <?php echo form_open('/signup') ; ?>

 <?php echo form_input($signup_email); ?>

 <?php echo form_checkbox($signup_opt1) . $this->lang-
>line('signup_opt1'); ?>

 <?php echo form_checkbox($signup_opt2) . $this->lang-
>line('signup_opt2'); ?>

 <?php echo form_submit('', $this->lang->line('common_form_
elements_go'), 'class="btn btn-success"') ; ?>

 <?php echo form_close() ; ?>

 </div>

Chapter 5

[133]

 </div>

</div>

The preceding HTML contains the form to enable a user to sign up to the
application. The form also displays any validation errors.

2. Create the /path/to/codeigniter/application/views/signup/
settings.php ile and add the following code to it:
<div class="row row-offcanvas row-offcanvas-right">

 <div class="col-xs-12 col-sm-9">

 <div class="row">

 <?php echo validation_errors(); ?>

 <?php echo form_open('/signup/settings') ; ?>

 <?php echo form_input($signup_email); ?>

 <?php echo form_checkbox($signup_opt1) . $this->lang-
 >line('signup_opt1'); ?>

 <?php echo form_checkbox($signup_opt2) . $this->lang-
 >line('signup_opt2'); ?>

 <?php echo form_checkbox($signup_unsub) . $this-
 >lang->line('signup_unsub'); ?>

 <?php echo form_submit('', $this->lang->
 line('common_form_elements_go'), 'class="btn btn-
 success"') ; ?>

 <?php echo form_close() ; ?>

 </div>

 </div>

</div>

The preceding HTML contains the form to enable the subscriber to edit their
settings or unsubscribe completely. The data for the form is fetched by the
get_settings() function of signup_model.

3. Create the /path/to/codeigniter/application/views/nav/top_nav.php
ile and add the following code to it:
<!-- Fixed navbar -->

<div class="navbar navbar-inverse navbar-fixed-top"
 role="navigation">

 <div class="container">

 <div class="navbar-header">

 <button type="button" class="navbar-toggle" data-
 toggle="collapse" data-target=".navbar-collapse">

 Toggle navigation

Creating a Newsletter Signup

[134]

 </button>

 <a class="navbar-brand" href="<?php echo base_url() ;
 ?>"><?php echo $this->lang->line('
 system_system_name'); ?>

 </div>

 <div class="navbar-collapse collapse">

 <ul class="nav navbar-nav">

 <li class="active"><?php echo anchor('signup',
 $this->lang->line('nav_home')) ; ?>

 </div><!--/.nav-collapse -->

 </div>

</div>

<div class="container theme-showcase" role="main">

Creating the controllers
We're going to create only one controller in this project, which is /path/to/
codeigniter/application/controllers/signup.php.

Let's go over this controller now, look at the code, and discuss how it functions.

Create the /path/to/codeigniter/application/controllers/signup.php ile
and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
allowed');

class Signup extends MY_Controller {

 function __construct() {

 parent::__construct();

 $this->load->helper('form');

 $this->load->helper('url');

 $this->load->model('Signup_model');

 $this->load->library('form_validation');

 $this->form_validation->set_error_delimiters('<div
 class="alert alert-danger">', '</div>');

 }

 public function index() {

Chapter 5

[135]

This function creates a subscriber in the database, so the irst thing we need to do is
set the form validation rules:

// Set validation rules

$this->form_validation->set_rules('signup_email', $this->lang-
 >line('signup_emailemail'), 'required|valid_email|
 min_length[1]|max_length[125]|is_unique[signups.signup_email]');

$this->form_validation->set_rules('signup_emailopt1', $this->lang-
 >line('signup_emailopt1'), 'min_length[1]|max_length[1]');

$this->form_validation->set_rules('signup_emailopt2', $this->lang-
 >line('signup_emailopt2'), 'min_length[1]|max_length[1]');

// Begin validation

if ($this->form_validation->run() == FALSE) {

If the form was submitted with errors, or if this is the irst load instance of the
function, then we will arrive at the following code. We deine the following settings
for the form elements in the views/signup/signup.php ile:

 $data['signup_email'] = array('name' => 'signup_email', 'class'
 => 'form-control', 'id' => 'signup_email', 'value' =>
 set_value('signup_email', ''), 'maxlength' => '100', 'size' =>
 '35', 'placeholder' => $this->lang->line('signup_email'));

 $data['signup_opt1'] = array('name' => 'signup_opt1', 'id' =>
 'signup_opt1', 'value' => '1', 'checked' => FALSE, 'style' =>
 'margin:10px');

 $data['signup_opt2'] = array('name' => 'signup_opt2', 'id' =>
 'signup_opt2', 'value' => '1', 'checked' => FALSE, 'style' =>
 'margin:10px');

 $this->load->view('common/header');

 $this->load->view('nav/top_nav', $data);

 $this->load->view('signup/signup', $data);

 $this->load->view('common/footer');

} else {

However, if there were no errors with the validation, we will arrive at the following
code. We package the data from the form elements into an array called $data and
send it to the add() function of signup_model. This will perform the task of writing
the subscriber to the database:

 $data = array('signup_email' => $this->input-
 >post('signup_email'),

 'signup_opt1' => $this->input-
 >post('signup_opt1'),

 'signup_opt2' => $this->input-
 >post('signup_opt2'),

Creating a Newsletter Signup

[136]

 'signup_active' => 1);

 if ($this->Signup_model->add($data)) {

 echo $this->lang->line('signup_success');

 } else {

 echo $this->lang->line('signup_error');

 }

 }

}

The following function is responsible for updating a subscriber's settings, or
handling an unsubscribe request. Before it can do either of these things, it needs the
users' e-mail address. The e-mail address is supplied when a subscriber clicks on a
link (such as an unsubscribe link in an e-mail):

public function settings() {
 // Set validation rules
 $this->form_validation->set_rules('signup_email', $this->lang-
 >line('signup_email'), 'required|valid_email|min
 _length[1]|max_length[125]');
 $this->form_validation->set_rules('signup_opt1', $this->lang-
 >line('signup_opt1'), 'min_length[1]|max_length[1]');
 $this->form_validation->set_rules('signup_opt2', $this->lang-
 >line('signup_opt2'), 'min_length[1]|max_length[1]');
 $this->form_validation->set_rules('signup_unsub', $this->lang-
 >line('signup_unsub'), 'min_length[1]|max_length[1]');

 // Begin validation
 if ($this->form_validation->run() == FALSE) {

If validation was unsuccessful, or the form is being accessed for the irst time, then
we arrive at the following code. The irst thing we try to do is get the details of
the subscriber so that we can display the correct settings in the form. We pass the
third and fourth parameters of the uri segment to the get_settings() function
of signup_model. We join them by writing the @ symbol between the two uri
segments, remembering that we cannot accept @ symbols in the URL for security
reasons. This can be done as follows:

$query = $this->Signup_model->get_settings($this->uri->segment(3) .
'@' . $this->uri->segment(4));
if ($query->num_rows() == 1) {
 foreach ($query->result() as $row) {
 $signup_opt1 = $row->signup_opt1;
 $signup_opt2 = $row->signup_opt2;
 }
} else {
 redirect('signup');
}

Chapter 5

[137]

The get_settings() function of signup_model will look in the signups table and
return a result object.

First, we test to see whether the number of records found is exactly 1. Anything else
and there's a problem: either more than one record exists in the database belonging
to the same e-mail address, or no e-mail address was found at all, in which case we
redirect the users to the index() function.

Anyway, if exactly one record was found, we then loop over the result object with a
foreach loop and put the values that we will use to populate the form options into
local variables: $signup_opt1 and $signup_opt2.

We then deine the settings for our form elements, passing $signup_email,
$signup_opt1 and $signup_opt2 as well as settings for the unsubscribe checkbox
to them:

$data['signup_email'] = array('name' => 'signup_email', 'class' =>
 'form-control', 'id' => 'signup_email', 'value' =>
 set_value('signup_email', $this->uri->segment(3) . '@' . $this-
 >uri->segment(4)), 'maxlength' => '100', 'size' => '35',
 'placeholder' => $this->lang->line('signup_email'));
$data['signup_opt1'] = array('name' => 'signup_opt1', 'id' =>
 'signup_opt1', 'value' => '1', 'checked' => ($signup_opt1 == 1)
 ? TRUE : FALSE, 'style' => 'margin:10px');
$data['signup_opt2'] = array('name' => 'signup_opt2', 'id' =>
 'signup_opt2', 'value' => '1', 'checked' => ($signup_opt2 == 1)
 ? TRUE : FALSE, 'style' => 'margin:10px');
$data['signup_unsub'] = array('name' => 'signup_unsub', 'id' =>
 'signup_unsub', 'value' => '1', 'checked' => FALSE, 'style' =>
 'margin:10px');

These form element settings are then sent to the views/signup/settings.php ile:

 $this->load->view('common/header');

 $this->load->view('nav/top_nav', $data);

 $this->load->view('signup/settings', $data);

 $this->load->view('common/footer');

} else {

If the form is submitted without errors, then we arrive at the following code. The irst
thing we do is work out whether the user has indicated that they wish to unsubscribe.
This is done by looking for the value of the signup_unsub form checkbox. If this has
been checked by the user, then there is no need to update their settings. Instead, we
delete the user by calling the delete() function of signup_model:

if ($this->input->post('signup_unsub') == 1) {

 $data = array('signup_email' => $this->input->
 post('signup_email'));

Creating a Newsletter Signup

[138]

 if ($this->Signup_model->delete($data)) {

 echo $this->lang->line('unsub_success');

 } else {

 echo $this->lang->line('unsub_error');

 }

} else {

However, if they haven't indicated that they want to unsubscribe by checking the
form checkbox named signup_unsub, then we would want to update their details.
We package up the values of the form inputs into an array called $data and make it
ready to write to the database using the edit() function of signup_model:

 $data = array('signup_email' => $this->input->
 post('signup_email'),

 'signup_opt1' => $this->input-
 >post('signup_opt1'),

 'signup_opt2' => $this->input-
 >post('signup_opt2'));

 if ($this->Signup_model->edit($data)) {

 echo $this->lang->line('setting_success');

 } else {

 echo $this->lang->line('setting_error');

 }

 }

 }

 }

}

So, that was the signup controller. As you saw, it's a small, concise script that I'm
sure you will be able to amend and extend as you wish.

Creating the language ile
As with all the projects in this book, we're making use of the language ile to serve
text to users. This way, you can enable multiple region/multiple language support.
Let's create the language ile.

Create the /path/to/codeigniter/application/language/english/en_admin_
lang.php ile and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

s// General

$lang['system_system_name'] = "Signup";

Chapter 5

[139]

// nav

$lang['nav_home'] = "Home";

// index()

$lang['singup_instruction'] = "";

$lang['signup_email'] = "Your Email";

$lang['signup_opt1'] = "Option 1";

$lang['signup_opt2'] = "Option 2";

$lang['signup_unsub'] = "Unsubscribe";

$lang['signup_success'] = "You have signed up";

$lang['signup_error'] = "There was an error in signing up";

$lang['setting_success'] = "Your settings have been amended";

$lang['setting_error'] = "There was an error in amending your
 settings";

$lang['unsub_success'] = "You have been unsubscribed";

$lang['unsub_error'] = "There was an error in unsubscribing you";

Putting it all together
Okay, here are a few examples that will help put everything together.

User subscribes
The sequence of events taking place when a user subscribes are as follows:

1. The user visits the application and CodeIgniter routes them to the
signup controller.

2. The index() function in the signup controller displays the views/signup/
signup.php view ile.

3. The user views the form in the browser, enters their e-mail address, and
submits the form with no validation errors.

4. The index() function packages the users' input into an array called $data
and passes it to the add() function of Signup_model.

5. The add() function performs an Active Record insert to write the users'
subscription to the signups database table.

Creating a Newsletter Signup

[140]

User updates their settings
The following events take place when a user wants to update settings:

1. The user clicks on a link in an e-mail they have been sent.

2. The URL routes them to the signup controller's settings() function.

3. The settings() function takes the third and fourth parameters of the URL,
joins the third and fourth segments with an @ character, and passes this
"rebuilt" e-mail address to the signup controller's get_settings() function.

4. The get_settings() function looks in the database for a matching record,
and if exactly one record is found, it returns it as a database result object to
the settings() function.

5. Now that the settings() function has a matching record, it takes various
items from the result object and assigns them to local variables.

6. These are then used to prepopulate the form items in the views/signup/
settings.php ile.

7. The user sees the form displayed with whichever settings the records are
illed in.

8. The user wishes to check Option 1 but leave Option 2 unchecked. The user
clicks on the checkbox of Option 1.

9. The user submits the form, the form is submitted to the signup controller's
settings() function, and is validated successfully with no errors.

10. As there are no errors, the second part of the validation test (the rest) is run.

11. The value of the form element signup_unsub is checked. As the user is not
unsubscribing, this will not equal 1.

12. As signup_unsub does not equal 1, the edit() function of signup_model is
passed an array called $data. This $data array contains the contents of the
posted form data.

13. The edit() function then performs a CodeIgniter Active Record update
operation on the $data array.

User unsubscribes
When a user wants to unsubscribe, the following events take place:

1. The user clicks on a link in an e-mail they have been sent.

2. The URL routes them to the signup controller's settings() function.

Chapter 5

[141]

3. The settings() function takes the third and fourth parameters of the URL,
joins the third and fourth segments with an @ character, and passes this
"rebuilt" e-mail address to the signup controller's get_settings() function.

4. The get_settings() function looks in the database for a matching record,
and if exactly one record is found, it returns it as a database result object to
the settings() function.

5. Now that the settings() function has a matching record, it takes various
items from the result object and assigns them to local variables.

6. These are then used to pre-populate the form items in the views/signup/
settings.php ile.

7. The user sees the form displayed with whichever settings the records are
illed in.

8. The user wishes to unsubscribe from the service.

9. The user checks Unsubscribe and submits the form. The form is submitted
to the signup controller's settings() function and is validated successfully
with no errors.

10. As there are no errors, the second part of the validation test (the rest) is run.

11. The value of the form element signup_unsub is checked. This equals 1 as the
user is unsubscribing.

12. As signup_unsub equals 1, the delete() function of signup_model is
passed an array called $data. This $data array contains the subscribers'
e-mail address.

13. The delete() function then performs a CodeIgniter Active Record delete
operation on the $data array.

Summary
In this project, you'll have the foundations of a useful signup application. As always,
there are a few things you can do to expand upon the functionality, which do are
as follows:

• Add more options that a user might apply to their subscription

• Add HTML/plaintext settings (and only send them what they've asked for)

• Add a signup sunset clause: allow someone to sign up for a certain time and
once that time is arrived at, stop sending them newsletters.

Creating an Authentication

System
CodeIgniter doesn't come with a user authentication system out of the box
(urgh, that phrase), but nevertheless it doesn't. If you want to manage users and
sessions, there are several options open to you. You can install an auth Spark,
or you can develop your own solution—which is what we will do here.

One of the irritations I have with other "third-party" plugins (whatever their
purpose) is that the code is almost always dificult, making maintenance and
integration dificult. This authentication system is as simple as I can make it,
and hopefully, it will be easy for you to adapt and extend it for your purposes.

The authentication system provided in this chapter will allow you to create and
manage users, password resets, user e-mail notiications, user logins, and so on.

In this chapter, we will cover the following topics:

• Design and wireframes

• Creating the database

• Creating the models

• Creating the views

• Creating the controllers

• Putting it all together

Creating an Authentication System

[144]

Introduction
To create this app, we will create ive controllers: one to handle signing in to
sessions, one to handle admin functions (CRUD operations), one for user password
management, one to allow a user to register, and one to offer functionality to a user
once they are logged in.

We'll also create a language ile to store text, allowing you to have multiple language
support should that be required.

We will make amends to the config.php ile to allow for encryption support
necessary for sessions and password support.

We'll create all the necessary view iles and even a CSS ile to help Bootstrap with
some of the views.

However, this app along with all the others in this book, relies on the basic setup we
did in Chapter 1, Introduction and Shared Project Resources; although you can take large
sections of the code and drop it into pretty much any app you might already have,
please keep in mind that the setup done in the irst chapter acts as a foundation for
this chapter.

So without further ado, let's get on with it.

Design and wireframes
As always, before we start building, we should as always take a look at what we plan
to build.

Firstly, a brief description of our intent: we plan to build an app that will provide the
following functions:

• An admin can manage all users within the system and also allow individual
users to edit and update their own data.

• Users can reset passwords if they have forgotten them; e-mails conirming
this will be sent to these users

• New users are able to register and become part of the system; a password
will be generated and sent to them in an e-mail

We will also look at how to implement code to check for a users' access level.
You can use this code in your projects to limit users from speciic controllers
and controller functions.

Chapter 6

[145]

To get a better idea of what's happening, let's take a look at the following site map:

Signin

1

ForgotPassword

9

Register

10

users

4

me

2

Edit My Details

3

View All

5

Create

6

Edit

7

Delete

8

So, that's the site map; now, let's go over each item and get a brief idea of what
it does:

• Signin: Imagine this as the start point. The user will be able to sign in at this
point. Depending on the value in users.usr_access_level, they will either
be directed to me or users controllers. The me controller is a place for normal
users to edit and update their details, while the users controller offers a
place for an admin to manage all users.

• Me: This currently displays a form to the user; however, consider this area
a dashboard area for users who are not admins. Admins have their users.
usr_access_level value set to 1. Currently, the me controller will load the
index function, which will allow the user to edit their details—speaking of
which, let's see the next block.

• Edit My Details: This will display a form to the current user. The form will
allow the user to change and save their contact data.

• Users: The users controller handles admin functions such as all CRUD
operations for users, password resets, and password scramble (for all users).

• View All: This lists all users and their current status in the database. The
users are displayed in a table. Those users who are active (users.usr_is_
active = 1) have no background color to their row, while users who are
inactive (users.usr_is_active = 0) have an orange background color.

Creating an Authentication System

[146]

• Create: As the name suggests, this will display the users/new_user view
that contains a form, allowing an admin to create a user within the system.

• Edit: This displays a form similar to the previous one, except that it is
prepopulated with details of the current logged in user. This is loaded
when the admin presses the Edit link in the View All page.

• Delete: This displays a conirmation page, asking the admin to conirm
whether they wish to delete the user. This is loaded when the admin presses
the Edit link in the View All page.

• Forgot Password: This displays a form to the user. The user is invited to
enter their e-mail address in a form text ield and press Submit. If the e-mail
address exists in the database, then an e-mail is sent to the e-mail address
with a URL in the body. This URL is the reset URL for this auth system.
Appended to the URL is a unique code that is used by the system to verify
that a password reset request is genuine.

• Register: This displays a form to the user, inviting them to enter their irst
name, last name, and e-mail address. Once successfully submitted (there
were no validation errors), the new user is added to the system and an e-mail
is sent to the new user informing them of their password; their password was
generated automatically by the system on their registration.

Now that we have a fairly good idea of the structure and form of the site, let's take a
look at some wireframes of each page.

Me – editing details
The following screenshot shows you a wireframe from the Edit My Details item
discussed in the site map. The normal user (not an admin user) can view their
details in an HTML form and by pressing Save, they can then update these details.

Chapter 6

[147]

Web Application Blueprints

Users New Logout

My Details

Frist Name

Last Name

Email

Address 1

Address 2

Postcode

Save or Cancel

Change Password

Prefilled

Prefilled

Prefilled

Prefilled

Prefilled

Prefilled

Viewing all users
The following screenshot shows you a wireframe from the View All item in the site
map. The admin user is able to see all users within the system in a table grid. Users
are listed and have Edit and Delete options, which the admin user can use.

Web Application Blueprints

Users New Logout

First Name

First Name 1

First Name 2

First Name 3

First Name 4

First Name 5

Last Name

Last Name 1

Last Name 2

Last Name 3

Last Name 4

Last Name 5

Email

first.last@one Edit Delete

Edit Delete

Edit Delete

Edit Delete

Edit Delete

first.last@two

first.last@three

first.last@four

first.last@five

Action

Creating an Authentication System

[148]

Creating users
The following screenshot shows you a wireframe from point 6 (the Create User item)
in the site map. It displays a form that contains text ields, allowing an admin to
enter a user's details. Notice that user access levels can be set here; level 1 is treated
in the system as an admin, so the user will be able to have admin rights assigned to
them, whereas higher numbers are normal users. Currently, only level 2 (as a normal
user) is understood by the system; the dropdown has as many as ive levels—you
can apply these in your adaptation of this project as you see it or even add more
should you wish. Setting the user as active (users.usr_is_active = 1) or inactive
(users.usr_is_active = 0) will restrict the user at login. An active user will have
their login request processed by the signin script, whereas an inactive user won't.

Web Application Blueprints

Users New Logout

New User

Frist Name

Last Name

Email

Address 1

Address 2

Postcode

Access Level

Active In active

1

Save or Cancel

Editing the user details
The form to edit user details is similar to the New User functionality discussed in the
previous section. It is accessed through point 5 (the View Users functionality) of the
site map when an admin user clicks on the Edit link (in the /views/users/view_
all_users.php view ile) next to a person's name. The interesting difference here is
the Other Options panel with the Reset Password Email option. This will reset the
user's password and send them an e-mail informing them of their new password.

Chapter 6

[149]

Web Application Blueprints

Users New Logout

Edit User

Frist Name

Last Name

Email

Address 1

Address 2

Postcode

Access Level

Active In active

1

Save or Cancel

Deleting a user
This is a inal conirmation page that asks for permission to delete a user. It is
accessed through point 5 (the View Users functionality) in the site map. An admin
clicks on the Edit link to view the Edit User page. Clicking on Delete will remove
the user from the users table, whereas Cancel will return the admin to point 5
(the View Users item).

Web Application Blueprints

Users New Logout

Confirm delete?

Are you sure you want to delete Firstname Lastname?

Delete or Cancel

Creating an Authentication System

[150]

Sign in
The following screenshot shows you the plan for the signing-in page. The user can
enter their username and password and press the Login button. Validation errors are
displayed above the form (however, validation errors are not shown in the following
screenshot). There is also a link for someone to initiate a process to reset password.
The Forgot Password link will display a new form, allowing that person to enter an
e-mail address.

Web Application Blueprints

Username

Password

Login

Forgot Password

Register
The register functionality allows a nonuser to register with the system. The potential
user is prompted to enter their irst name, last name, and e-mail address. We use
their irst and last name in a welcome e-mail that will be sent to the e-mail address
entered at this stage.

Chapter 6

[151]

Web Application Blueprints

First Name

Last Name

Email

Register

Register...

File overview
We're going to create quite a few iles for this project, 23 iles in all, and they are
as follows:

• /path/to/codeigniter/application/core/MY_Controller.php:
This acts as a parent class to child classes such as the users.php controller.
It provides common resources such as commonly used helpers, libraries,
and error delimiters.

• /path/to/codeigniter/application/models/password_model.php: This
provides read/write access to the database—particularly around the users
table—focusing on password speciic operations.

• /path/to/codeigniter/application/models/signin_model.php: This
provides methods that are speciic to the sign-in process.

• /path/to/codeigniter/application/models/users_model.php: This
provides methods that are speciic to the users table.

• /path/to/codeigniter/application/model/register_model.php: This
provides methods that assist in a user being added to the users table without
an admin creating them irst.

• /path/to/codeigniter/application/views/nav/top_nav.php:
This provides a navigation bar at the top of the page.

Creating an Authentication System

[152]

• /path/to/codeigniter/application/language/english/en_admin_

lang.php: This provides language support for the application.

• /path/to/codeigniter/application/views/users/new_user.php: This
allows an admin to create a new user. The user is saved to the users table.

• /path/to/codeigniter/application/views/users/view_all_users.

php: This allows an admin to view a list of all users in the users table.

• /path/to/codeigniter/application/views/users/delete_user.php:
This allows an admin to delete a user.

• /path/to/codeigniter/application/views/users/edit_user.php: This
allows an admin to edit the details of a user.

• /path/to/codeigniter/application/views/users/forgot_password.

php: This allows someone who is not logged in to reset their password. This
view contains a simple form that asks a user to enter their e-mail address. An
e-mail is sent to this address with a unique code. This code is used to ensure
that the change password request is genuine.

• /path/to/codeigniter/application/views/users/me.php: This allows a
user who is not an admin to edit their details.

• /path/to/codeigniter/application/views/users/new_password.php:
This allows a user who is not logged in to enter a new password.

• /path/to/codeigniter/application/views/users/register.php: This
allows someone who is not already a user (a record in the users table) to
sign in and generate a new row in the users table.

• /path/to/codeigniter/application/views/users/signin.php: This
shows a simple login form.

• /path/to/codeigniter/application/views/users/change_password.

php: This allows someone who is signed in to reset their password.

• /path/to/codeigniter/application/views/email_scripts/welcome.

txt: This contains simple welcome text.

• /path/to/codeigniter/application/views/email_scripts/new_

password.txt: This contains a simple instruction to click on a link to open
the password/new_password controller function

• /path/to/codeigniter/application/views/email_scripts/reset_

password.txt: This contains a simple message that informs a user that their
password has been changed.

Chapter 6

[153]

The ile structure of the preceding 23 iles is shown here:

application/

├── core/

│ ├── MY_Controller.php

├── controllers/

│ ├── me.php

│ ├── password.php

│ ├── register.php

│ ├── signin.php

│ ├── users.php

├── models/

│ ├── password_model.php

│ ├── register_model.php

│ ├── signin_model.php

│ ├── users_model.php

├── views/users/

│ ├── new_user.php

│ ├── view_all_users.php

│ ├── delete_user.php

│ ├── edit_user.php

│ ├── forgot_password.php

│ ├── me.php

│ ├── new_password.php

│ ├── register.php

│ ├── signin.php

│ ├── change_password.php

├── views/email_scripts/

│ ├── welcome.txt

│ ├── new_password.txt

│ ├── reset_password.txt

├── views/nav/

│ ├── top_nav.php

├── views/common/

│ ├── login_header.php

├── language/english/

│ ├── en_admin_lang.php

bootstrap/

├── css/

 ├── signin.css

Creating an Authentication System

[154]

Note the last item in the list, which is signin.css. This sits in the bootstrap/css/
folder, which is at the same level as CodeIgniter's application folder. We installed
Twitter Bootstrap in Chapter 1, Introduction and Shared Project Resources. In this
chapter, we will go through how to place the bootstrap folder at the proper folder
level and location.

Creating the database
Okay, you should have already set up CodeIgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources. If not, then you should know that
the code in this chapter is speciically built with the setup from Chapter 1, Introduction
and Shared Project Resources, in mind. However, it's not the end of the world if you
haven't—the code can easily be applied to other situations.

Firstly, we'll build the database. Copy the following MySQL code into your database:

CREATE DATABASE `user_auth`;

USE `user_auth`;

CREATE TABLE `ci_sessions` (

 `session_id` varchar(40) COLLATE utf8_bin NOT NULL DEFAULT '0',

 `ip_address` varchar(16) COLLATE utf8_bin NOT NULL DEFAULT '0',

 `user_agent` varchar(120) COLLATE utf8_bin DEFAULT NULL,

 `last_activity` int(10) unsigned NOT NULL DEFAULT '0',

 `user_data` text COLLATE utf8_bin NOT NULL,

 PRIMARY KEY (`session_id`),

 KEY `last_activity_idx` (`last_activity`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin;

CREATE TABLE `users` (

 `usr_id` int(11) NOT NULL AUTO_INCREMENT,

 `acc_id` int(11) NOT NULL COMMENT 'account id',

 `usr_fname` varchar(125) NOT NULL,

 `usr_lname` varchar(125) NOT NULL,

 `usr_uname` varchar(50) NOT NULL,

 `usr_email` varchar(255) NOT NULL,

 `usr_hash` varchar(255) NOT NULL,

 `usr_add1` varchar(255) NOT NULL,

 `usr_add2` varchar(255) NOT NULL,

 `usr_add3` varchar(255) NOT NULL,

 `usr_town_city` varchar(255) NOT NULL,

 `usr_zip_pcode` varchar(10) NOT NULL,

 `usr_access_level` int(2) NOT NULL COMMENT 'up to 99',

Chapter 6

[155]

 `usr_is_active` int(1) NOT NULL COMMENT '1 (active) or 0
 (inactive)',

 `usr_created_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 `usr_pwd_change_code` varchar(50) NOT NULL,

 PRIMARY KEY (`usr_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

You'll see that the irst table we create is ci_sessions. We need this to allow
CodeIgniter to manage sessions, speciically logged in users. However, it is just the
standard session table available from CodeIgniter User Guide, so I'll not include a
description of that table as it's not technically speciic to this application. However,
if you're interested, there's a description at http://ellislab.com/codeigniter/
user-guide/libraries/sessions.html.

Right, let's take a look at each item in each table and see what it means:

Table: users

Element Description

usr_id This is the primary key.

acc_id Should you wish to associate users with specific accounts (or group users
together under a sort of umbrella), acc_id (for account ID) can be a
hook that enables you to do that. You'll need to create an accounts table
to do this, however.

usr_fname This is the user's first name.

usr_lname This is the user's last name.

usr_uname This is the an option for a username.

usr_email This is the user's e-mail address.

usr_hash This is a hash of the user's password. The value in users.usr_hash
is generated in two ways. The first is when someone manually changes
their password (perhaps by the "forgot password" process). The $this-
>encrypt->sha1($this->input->post('usr_password1'));
CodeIgniter function contains the new password from the user.

The second way a password is created is when a password is generated
by the system and is e-mailed to the user, for example, when an admin
creates a new user manually. This way, the admin doesn't know what the
password of the new user is.

To achieve this, CodeIgniter uses the same sha1() encryption function;
however, instead of a password being supplied from a user through
$POST, it is made by creating a random string and passing it to sha1(),
as shown here:

$password = random_string('alnum', 8);

$hash = $this->encrypt->sha1($password);

Creating an Authentication System

[156]

Table: users

Element Description

usr_add1 This is the first line of a person's address.

usr_add2 This is the second line of a person's address.

usr_add3 This is the third line of a person's address.

usr_town_
city

This is the town or city of their address.

usr_zip_
pcode

This is the postal code or zip code of the person's address.

usr_
access_
level

This is the indicates the permission level of the user. The permission level
can govern what actions a user is allowed to perform.

usr_is_
active

This is the indicates whether the user is active (1) or inactive (0)—
inactive means that a user cannot log in.

usr_
created_at

This is the MySQL timestamp that is created when the record is created.

usr_pwd_
change_
code

This is a unique code that's generated when a person wishes to change
their password. This unique code is generated and sent in an e-mail to
the user who wishes to change their password. The code is appended
to a URL in the body of the e-mail. The user clicks on this link and is
redirected to the auth system. The system looks at that code to check
whether it is valid and matches the e-mail. If it matches, the user can
follow onscreen instructions to create a new password for them.

We'll also need to make amends to the config/database.php ile, namely setting
the database access details, username password, and so on.

Open the config/database.php ile and ind the following lines:

$db['default']['hostname'] = 'localhost';

$db['default']['username'] = 'your username';

$db['default']['password'] = 'your password';

$db['default']['database'] = 'user_auth';

Edit the values in the preceding lines, ensuring you substitute these values with
ones that are more speciic to your setup and situation; so, enter your username,
password, and so on.

Chapter 6

[157]

Adjusting the conig.php ile
There are a few settings in this ile that we'll need to conigure to support sessions and
encryption. So, open the config/config.php ile and make the following changes:

1. We will need to set an encryption key; both sessions and CodeIgniter's
encryption functionalities require an encryption key to be set in the $config
array, so ind the following line:

$config['encryption_key'] = '';

Then, change it to the following:

$config['encryption_key'] = 'a-random-string-of-alphanum-
 characters';

Now, obviously don't actually change this value to literally
a-random-string-of-alphanum-characters but change it to,
er, a random string of alphanum characters instead—if that
makes sense? Yeah, you know what I mean.

2. Next, ind the following lines:
$config['sess_cookie_name'] = 'ci_session';

$config['sess_expiration'] = 7200;

$config['sess_expire_on_close'] = FALSE;

$config['sess_encrypt_cookie'] = FALSE;

$config['sess_use_database'] = FALSE;

$config['sess_table_name'] = 'ci_sessions';

$config['sess_match_ip'] = FALSE;

$config['sess_match_useragent'] = TRUE;

$config['sess_time_to_update'] = 300;

Then, change it to the following:

$config['sess_cookie_name'] = 'ci_session';

$config['sess_expiration'] = 7200;

$config['sess_expire_on_close'] = TRUE;

$config['sess_encrypt_cookie'] = TRUE;

$config['sess_use_database'] = TRUE;

$config['sess_table_name'] = 'ci_sessions';

$config['sess_match_ip'] = TRUE;

$config['sess_match_useragent'] = TRUE;

$config['sess_time_to_update'] = 300;

Creating an Authentication System

[158]

Adjusting the routes.php ile
We want to redirect the user to the signin controller rather than default CodeIgniter
welcome controller. We will need to amend the default controller settings in the
routes.php ile to relect this:

1. Open the config/routes.php ile for editing and ind the following lines
(near the bottom of the ile):
$route['default_controller'] = "welcome";

$route['404_override'] = '';

2. Firstly, we need to change the default controller. Initially in a CodeIgniter
application, the default controller is set to welcome; however, we don't
need this; instead, we want the default controller to be signin. So, ind the
following line:

$route['default_controller'] = "welcome";

Replace it with the following:

$route['default_controller'] = "signin";

Creating the models
There are four models in this project, which are as follows:

• models/password_model.php: This contains functions that are speciic to
creating and resetting passwords.

• models/register_model.php: This contains functions that are speciic to
registering a user.

• models/signin_model.php: This contains functions that are speciic to
signing a user into the system.

• models/users_model.php: This contains the main bulk of the model
functions for this project, speciically CRUD operations to be performed on
users and various other admin functions.

So that's an overview of the models for this project; now, let's go and create
each model.

Create the /path/to/codeigniter/application/models/password_model.php
ile and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
 allowed');

Chapter 6

[159]

class Password_model extends CI_Model {

 function __construct() {

 parent::__construct();

 }

The does_code_match() function will check whether the code supplied in the URL
matches that in the database. If it does, it returns true or false if it doesn't. This is
shown here:

 function does_code_match($code, $email) {
 $query = "SELECT COUNT(*) AS `count`
 FROM `users`
 WHERE `usr_pwd_change_code` = ?
 AND `usr_email` = ? ";

 $res = $this->db->query($query, array($code, $email));
 foreach ($res->result() as $row) {
 $count = $row->count;
 }

 if ($count == 1) {
 return true;
 } else {
 return false;
 }
 }
}

Create the /path/to/codeigniter/application/models/register_model.php
model ile and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
 allowed');

class Register_model extends CI_Model {

 function __construct() {

 parent::__construct();

 }

 public function register_user($data) {

 if ($this->db->insert('users', $data)) {

 return true;

 } else {

 return false;

 }

 }

}

Creating an Authentication System

[160]

The register model contains just one function, which is register_user().
It simply uses the CodeIgniter Active Record insert() class to insert the contents
of the $data array into the users table.

Create the /path/to/codeigniter/application/models/users_model.php model
ile and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
 allowed');

class Users_model extends CI_Model {

 function __construct() {

 parent::__construct();

 }

 function get_all_users() {

 return $this->db->get('users');

 }

 function process_create_user($data) {

 if ($this->db->insert('users', $data)) {

 return $this->db->insert_id();

 } else {

 return false;

 }

 }

 function process_update_user($id, $data) {

 $this->db->where('usr_id', $id);

 if ($this->db->update('users', $data)) {

 return true;

 } else {

 return false;

 }

 }

 function get_user_details($id) {

 $this->db->where('usr_id', $id);

 $result = $this->db->get('users');

 if ($result) {

 return $result;

 } else {

 return false;

 }

Chapter 6

[161]

 }

 function get_user_details_by_email($email) {

 $this->db->where('usr_email', $email);

 $result = $this->db->get('users');

 if ($result) {

 return $result;

 } else {

 return false;

 }

 }

 function delete_user($id) {

 if($this->db->delete('users', array('usr_id' => $id))) {

 return true;

 } else {

 return false;

 }

 }

Let's look at the make_code() function. This function creates a unique code and
saves it to the user's record. This code is sent out at the end of a URL in an e-mail
to the user. If this code in the URL matches the code in the database, then chances
are that it's a genuine password change as it is unlikely that someone would have
accurately guessed the code.

Notice the PHP construct do…while—it looks something like this:

do {

// something

} while ('…a condition is met');

So, this means do something while a condition is met. With that in mind, think about our
problem; we have to assign users.usr_pwd_change_code with a value that doesn't
exist in the database already. The code should be a unique value to ensure that
someone else doesn't have his or her password changed by mistake.

We use the do…while construct as a means to create code that is unique in the
database by irst creating the code and then looking through the users table for
another occurrence of that code. If it is found, then the number of rows returned will
be greater or equal to one. Then, another code is generated and another search for the
users table happens.

Creating an Authentication System

[162]

This will repeat until a code that cannot be found in the users table is generated.
This unique code is then returned as $url_code:

function make_code() {

 do {

 $url_code = random_string('alnum', 8);

 $this->db->where('usr_pwd_change_code = ', $url_code);

 $this->db->from('users');

 $num = $this->db->count_all_results();

 } while ($num >= 1);

 return $url_code;

}

function count_results($email) {

 $this->db->where('usr_email', $email);

 $this->db->from('users');

 return $this->db->count_all_results();

}

The following update_user_password() function accepts an array of data
containing the user's primary key and a new password. The array is provided the
new_password() function of password_model. The user's ID (users.usr_id) is
from the session (as they're logged in) and the new password is from the form that
new_password() loads (views/users/new_password.php):

 function update_user_password($data) {

 $this->db->where('usr_id', $data['usr_id']);

 if ($this->db->update('users', $data)) {

 return true;

 } else {

 return false;

 }

 }

 function does_code_match($data, $email) {

 $query = "SELECT COUNT(*) AS `count`

 FROM `users`

 WHERE `usr_pwd_change_code` = ?

 AND `usr_email` = ? ";

 $res = $this->db->query($query, array($data['code'], $email));

 foreach ($res->result() as $row) {

 $count = $row->count;

Chapter 6

[163]

 }

 if ($count == 1) {

 return true;

 } else {

 return false;

 }

 }

 function update_user_code($data) {

 $this->db->where('usr_email', $data['usr_email']);

 if ($this->db->update('users', $data)) {

 return true;

 } else {

 return false;

 }

 }

}

Create the /path/to/codeigniter/application/models/signin_model.php
model ile and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
 allowed');

class Signin_model extends CI_Model {

 function __construct() {

 parent::__construct();

 }

 public function does_user_exist($email) {

 $this->db->where('usr_email', $email);

 $query = $this->db->get('users');

 return $query;

 }

}

This model contains only one function other than __construct(), that is,
does_user_exist($email). This function takes an e-mail address submitted
by the user from the sign-in view and returns the active record query.

Creating an Authentication System

[164]

The query is evaluated in the signin controller with the CodeIgniter database
function num_rows():

$query = $this->Signin_model->does_user_exist($usr_email);

if ($query->num_rows() == 1) {

...

If there is a single match, then the signin controller loops over the Active Record
result and attempts to log the user in.

Creating the views
There are quite a few view iles and e-mail template iles in this project—in fact,
we're going to create 10 view iles, three e-mail scripts, and one header ile each
speciic to logging in and amending a navigation ile. Right, let's get to it.

The following are the standard view iles used in this project:

• path/to/codeigniter/application/views/users/new_user.php: This
displays a form to the admin user, allowing them to create a user. The new
user is sent an e-mail that welcomes them to the system and informs them of
their password. The e-mail script is /views/email_scripts/welcome.txt.

• path/to/codeigniter/application/views/users/view_all_users.php:
This displays a list of users currently in the system. Admin users are able to
edit or delete a user.

• path/to/codeigniter/application/views/users/delete_user.php:
This displays a conirmation page to the admin user. This is displayed
if the admin user presses Delete in the view_all_users/php view. The
conirmation page asks whether the admin user really wishes to delete the
selected user.

• path/to/codeigniter/application/views/users/edit_user.php: This
displays a form to the admin user. This is displayed if the admin user presses
Edit in the view_all_users.php view. The form is similar to the new_user.
php ile, except that there is a panel where the admin user can send an e-mail
to the user to reset their password.

• path/to/codeigniter/application/views/users/forgot_password.

php: This displays a form to anyone asking for an e-mail address. If
this e-mail address is in the system, an e-mail will be sent to them with
instructions on how to reset their password.

• path/to/codeigniter/application/views/users/me.php: This displays
a form to the current logged in user. The form is similar to edit_user.php.
It allows the current logged in user to edit and amend their account details.

Chapter 6

[165]

• path/to/codeigniter/application/views/users/new_password.php:
This displays a form to anyone, inviting then to enter their e-mail address—
the code generated earlier from the forgotten password process is already a
hidden form element. The code and e-mail address are compared, and if the
code matches, a new password is generated for the user.

• path/to/codeigniter/application/views/users/register.php: This
displays a form to the user, allowing them to enter their irst and last names
and e-mail addresses. They are then added to the database and a password
is generated for them. This password is sent to them in an e-mail along with
a welcome message. The text for this e-mail is in /views/email_scripts/
welcome.txt.

• path/to/codeigniter/application/views/users/signin.php: This
displays a form. The form allows a user (normal or admin) to sign in to the
system with their username and password; remember that their password
isn't stored in the users table, only a hash of that password is stored. To
support this hashing, we'll need to alter the encryption key in the conig ile.
We discussed this in the Adjusting the conig.php ile section of this chapter.

• path/to/codeigniter/application/views/users/change_password.

php: This displays a form to anyone who is logged in. The form allows a user
(normal or admin) to change their password.

The following are the e-mail scripts used in this application:

• path/to/codeigniter/application/views/email_scripts/welcome.txt:
This contains the text for the welcome e-mail that is sent to a new user when
they are either added by an admin from the new_user.php form or when they
create an account themselves with the form in the register.php view.

• path/to/codeigniter/application/views/email_scripts/new_

password.txt: This ile contains the text informing the user of a
password change.

• path/to/codeigniter/application/views/email_scripts/reset_

password.txt: This contains a URL that a user can click on to begin the reset
password process. The URL contains a unique code that the system uses to
ensure that it is a genuine password change request.

The following are the login header and navigation views:

• path/to/codeigniter/application/views/common/login_header.php:
The css requirements of the login form are different from that of the standard
/views/common/header.php view. Speciically, it needs the signin.css ile.

• path/to/codeigniter/application/views/nav/top_nav.php: This
contains navigation options that allow admins and normal users to open
various pages, and it also contains a logout link that allows a user to
terminate their session.

Creating an Authentication System

[166]

Right, these were the view iles, both standard HTML and TXT iles for e-mails,
and so on. Let's go over each ile in turn and create them.

Create the /path/to/codeigniter/application/views/users/register.php ile
and add the following code to it:

<div class="container">

 <?php echo validation_errors(); ?>

 <?php echo form_open('register/index', 'role="form" class="form-
 signin"') ; ?>

 <h2 class="form-signin-heading"><?php echo $this->lang->
 line('register_page_title'); ?></h2>

 <input type="text" class="form-control" name="usr_fname"
 placeholder="<?php echo $this->lang->
 line('register_first_name'); ?>" autofocus>

 <input type="text" class="form-control" name="usr_lname"
 placeholder="<?php echo $this->lang->
 line('register_last_name'); ?>" >

 <input type="email" class="form-control" name="usr_email"
 placeholder="<?php echo $this->lang->line('register_email');
 ?>" >

 <?php echo form_submit('submit', 'Register', 'class="btn btn-
 lg btn-primary btn-block"'); ?>

 </form>

</div>

This displays a form to a potential user in the system. It requires the user to enter a
irst name, last name, and an e-mail address. The form is submitted to register/
index, which will validate the data inputted by the user. If there were no errors, then
the user is added to the users table, a password is generated for them, and a hash is
generated and stored as users.usr_hash and e-mailed to them. The e-mail template
is welcome.txt, which is given next.

Create the /path/to/codeigniter/application/views/email_scripts/
welcome.txt ile and add the following code to it:

Dear %usr_fname% %usr_lname%,

Welcome to the site. Your password is:

%password%

Regards,

The Team

Chapter 6

[167]

This is the text for the welcome e-mail sent to users when they register. Notice that
there are three strings of text enclosed in a percent sign (%). These are strings of text
that will be identiied by the signup process and replaced using the str_replace()
PHP function with their true values. For example, assume that I register with the site.
My name is Robert Foster and my e-mail might be rob-foster@domain.com. The
e-mail sent to rob-foster@domain.com would look like the following:

Dear Robert Foster,

Welcome to the site. Your password is:

<this-is-the-password>

Regards,

The Team

Create the /path/to/codeigniter/application/views/users/forgot_
password.php ile and add the following code to it:

<?php if (isset($login_fail)) : ?>

 <div class="alert alert-danger"><?php echo $this->lang->
 line('admin_login_error') ; ?></div>

<?php endif ; ?>

 <?php echo validation_errors(); ?>

 <?php echo form_open('password/forgot_password', 'class="form-
 signin" role="form"') ; ?>

 <h2 class="form-signin-heading"><?php echo $this->lang->
 line('forgot_pwd_header') ; ?></h2>

 <p class="lead"><?php echo $this->lang->
 line('forgot_pwd_instruction') ;?></p>

 <?php echo form_input(array('name' => 'usr_email', 'class' =>
 'form-control', 'placeholder' => $this->lang->
 line('admin_login_email'),'id' => 'email', 'value' =>
 set_value('email', ''), 'maxlength' => '100', 'size' =>
 '50', 'style' => 'width:100%')); ?>

 <button class="btn btn-lg btn-primary btn-block"
 type="submit"><?php echo $this->lang->
 line('common_form_elements_go') ; ?></button>

 <?php echo form_close() ; ?>

</div>

The forgot_password.php view ile provides a short form to any user to begin
the process of resetting their password. The user can enter their e-mail address
and press the Go button. The form is submitted to the password controller's
forgot_password() function, where it is validated.

Creating an Authentication System

[168]

If the e-mail address passes validation, then the forgot_password() function checks
to see whether the e-mail address exists in the users table. If it exists, then a unique
code is generated and stored in users.usr_pwd_change_code. If the code does not
exist, then the user is just redirected to the forgot_password() function to try again.

This code is also appended to a URL and sent in the body of an e-mail to the user.
The user is instructed to click on the link in the e-mail that will direct them to the
password controller's new_password() function. The new_password() function will
load the users/new_password.php view ile, which will ask the user to enter their
e-mail address.

This e-mail address is validated and new_password() will look in the users table
to see whether the e-mail address exists. If it exists, it will check to see whether the
value of the code in the URL matches the value stored in users.usr_pwd_change_
code. If it does, then it is likely to be genuine and a new password is generated. This
password is e-mailed to the user. A hash is created using the password and stored in
users.usr_hash.

Create the /path/to/codeigniter/application/views/users/signin.php ile
and add the following code to it:

<?php if (isset($login_fail)) : ?>

 <div class="alert alert-danger"><?php echo $this->lang->
 line('admin_login_error') ; ?></div>

<?php endif ; ?>

 <?php echo validation_errors(); ?>

 <?php echo form_open('signin/index', 'class="form-signin"
 role="form"') ; ?>

 <h2 class="form-signin-heading"><?php echo $this->lang->
 line('admin_login_header') ; ?></h2>

 <input type="email" name="usr_email" class="form-control"
 placeholder="<?php echo $this->lang->
 line('admin_login_email') ; ?>" required autofocus>

 <input type="password" name="usr_password" class="form-
 control" placeholder="<?php echo $this->lang->
 line('admin_login_password') ; ?>" required>

 <button class="btn btn-lg btn-primary btn-block"
 type="submit"><?php echo $this->lang->
 line('admin_login_signin') ; ?></button>

 <?php echo anchor('password',$this->lang->
 line('signin_forgot_password')); ?>

 <?php echo form_close() ; ?>

</div>

Chapter 6

[169]

The signin view is quite simple: a standard sign-in interface. The user can enter
their e-mail address and password to sign in. Validation errors are echoed above the
form if there were any errors, and a Forgot Password link allows the user to use a
method to begin the process of resetting their password.

The error messages are contained in a div element with the alert alert-danger
Bootstrap class; I prefer a big red error message rather than one of those limp-wristed
orange jobbies; however, you can change it to something softer, such as alert
alert-warning.

Create the /path/to/codeigniter/application/views/users/view_all_users.
php ile and add the following code to it:

<h2><?php echo $page_heading ; ?></h2>

<table class="table table-bordered">

 <thead>

 <tr>

 <th>#</th>

 <th>First Name</th>

 <th>Last Name</th>

 <th>Email</th>

 <td>Actions</td>

 </tr>

 </thead>

 <tbody>

 <?php if ($query->num_rows() > 0) : ?>

 <?php foreach ($query->result() as $row) : ?>

 <tr>

 <td><?php echo $row->usr_id ; ?></td>

 <td><?php echo $row->usr_fname ; ?></td>

 <td><?php echo $row->usr_lname ; ?></td>

 <td><?php echo $row->usr_email ; ?></td>

 <td><?php echo anchor('users/edit_user/'.

 $row->usr_id,$this->lang->
 line('common_form_elements_action_edit')) .
 ' ' . anchor('users/delete_user/'.

 $row->usr_id,$this->lang->
 line('common_form_elements_action_delete')) ; ?>

 </td>

 </tr>

 <?php endforeach ; ?>

 <?php else : ?>

 <tr>

 <td colspan="5" class="info">No users here!</td>

 </tr>

Creating an Authentication System

[170]

 <?php endif; ?>

 </tbody>

</table>

The view_all_users.php view ile displays all users within the system in a table at
any one time. Only admin users are able to see this list.

The table has options for editing and deleting, allowing the user to edit a user
(loading the users controller's edit_user() function) and delete a user (loading the
users controller's delete_user() function).

Create the /path/to/codeigniter/application/views/users/new_user.php ile
and add the following code to it:

<?php echo validation_errors() ; ?>

<div class="page-header">

 <h1><?php echo $page_heading ; ?></h1>

</div>

 <p class="lead"><?php echo $this->lang->
 line('usr_form_instruction_edit');?></p>

 <div class="span8">

<?php echo form_open('users/new_user','role="form" class="form"')
 ; ?>

 <div class="form-group">

 <?php echo form_error('usr_fname'); ?>

 <label for="usr_fname"><?php echo $this->lang->
 line('usr_fname');?></label>

 <?php echo form_input($usr_fname); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_lname'); ?>

 <label for="usr_lname"><?php echo $this->lang->
 line('usr_lname');?></label>

 <?php echo form_input($usr_lname); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_uname'); ?>

 <label for="usr_uname"><?php echo $this->lang->
 line('usr_uname');?></label>

 <?php echo form_input($usr_uname); ?>

 </div>

 <div class="form-group">

 <label for="usr_email"><?php echo $this->lang->
 line('usr_email');?></label>

 <?php echo form_input($usr_email); ?>

Chapter 6

[171]

 </div>

 <div class="form-group">

 <label for="usr_confirm_email"><?php echo $this->lang->
 line('usr_confirm_email');?></label>

 <?php echo form_input($usr_confirm_email); ?>

 </div>

 <div class="form-group">

 <label for="usr_add1"><?php echo $this->lang->
 line('usr_add1');?></label>

 <?php echo form_input($usr_add1); ?>

 </div>

 <div class="form-group">

 <label for="usr_add2"><?php echo $this->lang->
 line('usr_add2');?></label>

 <?php echo form_input($usr_add2); ?>

 </div>

 <div class="form-group">

 <label for="usr_add3"><?php echo $this->lang->
 line('usr_add3');?></label>

 <?php echo form_input($usr_add3); ?>

 </div>

 <div class="form-group">

 <label for="usr_town_city"><?php echo $this->lang->
 line('usr_town_city');?></label>

 <?php echo form_input($usr_town_city); ?>

 </div>

 <div class="form-group">

 <label for="usr_zip_pcode"><?php echo $this->lang->
 line('usr_zip_pcode');?></label>

 <?php echo form_input($usr_zip_pcode); ?>

 </div>

 <div class="form-group">

 <label for="usr_access_level"><?php echo $this->lang->
 line('usr_access_level');?></label>

 <?php echo form_dropdown('usr_access_level',
 $usr_access_level, 'large'); ?>

 </div>

 <div class="form-group">

Creating an Authentication System

[172]

 <label for="usr_is_active"><?php echo $this->lang->
 line('usr_is_active');?></label>

 <input type="radio" name="usr_is_active" value="<?php echo
 set_value('usr_is_active') ; ?>" /> Active

 <input type="radio" name="usr_is_active" value="<?php echo
 set_value('usr_is_active') ; ?>" /> Inactive

 </div>

 <div class="form-group">

 <button type="submit" class="btn btn-success"><?php echo
 $this->lang->line('common_form_elements_go');?></button>
 or <? echo anchor('users',$this->lang->
 line('common_form_elements_cancel'));?>

 </div>

<?php echo form_close() ; ?>

 </div>

</div>

The new_user.php view ile displays a form to an admin user, allowing them to
create a user in the system. The form is submitted to the users controller's new_
user() function. Validation errors are displayed above the form. On a successful
submission (no validation errors), the new_user() function will create a password
for the user and a hash value based on the password. The password will be sent
to the user in an e-mail. The text of this e-mail is in the /views/email_scripts/
welcome.txt ile.

Create the /path/to/codeigniter/application/views/users/edit_user.php
ile and add the following code to it:

<div class="page-header">

 <h1><?php echo $page_heading ; ?></h1>

</div>

 <p class="lead"><?php echo $this->lang->
 line('usr_form_instruction_edit');?></p>

 <div class="span8">

 <?php echo form_open('users/edit_user','role="form"
 class="form"') ; ?>

 <div class="form-group">

 <?php echo form_error('usr_fname'); ?>

 <label for="usr_fname"><?php echo $this->lang->
 line('usr_fname');?></label>

 <?php echo form_input($usr_fname); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_lname'); ?>

Chapter 6

[173]

 <label for="usr_lname"><?php echo $this->lang->
 line('usr_lname');?></label>

 <?php echo form_input($usr_lname); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_uname'); ?>

 <label for="usr_uname"><?php echo $this->lang->
 line('usr_uname');?></label>

 <?php echo form_input($usr_uname); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_email'); ?>

 <label for="usr_email"><?php echo $this->lang->
 line('usr_email');?></label>

 <?php echo form_input($usr_email); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_confirm_email'); ?>

 <label for="usr_confirm_email"><?php echo $this->lang->
 line('usr_confirm_email');?></label>

 <?php echo form_input($usr_confirm_email); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_add1'); ?>

 <label for="usr_add1"><?php echo $this->lang->
 line('usr_add1');?></label>

 <?php echo form_input($usr_add1); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_add2'); ?>

 <label for="usr_add2"><?php echo $this->lang->
 line('usr_add2');?></label>

 <?php echo form_input($usr_add2); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_add3'); ?>

 <label for="usr_add3"><?php echo $this->lang->
 line('usr_add3');?></label>

 <?php echo form_input($usr_add3); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_town_city'); ?>

 <label for="usr_town_city"><?php echo $this->lang->
 line('usr_town_city');?></label>

 <?php echo form_input($usr_town_city); ?>

Creating an Authentication System

[174]

 </div>

 <div class="form-group">

 <?php echo form_error('usr_zip_pcode'); ?>

 <label for="usr_zip_pcode"><?php echo $this->lang->
 line('usr_zip_pcode');?></label>

 <?php echo form_input($usr_zip_pcode); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_access_level'); ?>

 <label id="usr_access_level" for="usr_access_level"><?php
 echo $this->lang->line('usr_access_level');?></label>

 <?php echo form_dropdown('usr_access_level',
 $usr_access_level_options, $usr_access_level); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_is_active'); ?>

 <label for="usr_is_active"><?php echo $this->lang->
 line('usr_is_active');?></label>

 <input type="radio" name="usr_is_active" <?php if
 ($usr_is_active == 1) { echo 'checked' ;} ?> /> Active

 <input type="radio" name="usr_is_active" <?php if
 ($usr_is_active == 0) { echo 'checked' ;} ?> /> Inactive

 </div>

 <?php echo form_hidden($id); ?>

 <div class="form-group">

 <button type="submit" class="btn btn-success"><?php echo
 $this->lang->line('common_form_elements_go');?></button>
 or <? echo anchor('users',$this->lang->
 line('common_form_elements_cancel'));?>

 </div>

 <?php echo form_close() ; ?>

 </div>

 <?php echo anchor('users/pwd_email/'.$id['usr_id'],'Send
 Password Reset Email') ; ?>

</div>

The edit_user.php view ile displays a form to an admin user, allowing them to
edit a user in the system. The form is accessed when an admin user clicks on Edit
from the views/users/list_all_users.php view ile. The form is submitted to
the users controller's edit_user() function. Validation errors are displayed above
the form.

Chapter 6

[175]

Create the /path/to/codeigniter/application/views/users/me.php ile and
add the following code to it:

<?php echo validation_errors() ; ?>

<div class="page-header">

 <h1><?php echo $page_heading ; ?></h1>

</div>

 <p class="lead"><?php echo $this->lang->
 line('usr_form_instruction');?></p>

 <div class="span8">

 <?php echo form_open('me/index','role="form"') ; ?>

 <div class="form-group">

 <?php echo form_error('usr_fname'); ?>

 <label for="usr_fname"><?php echo $this->lang->
 line('usr_fname');?></label>

 <?php echo form_input($usr_fname); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_lname'); ?>

 <label for="usr_lname"><?php echo $this->lang->
 line('usr_lname');?></label>

 <?php echo form_input($usr_lname); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('usr_uname'); ?>

 <label for="usr_uname"><?php echo $this->lang->
 line('usr_uname');?></label>

 <?php echo form_input($usr_uname); ?>

 </div>

 <div class="form-group">

 <label for="usr_email"><?php echo $this->lang->
 line('usr_email');?></label>

 <?php echo form_input($usr_email); ?>

 </div>

 <div class="form-group">

 <label for="usr_confirm_email"><?php echo $this->lang->
 line('usr_confirm_email');?></label>

 <?php echo form_input($usr_confirm_email); ?>

 </div>

 <div class="form-group">

 <label for="usr_add1"><?php echo $this->lang->
 line('usr_add1');?></label>

Creating an Authentication System

[176]

 <?php echo form_input($usr_add1); ?>

 </div>

 <div class="form-group">

 <label for="usr_add2"><?php echo $this->lang->
 line('usr_add2');?></label>

 <?php echo form_input($usr_add2); ?>

 </div>

 <div class="form-group">

 <label for="usr_add3"><?php echo $this->lang->
 line('usr_add3');?></label>

 <?php echo form_input($usr_add3); ?>

 </div>

 <div class="form-group">

 <label for="usr_town_city"><?php echo $this->lang->
 line('usr_town_city');?></label>

 <?php echo form_input($usr_town_city); ?>

 </div>

 <div class="form-group">

 <label for="usr_zip_pcode"><?php echo $this->lang->
 line('usr_zip_pcode');?></label>

 <?php echo form_input($usr_zip_pcode); ?>

 </div>

 <?php echo form_hidden($id); ?>

 <div class="form-group">

 <button type="submit" class="btn btn-success"><?php echo
 $this->lang->line('common_form_elements_go');?></button>
 or <? echo anchor('users',$this->lang->
 line('common_form_elements_cancel'));?>

 </div>

 <?php echo form_close() ; ?>

 </div>

 <?php echo anchor('me/pwd_email/'.$id,'Reset Email') ; ?>

Again, like the forms in new_user and edit_user views, this form is similar;
however, it includes a Reset Email link, which will run the me controller's pwd_
email() function to create a new password and e-mail it to the current user. The
password isn't stored in the database; only a hash value is stored (users.usr_hash).

Create the /path/to/codeigniter/application/views/users/register.php ile
and add the following code to it:

<div class="container">

 <?php echo validation_errors(); ?>

Chapter 6

[177]

 <?php echo form_open('register/index', 'role="form" class="form-
 signin"') ; ?>

 <h2 class="form-signin-heading"><?php echo $this->lang->
 line('register_page_title'); ?></h2>

 <input type="text" class="form-control" name="usr_fname"
 placeholder="<?php echo $this->lang->
 line('register_first_name'); ?>" required autofocus>

 <input type="text" class="form-control" name="usr_lname"
 placeholder="<?php echo $this->lang->
 line('register_last_name'); ?>" required>

 <input type="email" class="form-control" name="usr_email"
 placeholder="<?php echo $this->lang->line('register_email');
 ?>" required>

 <?php echo form_submit('submit', 'Register', 'class="btn btn-
 lg btn-primary btn-block"'); ?>

 </form>

</div>

The register.php view ile displays a form to a person wishing to become a user
within the system. The user is invited to enter a irst name and last name as well as
their e-mail address. They then press the Register button.

The form is submitted to the register controller's index() function. The index()
function will perform validation, and any errors are displayed above the form.

Assuming that there were no errors and the form was submitted without problems,
the index() function will attempt to write them to the users table. A password is
generated and sent to the user in the form of an e-mail. The contents of the e-mail
are stored in the views/email_scripts/welcome.txt view ile.

Create the /path/to/codeigniter/application/views/users/signin.php ile
and add the following code to it:

<?php if (isset($login_fail)) : ?>

 <div class="alert alert-danger"><?php echo $this->lang->
 line('admin_login_error') ; ?></div>

<?php endif ; ?>

 <?php echo validation_errors(); ?>

 <?php echo form_open('signin/index', 'class="form-signin"
 role="form"') ; ?>

 <h2 class="form-signin-heading"><?php echo $this->lang->
 line('admin_login_header') ; ?></h2>

 <input type="email" name="usr_email" class="form-control"
 placeholder="<?php echo $this->lang->
 line('admin_login_email') ; ?>" required autofocus>

Creating an Authentication System

[178]

 <input type="password" name="usr_password" class="form-
 control" placeholder="<?php echo $this->lang->
 line('admin_login_password') ; ?>" required>

 <button class="btn btn-lg btn-primary btn-block"
 type="submit"><?php echo $this->lang->
 line('admin_login_signin') ; ?></button>

 <?php echo anchor('password',$this->lang->
 line('signin_forgot_password')); ?>

 <?php echo form_close() ; ?>

</div>

The signin.php view ile displays a form to a user. The user is invited to enter
their e-mail address and password. The form is submitted to the signin controller's
index() function, which will validate the input, and assuming there were no errors,
attempt to process the sign-in request.

Only users who are active can sign in (users.usr_is_active = 1) and admin
users (users.usr_accss_level = 1) will see options that are only available to
admins. The normal users (users.usr_access_level = 2) will be directed to the
me controller.

You can, of course, adapt this behavior to any other controller. Instructions
on how to do this are discussed in the Ensuring correct access section.

Create the /path/to/codeigniter/application/views/users/change_
password.php ile and add the following code to it:

<?php if (isset($login_fail)) : ?>

 <div class="alert alert-danger"><?php echo $this->lang->
 line('admin_login_error') ; ?></div>

<?php endif ; ?>

 <?php echo validation_errors(); ?>

 <?php echo form_open('me/change_password', 'class="form-signin"
 role="form"') ; ?>

 <h2 class="form-signin-heading"><?php echo $this->lang->
 line('forgot_pwd_header') ; ?></h2>

 <p class="lead"><?php echo $this->lang->
 line('forgot_pwd_instruction') ;?></p>

 <table border="0">

 <tr>

 <td><?php $this->lang->line('signin_new_pwd_email') ;
 ?></td>

 </tr>

 <tr>

Chapter 6

[179]

 <td><?php echo form_input($usr_new_pwd_1); ?></td>

 </tr>

 <tr>

 <td><?php echo form_input($usr_new_pwd_2); ?></td>

 </tr>

 </table>

 <button class="btn btn-lg btn-primary btn-block"
 type="submit"><?php echo $this->lang->
 line('common_form_elements_go') ; ?></button>

 <?php echo form_close() ; ?>

</div>

This view ile displays an HTML form to the user, allowing them to enter two
new passwords for their account. The form is submitted to the me controller's
change_password() function, which validates the two passwords supplied and
checks whether they match each other, apart from various other validation checks.
If validation is passed, then a hash is created from the supplied passwords and that
hash is saved to the user's record in the database.

Creating the controllers
In this project, there are six controllers, which are as follows:

• /core/MY_Controller.php: This is the parent controller class that contains
common resources.

• /controllers/password.php: This contains functions that allow the user to
request a new password.

• /controllers/me.php: This provides a location for a normal (that is, not an
admin) user to alter their account settings: name, e-mail, and so on.

• /controllers/register.php: This contains functions that allow a new user
to sign up and have their details recorded in the users table.

• /controllers/signin.php: This provides a method for users to log in to
their account and to start a session.

• /controllers/users.php: This provides functions for an admin to manage
users who have signed up and whose records are in the users table.

These are our six controllers (one to extend and ive that are extended); let's go over
each one and create them.

Creating an Authentication System

[180]

Create the /path/to/codeigniter/application/core/MY_Controller.php
controller ile and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
 allowed');
class MY_Controller extends CI_Controller {
 function __construct() {
 parent::__construct();
 $this->load->helper('form');
 $this->load->helper('url');
 $this->load->helper('security');
 $this->load->helper('language');
 $this->load->library('session');
 $this->load->library('form_validation');
 $this->form_validation->set_error_delimiters('<div
 class="alert alert-warning" role="alert">', '</div>');
 $this->lang->load('en_admin', 'english');
 }
}

The core/MY_Controller.php controller acts as an overarching parent controller
for all controllers that require the user to be logged in before they're accessed.

Create the /path/to/codeigniter/application/controllers/password.
php controller ile and add the following code to it. As this controller need not be
accessed by a logged-in user, we're not extending it with the MY_Controller, but
only the default CI_Controller:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');
class Password extends CI_Controller {
 function __construct() {
 parent::__construct();
 $this->load->library('session');
 $this->load->helper('form');
 $this->load->helper('file');
 $this->load->helper('url');
 $this->load->helper('security');
 $this->load->model('Users_model');
 $this->lang->load('en_admin', 'english');
 $this->load->library('form_validation');
 $this->form_validation->set_error_delimiters('<div class="bs-
 callout bs-callout-error">', '</div>');
 }

 public function index() {
 redirect('password/forgot_password');

 }

Chapter 6

[181]

The Reset Password page provides a form to the user, allowing them to enter
their e-mail address. Once the user has submitted the form, a code is generated
and prepended to a URL link. This link is sent in an e-mail to the e-mail address
provided. The unique code in the URL is used by the password controller's next
function, which is new_password(), but we'll go into that later.

First, we deine the validation rules for the form in the users/forgot_password.
php view ile, as shown here:

public function forgot_password() {

 $this->form_validation->set_rules('usr_email', $this->lang->
 line('signin_new_pwd_email'),
 'required|min_length[5]|max_length[125]|valid_email');

If the form is being viewed for the irst time or has failed the preceding validation
rules, then the $this->form_validation() CodeIgniter function returns FALSE,
loading the users/forgot_password.php view ile:

if ($this->form_validation->run() == FALSE) {

 $this->load->view('common/login_header');

 $this->load->view('users/forgot_password');

 $this->load->view('common/footer');

If the user's e-mail passes validation, then we will try to generate a unique code and
send them an e-mail:

} else {

 $email = $this->input->post('usr_email');

 $num_res = $this->Users_model->count_results($email);

First, we look to see whether the e-mail address supplied in the form actually exists
in the database. If not, then $num_res will not equal 1. If this is the case, then we
redirect the user to the forgot_password() function. If, however, it exists, then we
continue to process the request with an if statement:

if ($num_res == 1) {

We call the make_code() function of Users_model, which will generate a unique
code for us and return it as the $code variable. This $code variable is added to the
$data array and sent to the update_user_code() function of Users_model, which
will write the unique code that was just generated to users.usr_pwd_change_code
in preparation for the new_password() function shown here (new_password() is run
when the user clicks on the URL in the e-mail we will soon send them):

$code = $this->Users_model->make_code();

$data = array(

 'usr_pwd_change_code' => $code,

Creating an Authentication System

[182]

 'usr_email' => $email

);

if ($this->Users_model->update_user_code($data)) { // Update okay,
 so send email

 $result = $this->Users_model->get_user_details_by_email($email);

 foreach ($result->result() as $row) {

 $usr_fname = $row->usr_fname;

 $usr_lname = $row->usr_lname;

 }

Right, the code has been created and saved to the correct account in the database,
and we're now ready to start with the e-mail. Let's deine the link that will go in the
e-mail. For this example, it is http://www.domain.com/password/new_password/
UNIQUE-CODE-HERE; however, you'll need to change this to relect the path and
domain on your servers:

$link = "http://www.domain.com/password/new_password/".$code;

Now we need to load the reset_password.txt ile. This ile contains the template
text for the body of the e-mail we'll send. Again, you'll need to change the ile
path of this ile to that on your system. We pass the ilename to the read_file()
CodeIgniter function that will open the ile and return its contents. The contents of
this ile, that is, the text in the ile, is stored as a string in the $file variable:

 $path = '/path/to/codeigniter/application/views/
 email_scripts/reset_password.txt';

$file = read_file($path);

Using the str_replace() PHP function, we'll replace the variables in the $file
variable with the correct values:

$file = str_replace('%usr_fname%', $usr_fname, $file);

$file = str_replace('%usr_lname%', $usr_lname, $file);

echo $file = str_replace('%link%', $link, $file);

Now we're ready to send the e-mail to the user. We're using PHP's mail() function
to send the e-mail for us. If the e-mail was sent, then we will redirect the user to the
sign-in page. If not, then we just reload the function:

 if (mail ($email, $this->lang->
 line('email_subject_reset_password'),$file, 'From:
 me@domain.com')) {
 redirect('signin');
 }
 } else {

Chapter 6

[183]

 // Some sort of error happened, redirect user back to form
 redirect('password/forgot_password');
 }
 } else { // Some sort of error happened, redirect user back to
 form
 redirect('password/forgot_password');
 }
 }
}

The new_password() function is accessed when a user clicks on the URL in the e-mail
they were sent during the execution of the previous function—forgot_password().
It displays a form to the user, allowing them to enter their new password.

First we deine the validation rules for the form in the users/new_password.php
view ile:

 public function new_password() {
 $this->form_validation->set_rules('code', $this->lang->
 line('signin_new_pwd_code'),
 'required|min_length[4]|max_length[8]');
 $this->form_validation->set_rules('usr_email', $this->lang->
 line('signin_new_pwd_email'),
 'required|min_length[5]|max_length[125]');
 $this->form_validation->set_rules('usr_password1', $this->
 lang->line('signin_new_pwd_email'),
 'required|min_length[5]|max_length[125]');
 $this->form_validation->set_rules('usr_password2', $this->
 lang->line('signin_new_pwd_email'),
 'required|min_length[5]|max_length[125]|
 matches[usr_password1]');

 if ($this->input->post()) {
 $data['code'] = xss_clean($this->input->post('code'));
 } else {
 $data['code'] = xss_clean($this->uri->segment(3));
 }

If the form is being viewed for the irst time or has failed the preceding validation
rules, then the $this->form_validation() CodeIgniter function returns FALSE,
loading the users/new_password.php view ile. The view ile contains three form
elements: one for a user's email and two for their new password:

 if ($this->form_validation->run() == FALSE) {
 $data['usr_email'] = array('name' => 'usr_email',
 'class' => 'form-control', 'id' => 'usr_email', 'type'
 => 'text', 'value' => set_value('usr_email', ''),
 'maxlength' => '100', 'size' => '35', 'placeholder' =>
 $this->lang->line('signin_new_pwd_email'));

Creating an Authentication System

[184]

 $data['usr_password1'] = array('name' => 'usr_password1',
 'class' => 'form-control', 'id' => 'usr_password1', 'type'
 => 'password', 'value' => set_value('usr_password1', ''),
 'maxlength' => '100', 'size' => '35', 'placeholder' =>
 $this->lang->line('signin_new_pwd_pwd'));
 $data['usr_password2'] = array('name' => 'usr_password2',
 'class' => 'form-control', 'id' => 'usr_password2', 'type'
 => 'password', 'value' => set_value('usr_password2', ''),
 'maxlength' => '100', 'size' => '35', 'placeholder' =>
 $this->lang->line('signin_new_pwd_confirm'));

 $this->load->view('common/login_header', $data);
 $this->load->view('users/new_password', $data);
 $this->load->view('common/footer', $data);
 } else {

If the form has passed validation, then we will try to match the code in the URL with
an account using the e-mail address as a search term:

// Does code from input match the code against the email

$email = xss_clean($this->input->post('usr_email'));

If the does_code_match() function of Users_model returns a false value, then
there is no record in the database that has the e-mail address and code that matches
the e-mail address supplied in the form and the code in the URL. If that's the case,
we redirect them to the forgot_password() function to start the process again. If,
however, it matches, then this is obviously a genuine request:

 if (!$this->Users_model->does_code_match($data, $email)) { //
 Code doesn't match

 redirect ('users/forgot_password');

 } else { // Code does match

As this is most likely a genuine request and the e-mail and unique code have
matched, let's create a hash value from the supplied password:

$hash = $this->encrypt->sha1($this->input->post('usr_password1'));

We can store this hash in the $data array along with the supplied e-mail:

$data = array(

 'usr_hash' => $hash,

 'usr_email' => $email

);

Now let's take this e-mail and hash and pass to the update_user_password()
function of Users_model:

if ($this->Users_model->update_user_password($data)) {

Chapter 6

[185]

Now that the user has updated their password, let's send them an e-mail
conirming this:

$link = 'http://www.domain.com/signin';

$result = $this->Users_model->get_user_details_by_email($email);

foreach ($result->result() as $row) {

 $usr_fname = $row->usr_fname;

 $usr_lname = $row->usr_lname;

}

We need to load the new_password.txt ile. This ile contains the template text for
the body of the e-mail we'll send. Again, you'll need to change the ile path of this
ile to that on your system. We pass the ilename to the read_file() CodeIgniter
function that will open the ile and return its contents. The contents of this ile, that
is, the text in the ile, is stored as a string in the $file variable:

$path = '/ path/to/codeigniter/application/views/email_scripts/
 new_password.txt';

$file = read_file($path);

Using the str_replace() PHP function, we'll replace the variables in the $file
variable with the correct values. Once this e-mail is sent, we redirect them to the
signin controller where they can log in using their new password:

 $file = str_replace('%usr_fname%', $usr_fname, $file);

 $file = str_replace('%usr_lname%', $usr_lname, $file);

 $file = str_replace('%password%', $password, $file);

 $file = str_replace('%link%', $link, $file);

 if (mail ($email, $this->lang->line('
 email_subject_new_password'),$file, 'From:
 me@domain.com')) {

 redirect ('signin');

 }

 }

 }

 }

 }

}

Create the /path/to/codeigniter/application/controllers/me.php controller
ile and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed');

class Me extends CI_Controller {

Creating an Authentication System

[186]

The me controller is to be used by users who are not admins—in other words, users
whose value of users.usr_access_level is set to 2 or above.

This project allows the user to change their details, name, e-mail address, and so on.
However, you can adapt the me controller to display any number of things. Or, using
the following code in the __construct() function of another controller, you can
provide functions for speciic levels of users:

if (($this->session->userdata('logged_in') == FALSE) ||

 (!$this->session->userdata('usr_access_level') >= 2)) {

 redirect('signin');

}

We will go through this in more detail later on in the Putting it all together section
of this chapter; however, let's quickly mention it here anyway. The preceding code
checks to see whether the user is logged in and then checks the users' access level
(users.usr_access_level).

If the users.usr_access_level value is not greater than or equal to 2 (which is the
level of a normal user), then it will redirect them to signin or signout—in other
words, it will log them out and terminate their session.

By adjusting the value that is compared (for example 1, 2, 3, and so on), you can
ensure that users with a speciic value can only access this controller:

function __construct() {

 parent::__construct();

 $this->load->helper('form');

 $this->load->helper('url');

 $this->load->helper('security');

 $this->load->helper('file'); // for html emails

 $this->load->helper('language');

 $this->load->model('Users_model');

 $this->load->library('session');

 // Load language file

 $this->lang->load('en_admin', 'english');

 $this->load->library('form_validation');

 $this->form_validation->set_error_delimiters('<div class="alert
 alert-warning" role="alert">', '</div>');

 if (($this->session->userdata('logged_in') == FALSE) ||

 (!$this->session->userdata('usr_access_level') >= 2)) {

 redirect('signin/signout');

 }

}

Chapter 6

[187]

The index() function allows a normal user to update their details in the database.
First, we set our validation rules for the form:

public function index() {

 // Set validation rules

 $this->form_validation->set_rules('usr_fname', $this->lang->
 line('usr_fname'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_lname', $this->lang->
 line('usr_lname'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_uname', $this->lang->
 line('usr_uname'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_email', $this->lang->
 line('usr_email'), 'required|min_length[1]|max_length[255]|
 valid_email');

 $this->form_validation->set_rules('usr_confirm_email', $this->
 lang->line('usr_confirm_email'), 'required|min_length[1]|
 max_length[255]|valid_email|matches[usr_email]');

 $this->form_validation->set_rules('usr_add1', $this->lang->
 line('usr_add1'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_add2', $this->lang->
 line('usr_add2'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_add3', $this->lang->
 line('usr_add3'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_town_city', $this->lang->
 line('usr_town_city'), 'required|min_length[1]
 |max_length[125]');

 $this->form_validation->set_rules('usr_zip_pcode', $this->lang->
 line('usr_zip_pcode'), 'required|min_length[1]|
 max_length[125]');

 $data['id'] = $this->session->userdata('usr_id');

 $data['page_heading'] = 'Edit my details';

 // Begin validation

If the form is being viewed for the irst time or has failed the preceding validation
rules, then the $this->form_validation() CodeIgniter function returns FALSE,
loading the users/me.php view ile:

if ($this->form_validation->run() == FALSE) { // First load, or
 problem with form

Here, we deine the setting for the HTML form items to be displayed in the users/
me.php view ile. As we are editing a user who is already logged in, we'll need to
grab their details from the database in order to prepopulate the form elements.

Creating an Authentication System

[188]

We call the get_user_details() function of Users_model, passing to it the user ID
fetched from the session:

$query = $this->Users_model->get_user_details($data['id']);

foreach ($query->result() as $row) {

 $usr_fname = $row->usr_fname;

 $usr_lname = $row->usr_lname;

 $usr_uname = $row->usr_uname;

 $usr_email = $row->usr_email;

 $usr_add1 = $row->usr_add1;

 $usr_add2 = $row->usr_add2;

 $usr_add3 = $row->usr_add3;

 $usr_town_city = $row->usr_town_city;

 $usr_zip_pcode = $row->usr_zip_pcode;

}

Once we have fetched the users details and saved them to local variables, we apply
them to the form items. To do this, we use the set_value() CodeIgniter function,
the irst parameter being the name of the form element (for example, <input
type="text" name="this-is-the-name" />) and the second parameter being the
actual value of the form element:

 $data['usr_fname'] = array('name' => 'usr_fname', 'class' =>
 'form-control', 'id' => 'usr_fname', 'value' =>
 set_value('usr_fname', $usr_fname), 'maxlength' => '100',
 'size' => '35');

 $data['usr_lname'] = array('name' => 'usr_lname', 'class' =>
 'form-control', 'id' => 'usr_lname', 'value' =>
 set_value('usr_lname', $usr_lname), 'maxlength' => '100',
 'size' => '35');

 $data['usr_uname'] = array('name' => 'usr_uname', 'class' =>
 'form-control', 'id' => 'usr_uname', 'value' =>
 set_value('usr_uname', $usr_uname), 'maxlength' => '100',
 'size' => '35');

 $data['usr_email'] = array('name' => 'usr_email', 'class' =>
 'form-control', 'id' => 'usr_email', 'value' =>
 set_value('usr_email', $usr_email), 'maxlength' => '100',
 'size' => '35');

 $data['usr_confirm_email'] = array('name' =>
 'usr_confirm_email', 'class' => 'form-control', 'id' =>
 'usr_confirm_email', 'value' => set_value('usr_confirm_email',
 $usr_email), 'maxlength' => '100', 'size' => '35');

 $data['usr_add1'] = array('name' => 'usr_add1', 'class' =>
 'form-control', 'id' => 'usr_add1', 'value' =>
 set_value('usr_add1', $usr_add1), 'maxlength' => '100',
 'size' => '35');

Chapter 6

[189]

 $data['usr_add2'] = array('name' => 'usr_add2', 'class' =>
 'form-control', 'id' => 'usr_add2', 'value' =>
 set_value('usr_add2', $usr_add2), 'maxlength' => '100',
 'size' => '35');

 $data['usr_add3'] = array('name' => 'usr_add3', 'class' =>
 'form-control', 'id' => 'usr_add3', 'value' =>
 set_value('usr_add3', $usr_add3), 'maxlength' => '100',
 'size' => '35');

 $data['usr_town_city'] = array('name' => 'usr_town_city',
 'class' => 'form-control', 'id' => 'usr_town_city', 'value' =>
 set_value('usr_town_city', $usr_town_city), 'maxlength' =>
 '100', 'size' => '35');

 $data['usr_zip_pcode'] = array('name' => 'usr_zip_pcode',
 'class' => 'form-control', 'id' => 'usr_zip_pcode', 'value' =>
 set_value('usr_zip_pcode', $usr_zip_pcode), 'maxlength' =>
 '100', 'size' => '35');

 $this->load->view('common/header', $data);

 $this->load->view('nav/top_nav', $data);

 $this->load->view('users/me', $data);

 $this->load->view('common/footer', $data);

} else { // Validation passed, now escape the data

Now that validation has passed, we'll save the posted data to the $data array in
preparation to save it to the process_update_user() function of Users_model:

 $data = array(

 'usr_fname' => $this->input->post('usr_fname'),

 'usr_lname' => $this->input->post('usr_lname'),

 'usr_uname' => $this->input->post('usr_uname'),

 'usr_email' => $this->input->post('usr_email'),

 'usr_add1' => $this->input->post('usr_add1'),

 'usr_add2' => $this->input->post('usr_add2'),

 'usr_add3' => $this->input->post('usr_add3'),

 'usr_town_city' => $this->input->post('usr_town_city'),

 'usr_zip_pcode' => $this->input->post('usr_zip_pcode')

);

 if ($this->Users_model->process_update_user($id, $data)) {

 redirect('users');

 }

 }

}

Creating an Authentication System

[190]

The me controller also contains the change_password() function. This allows the
user who is accessing the controller to change their password. Once accessed, the /
views/users/change_password.php view ile displays a simple form that asks for
a new password. Once the form is submitted and validated successfully, a hash is
created using the new password provided and saved to the logged-in user's record:

 public function change_password() {

 $this->load->library('form_validation');

 $this->form_validation->set_rules('usr_new_pwd_1', $this->
 lang->line('signin_new_pwd_pwd'),
 'required|min_length[5]|max_length[125]');

 $this->form_validation->set_rules('usr_new_pwd_2', $this->
 lang->line('signin_new_pwd_confirm'), 'required|
 min_length[5]|max_length[125]|matches[usr_new_pwd_1]');

 if ($this->form_validation->run() == FALSE) {

 $data['usr_new_pwd_1'] = array('name' => 'usr_new_pwd_1',
 'class' => 'form-control', 'type' => 'password', 'id' =>
 'usr_new_pwd_1', 'value' => set_value('usr_new_pwd_1',
 ''), 'maxlength' => '100', 'size' => '35', 'placeholder'
 => $this->lang->line('signin_new_pwd_pwd'));

 $data['usr_new_pwd_2'] = array('name' => 'usr_new_pwd_2',
 'class' => 'form-control', 'type' => 'password', 'id' =>
 'usr_new_pwd_2', 'value' => set_value('usr_new_pwd_2',
 ''), 'maxlength' => '100', 'size' => '35', 'placeholder'
 => $this->lang->line('signin_new_pwd_confirm'));

 $data['submit_path'] = 'me/change_password';

 $this->load->view('common/login_header', $data);

 $this->load->view('users/change_password', $data);

 $this->load->view('common/footer', $data);

 } else {

 $hash = $this->encrypt->sha1($this->input->
 post('usr_new_pwd_1'));

 $data = array(

 'usr_hash' => $hash,

 'usr_id' => $this->session->userdata('usr_id')

);

 if ($this->Users_model->update_user_password($data)) {

 redirect('signin/signout');

 }

 }

 }

}

Chapter 6

[191]

Create the /path/to/codeigniter/application/controllers/register.php
controller ile and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
allowed');

class Register extends CI_Controller {

 function __construct() {

 parent::__construct();

 $this->load->helper('form');

 $this->load->helper('url');

 $this->load->helper('security');

 $this->load->model('Register_model');

 $this->load->library('encrypt');

 $this->lang->load('en_admin', 'english');

 $this->load->library('form_validation');

 $this->form_validation->set_error_delimiters('<div class="alert
 alert-warning" role="alert">', '</div>');

 }

The index() function displays a small form to a new user. This form allows them to
enter basic information such as the e-mail address and name. Once the user presses
the Register button and for form is successfully validated, the user is sent a welcome
e-mail and is added to the database.

First, we set the validation rules for the form in views/users/register.php:

public function index() {

 // Set validation rules

 $this->form_validation->set_rules('usr_fname', $this->lang->
 line('first_name'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_lname', $this->lang->
 line('last_name'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_email', $this->lang->
 line('email'), 'required|min_length[1]|max_length[255]|
 valid_email|is_unique[users.usr_email]');

 // Begin validation

 if ($this->form_validation->run() == FALSE) { // First load, or
 problem with form

 $this->load->view('common/login_header');

 $this->load->view('users/register');

 $this->load->view('common/footer');

 } else {

Creating an Authentication System

[192]

Once the form is successfully validated, we create an e-mail for them. This is done by
using the random_string() CodeIgniter function. We generate an eight-character
string of alphanumeric digits. This is stored in the $password variable—we'll need
this to create the hash (which will be stored in users.usr_hash) and to send it to the
user in an e-mail (otherwise they won't know what their password is):

// Create hash from user password

$password = random_string('alnum', 8);

After we create their password, we create a hash value of it. This is done by passing
$password to $this->encrypt->sha1():

$hash = $this->encrypt->sha1($password);

Now, we save everything to the $data array in preparation of writing to the
database. This is done by calling the register_user() function of Register_model
and passing it the $data array:

$data = array(

 'usr_fname' => $this->input->post('usr_fname'),

 'usr_lname' => $this->input->post('usr_lname'),

 'usr_email' => $this->input->post('usr_email'),

 'usr_is_active' => 1,

 'usr_access_level' => 2,

 'usr_hash' => $hash

);

If the register_user() function returns true, then we send the user an e-mail,
otherwise we send them back to the register controller:

 if ($this->Register_model->register_user($data)) {

 $file = read_file('../views/email_scripts/welcome.txt');

 $file = str_replace('%usr_fname%', $data['usr_fname'],
 $file);

 $file = str_replace('%usr_lname%', $data['usr_lname'],
 $file);

 $file = str_replace('%password%', $password, $file);

 redirect('signin');

 } else {

 redirect('register');

 }

 }

 }

}

Chapter 6

[193]

Create the /path/to/codeigniter/application/controllers/signin.php
controller ile and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

class Signin extends CI_Controller {
 function __construct() {
 parent::__construct();
 $this->load->library('session');
 $this->load->helper('form');
 $this->load->helper('url');
 $this->load->helper('security');
 $this->lang->load('en_admin', 'english');
 $this->load->library('form_validation');
 $this->form_validation->set_error_delimiters('<div
 class="alert alert-warning" role="alert">', '</div>');
 }

The index() function displays a form to the user, allowing them to enter their e-mail
address and password. It also handles any validation from the sign-in form.

First off, the index() function checks to see whether the user is already logged
in—after all, there's no point in someone trying to log in when they're already logged
in. So, we check for the value of the logged_in userdata item. If this exists and
equals TRUE, then they must already be logged in. If this is the case, then we work
out their user level to see whether they are a normal user or an admin. If they are an
admin, they're redirected to the admin area, that is, the users controller; if they are
not an admin user, they are redirected to the me controller:

public function index() {

 if ($this->session->userdata('logged_in') == TRUE) {

 if ($this->session->userdata('usr_access_level') == 1) {

 redirect('users');

 } else {

 redirect('me');

 }

 } else {

If they get to this point in the code, then they are not logged in, which means that we
have to display a form so they can log in. Now, we deine the validation rules for the
sign-in form:

 // Set validation rules for view filters

 $this->form_validation->set_rules('usr_email', $this->lang->
 line('signin_email'), 'required|valid_email|
 min_length[5]|max_length[125]');

Creating an Authentication System

[194]

 $this->form_validation->set_rules('usr_password', $this->
 lang->line('signin_password'), 'required|
 min_length[5]|max_length[30]');

 if ($this->form_validation->run() == FALSE) {

 $this->load->view('common/login_header');

 $this->load->view('users/signin');

 $this->load->view('common/footer');

 } else {

Assuming that the validation has passed, we store their e-mail and password in local
variables, load Signin_model, and call the does_user_exist() function, passing to
it the e-mail address supplied by the user. If anything other than one record is found,
then the form redirects to the signin controller for the user to try again:

$usr_email = $this->input->post('usr_email');

$password = $this->input->post('usr_password');

$this->load->model('Signin_model');

$query = $this->Signin_model->does_user_exist($usr_email);

If, however, exactly one record is found, then we will try to log them in:

if ($query->num_rows() == 1) { // One matching row found

 foreach ($query->result() as $row) {

 // Call Encrypt library

 $this->load->library('encrypt');

We generate a hash from the password supplied by the user and compare it to the
hash value in the database result object returned by the does_user_exist() call:

// Generate hash from a their password

$hash = $this->encrypt->sha1($password);

if ($row->usr_is_active != 0) { // See if the user is active or not

 // Compare the generated hash with that in the database

 if ($hash != $row->usr_hash) {

If the user gets to this part in the code, then it means that the hash values didn't
match, so we'll display the sign-in view with an error message:

 // Didn't match so send back to login

 $data['login_fail'] = true;

 $this->load->view('common/login_header');

 $this->load->view('users/signin', $data);

 $this->load->view('common/footer');

} else {

Chapter 6

[195]

However, if the user gets here then the hash values match, the password supplied
by the user must be correct. So, we package a few items into the $data array, which
they will ind useful once they are logged in:

$data = array(

 'usr_id' => $row->usr_id,

 'acc_id' => $row->acc_id,

 'usr_email' => $row->usr_email,

 'usr_access_level' => $row->usr_access_level,

 'logged_in' => TRUE

);

Then, create a session for them with $this->session->set_userdata():

// Save data to session

$this->session->set_userdata($data);

Finally, we work out what controller to redirect them to. If they are an admin user
(users.usr_access_level = 1), they will be directed to users; if they are a normal
user (users.usr_access_level = 2), they will be directed to the me controller;
however, if users.usr_access_level is anything other than 1 or 2, then they are
also directed to the me controller by default:

if ($data['usr_access_level'] == 2) {

 redirect('me');

 } elseif ($data['usr_access_level'] == 1) {

 redirect('users');

 } else {

 redirect('me');

 }

 }

 } else {

 // User currently inactive

 redirect('signin');

 }

 }

 }

 }

 }

 }

What comes up must come down, or something like that; anyway. what's logged in
must be logged out (dreadful!) anyway—signout() is a quick function that destroys
the session and redirects the user to the signin controller.

Creating an Authentication System

[196]

The signin controller is called when a user (admin or otherwise) clicks on the
Logout link in the top_nav.php view. Once redirected, the signin controller
will recognize they are no longer logged in and display the sign-in form:

 public function signout() {

 $this->session->sess_destroy();

 redirect ('signin');

 }

}

Create the /path/to/codeigniter/application/controllers/users.php
controller ile and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
 allowed');

class Users extends MY_Controller {
 function __construct() {
 parent::__construct();
 $this->load->helper('file'); // for html emails
 $this->load->model('Users_model');
 $this->load->model('Password_model');

 if (($this->session->userdata('logged_in') == FALSE) ||
 ($this->session->userdata('usr_access_level') != 1)) {
 redirect('signin');
 }
 }

Okay, the irst thing to notice is the __construct() function. We test the user's
access level (users.usr_access_level)—if it is not equal to 1 at least, then they
are not an admin user—so, we redirect them out of the controller:

public function index() {

 $data['page_heading'] = 'Viewing users';

 $data['query'] = $this->Users_model->get_all_users();

 $this->load->view('common/header', $data);

 $this->load->view('nav/top_nav', $data);

 $this->load->view('users/view_all_users', $data);

 $this->load->view('common/footer', $data);

}

Now, let's take a look at the preceding function. The index() function loads the
get_all_users() function of Users_model that, as the name suggests, gets all users
in the users table. The result of this is stored in the $data array's query item and is
then passed to the views/users/view_all_users.php view ile. This view ile will
display all users in a table format with two options for editing and deleting.

Chapter 6

[197]

The new_user() function handles the creation of users within the system. Initially,
the new_user() function sets the validation rules:

public function new_user() {

 // Set validation rules

 $this->form_validation->set_rules('usr_fname', $this->lang->
 line('usr_fname'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_lname', $this->lang->
 line('usr_lname'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_uname', $this->lang->
 line('usr_uname'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_email', $this->lang->
 line('usr_email'), 'required|min_length[1]|max_length[255]|
 valid_email|is_unique[users.usr_email]');

 $this->form_validation->set_rules('usr_confirm_email', $this->
 lang->line('usr_confirm_email'), 'required|min_length[1]|
 max_length[255]|valid_email|matches[usr_email]');

 $this->form_validation->set_rules('usr_add1', $this->lang->
 line('usr_add1'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_add2', $this->lang->
 line('usr_add2'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_add3', $this->lang->
 line('usr_add3'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_town_city', $this->lang->
 line('usr_town_city'), 'required|min_length[1]|
 max_length[125]');

 $this->form_validation->set_rules('usr_zip_pcode', $this->lang->
 line('usr_zip_pcode'), 'required|min_length[1]|
 max_length[125]');

 $this->form_validation->set_rules('usr_access_level', $this->
 lang->line('usr_access_level'), 'min_length[1]|
 max_length[125]');

 $this->form_validation->set_rules('usr_is_active', $this->lang->
 line('usr_is_active'), 'min_length[1]|max_length[1]|
 integer|is_natural');

 $data['page_heading'] = 'New user';

 // Begin validation

After we set the validation rules (shown in the preceding code), we then test for the
return value of $this->form_validation(). If it's the irst time the page is accessed
or any form item fails validation, then FALSE is returned, and the following code
is run. Here, we deine the settings for the HTML form elements displayed in the
views/users/new_user.php view:

if ($this->form_validation->run() == FALSE) { // First load, or
problem with form

Creating an Authentication System

[198]

 $data['usr_fname'] = array('name' => 'usr_fname', 'class' =>
 'form-control', 'id' => 'usr_fname', 'value' =>
 set_value('usr_fname', ''), 'maxlength' => '100', 'size' =>
 '35');
 $data['usr_lname'] = array('name' => 'usr_lname', 'class' =>
 'form-control', 'id' => 'usr_lname', 'value' =>
 set_value('usr_lname', ''), 'maxlength' => '100', 'size' =>
 '35');

 $data['usr_uname'] = array('name' => 'usr_uname', 'class' =>
 'form-control', 'id' => 'usr_uname', 'value' =>
 set_value('usr_uname', ''), 'maxlength' => '100', 'size' =>
 '35');

 $data['usr_email'] = array('name' => 'usr_email', 'class' =>
 'form-control', 'id' => 'usr_email', 'value' =>
 set_value('usr_email', ''), 'maxlength' => '100', 'size' =>
 '35');

 $data['usr_confirm_email'] = array('name' =>
 'usr_confirm_email', 'class' => 'form-control', 'id' =>
 'usr_confirm_email', 'value' => set_value('usr_confirm_email',
 ''), 'maxlength' => '100', 'size' => '35');

 $data['usr_add1'] = array('name' => 'usr_add1', 'class' =>
 'form-control', 'id' => 'usr_add1', 'value' =>
 set_value('usr_add1', ''), 'maxlength' => '100', 'size' =>
 '35');

 $data['usr_add2'] = array('name' => 'usr_add2', 'class' =>
 'form-control', 'id' => 'usr_add2', 'value' =>
 set_value('usr_add2', ''), 'maxlength' => '100', 'size' =>
 '35');

 $data['usr_add3'] = array('name' => 'usr_add3', 'class' =>
 'form-control', 'id' => 'usr_add3', 'value' =>
 set_value('usr_add3', ''), 'maxlength' => '100', 'size' =>
 '35');

 $data['usr_town_city'] = array('name' => 'usr_town_city',
 'class' => 'form-control', 'id' => 'usr_town_city', 'value' =>
 set_value('usr_town_city', ''), 'maxlength' => '100', 'size'
 => '35');

 $data['usr_zip_pcode'] = array('name' => 'usr_zip_pcode',
 'class' => 'form-control', 'id' => 'usr_zip_pcode', 'value' =>
 set_value('usr_zip_pcode', ''), 'maxlength' => '100', 'size'
 => '35');

 $data['usr_access_level'] = array(1=>1, 2=>2, 3=>3, 4=>4, 5=>5);

 $this->load->view('common/header', $data);

 $this->load->view('nav/top_nav', $data);

 $this->load->view('users/new_user',$data);

 $this->load->view('common/footer', $data);

} else { // Validation passed, now escape the data

Chapter 6

[199]

Assuming that the form data has passed validation, we begin to create a password
for the user. We use the random_string() CodeIgniter function to generate an
alphanumeric string of characters 8 digits in length.

We then generate a hash from this password using the $this->encrypt->sha1()
CodeIgniter function, as shown in the following snippet. Later on in the code, we
send the password to the user in an e-mail:

$password = random_string('alnum', 8);

$hash = $this->encrypt->sha1($password);

We save the form input and $hash to the $data arrays:

$data = array(

 'usr_fname' => $this->input->post('usr_fname'),

 'usr_lname' => $this->input->post('usr_lname'),

 'usr_uname' => $this->input->post('usr_uname'),

 'usr_email' => $this->input->post('usr_email'),

 'usr_hash' => $hash,

 'usr_add1' => $this->input->post('usr_add1'),

 'usr_add2' => $this->input->post('usr_add2'),

 'usr_add3' => $this->input->post('usr_add3'),

 'usr_town_city' => $this->input->post('usr_town_city'),

 'usr_zip_pcode' => $this->input->post('usr_zip_pcode'),

 'usr_access_level' => $this->input->post('usr_access_level'),

 'usr_is_active' => $this->input->post('usr_is_active')

);

Once it is stored in the $data array, we attempt to save the hash to the database with
the process_create_user() function of Users_model:

 if ($this->Users_model->process_create_user($data)) {

 $file = read_file('../views/email_scripts/welcome.txt');

 $file = str_replace('%usr_fname%', $data['usr_fname'],
 $file);

 $file = str_replace('%usr_lname%', $data['usr_lname'],
 $file);

 $file = str_replace('%password%', $password, $file);

 redirect('users');

 } else {

 }

 }

}

Creating an Authentication System

[200]

Should the admin user choose to edit a user's details, they can click on Edit
against the user's name when they're viewing the full user list, as described earlier
for the index() function. If they do press Edit, then the edit_user() function is
called—this is a basic function that uses the form validation functionality to validate
the user's details should the form be submitted.

Initially, we begin by deining the form validation rules:

public function edit_user() {

 // Set validation rules

 $this->form_validation->set_rules('usr_id', $this->lang->
 line('usr_id'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_fname', $this->lang->
 line('usr_fname'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_lname', $this->lang->
 line('usr_lname'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_uname', $this->lang->
 line('usr_uname'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_email', $this->lang->
 line('usr_email'), 'required|min_length[1]|max_length[255]|
 valid_email');

 $this->form_validation->set_rules('usr_confirm_email', $this->
 lang->line('usr_confirm_email'), 'required|min_length[1]|
 max_length[255]|valid_email|matches[usr_email]');

 $this->form_validation->set_rules('usr_add1', $this->lang->
 line('usr_add1'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_add2', $this->lang->
 line('usr_add2'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_add3', $this->lang->
 line('usr_add3'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('usr_town_city', $this->lang->
 line('usr_town_city'), 'required|min_length[1]|
 max_length[125]');

 $this->form_validation->set_rules('usr_zip_pcode', $this->lang->
 line('usr_zip_pcode'), 'required|min_length[1]|
 max_length[125]');

 $this->form_validation->set_rules('usr_access_level', $this->
 lang->line('usr_access_level'), 'min_length[1]|
 max_length[125]');

 $this->form_validation->set_rules('usr_is_active', $this->lang->
 line('usr_is_active'), 'min_length[1]|max_length[1]|
 integer|is_natural');

Chapter 6

[201]

The user's primary key (users.usr_id) is appended to the Edit link and passed to the
edit_user() function. This is used to look up the user in the users table. The get_
user_details($id) function of Users_model takes one parameter—the value of $id
(as passed in the Edit link or posted using $_POST if the form is submitted)—and looks
for the user. Once found, the details of the query are written to local variables and
saved to the $data array. This, in turn, is passed to the edit_user.php view where it
is used to populate the form items with the correct data:

if ($this->input->post()) {

 $id = $this->input->post('usr_id');

} else {

 $id = $this->uri->segment(3);

}

$data['page_heading'] = 'Edit user';

// Begin validation

After we set the validation rules, we test for the return value of $this->form_
validation(). If it's the irst time the page is accessed or any form item fails
validation, then FALSE is returned, and the following code is run. Here, we deine
the settings for the HTML form elements displayed in the views/users/edit_user.
php view:

if ($this->form_validation->run() == FALSE) { // First load, or
 problem with form

 $query = $this->Users_model->get_user_details($id);

 foreach ($query->result() as $row) {

 $usr_id = $row->usr_id;

 $usr_fname = $row->usr_fname;

 $usr_lname = $row->usr_lname;

 $usr_uname = $row->usr_uname;

 $usr_email = $row->usr_email;

 $usr_add1 = $row->usr_add1;

 $usr_add2 = $row->usr_add2;

 $usr_add3 = $row->usr_add3;

 $usr_town_city = $row->usr_town_city;

 $usr_zip_pcode = $row->usr_zip_pcode;

 $usr_access_level = $row->usr_access_level;

 $usr_is_active = $row->usr_is_active;

 }

Creating an Authentication System

[202]

We build the HTML form elements here, deining their settings in the $data array,
as shown in the following code:

 $data['usr_fname'] = array('name' => 'usr_fname', 'class' =>
 'form-control', 'id' => 'usr_fname', 'value' =>
 set_value('usr_fname', $usr_fname), 'maxlength' => '100',
 'size' => '35');

 $data['usr_lname'] = array('name' => 'usr_lname', 'class' =>
 'form-control', 'id' => 'usr_lname', 'value' =>
 set_value('usr_lname', $usr_lname), 'maxlength' => '100',
 'size' => '35');

 $data['usr_uname'] = array('name' => 'usr_uname', 'class' =>
 'form-control', 'id' => 'usr_uname', 'value' =>
 set_value('usr_uname', $usr_uname), 'maxlength' => '100',
 'size' => '35');

 $data['usr_email'] = array('name' => 'usr_email', 'class' =>
 'form-control', 'id' => 'usr_email', 'value' =>
 set_value('usr_email', $usr_email), 'maxlength' => '100',
 'size' => '35');

 $data['usr_confirm_email'] = array('name' =>
 'usr_confirm_email', 'class' => 'form-control', 'id' =>
 'usr_confirm_email', 'value' => set_value('usr_confirm_email',
 $usr_email), 'maxlength' => '100', 'size' => '35');

 $data['usr_add1'] = array('name' => 'usr_add1', 'class' =>
 'form-control', 'id' => 'usr_add1', 'value' =>
 set_value('usr_add1', $usr_add1), 'maxlength' => '100',
 'size' => '35');

 $data['usr_add2'] = array('name' => 'usr_add2', 'class' =>
 'form-control', 'id' => 'usr_add2', 'value' =>
 set_value('usr_add2', $usr_add2), 'maxlength' => '100',
 'size' => '35');

 $data['usr_add3'] = array('name' => 'usr_add3', 'class' =>
 'form-control', 'id' => 'usr_add3', 'value' =>
 set_value('usr_add3', $usr_add3), 'maxlength' => '100',
 'size' => '35');

 $data['usr_town_city'] = array('name' => 'usr_town_city',
 'class' => 'form-control', 'id' => 'usr_town_city', 'value' =>
 set_value('usr_town_city', $usr_town_city), 'maxlength' =>
 '100', 'size' => '35');

 $data['usr_zip_pcode'] = array('name' => 'usr_zip_pcode',
 'class' => 'form-control', 'id' => 'usr_zip_pcode', 'value' =>
 set_value('usr_zip_pcode', $usr_zip_pcode), 'maxlength' =>
 '100', 'size' => '35');

 $data['usr_access_level_options'] = array(1=>1, 2=>2, 3=>3,
 4=>4, 5=>5);

 $data['usr_access_level'] = array('value' =>
 set_value('usr_access_level', ''));

 $data['usr_is_active'] = $usr_is_active;

Chapter 6

[203]

 $data['id'] = array('usr_id' => set_value('usr_id', $usr_id));

 $this->load->view('common/header', $data);

 $this->load->view('nav/top_nav', $data);

 $this->load->view('users/edit_user', $data);

 $this->load->view('common/footer', $data);

} else { // Validation passed, now escape the data

Assuming that the form input passed validation, we save the new user information
to the $data array:

$data = array(

 'usr_fname' => $this->input->post('usr_fname'),

 'usr_lname' => $this->input->post('usr_lname'),

 'usr_uname' => $this->input->post('usr_uname'),

 'usr_email' => $this->input->post('usr_email'),

 'usr_add1' => $this->input->post('usr_add1'),

 'usr_add2' => $this->input->post('usr_add2'),

 'usr_add3' => $this->input->post('usr_add3'),

 'usr_town_city' => $this->input->post('usr_town_city'),

 'usr_zip_pcode' => $this->input->post('usr_zip_pcode'),

 'usr_access_level' => $this->input->post('usr_access_level'),

 'usr_is_active' => $this->input->post('usr_is_active')

);

Once everything is added to the $data array, we try to update the user's details
using the process_update_user() function of Users_model:

 if ($this->Users_model->process_update_user($id, $data)) {

 redirect('users');

 }

 }

}

By pressing the Delete link in the views/users/view_all_users.php ile, the
users controller's delete_user() function is called. Like the edit_user() function,
delete_user() uses the users_usr_id primary key appended to the end of the
Delete link URL and passes it to the delete_user($id) function of Users_model. This
model function takes one parameter—the $id (as passed in the Delete link or posted
using $_POST if the form is submitted)—and deletes the user from the users table:

 public function delete_user() {

 // Set validation rules

 $this->form_validation->set_rules('id', $this->lang->
 line('usr_id'), 'required|min_length[1]|max_length[11]|
 integer|is_natural');

Creating an Authentication System

[204]

 if ($this->input->post()) {

 $id = $this->input->post('id');

 } else {

 $id = $this->uri->segment(3);

 }

 $data['page_heading'] = 'Confirm delete?';

 if ($this->form_validation->run() == FALSE) { // First load,
 or problem with form

 $data['query'] = $this->Users_model->get_user_details($id);

 $this->load->view('common/header', $data);

 $this->load->view('nav/top_nav', $data);

 $this->load->view('users/delete_user', $data);

 $this->load->view('common/footer', $data);

 } else {

 if ($this->Users_model->delete_user($id)) {

 redirect('users');

 }

 }

 }

 public function pwd_email() {

 $id = $this->uri->segment(3);

 send_email($data, 'reset');

 redirect('users');

 }

}

Creating the language ile
As with all the projects in this book, we're making use of the language ile to serve
text to users. This way, you can enable multiple region/multiple language support.

Create the /path/to/codeigniter/application/language/english/en_admin_
lang.php ile and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

// General

$lang['system_system_name'] = "Auth System";

// Top Nav

$lang['top_nav_users'] = "Users";

Chapter 6

[205]

$lang['top_nav_new'] = 'New';

$lang['top_nav_signin'] = "Login";

$lang['top_nav_signout'] = "Logout";

// Login

$lang['signin_email'] = "Email";

$lang['signin_password'] = "Password";

$lang['admin_login_header'] = "Please sign in";

$lang['admin_login_email'] = "Email";

$lang['admin_login_password'] = "Password";

$lang['admin_login_signin'] = "Signin...";

$lang['admin_login_error'] = "Whoops! Something went wrong - have
 another go!";

$lang['forgot_pwd_header'] = 'Reset Password...';

$lang['forgot_pwd_instruction'] = 'Enter your email in the box
 below and if your email is in the database we will send you a
 new password' ;

$lang['signin_forgot_password'] = "Forgot Password?";

// Register

$lang['register_page_title'] = "Register...";

$lang['register_first_name'] = "First Name";

$lang['register_last_name'] = "Last Name";

$lang['register_email'] = "Email";

// Emails

$lang['email_subject_new_password'] = "Your new password.";

$lang['email_subject_reset_password'] = "Reset your password.";

// New/Edit User

$lang['usr_form_instruction_new'] = "New User Details";

$lang['usr_form_instruction_edit'] = "Edit User Details";

$lang['usr_id'] = "ID";

$lang['usr_fname'] = "First name";

$lang['usr_lname'] = "Last Name";

$lang['usr_uname'] = "Username";

$lang['usr_email'] = "Email";

$lang['usr_confirm_email'] = "Confirm Email";

$lang['usr_add1'] = "Address 1";

$lang['usr_add2'] = "Address 2";

$lang['usr_add3'] = "Address 3";

$lang['usr_town_city'] = "Town/City";

$lang['usr_zip_pcode'] = "Zip/Postal Code";

Creating an Authentication System

[206]

$lang['usr_access_level'] = "User Access Level";

$lang['is_active'] = "User is active?";

// Forgot password

$lang['forgot_pwd_success_heading'] = "Email Sent:";

$lang['forgot_pwd_success_msg'] = "An email has been sent to the
 address provided.";

// New password

$lang['signin_new_pwd_instruction'] = "Reset your password";

$lang['signin_new_pwd_email'] = "Your email";

$lang['signin_new_pwd_pwd'] = "Password";

$lang['signin_new_pwd_confirm'] = "Confirm password";

$lang['signin_new_pwd_code'] = "Code";

// Delete

$lang['delete_confirm_message'] = "Are you sure you want to delete
 the user: ";

Putting it all together
Okay, so that's the code. Now, let's take a look at some ways in which it can be
used—this will help us get a good idea about how it all interacts with each other.

User registration
The following is the sequence of steps:

• A user opens the register controller in their browser and is prompted
to enter their irst name, last name, and e-mail address

• The user submits the form and the form is posted to the index()
register function

• The register controller saves the user's details to the users table and
generates a password for them

• This is sent to them in an e-mail and is sent to the email address
submitted earlier

• The user can then log back in to the system and amend their details as
they wish

Chapter 6

[207]

Ensuring correct access
It is possible to allocate controllers and even certain functions to be accessed by users
with a speciic access level only. We touched on this earlier in the chapter; however,
we're going to discuss it here as well.

Look at the following code snippet, speciically, the parts in bold:

if (($this->session->userdata('logged_in') == FALSE) ||

 ($this->session->userdata('usr_access_level') != 1)) {

 redirect('signin');

}

This function can be placed into any controller or function as you wish; doing so will
protect this code block from access to users without the correct access level. The irst
part checks whether a user is logged in (that is, if a session exists), but the second
comparison looks at the user access level set at the sign-in. By adjusting the value
checked for, you can tailor access to speciic users, user groups, or access levels.

Summary
So there you are—a simple auth system using Twitter Bootstrap as a frontend. It
should be simple to adapt and amend to suit your needs but still enable you to do
the basics.

In the next chapter we will look at creating a simple e-commerce site that will allow
you to have a simple shop and a look at options on how you can extend it.

Creating an E-Commerce

Site
This is a small, concise e-commerce application. There's no admin CMS to manage
products (it would have been too much to write about in this chapter), but there is an
easy-to-use (and importantly for you easy to adapt) process to display products and
let customers order them.

In this chapter, we will cover:

• Design and wireframes

• Creating the database

• Creating models

• Creating views

• Creating controllers

• Putting it all together

Introduction
In this project, we will create a simple shopping cart. This application will allow
customers to view products, ilter products by category, and add products to their cart.

It will also let customers alter their shopping cart by removing items or changing the
quantity of these items.

Finally, there is a customer details form that allows their personal details to be saved
against an order for processing.

Creating an E-Commerce Site

[210]

To create the web application for this project, we will create one controller; this will
handle the display of products, amend the quantities of products in the cart, and also
handle the processing of orders.

We'll create a language ile to store text, which will allow you to have multiple
language support should that be required.

We'll create all the necessary view iles and a model to interface with the database.

However, this app along with all the others in this book relies on the basic setup we
did in Chapter 1, Introduction and Shared Project Resources; although you can take large
sections of the code and drop it into pretty much any app you might already have,
please keep in mind that the setup done in the irst chapter acts as a foundation for
this chapter.

So without further ado, let's get on with it.

Design and wireframes
As always, before we start building, we should take a look at what we plan to build.

Firstly, we will provide a brief description of our intent. We plan to build an app that
will allow people to view products as an online shop. They can sort these products
by category. Add products to a cart and enter their details to create an order. A
special code called order_fulfilment_code is generated (saved in the database
in orders.order_fulfilment_code). This code will allow you to track any order
through a payment system.

Anyway, to get a better idea of what's happening, let's take a look at the following
site map:

Home (index())

Add to car: (add()) Cart (display_cart())

Proceed to checkpout

(user_details())

1

2 3

4

Chapter 7

[211]

So that's the site map—the irst thing to notice is how simple the site is. There are
only four main areas to this project. Let's go over each item and get a brief idea of
what it does:

• Home: This is the initial landing area. The index() function displays
products to view and also displays categories with which a user can ilter the
products to see items related to that category. So, by clicking on the Books
category, they will see only products that are assigned the category as books.

• Add to cart: This processes the addition of a product to the user's cart. The
number of items in a cart is presented in the navigation bar at all times.

• Cart: This displays a list of items in the cart as well as an option to increase or
decrease the number of each items in that cart.

• Proceed to checkout: This displays a form to the users, inviting them to enter
their information. Once they press Go, their order and details are added to
the database for processing.

Now that we have a fairly good idea of the structure and form of the site, let's take a
look at some wireframes of each page.

Home – index()
The following screenshot shows you a wireframe from point 1 (the Home (index())
item) in the site map. Initially, the user is shown a list of products. This list is not
iltered. On the right-hand side of the wireframe is a list of categories (as found in
the categories table). The user is able to click on these categories to ilter the results
they view on the left-hand side, and clicking on All Categories clears the ilter
once more.

Creating an E-Commerce Site

[212]

Beneath each product is the Add to cart button, which allows the user to add a
particular product to their cart.

Web Application Blueprints

Shop

http://www.domain.com

Home Cart(())

Product Title Product Title
This is a product

description

29.99

This is a product

description

29.99

Product Title Product Title
This is a product

description

29.99

This is a product

description

29.99

Add to cart Add to cart

Add to cart Add to cart

All Categories

Shirts

Footware

Books

Beauty

Software

Computers

Kitchen Ware

Luggage

Camping

Sports

Add to cart – add()
The following screenshot shows you a user clicking and adding a product to their
cart. This is done by clicking on an Add to cart button below a particular product.
Clicking on this button will call the shop controller's add() function, which will then
call the CodeIgniter Cart class' $this->cart->insert() function, which will add
the product to the cart.

Chapter 7

[213]

Web Application Blueprints

Shop

http://www.domain.com

Home Cart(0)

Product Title Product Title
This is a product

description

29.99

This is a product

description

29.99

Product Title Product Title
This is a product

description

29.99

This is a product

description

29.99

Add to cart

Add to cart Add to cart

All Categories

Shirts

Footware

Books

Beauty

Software

Computers

Kitchen Ware

Luggage

Camping

Sports

Add to cart

Cart – display_cart()
The following screenshot shows you a wireframe from point 3 (the Cart display_
cart() item) in the site map. The user is presented with a list of items currently in
the cart. The display_cart() function is accessed in two ways—either by clicking
on the Cart link in the top navigation menu or immediately after clicking on Add to
cart under a product displayed in point 1 (the Home index() item) in the site map.
Adjusting the value in the text box under Quantity and pressing the Update Cart
button will increase or decrease the number of that product in the cart.

Creating an E-Commerce Site

[214]

Pressing Proceed to check out will call the user_details() function from point 4
(the Proceed to checkout item) in the site map.

Web Application Blueprints

Shop

http://www.domain.com

Home Cart(())

Update cart

Proceed to checkout

Quantity Description Item Price Sub-Total

1 Running Shoes 50.00

Total

50.00

50.00

User Details – user_details()
The following screenshot shows you a wireframe from point 4 (the Proceed to
checkout user_details() item) in the site map. The user is presented with a form
in which they can add their contact and delivery details for the order. Once the
user enters their details and presses Go, their order (content of the cart) and contact
details are written to the orders and customer tables, which are joined in the
orders table by the customer ID.

Chapter 7

[215]

Web Application Blueprints

Go...

Confirm Email

Delivery Address

Shop Home Cart(1)

Payment Address

Email

Last Name

First Name

http://www.domail.com/

File overview
This is a relatively small project, and all in all, we're only going to create seven iles;
these are as follows:

• /path/to/codeigniter/application/models/shop_model.php:
This provides read/write access to the database.

• /path/to/codeigniter/application/views/shop/display_products.

php: This displays a list of products to the user, allows them to add a
product to the cart, and ilters products by categories—as deined in the
categories table.

• /path/to/codeigniter/application/views/shop/display_cart.php:
This displays the contents of the cart to the user. There are form options to
amend product quantities and proceed to the checkout.

Creating an E-Commerce Site

[216]

• /path/to/codeigniter/application/views/shop/user_details.php:
This displays a form to the user, allowing them to enter their contact details
for their order fulillment. User information is stored in the customer table,
which is joined to the orders table—in the orders table—by the customer
table's primary key.

• /path/to/codeigniter/application/views/nav/top_nav.php: This
provides a navigation bar at the top of the page.

• /path/to/codeigniter/application/controllers/shop.php: This
contains all the necessary functions to display products, add products to a
cart, amend that cart, and process the customer details.

• /path/to/codeigniter/application/language/english/en_admin_

lang.php: This provides language support for the application.

The ile structure of the preceding seven iles is as follows:

application/

├── controllers/

│ ├── shop.php

├── models/

│ ├── shop_model.php

├── views/shop/

│ ├── display_products.php

│ ├── display_cart.php

│ ├── user_details.php

├── views/nav/

│ ├── top_nav.php

├── language/english/

│ ├── en_admin_lang.php

Creating the database
Okay, you should have already set up CodeIgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources. If not, then you should know that
the code in this chapter is speciically built with the setup from Chapter 1, Introduction
and Shared Project Resources, in mind. However, it's not the end of the world if you
haven't; the code can easily be applied to other situations.

First, we'll build the database. Copy the following MySQL code to your database:

CREATE DATABASE `shopdb`;
USE DATABASE `shopdb`;

CREATE TABLE `categories` (

Chapter 7

[217]

 `cat_id` int(11) NOT NULL AUTO_INCREMENT,
 `cat_name` varchar(50) NOT NULL,
 `cat_url_name` varchar(15) NOT NULL,
 PRIMARY KEY (`cat_id`)
) ENGINE=InnoDB AUTO_INCREMENT=11 DEFAULT CHARSET=latin1;

INSERT INTO `categories` VALUES
 (1,'Shirts','shirts'),(2,'Footware','footware'),(3,'Books','
 books'),(4,'Beauty','beauty'),(5,'Software','software'),(6,'
 Computers','computers'),(7,'Kitchen Ware','kitchenware'),
 (8,'Luggage','luggage'),(9,'Camping','camping'),(10,'Sports','
 sports');

CREATE TABLE `ci_sessions` (
 `session_id` varchar(40) COLLATE utf8_bin NOT NULL DEFAULT '0',
 `ip_address` varchar(16) COLLATE utf8_bin NOT NULL DEFAULT '0',
 `user_agent` varchar(120) COLLATE utf8_bin DEFAULT NULL,
 `last_activity` int(10) unsigned NOT NULL DEFAULT '0',
 `user_data` text COLLATE utf8_bin NOT NULL
) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin;

CREATE TABLE `customer` (
 `cust_id` int(11) NOT NULL AUTO_INCREMENT,
 `cust_first_name` varchar(125) NOT NULL,
 `cust_last_name` varchar(125) NOT NULL,
 `cust_email` varchar(255) NOT NULL,
 `cust_created_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `cust_address` text NOT NULL COMMENT 'card holder address',
 PRIMARY KEY (`cust_id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=latin1;

CREATE TABLE `orders` (
 `order_id` int(11) NOT NULL AUTO_INCREMENT,
 `cust_id` int(11) NOT NULL,
 `order_details` text NOT NULL,
 `order_subtotal` int(11) NOT NULL,
 `order_created_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `order_closed` int(1) NOT NULL COMMENT '0 = open, 1 = closed',
 `order_fulfilment_code` varchar(255) NOT NULL COMMENT 'the
 unique code sent to a payment provider',
 `order_delivery_address` text NOT NULL,
 PRIMARY KEY (`order_id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=latin1;

CREATE TABLE `products` (

Creating an E-Commerce Site

[218]

 `product_id` int(11) NOT NULL AUTO_INCREMENT,
 `product_name` varchar(255) NOT NULL,
 `product_code` int(11) NOT NULL,
 `product_description` varchar(255) NOT NULL,
 `category_id` int(11) NOT NULL,
 `product_price` int(11) NOT NULL,
 PRIMARY KEY (`product_id`)
) ENGINE=InnoDB AUTO_INCREMENT=14 DEFAULT CHARSET=latin1;

INSERT INTO `products` VALUES (1,'Running Shoes',423423,'These are
 some shoes',2,50),(2,'Hawaiian Shirt',34234,'This is a shirt'
 ,1,25),(3,'Slippers',23134,'Nice comfortable slippers',2,4),
 (4,'Shirt',2553245,'White Office Shirt',1,25),(5,'CodeIgniter
 Blueprints',5442342,'Some excellent projects to make and do (in
 CodeIgniter) - it\'s good value too!',3,25),(6,'Office Suite'
 ,34234123,'Writer, Calc, Presentation software',5,299),(7,'Anti-
 Virus',324142,'Get rid of those pesky viruses from your
 computer',5,29),(8,'Operating System',12341,'This can run your
 computer',5,30),(9,'Web Browser',42412,'Browse the web with a
 web browser (that\'s what they\'re for)',5,5),(10,'Dinner
 set',3241235,'6 dinner plates, 6 side plates, 6 cups',7,45),
 (11,'Champagne Glasses',1454352,'Crystal glasses to drink fizzy
 French plonk from ',7,45),(12,'Toaster',523234,'Capable of
 toasting 4 slices at once!',7,35),(13,'Kettle',62546245,'Heat
 water with this amazing kettle',7,25);

Now take a look at that last bit of SQL code; it's quite big and iddly.
Don't panic; all SQL code is available online from this book's support
page on the Packt website.

You'll see that the irst table we create is ci_sessions. We need this to allow
CodeIgniter to manage sessions, speciically, a customer's cart. However, this is just
the standard session table available from the CodeIgniter User Guide, so I'll not include
a description of that table as it's not technically speciic to this application. However,
if you're interested, there's a description at http://ellislab.com/codeigniter/
user-guide/libraries/sessions.html.

Right, let's take a look at each item in each table and see what it means. First we will
see the categories table.

Table: categories

Element Description

cat_id This is the primary key

cat_name This is the name of the category, and it is displayed as a title in the
right-hand side category filter list in the views/shop/display_
products.php file

Chapter 7

[219]

Table: categories

Element Description

cat_url_name This is the short version of the cat_name element; it is used as the
third parameter of the URL when a user clicks on a category in the
right-hand side category filter list in the views/shop/display_
products.php file

Now take a look at the products table:

Table: products

Element Description

product_id This is the primary key

product_name This is the name of the product

product_code This is a place where you can store your internal reference
code for the product

product_description This is the description of the product

category_id This is the category that the product belongs to, and it is the
primary key of the categories table

product_price This is the price of the product

Next we will see the customer table:

Table: customer

Element Description

cust_id This is the primary key

cust_first_name This is the customer's first name

cust_last_name This is the customer's last name

cust_email This is the customer's e-mail address

cust_created_at This is the MySQL timestamp of the date on which the row was
created in the database

cust_address This is the customer address (payment address)

Creating an E-Commerce Site

[220]

Finally, let's see the orders table:

Table: orders

Element Description

order_id This is the primary key

cust_id This is the primary key of the customer from the
customer table

order_details This is a serialized dump of the cart table populated by
the serialize($this->cart->contents()) line

order_subtotal This is the value of the order

order_created_at This is the MySQL timestamp of the date the row that
was created in the database

order_closed The default value is 0 but can be 1. 0; it indicates that this
is a new order, and 1 is that the order has been fulfilled

order_fulfilment_code This is the value of the $payment_code generated in the
shop controller's user_details() function, and it can
be used to track the order through a payment system

order_delivery_address This is the delivery address of the order

We'll also need to make amends to the config/database.php ile, namely setting
the database access details, username password, and so on.

Open the config/database.php ile and ind the following lines:

$db['default']['hostname'] = 'localhost';

$db['default']['username'] = 'your username';

$db['default']['password'] = 'your password';

$db['default']['database'] = 'shopdb';

Now edit the values in the preceding lines, ensuring you substitute these values with
ones more speciic to your setup and situation; so, enter your username, password,
and so on.

Adjusting the conig.php ile
There are a few things in this ile that we'll need to conigure to support sessions and
encryption. So open the config/config.php ile and make the following changes:

1. We will need to set an encryption key; both sessions and CodeIgniter's
encryption functionality require a encryption key to be set in the $config
array, so ind the following line:
$config['encryption_key'] = '';

Chapter 7

[221]

Replace it with the following:

$config['encryption_key'] = 'a-random-string-of-alphanum-
 characters';

Now obviously, don't actually change the value to literally
a-random-string-of-alphanum-characters; instead, change it to, er, a
random string of alphanum characters—if that makes sense? Yeah,
you know what I mean.

2. Find these lines:

$config['sess_cookie_name'] = 'ci_session';

$config['sess_expiration'] = 7200;

$config['sess_expire_on_close'] = FALSE;

$config['sess_encrypt_cookie'] = FALSE;

$config['sess_use_database'] = FALSE;

$config['sess_table_name'] = 'ci_sessions';

$config['sess_match_ip'] = FALSE;

$config['sess_match_useragent'] = TRUE;

$config['sess_time_to_update'] = 300;

Replace the lines with the following:

$config['sess_cookie_name'] = 'ci_session';

$config['sess_expiration'] = 7200;

$config['sess_expire_on_close'] = TRUE;

$config['sess_encrypt_cookie'] = TRUE;

$config['sess_use_database'] = TRUE;

$config['sess_table_name'] = 'ci_sessions';

$config['sess_match_ip'] = TRUE;

$config['sess_match_useragent'] = TRUE;

$config['sess_time_to_update'] = 300;

Adjusting the routes.php ile
We want to redirect the user to the shop controller rather than the default
CodeIgniter welcome controller. We will need to amend the default controller setting
in the routes.php ile to relect this:

1. Open the config/routes.php ile for editing and ind the following lines
(near the bottom of the ile):
$route['default_controller'] = "welcome";

$route['404_override'] = '';

Creating an E-Commerce Site

[222]

2. Firstly, we need to change the default controller. Initially in a CodeIgniter
application, the default controller is set to welcome; however, we don't
need that. Instead, we want the default controller to be shop. So, ind the
following line:

$route['default_controller'] = "welcome";

Change it to the following:

$route['default_controller'] = "shop";

$route['404_override'] = '';

Creating the model
There is only one model in this project—shop_model.php—which contains functions
that are speciic to searching and writing products to the database.

This is our one and only model for this project; let's briely go over each function
in it to give us a general idea of what it does, and then we will go into more detail
in the code.

There are ive main functions in this model, which are as follows:

• get_product_details(): This accepts one argument—the $product_id—of
the product being added to the cart and returns a database result object that
contains information about a speciic product. This model function is used
by the shop controller's add() function to fetch the correct details about a
product before it is added to the cart.

• get_all_products(): This accepts no argument. This model function
will return a list of products (as deined in the products table) to the shop
controller's index() function.

• get_all_products_by_category_name(): This accepts one argument—
$cat_url_name (deined in the database as categories.cat_url_name). This
function is called if a user has clicked on a category ilter link (displayed on the
right-hand side of the wireframe in the Home – index() section of this chapter).

• get_all_categories(): This fetches categories from the categories table.
It is used to populate the categories list (displayed on the right-hand side of
the wireframe in the Home – index() section of this chapter).

• save_cart_to_database(): This accepts two arguments: $cust_data and
$order_data. The $cust_data is data submitted by the user in point 4 (the
Proceed to checkout user_details() item) in the site map, and $order_
data is the contents of their cart. The customer data is added to the customer
table and the primary key that's generated is used as a foreign key in the
orders table.

Chapter 7

[223]

That was a quick overview, so let's create the model and discuss how it functions.

Create the /path/to/codeigniter/application/models/shop_model.php ile
and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
 allowed');

class Shop_model extends CI_Model {

 function __construct() {

 parent::__construct();

 $this->load->helper('url');

 }

 public function get_product_details($product_id) {

 $this->db->where('product_id', $product_id);

 $query = $this->db->get('products');

 return $query;

 }

The preceding get_product_details() function returns a list of all products. This
function is called by the shop controller's index() function if the user hasn't iltered
any results, that is, they haven't clicked on a category link in the views/shop/
display_products.php ile:products() {

 $q

public function get_all_uery = $this->db->get('products');

 return $query;

}

The preceding get_all_products() function returns a list of products with a ilter
applied. This function is called by the shop controller's index() function if the user
has iltered the products by a category, that, they have clicked on a category link in
the views/shop/display_products.php ile:

public function get_all_products_by_category_name($cat_url_name =
 null) {

 if ($cat_url_name) {

 $this->db->where('cat_url_name', $cat_url_name);

 $cat_query = $this->db->get('categories');

 foreach ($cat_query->result() as $row) {

 $category_id = $row->cat_id;

 }

 $this->db->where('category_id', $category_id);

Creating an E-Commerce Site

[224]

 }

 $query = $this->db->get('products');

 return $query;

}

The preceding get_all_products_by_category_name() function returns a list of
all categories in the categories table. This model function is called from the shop
controller's index() function to supply data to the product categories list on the
right-hand side of the views/shop/display_products.php ile:

public function get_all_categories($cat_url_name = null) {

 if ($cat_url_name) {

 $this->db->where('cat_url_name', $cat_url_name);

 }

 $query = $this->db->get('categories');

 return $query;

}

The preceding get_all_categories() function returns a list of all categories in the
categories table. This list is used in the views/shop/display_products.php ile
where a foreach loop iterates over the database object and displays the categories to
the user. A user can then click on a category and ilter their results.

Now, take a look at the following snippet:

 public function save_cart_to_database($cust_data, $order_data) {

 $this->db->insert('customer', $cust_data);

 $order_data['cust_id'] = $this->db->insert_id();

 if ($this->db->insert('orders', $order_data)) {

 return true;

 } else {

 return false;

 }

 }

}

The preceding save_cart_to_database() function saves an order to the database;
it converts the data in a cart, along with the data entered by the user in the views/
shop/user_details.php ile.

As you can see, the model is fairly straightforward and concise, so let's now take a
look at the views.

Chapter 7

[225]

Creating the views
There are four views in this project, and these are as follows:

• /path/to/codeigniter/application/views/shop/display_products.

php: This displays a list of products to the user and allows them to add
products to their cart and also ilter products.

• /path/to/codeigniter/application/views/shop/display_cart.

php: This displays all products in the user's cart, allows them to alter the
quantities of products in their cart, and also gives an option to move to the
checkout stage. This is a customized version of the cart template available
from the CodeIgniter documentation.

• /path/to/codeigniter/application/views/shop/user_details.php:
This displays a form to the user, allowing them to enter information about
their order, such as their contact details and delivery address.

• /path/to/codeigniter/application/views/nav/top_nav.php: This
displays the top-level menu. In this project, this is very simple, containing a
project name and link to go to the shop` controller and a link named Cart;
there is a variable positioned next to the word Cart, displaying the value
(0 by default); however, this is in fact the number of items in the cart at any
one time. If there were seven items in the cart, the link would say Cart (7).

That was a good overview of the views; now let's go over each one, build the code,
and discuss how they function.

Create the /path/to/codeigniter/application/views/shop/display_
products.php ile and add the following code to it:

<div class="row row-offcanvas row-offcanvas-right">

 <div class="col-xs-12 col-sm-9">

 <div class="row">

 <?php foreach ($query->result() as $row) : ?>

 <div class="col-6 col-sm-6 col-lg-4">

 <h2><?php echo $row->product_name ; ?></h2>

 <p>£<?php echo $row->product_price ; ?></p>

 <p><?php echo $row->product_description ; ?></p>

 <?php echo anchor('shop/add/'.$row->product_id, $this->
 lang->line('index_add_to_cart'), 'class="btn btn-
 default"') ; ?>

 </div>

 <?php endforeach ; ?>

 </div>

 </div>

Creating an E-Commerce Site

[226]

The preceding block of code outputs a list of products and displays them with a
description (products.product_description), price (products.product_price),
and link to add to cart.

A foreach loop is used to iterate over the products in $query. The $query value is
populated by data returned by the get_all_products() function of Shop_model;
or, if the user has iltered by a category (explained in the following HTML), then
$query is populated by the get_all_products_by_category_name() function of
Shop_model:

 <div class="col-xs-6 col-sm-3 sidebar-offcanvas" id="sidebar"
 role="navigation">

 <div class="list-group">

 <?php echo anchor(base_url(), $this->lang->
 line('index_all_categories'), 'class="list-group-item"') ;
 ?>

 <?php foreach ($cat_query->result() as $row) : ?>

 <?php echo anchor('shop/index/'.$row->cat_url_name, $row->
 cat_name, 'class="list-group-item"') ; ?>

 <?php endforeach ; ?>

 </div>

 </div>

</div>

The preceding block of code outputs a list of categories that the user can use to ilter
results. We use a foreach loop to iterate over the $cat_query array. This array is
supplied by the get_all_categories() function of Shop_model.

Create the /path/to/codeigniter/application/views/shop/display_cart.php
ile and add the following code to it:

<?php echo anchor('shop/user_details', $this->lang->
 line('display_cart_proceed_to_checkout'), 'type="button" class="btn
btn-primary btn-lg"') ; ?>

<?php echo form_open('shop/update_cart'); ?>

<table class="table">

 <tr>

 <th><?php echo $this->lang->line('display_cart_quantity') ; ?>
 </th>

 <th><?php echo $this->lang->line('display_cart_description') ;
 ?></th>

 <th><?php echo $this->lang->line('display_cart_item_price') ;
 ?></th>

Chapter 7

[227]

 <th><?php echo $this->lang->line('display_cart_sub_total') ;
 ?></th>

 </tr>

This view is responsible for displaying the contents of the cart to the user and also
allowing the user to adjust item quantities in the cart.

Look at the following line of code; with it, we create the $i variable. This variable
is incremented in the foreach loop. We use the $i variable to give the product
quantity textbox a unique name, that is, 1, 2, 3, 4, and so on:

 <?php $i = 1; ?>

This foreach loop iterates over each item in the CodeIgniter Cart class's $this-
>cart->contents() function. Each iteration is treated as the $item variable:

 <?php foreach ($this->cart->contents() as $items): ?>

 <?php echo form_hidden($i . '[rowid]', $items['rowid']); ?>

 <tr>

 <td><?php echo form_input(array('name' => $i . '[qty]',
 'value' => $items['qty'], 'maxlength' => '3', 'size' =>
 '5')); ?></td>

 <td>

 <?php echo $items['name']; ?>

 <?php if ($this->cart->has_options($items['rowid']) ==
 TRUE): ?>

 <p>

 <?php foreach ($this->cart->product_options($items
 ['rowid']) as $option_name => $option_value): ?>

 <?php echo $option_name; ?>: <?php
 echo $option_value; ?>

 <?php endforeach; ?>

 </p>

 <?php endif; ?>

 </td>

 <td><?php echo $this->cart->format_number($items['price']);
 ?></td>

 <td>£<?php echo $this->cart->format_number($items
 ['subtotal']); ?></td>

Creating an E-Commerce Site

[228]

 </tr>

 <?php $i++; ?>

 <?php endforeach; ?>

 <tr>

 <td colspan="2"> </td>

 <td>Total</td>

 <td>£<?php echo $this->cart->format_number($this->cart->
 total()); ?></td>

 </tr>

</table>

After the foreach loop, we display a button to the user. The following code is for the
button that will submit the form along with any adjusted item quantities:

<p><?php echo form_submit('', $this->lang->line
 ('display_cart_update_cart'), 'class="btn btn-success"'); ?></p>

<?php echo form_close() ; ?>

Create the /path/to/codeigniter/application/views/shop/user_details.php
ile and add the following code to it:

<div class="row row-offcanvas row-offcanvas-right">

 <div class="col-xs-12 col-sm-9">

 <div class="row">

 <?php echo validation_errors(); ?>

 <?php echo form_open('/shop/user_details') ; ?>

 <?php echo form_input($first_name); ?>

 <?php echo form_input($last_name); ?>

 <?php echo form_input($email); ?>

 <?php echo form_input($email_confirm); ?>

 <?php echo form_textarea($payment_address); ?>

 <?php echo form_textarea($delivery_address); ?>

 <?php echo form_submit('', $this->lang->line
 ('common_form_elements_go'), 'class="btn btn-success"') ;
 ?>

 <?php echo form_close() ; ?>

 </div>

 </div>

</div>

The preceding block of code creates a form into which the user can enter contact
details necessary for fulilling their order.

Chapter 7

[229]

Create the /path/to/codeigniter/application/views/nav/top_nav.php ile and
add the following code to it:

<!-- Fixed navbar -->

<div class="navbar navbar-inverse navbar-fixed-top"
 role="navigation">

 <div class="container">

 <div class="navbar-header">

 <button type="button" class="navbar-toggle" data-toggle=
 "collapse" data-target=".navbar-collapse">

 Toggle navigation

 </button>

 <a class="navbar-brand" href="<?php echo base_url() ; ?>">
 <?php echo $this->lang->line('system_system_name'); ?>

 </div>

 <div class="navbar-collapse collapse">

 <ul class="nav navbar-nav">

 <li class="active"><?php echo anchor('shop', $this->lang->
 line('nav_home')) ; ?>

 <?php echo anchor('shop/display_cart', ($items > 0) ?
 $this->lang->line('nav_cart_count') . '(' . $items . ')'
 : $this->lang->line('nav_cart_count') .'(0)') ; ?>

 </div><!--/.nav-collapse -->

 </div>

</div>

<div class="container theme-showcase" role="main">

The preceding block of code creates the navigation menu at the top of the page.
Take a look at the code in bold, shown again here (restructured):

 <?php

 echo anchor('shop/display_cart',

 ($items > 0) ? $this->lang->line('nav_cart_count') .

 '(' . $items . ')' : $this->lang->line
 ('nav_cart_count').'(0)') ;

 ?>

Creating an E-Commerce Site

[230]

The preceding block of code displays the word Cart along with a value in brackets.
This value is initially set to 0 (zero). However, this value is in fact the quantity of
items in the cart—if no items are in the cart, that number will be zero by default.

To start with, we use a PHP ternary operator to switch between displaying zero and
the actual number of items in the cart. If the number of items is greater than zero,
then there must be some items in the cart. So, we display that number of items,
otherwise we display zero.

The word Cart is set in the language ile, but what about the value of the number of
cart items? Where does that come from?

The number of items in the cart is calculated from several functions in the shop
controller, which are index(), update_cart() and user_details(). Let's take
a look at just one of these (as they all work the same) and see how it works in the
index() function; check out the following code segment from the index() function:

...

$cart_contents = $this->session->userdata('cart_contents');

$data['items'] = $cart_contents['total_items'];

$this->load->view('common/header');

$this->load->view('nav/top_nav', $data);

...

We fetch the contents of the cart stored in the cart_contents session item and store
it in the $cart_contents variable (to keep it simple).

The CodeIgniter Cart class automatically keeps a running total of the number of all
items currently in the cart and conveniently stores it in the total_items item in the
$cart_contents array.

We then assign $data['items'] the value of total_items (which should be the
number of items in the cart) and send it to the nav/top_nav.php view ile where is it
displayed next to the word Cart.

Creating the controllers
We're going to create only one controller in this project, which is /path/to/
codeigniter/application/controllers/shop.php.

Let's go over that controller now, look at the code, and discuss how it functions.

Chapter 7

[231]

Create the /path/to/codeigniter/application/controllers/shop.php ile and
add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

class Shop extends MY_Controller {

 function __construct() {

 parent::__construct();

 $this->load->library('cart');

 $this->load->helper('form');

 $this->load->helper('url');

 $this->load->helper('security');

 $this->load->model('Shop_model');

 $this->load->library('form_validation');

 $this->form_validation->set_error_delimiters('<div class=
 "alert alert-danger">', '</div>');

 }

 public function index() {

We want to display the correct products and as such, we need to test whether the
user has clicked on one of the ilter links on the right-hand side of the views/shop/
display_products.php ile. We test for the presence of a third uri parameter.

If the third parameter does not exist, then we can safely assume the user does not
want any iltering. So we call the get_all_products() function of Shop_model.

If a third parameter exists, then the user must be iltering their results. So we call
the get_all_products_by_category_name($this->uri->segment(3)) function,
passing to it the third parameter.

The third parameter comes from the categories.cat_url_name column in the
database, which is written out in the views/shop/display_products.php ile by
a foreach loop.

The loop iterates over the cat_query database object, which is populated by the
get_all_categories() function of Shop_model, as shown here:

if (!$this->uri->segment(3)) {

 $data['query'] = $this->Shop_model->get_all_products();

} else {

 $data['query'] = $this->Shop_model->
 get_all_products_by_category_name($this->uri->segment(3));

}

Creating an E-Commerce Site

[232]

As mentioned in the preceding paragraph, the get_all_categories() function of
Shop_model is called, returning its result to $data['cat_query']. In the views/
shop/display_products.php ile, it is iterated over with a foreach loop to create
a list of categories:

$data['cat_query'] = $this->Shop_model->get_all_categories();

Now we fetch the number of items in the cart from the cart_contents session
item. A full explanation of this is in the Creating the views section of this chapter,
speciically in the explanation for the /path/to/codeigniter/application/views/
nav/top_nav.php view ile:

 $cart_contents = $this->session->userdata('cart_contents');

 $data['items'] = $cart_contents['total_items'];

 $this->load->view('common/header');

 $this->load->view('nav/top_nav', $data);

 $this->load->view('shop/display_products', $data);

 $this->load->view('common/footer');

}

The following add() function adds an item to the cart. It is called from the views/
shop/display_products.php ile when a user clicks on Add to cart. The third
parameter of the link in Add to cart is the product ID (products.product_id).
We grab the product ID from the URI (it's the third segment) and pass it to the
get_product_details($product_id) function of Shop_model. This will return
the product details in the $query variable. We loop over $query, pulling out the
individual details for the product and saving them to the $data array:

public function add() {

 $product_id = $this->uri->segment(3);

 $query = $this->Shop_model->get_product_details($product_id);

 foreach($query->result() as $row) {

 $data = array(

 'id' => $row->product_id,

 'qty' => 1,

 'price' => $row->product_price,

 'name' => $row->product_name,

);

 }

We save the $data array to the cart using the CodeIgniter Cart class's $this->cart-
>insert();function:

$this->cart->insert($data);

Chapter 7

[233]

We then fetch a list of all categories and the new number of items in the cart and
send them to the nav/top_nav.php view ile.

The shop/display_cart.php view ile will loop over the contents of the cart using
the CodeIgniter Cart class's $this->cart->contents() function:

 $data['cat_query'] = $this->Shop_model->get_all_categories();

 $cart_contents = $this->session->userdata('cart_contents');

 $data['items'] = $cart_contents['total_items'];

 $this->load->view('common/header');

 $this->load->view('nav/top_nav', $data);

 $this->load->view('shop/display_cart', $data);

 $this->load->view('common/footer');

}

The update_cart() function is called when the user clicks on the Update Cart
button in the views/shop/display_cart.php ile. When it is called, it loops over
the input posted from the form in views/shop/display_cart.php and saves it to
the $data array; let's take a look:

public function update_cart() {

 $data = array();

 $i = 0;

First we create an array called $data in which we can store the adjusted cart
data (we'll use this later). Then, we create a $i variable; we'll use this to create
a multidimensional array, incrementing the value of $i on every iteration of the
loop—with $i keeping the rowid value (the ID of the product in the cart) and qty
value linked and related to each other.

We loop over the posted data (from the form in views/shop/display_cart.php),
treating each iteration of the loop as $item.

Each $item has a rowid element (the position of the product in the cart) and qty,
which is the adjusted product quantity:

foreach($this->input->post() as $item) {

 $data[$i]['rowid'] = $item['rowid'];

 $data[$i]['qty'] = $item['qty'];

 $i++;

}

Creating an E-Commerce Site

[234]

Now that the cart data has been looped over and any quantity adjustments made,
we'll use the CodeIgniter Cart class's $this->cart->update() function to update
the cart. We then redirect the user using the redirect() function to the shop
controller's display_cart() function, which will report the new values to the user:

 $this->cart->update($data);

 redirect('shop/display_cart');

}

The actual iteration over the cart data is done in the views/shop/display_cart.php
view ile, but the display_cart() function exists to offer a speciic way to view items
in the cart. Calling this function loads the views/shop/display_cart.php view:

public function display_cart() {

 $data['cat_query'] = $this->Shop_model->get_all_categories();

 $cart_contents = $this->session->userdata('cart_contents');

 $data['items'] = $cart_contents['total_items'];

 $this->load->view('common/header');

 $this->load->view('nav/top_nav', $data);

 $this->load->view('shop/display_cart', $data);

 $this->load->view('common/footer');

}

public function clear_cart() {

 $this->cart->destroy();

 redirect('index');

}

The user_details() function is responsible for displaying a form to the user,
allowing them to enter their contact details, validating those details, and converting
their cart to an order. Let's look in detail at how this works.

First off, we start by setting the validation rules for the form submission:

public function user_details() {

 // Set validation rules

 $this->form_validation->set_rules('first_name', $this->lang->
 line('user_details_placeholder_first_name'),
 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('last_name', $this->lang->
 line('user_details_placeholder_last_name'),
 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('email', $this->lang->
 line('user_details_placeholder_email'),
 'required|min_length[1]|max_length[255]|valid_email');

Chapter 7

[235]

 $this->form_validation->set_rules('email_confirm', $this->
 lang->line('user_details_placeholder_email_confirm'),
 'required|min_length[1]|max_length[255]|valid_email|
 matches[email]');

 $this->form_validation->set_rules('payment_address', $this->
 lang->line('user_details_placeholder_payment_address'),
 'required|min_length[1]|max_length[1000]');

 $this->form_validation->set_rules('delivery_address', $this->
 lang->line('user_details_placeholder_delivery_address'),
 'min_length[1]|max_length[1000]');

If this is the initial page load or there were errors with the submission of the form,
then the $this->form_validation->run() function will return FALSE. If either of
these happens, then we will begin to build the form elements, deining the settings
for each form item:

if ($this->form_validation->run() == FALSE) {

 $data['first_name'] = array('name' => 'first_name', 'class' =>
 'form-control', 'id' => 'first_name', 'value' =>
 set_value('first_name', ''), 'maxlength' => '100', 'size' =>
 '35', 'placeholder' => $this->lang->
 line('user_details_placeholder_first_name'));

 $data['last_name'] = array('name' => 'last_name', 'class' =>
 'form-control', 'id' => 'last_name', 'value' =>
 set_value('last_name', ''), 'maxlength' => '100', 'size' =>
 '35', 'placeholder' => $this->lang->
 line('user_details_placeholder_last_name'));

 $data['email'] = array('name' => 'email', 'class' => 'form-
 control', 'id' => 'email', 'value' => set_value('email', ''),
 'maxlength' => '100', 'size' => '35', 'placeholder' =>
 $this->lang->line('user_details_placeholder_email'));

 $data['email_confirm'] = array('name' => 'email_confirm',
 'class' => 'form-control', 'id' => 'email_confirm', 'value' =>
 set_value('email_confirm', ''), 'maxlength' => '100', 'size'
 => '35', 'placeholder' => $this->lang->
 line('user_details_placeholder_email_confirm'));

 $data['payment_address'] = array('name' => 'payment_address',
 'class' => 'form-control', 'id' => 'payment_address', 'value'
 => set_value('payment_address', ''), 'maxlength' => '100',
 'size' => '35', 'placeholder' => $this->lang->
 line('user_details_placeholder_payment_address'));

 $data['delivery_address'] = array('name' => 'delivery_address',
 'class' => 'form-control', 'id' => 'delivery_address', 'value'
 => set_value('delivery_address', ''), 'maxlength' => '100',
 'size' => '35', 'placeholder' => $this->lang->
 line('user_details_placeholder_delivery_address'));

Creating an E-Commerce Site

[236]

Now we fetch the number of items in the cart from the cart_contents session item.
A full explanation of this is in the Creating the views section of this chapter under the
explanation for the /path/to/codeigniter/application/views/nav/top_nav.php
view ile. After we have the contents of the cart for the Cart link in the navigation bar,
we'll load the views/shop/user_details.php ile, which will do the job of displaying
the form:

 $cart_contents = $this->session->userdata('cart_contents');

 $data['items'] = $cart_contents['total_items'];

 $this->load->view('common/header');

 $this->load->view('nav/top_nav', $data);

 $this->load->view('shop/user_details', $data);

 $this->load->view('common/footer');

} else {

If, however, there were no errors with the form when it was submitted, then we will
arrive at the following code. We deine two arrays—one called $cust_data, which
will store the information submitted by the user in the form in the views/shop/user_
details.php ile and the other called $order_details, which will store a serialized
dump of the cart. So, the following block of code saves the users' form data:

$cust_data = array(

'cust_first_name' => $this->input->post('cust_first_name'),

'cust_last_name' => $this->input->post('cust_last_name'),

'cust_email'=> $this->input->post('cust_email'),

'cust_address' => $this->input->post('payment_address'));

The $payment_code value acts as a type of hook that you can use for payment
processing. For example, most payment processing systems support the addition
of a code—usually a string of text and/or numbers that are generated by the shop
application, saved to the database, and sent off to the payment provider. After the
payment, a webhook script will receive a signal from the payment processing system
containing a success or error message (the success or error of the attempted payment
from the customer's bank account), along with the code. This way, you can ensure
that the correct order has been paid for (or not); anyway, $payment_code is the
following method in the current project:

$payment_code = mt_rand();

The following block of code saves the cart data to the $order_data array. The
contents of the cart are fetched from the cart by the CodeIgniter Cart class's $this-
>cart->contents() function. The retuned array is passed to the serialize() PHP
function and is written to $order_data['order_details':

$order_data = array(

'order_details' => serialize($this->cart->contents()),

Chapter 7

[237]

'order_delivery_address' => $this->input->
 post('delivery_address'),

'order_closed' => '0',

'order_fulfilment_code' => $payment_code,

'order_delivery_address' => $this->input->
 post('payment_address'));

Now that the customer's contact details and order details are in arrays, we can start
to save them to the database. We call the save_cart_to_database() function of
Shop_model, passing to it the $cust_data and $order_data array.

The save_cart_to_database() function of Shop_model irst saves the customer to
the customer table, returning the primary key of the insert and using that primary
key as the foreign key value that goes in orders.cust_id:

 if ($this->Shop_model->save_cart_to_database($cust_data,
 $order_data)) {

 echo $this->lang->line('user_details_save_success');

 } else {

 echo $this->lang->line('user_details_save_error');

 }

 }

 }

}

Creating the language ile
As with all the projects in this book, we're making use of the language ile to serve
text to users. This way, you can enable multiple region/multiple language support.
Let's create the language ile.

Create the /path/to/codeigniter/application/language/english/en_admin_
lang.php ile and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

// General

$lang['system_system_name'] = "Shop";

// nav

$lang['nav_cart_count'] = "Cart ";

$lang['nav_home'] = "Home";

// index()

Creating an E-Commerce Site

[238]

$lang['index_all_categories'] = "All categories";

$lang['index_add_to_cart'] = "Add to cart";

// display_cart()

$lang['display_cart_proceed_to_checkout'] = "Proceed to checkout";

$lang['display_cart_quantity'] = "Quantity";

$lang['display_cart_description'] = "Description";

$lang['display_cart_item_price'] = "Item Price";

$lang['display_cart_sub_total'] = "Sub-Total";

$lang['display_cart_update_cart'] = "Update Cart";

// user_details()

$lang['user_details_placeholder_first_name'] = "First Name";

$lang['user_details_placeholder_last_name'] = "Last Name";

$lang['user_details_placeholder_email'] = "Email";

$lang['user_details_placeholder_email_confirm'] = "Confirm Email";

$lang['user_details_placeholder_payment_address'] = "Payment
 Address";

$lang['user_details_placeholder_delivery_address'] = "Delivery
 Address";

$lang['user_details_save_success'] = "Order and Customer saved to
 DB";

$lang['user_details_save_error'] = "Could not save to DB";

Putting it all together
Okay, here are a few examples that will help put everything together.

Filtering a search
When you ilter a search, the following events take place:

1. The user visits the site and CodeIgniter routes them to the shop controller.
The shop controller loads the index() function

2. The index() function recognizes that there is no third parameter in the URL,
so it calls the get_all_products() function of Shop_model.

3. The index() function loads the get_all_categories() function of Shop_
model, passing the retuned result to $data['cat_query']. This is passed
to the views/shop/display_products.php ile, which—using a foreach
loop—echoes out the categories.

4. The user clicks on a category in the list. The URL calls the index() function,
but this time with a third parameter.

Chapter 7

[239]

5. The index() function recognizes this third parameter and loads the get_
all_products_by_category_name() function of Shop_model, passing it the
third uri segment.

6. The get_all_products_by_category_name() function of Shop_model then
looks in the categories table for a category whose categories.cat_url_
name value matches that supplied in the third parameter and returns the
primary key of the category.

7. It then looks in the products table for all products whose products.
category_id value matches the primary key of the category found in just
the previous step using get_all_products_by_category_name() and then
returns the query to the shop controller's index() function, where it is sent
to the views/shop/view_products.php ile.

Adding to cart
The sequence of events to add items to a cart is as follows:

1. The user visits the site and CodeIgniter routes them to the shop controller.
The shop controller loads the index() function

2. The index() function recognizes that there is no third parameter in the URL,
so it calls the get_all_products() function of Shop_model.

3. Using a foreach loop, the views/shop/display_products.php ile iterates
over the result object from get_all_products() and displays each product
in turn.

4. The user clicks on the Add to cart button

5. CodeIgniter calls the shop controller's add() function

6. The add() function grabs the product ID from the third uri segment and
sends it to the get_product_details() function of Shop_model.

7. The get_product_details() function looks in the products table for the
product whose primary key matches that in the argument passed to it and
returns it to the $query variable.

8. Using a foreach loop, we iterate over $query, fetching the details of the
product, such as product_name and product_price, and saving them to an
array called $data, which we will add to the cart. We also set the qty value
to 1 (as they're only adding one item).

9. Using the CodeIgniter Cart class's $this->cart->insert() function, we
add the product to the cart by passing it the $data array.

10. We then direct the user to display_cart() to make any amends should
they wish.

Creating an E-Commerce Site

[240]

Altering the product quantity
The user can access the cart in one of these two ways:

• By clicking on Cart in the navigation bar at the top of the page

• By being directed there automatically once they add an item to their cart

We'll pick up the story assuming that the user has used either of these methods
(as they both drop us here):

1. CodeIgniter calls the display_cart() shop function.

2. The bulk of the work in displaying the cart occurs in the views/shop/
display_cart.php ile, which is a modiied version of the template found
in the CodeIgniter documentation.

3. A variable called $i is created and given the value of 1; this will increment
as the loop iterates.

4. Using a foreach loop, we iterate ever the CodeIgniter Cart class's $this-
>cart->contents() function. For each iteration, we call $item.

5. An iteration writes the details of each product to an HTML table.

6. An HTML text input is created called $i, so if the current iteration is 1, then
the name of the textbox will be 1, and if the current iteration is 4, the name of
the textbox will be 4.

7. There are three items in the cart (three rows). Each row shows that there is
one item of each of the three products in the cart. The user wishes to change
the quantities of the product in the third row.

8. The user selects the value of the textbox named 3 and replaces the value in
that textbox with the number 2 (which means that the user wishes to buy one
item of product 1, one item of product 2, and two items of product 3).

9. The user presses the Update Cart button.

10. CodeIgniter calls the update_cart() shop function.

11. The update_cart() function adjusts the quantity of the third product in
the cart.

For a detailed breakdown, check out the explanation in the Creating the controllers
section of this chapter—look for the update_cart() function description.

Chapter 7

[241]

Summary
In this project, you saw the beginnings of a great shop platform. As always, there are
a few things you can do to expand upon the functionality, which are as follows:

• Product CMS: This project doesn't come with a CMS to manage products or
categories—this is simply because adding such a functionality would have
been far too big a topic to cover. However, perhaps you could add some sort
of functionality to govern products, adding new ones, deleting old ones, and
so on.

• Product images: You could add a column to the products table where an
image ile name can be stored and then echo out that value in an HTML <img
src=""> tag. You will, of course, need to add a folder somewhere in the
ilesystem to store the images.

• Product pages: You could add a link to the product title, opening a new page
and displaying detailed information about that product, such as color, size,
weight, "what's in the box", and so on. Of course, you'll need to add extra
columns to the products table to support the new information, but this can
be done quite easily.

• BOGOFF: Verb, British slang—an encouragement from one person to
another to leave! Depart! Never to be seen again!

Well, not quite, but you could add a Buy One Get One Free (erm, not sure
about the last F) option. You could add logic so that if a certain number of
products are selected, a discount is applied.

Creating a To-do List
This is a good little project; it's something nearly everyone might need in their day-
to-day work: a to-do list. This project will give you a small application to create tasks
and set them as complete. There's also a good level of scope for you to expand on the
project and really make it your own.

In this chapter, we will cover the following topics:

• Design and wireframes

• Creating the database

• Creating the model

• Creating views

• Creating the controller

• Putting it all together

Introduction
Right; in this project, we will create an application that allows users to create tasks
and view these tasks as a list. Tasks can also have a due date; late tasks will appear in
red so that you know it's important to execute that task as soon as possible.

To create this app, we will create one controller; this will handle the displaying of
tasks, creating these tasks, setting these tasks as done or still to do, and handling the
deletion of these tasks.

We'll create a language ile to store the text, allowing you to have multiple language
support should that be required.

We'll create all the necessary view iles and a model to interface with the database.

Creating a To-do List

[244]

However, this app along with all the others in this book, relies on the basic setup we
did in Chapter 1, Introduction and Shared Project Resources; although you can take large
sections of the code and drop it into pretty much any app you might already have,
please keep in mind that the setup done in the irst chapter acts as a foundation for
this chapter.

So without further ado, let's get on with it.

Design and wireframes
As always, before we start building, we should take a look at what we plan to build.

Firstly, a brief description of our intent: we plan to build an app that will allow
people to add tasks that they need to do. It will also allow users to view these tasks
as a list and set them as done. They can also delete old or unneeded tasks should
they wish.

Anyway, to get a better idea of what's happening, let's take a look at the following
site map:

Done/Not Done

3

Create

2

Delete

4

View All

1

Chapter 8

[245]

So that's the site map; the irst thing to notice is how simple the site is. There are
only four main areas to this project. Let's go over each item and get a brief idea of
what it does:

• View All: This displays a form to create a task and also displays all tasks
in a list

• Create: This processes the creation of tasks saved to the database

• Done/Not Done: This sets a task to either done or to-do

• Delete: This removes the task from the database

Now that we have a fairly good idea of the structure and form of the site, let's take
a look at some wireframes of each page.

View All/Create
The following screenshot shows you a wireframe from point 1 (the View All item)
and point 2 (the Create item) of the preceding site map. Initially, the user is shown a
list of tasks. They are able to click on the It's Done or Still Todo button to go to point
3 (the Done/Not Done item) shown in the site map.

Web Application Blueprints

To do list

http://www.domain.com/

Done by 3rd 2015August

Fix washing machine To Do Delete

Go food shooping Done Delete

Call dentist - cancel appointment Done Delete

Book holiday Done Delete

AddChoose meeting room booking

Creating a To-do List

[246]

Delete
The following screenshot shows you a wireframe from point 4 (the Delete item) in
the site map. The user views the task description (tasks.task_desc) and is given
the option to delete (to process the deletion of the task from the database) or cancel to
return to point 1 (the View All item) of the site map.

Web Application Blueprints

To do list

Confirm delete?

Are you sure you want to delete Task Description?

Delete or Cancel

File overview
This is a relatively small project, and all in all, we're only going to create six iles;
these are as follows:

• /path/to/codeigniter/application/models/tasks_model.php:
This provides read/write access to the tasks database table.

• /path/to/codeigniter/application/views/tasks/delete.php: This
displays a form to the user, asking them to conirm the deletion of a task.

• /path/to/codeigniter/application/views/tasks/view.php: This is the
view for the tasks controller's index() function. It displays a list of tasks to
the user.

• /path/to/codeigniter/application/views/nav/top_nav.php:
This provides a navigation bar at the top of the page.

• /path/to/codeigniter/application/controllers/tasks.php:
This contains three main functions: index(), apply() and create().

Chapter 8

[247]

• /path/to/codeigniter/application/language/english/en_admin_

lang.php: This provides language support for the application.

The ile structure of the preceding six iles is as follows:

application/

├── controllers/

│ ├── tasks.php

├── models/

│ ├── tasks_model.php

├── views/tasks/

│ ├── view.php

│ ├── delete.php

├── views/nav/

│ ├── top_nav.php

├── language/english/

│ ├── en_admin_lang.php

Creating the database
Okay, you should have already setup CodeIgniter and Bootstrap, as described in
Chapter 1, Introduction and Shared Project Resources. If not, then you should know that
the code in this chapter is speciically built with the setup from Chapter 1, Introduction
and Shared Project Resources, in mind. However, it's not the end of the world if you
haven't—the code can easily be applied to other situations.

Firstly, we'll build the database. Copy the following MySQL code to your database:

CREATE DATABASE `tasksdb`;
USE DATABASE `tasksdb`;

CREATE TABLE `ci_sessions` (
 `session_id` varchar(40) COLLATE utf8_bin NOT NULL DEFAULT '0',
 `ip_address` varchar(16) COLLATE utf8_bin NOT NULL DEFAULT '0',
 `user_agent` varchar(120) COLLATE utf8_bin DEFAULT NULL,
 `last_activity` int(10) unsigned NOT NULL DEFAULT '0',
 `user_data` text COLLATE utf8_bin NOT NULL
) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin;

CREATE TABLE `tasks` (
 `task_id` int(11) NOT NULL AUTO_INCREMENT,
 `task_desc` varchar(255) NOT NULL,
 `task_due_date` datetime DEFAULT NULL,
 `task_created_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `task_status` enum('done','todo') NOT NULL,
 PRIMARY KEY (`task_id`)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

Creating a To-do List

[248]

Now, take a look at that last bit of SQL code, it's quite big and iddly.
Don't panic; all SQL code is available online from this book's support
page on the Packt website.

You'll see that the irst table we create is ci_sessions, which we need to allow
CodeIgniter to manage sessions, speciically logged-in users. However, this is just the
standard session table available from the CodeIgniter User Guide, so I'll not include a
description of that table as it's not technically speciic to this application. However,
if you're interested, there's a description at http://ellislab.com/codeigniter/
user-guide/libraries/sessions.html.

Right, let's take a look at each item in each table, and see what it means:

Table: tasks

Element Description

task_id This is the primary key.

task_desc There is no title field or body to our tasks as such—only a brief
description of what needs to be done; this is that description.

task_due_date This is the date by which the task needs to be done. If a task
is late, we will color the background of the table row red to
indicate that a particular task remains to be done and is late.

task_created_at as such MySQL timestamp of the date on which the row was
created in the database.

task_status This indicates whether the task still remains to be done or not.
This is an enum field with the two values: done and todo. If
a task is set to done, then we will use the <strike> HTML
markup to strike through the text; if, however, is it set to todo
(as it is by default), then the task isn't struck through and
remains to be done.

We'll also need to make amends to the config/database.php ile, namely setting
the database access details, username password, and so on.

Open the config/database.php ile and ind the following lines:

$db['default']['hostname'] = 'localhost';

$db['default']['username'] = 'your username';

$db['default']['password'] = 'your password';

$db['default']['database'] = 'tasksdb';

Edit the values in the preceding lines, ensuring you substitute these values with ones
more speciic to your setup and situation; so, enter your username, password, and
so on.

Chapter 8

[249]

Adjusting the conig.php ile
There are a few things in this ile that we'll need to conigure to support sessions and
encryption. So, open the config/config.php ile and make the following changes:

1. We will need to set an encryption key—both sessions and CodeIgniter's
encryption functionality require an encryption key to be set in the $config
array, so ind the following line:
$config['encryption_key'] = '';

Replace the preceding line with the following:

$config['encryption_key'] = 'a-random-string-of-alphanum-
 characters';

Now obviously, don't actually change the preceding value to literally
a-random-string-of-alphanum-characters but change it to, er, a random
string of alphanum characters instead—if that makes sense? Yeah, you
know what I mean.

2. Find the following lines:

$config['sess_cookie_name'] = 'ci_session';

$config['sess_expiration'] = 7200;

$config['sess_expire_on_close'] = FALSE;

$config['sess_encrypt_cookie'] = FALSE;

$config['sess_use_database'] = FALSE;

$config['sess_table_name'] = 'ci_sessions';

$config['sess_match_ip'] = FALSE;

$config['sess_match_useragent'] = TRUE;

$config['sess_time_to_update'] = 300;

Replace the preceding line with the following:

$config['sess_cookie_name'] = 'ci_session';

$config['sess_expiration'] = 7200;

$config['sess_expire_on_close'] = TRUE;

$config['sess_encrypt_cookie'] = TRUE;

$config['sess_use_database'] = TRUE;

$config['sess_table_name'] = 'ci_sessions';

$config['sess_match_ip'] = TRUE;

$config['sess_match_useragent'] = TRUE;

$config['sess_time_to_update'] = 300;

Creating a To-do List

[250]

Adjusting the routes.php ile
We want to redirect the user to the tasks controller rather than the default
CodeIgniter welcome controller. To do this, we will need to amend the default
controller settings in the routes.php ile:

1. Open the config/routes.php ile for editing and ind the following lines
(near the bottom of the ile):
$route['default_controller'] = "welcome";

$route['404_override'] = '';

2. First, we need to change the default controller. Initially in a CodeIgniter
application, the default controller is set to welcome; however, we don't
need this—instead, we want the default controller to be tasks. So ind the
following line:

$route['default_controller'] = "welcome";

Change it to the following:

$route['default_controller'] = "tasks";

$route['404_override'] = '';

Creating the model
There is only one model in this project, tasks_model.php, that contains functions
that are speciic to searching and writing tasks to the database.

This is our one and only model for this project. Let's briely go over each function
in it to give us a general idea of what it does, and then we will go into more detail
in the code.

There are ive main functions in this model, which are as follows:

• get_tasks(): This serves two functions: irstly, to display all tasks—for
example, when a user irst visits the site and when a user enters a new task
in the form.

• change_task_status(): This changes the tasks.task_status value in the
database from either todo or done. A task that is set to done appears struck
through in the list, whereas tasks that are set to todo are not struck through
and are displayed normally; this way, a user can easily work out what is
done and not done.

• save_task(): This saves a task to the database when a user submits the form
from point 3 (the Create item) of the site map.

Chapter 8

[251]

• get_task(): This fetches an individual task from the tasks table.

• delete(): This deletes a task from the tasks table.

That was a quick overview, so let's create the model and discuss how it functions.

Create the /path/to/codeigniter/application/models/tasks_model.php ile
and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
 allowed');

class Tasks_model extends CI_Model {

 function __construct() {

 parent::__construct();

 }

The get_tasks() function takes no argument. It returns all tasks from the database
and returns it to the tasks controller's index() function. The tasks/view.php view
ile will loop over the database result object and display tasks in an HTML table:

function get_tasks() {

 $query = "SELECT * FROM `tasks` ";

 $result = $this->db->query($query);

 if ($result) {

 return $result;

 } else {

 return false;

 }

}

The change_task_status() function changes the status of a task from either todo
or done.

It takes two arguments: $task_id and $save_data. The $task_id and $save_data
values are passed from the tasks controller's status() function.

The value of $task_id is set when the user clicks on either It's Done or Still Todo
in the views/tasks/view.php view ile; the fourth parameter of the uri segment of
either option is the primary key (tasks.task_id) of the task in the tasks table and
by using the CodeIgniter function $this->uri->segment(4), we grab the value and
store in a $task_id local variable.

Creating a To-do List

[252]

The $save_data value is populated in the tasks controller. It contains only one item,
task_status, that is populated in the status() function with the third parameter of
the uri segment:

function change_task_status($task_id, $save_data) {

 $this->db->where('task_id', $task_id);

 if ($this->db->update('tasks', $save_data)) {

 return true;

 } else {

 return false;

 }

}

The save_task() function accepts one argument—an array of data. This data is
supplied by the tasks controller's index() function. The function will save a task
to the tasks table, returning true if successful and false if an error occurs:

function save_task($save_data) {

 if ($this->db->insert('tasks', $save_data)) {

 return true;

 } else {

 return false;

 }

}

The get_task() function takes one argument—$task_id (that is, the primary key of
the task in the database). It is supplied by the tasks controller's delete() function,
which uses it to supply information about the task in the delete conirmation form.

The user clicks on Delete in the views/tasks/view.php ile, the third parameter of
which is the task's primary key. The tasks controller's delete() function will then
grab that ID from the URI with the $this->uri->segment(3) CodeIgniter function.
This ID is passed to the get_task()model function, which will return the details of
the task in the database or false if no ID was found:

function get_task($id) {

 $this->db->where('task_id', $id);

 $result = $this->db->get('tasks');

 if ($result) {

 return $result;

 } else {

 return false;

 }

}

Chapter 8

[253]

The delete() function performs an operation on the database to remove a task.
It accepts one argument—the ID of the task, which is the primary key of that task:

 function delete($id) {

 $this->db->where('task_id', $id);

 $result = $this->db->delete('tasks');

 if ($result) {

 return true;

 } else {

 return false;

 }

 }

}

Creating views
There are three views in this project, which are as follows:

• /path/to/codeigniter/application/views/tasks/view.php: This
displays a list of current tasks to the user as well as a form that allows the
user to create new tasks.

• /path/to/codeigniter/application/views/tasks/delete.php: This
displays a conirmation message to the users, asking them to conirm
whether they really want to delete the task.

• /path/to/codeigniter/application/views/nav/top_nav.php: This
displays the top-level menu. In this project, this is very simple; it contains
a project name and link to go to the tasks controller.

These are our three view iles. Now let's go over each one, build the code, and
discuss how they function.

Create the /path/to/codeigniter/application/views/tasks/view.php ile
and add the following code to it:

<div class="page-header">

 <?php echo form_open('tasks/index') ; ?>

 <div class="row">

 <div class="col-lg-12">

 <?php echo validation_errors() ; ?>

 <div class="input-group">

 <input type="text" class="form-control" name="
 task_desc" placeholder="<?php echo $this->lang->
 line('tasks_add_task_desc'); ?>">

Creating a To-do List

[254]

 <button class="btn btn-default" type="submit"><?php
 echo $this->lang->line('tasks_add_task'); ?>
 </button>

 </div><!-- /input-group -->

 </div><!-- /.col-lg-6 -->

 </div><!-- /.row -->

 <div class="row">

 <div class="form-group">

 <div class="col-md-2">

 <?php echo form_error('task_due_d'); ?>

 <select name="task_due_d" class="form-control">

 <option></option>

 <?php for ($i = 1; $i <= 30; $i++) : ?>

 <option value="<?php echo $i ; ?>"><?php echo
 date('jS', mktime($i,0,0,0, $i, date('Y'))) ;
 ?></option>

 <?php endfor ; ?>

 </select>

 </div>

 <div class="col-md-2">

 <?php echo form_error('task_due_m'); ?>

 <select name="task_due_m" class="form-control">

 <option></option>

 <?php for ($i = 1; $i <= 12; $i++) : ?>

 <option value="<?php echo $i ; ?>"><?php echo
 date('F', mktime(0,0,0,$i, 1, date('Y'))) ;
 ?></option>

 <?php endfor ; ?>

 </select>

 </div>

 <div class="col-md-2">

 <?php echo form_error('task_due_y'); ?>

 <select name="task_due_y" class="form-control">

 <option></option>

 <?php for ($i = date("Y",strtotime(date("Y"))); $i
 <= date("Y",strtotime(date("Y").' +5 year'));
 $i++) : ?>

 <option value="<?php echo $i;?>"><?php echo
 $i;?></option>

 <?php endfor ; ?>

 </select>

Chapter 8

[255]

 </div>

 </div>

 </div>

 <?php echo form_close() ; ?>

</div>

The preceding block of code is the form that the user can use to create a new task.
Also in this block is the validation error code (validation_errors()) where we will
display any errors with the data submitted form the form:

<table class="table table-hover">

 <?php foreach ($query->result() as $row) : ?>

 <?php if (date("Y-m-d",mktime(0, 0, 0, date('m'), date('d'),
 date('y'))) > $row->task_due_date) {echo ' <tr class="list-
 group-item-danger">';} ?>

 <?php if ($row->task_due_date == null) {echo ' <tr>';} ?>

 <td width="80%"><?php if ($row->task_status == 'done') {echo
 '<strike>'.$row->task_desc.'</strike>' ;} else {echo $row->
 task_desc;} ?>

 </td>

 <td width="10%">

 <?php if ($row->task_status == 'todo') {echo anchor ('
 tasks/status/done/'.$row->task_id, 'It\'s Done');} ?>

 <?php if ($row->task_status == 'done') {echo anchor ('
 tasks/status/todo/'.$row->task_id, 'Still Todo');} ?>

 </td>

 <td width="10%"><?php echo anchor ('tasks/delete/'.$row->
 task_id, $this->lang->line
 ('common_form_elements_action_delete')) ; ?>

 </td>

 </tr>

<?php endforeach ; ?>

</table>

The preceding table echoes out any tasks in the database. The actions are also in this
block, that is, the PHP ternary operator that switches the status from It's Done to
Still Todo and the Delete link.

Create the /path/to/codeigniter/application/views/tasks/delete.php ile
and add the following code to it:

<h2><?php echo $page_heading ; ?></h2>

<p class="lead"><?php echo $this->lang->
 line('delete_confirm_message');?></p>

<?php echo form_open('tasks/delete'); ?>

 <?php if (validation_errors()) : ?>

Creating a To-do List

[256]

 <h3>Whoops! There was an error:</h3>

 <p><?php echo validation_errors(); ?></p>

 <?php endif; ?>

 <?php foreach ($query->result() as $row) : ?>

 <?php echo $row->task_desc; ?>

 <?php echo form_submit('submit', $this->lang->
 line('common_form_elements_action_delete'), 'class="btn
 btn-success"'); ?>

 or <?php echo anchor('tasks',$this->lang->
 line('common_form_elements_cancel'));?>

 <?php echo form_hidden('id', $row->task_id); ?>

 <?php endforeach; ?>

<?php echo form_close() ; ?>

The preceding block of code contains the form that asks the user to conirm whether
they really wish to delete the task.

Create the /path/to/codeigniter/application/views/nav/top_nav.php ile and
add the following code to it:

<!-- Fixed navbar -->

<div class="navbar navbar-inverse navbar-fixed-top" role="navigation">

 <div class="container">

 <div class="navbar-header">

 <button type="button" class="navbar-toggle" data-
 toggle="collapse" data-target=".navbar-collapse">

 Toggle navigation

 </button>

 <?php echo anchor('tasks', $this->lang->
 line('system_system_name'),'class="navbar-brand"') ; ?>

 </div>

 <div class="navbar-collapse collapse">

 <ul class="nav navbar-nav navbar-right">

 </div><!--/.nav-collapse -->

 </div>

</div>

<div class="container theme-showcase" role="main">

This view is quite basic but still serves an important role. It displays an option to
return to the tasks controller's index() function.

Chapter 8

[257]

Creating the controller
We're going to create only one controller in this project, which is /path/to/
codeigniter/application/controllers/tasks.php.

Let's go over that controller now, look at the code, and discuss how it functions.

Create the /path/to/codeigniter/application/controllers/tasks.php ile
and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

class Tasks extends MY_Controller {

 function __construct() {

 parent::__construct();

 $this->load->helper('string');

 $this->load->helper('text');

 $this->load->model('Tasks_model');

 $this->load->library('form_validation');

 $this->form_validation->set_error_delimiters('<div
 class="alert alert-danger">', '</div>');

 }

The index() function performs a couple of tasks: displaying a list of tasks and
handling the form submission (validation, error checking, and so on).

Initially, we set the validation rules for the form, as follows:

public function index() {

 $this->form_validation->set_rules('task_desc', $this->lang->
 line('tasks_task_desc'), 'required|min_length[1]|
 max_length[255]');

 $this->form_validation->set_rules('task_due_d', $this->lang->
 line('task_due_d'), 'min_length[1]|max_length[2]');

 $this->form_validation->set_rules('task_due_m', $this->lang->
 line('task_due_m'), 'min_length[1]|max_length[2]');

 $this->form_validation->set_rules('task_due_y', $this->lang->
 line('task_due_y'), 'min_length[4]|max_length[4]');

If there were errors in the form or if it is the irst time the page is accessed, then we'll
build the form elements, deining their settings and be ready to draw them in the view:

if ($this->form_validation->run() == FALSE) {

 $page_data['job_title'] = array('name' => 'job_title', 'class'
 => 'form-control', 'id' => 'job_title', 'value' => set_value
 ('job_title', ''), 'maxlength' => '100', 'size' => '35');

Creating a To-do List

[258]

 $page_data['task_desc'] = array('name' => 'task_desc', 'class'
 => 'form-control', 'id' => 'task_desc', 'value' => set_value
 ('task_desc', ''), 'maxlength' => '255', 'size' => '35');

 $page_data['task_due_d'] = array('name' => 'task_due_d', 'class'
 => 'form-control', 'id' => 'task_due_d', 'value' => set_value
 ('task_due_d', ''), 'maxlength' => '100', 'size' => '35');

 $page_data['task_due_m'] = array('name' => 'task_due_m', 'class'
 => 'form-control', 'id' => 'task_due_m', 'value' => set_value
 ('task_due_m', ''), 'maxlength' => '100', 'size' => '35');

 $page_data['task_due_y'] = array('name' => 'task_due_y', 'class'
 => 'form-control', 'id' => 'task_due_y', 'value' => set_value
 ('task_due_y', ''), 'maxlength' => '100', 'size' => '35');

Next, we'll fetch all tasks in the database and store them in the $page_data['query']
array. We will send this array to the tasks/view.php ile where it will be looped over
using foreach($query->result as $row)—where each task will be written out in a
table along with the It's Done, Still Todo, and Delete options:

 $page_data['query'] = $this->Tasks_model->get_tasks();

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('tasks/view', $page_data);

 $this->load->view('common/footer');

} else {

If there were no errors with the form, then we try to create the task in the database.
First, we look to see whether the user has tried to set a due date for the task. We do
this by looking for the date ields in the post array.

We require all three (day, month, and year) items to create a due date, so we check
to see whether all three have been set. If all three are set, then we build a string that
will be the date. This is saved in the $task_due_date variable. If all three date items
haven't been set (perhaps only two were), then we just set the $task_due_date value
to null:

if ($this->input->post('task_due_y') && $this->input->
 post('task_due_m') && $this->input->post('task_due_d')) {

 $task_due_date = $this->input->post('task_due_y') .'-'. $this->
 input->post('task_due_m') .'-'. $this->input->
 post('task_due_d');

} else {

 $task_due_date = null;

}

Chapter 8

[259]

We then create an array to pass to the save_task() function of Tasks_model. The
$save_data array contains the task description, any date that might have been applied
(or null value), and a default value for task_status; this is initially set to todo:

$save_data = array(

 'task_desc' => $this->input->post('task_desc'),

 'task_due_date' => $task_due_date,

 'task_status' => 'todo'

);

The $save_data array is then sent to the save_task() function of Tasks_model.
This function will return true if the save operation was successful or false if there
was an error. Whatever the outcome, we'll set a message using the $this->session-
>set_flashdata()CodeIgniter function with a success message or an error message
(the content for these messages is in the language ile) and redirect to the tasks
controller's index() function, which will display all tasks (and hopefully, the one
just created) to the user:

 if ($this->Tasks_model->save_task($save_data)) {

 $this->session->set_flashdata('flash_message', $this->lang->
 line('create_success_okay'));

 } else {

 $this->session->set_flashdata('flash_message', $this->lang->
 line('create_success_fail'));

 }

 redirect ('tasks');

 }

}

The status() function is used to change a task status from done to todo. If you
hover over either the It's Done or Still Todo links, you'll see the URI. The format will
look something like http://www.domain.com/tasks/status/todo/1 (if the task is
set to done in the database) or http://www.domain.com/tasks/status/done/1 (if
the task is set to todo in the database). The third parameter is always the opposite
to whatever is the current status of the task, so if a task is set to done, the URI will
display todo, and if it is set to todo, the URI will display done.

The fourth parameter is the primary key (in the preceding example, this is 1).

When the user clicks on either It's Done or Still Todo, the status() function
grabs the third and fourth parameters and sends them to the status() function
of Tasks_model:

public function status() {

 $page_data['task_status'] = $this->uri->segment(3);

 $task_id = $this->uri->segment(4);

Creating a To-do List

[260]

We take the third and fourth parameters and send them to the change_task_
status() function of Tasks_model. The change_task_status() function will
return true if the update was successful or false if there was an error. We set a
message to the user using the $this->session->set_flashdata()CodeIgniter
function and redirect to the tasks controller's index() function:

 if ($this->Tasks_model->change_task_status($task_id,
 $page_data)) {

 $this->session->set_flashdata('flash_message', $this->lang->
 line('status_change_success'));

 } else {

 $this->session->set_flashdata('flash_message', $this->lang->
 line('status_change_fail'));

 }

 redirect ('tasks');

}

The delete() function does two things. It displays information about the task to the
user so that they are able to decide whether they really want to delete the task, and
it also processes the deletion of that task should it be conirmed by the user. First off,
we set the validation rules for the form. This is the form that the user uses to conirm
the deletion:

public function delete() {

 $this->form_validation->set_rules('id', $this->lang->
 line('task_id'), 'required|min_length[1]|max_length[11]|
 integer|is_natural');

Because the function can be accessed by the user by clicking on Delete or submitting
the form, the task ID can be supplied either from the URI (in the case of Delete) or in
a hidden form element in the form. So, we check whether the form is being posted or
accessed for the irst time and grab the ID from either post or get:

if ($this->input->post()) {

 $id = $this->input->post('id');

} else {

 $id = $this->uri->segment(3);

}

$data['page_heading'] = 'Confirm delete?';

if ($this->form_validation->run() == FALSE) {

We then send the ID to the get_task() function of Tasks_model, which will return
the details of the task as a database object. This is saved in $data['query'] and sent
to the tasks/delete.php view ile, where the user is asked to conirm whether they
wish to really delete the task:

Chapter 8

[261]

 $data['query'] = $this->Tasks_model->get_task($id);

 $this->load->view('common/header', $data);

 $this->load->view('nav/top_nav', $data);

 $this->load->view('tasks/delete', $data);

 $this->load->view('common/footer', $data);

} else {

If there were no errors with the form submission, then we call the delete() function
of Tasks_model so that the task is deleted:

 if ($this->Tasks_model->delete($id)) {

 redirect('tasks');

 }

 }

 }

}

Creating the language ile
As with all the projects in this book, we're making use of the language ile to serve
text to users. This way, you can enable multiple region/multiple language support.
Let's create the language ile.

Create the /path/to/codeigniter/application/language/english/en_admin_
lang.php ile and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

// General

$lang['system_system_name'] = "Todo";

// Tasks - view.php

$lang['tasks_add_task'] = "Add";

$lang['tasks_add_task_desc'] = "What have you got to do?";

$lang['tasks_task_desc'] = "Task Description";

$lang['tasks_set_done'] = "Mark as done";

$lang['tasks_set_todo'] = "Mark as todo";

$lang['task_due_d'] = "Due Day";

$lang['task_due_m'] = "Due Month";

$lang['task_due_y'] = "Due Year";

$lang['status_change_success'] = "Task updated";

$lang['status_change_fail'] = "Task not updated";

Creating a To-do List

[262]

Putting it all together
Okay, here are a few examples that will help put everything together.

User adds a task
The sequence of events in order to add a task is as follows:

1. The user visits the site and CodeIgniter routes them to the tasks controller.

2. The tasks controller loads (by default) the index() function. The index()
function checks whether the form validation is false:

if ($this->form_validation->run() == FALSE) {

...

3. As this is the irst load and the form has not been submitted, it will equal
false. The index() function then deines the settings for the task_desc text
ield, calls the get_tasks() function of Tasks_model (which returns all tasks
from the database), and then loads the view iles, passing the database object
to the views/tasks/view.php ile.

4. The user enters the Chase meeting room booking string, selects a date
three days into the future, and clicks on Add to submit the form.

5. The form is submitted and index() validates the task_desc form elements
and the three date dropdowns' values. The validation is now passed.

The three date ields are strung together to form a date string to be entered
into the database and saved as $task_due_date:

$task_due_date = $this->input->post('task_due_y') .'-'. $this-
>input->post('task_due_m') .'-'. $this->input->
 post('task_due_d');

6. These $task_due_date and task_desc values are saved to an array called
$save_data. Also saved is a default value for the task_status ield in the
tasks table. This value is set to todo.

7. After a successful save operation to the database. the user is redirected to
index(), where their new task is displayed.

Chapter 8

[263]

User changes the task status
The events performed while a user changes the task status are as follows:

1. The user visits the site and CodeIgniter routes them to the tasks controller.

2. The tasks controller loads (by default) the index() function. The index()
function checks whether the form validation is false:

if ($this->form_validation->run() == FALSE) {

...

3. As this is the irst load and the form has not been submitted, it will equal
false. The index() function then deines the settings for the task_desc text
ield, calls the get_tasks() function of Tasks_model (which returns all tasks
from the database), and then loads the view iles, passing the database object
to the views/tasks/view.php ile.

4. The user sees the task "Chase meeting room booking" and (knowing that this
task is done) clicks on It's Done.

5. CodeIgniter loads the status() task function.

6. The status() function takes the third (todo or done) and fourth (the task's
primary key) parameters of the URI and sets them to the $page_data['
task_status'] and $task_id local variables.

7. These two variables are sent to the change_task_status() function of
Tasks_model.

8. The change_task_status() function takes the $task_id value and the new
status and performs an Active Record update on this task, returning true or
false values if successful or if an error occurred.

9. The status() function looks at the return value and sets a session lash
message accordingly: a success message if successful and an error if not.

10. The user is then redirected to index(), where they can see the updated
task status.

Creating a To-do List

[264]

Summary
So. this is a fairly small application—perhaps one of the smallest in the book—but it's
by no means not useful. You can use this to-do list as a really easy way to manage any
tasks you might have on your plate; however, there's always room for improvement.
There are a few things that you can do to add greater functionalities to the project, and
these might include the following:

• Adding a sorting feature: You could add sorting functions to only display
late (overdue), done, or still-to-do tasks.

• Adding a category: You could add a dropdown to the form that creates
the tasks. This dropdown could (for example) have the colors Red, Green,
Blue, Yellow, Orange, and so on. A task can be assigned a color and this
color could be displayed in the table that displays each task. You could use
the Bootstrap label markup; for example, the span warning label (<span
class="label label-warning">Warning) would give you a great
block of color—change the word Warning, though!

• Adding progress and progress bar: You could add an HTML dropdown with
set percentage values: 25 percent, 50 percent 75 percent, 100 percent, and so
on, which allow you to deine how much of the task has been completed.

Creating a Job Board
There are some quite complex job boards out there and some that are woefully
designed. There are some that I can think of that simply don't work as you would
think they should and some that don't function properly at all. I'm sure they all have
a heap of VC funding and probably turn some sort of proit, so it is beyond me why
they don't manage to get it together and make something that actually works; the
thing is that it's not actually that dificult a thing to do.

The job board in this project is small and concise, but there is scope to expand
upon—if you skip ahead to the Summary section, you'll see some things you can
add to make it more feature-rich, but I'm sure you have your own.

In this chapter, we will cover the following topics:

• Design and wireframes

• Creating the database

• Creating the model

• Creating views

• Creating the controller

• Putting it all together

Introduction
So what are we going to do for this project anyway? We'll create an application
that allows users to create job adverts that will be displayed on a "board". Users
can search for speciic terms and some results will be returned.

Other users can create adverts that will be displayed in these boards.

Creating a Job Board

[266]

To create this app, we will create one controller; this will handle the display of jobs,
creation of new jobs, and applying for jobs.

We'll create a language ile to store text, allowing you to have multiple language
support should that be required.

We'll create all the necessary view iles and a model to interface with the database.

However, this app along with all the others in this book relies on the basic setup we
did in Chapter 1, Introduction and Shared Project Resources; although you can take large
sections of the code and drop it into pretty much any app you might already have,
please keep in mind that the setup done in the irst chapter acts as a foundation for
this chapter.

So without further ado, let's get on with it.

Design and wireframes
As always, before we start building, we should take a look at what we plan to build.

Firstly, a brief description of our intent: we plan to build an app that will allow
people to browse job adverts in the form of a job board.

People will be able to create job adverts that will appear on search listings. Others
will be allowed to apply for these advertised jobs, and applications are sent in an
e-mail to the advertiser with details of the job and applicant.

Anyway, to get a better idea of what's happening, let's take a look at the following
site map:

Jobs/Search

1

Create

3

Detail/Apply

2

Chapter 9

[267]

So that was the site map; the irst thing to notice is how simple the site is. There are
only three main areas to this project. Let's go over each item and get a brief idea of
what it does:

• Jobs/Search: Imagine this as the start point. The user is presented with a list
of active jobs available on the site. The user is able to view the job details
and apply (taking them to point 2 of the site map), or click on Create on the
navigation bar and go to point 3 (the Create item) of the site map.

• Detail/Apply: The user is presented with the details of the job advertised,
such as the start date, location and the job description, and advertiser's
contact details. There is also a form below the job details that allows a user
to apply for the job. Details of the application are sent in an e-mail to the job
advertiser (jobs.job_advertiser_email).

• Create: This will display a form to the user, allowing them to create a job
advert. Once that advert is created, it will be displayed in search listings.

Now that we have a fairly good idea of the structure and form of the site, let's take a
look at some wireframes of each page.

Job/Search
The following screenshot shows you a wireframe from point 1 (the Create item)
in the site map. Initially, the user is shown a list of current jobs. The job title and
description are shown. The description is kept at a set length—that of the irst 50
words of a job description. They are able to click on the job title or an Apply link
to go to point 2 (the Detail/Apply item) of the site map.

Web Applications Blueprints

Job Board Create

Job Title
Job Description
Job Title
Job Description
Job Title
Job Description
Job Title
Job Description
Job Title
Job Description
Job Title
Job Description

Created Date
Rate
Created Date
Rate
Created Date
Rate
Created Date
Rate
Created Date
Rate
Created Date
Rate

Apply

Apply

Apply

Apply

Apply

Apply

http://www.domain.com/

Search Search

Creating a Job Board

[268]

Detail/Apply
The following screenshot shows you a wireframe from point 2 (the Detail/Apply
item) in the site map. The user views the detailed description of the job advertised
and a form that enables the user to enter their details and send off an application for
the job—the details of this application are e-mailed to the job advertiser.

Web Applications Blueprints

Job Board Create

http://www.domain.com/

Covernote

Your name

Your email

Your phone number

Go or Cancel

This is the job description. This is the job description. This is the job
description. This is the job description. This is the job description. This is the

job description. This is the job description. This is the job description. This is
the job description. This is the job description. This is the job description.
This is the job description. This is the job description. This is the job

Fill out the form below to apply for CodeIgniter Developer

CodeIgniter Developer
Posted by Lucy Welsh on 2015-09-17

Start Date 2015-10-01
Location London
Type Contract

Create
The following screenshot shows you a wireframe from point 3 (the Create item)
of the site map. Any user can post a job advert. This displays a form to the user,
allowing them to enter the details of their job advert and save it to the database.

Chapter 9

[269]

Web Applications Blueprints

Job Board Create

http://www.domain.com/

Enter the information about your job advert below...

Job Title

Description

Job Type

Full TIme

Category
IT-computing

Location
London

Start date

18 April 2015

Rate

Sunset date

01 May 2015

Your name

Your email

Your phone

Go or Cancel

File overview
This is a relatively small project, and all-in-all, we're only going to create seven iles;
these are as follows:

• /path/to/codeigniter/application/models/jobs_model.php: This
provides read/write access to the jobs database table.

• /path/to/codeigniter/application/views/jobs/apply.php: This
provides us an interface that allows the user to view a job advert's details
and also a form that allows any user to apply for a job.

Creating a Job Board

[270]

• /path/to/codeigniter/application/views/jobs/create.php: This
displays a form to the user, allowing the user to create a job advert.

• /path/to/codeigniter/application/views/jobs/view.php: This is the
view for the jobs controller's index() function. It displays the search form
and lists any results.

• /path/to/codeigniter/application/views/nav/top_nav.php:
This provides a navigation bar at the top of the page.

• /path/to/codeigniter/application/controllers/jobs.php:
This contains three main functions: index(), apply() and create().

• /path/to/codeigniter/application/language/english/en_admin_

lang.php: This provides language support for the application.

The ile structure of the preceding seven iles is as follows:

application/

├── controllers/

│ ├── jobs.php

├── models/

│ ├── jobs_model.php

├── views/create/

│ ├── create.php

│ ├── apply.php

│ ├── view.php

├── views/nav/

│ ├── top_nav.php

├── language/english/

│ ├── en_admin_lang.php

Creating the database
Okay, you should have already set up CodeIgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources; if not, then you should know that
the code in this chapter is speciically built with the setup from Chapter 1, Introduction
and Shared Project Resources, in mind. However, it's not the end of the world if you
haven't—the code can easily be applied to other situations.

First, we'll build the database. Copy the following MySQL code to your database:

CREATE DATABASE `jobboarddb`;

USE `jobboarddb`;

DROP TABLE IF EXISTS `categories`;

CREATE TABLE `categories` (

Chapter 9

[271]

 `cat_id` int(11) NOT NULL AUTO_INCREMENT,

 `cat_name` varchar(25) NOT NULL,

 PRIMARY KEY (`cat_id`)

) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8;

INSERT INTO `categories` VALUES (1,'IT'),(2,'Legal'),(3,'Management'),
(4,'Purchasing');

DROP TABLE IF EXISTS `ci_sessions`;

CREATE TABLE `ci_sessions` (

 `session_id` varchar(40) COLLATE utf8_bin NOT NULL DEFAULT '0',

 `ip_address` varchar(16) COLLATE utf8_bin NOT NULL DEFAULT '0',

 `user_agent` varchar(120) COLLATE utf8_bin DEFAULT NULL,

 `last_activity` int(10) unsigned NOT NULL DEFAULT '0',

 `user_data` text COLLATE utf8_bin NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin;

DROP TABLE IF EXISTS `jobs`;

CREATE TABLE `jobs` (

 `job_id` int(11) NOT NULL AUTO_INCREMENT,

 `job_title` varchar(50) NOT NULL,

 `job_desc` text NOT NULL,

 `cat_id` int(11) NOT NULL,

 `type_id` int(11) NOT NULL,

 `loc_id` int(11) NOT NULL,

 `job_start_date` datetime NOT NULL,

 `job_rate` int(5) NOT NULL,

 `job_advertiser_name` varchar(50) NOT NULL,

 `job_advertiser_email` varchar(50) NOT NULL,

 `job_advertiser_phone` varchar(20) NOT NULL,

 `job_sunset_date` datetime NOT NULL,

 `job_created_at` timestamp NULL DEFAULT CURRENT_TIMESTAMP,

 PRIMARY KEY (`job_id`)

) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8;

INSERT INTO `jobs` VALUES (1,'PHP Developer','PHP Developer
 required for a large agency based in London. Must have MVC
 experience\n',1,1,1,'2014-09-24 00:00:00',400,'Rob Foster',
 'rob@bluesuncreative.com','01234123456','2015-09-26 00:00:00',
 '2014-09-17 09:00:18'),(2,'CodeIgniter Developer','Small London
 agency urgently requires a CodeIgniter developer to work on
 small eCommerce project.',1,1,1,'0000-00-00 00:00:00',
 350,'Lucy','lucy@londonagencycomain.com','01234123456','2015-09-
 26 00:00:00','2014-09-17 11:22:19'),(3,'Flash Developer','Paris
 based agency requires Flash Developer to work on new built

Creating a Job Board

[272]

 project',1,1,2,'0000-00-00 00:00:00',
 350,'Brian','brian@frenchdesignagenct.fr','01234123456','2015-
 09-26 00:00:00','2014-09-17 11:23:39');

DROP TABLE IF EXISTS `locations`;

CREATE TABLE `locations` (

 `loc_id` int(11) NOT NULL AUTO_INCREMENT,

 `loc_name` varchar(25) NOT NULL,

 PRIMARY KEY (`loc_id`)

) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8;

INSERT INTO `locations` VALUES (1,'England'),(2,'France'),(3,'Germany'
),(4,'Spain');

DROP TABLE IF EXISTS `types`;

CREATE TABLE `types` (

 `type_id` int(11) NOT NULL AUTO_INCREMENT,

 `type_name` varchar(25) NOT NULL,

 PRIMARY KEY (`type_id`)

) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8;

INSERT INTO `types` VALUES (1,'Contract'),(2,'Full Time'),(3,'Part
Time');

Now, take a look at that last bit of SQL code, it's quite big and iddly.
Don't panic, all SQL code is available online from this book's support
page on the Packt website.

You'll see that the irst table we create is ci_sessions. We need this to allow
CodeIgniter to manage sessions, speciically, logged-in users. However, this is just
the standard session table available from CodeIgniter User Guide, so I'll not include a
description of that table as it's not technically speciic to this application. However,
if you're interested, there's a description at http://ellislab.com/codeigniter/
user-guide/libraries/sessions.html.

Right, let's take a look at each item in each table, and see what it means. First, we will
take a look at the categories table:

Table: categories

Element Description

cat_id This is the primary key.

cat_name This stores the name of the category.

Chapter 9

[273]

Next up, we will see the types table:

Table: types

Element Description

type_id This is the primary key.

type_name This stores the name of the type.

Now, let's see the locations table:

Table: locations

Element Description

loc_id This is the primary key.

loc_name This stores the name of the location.

Finally, we will see the jobs table:

Table: jobs

Element Description

job_id This is the primary key.

job_title This is the title of the position advertised.

job_desc This is the general job specification for the position
advertised.

cat_id This is foreign key from the categories table,
indicating the category of the position—IT, Management,
Manufacturing, Health Care, and so on

type_id This is the foreign key from the types table, indicating the
type of the position—full time, part time, contract, and so
on

loc_id This is the foreign key from the locations table,
indicating the location that the position is to be based in.

job_start_date This is the starting date of the position advertised.

job_rate This is the money offered (remuneration)—salary, day rate,
and so on.

job_advertiser_name This is the name of the person advertising the position
so that the applicant knows who to contact to chase their
application.

job_advertiser_email This is the contact e-mail of the person who is advertising
the position. It is to this e-mail address that an application
is sent. The application is sent when a user fills in and
submits the form in views/jobs/apply.php.

Creating a Job Board

[274]

Table: jobs

Element Description

job_advertiser_phone This is the phone number of the person advertising the
position. This is included if the applicant wishes to call the
job advertiser.

job_sunset_date This is the date at which the job will no longer be displayed
in searches. This is required as jobs will not be advertised
forever and applying a date that limits the time jobs can
be applied for prevents people from applying for jobs that
have either been filled or no longer exist.

job_created_at This is the MySQL timestamp that's applied when a new
record is added to the database.

We'll also need to make amends to the config/database.php ile, namely setting
the database access details, username password and so on.

Open the config/database.php ile and ind the following lines:

$db['default']['hostname'] = 'localhost';

$db['default']['username'] = 'your username';

$db['default']['password'] = 'your password';

$db['default']['database'] = 'jobboarddb';

Edit the values in the preceding lines, ensuring you substitute these values with
ones more speciic to your setup and situation; so, enter your username, password,
and so on.

Adjusting the conig.php ile
There are a few things in this ile that we'll need to conigure to support sessions and
encryption. So, open the config/config.php ile and make the following changes.

1. We will need to set an encryption key; both sessions and CodeIgniter's
encryption functionality require an encryption key to be set in the $config
array, so ind the following line:
$config['encryption_key'] = '';

Change it to the following:

$config['encryption_key'] = 'a-random-string-of-alphanum-
characters';

Chapter 9

[275]

Now obviously, don't actually change this value to literally
a-random-string-of-alphanum-characters but change it to, er, a
random string of alphanum characters instead—if that makes sense?
Yeah, you know what I mean.

2. Find these lines:

$config['sess_cookie_name'] = 'ci_session';

$config['sess_expiration'] = 7200;

$config['sess_expire_on_close'] = FALSE;

$config['sess_encrypt_cookie'] = FALSE;

$config['sess_use_database'] = FALSE;

$config['sess_table_name'] = 'ci_sessions';

$config['sess_match_ip'] = FALSE;

$config['sess_match_useragent'] = TRUE;

$config['sess_time_to_update'] = 300;

Change them to the following:

$config['sess_cookie_name'] = 'ci_session';

$config['sess_expiration'] = 7200;

$config['sess_expire_on_close'] = TRUE;

$config['sess_encrypt_cookie'] = TRUE;

$config['sess_use_database'] = TRUE;

$config['sess_table_name'] = 'ci_sessions';

$config['sess_match_ip'] = TRUE;

$config['sess_match_useragent'] = TRUE;

$config['sess_time_to_update'] = 300;

Adjusting the routes.php ile
We want to redirect the user to the jobs controller rather than the default
CodeIgniter welcome controller. To do this, we will need to amend the default
controller setting in the routes.php ile:

1. Open the config/routes.php ile for editing and ind the following lines
(near the bottom of the ile):
$route['default_controller'] = "welcome";

$route['404_override'] = '';

Creating a Job Board

[276]

2. First, we need to change the default controller. Initially in a CodeIgniter
application, the default controller is set to welcome; however, we don't
need this—instead, we want the default controller to be jobs. So, ind the
following line:

$route['default_controller'] = "welcome";

Replace it with the following:

$route['default_controller'] = "jobs";

$route['404_override'] = '';

Creating the model
There is only one model in this project—jobs_model.php— that contains functions
that are speciic to searching and writing job adverts to the database.

This is our one and only model for this project, so let's create the model and discuss
how it functions.

Create the /path/to/codeigniter/application/models/jobs_model.php ile and
add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
 allowed');

class Jobs_model extends CI_Model {

 function __construct() {

 parent::__construct();

 }

 function get_jobs($search_string) {

 if ($search_string == null) {

 $query = "SELECT * FROM `jobs` WHERE DATE(NOW()) <
 DATE(`job_sunset_date`) ";

 } else {

 $query = "SELECT * FROM `jobs` WHERE `job_title` LIKE
 '%$search_string%'

 OR `job_desc` LIKE '%$search_string%' AND
 DATE(NOW()) < DATE(`job_sunset_date`)";

 }

 $result = $this->db->query($query);

 if ($result) {

 return $result;

 } else {

Chapter 9

[277]

 return false;

 }

 }

 function get_job($job_id) {

 $query = "SELECT * FROM `jobs`, `categories`, `types`,
 `locations` WHERE

 `categories`.`cat_id` = `jobs`.`cat_id` AND

 `types`.`type_id` = `jobs`.`type_id` AND

 `locations`.`loc_id` = `jobs`.`loc_id` AND

 `job_id` = ? AND

 DATE(NOW()) < DATE(`job_sunset_date`) ";

 $result = $this->db->query($query, array($job_id));

 if ($result) {

 return $result;

 } else {

 return flase;

 }

 }

 function save_job($save_data) {

 if ($this->db->insert('jobs', $save_data)) {

 return $this->db->insert_id();

 } else {

 return false;

 }

 }

 function get_categories() {

 return $this->db->get('categories');

 }

 function get_types() {

 return $this->db->get('types');

 }

 function get_locations() {

 return $this->db->get('locations');

 }

}

Creating a Job Board

[278]

There are six main functions in this model, which are as follows:

• get_jobs(): This serves two functions: irstly, displaying all jobs—for
example, when a user irst visits the site—and secondly, when a user enters a
search term, the query is then changed to look for the speciic search term in
job_title and job_desc.

• get_job(): This fetches the details of a speciic job advert for point 2
(the Details/Apply item) of the site map.

• save_job(): This saves a job advert to the database when a user submits the
form from point 3 (the Create item) of the site map.

• get_categories(): This fetches categories from the categories table. It is
used to populate the categories dropdown for the create process.

• get_types(): This fetches types from the types table. It is used to populate
the types dropdown for the create process.

• get_locations(): This fetches locations from the locations table. It is used
to populate the locations dropdown for the create process.

Taking the get_jobs() function irst, as mentioned, this function has two purposes:

• To return all results, that is, to list all jobs

• To return results (jobs) that match a user's search

When a user visits the site, they are routed to jobs/index. This will cause the get_
jobs() model function to search the database. On this initial visit, the $search_
string variable will be empty (as the user isn't searching for anything). This will
cause the irst part of the if statement to be run, basically returning every valid job.

However, if the user is searching for something, then the $search_string variable
will not be empty; it will contain the search term the user entered in the views/
jobs/view.php form.

This will cause the second part of the if statement to run, adding $search_term to
the database query:

function get_jobs($search_string) {
 if ($search_string == null) {
 $query = "SELECT * FROM `jobs` WHERE DATE(NOW()) <
 DATE(`job_sunset_date`) ";
 } else {
 $query = "SELECT * FROM `jobs` WHERE `job_title` LIKE
 '%$search_string%'
 OR `job_desc` LIKE '%$search_string%' AND
 DATE(NOW()) < DATE(`job_sunset_date`)";
 }

Chapter 9

[279]

 $result = $this->db->query($query);
 if ($result) {
 return $result;
 } else {
 return false;
 }
}

Both queries will only return results whose sunset date has not passed. The
jobboarddb.job_sunset_date ield contains a date on which the job advert
will stop being displayed in search terms.

Next, we'll look at the get_job() function. This function is passed the $job_id
value from the jobs controller. The jobs controller gets the ID of the job advert from
$this->uri->segment(3) when the user clicks on the Apply link in views/jobs/
view.php.

The get_job() function simply returns all the data for point 2 (the Details/Apply
item) of the site map.

It joins the categories, types, and locations tables to the jobs table in order to
ensure that the correct category, type, and location is displayed in the views/jobs/
apply.php view along with the speciic job advert details.

We then move down to the save_job() function. This accepts an array of data from
the jobs controller. The jobs controller's create() function sends the $save_data
array to the save_job() model function. The $save_data array contains the input
from the form in the views/jobs/create.php view ile.

On a successful save, the primary key of the insert is returned.

Now we will cover the three functions—_categories(), get_types() and
get_locations()—at the same time (as they do pretty similar things). These three
functions fetch all categories, types, and locations from their respective tables. These
functions are called by the jobs controller's create() function to ensure that the
dropdowns are populated with the correct data.

Creating views
There are four views in this project, and these are as follows:

• /path/to/codeigniter/application/views/jobs/view.php:
This displays a list of current jobs to the user.

• /path/to/codeigniter/application/views/jobs/create.php: This view
allows the job advertiser to enter the job advert details. The form submits to
the jobs controller's create() function.

Creating a Job Board

[280]

• /path/to/codeigniter/application/views/jobs/apply.php: This
displays a form to the user allowing them to enter information to apply
for the job. It also displays validation errors.

• /path/to/codeigniter/application/views/nav/top_nav.php: This
displays the top-level menu. In this project, this is very simple as it contains
a project name and link to go to the jobs controller.

These are our four view iles. Now, let's go over each one, build the code, and discuss
how it functions.

Create the /path/to/codeigniter/application/views/jobs/view.php ile and
add the following code to it:

<div class="page-header">

 <h1>

 <?php echo form_open('jobs/index') ; ?>

 <div class="row">

 <div class="col-lg-12">

 <div class="input-group">

 <input type="text" class="form-control" name="
 search_string" placeholder="<?php echo $this->lang->
 line('jobs_view_search'); ?>">

 <button class="btn btn-default" type="submit"><?php
 echo $this->lang->line('jobs_view_search');
 ?></button>

 </div><!-- /input-group -->

 </div><!-- /.col-lg-6 -->

 </div><!-- /.row -->

 <?php echo form_close() ; ?>

 </h1>

</div>

<table class="table table-hover">

 <?php foreach ($query->result() as $row) : ?>

 <tr>

 <td><?php echo anchor ('jobs/apply/'.$row->job_id, $row->
 job_title) ; ?>
<?php echo word_limiter($row->job_desc,
 50) ; ?>

 </td>

 <td>Posten on <?php echo $row->job_created_at ; ?>
Rate
 is £<?php echo $row->job_rate ; ?>

 </td>

Chapter 9

[281]

 <td><?php echo anchor ('jobs/apply/'.$row->job_id, $this->
 lang->line('jobs_view_apply')) ; ?>

 </td>

 </tr>

<?php endforeach ; ?>

</table>

This view serves two functions:

• To display a simple search form at the top of the page. This is where a user
can search for jobs that match a search term.

• To display a list of jobs in an HTML table. These are the current active jobs
in the database. A job is considered active if the job's sunset date (jobs.job_
sunset_date) has not passed.

The search form is submitted to the jobs controller's index() function—this
controller function will pass the search term to the get_jobs($search_term)
function of Jobs_model. It will be added to the database query; this query will
look in jobs.job_title and jobs.job_desc for text that matches the term.

Create the /path/to/codeigniter/application/views/jobs/create.php ile
and add the following code to it:

<?php if ($this->session->flashdata('flash_message')) : ?>

 <div class="alert alert-info" role="alert"><?php echo $this->
 session->flashdata('flash_message');?></div>

 <?php endif ; ?>

 <p class="lead"><?php echo $this->lang->line
 ('job_create_form_instruction_1');?></p>

 <div class="span8">

 <?php echo form_open('jobs/create','role="form" class="form"') ;
 ?>

 <div class="form-group">

 <?php echo form_error('job_title'); ?>

 <label for="job_title"><?php echo $this->lang->
 line('job_title');?></label>

 <?php echo form_input($job_title); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('job_desc'); ?>

 <label for="job_desc"><?php echo $this->lang->
 line('job_desc');?></label>

 <?php echo form_textarea($job_desc); ?>

 </div>

Creating a Job Board

[282]

The type dropdown is populated by the get_types() function in Jobs_model.
It returns a result object that we loop over, allowing the user to select the type:

<div class="form-group">

 <?php echo form_error('type_id'); ?>

 <label for="type_id"><?php echo $this->lang->
 line('type');?></label>

 <select name="type_id" class="form-control">

 <?php foreach ($types->result() as $row) : ?>

 <option value="<?php echo $row->type_id ; ?>"><?php echo $row-
 >type_name ; ?></option>

 <?php endforeach ; ?>

 </select>

</div>

The category dropdown is populated by the get_categories() function in
Jobs_model. It returns a result object that we loop over, allowing the user to
select the category:

<div class="form-group">

 <?php echo form_error('cat_id'); ?>

 <label for="cat_id"><?php echo $this->lang->
 line('cat');?></label>

 <select name="cat_id" class="form-control">

 <?php foreach ($categories->result() as $row) : ?>

 <option value="<?php echo $row->cat_id ; ?>"><?php echo $row->
 cat_name ; ?></option>

 <?php endforeach ; ?>

 </select>

</div>

The location dropdown is populated by the get_locations() function in
Jobs_model. It returns a result object that we loop over, allowing the user to
select the location:

 <div class="form-group">

 <?php echo form_error('loc_id'); ?>

 <label for="loc_id"><?php echo $this->lang->
 line('loc');?></label>

 <select name="loc_id" class="form-control">

 <?php foreach ($locations->result() as $row) : ?>

 <option value="<?php echo $row->loc_id ; ?>"><?php echo
 $row->loc_name ; ?></option>

 <?php endforeach ; ?>

 </select>

 </div>

Chapter 9

[283]

 <label for="sunset_d"><?php echo $this->lang->line
 ('job_start_date');?></label>

 <div class="row">

 <div class="form-group">

 <div class="col-md-2">

 <?php echo form_error('startd'); ?>

 <select name="startd" class="form-control">

 <?php for ($i = 1; $i <= 30; $i++) : ?>

 <?php if (date('j', time()) == $i) : ?>

 <option selected value="<?php echo $i ; ?>"><?php
 echo date('jS', mktime($i,0,0,0, $i, date('Y'))) ;
 ?></option>

 <?php else : ?>

 <option value="<?php echo $i ; ?>"><?php echo date
 ('jS', mktime($i,0,0,0, $i, date('Y'))) ; ?>
 </option>

 <?php endif ; ?>

 <?php endfor ; ?>

 </select>

 </div>

 <div class="col-md-2">

 <?php echo form_error('startm'); ?>

 <select name="startm" class="form-control">

 <?php for ($i = 1; $i <= 12; $i++) : ?>

 <?php if (date('m', time()) == $i) : ?>

 <option selected value="<?php echo $i ; ?>"><?php
 echo date('F', mktime(0,0,0,$i, 1, date('Y'))) ;
 ?></option>

 <?php else : ?>

 <option value="<?php echo $i ; ?>"><?php echo date
 ('F', mktime(0,0,0,$i, 1, date('Y'))) ; ?>
 </option>

 <?php endif ; ?>

 <?php endfor ; ?>

 </select>

 </div>

 <div class="col-md-2">

 <?php echo form_error('starty'); ?>

 <select name="starty" class="form-control">

 <?php for ($i = date("Y",strtotime(date("Y"))); $i <=
 date("Y",strtotime(date("Y").' +3 year')); $i++) : ?>

 <option value="<?php echo $i;?>"><?php echo $i;?>
 </option>

Creating a Job Board

[284]

 <?php endfor ; ?>

 </select>

 </div>

 </div>

 </div>

 <div class="form-group">

 <?php echo form_error('job_rate'); ?>

 <label for="job_rate"><?php echo $this->lang->line
 ('job_rate');?></label>

 <?php echo form_input($job_rate); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('job_advertiser_name'); ?>

 <label for="job_advertiser_name"><?php echo $this->lang->
 line('job_advertiser_name');?></label>

 <?php echo form_input($job_advertiser_name); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('job_advertiser_email'); ?>

 <label for="job_advertiser_email"><?php echo $this->lang->
 line('job_advertiser_email');?></label>

 <?php echo form_input($job_advertiser_email); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('job_advertiser_phone'); ?>

 <label for="job_advertiser_phone"><?php echo $this->lang->
 line('job_advertiser_phone');?></label>

 <?php echo form_input($job_advertiser_phone); ?>

 </div>

 <label for="sunset_d"><?php echo $this->lang->line
 ('job_sunset_date');?></label>

 <div class="row">

 <div class="form-group">

 <div class="col-md-2">

 <?php echo form_error('sunset_d'); ?>

 <select name="sunset_d" class="form-control">

 <?php for ($i = 1; $i <= 30; $i++) : ?>

 <?php if (date('j', time()) == $i) : ?>

Chapter 9

[285]

 <option selected value="<?php echo $i ; ?>"><?php
 echo date('jS', mktime($i,0,0,0, $i, date('Y'))) ;
 ?></option>

 <?php else : ?>

 <option value="<?php echo $i ; ?>"><?php echo date
 ('jS', mktime($i,0,0,0, $i, date('Y'))) ; ?>
 </option>

 <?php endif ; ?>

 <?php endfor ; ?>

 </select>

 </div>

 <div class="col-md-2">

 <?php echo form_error('sunset_m'); ?>

 <select name="sunset_m" class="form-control">

 <?php for ($i = 1; $i <= 12; $i++) : ?>

 <?php if (date('m', time()) == $i) : ?>

 <option selected value="<?php echo $i ; ?>"><?php
 echo date('F', mktime(0,0,0,$i, 1, date('Y'))) ;
 ?></option>

 <?php else : ?>

 <option value="<?php echo $i ; ?>"><?php echo date
 ('F', mktime(0,0,0,$i, 1, date('Y'))) ; ?>
 </option>

 <?php endif ; ?>

 <?php endfor ; ?>

 </select>

 </div>

 <div class="col-md-2">

 <?php echo form_error('sunset_y'); ?>

 <select name="sunset_y" class="form-control">

 <?php for ($i = date("Y",strtotime(date("Y"))); $i <=
 date("Y",strtotime(date("Y").' +3 year')); $i++) : ?>

 <option value="<?php echo $i;?>"><?php echo $i;?>
 </option>

 <?php endfor ; ?>

 </select>

 </div>

 </div>

 </div>

 <?php echo $this->lang->line
 ('job_sunset_date_help') ; ?></div>

 <div class="form-group">

Creating a Job Board

[286]

 <button type="submit" class="btn btn-success"><?php echo
 $this->lang->line('common_form_elements_go');?></button>
 or <? echo anchor('jobs',$this->lang->
 line('common_form_elements_cancel'));?>

 </div>

<?php echo form_close() ; ?>

 </div>

</div>

Any error messages related to the validation process—such as a missing form ield
that's required—are also displayed in this view ile next to the form ield, triggering
an error. To do this, we use the form_error() CodeIgniter validation function.

Create the /path/to/codeigniter/application/views/jobs/apply.php ile and
add the following code to it:

 <?php if ($this->session->flashdata('flash_message')) : ?>

 <div class="alert alert-info" role="alert"><?php echo $this->
 session->flashdata('flash_message');?></div>

 <?php endif ; ?>

 <div class="row">

 <div class="col-sm-12 blog-main">

 <div class="blog-post">

 <?php foreach ($query->result() as $row) : ?>

 <h2 class="blog-post-title"><?php echo $row->job_title ;
 ?></h2>

 <p class="blog-post-meta">Posted by <?php echo $row->
 job_advertiser_name . ' on ' . $row->job_created_at ;
 ?></p>

 <table class="table">

 <tr>

 <td>Start Date

 </td>

 <td><?php echo $row->job_start_date ; ?>

 </td>

 <td>Contact Name

 </td>

 <td><?php echo $row->job_advertiser_name ; ?>

 </td>

 </tr>

 <tr>

 <td>Location

 </td>

 <td><?php echo $row->loc_name ; ?>

 </td>

Chapter 9

[287]

 <td>Contact Phone

 </td>

 <td><?php echo $row->job_advertiser_phone ; ?>

 </td>

 </tr>

 <tr>

 <td>Type

 </td>

 <td><?php echo $row->type_name ; ?>

 </td>

 <td>Contact Email

 </td>

 <td><?php echo $row->job_advertiser_email ; ?>

 </td>

 </tr>

 </table>

 <p><?php echo $row->job_desc ; ?></p>

 <?php endforeach ; ?>

 </div>

 </div>

 </div>

 <p class="lead"><?php echo $this->lang->line
 ('apply_instruction_1') . $job_title ;?></p>

 <div class="span12">

 <?php echo form_open('jobs/apply','role="form" class="form"') ;
 ?>

 <div class="form-group">

 <?php echo form_error('app_name'); ?>

 <label for="app_name"><?php echo $this->lang->line
 ('app_name');?></label>

 <?php echo form_input($app_name); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('app_email'); ?>

 <label for="app_email"><?php echo $this->lang->line
 ('app_email');?></label>

 <?php echo form_input($app_email); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('app_phone'); ?>

 <label for="app_phone"><?php echo $this->lang->line
 ('app_phone');?></label>

Creating a Job Board

[288]

 <?php echo form_input($app_phone); ?>

 </div>

 <div class="form-group">

 <?php echo form_error('app_cover_note'); ?>

 <label for="app_cover_note"><?php echo $this->lang->line
 ('app_cover_note');?></label>

 <?php echo form_textarea($app_cover_note); ?>

 </div>

 <input type="hidden" name="job_id" value="<?php echo $this->
 uri->segment(3) ; ?>" />

 <div class="form-group">

 <button type="submit" class="btn btn-success"><?php echo
 $this->lang->line('common_form_elements_go');?></button>
 or <? echo anchor('jobs',$this->lang->line
 ('common_form_elements_cancel'));?>

 </div>

 <?php echo form_close() ; ?>

 </div>

</div>

Take a look at the top of the view ile, speciically, the code in the foreach($query-
>result() as $row) loop that displays the details of the job. It is arranged as an
HTML table, clearly separating the main points of the job advert, such as the start
date, job location, and contact details. The only thing that's not in the table is the
job description.

Below the foreach() loop is an HTML form that allows the user to enter their
contact details and a small cover note explaining their interest in the role. The form
is submitted when the user clicks on Go.

There is a hidden ield element called job_id, and it looks like this:

<input type="hidden" name="job_id" value="<?php echo $this->uri->
 segment(3) ; ?>" />

This hidden ield that's populated with the ID of the job advert ensures that when
the form is submitted, the jobs/apply() function can query the database with the
correct ID and fetch the correct e-mail address (jobs.job_advertiser_email)
associated with the job, and using PHP's mail() function, it will send an e-mail to
the job advertiser with the applicants details.

Chapter 9

[289]

Create the /path/to/codeigniter/application/views/nav/top_nav.php ile and
add the following code to it:

 <!-- Fixed navbar -->

<div class="navbar navbar-inverse navbar-fixed-top" role
 ="navigation">

 <div class="container">

 <div class="navbar-header">

 <button type="button" class="navbar-toggle" data-
 toggle="collapse" data-target=".navbar-collapse">

 Toggle navigation

 </button>

 <a class="navbar-brand" href="<?php echo base_url() ;
 ?>"><?php echo $this->lang->line
 ('system_system_name'); ?>

 </div>

 <div class="navbar-collapse collapse">

 <ul class="nav navbar-nav">

 <li class="active"><?php echo anchor('jobs/create',
 'Create') ; ?>

 </div><!--/.nav-collapse -->

 </div>

</div>

<div class="container theme-showcase" role="main">

This view is quite basic but still serves an important role. It displays an option to
return to the jobs controller's index() function.

Creating the controller
We're going to create only one controller in this project, which is /path/to/
codeigniter/application/controllers/jobs.php.

There is only one controller in this project, so let's go over it now. We will look at the
code and discuss how it functions.

Creating a Job Board

[290]

There are three main functions in this controller, and these are as follows:

• index(): This displays the initial list of job adverts to the user. It also
displays the search box and displays any results that might be returned.

• create(): This displays a form to the any user, allowing the users create
a job advert.

• apply(): This is accessed if the user clicks on the Apply button or the
job title.

Create the /path/to/codeigniter/application/controllers/jobs.php ile
and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

class Jobs extends MY_Controller {

 function __construct() {

 parent::__construct();

 $this->load->helper('string');

 $this->load->helper('text');

 $this->load->model('Jobs_model');

 $this->load->library('form_validation');

 $this->form_validation->set_error_delimiters('<div
 class="alert alert-danger">', '</div>');

 }

Looking at index() irst, you'll see that one of the irst things this function does is
call the get_jobs() function of Jobs_model, passing to it the search string. If no
search string was entered by the user in the search box, then this post array item will
be empty, but that's okay because we test for it in the model.

The result of this query is stored in $page_data['query'], which is ready to be
passed to the views/jobs/view.php ile, where a foreach() loop will display each
job advert:

public function index() {

 $this->form_validation->set_rules('search_string', $this->lang->
 line('search_string'), 'required|min_length[1]|
 max_length[125]');

 $page_data['query'] = $this->Jobs_model->get_jobs($this->input->
 post('search_string'));

Chapter 9

[291]

We set the validation rules for search_string. If this is the irst time the page is
viewed or if the validation fails, then $this->form_validation() will return a
false value:

if ($this->form_validation->run() == FALSE) {

 $page_data['search_string'] = array('name' => 'search_string',
 'class' => 'form-control', 'id' => 'search_string', 'value' =>
 set_value('search_string', $this->input->post
 ('search_string')), 'maxlength' => '100', 'size' => '35');

To display a list of jobs to the user, we call the get_jobs() function of Jobs_model,
passing to it any search string entered by the user and storing the database result
object in the $page_data array's item query. We pass the $page_data array to the
views/jobs/view.php ile:

 $page_data['query'] = $this->Jobs_model->get_jobs($this->
 input->post('search_string'));

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('jobs/view', $page_data);

 $this->load->view('common/footer');

 } else {

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('jobs/view', $page_data);

 $this->load->view('common/footer');

 }

}

The create() function is a little more meaty; initially, we set out the form validation
rules—nothing really interesting to see there—but just after, we call three model
functions: get_categories(), get_types(), and get_locations(), the results of
which are stored in their own $save_data array items, as follows:

$page_data['categories'] = $this->Jobs_model->get_categories();

$page_data['types'] = $this->Jobs_model->get_types();

$page_data['locations'] = $this->Jobs_model->get_locations();

We'll loop over these results in the view/jobs/create.php ile and populate the
HTML select dropdowns.

Anyway, after this, we check whether the form has been submitted and if so,
whether it's submitted with errors. We build the form elements, specifying each
element's settings and sending them in the $page_data array to the views/jobs/
create.php view.

Creating a Job Board

[292]

If there were no errors after the form was submitted, we package up all the post
inputs and send them to the save_job() function of Jobs_model.

If the save operation worked, we'll set a success message lash data, indicating to the
user that their job has been saved so that they know it will now appear in searches.
However, if it hasn't, we'll return an error message:

public function create() {

 $this->form_validation->set_rules('job_title', $this->lang->
 line('job_title'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('job_desc', $this->lang->
 line('job_desc'), 'required|min_length[1]|max_length[3000]');

 $this->form_validation->set_rules('cat_id', $this->lang->
 line('cat_id'), 'required|min_length[1]|max_length[11]');

 $this->form_validation->set_rules('type_id', $this->lang->
 line('type_id'), 'required|min_length[1]|max_length[11]');

 $this->form_validation->set_rules('loc_id', $this->lang->
 line('loc_id'), 'required|min_length[1]|max_length[11]');

 $this->form_validation->set_rules('start_d', $this->lang->
 line('start_d'), 'min_length[1]|max_length[2]');

 $this->form_validation->set_rules('start_m', $this->lang->
 line('start_m'), 'min_length[1]|max_length[2]');

 $this->form_validation->set_rules('start_y', $this->lang->
 line('start_y'), 'min_length[1]|max_length[4]');

 $this->form_validation->set_rules('job_rate', $this->lang->
 line('job_rate'), 'required|min_length[1]|max_length[6]');

 $this->form_validation->set_rules('job_advertiser_name', $this->
 lang->line('job_advertiser_name'), 'required|
 min_length[1]|max_length[125]');

 $this->form_validation->set_rules('job_advertiser_email', $this-
 >lang->line('job_advertiser_email'), 'min_length[1]|
 max_length[125]');

 $this->form_validation->set_rules('job_advertiser_phone', $this-
 >lang->line('job_advertiser_phone'), 'min_length[1]|
 max_length[125]');

 $this->form_validation->set_rules('sunset_d', $this->lang->
 line('sunset_d'), 'min_length[1]|max_length[2]');

 $this->form_validation->set_rules('sunset_m', $this->lang->
 line('sunset_m'), 'min_length[1]|max_length[2]');

 $this->form_validation->set_rules('sunset_y', $this->lang->
 line('sunset_y'), 'min_length[1]|max_length[4]');

 $page_data['categories'] = $this->Jobs_model->get_categories();

 $page_data['types'] = $this->Jobs_model->get_types();

 $page_data['locations'] = $this->Jobs_model->get_locations();

 if ($this->form_validation->run() == FALSE) {

Chapter 9

[293]

 $page_data['job_title'] = array('name' =>
 'job_title', 'class' => 'form-control', 'id' => 'job_title',
 'value' => set_value('job_title', ''), 'maxlength' =>
 '100', 'size' => '35');

 $page_data['job_desc'] = array('name' =>
 'job_desc', 'class' => 'form-control', 'id' => 'job_desc',
 'value' => set_value('job_desc', ''), 'maxlength' =>
 '3000', 'rows' => '6', 'cols' => '35');

 $page_data['start_d'] = array('name' =>
 'start_d', 'class' => 'form-control', 'id' => 'start_d',
 'value' => set_value('start_d', ''), 'maxlength' => '100',
 'size' => '35');

 $page_data['start_m'] = array('name' =>
 'start_m', 'class' => 'form-control', 'id' => 'start_m',
 'value' => set_value('start_m', ''), 'maxlength' => '100',
 'size' => '35');

 $page_data['start_y'] = array('name' =>
 'start_y', 'class' => 'form-control', 'id' => 'start_y',
 'value' => set_value('start_y', ''), 'maxlength' => '100',
 'size' => '35');

 $page_data['job_rate'] = array('name' =>
 'job_rate', 'class' => 'form-control', 'id' => 'job_rate',
 'value' => set_value('job_rate', ''), 'maxlength' =>
 '100', 'size' => '35');

 $page_data['job_advertiser_name'] = array('name' =>
 'job_advertiser_name', 'class' => 'form-control', 'id' =>
 'job_advertiser_name', 'value' => set_value(
 'job_advertiser_name', ''), 'maxlength' => '100', 'size'
 => '35');

 $page_data['job_advertiser_email'] = array('name' =>
 'job_advertiser_email', 'class' => 'form-control', 'id' =>
 'job_advertiser_email', 'value' => set_value(
 'job_advertiser_email', ''), 'maxlength' => '100', 'size'
 => '35');

 $page_data['job_advertiser_phone'] = array('name' =>
 'job_advertiser_phone', 'class' => 'form-control', 'id' =>
 'job_advertiser_phone', 'value' => set_value(
 'job_advertiser_phone', ''), 'maxlength' => '100', 'size'
 => '35');

 $page_data['sunset_d'] = array('name' =>
 'sunset_d', 'class' => 'form-control', 'id' => 'sunset_d',
 'value' => set_value('sunset_d', ''), 'maxlength' =>
 '100', 'size' => '35');

 $page_data['sunset_m'] = array('name' =>
 'sunset_m', 'class' => 'form-control', 'id' => 'sunset_m',
 'value' => set_value('sunset_m', ''), 'maxlength' =>
 '100', 'size' => '35');

Creating a Job Board

[294]

 $page_data['sunset_y'] = array('name' =>
 'sunset_y', 'class' => 'form-control', 'id' => 'sunset_y',
 'value' => set_value('sunset_y', ''), 'maxlength' =>
 '100', 'size' => '35');

 $this->load->view('common/header');

 $this->load->view('nav/top_nav');

 $this->load->view('jobs/create', $page_data);

 $this->load->view('common/footer');

 } else {

At this point, the data has passed validation and is stored in the $save_data array in
preparation for saving it to the database:

$save_data = array(
 'job_title' => $this->input->post('job_title'),
 'job_desc' => $this->input->post('job_desc'),
 'cat_id' => $this->input->post('cat_id'),
 'type_id' => $this->input->post('type_id'),
 'loc_id' => $this->input->post('loc_id'),
 'job_start_date' => $this->input->post('start_y') .'-'.$this->
 input->post('start_m').'-'.$this->input->post('start_d'),
 'job_rate' => $this->input->post('job_rate'),
 'job_advertiser_name' => $this->input->
 post('job_advertiser_name'),
 'job_advertiser_email' => $this->input->
 post('job_advertiser_email'),
 'job_advertiser_phone' => $this->input->
 post('job_advertiser_phone'),
 'job_sunset_date' => $this->input->post('sunset_y') .'-'.$this->
 input->post('sunset_m').'-'.$this->input->post('sunset_d'),
);

The $save_data array is then sent to the save_job() function of Jobs_model, which
will use set_flashdata() to generate a conirmation message if the save operation
was successful or an error message if it failed:

 if ($this->Jobs_model->save_job($save_data)) {

 $this->session->set_flashdata('flash_message', $this->lang->
 line('save_success_okay'));

 redirect ('jobs/create/');

 } else {

 $this->session->set_flashdata('flash_message', $this->lang->
 line('save_success_fail'));

 redirect ('jobs');

 }

 }

}

Chapter 9

[295]

Finally, we arrive at the apply() function. This is a little simpler. Like create(), we
start off by deining our form item validation rules, and then we check whether the
form is being posted (submitted) or not. We do this because the job ID can be passed
to it in two ways.

The irst way is using $this->uri->segment(3). The ID is passed to the apply()
function via the third uri segment if a user clicks on the Apply link or the job title in
the views/jobs/view.php ile.

The second way is $this->input->post('job_id'). The ID is passed to the
apply() function via the post array if the form has been submitted. There is a hidden
form element in the views/jobs/view.php ile named job_id, the value of which is
populated with the actual ID of the job being viewed:

public function apply() {

 $this->form_validation->set_rules('job_id', $this->lang->
 line('job_title'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('app_name', $this->lang->
 line('app_name'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('app_email', $this->lang->
 line('app_email'), 'required|min_length[1]|max_length[125]');

 $this->form_validation->set_rules('app_phone', $this->lang->
 line('app_phone'), 'min_length[1]|max_length[125]');

 $this->form_validation->set_rules('app_cover_note', $this->lang-
 >line('app_cover_note'), 'required|min_length[1]|
 max_length[3000]');

 if ($this->input->post()) {

The ID is stored in the $page_data array's job_id item and passed to the get_job()
function of Jobs_model:

 $page_data['job_id'] = $this->input->post('job_id');

} else {

 $page_data['job_id'] = $this->uri->segment(3);

}

$page_data['query'] = $this->Jobs_model->
 get_job($page_data['job_id']);

We then test to see whether anything is returned. We use the num_rows()
CodeIgniter function to see whether there are any rows in the returned database
object. If there aren't, then we just set a lash message saying that the job is no
longer available.

Creating a Job Board

[296]

It might be that in the time between the user clicking on the Apply link and the time
when they actually submit their application, the job advert has become unavailable;
that is, its job_sunset_date has passed, or someone might have manually typed a
random ID and it just so happens that that ID doesn't exist. Anyway, whatever the
reason, if no results are returned, a lash message is shown to the user. If, however, it
is been found, we pull out the data from the database and store it as local variables:

if ($page_data['query']->num_rows() == 1) {

 foreach ($page_data['query']->result() as $row) {

 $page_data['job_title'] = $row->job_title;

 $page_data['job_id'] = $row->job_id;

 $job_advertiser_name = $row->job_advertiser_name;

 $job_advertiser_email = $row->job_advertiser_email;

 }

} else {

 $this->session->set_flashdata('flash_message', $this->lang->
 line('app_job_no_longer_exists'));

 redirect('jobs');

}

We then move on to the form validation process. If this is the initial page view or if
there were errors with the submit, then $this->form_validation->run() will have
retuned FALSE; if so, then we build our form items, deining their settings:

if ($this->form_validation->run() == FALSE) {

 $page_data['job_id'] = array('name' => 'job_id', 'class'
 => 'form-control', 'id' => 'job_id', 'value' =>
 set_value('job_id', ''), 'maxlength' => '100', 'size' =>
 '35');

 $page_data['app_name'] = array('name' => 'app_name',
 'class' => 'form-control', 'id' => 'app_name', 'value' =>
 set_value('app_name', ''), 'maxlength' => '100', 'size' =>
 '35');

 $page_data['app_email'] = array('name' => 'app_email',
 'class' => 'form-control', 'id' => 'app_email', 'value' =>
 set_value('app_email', ''), 'maxlength' => '100', 'size' =>
 '35');

 $page_data['app_phone'] = array('name' => 'app_phone',
 'class' => 'form-control', 'id' => 'app_phone', 'value' =>
 set_value('app_phone', ''), 'maxlength' => '100', 'size' =>
 '35');

 $page_data['app_cover_note'] = array('name' => 'app_cover_note',
 'class' => 'form-control', 'id' => 'app_cover_note', 'value'
 => set_value('app_cover_note', ''), 'maxlength' => '3000',
 'rows' => '6', 'cols' => '35');

 $this->load->view('common/header');

Chapter 9

[297]

 $this->load->view('nav/top_nav');

 $this->load->view('jobs/apply', $page_data);

 $this->load->view('common/footer');

If there was no error with the submit, then we will build an e-mail to be sent to the
advertiser of the job; this e-mail will be sent to the e-mail address contained in jobs.
job_advertiser_email.

 } else {

We substitute the variables in the e-mail using the str_replace(); PHP function,
replacing the variables with the details pulled from the database or form submit,
such as the applicant's contact details and cover note:

$body = "Dear %job_advertiser_name%,\n\n";
$body .= "%app_name% is applying for the position of
 %job_title%,\n\n";
$body .= "The details of the application are:\n\n";
$body .= "Applicant: %app_name%,\n\n";
$body .= "Job Title: %job_title%,\n\n";
$body .= "Applicant Email: %app_email%,\n\n";
$body .= "Applicant Phone: %app_phone%,\n\n";
$body .= "Cover Note: %app_cover_note%,\n\n";

$body = str_replace('%job_advertiser_name%', $job_advertiser_name,
 $body);
$body = str_replace('%app_name%', $this->input->post('app_name'),
 $body);
$body = str_replace('%job_title%', $page_data['job_title'],
 $body);
$body = str_replace('%app_email%', $this->input->
 post('app_email'), $body);
$body = str_replace('%app_phone%', $this->input->
 post('app_phone'), $body);
$body = str_replace('%app_cover_note%', $this->input->
 post('app_cover_note'), $body);

If the e-mail is sent successfully, we send a lash message to the applicant, informing
them that their application has been sent as shown in the following code; this isn't
the same as a validation error. Validation errors have been handled earlier and we
wouldn't be this far into the processing of the form if validating had not been passed.
Really, what we're saying is if the e-mail had not been sent correctly—perhaps
mail() failed for some reason—the application would not have been sent. This is
what we are indicating:

 if (mail($job_advertiser_email, 'Application for ' .
 $page_data['job_title'], $body)) {

 $this->session->set_flashdata('flash_message', $this->
 lang->line('app_success_okay'));

Creating a Job Board

[298]

 } else {

 $this->session->set_flashdata('flash_message', $this->
 lang->line('app_success_fail'));

 }

 redirect ('jobs/apply/'.$page_data['job_id']);

 }

 }

}

Creating the language ile
As with all the projects in this book, we're making use of the language ile to serve
text to users. This way, you can enable multiple region/multiple language support.
Let's create the language ile.

Create the /path/to/codeigniter/application/language/english/en_admin_
lang.php ile and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
 allowed');

// General

$lang['system_system_name'] = "Job Board";

// Jobs - view.php

$lang['jobs_view_apply'] = "Apply";

$lang['jobs_view_search'] = "Search";

// Jobs - create.php

$lang['job_create_form_instruction_1'] = "Enter the information
 about your job advert below...";

$lang['job_title'] = "Title";

$lang['job_desc'] = "Description";

$lang['type'] = "Job type";

$lang['cat'] = "Category";

$lang['loc'] = "Location";

$lang['job_start_date'] = "Start date";

$lang['job_rate'] = "Rate";

$lang['job_advertiser_name'] = "Your name (or company name)";

$lang['job_advertiser_email'] = "Your email address";

$lang['job_advertiser_phone'] = "Your phone number";

$lang['job_sunset_date'] = "Sunset date";

Chapter 9

[299]

$lang['job_sunset_date_help'] = "Your job advert will be live up
 to this date, after which it will not appear in searches and
 cannot be applied for";

$lang['save_success_okay'] = "Your advert has been saved";

$lang['save_success_fail'] = "Your advert cannot be saved at this
 time";

// Jobs - Apply

$lang['apply_instruction_1'] = "Fill out the form below to apply
 for ";

$lang['app_name'] = "Your name ";

$lang['app_email'] = "Your email ";

$lang['app_phone'] = "Your phone number ";

$lang['app_cover_note'] = "Cover note ";

$lang['app_success_okay'] = "Your application has been sent ";

$lang['app_success_fail'] = "Your application cannot be sent at
 this time ";

$lang['app_job_no_longer_exists'] = "Unfortunately we are unable
 to process your application as the job is no longer active";

Putting it all together
Okay, here are a couple of examples that will help put everything together.

User creates a job advert
Let's see how the process of creating a job advert exactly works:

1. The user visits the site and is presented with a list of jobs, a search box, and a
navigation bar.

2. The user wishes to create a new job so they click on the Create link contained
in the views/nav/top_nav.php ile.

3. CodeIgniter loads the jobs controller's create() function.

4. The create() function displays the form in the views/jobs/create.php
view ile. There are three HTML dropdown form elements that allow the user
to choose a job type, category, and location. These dropdowns are populated
by the get_types(), get_categories() and get_locations() functions of
Jobs_model, respectively.

5. The user ills in the form and clicks on Go to submit the form.

Creating a Job Board

[300]

6. The form is submitted to the jobs controller's create() function; it is
validated and passed.

7. The jobs controller's create() function sends the validated form input
to the save_job() function of Jobs_model where it is saved to the jobs
database table.

User looks at a job
Now we will see how does a user looks at a job:

1. The user visits the site and is presented with a list of jobs, a search box,
and a navigation bar.

2. The user clicks on the job title of the irst job in the list.
3. CodeIgniter loads the jobs controller's apply() function.

4. The apply() function looks at the third segment in the URI (this is the job_
id value passed in the URL of the job title in the previous step) and passes
this to the get_job() function in Jobs_model.

5. The get_job() function pulls the details of the job from the database and
returns a database result object to the jobs controller.

6. The jobs controller sends the database result object to the views/jobs/
apply.php view ile where a foreach() loop runs over the object, echoing
out the details of the job.

User searches for a job
The low of steps followed when a user searches for a job is as follows:

1. The user visits the site and is presented with a list of jobs, a search box,
and a navigation bar.

2. The user types the word CodeIgniter into the search box and hits the
Enter key.

3. The CodeIgniter framework then calls the jobs controller's index() function.

4. The index() function calls the get_jobs function of Jobs_model and passes
to it the search_string post item:

$page_data['query'] = $this->Jobs_model->get_jobs($this->
 input->post('search_string'));

Chapter 9

[301]

5. The get_jobs() function of Jobs_model recognizes that there is a search
string as input and runs the correct database query, looking at jobs.job_
title and jobs.job_desc to see whether a string of text matches the user's
search string.

6. A job advert is found to match.

7. The result object is returned to the views/jobs/view.php ile, where a
foreach() loop runs over the result object, displaying the summary details
of the job.

8. The user is free to click on the Apply link to study the details further or apply
for the job.

User applies for a job
When a user wants to apply for a job, the following steps are performed:

1. The user visits the site and is presented with a list of jobs, a search box
and navigating bar.

2. The user clicks on the job title of the irst job in the list.
3. CodeIgniter loads the jobs controller's apply() function.

4. The apply() function looks at the third segment in the URI (this is the
job_id value passed in the URL of the job title in the previous step) and
passes this to the get_job() function in Jobs_model.

5. The get_job() function pulls the details of the job from the database and
returns a database result object to the jobs controller.

6. The jobs controller sends the database result object to the views/jobs/
apply.php view ile where a foreach() loop runs over the object, echoing
out the details of the job.

7. The user enters their details in the form below the job description and
clicks on Go.

8. The form is submitted to the jobs controller's apply() function where it is
validated; once passed, the jobs controller queries the get_job() function
of Jobs_model to ind the jobs.job_advertiser_email and jobs.job_
advertiser_name values in order to e-mail the application to the advertiser.

Creating a Job Board

[302]

Summary
So, here we have a basic job board application; it is capable of allowing people to
create jobs, displaying those jobs, searching for jobs, and it also allows people to
apply for these jobs. However, there are still areas of improvement and scope to add
greater functionality; perhaps you could do the following:

• Add e-mail conirmation for the applicant. You could add a functionality to
the jobs/apply() function to send a conirmation e-mail to the applicant
when they apply for a job.

• Limit the number of applications. You could add a functionality to limit the
number of job applications per job; logic would be needed to calculate which
came irst: the sunset date or the application limit.

• You could paginate the results. Currently, all active jobs are displayed in the
jobs/index() function. You might wish to add pagination to this, limiting
the number of jobs per page to a set number—25 per page, for example.

• You can have detailed search options. You could add a more complex search,
perhaps a dropdown specifying locations or job types, and so on.

• You can delete old job adverts. You could create a small Cron script, deleting
jobs that are beyond their sunset date (jobs.job_sunset_date). This would
reduce the database to a more reasonable size and ensure that only jobs that
are active are kept there.

So there we are, then—we're at the end! What have we learned… erm, well, you
should have a whole bunch of projects to be ready to work with—best of all, they're
all really simple, so you can easily expand upon them and build more features and
functions as you require; at the very least, you should have a base platform on which
you can build any number of applications.

Be sure to check out the CodeIgniter website (http://www.codeigniter.com/) for
regular updates and new releases. Don't forget that the code in this book is available
online from the Packt website, so you don't have to painfully copy from page to
screen, and the SQL for each project is there too.

Right—that's it, the end!

http://www.codeigniter.com/

Index

Symbols

$data array
ds_body 57

ds_title 57

usr_email 57

usr_id 57

usr_name 57

$discussion_data array
ds_body 59

ds_is_active 59

ds_title 59

usr_id 59

A

add() function, e-commerce site 212
address bar

index.php, removing from 12

admin controller
about 88-91

dashboard() function 88

index() function 88

login() function 88

update_item() function 88

admin Dashboard page 47
admin_model.php ile

creating 63-65

dashboard_fetch_comments() function 63

dashboard_fetch_discussions() function 63

update_comments() function 63

update_discussions() function 63

authentication system
about 144

conig.php ile, adjusting 157

controllers, creating 179

correct access, ensuring 207

Create 146

database, creating 154

Delete 146

design 144

Edit 146

Edit My Details 145

iles 151

Forgot Password 146

language ile, creating 204

Me 145, 146

models, creating 158

Register 146

register functionality 150

routes.php ile, adjusting 158

Signin 145

signing-in page 150

summarizing 206

user, deleting 149

user details, editing 148

user registration 206

Users 145

users, creating 148

View All 145

View all users 147

views, creating 164

wireframes 144

[304]

autoload.php iles, photo sharing
application

adjusting 105

B
base_url() function 36
Bootstrap

URL 10

C

change_task_status() function 250, 251
CodeIgniter

downloading 8, 9

URL 8

comments controller
about 82-87

lag() function 82

index() function 82

comments_model.php ile
creating 60-63

fetch_comments() function 61

lag() function 61

new_comments() function 61

comments table, elements
cm_body 51

cm_created_at 51

cm_id 51

cm_is_active 51

ds_id 51

usr_id 51

comments view
creating 68-70

common language items 16
common resources

about 8

headers and footers 8

Twitter Bootstrap 8

common system resources
autoloading 18

conig.php ile
adjusting, for authentication system 157

adjusting, for discussion forum 54

adjusting, for e-commerce site 220

adjusting, for job board 274

adjusting, for photo sharing application 105

adjusting, for to-do list 249

controller ile
create.php controller ile, creating 32-34

go.php controller ile, creating 34-37

controllers
admin controller, creating 88-91

comments controller, creating 82-87

controller ile, creating 32-36

creating 32, 78

discussions controller, creating 79-82

controllers, authentication system
creating 179-203

me.php 179

MY_Controller.php 179

password.php 179

register.php 179

signin.php 179

users.php 179

controllers, e-commerce site
creating 230

controllers, job board
apply() function 290

create() function 290

creating 289-297

index() function 290

controllers, newsletter signup
creating 134-138

controllers, photo sharing application
create.php 111

creating 111-118

go.php 111

controllers, to-do list
creating 257-261

create item 100, 101
Create, job board 268
create.php controller ile

creating 32-34

D

dashboard_fetch_comments() function 63
dashboard_fetch_discussions() function 63
dashboard view

creating 75

[305]

database
creating, for e-commerce site 216-219

creating, for job board 270-274

creating, for newsletter signup 128, 129

creating, for photo sharing application 104

creating, for to-do list 247, 248

creating 24, 25, 50-53

url_address 25

url_code 25

url_created_at 25

url_id 25

delete() function 141, 251
design, photo sharing application 100
design, URL shortener 22, 23
Detail/Apply, job board 268
discussion forum

about 41

admin Dashboard 47

comment, disliking by user 95

comment, moderating 95

comments awaiting moderation,

reviewing 96

controllers, creating 78

creating, by user 93

database, creating 50-53

design 42-44

ile overview 48, 49

Home 43

implementing 93

language ile, creating 92

models, creating 55

New Discussion 43, 46

user comments 94

View All Discussions 43, 44

View Discussion/Add Comment 43, 45

views, creating 66

wireframes 42-44

discussion forum, admin-only functions
Admin Login 44

Moderator Dashboard 44

discussions_model.php ile
creating 55-59

fetch_discussion() function 55

fetch_discussions() function 55

lag() function 55

discussions controller
about 79-82

create() function 79

lag() function 79

index() function 79

discussions table, elements
ds_body 52

ds_created_at 52

ds_id 52

ds_is_active 52

ds_title 52

usr_id 52

discussions view
creating 67, 68

display_cart() function 213
do_upload item 101, 102

E

e-commerce site
add() function 212

Add to cart item 211

Cart item 211

conig.php ile, adjusting 220, 221

controllers, creating 231-236

creating 209, 210

database, creating 216-220

design 210, 211

display_cart() function 213

iles 215

Home item 211

items, adding to cart 239

language ile, creating 237

model, creating 222-224

Proceed to checkout 211

product quantity, altering 240

routes.php ile, adjusting 221, 222

search, iltering 238

summarizing 238

user_details() item 214

views, creating 225-230

wireframes 210, 211

[306]

edit() function 140
elements, categories table

cat_id 218, 272

cat_name 218, 272

cat_url_name 219

elements, customer table
cust_address 219

cust_created_at 219

cust_email 219

cust_irst_name 219

cust_id 219

cust_last_name 219

elements, jobs table
cat_id 273

job_advertiser_email 273

job_advertiser_name 273

job_advertiser_phone 274

job_created_at 274

job_desc 273

job_id 273

job_rate 273

job_start_date 273

job_sunset_date 274

job_title 273

loc_id 273

type_id 273

elements, locations table
loc_id 273

loc_name 273

elements, newsletter signup
signup_active 128

signup_created_at 128

signup_email 128

signup_id 128

signup_opt1 128

signup_opt2 128

elements, orders table
cust_id 220

order_closed 220

order_created_at 220

order_delivery_address 220

order_details 220

order_fulilment_code 220

order_id 220

order_subtotal 220

elements, photo sharing application
img_dir_name 105

img_id 105

img_image_name 105

img_url_code 105

img_url_created_at 105

elements, products table
category_id 219

product_code 219

product_description 219

product_id 219

product_name 219

product_price 219

elements, tasks table
task_created_at 248

task_desc 248

task_due_date 248

task_id 248

task_status 248

elements, types table
type_id 273

type_name 273

elements, users table
acc_id 155

usr_access_level 156

usr_add1 156

usr_add2 156

usr_add3 156

usr_created_at 156

usr_email 155

usr_fname 155

usr_hash 155

usr_id 155

usr_is_active 156

usr_lname 155

usr_pwd_change_code 156

usr_town_city 156

usr_uname 155

usr_zip_pcode 156

error messages 19, 20

F

fetch_comments() function 61
fetch_discussion() function 56

[307]

fetch_discussions() function 56
fetch_url() function 27, 29, 36
iles, authentication system

about 151, 152

change_password.php 152

delete_user.php 152

edit_user.php 152

en_admin_ lang.php 152

forgot_password.php 152

me.php 152

MY_Controller.php 151

new_password.php 152

new_user.php 152

password_model.php 151

register_model.php 151

register.php 152

reset_password.txt 152

signin_model.php 151

signin.php 152

top_nav.php 151

users_model.php 151

view_all_users.php 152

welcome.txt 152

iles, discussion forum
overview 48, 49

iles, e-commerce site
display_cart.php 215

display_products.php 215

en_admin_lang.php 216

shop.php 216

shop_model.php 215

top_nav.php 215, 216

user_details.php 216

iles, job board
apply.php 269

create.php 270

en_admin_lang.php 270

jobs.php 270

jobs_model.php 269

top_nav.php 270

iles, newsletter signup
settings.php 127

signup.php 127

signup_model.php 127

top_nav.php 127

iles, photo sharing application
create.php 103, 104

en_admin_lang.php 104

go.php 104

image_model.php 103

top_nav.php 103

iles, to-do list
delete.php 246

en_admin_lang.php 247

tasks.php 246

tasks_model.php 246

top_nav.php 246

view.php 246

iles, URL shortener
create.php 23, 24

en_admin_lang.php 24

go.php 24

overview 23, 24

top_nav.php 24

urls_model.php 23

lag() function 56, 61

G

get_all_categories() function 222
get_all_products_by_category_name()

function 222
get_all_products() function 222
get_product_details() function 222
get_settings() function 140, 141
GetSparks

URL 13

get_task() function 251, 252
get_tasks() function 250, 251
go controller 38
go item 101, 102
go.php controller ile

creating 34-37

H

headers and footers 8
Home

index() function 124, 125, 211

[308]

I

image
uploading, by user 119, 120

index() function 114, 139
index.php

removing, from address bar 12

items
adding, to cart 239

J

job board
about 265

conig.php ile, adjusting 274

controller, creating 289

Create 267, 268

creating 266

database, creating 270

design 266, 267

Detail/Apply 267, 268

iles 269

job advert, creating 299

job, applying by user 301

job, searching by user 300, 301

Jobs/Search 267

job, viewing by user 300

language ile, creating 298

model, creating 276

routes.php ile, adjusting 275

summarizing 299

views, creating 279

wireframes 266, 267

L

language ile
creating, for authentication system 204

creating, for discussion forum 92

creating, for e-commerce site 237

creating, for job board 298

creating, for newsletter signup 138, 139

creating, for photo sharing application 119

creating, for to-do list 261

creating, for URL shortener 37

Loader class extension
URL 13

login_header ile
about 74

creating 74

login view
creating 73

M

make_code() function 161
model, authentication system

creating 158-164

password_model.php 158

register_model.php 158

signin_model.php 158

users_model.php 158

model, discussion forum
admin_model.php ile, creating 63-65

comments_model.php ile, creating 60-63

creating 55

discussions_model.php ile, creating 55-59

model, e-commerce site
creating 222-224

get_all_categories() function 222

get_all_products_by_category_name()

function 222

get_all_products() function 222

get_product_details() function 222

save_cart_to_database() function 222

model, job board
creating 276-279

get_categories() function 278

get_job() function 278

get_jobs() function 278

get_locations() function 278

get_types() function 278

save_job() function 278

model, newsletter signup
add() function 130

creating 129-132

delete() function 130

edit() function 130

get_settings() function 130

[309]

model, photo sharing application
creating 106-108

fetch_image() function 108

save_image() function 108

model, URL shortener
creating 27-29

model, to-do list
change_task_status() function 250

creating 250-253

delete() function 251

get_task() function 251

get_tasks() function 250

save_task() function 250

MY_Controller ile
creating 17

N

nav/top_nav.php view ile
creating 31

new_comments() function 61
New Discussion page 46
New Discussion view

creating 70, 71

newsletter signup
about 123

controllers, creating 134

creating 123

database, creating 128

design 124

iles 127

language ile, creating 138

model, creating 129

routes.php ile, adjusting 129

views, creating 132

wireframes 124

P

photo sharing application
design 100

iles 103

wireframes 100

prep_url() function 37

product quantity
altering 240

Q

query binding 20

R

random_string() function 29
register functionality, authentication

system 150
adjusting, for authentication system 158

adjusting, for discussion forum 55

adjusting, for e-commerce site 221

adjusting, for job board 275

adjusting, for newsletter signup 129

adjusting, for photo sharing application 106

adjusting, for to-do list 250

adjusting, for URL shortener 26

S

save_cart_to_database() function 222
save_task() function 250, 252
save_url() function 27, 38
search

iltering 238

security considerations
about 18

error messages 19, 20

query binding 20

system folder, moving 18

settings() function 140
Settings/Unsubscribe

settings() function 125, 126

setting updates, for user 140
shared header and footer view

creating 14, 15

shortened URL
creating 38

signin.css ile
about 77

creating 77

signing-in page, authentication system 150

[310]

Signup
index() function 124, 125

Sparks
installing 12, 13

sing 12, 13

system folder
moving 18

T

to-do list
about 243

conig.php ile, adjusting 249

controller, creating 257

Create 245

database, creating 247

Delete 245, 246

design 244

Done/Not Done 245

iles 246

language ile, creating 261

model, creating 250-253

routes.php ile, adjusting 250

summarizing 262

task, adding 262

task status, changing 263

View All 245

View All/Create 245

views, creating 253

wireframes 244

top_nav ile
creating 72

Twitter Bootstrap
about 8

installing 10, 11

U

update_comments() function 63
update_discussions() function 63
URL

retrieving 38

user_details() function 214, 234
users, authentication system

creating 148

deleting 149

details, editing 148

viewing 147

users table, elements
usr_created_at 53

usr_email 53

usr_hash 52

usr_id 52

usr_is_active 53

usr_level 53

usr_name 52

user subscribes, events 139
user unsubscribes, events 140, 141

V

View All Discussions page 44
View Discussion/Add Comment page 45
view iles, discussion forum

comments 68-70

creating 29, 66

dashboard 75

discussions 67, 68

login.php 66

login_header.php 66

login_header ile 74

login view 73

new.php 66

New Discussion view 70, 71

view.php 66

signin.css ile 77

top_nav.php 66

top_nav ile 72

view ile, creating 30, 31

views iles, URL shortener
create.php view ile, creating 30

creating 30, 31

top_nav.php view ile, creating 31

views, authentication system
change_password.php 165

creating 164-179

delete_user.php 164

e-mail scripts 165

edit_user.php 164

login header 165

me.php 164

[311]

navigation views 165

new_password.php 165

new_user.php 164

register.php 165

signin.php 165

users forgot_password.php 164

view_all_users.php 164

views, e-commerce site
creating 225-227

display_cart.php 225

display_products.php 225

top_nav.php 225

user_details.php 225

views, job board
creating 279-288

top_nav.php 280

view.php 279

views, newsletter signup
creating 133

settings.php 132

signup.php 132

top_nav.php 132

views, photo sharing application
create.php 109

creating 109-111

result.php 109

top_nav.php 109

views, to-do list
creating 253-256

delete.php 253

top_nav.php 253

view.php 253

W

wireframes, photo sharing application 100
wireframes, URL shortener 22, 23

Thank you for buying
CodeIgniter Web Application Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its irst book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it irst before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

CodeIgniter 2 Cookbook
ISBN: 978-1-78216-230-8 Paperback: 306 pages

Over 80 recipes to help you create CodeIgniter-powered
applications and solve common coding problems

1. Customizable code that can be used in your
own applications right away.

2. Recipes that will help you solve your
CodeIgniter issues eficiently and effectively.

3. Each recipe comes with a full code example,
and where necessary, the model and view iles
are included too.

Programming with CodeIgniter

MVC
ISBN: 978-1-84969-470-4 Paperback: 124 pages

Build feature-rich web applications using the
CodeIgniter MVC framework

1. Build feature-rich web applications using
the CodeIgniter MVC framework.

2. Master the concepts of maximum simplicity,
separation, lexibility, reusability, and
performance eficiency.

3. A quick guide to programming using the
CodeIgniter MVC framework.

Please check www.PacktPub.com for information on our titles

CodeIgniter 1.7 Professional

Development
ISBN: 978-1-84951-090-5 Paperback: 300 pages

Become a CodeIgniter expert with professional tools,
techniques, and extended libraries

1. Learn expert CodeIgniter techniques and move
beyond the realms of the user guide.

2. Create mini applications that teach you a
technique and allow you to easily build extras
on top of them.

3. Create CodeIgniter libraries to minimize code
bloat and allow for easy transitions across
multiple projects.

CodeIgniter 1.7
ISBN: 978-1-84719-948-5 Paperback: 300 pages

Improve your PHP coding productivity with the free,
compact, open source, MVC CodeIgniter framework!

1. Clear, structured tutorial on working with
CodeIgniter for rapid PHP application
development.

2. Careful explanation of the basic concepts of
CodeIgniter and its MVC architecture.

3. Use CodeIgniter with databases, HTML forms,
iles, images, sessions, and e-mail.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction and Shared Project Resources
	Common resources
	Twitter Bootstrap
	Headers and footers

	Downloading CodeIgniter
	CodeIgniter on newer versions of PHP

	Installing Twitter Bootstrap
	Removing index.php from the address bar
	Installing and using Sparks
	Creating a shared header and footer view
	Common language items
	Creating the MY_Controller file
	Autoloading common system resources
	Security considerations
	Moving the system folder
	Error messages
	Query binding

	Summary

	Chapter 2: A URL Shortener
	Design and wireframes
	File overview

	Creating the database
	Adjusting the routes.php file
	Creating the model
	Creating views
	Creating the view file–views/create/create.php
	Creating the view file–views/nav/top_nav.php

	Creating controllers
	Creating the controller file–controllers/create.php
	Creating the controller file–controllers/go.php

	Creating the language file
	Putting it all together
	Creating a shortened URL
	Retrieving a URL

	Summary

	Chapter 3: Discussion Forum
	Design and wireframes
	The View All Discussions page
	The View Discussion/Add Comment page
	The New Discussion page
	The admin Dashboard page
	File overview

	Creating the database
	Adjusting the config.php file
	Adjusting the routes.php file
	Creating the models
	Creating the model file – models/
discussions_model.php
	Creating the model file – comments_model.php
	Creating the model file – admin_model.php

	Creating views
	Discussions
	Comments
	New discussion
	The top_nav file
	The login view
	The login_header file
	Dashboard
	The signin.css file

	Creating the controllers
	The discussions controller
	The comments controller
	The admin controller

	Creating the language file
	Putting it all together
	A user creates a discussion forum
	A user comments on a discussion forum
	A user dislikes a comment and flags it for moderation
	A moderator reviews comments awaiting moderation

	Summary

	Chapter 4: Creating a Photo Sharing Application
	Design and wireframes
	The create item
	The do_upload item
	The go item
	File overview

	Creating the database
	Adjusting the config.php and autoload.php files
	Adjusting the routes.php file
	Creating the model
	Creating the views
	Creating the controllers
	Creating the language file
	Putting it all together
	Summary

	Chapter 5: Creating a Newsletter Signup
	Introduction
	Design and wireframes
	The Home – index() and Signup – index() items
	Settings/Unsubscribe – settings()
	File overview

	Creating the database
	Adjusting the routes.php file
	Creating the model
	Creating the views
	Creating the controllers
	Creating the language file
	Putting it all together
	User subscribes
	User updates their settings
	User unsubscribes

	Summary

	Chapter 6: Creating an Authentication System
	Introduction
	Design and wireframes
	Me – editing details
	View all users
	Creating users
	Editing the user details
	Deleting a user
	Sign in
	Register
	File overview

	Creating the database
	Adjusting the config.php file
	Adjusting the routes.php file
	Creating the models
	Creating the views
	Creating the controllers
	Creating the language file
	Putting it all together
	User registration
	Ensuring correct access

	Summary

	Chapter 7: Creating an E-Commerce Site
	Introduction
	Design and wireframes
	Home – index()
	Add to cart – add()
	Cart – display_cart()
	User Details – user_details()
	File overview

	Creating the database
	Adjusting the config.php file
	Adjusting the routes.php file
	Creating the model
	Creating the views
	Creating the controllers
	Creating the language file
	Putting it all together
	Filtering a search
	Adding to cart
	Altering product quantity

	Summary

	Chapter 8: Creating a To-do List
	Introduction
	Design and wireframes
	View All/Create
	Delete
	File overview

	Creating the database
	Adjusting the config.php file
	Adjusting the routes.php file
	Creating the model
	Creating views
	Creating the controller
	Creating the language file
	Putting it all together
	User adds a task
	User changes the task status

	Summary

	Chapter 9: Creating a Job Board
	Introduction
	Design and wireframes
	Job/Search
	Detail/Apply
	Create
	File overview

	Creating the database
	Adjusting the config.php file
	Adjusting the routes.php file
	Creating the model
	Creating views
	Creating the controller
	Creating the language file
	Putting it all together
	User creates a job advert
	User looks at a job
	User searches for a job
	User applies for a job

	Summary

	Index

