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PREFACE 

Complex-valued neural networks (CVNNs) have continued to open doors to various 
new applications. The CVNNs are the neural networks that deal with complex ampli-
tude, i.e. signal having phase and amplitude, which is one of the most core concepts 
in science and technology, in particular in electrical and electronic engineering. A 
CVNN is not equivalent to a double-dimensional real-valued neural network. It has 
different dynamics and characteristics such as generalization, which is significantly 
useful in treatment of complex-amplitude information and wave-related phenomena. 
This is a critical point in applications in engineering fields. It is also crucial for 
developing new devices in the future. That is, the CVNN framework will play an 
important role in introduction of learning and self-organization into future quantum 
devices dealing with electron waves and photonic waves. 

We can further expect that broad-sense CVNNs such as quaternion neural net-
works break ground in unique directions respectively. Quaternion has been essential 
in computer graphics to render three-dimensional moving objects. When we intro-
duce learning and self-organization in virtual realities and computer-aided ameni-
ties, quaternion neural networks will surely bring an important fundamental basis. 
CVNNs may be useful even in physiological analysis and modeling where the re-
searchers suggest, for example, that the phase information of neuron firing timing 
against the theta wave in electroencephalography possesses a close relationship to 
short-term position memory in the brain. 

xv 



XVI PREFACE 

This book includes recent advances and applications of CVNNs in the follow-
ing ten chapters. Chapter 1 presents historical and latest advances in applications 
of CVNNs first. Then it illustrates one of the most important merits of CVNNs, 
namely, the suitability for adaptive processing of coherent signals. Chapter 2 deals 
with complex-valued parameter manifolds and with applications of CVNNs in which 
the connection parameters work in complex-valued manifolds. Successful applica-
tions are also shown, such as blind source separation of complex-valued sources, 
multichannel blind deconvolution of signals in telecommunications, nondestructive 
evaluation of materials in industrial metallic slab production, and a purely algorith-
mic problem of averaging the parameters of a pool of cooperative CVNNs. Chapter 
3 describes the iV-dimensional vector neuron, which can deal with TV signals as one 
cluster, by extending the three-dimensional vector neuron to N dimensions. The 
iV-bit parity problem is solved with a signal iV-dimensional vector neuron with an 
orthogonal decision boundary. It is shown that the extension of the dimensionality 
of neural networks to iV dimensions originates the enhancement of computational 
power in neural networks. Chapter 4 discusses the Wirtinger calculus and derives 
several algorithms for feedforward and recurrent CVNNs. A functional dependence 
diagram is shown for visual understanding of respective derivatives. For feedforward 
networks, two algorithms are considered, namely, the gradient descent (backpropa-
gation) and the Levenberg-Marquardt (LM) algorithms. Simultaneously, for recur-
rent networks, the authors discuss the complex versions of the real-time recurrent 
learning (RTRL) and the extended Kaiman filter (EKF) algorithms. 

Chapter 5 presents quaternion associative memories. Quaternion is a four-dimen-
sional hypercomplex number system and has been extensively employed in the fields 
of robotics, control of satellites, computer graphics, and so on. One of its benefits lies 
in the fact that affine transforms in three-dimensional space can be compactly and 
consistently represented. Thus neural networks based on quaternion are expected 
to process three-dimensional data with learning or self-organization more success-
fully. Several schemes to embed patterns into a network are presented. In addition to 
the quaternion version of the Hebbian learning scheme, the projection rule for em-
bedding nonorthogonal patterns and local iterative learning are described. Chapter 6 
extends neural networks into the Clifford algebraic domain. Since geometric product 
is non-commutative, some types of models are considered possible. In this chapter 
three models of fully connected recurrent networks are i nvestigated, in particular 
from the viewpoint of existence conditions of an energy function, for two classes of 
the Hopfield-type Clifford neural networks. 

Chapter 7 presents a meta-cognitive learning algorithm for a single hidden layer 
CVNN called Meta-cognitive Fully Complex-valued Relaxation Network (McFCRN). 
McFCRN has two components, that is, cognitive and meta-cognitive components. 
The meta-cognitive component possesses a self-regulatory learning mechanism which 
controls the learning stability of FCRN by deciding what to learn, when to learn, and 
how to learn from a sequence of training data. They deal with the problem of explicit 
minimization of magnitude and phase errors in logarithmic error function. Chapter 8 



PREFACE XVH 

describes a multilayer feedforward neural network equipped with multi-valued neu-
rons and its application to the domain of brain-computer interface (BCI). A new 
methodology for electroencephalogram (EEG)-based BCI is developed with which 
subjects can issue commands by looking at corresponding targets that are flickering 
at the same frequency but with different initial phase. Chapter 9 develops a complex-
valued (CV) B-spline (basis-spline) neural network approach for efficient identifica-
tion of the CV Wiener system as well as the effective inverse of the estimated CV 
Wiener model. Specifically, the CV nonlinear static function in the Wiener system is 
represented using the tensor product from two univariate B-spline neural networks. 
The effectiveness is demonstrated using the application of digital predistorter for 
high-power amplifiers with memory. Chapter 10 presents an effective color image 
processing system for persons' face image recognition. The system carries out the 
recognition with a quaternion correlator and a max-product fuzzy neural network 
classifier. The performance is evaluated in terms of accuracy, calculation cost, and 
noise and/or scale tolerance. 

This is the first book planned and published by the Complex-Valued Neural Net-
works Task Force (CVNN TF) of the IEEE Computational Intelligence Society (CIS) 
Neural Networks Technical Committee (NNTC). The CVNN TF has been estab-
lished to promote research in this developing field. The authors expect readers to get 
more interested in this area, to send feedback in any form, and to join us. Please visit 
our website h t t p : //www. e i s . t . u - t o k y o . a c . jp/news/NNTC_CVNN/. 

AKIRA HIROSE 

Tokyo 

January 2013 



CHAPTER 1 

APPLICATION FIELDS AND 
FUNDAMENTAL MERITS OF 
COMPLEX-VALUED NEURAL 
NETWORKS 

AKIRA HlROSE 

The University of Tokyo, Tokyo, Japan 

This chapter presents historical and latest advances in applications of complex-
valued neural networks (CVNNs) first. Then it also shows one of the most 
important merits of CVNNs, namely, the suitability for adaptive processing of 
coherent signals. 

1.1 INTRODUCTION 

This chapter presents historical and latest advances in applications of complex-valued 
neural networks (CVNNs) first. Then it also shows one of the most important merits 
of CVNNs, namely, the suitability for adaptive processing of coherent signals. 

CVNNs are effective and powerful in particular to deal with wave phenomena 
such as electromagnetic and sonic waves, as well as to process wave-related infor-
mation. Regarding the history of CVNNs, we can trace back to the middle of the 
20th century. The first introduction of phase information in computation was made 
by Eiichi Goto in 1954 in his invention of "Parametron" [17, 18, 61]. He utilized 
the phase of a high-frequency carrier to represent binary or multivalued informa-

Complex- Valued Neural Networks: Advances and Applications. Edited by Akira Hirose 1 
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2 APPLICATION FIELDS AND FUNDAMENTAL MERITS 

tion. However, the computational principle employed there was "logic" of Turing 
type, or von Neumann type, based on symbol processing, so that he could not make 
further extensive use of the phase. In the present CVNN researches, contrarily, the 
researchers extend the world of computation to pattern processing fields based on a 
novel use of the structure of complex-amplitude (phase and amplitude) information. 

We notice that the above feature is significantly important when we give thought 
to the fact that various modern technologies centered on electronics orient toward 
coherent systems and devices rather than something incoherent. The feature will 
lead to future general probability statistics, stochastic methods, and statistical learn-
ing and self-organization framework in coherent signal processing and information 
analysis. The fundamental idea is applicable also to hypercomplex processing based 
on quaternion, octonion, and Clifford algebraic networks. 

Some parts of the following contents of this chapter were published in detail in the 
Journal of Society of Instrument and Control Engineers [29], the Frontiers in Elec-
tncal and Electronic Engineering in China [28], and IEEE Transactions in Neural 
Networks and Learning Systems [35]. 

1.2 APPLICATIONS OF COMPLEX-VALUED NEURAL NETWORKS 

Complex-valued neural networks (CVNNs) have become widely used in various 
fields. The basic ideas and fundamental principles have been published in several 
books in recent years [27, 22, 26, 41, 53, 2]. The following subsections present 
major application fields. 

1.2.1 Antenna Design 

The most notable feature of CVNNs is the compatibility with wave phenomena and 
wave information related to, for example, electromagnetic wave, lightwave, electron 
wave, and sonic wave [28]. Application fields include adaptive design of anten-
nas such as patch antennas for microwave and millimeter wave. Many researches 
have been reported on how to determine patch-antenna shape and sub-element ar-
rangement, as well as on the switching patterns of the sub-elements [46, 10, 47]. 
A designer assigns desired frequency-domain characteristics of complex amplitude, 
or simply amplitude, such as transmission characteristics, return loss, and radiation 
patterns. A CVNN mostly realizes a more suitable design than a real-valued net-
work does even when he/she presents only simple amplitude. The reason lies in the 
elemental dynamics consisting of phase rotation (or time delay x carrier frequency) 
and amplitude increase or decrease, based on which dynamics the CVNN learning 
or self-organization works. As a result, the generalization characteristics (error mag-
nitude at nonleaming points in supervised learning) and the classification manner 
often become quite different from those of real-valued neural networks [28, 35]. The 
feature plays the most important role also in other applications referred to below. 
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1.2.2 Estimation of Direction of Arrival and Beamforming 

The estimation of direction of arrival (DoA) of electromagnetic wave using CVNNs 
has also been investigated for decades [67, 6]. A similar application field is the 
beamforming. When a signal has a narrow band, we can simply employ Huygens' 
principle. However, in an ultra-wideband (UWB) system, where the wavelength 
is distributed over a wide range, we cannot assume a single wavelength, resulting 
in unavailability of Huygens' principle. To overcome this difficulty, an adaptive 
method based on a CVNN has been proposed [60] where a unit module consists of a 
tapped-delay-line (TDL) network. 

1.2.3 Radar Imaging 

CVNNs are widely applied in coherent electromagnetic-wave signal processing. An 
area is adaptive processing of interferometric synthetic aperture radar (InSAR) im-
ages captured by satellite or airplane to observe land surface [59,65]. There they aim 
at solving one of the most serious problems in InSAR imaging that there exist many 
rotational points (singular points) in the observed data so that the height cannot be 
determined in a straightforward way. 

Ground penetrating radar (GPR) is another field [21, 66, 43, 44, 49, 34]. GPR 
systems usually suffer from serious clutter (scattering and reflection from non-target 
objects). Land surface as well as stones and clods generate such heavy clutter that 
we cannot observe what are underground if we pay attention only to the intensity. 
Complex-amplitude texture often provides us with highly informative features that 
can be processed adaptively in such a manner that we do in our early vision. 

1.2.4 Acoustic Signal Processing and Ultrasonic Imaging 

Another important application field is sonic and ultrasonic processing. Pioneering 
works were done into various directions [69, 58]. The problem of singular points 
exists also in ultrasonic imaging. They appear as speckles. A technique similar to 
that used in InSAR imaging was successfully applied to ultrasonic imaging [51]. 

1.2.5 Communications Signal Processing 

In communication systems, we can regard CVNNs as an extension of adaptive com-
plex filters, i.e., modular multiple-stage and nonlinear version. From this viewpoint, 
several groups work hard on time-sequential signal processing [15, 16], blind sep-
aration [68], channel prediction [12], equalization [63, 36, 55, 40, 33, 7, 8], and 
channel separation in multiple-input multiple-output (MIMO) systems [37]. Rele-
vant circuit realization [ 13] is highly inspiring not only as working hardware but also 
for understanding of neural dynamics. 
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4 APPLICATION FIELDS AND FUNDAMENTAL MERITS 

1.2.6 Image Processing 

There are many ideas based on CVNNs also in image processing. An example is the 
adaptive processing for blur compensation by identifying point scattering function 
in the frequency domain [3]. In such a frequency-domain processing of images, we 
often utilize the fact that the phase information in frequency domain corresponds to 
position information in spatial domain. On the other hand, CVNN spatial-domain 
processing is also unique and powerful. A highly practical proposal was made for 
quick gesture recognition in smart phones by dealing with finger angle information 
adaptively by a CVNN [19]. Biological imaging is another expanding field. There we 
can find, for example, a classification of gene-expression stages in gene images [1], 
along with adaptive segmentation of magnetic resonance image (MRI) by placing 
a dynamic boundary curve (so-called "snake") in the obtained complex-amplitude 
MRI image for segmentation of blood vessels and other organs [20]. Since there are 
various types of active and coherent imaging systems in medicine, we can expect 
further applications of CVNNs to deal with complex-amplitude images. 

1.2.7 Social Systems Such as Traffic and Power Systems 

Recent applications expand more multi-directionally even to social systems. In traf-
fic systems, a CVNN will be effectively used for controlling mutual switching timing 
of traffic lights in complicatedly connected driving roads [50]. Since traffic lights 
have periodic operation, some CVNN dynamics is suitable for their adaptive control. 
Green energy and smart grid are also the fields. A CVNN-based prediction of wind 
strength and direction has been demonstrated for efficient electric power generation 
[14] in which amplitude and phase in the complex plane represent the strength and 
the direction, respectively. 

1.2.8 Quantum Devices Such as Superconductive Devices 

Applications to quantum computation using quantum devices such as superconduc-
tivity have also been investigated in many groups [57, 39, 48]. Their results suggest 
the future realization of intrinsically non-von Neumann computers including pattern-
information representing devices. Conventional quantum computation is strictly lim-
ited in its treatable problems. Contrarily, CVNN-based quantum computation can 
deal with more general problems, which leads to wider applications of quantum com-
putation. 

1.2.9 Optical/Lightwave Information Processing Including 

Carrier-Frequency Multiplexing 

Learning optical and lightwave computer is another field of CVNN applications. 
There are researches such as frequency-domain multiplexed learning [38] and real-
time generation of a three-dimensional holographic movie for interactively control-
lable optical tweezers [32, 62]. In these networks, a signal has its carrier frequency, 
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equivalent to a band signal in communications, and therefore the learning and pro-
cessing dynamics is controllable by modulating the carrier frequency. The idea can 
be adapted to complex filters. It led to a novel developmental learning of motion 
control combined with reinforcement learning [30]. The success suggests further a 
possible influence of frequency modulation of brain wave on biological brain activ-
ity, indicating a new door to CVNN-related physiology. 

1.2.10 Hypercomplex-Valued Neural Networks 

Hypercomplex-valued neural networks have also been actively investigated [5], An 
example is the adaptive learning in three-dimensional color space by using quater-
nion [45]. An adaptive super-high-sensitive color camera (so-called night vision) has 
been produced that realizes a compensation of nonlinear human color-vision charac-
teristics in extremely dark environment. More generalized hypercomplex networks, 
namely, Clifford algebraic neural networks, are also discussed very actively in, e.g., 
special sessions in conferences [54]. 

1.3 WHAT IS A COMPLEX NUMBER? 

In this section, we look back the history of complex numbers to extract the essence 
influential in neural dynamics. 

1.3.1 Geometric and Intuitive Definition 

Throughout history, the definition of the complex number has changed gradually 
[11]. In the 16th century, Cardano tried to work with imaginary roots in dealing with 
quadratic equations. Afterward, Euler used complex numbers in his calculations in-
tuitively and correctly. It is said that by 1728 he knew the transcendental relationship 
i log i = — π/2. The Euler formulae appear in his book as 

£)1>X I Λ tX Λ*«*' £3 * * 

c o s £ = and s i n x = — (1.1) 

In 1798, Wessel described representation of the points of a plane by complex num-
bers to deal with directed line segments. Argand also interpreted yf-ΐ as a rotation 
through a right angle in the plane, and he justified this idea on the ground that two 
>/—T rotations yields a reflection, i.e., —1. It is also believed that, in early 1749, 
Euler already had a visual concept of complex numbers as points of a plane. He 
described a number x on a unit circle as x = cos g + i sin g, where g is an arc of the 
circle. Gauss was in full possession of the geometrical theory by 1815. He proposed 
to refer to +1 , — 1, and y/^Λ as direct, inverse, and lateral unity, instead of positive, 
negative, and imaginary or "impossible" elements. 
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1.3.2 Definition as Ordered Pair of Real Numbers 

The geometrical representation is intuitively simple and visually understandable, but 
may be weak in strictness. In 1835, Hamilton presented the formal definition of the 
complex number as an "ordered pair of real numbers," which also led to the discovery 
of quaternions, in his article entitled "Theory of conjugate functions, or algebra as 
the science of pure time." He defined addition and multiplication in such a manner 
that the distributive, associative, and commutative laws hold. The definition as the 
ordered pair of real numbers is algebraic, and it can be stricter than the intuitive 
rotation interpretation. 

At the same time, the fact that a complex number is defined by two real num-
bers may lead present-day neural-network researchers to consider a complex network 
equivalent to just a doubled-dimension real-number network effectively. However, 
in this paper, the authors would like to clarify the merit by focusing on the rotational 
function even with this definition. 

Based on the definition of the complex number as an ordered pair of real numbers, 
we represent a complex number z as 

z = (x,y) (1.2) 

where x and y are real numbers. Then the addition and multiplication of z\ and z2 

are defined in complex domain as 

(a?i,2/i) + (a;2,2/2) = (»l+£2,2/1+2/2) (1.3) 
(a?i,2/i)· (0:2,2/2) = (si&2 - J/i2/2,a?ii/2 +2/1^2) (1.4) 

As a reference, the addition and multiplication (as a step in correlation calculation, 
for example) of two-dimensional real values is expressed as 

(«1,2/i) + (»2,2/2) = (a?i+»2,2/1+2/2) (1.5) 
(»i,2/i)'(»2,2/2) = (»1^2,2/12/2) (1.6) 

In the comparison, the addition process is identical. Contrarily, the complex multi-
plication seems quite artificial, but this definition (1.4) brings the complex number 
with its unique function, that is, the angle rotation, as well as amplitude amplifica-
tion/attenuation, which are the result of the intermixture of the real and imaginary 
components. 

It is easily verified that the commutative, associative, and distributive laws hold. 
We have the unit element (1,0) and the inverse of z (Φ 0), which is 

z-1 = ( X , ~V ) 
\ x2 + 2/2 ' x2 + 2/2 / 

= (rVriO (L7) 

\\z\ \z\ ) 

where |^| = y/x2 + y2. 
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1.3.3 Real 2 X 2 Matrix Representation 

We can also use real 2x2 matrices, instead of the ordered pairs of real numbers, to 
represent complex numbers [11, 9]. With every complex number c = a + ib, we 
associate the C-linear transformation 

Tc : C -> C, z ·->· cz = ax - by + i(bx + ay) (1.8) 

which includes a special case of z -» iz that maps 1 into i, i into —1, ..., with a 
rotation with right angle each. In this sense, this definition is a more precise and 
general version of Argand's interpretation of complex numbers. If we identify C 
with R2 by 

z = x + iy = fXj (1.9) 

it follows that 

x \ _ ( ax — by 
y J ~ \bx + ay ) 

: « 6 ) ( 

X l (1.10) 
y ' 

In other words, the linear transformation Tc determined by c = a + ib is described 

by the matrix ( , j . Generally, a mapping represented by a 2x2 matrix is 

noncommutative. However, in the present case, it becomes commutative. By this 
real matrix representation, the imaginary unit i in C is given as 

/ = 
( Ϊ - 0 1 ) · ' - ( - ο ' - I ) " " * 

In the days of Hamilton, we did not have matrices yet. Even after the advent of 
matrices, it is very rare to define complex numbers in terms of real 2x2 matrices [11] 
(Chapter 3, §2, 5.), [9]. The introduction of complex numbers through 2 x 2 matrices 
has the advantage, over introducing them through ordered pairs of real numbers, 
that it is unnecessary to define an ad hoc multiplication. What is most important is 
that this matrix representation clearly expresses the function specific to the complex 
numbers—that is, the rotation and amplification or attenuation as 

a —b \ _ / cos# — sinö λ 1 ? . 
b a ) ~ r \ ήηθ cos0 J { ' } 

where r and Θ denote amplification/attenuation of amplitude and rotation angle ap-
plied to signals, respectively, in the multiplication calculation. On the other hand, 
addition is rather plain. The complex addition function is identical to that in the case 
of doubled-dimension real numbers. 

In summary, the phase rotation and amplitude amplification/attenuation are the 
most important features of complex numbers. 
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Figure 1.1 (a) A simple real-valued single-layered two-input two-output 
feedforward network to learn (b) a mapping that maps x to cc and (c) a possible 
but degenerate solution that is often unuseful [28]. 

1.4 COMPLEX NUMBERS IN FEEDFORWARD NEURAL 
NETWORKS 

We consider intuitively what feature emerges in the dynamics of complex-valued 
neural networks. Here we first take a layered feedforward neural network. Then we 
consider metrics in correlation learning. 
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Figure 1.2 (a) A complex-valued neural network seemingly identical to Fig. 1.1(a) 
to learn the mapping shown in Fig. 1.1(b), and (b) a solution obtained in this small-
degree-of-freedom case [28]. 

1.4.1 Synapse and Network Function in Layered Feedforward Neural 

Networks 

In wave-related adaptive processing, we often obtain excellent performance with 
learning or self-organization based on the CVNNs. As already mentioned, the rea-
son depends on situations. However, the discussion in Section 1.3 suggests that the 
origin lies in the complex rule of arithmetic. That is to say, the merit arises from the 
functions of the four fundamental rules of arithmetic of complex numbers, in partic-
ular the multiplication, rather than the representation of the complex numbers, which 
can be geometric, algebraic, or in matrices. Moreover, the essence of the complex 
numbers also lies in the characteristic multiplication function, the phase rotation, as 
overviewed in Section 1.3 [27]. 

Let us consider a very simple case shown in Fig. 1.1(a), where we have a single-
layer 2-input 2-output feedforward neural network in real number. For simplicity, 
we omit the possible nonlinearity at the neurons, i.e., the activation function is the 
identity function, where the neurons have no threshold. We assume that the net-
work should realize a mapping that transforms an input xIN to an output xOUT in 
Fig. 1.1(b) through supervised learning that adjusts the synaptic weights Wji. Sim-
ply, we have only a single teacher pair of input and output signals. Then we can 
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describe a general input-output relationship as 

CF)-(:;)CF) 
We have a variety of possible mapping obtained by the learning because the number 
of parameters to be determined is larger than the condition; i.e., the learning task is 
an ill-posed problem. The functional difference emerges as the difference in the gen-
eralization characteristics. For example, learning can result in a degenerate mapping 
shown in Fig. 1.1(c), which is often unuseful in practice. 

Next, let us consider the mapping learning task in the one-dimensional complex 
domain, which transforms a complex value xIN = {x[N, x*N) to another complex 
value xOUT — (χγυτ,χγυτ). Figure 1.2(a) shows the complex-valued network, 
where the weight is a single complex value. The situation is expressed just like in 
(1.13) as 

( X?UT \ _ ( Mcosfl - M s i n f l \ ( x[N \ 
V x°UT ) ~ \ Hs inf l M c o s 0 )\x}N ) ( } 

where Θ = arg(w). The degree of freedom is reduced, and the arbitrariness of 
the solution is also reduced. Figure 1.2(b) illustrates the result of the learning. The 
mapping is a combination of phase rotation and amplitude attenuation. This example 
is truly an extreme. The dynamics of a neural network is determined by various 
parameters such as network structure, input-output data dimensions, and teacher 
signal numbers. However, the above characteristics of phase rotation and amplitude 
modulation are embedded in the complex-valued network as a universal elemental 
process of weighting. 

The essential merit of neural networks in general lies in the high degree of free-
dom in learning and self-organization. However, if we know a priori that the objec-
tive quantities include "phase" and/or "amplitude," we can reduce possibly harmful 
portion of the freedom by employing a complex-valued neural network, resulting 
in a more meaningful generalization characteristics. The "rotation" in the complex 
multiplication works as an elemental process at the synapse, and it realizes the ad-
vantageous reduction of the degree of freedom. This feature corresponds not only to 
the geometrical intuitive definition of complex numbers but also to the Hamilton's 
definition by ordered pairs of real numbers, or the real 2x2 matrix representation. 

Though we considered a small feedforward network in this section, the conclu-
sion is applicable also to other CVNNs such as complex-valued Hebbian-rule-based 
network and complex correlation learning networks, where the weight is updated by 
the multiplication results. The elemental process of phase rotation and amplitude 
modulation results in the network behavior consistent with phase rotation and am-
plitude modulation in total. The nature is a great advantage when we deal with not 
only waves such as electromagnetic wave and lightwave, but also arbitrary signals 
with the Fourier synthesis principle, or in the frequency domain through the Fourier 
transform. 
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^'''-'' Augmented 
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Figure 1.3 Conceptual illustration of the relationship among bases in the respective 
neural networks to deal with complex signal z [35]. 

1.4.2 Circularity 

The circularity of the signals to be processed is also an important factor. To deepen 
the discussion, we refer to the wide sense linear (or widely linear: WL) systems 
which introduce conjugate signals in addition to direct complex signals [56,41]. WL 
systems well learn complex data distributed anisotropically in the complex plane, 
i.e., noncircular data. For example, it is useful for predicting wind strength and 
direction by assuming the axes of the complex number plane represent north, south, 
east, and west, and the distance from the origin expresses the strength. Augmented 
complex-valued neural networks have been proposed in such a context [64]. Wind 
has high anisotropy in general. The augmented complex-valued networks does not 
lead to the reduction of the degree of freedom. The degree is the same as that of 
real-valued networks, resulting in dynamics similar to that of real-valued ones [42]. 

Figure 1.3 is a conceptual illustration showing the bases of the respective net-
works. The number of the bases of the augmented complex networks becomes that 
of the real-valued networks back, and its dynamics approaches that of real networks. 
This situation is analogous to the fact that the combination of positive and nega-
tive frequency spectra generates almost real-valued signals. In other words, if we 
compare the relationship to the polarization of lightwave, we come to the follow-
ing. Complex-valued neural networks deal with only right- or left-handed circular 
polarized light, which are suitable for circular signal processing. Note that the sig-
nal in total can be out of complete circularity, but only each frequency component 
has the circularity. Since any waveform can be synthesized by sinusoidal compo-
nents through Fourier synthesis, the signals that the complex networks can deal with 
are not limited to completely coherent signals. In contrast, the augmented complex-
valued networks deal with both the right- and left-handed circular polarized light. 
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They are more flexible because of the larger degree of freedom, which is too much 
for circular signals. Dual univariate networks have the same degree of freedom; 
however, in this case, the bases are linear polarization corresponding to the real and 
imaginary parts, instead of the right- and left-handed circular bases in the augmented 
networks. In this manner, they are similar to each other. 

Consequently, complex-valued neural networks are suitable for processing ana-
lytic signals, which consist of a real component and its consistent imaginary com-
ponent that has the same amplitude but 90-degree shifted phase. The analytic signal 
is essentially circular. Analytic signals exist widely in electronics—for example, at 
the output of heterodyne or homodyne mixers and at the output of digital signal pro-
cessing using the Hubert transform. Complex-valued networks have the ability to 
process such analytic signals appropriately. 

1.5 METRIC IN COMPLEX DOMAIN 

1.5.1 Metric in Complex-Valued Self-Organizing Map 

Among various neurodynamics in the complex domain, the complex-valued self-
organizing maps (CSOMs) may possess fewer features which reflect the complex 
multiplication mentioned in Section 1.4 since most of SOMs have two subprocesses 
in the operation, i.e., winner determination and weight update, both of which may 
consist of only addition and subtraction in its arithmetic without any multiplication 
that utilizes the complex nature of phase rotation. 

However, the circumstances depend on the metric we use to determine the dynam-
ics. If we employ complex inner product, instead of conventional Euclidean metric 
in double-dimensional real space, we can utilize the characteristics specific to com-
plex space [4]. The general dynamics of a SOM will be explained in Section 1.5. In 
this section, we discuss the metric we use in feature vector space. 

1.5.2 Euclidean Metric 

In SOM in general, the metric most widely used to determine the winner neuron 
whose weight wc is nearest to an input feature vector z is the Euclidean metric. Even 
in a complex-valued SOM (CSOM) where z and w are complex, we can express 
them with imaginary unit i as 

z = 

wc = 

\ζχ\ exp (z# i ) 

\ζ2\βχρ(ίθ2) 

|w c i | exp(# c i ) ' 

| w c 2 | e x p ( # c 2 ) 

(1.15) 

(1.16) 
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Figure 1.4 Conceptual illustration to compare the inner product z*wc and the 
real-part inner product Re(z*wc) to calculate \\z — tuc||2 [4]. 

The Euclidean process to choose a winner is expressed as 

c = arg min \\z — wc\\ (c : class index) (1.17) 

where arg minc · · · chooses a c that minimizes · · · , and 11 · 11 denotes norm (ampli-
tude), i.e., 

Hz-Wcll2 = (z-wcy {z-wc) 

= \\z\\2 + \\we\\
2-(z*wc + w*cz) 

= | |z| |2 + I K H 2 - 2Re(z*wc) (1.18) 

Though (1.18) deals with complex numbers, this arithmetic is identical to the cal-
culation of real-valued Euclidean distance and also of the real-valued inner product; 
i.e., when x,wc € R m , 

\X — Wc \x\\2 + \\wc\\
2-2xTwc 

= \\x\\2 + \\wc\\
2 -2^2 N K i\ cos(xpc i - Oi) (1.19) 

Then, when | |z| |2 and ||wc||2 are almost constants, as is often the case, and/or we 
pay attention to phase information, the distance (1.19) is detemined by the cosine 
component (real part) \zi\\wc *| cos(i/>c i - 0;). 

www.allitebooks.com
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1.5.3 Complex Inner-Product Metric 

Instead, we can also employ a complex inner-product metric for use in determination 
of a winner in the CSOM as 

(c : class index) (1.20) 

This process is better understandable in equations by employing the polar represen-
tation. That is, the numerator of the complex-valued inner product (1.20) is given 
as 

z* wc = ^2 ( N exp(-iöi)) ( K i\ exp(iipc *)) (1.21) 
i 

= Σ \zi\\wc i\ exp(i(^c i - θι)) (1.22) 
i 

where the summation takes into account the phase values directly, that is, the direc-
tion of the arrows [4]. 

In other words, the metric (1.22) takes both the cosine and sine components (real 
and imaginary parts) into consideration. That is, when we express the vectors as 
z = (#! + it/i,^2 +iy2, ···) andw = (u\ + iv\,u2 -Hv2?···)> omitting suffix c, we 
obtain 

z* w = [xi - iyi x2 - iy2 ... ] \μ\ + iv\ u2 + iv2 ... ] 
= xiUi + yivi + x2u2 + y2v2 + ... < = cos component 

+i (x\Vi - yiui -h x2v2 - y2u2 + ...) <= sin component (1.23) 

1.5.4 Comparison Between Complex Inner Product and Euclidean 

Distance 

Figure 1.4 is a conceptual illustration to show the merit of this complex inner-product 
metric. In active imaging such as the ground penetrating radars described in Section 
1.2.3, we obtain coherent signals consisting of amplitude and phase. The feature vec-
tor is defined in complex domain. For a set of high-coherence signals, i.e., signals 
having similar phases, the summation to generate inner product grows straightfor-
ward as shown by arrows (a) in Fig. 1.4. Contrarily, in a low-coherence case, having 
random phases, the summation does not grow so much as shown by arrows (b). This 
effect emerges also in the Euclidean metric to some extent. However, the Euclidean 
metric is related only to the cosine component as shown in Fig. 1.4(a;) and (b'), 
resulting in a partial treatment of phase directions. The evaluation results can be 
different from (a) and (b). The complex inner-product metric is then more sensitive 
to signal coherence and, therefore, enhances the distinction among various objects 
compared with the case of Euclidean metric described below. 

In addition, the complex inner product is inherently less sensitive to the norm of 
signal vectors. This is simply because of the normalization. It is desirable in partic-

c = arg max 
z wc 

\z\\\\wc\ 
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ular in coherent imaging systems where we often suffer from distortion in intensity 
caused by the mirror glaring and speckles. 

1.5.5 Metric in Correlation Learning 

Correlation learning, used widely in neural networks such as associative memories 
[24] described in Section 1.5.5, also possess the same feature of the complex-valued 
learning. The correlation learning embeds the correlation between output signals 
zs and input signals zt in synaptic weights w. For simplicity of expression, we 
consider one of the output signals zs out of zs. As shown in detail in Section 1.5.5, 
the learning dynamics is expressed as 

dw * ,« ~^ 
r— = -w + zsz*t (1.24) 

where r is the learning time constant in the time t domain. Various pairs of input 
Zt and output zs teacher signals are presented to the network for the training. The 
correlation is accumulated into w, converging at 

w —> K<zaz\> (1.25) 

where K is a real constant. 
Here we express the teacher signal pairs in real and imaginary parts as 

zs = Xs+JVs (1.26) 
zt = [xti+jyti,xt2+jyt2,-,xtN + jytN]T (1.27) 

where j and N are the imaginary unit and the input terminal number. Then the 
product in the correlation in (1.25) is rewritten as 

zs z\ = [ {xsxti + y8yti) + JiysXti - x8yti), 
{xsxt2 + ysyt2) + j(ysxt2 - xayt2), 

(xsxtN + ysytN) + j{ysxtN - xsytN) ]T (1.28) 

The real and imaginary parts mix with each other. The meaning becomes obvious 
when we express the pixel values in amplitude and phase as 

zs = rse
ie* (1.29) 

zt = [rtie
jyt\rt2ejyt2,...,rtNejytN]T (1.30) 

and rewrite (1.28) as 

zaz;= [rsrtle^-^\rsrt2e
j^-^\ ... ,rartNe>(e'-9*N)]T (1.31) 

The product yields the phase difference as well as the amplitude product, which is 
compatible with the signal circularity. 
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Figure 1.5 A set of teacher signals [35] (See color insert.). 

On the contrary, if we regard the neural network as a real-valued network having 
double input terminals and two output neurons corresponding to real and imaginary 
parts, the dynamics for double-dimensional real signals zs and Zt are expressed as 

Zs = [XeiVa] (1-32) 
Zt — [stl,i/tl,St2ji/i2»— ,XtN,ytN]T (1.33) 

and the product as a step to calculate correlation becomes 

zszt= [x8xtu ysyti, x8xt2, y8yt2, ..., x8xm, y8ytN]T (1.34) 
We can find that the product (1.34) is different from (1.28) or (1.31). That is, the dy-
namics of the real-valued network is completely different from that of the complex-
valued one. The difference originates from the very basic arithmetic operation, and 
is therefore very fundamental. This property may also be called circularity as one of 
the characteristics of the complex-valued neural network. The circularity is one of 
the most essential features of the complex-valued neural networks. 

1.6 EXPERIMENTS TO ELUCIDATE THE GENERALIZATION 
CHARACTERISTICS 

To elucidate the generalization characteristics in feedforward layered neural net-
works described in Section 1.4, we conducted a set of experiments. The details 
were reported in Ref. 35. The outline is explained as follows. 

• Input signals: Weighted summation of the following (A) and (B) as shown in 
Fig. 1.5. 
(A) Sinusoid: completely coherent signal. 
(B) White Gaussian noise (WGN): completely incoherent data having random 
amplitude and phase (or real and imaginary parts). 

• Task to learn: Identity mapping, which is expected to show the learning char-
acteristics most clearly for the above signals with various degrees of coher-
ence. 
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Figure 1.6 Basic construction of the complex- and real-valued feedforward neural 
networks [35]. (See color insert.) 

• Evaluation of generalization: Observation of the generalization error when the 
input signals shift in time, or when the amplitude is changed. 

1.6.1 Forward Processing and Learning Dynamics 

1.6.1.1 Complex- Valued Neural Network (CVNN) Figure 1.6 shows the general 
construction of the neural network to be considered here. It is a layered feedforward 
network having input terminals, hidden neurons, and output neurons. In a CVNN, 
we first employ a phase-amplitude-type sigmoid activation function and the teacher-
signal-backpropagation learning process, [23, 31] with notations of 

z1 = [z1,...,zi,...,zI,zI+1]
T 

(Input signal vector) (1.35) 

Z = [zi,...,Zh,'..,ZH,ZH+l] 

(Hidden-layer output signal vector) (1.36) 

z = [zi,...,z0,...,zo] 
(Output-layer signal vector) (1.37) 

TJ 

W n = [whi] (Hidden neuron weight matrix) (1.38) 
W = [w0h] (Output neuron weight matrix) (1.39) 

where [ · ] T means transpose. In (1.38) and (1.39), the weight matrices include addi-
tional weights Wh /+i and w0 #+i , equivalent to neural thresholds, where we add 
formal constant inputs zi+i = 1 and ZH+I = 1 in (1.35) and (1.36), respec-
tively. Respective signal vectors and synaptic weights are connected with one an-
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Figure 1.7 Schematic diagram of the learning process for pairs of input-output 
teachers [35]. (See color insert.) 

other through an activation function f(z) as 

z° = f (w°zH) 
(1.40) 

(1.41) 

where f(z) is a function of each vector element z (G C) defined as 

f(z) — tanh (\z\) exp (i argz) (1.42) 

Figure 1.7 is a diagram to explain the supervised learning process. We prepare a 
set of teacher signals at the input z\ — [z\s,..., Zi8,..., z\s, zj+\ S ] T and the output 
*s — [zis, ·■·, zos,..., zos]T (s = 1, . · . , s, ...5) for which we employ the teacher-
signal backpropagation learning. We define an error function E to obtain the dynam-
ics by referring to Refs. [31, 23, 27] as 

E 

KH 
a r g ^ 

= 

-

= 

1 s o 

s—1 o—\ 

2 

r°h 1 Kd\Woh\ 
arg u Ä d - if 1 —-

dE 
igwc >/l) 

(1.43) 

(1.44) 

(1.45) 
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dE _ 

d\woh\ 

[I- \z0\
2J (\z0\ - \z0\cos(<irgz0 - argz0)) \zh\ 

• cos (argz0 - argz0 - sngw0h) 

- \z0\ \z0\ sin (argz0 - argz0) -— * 
tann \z0\ 

• sin (arg z0 - arg z0 - arg woh) (1.46) 

1 ΘΕ \woh\d{zxgwoh) 

[l- \z0\
2J {\z0\ - |£0|cos(argz0 - argz0)) \zh\ 

• sin (arg z0 - arg z0 - arg woh) 

+ |z0| |£0| sin (arg20 - argl0) - ^ - — -
tann \z0\ 

• cos (arg z0 - arg z0 - arg ι^ο^) (1.47) 

where (· ) n e w and (· ) o l d indicates the update of the weights from (· ) o l d to (· ) n e w , 
and K is a learning constant. The teacher signals at the hidden layer z — [zi,...,Zh, 
···? ZH]T is obtained by making the output teacher vector itself τΡ propagate back-
ward as 

i H = ( / ( ( i ° ) * w O ) ) * (1.48) 

where (· )* denotes Hermite conjugate. Using £ , the hidden layer neurons change 
their weights by following (1.44)-(1.47) with replacement of the suffixes o,h with 
/ M [ 2 5 , 2 7 ] . 

1.6.1.2 Complex-Valued Neural Network Having Real-Imaginary Separate-Type 
Activation Function (Rl- CVNN) We also investigate the characteristics of complex-
valued neural networks having real-imaginary separate-type activation function. In-
stead of (1.42), a neuron has an activation function expressed as 

f(z) = tanh(Re[z]) + i tanh(Im[z]) (1.49) 

The structure and the dynamics of feedforward processing and backpropagation learn-
ing are those described in, for example, Ref. 52. 

1.6.1.3 Real-Valued Neural Network Having Double Input Terminals and Output 
Neurons for Bivariate Procesing (RVNN) Similarly, the forward processing and 
learning of a RVNN having double input terminals and output neurons are explained 
as follows. Figure 1.7 includes also this case. We represent a complex number as 
a pair of real numbers as z\ — X2%-\ + ix2%- Then we have a double number of 
terminals for real and imaginary parts of input signals zk and a double number of 
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output neurons to generate real and imaginary parts of output signals zQ. We also 
prepare a double number of hidden neurons for hidden-layer signals zU so that the 
equivalent number of neurons is the same as that of the above CVNN. 

Forward signal processing connects the signal vectors as well as hidden neuron 
weights WJi and output neuron weights W R through a real-valued activation func-
tion fR as 

real & imaginary 

* R = [ χ1ι #2 , —j#2i - l , f f2 i j—j 

# 2 7 - 1 , #27, #27+1 , # 2 7 + 2 ] T 

ί = z J (Input signal vector) (1.50) 
TJ 

* R = [#1>#2, · · · , # 2 / i - l 5 # 2 / i , · · · , 

#277-1 , #27ί, #277+1, #277+2] 

(Hidden-layer output signal vector) (1.51) 

* R - [χ1> # 2 , · · · , # 2 o - l , #2o, ···> # 2 0 - 1 , χ2θ]Τ 

(Output-layer signal vector) (1.52) 
TT 

WR = [WR^J (Hidden neuron weight matrix) (1.53) 

WR = t^Ro/i] (Output neuron weight mateix) (1-54) 

*R = / R ( W R 4 ) (I·») 

*R = / R ( W R ^ R ) d · 5 6 ) 
fR(x) = tanh(x) (1.57) 

where the thresholds are wR h 2 / + 1 , wR h 2 / + 2 , wR h 2 1 f + 1 , and wR h 2 H + 2 with 
formal additional inputs 2?2i7+i = 1, #277+2 = 1> #277+1 = 1 , and #277+2 = 1· 
We employ the conventional error backpropagation learning. That is, we define an 
error function ER for a set of input and output teacher signals ( i j , ζγ) to obtain the 
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learning dynamics as 

s 20 
ER = J E E M * L ) - M 2 (=£) 

s = l 0=1 
(1.58) 

wo]d ~ v dER <? = W^-Ki^th
 (L59) 

ynew _ „„old _ ^ g j ER 
Rj? ■C = -&-*££ <ia» 

9™Ro/> 
= (x0 - Xo) (1 - x2

0) Xh (1.61) 

/ 2 0 \ 
= E ( X ° " ί ο ) ί1 ~ χ2ο) Woh K1 ~ Χ%) Xi i 1 · 6 2) 

1.6.1.4 Dual Real-Valued Neural Networks for Real-Imaginary Separate Process-
ing (dual-RVNN) We consider another type of real-valued neural network in which 
the real and imaginary parts of input signals are processed separately. It is an exten-
sion of dual univariate real-valued neural network having single-layer structure. We 
may have a variety of ways of mixing and separation of real and imaginary variables 
in multiple-layer networks. With this network, we examine a completely separate 
case where the neurons in the real-part network have no connections to those in the 
imaginary-part network. The learning and processing dynamics are identical to that 
of the above RVNN except that the numbers of input terminals and output neurons 
are the same as the CVNNs for the respective real and imaginary networks. 

1.6.2 Experimental Setup 

1.6.2.1 Simulation Setup Figure 1.8 shows schematically how to observe the 
generalization characteristics of the networks. We conducted the learning process as 
follows. We chose the identity mapping as the task to be learned to show the network 
characteristics most clearly. That is, we take a set of input and output teacher signals 
as z\ = ζ^ (s — 1,2,..., 5) with the following conditions. For a signal set showing 
high coherence, we choose its wavelength in such a manner that a unit wave spans 
just over the neural input terminals i — 1,..., / , and discrete / points are fed to the 
network evenly with a constant interval in the unit wave. In more detail, we choose 
multiple amplitude values between 0 to 1 evenly for 5A = 1,..., 5A teacher signals 
as well as multiple time shift amount between 0 to half-wave duration (phase shift in 
a sinusoidal case between 0 to π) evenly for st = 1,..., St teachers. Consequently 
we generate S = SA X St points of discrete teacher-signal sets zis (s — 1,2,..., S) 
as 

5A + 
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Figure 1.8 Schematic diagrams showing how to feed signals to observe (a) time-
shift and (b) amplitude-change generalizations [35]. (See color insert.) 

Note that the wavelength, and then the signal frequency, are unchanged. Figure 1.5 
includes the manner of the amplitude variation. We add WGN to the sinusoidal wave 
with various weighting. The noise power is adjusted depending on the signal power 
and the expected signal-to-noise ratio SNR which is determined in each learning 
trial. 

The dots on the continuous signals in Fig. 1.8 indicates the discrete teacher signal 
points ZiS · We observe the generalization characteristics by inputting signals other 
than the teachers and evaluate the output errors. Figure 1.8(a) illustrates the observa-
tion of outputs when the input signal is shifted in time. The continuous time signal 
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Figure 1.9 Example of (a) amplitude and (b) phase when the input signal gradually 
shifts in time in the real-valued and complex-valued neural networks (RVNN and 
CVNN) when no noise is added to sinusoidal signals (SNR= oo) [35]. 

was generated by the Lagrange interpolation. Figure 1.8(b) shows the observation 
when the amplitude is changed. We combine the time shift and the amplitude change 
to evaluate the generalization. In the experiment below, 5A = 4, St = 4, and the 
neural network parameters are listed in Table 1.1. The learning iteration is 3,000. 

1.6.2.2 Heterodyne Signal Experiment We process a heterodyne signal observed 
in a sonar imaging system. The signal has a carrier of 100 kHz with thermal noise. It 
is converted into 100 Hz in-phase and quadrature-phase (IQ) intermediate-frequency 
(IF) signals through an IQ mixer. The imbalance of the IQ mixer is less than 0.3 dB 

www.allitebooks.com
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Table 1.1 Parameters in the neural networks [35] 

CVNN or RI-CVNN RVNN or dual-RVNN 

Number of input neurons 
Number of hidden neurons 
Number of output neurons 

Learning constant 

7 = 1 6 
if = 25 
0 = 16 

A: = 0.01 

27 = 32 
277 = 50 
2 0 = 32 
K = 0.01 

in amplitude and 3 degrees in phase, which is common in this type of systems. The IF 
signal is recorded by a personal computer (PC) through an analogue/digital converter 
with 600 k Sample/s sampling frequency. We aim at appropriate interpolation of the 
signals in time and/or space domain for post-processing to generate high-quality 
time-space images. When the 100 kHz carrier signal power changes, the SNR also 
changes for a constant noise power. 

1.6.3 Results 

1.6.3.1 Examples of Output Signals for Inputs Having Various Coherence De-
grees Figure 1.9 displays typical examples of the output signals of the CVNN and 
RVNN for a single learning trial when SNR = oo, i.e., the signal is completely si-
nusoidal and coherent. After a learning process, we use other input signal points to 
investigate the generalization. As mentioned above, the wavelength is adjusted to 
span over the 16 neural input terminals. For example, we gradually move the input 
signal forward in time while keeping the amplitude unchanged at a = 0.5. Figures 
1.9(a) and (b) present the output amplitude and phase, respectively, showing from 
left-hand side to the right-hand side the ideal output of the identity mapping, the 
RVNN outputs, and CVNN outputs of the 16 output neurons. The horizontal axes 
present the time shift t normalized by the unit-wave duration. 

In Fig. 1.9(b), we find that the output signals of the RVNN locally deviate greatly 
from the ideal ones. The learning points are plotted at t = 0 (no time shift), where 
the output amplitude is almost 0.5 for all the neurons. However, with the time course, 
the amplitude values fluctuate largely. Contrarily, the CVNN amplitude stays almost 
constant. At the learning point t = 0, the value is slightly larger than 0.5, corre-
sponding to the slight nonzero value of the residual error in the learning curve. 

In Fig. 1.9(c), the ideal output phase values on the left-hand side exhibit linear 
increase in time. In the RVNN case, though the phase values at t = 0 are the same as 
those of ideal outputs, the values sometimes swing strongly. In contrast, the CVNN 
output phase values increase orderly, which is almost identical with the ideal values. 
In summary, the CVNN presents much better generalization characteristics than the 
RVNN when the coherence is high, i.e., SNR= oo. 
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Figure 1.10 Squared generalization errors averaged for 100 trials as functions of 
amplitude change and time shift for SNR= (a) oo, (b) 20 dB, (c) 10 dB, and (d) 0 dB, 
respectively [35]. 
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Figure 1.11 Squared generalization errors summed up for all the sampling 
amplitude-time points shown in Fig. 1.10 versus signal SNR for the real-valued and 
complex-valued neural networks (CVNN, RI-CVNN, RVNN, and dual-RVNN; curves 
denote simulations, marks denote experiments) [35]. 
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1.6.3.2 Generalization Error and Its Dependence on the Coherence Here we 
present statistic results obtained by repeating the above simulations as well as the 
real-world experiment dealing with the heterodyne signals explained in Section 1.6.2.2. 

Figure 1.10 is a three-dimensional representation of the square errors as the av-
erage of 100 learning trials for various coherence degree, namely, SNR= (a) oo, 
(b) 20 dB, (c) 10 dB, and (d) 0 dB, as functions of time shift and amplitude change. 
The learning points exist at t = 0 and amplitude values of a = 0.2, 0.4, 0.6, and 
0.8. At these points we can find the errors are very small, which corresponds to the 
almost zero residual errors in the learning curves. However, the errors at the teacher 
points for lower SNRs are obviously positive. This is because the learning error in 
some trials fails to converge at zero. As a whole, we notice in Fig. 1.10 that the 
generalization error of the RVNN are larger than those of the CVNN, in particular 
in the cases of higher SNR. When SNR is low (~0 dB), the error of the CVNN also 
increases. 

Figure 1.11 compares quantitatively the generalization errors, summed up for all 
the sampling amplitude-phase points shown in Fig. 1.10, for the CVNN, RI-CVNN, 
RVNN, and dual-RVNN as functions of the coherence degree, i.e., SNR. The four 
curves show the results of the simulation, while the marks indicate experimental 
results. In all the neural network cases, the generalization error reduces according 
to the increase of the coherence (increase of SNR). The CVNN curve shows lower 
errors than other network ones over a wide range of SNR. The dual-RVNN also 
shows low errors though, at the middle SNR (SNR — - 5 to 15 dB) the value is 3 to 
6 dB larger than that of the CVNN. The error of the simulated RVNN is about 2 dB 
larger than the dual-RVNN in the low and middle SNR range. The experimental 
results (marks) of the RVNN are slightly larger. It is remarkable that, in the higher 
coherence region (SNR> 10 dB), the RVNN curve holds a floor at a nonnegligible 
level. The RI-CVNN shows a large generalization error in the low coherence region. 
This is not only because of the errors at non-teacher points but also because of the 
errors at teacher points. That is, the learning sometimes fails. In the high coherence 
region (SNR> 20 dB), however, the generalization error decreases and approaches 
to the curves of the CVNN and dual-RVNN. In summary, we found that the four 
neural networks present generalization characteristics different among them. The 
experimental results have been found mostly near to the simulation results. In total, 
the CVNN shows good generalization characteristics. 

1.7 CONCLUSIONS 

This chapter first presented recent advances in applications of complex-valued neu-
ral networks in various engineering fields, in particular in coherent systems. We also 
mentioned the history briefly by referring to Parametron. Then we discussed their 
merits intuitively concerning the degree of freedom in the learning in feedforward 
layered neural networks as well as the metric specific to the complex«valued net-
works such as complex inner product. We also considered widely linear systems 
and circularity not only in data but also in neural dynamics. In the latter part, we 
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examined the generalization characteristics of complex-valued networks in compar-
ison with real-valued ones. We observed that the complex-valued neural networks 
show smaller generalization error in the feedforward network to deal with coher-
ent signals. This fact leads to great merits in electronics and engineering fields that 
deal with wave phenomena and wave-related information such as communications, 
imaging and sensing, social systems such as traffic signals, frequency-domain pro-
cessing including frequency-domain multiplexing, and quantum computation and 
devices. Hypercomplex-valued networks are also promising in the fields related to 
three-dimensional motion, color processing, and other high-dimensional space infor-
mation. 
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CHAPTER 2 

NEURAL SYSTEM LEARNING ON 
COMPLEX-VALUED MANIFOLDS 

S I M O N E F I O R I 

Universitä Politecnica delle Marche, Ancona, Italy 

An instance of artificial neural learning is by criterion optimization, where the 
criterion to optimize measures the learning ability of the neural network either 
in supervised learning (the adaptation is supervised by a teacher) or in unsu-
pervised learning (the adaptation of network parameters proceeds on the basis 
of the information that the neural system is able to extract from the inputs). 
In some circumstances of interest, the space of parameters of the neural sys-
tem is restricted to a particular feasible space via suitable bounds, which rep-
resent the constraint imposed by the learning problem at hand. In this case, 
the optimization rules to adapt the parameters of the neural network must be 
designed according to the known constraints. If the set of feasible parame-
ters form a smooth continuous set, namely, a differentiable manifold, the de-
sign of adaptation rules falls in the realm of differential geometrical methods 
for neural networks and learning and of the numerical geometric integration of 
learning equations. The present chapter deals with complex-valued parameter-
manifolds and with applications of complex-valued artificial neural networks 
whose connection-parameters live in complex-valued manifolds. The success-
ful applications of such neural networks, which are described within the present 
chapter, are to blind source separation of complex-valued sources and to mul-
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tichannel blind deconvolution of signals in telecommunications, to nondestruc-
tive evaluation of materials in industrial metallic slabs production and to the 
purely algorithmic problem of averaging the parameters of a pool of cooperative 
complex-valued neural networks. The present chapter recalls those notions of 
differential geometry that are instrumental in the definition of a consistent learn-
ing theory over complex-valued differentiable manifolds and introduces some 
learning problems and their solutions. 

2.1 INTRODUCTION 

Complex-valued neural systems are made of basic processing elements with complex-
valued weights and complex-valued activation functions. A number of signal/data 
processing methods based on complex-valued neural systems are nowadays made use 
of in pattern recognition and classification, in artificial neural information processing 
and in image processing. The use of complex-valued weights and complex-valued 
activation functions is not simply a theoretical generalization of the real-valued case 
but it makes it possible to extend the functionality of a single basic neural process-
ing element and of an artificial neural system to solve applied problems that do not 
accommodate well in the framework of real-valued neural systems [1], Complex-
valued neural systems find applications in adaptive signal processing for highly func-
tional sensing and imaging, in automatic control in unknown and changing environ-
ment, in brain-like information processing and in robotics inspired by human neural 
systems [32]. In the field of signal processing, for example, complex-valued neu-
ral systems are widely applied, as in land-surface classification, in the generation of 
digital elevation maps and in speech synthesis. 

An instance of artificial neural system learning is by criterion optimization, where 
the criterion to optimize measures the learning ability of the neural system either 
in supervised learning or in unsupervised learning (i.e., information-theoretic-based 
learning). In some applications, the parameters of the neural system are restricted to 
lay in a particular feasible space. In such a case, the optimization rules to adapt the 
parameters of the artificial neural system must be designed according to the structure 
of the feasible space. If the feasible space forms a smooth manifold, the design of 
adaptation rules falls in the realm of differential geometrical methods for neural sys-
tems and learning and of the numerical geometric integration of learning equations. 

The present chapter deals with complex-valued parameter-manifolds and with ap-
plications of complex-valued artificial neural systems whose adaptable parameters 
lay on complex-valued manifolds. The successful applications of such neural sys-
tems, which are described within the present chapter, are to blind source separation 
of complex-valued sources, to optimal pre-coding of MIMO broadcast channels and 
to the purely algorithmic problem of averaging the parameters of a pool of cooper-
ative complex-valued neural systems. The present chapter fits within the research 
line of differential geometrical methods for machine learning and neural networks 
design [2]. In particular, the present chapter lays on the intersection between the 
author's research line about learning by optimization on Riemannian (as well as 
pseudo-Riemannian) manifolds with application, e.g., to blind signal deconvolution 
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[15,19], blind source separation, latent variable analysis and independent component 
analysis [17, 26], unsupervised machine learning by optimization on differentiable 
manifolds and Lie groups [6, 14, 18, 21, 23, 24], and the author's research line about 
complex-valued neural systems [10, 16, 20]. 

The present chapter recalls those notions of differential geometry that are instru-
mental in the definition of a consistent learning theory over complex-valued differ-
entiable manifolds and introduces some learning problems and their solutions. A 
reference on differential geometry is [39]. 

Notation. Throughout the present chapter, symbol C denotes the field of com-
plex numbers, symbol Cnxp denotes the set o f n x p matrices with complex-valued 
entries, superscriptH denotes hermitian transpose, operator tr denotes matrix trace, 
operator det denotes matrix determinant and symbol 3Ϊ denotes real part. 

2.2 LEARNING AVERAGES OVER THE LIE GROUP OF UNITARY 
MATRICES 

Unitary matrices play a prominent role in engineering. For instance, unitary matri-
ces are involved in almost all modern multi-antenna transceiver techniques and in 
sensor array applications to biomedicine and to astronomy. A typical application in 
signal processing is to array and multichannel signal processing techniques, which 
appear to be key technologies in wireless communication systems [43]. An interest-
ing signal processing application involving sets of unitary matrices is the design of 
symbol constellations with maximal diversity [30]. Multiple antennas can enhance 
the data rate for wireless communication systems without increasing the error prob-
ability. Fully diversified constellations with large diversity are playing an important 
role in improving the data rate of systems with multiple antennas. The involved 
design problem may be cast as follows: Given a diversity measure for unitary ma-
trices, find a constellation of given cardinality such that the diversity of the unitary 
matrices in the constellation is as large as possible. Another interesting application 
of unitary matrices is to holographic memory design and analysis [45, 46]. Volume 
holographic data storage based on phase-code multiplexing appears to be a promis-
ing technology for the next generation of optical storage devices, because volume 
holographic memories offer high storage capacities and short data access times. 

In some applications, several estimates of a sought-for unitary matrix are avail-
able. An example found in the field of artificial neural network learning is provided 
by a set of different algorithms that were designed for the same purpose and that are 
run on the same data set in order to perform a unitary-matrix learning task. Another 
example is provided by the repeated run of an adaptive algorithm on the same data 
set from different initial conditions. Allegedly, the available estimates of the actual 
unitary matrix will differ only slightly one to another, except for a few outliers. A 
concern that might arise in this case is how to merge the obtained unitary matrix es-
timates in order to obtain an average matrix that is close to the actual unitary matrix. 
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2.2.1 Differential-Geometric Setting 

The notion of mean value of objects belonging to a curved space arises as a gen-
eralization of mean values of real numbers. When the space that the objects to be 
averaged belong to is a smooth manifold M endowed with a Riemannian metric, a 
possible definition of average value is given by the Riemannian mean. Given a set of 
N points Xk G M,k G { 1 , . . . , iV}, their Riemannian mean is defined as 

N 

μ = argmin y^d2(x,Xfe) (2.1) 
k=l 

where d : M x M -+ W£ is a distance function. In general, this definition does 
not guarantee the average μ G M to be unique. As long as a suitable geometrical 
characterization of the space M is available and a distance function is available in 
closed form, the Riemannian-mean problem (2.1) may be tackled. This would be the 
case, for example, for the matrix-hypersphere that will be introduced in Section 2.3. 

In the present section, a different approach is adopted, based on the assumption 
that the manifold of interest is a Lie group. The average element in the Lie group G 
is characterized as the one corresponding to the arithmetic mean in the Lie algebra 
ofG. 

A Lie group G is an algebraic group that also possesses the structure of a smooth 
manifold. In particular, the set G is endowed with a differential manifold structure, 
which is further supposed to be Riemannian. The tangent space of the manifold G at 
a point g G G is denoted by TgG. The tangent bundle associated with the Lie group 

def 
G is denoted here as TG. The Lie group G is associated with a Lie algebra $ = TeG. 

Recall that an algebraic group structure (G, m, i, e) is made of a set G endowed 
with multiplication operation m, inverse operator i and an identity element e, such 
that for every gu g2 G G, it holds that m(gug2) G G9m(g1,i(g1)) = m(i(#i),#i) = 
e and m(gi,e) = ra(e, g\) = g\. Also, group identity and inverse need to be unique 
and the group multiplication needs to be associative, namely m(#i, m(g2^gs)) — 
ra(ra(<7i,<72),<?3)> ^91,92,93 G G. In addition, it is necessary to ensure that the 
algebraic and differential structures are compatible, namely, that the map (pi, g2) i-> 
m(gi, i(</2)) be infinitely differentiable for every gi, g2 G G. 

A left translation about an element g G G, lg : G —> G, may be associated with 
the Lie group G, which is defined by 

ig(gi) = m(i(g),9l), Vp,0i G G (2.2) 

The inverse of operator ί9(·) : G -> G is defined as 

tj1(9i)=rn(g,g1) (2.3) 

As G is a Riemannian manifold, it is endowed with a inner product ( · , · )g : 
TgG x TgG -¥ M. A geodesic line with normal parameterization 7 : [0, 1] —» G 
connecting two points gi,g2 G G is the shortest path on G having gx and g2 as 
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endpoints. Namely it solves the variational problem: 

* / (7G(t)nG(t))yG{t)dt, (2.4) 
JO 

where the overdot stands for derivative with respect to the parameter t and symbol δ 
denotes variation. The geodesic curve 7 can also be specified in terms of an endpoint 
g G G and a tangent vector v G T9G, namely it satisfies the conditions 7G(0) = g 
and 7G(0) = v. In this case, the geodesic curve is specified as j^v(t). The quantity 
άΊ (gi, #2) defined as: 

dybhito) = f I y/{7G(t),iG(t)ho{t)dt, (2.5) 

is termed geodesic distance. Exponential maps may be associated to a manifold by 
the help of geodesic curves. The exponential map: TG —> G associated to any 
geodesic η^ν : [0, 1] -» G emanating from g G G with tangent v G TgG at the 

origin is defined by exp^(v) = 7G
V(1). The exponential expG maps a point of TgG 

into a point in G. The exponential map at the origin of a Lie group, expG, is simply 
denoted by expG and its inverse operator is denoted by log . 

2.2.2 An Averaging Procedure over the Lie Group of Unitary Matrices 

The set of samples to average consists of N independent estimates g\* G G belonging 
to a Lie group G. It is assumed that the estimates g^ G G are sufficiently close to each 
other for them to make sense to average. The procedure to compute a mean element 
μ is independent of the estimation problem as well as of the estimation algorithms 
through which the estimates were computed. 

An algorithm to learn averages, as developed in Ref. [27], reads: 

1. Shift the whole set of available patterns in a neighborhood of the identity e G 
G by left-translation about the sought-after average element μ. The shifted set 
of patterns is then given by iß(gn) = τη(ι(μ), gn) G G, n = 1 , . . . , N. 

2. As the elements £ß(gn) belong to a neighborhood of the identity e, then they 
may be shifted to the Lie algebra $ by applying operator logG, which yields 
un= log0:(ra(i(/z),0n)) €f l ,n = l , . . . , iV. 

3. In the Lie algebra 9, averaging may be computed by the arithmetic mean 

AT 2^n=l un-

4. The mean element -^ $^=1 un m 0 m u s t correspond - upon exponentiation 
and inverse left-translation - to the mean element μ G G. 

Ultimately, an element μ G G is sought, which satisfies the condition 

μ = m^μ1expGl—^\ogG(m(^{μ),gn))\ J (2.6) 
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In some circumstances of interest, Eq. (2.6) may be solved in closed form. Oth-
erwise, it might be solved by means of a fixed-point iteration algorithm. 

In the present context, the Lie group of interest has the structure (U(p), · ,H , ip), 
where U(p) is the set of p x p unitary matrices, namely: 

υ(ρ)ά={9Ζσχρ\9
Η

9 = Ιρ} (2.7) 

and Ip denotes the p x p identity matrix. The Lie algebra u(p) associated to the 
unitary group is made of skew-Hermitian matrices, namely: 

u(p)d={u G σχρ \uH = -u) (2.8) 

Also, it holds that 
TgU(p) = {gu\u e u(p)} (2.9) 

The unitary group is endowed with the canonical inner product: 

(vuV2)g
a=mT(v^v2) (2.10) 

associated to the Frobenius norm, for every vi,v2 G TgU(p). The exponential map 
exp coincides with the matrix exponential function while the inverse exponential 
map coincides with the matrix logarithm function. 

Here Gl(p, C) denotes the general linear Lie group of p x p invertible complex-
valued matrices and by g((p, C) its associated Lie algebra (namely, the set of p x p 
complex-valued matrices). The exponential of a matrix u G gi(p, C) is given by the 
convergent series: 

oo u 
fti"' 

exp(u) = ΙΡ + Ση^ 
k=l 

It is worth recalling that, given matrices ui,u2 £ 0l(p>C)> it holds that exp(wi + 
u2) φ exp(wi) exp(u2) unless matrices ui and u2 commute. Logarithms of a matrix 
g are solutions of the matrix equation exp(u) = g. A matrix has a logarithm if and 
only if it is invertible. The logarithm is not unique, but if a matrix has no negative 
real eigenvalues, then it has a unique logarithm known as the principal logarithm, 
which is denoted by log(^). Furthermore, if, for any given matrix norm || · || it holds 
\\g — Ip11 < 1, where Ip denotes the identity element in Gl(p), then it holds that 

k=l 

In general, given matrices gi,g2 G G7(p, C), it holds that log(pi^2) Φ log(#i) + 
log(<72)· In practice, matrix exponential and logarithm may be computed efficiently 
by making use of the spectral decomposition of matrices or by various approximate 
methods [9, 31]. 

Condition (2.6) gives rise to the fixed-point learning algorithm: 

μ*+ι = μ* exp ί Σ log y(ßk)H9n J (2.11) 
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Algorithm 1 Pseudocode to implement the averaging method (2.11) over the unitary 
group. 

Set k = 0 
Set μο to an initial guess in U(p) 
Set ε to desired precision 
repeat 

Update μΗ+1 = μΗ e x p ( ^ Ση=ι loS((ßk)H9n)j 
Setk = k + 1 

until <27(μ*,μ*_ι) < ε 

A geodesic curve on the manifold U{p) endowed with the metric (2.10) depart-
ing from the point g E U(p) with tangent direction v = gu, with u E u(p), has 
expression jg}gu(t) = gexp(tu)9t E [0, 1]. Therefore, as it holds that jg/guit) = 
7siw (t)u, the geodesic arclength is given by 

d, = f \J\x{{$$ {t)u)"{^ (t)u))) di = \ / ^ R ) 

If the geodesic curve is specified in terms of endpoints 7(0) = g\ E U(p) and 
7(1) = g2 E i/(p), then it must hold that g = gi and u = l o g ^ f ^ ) ; therefore, 

^(51,S2) = ^/-tr((log(9f f f 2))2) (2.12) 

The discussed averaging procedure may be summarized by the pseudocode listed 
in the Algorithm 1. 

A first set of numerical tests was conducted by generating a random matrix g E 
U(p) and N matrices g^ E U(p) by means of the relationship gn = gexp(un), 

where the un E u(p) are random matrices defined by un = \{bn — b„) and the 
bn E Cpxp are, in turn, random matrices whose real-part and imaginary-part entries 
are drawn from a zero-mean Gaussian distribution with variance σ\. With the aim 
of objectively measuring the behavior of the average-learning algorithm, two indices 
were defined: 

Relative distance^ ^n
d^9n) (2U) 

which measures how far apart the average pattern lies from the pattern set with re-
spect to the original point g, and 

C l o s e n e s s ^ y / ^ ^ (2.14) 
dy{g,gn) 

which measures how far the average point lies from each of the nth sample relatively 
to the original point g. Figure 2.1 displays the result of a run when p = 5, N = 
100 and σ\ — 0.25. Figure 2.1(a) shows that the algorithm converges steadily and 
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A run with 100 samples 

(a) Relative distance versus iteration. 

Before iteration 

0) 2 

10 20 30 40 50 60 70 80 90 100 
Samples 

After iteration 

10 20 30 40 50 60 70 80 90 100 
Samples 

(b) Closeness indices. 

Figure 2.1 Experiment on the Lie group G = f/(5) with N = 100 samples to 
average. In Figure 2.1(b), the top panel shows closeness indices before iteration, 
namely, with μ = /in, while the bottom panel shows closeness indices after iteration. 
The straight line on both panels denotes the value 1. 

in a few iterations. Figure 2.1(b) shows the distribution of normalized distances 
d7(ßo,gn), which differ considerably from 1 as the initial guess is chosen randomly, 
and the distribution of normalized distances o?7(/i, gn) after completion of learning, 
which are close to 1, a fact that confirms that the learned average matrix truly locates 
as close as possible to all samples at a time. 
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A second kind of numerical result allows a better visualization of the behavior 
of the discussed averaging algorithm. An useful illustration consists in seeing the 
cloud of points representing the matrices gn to get a nice view of how these points 
distribute around the actual solution g and how close to it the mean solution μ locates. 
However, in general an element of a Lie group U(p) involves several parameters and 
it is impossible to get a nice graphical point-wise representation of the elements gn. 
A special case is the one of the group of unitary unimodular matrices Si/(2), defined 
as 

SU{2) = {ge C2x2\gHg = J2, det(g) = 1} (2.15) 

Any SU(2) matrix may be represented as [20] 

9 = 
Zl Z2 

-z2 zx 
(2.16) 

where ζχ,ζ2 G C are the Cayley-Klein parameters, which have to satisfy the con-
straint \zi\2 + \z2\

2 = 1, where symbol | · | denotes complex-valued number modulus 
and superscript * denotes complex conjugation. The manifold 517(2) is a subgroup 
of the manifold {7(2) under matrix multiplication/inversion. The Lie algebra su(2) 
associated with the Lie group SU(2) is the set of 2 x 2 complex-valued, skew-
Hermitian, traceless matrices. As a numerical case study, a central random matrix 
g G SU(2) may be generated and then TV matrices gn G SU(2) may be further 
generated by the rule 

gn = gexp(un)e-tr^ (2.17) 

where un G u(2) are random matrices defined by un = \(bn — b%) and the bn G 
C 2 x 2 are, in turn, random matrices whose real-part and imaginary-part entries are 
drawn from a zero-mean Gaussian distribution with variance σ\. In fact, it holds that 

det(pn) = det(p) d e t ( e x p K ) ) e - t r ^ = 1 · e t r ^ · e ~ t r ^ = 1 (2.18) 

Complex variables z\,z2 in (2.16) comprise a total of 4 real parameters and the 
constraint on their moduli makes the representation have in total 3 independent pa-
rameters. Therefore, any matrix in G = SU(2) may be represented by a point of R3: 
For graphical representation purpose only, the representation g -» [ΰί,ζι Stzi $tz2]

T 

is made use of, where symbol 5 denotes imaginary part. Figure 2.2 displays the 
result of a single run when N = 100, au = 0.5 and the samples set contains 10% of 
outliers (i.e., elements generated with au = 5), after 10 iterations of the algorithm. 
From Figure 2.2 it is readily appreciated how the computed empirical mean does lay 
very close to the actual center of the distribution, in spite of the outliers. 

2.3 RIEMANNIAN-GRADIENT-BASED LEARNING ON THE 
COMPLEX MATRIX-HYPERSPHERE 

A signal-processing problem posed in Ref. [33] concerns the computation of an op-
timal precoding matrix via maximization of a weighted sum rate in MIMO broadcast 
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Figure 2.2 Experiment on SU(2) with N = 100 and with outliers: The open circle 
(o) denotes the computed average solution μ, the diamond (o) denotes the point g, 
while the cloud of dots (·) denotes the patterns gn. 

channels. For a recent review of weighted sum rate in MIMO broadcast channels 
see, e.g., Refs. [29, 34, 35]. The main focus of the present contribution is to develop 
a suitable algorithm to learn a precoding matrix. The present analysis of the above 
problem starts by casting it as an optimization problem of a regular criterion function 
over the complex-valued matrix-hypersphere S£)P(C), defined as 

S°JQd={x e C ^ M a ^ a ; ) = a} (2.19) 

where n> p and a > 0. 
As the real line E is a subfield of the complex plane C, the developed optimization 

algorithm translates to the real-valued parameter space S£jP(IR) in a straightforward 
way, which proves useful in certain applications. An application of learning by op-
timization on the manifold S^>p(E) is to dimension reduction for image retrieval 
[47], which was designed to optimize class separation with respect to metrics de-
rived from cross-correlation of spectral histograms. A problem formally similar to 
the one discussed in Ref. [33] tailored to the real line was discussed in Ref. [42] un-
der the name of "maximum relative uncertainty theory" for linear-neural-networks' 
unsupervised learning. Moreover, optimization problems over the manifold §£^(M) 
arise in applications such as blind channel deconvolution [15, 19] and one-unit prin-
cipal/independent component analysis [22]. 
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The sought-after learning rule over the manifold §£?P(C) is formulated in terms of 
Riemannian-gradient-based optimization of a regular criterion function, as the space 
of interest S£)P(C) is a smooth manifold that may be endowed with a Riemannian 
geometry. The discussed Riemannian-gradient-based optimization theory is imple-
mented by a geodesic-stepping method [28, 36]. Geodesic stepping is based on the 
calculation of geodesic arcs in closed form and provides a geometrically sound way 
of moving from a point along a given direction on a Riemannian manifold propor-
tionally to a learning stepsize. A method to compute a numerically optimal learning 
stepsize schedule is discussed as well, which resembles the line-search method on 
Euclidean spaces, termed geodesic-search method. An advantage of the devised 
geodesic-search method is that, in the space §£ (C), the geodesic curve is periodic 
of finite period, hence the learning stepsize belongs to a closed interval. Moreover, 
unlike other methods previously adopted [19], it does not rely on any local approxi-
mation of the criterion function and hence does not limit to short steps. 

2.3.1 Geometric Characterization of the Matrix Hypersphere 

The tangent space to the manifold §£jP(C) at a point x G 8^p(C) is denoted by 
TxS^p(C). Given any smooth curve 7(t) such that 7 : [-a, a] 4 S£jP(C), with a > 
0 and 7(0) = x, the tangent space TXS% p(C) is spanned by the vectors 7(0), where 
an overdot denotes derivative with respect to parameter t. Hand-by-hand derivation 
of the condition tr(jH (t)~f(t)) = a gives, for any t G [—a, a], 

tr(7*(t)7(t) +lH(t)i(t)) = 2mr(jH(th(t)) = 0 
def 

where symbol U denotes real part. Setting v = 7(0) G TxS^p(C), it is found that the 
tangent space of the smooth manifold §£ p(C) at a point x G § J p(C) is described 
by 

TXK,P(Q ={v£ Cnxp\mr(vHx) = 0} (2.20) 
By embedding the manifold §£)P(C) into the ambient space Cnxp equipped with the 
inner product (z, w) = Utr(zHw), z,w G Cnxp, the normal space NxE>%p(C) to the 
manifold §£)P(C) at a point x G §£jP(C) may be defined as the collection of vectors 
that are orthogonal to the tangent space TXS%jP(C), namely as 

NxSZtP(Qd={z G Cnxp\mv(zHv) = 0, Vv € TxSlp(C)} (2.21) 

The normal space NXS>% (C) admits the following characterization: 

Nx$ZtP(Q = {\x\X G R} (2.22) 

In fact, mv(zHv) = »tr((Aa?)H v) - $ίτ(λχΗυ) = ΧΆίτ(χΗυ) = 0, for all 
v G TXS% (Q and A G R 

Endowing the smooth manifold §^p(C) with a inner product turns it into a Rie-
mannian manifold. The following inner product at every point x G §n,p(Q is cho-
sen: 

(u,v)x
a=VttT(uHv), u,ve TXS% (Q (2.23) 
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The above inner product defines the norm \\v\\x = y/tr(vHv), v G TxS^p(C), at 
every point x G §£)P(C). 

The Riemannian gradient of a regular function / : S£jP(C) -* R is denoted as 
Vxf and satisfies the following conditions: 

• Tangency: It holds that Vxf G TxS^p(Q. 

• Compatibility with the metric: It holds that {v, Vxf)x — $ttr(vHdxf), for all 
v G TXK,P(Q, 

where the gradient dxf represents the matrix of partial derivatives: 

Β.Λ . -£ ("4) 
From the metric compatibility condition, it follows that $ttr(vHVx f) = $ttr(vHdx f), 
Vv G Ta-S^piQ, which clearly implies that Vxf - dxf G A ^ S ^ C ) , namely, that 
\/xf — dx f' + \xx for some λ^ G R In addition, the tangency condition implies that 
0 = Utv{xHVxf) = mr(xHdxf) + Xxmr(xHx) = mr(xHdxf) + a\x. Thus, 
applying both conditions yields the Riemannian gradient on the manifold §£)P(C): 

V*/ = dxf - -mr(xHdxf) (2.25) 
a 

A smooth curve 7 : [0, 1] -* §^ p(C) is referred to as geodesic line with normal 
parameterization if it solves the following variational problem: 

;Γ<7(ί),7(ί)> 
Jo 

7(t) dt = 0 (2.26) 

In the above expression, symbol δ denotes again the variation of the integral as in 
subsection 2.2.1. The variation £7 G T7S£)P(C) is arbitrary, except at the boundaries 
of the curve, 7(0) and 7(1), where the variation vanishes to zero. The variation of 
the integral in (2.26) may be written explicitly as: 

/ <Jtr(7H7) dt = 2 ί mr ( τ " ^ ρ ) dt =-2 ί Μί^ΗδΊ) dt 

upon integration by parts. As the last integral must vanish to zero for any admissi-
ble variation J7, the geodesic line is characterized by the condition 7 G NXS%)P(C), 
namely 7 = A77forA7 G R Asj(t) G S£jP(C), it must hold that Rtr(7JT(i)7(i)) = 
a for any ί G [0, 1]. Deriving twice with respect to the parameter t gives the condi-
tion ifttr(7//7 + 7^7) = 0. Replacing the term 7 with λ 7 7 in the last equation gives 
$ΗΓ(λ77^7 + 7^7) = 0 from which λ7 = —οΓιϊτ(ηΗ7). Therefore, the equation 
of the geodesic curve reads 

7 + οΓΗτ{ηΗη)η = 0 (2.27) 

www.allitebooks.com

http://www.allitebooks.org
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The solution j£v : R -> S£p(C) o f t h e variational problem (2.26) with initial 
conditions 7(0) — x and 7(0) —v reads 

for v φ 0, while 7 ,̂0 W = ^· 
The distance between the endpoints of a geodesic line in a matrix-hypersphere is 

defined as follows: 

<*7(7*%(0),7*%(1)) =f / Il7^(*)ll7?.(t) at = IMU (2-29) 

Such an expression is used to compute the distance between two points as the length 
of the geodesic line that connects them. 

2.3.2 Geodesic-Stepping Optimization Method 

Given a regular function / : S£)P(C) -> K, a gradient-steepest ascent algorithm 
to compute its maximum (or a local maximum) compatible with the geometrical 
structure of the parameter space is the geodesic-stepping method (see, for instance, 
Refs. [28, 36]). 

Geodesic-stepping methods are regarded as the counterparts of Euler stepping 
methods on curved spaces. Euler-stepping-based optimization consists in moving in 
the direction of the gradient of a criterion function along a straight line. Geodesic 
stepping extends Euler stepping by replacing the notion of straight line with the no-
tion of geodesic line. Geodesic steepest-gradient-ascent stepping may be expressed 
as 

a?*+i=7?fc,v.fc/(Ä*)forfc>0, 
hk = argmaxi > 0{/(7^,v! C f c /W)} 

where xk G S"jP(C) denotes a sequence of discrete steps on the manifold of param-
eters with step-counter k G N. The term hk > 0 denotes a sequence of optimization 
stepsizes. Likewise in Euler stepping methods, in the context of geodesic stepping 
methods, the length of a step is proportional to the learning stepsize. In fact, from 
the definition of geodesic distance (2.29), it follows that 

d^XkiXk+i) = hk\\VXkf\\Xk (2.31) 

By setting ojk =«~5||Va;fc/||a·, the geodesic-stepping algorithm (2.30) may be 
implemented on the manifold §£)P(C) as: 

xfc+i = xk cos(hkuk) + VXkfsm(h^k)u^1 for k > 0 (2.32) 

as long as u)k Φ 0, otherwise the algorithm stops. The condition ujk = 0 corresponds 
to a critical point of the criterion function / . 
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The choice of the learning-stepsize schedule hk is facilitated by the observation 
that the geodesic function (2.28), with \\v\\x φ 0, is periodic in the argument t of 
period Θ = i S p . Namely, given a smooth function / : S£)P(C) -> R to optimize, 
it holds that jf(7" νΒ/(* + ®)) ~ fi^x νβ/(*))· ^he s e a r c n of an optimal learning 
stepsize may thus be restricted to the interval (0, Θ]. Numerically, for a fixed matrix 
x £ S^p(C), the optimal stepsize in (2.30) may be approximated by sampling the 
function / (7«,νβ /W) a t P°in t s t = ^ , where the integer constant 5 denotes the 
number of sampling locations and s = 1, 2, . . . , 5. The stepsize is selected as the 
value η^- that guarantees the maximum increase of the function / with respect to the 
preceding learning step, namely, with respect to value f(x). If no increase can be 
achieved, the learning process stops. 

2.3.3 Application to Optimal Precoding in M I M O Broadcast Channels 

Consider a discrete, memoryless communication channel model, y = Hz+w, where 
z £ O1 is the input vector, y £ C™ is the output vector, H £ C m x n is the channel 
matrix and w £ C™ is a Gaussian random noise vector. Without making any further 
assumptions, this is a general Multiple Input Multiple Output (MIMO) channel. In 
a multiple-input multiple-output (MIMO) communication channel, transmitters and 
receivers may cooperate [4]. The transmitters can cooperate-if the messages to be 
sent through the communication channel is jointly encoded into the components of 
the input vector z, and the receivers can cooperate if the whole output vector y in-
stead of each individual entries of y is used to decode the message. The channel can 
have four different interpretations, according to whether either side cooperates. If 
both transmitters and receivers are allowed to cooperate, it represents a single-user 
MIMO Gaussian channel, arising in multiple antenna wireless systems. If only the 
receivers are allowed to cooperate and the transmitters are constrained to encode 
their signals independently, then the MIMO system represents a Gaussian multiple-
access channel, arising in code-division multiple access (CDMA). If only the trans-
mitters are allowed to cooperate and the receivers are constrained to decode their 
signals independently, it represents a Gaussian MIMO broadcast channel, arising in 
the downlink of a wireless system where the base station is equipped with an antenna 
array. 

When a base station of a MIMO broadcast channel does not have enough antennas 
for full multiplexing, a precoding matrix is sought for that maps the data streams to 
the antenna elements of the user that does not apply full multiplexing [33]. All other 
variables like power allocation and covariance matrices of fully multiplexing users 
are already completely determine; therefore, the weighted sum rate solely depends 
on the precoder matrix. As the particular choice of the precoding matrix defines the 
subspace that the transmitted signals lay in, it has also a considerable impact on the 
achievable rates of the other users. 

The learning problem discussed in the present section, concerning the maximiza-
tion of a weighted sum rate in the context of MIMO broadcast channels, may be cast 
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as the maximization of the criterion function F : §^P(C) —> R defined as [33] 

where x E §n,i>(Q denotes a precoding matrix, matrix A E C n x n is Hermitian 
positive-definite, matrix B E C n x n is Hermitian positive-semidefinite and such that 
rank(2?) > p and the exponent ß > 1. 

In order to put into effect the learning scheme described in Section 2.3.2, it is 
necessary to compute the gradient dxF of the learning criterion (2.33). For K E 
C n x n Hermitian and xHKx e Cpxp nonsingular, it holds that 

dx det(xHKx) = 2 det(xHKx)Kx(xHKx)-1 (2.34) 

In fact, the gradient dx det(xH Kx) must satisfy 

det((x + y)HK{x -h y)) - det(xHKx) = $ttv{yHdx det(xHKx)) + o(\\y\\) 

where symbol o( ·) denotes higher-order infinitesimal. Calculations show that: 

a&{{x + y)HK{x + y)) 

= det(xHKx + yHKx + xH Ky + o(y)) 

= det(xHKx(ep + (χΗΚχ)-χ
ν
ΗΚχ + (xHKx)~1xHKy + o(y))) 

= det(xHKx) det(ep + (xHKx)-lyHKx + (xHKx)~lxHKy + o(y)) 

where symbol ep denotes a p x p identity matrix. For an arbitrary small y E C p x p , 
the following identity holds true: 

det(ep + y) = l + tv(y) + o(\\y\\) (2.35) 

Hence, it is found that: 

det((x + y)HK{x + y)) - det(xHKx) 

= det(xHKx)tv((xHKx)-1yHKx + {xH Kx)~lxH Ky) + o(||y||) 

= 2det(x//ÜTx)mr(2/i iKx(xif
JFix)-1) + o(||y||) 

The last term must equate <Rtx{yHdx det(xHKx)), up to an high-order infinitesimal, 
hence (2.34) follows. 

The result (2.34) holds true at every point x E S^p(C) such that det(xHKx) φ 
0. It may be extended to the whole matrix space S^jP(C) thanks to the notion of 
adjugate matrix [40]. The adjugate of a matrix z E C p x p , denoted as A(z), satisfies 
the identities A(z)z = zA(z) = det(z)ep. If xHKx is nonsingular, it holds that: 

(xHKx)~1 det{xHKx) = A(xHKx) (2.36) 
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Algorithm 2 Pseudocode to implement the proposed procedure to optimize the cri-
terion function. 

Set k = 0 
Set XQ to an initial guess in §^p(C) 
Set ε to desired precision 
repeat 

Set ak = det(xffAxk) and bk = det(x%Bxk) 

Setgk = 2^[ßakBxkA(x%Bxk) - bkAxkA{x%Axk)] 

Setvk=gk-^mT(x%gk) 

Setcj* = αΓ s||vfc|| 
Set Qk — 2π/ωΐι and determine the stepsize hk according to the method ex-
plained in Section 2.3.2 
Set xk+i = xk cos(ujkhk) + vk s i n ^ / i * ) ^ 1 

Set k = k + 1 
until ||v*|| <e 

The right-hand side of the above equation is defined for every x € §£jP(C), hence 
the gradient (2.34) may be prolonged to the whole space §£}P(C) and reads 

dx det{xHKx) = 2KxA(xHKx) (2.37) 

Such result allows computing the gradient of the criterion function (2.33) that takes 
on the form 

detß-\x»Bx) 
dxF{x) ~ 2 det*(x«Ax) 

x [ß det(xHAx)BxA(xHBx) - det(xHBx)AxA(xHAx)] (2.38) 

The above expression together with the general expression (2.25) of the Riemannian 
gradient on the hypersphere §^,p(Q gives the Riemannian gradient of the criterion 
function (2.33). 

The proposed procedure to optimize the criterion function (2.33) may be summa-
rized by the pseudocode listed in the Algorithm 2, where the quantity gk denotes the 
gradient of the learning criterion function (2.33) while the quantity vk denotes its 
Riemannian gradient. To start the iteration (2.32), an initial guess x0 may be picked 
up randomly in §£ p(C). The learning progress may be monitored by computing it-
eratively the value of the learning criterion function F(xk). As the range of values of 
the criterion function may vary considerably, the following performance index may 
be considered instead: 

10 log 10 „ , v. forfc>0 (2.39) 
.F(x0)\ 

Figure 2.3 shows a result of learning on the manifold S | 5(C). In the test-problem, 
the matrix A is generated by the rule A = UPUH with U being the orthogonal 
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Figure 2.3 Result of a run of the algorithm (2.32) on the manifold S|,5(C). 

projection of a 8 x 8 random matrix C + iD with C and D having random entries 
drawn from a normal distribution (here i2 = — 1) and P being a 8 x 8 diagonal ma-
trix whose in-diagonal elements are drawn from a uniform distribution with support 
[0, yjj]. Likewise, the matrix B is generated by the rule B = VRVH with V being 
randomly generated likewise U and R being a diagonal matrix with at least 5 nonzero 
in-diagonal entries which are again drawn from a uniform distribution with support 
[0, JQ). The rank of the matrix B, namely, the number of nonzero in-diagonal en-
tries, is randomly selected in the integer-set {5,6,7,8}. The number of sampling 
locations to approximate the optimal stepsize was set to 5 = 50. The obtained nu-
merical result shows that the optimization algorithm (2.32) converges steadily and in 
a few iterations. 

Figure 2.3 also shows a comparison of the learning ability of the proposed algo-
rithm and that of the fixed-point learning method proposed in Ref. [29] to tackle the 
precoding matrix calculation problem. Though effective in the case p — 1, in the 
general case that p > 1 the fixed-point algorithm seems unsuitable. 

2.4 COMPLEX ICA APPLIED TO TELECOMMUNICATIONS 

Fiori [14] introduced a new class of learning rules for linear as well as nonlinear 
neural systems, arising from the study of the dynamics of an abstract rigid bodies 
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in high-dimensional spaces, and experimentally proved their suitability for solving 
some learning problems such as optimal reduced-dimension data representation and 
blind source separation from instantaneous mixtures of real-valued independent sig-
nals. The studies on rigid-body learning dynamics are in close relationship with other 
contributions, such as the work of Qian [38] on second-order systems for learning. 
The mentioned class of learning algorithms is a subset of a larger family of adapta-
tion rules that originated a general theoretical framework which encompasses several 
contributions found in the scientific literature [11]. The rigid-body theory may also 
be viewed as a special case of learning on Riemannian manifolds by the dynamical 
system theory, which has recently been developed in Refs. [24, 25]. 

The rigid-body learning paradigm arises from the equations describing the dy-
namics of an abstract rigid body embedded in a high-dimensional Euclidean space. 
The base-manifold for a single-unit system is the unit hypersphere §^ X(E). For a 
single-unit neural system, the single-neuron learning equations read 

j x = Üx, q = -μϊϊχ, f = -2VXV, 
l Ω = ΐ[(/ + *)*Γ-*(/ + *)η {ZAÖ) 

where x(t) G § n 1(1R) describes the neuron's connection pattern at time £, superscript 
T denotes transposition, Ω G E n x n is a kind of angular speed, q G En represents 
the braking effect produced by the fluid permeating the space that the body moves 
within, whose viscosity is denoted by μ, and / G En represents the force field which 
makes the body move. It is further supposed that the force field derives from a 
potential energy function V : §^}1(E) -l· R that describes the neural system's task. 

The basic properties of dynamical learning system (2.40) may be summarized as 
follows: 

• Denote by SO(n, E) the special orthogonal group, which is the subset of R n x n 

of the orthogonal matrices with unitary determinant. The manifold SO(n, E) 
is a Lie group with Lie algebra so(n, E), which is known to be the set of skew-
symmetric matrices. It is immediate to verify that if Ω(0) G so(n, E), then the 
equations (2.40) make il(t) G so(n, R) and thus Ω(ί) G so(n, E). 

• Because of the skew-symmetry of the matrix field Ω(£), it follows that if 
x(0) G §n,iW> t h e n xh) € §n,iW f o r a11 *· A l s o n o t e that> bY definition, it 
holds that </, / G Τχ§

λ
η?1(Ε). 

• The equilibrium conditions for the system (2.40) are that Ωχ = 0andf(t)xT(t)-
x(t)fT(t) — On» where symbol 0n denotes the null element of E n x n . It is im-
portant to recall that the force field f(i) is in general a nonlinear function of 
the parameters of the neural system. 

• A rigid body, stimulated by a force field derived by a potential energy func-
tion, tends to minimize its potential energy V; therefore, the set of learning 
equations (2.40) for a neural unit with weight-vector x may be regarded as a 
nonconventional optimization algorithm. 
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An indicator of neuron's internal state, inspired by the rigid-bodie parallelism, is 
the neural system's kinetic energy, defined as 

#(i)d= \\\m\\l{t) = -\xT(W2(t)x(t) > 0 (2.41) 

This is an important function in the theory of dynamical system because it may be 
proven that the sum K + V of the kinetic energy and the potential energy - that is, 
the neural system's total energy - may be taken as a valid Lyapunov function for the 
system, ensuring the convergence of its connection pattern during the learning phase 
to a local optimum of the potential function V. Also, at these stable equilibria the 
kinetic energy vanishes. It is important to note that, because of the braking effect of 
the viscous fluid permeating the space that the abstract rigid body moves within, the 
rigid body is subject to energy loss. 

2.4.1 Complex-Weighted Rigid-Body Learning Equations for ICA 

Complex-valued independent component analysis (ICA) aims at extracting indepen-
dent signals from their linear mixtures or to extract independent features (as latent 
variables) from signals having complex structure. A theoretical review as well as 
some interesting applications are reported in Refs. [7, 8, 12, 37,44]. A way to define 
the independent components is to employ the maximum or minimum- kurtosis prin-
ciple: Under some conditions, the output of a linear neuron with n inputs z(t) G P 1 

described by y(t) = xH(t)z(t) contains an independent component of the input if 
the weight-vector x maximizes or minimizes the fourth moment of neuron response 
[5], The signal model is z(t) = Ms(t), where s(t) G Cn is a vector-signal with 
statistically independent components, and M E C m x n is a matrix describing the 
mixing of the independent components into the observable signal or the expected 
relationship between the latent variables and the observable variables. Apart from 
special cases, the number of observations m should exceed or equate the number of 
independent sources n. With the convention that sr(t) denotes the rth independent 
component of s(t), usually the hypotheses are that each sr is a random signal and is 
statistically independent of each other at any time. Following Therrien [41], the kur-
tosis of signal e(f) e CmaybedcünQaeLSK4

d=E[\s\4]-2E2[\s\2}-\E[s2]\2. When 
s is white, i.e. ü?[|s|2] = 1 and the real part and imaginary part of s have identical 
variance and are uncorrelated, the above expression simplifies into ü?[|s|4] - 2 . 

The aim of the present section is to investigate the behavior of an extension of 
the rigid-body learning theory to the manifold §^ X(C), in order to apply the neural 
ICA signal processing technique to blind separation of complex-valued signals [3, 
7, 13]. The rigid-bodies-dynamics-based learning theory may be extended with little 
theoretical difficulty to the complex-valued case. The first step is to rewrite equations 
(2.40)fora;GSif l(Q: 

x = Ωχ, q = -μίϊχ, f = -2VXV, 
n=\[(f + q)xH-x(f + q)H] (ZAZ) 
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Algorithm 3 Pseudocode to implement the complex-valued one-unit rigid-body 
learning procedure. 

Set k = 0 
Set x0 to an initial guess in §^i(C) and Ω0 = 0 
Set ε to desired precision 
repeat 

Set^fc = ilkXk andu;* = Jtx(v%vk) 

Update xk+i = xk cos(huk) + vk sin(huk)u^1 

Setqk - -ßvk and/* = -2ηΕζ[\χ%ζ\2(χξζ)*ζ] 
Update Ω*+1 = Ω* + £[(/* + qk)xf* - xk(fk + ?*)"] 
Set A: = k + 1 

until | Μ | < ε 

The field Ω(£) is a skew-Hermitian matrix field as it holds that — Q(t) = üH(t) for 
any t. It is worth clarifying that, if x = u + iv (i2 = — 1) and V : O1 -> M, then 

def 
the ordinary gradient defines as dxV(x) = duV(u, v) + idvV(u, v). In the complex 
domain the system's kinetic energy writes K = — ^xHfl2x. 

The basic conditions in complex-valued IC A are that the components of the source 
signal s(t) G Cn in the model z(t) = Ms(t) G Cn are IID and statistically in-
dependent at any time, and that the observed multivariate signal is white, i.e., the 
conditions Ez[zzH] — In and Ez[zzT] = 0n are fulfilled [41]. The objective func-
tion which may be associated to complex-valued ICA is a kurtosis-based one [5], 
formally ü^fl^/l4] — 2, where y(t) = xH(t)z(t) G C is the response of a linear 
complex-weighted neuron having connection pattern z. In the rigid-body learning 
context it is, thus, assumed that 

V(x) = -n{Ez[\xHzf] - 2} =» / = -2ηΕζ[\ν\2ν**\ (2-43) 

where the superscript * denotes again complex conjugation. The sign of the constant 
η G R determines whether maximization or minimization of the objective function 
is carried on. 

The complex-valued rigid-body learning theory (2.42) may be implemented nu-
merically by a geodesic-stepping algorithm as follows: 

Xk+i = llk,nkXk{h), qk = -μΩ*ζ*, fk = -2VXkV, 
Ω*+ι = Ük + £ [(/* + qk)x* - xk(fk + qk)

H] 
(2.44) 

where h denotes a fixed learning stepsize and the geodesic line equation is (2.28) with 
a = 1. The discussed learning procedure may be summarized by the pseudocode 
listed in the Algorithm 3. 
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2.4.2 Application to the Blind Separation of QAM/PSK Signals 

In order to test the explained ICA algorithm, computer simulations inspired by the 
work of Cardoso and Laheld [5] about blind separation of complex-valued QAM/PSK 
signals are shown and discussed in the following. 

The input sequence z G C4 is formed by a linear mixture of four independent 
signals arranged in a vector s e C 4 . Signal s\ is a QAM4, signal s2 is a QAM 16, 
signal s% is a PSK8, while signal s^ is a Gaussian noise. The mixture is computed as 
z = Ms, where M is a randomly generated 4 x 4 complex-valued matrix. 

As a measure of separation, the signal-to-interference ratio (SIR) was defined as 

\\xHM\\\ 

where || · ||i denotes the L\ (max-abs) norm. 
A linear neuron with four inputs and one output, trained by the learning rule 

(2.42), will be able to recover one independent source signal except for arbitrary 
amplitude change and phase shift. An experimental result on blind separation is 
shown in Figure 2.4. The first row shows the original source signals, the second 
row shows the mixtures and the third row show the separation results of the neuron 
trained by the algorithm (2.44) with parameters η = 0.5, μ = 4, and the sampling 
step to discretize the continuous-time learning equations was h = 0.001. The kinetic 
energy of the neuron vanishes to zero after learning, while the extracted signal is the 
PSK. 

2.5 CONCLUSION 

The present book chapter deals with artificial neural systems whose adaptable param-
eters lay on complex-valued manifolds and with their application to signal-processing 
problems. In particular, the present chapter recalled notions from differential geom-
etry that are instrumental in the development of a consistent learning theory over 
complex-valued differentiable manifolds and introduced some applications in signal 
processing and their solutions based on learning. 

A first application concerns averaging over a curved manifold. A committee of 
learning machines is a set of adaptive systems that work independently toward the 
solution of the same learning problem. Every machine in the committee learns a 
parameter pattern that differs only slightly one to another, except for a few outliers. 
A natural concern that arises in this case is how to merge the available patterns in 
order to obtain an average pattern that is closer to the optimal solution of the learning 
problem than the single parameter patterns. In this chapter, averaging is selected as 
a possible merging technique. In the case that the parameter space is curved, the 
averaging procedure should be designed on the basis of its geometric properties. It 
is known that curved parameter spaces provide a natural way to incorporate learning 
constraints pertaining to learning problems of interest. The present book-chapter 
treated in details the problem of designing an averaging procedure in the case that 
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Figure 2.4 Top panels: Independent source signals. Middle panels: Observed 
mixed signals. Bottom panel (from left to right): Separated signal, neuron kinetic 
energy K(t), signal-to-interference ratio (SIR) versus time, and potential energy 
function V{t), versus time. 

the parameter space shared by learning machines belonging to a committee exhibits 
the structure of the unitary group of matrices. 

The second application discussed within present chapter is about learning the opti-
mal precoding matrix for MIMO-broadcast channels. Numerical results about the so-
lution of the formal problem related to the optimal precoding for MIMO-broadcast-
channels show the effectiveness of the proposed learning method and of its numerical 
implementation. The obtained numerical results show that the developed optimiza-
tion algorithm converges steadily and in a few iterations. The discussed method 
proves advantageous over the fixed-point learning method originally suggested in 
Ref. [29]. 

The third application is about blind separation of complex-valued signals from 
their linear complex-valued mixtures by a one-unit system complex-valued rigid-
body learning theory. The numerical results show that a source signal· can be cor-
rectly extracted from a mixture and that, in the special case of PSK/QAM source 
signals, the symbols of a PSK constellation are well-recognizable after separation. 
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CHAPTER 3 

JV-DIMENSIONAL VECTOR NEURON 
AND ITS APPLICATION TO THE iV-BIT 
PARITY PROBLEM 

TOHRU NlTTA 

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 
Japan 

We describe a new neuron model, iV-dimensional vector neuron, which can 
deal with N signals as one cluster, by extending the three-dimensional vector 
neuron to N dimensions naturally. The N-bit parity problem, which cannot be 
solved with a single usual real-valued neuron, can be solved with a single N-
dimensional vector neuron with the orthogonal decision boundary, which reveals 
the potent computational power of iV-dimensional vector neurons. Rumelhart, 
Hinton, and Williams showed that increasing the number of layers made the 
computational power of neural networks high. In this chapter, we show that 
extending the dimensionality of neural networks to N dimensions originates the 
similar effect on neural networks. 

3.1 INTRODUCTION 

In order to provide a high computational power, there have been many attempts to de-
sign neural networks, taking account of task domains. For example, complex-valued 
neural networks have been researched since the 1970s [1,2]. Complex-valued neural 
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networks whose parameters (weights and threshold values) are all complex numbers 
are suitable for the fields dealing with complex numbers such as telecommunications, 
speech recognition, and image processing with the Fourier transformation. Actually, 
we can find many applications of the complex-valued neural networks to various 
fields such as telecommunications and image processing in the literature [3,4,5]. For 
example, the fading equalization problem has been successfully solved with a single 
complex-valued neuron with the highest generalization ability [6], using the property 
that the decision boundary for the real part of an output of a single complex-valued 
neuron and that for the imaginary part intersect orthogonally [7]. The exclusive-or 
(XOR) problem and the detection of symmetry problem which cannot be solved with 
a single real-valued neuron [8] can be solved with a single complex-valued neuron 
with the orthogonal decision boundaries [6]. 

This chapter is organized as follows: Section 3.2 reviews various neuron models 
with high-dimensional parameters. Section 3.3 proposes an iV-dimensional neuron, 
shows its property on decision boundaries, and provides a solution to the iV-bit parity 
problem. Discussions are given in Section 3.4. Finally, we give some conclusions. 

3.2 NEURON MODELS WITH HIGH-DIMENSIONAL PARAMETERS 

In this section, various neuron models with high-dimensional parameters and their 
properties are reviewed briefly. 

3.2.1 Complex-Valued Neuron 

A usual real-valued neuron can be extended to complex numbers, which is the second 
lowest dimension [1, 2, 3,4, 5, 9]. 

Consider an n-input complex-valued neuron with weights wk = wr
k + iwl

k € 
C (1 < k < n) (C denotes the set of complex numbers, i = >/—Ϊ) and a threshold 
value θ = θν + ιθι G C. Given input signals Xk+ifJk G C (1 < k < n), the neuron 
generates a complex-valued output value X + ϊΥ, where 

X + iY = / c ( ^ W + ^ ) f e + ^ ) + («r + ^)) 

= f(JT(wixk-wiyk)+er) 

fc(z) = f(x)+if(y),z = x + iy (3.2) 

and / : R -> R is a real-valued function such as a sigmoidal function (R denotes 
the set of real numbers). Although various types of activation functions fc:C-+C 
have been proposed, this chapter focuses on a split-type activation function described 
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above. Equation (3.1) can be rewritten as 

X 
Y ΜΈ 

\k=l 

where 

* ( [ : ] ) -

wi 

m 
f(y) 

Xk 

+ (3.3) 

e02(R) (3.4) 

and 02(A) is the two-dimensional orthogonal group. 
The complex-valued neuron has different nature from that of the real-valued neu-

ron. One of them is the decision boundary. Decision boundary is a boundary by 
which the pattern classifier classifies patterns, and it generally consists of hyper-
surfaces. In Ref. 10, the decision boundaries of the complex-valued neural network 
have been analyzed mathematically. A decision boundary of a single complex-valued 
neuron consists of two hypersurfaces which intersect orthogonally, and it divides a 
decision region into four equal sections. 

3.2.2 Hyperbolic Neuron 

Buchholtz and Sommer first formulated a hyperbolic neuron model using hyperbolic 
numbers [11]. Hyperbolic numbers, another second lowest dimension, are numbers 
of the form 

w = a + ub (3.5) 

where a,b G R and u is called unipotent which has the algebraic property that 
u ^ i l b u t u 2 = 1 [12]. 

The input and output signals, as well as the weights and threshold values of the 
hyperbolic neuron, are all hyperbolic numbers, and the activation function / # of the 
hyperbolic neuron is defined to be 

fH(z) = f(x)+uf(y) (3.6) 

where z — x + uy is a hyperbolic-valued net input to the hyperbolic neuron, and 
/ : R -> R (for example, f(s) = 1/(1 + exp(—s)) for s £ R). Various types of 
activation functions other than Eq. (3.6) can be considered naturally. 

The decision boundary of a hyperbolic neuron consists of two hypersurfaces 
which can intersect orthogonally or be parallel depending on the values of the hyper-
bolic-valued weight vectors [13]. One of the advantages of hyperbolic neurons is that 
the angle between the decision boundary for the real part and that for the unipotent 
part can be easily controlled by changing the weight parameters. 

3.2.3 Three-Dimensional Vector Neuron 

The three-dimensional vector neuron is a natural extension of the complex-valued 
neuron to three dimensions, which can deal with three signals as one cluster: The 
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input signals, thresholds, and output signals are all 3D real-valued vectors, and the 
weights are all 3D orthogonal matrices [14]. The activity a of neuron is defined to 
be 

a = Y,Wksk+t (3.7) 
k 

where sk is the fcth 3D real-valued vector input signal, Wk is the 3D orthogo-
nal weight matrix for the fcth input signal sk (that is, an element of the three-
dimensional orthogonal group Os(R): Wk -lWk — tWk · Wk = 13 where J 3 
denotes the three-dimensional identity matrix), and t is the 3D real-valued vector 
threshold value. The output signal F(a) is defined to be 

F(a) = /M 
/ (as) 

where a 

and f(cii) = 

ai 

03 

i-L. 1 ϊ ( 3 · 8 ) 

1 + exp(-ai) 
In the above formulation, various restrictions can be imposed on the 3D matrix; e.g., 
it can be regular, symmetric, or orthogonal, etc., which will influence the behavioral 
characteristics of the neuron. The weights are assumed to be orthogonal matrices 
because this assumption is a natural extension of the weights of the complex-valued 
neuron. Considering Eqs. (3.3) and (3.4), the formulation of a neuron as given in 
Eqs. (3.7) and (3.8) above is natural. 

The 3D vector neural network constructed with the 3D vector neurons has the 
ability to learn 3D affine transformations [15]. 

3.2.4 Three-Dimensional Vector Product Neuron 

The three-dimensional vector product neuron [16] is a three-dimensional neuron dif-
ferent from the 3D vector neuron described in Section 3.2.3: The computation is 
performed using a 3D vector product that is invented by the demands of sciences, 
e.g. dynamics. 

The input signals, weights, thresholds and output signals are all 3D real-valued 
vectors. The activity a of neuron is defined to be 

a = Y2(wk x sk)+t (3.9) 

where sk is the 3D real-valued vector input signal coming from the output of neuron 
fc, wk is the 3D real-valued vector weight for the kth input signal s&, t is the 3D 
real-valued vector threshold value of neuron, and x x y denotes vector product of 
x = *[xi X2 xs] and y = *[j/i y2 ys], i.e. x x y = *[a?22/3 - #32/2 x^yi -
xiVs x\V2 — #22/1]· To obtain the (3D real-valued vector) output signal, convert the 
activity value a into its three components as follows. 

a = «2 

a3 

(3.10) 
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The output signal F(a) is defined to be 

F(a) = 
/ (αι) 
f{a2) where /(o<) = — -( r (3.11) 

1 + exp(-ai) 

Kobayashi proposed a three-dimensional associative memory using the 3D vector 
product neuron [17]. The vector product neuron could be effectively used in the field 
dealing with three-dimensional vectors, especially vector product operation. 

3.2.5 Quaternary Neuron 

Quaternary neurons were proposed in the mid-1990s [18,19]. The weights, threshold 
values, input and output signals are all quaternions where a quaternion is a four-
dimensional number and was invented by W. R. Hamilton in 1843 [20]. The activity 
a of neuron is defined to be 

a = ^2snwn-\-t (3.12) 
n 

where sn is the quaternary input signal coming from the output of neuron n, wn is 
the quaternary weight for the nth input signal, and t is the quaternary threshold value 
of neuron. To obtain the quaternary output signal, convert the activity value a into 
its four parts as follows. 

a — a\ + ü2i'■ + asj + a±k (3.13) 

where i2 = j 2 — k2 — —1, ij = -ji = fc, jk = -kj = i, ki = —ik = j . 
The output signal /g(a) is defined to be 

fQ(a) = / (a i ) + /(a2)< + / ( a 3 ) i + / (a 4 )* , 

where f(at) = 1 (3.14) 
1 + exp(-aj) 

The multiplication snwn in Eq. (3.12) should be carefully treated because the 
equation snwn = wnsn does not hold (the noncommutative property of quternions 
on multiplication), which produces two kinds of quaternary neurons: One calculates 
a = Ση snwn + t, and the other calculates a = Ση wn^n + t. Kobayashi and 
Nakajima proposed a twisted quaternary neural network (TQNN) which consisted of 
both of the two kinds of neurons, and they discussed the properties of the TQNN vis-
a-vis the ability to learn and the reducibility [21]. On the other hand, Isokawa et al. 
proposed a multistate Hopfield neural network model using commutative quaternions 
[22]. Nitta proved that the 4-bit parity problem which cannot be solved with a single 
usual real-valued neuron can be solved with a single quaternary neuron with the 
orthogonal decision boundary, resulting in the highest generalization ability [23]. 

3.2.6 Clifford Neuron 

The Clifford neuron is a 2n-dimensional neuron [24, 25, 26]. First, we briefly de-
scribe the Clifford algebra or geometric algebra [27]. Clifford algebra ClVA is an 
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eoei = ê eo — e% (i = I,... 
eiej = ~Cj€i \l T1 3\ *? J ~ 

p2 - p2 - . · · - p2 - 1 e 0 — ex — — e p — i , 

2 2 i 
e P + i — * * · — e p + 9 — J-

,rc), 
1 , . . . . ,n) , 

extension of real, complex numbers, and quaternions to higher dimensions, and has 
2n basis elements. The subscripts p, q such that p + q = n determine the character-
istics of the Clifford algebra. Note that commutativity does not hold generally. For 
example, in the case of n = 2,p = 0, q = 2, the number of basis is 22 = 4, which 
corresponds to the basis of quaternions. 

Let the space J£n + 1 be given with the basis {eo,.. . , e n } . And also, let p e 
def 

{0 , . . . , n} , q = n — p be given. Assume that the following rules on the multiplica-
tion hold: 

(3.15) 
(3.16) 
(3.17) 
(3.18) 

Then, the 2n basis elements of the Clifford algebra ClVA are obtained: 
e0; e i , . . . , e n ; e i e 2 , . . . , e n _ i e n ; e i e 2 e 3 , . . . ; . . . ; e i e 2 . . . e n (3.19) 

where eo is a unit element. The addition and the multiplication with a real number 
are defined coordinatewise. Furthermore, we assume that the following condition 
holds: 

e i e 2 - - - e n # ± l if p- q = 1 (mod4) (3.20) 
The algebra thus obtained is called Clifford algebra ClPtq. 

The Clifford neuron is a 2n-dimensional neuron where the input signals, weights, 
thresholds and output signals are all Clifford numbers. The activity a of neuron is 
defined to be 

a = ̂ 2wksk+t (3.21) 
k 

where sk is the Clifford-valued input signal coming from the output of neuron k, wk 

is the Clifford-valued weight for the fcth input signal, and t is the Clifford-valued 
threshold of neuron. To obtain the Clifford-valued output signal, convert the activity 
value a into its 2n parts as follows. 

a = a\ - eo + · · · 4- a2« · e\ · · · en (3.22) 

The output signal fcip,q (a) is defined to be 

fcip,q(a) = / (αι) ·βο + · · · + / (β2» ) ·β ι · · · β η 

where f(at) = — — ^ - r (3.23) 
l + exp(-az) 

Pearson formulated a multilayered Clifford neural network model, derived a Clif-
ford back-propagation learning algorithm, and clarified the ability on approximate 
functions [24, 25]. Buchholz formulated another multilayered Clifford neural net-
work with a split-type activation function which is different from that Pearson adopted 
[28]. Kuroe first proposed models of recurrent Clifford neural networks and dis-
cussed their dynamics from the point of view of the existence of energy functions 
[29, 30]. 
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3.3 ΛΓ-DIMENSIONAL VECTOR NEURON 

It is a matter of common occurrence that a vector is used in the real world, which rep-
resents a cluster of something, - for example, a four-dimensional vector consisting 
of height, width, breadth, and time, along with a iV-dimensional vector consisting 
of N particles and so on. Then, we formulate a model neuron that can deal with N 
signals as one cluster, called N-dimensional vector neuron, by extending the three-
dimensional vector neuron described in Section 3.2.3 to N dimensions naturally [31]. 

3.3.1 iV-Dimensional Vector Neuron Model 

We will consider the following iV-dimensional vector neuron with M inputs. The 
input signals, thresholds, and output signals are all N-dimensional real-valued vec-
tors, and the weights are all iV-dimensional orthogonal matrices. The net input u to 
a ΛΓ-dimensional vector neuron is defined as 

M 

u = Y^Wkxk+e (3.24) 
k=l 

where xk is the fcth iV-dimensional real-valued vector input signal, Wk is the N-
dimensional orthogonal weight matrix for the kth input signal xk (that is, an element 
of the iV-dimensional orthogonal group ON(R)), and Θ is the iV-dimensional real-
valued vector threshold value. The TV-dimensional real-valued vector output signal 
is defined to be 

IJV(U) = 

1 Ä ( U ( 1 ) ) 

, where u = 

and 1Ä(«) = | I l l >0 
<0 

,.(i) 

,.W 

(3.25) 

For the sake of simplicity, the step function 1R is used. Naturally, the activation 
function \R can be replaced with a nonlinear function. 

3.3.2 Decision Boundary 

We can find that a decision boundary of a iV-dimensional vector neuron consists 
of N hyperplanes which intersect each other orthogonally, and it divides a decision 
region into N equal sections, as that of a complex-valued neuron case [10]. The net 
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input u (Eq. (3.24)) to a TV-dimensional neuron with M inputs can be rewritten as 
M 

u = ^2wkxk+e 
k=l 

[*>p- «£>] 

[«r ···«#>] 

Xl 

XM 

Xl 

+ ew 

XM \ 

+ 0W 

(3.26) 

where tuj^/ is the iih row vector of Wk (i = 1, · · · , iV; fc = 1, · · · , M), and 0 = 
*[0(i) . . . gW] , Thus, 

f i ) / \ def r (i) (i)-i 
Xl 

XM 

+ 0(0 

= 0 

is the decision boundary for the ith component of an output of the iV-dimensional 
vector neuron with M inputs (i = 1, · · · , N). That is, input signalst [xi, · · · , XM] £ 
RMN are classified into two decision regions 

(3.27) 

r isional 
input signalst [xi, · · · , XM] £ 

{t[xw',XM]eRMN\uM(x1,...,xM)>0} (3.28) 

{'[*!,· * · , XM] G Ä M i V | u « ( x i , · · · , xM) < 0} (3.29) 
by the hyperplane given by Eq. (3.27) (i — 1, · · · , N). The normal vect 
decision boundary for ith component (Eq. (3.27)) is given byt[tw^ · · · tw^](i = 
1, · · · , N), and it follows from the orthogonal property of the weight 

and 

by the hyperplane given by Eq. (3.27) (i — 1, · · · , JV). The normal vector gW of the 
decision boundary for ith component (Eq. (3.27)) is given byt[tw^ · · · *ίΐ;^] (i = 
L, · · · , ΛΓ), and it follows from the orthogonal property of the weight matrix Wk 

(i.e., Wk - *Wk = tWk - Wk = IN (iV-dimensional identity matrix)) that the in-
uiuiuguiiai piupcity ui nie wcigin iiiauiA ψ 

(i.e.,Wk'lWk = lWk'Wk = IJV (N-dimensional identity matrix)) that the 
ner product of the normal vectors of the decision boundaries for any two distinct 
components is zero: for any 1 < i, j < N such that i φ j , 

ν°νΛ = [̂ ° w ,(0i 
Ml 

*ν>φ 

*w<i) 

= 0 (3.30) 

Thus, the decision boundary of a iV-dimensional vector neuron consists of N hyper-
planes which intersect orthogonally each other. 
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3.3.3 iV-Bit Parity Problem 

We will find a solution to the iV-bit parity problem, using a single TV-dimensional 
vector neuron with the orthogonal decision boundary with the highest generalization 
ability. Minsky and Papert clarified the limitations of a single real-valued neuron: In 
a large number of interesting cases, a single real-valued neuron is incapable of solv-
ing the problems [8]. The most difficult problem among them is the parity problem, 
in which the output required is 1 if the input pattern contains an odd number of Is 
and 0 otherwise. 

Rumelhart, Hinton, and Williams showed that the 3-layered real-valued neural 
network (i.e., with one hidden layer) can solve the parity problem [32, 33]. As de-
scribed above, the parity problem cannot be solved with a single real-valued neu-
ron. Then, it will be proved that the parity problem can be solved by a single 
iV-dimensional vector neuron with the orthogonal decision boundary. Rumelhart, 
Hinton, and Williams showed that increasing the number of layers made the com-
putational power of neural networks high. We will show that extending the dimen-
sionality of neural networks to TV dimensions originates the similar effect on neural 
networks. 

3.3.4 A Solution 

The input-output mapping in the TV-bit parity problem is shown in Table 3.1. In 
order to solve the TV-bit parity problem with TV-dimensional vector neurons, the 
input-output mapping is encoded as shown in Table 3.2, where the outputs t[ 0 0 0 
· · · 0 0 0],*[0 0 ()··■ 0 1 1],*[0 0 ()■·· 1 0 1],*[0 0 0 · · · 1 1 0 ] , . . . 
are interpreted to be 0, and *[0 0 0 · · · 0 0 1], *[0 0 0 · · · 0 1 0],*[0 0 0 · · · 
1 0 0], . . . are interpreted to be 1 of the original TV-bit parity problem (Table 3.1), 
respectively. We use a single TV-dimensional vector neuron with only one input with 
a weight 

wn · · · WIN 

W = e 0N(R) (3.31) 

WNI - · · WNN 

(we assume that it has no threshold parameters). The decision boundary of the TV-
dimensional vector neuron described above consists of the following TV hyperplanes 
which intersect orthogonally each other: 

[wn WlNl 

X1 

XN 

= 0, 

(3.32) 

[WNI * ' * WNN] 

Xl 

XN 

= 0 
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for any input signal x — l[xi · · · XN] € RN · The iV equations of Eq. (3.32) are 
the N decision boundaries for the N components of the output of the TV-dimensional 
vector neuron, respectively. Figure 3.1 shows an example of the decision boundary 
of the ΛΓ-dimensional vector neuron (N = 2 for the sake of simplicity). 

Table 3.1 The iV-bit parity problem 

Input Output, 
Xi 

0 
0 
0 
0 

X2 

0 
0 
0 
0 

XZ 

0 
0 
0 
0 

0 0 1 
0 1 0 
1 0 0 
0 0 0 
0 0 0 
0 0 0 

0 1 1 
1 0 1 
1 1 0 

1 1 1 

Letting wu = 1 (i — 1, · · · , N) and Wij = 0 (i φ j) (i.e., the weight W is the 
ΛΓ-dimensional identity matrix), we can find that the iV-dimensional vector neuron 
implements the input-output mapping shown in Table 3.2, the decision boundary of 
which consists of the orthogonal N hyperplanes 

xi = 0 , 

: (3.33) 
XN — 0 

and divides the input space (the decision region) into 2N equal sections, and has 
the highest generalization ability for the TV-bit parity problem. Figure 3.2 shows an 
example of the decision boundary for the 2-bit parity case. 

0 
0 
0 
1 

0 
0 
0 
0 
1 
1 

0 
0 
0 

0 
0 
1 
0 

0 
0 
0 
1 
0 
1 

0 
0 
0 

0 
1 
0 
0 

0 
0 
0 
1 
1 
0 

0 
0 
0 

J 1 (if AT is 
\ 0 (if TV is < 

odd) 
even) 
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Table 3.2 An encoded iV-bit parity problem 

Xi 

-1 
-1 
-1 
-1 

-1 
-1 
1 
-1 
-1 
-1 

-1 
1 
1 

1 

X2 

-1 
-1 
-1 
-1 

-1 
1 
-1 
-1 
-1 
-1 

1 
-1 
1 

1 

xz 

-1 
-1 
-1 
-1 

1 
-1 
-1 
-1 
-1 
-1 

1 
1 
-1 

1 

Input 
XN-2 

_1 
_1 
-1 

. . . _i 

_1 
_1 
-1 

. . . _i 

-1 
-1 

XN-1 

-1 
-1 
1 

-1 

-1 
-1 
-1 
1 

-1 
1 

-1 
-1 
-1 

1 

Output, 
XN y 

-1 ' [ 0 0 0 · · 
1 ' [ 0 0 0 · · 
-1 ' [ 0 0 0 · · 
-1 ' [ 0 0 0 · · 

-1 ' [ 0 0 1 · · 
-1 ' [ 0 1 0 · · 
-1 ' [ 1 0 0 · · 
1 ' [ 0 0 0 · · 
1 ' [ 0 0 0 · · 
-1 ' [ 0 0 0 · · 

-1 ' [ 0 1 1 · · 
-1 ' [ 1 0 1 · · 
-1 ' [ 1 1 0 · · 

1 ' [ 1 1 1 · · 

• 0 0 0 ] 
• 0 0 1 ] 

0 1 0 ] 
• 1 0 0 ] 

• 0 0 0 ] 
• 0 0 0 ] 

0 0 0 ] 
• O i l ] 
• 1 0 1] 
• 1 1 0 ] 

• 0 0 0 ] 
• 0 0 0 ] 
• 0 0 0 ] 

• 1 1 1 ] 

3.4 DISCUSSION 

The iV-dimensional vector neuron throws the framework 'numberfield9 to the winds 
whereas the Clifford neuron described in Section 3.2.6 maintains the framework 'al-
gebra' firmly. This difference between the ΑΓ-dimensional vector neuron and the 
Clifford neuron yields different properties. 

Since the dimension of the Clifford neuron is 2n, it can have 1, 2, 4, 8, 16, 32, 
. . . dimensions, depending on the value of n. For example, one must use a Clif-
ford neuron with 16 = 24 dimensions to express 9-dimensional information (note 
that 23 = 8 < 9). In this case, the remaining 7 dimensions lie idle. That is, the 
Clifford neuron has a redundancy as its nature in this sense when it is applied to real 
problems. The number of idle dimensions increases exponentially as the dimension 
of information expressed increases. For example, 210 = 1024-dimensional Clifford 
neuron is needed in order to deal with 513-dimensional information, and there are 
1024 -513 = 511 idle dimensions (note that 29 = 512 < 513). On the other hand, 
513-dimensional information can be dealt with the 513-dimensional vector neuron. 
All the dimensions are used to express information and there are no idle dimensions. 
Thus, there is no redundancy in the iV-dimensional vector neuron in this sense. 

There exist some neural network models that can solve the iV-bit parity problem. 
The comparison between our result and the previous works is shown in Table 3.3. 
The number of neurons of the iV-dimensional vector neuron and Aizenberg's model 
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Decision boundary Decision boundary 
for the 2nd component for t h e 1 s t c o m p o n e n t 

w 2 1 x 1 = w,2 x 2 

Figure 3.1 An example of the decision boundary in the input space of the 2-
dimensional vector neuron (i.e., N = 2). The black circle means that the output in 
the parity problem is 1, and the white one 0. 

is 1 constantly whereas those of the other models increase as N increases on the 
order N. The number of parameters of Lavretsky's model is the least, but the number 
of layers is N - 1, which increases as N increases. The number of parameters of 
the Stork and Allen's model is on the order of TV, but the activation function of the 
hidden neurons is considerably complicated: 

Λ/ N 1 ( COS( t fx ) \ 

where a is a constant greater than 1.0. The number of parameters of the N-dimension 
al vector neuron is the least among the models on the order N2. The number of 
layers of the iV-dimensional vector neuron and Aizenberg's model is only 2, which 
is the least. As described above, the Aizenberg's model seems to be the best totally, 
but its activation function is somewhat special. Thus, we can conclude that the N-
dimensional vector neuron proposed in this chapter is the best totally among the 
models with the traditional activation functions such as a step function. It should 
be emphasized here that the number of neurons needed is only one (i.e., a single 
neuron). 

3.5 CONCLUSION 

A solution to the N-bit parity problem with a single Af-dimensional vector neuron 
suggests that making the dimensionality of neural networks high (for example, com-
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Decision boundary D e c i s i o n b o u n d a r y 

for the 2nd component for t h e 1 s t c o m p 0 n e n t 

X 2 x2 = 0 \ 

- 1 , 1) 

\ 

o 
(-1,-1) 

x, = 0 

(1,1) 

o 

(1.-1) 

Figure 3.2 The decision boundary in the input space of the 2-dimensional vector 
neuron that solves the 2-parity problem (i.e., N = 2). The black circle means that the 
output in the parity problem is 1, and the white one is 0. 

plex numbers and quaternions [5] is a new directionality for enhancing the ability 
of neural networks, and that it is worth researching the neural networks with high-
dimensional parameters. 
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Although complex-valued neural networks (CVNNs) have been proved much 
more efficient in processing complex-valued data than the real-valued neural 
networks (RVNNs), conventional derivation of the well-known learning algo-
rithms employ real derivatives. Such derivations require reformulating the prob-
lem in the real domain by separating into real and imaginary parts; and conse-
quently, it becomes tedious and awkward since the original problem is in the 
complex domain. Nevertheless, the main reason for the real-valued perspective 
is that the CVNNs bring in nonholomorphic functions quite naturally, for which 
the standard complex derivatives do not exist. There are two sources of non-
holomorphism: (i) the real-valued loss functions and (ii) the nonholomorphic 
(nonanalytic) activation functions. The derivatives of such functions, however, 
are defined in Wirtinger calculus that generalizes the notion complex derivative, 
and the holomorphic function becomes a special case only. Most importantly, 
the Wirtinger calculus simplifies the derivative evaluation and enables us to re-
main in the complex domain. 
This chapter provides a brief discussion on the Wirtinger calculus and derives 
several algorithms for the feedforward and recurrent CVNNs utilizing this cal-
culus. A functional dependency graph among neurons helps evaluating the 
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derivatives by visual inspection. For the feedforward networks, two algorithms 
are considered: the gradient descent (backpropagation) and the Levenberg-
Marquardt (LM) algorithm. While deriving the LM algorithm, we encounter 
a least squares problem involving a complex vector and its conjugate, which 
is more general than the usual least squares problem in the complex domain. A 
solution with proof is given and used in the LM algorithm derivation. For the re-
current networks, we derive complex version of the real-time recurrent learning 
(RTRL) and the extended Kaiman filter (EKF) algorithm. Computer simulation 
results are provided to illustrate each of the algorithms. The unified and system-
atic way of our derivations would enable the readers extending any algorithm in 
the RVNNs to the CVNN framework with least effort. 

4.1 INTRODUCTION 

The key features of complex-valued neural networks (CVNNs) are that the parame-
ters are complex numbers and their computations utilize the complex algebraic rules. 
In order to get satisfactory performance from the networks, the parameters should be 
optimized through some optimization procedure commonly known as learning al-
gorithm. Therefore, one of the most important matters in the CVNNs is to devise 
learning algorithms for them. The gradient- or partial-derivative-based algorithms 
are perhaps the most prevalent learning mechanisms in the neural networks. To this 
end, one encounters a problem because the standard complex "derivative exists only 
for analytic or holomorphic functions, which entails a stringent condition in the com-
plex domain. 

The CVNNs bring in nonholomorphic functions in two ways: (i) with the loss 
function to be minimized over complex parameters and (ii) with the most widely 
used activation functions. The former is completely unavoidable as the loss func-
tion is necessarily real-valued and hence nonanalytic. The second source of non-
holomorphism arises because boundedness and analiticity cannot be achieved at the 
same time in the complex domain, and it is the boundedness that is often preferred 
over analyticity for the activation functions [3, 23]. Although some researchers have 
proposed several holomorphic activation functions having singularities [15, 26], a 
general consideration would be that the activation functions can be nonholomorphic. 
In such a scenario, derivative-based optimization algorithms are unable to use stan-
dard complex derivatives since the derivatives do not exist (i.e., the Cauchy-Riemann 
equations do not hold). As an alternative, the conventional approach for algorithm 
derivation casts the optimization problem in the real domain by separating the real 
and imaginary components of a complex variable and then taking the real derivatives. 
This real-valued perspective treats a nondifferentiable mapping between C and C as a 
differentiable mapping between E2 and M2. Since the real-valued perspective arises 
within a complex variable framework, it is often awkward and tedious to reformulate 
the problem in the real domain [16]. 

An elegant approach that greatly simplifies derivations and can save computa-
tional labor in dealing with nonholomorphic functions is to use Wirtinger calcu-
lus [32]. The Wirtinger calculus can be considered as a generalization of complex 
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derivative using conjugate coordinates where two derivatives | £ and Ĵ jr come in 
a pair. Here z* denotes the complex conjugate of z. The derivatives are called 
M-derivative and conjugate M-derivative, respectively. The formal definitions and 
properties of the derivatives are discussed in Section 4.2. 

A pioneering work that utilizes the concept of conjugate coordinates is by Brand-
wood [5]. The author formally defines complex gradient and the condition for sta-
tionary point. An application in adaptive array theory is also discussed in the paper. 
The work is further extended by van den Bos showing that the complex gradient and 
Hessian are related to their real counterparts by a simple linear transformation [28]. 
However, neither of the authors has cited the contribution of Wilhelm Wirtinger, an 
Austrian mathematician, who originally developed the concept of derivatives with 
respect to the conjugate coordinates. The reason might be due to the fact that the 
article was published in the German language. Today, the Wirtinger calculus is well-
appreciated and has been fruitfully exploited by several recent works [4, 18]. 

Although Wirtinger calculus can be a useful tool in extending the well-known 
first- and second-order optimization algorithms used in the RVNNs to the CVNN 
framework, only few studies can be found in the literature (e.g., [17]). In [17], the 
Wirtinger calculus has been utilized to derive a gradient descent algorithm for a 
feedforward CVNN. The authors employ holomorphic activation functions and states 
that the derivation is simplified only because of the holomorphic functions. It is 
further stated that the evaluation of gradient in the nonholomorphic case has to be 
performed in the real domain as it is done traditionally. In this chapter, however, we 
show that the Wirtinger calculus can simplify the derivations with nonholomorphic 
activation functions too, which is the original motivation of Wirtinger calculus. 

We derive several widely used learning algorithms for feedforward and recurrent 
CVNNs. Each algorithm is illustrated with computer simulation results. All compu-
tations are carried out in matrix-vector form so that it can be easily implemented in 
any computating environment where computations are optimized for matrix opera-
tions. An important aspect of our derivations is that we use functional dependency 
graph for a visual evaluation method of derivatives, which is particularly useful in 
multilayer CVNNs. Because the Wirtinger calculus essentially employs conjugate 
coordinates, a coordinate transformation matrix between the real and conjugate coor-
dinate system plays an important role in the derivations. It turns out that the Wirtinger 
calculus, the coordinate transformation matrix, and the functional dependency graph 
are three useful tools for extending any derivative based optimization algorithm in 
the RVNNs to the CVNN framework. 

In Section 4.3, we define complex gradient using the Wirtinger calculus. Our 
gradient evaluation is more general and the CVNN with holomorphic activation 
function becomes a special case only. Then a complex gradient descent algorithm 
is formulated for feedforward CVNNs in Section 4.4.1. We also derive a popular 
second-order learning method (in the sense, the Hessian matrix involving second-
order derivatives is approximated by using Jacobian matrix), the Levenberg-Marquardt 
(LM) algorithm [10], for CVNN parameter optimization. The derivation is provided 
for feedforward CVNN in Section 4.4.2. We find that a key step of the LM algorithm 
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is a solution to the least squares problem ||b — (Az +Bz*)||min in the complex do-
z 

main, which is more general than the ||b — Az||min. Here z* denotes the conjugate 
z 

of a column vector z. A solution to the least squares problem has been given with 
a proof. Computer simulation results for the gradient descent and LM algorithm are 
presented in Section 4.4.3 in order to validate the derived algorithms. The results 
exhibit that as with the real-valued case, the complex LM algorithm provides much 
faster learning than the complex gradient descent algorithm. Although the LM algo-
rithm is widely used in the RVNN training, no other study except ours has been done 
in the complex domain [1]. 

Section 4.5 derives two popular algorithms for recurrent CVNNs, namely com-
plex real-time recurrent learning (CRTRL) and complex extended Kaiman filter (CEKF) 
algorithms. It is well known that the recurrent neural networks are well suited for 
processing temporal or sequential information as they can have feedback connections 
in addition to the feedforward connections [30,24]. Our derivations are based on the 
Wirtinger calculus and are more general (networks with any activation functions hav-
ing the property of differentiable mapping from M2 to E2) than the derivations found 
in [8, 14, 9]. Both the CRTRL and CEKF are illustrated with computer simulations 
on a real-world wind prediction problem. 

We summarize the key concepts of this chapter in Section 4.6. 

4.2 DERIVATIVES IN WIRTINGER CALCULUS 

This section briefly discusses the E-derivative and the conjugate M-derivative for-
mally developed by the Austrian mathematician, Wilhelm Wirtinger [32]. The re-
sulting calculus is therefore also known as Wirtinger calculus in the literature [7]. 
Rigorous descriptions with applications can be found in [22, 25, 5, 16]. 

Any function of a complex variable z can be defined as f(z) = u(x, y) +jv(x, y), 
where z = x+jy. If all the partial derivatives ux,uy,vx, and vy exist, then the com-
plex derivative of f(z) is said to exist if the partial derivatives satisfy the Cauchy-
Riemann equations, i.e., ux = vy, vx = —uy. In the complex domain, the functions 
satisfying the Cauchy-Riemann equations are called holomorphic functions. Other-
wise, the functions are called nonholomorphic. As for instance, if a function f(z) is 
real-valued, i.e., v(x, y) = 0, then it is nonholomorphic since the Cauchy-Riemann 
equations no longer hold. In other words, the Cauchy-Riemann equations are more 
stringent condition than the mere existence of real partial derivatives. Consequently, 
we do not have a definition of complex derivate for nonholomorphic functions. 

Interestingly, any differentiable mapping, f : R2 -+ R2 (or E), can be treated in 
complex domain by introducing conjugate coordinates such that 

G-Ki)G) 
This ingenious idea of Wirtinger allows us to deal with nonholomorphic functions 
in the complex domain. In other words, any nonholomorphic mapping / : C —> 
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C(or R) is viewed from pseudo-real perspective in terms of conjugate coordinates. 
Note from Eq. (4.1) that the conjugate coordinates are related to the real coordinates 
by a simple coordinate transformation matrix. From the inverse relations, x = (z + 
z*)/2 and y = —j(z — z*)/2, Wirtinger defines the following pair of derivatives for 
a function/ (z, z*): 

a/ 
dz 2\dx *dy)' dz* 2\dx+jdy) ( 4 ' 2 ) 

The derivatives are called M-derivative and conjugate K-derivative, respectively. 
From the coordinate transformation viewpoint, one can take partial derivatives in 

either of the coordinate systems, whichever seems convenient. Then, if required, it is 
straightforward to switch to the other coordinate system by the simple linear trans-
formation. When evaluating partial derivatives in the conjugate coordinate system, 
we take one of the variables, z and z*, as constant. For example, in the evaluation of 
| £ , z* is considered as constant; similarly in the evaluation of ■$£?, z is considered 
as a constant. An illustrative example is given below. 

■ EXAMPLE 4.1 

Suppose g(z, z*) = z2z* = u + jv, where z = x + jy, then 

u(x,y) = x3 + xy2 

v(x, y) = x2y + y3 

dg l i d . d \ , 
d-z = 2{a-x-Jd-y)iu+JV) 

1 
2 ((3x2 +y2 +j(2xy)) -j {2xy + j(x2 + 3j/2))) 

= 2(x2+y2) 

= 2zz* 

9?_ = l( 
dz* 2 \ 

d . d \ . 
dx-+%)iu + JV) 

- ((3x2 + y2+j(2xy)) +j {2xy + j(x2+3y2))) 

x2 -y2 + j2xy 

= z2 

Here the derivatives are computed in the real coordinate system defined in Eq. 
(4.2). However, one can get the similar results quickly if the derivatives are 

d(z2z*) 
evaluated in the conjugate coordinate system. That is, —^r—- = 2zz* and 

d(z2z*) 2 

dz* 
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Most importantly, the Wirtinger calculus generalizes the concept of derivatives in 
complex domain. It is easy to see from Eq. (4.1) that the Cauchy-Riemann equa-
tions are equivalent to J-j£- = 0. In other words, the holomorphic functions can 
be considered as functions of z only, not of z*. This beautiful result is the key to 
deal with nonholomorphic functions in the gradient based optimization problems in-
volving complex-valued parameters. There is no need to express or reformulate the 
optimization problem in the real domain by separating real and imaginary compo-
nents which would be tedious and cumbersome. 

The Wirtinger calculus enables us to perform all computations directly in the com-
plex domain, and the derivatives obey all the rules of conventional calculus, including 
the chain rule, differentiation of products and quotients. Here are some useful iden-
tities that we use extensively in the derivation of learning algorithms throughout this 
chapter. 

{%y = ^ ' W h e n / i s r e a l ( ! 0 * = ^ [Conjugation rule] (4.3) 

\d?J = " ö 7 ; w h e n / i s r e a l ( ^ J = ä J [Conjugationrule] (4.4) 

df = -J-dz + ττ-dz* [Differential rule] (4.5) 
oz az* 

dh(g) dhdg dh dg* r n . , , 
"Λ = 7Γ 7Γ + 7ΓΤ ΤΓ- [Cham rule] (4.6) 

oz dg az dg* az 

dh(g) dh dg dh dg* r ^ u . , . 
-^=*Θ!Ϊ + ΘΪ&

 [Chainrulel (47) 

4.3 COMPLEX GRADIENT 

The gradient of a real-valued scalar function of several complex variables can be 
evaluated in both real and conjugate coordinate systems. And there is a one-to-one 
correspondence between the coordinate systems. Let z be an n-dimensional column 
vector, i.e., z = (zi,z2,. ■ .,zn)

T € C", where z, = Xi+jyi,i = 1,2, . . . , n . Then 
an isomorphism between the real and conjugate coordinate system is given by 

*(?)·■* ©-(58) 
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where U(z) and ξ>(ζ) represent the real and imaginary parts of z, respectively. In the 
real-valued coordinates, the gradient is defined as 

real-Vf = df_ d£_ df df Of 
dx\' dx2 ' ' dxn' dyi' dy2' "' dyn) 

= ( % ■ $ ) (4.8) 

where Γ denotes the transpose operator. Now if the real-valued partial derivatives 
are arranged according to the real and imaginary parts, component-wise, an intuitive 
definition of complex gradient could be 

dz{* ' dz^J 
J / 

= 2—— 
öz* 

= VZ*/ (4.9) 

The second line of Eq. (4.9) follows from Eq. (4.2). Note that this intuitive definition 
is valid only when / is a real-valued function. As will be shown next, a more formal 
derivation leads to the same definition of Eq. (4.9). 

In the single complex variable case, the real and conjugate coordinates are related 
by the coordinate transformation matrix of Eq. (4.1). Similarly, the multivariable 
case can be written with a coordinate transformation matrix in the block matrix form 

z 
z = Μί^ΗϊΗΦΗ' <4iw 

where I is an identity matrix conforming to the size of x or y. Note here that 
M _ 1 = | Μ ^ , where H represents the Hermitian transpose operation. Since the 
coordinate transformation is a linear transformation it follows that for a real-valued 
scalar function, / (z , z*), 

df _&£rdf =ΜΤ8ζ 
dz 

Since both / and r are 
dr dr dz 

Ϊ real-valued 

m-m 
9i* [ E * ( 4 3 ) ] 



82 LEARNING ALGORITHMS IN COMPLEX-VALUED NEURAL NETWORKS USING WIRTINGER CALCULUS 

The gradient descent update rule in the real-valued case is Δ Γ = — μ—, where μ is 
a r 

a small step size. Using the coordinate transformation of Eq. (4.10), we obtain 

Δζ = ΜΔΓ = -μΜ^- = -μΜΜΗ^1- = -2μ^ί- (4.11) 
a r σζ* αζ* 

Because ζ* = (ζΗ, ζ τ ) , Eq. (4.11) can be written as 

*«-=(£)=-*· <9z* 

\dzJ 

Αζ = - 2 μ § ϊ ( 4 · 1 2 ) 

Thus using the Wirtinger calculus, the complex gradient of a real-valued function 
with respect to a parameter vector z is evaluated as V z */ = 2 - — , but not -7—! 

αζ* α ζ 
Note that this formal way of formulation conforms to our intuitive definition of Eq. 
(4.9). Although the multiplicative factor 2 appearing in the complex gradient may be 
ignored, we adhere to this as the exact relationship between the real gradient (had we 
solved the optimization problem in the real domain) and the complex gradient should 
include the factor. Thereby, one can verify the final result of derivation in the real 
domain with that in the complex domain and appreciate the simplicity obtained in 
the complex domain due to the Wirtinger calculus. No matter, whichever approach 
is followed the final result must be same, but the Wirtinger calculus is much more 
elegant and painless. 

4.4 LEARNING ALGORITHMS FOR FEEDFORWARD CVNNS 

4.4.1 Complex Gradient Descent Algorithm 

Now that we have the notion for complex gradient, we are ready to derive the gradi-
ent descent learning algorithm for CVNNs. The derivation is carried out in matrix-
vector form. As a result, the algorithm can be easily implemented in any computing 
environment where matrix computations are optimized. In the gradient descent algo-
rithm, when applied in the supervised manner, the network is provided with a desired 
signal vector d from which an error signal can be computed as 

e = d - y (4.13) 

where y denotes the network's output. Then the gradient descent algorithm mini-
mizes a real-valued loss function 

£(z,z*) = i £ e £ e * = V e (4.14) 
Δ k Δ 

where k stands for the fcth element of network's output vector. For a given set of 
training examples, the loss function depends on the parameter vector z as well as on 
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its conjugate z* from the viewpoint of Wirtinger calculus. The parameter vector can 
be biases of the neurons in a particular layer, or the incident connection weights to 
a particular neuron, or even all the network parameters collected in a single column 
vector. During the learning process, the parameter vector z is iteratively updated 
along the opposite direction of gradient, i.e., to the negative of gradient. The negative 
of complex gradient as defined in Eq. (4.12) can be written as 

We find that it is convenient to take derivative of a scalar or a column vector with 
respect to a row vector as it gives the Jacobian naturally. Now 

dt d (eHe) de d (eHe) de* 

~2W = —de^-W ~ -dWfd^ [Eq' (4'6) ^ matrix"veCt0r f0rm] 

= eHJz + eT (Jz* )* [Eq. (4.4) in matrix-vector form] (4.16) 

dy dy 
Here, we define two Jacobian matrices, J z = -r-777 and Jz* = -r—π. Taking Her-

oz1 dzH 

mitian conjugate transpose to both side of Eq. (4.16) yields the negative of complex 
gradient as 

-V,.i = jfe+(jf.e)* (4.17) 
It is clear from Eq. (4.17) that in order to evaluate complex gradient all we need 
is to compute a pair of Jacobians: J z , the Jacobian of network output y w.r.t. the 
parameter vector z; and Jz*, the Jacobian of y w.r.t. z*. It should be noted that 
the Jacobians have the form of P - jQ and P + j Q , respectively, because of the 
definition of derivatives in the Wirtinger calculus. Therefore, we can compute the 
other one while computing one of the Jacobians. It should be noted that P and Q are, 
in general, two different complex-valued matrices. Although our primary interest is 
on — Vz* ξ, a convenient formulation may also include its conjugate term, so that the 
pair belongs to a point in the conjugate coordinate system. In that case, Eq. (4.17) 
can be extended as 

H 

(3#-(ώ· (iir) (;) 
In the compact notation of conjugate coordinate system, an equivalent formulation 
is given by 

- V g ^ = J f e (4.19) 

Note that Eq. (4.19) resembles the gradient descent algorithm formulation for RVNNs. 
This is intuitive because only the coordinate has been transformed from the real sys-
tem to the conjugate system. 

Let us now derive the gradient descent algorithm in explicit form for a multi-
layer feedforward CVNN. To illustrate, we consider one hidden layer for the sake 
of notational convenience only. The method presented here, however, can be easily 
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followed for any number of layers. The forward equations for signal passing through 
the network are given by 

( i ) v = ( D W x + ( i ) b 

<l>y = 0 ( « V ) = («M«1^!), M(1)V2), ■ ■ ■ ,<M ( 1 ) fm) ) T 

( 2 ) v = ( 2 ) W ( l ) y + ( 2 ) b 

y = (»)y = φ(^ν) = (φ1(^ν1),φ2(
(2)ν2),...,Φη({2)υη))Τ (4.20) 

The notations for Eq. (4.20) are as follows. A left superscript indicates the layer 
number and the input layer is counted as 0-th layer. The vector x is the input signal; 
(*)y and y = ^y are the outputs at hidden and output layer, respectively; the weight 
matrix ^ W connects the input units to the hidden units, while the matrix ^ W 
connects the hidden units to the output units; the column vectors ^ b and ̂ b are 
the biases to the hidden and output units, repectively; and φ%{-) is any activation 
function {holomorphic or nonholomorphic) having real partial derivatives. 

(a) nonholomorphic case 

U > W Λ ( „ ν ( 2 ) W Λ(2)ν 

l (2)y 
X ( D V (D y (2)y 

(b) holomorphic case 

Figure 4.1 Functional dependency graph of a single hidden layer CVNN 
corresponding to Eq. (4.20). Each node represents a complex-vector-valued variable, 
and an edge connecting two nodes is labeled with the Jacobian of its right node 
with respect to its left node, (a) The general case, where activation functions are 
nonholomorphic; and (b) the special case, where activation functions are holomorphic. 
In the holomorphic case, conjugate Jacobians are the zero matrix. Thus, the graph of 
(a) reduces to the graph of (b). 

Visual Evaluation of Jacobians in the Feedforward CVNN: In the feedforward 
CVNN, parameters are structured in layers. Therefore, it is very convenient to com-
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pute the Jacobians by visual inspection if we draw a functional dependency graph, 
which is a graphical representation of the chain rule in the differential calculus. Fig-
ure 4.1 depicts the functional dependency graph for a single hidden layer CVNN 
described by Eq. (4.20). In this figure, the dependency delegates from right to the 
left. Each edge is labeled with the Jacobian of its right node w.r.t. the left node. 
However, for any arbitrary vector z, the Jacobians of interest are J z and Jz*, i.e., the 
Jacobians of the rightmost node (labeled as y in Fig. (4.1)) w.r.t. to all other nodes 
appearing to its left at different depths. 

To evaluate the Jacobian of the right most node (i.e., network's output) w.r.t. any 
other node to its left, we just need to follow the possible paths from the rightmost 
node to that node. Then the desired Jacobian is the sum of all possible paths, where 
for each path the labeled Jacobians are multiplied from the right to the left. For 
example, in Fig. 4.1 

J(Dv — 
dy 

dWv T 

= Λ(2)ν(2)\νΛ(1)λ + A(2)v.<2>W*(A(1,v.)* (4.21) 

where the Jacobians Λ(ΐ> ν , Λα> ν , , Λ<2) v , and Λ(2)ν, are diagonal matrices consisting 
of the derivatives of activation function(s). 

As an example, let ^ ' v = ( ^ « ι , ^V2, ■ ■■, ^vm) . Then 

/ Ä ( l l ~ U 

Λ(ΐ)ν = 
0 

dWV2 

o \ 
0 

V o 0 

Λ(ΐ)ν* — 
0 

V o 

θΜυζ 

0 

0 

ö( r
m / 

It may seem that the number of paths would increase in a multiplicative manner for 
many layers network, particularly when evaluating the Jacobian at a far node than 
the right most node. Here a trick is to reuse the computation (i.e., backpropagation). 
We only need to look for Jacobian to the immediate rightmost nodes, presumably the 
Jacobians are already computed there. Thus Eq. (4.21) can be alternatively computed 
as 

J(1)V — J(l)yA(l)v + J(l)y* (Λ(1)ν*) 

&y A T dy w h e r e J ( 1 ) y = a ( l ) v T a n d J ( i V = fl(1)ylf. 
It is now a simple task to find the update rule for the feedforward CVNN param-

eters. We note from Eq. (4.20) that J(i>b = J<i)v and J(2>b = J(2>v. Thus update 
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rules for the biases at hidden and output layer are 

A(1)b = / x ( j ^ ) b e + ( J ? i ) b . e ) * ) ; A<2>b = μ ( j £ ) b e + ( J& b .e )* ) (4.22) 

where μ is the learning rate. Extending the notation for vector gradient to matrix 
gradient of a real-valued scalar function [17] and using Eq. (4.20), the update rules 
for hidden and output layer weight matrices are given by 

A ^ W - ( A ^ b ) x " ; Δ<2>W = ( A ^ b ) ^yH (4.23) 

This completes the derivation of the gradient descent learning algorithm in the feed-
forward CVNN. All computations are directly performed in the complex domain in 
matrix-vector form. As shown in Fig. 4.1 one can easily compute the required Ja-
cobians by visual inspection from the functional dependency graph. Furthermore, 
if the activation function is holomorphic, the Jacobians corresponding to conjugate 
vector turns into zero. Consequently, Fig. 4.1(a) reduces to Fig. 4.1(b). 

4.4.2 Complex Levenberg-Marquardt Algorithm 

The naive gradient descent method presented above has a limitation in many prac-
tical applications of multilayer neural networks because of very slow training time 
and less accuracy in the network mapping function [2]. In order to overcome this 
problem, many algorithms have been applied in the neural networks, such as conju-
gate gradient, Newton's method, quasi-Newton method, Gauss-Newton method, and 
Levenberg-Marquardt (LM) algorithm. Among those, perhaps the LM algorithm is 
the most popular in the neural networks as it is computationally more efficient. In 
this section, we derive the LM algorithm for training feedforward CVNNs. The LM 
is basically a batch-mode fast learning algorithm with a modification to the Gauss-
Newton algorithm. Therefore, the Gauss-Newton algorithm will be first derived in 
the complex domain. 

The Gauss-Newton method iteratively re-linearizes the nonlinear model and up-
date the current parameter set according to a least squares solution to the linearized 
model. In the CVNN, the linearized model of network output g(z, z*) around (z, z*) 
is given by 

y(z + A z , z * + A z * ) « y ( z , z * ) + - ^ Δ ζ + 9y 

d(z*f 
Δζ* 

Z * 

= y + JzAz + Jz*Az* (4.24) 

which follows from the differential rule of Eq. (4.5). The error associated with the 
linearized model is given by 

e = e - (JzAz + Jz*Δζ*) (4.25) 

where e = d - y is error at the point (z, z*). Then the Gauss-Newton update rule 
is given by the least squares solution to ||e - (JzAz + Jz* Δζ*) ||. So we encounter 
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a more general least squares problem having the form of ||b — (Az + Bz*) | |min, as 
z 

opposed to the well-known problem ||b — Az||min. Although solving the problem 
z 

||b — Az||min is well known from the normal equation A^b = A^Az, it is not 
z 

found in the literature (to the best of our knowledge) as to how to write the normal 
equation of ||b — (Az + Bz*) ||min· In the following, we solve the problem simply 

z 

by using the coordinate transformation of Eq. (4.10) and the well-known real-valued 
normal equation. 
Theorem 4.4.2. Let A and B be arbitrary complex matrices of same dimension. 
Then a solution to the least squares problem, ||b — (Az + Bz*) | |min, is given by the 

z 

following normal equation: 

C " ( £ ) = C " C ( ; . ) , where C = ( £ £ ) (4.26) 

Proof: From Eq. (4.10), we know that the conjugate coordinates system is related 
to the real coordinate system by the transformation matrix M, and M _ 1 = | M ^ . 
The error equation and its complex conjugate associated to the least squares problem 
are 

e = b - ( A z + Bz*), (4.27) 
e* = b * - ( A * z * + B * z ) (4.28) 

Combining the above equations to form a single matrix equation and applying the 
coordinate transformation the problem can be transformed into real coordinate sys-
tem, where the normal equation for least squares problem is well known. This gives 
the following equation 

\MMH = i 
2 J 

= MH (b*) " \ (M"CM) MH (Z
Z*) <4'29) 

It can be shown that ^M^CM = P is a real-valued matrix. Consequently, Eq. 
(4.29) is real-valued matrix equation and can be rewritten as 

/ » ( e ) \ / » ( b ) \ _ / » ( z ) \ 
{%(e)J ~ \Z(b)) *Λ3(ζ); 

= q - Pr (4.30) 

Because it is now completely in the real coordinate system, we can readily apply the 
normal equation P T q = P T P r for the least squares problem of Eq. (4.30). Noting 
that the ordinary transpose and Hermitian conjugate transpose is the same operation 
in the real-valued matrices, the real-valued normal equation, P T q = P T Pr, trans-
forms to the following complex-valued normal equation (Eqs. (4.29) and (4.30) are 

M"(ee-)=M"(b· - M " C G M M ")(z Z · 
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equivalent): 

±MHCHMMH(£\ = i M f f C f f M M " c Q M M " ) ( * Λ (4.31) 

Since | Μ Μ Η = I and M ^ is invertible, Eq. (4.31) immediately yields the follow-
ing normal equation in the complex form 

c " ( b b - ) = c " c ( * · ) 

as required. ■ 

According to Theorem 4.4.2, the least squares solution to Eq. (4.25) gives the 
following Gauss-Newton update rule: 

( £ ) - H - ' 0 » ( « ) (4.32) 

—e-((ir ar)-JH-e'e-(S« £) 
The matrix H can be considered as an approximation to the Hessian matrix that 
would result from Newton method. Note that when H = I, the Gauss-Newton 
update rule reduces to the gradient descent algorithm. There is also a pseudo-Gauss-
Newton algorithm, where the off-diagonal block matrices are H12 = Hi 2 = 0 [16]. 
The pseudo-Gauss-Newton update rule then takes a simpler form: 

Azpseudo-Gauss-Newton = JJ-1 fjHe + ( j" e )* ) (4.33) 

When the activation functions in the CVNN are holomorphic, the output function 
g(z) is also holomorphic. The Gauss-Newton update rule becomes very simple and 
resembles the real-valued case: 

^holomorphic = (jf Jz) _ 1 jf e (4.34) 

It can be observed that all the computations use the Jacobian matrices extensively, 
which can be evaluated visually and efficiently from the functional dependency graph 
of Fig. 4.1. It thus shows the simplicity of our derivation using the Wirtinger calcu-
lus. 

The LM algorithm makes a simple modification to the Gauss-Newton algorithm 
of Eq. (4.32) in the following way 

( £ ) = <ο'β+ <*)-'<»*(£) «*> 
The parameter μ is varied over the iterations. Whenever a step increases the error 
rather than decreasing, μ is multiplied by a factor of /?. Otherwise, μ is divided by 
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ß. A popular choice for the initial value of μ is 0.01 and β = 10. The LM is a batch-
mode learning algorithm, and hence all the training examples are presented before 
a parameter update. Consequently, the Jacobians J z and Jz* become submatrices 
of two larger Jacobian matrices containing the derivatives for all examples. The 
following are the steps of the complex-LM algorithm: 

1. Present all the input data to the CVNN and compute network outputs and error. 
Arrange error vectors for all the input patterns into a single column vector and 
compute the norm of the error vector. 

2. Compute the Jacobian and conjugate Jacobian submatrices using Fig. 4.1 for 
all the patterns. Again arrange all the submatrices into two corresponding 
larger Jacobian matrices in such way that the patterns get augmented row-wise, 
the parameters column-wise. 

3. Use Eq. (4.35) to obtain Δζ. Note that when the activation function is holo-
morphic or if the pseudo-Gauss-Newton is intended, update should be done 
according to Eqs. (4.34) or (4.33), respectively. 

4. Recompute the norm of the error vector using z -I- Δζ. If the new norm is 
smaller than the one computed in step 1, reduce μ by β and admit the update 
z = z + Δζ; and go back to step 1. If the error norm does not get reduced, 
then increase μ by β and go back to step 3. 

5. The algorithm is stopped if some stopping criteria is met; for example, error 
goal is met or a given maximum number of iterations has been passed. 

4.4.3 Computer Simulations 

A computer experiment was performed in order to verify the algorithms presented in 
Section 4.4.1 and Section 4.4.2. The algorithms were implemented in the Matlab to 
utilize its matrix computing environment. We took the experimental data from [23], 
where the task is to learn the patterns shown in Table 4.1. We trained a 2-4-1 CVNN 
using the complex gradient descent learning algorithm and two variants of complex-
LM algorithm. Note that the complex-LM algorithm uses the Gauss-Newton update 
rule as its basic constituent, which has a variant called the pseudo-Gauss-Newton 
method. Accordingly, two variants are called complex-LM and pseudo-complex-
LM. In either case of the learning algorithms, the training was stopped when the 
error (mean squared error (MSE)) goal was met or a maximum number of iterations 
has been passed. The MSE goal was set to 0.0001 and the maximum number of 
iterations was set to 10 000. We used the same activation function of [23] in the 
hidden and output layers, which is nonholomorphic. The function has the following 
form: 

/ M W = fn (»(*)) + j / / ( 3 ( * ) ) (4.36) 

where / R ( ·) and / / ( · ) are real-valued log sigmoid functions. 
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Table 4.1 Learning patterns 

Input 1 

0 
0 
3 
3 
1 
3 

1 + J 
i + i 

Input 2 

0 
3 
3 
1 
1 
0 

i + i 
3 

Output 

1 
3 

i + i 
3 

i + i 
0 
1 
i 

V=T 

iou 

1 0 " 

CO 

10 

I IG"31 

10 

l e complex gradient descent 

-4 

■pseudo-complex-LM 
I 
I 

complex-LM\ 

10 
iou 1 0 1 10* 

Iteration 
10J 10* 

Figure 4.2 Learning curves of complex gradient descent, complex-LM, and pseudo-
complex-LM algorithm. 
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The number of iterations required to meet error goal were only 15 and 36 for 
the complex-LM and the pseudo-complex-LM, respectively. The complex gradi-
ent descent, however, met the error goal at 5345-th iteration. Figure 4.2 shows the 
learning curves in log scale. It is clearly observed that the complex-LM and the 
pseudo-complex-LM algorithms converged very fast. Furthermore, the complex-
LM is faster than the pseudo-complex-LM since the latter is an approximation to 
the former. Note that in the pseudo-complex-LM, approximation is done by block 
diagonal matrix to reduce the computations of matrix inversion (see Eq. (4.32)). As 
shown in Fig. 4.2, the convergence behavior of complex-LM and complex gradient 
descent algorithms resembles much like that in the RVNNs. Therefore, complex-LM 
learning in the CVNNs could be very useful in the CVNN applications very much 
like the LM algorithm in the RVNNs. 

Similar to the RVNNs, the application of complex-LM algorithms in CVNNs is 
limited by the number of parameters of CVNNs, because it requires a matrix inver-
sion computation in each iteration, whereby the matrix dimension is in the order of 
total number of learning parameters. Therefore, the complex-LM algorithms are ap-
plicable when faster and higher accuracy in the network mapping is required, such 
as system identification and time-series prediction in the complex domain. 

4.5 LEARNING ALGORITHMS FOR RECURRENT CVNNS 

The feedforward neural networks discussed in the previous section are often called 
static networks [6] since they have no feedback elements. On the other hand, re-
current networks having feedback connections can represent highly nonlinear dy-
namical systems [19]. These dynamic networks have capabilities superior to those 
of the feedforward networks with tapped delay line representations for processing 
temporal or sequential information. A number of learning algorithms exist for the 
real-valued recurrent neural networks, including real-time recurrent learning (RTRL) 
[31], backpropagation through time (BPTT) [29], and extended Kaiman filter (EKF) 
[24]. 

n y ( / - i ( , )yi>-
* - i i 

( M y ( ' - l ) 

Figure 4.3 Block diagram of recurrent CVNN. 

In this section, we utilize the Wirtinger calculus for deriving complex version of 
the RTRL and EKF algorithm, i.e., the CRTRL and the CEKF. A very general class 
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of networks as shown in Fig. 4.3 is considered, which is referred to as recurrent 
multilayer perceptron (RMLP) in [24, 11]. The CRTRL has been derived in [8] for 
holomorphic activation function, while only the split-type sigmoid activation func-
tion has been considered in [14]. Both the works deal with a single-layered recurrent 
CVNN and reformulates the problem in real domain for computing real-valued gra-
dient. In contrast, the derivations carried out here do not impose restrictions on the 
type of activation function and all computations are performed directly in the com-
plex domain. We then derive CEKF and show how the augmented CEKF (ACEKF) 
of [9] naturally arises from the coordinate transformation viewpoint in the Wirtinger 
calculus. The CEKF employs the CRTRL algorithm for locally linearizing the recur-
rent CVNN model. 

4.5.1 Complex Real-Time Recurrent Learning Algorithm 

The network shown in Fig. 4.3 consists of one or more fully recurrent hidden layers. 
Feedback connections exist only in the same layer feeding its input by a unit time-
delayed output. The network operates in discrete time steps, and at time instant t the 
output from Zth layer is given by 

(°y(<) = Φ ( ( i )v(f)) , (4.37) 

O v ( i ) = M$vWy{t - 1) + W ^ ' - ^ y i t ) , 1 < I < L (4.38) 

Here φ( ■) is any activation function having R2 -»· R2 differentiable mapping prop-
erty. The matrices « Ϊ Ϋ and W\$ designate the feedback and feedforward connec-
tions, respectively. The biases are subsumed in the feedforward connections having 
a constant input. 

The CRTRL is a gradient descent learning algorithm that computes derivatives 
through a recurrence relation. Figure 4.4 shows the functional dependency diagram 
of an output layer, /, along with its conjugate. The diagram has the similar role as of 
Fig. 4.1, i.e., to facilitate evaluating the Jacobians. However, because of the feedback 
connections, we define dynamic Jacobian in order to account for the indirect effects 
through time. The dynamic Jacobian matrix of Zth layer output w.r.t. ^Wk, the 
weight vector of fcth neuron in rath layer (ra < /), is as follows: 
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' W - ^yv-vyd) 

Figure 4.4 Functonal dependency graph for /th layer neurons. The dependency 
delegates from top to bottom. 

Direct subpath Direct subpath 

(,)J<»Owt(t) = ( i )J«>y( i-i) (i)J<"»w,(i - 1) + ( i ) J( ' ) y . ( i - i ) ( (°J(-)w*)* (t ~ 1) 

/ Direct subpath 

V 
+ (1 - St>m) 

Dynamic recurrent path 

Direct subpath 

( /)J(/-i)y(t) (/ 1)J(m)Wfc(i) + ( / )J( i- i)y(t-i) y 1}J(^)w*j (*) 

Dynamic forward path 

+ <*i,m(/)J(m)Wfc , / > m 
y V ' 

Direct recurrent and forward paths 

(4.39) 

where Siym is the Kronecker delta. The direct path computations are as usual like the 
feedforward networks. The dynamic Jacobians are shown with the time step as their 
arguments forming the recurrence relation of Eq. (4.39). Initially all the derivatives 
are set to zero. Note that for / < ra, the Jacobians are zero matrix as the output of 
a layer does not depend on the weights of succeeding layers. Now evaluating the 
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direct path Jacobians yields the following expression: 

(l)J(m)wfc(t) - A(i)v(i)
(/) ;vV^J(rn)Wfc(i - 1) + A(0v*(<)

(i);vV* ( ( / ) J ( . ) w *)* (t - 1) 

+ (1 -Ä,,m) ( A ( , , v ( t ) « ^ - i ) j ( m ) w f c ( t ) + A o ) ^ ^ ) « ^ · ( ^ J ^ ) * (*)) 

+ < W W ( t ) ( ° u * W , J > r o (4.40) 

where ^ U ^ (£) is a matrix whose all rows except the fcth one are zero since W w* has 
direct influence only to the fcth neuron. The indirect influence, however, is already 
accounted in the dynamic Jacobians. The fcth row consists of both the feedback and 
feedforward inputs to the Zth layer, i.e., (^yT(t ~~ 1)> ̂ _ 1 V T W ) · I*c a n ^ e easily 
conceived from Eq. (4.39) that for a feedfoward CVNN, the recurrent path vanishes 
and the dynamic forward path simply reduces to direct forward path. 

In the conjugate coordinate system, there are three additional Jacobian matri-
ces: ^J(m)w*(i), (^J(m) w J* (£), and (^J(m)w* J (t). Utilizing the dependency 
graph of Fig. 4.4 the complete Jacobian matrix in conjugate coordinate system can 
be written as 

/ O j ( m ) «>J ( m ) w . \ / Λ ( 1 ) ν ( ί ) W(t)\ 

l((,)J(-..i) ((,)J(-)wJV () " V(WW)· (A<ovW)V 
'tow o y (i)j(-)W, (i)j(-.)w: v . , . 

0 (OW-J ψJc.,w.)* («J(-)wJV(t_1) 

+ ( 1 - * - ) ^ 0 (O^J ((<'->Jc-,wi) (^J^ky)(t) 

+ Λ ({l)Vk ° W 
, ί > m (4.41) 

A more compact form of Eq. (4.41) is shown below: 

+ ( , ) jU,*f c(i) = A<„^(i) ^ ' ) ^ ' ) j ( m ) - f c ( i - 1) 

( Ι - ί ι , π , ) 0 ^ " " 1 ' ^ ) * » ^ ) + *i,mUt), l>m (4.42) 

where a n7de over a complex vector and a Jacobian refers to their conjugate coor-
dinate representations and over any other matrix, say A, denotes a block diagonal 
matrix composed of the original matrix and its conjugate, i.e., A and A*. 

In the online training mode, weights are updated at discrete time steps according 
to the negative of gradient defined in Eq. (4.17): 

<m>wfc(i + 1) = <m>wfc(i) +μ ( ( i »Jw W l ( i )e ( f ) + (<L>j£>w.(i)e(i))*) 
(4.43) 
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where L denotes the output layer and μ is the learning rate. This completes our 
CRTRL algorithm derivation in matrix-vector form where all computations are car-
ried out directly in the complex domain. 

4.5.2 Complex Extended Kaiman Filter Algorithm 

The Kaiman filter algorithm [13] provides an optimal solution to the linear Gaussian 
sequential state estimation problems. For nonlinear models such as neural networks, 
it is extended by linearizing the system locally at every update step of estimation, 
and hence it is called the extended Kaiman filter (EKF). The algorithm often shows 
better performance than the gradient based algorithms especially when processing 
signals with rich dynamics [9]. One of the key features of the EKF algorithm is the 
use of second-order statistics such as covariance matrix. However, in the complex 
domain, random variables can be proper or improper [21]. The improper case is 
more general, and it is viewed from the real-valued perspective. 

Let us consider a complex random vector z = x + jy. Its real coordinate repre-
sentation is r = (xT, yT)T and the covariance in the real coordinate system is given 
by 

P r r = E ( r r T ) 

, τ 

( " χ χ * x y \ (4.44) 

where E( · ) stands for the expectation operator. Under any coordinate transforma-
tion, say M, of a random variable, the covariance matrix transforms into M P M ^ . 
Therefore, in the conjugate coordinate system, covariance matrix takes the following 
form: 

P« = 
(i j i \ /Pxx p x y \ ( ι i \ 

\\ -ji) vp*y p y y ; \-ji a) 

= ((Pzz*r (p»)v (4,45) 
where 

"zz — ("xx "I" * yy) 3 ("xy "xyj 

Pzz* = (Ρχχ — Pyy) + 3 (Pxy + ^xy) 

Note that P^ has the following properties: 

1. It is Hermitian and positive semidefinite, thus a valid covariance matrix. 

2. It has the same structure of Jacobian matrix in the conjugate coordinate sys-
tem discussed in the previous section (see Eqs. (4.18) and (4.19)), i.e., block 
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diagonal matrices as well as the block off-diagonal matrices are conjugate to 
each other. As we shall see later, this is an essential property for being a valid 
covariance matrix during the update process of CEKF algorithm. 

A Similar covariance matrix is also described in [27] giving it the name augmented 
covariance matrix. However, we refer to it here as the covariance matrix in a conju-
gate coordinate system in order to adhere to the discussion in the previous sections, 
which allows a unified view of deriving learning algorithms for the CVNNs. 

In order to find the equations for CEKF algorithm, we need to express the recur-
rent CVNN as a discrete time dynamical system with a state-space representation. 
The weight parameters are considered to be a state vector, network output has the 
role of an observation vector, and the error vector represents the innovation. There-
fore, the dynamical behavior is given by 

wt = wt_i +u>*, (4.46) 
Yt = y ( w t , u t ) + i / t (4.47) 

where ujt and vt are complex Gaussian process noise and observation noise with 
the covariances, Qt and R^, respectively. We indicate time step as a subscript for 
notational convenience. For the CEKF, a nonlinear CVNN model is linearized locally 
around the current estimate of weight parameters and is represented by the Jacobian 
matrix, Jt which we evaluate by the CRTRL algorithm of previous section. We need 
another covariance matrix known as error covariance, P i ? associated with the state 
estimation. Now the update equations in conjugate coordinate system are as follows: 

Prediction: 

wt" = w t - i (4.48) 

Pt" - Pt_i + Qt (4.49) 

Update: 

Gt = Pt"Jf (jtPt-J? + Rt) _ 1 (4.50) 

wt = wt~ + Gt (dt - y t ) (4.51) 

P t = ( i - GtJf) ΡΓ + Qt (4.52) 
It should be noted that any matrix having the conjugate coordinate structure, a prop-
erty found in the Jacobian and covariance matrices, always preserves the same con-
jugate coordinate structure by its operation. Consequently, throughout the CEKF 
update equation, the covariance matrix Pt always remains valid and the weight vec-
tor in conjugate coordinate form retains its similar structure. 

4.5.3 Computer Simulations 

In this section, we provide computer simulation results of CRTRL and CEKF on a 
real-world wind prediction problem. It is very important to predict wind speed and 
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direction, especially for efficient wind power generation. Traditionally, wind model-
ing and forecasting are done by considering the speed and direction as independent 
variables. However, recent studies have shown a better modeling and forecasting of 
wind as a complex number field, noting the statistical dependence between the speed 
and direction [20]. 

We obtained real-world data from the Iowa (USA) Department of Transport at the 
location WASHINGTON (AWG). The data sampled for every 10 minutes was down-
loaded from the website1 during the period between February 1, 2011 and February 
28, 2011. Then the data were averaged over every 1-hour interval. In order to assess 
the performance of CRTRL and CEKF, a standard measure called prediction gain 
[12, 20] is evaluated. The prediction gain, Rp, defined as in [12] is given by 

Rp±10\og10(^\ [dB] (4.53) 

where σ\ and σ\ denote the mean squared value of input signal {x(k)} and predic-
tion error signal {e(fc)}, respectively. A smaller prediction error would result in a 
larger prediction gain. Therefore, a better predictor would have a larger value of Rp. 

A recurrent CVNN consisting one input unit, three fully recurrent hidden units, 
and one nonrecurrent output unit was trained with CRTRL and CEKF algorithms. 
The network weights and biases were initialized with random complex numbers 
taken uniformly within a small disc of radius 0.01. Figure 4.5 shows the actual 
and predicted wind speed by the CEKF and CRTRL. The activation function used 
here was split-type hyperbolic tangent function, f(u + jv) = tanh(w) + j tanh(v). 
It can be observed that the CEKF predicted relatively better than the CRTRL algo-
rithm. However, the CEKF requires additional computations due to Kaiman filtering 
update equations. 

Table 4.2 Prediction gain, Äp, for wind prediction problem. Averages taken 
over 20 independent runs. 

Activation function CRTRL CEKF 

split-tanh 11.19 12.27 
tanh 9.59 11.60 
tan 9.79 11.78 

arctan 9.71 11.52 

We also took simulation for three more activation functions which are holomor-
phic except at singular points. The functions are complex-valued version of hy-
perbolic tangent, circular tangent, and inverse circular tangent. They belong to the 
class of elementary transcendental functions [15]. Table 4.2 compares the predic-
tion performance in terms of prediction gain, Rp, for different activation functions. 
The results are an average of 20 independent runs. In both CRTRL and CEKF, the 

1 http://mesonet.agron.iastate.edu/request/awos/! min.php 
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One step ahead prediction by CEKF 

Figure 4.5 One step ahead prediction of wind speed: (a) CEKF algorithm and (b) 
CRTRL algorithm. 
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best prediction was obtained with the split-type hyperbolic tangent function. For 
all the activation functions, however, CEKF had better prediction performance than 
that of CRTRL. Furthermore, it can be observed that the performances of holomor-
phic functions were almost same within either of the CRTRL or CEKF algorithm. 
However, we noticed that some of the independent runs with holomorphic activation 
functions went out of bound due to the singular points. Those results were omitted 
in computing the averages in Table 4.2. Therefore, it seems that the boundedness is 
more important than the analyticity of complex activation functions in the multilayer 
recurrent CVNNs, unless we can ensure the avoidance of singularities. 

4.6 CONCLUSION 

In this chapter, first a brief discussion on Wirtinger calculus is presented. It is shown 
to be very useful in dealing with nonholomorphic functions that are obvious in the 
CVNNs. Most importantly, the well-known Cauchy-Riemann equations for holo-
morphic function becomes a special case of derivatives in the Wirtinger calculus. 
The derivative rules (e.g., product, quotient and chain rule) in the Wirtinger calculus 
comply with those in the ordinary calculus, thereby making it easier to use. 

We have derived several learning algorithms for complex CVNNs, including com-
plex gradient descent, complex-LM, CRTRL, and CEKF using the Wirtinger calcu-
lus, which enables performing all computations directly in the complex domain. The 
CRTRL and CEKF are particularly employed in the recurrent CVNNs. In the course 
of complex-LM derivation, we have encountered a general least squares problem in 
the complex domain. A solution with proof is presented and the result in utilized in 
the derivation. We point out that (i) the Wirtinger calculus, (ii) coordination trans-
formation between the conjugate coordinate and the real coordinate system, and (iii) 
the functional dependency graph of Jacobians greatly simplifies the extension of the 
learning algorithms in the RVNNs to the CVNN framework. The approach is a uni-
fied and systematic way for the formulation of derivative based learning algorithms. 

Computer simulation results are provided to verify the derivations. For feedfor-
ward CVNNs, it is shown that the complex-LM as well as its variant, the pseudo-
complex-LM, have much faster learning convergence. This resembles the conver-
gence behavior of LM algorithm in the RVNNs for which the LM is widely used 
in various RVNN applications. Therefore, as the application areas of CVNNs be-
come wider, the complex-LM is expected to be very useful in those applications. 
For the recurrent CVNNs, computer simulation results show that the performance 
of the CEKF algorithm is superior to that of the CRTRL algorithm on a real-world 
wind prediction problem. Furthermore, the split-type hyperbolic tangent, a nonholo-
morphic activation function, seems to be a better choice than several holomorphic 
functions in the multilayer recurrent CVNNs. 
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Appendix 

List of Notations 

Layer number indicator 
Total number of layers 
Discrete time step 

Hermitian transpose operator 
Transpose operator without conjugation 
Outputs of Ith layer neurons 
net-inputs of Ith layer neurons 
Inputs to the network 
Outputs of the network 
Incident weight connections to kth neuron of Ith layer 
Biases to Ith layer neurons 
Incident weight connection matrix to Ith layer neurons 

Real coordinates representation of complex vector z = x + iy 

Conjugate coordinates representation of complex vector z 

Coordinate transformation matrix for real to conjugate coordinate transformation 
Jacobian matrix of output y with respect to (w.r.t.) z 
Jacobian matrix of output y w.r.t. z 
Auto covariance of random vector x 
Cross covariance of random vectors x and y 
Auto covariance of z in conjugate coordinate system 
Error covariance matrix of state estimation in conjugate coordinate system 
Process noise covariance matrix in conjugate coordinate system 
Measurement noise covariance matrix in conjugate coordinate system 
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This chapter presents associative memories by Hopfield neural networks based 
on quaternion. Quaternion is a four-dimensional hypercomplex number system, 
which has been extensively employed in the fields of robotics, control of satel-
lites, computer graphics, and so on. One of the benefits by quaternions is that 
affine transformations in three-dimensional space can be compactly described; 
thus neural networks based on quaternion are expected to process four or three-
dimensional data efficiently. 

There are several types of discrete-time driven quaternionic Hopfield neural net-
works, such as discrete state, continuous state, and multi-valued state for the 
representation of neuronal state. The stability of each network is theoretically 
proven by showing that the energy decreases monotonically with respect to the 
change in neuron states. Several schemes for embedding patterns onto the net-
work are also presented. In addition to the quaternionic version of the Heb-
bian learning scheme, we describe (a) the Projection rule for embedding non-
orthogonal patterns and (b) Local iterative learning, which is an implementation 
of the Projection rule. 
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5.1 INTRODUCTION 

Processing multi-dimensional data is an important problem for neural networks. 
Typically, a single neuron can take only one real value as its input; thus a net-
work should be configured so that several neurons are used for accepting multi-
dimensional data. This type of configuration is sometimes unnatural in applications 
of neural networks to engineering problem, such as processing of acoustic signals 
and coordinates in the plane. A series of acoustic signals has its amplitude and fre-
quency that should not be operated separately, and a coordinate in two dimensional 
space has two parameters (x,y), only either of which is less significant for repre-
senting a coordinate. Thus, complex number systems have been utilized to represent 
two-dimensional data elements as a single entity. Application of complex numbers 
to neural networks have been extensively investigated [11, 12, 35]. 

Complex values can treat two-dimensional data elements as a single entity. But 
what about data with more than two elements? Obviously, this problem can be solved 
by applying several real-valued or complex-valued neurons. However, following the 
same reasoning as in the case of complex numbers, it would be useful to introduce a 
number system with higher dimensions, a so-called hypercomplex number system. 

Quaternion is a four-dimensional hypercomplex number system introduced by 
Hamilton [8,9]. This number system has been extensively employed in several fields, 
such as modern mathematics, physics, control of satellites, computer graphics, and so 
on [32,24,13]. One of the benefits provided by quaternions is that affine transforma-
tions of geometric figures in three-dimensional spaces, especially spatial rotations, 
can be represented compactly and efficiently. Applying quaternions to the field of 
neural networks has been recently explored in an effort to naturally represent high-
dimensional information, such as color and three-dimensional body coordinates, by 
a quaternionic neuron, rather than by complex-valued or real-valued neurons. 

In this respect, there has been a growing number of studies concerning the use of 
quaternions in neural networks. Multilayer perceptron (MLP) models have been de-
veloped [33, 2, 3, 30]. The use of quaternion in MLP models has been demonstrated 
in several applications such as control problems [2], color image compression [30], 
color night vision [25,14], and prediction of chaos circuits and winds [29, 38]. Other 
types of network models has also been explored, such as the computational ability of 
a single quaternionic neuron [34] and the existence condition of an energy function 
in continuous-time and continuous-state recurrent networks [39]. 

In this chapter, we present and explore higher-dimensional associative memories 
based on quaternionic Hopfield neural networks, based on the Refs. [17, 19, 18, 
20, 15, 16]. There are several types of discrete-time driven models, such as discrete 
state, continuous state, and multi-valued state used to represent the neuronal state. 
For these models, stability conditions are theoretically proven by showing that the 
energy with respect to the network state decreases monotonically when the state of a 
neuron changes. 

Several schemes for embedding patterns in a network are also considered. In 
addition to the quaternionic equivalent of the traditional Hebbian learning scheme, 
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the Projection rule for embedding non-orthogonal patterns and the Local iterative 
learning rule, an implementation of the Projection rule, are also introduced. 

5.2 QUATERNIONIC ALGEBRA 

5.2.1 Definition of Quaternion 

Quaternions form a class of hypercomplex numbers consisting of a real number and 
three imaginary numbers -i,j, and fc. Formally, a quaternion number is defined as 
a vector x in a four-dimensional vector space, 

x = x^e) + x{i)i + xij) j + x{k)k (5.1) 

where x^e\ x^\x^\ and x^ are real numbers. The division ring of quaternions, 
if, constitutes the four-dimensional vector space over the real numbers with bases 
1, i, j , and fc. Equation (5.1) can also be written using 4-tuple or 2-tuple notation as 

x = (x^, x®, XW, x<*>) = (x<e>, χ) (5.2) 

where χ = (χ^, χ^, χ^). In this representation, χ^ is the scalar part of x, and x 
forms the vector part. The quaternion conjugate is defined as 

#* = (x(
e\-x) = x^ - xWi - xU) j - x{k)k (5.3) 

Quaternion bases satisfy the following identities, 

t2=j2=fc2=ijfc = - l , (5.4) 
ij = —ji = fc, jk — —kj = i, fci = -ifc = j (5.5) 

known as the Hamilton rule. From these rules, it follows immediately that multipli-
cation of quaternions is not commutative. 

Next, we define the operations between quaternions p = (p^, p) = (p^, pW, 
pü),p(k)) &ndq = (q^e\q) = (q(e\qM,qü\qW). The addition and subtraction 
of quaternions are defined in a similar manner as for complex-valued numbers or 
vectors, i.e., 

p±q = {p^±q^\p±q) (5.6) 
= (p(e) ±g( e ) , p{i) ±q{i), ρ ω ±g<>>, p{k) ±q(k)) (5.7) 

The product of p and q is determined by Eq. (5.5) as 

pq = (pWqW -p-q, p{e)q + q{e)p + px q) (5.8) 

where p- <f and p x <f denote the dot and cross products, respectively, between three-
dimensional vectors p and q. The conjugate of the product is given as 

(PQ)· = <?V (5-9) 
The quaternion norm of x, denoted by |a?|, is defined as 
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5.2.2 Phase Representation of Quaternion 

A quaternion x represented in Cartesian form can be transformed into polar form. 
Among the possible ways to define the polar representation of a quaternion, we adopt 
the representation defined in Refs. [4, 5]. In this polar form representation, the 
parameters required for expressing x are the amplitude |a?|, and three phase angles 
-π<φ<π, -π/2<θ<π/2, and —π/4<^<π/4. A quaternion x in polar form can 
be represented as 

x = \x\ei*ek*e?e (5.11) 
where 

ε1φ 

eJ* 

ekn 

= 

— 

-

cos φ + i sin </?, 

cos# + j s inö , 

cos ψ + fc sin ψ 

For details about representing these phase angles in the Cartesian system, refer to 
Chapter 2 of Ref. [4]. 

5.2.3 Quaternionic Analyticity 

It is important to introduce an analytic function (or differentiable function) to serve 
as the activation function in the neural network. This section describes the required 
analyticity of the function in the quaternionic domain, in order to construct activation 
functions for quaternionic neural networks. 

The condition for differentiability of the quaternionic function / is given by 

0/(«) _ _ β _ .am _ _k?m 2 
dxM ~ ftcW ~ 3 dxli) ~ dxW K } 

The analytic condition for the quaternionic function, called the Cauchy-Riemann-
Fueter (CRF) equation, yields: 

df(x) . .dfw . .em_ . hdf(x)_ _ 
dx^) + ftr(0 + J dxU) ^"dxW ~ P ^ 

This is an extension of the Cauchy-Riemann (CR) equations defined for the complex 
domain. However, only linear functions and constants satisfy the CRF equation [27, 
28, 38]. 

An alternative approach to assure analyticity in the quaternionic domain has been 
explored [27, 28, 37]. This approach is called local analyticity and is distinguished 
from the standard analyticity, i.e., global analyticity. Below, we briefly summarize 
the results on local analyticity presented in Ref. [37]. 

A quaternion x can be alternatively represented as: 
x = X(e)+Uxry (5.14) 

Φ. x(i)
2 + XU)2 + x(k)2, (5.15) 

ux = (5.16) 
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From the definition in Eq. (5.16), we deduce that u2
x — — 1. Thus, a quaternion x can 

be treated as a complex value in the plane spanned by ux, and it can be represented 
in the local coordinate system by ux. 

A quaternion dx = (dx^, dx^, dx^, dx^) can be decomposed by using 

dx = dx\\ + dx± (5.17) 

where 
dx\\ = - (dx — uxdxux), dx± = — (dx + uxdxux) 

Then, the following relations hold: 

dx\\x — xdx^ dx±x = x*dx± 

F(x + dx) can be expanded using the abovementioned representations as 

F(x + dx) = F(x) + F ( 1 ) + F ( 2 ) + 0(dx3) (5.18) 

where 

^ m w/ x , F(x) ~F(X*) , 
F*1' = F'(s)<fa|| + ^ _ ^ }

 ; d * x , 

F<2> = )-F"(x)dxl + F{X) " F(f) ((faxda., - d a d a ± ) 
2 " (a; - a?*) 

F ' (x) ^ J F'(x*) Λ J H αίΡαΧχ H αχχαχιι 
x — x* x* — x 

When we set dx± = 0, i.e., dec + uxdxux = 0, which results in u^dec = dxux. 
This leads to ux x dx = 0, because u x is a quaternion without a real part. Thus, ux 

and dx are parallel to each other. Then, dx — 6ux can be obtained. From Eq. (5.15), 
it follows that 

rdr = x^dx{i) + x{j)dxU) + x{k)dx{k) 

= x - dx 

= uxr-ux6 

— r6ux - ux 

— rö 

Hence, dx is represented as dx = dx\\ — dx^ + drux . By introducing the local 
derivative operators 

dx\\ 2 
a ifd d 

dxt 2 \dx(e) dx(r) 
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where 
9 x « 9 χϋ) 9 x^ 9 

dxW r öxW r 9a?ü) r ftrW 
with the properties 

dx _ dx* _ 9a?* _ 9a; _ 
9a; 11 dxt dx\\ dxl 

the local derivative of F(x) is written as 

öarll 
and the local analytic condition for the function F(x) is given by 

dF(x) n . dF dF 

-dxy = ° i e ' toW+w-toöT = ° 
in the corresponding local complex plane. This result corresponds to the one pre-
sented in Ref. [28], where dx± = 0 always holds. 

Moreover, if F is a function with the two arguments, x and a;*, it becomes 

F(x + dx,x* +dx*) 

i n , *Λ Ö F J Ö F J * 1 ( 9 2 F J 2 9 f d F \ J J # 

= F ( « , x ) + — dx|| + ^ dx,, + - | ^ dx,, + - ^ ( ^ J dx„dz„ 9x,i » 9a;i « 2 l 9a;ü 

+ A ( ^ ) & 5 < f a i i + £ f < f a v + 0 ( < f a j | ) (5·19) 

with a; and a;* being independent each other. As a result, complex-valued functions 
can be used as activation functions in quaternionic domains. 

5.3 STABILITY OF QUATERNIONIC NEURAL NETWORKS 

We present formalisms for neural networks whose variables are encoded by quater-
nion numbers. We start with the quaternion-valued neuron model with bipolar states. 
Next, this model is extended to include continuous states. Another type of neuron 
model, called multistate neuron model, is also presented. For each neuron model 
presented, networks are constructed and their stability properties are shown. 

5.3.1 Network with Bipolar State Neurons 

Neuron Model. The action potential and output state of neuron p are defined as 
follows: 

Sp = Y^WpqXq - 0 p , (5.20) 
q 

VP = f(sP) (5.21) 
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where as, wpq, and Θ are the input to the neuron, connection weight from neuron q 
to neuron p, and threshold, respectively [17, 19]. 

The activation function / determines the output of the neuron. For bipolar state 
neurons, we define this function as 

/ ( e ) = /(«)(*(«>) + / « ( « « ) * + f^(s^)j + /<*>(*<*>)* (5.22) 

and use the same signum function for each component of the quaternionic function: 

/ Λ f\ f\ iu\ f 1 fors > 0 
/ W (8) = / « (s) = /<*> (a) = f{k) (s) = { Λ r " (5.23) 

f 1 for a > 0 

~ \ - 1 for 5 < 0 

Energy Function. The neurons are fully connected as in the case of real-valued 
Hopfield neural networks. We introduce the energy function for a network with N 
neurons: 

1 TV N I N \ 
E = - 2 Σ Σ *>*>Ä + fie I Σ θ ^ ) ( 5 · 2 4 ) 

p=l g=l \ p = l / 

When wpq = w*p, E always becomes a real-valued function. This can be checked 
by showing E* = E as follows: 

1 N N / N > 

p=l q=l \p=l ) 

1 N N / N > 

= " 2 Σ Σ XlWQPXP + ß e ( Σ ΘΡ^ 
/>=1 g = l \ p = l > 

This network allows self-connections whose values take real numbers, wpp = wpp = 
(wPp , 0), and are set to non-negative values, wpp > 0. 

Network Stability. The stability of the network can be proved by showing that the 
energy E of the network never increases with time when there is a change in the 
state of a neuron, as in the case of real-valued Hopfield networks. Let Er(t) be the 
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contribution of a neuron r to energy E at time t in the network, given as 

Er(t) = -^) [Y2XP^WPr) Xr^ ^ Χ*^) [Y^WrqXq(t)\ ~ X*r{t)wrrXr(t) \ 

+Re(e*rxr(t)) 

= ~ 9 I w2WrVXP^ ) Xr(t)+Xr{t) l^2wrqXq(t)\ - X*r(t)wrrXr{t) 

+ - (e*rxr + x*r0r) 

= —z I i^2wrpxp(t) - 0 r J xr(t) + x*r(t) I Y^wrqxq(t) - 0 r j 

- x*(t)wrrxr(t) > 

By considering the relation 

x*r(t)wrrxr{t) = wff -x*(t)xr(t) 

= w$ ^xr{t)\2 = ±w$ 

and the action potential of the neuron r (Eq. (5.20)), 

Er(t) = -^{s^XrW+X^SrW-Awtf} 

= -Re {x*r(t)sr{t)} + 2w$ (5.25) 

is obtained. Now, suppose that the state of neuron r is updated at time (t + 1) 
according to Eq. (5.20). Its contribution to E, Er(t + 1), becomes 

Er(t + 1) = - i t e {a£(i + l )e r ( t + 1)} + 2w$ 

= - # e | χ ; ( ί Η-1) (er(f) - wrr (xr(t) - xr(t + 1))) } + 2 w # 

= - # e |a?;(i + l )e r ( i )} + wtf · ü e jx*(* + 1) (xr(t) - xr(t + 1))} 

The difference between the energies at time t + 1 and f, denoted by Δ-Ε, becomes 

Δ £ = Er(t + 1) - Er(t) 

= - ( i te | x ; ( i + l )s r ( t ) J - i?e | ^ ( t ) s r ( t ) | J 

+wleJ . i?e {χ*(* + 1) (a:r(t) - x r ( i + 1))} (5.26) 
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The activation function f(s) can be represented by using Eqs. (5.22) and (5.23) as 

s(e) s(i) _ s(i) _ s(k) 

/(*) = ττττπ + ΪΤΤΤΤΤ* + τζπτ^ + |sW| |e(0| \8νψ |«(*)| 

The first term in Eq. (5.26) is then reduced to 

Re{x*r(t + l)sr(t)\ 

= Re{(f(sr(t)))*sr(t)} 

\Wre)(t)\ \sii}(t)\ \siJ)(t)\J \4k)(t)\ ) r W, 
Σ \s. 

(a) 

a={e,i,j,k} 

The state of neurons takes bipolar values, i.e., a;{(e)>(*)>(.7)>(*)} e {1, - 1 } , the fol-
lowing inequality holds: 

Σ Ι4α)1 > Σ 4a)(t)-4a)(t) 
a={e,i,j,k} a={eyi,j,k} 

= Re{x*r(t)sr(t)} (5.27) 

By considering all updated cases o f ( ^ a ) ( t ) , ^ a ) ( t + l ) ) = ( ± l , ± l ) , ( ± l , T l ) , 

Re {x*r(t + 1) (xr(t) -xr{t + 1)) | 

= Σ xl°Ht + i)-(xla)(t)-4aHt + i)) 
a={e,i,j,k} 

< 0 (5.28) 

holds. From wfr > 0 and the relations of Eqs. (5.27) and (5.28), it is shown that the 
energy never increases, i.e., AE < 0. 

5.3.2 Network with Continuous State Neurons 

The neuron model with bipolar state is extended to include continuous state, by in-
troducing other types of activation functions [18]. This section describes the analysis 
of two types of activation functions. 

Neuron Model and Activation Functions. The action potential and output state of 
neuron are determined by Eqs. (5.20) and (5.21). 

Two types of quaternionic functions for / are presented in this section. The first 
function, / 1 ? is designed so that each quaternionic component is updated indepen-
dently, and is defined as 

f^a) = / i e ) ( S
( e ) ) + A(i)(e(i ))i + / ι ω ( * ϋ ) ) ί + nk)(*(k))k (5-29) 
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where each real-valued function /^ (a = {e, i, j , k}) is set to an identical function: 

/i(e) («) = /i( i ) («) = Λϋ) (*) = A(fc) (*) = tanh(S/i,) (5.30) 

where η is a positive constant and called steepness parameter. This is a straightfor-
ward extension of the conventional updating scheme for real-valued neurons, and it 
is often used in the quaternionic MLP models [33, 2, 30]. 

The second quaternionic function f2 is an extension of the activation function 
proposed in Ref. [7] for the complex domain to the quaternionic domain, and is 
defined as 

/ , ( · ) = ^ (5.3D 

where a is a real-valued constant. 

Energy Function. For a network with N neurons, we introduce the energy function 

- N N 1 N 

E® = ~2 Σ Σ ^ ^ ^ ο + 2 Σ (W)+«**;(*)) 
p = l q=l p=l 

N 

+ Y^G(xp(t)) (5.32) 
p=l 

where G(x(t)) is a scalar function that satisfies 

^.=g^(x(e),x(i),xU)^)) (Q = {e.i , ; ,*}) (5.33) 

g(x) is the inverse function of f(x) and is defined as 

g(x) = f-\x) 

= gW(xW,xli\xU),xlk))+gW(xl<),x(i),xU),xV'))i 

+gW (x(e), «W, *«>, ar<*>) j + 5
(fe) (x(e), x( i ) , x( j ) , *<*> )fe 

(5.34) 

This definition and Eq. (5.20) lead to the following relation: 

*P(t) = f~Hxp(t + 1)) = g(xP(t + 1)) (5.35) 

When we impose wpq = w*p as the constraint of connection weights, E = E* 
always holds, thus E is a real-valued function. This network allows self-connections 

•Jpp - νυρρ 
= (Wpp\0). 

Stability Analysis. We also show that the energy E of this network never increases 
with time when the state of a neuron changes, as is the case of the neuron model with 

where G(x(t)) is a scalar function that satisfies 
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bipolar state. Let Er(i) be the contribution of a neuron r to energy E at time t. Then 
Er(t) is given as 

Er(t) = 2) (S^W^PrjMO+^W i^^rqXq(t)\ 

- X*r(t)wrrXr(t) \ + - (e*Xr(t) + X*0rW) + G (MO) 

= ~2 \[ Y^WrpXp(t) -0r j Xr(t) 

+G (av(f)) 
By taking into consideration Eq. (5.20), we obtain 

Er(t) = - - {S*r(t)xr(t) + X*(t)8r(t) - X*(t)wrrXr(t)} + G (Xr(t)) 

= -Re {x*r(t)8r(t)} + ^ # « ; : ( ί ) « Γ ( ί ) + G (χΓ(ί)) (5.36) 

Suppose that only the state of neuron r is asynchronously updated at time (t + 1) 
according to Eq. (5.20). Then, its contribution to energy E becomes 

Er(t + 1) = -Re {xl(t + l)ar(t + 1)} + ^w^x^t + l)xr(t + 1) 

+G(M* + 1)) 
= - # e | » ; ( ί + 1) (βΓ(ί) + κ ; Γ Γ Δχ Γ ) | 

+ lw$x;(t + l )« r ( i + 1) + G (a?r(* + 1)) 

where Axr = xr (t + 1) - x r (£). The difference of the energy between time t + 1 
and έ, Δ.Ε, becomes 

Δ £ = £ r (* + l ) - £ r ( £ ) 

= -ife (A»;«r(t)) -wj^-iie {#;:(*+ ΐ)Δ#Γ} 

+ ^ β > ; ( * + i)xr(t +1) - ! « # * ; : (t)a.r (*) 
+G(a;r(t + 1))-G(a5r(t)) 

= - i t e (Δχ;« Ρ ( ί ) ) - - ^ Δ Χ ^ Δ Χ Γ -l· G(xr(t + 1)) - G(xr(*)) 

= -Re ( Δ Ζ > Γ ( * ) ) - ^ e
r

) | A a : r | 2 + G ( a i r ( i 4 - l ) ) - G ( x r ( i ) ) 

(5.37) 
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G(xr(t)) can be expanded around xr(t + 1) by using Taylor's theorem as 

dG 
G(xr(t)) = G(xr(t + l ) ) - 5 > 4 e ) — π 

dx (a) x(<*)=xia)(t+l) 

+ V Αχ{θί)Αχ{β) — 
χΜ=φΜ 

where φ^ exists between x)?\i) and #f* \ t + 1). Hence, the difference of the 
energy can be written as 

AE = -Re^Ax^rit^-^w^lAxr]2 

&r («) a>(«)=a?<.e)(t+l) 

-ΣΑχ^Αχψ) ^G
 {β) 

Q, Λ ΟΧγ ΟΧγ 
^=φ^ xK~'=4 

Considering Eqs. (5.33) and (5.35), AE is reduced to 

AE = - 1»«|Δ*Ρ|» - ^ Δ ^ Δ χ ^ ) ^ 
α,/3 

dgW 
dx^ χ(«)=φ(<*), (5.38) 

First let us consider the case that function f1 (Eq. (5.29)) being used as an acti-
vation function of neurons. The inverse function of / 2 , denoted by gl9 is calculated 
as 

9l(x) = 0ieVe))+»iV°)< + A ^ 
( a ) / N , i - l V , 1 + X 

2 I — x 

Then, Eq. (5.38) becomes 

AE = * W | A * r | » - E ( A * W ^ 
dx(<*) 

+ <^a))(l-</>(")) 

because dg^/dx^ = 0 for α φ β and dg^/dx^ = r?/(l + z(a))(l - &(")). 
Furthermore, due to 

min 
»7 

(1+ </>("))(!-0(")) 
= r/ (at <^a> = 0) 



STABILITY OF QUATERNIONIC NEURAL NETWORKS 1 1 5 

the following inequality holds: 

AE < -1«>#|Δ*Ρ|2-»,]Γ(Δ40>)2 

a 

= "(^+^ΐΔ^Ι2 (5.39) 

In the case of f1 as an activation function, the energy never increases if Wrr > —2η. 
Next, let us consider the case of using / 2 (Eq. (5.31)) as the activation function. 

In this case, the inverse of / 2 is 

x 
»2 (as) = 

a — \x\ 

= 9{2] (x) + 9? {x)i + 9{2j) (x)3 + 9{2k) (x)k 

where 

(a) * ( e ) 

»Γ'(«) = 
a — \x\ 

The differential of gf' (x) (/? — {e, i,j, k}) with respect to x^ is calculated as 

d9^ 
dxM = < 

χ(<*)χ(β) 

(a-\x\r\x\ 
2 

(α = β) 
(a-\x\r\x\ 

Thus, the difference of the energy (Eq. (5.38)) becomes 

AE = -lwieJ\Axr\
2 - Y(Ax^)2 %-.— (5.40) 

where — a < φ^ < a. The energy never increases under the condition a > 0, when 
the state of the neuron changes. 

5.3.3 Network with Continuous State Neurons Having Local Analytic 

Activation Function 

In the previous section, we presented two types of activation functions. These func-
tions, however, are not analytic functions, whereas in real-valued neurons analytic 
and bounded functions are often used. This section presents a quatemionic neuron 
with a local analytic function as an activation function [16]. 

Neuron Model and Activation Function. The action potential is determined by 
Eq. (5.20). We adopt the quatemionic function tanh as activation function, which 
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has been explored for the complex-valued neural networks [22]. The output of the 
neuron is 

x(t + l) = f(s{t)) = tanh(e(*)) (5.41) 

and f(s) is locally analytic (dx± = 0) satisfying 

&-° OS\\ 

Hereinafter the symbol || will be omitted. 

Energy Function. The energy function of a network with N neurons is defined as 
1 N N 1 N 

p = l q=l p=l 

+RenTG(xp(t),x;(t))j (5.42) 

where G(x(t), x*(t)) is a function that satisfies 

rxp(t) 

/o 
G(xp(t),x*p(t)) = / g*(v)dv (5.43) 

Jo 

Here, g(v) is the inverse function of / ( v ) , i-e. g{v) = f 1(v), and thus, using Eq. 
(5.41), the following relation holds: 

sP(t) = f~\xP{t + 1)) = 9(xP(t + 1)) (5.44) 

When tanh is used as the activation function, i.e., f(s) = tanh(s), the inverse 
function g(x) is 

g(x) = \ l n \ ^ (5.45) 

Note that this function satisfies g*(x) = g(x*)-
It is always satisfied that E should be a real-valued function (E = E*)9 by the 

condition imposed on the connection weight, wpq = w*p. This network allows 
self-connections whose values take real numbers, wpp = w*pp = (wpp , 0). 

Stability Analysis. The difference of the energy between time t + 1 and t, ΔΕ, can 
be deduced in a similar way to the one presented in the previous section, i.e., 

AE = Er(t + 1) - Er(t) 

= -Re[AxUr{t))-\w^\Axr\2 

+Re(G(xr{t + l),x*r(t + 1))) - Re(G(xr{t),x*r(t))) (5.46) 
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G(xr{t),x*r(t)) can be expanded around (xr(t + l),x*(£ + 1)) as 

G(xr(t),x;(t)) 

= G(xr(t + 1) - ΔαΓ, x*(£ + 1) - Δχ^) 

= G(a5r(t + l),x*r(t + 1)) + ^ ( - Δ Χ Γ ) + ^ ( - Δ < ) 

Μ^-**') +^ fej (-Δ^)(-Δ^ 
9 fdG\. Λ . , , Λ , ö2G , . , . 2Ί 

From Eqs. (5.44) and (5.45), the derivatives of G are 

= g*(x{t + l)) 
dx x=xr(t+i) 

= g(x;(t + l)) 

(5.47) 

^ = 0 A 

dx* dx) ~ dx*' 

d2G 

dx*2 

d2G ds 

= 0, 

= 0 
dx2 dx 

By substituting Eq. (5.47) into Eq. (5.46) with the above derivatives, we obtain 

AE = —wtflAxrl2-Re (Ax*rsr(t)}+Re (s*r(t)Axr) 

-Re{\i%AXrAx' 
The second and third terms of this equation vanishes, and when the relation Ax = 
dx/ds · As, where Δ (t) — 8r(t — 1), is considered, AE becomes: 

AE = -^«|ΔχΓ|» - \Re(^) \^r\
2 (5.48) 

The term dx/ds is calculated with sr — Sr ^ ~l~ TSUS as follows: 

dx 1 f dx dx 

ds 2V<9s(e) ds(r) 
us) (5.49) 

By considering the condition of the CR equations due to the local analyticity, the 
following relation holds: 

dx 1 f dx dx 
+ -TT-TTU, 2V<9s(e) <9s(r) 
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which leads to 
dx dx 

Us 
ds(e) ds(r) 

Substituting this equation to Eq. (5.49), we obtain 

dx _ dx 
~ds ~ ds(e) 

When x — x^ + x^H + x^j + x^k, the real part ofdx/ds becomes 

*(£) - *G&) 
'dx^ . dx& . . dxW . . dx^ 

dx^ 

~ R e \ Q8(e) + ds(e)l + Qs{e) 3 + Qs{e) k 

Finally, AE is reduced to 

Δ £ = - - ^ ) | Δ χ Γ | 2 - ^ | Δ β Γ | 2 (5.50) 

The tanh function with the argument s can be described by 

sinh(2s(e>) sinh(2rg) 
tann(s) = — ( , ——- + us cosh(2s(e)) + cos(2rs) *cosh(2s(e)) + cos(2rs) 

then 

dx^ d ( sinh(2s(e)) \ _ 1 + cosh(2a<e))cos(2re) 
ds(e"> dsW V c o s h ( 2 5 ( e ) ) + cos(2rs)J (cosh(2s(e)) + cos(2rs))2 

is obtained. The first and second terms of Eq. (5.50) take non-positive values un-
der the conditions of wfr > 0 and — π/4 < rs < 
conditions are the stability conditions, i.e. AE < 0. 
der the conditions of wfr > 0 and — π/4 < rs < π/4, respectively. Thus these 

5.3.4 Network with Multistate Neurons 

This section describes another type of neuron models, called the phaser or multistate 
model. This type of neuron models has been extensively explored in the field of 
complex-valued neural networks [1, 10, 21, 31]. In these models, the phases and 
amplitudes of states in complex-valued neurons are utilized. Quaternionic multistate 
neuron model is an extension of the complex-valued ones [20], which also utilizes 
the phase and amplitude of a quaternion as its state. 
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Neuron Model. In the multistate neuron, the state of a neuron p is represented in 
polar form with \up\ = 1, i.e., 

ei<PpekipPejep 

(5.51) 

where q^ - ei(f, qM = efe^, and qW = e^e. The action potential of neuron p at 
time t, hp(t), is defined as 

Q 

Q 

= E t " w i ( , , ) ( i ) « w ( i ) i ( ' ' ) ( i ) (5·52) 

where ΐϋΡ9 € i f denotes the connection weight from neuron q to neuron p. 
As an activation function of a neuron, we employ the complex-valued multistate 

signum function introduced in [21], and extend it to the quatemionic domain. The 
state of neuron p at (t + 1) is defined as 

where 

up(t + 1) = qsign(hp(t)) (5.53) 

qsign(u) = csigriA(q^)csignB(q^)csignc(q^) (5.54) 

The update is conducted for each of components in u, i.e., q^\ q^\ and q(e\ 
Function csigriA{ ·) used for updating q^\ is defined as 

( 6ί(-π+0'φ0) 

csignA(q{(p)) = 

for — π < a r g q ^ < - π + φ0 

οΐφο 

for - π + <Λ) < argg^) < - π + 2<ρ0 

for - π + 2<̂ ο < axgg(v?) < - π + 3(̂ ο 
_e«2<po 

(5.55) 

_β2(Λ-1)^ο 

for -π + (Α- ί)φ0 < axgqM < - π + Αφ0 

where φ0 defines a quantized unit φο=2π/Α. Thus the state of a neuron takes the 
quantized levels of A. The quatemionic signum functions csignß( ·) for qW and 
csignci') f° r Q^ c a n b e defined in a similar way, with considering the domains of 
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φ and Θ. They are defined as 

csignßiq^) = 

efc(-f+0-^o) 
for - f < a r g ^ ) <- f+</>o 

efe(-f+(B-l)-^o) 
t for - f + (B - 1)ψ0 < a r g ^ ) < - f + Βψ0 

and 

(5.56) 

csignc ( , « ) EE 

for - f < a r g g W < - f + 0O 

ei ( - i+(c- i ) -ö 0 ) 
for - f + (C - l)öo < arggW < - f + C0O 

(5.57) 

where B and C are integers, and ψο = π/(2Β) and 0O = π / C determine quantized 
levels. 

Neurons are updated in an asynchronous manner with the condition that the com-
ponents q^\ q^\ and q^ of a neuron are never updated simultaneously. The 
mechanism for updating the state of the r-th neuron in the network, at time t, is 
defined as 

[ q^\t)q^\t)q^\t) = up(t) for p^r 

up(t + 1) = { q^\t)q^\t + l)«('p>(f + 1) 
or for p = r 

(5.58) 

Energy Function and Stability Analysis. The stability of the network can be in-
vestigated by introducing the energy function and by showing that the energy never 
increases when the state of the network changes, as shown in the previous sections. 
The energy function of a network consisting of N neurons is defined as 

N N 

E{t) = -\Y^Y^ul{t)wpquq{t) (5.59) 
p = l g = l 

When the connection weight wpq = w*p is satisfied, E becomes a real-valued func-
tion (E = E*). This network allows self-connections whose values take real num-
bers, wpp = w* = (wpp , 0), and are set to non-negative values, wpp > 0. 
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Let Er(t) be the contribution of a given neuron r to energy E at time t. Thus, 
Er(t) is written as 

-u*(t)wrrur(t) > 

2 j ( Σ WrpUp(t) j Ur(t) + K(t) ( ^ WrqUq(t) j 

- u*(t)wrrur(t) > (5.60) 

By considering the relation in Eq. (5.52), along with 

u*r(t)wrrur{t) = wleJ -u*(t)ur(t) 

= «;W.|t*r(0|2=ti;W 
we obtain 

Er(t) = -l{h;{t)Ur{t)+u;(t)hr(t)-wg!} 

= -Re{u;{t)hr{t)} + ±w$ (5.61) 

Suppose that the state of the neuron r is updated at time (t + 1) according to Eq. 
(5.52). Its contribution to E changes to 

Er(t + 1) = -Re{u*r(t + l)hr(t + l)} + ̂ wleJ 

= -Relu*{t+1) 

(fcr(t) - Wrr (Ur(t) - Ur(t + 1))) } + -ItW 

= -Äe |« ; ( i + l)hr(i)J 

+wieJ ■ Re[u*r{t + 1) (t*P(t) - ur(t + 1))} + \w£ 

The difference between energies at time t + 1 and t, AE, becomes 

AE = Er(t + 1) - Er(t) 

= - (ite{ur(t + l)fcr(t)} - Äe{«;(t)hP(t)} ) 

+wieJ ■ Re{u*r(t + 1) (ur{t) - ur(t + 1))} 

= -{X1-X2)+w$-(X3-l) (5.62) 
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where 

Xi = Re{u*(t + l)hr(t)} , 

X2 = Re{u*r(t)hr(t)}, 
X3 = Re{u*r(t + l)ur(t)} 

In order to decompose Xi, X2, and X3, we first investigate the relation between 
ur and hr. The state of neuron r at time (t + 1) is described as 

= eia^q^\t)ekHoq^\t)e^ce°q{er){t) (5.63) 

where a, b, and c are integers, and a = 0 or c = 0, due to the scheme of updating the 
neuron state (Eq. (5.58)). Let Δφ, Δψ, and ΔΘ be the phase shifts of components 
φ9 ψ> and 0, respectively, the action potential of neuron r at time t can be calculated 
from the neuron state at time (t + 1) as 

hr(t) = \hr(t)\e
iA*q^)(t + l ) e

f c A V * p ) ( * + l)e?*BqV"\t + 1) 

= |Μί)|β*<α*ο+Δ*ν^^ 
(5.64) 

Here we introduce the assumption that the phase shifts are not large enough to sur-
pass a sector of a unit circle, i.e., \Δφ\ < φ0, \Δψ\ < ψο, and |Δ0| < #ο· 

Let us consider to extract the term X3: 

u ; ( i + l )u r ( i ) = (e i e v o g (^) ( t )e f c 6 ^e^>( i )e^ c e o g(^) ( i ) )* 

g^)(i)flfWr)(i)9(er )(*) 
_ e - i ( c Ö 0 + Ö r ) e - f c 6 i / ; o e - f c ^ r e - W o e f e ^ e J ^ 

By the relation e-ki>ei<Pekip _ cos<^ + e~*2^isiny>, the right-hand side of this 
equation can be decomposed as 

- c o s ( - a ^ o ) e ^ ^ 0 + ^ ) e - f c 6 ^ e ^ 
+ e - i ( c ^ ^ ) e - f c ^ 0 ^ ) e - i ( _ i s i n ( _ ^ o ) ) 

Thus Xs becomes 

X3 = cos(cöo) cos(bipo) cos(a^?o) — sin(c0o) sin(6^o+2?/v) sin(a^o) (5.65) 

The second term on the right-hand side of Eq. (5.65) can be omitted when ei-
ther a = 0 or c = 0, due to the updating scheme of the state of the neurons 
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(see Eq. (5.63)). Thus, we obtain X3 = cos(c0o) cos(bipo) < 1 for a = 0, or 
X3 = cos(fa/>o) cos(a(/?o) < 1. 

Next, let us consider to extract X\ and X2· These terms can be decomposed in a 
similar way to decompose X3: 

Xx = Re{u;(t + l)hr(t)} 

Äe{e-J< 

• |ΛΓ(ί)| . e ^ a ^ 0 + ^ + A ^e^ ( 6 ^ 0 + i / ; r + A ' / , ) e^ ( c Ö 0 + ö r " f ' A 6 , ) j (5.66) 

= cos(A0) cos(A^) cos(A^) 
- sin(A0) sin(2fa/>o+2Vv+Ai/>) · sin(A^), (5.67) 

X2 = cos(c0o+A0) cos(fa/>o+A?/0 cos(a<£o+A<^) 
- sin(c0o+A0) sin(fa/>o+2Vv+A^) sin(a</?0+A^) (5.68) 

The second term on the right-hand side of these equations can be omitted when a = 0 
or c = 0, because Δφ = 0 (or Δ0 — 0) means that the component φ (or 0, resp.) of 
the state of the neuron has not been updated. Finally, X\ — X2 becomes 

X\ — X2 
cos(A0) cos(A^) - cos(c0o+A0) cos(6^0+A^) (for a = 0, Δφ = 0) 

cos(A^) cos(A^) - cos(bip0+Aiß) cos(lxpo+Aip) (for c = 0, Δ0 = 0) 
(5.69) 

X\ — X2 becomes positive or zero in either case when \Δφ\ < φο, \Δψ\ < ψο, and 
|Δ0| < 0ο hold. 

Let us recall the difference of the energy caused by the change of the state of 
neuron r. The first term of Eq. (5.62) becomes negative or zero, due to (Χχ — X2) < 
0. The second term of this equation also takes a negative or zero value when we set 
w(e) > 0. As a result we obtain ΔΕ < 0, indicating that the energy of the network 
never increases when the state of the network changes, thus proving the stability of 
the network. 

Condition for Embedding Patterns. This section describes the required condition 
for each desired memory pattern to be a stable point in this network. A quatemionic 
pattern vector is set to 

ej* = \eH;\eHtpek*+pe?*°p 

where £ £ p , $ p , and ^ are 

ig p e{o, . . . ,A- i} , 
^ p e { 0 , . . . , £ - l } , (5.70) 
# € { 0 , . . . , C - 1 } 
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A pattern e% represents a stable configuration of the network, if the relation 

Up(t + 1) = u„(0 = «p (5·71) 
holds for every neuron p. This condition can be described by the phase relations as 
follows: 

ξ$ρφ0 < arg(/^»>) + ψ < ξ»ρφ0 + ψο, 

$ > < arg(fc<*'>) + f < ξ»ρψ0 + Ψο, (5.72) 
$ρθ0 < arg(fc(e')) + ^ < ξ^βο + 0ο 

where hp is represented as/ιρ = l Ä p l e ^ V ^ V ' " 0 = l / g h ^ f c ^ ' W ' * . 
Thus, the relations of Eq. (5.72) become 

|arg(fc(* '>)-$p¥>o|<^, 

\^(Η^)-ξ;ρφ0\<^, (5.73) 
|arg(fc(ep))-$>|<f 

Furthermore, in the case of multistate networks, greater stability can be achieved by 
introducing the threshold parameters κφ,κψ, and κβ such that 

| arg(h<*'>) - ξ»ρψο\ <κψ<ψ, (5.74) 
\*ΧΕ(Η^)-ξ%ρθ0\<κθ<ψ 

5.4 LEARNING SCHEMES FOR EMBEDDING PATTERNS 

5.4.1 Hebbian Rule 

We introduce a quaternion equivalent of the Hebbian rule for embedding patterns in 
the network [17,18, 15]. The Hebbian rule is defined as 

*» = ·&£*< (5·75) 

where e% represents the pattern vector for neuron p in the /i-th pattern and np is 
the number of stored patterns. This form satisfies the conditions wpq = w*p and 
wpp > 0 as shown below: 

μ = 1 μ = 1 

and 
n 

μ = 1 μ = 1 



LEARNING SCHEMES FOR EMBEDDING PATTERNS 1 2 5 

Using the weight matrix of Eq. (5.75), each βμ is a fixed point when orthogonality 
among the patterns εμ is satisfied, i.e., for μ, v — 1,..., np, 

N 

Σ > Γ < - 47V<V„ = 4ΛΓ(ί« ,8), (5.76) 
g=i 

where £^£, denotes the Kronecker delta. This property can be verified by applying a 
stored pattern ev as the input to the network. For neuron p, the action potential sp is 
calculated as 

N 

sp = Y^wmev
q 

9=1 

Ί Ν /np X 

q=l \μ=1 / 

1 np N 

μ=1 

The output of this neuron is obtained by applying the activation function, 

Xp = f(sP) = / ( < ) = tp 

5.4.2 Projection Rule 

A major limitation of the Hebbian rule is that it works only when patterns e satisfy 
the condition described in Eq. (5.76). This means that the patterns to be embedded 
in the network must be orthogonal to each other. However, the patterns provided in 
most cases are non-orthogonal. 

The Projection rule [23,36,26] is a learning scheme that can embed non-orthogonal 
patterns in a network. The key idea of the Projection rule is that non-orthogonal pat-
terns are first projected onto orthogonal ones, and then the Hebbian rule is applied 
to the projected patterns [15]. Projection is conducted by introducing the matrix 
{Q^}> defined as 

0»> = 1ϊΣ<*1 <5-77> 
p 

The weight matrix of the network, w, is calculated by 

μ,ν 
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where Q~l is the pseudo inverse matrix of Q. 
Patterns embedded by this scheme become stable points in the network, as in the 

case of the Hebbian rule. This can be checked by calculating the action potential of 
a neuron by applying an embedded pattern as the input to the network, as 

N 

*"pq*=-q - y^»"6 
q=l 

μ,ν q 

μ,ν 

= E<<w 
= < (5.79) 

5.4.3 Iterative Learning for Quaternionic Multistate Neural Network 

A Local iterative learning scheme [6] is an implementation of the projection rule. 
The connection weights of the network in this scheme are formed by iteratively pre-
senting the desired memory patterns. This scheme allows easy implementation of 
pattern storage and to control the depth of basins for each local minimum. 

The quaternionic version of the iterative learning scheme [15] are formulated in 
the multistate networks: 

« S T = w°p
l
q

d + Swpq, (5.80) 

Swpq = l ^ e ? · (5.81) 

After the update, the action potential is described as 

Q 

= h°p
ld + ^2Swpquq (5.82) 

Q 

In the above equation, when uq — e£, we obtain 

hnew = hoU + εμ ( 5 g 3 ) 
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After (L + 1) updates, Eq. (5.83) takes the form 

hf+1)=h0
p + (L + l)c£ (5.84) 

This equation can be expressed as 

|fc(L+l)|e«(*.(t+1))efc(*(t + 1 ))eJ(i ( t+1 )) 

= \h%\e^ek*°^ + (L + l ) | e £ | Ä * ° e f e < W V ° 

Note that the definitions of £Ms are in Eq. (5.70). By multiplying e *φρν>ο on the 
left-hand side and e-·* "» °e~ ^p*"0 on the right-hand side, we obtain 

| h ( L + l ) | e i ( ^ L + 1 > - i ^ V o ) e f e ( ^ I ' + 1 ) - ^ ^ o ) e J ( 9 ( t + 1 ) - i ? / o ) 

-\Ηΐ\β«*0-ξ^β**02ίΰη(<Ρ - ξ%ρθ0) s i n ^ V ü ) + (L + 1 ) « | 

Note that, due to the noncommutability of β^φ and e^e, an additional term appears in 
this equation, which never appears in the complex-valued multistate networks. From 
the real part of the left-hand side of Eq. (5.85), we obtain 

|/i(L+1»| (cos(<#+1> - ξ»ρφο) · co s (^ L + 1 ) - $ > ) 

• cos(0(L+1> - %ρθο) + s i n ( ^ + 1 ) - $pV>o) 

• sin(Vf+1> - ^ p φ ο ) ■ Mf>iL+1) ~ $ > ) 

+2s in (^ L + 1 ) - ξ£ρφο) · cos(^L + 1») 

• s m ( 0 ( i + 1 ) - ^ 0 o ) - s m ( ^ p V > o ) ) 

= l>4L+1)l*i 

Similarly, from the right-hand side of Eq. (5.85), we obtain 

\h°p\ (cos(<^ - ξ*ρΨο) ■ co s ($ - ξ*ρψο) 

■ cos(0° - $ρθ0) + sinfa» - %ρφο) · s i n ( $ - ξ^ψο) 

• s in(^ - ξ»ρθ0) + sm(<P°P - $ , ¥ * ) · cos (^ ) 

• 2s in (^ - ^ 0 O ) · sin(^pVo)) +(L + l)|e£| 

= |h»|X2 + (L + l) |e^| 
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Due to \h{
p
L+1)\Xi = \hp\X2 + (L + l)|eg|, the following relation holds: 

\h°p\X2 + (L + l)\e$\ 
Xi = \KL+1)\ 

When 
\\h°p\ - (L + 1)|€^|| < \hL

p
+1\ < \h°p\ + (L + l)|e£| 

holds, Eq. (5.85) satisfies the relation 

\hp\X2 + (L + l)\e$\ 

\\hp\-{L + l)\e$\\ 

For large values of L, 

|hg|X2 + (L + l)|eg 

>X, > 
|/i°]X2 + (L + l)l€^| 

|fcJ| + (L + l ) | e i | 

(L + l ) | c g | _ 

(5.85) 

(5.86) 

(5.87) 

\\h°p\-(L + l)\e^\\ (L + l)\eS\ 

\h°p\X2 + (L + l)|e/J| (£ + l)|6g| 
\hl\ + (L + l)\e£\ (L + l)\4\ 

1, 

= 1 

Thus, from Eq. (5.87), it can be found that X\ « 1 for large values of L. The case 
Xi = 1 is obtained when the following relations hold: 

COS(<£; (i+1) 
P - #! w ) = 1 (s in(^L + 1) - Άφο) = 0), V p l 

c o s ( # + 1 ) - ^ p Vo) = 1 ( s i n ( < + 1 ) - ^ > ) = 0), 

cos(0<L+1) - #p0o) = 1 (sin(*<i+1> - tfp0o) = 0) 

Thus, we obtain 

\arg(h^ L+1) - ξ$ρΨο\ < 

| a r g ( h ^ ) i + 1 ) - ^ ^ o | < 

| a r g ( h < e ' > i + 1 ) - # e o < 

arg(/i<<^ °) - ξ»ρφ0 

a r g ( h < « ° ) - ^ > 

a r g ( f c e ' 0 ) - ^ ö 0 

(5.88) 

In the case of multistate networks, it can be shown that the desired patterns in the 
network become stable when the condition in Eq. (5.74) is satisfied by iteratively 
updating the connection weights. 

5.5 CONCLUSION 

This chapter describes three quatemionic neural networks that are Hopfield-type re-
current neural networks, whose parameters are encoded by quaternions. 
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As in the case of complex-valued neuron models, two types of neuron mod-
els exist. One model uses a quaternion for a neuron state. The bipolar-state and 
continuous-state neurons in this chapter adopt this type of neuron model. The other 
model, termed multistate neuron, utilizes a phaser representation of quaternions. A 
quaternion is represented by three kinds of phases and an amplitude. Thus, the mul-
tistate quaternionic neuron presented in this chapter attains three degrees of freedom. 

All networks in this chapter are shown to work as associative memories, i.e., 
the network state eventually reaches an embedded state. We prove this by defining 
energy functions with respect to the neuron states and connection weights and by 
showing that these energies, under certain conditions, decrease when the state of the 
neurons change. 

Schemes for embedding patterns in the networks are also presented. Specifically, 
the quaternionic equivalents of the Hebbian rule, Projection rule, and Local iterative 
learning rule are discussed in detail. The Hebbian rule is limited by the constraint 
that embedded patterns must be orthogonal to each other. The Projection rule can 
overcome this limitation by projecting non-orthogonal patterns to orthogonal ones. 
However, this scheme is computationally expensive because the projection operation 
requires the calculation of a pseudo-inverse matrix. Local iterative learning is an 
implementation of the Projection rule. The weight matrix is gradually modified by 
iteratively applying embedded patterns, such as the backpropagation learning scheme 
for MLP models. 
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CHAPTER 6 

MODELS OF RECURRENT CLIFFORD 
NEURAL NETWORKS AND THEIR 
DYNAMICS 

Y A S U A K I K U R O E 

Kyoto Institute of Technology, Kyoto, Japan 

Recently, models of neural networks in the real-number domain have been ex-
tended into the high-dimensional domain such as the complex- and quaternion-
number domains, and several high-dimensional models have been proposed. 
These extensions are generalized by introducing Clifford algebra (geometric al-
gebra). In this chapter we extend conventional real-valued models of recurrent 
neural networks into the domain defined by Clifford algebra and discuss their 
dynamics. Since geometric product is noncommutative, some different models 
can be considered. We present three models of fully connected recurrent neural 
networks, which are extensions of the real-valued Hopfield type neural networks 
to the domain defined by Clifford algebra. We study dynamics of the proposed 
models from the point view of existence conditions of an energy function. We 
derive existence conditions of an energy function for two classes of the Hopfield 
type Clifford neural networks. 
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6.1 INTRODUCTION 

In recent years, there have been increasing research interests of artificial neural net-
works and many efforts have been made on applications of neural networks to various 
fields. As applications of the neural networks spread more widely, developing neural 
network models which can directly deal with complex numbers is desired in vari-
ous fields. Several models of complex-valued neural networks have been proposed 
and their abilities of information processing have been investigated [1, 2]. More-
over, those studies are extended into the quaternion-number domain, and models of 
quaternion neural networks are proposed and actively studied [2, 11]. These exten-
sions are generalized by introducing Clifford algebra (geometric algebra). Recently, 
Clifford algebra has been recognized to be powerful and practical framework for the 
representation and solutions of geometrical problems. It has been applied to vari-
ous problems in science and engineering [12, 13]. Neural computation with Clifford 
algebra is, therefore, expected to possess superior ability of information processing 
and to realize superior computational intelligence. 

In this chapter we extend conventional real-valued models of recurrent neural net-
works into the domain defined by Clifford algebra and discuss their dynamics. Since 
geometric product is noncommutative, some different models can be considered. We 
present three models of fully connected recurrent neural networks, which are ex-
tensions of the real-valued Hopfield-type neural networks to the domain defined by 
Clifford algebra. We also discuss dynamics of those models from the viewpoint of 
existence of an energy function. We have already derived existence conditions and 
proposed energy functions for Hopfield-type complex and quaternion- valued neural 
networks [9, 10, 11]. Those results can be revisited from the point of view of Clif-
ford algebra models. Based on the those results, we discuss existence conditions of 
an energy function for two classes of the Hopfield-type Clifford neural networks. 

6.2 CLIFFORD ALGEBRA 

We consider the finite-dimensional Clifford algebra defined over the real field R. Its 
outline is given in this section. See Refs. 4 and 5 for details. 

6.2.1 Definition 

Let W>q>r denote a (p + q + r)-dimensional vector space over the real field E. Let a 
commutative scalar product be defined as * : M M ' r x W>q'r -» E. That is, 

a * ö = b*a<EM for a, be Rp^r. 

For M M ' r , the canonical basis, denoted by Rp,q'r, is defined as totally ordered set 

:— {e i , . . . , e p , e p + i , . . . , e p + g ,e p +g+i , . . . ,ep+q+r} C Rp,q'r (6.1) 
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where the {e^} have the property 

+1 , l < i = i < p , 

I 0, p + q<i=j<p + q + r, v ' 
( 0, i?j 

The combination of a vector space with a scalar product is called a quadratic space 
denoted by (W>q>r, *). Note that e* * e* takes not only the value 1 but also the 
values - 1 and 0. Clifford algebra is defined over the quadratic space ( R M ' r , *) 
by introducing so-called Clifford product (geometric product) denoted by o. The 
Clifford algebra over (W^r, *) is denoted by G ( R M ' r ) or simply Gp^r. 
Definition of Clifford Algebra GPjg,r. Let 6Ρ)9)Γ denote the associative algebra 
over the quadratic space (W,q>r, *) and let o denote the product. The G M ? r is said 
to be Clifford algebra if the following are satisfied. 

• ®p,g,r contains the field R and the vector space WtQir as distinct subspaces. 

• ^p,q,r is a vector space equipped with vector addition + and multiplication 
with scalar (a G 1). 

• There exists the product o which satisfies the following properties. 

1. The algebra is closed under the product o, that is, 

o o 6 G Gp,9,r for all a,b e Gp,9,r · 

2. Associativity: 

(a o b) o c = a o (6 o c) for all a, 6, c G Gp,g,r. 

3. Distributivity: 

a o (6 + c) = a o b + a o c for all a, 6, c G G M , r 

and 
(6 + c) o a — 6 o o -f c o a for all a, ö, c € G M , r . 

4. Scalar multiplication: 

α ο α = α ο α = αα, for all a £ Gp,9,r, a G K. 

5. Let a G W>q>r C Gp,g,r; then 

a o a - a * a G l (6.3) 

Note that item 5 implies that the Clifford product of any vector in the vector 
space MM' r with itself equals their inner product, which links the vector space to 
the Clifford algebra. Note also that the commutativity is not imposed on the Clifford 
product o; that is, it is in general noncommutative. 
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6.2.2 Basic Properties and Algebraic Basis 

The elements of Clifford algebra G M ? r are called multivectors whereas the elements 
of W>q,r are called vectors. For multivectors a, 6 E Gp,g,r, the Clifford product a o& 
is expressed as a sum of its symmetric and antisymmetric parts: 

a o 6 — -(a o 6 + & o a) + - ( a 0 6 - 6 0 0 ) . 

If a and b are vectors, that is, a, b G Rp'9'r, the following relation holds. 

(a + b) o (a + 6) = (a + 6) * (a + 6) 

<£>aoa + aofe + 6 o a + &o6 = a * a + 2 a *& + &*& 

O" - ( 0 0 6 + 6 0 0 ) = 0 * 6 

Let us express the antisymmetric part as 

a Λ 6 := - ( a 06 — 6 0 0 ) , 

then 
α ο 6 = α * 6 + οΛ&. 

The product Λ is called the outer or wedge product. In particular, for basis vectors 
euej mW>q>r, 

β{ o ej = β{ Λ €j 

since e» * ê · = 0 (i Φ j) from (6.2), which implies 

d o ej = —ej o e*. (6.4) 

We are now in the position to construct a basis of the Clifford algebra GM,r> 
which is called an algebraic basis of Gp,g,r · 6P r o m n o w o n > m e Clifford product 
will be denoted by juxtaposition of symbols. For example, a o b is now written as 
06. Since the Clifford product is associative, (a o 6) o c or a o (6 o c) is written as 
a6c. Also, the product operator ]\ refers to the Clifford product of the operands, for 
example, Π?=ι Ö» = α ια 2 α 3 . 

Consider the Clifford product of a number of different elements of the canonical 
basis Rp,q,r of W>q'r, called a basis blade, which plays an important role to construct 
a basis of the Clifford algebra G M , r . 

Let A be an ordered set and let A[i] denote the ith elements of A. That is, if 
A = {2,3,1}, then A[2] = 3. A basis blade in Gp,g,r denoted by eA is defined; let 
A C { l , 2 , . . . , p + e? + r} , then 

|A| _ 

eA = Y[RP'q'r[A[i}]. (6.5) 
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where | A| denotes the number of elements of the set A. The number of the factors 
under the Clifford products in each basis blade β&, that is, |A| is called grade. For 
example, if A = {2,3,1}, then e& = 62β3βι and its grade is 3. 

Given a vector space R M ' r with a canonical basis Kp,9'r in (6.1), there are 2ρ + ς , + Γ 

ways to combine the {e^} with the Clifford product such that no two of these prod-
ucts are linearly independent, that is, there exist 2 p + g , + r linearly independent basis 
blades. The collection of 2 p + 9 + r linearly independent basis blades forms an al-
gebraic basis of Gp?g,r. The choice of basis is arbitrary, however, it is useful to 
choose an ordered basis, called the canonical algebraic basis, defined as follows. Let 
I = {1,2, · · · , p + q + r} , its power set is denoted by V[I] and its ordered power set 
is denoted by Pop] . For example, if I = {1,2,3}, then 

^[I]-{{0},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} 

where 0 is the empty set. The canonical algebraic basis of Gp,g?r, denoted by Gp,g,r 

is defined: 
G M , r : = { 6 A : A G ^ [ I ] } 

where we let e$ = 1 G R For example, let p + q + r = 3 and consider R3 := R M ' r 

3 

with a canonical basis R = {e\, e<i, e^ }. The canonical algebraic basis G3 of G3 is 
then given by 

G3 = {I ,e i ,e2 ,e3,eie2,eie3,e2e3,eie2e3} 

A general multivector of G M ? r is written as a linear combination of the elements of 
the canonical algebraic basis G M 5 r thus defined, that is, a G G M , r is written as 

2P+<z+r 

a= Σ a(i)®P^r\i] (6.6) 
i= l 

where a^ G R Recall that Gp,g>r[i] denotes the ith element of G M , r . 
The absolute value (modulus) of a G GPjg,r, denoted by \a\, is defined as 

6.3 HOPFIELD-TYPE NEURAL NETWORKS AND THEIR ENERGY 
FUNCTIONS 

It is well known that one of the pioneering works that triggered the research interests 
of neural networks in the last two decades is the proposal of models for neural net-
works by J. J. Hopfield [6, 7], which are fully connected recurrent neural networks. 
He introduced the idea of an energy function to formulate a way of understanding the 
computation performed by dynamics of fully connected neural networks and showed 
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that a combinatorial optimization problem can be solved by the neural networks. The 
neural network models proposed by Hopfield are called Hopfield-type neural net-
works; and by using concept of energy functions, they have been applied to various 
problems such as qualitative analysis of neural networks, synthesis of associative 
memories, optimization problems, etc., ever since. It is, therefore, of great interest 
to develop models of Clifford algebraic neural networks of Hopfield-type and to in-
vestigate their dynamics. In this section we review the model of the Hopfield-type 
neural networks and its energy function. 

J. J. Hopfield proposed both discrete-time and continuous-time models of fully 
connected recurrent neural networks and introduced the idea of energy functions. We 
consider the continuous-time Hopfield-type neural network, which is implemented 
by an electric circuit shown in Fig. 6.1 [6, 7]. The circuit consists of n nonlinear 

• Conductor ?jk 

\ /invertingAmplifier 

V Amplifier 

F i g u r e 6.1 Hopfield-type neural network. 

amplifiers interconnected by an RC network, and conductances and ideal current 
sources. Each amplifier provide an output voltage Xj given by f(uj), where Uj is 
the input voltage and / is a nonlinear activation function. For each amplifier, it 
contains an inverting amplifier whose output is — Xj which permits a choice of the 
sign of the amplifier and the outputs Xj and -Xj are usually provided by two output 
terminals of the same operational amplifier circuit. The pair of nonlinear amplifiers 
with an RC network is refereed to as a "neuron" and the RC network partially define 
the time constant of the neuron and provide for integrative analog summation of the 
synaptic input currents from other neurons in the network. A synapse between two 
neurons is defined by a conductance Tjk which connects one of the two outputs ( 
Xk or —Xk) of amplifier k to the input of amplifier j , and this connection is made 
with a resistor of value Rjk = 1/|Τ^|. As shown in Fig. 6.1, the circuit included 
an externally supplied input current Ij for each neuron, which represents an external 
input signal (or bias) to neuron j . 
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Writing the Kirchhoff's current law at the input node of amplifier j , we obtain 

= "£« Cj dtUj ~ Ri Uj + ^ * = i TjkXj +Ij j = 1,2,. . . , n (6.7) 

where 

R3 Pj ^ Rjk 

In order to analyze dynamics of the neural network, the following function has 
been defined as an energy function of the network [6]. 

E{x) = -\ Σ Σ Ti*xix* - Σ h'i + E F f" /~V)<^ (6-8) 

By using the energy function J. J. Hopfield showed that if the activation function is 
bounded, continuously differentiable and monotonically increasing, and Tjk = Tkj, 
then the time evolution of the network is a motion in state space that seeks out the 
minima of E and comes to a stop such points and E is a Liapunov function of the 
network. Moreover, any optimization problem that is mapped to the energy function 
Eq. (6.8) can be solved by this neural network. 

Letting TJ := RjCj, Wjk := RjTjk and bj := Rjlj, we can rewrite (6.7) as 

TJ ~ä£ = ~UJ + E L i wjk*k +t>j j = i, 2 , . . . , n (6.9) 
Bj = / ( % ) 

6.4 MODELS OF HOPFIELD-TYPE CLIFFORD NEURAL 
NETWORKS 

In this section we present models of fully connected recurrent neural networks, which 
are extensions of the real-valued Hopfield neural networks into the domain of the 
Clifford algebra presented in the previous section. Since geometric product is non-
commutative, different models can be developed. We will show three models of 
Hopfield-type Clifford neural networks. In Section 6.2 we write the multivectors, 
that is, elements of the Clifford algebra, in boldface like a G G M ? r . ^From now on, 
we write them in normal face like a £ Gp>g>r for simplicity. 

The first model is a direct extension of the Hopfield neural networks, described 
by differential equations of the same form as (6.9) 

dui χ-^ 

dt ^Ξι z = l , 2 , . . . , n (6.10) 
Vi = f(Ui) 

where n is the number of neurons, r\ is the time constant of the zth neuron, U{ and 
vi are the state and the output of the ith neuron at time t, respectively, bi is the 
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threshold value, w^ is the connection weight coefficient from the jth neuron to the 
zth one and / ( · ) is the activation function of the neurons. In the model u^, υ^ b{ and 
w^ arc multivectors, that is, the elements of the Clifford algebra Gp,g>r: Ui G Gp,g,r» 
v% £ G M ? r , bi e Gp>g,r, wij e Gp,9,r. The time constant r» is a positive real 
number: Tj G Ι , η > 0. WijVj is the Clifford product of Wij and Vj in Gp,g,r: 
ti;^ o VJ. The activation function / ( · ) is a nonlinear function which maps from 
a multivector to a multivector: / : GP)9,r -> G M ? r . For a multivector u(t) — 

Σί=ι wl> (t)Gp,q,r [i], its time derivative is defined by 

|"<W:= Σ !«W(*)EM,r[i]· 
i = l 

Since in Gp,g,r, the Clifford product is non-commutative, the model in which the 
product WijVj in the model (6.10) is replaced by VjWij is a different model. As the 
second model we consider the model which is described by differential equations of 
the form: 

dui ^ 
Ti-77 = ~Ui + 2_^VjWij +h 

at *r? ^ = l ,2, . . . , n (6.11) 
Vi = f(Ui) 

where the definitions of all the symbols are same as those in (6.10). 
The third one is the model in which w^Vj in the model (6.10) is replaced by 

w^jVjWij l , which is described by differential equations of the form: 

*1F =-^ + Σ < ^ + & < i = l,2,...,n. (6.12) 
Vi = f(Ui) 

where the definitions of all the symbols are same as those in (6.10). The connection 
weight coefficient u>* could generally be any multivecter in GPjg,r different from 
w^. It is useful in the Clifford algebra to let * be an involution operator. An involu-
tion is an operation that maps an operand to itself when applied twice: (w*)* = w. 
Examples of involution in the Clifford algebra are inversion, reversion and conjuga-
tion. 

6.5 DEFINITION OF ENERGY FUNCTIONS 

As stated in Section 6.3, J. J. Hopfield introduced the idea of an energy function 
to formulate a way of understanding the computation performed by fully connected 

1 In Clifford algebra the a geometric transformation such as a rotation is expressed in the form of a sand-
wiching product with an element like this. 
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recurrent neural networks and showed that a combinatorial optimization problem 
can be solved by them. The energy functions have been applied to various problems 
such as qualitative analysis of neural networks, synthesis of associative memories, 
optimization problems etc. ever since. It is, therefore, of great interest to investigate 
existence conditions of energy functions and to obtain energy functions for the neural 
networks (6.10), (6.11), and (6.12). In this section we give the definition of energy 
functions for the models of Hopfield-type Clifford neural networks (6.10), (6.11), 
and (6.12). 

If the neural network (6.10) is real-valued, that is, Ui, V{, bi, and Wij are all real, 
Ui e M, Vi e K, bi e K, Wij e R and the activation function is a real nonlinear 
function / : R -> E, the network (6.10) is equivalent to the Hopfeild neural network 
(6.9). The following function can be an energy function for the network (6.10), 
which is corresponding to the energy function given by (6.8) for the network (6.7). 

E(v) = 
1 ΣΣ 

i=l j=l 

WijViVj f-\p)dp (6.13) 

where v = [vi,V2,··· ,vn] € W1 and / x ( · ) is the inverse function of / ( · ) . The 
function E(v) is a mapping E : R" ->· K and has the following property. 

be the time derivative of E(v) along the trajectories of (6.10). If L e t ^ i 
at 1(6.10) 

the weight coefficients satisfy 
Wi (6.14) vj% — wij (hj — 1? 2 , . . . , n) 

and the nonlinear function / ( · ) is continuously differentiable, bounded, and mono-
tonically increasing, then 

dE(v) I 
dt 

< 0 
(6.10) 

and furthermore 
dE(v) 

dt 
dv 

(6.10) 
= 0 if and only if —- = 0. J dt 

It is still an open question what properties should be demanded as energy func-
tions and how to define and construct them. As the first step to the problem, we 
define an energy function for the Clifford neural networks (6.10), (6.11), and (6.12) 
by the analogy to that for Hopfield-type real-valued neural networks as follows. 

Definition 1 Consider the Clifford neural network (J\f) where J\f is the equation 
number 6.10, 6.11, or 6.12. E is an energy function of the Clifford neural network 
(Λί), if the following conditions are satisfied. 

(i) E( -) is a mapping E : Gp,g,r —► R and bounded from below. 

(ii) The derivative of E along the trajectories of the network (J\f), denoted by 
4§\{My satisfies 

dE\ 

dt 
<0 . 

(Λ0 
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Furthermore, 

= 0 if and only if —^-= 0 ( i = 1,2,... ,n ). 
(Λ0 dt 

Based on the definition we will discuss existence conditions of an energy function 
for two classes of the Clifford neural networks, Go,2,o and Go,i,o in the following 
section. 

6.6 EXISTENCE CONDITIONS OF ENERGY FUNCTIONS 

We have already derived existence conditions and proposed energy functions for 
Hopfield-type complex and quaternion-valued neural networks. Based on those re-
sults we discuss existing conditions of an energy function for the corresponding 
classes of Hopfield-type Clifford neural networks described by (6.10), (6.11), and 
(6.12). 

6.6.1 Assumptions on Clifford Activation Functions 

One of the important factors to characterize dynamics of recurrent neural networks 
is their activation functions which are nonlinear functions. It is therefore, important 
to discuss which type of nonlinear functions is chosen as activation functions for 
Clifford neural networks (6.10), (6.11), and (6.12). In the real-valued neural net-
works, the activation is usually chosen to be a smooth and bounded function such 
as a sigmoidal function. Recall that, in the complex-valued domain, Liouville's the-
orem says that if / ( · ) is analytic at all points of the complex plane and bounded, 
then / ( · ) is constant. Since a suitable / ( · ) should be bounded, it follows from the 
theorem that if we choose an analytic function for / ( · ) , it is constant over the entire 
complex plain, which is clearly not suitable. In the complex-valued neural networks 
in Ref. 9, in place of analytic function, a function whose real and imaginary parts 
are continuously differentiable with respect to the real and imaginary variables of its 
argument, respectively, is chosen for the activation function and the existence condi-
tions of an energy function are derived [9]. In this paper we extend these conditions 
on the activation functions to those of the Clifford neural networks (6.10), (6.11), 
and (6.12). 

Letting / « , i = 1,2,.. . , 2*,+«+r be real value functions: / « : R2P+q+r -> IR, 
the nonlinear function on the Clifford algebra f(u) : Gp,9,r -> Gp,g>r is described 
as follows: 

2P+q+T-

/(„)= £ ^(«(».«Ρ),...,«^')^!.! (6.15) 
ί = 1 

where 
2P+9+r 

U= Σ «(<)®M.r[»]· (6·16) 

dt 
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For example, in the Clifford algebra G2 := Gp,?,r where we let p + q + r = 2, its 
canonical basis is described by 

G2 = { l , e i , e 2 , e i e 2 } 

and the nonlinear function f(u) : G2 -l· Gb is described as 

+/(1)(uW,tiW,u(2),tiW)ei 

+/<3)(U<0),w(1),u(2),u(3))e1e2 (6.17) 

We assume the following conditions on the activation function f(u) : Gp,g,r -» 
Gp?g,r of the neural networks (6.10), (6.11) and (6.12). 

(i) /W ( · ) , ( / = 0 , 1 , . . . , 2p+q+r) are continuously differentiable with respect to 
ti(m),(m = 0 , l , . . . ,2 ' H -« + r ) . 

(ii) / ( · ) is a bounded function, that is, there exists some M > 0 such that 
Ι / ( · ) Ι < Μ . 

^From this assumption, we can define the Jacobian matrix of the activation function 
/ at a point u, denoted by Jf(u) — {ctim(u)} £ M2P r x2P where 

OLlm(u) -
<9u(m) 

(6.18) 

6.6.2 Existence Conditions for Clifford Neural Networks of Class Go,2,0 

The canonical basis of the Clifford algebra Go,2,o is given by 

Go,2,o = { l , e i , e 2 , e i e 2 } 

and an element of Go,2,o > x € Go,2,o»*s described as follows. 

x = x{0) + x( 1 )ei + x{2)e2 + x{3)e1e2 (6.19) 

The multiplication table of Go,2,0 is obtained as shown in Table 6.1. 
It can be seen that the Clifford algebra Go,2,o is isomorphic to the quaternion 

numbers EL A quaternion number is defined by 

x = χ(0) + ix{1) + jx{2) + kx^ (6.20) 

where χ(°\ χ(χ\ χ(2), and χ^ are real numbers, {i, j ,fc} are imaginary units for 
which the following relations hold. 

72 — — 1 1'2 — — 1 k2 — — 1 ' 3 ~ ' ~~ ' (6 21) 
ij = —ji = fc, jk — -kj = i, fci = -ifc = j . 
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Table 6.1 Multiplication table for geometric algebra Go,2,0 

e i β 2 e i e 2 

1 
ei 
e2 

eie2 

1 
ei 
e2 

eie2 

ei 
-1 

-eie2 

e2 

e2 
eie2 

-1 
-ei 

e i e 2 

- e 2 

e i 
- 1 

The multiplications of the quaternion numbers are performed according to the above 
relations. Note that quaternion numbers are noncommutative on multiplication, that 
is xy φ yx where x and y are quaternion numbers. It can be seen that, identifying e\, 
β2 and βιβ2 in Go,2,o with the imaginary units i, j and fc in the quaternion numbers, 
respectively, the Clifford algebra GQ,2,O is isomorphic to the quaternion numbers HL 

Here we discuss the existence conditions of energy functions for the Clifford neu-
ral networks of the class GQ,2,O described by (6.10), (6.11), and (6.12). In model 
(6.12), we let the involution operator * be the conjugation defined as follows. For 
w € Q),2,o described as 

w = ιι/°) + w^ei + w^e2 + w^e\e2, 

w* is defined as follows. 

w*=w(°)-wWe1 ■ w^e2 - w^eie2' (6.22) 

Furthermore for x G Go,2,o> <Sc( *) is defined as 

Sc(x)=x{0\ 

This implies that Sc( ·) corresponds to the operator which picks up the real part x^ 
of x in the case of quaternion numbers. 

We need the following assumptions on the weight coefficients and the activation 
functions of (6.10), (6.11), and (6.12). 

Assumption 1 The weight coefficients of the Clifford neural networks of the class 
Go,2,o (6.10), (6.11) and (6.12) satisfy 

wji =wij ( M = 1 , 2 , . . . , n ) 

Note that the involution operator * is defined in (6.22). 

(6.23) 

Assumption 2 The activation function f of the Clifford neural networks (6.10), 
(6.11), and (6.12) of the class Go,2,o satisfies 
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(i) f is an injective function, 

(ii) The Jacobian matrix Jf(u) is a symmetric matrix for all u G Q),2,o> 

(in) The Jacobian matrix Jf(u) is positive definite for all u G Go,2,o· 

Because of the condition (i) of Assumption 2 and boundedness of / , there exists 
the inverse function of / , denoted by g = f~l : Go,2,o —> Go,2,o· We express g as 
u = g(v): 

9(v) = /V0\*;(1)y2)y3)) 

+ g^(v^\v{1)M2\v^)e2 

+ ^ 3 ) ( ^ ( 0 ) ^ ( 1 ) ^ ( 2 ) ^ ( 3 ) ) e i e 2 (6.24) 

where g^ ( · ) : R4 -> K (/ = 0,1,2,3). Then, the following lemma holds. 

Lemma 1 Iff satisfies Assumption 2, there exists a scalar function G(-) : GQ 2 0 ~> 
K, such that 

dG =ö(')(v(0),,,(i),t,(2)j t ,(3)) (/ = 0,1,2,3). (6.25) 
Λ>(0 

This lemma can be proved by denning the function G(v) as 

G(v) := / ff<o>(p,0,0,0)dp 
Jo 

+ / gw(vl°\p,090)dp 
Jo 

Jo 
(3) 

g^\v^Ml\v^\p)dp. (6.26) f 
Jo We now propose candidates of the energy functions for the Clifford neural net-

works (6.10), (6.11), and (6.12) of the class G0,2,o as follows. For the network 
(6.10), 

n n 1 

£(β.ιο)(») - -Y^Yj-Sc{v*wijvj+2b*vi)-G{vi) (6.27) 

where t; = [i>i, ί^, · · ·, vn)
T G Go,2,o · F o r t n e network (6.11) 

n n 1 
£(6.n)(f) = - ^ ^ - « S c ( t ; > ^ y + 2 ö * t ; i ) - G ( t ; i ) . (6.28) 



1 4 6 MODELS OF RECURRENT CLIFFORD NEURAL NETWORKS AND THEIR DYNAMICS 

For the network (6.12) 

n n i 

£(6.i2)(to - - Σ Σ 2 S c ( V * W * M W V + 26<v0 - G ^ ) · ( 6 · 2 9 ) 

i = l j=l 

We now obtain the following theorem: 

Theorem 6.1 If the Clifford neural networks (6.10), (6.11), and (6.12) ö/rAe class 
Go,2,0 satisfy Assumptions 1 and 2, i/ie/i ί/iere emis an energy function which satis-
fies Definition 1. 

This theorem can be proved as follows. Calculating the time derivatives of the 
functions (6.27), (6.28), and (6.29) along the trajectories of the networks (6.10), 
(6.11) and (6.12), respectively, by using Lemma 1, we can show the conditions of 
Definition 1 of energy functions holds. 

The existing conditions of energy functions thus obtained are ones on the connec-
tion weight coefficients wij and the activation function / ( · ) . As examples of the 
functions which satisfy Assumption 2, 

/ («) = ^ (6.30) 

f(u) = tanh(u(0)) + tanh(w(1))ei 
+ tanh(u(2))e2 + tanh(u( 3 ))eie2 (6.31) 

can be considered. Equation (6.30) has the same form as that of the complex-valued 
function which is often used in the complex-valued neural networks [9]. The func-
tion (6.31) is a split activation function, that is, each component of its argument is 
transformed separately. 

6.6.3 Existence Conditions for Clifford Neural Networks of Class Go,i,o 

The canonical basis of the Clifford algebra Go,i,o is given by 

Go,i,o = { I J C I } . 

An elemet of GQ,I,O > # £ Οο,ι,ο > is described as follows. 

x = x ( 0 ) +a? ( 1 ) e i . (6.32) 

Because e\e\ — —1, identifying e\ with the imaginary unit i of the complex num-
bers, the Clifford algebra GQ,I,O is isomorphic to the complex numbers C. Since the 
Clifford product in GQ,I,O is commutative the models (6.10), (6.11), and (6.12) are 
essentially equivalent. Here we discuss existence conditions of energy function for 
the neural network (6.10) of the class Go,i,o · 

We need the following assumptions on the weight coefficients and the activation 
functions of (6.10). 
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Assumption 3 The weight coefficients of the Clifford neural networks (6.10) of the 
class Go, 1,0 satisfy 

wji = wij (hj = l , 2 , . . . , n ) (6.33) 

where * is defined: for w = x^ + x^e\ G Go,i,o> w* = x^ — x^e\. 

The activation function (6.10) in the Clifford algebra GQ,I,O is described by 

/(M) = /(°)(ti(0),W(1)) + /(1)(u(°),u(1))e1 

where u = u^ + u^e\. 

Assumption 4 The activation function f of the Clifford neural networks (6.10) of 
the class Go,i,o is an injective function and satisfies 

dm 
(i) Ä > °· 
(ii) ^ = ^ (6.34) 

d^^_df^_df^ 
{m) du«» duW duM öti(°) > 

for all u G GQ,I,O· 

Note that the conditions (6.34) are equivalent to the condition that the Jacobian 
matrix Jf(u) of / is symmetric and positive definite for all u G Go,i,o· Therefore 
Assumption 2 on the activation function in Go,2,o and Assumption 4 on the activation 
function in Go,i,o are the same. Because of the injectivity and boundedness of / , 
there exists the inverse function of / , denoted by g = / _ 1 : Go,i,o -> Go,i,o· We 
express g as u = g(v): 

9(v) = gW (v<0>, v<°)) + <7(1) (^(0), <;(1) )ei (6.35) 

The following lemma holds. 

Lemma 2 Iff satisfies Assumption 4, ί/zere exists a scalar function G(-) : GQ I 0 —► 
K, suchthat 

dG gW{vW,VW) 
dv(°) 

This lemma can be proved by defining the function G(v) as 

„<°> *«(!) 

(6.36) 

G(t;) := /"V0) (p, 0 )^ + / V 0 ) (^(0), Ρ)Φ (6.37) 
JO JO 
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We now propose candidates of the energy functions for the Clifford neural net-
works (6.10) of the class GQ,I,O as follows. 

n n .. 
E(v) = -Y,Y,i>Sc{v*wijvu+2b*vi)-G{vi) (6.38) 

where v = [v\,V2, · · . , vn]
T € Go,i,o and<Sc(·) is defined; Sc(x) = x^ for 

# £ Q),i,o· 

The following theorem is obtained. 

Theorem 6.2 If the Clifford neural networks (6.10) of the class Go,i,o satisfy As-
sumptions 3 and 4, then there exists an energy function which satisfies Definition 
1. 

This theorem can be proved in the similar manner to that of 6.1 as follows. Calcu-
lating the time derivatives of the function (6.38) along the trajectories of the networks 
(6.10) by using Lemma 2, we can show the conditions of Definition 1 of energy func-
tions hold. 

The existence conditions of energy functions thus obtained are ones on the con-
nection weight coefficients Wij and the activation function / ( · ) . It is important to 
note that the existence conditions of energy functions for the Clifford neural networks 
of the class Go,2,o and Go,i,o are the same in the sense: the involution self-equality 
on the connection weight coefficients Wji = w*j and the symmetry and positive 
definiteness of the Jacobian matrix of the activation functions. 

Further investigation on the existence conditions on the activation function in 
Go,i,o can be carried out [10]. We consider two restricted classes of nonlinear func-
tions in Go,i,o: / ·* Go,i,o -» Go,i,o· 

The functions of the first class are 

f(u) = /(°)(u(°)) + i/(1 V 1 } ) · (6.39) 

Let us represent / : Go,i,o ->· Q),i,o in the polar representation by letting u = 

rexp(ei0), r = >/ti(°) H-uW2, Θ = t a n " 1 ^ 1 ) / ^ ) as follows. 

f{u) = ^{r,e)eKv{el(t>(r,e)). 

The functions of the second class are 

/(ti) = ^(r)exp(ei0(ff)). (6.40) 

The existence conditions of energy functions for the activation functions of the 
first class (6.39) is immediately obtained from Theorem 6.2 and the conditions of 
Assumption 4. 
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Theorem 6.3 The activation functions of the first class (6.39) satisfy the conditions 
of Assumption 4 if and only if 

ö/<°> dfM 
3^>0and0^>0 

for all u G Go,i,o. 

For the activation functions of the second class (6.40) the following theorem is 
obtained. 

Theorem 6.4 The activation functions of the second class (6.40) satisfy the condi-
tions of Assumption 4 if and only if 

ψ> > 0 for all r > 0, lim *& > 0 (6.41) 
dr r-*o r 

and 

φ(θ) = θ + ηπ (6.42) 

where n is an integer. 

It is seen from the theorem that the activation (6.40) must take the form 

/ («) = φ(ν)βίθ 

for satisfying the conditions of Assumption 4 because φ(θ) — θ + ηπ. 
It is seen from Theorem 6.3 that, for the activation functions of the first class 

(6.39) in Go,i,o >m e existence condition is a direct extension ofthat of the real-valued 
Hopfield-type neural networks. On the other hand, for the activation functions of the 
second class (6.40) in Go,i,o, only the condition on the modulus r is similar to that 
of the real-valued networks. Note that, the activation function of the second type 
satisfying the existence condition does not vary the phase Θ of an input. 

6.7 CONCLUSION 

Recently, models of neural networks in the real-number domain have been extended 
into the high dimensional domain such as the complex- and quaternion-number do-
main. These extensions are generalized by introducing Clifford algebra (geometric 
algebra). In this chapter we extend conventional real-valued models of recurrent neu-
ral networks into the domain defined by Clifford algebra and discuss their dynamics. 
Since geometric product is noncommutative, some different models can be devel-
oped. Three models of fully connected recurrent Clifford neural networks, which are 
extensions of the real-valued Hopfield-type neural networks to the domain defined 
by Clifford algebra, were presented. We studied dynamics of the proposed models 
from the point view of existence conditions of an energy function. The existence 
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conditions were discussed for two classes of Hopfield-type Clifford neural networks: 
the neural networks of the class Go,i,o and GQ,2,O · 

The contribution of this chapter is based on the study [14]. The existence con-
ditions for the Hopfield type Clifford neural networks of the class Gi,o,o and Go,o,i 
are discussed in [15]. The Clifford algebras Gi,o,o and Go,o,i are isomorphic to the 
hyperbolic number and the dual number, respectively [16]. Further work is under-
way in deriving the existence conditions for more general classes of Hopfield-type 
Clifford neural networks. 
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CHAPTER 7 
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This chapter presents a meta-cognitive learning algorithm for a single hidden 
layer complex-valued neural network called "Meta-cognitive Fully Complex-
valued Relaxation Network (McFCRN) ". McFCRN has two components: a 
cognitive component and a meta-cognitive component. A fully complex-valued 
relaxation network (FCRN) with a fully complex-valued Gaussian like activa-
tion function (sech) in the hidden layer and an exponential activation function 
in the output layer forms the cognitive component. The meta-cognitive compo-
nent contains a self-regulatory learning mechanism which controls the learning 
ability of FCRN by deciding what to learn, when to learn and how to learn from 
a sequence of training data. The input parameters of cognitive components are 
chosen randomly, and the output parameters are estimated by minimizing a log-
arithmic error function. The problem of explicit minimization of magnitude and 
phase errors in the logarithmic error function is converted to system of linear 
equations and output parameters of FCRN are computed analytically. McFCRN 
starts with zero hidden neuron and builds the number of neurons required to 
approximate the target function. The meta-cognitive component selects the best 
learning strategy for FCRN to acquire the knowledge from training data and also 
adapts the learning strategies to implement best human learning components. 

Complex- Valued Neural Networks: Advances and Applications. Edited by Akira Hirose 153 
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Performance studies on a function approximation and real-valued classification 
problems show that proposed McFCRN performs better than the existing results 
reported in the literature. 

7.1 META-COGNITION IN MACHINE LEARNING 

Meta-cognition means knowledge about knowledge and includes knowledge about 
when and how to use particular strategies for learning or for problem solving. It 
involves several separate but related cognitive processes and knowledge structures, 
which share the self as the referent as the common theme [7]. Metacognition re-
search includes the studies regarding reasoning about one's own thinking, memory 
and executive processes that control the strategy selection and processing allocation, 
where the self is the referent [34]. In this section, we shall briefly discuss the various 
models of meta-cognition and describe the various meta-cognitive neural networks 
that are developed in the literature. 

7.1.1 Models of Meta-cognition 

Machine self-knowledge and introspective capabilities are two important issues of 
machine learning that are of concern for the machine learning community. Minsky 
and McCarthy were the pioneers to delve deep into these issues. Minsky [17] pro-
posed the idea that for a machine to answer adequately about the world, including 
questions about itself in the world, it has to have an executable model of itself. Min-
sky stated that an intelligent machine should have a computational model of the out-
side world so that it can answer questions about actions in the world without actually 
performing the action, through simulated execution. Minsky's idea was reaffirmed 
by McCarthy, who stated that a machine that is required to act intelligently should 
declaratively represent its knowledge [16]. Ever since then, the formal definition 
of meta-cognition has been refined to include meta-reasoning, meta-knowledge, and 
control: [7] presents a detailed survey of these definitions. 

Although many researchers in the artificial intelligence community have recog-
nized the necessity of reasoning about one's own beliefs, few have both modeled 
and represented the processes that generate beliefs and made them available to the 
reasoner itself. There are two kinds of systems in the category of meta-cognition: (a) 
systems that reason forward to decide what action to perform or what computation 
to execute (viz., forward strategic control) and (b) systems that reason backward to 
explain a failure or to learn (viz., backward meta-cognitive monitoring). Systems 
with forward strategic control attempt to choose a reasoning action based on some 
knowledge of the mental actions at the disposal of the system. For example, proba-
bilistic estimations and decision theory have been used to select a computation that 
has the most expected utility [10]. Decision-analytic methods [12] have been used to 
weigh the trade-off between deliberation cost, execution cost, and goal value when 
choosing a goal toward which to direct attention and when deciding which action to 
take to attain a chosen goal. Systems with backward meta-cognitive monitoring rep-
resents feedback from the reasoning process. This feedback can be used for learning 
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in tasks such as explanation and interpretive understanding. For example, a compu-
tational model of introspection and failure driven learning [6], [8] have been built. 

Nelson and Narens proposed a model of human meta-cognition that combines 
both forward strategic control and backward meta-cognitive monitoring [18]. Ac-
cording to the Nelson and Narens model of meta-cognition, there are two compo-
nents, namely, a cognitive component and a meta-cognitive component, as shown in 
Fig. 7.1. The cognitive component represents the knowledge and the meta-cognitive 
component has a dynamic model of the cognitive component (a mental simulation 
of the cognitive component). The information flow from the cognitive component to 
the meta-cognitive component is considered as a monitory signal, while the informa-
tion flow in the reverse direction is considered as a control signal. In particular, the 
information flowing from the meta-cognitive component to the cognitive component 
(control) either changes the state of the cognitive component or changes the cognitive 
component itself. As a result, one of the following three actions could occur at the 
cognitive component: (a) initiate an action, (b) continue an action, or (c) terminate 
an action. However, as the control signal does not yield any information from the 
cognitive component, a monitory signal is needed. The basic notion of monitoring is 
that the meta-cognitive component is informed about the cognitive component. This 
changes the state of the meta-cognitive component's model of the cognitive compo-
nent, including "no change in state ". It must be noted that the monitory signal is 
logically independent of the control signal. 

Recently, a class of machine learning algorithms have been developed based on 
the Nelson and Narens model of meta-cognition. In the next section, we briefly 
discuss the network architecture and explain the analogy between these learning sys-
tems and the model of meta-cognition proposed by Nelson and Narens. 

7.1.2 Meta-cognitive Neural Networks 

Similar to the Nelson and Narens model of meta-cognition, a Meta-cognitive Neu-
ral Network (McNN) also has two components, namely, a cognitive component and 
meta-cognitive component, as shown in Fig. 7.1. A multilayer perceptron network 
is the cognitive component of McNN and a self-regulatory learning mechanism is its 
meta-cognitive component. The meta-cognitive component has a dynamic model of 
the cognitive component and controls its learning ability by selecting suitable strate-
gies for each sample in the training data set. Thus, for a given training data set, it 
decides what to learn, when to learn, and how to learn in a meta-cognitive frame-
work. As a result, when a training sample is presented, one of the following actions 
occur in the cognitive component: (a) sample deletion, (b) sample learning, or 
(c) sample skip. Thus, during the entire training process, the self-regulatory learn-
ing mechanism controls the learning process of cognitive component by enabling the 
samples with higher information content to be learnt first and samples with lower 
information content to be learnt during the later stages of the training process. Sam-
ples with similar information content are deleted during the training process. Thus, 
the meta-cognitive component prevents learning similar samples in every epoch of 
the batch learning process, thereby avoiding overtraining and improving the gener-
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Figure 7.1 Analogy between Nelson and Narens model of meta-cognition and meta-
cognitive neural networks, (a) Nelson and Narens model of meta-cognition. (b) Meta-
cognitive neural networks. 

alization performance of the cognitive network. The cognitive component monitors 
the meta-cognitive component by updating its relative knowledge with respect to the 
knowledge contained in the training data set. 

A self-regulatory resource allocation network [29], and the meta-cognitive neural 
network [3] are the real-valued meta-cognitive networks available in the literature. 
Recently, the principles of meta-cognition has also been extended to neuro-fuzzy 
inference system [32]. 

The principles of meta-cognition have also been extended to the complex domain 
and we have developed a few meta-cognitive fully complex-valued neural networks 
and their learning algorithms. In the next section, we briefly discuss these networks 
and their learning algorithms. 

7.2 META-COGNITION IN COMPLEX-VALUED NEURAL 
NETWORKS 

The fully complex-valued neural networks developed based on the principles of 
meta-cognition include the Meta-cognitive Fully Complex-valued Radial Basis Func-
tion Network (Mc-FCRBF) [24] and the Complex-valued Self-regulatory Resource 
Allocation Network (CSRAN) [31]. In this section, we briefly discuss these networks 
and their learning algorithms. 
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7.2.1 Problem Definition 

Given a training data set { ( z ^ y 1 ) , . . . , ( z^y*) , . . . , (zN,yN)}, where, N is the 
total number of training samples with zl = [z[,..., 2^ ] T G C71 as the complex-
valued inputs, and y* = [y\,..., i/JJT G C1 as the complex-valued target outputs. 
The aim of a fully complex-valued neural network is to approximate the relationship 
between the inputs and their respective target values. In a function approximation 
problem, z* G Cm is the m-dimensional complex-valued input vector and y* G C 1 

is its desired target (i.e., functional value for the given input z*). In classification 
problems, the (z* G C71) is the m-dimensional transformed complex-valued input 
feature vector and the target y* G Cn is the n-dimensional complex-valued coded 
class label obtained from the actual class label (c*) using 

»i = { - l - i l otherwise J = 1 , · · · ,» ; * = l , · · · , * (7.1) 

where n is the total number of classes, and i is the Complex operator. 

7.2.2 Meta-cognitive Fully Complex-valued Radial Basis Function 

Network 

Mc-FCRBF is a meta-cognitive fully complex-valued radial basis function network. 
A Fully Complex-valued Radial Basis Function (FC-RBF) network [21] is the cogni-
tive component of Mc-FCRBF and a self-regulatory learning mechanism is its meta-
cognitive component. 
Cognitive component: An FCRBF is a three-layered fully complex-valued network 
with a linear input layer, a nonlinear hidden layer and a linear output layer. The neu-
rons at the hidden layer of FC-RBF employ the fully complex-valued sech activation 
function. Thus, the response of the fcth hidden neuron (h*k) with the sech activation 
function for an input z* G C771 is given by 

h{ = sech \yl(d - ufc)] ; k = 1,2,.. . , K (7.2) 

where u^ = [υ\,..., u™]T G C71 is the center of the /cth hidden neuron, v^ = 
[v\,..., v™]T G Cm is the scaling factor of the /cth hidden neuron, and the super-
script T is the transpose operator. 

The predicted output of the jth output neuron (ί/j) for an input z* is given by: 

K 

% = £ t i ; i f c /4 ; j = l ,2 , . . . ,n (7.3) 

The residual error (ef) of the network is given by 

e* = y * - y * (7.4) 

and the mean squared error function (E) is given by 

E = \e^H (7.5) 
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where the superscript H represents the Complex Hermitian operator. 
The objective of Mc-FCRBF learning algorithm is to estimate the following net-

work parameters: the hidden neuron centers (u^), the scaling factor of the hidden 
neurons (ν&) and the output weights (w^), such that the error function (Eq. (7.5)) 
is minimized for all the training samples. The fully complex-valued learning algo-
rithm of this network has been derived and the parameter update rules for the free 
parameters of the network [21] are given by 

Δτν/k = ifahfce*; k = l,2,...,K (7.6) 
Δν* - r 7 v w ^ e < 7 , ( v ^ ( z i - u f c ) ) ( ^ ^ ) (7.7) 

Acfc = -^wle'Y (vKz'-Uk))^ (7.8) 

Meta-cognitive component: A self-regulatory learning mechanism is the meta-
cognitive component of Mc-FCRBF. When a new sample is presented to the network, 
the meta-cognitive component controls the learning ability of FC-RBF by choosing 
one of the following strategies: 
Action (a) Sample Deletion: Delete those samples from the training data set that 
contain information similar to that already learnt by the network. This action ad-
dresses the what-to-learn component of the meta-cognition. 
Action (b) Sample Learning: Use the sample to update the network parameters in 
the current epoch. This represents how-to-learn the sample in the meta-cognitive 
framework. 
Action (c) Sample Skip: Skip the sample from learning in the current epoch and 
retain the sample in the training data set, thereby, deciding when-to-learn the sample 
in the context of meta-cognition. 

The cognitive component monitors the meta-cognitive component and updates 
the meta-cognitive component's dynamic model of the cognitive component using 
the instantaneous magnitude and phase errors based on the residual error of FC-RBF 
(e* = [e[,..., e\,..., e*JT) defined as: 

4 = ^ - y i ; f c = l , . . . ,n ; t = l,., . ,iV (7.9) 

Based on the residual error, the monitory signals of Mc-FCRBF are defined by 

• The instantaneous magnitude error: 

Mf = -y/e^.e* (7.10) 
n 

• The instantaneous phase error: 

*t = ^Eksü/U^)) 
n 

k=l 

(7.11) 

where (yfy refers to the conjugate of the predicted output y*k and the function 
arg(.) returns the phase of a complex-valued number in [-π, π] and is given 
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by 

arg{z) = atan f ^ f ) (7.12) 
\ real(z) ) 

Use these monitory signals, the three actions of the meta-cognitive learning are 
described in detail below: 

• Sample Deletion: If Mf < Ef and φ\ < Εφ
ά, where Ef is the delete 

magnitude threshold and E$ is the delete phase threshold, then the sample t 
is deleted from the training data set. The thresholds Ef and E$ are chosen 
based on the desired accuracy. 

• Sample Learning: If the sample learning condition given by 

If Me
t > Ef or ΦΙ > Ef (7.13) 

is satisfied in the current epoch, then the parameters of the network are updated 
using the gradient descent based parameter update rules (given in Eq. (7.7), 
Eq. (7.8), Eq. (7.6)) in the current epoch only. Here, Ef1 is the parameter 
update magnitude threshold and Ef is the parameter update phase threshold. 
It must be noted that the parameter update magnitude threshold (Ef) and 
parameter update phase threshold (Ef) are not fixed. They are self-regulated 
based on the residual error of the sample in the current epoch, according to the 
following conditions: 

If Me
t > Ef, then Ef := 6Ef - (1 - δ)Μξ (7.14) 

If φ\ > Ef, then Ef := 8Ef - (1 - δ)φ\ (7.15) 

where δ is the slope at which the thresholds are self-regulated. Larger value of 
δ results in a slow decay of the thresholds from their initial values. This helps 
fewer samples with significant information to be learnt first, and samples con-
taining less significant information to be learnt last. Therefore, larger values of 
δ ensures that the meta-cognitive principles are emulated efficiently. Usually, 
δ is set close to 1. 

• Sample Skip: If a sample does not satisfy the sample deletion or sample learn-
ing condition in the current epoch, then the sample is skipped in the current 
epoch and is retained in the training data set as such. Due to the self-regulating 
nature of the parameter update thresholds, the sample might be used in learn-
ing in subsequent epochs. 

Thus, Mc-FCRBF is a batch learning meta-cognitive fully complex-valued net-
work. Hence it requires the complete training data set before training. Moreover, 
it also requires that the number of hidden neurons are fixed a priori. However, in 
real-world applications like the medical diagnosis, the complete training data set is 
not available a priori. Hence, it is desirable to derive sequential learning algorithms 
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that learn the training samples one-by-one and discard them after learning. In such a 
sequential learning algorithm, the network begins with zero hidden neurons and adds 
and deletes neurons during the training process to achieve a parsimonious network 
structure. In the next section, we briefly explain a sequential learning algorithm for 
a complex-valued self-regulatory resource allocation network. 

7.2.3 Complex-Valued Self-Regulatory Resource Allocation Network 

CSRAN is a fully complex-valued sequential learning algorithm that approximates 
a given function using the principles of meta-cognition. The basic building block of 
the CSRAN is a fully complex-valued radial basis function network. As CSRAN is 
a sequential learning algorithm, it starts with no hidden neuron and builds the nec-
essary number of hidden neurons based on the information contained in the current 
sample. CSRAN has a self-regulating scheme which controls the learning process 
by proper selection of the training samples. 

Without loss of generality, we assume that after sequentially learning t — 1 obser-
vations, CSRAN has built a network with K hidden neurons. For a given input, the 
predicted output (y* = [yj,..., y?]T e C1) of the CSRAN with K hidden neurons 
is given by 

K 

% = ^wJkh\\ j = l , . . . , n (7.16) 

h\ = sech [ v £ V " u*)] ; * = 1 , . . . , Ä" 

where Wjk € C is the complex-valued weight connecting the fcth hidden neuron to 
the jth output neuron, v& = [vki, · · ·, Vkm]T £ C™ is the complex-valued scaling 
factor of the fcth hidden neuron, u& = [cki,..., Ckm]T G C™ is the center of the 
fcth hidden neuron, the superscript T denotes the transpose operator and sech(z) = 
2/(ez + e~z). 

The residual error (e*) of the CSRAN for the current observation (x*, y*) is de-
fined as 

e< = y * - y ' (7.17) 

Using the residual error, we estimate the instantaneous magnitude error (Mt
e) and 

the normalized absolute phase error (φ%) as defined in Eqs. (7.10) and (7.11). 
In a sequential learning framework, the observation data/samples arrive one-by-

one and one at a time. CSRAN algorithm regulates the sequential learning process 
by selecting appropriate samples for learning. The schematic diagram of the self-
regulating scheme is shown in Fig. 7.2. The basic working principles of the self-
regulating scheme are explained in the following paragraph. 

Based on the instantaneous magnitude (Mt
e) and absolute phase error (φΐ) of 

each sample in the training sequence, the self-regulating scheme performs one of the 
following three actions: 
Action (a) Sample Deletion: Samples are deleted without being used in the learning 
process. 
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Figure 7.2 Schematic diagram of CSRAN and its self-regulatory learning scheme. 

Action (b) Sample Learning: Learning includes growing/pruning the hidden neuron 
or updating the network parameters. 
Action (c) Sample Reserve: The samples are pushed to the rear end of the training 
sequence and can be used at a later stage. 

The concept behind these actions representing each block of Fig. 7.2 are described 
in detail below: 

Action (a) Sample Deletion: When both the instantaneous magnitude error (Mt
e) 

(given in Eq. (7.10)) and the absolute phase error (</>f) (given in Eq. (7.11)) of a 
sample are less than their fixed delete thresholds, the self-regulating scheme deletes 
the sample without using it in the learning process. The sample deletion criterion is 
given by 

Me
t < Ef and φ\ < Εφ

ά (7.18) 

where E^1 is the sample delete magnitude threshold and E$ is the sample delete 
phase threshold. The 'sample deletion' criterion removes similar samples from the 
training sequence. Hence, it avoids over-training and reduces the computational ef-
fort. 

Action (b) Sample Learning: In a self-regulating scheme, the learning process 
involves the allocation of new hidden neurons ('growing'), updating of network pa-
rameters ('update') and removing redundant neurons ('pruning'). 

Neuron Growing Criterion: As the training samples arrive sequentially, some of 
the selected samples will be used to 'add' new hidden neurons based on the following 
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criterion 
Me

t > E™ or φ\>Ε* (7.19) 
where E^1 is the neuron growing magnitude threshold and E$ is the neuron growing 
phase threshold. 

It should be pointed out here that the neuron growing thresholds (E%*, E$) are 
not kept constant. They are adaptively varied based on the current residual error as 
given below: 

If Mf > E™, then E™ := δΕ™ - (1 - δ)Μ? 

If φ\ > Ef, then Et := δΕ* - (1 - δ)φΙ (7.20) 

where the slope parameter (δ) controls the rate at which the neuron growing thresh-
olds (E*f, E$) are regulated and hence influence the neuron growth. In general, the 
slope parameter is initialized close to 1. 

When a new hidden neuron (K + 1) is added to the network, the parameters 
associated with it are initialized as 

wx+i = ef; CK+I = x*; v K +i = «(xt - cn r ) (7.21) 

where nr is the nearest neuron, defined as that neuron with the smallest Euclidean 
distance from the current sample. The scaling factor κ determines the overlap be-
tween the samples in the input space. As κ increases, the overlap between the re-
sponses of the hidden neurons also increases. 

Network Parameter Update Criterion: If a new observation (xt,y*) arrives 
and the parameter update criterion is satisfied then the parameters of the network are 
updated using a C-EKF [13]. The parameter update criterion is given by 

Me
t > Ε^ στ ΦΙ > Ef (7.22) 

where Ef1 is the parameter update magnitude threshold and Ef is the parameter 
update phase threshold. The parameter update thresholds (E^9 Ef) are also adapted 
based on the residual error of the current sample as given below 

I f M t
e > £ j M , then E^ := SEJ" - (1 - δ)Μ{ 

If φϊ > Ef, then Ef := SEf - (1 - δ)φ\ (7.23) 

where δ is a slope that controls the rate of self-adaptation of the parameter update 
magnitude and phase thresholds. Usually, δ is set close to 1. 

The main advantage of the self-regulating thresholds is that it helps in select-
ing appropriate samples to add neuron or update the network parameters, i.e., the 
CSRAN algorithm uses sample with higher error to either add a new hidden neuron 
or update the network parameters first and the remaining samples for fine tuning the 
network parameters. 

The network parameters (a* = [ u i , . . . , u ^ , v i , . . . , v ^ , w i , . . . , w^] T ) are up-
dated for the current sample (t) as 

a1 = a*-1 + GV (7.24) 
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where e* is the residual error and Gl is complex-valued Kaiman gain matrix given 
by 

Gl = P%'W \R + a '" P1'1 a*] * (7.25) 

where a* is the complex-valued gradient vector, R — roInxnis the variance of the 
measurement noise and Pl is the error covariance matrix. 

The gradient vector (a*) (set of partial derivatives of output with respect to ott) is 
defined as 

T 
l_ uyi vy\ (jyi \ 

dvu 
a< = 

dy\ 
dun 

dy\ 

dyl
n 

L dun 

duKn 

dUKm dV! 

dvu 

dVKm 

dw\ 

dw\ 

dWnK 

dwnK -I 

where, the gradients for the free parameters wik, v^ and Uk are given by Eqs. (7.6), 
(7.7), and (7.8), respectively. 

The error covariance matrix is updated as 

P*=[/-Gtat H]pt-1+(Z/ (7.26) 

where q is a process noise covariance usually set close to 0 and / is an identity matrix 
of dimension K(2m + n) x K(2m + n). 

Neuron Pruning Criterion: CSRAN algorithm uses the contribution of the hid-
den neuron to delete the superfluous neuron. The contribution of the fcth hidden 
neuron is defined as 

rk = 
hi 

maxj hi 
(7.27) 

If \\rk\\ < Ep AND arg(rk) < Ep for Nw consecutive samples, then the kth neuron 
is superfluous and is removed from the network. Here, Ep is the neuron pruning 
threshold. If the neuron pruning threshold (Ep) is set at a lower value, then pruning 
seldom occurs and all the added neurons will remain in the network irrespective of 
their contribution to the network output. On the other hand, higher value of Ep results 
in frequent pruning, resulting in oscillations and insufficient neurons to approximate 
the function. 

When a neuron is added to the network, the error covariance matrix (Pt) is up-
dated as 

p t - i 0 

0 P -^(2ra+n)x(2m+n) 
(7.28) 

where p° is the estimated uncertainty of initial parameters. On the other hand, when 
a neuron (say, kth neuron) is removed from the network, the dimensionality of the 
error covariance matrix is reduced by removing the respective rows and columns of 
the Pt matrix, i.e. remove (i — l)(2ra + ra) + 1 to i(2m + n) rows and columns of 
the Pt matrix. For initialization of the C-EKF parameters, po, q and ro, one should 
refer to Ref. (13). 
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Action (c) Sample Reserve: If the current observation (z*,y*) does not satisfy 
the sample deletion criterion or the neuron growing criterion or the parameter update 
criterion, then the sample is pushed to the rear end of the data stream. Due to the 
self-adaptive nature of the thresholds, these reserve samples may also contain some 
useful information and will be used later in the learning process. 

These three actions of self-regulating learning are repeated for all the samples in 
the training sequence. 

7.2.4 Issues in Mc-FCRBF and CSRAN 

Although Mc-FCRBF and CSRAN are meta-cognitive in nature, they suffer from the 
following drawbacks: 

Mc-FCRBF is a gradient descent based batch learning algorithm derived by min-
imizing the mean squared error function. However, the mean squared error function 
is an explicit representation of only the magnitude of error and does not represent the 
phase of the error explicitly. Hence, Mc-FCRBF might not approximate the phase of 
the complex-valued function accurately. As CSRAN also uses the gradients derived 
from the mean squared error function, it might not also approximate the phase of 
the complex-valued function accurately. Moreover, Mc-FCRBF is a batch learning 
algorithm that learns the given training samples over a number of epochs, and hence, 
requires large computational effort to learn the training samples. CSRAN also uses 
the C-EKF to update the network parameters and hence, requires considerable com-
putational effort. 

To overcome these issues of Mc-FCRBF and CSRAN, in the following sections, 
we introduce a more accurate, fast learning fully complex-valued meta-cognitive 
neural network namely, 'Meta-cognitive Fully Complex-valued Relaxation Network 
(McFCRN)' and its sequential learning algorithm. We also study the performance of 
McFCRN on a synthetic complex-valued function approximation problem and a set 
of real-valued benchmark classification problems. 

7.3 META-COGNITIVE FULLY COMPLEX-VALUED RELAXATION 
NETWORK 

In this section, we present the description of "Meta-cognitive Fully Complex-valued 
Relaxation Network (McFCRN)" [23]. We first describe the architecture and learn-
ing algorithm of FCRN that is the cognitive component of McFCRN. Then, we 
present in detail the meta-cognitive component of McFCRN and its various control 
strategies. 

7.3.1 Cognitive Component: A Fully Complex-valued Relaxation 
Network (FCRN) 

We describe the fully complex-valued relaxation network and its projection-based 
learning algorithm in detail in this section. Fully Complex-valued Relaxation Net-
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work (FCRN) is a single hidden layer feed forward network. FCRN uses a projec-
tion based learning algorithm that does not require the number of hidden neurons to 
be fixed a priori. Instead, it begins with zero hidden neurons and builds a minimal 
network architecture to approximate the function defined by the training data set. 

Without loss of generality, let us assume that K neurons are added to the network 
after learning t — 1 samples. The architecture of FCRN with K hidden neurons is 
presented in Fig. 7.3. 

Figure 7.3 The architecture of FCRN. 

The neurons in the hidden layer of the network employ the fully complex-valued 
activation function of the type of hyperbolic secant [21] (sech(z) = 2/(ez + e~z)) 
to map the input features to a hyper-dimensional Complex plane, i.e., C m -» CK. 
Thus, the response of the jth hidden neuron for a given input z* e C m is given by 

h) = sech[vf(zt-uj)],j = l,...,K (7.29) 

where Vj G C m is the complex-valued scaling factor and Uj 6 C m is the complex-
valued center of the hidden neurons. 

The neurons in the output layer of FCRN employ an 'exp' activation function and 
the predicted output (y*) of FCRN with K hidden neurons is given by 

y{ = exp 1^2 wkjh] ) > k = !> · · · > n C7·30) 

where Wkj is the output weight connecting the jth hidden neuron and the kth output 
neuron. 

The essential properties for a fully complex-valued activation function require 
that it has to be nonlinear, analytic and bounded almost everywhere (a.e.) [14]. Both 
the activation functions, 'sech' and 'exp' functions, employed in the hidden and 



1 6 6 META-COGNITIVE COMPLEX-VALUED RELAXATION NETWORK 

output layers of FCRN satisfy these essential properties as shown in [21] and [28], 
respectively. Hence, when operated in the bounded region of the Complex plane [14], 
FCRN with at most K hidden neurons is capable of learning iV distinct samples with 
random and constant hidden layer parameters (UJ and v^). 

FCRN network is a complex-valued network that is used to approximate both 
the magnitude and phase of the complex-valued signals accurately. Hence, the error 
function should be an explicit representation of both the magnitude and the phase of 
the complex-valued error, of the form: 

J = 9(Υ*,?*) (7.31) 
where y* = Μί.6χρ(φί); yl - Mt.exp($t) 

where Ml and φι are the true/target magnitude and phase of the £th sample and Ml
k 

and φ\ are the predicted magnitude and phase of the £th sample. 
One possible choice of the error function J that is an explicit representation of 

both magnitude and phase can be taken as 
2 r 

\ln [ ^ -1 + ( ^ - 0 ^ 1 (7.32) J = MIX 

which can be equivalently written as 

J — \ln >60 (7.33) 

where y* is the predicted output of the network as defined in Eq. (7.30) and In (K j 

is the complex conjugate of In (|r J. 
Given the training data set { ( z ^ y 1 ) , . . . , ( z^y*) , . . . , ( z ^ y ^ ) } , the objective 

is to estimate the output weights Wkj with h^ obtained using randomly chosen hidden 
layer parameters such that the minimum energy state of Eq. (7.33) is estimated, or 

W* = arg min J(W) (7.34) 

where the arg in the above equation represents the function argument. Estimation of 
the minimum energy state of Eq. (7.34) yields the optimum output weight (W*) for 
the selected random hidden layer parameters. The complex-valued neural network 
used to determine this minimum energy state for a given training data set is called a 
"fully complex-valued relaxation network." 

Substituting for yt from Eq. (7.30) in Eq. (7.33), we have 

J = ^ΣΣ ('»(»£)-ίΣ»^)) 

ln(yi) - wlWkihti 
u=i 

(7.35) 
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where Λ*. is the response of the jth hidden neuron for the tth sample and y\ is target 
to the fcth output neuron of the tth sample. 

Using the definition of the partial derivatives of a real-valued function of complex-
valued variables, the derivative of the error function J (Eq. (7.35)) with respect to 
the output weights Wkj is 

dJ 

dwkj 

N 

= Σ*5 
K 

ln {vl) - Σ Wkp K 
P = l 

(7.36) 

The minimum energy state of the error function J is obtained by equating its first 
order derivative to 0, i.e., 

dJ 

dwkj 

N 

= Σ*5 
i = l 

K 
ln (νϊ) - Σ Wkp hi 

P=I 

= o 

Rearranging the above equation, we can obtain 

K N N 

t=l 

Eq. (7.38) is reduced to 

K 

The above equation can be represented in matrix form as 

W A = B 

where A G CKxK is the projection matrix given by 

N 

andBG C C x K 

Bjk = Σ / η ^ * * ) /ij·; j = 1,...,JRT,* = l , . . . , i 

ί = 1 

is the output matrix given by 

N 

t=l 

(7.37) 

(7.38) 

(7.39) 

(7.40) 

(7.41) 

(7.42) 

Equation (7.40) is a system of linear equations and can be easily solved by the 
inversion of the matrix A. It can be observed from the definition of the projection 
matrix in Eq. (7.41) that the matrix A is a Hermitian square matrix. The matrix A 
is non-singular, and is hence, invertible [30]. 
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Hence, the unique and optimum output weights of FCRN network can be esti-
mated as: 

W* = B Ä " 1 (7.43) 

Equation (7.43) is the linear least square solution to the set of linear equations given 
by Eq. (7.38). The output weights given in Eq. (7.43) are the optimal weights for a 
given random hidden layer parameters. Thus, FCRN estimates the minimum energy 
state of the error function defined in Eq. (7.32) and is computationally less intensive. 

7.3.2 Meta-cognitive Component: A Self-regulatory Learning 

Mechanism 

In this section, we describe the working principles of the meta-cognitive component 
of McFCRN that controls the learning process of FCRN (cognitive component) by 
selecting suitable learning strategies for each sample (control signal) in the training 
data set. 

The self-regulatory learning mechanism uses these errors to measure the relative 
knowledge of the cognitive component (FCRN) in comparison to the knowledge 
contained in the training data set. Based on these measures of relative knowledge, 
the meta-cognitive component controls the learning process of FCRN by selecting 
one of the following strategies: 
Strategy (a): Sample Deletion Samples that contain knowledge already learnt by 
FCRN are deleted. 
Strategy (b): Sample Learning Samples with relatively new knowledge are used to 
add a new hidden neuron or update the output weights of existing neurons 
Strategy (c): Sample Reserve Samples that satisfy neither of the above conditions 
are pushed to the rear end of the stack for future use. 

We explain each of these strategies in detail next: 

• Strategy (a): Sample Deletion If the sample delete criteria given by: 

Ml <Ef αηάφ\ < Εφ
ά (7.44) 

is satisfied, then the sample is deleted from the training data set. Here, E^1 

and E$ are the magnitude and phase delete thresholds, respectively. They are 
usually set based on the desired accuracy. 

• Strategy (b): Sample Learning Samples are used to either add a new hidden 
neuron or to update the parameters of the network. Thus, sample learning 
strategy comprises of the neuron addition strategy and the parameter update 
strategy. 

- Neuron addition strategy: As the training samples arrive sequentially, 
some of the selected samples will be used to 'add' new hidden neurons 
based on the following criterion 

Ml > E f or φ\ > Et (7.45) 
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where Ejjf is the neuron growing magnitude threshold and E$ is the 
neuron growing phase threshold. These thresholds are not constants, but 
are self-regulated such that samples with higher error are learnt first, fol-
lowed by samples with lower error. The self-regulation occurs according 
to: 

If Ml > E*f, E™ = δΕ™ - (Ι-δ)Μΐ 

If φ\ > Et, Et = δΕ+ - (1 - 8)φ\ (7.46) 

where δ is the slope at which the thresholds are self-regulated. Larger 
value of δ results in a slow decay of the thresholds from their initial val-
ues. This helps fewer samples with significant information to be learnt 
first, and samples containing less significant information to be learnt last. 
Thus, larger values of δ ensures that the meta-cognitive principles are 
emulated efficiently. Usually, δ is set close to 1. When a new neuron is 
added to FCRN, the input parameters (u^ and v^ ) of the new neuron 
are initialized randomly and the optimal output weights are computed us-
ing the projection based learning algorithm. Accordingly, the following 
sequence of operations are carried out: 

A(jc+i)X(K+i) -
^κχκ a/c+i 

a*:+i | ακ+ι,κ+ι 
(7.47) 

where matrix Ακχκ £ CKxK is updated as 

Akp = Akp + Λ£/£; k,p = 1 , . . . , K (7.48) 

where h\ is the response of the kth hidden neuron to the tth sample being 
used to add the neuron. 
The CKxl vector a^+i = [αι,/r+i,. . . aPlK+u · · ·, α>κ,κ+ι] is given 
by 

t 

αρ,κ+ι = 5^Λ^+ 1ή ,
ρ ;ρ=1, . . . ,Α' (7.49) 

1=1 

and the complex-valued scalar α,(κ+ΐ)(κ+ΐ) *S given by 

α(ΑΓ+ΐ)(Α-+ι) = zlhlK+ihK+i {150) 
- i 

1=1 

Similarly, the dimensionality of the B matrix is also increased from K x 
n to (K + 1) x n according to 

B = 
t>lxn 

(7.51) 
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where the K x n matrix is updated with the current sample t according 
to: 

t 

B = Y,ln(fk) ftj; j = l,...,tf,fc = l,. . . ,n (7.52) 
1=1 

and the output matrix B is appended with l x n elements corresponding 
to the K + 1-th neuron as: 

t 

b = Σ / n f ä ) ftk+1; * = l,...,n (7.53) 
z=i 

Finally, the output weights are estimated as 

- Parameter update strategy: When a sample contains significant informa-
tion that is not novel, but is less familiar to FCRN, the output weights of 
the network are updated according to Eq. (7.43). The parameter update 
criterion is given by 

Ml > Ε^ΟΚφΙ > Ef (7.55) 

where Ef1 and Ef are the parameter update magnitude and phase thresh-
olds, respectively. Similar to the neuron addition thresholds, the param-
eter update thresholds are also self-regulated according to 

If Me
t > Ef1, Ef1 = SEf1 - (1 - δ)Μξ 

If φ\ > Ef, Ef = SEf - (1 - δ)φΙ (7.56) 

It is intuitive that the initial values of the self-regulating parameter update 
thresholds are lesser than their respective neuron add thresholds. It is 
usually set at a value smaller than the smallest value the neuron addition 
thresholds can achieve after self-regulation. For a complete guideline 
on the initialization of the various self-regulating thresholds of the meta-
cognitive component, one must refer to Ref. (31). 

• Strategy (b): Sample Reserve Strategy If the current observation (z^y*) 
does not satisfy the sample deletion criterion or the neuron growing criterion 
or the parameter update criterion, then the sample is pushed to the rear end of 
the data stream. Due to the self-adaptive nature of the thresholds, these reserve 
samples may also contain some useful information and will be used later in the 
learning process. 

blxn 

AKXK I a/c+i 

|_ a £ + i I a#+i,*:+i 
(7.54) 
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These three control strategies of the meta-cognitive component are repeated for 
all the samples in the training process and help to improve the generalization perfor-
mance of FCRN as will be shown in Section 7.4 and Section 7.5. 

The learning algorithm of McFCRN is summarized in Pseudocode 1. 

Pseudocode 1 Pseudo code for McFCRN algorithm 
Given the training data set: 

START 
For each input, 
Compute the network output (y*) using Eq. (7.30). 
Compute M£

e and φ\ using Eqs. (7.10) and (7.11), 
respectively. 
If Mt < Ef AND ΦΙ < E* 
Delete the sample. 

Else if Ml > Ef OR φ\ > E$ 
Add a neuron. K = K+l; 
Choose the center and scaling factor of the 
K-th neuron (νχ and u#) randomly. 
Compute the hidden layer responses (ft*·) using 

Eq.(7.29). 
Compute the projection matrix {A) according to 

Eq. (7.41). 
Compute t h e m a t r i x B u s i n g Eq. (7.42). 
E s t i m a t e t h e optimum o u t p u t w e i g h t s (WK) 
u s i n g Eq. (7.43). 

E l s e i f Ml > Ef OR φ\ > Ef 
Update t h e optimum o u t p u t we igh t of t h e 
ne twork u s i n g Eq. (7.43). 

E l s e 
R e s e r v e t h e sample f o r f u t u r e u s e . 

END 

7.4 PERFORMANCE EVALUATION OF MCFCRN: SYNTHETIC 
COMPLEX-VALUED FUNCTION APPROXIMATION PROBLEM 

In this section, we evaluate the complex-valued function approximation performance 
of McFCRN in comparison to other complex-valued networks available in the liter-
ature. The approximation ability of McFCRN is studied using a synthetic complex-
valued function approximation problem [28]. The synthetic complex-valued function 
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approximation problem is defined in Ref. £8) as 

/(*) -M Z3 + IOZ1Z4 + 
zi) 

(7.57) 

where z is a 4-dimensional complex-valued vector, z\> Z2> 23 and z± are complex-
valued variables of magnitude less than 2. The study was conducted with a train-
ing set with 3000 samples and a testing set with 1000 samples. The root mean 
squared magnitude error (JMe) (Eq. (7.58)) and the average absolute phase error 
(Φβ) (eq. (7.59)), as defined in Ref. £8), are used as the performance measures for 
the complex-valued function approximation problems. 

JMe = 
N N xn 

N 

t=l 
Y,ie\A) 
1=1 

(7.58) 

Φβ 
1 N 

N xn 
t=i 

Σ \arg 

.k=l 

(nut) I 180 

π 
(7.59) 

Performance of McFCRN is compared against the best performing results of other 
complex-valued learning algorithms available in the literature. The algorithms used 
for comparison are: Fully Complex-valued Multi-layer Perceptron (FC-MLP) [14], 
Complex-valued Extreme Learning Machine (C-ELM) [15], Complex-valued Radial 
Basis Function network (CRBF) [5], the Complex-valued Minimal Resource Alloca-
tion Network [9], Fully Complex-valued Radial Basis Function network (FC-RBF) 
[21] and Fully Complex-valued Relaxation Network (FCRN) [30]. For FC-MLP net-
work, asinh activation function is used at the hidden layer. The Gaussian activation 
function is used at the hidden layer of C-ELM, CRBF and CMRAN learning algo-
rithms. For FC-RBF, FCRN, and McFCRN the 'sec/ι' activation function is used 
at the hidden layer. The number of neurons used for approximation, the training 
time, the root mean squared magnitude error and the average absolute phase error of 
McFCRN in comparison with the other learning algorithms is presented in Table 7.1. 

Comparing the training and testing performances of the various complex-valued 
learning algorithms presented in Table 7.1, McFCRN has the lowest generalization 
magnitude and phase errors. It can also be observed that McFCRN requires only 10 
neurons to approximate the function. Although FCRN also requires only 10 neurons, 
its testing magnitude and phase errors are slightly greater than those of McFCRN. 
This is because the meta-cognitive component of McFCRN helps to delete similar 
samples, thereby, improving its generalization performance. 

7.5 PERFORMANCE EVALUATION OF MCFCRN: REAL-VALUED 
CLASSIFICATION PROBLEMS 

Recent research studies have shown that the complex-valued neurons have better 
computational power than the real-valued neurons [19] and that the complex-valued 
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Table 7.1 Performance comparison for the function approximation problem 

Algorithm K Train 
time (s) 

Training 
JMe | 

error 
Φβ 

Testing 
JMe 

error | 
Φβ 

FC-MLP 

C-ELM 

CMRAN 

C-RBF 

FC-RBF 

FCRN 

McFCRN 

15 

15 

14 

15 

20 

10 

10 

1857 

0.2 

52 

9686 

1910 

0.42 

10.5 

0.029 | 

0.192 | 

0.026 | 

0.15 | 

0.02 | 

0.03 | 

0.04 | 

15.74 

90 

2.23 

51 

15.9 

1.38 

1.5 

0.054 

0.23 

0.48 

0.18 

0.05 

0.06 

0.041 

15.6 

88.2 

18.7 

52 

15.8 

3.22 

2.98 

neural networks are better decision makers than the real-valued networks. The better 
decision making ability of complex-valued neural networks is attributed to the pres-
ence of two decision boundaries that are orthogonal to each other as shown by Ref. 
£0). In this section, we evaluate the classification performance of McFCRN using a 
set of benchmark real-valued classification problems from the UCI machine learning 
repository [4] and a practical mammogram classification for breast cancer detection 
[11]. 

7.5.1 Real-valued Classification Problem in the Complex Domain 

Consider { ( x ^ c 1 ) , . . . (χ*,ο*),..., (xN,cN)}, where x* = [x\ .. .xlj .. . x ^ ] T G 
5im are a set of N observations belonging to n distinct classes, where x* is the m-
dimensional real-valued input features of tth observation and c* G {1 ,2 , . . . , n) is 
its class label. 

Solving the real-valued classification problem in the Complex domain requires 
that the real-valued input features be mapped onto the Complex space (JRm -> Cm) 
and the class labels are coded in the Complex domain. In a Multi-Layered network 
with Multi-Valued Neuron (MLMVN) [1], a multiple-valued threshold logic to map 
the complex-valued input to n discrete outputs using a piecewise continuous acti-
vation function (n is the total number of classes). Thus, the transformation does 
not perform one-to-one mapping of the real-valued input features to the Complex 
domain, and might cause misclassification. In a Phase-Encoded Complex-Valued 
Neural Network (PE-CVNN) [2], the complex-valued input features are obtained by 
phase encoding the real-valued input features between [0, π] using the transformation 
zl — 6χρ(ίπχι), where xl are the real-valued input features normalized in [0,1]. 
Recently, a fully complex-valued radial basis function (FC-RBF) classifier [27] and a 
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fast learning phase encoded complex-valued extreme learning machine (PE-CELM) 
classifier [25, 26] have been developed using the phase encoded transformation to 
convert the real-valued input features to the Complex domain. However, the phase 
encoded transformation maps the real-valued input features onto the unit circle in the 
I and II quadrants of the Complex plane, completely ignoring the other two quadrants 
and other regions in the I and II quadrants. Therefore, the transformation used in the 
PE-CVNN does not completely exploit the advantages of the orthogonal decision 
boundaries. 

To overcome the issues due to the transformation, a nonlinear transformation us-
ing asinh function has been proposed in Ref. £2). Although this transformation also 
maps the real-valued features to the I and II quadrants, the region of the Complex-
valued input space is not restricted to the unit circle. However, this transformation 
also ignores the other two quadrants of the Complex plane and does not effectively 
use the advantages of the orthogonal decision boundaries. In this paper, the complex-
valued input features (zl = [z\... zj . . . £^JT) are obtained by using a circular trans-
formation. The circular transformation for the jth feature of the tth sample is given 
by: 

Zj = siniax^ + for* + α^); j = 1 , . . . , m (7.60) 

where a, b G [0,1] are randomly chosen scaling constants and aj € [0,2π] is used to 
shift the origin to enable effective usage of the four quadrants of the Complex plane. 
As the circular transformation performs one-to-one mapping of the real-valued input 
features to the Complex domain, it uses all the four quadrants of the Complex domain 
effectively and overcomes the issues due to transformation in the existing complex-
valued classifiers. 

The coded class label in the Complex domain yl = [y\... y\... 2/^]T G Cn is 
given by 

t ( 1 + l i if c* = Z . 1 (n„. 
yi = { - 1 - l z otherwise l = ^ ' ^ <7'61) 

The classification problem in the Complex domain is defined as: Given the train-
ing data set, { ( z ^ y 1 ) , . . . ( z^y*) , . . . , (zN,yN)}, estimate the decision function 
(F : C771 —» Cn) to enable an accurate prediction of the class labels of unseen sam-
ples. The predicted class label of the tth sample (c?) is obtained from the predicted 
output of the network (y*) as 

c*= max Re (»J) (7.62) 
/ = l , 2 , . . . , n 

7.5.2 Data Sets 

The decision-making performance of McFCRN is evaluated using a set of bench-
mark classification problems from the UCI machine learning repository [4]. Table 
7.2 presents the details of the various benchmark data sets including the number of 
features, and number of samples used in training/testing data sets used in the study. 
The availability of small number of samples, the sampling bias, and the overlap be-
tween classes introduce additional complexity in the classification and may affect the 
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classification performance of the classifier [33]. To study the effect of these factors, 
we also consider the Imbalance Factor (I.F.) of the training and testing data sets, 
defined as 

I.F. = 1 n 
— mm 

Ni (7.63) 

where Ni is the number of samples belonging to a class /. Note that N = Y^i iVj. 
The imbalance factor gives a measure of the sample imbalance in the various classes 
of the training data set, and the imbalance factor of each data set considered in this 
study is also presented in Table 7.2. The training data set of the image segmentation 
problem is a balanced data set, while the remaining data sets are unbalanced in na-
ture. As it can be observed from the table, the imbalance factors of the training data 
sets vary widely in the range from 0.1 to 0.68. 

Table 7.2 Description of the various real-valued classification problems used 
in the performance study 

Type of 
data set 

Prob. No. of 
features 

No. of 
classes 

No. of samples 
Train | Test | Train | Test 

I.F. 

Multi-
category 

Image 
segmentation 
Vehicle 
classification 
Glass 
identification 

19 

18 

9 

7 

4 

6 

210 

424 

109 

2,100 

422 

105 

0 

0.1 

0.68 

0 

0.12 

0.73 

Binary Liver 
disease 
PIMA 
data 
Breast 
cancer 
Heart 
disease 

6 

8 

9 

14 

2 

2 

2 

2 

200 

400 

300 

70 

145 

368 

383 

200 

0.17 

0.225 

0.26 

0.14 

0.145 

0.39 

0.33 

0.1 

7.5.3 Modifications in McFCRN Learning Algorithm to Solve 

Real-Valued Classification Problems 

The learning algorithm of McFCRN described in Section 7.3 has been developed 
to solve complex-valued function approximation problems. Although they can also 
be used to approximate the decision surface to solve real-valued classification prob-
lems, the classification performance is affected by the definition of error and the 
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sample learn criteria. Hence, we modify the meta-cognitive component to improve 
the classification performance of McFCRN. In this respect, the predicted output in 
Eq. (7.30) is replaced to accommodate the hinge loss function and the criteria for 
neuron addition/parameter update is modified to incorporate a classification measure 
also. 
Hinge loss error function: Recently, it was shown in Ref. §5) and Ref. $3) that 
in real-valued classifiers, the hinge loss function helps the classifier to estimate the 
posterior probability more accurately than the mean squared error function. Hence, 
in this paper, we modify the error function defined in Eq. (7.33) as 

f 0, |f Real(y*#) > 1 
3 = \ ,„ / V λ TTTVT ^u :_ Z = 1 , . . . , n (7.64) 

' n ( y*") ' n ( y*")' otherwise 

Criteria for learning: While solving real-valued classification problems in the Com-
plex domain, it is mandatory that the class labels are predicted accurately. Hence, we 
have modified the neuron addition and parameter update criteria are modified to en-
sure accurate prediction of the class labels. Accordingly, the neuron addition criteria 
is modified as 

If c* Φ cl or (Μξ > E™ and φ\ > E+) (7.65) 

Add a neuron to the network. Choose the neuron center (u#) and the scaling 
factor (VK) randomly and compute the optimum output weights according to Eq. 
(7.43). Here, the predicted class labels are estimated using Eq. (7.62). 

The parameter update criteria is modified as 

If c* φ cl or (Ml > E™ and φ\ > ESf\ (7.66) 

Then, update the output weight according to Eq. (7.43). 

7.5.4 Performance Measures 

The following performance measures are used to evaluate the classification perfor-
mance of FCRN in comparison to other complex-valued learning algorithms on the 
problems presented in Table 7.2. 

Average classification efficiency: The average classification efficiency (ηα) is 
defined as the average ratio of number of correctly classified samples in each class, 
to the total number of samples in each class. 

1 n 

i° = - Σ ΐ τ χ 1 0 0 % <7·67> 
where qu is the total number of correctly classified samples in the training/testing 
data set. 

Overall classification efficiency: The overall classification efficiency (η0) is de-
fined as the ratio of total number of correctly classified samples to the total number 
of samples available in the training/testing data set. 
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η0 = ^ ψ ^ x 100% (7.68) 

In the next section, we evaluate the classification performance of McFCRN with 
the above modifications, on a set of benchmark and practical classification problems 
and verify the improved performance due to the meta-cognitive component and or-
thogonal decision boundaries of McFCRN. 

7.5.5 Multi-category Benchmark Classification Problems 

First, to study the effect of meta-cognition on a simple problem, we studied the per-
formance of McFCRN on the IRIS classification problem. In the IRIS classification 
problem, 4 input features are used to classify the samples into one of the 3 classes. 
McFCRN achieves an overall testing classification efficiency of 98.1% with 7 hid-
den neurons. Also, it is observed during the training process that of the total 45 
training samples, 7 samples are used to add a neuron and the remaining 38 samples 
are deleted during the training process. On the other hand, SVM classifier uses all the 
training samples and 25 neurons to achieve an overall testing efficiency of 96.19%. 
Thus, the effect of meta-cognition is clearly evident in the IRIS classification prob-
lem. 

Next, the performance results of McFCRN is studied in comparison with other 
complex-valued classifiers and a few best performing real-valued classifiers on the 
three multi-category benchmark classification problems. Support Vector Machines 
and Self-adaptive Resource Allocation Network (SRAN) [29] are the two real-valued 
classifiers used for comparison. The complex-valued classifiers used in comparison 
are: Phase Encoded Complex-valued Extreme Learning Machine (PE-CELM), Bi-
linear Branch-cut Complex-valued Extreme Learning Machine (BB-CELM) [25], 
FC-RBF [27], Mc-FCRBF [24], CSRAN [31] and FCRN [30]. The results for SVM 
and SRAN classifiers are reproduced from Ref. £9). The performance results for PE-
CELM, and BB-CELM are reproduced from Ref. £5), those of FC-RBF classifier 
from Ref. £7) and those of Mc-FCRBF classifier from Ref. £4). The number of neu-
rons used in the classification, and the testing classification accuracies of McFCRN 
in comparison with the aforementioned classifiers for the multi-category benchmark 
classification problems are presented in Table 7.3. 

From the table, it can be observed that the generalized performance of McFCRN 
is better than other real-valued and complex-valued classifiers available in the lit-
erature. Also, the computational effort required to train McFCRN is significantly 
less. McFCRN evidently outperforms the real-valued classifiers used in comparison, 
especially in the unbalanced vehicle classification and the glass identification data 
sets. The following observations are notable from the performance results on the 
multi-category benchmark data sets presented in Table 7.3: 

• Balanced data set-Image segmentation problem: McFCRN uses only 194 
samples of the total 210 samples from the training data set to learn the decision 



1 7 8 META-COGNITIVE COMPLEX-VALUED RELAXATION NETWORK 

surface described by the image segmentation problem. Moreover, it requires 
only a fewer neurons and a slightly improved generalization performance. 

• Unbalanced data set-Vehicle classification problem: The meta-cognitive 
component of McFCRN uses only 572 of the total 620 samples to approxi-
mate the decision surface represented by the vehicle classification data set. It 
is observable from the table that the meta-cognitive component improves the 
generalization ability of FCRN by at least 1%. 

• Unbalanced data set-Glass identification problem: In the glass identifica-
tion problem with highly unbalanced data set, McFCRN deleted 18 samples 
of the total 336 training samples during the training process. Of the remaining 
318 samples, 80 samples are used to add neurons, and 238 samples are used 
in parameter update. It can also be observed from Table 7.3 that the meta-
cognitive component improves the generalization ability of FCRN at least by 
3%. 

7.5.6 Binary Classification Problems 

We study the classification performance of McFCRN classifier using the benchmark 
binary classification problems described in Table 7.2. The performance of McFCRN 
is compared with the real-valued SVM, ELM, SRAN [29] PE-CELM, BB-CELM 
[25], FC-RBF [27], Mc-FCRBF [24], CSRAN [31] and FCRN [30]. The results for 
SVM and SRAN classifiers are reproduced from Ref. £9), those of PE-CELM, and 
BB-CELM are reproduced from Ref. £5). The classification results of FC-RBF and 
Mc-FCRBF classifiers are reproduced from Ref. £7) and Ref. £4), respectively. The 
performance results of McFCRN classifier on the binary classification problems in 
comparison to these classifiers are presented in Table 7.4. 

From the table, it can be observed that McFCRN classifier outperforms all the 
other real-valued/complex-valued classifiers used in this study. Although FC-RBF is 
also a fully complex-valued classifier with the sech activation function in the hidden 
layer, the energy function used in McFCRN helps it to perform better than FC-RBF 
classifier. Moreover, the meta-cognitive component of McFCRN improves the gen-
eralization ability of FCRN classifier. 

7.6 CONCLUSION 

In this chapter, we have discussed the various meta-cognitive fully complex-valued 
learning algorithms available in the literature. We have also presented a Meta-
cognitive Fully Complex-valued Relaxation Network (McFCRN). McFCRN has two 
components, namely, the cognitive and meta-cognitive component. FCRN is the 
cognitive component of McFCRN and a self-regulatory learning mechanism is the 
meta-cognitive component of McFCRN. FCRN, which is the cognitive component 
of McFCRN, uses a logarithmic error function that is an explicit representation of 
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Table 7.3 Performance comparison for the multi-category classification 
problems. 

Problem Classifier 
domain 

Learning 
model 

No. of 
neurons 

Training 
time (sec.) 

Testing η 

Image 
segmentation 

Real-
valued 

Complex-
valued 

SVM 
ELM 
SRAN 
FC-RBF 
Mc-FCRBF 
CSRAN 
BB-CELM 
PE-CELM 
FCRN 
McFCRN 

127 
49 
48 
38 
36 
54 
65 
75 
70 
60 

721 
0.25 
22 

421 
362 
339 
0.03 
0.03 
0.4 

14.23 

91.38 
90.23 

93 
92.33 
92.9 
88 

92.5 
92.1 
93.3 
93.8 

91.38 
90.23 

93 
92.33 
92.9 
88 

92.5 
92.1 
93.3 
93.8 

Vehicle 
classification 

Real-
valued 

Complex-
valued 

SVM 
ELM 
SRAN 
FC-RBF 
Mc-FCRBF 
CSRAN 
BB-CELM 
PE-CELM 
FCRN 
McFCRN 

340 
150 
113 
70 
90 
80 
100 
100 
90 
90 

550 
0.4 
55 

678 
638 
352 
0.11 
0.11 
0.8 
19.8 

70.62 
77.01 
75.12 
77.01 
79.38 
79.15 
80.3 
80.8 

82.62 
83.2 

68.51 
77.59 
76.86 
77.46 
78.25 
79.16 
80.4 
81.1 
82.46 
83.4 

Glass 
identification 

Real-
valued 

Complex-
valued 

SVM 
ELM 
SRAN 
FC-RBF 
Mc-FCRBF 
CSRAN 
BB-CELM 
PE-CELM 
FCRN 
McFCRN 

183 
80 
59 
90 
90 
80 
70 
70 
80 
80 

320 
0.05 
28 

452 
364 
452 
0.08 
0.08 
0.25 
16.22 

70.4 
81.31 
86.2 

83.76 
84.75 
83.5 

88.16 
86.35 
94.5 
97.7 

75.61 
87.43 
80.95 
80.95 
83.33 
78.09 

81 
80 

88.3 
92.2 

both magnitude and phase of the complex-valued errors to enable accurate approx-
imations. For random constant input and hidden layer parameters, FCRN estimates 
the unique and optimum output weights corresponding to the minimum energy point 
of the logarithmic error function using a projection based batch learning algorithm. 
The projection based learning algorithm of FCRN begins with zero hidden neurons 
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Table 7.4 
problems. 

Performance comparison on benchmark binary classification 

Problem Classifier 
domain 

Classifier Training 
time (s) 

Testing 
efficiency (r/0) 

Liver 

disorders 
Real-valued 

Complex-valued 

SVM 
ELM 

SRAN 
FC-RBF 

Mc-FCRBF 
CSRAN 

BB-CELM 
PE-CELM 

FCRN 
McFCRN 

141 
100 
91 
20 
20 
20 
15 
10 
10 
10 

0.0972 
0.1685 

3.38 
133 
112 
38 

0.06 
0.05 
0.05 
1.3 

71.03 
72.41 
66.9 

74.46 
76.6 
67.59 
75.17 
75.86 
75.86 
76.55 

PIMA 

data 
Real-valued 

Complex-valued 

SVM 
ELM 

SRAN 
FC-RBF 

Mc-FCRBF 
CSRAN 

BB-CELM 
PE-CELM 

FCRN 
McFCRN 

221 
100 
97 
20 
20 
20 
10 
5 
15 
15 

0.205 
0.2942 
12.24 
130.3 
103 
64 

0.15 
0.08 
0.125 
1.46 

77.45 
76.63 
78.53 
78.53 
79.89 
77.99 
78.8 

78.53 
80.71 
81.82 

Breast 

cline3-6 cancer 

cline3-6 

Real-valued 

Complex-valued 

SVM 
ELM 

SRAN 
FC-RBF 

Mc-FCRBF 
CSRAN 

BB-CELM 
PE-CELM 

FCRN 
McFCRN 

24 
66 
7 
10 
10 
20 
15 
15 
15 
15 

0.1118 
0.1442 

0.17 
158.3 
125 
60 

0.06 
0.09 
0.16 
1.23 

96.6 
96.35 
96.87 
97.12 
97.4 

96.08 
92.69 
97.13 
97.4 
97.65 

Heart 

Disease 

cline3-6 

Real-valued 

Complex-valued 

SVM 
ELM 

SRAN 
FC-RBF 

Mc-FCRBF 
CSRAN 

BB-CELM 
PE-CELM 

FCRN 
McFCRN 

42 
36 
28 
20 
20 
20 
5 
5 
10 
10 

0.038 
0.15 
0.534 
45.6 
32.8 
26 

0.03 
0.02 
0.03 
0.16 

75.5 
76.5 
78.5 
78 

79.5 
76.5 
83 

83.5 
84.5 
85.5 
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and builds a minimal network architecture to approximate the function defined by 
the training data set. Thus FCRN requires lesser computational effort as the weights 
are learnt directly by inversion of a nonsingular matrix. The self-regulatory learning 
mechanism of McFCRN decides what-to-learn, when-to-learn and how-to-learn in 
a meta-cognitive framework by choosing suitable learning strategies for each sam-
ple in the training data set. The two components of McFCRN and their learning 
algorithm are explained in detail. Performance study on a function approximation 
problem and a set of real-valued classification problems show the superior perfor-
mance and computational abilities of McFCRN. 
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In this chapter, we describe a multilayer feedforward neural network equipped 
with multi-valued neurons and its application to the domain of brain-computer 
interfacing (BCI). A new methodology for electroencephalogram (EEG)-based 
BCI is developed with which subjects can issue commands by looking at the 
corresponding targets that are flickering at the same frequency but with differ-
ent initial phase. Two filter-based feature selection procedures are discussed 
for extracting relevant information from the phases estimated from the recorded 
EEGs. The proposed multichannel methodology is compared with existing sin-
gle channel approaches and the results show that the former performs better in 
terms of accuracy and length of EEG interval considered for phase estimation. 

8.1 BRAIN-COMPUTER INTERFACE (BCI) 

Ever since it was acknowledged that the brain controls our intentions, motivations, 
decisions, muscles, and so on, theories were developed and experiments set up to 
better understand its neural origin. These efforts also led to the challenge to mimic 
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the brain by constructing artificial ones or to incorporate some of its traits into intel-
ligent systems. One example is the artificial neural networks. They show the kind of 
adaptive behavior, learning capacity, and pattern recognition capabilities which we 
generally attribute to the brain. They also were the first to generate these capabilities 
by modifying synaptic connections between the artificial neurons, which is consid-
ered to be one of the ways our brain stores memories and displays adaptive behavior. 
Besides understanding the brain by developing models and theories, one also started 
to record and monitor brain activity directly, as well as to decode it in terms of the 
underlying sensory, cognitive and motor processes. 

Soon after Hans Berger performed his first electroencephalography (EEG) record-
ings back in 1928, scientists started to analyze change in the electrical activity recor-
ded over the subject's scalp in response to external stimuli or changes in the subject's 
mental or cognitive state. They found correlates providing, albeit indirectly, impor-
tant insights into how the evoked EEG changes could be turned into command(s) for 
controlling a computer. This is in fact the principle behind the Brain-Computer In-
terfaces (BCIs).2 It records brain activity, decodes it, and issues commands, all with 
the aim to enable the subject, from whom the recording are made, to interact with the 
external world, by controlling a computer program (e.g., a game), a robot actuator, 
and so on, bypassing the need for muscular activity. While this was first demon-
strated in the early 1970's [51], BCIs received widespread attention only recently 
with the advent of EEG devices and computer technology that made it possible to 
perform on-line monitoring and decoding. BCI research is now widely considered 
as one of the most successful applications of the neuroscience as it can provide an 
outlook for immediately improving the quality of life of patients suffering from se-
vere communication and motor disabilities such as in the case of (terminal stage) 
amyotrophic lateral sclerosis, stroke, traumatic brain or spinal cord injury, cerebral 
palsy, muscular dystrophy etc. For example, with the use of a BCI, a locked-in syn-
drome patient (re)gains the ability to communicate his/her intentions, desired motor 
actions, emotions, etc. [32, 37]. 

Any BCI system (see Fig. 8.1) consists of the following components: a recording 
device, a preprocessor, a decoder, and an external device, such as a robot actua-
tor or a computer display where the result of the issued commands are shown to 
the subject. Brain activity is either recorded inside (invasively) or outside the brain 
(noninvasively), e.g., on the scalp. Apart from EEG, noninvasive BCIs [10, 15, 11] 
have been described that employ magnetoencephalography (MEG) and functional 
magnetic resonance imaging (fMRI). Invasive BCIs are based on electrode arrays 
implanted in brain tissue [50, 38, 39] or just above it as in the case of the electrocor-
ticograms (ECoG) [28]. Preprocessing is done with the spatial and temporal filtering 
(for example, the notch filter to remove power line interference) of the recorded 
signals, along with the selection and construction of signal features that detect infor-
mation relevant for the considered decoding task. The decoder performs the classifi-
cation or regression of the preprocessed signal into the control signal of the external 

2Sometimes the term Brain-Machine Interfaces (BMIs) is used, generalizing the type of controllable 
device. 
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Brain activity 
recording device 

Preprocessor Decoder 

Figure 8.1 Generic BCI scheme (see text). (See color insert.) 

device. The feedback provided to the subject, of the outcome of the decoder, is an 
important aspect of the BCI system as it enables one to detect mistakes and motivates 
in this way the subject to better modulate his/her brain activity, when adhering to a 
so-called neurofeedback principle, or to improve the preprocessor and the decoder, 
or both. Thus, when the feedback is used to improve the outcome, the BCI can be 
viewed as a closed-loop system. 

8.1.1 Invasive BCI 

The origin of invasive BCFs can be traced back to 1999 when, for the first time, it was 
shown that ensembles of cortical neurons could directly control a robotic manipula-
tor [13]. Since then a steady increase in the number of publications can be observed. 
Invasive BCIs can be divided according to the type of signal used. They can rely on 
action potentials (spikes), which is a short-lasting event with a rapid, stereotypical 
change in the membrane potential. Spike trains are extracted by high-pass filter-
ing the extracellular recordings (above 500 Hz). For BCI purposes, recordings are 
made from either a single cortical area (for example, the primary motor cortical area, 
Ml) or from multiple ones, thereby taking advantage of the distributed processing 
of information in the brain. For decoding purposes, either spike trains from a few 
neurons, with prominent tuning properties [46,47], or from a large ensemble of neu-
rons (hundreds of cells) [38, 12, 54] are considered. If the low-frequency component 
(below 300 Hz) of the extracellular recording is used, then we are dealing with local 
field potentials (LFPs). LFPs represent the composite extracellular potentials from 
hundreds or thousands of neurons around the electrode tip. They are more stable than 
spikes as they can be recorded for longer period of time, which makes them attractive 
for BCI applications [39, 40, 44]. All invasive BCIs require brain surgery; and, as a 
consequence, much of the research is done on animal such as monkeys [46, 47, 26], 
rather than directly on humans [25, 23]. Spike- or LFP-based BCIs are primary de-
veloped for motor control, for example, of an arm actuator [26, 46, 47, 54], where 
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for decoding a linear regression of the spike firing rate into the position and velocity 
of the limb is usually considered. For a review of invasive BCI, we refer to Ref. 26. 

8.1.2 Noninvasive BCI 

Noninvasive BCI mostly rely on electroencephalogram (EEG) recordings, which 
measure cumulative simultaneous synchronous activity of thousands or millions of 
pyramidal neurons mainly in close proximity of the scalp. Since such recordings do 
not require any surgery, and therefore can be performed on human subjects directly, 
they have attracted more attention in the scientific community than their invasive 
counterparts. Noninvasive BCI can be divided according to the brain signal paradigm 
used. We can distinguish BCIs based on event-related potentials (ERPs) [19,17,16], 
which are stereotyped electrophysiological responses to time- and phase-locked in-
ternal or external stimuli [30]. In order to detect the ERP component in the signal, 
one trial is usually not enough and several trials should be averaged to reduce addi-
tive noise and other irrelevant activity in the recorded signals. The most-known BCI 
of this type is the one based on the cognitive P300 ('oddball') component of ERP 
in the parietal cortex, which is evoked in response to an infrequent preferred stimu-
lus but not to a frequent, nonpreferred stimulus. The aim of the decoder is then to 
detect an enhanced positive-going signal component with a latency of about 300 ms 
when observing the rare stimulus [43]. It has been widely used to achieve a letter 
spelling or other type of communication system operating in visual, auditive, or tac-
tile mode [19, 15,49]. Besides cognitive, also early sensory components of the ERP 
have been used, — for example, the visually evoked potential (VEP) [51]. 

Whereas BCIs based on ERPs deal with information encoded in the temporal do-
main (the averaged ERP waveform), another BCI detects changes in the power of a 
particular frequency band ("rhythm") evoked by some voluntary acts, for example, 
the imagination of right/left-hand movements. Since those events in EEG recordings 
are not phase locked to the onset of the voluntary acts, an averaging method is of no 
use here. The relevant information is primarily encoded in the frequency domain. 
By monitoring event-related de synchronization (ERD) and event-related synchro-
nization (ERS) in the mu- and beta-bands, in response to the imagined movement, 
one can construct different types of BCI applications [56, 42]. The detection of 
other mental tasks (e.g., imagined cube rotation, number subtraction, word associa-
tion [41]) also belong to this category. 

8.2 BCI BASED ON STEADY-STATE VISUAL EVOKED 
POTENTIALS 

In this chapter we focus on a particular type of VEP-based BCI, namely one based on 
the Steady-State Visual Evoked Potential (SSVEP). It relies on the psychophysiolog-
ical properties of EEG responses recorded from the occipital pole during the periodic 
presentation of identical visual stimuli (i.e., flickering stimuli). When the periodic 
presentation is at a sufficiently high rate (above 6 Hz), the individual transient vi-
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stimulus 

/ 2/ 3/ frequency 

Figure 8.2 Schematic overview of the SSVEP decoding approach: (A) the subject 
looks at the Target stimulus, flickering at frequency / , (B) noisy EEG-signals are 
recorded, (C) the power spectral density plot of the EEG signal (estimated over a 
sufficiently large time window) shows dominant peaks at / , 2/, and 3/ . 

sual responses overlap, leading to a steady-state signal: the signal resonates at the 
stimulus rate and its multipliers [30]. This means that, when the subject is looking 
at stimuli flickering at frequency / , the frequency / and its harmonics 2 / , 3 / , . . . 
are salient in the Fourier transform of the EEG signal, as schematically illustrated in 
Figure 8.2. However, as the amplitude of a typical EEG signal decreases as 1 / / in 
the spectral domain [8], the power of / decreases with increasing frequency (as is 
the case with the harmonics as well). 

As the SSVEP is embedded in other ongoing brain activity and (recording) noise; 
hence, when considering a too small recording window, the flickering frequency / 
could not be detected or erroneously detected. To overcome this problem, averaging 
over several time intervals [14], recording over longer time intervals [53] and/or 
preliminary training [18, 31, 34] are often used for increasing the signal-to-noise 
ratio (SNR) and the detectability of the responses. 

An SSVEP-based BCI can be considered as a dependent one according to the clas-
sification proposed in Ref. 57. The dependent BCI does not use the brain's normal 
output pathways (for example, the brain's activation of muscles for typing a letter) 
to carry the message, but activity in these pathways (e.g., muscles) is needed to gen-
erate the brain activity (e.g., EEG) that does carry it. In the case of SSVEP BCI, the 
brain's output channel is EEG, but the generation of the EEG signal depends on the 
gaze direction (subject should look at flickering stimulus) and therefore on extraocu-
lar muscles and the cranial nerves that activate them. A dependent BCI is essentially 
an alternative method for detecting/decoding of the messages carried by the brain's 
normal output pathways. It has the advantages of a high information transfer rate 
(the amount of information communicated per unit time) [9] and little (or no) user 
training [53]. 

As a stimulation device for SSVEP BCI, either light-emitting diodes (LEDs) or 
computer screens (LCD or CRT monitors) are used [59]. While the LEDs can evoke 
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(a) OnVofP'frequency-coded stimulation. 

(b) 'OnVofP' (50% duty cycle) phase-coded stimulation. 

Figure 8.3 Examples of frame-based ("on/off") stimulation patterns for frequency-
coded (a) and phase-coded (b) SSVEP BCIs. The white-shaded squares indicate the 
"on" frames, while the dark-shaded squares are the "off" frames. Only 30 frames 
corresponding to 500 ms of stimulation (on a 60-Hz screen) are shown. 

more prominent SSVEP responses [59], they still require additional equipment (con-
sidering that the feedback is presented on a computer screen). Therefore, SSVEP-
based BCI systems mostly rely on computer screens for visual stimulation in order 
to combine stimulation and feedback presentation devices. However, the latter also 
have their disadvantages as the stimulation frequencies need to be related to the re-
fresh rate of the computer screen [52] (see Section 8.2.1), whereas LEDs can be 
stimulated at any desirable frequency. In any case, the flickering frequency needs 
to be restricted to specific (subject-dependent) frequency bands to obtain good re-
sponses [34]. 

8.2.1 Frequency-Coded SSVEP BCI 

The stimulation sequence is constructed in the follwoing way: an intense ("on") 
stimulus is shown for q frames, and a less intense ("off") stimulus for the next w 
frames. Hence, the flickering period of the stimulus is q + w frames and the cor-
responding stimulus frequency is /scr/(<7 + w), where /scr is the refresh rate of the 
computer screen used for stimulation. An example of an "on/off" stimulations pat-
tern (based on q = 1 "on" frames, indicated by the white-shaded squares) for 20, 
15, 12, and 10 Hz constructed for an / ^ = 60 Hz is shown in Fig. 8.3(a). The 
whole subset of SSVEP stimulation frequencies for a 60-Hz screen consists of the 
following frequencies: 30, 20, 15, 12, 10, 8.57, 7.5, 6.66, and 6 Hz. 

Frequency-coded SSVEP BCIs rely on the detection of the SSVEP induced by 
one of several ( / i , . . . , /;v) stimulation frequencies, one for each selectable target. 
Thus, the information is encoded into the frequency domain. The detection is usu-
ally based on monitoring of an increase (with respect to the normal resting condi-
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tion) in the power spectral density (psd) of one of the stimulation frequencies (i.e., 
Λ, · · · 5 /iv and their subharmonics) during the time the subject is gazing at the cor-
responding target [21]. After detecting the increase, e.g., at frequency / , the BCI 
system produces an output (command) associated with that target. 

The number of encodable targets in frequency-coded SSVEP-based BCI is fac-
tually even lower than the dividers of the screen's refresh rate as it is not desirable 
to take frequencies that are dividers of one another [52]. To clarify this, consider 
again the previously mentioned nine frequencies for a 60-Hz screen. Assume we 
have 10 Hz and 20 Hz flickering frequencies. In this case, when the subject is gaz-
ing at the 10-Hz target, we have an increase in the psd at 10 Hz and consequent 
subharmonics, which are 20 Hz, 30 Hz, and so on. While powers in those subhar-
monics are decreasing with frequency, there is still a significant peak at 20 Hz, i.e., 
the 10-Hz stimulation produces also an increase in psd amplitude at 20 Hz. Thus, it 
is likely to make a mistake by erroneously interpreting the 20-Hz frequency based 
on EEG recordings. Due to this fact, we have to further limit the number of possible 
frequencies simultaneously used for stimulation. 

8.2.2 Phase-Coded SSVEP BCI 

In order to increase the number of encodable targets in SSVEP-based BCI, the phase 
has been proposed in addition (or as an alternative) to the frequency [24, 27, 33]: 
even a single frequency could be used with different phase lags for encoding dif-
ferent targets. For example, assume we have an / = 15-Hz stimulation, on a 60-
Hz monitor, which is constructed by repeating one stimulation period (with length 
Tfr = 4 frames) of q = 1 intense frames followed by w = 3 "off" frames. This 
leads to the stimulation profile a(k) (where k is the video frame index) as visual-
ized in Fig. 8.3(b). Let us consider a phase lag Αφ. One period of stimulation takes 
Tfr frames and corresponds to 2π, thus, the phase lag Αφ produces a corresponding 
stimulation delay of Ah = Τ&Αφ/2π = 2Αφ/π frames. Note, that Ak must be an 
integer, which is the case when ^ G Z . For example, with a phase lag Αφ = f, 
the corresponding frame lag is Δ k = 1 and the corresponding stimulation profiles 
for targets 2, 3, and 4 are constructed by shifting in time the profile a(k), by 1,2, 
and 3 frames (into the future), respectively, as depicted in Fig. 8.3(b). By design, the 
resulting set of stimuli is circular (i.e., target 3 could be received from target 1 by 
shifting on π in either direction). The phases estimated from the EEG responses on 
the phase-coded stimulation also demonstrate a similar property (of being circular). 
When the subject is presented with such phase-coded stimulations, by extracting 
phase information from the Fourier transform of the EEG signal at / = 15 Hz and 
by comparing it to the phase of some reference signal (for example, the phase of the 
EEG response for a stimulus with zero phase lag [27]), one can detect the target the 
subject is looking at. The comparison to the reference phase is one of the simplest 
solutions to the more general problem of constructing a mapping of circular data 
(estimated phases from EEG data may be represented on the unit circle in the com-
plex plane) onto circular target-classes [35, 36]. By combining the frequency- and 
phase-based approaches, one can increase the number of encoded targets [24]. 
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8.3 EEG SIGNAL PREPROCESSING 

8.3.1 EEG Data Acquisition 

We made recordings with a wireless EEG system consisting of two parts: an am-
plifier coupled with a wireless transmitter and a USB receiver (Fig. 8.4(a), 8.4(b)). 
The wireless EEG system was developed by Hoist Centre3 and built around their 
ultra-low power eight-channel EEG amplifier chip. Each EEG channel is sampled 
with a resolution of 12 bit per sample at 1024 Hz. We use an EEG-cap with large 
filling holes and sockets for active Ag/AgCl electrodes (ActiCap, Brain Products, 
Fig. 8.4(c)). The recordings are made with eight electrodes located primarily on 
the occipital pole, namely at positions P07, P03, POz, P04, P08, 0 1 , Oz, 02 ac-
cording to the international 10-10 system (Fig. 8.4(d)). The reference and ground 
electrodes are placed on the right and left mastoids, respectively, mainly for com-
paring our results to those of [27], in which case the recordings were done with a 
single Oz electrode referenced to the right mastoid. For further analysis we addi-
tionally considered EEGs from the mentioned electrodes with respect to common 
average reference (CAR)4 and all possible bipolar combinations,5 thus leading to 
44 channels Sd(t). The phases were extracted as 

φα = arg I ^sd(t)cos(2nnhft) + i ^ sd(t) sm(2nnh ft) I (8.1) 

where i — >/—X / is the stimulus frequency, and rih indicates the considered (sub)-
harmonic(s). We used segments Sd(t) of length T (T = 1 , . . . , 5 seconds) cropped 
from the stimulation stage recordings. We further restrict ourselves to only the prin-
cipal harmonic, thus considering only rih = 1, leading to 44-dimensional feature 
space of phases φ^. Note the difference in notations: we use Δφ to denote the phase 
shifts in the visual stimulation, while φ is used for the phases extracted from the 
recorded EEG data. 

8.3.2 Experiment Description 

Seven subjects (all male, aged 23-35, average 28.3 years) participated in the exper-
iment. The subjects were sitting about 60 cm from a notebook's LCD screen (with 
refresh rate /scr = 60 Hz) on which the stimuli of size 6 x 6 cm were shown. A set 
of N = 6 stimuli flickering at / = 10 Hz with phase lags of Δ(/> = π /3 were simul-
taneously presented using the stimulation profiles shown in Fig. 8.5. The stimulus 
had a 50% duty cycle (—^ · 100 %) as this was reported to produce better detectable 

3 http .//www. holstcentre. com/ 
4The CAR signal is a difference between the EEG from the current electrode and the average ones from 
all electrodes used in the recordings. 
5The resulting signal is the difference between the EEG from the current electrode and other preselected 
one. 
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(a) (b) 

(c) (d) 

Figure 8.4 (a) Wireless eight-channel amplifier/transmitter. (b) Receiver 
station, (c) Active electrode (Brain Products Acticap2) used for EEG acquisition. 
(d) Locations of the electrodes on the scalp: the recording electrodes are shaded in 
dark blue, the reference electrode is shaded in light green, and the ground electrode 
has gray background. (See color insert.) 

SSVEP responses for mostly all frequencies and for / = 10 Hz in particular [48]. 
The stimuli were arranged in two rows and three columns, separated 7.5 cm horizon-
tally and 7.75 cm vertically. The fixation point marker was placed for five seconds 
on each stimulus followed by a one second interval allowing the gaze to shift to the 
next stimulus (during this time no stimuli were shown). Each stimulus was attended 
by the subject L — 20 times. In total, we acquired 6 x 20 = 120 five-second-long 
EEG intervals. 
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8.3.3 Feature Selection 

We wish to decode N different phase shifted stimuli (in our case TV = 6) based on 
K (in our case K = 44) phase features. Since both the input features (extracted 
phases) and the output classes are circular, our classifier should be able to map the 
lf-dimensional torus into a circle. To achieve this, we firstly reduce the number of 
features K through a filter-based (thus, not considering the classifier output) fea-
ture selection procedure. As it was pointed out in Ref. 22, the objective of feature 
selection is threefold: 

1. To improve the prediction performance of the classifier (by avoiding undesir-
able input variables that can make the classifier's learning process to adjust to 
inseparable data). 

2. To provide low computationally complex classifiers that are also more cost-
effective (by reducing the number of input channels/variables of the classifier). 

3. To yield a better understanding of the underlying process that generated the 
data. 

To understand the necessity of selecting appropriate channels, let us consider Fig. 8.6, 
where phases extracted from EEG recordings are represented by shaped and colored 
symbols (each shape and color correspond to a particular phase shifted target in a 
particular round of the experiment, where the subject was asked to gaze at a particu-
lar flickering stimulus for T — 1 second) for three different channels: Oz referenced 
to the mastoid (as it was considered in Ref. 27), bipolar Oz-POz (as it was consid-
ered in Ref. 24) and the best channel according to the standard deviation selection 
procedure described below. It is clearly seen that the latter yields the best separabil-
ity of the classes. The feature selection procedure should be applied to training data, 
with further restriction to selected channels for new data coming for classification. 

The feature selection procedure has to take into account the circular nature of the 
data. Thus, when calculating estimates, we have to rely on circular statistics [20]. In 

/ = 10Hz, Δ<£ι=0 I I I ■ ■ I I I M E I X M E I I J W J X ^ M 
/ = 10Hz, Δ 2̂ = | II I I — I C M E I X M i I I ■ ■ I I M 

/ = IOHZ, Αφ4 = π ^mnzjamjjJii^MJznmmjnimmcuj 
/ = 10Hz, Δ05 = ιτ ί :^βΟΧβΒΕΓΓΒΒΚΖΖ:^ 
/ = 10Hz, Αφ6 = ψ I I ■ ■ I I i M H T M 

Figure 8.5 Phase-coded "on/off" stimulation patterns for 10-Hz stimulation on a 
60-Hz screen. As in Fig. 8.3, the white-shaded squares indicate the intensified ("on") 
frames, and the dark-shaded ones indicate the "off" frames. Each row corresponds to 
one target stimulation profile. 
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Figure 8.6 Distribution of estimated phases (expressed as angular values) for 
subject 1 in the experiment described in Section 8.3.2 for channels Oz (left), POz-Oz 
(central) and POz-02 (right). Each dot corresponds to the phase estimated from a 
one second interval recorded when the subject was observing a particular phase-shifted 
stimulus. Colors represent target-classes (with the stimulus shifted by A 0 m c = rac7r/3, 
where mc is the class index). Radial lines correspond to the circular means for each 
class. For the sake of visualization, each class is drawn on a circle with a different 
radius. (See color insert.) 

this case, the mean value for a set of phases φ\, φ\,..., φ% is estimated as 

argi^e^J (8.2) 

where i is the imaginary unit, d is feature index and I is the trial index (/ = 1 , . . . , L). 
The mean values are, for the data of each class, drawn as radial lines in Fig. 8.6. The 
proposed estimation of the mean value by converting the phases into a complex num-
ber et(Pd on a unit circle is a convenient way to visualize the data and the classifier 
output. Additionally to this, the unique correspondence between phases and unit 
length complex numbers can be further exploited when constructing our classifier. 

If we take into account not only the argument but also the length R^ of the sum 
vector Y^t e

t(fd, we can estimate the circular standard deviation according to 

Λ/2(1 - Rd) (8.3) 

Those standard deviations are in turn used as the basis of the following heuristic 
feature selection method. If we look into the distribution of our data (see Fig. 8.6), 
we may find that channels with a good separability between classes also possess the 
property that the standard deviation (scatterness of the data) within each class is min-
imized. Indeed, if we look, for example, into the "black" class (stars) in Fig. 8.6, we 
observe a decrease in the standard deviation of the right (better separable) channel 
compared to the channels visualized left from it. Thus, the maximal standard de-
viation between all encoded classes can serve as a way to arrange the channels in 
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increasing order. By taking the first channels in this ranking, we factually perform a 
filter feature selection. 

As another more rigorous feature selection procedure, we can rely on a statistical 
test for testing differences between mean values of paired classes. First of all, we 
assume that the data from each class mc (mc = 1 , . . . , N) and each feature d(d — 
1 , . . . , K) are taken from the von Mises distribution 

ΡΓ W . » D = e x PW · «*(*> ~ μΓ))/(2π/0(«Γ)) (8.4) 
where I0 is the modified Bessel function of order zero, and K™C and /x™c are the pa-
rameters responsible for the circular variance and the circular mean. By considering 
this assumption and the equalities of «'s, we can perform pairwise (each class vs. 
each class for every channel) Watson-Williams tests, which is the circular analogue 
of the one-factor ANOVA. Assigning to each channel the maximal p-value between 
all pairwise tests, we can rank them in ascending order. And, as in the previously 
described feature selection procedure, we perform a filter feature selection procedure 
by taking the first channels in this ranking. Albeit we rely here on the assumption of 
a von Mises distribution with equal concentration parameter /c, it was shown that the 
Watson-Williams test is robust against deviations from this assumption [58]. 

8.4 DECODING BASED ON MLMVN FOR PHASE-CODED SSVEP 
BCI 

8.4.1 Multi-Valued Neuron 

The discrete multi-valued neuron (MVN) was introduced in Ref. 6 as a neural el-
ement based on the principles of multiple-valued threshold logic over the field of 
complex numbers. These principles have been initially formulated in Ref. 7 and then 
presented in Ref. 5. The concept of multiple-valued threshold logic over the field of 
complex numbers was recently comprehensively covered in Ref. 1. 

The discrete MVN performs a mapping between n inputs and a single output. 
This mapping is described by a multiple-valued (k-valued) function of n variables 
/ (z i , #2, · · ·, #n )> which is a function of fc-valued logic over the field of complex 
numbers [1]. For simplicity, we will omit in what follows "over the field of complex 
numbers" but keeping it in mind. The values of the Ar-valued logic are encoded by the 
kth roots of unity ε* = et2n^k, j G 0 , 1 , . . . , k — 1 (iis an imaginary unity), not by 
integers 0 , 1 , . . . , k — 1 as in the classical fc-valued logic. A &-valued function, which 
can be learned by a single MVN, is called a multiple-valued (fc-valued) threshold 
function or a threshold function of fc-valued logic. A fc-valued threshold function 
can be represented using n + 1 complex-valued weights as follows [5, 1]: 

/ ( £ ι , # 2 , . . . , £ η ) = P(W0 +W1X1 H \-WnXn) (8.5) 

where # i ,x 2 , · · · ιχη are the variables on which this function depends (neuron in-
puts), and wo, wi,..., wn are the weights. The values of the function and of the vari-
ables are complex. They are the fcth roots of unity: ε·7 = et2n^k, j 6 0 , 1 , . . . , k — 1, 
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Figure 8.7 Geometrical interpretation of the discrete MVN activation function 
P(z) = ei2nj/k. 

i is an imaginary unity. P is the activation function of the neuron: 

P{z) = ei27rj/k, if2nj/k < argz < 2n(j + l ) /k (8.6) 

where j = 0 , 1 , . . . , k—1 are values of k-valued logic, z = WQ+WIXIA \-wnxn is 
the weighted sum, and arg z is the argument of the complex number z. The activation 
function is illustrated in Fig. 8.7. This activation function (8.6) divides the complex 
plane into A; equal sectors with the angular size 2π/&. If the weighted sum falls into 
the sector number j G 0 , 1 , . . . , k — 1, then according to (8.6) the neuron's output 
is equal to eK Thus, the neuron's output is completely determined by the argument 
(phase) of the weighted sum and does not depend on its magnitude. This circularity 
of the MVN activation function is very important for solving those problems, which 
we consider in this chapter. 

The continuous MVN has been proposed in Ref. 3. Its inputs and output are 
located on the unit circle and they can be arbitrary points. The continuous MVN 
activation function is 

P(z)=eiAT*z = z/\z\ (8.7) 

where z = WQ + w\Xi + · · · + wnxn is the weighted sum, and Argz is the main 
value of the argument of the complex number z. Thus, for the continuous MVN, its 
output is the projection of the weighted sum on the unit circle, as it is determined by 
the activation function (8.7) (see Fig. 8.8). 

MVN learning is detailed in Ref. 1. The most efficient MVN learning algorithm 
is based on the error-correction rule. The one for the discrete MVN was proposed in 
Ref. 5, which was then generalized in Ref. 2 for the continuous MVN. The conver-
gence of the learning algorithm for the discrete MVN is proven in Refs. 5 and 1. It 
is shown in Ref. 4 that for the continuous MVN the learning process is reduced to 
that of the discrete MVN with k —> oo in (8.6) and it converges as well. The error-
correction learning rule for both the discrete and the continuous MVN is as follows. 
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Figure 8.8 Geometrical interpretation of the continuous MVN activation function. 

Let D and Y be, respectively, the desired and actual outputs of the MVN. Then, the 
weights adjustment is performed according to the rule 

Wr+1 =Wr + - ^ - (D-Y)X (8.8) 
n + 1 

where X is the neuron's input vector with complex-conjugated components, r is the 
number of the current weighting vector, n is the number of neuron inputs (the length 
of the input vector), Wr and Wr+\ are the weighting vectors, before and after cor-
rection, respectively, ar is the learning rate (it should always be equal to 1). The 
training of the neuron using this rule is performed without requiring differentiabil-
ity of the activation function (actually, both activation functions (8.6) and (8.7) are 
not differentiable being functions of a complex variable). In Ref. 2, the following 
modification of the learning rule (8.8) was suggested: 

Wr+1 =Wr+
 Q r (D-Y)X (8.9) 

(n + l ) |z r | 

where \zr\ is the absolute value of the current weighted sum. The learning rule (8.9) 
works better for those input/output mappings that have many irregular jumps. The 
factor l/\zr\ in (8.9) is de facto a self-adaptive learning rate. Geometrically, learning 
rules (8.8) and (8.9) are reduced to a movement along the unit circle in the shortest 
possible way from the "incorrect" actual output to the "correct" desired output, which 
is determined by the error (see Fig. 8.9). 

8.4.2 Multilayer Feedforward Neural Network with Multi-Valued 

Neurons ( M L M V N ) 
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Figure 8.9 Geometrical interpretation of the MVN learning rule. 

Multilayer Feedforward Neural Network with Multi-Valued Neurons (MLMVN) is a 
neural network with a standard feedforward topology [45]. This is a multilayer neu-
ral network for which all neurons from a given layer receive input from the neurons 
from the preceding layer. However, the use of MVN as a basic neuron for MLMVN 
has some important differences and advantages compared to a standard multilayer 
feedforward neural network (MLFBP) based on sigmoidal neurons (the latter is of-
ten referred to as a multilayer perceptron, i.e., MLP). The most important difference 
is with the way the backpropagation learning process is organized. 

As shown in Refs. 2, 4, and 1, the MLMVN learning algorithm is based on the 
same error-correction learning rule as in the case of a single MVN. Let us consider 
how the MLMVN learning algorithm is organized. 

Let us consider a MLMVN consisting of m — 1 hidden layers and one output layer. 
For the output layer (the mth layer) the weights for the fcth neuron of this (mth) layer 
have to be adjusted according to the following rule: 

qT.km _ „..km ■ Qfem X γ 7 — 1 N — 1 
Wl ~Wl + AU- i + l 0 * ™ ^ ™ - 1 ' * — 1 J - - - ? i V m -l· (8 10) 
lTlkm _ inkm , aj^ c v * ' 
W0 — W0 -f- Nrn_1 + iOkm 

where w represents the corrected weight, iVm_i the number of neurons in the (m -
l)st layer (the last hidden layer preceding the output layer; evidently, this is also the 
number of inputs of all neurons in the mth layer), akm the learning rate (it should 
always be equal to 1), Y/,m_i the actual output of the ith neuron of the (m — l)st 
layer, which is corrected when it has the tilde (~) supersign and conjugated when it 
has the bar (") supersign, and Skm = N * +i^fcm

 t n e e r r o r of the kth neuron of the 
mth (output) layer which is obtained from the global network error taken from the 
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same neuron: 
S*krn=Dkrn-Ykm (8.11) 

where Dkm and Ykm are» respectively, the desired and actual outputs of the fcth 
neuron from the rath layer. 

For the hidden layers neurons, except for the first one, the error is calculated by 
backpropagating it from the next layer followed by the weight adjustment: 

^ =^ + (N^+hM^iYij-i, i = l,...,JV,--l, (8.12) 

where the indexes kj stand for the fcth neuron from the jth layer, whose weights are 
adjusted, \zkj\ the absolute value of the current weighted sum of this neuron, Nj-i 
the number of neurons in the (j — l)st layer (this is also the number of inputs of 
all neurons in the jth layer), c*kj the learning rate (it should always be equal to 1), 
Yij-i the actual output of the /th neuron of the (j — l)st layer, which is corrected 
when it has the ~ supersign and conjugated when it has the" supersign, and Skj the 
error of the fcth neuron of the jth layer. Finally, for the first hidden layer, the error is 
backpropagated from the second one after which the weights are adjusted as follows: 

wf1=wf1 + {n+
a
1^Zki{Skjxh l = l,...,n, (8.13) 

where the indexes fcl stand for the kth neuron of the 1st layer, x\ the /th input com-
ponent complex conjugated, n the number of network inputs (it is also the number 
of inputs of all 1st hidden layer neurons), ak\ the learning rate (it should always be 
equal to 1), and 6ki the error of the kth neuron of the 1st layer. The convergence of 
the learning process based on the learning rules (8.10)—(8.13) is proven in Ref. 1. 

The MLMVN has shown very nice results for a number of benchmark prob-
lems [2] and real-world problems such as the identification of the type of blur and its 
parameters in image restoration [4], time-series prediction, among others [1]. It was 
shown that the MLMVN outperforms a standard MLFBP and many other kernel-
based and neuro-fuzzy techniques in terms of the classification/prediction rate. It 
also employs fewer parameters to solve a particular problem. 

8.4.3 MLMVN for Phase-Coded SSVEP BCI 

For our phase-coded SSVEP BCI system, we want to perform mapping from the 
phases, estimated from the EEG recordings, onto the target-class indicators. Since 
both input and output are circular, we can represent them as complex numbers with 
unit length. For doing so, we convert all preselected phases φα (according to the 
feature selection algorithm described in Section 8.3.3) into complex numbers et(fd. 
Those numbers will be used as an input into our MLMVN. During training, for 
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the training samples of class mc (mc = 1 , . . . , N, where N is the number of target 
classes) we used as the network's desired output value Dmc = exp(i27r(rac-|)/iV). 
Then, after the training, from the output Y\m of the network (k = 1, since we have 
a network with a single output), the resulting class index rh is deduced as an integer 
satisfying two conditions: 2n(rh - 1)/N < arg Yim < 2ππι/Ν and 1 < rh < N. 

During training we kept track of an angular variant of the root mean square error 
(RMSE) [1]. The training was stopped when the RMSE got lower than a predefined 
threshold which, in our experiments, was set to 0.1 radian. 

For our experiments, we used an MLMVN with a single hidden layer. This choice 
was motivated by the next observations. The use of a single multi-valued neuron for 
our problem did not allow us to achieve a proper separability between the classes, 
since the training did not decrease below a predefined training error value due to the 
more complex, nonlinear nature of the separation problem. This calls for a MLMVN. 
Since we did not observe any significant improvement in performance when increas-
ing the number of hidden layers, but only an increase in training time, we stick to the 
minimal number of hidden layers, i.e., one. 

8.5 SYSTEM VALIDATION 

Figure 8.10 shows the result of a five-fold cross-validation performed on the methods 
of Refs. 27 and 24 and the proposed one using a MLMVN classifier, for different 
EEG interval lengths T used for phase estimation. It is clear that the results obtained 
with the MLMVN significantly outperform those of the other considered methods, 
according to a repeated-measures ANOVA (p < 0.01), at least for the tested subjects. 
By applying the single-channel methods from Refs. 24 and 27 to the optimal channel 
(obtained via a wrapper-like exhaustive search through all channels Sd on the training 
data), we also observe the superiority of the proposed multichannel classifier (see p-
valuesinFig. 8.10). 

We have also verified the number of neurons in the hidden layer Nh (considering 
range from 2 to 20) of the MLMVN and the number of best features required for 
obtaining a satisfactory decoding accuracy. The best features were selected accord-
ing to the two proposed in Section 8.3.3 methods namely, a feature selection based 
on the circular standard deviation and on the Watson-Williams test. As it can be 
seen from Fig. 8.11, both feature selection methods perform quite equally in terms 
of achieved accuracy. 

We also see that selecting more features actually decreases the classification per-
formance. For the comparison described above we considered the four best sepa-
rating features according to our heuristic method based on the standard deviation. 
As to the number of neurons in the hidden layer (Nh), we observed for the optimal 
number of selected channels, in the case of a good separability between classes, only 
a slight increase in accuracy for Nh from two to six (see Fig. 8.11). For all other 
cases, we observe that the accuracy increases for Nh increasing until about 10 and 
further decreases (see Fig. 8.11). Based on this, we decided to use Nh — 10 for the 
comparison reported above. 
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Figure 8.10 Average (among all subjects) discrimination accuracy as a function of 
the EEG segment length for Lee et al.'s method [27] using channel Oz referenced to the 
mastoid (blue), Jia et al.'s method [24] using the bipolar POz-Oz channel (light-blue), 
Lee et al.'s method [27] for the optimal channel (green), Jia et al.'s method [24] for the 
optimal channel (orange), and the proposed multichannel method based on MLMVN 
and feature selection (brown). The numbers above the horizontal braces (at the top of 
the chart) are the repeated-measures ANOVA p-values for the differences between the 
results of the proposed method and the optimal channel version methods. (See color 
insert.) 

neurons in hidden layer features neurons in hidden layer features 

Figure 8.11 Dependency of the averaged accuracy in a five-fold cross-validation 
test of the MLMVN classifier on the number of neurons Nh in the hidden layer and 
the number d of best features used. The best features were estimated according to a 
feature selection based on standard deviation (left) and based on a Wat son-Williams 
test (right). Results are presented for subject 1 while using five seconds of EEG 
recording for classifying six phase-shifted targets flickering at 10 Hz on the 60-Hz LCD 
screen. (See color insert.) 
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Figure 8.12 Averaged accuracy plotted as a function of the number of best features 
selected by the method based on the standard deviation (std) and the Watson-
Williams test (ww-test). The plots were generated with the data shown in Fig. 8.11. 
(See color insert.) 

8.6 DISCUSSION 

As it can be seen from Fig. 8.6, the channel combination and the referencing method 
influence the separability of the classes. Thus, a proper selection of the channels 
should always be verified, which was also indicated in Ref. 24. But as they only con-
sidered one channel and did not provide a discriminative way to select it, our results 
for the multichannel combination and automatic feature selection can be viewed as 
an improvement (and also a generalization). Additionally to this, it is clear that only 
some channels combinations provide a good separability. This calls for a search for 
an appropriate spatial filtering approach for weighting the channels in such a way 
that the best separability is obtained. As a step in this direction, in Ref. 29 a canon-
ical correlation analysis is used to incorporate all recorded EEG channels into one 
weighted sum. 

In Ref. 24 the authors considered for their decoder one optimal channel, while we 
used a classifier that incorporates several best channels. Here the question arises: do 
we actually gain anything by considering several optimal channels? As one can see 
from Fig. 8.12, the classification accuracy rises up to its maximum at about 4-5 best 
features. This tells us that the combination of several best channels outperforms the 
case of only one optimal channel. This confirms the use of multichannel classifiers 
(as, for example, the MLMVN used in this study) and underlines their benefit with 
respect to the single channel decoders as the one of Refs. 24 and 27. 

In Ref. 24 the authors analyzed the dependency of the decoding performance on 
the number of harmonics considered. And they found that the considering harmonics 
in the decoding improves the result. In this study we have restricted ourselves to only 
the fundamental frequency (n^ = 1). But we have to say that the proposed decoding 

/̂"**-%̂ ^̂  

1 — wwtest 
std 



2 0 4 MULTILAYER FEEDFORWARD NEURAL NETWORK WITH MULTI-VALUED NEURONS FOR BCI 

algorithm is also able to incorporate any other features (as, for example, harmonics). 
This could, probably, lead to even better results. 

One way to assess any new BCI system is by estimating the information trans-
fer rate (ITR) [55] which favors more accurate, faster systems with more encoded 
targets. In our design we did not aim to increase the ITR, but rather to prove the in-
troduced concept of multichannel detection based on MLMVN. In order to increase 
the ITR, we can incorporate more phase-shifted targets, choose another frequency 
with more space for encoding such targets. Or we can even consider phase shift and 
frequency combinations, as it was shown in Ref. 24. 

Appendix: Decoding Methods 

A.l METHOD OF JIA AND CO-WORKERS 

In Ref. 24, the following method was proposed. Based on the training data, the 
reference phases φτ^ * are estimated by averaging, over the whole training set, the 
Fourier coefficients (obtained by using FFT) at the stimulation frequency / of each 
target class mc = 1 , . . . , N (see Eq. (8.2)). Here, only one optimal electrode (ac-
cording to Ref. 24) or Oz-POz bipolar combination is considered. When decoding 
new data (thus, the test set), the Fourier coefficients at stimulation frequency / are 
estimated from the same, previously selected optimal electrode. This coefficient is 
projected onto all reference φ^ * phases and the resulting target class fa is selected 
as the one with the maximal projected value ρ^. If we consider not only the fun-
damental frequency / , but also its harmonics, then we compute the lengths of the 
coefficient projections not only for the fundamental frequency, but also for its har-
monics, on the respective reference phases, and sum up the resulting lengths for each 
target class separately, and then take the arg max of the resulting sums to infer the 
index of the target class. 

A.2 METHOD OF LEE AND CO-WORKERS 

In Ref. 27, the following method was proposed. The EEG signals recorded from Oz 
channel referenced to the mastoid were band pass filtered in the range [/ — 2, / + 
2] Hz, where / is the stimulation frequency. Based on the training data (1 min of 
recordings on a subject observing a flickering stimulus with "zero" phase lag), an 
SS VEPref is generated by averaging all epochs (EEG recordings corresponding to one 
period of stimulation, from one channel). The reference value tKf is defined from the 
obtained SSVEPref as the latency of the maximum amplitude peak. In the decoding 
stage, the phase lag between SSVEPref and SSVEPgaze is evaluated to infer the target 
class. This was done by cutting the SSVEPgaZe signal into one-period-long segments, 
and take the average, and determine in this average the latency of the maximum 
amplitude peak, called tpeak· Next, the difference At = tKf — £peak is transformed 
into a phase difference Θ = 2nAtf. This phase difference Θ is then wrapped to 
the interval [0,2π) by adding or subtracting (if necessary) 2π. The achieved phase 
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distance Θ is compared to the expected phase delays # m c = 2π(τη0 — 1)/N (mc — 
1 , . . . , N) through an estimation of the angular distance as Dmc = \9mc — θ\. The 
resulting target class is then derived as arg min Dmc. 

mc 
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Many communication signal processing applications manifest as the problem of 
modeling and inverse of complex-valued (CV) Wiener systems. This contribu-
tion develops a CV B-spline neural network approach for efficient identifica-
tion of the CV Wiener system as well as effective inverse of the estimated CV 
Wiener model. Specifically, the CV nonlinear static function in the Wiener sys-
tem is represented using the tensor product from two univariate B-spline neural 
networks. Following the use of a simple least squares parameter initialization, 
the Gauss-Newton algorithm is applied for estimating the model parameters 
that include the CV linear dynamic model coefficients and B-spline neural net-
work weights. The identification algorithm naturally incorporates the efficient 
De Boor algorithm with both the B-spline curve and first-order derivative recur-
sions. Moreover, an accurate inverse of the CV Wiener system can readily be 
obtained using the estimated model. In particular, the inverse of the CV non-
linear static function in the Wiener system can be calculated effectively using 
the Gauss-Newton algorithm based on the estimated B-spline neural network 
model with the aid of the inverse of De Boor algorithm. The effectiveness of 
our approach is demonstrated using the application of digital predistorter design 
for high-power amplifiers with memory. 
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9.1 INTRODUCTION 

Communication signal processing applications often involve complex-valued (CV) 
functional representations for signals and systems. CV artificial neural networks 
have been studied theoretically and applied widely in nonlinear signal and data pro-
cessing [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Note that most artificial neural networks 
cannot be automatically extended from the real-valued (RV) domain to the CV do-
main because the resulting model would in general violate Cauchy-Riemann con-
ditions, and this means that the training algorithms become unusable. A number of 
analytic functions were introduced for the fully CV multilayer perceptrons (MLP) 
[4]. A fully CV radial basis function (RBF) nework was introduced in Ref. [8] for 
regression and classification applications. Alternatively, the problem can be avoided 
by using two RV artificial neural networks, one processing the real part and the other 
processing the imaginary part of the CV signal/system. An even more challenging 
problem is the inverse of a CV nonlinear system, which is typically found in practical 
applications. This is an under-researched area, and a few existing methods, such as 
the algorithm proposed in Ref. [10], are not very effective in tackling practical CV 
signal processing problems. In order to develop an efficient approach for modeling 
and inverse of CV Wiener systems, we have turned to the RV signal processing field 
for motivations and inspirations. 

A popular approach to nonlinear systems identification in the RV domain is to 
use block-oriented nonlinear models which comprise the linear dynamic models and 
static or memoryless nonlinear functions [12, 13, 14, 15, 16, 17]. Specifically, the 
Wiener model, which comprises a linear dynamical model followed by a nonlinear 
static transformation, offers a reasonable model for linear systems with a nonlin-
ear measurement device that are widely found in industrial and biological systems 
[18, 19, 20, 21, 22, 23]. The model representation of the unknown nonlinear static 
function in the Wiener model is fundamental to its identification, control and/or other 
applications. Various approaches have been developed in order to capture the a pri-
ori unknown nonlinearity in the Wiener system, including the nonparametric method 
[24], subspace model identification methods [22], fuzzy modeling [25] and the para-
metric method [13, 20, 21]. With its best conditioning property, the B-spline curve 
has been widely used in computer graphics and computer aided geometric design 
[26]. The B-spline curves consist of many polynomial pieces, offering versatility. 
In particular, the De Boor algorithm [27], which uses numerically stable recurrence 
relations, offers a highly efficient means of constructing B-spline curve. The B-
spline basis functions for RV nonlinear systems modeling have been widely applied 
[28,29,30,31]. 

Many practical communication applications involve propagating complex-valued 
signals through CV nonlinear dynamic systems that can be represent by the Wiener 
model. For example, at the transmitter of broadband communication systems, the 
transmitted signal is distorted by the high-power amplifier (HPA) with memory that 
can be characterized by the CV Wiener model [32, 33]. Also some nonlinear com-
munication channels can usually be represented by a finite duration impulse response 
(FIR) filter followed by a CV static nonlinear function, namely, a CV Wiener model. 
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Accurate identification of a CV Wiener model is often the first successful step in 
these applications. Moreover, an accurate inverse of the estimated CV Wiener model 
is required, such as in digital predistorter design for compensating the distortions of 
the Wiener HPA at the transmitter [34,35,36,37,38,39] and deconvolution or equal-
ization at the receiver [2, 3]. Our previous work [40] has developed an efficient B-
spline neural network approach for general modeling of CV Wiener systems, which 
represents the CV nonlinear static function in the Wiener system using the tensor 
product from two univariate B-spline neural networks. This novel approach is differ-
ent from the existing CV neural network based on spline functions [3,41,42], in both 
model representation and identification algorithms [40]. By minimizing the mean 
square error (MSE) between the model output and the system output, the Gauss-
Newton algorithm, coupled with a simple least squares (LS) parameter initialization, 
is readily applicable for the parameter estimation in the proposed CV model, which 
naturally incorporates the De Boor recursions for both the B-spline curves and first-
order derivatives. 

The significance of the proposed method [40] is twofold. Firstly, it extends the B-
spline model to accommodate general CV Wiener systems. Secondly, the proposed 
model based on B-spline functions has a significant advantage over many other mod-
elling paradigms in that it enables stable and efficient evaluations of functional and 
derivative values, as required in the Gauss-Newton optimization algorithm. The ad-
ditional contribution of our current work is to develop an effective inverse of the CV 
Wiener system so as to complete the whole task for identification and inverse of the 
generic Wiener system. We demonstrate that the B-spline neural network scheme 
for modeling of CV Wiener systems proposed in Ref. [40] has a further advantage 
in that an accurate inverse of the CV Wiener system can directly be achieved from 
the estimated Wiener model in a very efficient way. In particular, the inverse of the 
CV nonlinear static function in the Wiener model is calculated effectively using the 
Gauss-Newton algorithm based on the inverse of De Boor algorithm, which again 
utilizes naturally the B-spline curve and first order derivative recursions. The effec-
tiveness of the proposed approach for identification and inverse of CV Wiener sys-
tems is illustrated using the application of digital predistorter design for broadband 
communication systems that employ power-efficient nonlinear HPA transmitter. 

9.2 IDENTIFICATION AND INVERSE OF COMPLEX-VALUED 
WIENER SYSTEMS 

Throughout this contribution, a CV number x e C is represented either by the rect-
angular form x = xR + \xj, where j = χ/^Τ, while xR = U[x] and #/ = ζ$[χ] 
denote the real and imaginary parts of x, or alternatively by the polar form x = 
\x\ - expflZ*) with |x| denoting the amplitude of x and Zx its phase. 
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9.2.1 The Complex-Valued Wiener System 

The generic CV Wiener system considered in this study consists of a cascade of two 
subsystems, an FIR filter of order L that represents the memory effect on the input 
signal x(k) £ C, followed by a nonlinear memoryless function Φ(·) : C —>■ C. The 
system is represented by 

L 

w(k) = Σ hix(k - *)> w i t h Λο = 1 (9.1) 

y(k)=9(w(k))+£{k) (9.2) 

where y(k) €. C is the system output, and £(fc) is a CV white noise sequence inde-
pendent of #(&) and with £[|£A(A;)|2] = £[|£/(&)|2] = σ|. The z transfer function 
of the FIR filter is defined by 

L 

H(z) = Σ Λ^"*» w i t h ^o = 1 (9.3) 
i=0 

with the CV coefficient vector given by h = [hi h2 · · · /&L]T € CL. Note that, with-
out loss of generality, we assume that h0 = 1. If this is not the case, ho can always 
be absorbed into the CV static nonlinearity * ( · ) , and the linear filter's coefficients 
are re-scaled as hi/ho for 0 < i < L. 

Without loss of generality, the following assumptions are made regarding the CV 
Wiener system (9.1) and (9.2). 
Assumption 1: Φ(·) is a one to one mapping, i.e. it is an invertible and continuous 
function. 
Assumption 2: yii(k), yi(k), WR(k), wi(k) XR(k) and xi(k) are upper and lower 
bounded by some finite real values. 

For practical applications, these two assumptions typically hold. Our aim is to 
identify the above CV Wiener system, i.e. given the input-output data set DN = 
{x(k),y(k)}^:=1, to identify the underlying nonlinear function Φ(·) and to estimate 
the FIR filter parameters h, as well as to provide an accurate inverse of the above 
Wiener system based on the identified model. Note that the signal w(k) between 
the two subsystems are unavailable. We will use the CV B-spline neural network 
approach proposed in Ref. [40] for an efficient identification of this Wiener system 
and then develop an effective algorithm for an accurate inverse of this Wiener system 
based on the estimated Wiener model Φ(·) and h. 

9.2.2 Complex-Valued B-Spline Neural Network 

The CV B-spline neural network proposed in Ref. [40] is adopted to represent the 
mapping y = ^(WR + \wi) : C -> C that is the estimate of the underlying CV 
nonlinear function Φ(·). Assume that J7min < WR < UmaiX and V^in < wi < Vma>x, 
where Um-m, {7max, Vm\n, and VmSLX are known finite real values. 
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A set of univariate B-spline basis functions based on WR is parametrised by the 
order (P0 — 1) of a piecewise polynomial and a knot vector which is a set of values 
defined on the real line that break it up into a number of intervals. Suppose that there 
are NR basis functions. Then the knot vector is specified by (NR + P0 + 1) knot 
values, {{70, *7i, · · · , UNR+PO }, with 

U0 < Ux < · · · < UPo-2 < UPo-i = Umin <UPo<·-

< UNR < UNR+! = Umax < UNR+2 < < UNR+PO (9.4) 

At each end, there are PQ — 1 external knots that are outside the input region and one 
boundary knot. As a result, the number of internal knots is NR + 1 — P0. Given 
the set of predetermined knots (9.4), the set of NR B-spline basis functions can be 
formed by using the De Boor recursion [27], yielding 

*rw>={;; ""-££u" i < i < s. + ft («) 
Jtfw<«>=z^itB^-"^+^tBiir"<-)· 

for/ = l , · · . ,i\rH + P 0 - p a n d p = l , · · · ,P 0 (9.6) 

The derivatives of the B-spline basis functions B\ ' (WR) for 1 < / < NR can 
also be computed recursively according to 

jgg!f ig>. ft n{^-»(,«) 
dwR UPo+i-! - Ui-i l 

- . . Po
 TTB^-1\wR) (9.7) 

Similarly, a set of univariate B-spline basis functions based on wi can be estab-
lished. Suppose that the order of the piecewise polynomial is again predetermined 
as (P0 - 1) and there are Ni basis functions. Then the knot vector is defined on the 
imaginary line in a similar manner, which is specified by the (TV/ + P0 + 1) knot 
values, {V0, Vu · · · , VNl+Po}. Specifically, 

Vo < Vi < · · · < VPo-2 < VPo-i = Vmin < VPo < · · · 
< VNl < Vjvj+l = Vmax < VNl+2 < < VNl+Po (9.8) 

Again, at each end, there are P0 — 1 external knots that are outside the input region 
and one boundary knot. Consequently, the number of internal knots is Ni + 1 — P0. 
Similarly, the set of Ni B-spline basis functions are constructed by the De Boor 
recursion [27] as 

*?»<.,> - {l: "*--££;v-«s - s * + p . (9.9) 

Vp+m-1 — Vm-1 ^p-fm _ Vm 

form = 1, · ,Ni + P0 - p a n d p = 1,··· , P 0 (9.10) 
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while the derivatives of the B-spline basis functions Bm ' (wi) for 1 < ra < TV/ 
are computed recursively according to 

dB^\wj) _ P0 . Β ( θ Λ - ΐ ) ( β , 7 ) 
dwi Vp 0 + m _i - Vm-i 

Pn 

VPo+m — Vn 

- B ^ - % , ) (9.11) 

Using the tensor product between the two sets of univariate B-spline basis func-
tions [30], B^Po) (WR) for 1 < I < NR and Β{*'Ρο) (w7) for 1 < m < Nl9 a set of 

(p ) new B-spline basis functions B\ ̂  (w) can be formed and used in the CV B-spline 

neural network, giving rise to 

NR Nj 

1=1 m = l 

NR N! 

= Σ Σ S,(",PeW)*£'P-W«».m (9-12) 
1=1 m=l 

where o;/?m = ooRlTn + \ωιι m G C, 1 < / < NR and 1 < m < Ni, are the CV 
weights. The CV B-spline neural network (9.12) can obviously be decomposed as 
the following two RV B-spline neural networks 

NR Nj 

» = Σ Σ B^\WR)B^\Wl)u;R,m (9.13) 
Z = l m = l 

NR Nj 

w = Σ Σ fl|(R,Pe)(ti;Ä)^A)(ti;/Kfm (9.14) 
/ = 1 m = l 

Because of the piecewise nature of B-spline functions, for any point evaluation, 
there are only P0 basis functions with nonzero values for each of the real and imag-
inary parts, leading to P% nonzero terms in both (9.13) and (9.14). This is advanta-
geous as P0 can be set to a quite low value. The complexity of the De Boor recursion 
is in the order of P%9 0(P%). Thus the computational cost of calculating both (9.13) 
and (9.14) scales up to about three times of the De Boor recursion, including eval-
uation of both real and imaginary parts as well as the tensor product calculation. 
Notably, additional cost for derivative evaluation is minimal, as (9.7) and (9.11) are 
byproducts of the De Boor recursion. Also there are only P0 nonzero first-order 
derivative terms in each of (9.7) and (9.11). Compared with other CV neural net-
works based on different spline functions [41, 42, 3], our approach is clearly differ-
ent in terms of model representation and identification algorithm. The advantages of 
our CV B-spline neural network are discussed in Ref. [40]. 
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9.2.3 Wiener System Identification 

The schematic of CV Wiener system identification is depicted in Fig. 9.1. For the 
chosen two sets of knots, (9.4) and (9.8), and the polynomial degree P0, denote the 
weight vector of the CV B-spline neural network (9.12) as ω = [UJI^I ωι,2 * * * ωι,τη 
• · · ^ΛΓΗ,ΛΓ/] € CN, where N = NRNJ. Given a set of training input-output data 
{x(fc),2/(fc)}^L1, where x(fc) = [x(k) x(k — \) · · 'x(k — L)]T, the task is to estimate 
the parameter vector θ = \θ\ θ^ · · ■ 02{N+L)\ oftne Wiener model, defined as 

0 = [ u , £ u , J h £ h J ] T
€ E 2 ^ ) (9.15) 

where h = \IR + jh/ denotes the estimate of h = h« + jh/ and ω = ω« + jw/. 
The CV B-spline neural network used in representing Φ(·) is given by 

NR NJ 

y{k) = *(«;(*)) = Σ Σ S r ' P ° W * 0 ) i 4 3 ' P o ) ( £ / ( f c ) H m (9.16) 
/ = 1 m = l 

which is equivalent to the two RV B-spline neural networks 

NR N! 

y*(k) = Σ Σ ^Po)(^(fc))^'Po)(^(^)VÄ^ 
/ = 1 ro=l 

NR Nf 

yi(t) = Σ Σ ß , ( , l , p , , ) (ÄÄ(*))^ ' P o ) (« / (*))«/ , . m 

(9.17) 

(9.18) 
ί = 1 m = l 

X(k) 
*H(z) 

~" --■ . Λ ΐ ^ 
I i _ _ _ _ l 

z 
e(k)X 

Φ 
\H(z)'r^A(.)r 

y(k) 

Figure 9.1 Schematic of Wiener system identification. (See color insert.) 
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where 

L· 

w{k) = [1 hT]x(A;) =(xR(k) + Σ &*ixR(k ~ 0 " hi.xiik - i ))) 

L 

+ \(xi(k) + 5 ^ (£**/(* - i) + Λ/4χΑ(* - i))) (9.19) 
i = l 

Define the error between the desired output y(k) and the Wiener model output y(k) 
as e(k) = y(k) — y(k), yielding the sum of squared errors (SSE) cost function 

K K 

JSSE(6 ) = £ |e(fe)|2 = £ (e2
R(k) + e]{k)) (9.20) 

k=l k=l 

We apply the Gauss-Newton algorithm to minimize the cost function (9.20). 

The Gauss-Newton Algorithm First denote ε = [ε± 62 · · · S2K\ £ M2X as 

e - [eÄ(l) eÄ(2) · · · eR(K) e7(l) e7(2) · · · e7(tf)]T (9.21) 

By denoting the iteration step with the superscript (r) and with an initial value θ^°\ 
the iteration formula is given by 

θ(τ) = ö ( r - l ) _ M ( ( j M ) T j W ) ' ( jM) T
e ( f l ( r - l ) ) (9>22) 

where μ > 0 is the step size, and j ( r ) denotes the Jacobian of ε(θ^τ ^ ) , which is 
given by 

θεχ 
dex 
de2 
θθλ 

9S2K 
θθχ 

der 
θθ2 

θε2 

3Θ2 

9ε2κ 
θθ2 

. ggi 
902(N + L) 

οε2 
902(N + L) 

9ε2Κ 
d&2(N + L) 

(9.23) 
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The partial derivatives in the Jacobian (9.23) can be calculated as follows. For 1 < 
k< K, 

£gia = -*^W*0)iep^/(A0), 
nl,m 

q = l-m,l<l<NR,l<m<NI, 
|£si*i = o, q = N +1 ■ m, 1 < I < NR, 1 < m < Ni, 

■*Z,m 

dek 

Θθα 

9lRi 1=1 rlkl \ dwR(k) 

q = 2N + i, 1 < i < L, 

■Dm 

(*,Po)f^ fu\\dBJ*>poHwi(k)) 
XI 

(wI(k))xR(k-i) 

(fc-i))wÄ,,m, 

deR(k) 
dh 

NR Nj 
Μ = _ Σ Σ ( 
Ji i = l m = l v 

dßi (SR,P0),~ (JgH(fc))p(9f,Po)/ -M-u^-—B^^(wI(k))xI(k - i) 

+3 (»Λ) feW)dB%g(t))^(^-«))^,m, 
g = 2AT + L + i , l < i < L 

but for K + 1 < A: < 2if and £ = k - Ky 

&^=Q,q = l.m,l<l<NRjl<m<NI, 

(9.24) 

dek 
= < 

ς? = iV + / · m, 1 < / < NR, 1 < m < JV/, 
öwJ | f . 

iVR iVj fdB 

**«« 1=1 τ ^ Λ ^ ^ 1 

( » , Ρ 0 ) , ~ 
M R ( ^ ) ^ (Ä/(i))xÄ(i-i) 

+3 (»A) (äaWJ^s^ä^Mt-oH., 
gej ( t ) _ 

g = 2iV + i, 1 < i < L, 
iVß Ni 

dwR(t) 
m ^ ß iVj , 

f = - Σ Σ (-
dBl*'Po\wR(t)) B. ( θ Λ ) ( i J / ( i ) )x j ( i - i ) 

+ B (™*(*)) md®i\t) ΧΚ(1 ~ 0J<*>/|,m> 
q = 2iV + L + i, 1 < i < L 

(9.25) 
It is seen that the De Boor algorithm, (9.5)-(9.7) and (9.9)-(9.11), is applied in 
evaluating all entries in the Jacobian. Effectively, this enables stable and efficient 
evaluations of B-spline functional and derivative values, which could be very difficult 
for many other nonlinear models, including some spline functions based nonlinear 
models. The iterative procedure (9.22) is terminated when θ^ converges or when a 
predetermined sufficiently large number of iterations has been reached. 

Parameter Initialisation for the Gauss-Newton Algorithm As the cost function 
(9.20) is highly nonlinear in the parameters, the solution of the Gauss-Newton al-
gorithm depends on the initial condition. It is important to properly initialize θ^ 
so that it is as close as possible to an optimal solution. A simple and effective LS 
parameter initialization scheme was introduced in Ref. [40], which we adopt in this 
study. 
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Initialisation of the Linear Filter Parameters. Denote an estimate of the linear 
filter parameter vector as h = [hi h2 · · · HL\ and the inverse function of Φ(·) as 
φ(%) = Φ _ 1 ( · ) : C -> C. Consider now using the proposed CV B-spline neural 
network to model φ(·). For notational simplicity, assume that the polynomial degree 
used is still denoted as P0 — 1 and the numbers of basis functions used in the modeling 
of the real and imaginary parts are still denoted as NR and Ni, respectively. With 
the two knot vectors for the real and imaginary parts being set based on yn(k) and 
yi(k)9 respectively, we have an estimate οΐφ(·) 

NR Nj 

£(*(*)) - E Σ BZ] (V(*))««,m (9-26) 
1=1 m=l 

where a/,m G C, 1 < / < NR and 1 < m < Ni, are CV weights. Let the error 
between w(k) and (p(y(k)) be defined as e(k) = w(k) - &(y(k))9 where 

L 

w(k) = x{k) + ] T hix(k - i) (9.27) 

is used as the target for ip(y(k)). Thus, 

L NR Nt 

x(k) = - Σ hix(k - 0 + Σ Σ BiP™ (V(k))^m + e(k) 
i=l 1=1 ra=l 

= (p(x(fc)))T1? + e(k) (9.28) 

where 

x{k) =[x(k - 1) x(fc - 2) · · · x(k - L) y(k)]T, 

p(x(fc)) =[-x(k-l) -x(k-2) x(k- L) 

B^\y{k)) B[P
2°\y(k)) ■ ■ · B™Nl{y{k))]T 

= [ P I ( X ( * ) ) ? 2 ( # ) ) · · · ^ ( χ ( έ ) ) ] τ e C " + L , 

ϋ — [hih2'"hL α:ι,ι αι,2 · · · a/,m · · · O:JVH,JV7 J 

Over the training data set, (9.28) can be written in the matrix form as 

x = Pi9 + e (9.29) 

where x = [x(l) x(2) · · · x(K)]T, e = [e(l) e(2) · · · e(K)]T, and P is the regression 
matrix denned as P = [p(x(l)) p(x(2)) · · · ρ (χ (Κ)) ] τ . The LS solution for the 
parameter vector ϋ is readily given as 

tfLS= ( P H P ) _ 1 P H x (9.30) 
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The sub-vector of the resulting I?LS» consisting of its first L CV elements, forms our 
initial estimate h^0^ = h^ -I- jhj , which are used as the last 2L RV elements of 
θ^ in the parameter initialization for the Gauss-Newton iteration procedure. 
Initialization of the B-Spline Neural Network Weights. Given the estimate h^°\ 
generate the auxiliary signal 

L 

5(fc) = x(k) + Y^h\0)x(k - i) (9.31) 
i=l 

Using the CV B-spline neural network (9.12) to model the nonlinear static function 
Φ(·) based on the training data set {w(h),y(k)}%=1 yields 

NR Nj T 

y(V = Σ Σ BZ] (S(*))wi,n» + e(k) = (q(S(fc))) ω + e(k) (9.32) 
1=1 m=l 

where 

q(5(*)) = [B™ (S(*)) Bge) (S(*)) · · · B™ (S(*)). ·. B^]NI (S(*))]T 

= foi («(*)) (fö(S(fc)) · · · ,<ZJV(Ä(*))]T e RN 

Over the training data set, (9.32) can be written in the matrix form 

y = Qa; + e (9.33) 

withy - [y(l) .· -y(K)]T,e = [e(l) ·· -e(K)]T andQ = [q(S(l)) · · -q (S(K) ) ] T . 
The LS solution for w e C ^ 

" L S = ( Q T Q ) - 1 Q T y (934) 

is used as the initial estimate of ω^ — ω^ + jo;j that forms the first 2iV RV 
elements of θ^ for the parameter initialization of the Gauss-Newton algorithm. 

The LS estimates h(°) and ω^ are generally not consistent. This is because 
the B-spline regressors in (9.26) and (9.32) are subject to the output noise which 
will in general propagate to the parameter estimates, yielding a bias. However, this 
estimate represents an excellent initialization for the Gauss-Newton algorithm. The 
final parameter estimate via minimizing (9.20) is optimal in the sense that it is the 
maximum likelihood estimate in the case that ξ(ί) is Gaussian. 

9.2.4 Wiener System Inverse 

For the CV Wiener system (9.1) and (9.2), there are two types of inverse as depicted 
in Fig. 9.2. The "pre-inverse" can be found for example in the digital predistorter 
design for compensating the Wiener HPA [34, 35, 36, 37, 38, 39], while the "post-
inverse" is typically found in the deconvolution or equalization applications [2, 3]. 
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x(k) 
-►Ψ (·) ►,// (z)\ H(Z) Γ ^ ! Ψ Γ . ; 

Hammerstein system Wiener system 
(a) Pre-lnverse 

\iVP^¥ä\ 
Wiener system Hammerstein system 

(b) Post-Inverse 

Figure 9.2 Schematic of inverse for a Wiener system. (See color insert.) 

Note that in either case, the exact inverse of the Wiener system is a Hammerstein sys-
tem consisting of a nonlinear static function followed by a linear filter. The difference 
between these two cases is that in the pre-inverse case, the input to the Hammerstein 
model is a clean, i.e. noise-free, signal, while in the post-inverse case, the input sig-
nal to the Hammerstein model is corrupted by the noise. Without significant loss of 
generality, we consider the pre-inverse case in this study. 

Inverse of Wiener System s Static Nonlinear Function Given the CV Wiener sys-
tem's static nonlinearity Φ(·), we wish to compute its inverse defined by v(k) = 
Φ_1(χ(Α:)). This task is identical to find the CV root of x(k) — ty(v(k)), given 
x(k). In Subsection 9.2.3, the estimate Φ(·) for Φ(·) has been obtained based on 
the CV B-spline neural network with the aid of the De Boor algorithm. We now 
show that Φ - 1 (·) can be effectively obtained with the aid of the inverse of De Boor 
algorithm. Given $ ( · ) of (9.17) and (9.18), we have 

NR JVj 

**(*) = Σ Σ B^\vR(k))B^\vI(k))uRL 
1=1 m=l 
NR Nj 

*'(*) = Σ Σ B^\vR(k))B^\vj(k))uj^ 
1=1 m=l 

Define ((k) = x(k) - x(k) and the squared error (SE) 

(9.35) 

(9.36) 

(9.37) 

IfS(A;) = 0,thent;(fc)istheCVrootofx(A;) = *(v(fc)). Thus, the task is equivalent 
to the one that minimizes the SE (9.37). We propose to use the following Gauss-
Newton algorithm to solve this optimization problem with the aid of the inverse of 
De Boor algorithm. 



IDENTIFICATION AND INVERSE OF COMPLEX-VALUED WIENER SYSTEMS 2 2 1 

By denoting again the iteration step with the superscript (r) and giving a random 
initialization of v^°\k) that satisfies Um\n < v^\k) < i7m a xandymin < Vj (k) < 
Vinax» the iterative procedure is given by 

v{n\k) 
v^ik) 

( r - l ) 
(*) 
(*) 

- ^ ( ( J ^ ) ^ ) " 1 ^ ) (r-i}(fc) 
(9.38) 

where η > 0 is the step size, C(r)(fc) = x(k) ~ x(r)(k) with x<<T\k) = § (v(r)(*0)» 
and Jv is the 2 x 2 Jacobian matrix given by 

J W = dvR(k) 
db(k) 
dvR(k) 

dCR(k) 
dvAk) 
djilk) 
dvi(k) 

(9.39) 
\v(k)=v^(k) 

The entries in (9.39) are given by 

dvR(k) dvR(k) 'η1 (ν/(Λ))ωΛ|. Σ Σ 
Z = l m = l 

*«(*) _ _ ψ y* / Λ ) ( a u r f ß ^ M f f i 
dVl(k) ~ L· L· ni \VR\K)) dv^k) URl,rn1 

1=1 m=l 

/=1 m=l 

/=1 m=l 

(9.40) 

for which the De Boor algorithm, (9.5)-(9.7) and (9.9)—(9.11), can be used for their 
calculation efficiently. The algorithm is terminated when S(k) < p, where p is 
a preset required precision, e.g. p = 10~8, or when r reaches a predetermined 
maximum value. 

Inverse of Wiener System's Linear Filter The identification algorithm presented 
in Subsection 9.2.3 also provides the estimate of the Wiener system's linear filter 
- L ^ 
H(z) = 1 + 5 3 hiZ~\ Let the transfer function of the Hammerstein model's linear 

i=l 
filter be 

G{z) = z-^J^giz-i (9.41) 
i=0 

where the delay ι — 0 if H(z) is minimum phase. The solution of the Hammerstein 
model's linear filter g = [g0 9i · · · 9L9]

T can readily be obtained by solving the set 
of linear equations specified by 

G(z)-H(z) = z- (9.42) 

To guarantee an accurate inverse, the length of g should be chosen to be three to four 
times of the length of h. Note that g0 = 1 as h0 = 1. 
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9.3 APPLICATION TO DIGITAL PREDISTORTER DESIGN 

HPA is an indispensable component in any wireless communication system. The op-
eration of HPAs in modern wireless systems may introduce serious memory effects 
and nonlinear distortions [32, 33, 43, 44], causing intersymbol interference and ad-
jacent channel interference that degrade the system's achievable bit error rate (BER) 
performance. The problem becomes particularly acute, as the recent green-radio ini-
tiative [45] places the emphasis on the energy-efficiency aspect of communication. 
To achieve high-energy efficiency, HPAs should operate at their output saturation re-
gions, but this operational mode could not accommodate high-bandwidth-efficiency 
single-carrier high-order quadrature amplitude modulation (QAM) signals [46] as 
well as multi-carrier orthogonal frequency division multiplexing (OFDM) signals 
[47], which are essential modern transmission technologies. It is therefore critical 
to compensate the distortions caused by the HPA with a digital predistorter in the 
design of a wireless system [34, 35, 36, 37, 38, 39]. 

9.3.1 High-Power Amplifier Model 

A widely used model for HPAs is the Wiener model [32]. Without loss of generality, 
we consider single-carrier QAM systems [46], but our approach is equally applicable 
to multi-carrier OFDM systems [47]. The CV input signal to the HPA, x(k), where 
k denotes the discrete time or symbol index, takes the values from the CV M-QAM 
symbol set 

§ = {d{2l - \[U - l)+\d(2q - VM - 1), 1 < l,q < Λ / Μ } (9.43) 

where 2d is the minimum distance between symbol points. The 16-QAM symbol 
constellation is illustrated in Fig. 9.3. The memory effect of the Wiener HPA can 
be modeled by the FIR filter (9.1), while the nonlinear saturating distortion of the 

• · -

• · -
| | -3d ~d 

• · 

• · 

Im 

3d % · 

• · 

1 1 * e 
d 3d 

-d · · 

-3d · · 

Figure 9.3 16-QAM symbol constellation. 
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Wiener HPA can be represented by the static nonlinearity (9.2). Note that in practi-
cal HPAs, the noise £(k) is often negligible, that is, σ | is zero or extremely small. 
Two typical CV nonlinearities Φ(·) of HPAs are the traveling-wave tube (TWT) 
nonlinearity [43] and the nonlinearity of solid-state power amplifiers [44]. Nonlin-
ear characteristics of these two types of HPAs are similar. The static nonlinearity of 
the HPA considered in this study is the TWT nonlinearity, but the approach is equally 
applicable to the other type of nonlinearity. 

Express the (unavailable) input signal w(k) to the static nonlinearity part Φ(·) of 
the HPA by 

w(k) = r(k) · exp(j^(fc)) (9.44) 

with the amplitude r(k) = \w(k)\ and phase ip(k) — Zw(kh The input signal 
w(k) is affected by the nonlinear amplitude and phase functions of the HPA, and 
the output signal y(k) is distorted mainly depending on the input signal amplitude 
r(k), yielding 

y(k) = \y(k)\ · e x p ( j Z ^ ) = A(r(k)) · expQ{tß(k) + Φ ( Γ ( * ) ) ) ) (9.45) 

The output amplitude A(r(k)) and the phase Φ(Γ(&)) = ZyW - ip(k) of the HPA 
are specified respectively by [43, 32, 39] 

A(r) = ( ψ ^ ' 0 < r < r s a t , ( 9 4 6 ) 

where the saturating input amplitude is defined as 

rsat = -±= (9.48) 

while the saturation output amplitude is given by 

2VK 
(9.49) 

The underlying physics require that AmSLX > rsa t and the input amplitude r meets 
the condition r < i?m a x , where i?m a x is some large positive number. The TWT 
nonlinearity is specified by the positive RV parameter vector t = [aa βα θίψ βφ]Ύ. 
The operating status of the HPA is specified by the input back-off (IBO), which is 
defined as 

mO = 1 0 . 1 o g 1 0 ^ (9.50) 
* a v g 

where Ps a t = r^at is the saturation input power and Pa v g is the average power of 
the signal at the input of the TWT nonlinearity. Note that here Pa v g is defined as the 
average power of w(k)9 which is equal to the average power of x(k) scaled by the 
linear filter power gain 1 + ||h||2. A small IBO value indicates that the HPA operates 
in the highly nonlinear saturation region. 
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9.3.2 A Novel Digital Predistorter Design 

Based on the technique developed in Section 9.2 for identification and inverse of the 
CV Wiener system, a novel digital predistorter can readily be designed to compen-
sate the distortions caused by the HPA. Because both the predistorter and the HPA 
are operating at the transmitter, the input M-QAM signal x(k) to the HPA and the 
HPAs output signal y(k) are readily available to identify the Wiener HPA model 
H(z) and Φ(·) using the Gauss-Newton method based on the De Boor algorithm of 
Subsection 9.2.3. Since the distributions of XR(k) and xj(k) are symmetric, the dis-
tributions of WR (k) and wj (k) are also symmetric. Furthermore, from the underlying 
physics of the HPA, iZmax is known or can easily be found. Therefore, the two knot 
sequences (9.4) and (9.8) can be chosen to be identical with J7max = V'max = ßmax> 
Umm = V'min = — Umax and NR = Nj = y/N. In practice, P0 = 4 is sufficient, 
and an appropriate value of y/N can be chosen by trail and error. Specifically, the 
number of internal knots should be sufficient to provide good modeling capability 
but should not be too large in order to avoid overfitting. 

Based on the estimated Φ(·) = Φ#(·) + j ^ / ( · ) , an accurate inverse to Φ(·) = 
Φβ(·) + j * / ( · ) can readily be obtained. Note that over the input range, Φ#(·) 
and Φ/(·) are monotonic. Since Φ(·) is an accurate estimate of Φ(·), Φ#(·) and 
Φ/(·) can also be assumed to be monotonic over the input range. Therefore, the 
Gauss-Newton method of Subsection 9.2.4 based on the inverse of De Boor algo-
rithm converges to the unique solution Φ _ 1 ( · ) . For the M-QAM signal (9.43), 
there are M different symbol points x(k). Thus, v(k) = Φ-1(χ(&)) has M distinct 
values, and these values can be precalculated off-line and stored for on-line transmis-
sion. Therefore, our proposed digital predistorter solution has extremely low on-line 
computational complexity, which is critically important for high-throughput wireless 
systems. 

9.3.3 A Simulation Example 

We considered the single-carrier 16-QAM system with the static nonlinearity of the 
Wiener HPA described by (9.46) and (9.47). The parameters of the Wiener HPA 
were given as 

h T = [0.75 + jO.2 0.15 + jO.l 0.08 + jO.01], 
t T = [2.15871.15 4.0 2.1] l * M ' 

The serious nonlinear and memory distortions caused by this memory HPA are illus-
trated in Figs. 9.4 and 9.5. Note that, for IBO= 0 dB, the HPA is operating well into 
the saturation region. 

Results of Wiener HPA Identification The 16-QAM training sets each containing 
K = 3000 data samples were generated given the HPAs parameters (9.51) and with 
the HPA operating at the IBO values of 4 dB and 0 dB, respectively, where the power 
of the CV output measurement noise £(fc) was 2σ|. Note that since the identification 
is carried out at the transmitter, both the HPAs input x(fc) and the corresponding 
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(a) (b) 
Figure 9.4 The case of IBO = 4 dB: (a) the HPA's input x(k), marked by ·, and 
(b) the HPA's output y(k), marked by x. 

(a) (b) 
Figure 9.5 The case of IBO = 0 dB: (a) the HPA's input x(k), marked by ·, and 
(b) the HPA's output y(k), marked by x. 

HPA's output measurement y(k) are available. Furthermore, the measurement y(k) 
can usually be considered as noise free. However, to demonstrate the effectiveness of 
the proposed CV B-spline identification approach, we considered both the noise-free 
and noisy measurement cases with 2σ| = 0.0 and 2σ| =0.01, respectively. 

The piecewise cubic polynomial (P0 = 4) was chosen as the B-spline basis func-
tion, and the number of B-spline basis functions was set to y/N = 8. For this HPA, 
we set i?m a x = 1.2, and used the empirically determined knot sequence 

{-12.0, -6 .0, -2.0, -1 .2 , -0.6, -0.3,0.0,0.3,0.6,1.2,2.0,6.0,12.0} 

The Gauss-Newton identification algorithm with the LS parameter initialization, as 
described in Subsection 9.2.3, was carried out. The results obtained are summarized 



226 COMPLEX-VALUED B-SPLINE NEURAL NETWORKS FOR MODELING AND INVERSE OF WIENER SYSTEMS 

in Table 9.1 and illustrated in Figs. 9.6 to 9.9, which confirm that an accurate CV 
B-spline neural network model can be obtained for the HPA even in the cases that 
the measurements y(k) are corrupted by noise. 

In order to achieve an accurate identification of a nonlinear system, the nonlinear 
system should be sufficiently excited over all the amplitudes concerned by the input 
signal, which is known as the "persistent excitation" condition. Note that, under the 
identification condition of IBO= 4 dB, there were relatively few data points which 
yielded the signal amplitude r(k) = \w(k)\ with the values near or over the satu-
ration value rsat · Consequently, the amplitude response and phase response of the 
estimated B-spline neural network Φ(·) exhibits noticeable deviation from the HPA's 
true amplitude response A(r) and true phase response Φ(Γ) in the region r > Rm&x, 
as can be seen from Figs. 9.7 and 9.9. This of course does not matter, as this region 
is well beyond the operating region of the HPA. Interestingly, under the operating 
condition of IBO = 0 dB, the deviation between the estimated response and the true 
response at the region of r > Rma,x is no longer noticeable, as can be noted from 
Figs. 9.6 and 9.8, because of the better excitation of the input signal. From Figs. 9.7 
and 9.9, it can be seen that the noise £(fc) mainly affects the estimated phase response 
at the region of the signal amplitude r(k) near zero. Note that this relatively poor 
accuracy of the estimated phase response under the noisy measurement condition at 
r(k) near zero does not matter at all. This is because the estimated Φ(·) is used to 
design v(k) = i^~1(x(k)) for the 16-QAM signal x(k), whose amplitude \x(k)\ is 
much larger and is well over this near zero region. 

Results of Digital Predistorter Solution We employed the estimated CV B-spline 
Wiener HPA model obtained under the condition of noise-free measurement (2σ| = 
0.0) to design the predistorter. Note that we only needed to calculate the 16 points 
of v(k) = Φ - 1 (x(k)) for the 16-QAM constellation using the Gauss-Newton algo-
rithm based on the De Boor inverse, as described in Subsection 9.2.4. The length 

Table 9.1 Identification results for the linear filter part, h, of the HPA 

true parameter vector: 
hT = [0.7500 + J0.2000 0.1500 + jO.1000 0.0800 + jO.0010] 

estimate under IBO = 0 dB and 2σ£ = 0.0: 
hT = [0.7502 + J0.1996 0.1499 + J0.0999 0.0800 + J0.0008] 

estimate under IBO = 0 dB and 2σ| = 0.01: 
hT = [0.7519 + J0.1963 0.1510 + jO.1000 0.0814 + jO.0014] 

estimate under IBO = 4 dB and 2σ£ = 0.0: 
hT = [0.7502 + J0.2001 0.1501 + jO.1001 0.0800 + jO.0011] 

estimate under IBO = 4 dB and 2σ\ = 0.01: 
hT = [0.7533 + J0.1978 0.1518 + J0.1002 0.0810 + J0.0019] 
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Figure 9.6 Comparison of the HPA's static nonlinearity Φ(·) and the estimated 
static nonlinearity Φ(·) under IBO = 0 dB and 2σ | = 0.0: (a) the amplitude response, 
and (b) the phase response. 
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Figure 9.7 Comparison of the HPA's static nonlinearity Φ(·) and the estimated 
static nonlinearity Φ(·) under IBO = 4 dB and 2σ | = 0.0: (a) the amplitude response, 
and (b) the phase response. 

of the predistorter's inverse filter was set to Lg = 12. The outputs of the combined 
predistorter and Wiener HPA are depicted in Fig. 9.10 for the HPA's operating condi-
tions of IBO = 4 dB and 0 dB, respectively. Compared with the outputs of the HPA 
as plotted in Fig. 9.4 (b) and Fig. 9.5 (b), it can be seen that the designed predistorter 
successfully removes the serious distortions caused by the HPA. The achievable per-
formance of the designed predistorter was further assessed using the MSE metric 
defined by 

1 Ktest \ 
MSE = 10 log10 ( — - £ l*(*) - V(*) I2 ) (9-52) 

k=l 

and the system's BER, where igtest was the number of test data, x(k) was the 16-
QAM input and y{k) was the output of the combined predistorter and HPA system. 
The channel signal-to-noise ratio (SNR) in the simulation was given by SNR = 
10 log10 (E b /N 0 ) , where Eb was defined as the energy per bit and N0 the power of 
the channel's additive white Gaussian noise (AWGN). 
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Figure 9.8 Comparison of the HPA's static nonlinearity Φ(·) and the estimated 
static nonlinearity Φ(·) under IBO = 0 dB and 2cr| = 0.01: (a) the amplitude 
response, and (b) the phase response. 
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Figure 9.9 Comparison of the HPA's static nonlinearity Φ(·) and the estimated 
static nonlinearity Φ(·) under IBO = 4 dB and 2σ| = 0.01: (a) the amplitude 
response, and (b) the phase response. 

With igtest = 105, 16-QAM data were passed through the combined predistorter 
and HPA system to compute the MSE (9.52), and the resulting MSE as the function 
of IBO is plotted in Fig. 9.11. The output signal after the HPA was then trans-
mitted over the AWGN channel, and the BER was then determined at the receiver. 
The results so obtained are plotted in Fig. 9.12, in comparison with the benchmark 
BER curve of the ideal AWGN channel. It can be seen from Fig. 9.12 that the BER 
performance of the combined predistorter and HPA system is practically indistin-
guishable from those of the ideal AWGN channel even under the operating condition 
of IBO = 0 dB. The achievable BER performance of the combined predistorter and 
HPA system are further illustrated in Fig. 9.13 for the three values of the channel 
SNR. 



CONCLUSIONS 229 

9.4 CONCLUSIONS 

Identification and inverse of complex-valued Wiener systems have been proposed 
based on the complex-valued B-spline neural network approach. Our contribution is 
twofold. Firstly, the complex-valued nonlinear static function in the Wiener system is 
modelled based on the tensor product from two univariate B-spline neural networks 
that are constructed using the real and imaginary parts of the system input. The 
Gauss-Newton algorithm, aided by an least squares parameter initialization scheme, 
has been applied to estimate the model parameters that include the complex-valued 
linear dynamic model coefficients and B-spline neural network weights. The identifi-
cation algorithm naturally incorporates the efficient De Boor algorithm with both the 
B-spline curve and first-order derivative recursions. Secondly, an accurate inverse 
technique has been developed for the complex-valued Wiener model. In particular, 
the inverse of the complex-valued nonlinear static function in the Wiener system is 
calculated effectively using the Gauss-Newton algorithm based on the estimated B-
spline neural network model with the aid of the inverse of De Boor algorithm that 
again utilises naturally both the B-spline curve and first-order derivative recursions. 
An application to digital predistorter design for high-power amplifiers with memory 
has been used to demonstrate the effectiveness of our approach for modeling and 
inverse of complex-valued Wiener systems. 
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CHAPTER 10 

QUATERNIONIC FUZZY NEURAL 
NETWORK FOR VIEW-INVARIANT 
COLOR FACE IMAGE RECOGNITION 
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People always to recognize, identify, and distinguish individuals based on face. 
Conventional face recognition algorithms employ simple geometric models. How-
ever, recently developed face recognition processes have emerged into the ad-
vancement of sophisticated mathematical representations and pattern matching 
processes. This book presents an effective color image processing system of 
view-invariant person face image recognition for the Max Planck Institute Ky-
bernetik (MPIK) dataset. The proposed system can recognize face images of 
a view-invariant person by correlating the input face images with the reference 
face image and classifying them according to the correct persons name/ID in-
deed. This has been carried out by constructing a complex quaternion correlator 
and a max-product fuzzy neural network classifier. Two classification parame-
ters, namely discrete quaternion correlator output (p-value) and the peak-to-side-
lobe ratio (PSR), were used in classifying the input face images to categorize it 
to the authentic class or not. Besides, a new parameter called G-value is also in-
troduced in the proposed view-invariant color face image recognition system for 
better classification purpose. Experimental results show that the proposed view-
invariant color face image recognition system outperforms the conventional non-
negative matrix factorization (NMF), block diagonal non-negative matrix factor-
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ization (BD-NMF), and hyper-complex Gabor filter in terms of consumption of 
enrolment time, recognition time and accuracy in classifying MPIK color face 
images which are view-invariant, noise-influenced, and scale-invariant. 

10.1 INTRODUCTION 

Face recognition has been applied in many areas such as face search in databases, 
authentication in security system, smart user interfaces, robotics and so on. Conven-
tional face recognition methods normally focus on grayscale face image recognition. 
However in recently, there are more and more researchers switch to focus on color 
information of the face images to improve the performance of recognition algorithm 
due to the reasons that color face images offer more information for face recognition 
task in contrast to grayscale face images. 

A simple color face recognition system was first proposed by Torres et al. [1] 
based on the PCA (principal component analysis) method. The method is based on 
the representation of the facial images using eigenfaces. The information of three 
different channels (R, G, B) of color face images are first represented in the form 
of eigenvectors respectively; and the recognition is implemented separately on each 
color channel. However, it is found out that the information of different color chan-
nels that utilized separately would destroy the structural integrality of the color in-
formation and make it hard to learn the facial features (variation in expression, poses 
and illuminations). Rajapakse et al. [2] presented a parallel work based on NMF 
(non-negative matrix factorization) for color face recognition. In their work, color 
information on face images of different channels were treated separately too. Some 
observed advantages of NMF method on face recognition are more robust to occlu-
sion, variation of expressions and poses. However, since the NMF method also treats 
information of different color channels separately, just like the PCA method, it would 
also destroy the structural integrality of color information and the correlation among 
the color information. 

In order to preserve the integrality of color information on different channels in 
the color face recognition system, Wang et al. [3] proposed a supersedable NMF 
method, which is the block diagonal non-negative matrix factorization (BDNMF). 
Inspired by the NMF method, BDNMF also separated color information into differ-
ent color channels, but it uses block diagonal matrix to simultaneously encode color 
information of different channels, hence preserving the integrality of color infor-
mation. However, BDNMF method has the demerit of complex enrollment/training 
stage. In BDNMF, unsupervised multiplicative learning rules are used iteratively 
to update the parameters such as basis image matrix (W) and encoding image (H). 
Therefore, longer enrollment time is required for this method. Another demerit of 
BDNMF is that an additional coined block diagonal constraint is imposed on the 
factorization part to construct the BDNMF algorithm. This makes the computation 
more complex compared to the conventional NMF method. 

Another recently developed color face recognition method is the use of hypercom-
plex Gabor filters [4]. Conventional Gabor filters are used in many face recognition 
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applications [5-7] and they are proven to obtain good recognition performance due 
to its inherent merits of insensitivity to illumination and pose variation. In Ref.4, the 
author further extended conventional Gabor filter into hypercomplex (quaternion) 
domain to perform color based feature extraction. Experimental results in Ref.4 
showed that the conventional Gabor filter feature extraction achieved significant im-
provement in face matching accuracy over the monochromatic case. However, hy-
percomplex Gabor filter required a large number of different kernels, and hence the 
length of the feature vectors in quaternion domain would increase dramatically. Also, 
hypercomplex Gabor filter is twice the size of filter structure compared to those used 
in the conventional Gabor filters. 

Most of the proposed algorithms for color face recognition treat the three color 
channels (R, G, B) separately and apply grayscale face recognition methods [8, 9] 
to each of the channels and then combine the results at last. But with the quaternion 
correlation techniques [10], it processes all color channels jointly by using its quater-
nion numbers. Quaternion numbers are the generalization of complex numbers. It is 
a number which consists of one real part and three orthogonal imaginary parts. RGB 
color face image can be represented using quaternion representation by inserting the 
value of three color channels into the three imaginary parts of the quaternion number 
respectively. Therefore, in this book chapter, the concept of quaternion is proposed 
for view-invariant color face image recognition system. 

An advanced correlation filter named as unconstrained optimal tradeoff synthetic 
discriminant (UOTSDF) [11,12], is also applied in the proposed view-invariant color 
face image recognition system. The goal of the filter is to produce sharp peak that 
is similar to 2-D delta-type correlation outputs when the input face image belongs to 
the class of the reference face image that was used to train the input face image; and, 
this provides automatic shift-invariance. A strong and sharp peak can be observed 
in the output correlation plane when the input face image comes from the authentic 
class (input face image matches with a particular training/reference face image stored 
in database) and no discernible peak if the input face image comes from the imposter 
class (input face image does not matches with the particular reference face image). 

Three classification parameters are in concern in classifying whether an input face 
image belongs to the authentic class or not. They are the real-to-complex ratio of 
the discrete quaternion correlator output (p-value) [10], peak-to-sidelobe ratio (PSR) 
[13] and the max product fuzzy neural network classifier value (G-value), p-value 
has been introduced in Ref. 10, which is used in measuring the correlation output 
between the colors, shape, size, and brightness of input image and a particular refer-
ence image. PSR is another parameter introduced in Ref. 13 for a better recognition 
due to the reason that it is more accurate if we consider the peak value with the re-
gion around the peak value, rather than a single peak point. The higher the value 
of PSR, the more likely the input face image belongs to the referenced image class. 
In this chapter, both the p-value and the PSR are combined, normalized and applied 
with Gaussian distribution function in the max-product fuzzy neural network classi-
fier. This technique is producing a new parameter, so-called the G-value. This new 
parameter as well as the new algorithm is applied in view-invariant color face image 
recognition system for better classification purposes. The same technique had been 
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applied in the machine condition monitoring [14] and it yields high success rate in 
classifying machine conditions. It is good to be implemented for color face image 
recognition. 

In this chapter, a quaternion-based fuzzy neural network classifier is proposed 
for MPIK data sets view-invariant color face image recognition. A ten thousand re-
peated images generated/collected from the 7 different position color face images 
of 200 people in MPIK data set were used for evaluated the system performance. 
Among the 10,000 repeated color face images, 5000 are normal MPIK color face im-
ages; 2500 are normal MPIK color face images embedded with noise features such 
as "salt and pepper," "poisson," and "speckle noise" as provided in Matlab image 
processing toolbox; and 2500 are normal MPIK color face images with scale invari-
ance (shrink or dilation). The performance of the proposed quaternion-based fuzzy 
neural network classifier is compared to NMF, BDNMF, and hypercomplex Gabor 
filter. Experimental results showed that the quaternion-based fuzzy neural network 
classifier outperforms conventional NMF, BDNMF, and hypercomplex Gabor filter 
in terms of enrollment time consumption, recognition time consumption and accu-
racy in classifying view-invariant, noise-influenced, and scale-invariant MPIK color 
face images. 

This chapter is organized as follows: Section 10.2 briefly discusses face recogni-
tion system and some conventional face recognition methods, such as PCA, NMF, 
and BDNMF methods. Section 10.3 comments on the proposed view-invariant color 
face image recognition model and the quaternion-based color face image correlator. 
Section 10.4 describes the enrollment stage and recognition stage for the algorithm 
of the proposed quaternion-based color face image correlator. Then in Section 10.5, 
the structure of fuzzy max-product neural network classifier will be described. Sec-
tion 10.6 contains the experimental results. Finally, in Section 10.7, the work is 
summarized and envisages some future work. 

10.2 FACE RECOGNITION SYSTEM 

Humans often had the inherent ability to distinguish and recognize between indi-
vidual faces, however, computers starting from the mid-1960s have shown the same 
ability. In the mid-1960s, researchers began using the computer to work on face 
recognition. Since then, computerized facial recognition has started. During 1964, 
Bledsoe and Chan worked on using the computer to recognize human faces [15-17]. 
They were proud of these works, however, due to the reason that an unnamed intelli-
gence agency was funded their research, they did not allow much dissemination, and 
only little of the work was published. According to their work, given a big database 
of images and a photograph, the problem was to pick from the database on a small set 
of records such that one of the image records matched the photograph. The success 
rate is measured in terms of the ratio of the answer list to the number of records in 
the database. Bledsoe labeled the facial recognition system as man-machine system 
[16] due to the reason that the coordinates of a set of features from the photographs 
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will be extracted out based on human images, which will later be applied by the 
computer for recognition. The following difficulties were discovered in Ref. 16: 

1. Face recognition is hard with the great variability in head rotation and tilt, 
angle and lighting intensity, aging, facial expression, etc. 

2. The correlation method on unprocessed optical data is inevitably failed on 
cases with great variability. The correlation between two images of the same 
person with two different head rotations is very low. 

In 1970s, Goldstein et al. [18] applied 21 specific subjective markers such as 
lip thickness and hair color to run the automated face recognition. The problem of 
this face recognition method was that the measurements and locations were manu-
ally computed. However in 1987, Sirovich and Kirby [19] applied a standard linear 
algebra technique, so called the "principal components analysis" for grayscale face 
recognition. 

10.2.1 Principal Component Analysis (PCA) Method 

Principal Components Analysis (PCA) is a statistical method used in face recogni-
tion, image compression, and high-dimensional pattern searching. In face recogni-
tion, PCA, by the application of eigenfaces (eigenvectors of the set of faces) is the 
technique first developed by Sirovich and Kirby for grayscale face recognition in 
1987. It was later improved by Turk and Pentland [20] to extend to multiple-view 
face recognition, as well as by Torres et al. [1] in the color face recognition system. 

In PCA face recognition system [1], every face image is represented as a vector 
and expressed in an orthogonal basis, computed from the training images set. Sup-
pose there are N training vectors x~\, x~2, . . . , X~N, the covariance matrix C can be 
estimated by 

1 N 

C*N Σ ^ - #(** - tiT (ιαΐ) 

k 

where β is the estimation of the training vectors expectation. The N — 1 eigenfaces e* 
can be computed and sorted by descending module of their eigenvalues λι > λ2 > 
• · · > Aiv-i- Once the corresponding eigenfaces are computed, they are used to 
represent the training and the test faces to be identified. This is done by a projection 
on the eigenfaces applying a scalar product. Any training image can be obtained by 
a linear combination of the eigenfaces: 

J V - l 

x - β + ^2 £& (10.2) 
i=l 

where \. The first eigenfaces contain the most information, in the root mean 
square sense, so that a test vector y can be expressed in the eigenspace, to express it 
in term of the principal components of the training vectors [1]: 
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N-l 

υ = μ+Σ ΰίβί 

i=l 

The training and test vectors can be rewritten as 

and y = x — 

\ XN-1 ) 

(10.3) 

2/1 

(10.4) 

\ VN-i ) 

Then the recognition is performed using the maximum likelihood principle by a dis-
tance computation. The selected training image is the one which have the minimal 
distance under the eigenbasis: 

κ0 arg min d{xk,y) 
Kk<K 

(10.5) 

^ is the Mahalanobis distance. In summary, PCA is where d(x,y) = J Σ ^ 

holistic algorithm which learns facial features of the whole image. It uses a linear 
combination of a set of orthogonal bases to describe a whole face image. The essence 
of the algorithm makes it hard to learn local facial features for recognition [21]. 
Hence, face recognition approach based on it is more prone to be affected by the 
variation of poses, expressions and illuminations. 

10.2.2 Non-negative Matrix Factorization (NMF) Method 

Rajapakse et al. [2] present a color face recognition method based on non-negative 
matrix factorization (NMF). In their work, color information from different channels 
(R, G, B) is treated separately. Face images of different color channels are factorized 
using NMF algorithm respectively and base images on each channel are computed. 
The projection coefficients of color face samples extracted from the base images are 
used as the facial features for recognition. Given a data matrix F = {Fij}nxm, 
non-negative matrix factorization refers to the decomposition of the matrix F into 
two matrices W and H of size n x r and r x ra, respectively, such that 

F = WH (10.6) 

where the elements in W and H are all positive values. From this decomposition, a 
reduced representation is achieved by choosing the rank r, such that r < n and r < 
m. The reconstruction of an object is performed only by adding its representative 
parts collectively. Each column in the matrix H is called an encoding and each 
column in the matrix W is called a basis image. An image (column) in F can be 
reconstructed by linearly combining the coefficients in an encoding with the basis 
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images. The encodings influence the activation of pixels in the original matrix via 
basis images. 

According to Ref.22, each element in the matrix F can be written as Fij = 
r 

Σ WipHPj, where r represents the number of basis images and the number of co-
p = l 

efficients in an encoding. The following unsupervised multiplicative learning rules 
are used iteratively to update W and H: 

Hpj <- Hpj £( r
Wi»Fi> ) (10.7) 

Wip <- Wip Σ( /*>"» ) (10.8) 
i=i ZWikHkj 

k=l 

WiP <- - ^ — (10.9) 
Ewkp 

k=l 

The initial values of W and H are fixed randomly. At each iteration, a new value 
for W or H is evaluated. Each update consists of a multiplication, and sums of 
positive factors, With these iterative updates, the approximation of (10.6) improves 
with a guaranteed convergence to a locally optimal matrix factorization [23]. 

10.2.2.1 Color Image Representation and Training for Face Recognition In 
color images, a set of 3 data matrices Fl is constructed where I e { R,G,B } 
such that each color channel, /, of training face images occupies the columns of 
the Fl = [flifl2--flm}> l € { R,G,B } matrices. Let the set of faces be Γ = { 
Λ j h, ···, fm }> then the data matrices, Fl = [fif^—fm]- Learning is done using 
(10.7) - (10.9) to decompose each matrix Fl into two matrices, Hi and Wi. Let the 
basis images be Wl = [wliwl2...wl

r] and encodings be Hl = [hlihl2--hl
m]. Each 

face fli in F can be approximately reconstructed by linearly combining the basis 
images, and the corresponding encoding coefficients c = (hliihl2i--hl

ri). Hence, 
a face can be modeled in terms of a linear superposition of basis functions together 
with color encodings as follows: 

fli = Wlhli (10.10) 

For each face fi in the training set and test set, the corresponding encoding coef-
ficients are calculated for each color channel. The basis images in Wl are generated 
from the set of training faces, Ytrain. The corresponding color encodings, hli of 
each training face fi is given by 

hli = (W'Yfi (10.11) 



242 QUATERNIONIC FUZZY NEURAL NETWORK FOR VIEW-INVARIANT COLOR FACE IMAGE RECOGNITION 

where Wl is computed pseudo-inverse matrix of the basis matrix W. Once trained, 
the face image set, r i r a m , is represented by a set of encodings {h\ hl2 . ·. hl

m} 
with a reduced dimension of rank r. 

10.2.2.2 Color Face Image Recognition Given a face image / , a representative 
color encodings for it can be found by 

hi = (wiyf (10.12) 

Cosine angle distance measure is used to calculate the similarity between encod-
ings of a trained image hi = rtrazn and a test image h = Ytest. 

The cosine angle between the two data vectors is taken as the similarity measure: 

The similarity measure si determines the matching score between the encodings 
h and hi corresponding to 2 faces / and /$. The optimum matching encoding of a 
trained image can be given as hi* where 

i* = arg max Si (10.14) 
i 

In summary, NMF algorithm imposes non-negative constraint on base image ma-
trix and coefficient matrix. In the algorithm, there are only additive operations and 
no subtractive operations. It is more accordant to the basic idea of linear combi-
nation. It can learn facial features of facial part and then construct the part-based 
representation. The pros of NMF algorithm in face recognition is more robust to oc-
cultation, variation of expression and poses. But as on color face image, Rajapakse 
et. al. applied NMF algorithm to different channels separately which would destroy 
the integrality of color information and the correlation among them as the work of 
Torres et. al. does on PCA method. 

10.2.3 Block Diagonal Non-negative Matrix Factorization (BDNMF) 

Method 

Inspired by the NMF algorithm, a novel approach on block diagonal non-negative 
matrix factorization (BDNMF) is proposed by Wang and Bai [3] for color face rep-
resentation and recognition. In order to preserve the integrality of color information 
of different channels, BDNMF method exploits block diagonal matrix to encode the 
color information for different channels (R, G, B) simultaneously. BDNMF imposes 
an additional coined block diagonal constraint on base image matrix and coefficient 
matrix based on the basic constraint of NMF, and it is applied to compute factoriza-
tion coefficients and color base images. To preserve the integrality of color informa-
tion no each channels (R, G, B), the mode of block diagonal matrix is proposed in 
[3] to encode color information of different channel simultaneously. 



FACE RECOGNITION SYSTEM 243 

Let F denote a color face image with size n = πι χ Π2· (F^R\ F^G\ F^) are 
data matrices corresponding to three color channels (R, G, B), respectively (F^, F^, F^ € 
SRniXn2). These component data corresponding to the three color channels are ar-
ranged in the place of principal diagonals of a matrix and used to represent a color 
face: 

F = 
F(R) o o 

0 F<G) 0 
0 0 FW 

(10.15) 

In order to exploit the BDNMF algorithm to compute the coefficient matrix and 
the base image matrix, color faces in training set are first combined together to form 
the block diagonal matrix of training set [3]: 

V = 
χ(β) o o 

0 Χ^ 0 
0 0 Χ^ 

(0 

(10.16) 

where X® = [X1
{l\X2

{l\ . . , I m
( / ) ] , / € {R,G,B}, for m color faces, and each 

column of the sub-matrix X^ represents the component data corresponding to chan-
nel I of one color face, i.e., X^ is the vector mode of component data matrix F^. 

Similar to the conventional NMF algorithm, BDNMF algorithm's goal is to fac-
torize block diagonal matrix V into the multiplication of two non-negative matrices 
W (basis images) and H (encodings/coefficients): 

3r 

Viß*(WH)iß = Y^WikHkfi (10.17) 
fe=l 

where 3r is the rank of BDNMF and r is the rank of sub-matrix in the place of 
principal diagonal. The most essential difference between BDNMF and conventional 
NMF algorithm is that the constraint imposed on the basis image matrix W and 
encoding/coefficient matrix H are different. As seen in (10.16), most elements in 
V are zeros except for three sub-matrices in the place of the principal diagonal, and 
the elements of each sub-matrix belong to the same color channel. Herein, as to the 
same rank r, BDNMF imposes an additional block diagonal constraint on the basis 
image matrix W and encoding/coefficient matrix H, i.e., W and H must be in block 
diagonal matrices as well: 

W = 

H = 

w(R>> o o 
0 W^ 0 
0 0 W^ 

H(R) 

0 
0 

0 
Hl°) 

0 

0 Ί 

0 
#<*) 

(10.18) 

(10.19) 

where WW € 3?n x r , H® € ΚηΧΓ(ί € {R,G,B}). Then BDNMF algorithm is 
transformed into the following optimal problem: 
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MgminD(V\\WH), s.t. W>0,H>0; (10.20) 
W and H meet conditions (10.18) and (10.19) 

In summary, it is deserved to be mentioned that V, W, and H have a lot of el-
ements equaling zero respectively. It would be time-consuming to compute each 
element during the process of optimizing subjective function (10.20). Therefore, 
longer enrollment time is required for this method. Another demerit of BDNMF is 
that an additional coined block diagonal constraint is imposed on the factorization 
part to construct the BDNMF algorithm. This makes the computation more complex 
compared to the conventional NMF method. Therefore, in this chapter, a concept 
applying the quaternion approach is proposed for view-invariant color face image 
recognition system. The proposed quaternionic-based face recognition system pro-
cesses all color channels jointly by using its quaternion numbers. 

10.3 QUATERNION-BASED VIEW-INVARIANT COLOR FACE 
IMAGE RECOGNITION 

In this subchapter, quaternion-based view-invariant color face image recognition will 
be briefly discussed. Section 10.3.1 will introduce what is quaternion. Section 10.3.2 
will discuss the quaternion Fourier transform and Section 10.3.3 will indicate the 
newly developed quaternion-based view-invariant color face image correlator. 

10.3.1 Quaternion 

In mathematics, complex number is viewed as points in a plane. It consists of a real 
part and an imaginary part. However, a quaternion is number system that extends the 
complex number into space. A quaternion consists of a real part and three imaginary 
parts. From the quaternion, it gave birth to quaternion algebra. Quaternion algebra 
was first introduced by Sir William Rowan Hamilton, an Irish mathematician, in 
1843 [24]. Sir Hamilton discovered that points in space can actually be described by 
their coordinates that are with triples of numbers (i,j, k). He was later carving the 
formulas for adding multiplying and dividing those triples of numbers (quaternion). 

The quaternion and quaternion algebra were first applied to mechanics litera-
ture on its three-dimensional space studies. In the modern world today, the quater-
nion also is useful in theoretical mathematics and applied mathematics for three-
dimensional rotations calculations such as in 3D computer vision and computer 
graphics. Some elementary properties of quaternion numbers and the operations 
of quaternion arithmetic are shown below: 

Extending the complex number: A triples example p + q.i + r.j = (p, q, r) where 
i and j are distinct and independent. 

Breaking commutatively: Two triples x and #*. 
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x =p + q,i + r.j = (p,g,r),x* = p - q.i - r.j = (p,-q,-r) (10.21) 
xx* = p2 + q2 + r2 — 2i^'gr 

The result has an extra product term (—2ijqr). 
Sir Hamilton resolves this problem by regarded them as two terms: (—ijqr) and 

(—jiqr). If somebody breaks the commutative law of multiplication and claims that 
ij = —ji, then (—2ijqr) term vanishes, but it turns out that there still maintain a 
consistent number: 

ij-ij = i(ji)i = -i(ij)j = - ( i 2 )Ü 2 ) = - ( - 1 ) ( - 1 ) = - 1 (10.22) 

which means ij = >/—Ϊ» which is still a root of — 1. If this root is name as A:, then 
the extension from triples to quadruples is straightforward: 

p + q.i + r.j + s.k = (p, 0, r, s) (10.23) 

which means that the following relationships hold: 

ij = &, jk = i, ki= j , ji = -k, kj = - i , zA: = - j (10.24) 
i2=f = k2=ijk=_1 

Sir Hamilton named these extended numbers as quaternions. 

Addition and subtraction for quaternions: 

Let x = (p, q,r,s) = p + 9.i + r.j + s.fc 
and 2/ = (a, b,c,d) = a + iu 4- c.j + d.fc, t/ien 

# H- 2/ = (P + a? (7 + &> r + c, s + d) 
= {P + a) + (q + 6).i + (r + c).j + (« + d).fc 

x — y — (p — a, q — 6, r — c, s — d) 

= (p - a) + (σ - 6).i + (r - c).j + (s - d).fc (10.25) 

Multiplication of a quaternion with a real number: 

Let x = (p, a, r, s), and y is a real number, then 

yx = xy = (yp, ya, yr, ye) = yp + (yg)i + (yr).j + (ys).fc (10.26) 

Alternate representation of a quaternion: 

Lei x = (p, tf, r, s) 
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where the real part p can be separate from the purely imaginary part v — (p, o, r) 

x = (p, v) 

If there is another quaternion, y = (a, u) where u is another purely imaginary 
part, then 

s + V = (P» V) + (a, u) = (p + a, i/ + u) (10.27) 

Conjugation and absolute value of a quaternion: 

Let x = (p, g, r, s) = p + <?i 4- r . j + s.fc 
and its conjugate x* = (p, — q, — r, —5) — p — iq — jr — ks 

or x* — (p, —1/) 

The absolute value \x\ = y/(p2 + <f + r2 + s2) = v/xx* (10.28) 

Multiplication of a quaternion: 

Lei # = (p, #, r, s) and y = (a, 6, c, d), 
#y = (p + 9.« -f r.j + s.k)(a + &i + c.j + d.A;) 

— p(a + fr.i + c.j + d.A;) + gi(a + b.i + c.j + d.A;) + 
r.j(a + b.i + c.j + d.A:) + s.A;(a + b.i + c.j + d.A;) 

— pa+ pb.i + pc.j + pd.A; + aa.i — qb + qc.k — qd.j + 
ra. j — r&.A; — re + r.i + sa.A; + sfcj — se i — sd 

— (pa — qb — rx — sd, pb + qa + rd — sc, pc — qd + ra + sb, 

pd + qc — rb + sa) 

Another representation way: x = (p, z/), y = (a, u) 

#2/ = (pa — i/.u,pu + ai/ + i / Iu ) (10.29) 

where X is the vector cross product. From this representation, it shows that 
quaternion multiplication is not commutative (change the order of operands will 
change the end result). 

Squaring the quaternion: Let x = (p,q,r,s) — (p, v) 

x2 = (p2 - Ι/.Ϊ/, 2pi/) (10.30) 

since the cross product of any vector with itself is zero. 

Inverse and division of a quaternion: 
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XX* 

X 

y 

= x*x = |x|2andthus 
XX* X*X 

w = w = 
- l y - i 

— xy or — — x y 
X 

(10.31) 

Real and complex subspaces for quaternions: 

e.g. (p, 0,0,0) = p, 
(p,g,0,0) =P + q-i, 

(p,0,r,o) =p + rj, 

(ρ,Ο,Ο,β) = p + s.A; (10.32) 

For more understanding and studies on quaternion and its properties, see Ref.25. 

10.3.2 Quaternion Fourier Transform 

There are many types of Quaternion Fourier Transform introduced, the earliest defi-
nition of QFT is the two-side form as below: 

oo oo 

Η(9)(ω,ν) = 1 1 e-iux.h(x,y).e-^y dxdy (10.33) 
— OO —OO 

It can be generalized as 

oo oo 

H{q)(D,v)= I I e-^x.h{x,y).e-^vy axay (10.34) 
— OO —OO 

where μι and μ2 are two pure quaternion units (the quaternion equation with real 
part equal to zero) that are orthogonal to each other: 

β2 = μ2,ί + M2,j-i + M2,fc·* 

Recently, the left-side form of QFT was introduced: 

H{ 

oo oo 

[ω,ν) = j f e-^{ux+vy\h{x,y) axay (10.35) («) 
— oo —oo 
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The right-side QFT can also define as the transpose transform of the left-side form 
of QFT. Therefore, it can be concluded that there are at least three types of QFT: 

1. Typel QFT (two-side): 
oo oo 

Hiql)(u>,v)= I I e-^xh(x,y)e~^y dxdy 

— OO —OO 

2. Type 2 QFT (left-side): 
oo oo 

Η ( , 2 ) (ω, ι / )= I I e-^ux+^h(x,y) dxdy 

— OO —OO 

3. Type 3 QFT (right-side): 
OO OO 

Η(φ){ω,ν) = j j h(x,y)e-"^x+^ dxdy (10.36) 
— OO —OO 

The inverse quaternion Fourier transform (IQFT) are as below: 

1. Type 1 IQFT (two-side): 
oo oo 

h{x,y) = (47Γ2)"1 f f e^wxH{ql){u,v)e^vy dudv 

— OO —OO 

2. Type 2 IQFT (left-side): 
oo oo 

h(x,y) = (47Γ2)-1 ί ί e^wx+v^H(q2){uj,v) dujdv 

— OO —OO 

3. Type 3 IQFT (right-side): 
OO OO 

Λ(χ,Ι/) = (4π2)-1 f f H{q3)e^wx+^ άωάν (10.37) 

For continuous QFT, there are also at least three types of discrete quaternion 
Fourier transform (DQFT): 

1. Type 1 DQFT (two-side): 

M - l J V - l 

H(qi)(p,8)= Σ Σ e-ßl27r(pm/M)h(m,n)e-^2^sn/M^ 
m=0 n=0 
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2. Type 2 DQFT (left-side): 

Μ-1ΛΓ-1 
H{q2)(p,s)= Σ $ ] e - ^ 2 7 r ^ m / M ) + ^ / M ) ) / i ( m , n ) 

m=0 n=0 

3. Type 3 DQFT (right-side): 

Μ-1ΛΓ-1 

H(q3)(p,s) = Σ 5Z^K^"M l 2 7 r ( ( p m / M ) + ( W M ) )^K^) (10.38) 
m=0 n=0 

QFT and DQFT are useful for color image processing, especially for the color-
sensitive smoothing, but research on the algorithms of QFT and DQFT are not suf-
ficient enough and thus limit the utilities of QFT and DQFT. Therefore, efficient 
algorithms of all types of QFT will be developed. With the algorithms, the QFT can 
be implemented by using the structure of the original FFT directly [26]. As the effi-
cient algorithms of DQFT are very similar to the continuous QFT, therefore we will 
only discuss the efficient algorithms of the continuous QFT. 

10.3.2.1 Implementation of Type 1 QFT To simplify the discussion, we begin 
with a special case that μι = i and μ2 = j . If: 

oo oo 

He{w,v)= I j e-iwx.h{x,y).e-ivy uxay (10.39) 
— OO —OO 

then 

[ffc(cj,i/) + ffc(ü;,-i/)] 
2 = i iuJXh(x>y)'cos(uy)dxdy 

[Hc(u>,v) + Hc(u),-v)] _ 

-oo —oo 

oo oo 

/ / 
e lwxh(x,y)soi(vy) dxdy A (10.40) 

and therefore, 

[gc(h;,i/) + ge(a; ,- i /)] + [He(u>,v) + He(uit-v)] ,fc) 

f f e~^xh{x,y)e-iivy AxAy (10.41) 
- o o —oo 

thus, 
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#(9ι)(ω,ι/) - (10.42) 

Hence, to compute the QFT, it can first compute complex 2-D FT of input function 
as stated in (10.39) and then use (10.42) to compute the QFT. Note that in (10.39), 
the input h(x, y) is a quaternion function and not a complex function; therefore one 
complex 2-D FT is impossible to implement it. Hence, h(x, y) first decompose as 

h(x, y) = ha(x, y) + hb(x, y).j (10.43) 

where ha{x,y) = hr(x,y) + hi(x,y).i9 hb(x,y) = hj(x,y) + hk(x,y)A. Then, 
(10.39) can be rewritten as 

CO OO CO CO 

HC(CJ,V) = f f e-iuxha(x,y)e-ivy dxdy + J j e-^xhb{x,y).je-ivy axay 

— CO —CO —CO —CO 

CO CO CO CO 

= f j e-iuxha(x,y)e-iuydxdy+ f j e-i"xhb(x,y).e-il'1>.j dxdy 

— CO —CO —CO —CO 

CO CO Γ CO CO 

= [ [ e-i"xe~il'yha{x,y)axay+ j j e ^ e ^ k ^ x , -y) axay J 

(10 

In summary, there are 3 steps to follow to compute the type 1 QFT: 

1. Decompose the input function as Eq.( 10.43). 

2. Calculate Η(ω, ν) from Eq.(10.44). 

3. Calculate the transform result of QFT from H(CJ, v). 

If the x, y, ω, and v axes are sampled as 

x = mAx, y = nAy, ω = ρΔω 

v = qAu, m, pe [-M0, M0], n, q e [-JV0, N0] 

2ττ Α Α 2π 
Δ*. Δ ω = — , Δ„.Δ„ = —, Μ = 2M0 + 1, N = 2N0 + 1 

(10.45) 

then (10.44) can be implemented as below: 
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M0 N0 

m= —Mo n=—No 

Mo iV0 

m=—Mo n= — No 

(10.46) 

QFT can be implemented by two M x N point 2-D DFTs. Each 2-D DFT requires 
MN x log2 MN real number multiplications. Hence, to implement QFT, it is totally 
require 2MN x log2 MN real number multiplications. For the discussion above, it 
is the special case where μ\—ι and μ2 = j · Hence, for general case, suppose that 

μι = μι,ι-ί + ^1,2-j + μι,3·&, 
μ2 = μ2,ι·* + ^2,2-i + μ2,3·&, 

μ3 = μ 3 , ι · * + μ3,2^ + μ3,3·^ 
(10.47) 

Then, /ι(χ, ?/) rewritten as below: 

h(x,y) = hr(x,y) + Λι(χ,2/)μι + Μ^>2/)μ2 + Μ#>2/)μ3 (10.48) 

and 

Γ hi(x,y) "I Γ μ Μ μ2,ι μ3,ι 1 Γ hi{x,y) 1 
h2(x,y) = μι ,2 μ2,2 μ3,2 hj{x,y) (10.49) 

L hs(x,y) J L ^ι,3 μ2,3 μ3,3 J L hk(x,y) J 

Then, the type 1 QFT can be implemented as follows [26]: 

1. Decompose input function as 
ft(x, y) = ha(x, y) + Λ&(3,2/)μ2 (10.50) 

where fte (a:, 2/) = hr(x,y)h1(x,y).ßi,hb(xJy) = h2{x,y) + h3{x,y).ßi 

2. Calculate Η(ω,ν), where 
oo oo 

Hc(w,i/) = f ( e-^wx+"v\ha{x,y) axay 

— OO —OO 

/ OO OO \ 

+ ( / / ^ ^ ^ - M * , - ? / ) d a ; d 2 / ) ^ (10.51) 
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3. Calculate transform result of QFT by 

Hql(u,u) = Hc(u9u)^^+Hc(u,-u)^-^ (10.52) 

10.3.2.2 Implementation of Type 2, 3 QFT The following process shows the 
implementation of type 2 and type 3 QFT: 

1. Find a unit pure quaternion μ2 orthogonal to μ2, as below: 

μι = μι,».ί + ßij.j + μι,*·&, 

μι,ι^2,ί + μι j-ß2j + μι,*·μ2,* = ο (10.53) 

μ3 defined as product of μι and μ^. 

2. Decompose input function h(x, y) into ha(x, y) and h^x, y). 

3. Calculate transform result. Type 2 QFT: 

OÜ OO 

if(i2)(w,«/) = J J e-^ux+"^ha(x,y) dxdy 
— OO —OO 

/ oo oo 

+ 1 /" /" e-^ux+v^hb{x,y) dzdt/) .μ2 (10.54) 
V-CXD —OO 

Type 3 QFT: 

oo oo 

#(,3)(ω,ι>) = j J e-^u'+v^ha(x,y) dxdy 
— OO —OO 

/ OO OO 

+ ( / f e-^»x+vv)hh(x,y) άχάυ\μ2 (10.55) 

The amount of real multiplications required for the QFT of types 2 and 3 are same 
as typel QFT. The similar way as in type 1 can be used to implement IQFT of types 
2 and 3 except that: 

1. The roles of h(x, y) and Hq2$ (a;, v) are exchanged 

2. The signs of μ\ in Eqs.(10.54) and (10.55) are opposite. 
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Figure 10.1 View-invariant color face image recognition system. 

10.3.3 Quaternion-Based View-Invariant Color Face Image Recognition 

System Model 

The proposed view-invariant face recognition system model considered in this chap-
ter is shown in Fig. 10.1. 

The view-invariant input color face image is first supplied to the quaternion-based 
color face image correlator. The quaternion-based color face image correlator is used 
to obtain correlation plane for each correlated input face image with reference face 
images stored in a database to calculate out some classification characteristics such 
as the real to complex ratio of the discrete quaternion correlator (DQCR) output, 
p-value, and the peak-to-sidelobe ratio, PSR. These classification characteristic will 
later be input to the max-product fuzzy neural network to perform classification. Be-
low is the detailed discussion on the quaternion-based color face image correlation. 

The referenced face image after performing discrete quaternion Fourier trans-
forms (DQFT) [10]: 

I(m,n) = i # ( r a ,n ) i + /G(ra,n).j + 7#(ra,n).fc (10.56) 

where m and n are the pixel coordinates of the reference face image. R, G, B parts of 
reference face image are represented by i#(ra, n), 7 G ( ^ 5 rc)> and /^(ra, n), respec-
tively, and i—, j — , k- are the imaginary parts of a quaternion complex number [27] 
and the real part of it is set to zero. Similarly, hi(m, n) is used for representing input 
face image. Then, we can produce output 6(m, n) to conclude whether the input face 
image matches the reference face image or not. If hi(m, n) is the space shift of the 
reference face image: 

hi(m, n) = I(m — ra0, n — no) 

Then after some calculation, 

max(fer(ra,n)) = br(—mo, no) 

where br (m, n) means the real part of 6(m, n) and 

M - l N - l 

&r(-m0,n0) = 5Z ΣΖ \I(m'n)\2 

m=Q n=0 

(10.57) 

(10.58) 

(10.59) 
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where M, N is the image ar-axis, y-axis dimension. At the location (—mo, no), 
the multiplier of i—, j — , k— imaginary part of b(—mo, no) are equal to zero: 

bi(-m0,n0) - bj(-mo,n0) = ^ ( - m 0 , n 0 ) = 0 (10.60) 

Thus, the process as below can be followed for face image correlation [10]: 

1. Calculate energy of reference face image I(m,n): 

M-1N-1 

Ει=Σ EiJ(m'n)i2 (ια61> 
77i=0 n=Q 

Then the reference face image and the input face image are normalized as: 

I8(m,n) = I{m,n)ly/E[ (10.62) 

H8(m,n) = hi{m,n)ly/E[ (10.63) 

2. Calculate the output of discrete quaternion correlation (DQCR): 

M-1N-1 

gs(m,n)= ^ Γ ^ Ι8(τ,η).Η8{τ - ηι,η - n) (10.64) 
r = 0 77=0 

where the bar means the quaternion conjugation operation and perform the 
space reverse operation: 

#(m, n) = gs(-m, - n ) (10.65) 

3. Perform an inverse discrete quaternion Fourier transform (IDQFT) on (65) to 
obtain the correlation plane P(m, n). 

4. Search all the local peaks on the correlation plane and record the location of 
the local peaks as (ms,ns). 

5. Then at all the location of local peaks (ms,ns) found in step 4, calculate the 
real to complex value of the DQCR output: 

\Pr(ms,ns)\ (10 66) 
\Pr(ms,ns)\ + \Pi(m8,n8)\ + \Pj(m8,n8)\ + \Pk(m8,ns)\ 

where Pr(m8lns) is the real part of P (m s ,n s ) . Pi(m8,n8), Pj(m8,ns) and 
Pk(m8,n8) are the i—, j — , k— parts of P (m s ,n s ) , respectively. If p > d\ 
and c\ < \P(m8,n8)\ < C2, then it can conclude that at location (ms,n8), 
there is a face image that has the same shape, size, color, and brightness as the 
reference face image. d\ < 1, c\ < 1 < C2 and ci, C2, and d\ are all with 
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values near to 1. The value of p decays faster with the color difference among 
the match face image to the reference face image. 

Another classification characteristic that can be applied in quaternion-based color 
face image correlation is the peak-to-sidelobe ratio (PSR). A strong peak can be 
observed in the correlation output if the input face image comes from imposter class. 
A method of measuring the peak sharpness is the PSR, which is defined as below 
[13,28]: 

p S R = Peak - mean(sidelobe) 
a(sidelobe) 

where peak is the value of the peak on the correlation output plane, sidelobe is a 
fixed-sized surrounding area off the peak, mean is the average value of the sidelobe 
region, σ is the standard deviation of the sidelobe region. Large PSR values indicate 
the better match of the input face image and the corresponding reference face image. 

The quaternion-based color face image correlator involved 2 stages: (1) enroll-
ment stage and (2) recognition stage. During the enrollment stage, one or multiple 
face images of each person in database are acquired. These multiple reference face 
images have the variability in the angle of turning faces (e.g., 90 deg to left, 60 deg 
to left, 30 deg to left, 0 deg facing in front, 30 deg to right, 60 deg to right, 90 deg 
to right, etc.). The DQFT of the reference face images are used to train the fuzzy 
neural network and determine correlation filter coefficients for each possible persons 
set. During the recognition stage, sample face images will be input and the DQFT of 
such images are correlated with the DQFT form of the reference face images stored 
in the database together with their corresponding filter coefficients, and the inverse 
DQFT of this product results in the correlation output for that filter. Enrollment stage 
and recognition stage are discussed in detail in the following section. 

10.4 ENROLLMENT STAGE AND RECOGNITION STAGE FOR 
QUATERNION-BASED COLOR FACE IMAGE CORRELATOR 

This section describes the enrollment stage and recognition stage for the algorithm 
of the proposed quaternion based color face image correlator. 

10.4.1 Enrollment Stage 

The schematic of the enrollment stage is shown in Fig. 10.2. During the enrollment 
stage, the reference face images for each person set in database are partitioned ac-
cording to S different angle face image. These partitioned reference face images are 
then encoded into a two-dimensional quaternion array (QA) as follows: 

J*(ti) = ^ r ( i j ) + IsRit^-i + IsGit^-J + IsB{tx)-k (10.68) 
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Figure 10.2 Schematic of the enrollment stage. (See color insert.) 

where t\ = 1,2,..., T represents the number of person subscribe to the database, 
Isr(ti) represents the real part of a quaternion array of an s-th face image for person 
set t i , s = 1,2,..., S represents the number of face images in different angle for a 
particular person. Je Ä( t l) , 7eG(ti). a n d ^JB(*I) e a c h represents the i-, j - 9 k-
imaginary part of an s-th face image for person t\, respectively. 

The quaternion array in (10.68) then performs a discrete quaternion Fourier trans-
form (DQFT) to transform the quaternion image to the quaternion frequency domain. 
A two-side form of DQFT has been proposed by Ell [29, 30] as follows: 

Μ-1ΛΓ-1 

W m , n ) = Σ Σ e-^2<mr^J9(tl)(r^).e-^2<n^^ (10.69) 
τ=0 η=0 

where e is an exponential term, and μ\ and μ2 are two units pf pure quaternion (the 
quaternion unit with real part equal to zero) that are orthogonal to each other [26]: 

μι = μι,ΐ-ί + ß2,j-j + M2,fc.*, 
Mi,· + μ2υ + ßi,k = vliVh + Mi,* = ! 

(i.e.//? = μΙ = - 1 ) , 
μΐ,ί·μ2,ΐ + Vlj-ß2j + Ml,Ä-^2,Ä = 0 (10.70) 

The output of DQFT, /«(^) is used to train the max-product fuzzy neural network 
classifier and design the correlation filter. 

10.4.1.1 Quaternion Correlator (QC) To train the max-product fuzzy neural net-
work classifier, the output of the DQFT is first passed to a quaternion correlator (QC) 



ENROLLMENT STAGE AND RECOGNITION STAGE FOR QUATERNION-BASED COLOR FACE IMAGE CORRELATOR 257 

DQFT 
output 

HlDQFTl· 
ς$ΐ §5(^=1) 

?6» 
[ I DQF T |—i-» 

9 
CO 
PH 

ITsit 
P S R s ( U ) * " P S R*(1,T) 

A(i,i) """ Ps(\j) 

Ps<J,Y) ''' Ps(JJ) 

Figure 10.3 Quaternion correlator (QC) 

as shown in Fig. 10.3. The function of the QC is summarized as below: For DQFT 
output of 5-th face image, perform discrete quaternion correlation (DQCR) [31, 32] 
on reference face image I8{t!) w i m reference face image I8(t2)

 anc* multiply with 
corresponding filter coefficients (filt(t2)): 

M-1N-1 

9s{tut2)(m,n) = Σ Y^h^'Isit^ir-m^-r^.filt^ (10.71) 
r = 0 77=0 

where ti,t2 = 1,2,..., T are the number of person subscribe to the database. After 
that, (10.71) is performing inverse DQFT to obtain the correlation plane function: 

M-lN-l 

Ps(tlt2)(m,n) = ̂  Σ Σ ε~μι2π(ηΐτ/Μ)-9*{ίιΜ)(™,η)-ε-μ22π{ηη/Ν) 

r = 0 77=0 
(10.72) 

The correlation plane is a collection of correlation values, each one obtained by 
performing a pixel-by-pixel comparison (inner product) of two images (Isfa) anc* 
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Is(t2))' A sharp peak in the correlation plane indicates the similarity of Is(ti)
 anc* 

Is(t2)> while the absence of lower value of such a peak indicate their dissimilarity 
I8(H) a n d ^ ( t 2 ) · 

Calculate ps(tut2)
 anc* PSRs(ti,t2) fr°m m e correlation plane as in (10.72) using 

(10.66) and (10.67), respectively. ps(tut2)
 m e a n s that p-values of reference face im-

age /(£!) correlate with reference face image 7(i2) in s-th angle, while PSRs^tl^ 
means that PSR values of reference face image J(tl) correlate on reference face im-
age J(i2) m s-th angle. These values are then fed into max-product fuzzy neural 
network classifier to perform training and calculate weight, which will be discussed 
in Section 10.5. 

10.4.1.2 Correlation Filter Conventional filtering methods [33] are emphasizing 
on applying matched filters. Matched filters are optimal for detecting a known refer-
ence image in additive white Gaussian noise environment. If the input image changes 
slightly from the known reference image (scale, rotation, and pose invariant), the 
detection of the matched filters degrades rapidly. However, the emergence of cor-
relation filter designs [34] have changed to handle such types of distortions. The 
minimum average correlation energy (MACE) filters [35] are one of such design and 
show good results in the field of automatic target recognition and applications in 
biometric verification [13, 36]. MACE filters are different from matched filters in 
that more than one reference image are used to synthesize a single filter template, 
therefore making its classification performance invariant to shift of the input image 
[34]. 

There are two types of MACE filters in general, namely: (1) Conventional MACE 
filter [35] and (2) Unconstrained MACE (UMACE) filter [37], both with the goal 
to produce sharp peaks that resemble two-dimensional delta-type correlation outputs 
when the input image belongs to the authentic class and low peaks in imposter class. 
Conventional MACE filter [35] minimizes the average correlation energy of the ref-
erence images while constraining the correlation output at the origin to a specific 
value (usually 1), for each of the reference images. Lagrange multiplier is used for 
optimization, yielding 

filtMACE = D^XiX'D^X)-^ (10.73) 

This equation is the closed form solution to be the linear constrained quadratic min-
imization. D is a diagonal matrix with the average power spectrum of the refer-
ence images placed as elements along diagonal of the matrix. X contains a Fourier 
transform of the reference images lexicographically reordered and placed along each 
column. As an example, if there are T sets of reference face images, each with size 
256 x 1792(= 458752), then X will be a 458792 T matrix. X is the matrix transpose 
of X. c is a column vector of length T with all entries equal to 1. 

The second type of MACE filter is the unconstrained MACE (UMACE) filter 
[37]. Just like a conventional MACE filter, UMACE filter also minimizes the average 
correlation energy of the reference images and maximizes the correlation output at 
the origin. The difference between a conventional MACE filter and a UMACE filter 
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is the optimization scheme. A conventional MACE filter uses a Lagrange multiplier 
but a UMACE filter uses a Raleigh quotient that leads to the following equation: 

filtuMACE = D~lm (10.74) 

where D is the diagonal matrix which is the same as that in conventional MACE 
filter, m is a column vector containing the mean values of the Fourier transform of 
the reference images. 

Besides MACE filters, there is a type of correlation filter, namely the uncon-
strained optimal tradeoff synthetic discriminant filter (UOTSDF) shown by Refreiger 
[38] and Kumar et al. [11] has yielding good verification performance. The UOTSDF 
is by 

filtuoTSDF = {aD + y/l-a*C)-Xm (10.75) 

where D is a diagonal matrix with average power spectrum of the training image 
placed along the diagonal elements, m is a column vector containing the mean values 
of the Fourier transform of the reference images and C is the power spectral density 
of the noise. For most of the applications, a white noise power spectral density is for 
assumption, therefore C reduces to the identity matrix. The a term is typically set to 
be close to 1 to achieve good performance even in the presence of noise, but it also 
helps improve generalization to distortions outside the reference images. 

By comparing the three correlation filters listed above, conventional MACE filter 
is complicated to implement whereby it requires many inversion of T x T matrices. 
UMACE filter is simpler to implement from a computational viewpoint as it involves 
inverting diagonal matrix only, and the performance was close to the conventional 
MACE but poorer than UOTSDF. Therefore, this chapter extends UOTSDF into a 
quaternion version to use in the quaternion-based face image correlator for the recog-
nition of a view invariant person face since it is less complicated in computational 
viewpoint than is a conventional MACE filter and achieves good performance. 

10.4.2 Recognition Stage 

The schematic of recognition stage for classification of color face image by quater-
nion correlation is shown in Figure 10.4. During the recognition stage, an input view 
invariant face image is first encoded into a two-dimensional quaternion array (QA) 
as follows: 

h(i) = hriyi) + hR(i).i + hG(i).j + hB{i).k (10.76) 

where i represents the input face image, hr^ represents the real part of a quaternion 
array for input face image i. /ι#(φ ho(i), and ΗΒ(Ϊ) each represents the i—, j — , k— 
imaginary part for input face image i, respectively. 

The quaternion array in (10.76) is then performing DQFT to transforms the quater-
nion image to the quaternion frequency domain. A two-side form of DQFT is used: 
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Figure 10.4 Schematic of recognition stage. (See color insert.) 

M-lN-l 

h{i){m,n) = Σ Σ e"Ml27r(mr/M)^(i)(r,77).e"M227r(ni7/ iV) (10.77) 
τ=0 η=0 

where e is exponential term, and μι and μ2 are two pure quaternion units as shown 
in (10.70), respectively. The output of the DQFT, h^, is cross-correlated with every 
quaternion correlation filter in the database using the quaternion correlator (QC) just 
as the one shown in Fig. 10.3, but the DQFT output is now. The QC performs 
quaternion correlation with h^ with reference face images I8(t2) fr°m m e database, 
and it is multiplied with corresponding filter coefficients filthy. 

M-lN-l 

9s{iM)(min) = Σ ^h^'Is{t2){T-m^-n)'filtt2 (10.78) 
r = 0 77=0 

After that, (10.78) is performing inverse DQFT to obtain the correlation plane 
function: 

M-lN-l 

Ps(i,t2)(™,n) = ^ 2 Σ Σ e-^mTlM\gs(iM){m,n).e-^noW 
r = 0 77=0 

(10.79) 
Calculate ps{i,t2)

 anc* PSRs(i,t2) fr°m t n e correlation plane as in (10.79) using 
(10.66) and (10.67), respectively. p8(i,t2)

 m e a n s t n a t p-values of input face image 
/i(i) correlate with an s-th reference face image in J(t2), while PSRS^^2) means 
that PSR values of input image h^ correlate with an s-th reference face image in 
I(t2)- These values are then fed into a max-product fuzzy neural network classifier 
to perform classification for view invariant face images, which will be discussed in 
the next section. 

10.5 MAX-PRODUCT FUZZY NEURAL NETWORK CLASSIFIER 

Fuzzy logic is a type of multivalued logic that derived from fuzzy set theory to deal 
with approximate reasoning. Fuzzy logic provides a high-level framework for ap-
proximate reasoning that can appropriately handle both the uncertainty and impreci-
sion in linguistic semantics, model expert heuristics, and provide requisite high-level 
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organizing principles [39]. Neural network in the engineering field refers to a math-
ematical/computational model based on biological neural network. Neural network 
provides self-organizing substrates for low-level representation of information with 
adaptation capabilities. Fuzzy logic and neural network are complementary tech-
nologies. Therefore, it is plausible and justified to combine both these approaches in 
the design of classification systems. Such integrated system is referring to a fuzzy 
neural network classifier [39]. This section will discuss the fuzzy neural network 
system and the Max-Product fuzzy neural network classification. 

10.5.1 Fuzzy Neural Network System 

Fuzzy neural network system refers to the combinations of fuzzy logic and artificial 
neural network system. Fuzzy neural network system was first proposed by Jyh-
Shing Roger Jang [40]. Conventional fuzzy systems have limitation of low capabili-
ties for learning and adaptation. An improvement done in Ref.40 combines conven-
tional fuzzy technology with neural network technology to form an innovative tech-
nological field, so called fuzzy neural networks (FNNs). Fuzzy mathematics gives an 
inference mechanism for approximate reasoning under cognitive uncertainty, while 
neural networks have the abilities of pattern recognition, optimization, and decision 
making [41]. A combination of these two technological innovations gives birth to 
a new technology in which the explicit knowledge representation of fuzzy logic is 
improved by the learning power of simulated neural networks [41]. 

A normal fuzzy logic system can take linguistic information (linguistic rules) 
from human experts, in which it incorporates the human-like reasoning style of fuzzy 
systems through the application of fuzzy sets and linguistic model consisting of a set 
of fuzzy IF-THEN rules. However, fuzzy logic system has the limitation of no learn-
ing capability. On the other hand, an artificial neural network system is with learning 
capability but cannot take linguistic information directly. Jyh-Shing Roger Jang in 
his work [40] had formalized a hybrid model for both fuzzy logic and artificial neural 
network, so called the fuzzy neural network which not only can take in linguistic in-
formation (rules) from human experts, but also has learning capability to adapt itself 
using numerical data (input/output pairs) to achieve better performance. The main 
strength of the developed fuzzy neural network systems is that they are universal 
approximators together with the ability to seek for interpretable IF-THEN rules. 

The framework for a fuzzy neural network system is introduced below. This type 
of network system normally referred to by practitioners as adaptive Neuro-Fuzzy In-
ference System (ANFIS) [42-44]. The ANFIS architecture will be described below. 
For simplicity, an example of two inputs (x and y) and one output (f) fuzzy inference 
system is under consideration. For a simple radial basis function model [45-47], a 
normal rule set with two fuzzy IF-THEN rules under max-min composition [48-50] 
can be expressed as 

RULE 1 : IF x is Αχ and y is Bu THEN / i = min(pi:r, qxy) 

RULE 2 : IF x is A2 and y is B2, THEN f2 = mm(p2x, Q2y) (10.80) 
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Layer1 

Layer3 

Figure 10.5 Fuzzy radial basis function model with max-min composition. 

where pi and qi are modifiable parameters, i = 1,2. Figure 10.5 illustrates the 
ANFIS architecture for the fuzzy radial basis function model with max-min 
composition. 

Layer 1: Each node i in this layer is an adaptive node with node output: 

Oi,i = ßAi(x) fori = 1,2 
Οι,ί = μΒί.2(υ) for i = 3,4 (10.81) 

where x (or y) is the input to layer 1 node and Ai (or Bi-2) is the fuzzy set 
related with this node. The outputs of layer 1 are the membership functions for 
Ai and Bi correspondingly, can be any parametrized membership functions. 
For example, Ai can be characterized by the Gaussian function: 

μΑί (x) = exp 
-(x-c) 21 

(10.82) 

where {c, σ} are the parameters set. Parameters in this layer are named as 
premise parameters. 

Layer 2: Each node in this layer is a fixed node labeled min, which compares the in-
coming signals and output the minimum one. 
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Figure 10.6 Fuzzy radial basis function model with max-product composition. 

02 , i = fi= ηήη(μΑί (χ),μΒ{ (y)) for i = 1,2 (10.83) 

Layer 3: The single node in this layer is a fixed node labeled max which computes the 
overall output as the maximum one chosen: 

034 = / = max( iü i / i , iü 2 /2 ) (10.84) 

Next, another study case for a normal rule set with two IF-THEN rules under 
max-product composition [51, 52] in an example of two inputs (x and y) and one 
output (/) fuzzy inference system can be expressed as 

Rule 1 : IF x is A\ and y is B\, THEN / i = ριχ χ q\y 

Rule 2 : IF x is A2 and y is £ 2 , THEN f2 = p2x x (hV 

(10.85) 

where pi and qi are modifiable parameters, i = 1,2. Figure 10.6 illustrates the 
ANFIS architecture for the fuzzy radial basis function model with max-product com-
position. 

Layer 1: Each node i in this layer is an adaptive node with node output: 

Oi,i = VAi(x) fori = 1,2 
Οι,» = VBi-2(y) fori = 3,4 (10.86) 
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Layer 2: Each node in this layer is a fixed node labeled "Π," which multiplies the in-
coming signals and outputs the product. 

02,i = fi = μΑί (x) x μΒί (y) for i = 1,2 (10.87) 

Layer 3: The single node in this later is a fixed node labeled "max," which computes 
the overall output as the maximum one chosen: 

03,i = f = max(wi/i, w2/2) (10.88) 

There are various fuzzy neural network classifiers proposed in the literature [53-
56], and there has been much interest in many fuzzy neural networks applying max-
min composition as functional basis [48-50]. However, Leotamonphong and Fang 
[52] mention that the max-min composition is suitable only when a system allows 
no compensatability among the elements of a solution vector. He proposed to use 
max-product composition in fuzzy neural network rather than max-min composi-
tion. Another work by Bourke and Fisher [51] also comments that the max-product 
composition gives better results than the traditional max-min operator. Therefore, 
efficient learning algorithms have been studied by others [57, 58] using the max-
product composition afterwards. 

10.5.2 Max-Product Fuzzy Neural Network Classification 

In this chapter, a fuzzy neural network classifier using max-product composition will 
be proposed for a view-invariant color face image classification system. The max-
product composition is the same as a single perceptron except that summation is 
replaced by maximization, and in the max-min threshold unit, min is replaced by 
product. 

10.5.2.1 Define T Classes, for T Persons' Sets of View-Invariant Face Images 
The reference face images for all T persons in database will be assigned with a 
Unique Number started from 1 till T x S. Class number is assigned starting from 1 
till T. The same person's face images in a different angle of view will be arranged in 
sequence according to the unique number assigned and classified in the same Class 
number. 

10.5.2.2 Training Max-Product Fuzzy Neural Network Classifier The training 
of the max-product of fuzzy neural network is done with 4 steps: 

1. PSRs(tl^S2) andps(tl?S2) output from the quaternion correlator of the enroll-
ment stage are fuzzified through the activation functions (Gaussian member-
ship function): 

GPSR3(tl>t2) = e x p 
-(PSR8(tltt2) - 1) 21 

or „^'•h"""-"" 

(10.89) 

(10.90) 
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where σ is the smoothing factor, that is the deviation of the Gaussian functions. 

2. Calculate the G-value, which is the product value for the s-th reference face 
image of the fuzzy neural network classifier at each correlated images: 

Gs{tiM) - GpSRaitltt2) X Gp3(tl,s2) 

3. Gather and store the product values in an array: 

(10.91) 

F = 

«(1,1) 

5(2,1) 

«(1,2) 

s(2,2) 

G *(T,l) G s(T,2) 

G, 
G 

8(1,T) 

s(2,T) 

G s(T,T) 

(10.92) 

The output will be set so that it will output 1 if it is authentic class and 0 if it is 
imposter class, and it is in an array Yidentity> whereby it is an identity matrix 
of dimension T x T. To calculate the weight w for the s-th angle face image, 
the equation is 

We = X straining ^identity (10.93) 

10.5.2.3 Max-Product Fuzzy Neural Network Classification The max-product 
fuzzy neural network classification is with 7 steps: 

1. PSRs(i^S2) and ps(i,S2)
 0 U t P u t fr°m m e quaternion correlator of the recogni-

tion stage are fuzzified through the activation functions (Gaussian membership 
function): 

GpSR9{itta) =exp 
-(PSR8(iyt2) - l ) 2 

G Ps(i,s2) exp 
-(P*(M2) ~ ^ 2 

(10.94) 

(10.95) 

2. Calculate the product value of the fuzzy neural network classifier at an input 
face image on the training face images in th database: 

Gs{iM) = GPSRs(i,t2) X GPs(i,s2) 

3. Gather and store the product values in an array: 

(10.96) 

Xs classification — | v s ( i , l ) Gs(i,l) ··· Gs(i,T)\ (10.97) 
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4. Obtain the classification outcomes by multiplying (97) with the weight trained 
at (93): 

*classification = ^-s classification * Ws (lU.Vo) 

5. Classify the input face image with the person it belongs to by using max com-
position: 

Output = max|Yclassification 
} (10.99) 

6. Determine whether the face image is in the database or not: 
IF normalized output < Threshoutput 
THEN conclude that the face is not in the database. 
ELSE determine which element in Yciassification matrix matches with output: 
ψ = the position number of element in Yciassification matrix which has the 
equal value with output. 
Thresoutput is the threshold value of an output to indicate that a face is not in 
the database, ψ corresponds to the assigned number of reference image in the 
database. 

7. Based on T sets of fuzzy IF-THEN rules, perform defuzzification: 

R\1': IF ψ is match with the Unique Number stored in Class /, 
THEN display name of person correspond to Class I 

(10.100) 

where / = 1,2,...,T. 

10.6 EXPERIMENTAL RESULTS 

In this section, the application of a quaternion-based face image correlator together 
with a max-product fuzzy neural network classifier for a view-invariant face recog-
nition system will be briefly illustrated. Here, some experiments are used to prove 
the algorithms introduced in Sections 10.4 and 10.5. 

10.6.1 Database of Reference Face Images for 200 Persons 

A database with view-invariant color face images provided by the Max-Planck In-
stitute for Biological Cybernetics in Tuebingen Germany [59] is used to test the 
proposed view-invariant color face image recognition system. The database con-
tains color face images of 7 views of 200 laser-scanned (Cyberware TM) heads 
without hair. These model 200 persons' sets of color face images, each with view-
invariant/angle of different: facing 90 deg to left, facing 60 deg to left, facing 30 deg 
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Figure 10.7 An example of a person set with view-invariant face images (a) facing 
90° to left, (b) facing 60° to left, (c) facing 30° to left, (d) facing 0° in-front, (e) facing 
30° to right, (f) facing 60° to right, and (g) facing 90° to right. (See color insert.) 

to left, facing 0 deg in-front, facing 30 deg to right, facing 60 deg to right, and facing 
90 deg to right. Hence, S — 7 since there are 7 view-invariant images for 1 person 
set. An example of a person set with view-invariant face images are shown in Fig. 
10.7. The dimension of each image is 256 horizontal pixels x 256 vertical pixels. 

10.6.2 Quaternion-Based Face Image Correlation Using Unconstrained 

Optimal Tradeoff Synthetic Discriminant Filter (UOTSDF) 

In the evaluation experiment, T = 180 MPIK persons' faces are used to train the 
system during the enrollment stage. T x S = 1260 reference face images are used 
in the database to synthesize a single UOTSDF using (75). D and m are calculated 
from the reference images, and C is an identity matrix of dimension 1260 x 1260 
and a set to 1. These values are substituted into (75) to calculate out the filter co-
efficients. Then in the enrollment stage, for each filter line as in Fig. 10.3, per-
form cross-correlations of all the DQFT form of reference face images in database 
Isfa) w i m the DQFT form of reference face image in database as well I8(t2)> and 
multiply the output value with corresponding filter coefficients respectively, where 
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Figure 10.8 Sample correlation plane for input face image matching with the exact 
reference face image of the same person class in the database (authentic case). (See 
color insert.) 

£1, £2 = 1, 2,..., 180; s = 1,2,..., 7. In the recognition stage, for each filter line, per-
form cross-correlation of the DQFT form of input face image (h^) with the DQFT 
form of reference face images in database (Is(t2))

 an(^ multiply the output value with 
the corresponding filter coefficient respectively. For an authentic case (good match 
in between two face images), the correlation plane should have sharp peaks and it 
should not exhibit such strong peaks for the imposter case (bad match in between 
two face images). These two cases will be investigated below: 

Authentic case: Figure 10.8 shows the samples correlation plane for input face im-
age matching with the exact reference face image of the same person in the database. 
Since the face images are in good match, the observed correlation plane is having a 
smooth and sharp peak. 

Imposter case: Fig. 10.9 show the sample correlation plane for input face image 
matching with one of the reference face image of different person in the database. 
Since the face images are not in good match, the observed correlation plane is having 
a lower and round peak as compared to those in good match. 

Table 10.1 shows the PSR and p-value for both authentic and imposter case as 
in Fig. 10.8 and Fig. 10.9. Note that the sharp correlation peak resulted in large 
normalized PSR and p-value in the authentic case, whereas small PSR and p-value 
are exhibited in the imposter case. 
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Figure 10.9 Sample correlation plane for input face image matching with one of 
the reference face image of different person in the database. (See color insert.) 

Table 10.1 Normalized PSR and p-value for both authentic and imposter 
case 

Case 

Authentic case 

Imposter case 

Normalized PSR 

1.0000 

0.7894 

Normalized p- value 

0.7905 

0.5083 

To indicate that a face is not in the database, a threshold, Thresoutput, is imple-
mented on the normalized output value at Step 6 in Section 10.5.2.3. The 20 persons' 
faces samples excluded from the training database are input to the trained system to 
run for accuracy test on different normalized output value ranges from 0.05 to 1.0. 
The plot is shown in Fig. 10.10. From the plot, the optimum Thresoutput is at 0.6. 

10.6.3 Efficiency of the View-invariant Color Face Image Recognition 

System 

The view-invariant color face image recognition system was evaluated with respect 
to random picking 10,000 repeated input face images from database (with mixing 
up the trained T — 180 people's faces plus 20 more people's faces excluded from 
the training database sets) and input to the view-invariant color face image recogni-
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Figure 10.10 Plot of accuracy versus normalized output. 

tion system to run test. The graph of accuracy versus number of person sets in the 
database is plotted in Fig. 10.11. 

From the plot, it can be observed that as the number of persons in the database 
increases, the performance drop is actually not much if the G-value is applyied in 
the proposed view-invariant color face image recognition system. Among the 10,000 
input face images, 9,973 were tracked perfectly (output human names/ID agreed by 
the input images) in a database of 10 persons, i.e. an accuracy of 99.73%, while 9,821 
were tracked perfectly in a database of 200 persons, i.e. an accuracy of 98.21%. The 
performance drops if the proposed face recognition system is only applying PSR 
value (no G-value and p-value) whereas the accuracy is 99.62% in a database of 10 
persons but is 97.73% in a database of 200 persons. The performance drop almost 
0.24-fold more compared to the system that applies G-value. The performance drops 
in the face recognition system, applying only p-value (no G-value and PSR-value), 
is rather significant. The accuracy is 99.50% in a database of 10 persons but is 
97.04% in a database of 200 persons. It is almost 0.62 fold more the performance 
drop compared to the system that applies G-value. From the experiment results, it 
can be concluded that with the implementation of the G-value and the fuzzy neural 
network classifier, it helps boost up the accuracy of view-invariant color face image 
recognition. 
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Figure 10.11 Plot of accuracy versus number of person sets in database. 

10.6.4 Comparative Study with the Parallel Method 

For comparative study, the proposed quaternion based fuzzy neural network classifier 
is compared with conventional NMF, BDNMF, and hypercomplex Gabor filter. For 
conventional NMF, the reference face images as in Section 10.6.1 database has been 
extracted and used. There are seven training sets, each set exclusively containing 
the color face images for every person in different positions (facing 90 deg to left, 
facing 60 deg to left, facing 30 deg to left, facing 0 deg in-front, facing 30 deg to 
right, facing 60 deg to right, and facing 90 deg to right). For each training set, three 
different basis matrices and encodings were extracted for each color channel in the 
RGB scheme, Fl, where I € {R, G, B} is constructed such that each color channel, 
/, of training color face images occupies the columns of Fl matrices. The rank r of 
factorization is generally chosen so that [60] 

n + m 
In this case, n — 7 and m = 180, r < 6.74. Hence, r is set to 6. The experiment 

was carried out to test the enrollment stage time consumption and the classification 
stage time consumption. The recorded time consumption is normalized and recorded 
in Table 10.2. For the recognition accuracy, a total of 10000 randomly selected and 
repeated MPIK color face images with mixing up the trained T = 180 persons 
faces plus 20 more persons faces excluded from the training database sets are tested. 
These also distributed to 5000 are normal MPIK color face images, 2500 are normal 
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Cd) (e) 

Figure 10.12 An example of a person set (a) original image (b) embedded with 
mild salt and pepper noise, (c) embedded with heavy salt and pepper noise, (d) shrink 
(e) dilation. (See color insert.) 

MPIK color face images embedded with noise features such as "salt and pepper," 
"poisson," and "speckle noise" in Matlab image processing toolbox, and 2500 are 
normal MPIK color face images with scale invariance (shrink or dilation), some 
examples are shown in Fig. 10.12. The recognition accuracy (percentage of total 
correct recognized images 10,000 tested images) is recorded in Table 10.2. 

For the BDNMF method, to evaluate the performance on different color spaces, 
the color faces are separated into RGB spaces and face recognition experiment using 
BDNMF algorithm is conducted. The rank of factorization r is set to 6 as well. In 
the experiment, all the seven color face images of each person in different position 
are used to constitute the training/enrollment set. For the testing/classification set, a 
total of 10,000 face images used in testing the conventional NMF method are used. 
The results of the identification test including the enrollment stage time consump-
tion (normalized), classification stage time consumption (normalized), and matching 
accuracy are shown in Table 10.2. 

To evaluate the effectiveness of the hypercomplex Gabor filter proposed by Jones 
and Abbott [4] for feature extraction used in this comparative study, the hypercom-
plex Gabor filter is operated on all the MPIK RGB data set color face images as 
in Section 10.6.1. Each color face image was analyzed at a total of 24 landmark 
location, determined by the statistical analysis of the MPIK face image population. 
Since Mahalanobis distance applied in Ref.4 yields higher accuracies compared to 
the normal Euclidean distance approach, matching in this comparative study was per-
formed using Mahalanobis distance classification. The jets extracted at the chosen 
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Table 10.2 Normalized enrollment stage time consumption, normalized 
classification stage time consumption, and matching accuracy for different color 
face classification method 

Color face classifi- Enrollment stage Classification stage Accuracy (output 
cation method normalized time normalized time human names/ID 

consumption (for consumption (for match with the 
training all data sets matching 10,000 correspondence 
in database) tested image) input images) 

Conventional NMF 

BDNMF 

Hypercomplex 
Gabor filter (Ma-
halanobis distance 
classification) 

Quaternion-based 
fuzzy neural net-
work classifier 

2.76 

3.51 

1.36 

1.00 

1.39 

1.55 

1.20 

1.00 

80.18% 

83.37% 

86.13% 

92.06% 

face landmark locations was used for face matching, and the Mahalanobis distance 
was computed using the global covariance matrix for all the color face landmarks. 
During classification, jets derived from color face images in a database were matched 
against models consisting of jets extracted from a set of 10,000 color face images 
used in testing both conventional NMF and BDNMF above, for accuracy measure-
ment. The results of the identification test including the normalized enrollment stage 
time consumption, normalized classification stage time consumption, and matching 
accuracy are shown in Table 10.2. 

From the experimental results in Table 10.2, it is observed that a quaternion-based 
fuzzy neural network classifier has the fastest enrollment time and classification time. 
This was followed by a hypercomplex Gabor filter using Mahalanobis distance clas-
sification, conventional NMF, and the slowest BDNMF. Conventinal NMF and BD-
NMF are slow due to the reason that they required an iterative training stage for 
enrollment, which is time-consuming in comparison with the proposed quaternion-
based fuzzy neural network classifier and hypercomplex Gabor filter. Comparing 
between conventional NMF and BDNMF, the BDNMF algorithm imposes an addi-
tional constraint, which is the block diagonal constraint, on the base image matrix 
and coefficient matrix slowing down the enrollment processes. However, with the 
block diagonal constraint, BDNMF can preserve the integrity of color information 
better in different channels for color face representation, hence achieving higher ac-
curacy in color face recognition. In comparison to the fuzzy neural network, the 
Gabor filter required a large number of different kernels, and hence the length of 
the feature vectors in quaternion domains would increase dramatically. Therefore, 
the Gabor filter required more time in enrollment and classification compared to the 
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fuzzy neural network. In terms of recognition accuracy, the proposed quaternion-
based fuzzy neural network outperformed the hypercomplex Gabor filter, conven-
tional NMF, and BDNMF in recognizing view-invariant, noise influenced and scale-
invariant MPIK color face images. 

10.7 CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

This chapter presents a system capable of recognizing view-invariant color face im-
ages from MPIK dataset, using quaternion-based color face image correlator and 
max-product fuzzy neural network classifier. One of the advantages of using quater-
nion correlator rather than a conventional correlation method is that quaternion cor-
relation method deals with color images without converting them into gray-scale 
images. Hence important color information can be preserved. Also the proposed 
max-product fuzzy neural network provides high-level framework for approximate 
reasoning, since it is best suitable to apply in face image classification. Our ex-
perimental results show that the proposed face recognition systems perform well 
with a very high accuracy of 98% from a data set of 200 persons each with 7 view-
invariant images. In comparative study with parallel work, experimental results also 
show that the proposed face recognition system outperforms conventional NMF, BD-
NMF, and hypercomplex Gabor filter in terms of consumption of enrollment time, 
recognition time, and accuracy in classifying view-invariant,-noise influenced, and 
scale-invariant color face images from MPIK. Since an artificial data set (MPIK) was 
used in the experiments, which might be impractical, this work creates a number of 
avenues for further work. Direct extensions of this work may fall into three main 
sorts in future. Firstly, more rigorous work is necessary on investigating the system 
performance in realistic environment, and the system should be extended to consider 
variations that include translation, facial expression, and illumination. Real face im-
ages such as FERET dataset might be employed in the training as well as empirical 
tests. Secondly, facial image preprocessing mechanisms, mainly eye detection, and 
geometric and illumination normalization, might be employed to ease the image ac-
quisition. A large scale of facial images acquisition and storage of facial data might 
raise security concerns in terms of identity theft. Third extension might fall in the 
employment of cancelable face data as a step to reinforce the system security. 
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Figure 1.5 A set of teacher signals [35] (See Page 16). 
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Figure 1.6 Basic construction of the complex- and real-valued feedforward neural networks 
[35] (See Page 17). 
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Figure 1.7 Schematic diagram of the learning process for pairs of input-output teachers 
[35] (See Page 18). 
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Figure 1.8 Schematic diagrams showing how to feed signals to observe (a) time-shift and 
(b) amplitude-change generalization [35] (See Page 22). 
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Figure 8.1 Generic BCI scheme (see text) (See Page 187). 
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(c) (d) 

Figure 8.4 (a) Wireless eight-channel amplifier/transmitter, (b) Receiver station. (c)Active 
electrode (Brain Products Acticap2) used for EEG acquisition. (d)Locations of the electrodes 
on the scalp: the recording electrodes are shaded in dark blue, the reference electrode is 
shaded in light green, and the ground electrode has gray background (See Page 193). 
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(c) (a) (b) 
Figure 8.6 Distribution of estimated phases (expressed as angular values) for subject 1 in 
the experiment described in Section 8.3.2 for channels Oz (left), POz-Oz (central) and 
P O z - 0 2 (right). Each dot corresponds to the phase estimated from a one second interval 
recorded when the subject was observing a particular phase-shifted stimulus. Colors 
represent target-classes (with the stimulus shifted by Αφ = m 7Γ/3 , where m is the 
class index). Radial lines correspond to the circular means for each class. For the sake of 
visualization, each class is drawn on a circle with a different radius. (See Page 195). 
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Figure 8.10 Average (among all subjects) discrimination accuracy as a function of the EEG 
segment length for Lee et al's method [27] using channel Oz referenced to the mastoid (blue), 
J ia et al.'s method [24] using the bipolar POz-Oz channel (light-blue), Lee et al.'s method 
[27] for the optimal channel (green), J ia et al.'s method [24] for the optimal channel (orange), 
and the proposed multichannel method based on MLMVN and feature selection (brown). 
The numbers above the horizontal braces (at the top of the chart) are the repeated-measures 
ANOVA p -values for the differences between the results of the proposed method and the 
optimal channel version methods (See Page 202). 

neurons in hidden layer features neurons in hidden layer features 

(a) (b) 

Figure 8.11 Dependency of the averaged accuracy in a five-fold cross-validation test of the 
MLMVN classifier on the number of neurons JVh in the hidden layer and the number d 
of best features used. The best features were estimated according to a feature selection 
based on standard deviation (left) and based on a Watson--Williams test (right). Results are 
presented for subject 1 while using five seconds of EEG recording for classifying six 
phase-shifted targets flickering at 10Hz on the 60-Hz LCD screen (See Page 202). 
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Figure 9.1 Schematic of Wiener system identification (See Page 215). 
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Figure 9.2 Schematic of inverse for a Wiener system (See Page 220). 
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Figure 10.7 An example of a person set with view-invariant face images (a) facing 90° to 
left, (b) facing 60° to left, (c) facing 30° to left, (d) facing 0° in-front, (e) facing 30° to right, 
(Ö facing 60° to right, and (g) facing 90° to right (See Page 267). 
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Figure 10.8 Sample correlation plane for input face image matching with the exact 

reference face image of the same person class in the database (authentic case) (See Page 

268V 
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Figure 10.9 Sample correlation plane for input face image matching with one of the 
reference face image of different person in the database (See Page 269). 

Figure 10.12 An example of a person set (a) original image (b) embedded with mild salt 
and pepper noise, (c) embedded with heavy salt and pepper noise, (d) shrink (e) dilation 
(See Page 272). 


