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 PREFACE     

  The next generation of computer system designers will be concerned more 
about the elements of a system tailored to particular applications than with 
the details of processors and memories. 

 Such designers would have rudimentary knowledge of processors and other 
elements in the system, but the success of their design would depend on their 
skills in making system - level trade - offs that optimize the cost, performance, 
and other attributes to meet application requirements. 

 This text is organized to introduce issues in computer system design, par-
ticularly for system - on - chip (SOC). Managing such design requires knowledge 
of a number of issues, as shown in Figure  1 .   

 After Chapter  1 , the introduction chapter, Chapter  2  looks at issues that 
defi ne the design space: area, speed, power consumption, and confi gurability. 
Chapters  3  –  5  provide background knowledge of the basic elements in a system: 
processor, memory, and interconnect. 

 The succeeding chapters focus on computer systems tailored to specifi c 
applications and technologies. Chapter  6  covers issues in customizing and 
confi guring designs. Chapter  7  addresses system - level trade - offs for various 
applications, bringing together earlier material in this study. Finally, Chapter 
 8  presents future challenges for system design and SOC possibilities. 

 The tools that illustrate the material in the text are still being developed. 
The Appendix provides an overview of one such tool. Since our tools are 
evolving, please check from time to time to see what is available at the com-
panion web site:  www.soctextbook.com . 

 Moreover, material useful for teaching, such as slides and answers to exer-
cises, is also being prepared. 

 This book covers a particular approach to computer system design, with 
emphasis on fundamental ideas and analytical techniques that are applicable 
to a range of applications and architectures, rather than on specifi c applica-
tions, architectures, languages, and tools. We are aware of complementary 
treatments on these and also on other topics, such as electronic system - level 
design, embedded software development, and system - level integration and 
test. We have included brief descriptions and references to these topics where 
appropriate; a more detailed treatment can be covered in future editions or 
in different volumes. 

 SOC is a quickly developing fi eld. Although we focused on funda-
mental material, we were forced to draw a line on the inclusion of the latest 

xiii

fpref.indd   xiiifpref.indd   xiii 5/4/2011   9:54:47 AM5/4/2011   9:54:47 AM



xiv  PREFACE

     Figure 1     An approach to SOC system design described in this book.  
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technological advances for the sake of completing the book. Such advances, 
instead, are captured as links to relevant sources of information at the com-
panion web site described above. 

 Many colleagues and students, primarily at Imperial College London and 
Stanford University, have contributed to this book. We are sorry that we are 
not able to mention them all by name here. However, a number of individuals 
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Shay Ping Seng, David Thomas, Steve Wilton, Alice Yu, and Chi Wai Yu con-
tributed signifi cant material to various chapters. Philip Leong and Roger 
Woods read the manuscript many times carefully and provided many excellent 
suggestions for improvement. We also greatly benefi ted from comments by 
Jeffrey Arnold, Peter Boehm, Don Bouldin, Geoffrey Brown, Patrick Hung, 
Sebastian Lopez, Oskar Mencer, Kevin Rudd, and several anonymous review-
ers. We thank Kubilay Atasu, Peter Collingbourne, James Huggett, Qiwei Jin, 
Adrien Le Masle, Pete Sedcole, and Tim Todman, as well as those who prefer 
to remain anonymous, for their invaluable assistance. 

 Last, but not least, we thank Cassie Strickland, of Wiley, and Janet Hronek, 
of Toppan Best - set, for their help in the timely completion of this text. 
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  1    Introduction to the 
Systems Approach     

    1.1    SYSTEM ARCHITECTURE: AN OVERVIEW 

 The past 40 years have seen amazing advances in silicon technology and result-
ing increases in transistor density and performance. In 1966, Fairchild 
Semiconductor  [84]  introduced a quad two input NAND gate with about 10 
transistors on a die. In 2008, the Intel quad - core Itanium processor has 2 billion 
transistors  [226] . Figures  1.1  and  1.2  show the unrelenting advance in improv-
ing transistor density and the corresponding decrease in device cost.   

 The aim of this book is to present an approach for computer system design 
that exploits this enormous transistor density. In part, this is a direct extension 
of studies in computer architecture and design. However, it is also a study of 
system architecture and design. 

 About 50 years ago, a seminal text,  Systems Engineering — An Introduction 
to the Design of Large - Scale Systems   [111] , appeared. As the authors, H.H. 
Goode and R.E. Machol, pointed out, the system ’ s view of engineering was 
created by a need to deal with complexity. As then, our ability to deal with 
complex design problems is greatly enhanced by computer - based tools. 

 A system - on - chip (SOC) architecture is an ensemble of processors, memo-
ries, and interconnects tailored to an application domain. A simple example 
of such an architecture is the Emotion Engine  [147, 187, 237]  for the Sony 
PlayStation 2 (Figure  1.3 ), which has two main functions: behavior simulation 
and geometry translation. This system contains three essential components: a 
main processor of the reduced instruction set computer (RISC) style  [118]  and 
two vector processing units, VPU0 and VPU1, each of which contains four 
parallel processors of the single instruction, multiple data (SIMD) stream style 
 [97] . We provide a brief overview of these components and our overall 
approach in the next few sections.   

 While the focus of the book is on the system, in order to understand the 
system, one must fi rst understand the components. So, before returning to the 
issue of system architecture later in this chapter, we review the components 
that make up the system.  

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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2  INTRODUCTION TO THE SYSTEMS APPROACH 

   1.2    COMPONENTS OF THE SYSTEM: PROCESSORS, MEMORIES, 
AND INTERCONNECTS 

 The term  architecture  denotes the operational structure and the user ’ s view 
of the system. Over time, it has evolved to include both the functional speci-
fi cation and the hardware implementation. The system architecture defi nes 
the system - level building blocks, such as processors and memories, and the 

     Figure 1.1     The increasing transistor density on a silicon die.  
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     Figure 1.2     The decrease of transistor cost over the years.  
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COMPONENTS OF THE SYSTEM  3

interconnection between them. The processor architecture determines the 
processor ’ s instruction set, the associated programming model, its detailed 
implementation, which may include hidden registers, branch prediction cir-
cuits and specifi c details concerning the ALU (arithmetic logic unit). The 
implementation of a processor is also known as  microarchitecture  (Figure  1.4 ).   

 The system designer has a programmer ’ s or user ’ s view of the system com-
ponents, the system view of memory, the variety of specialized processors, and 

     Figure 1.3     High - level functional view of a system - on - chip: the Emotion Engine of the 
Sony PlayStation 2  [147, 187] .  
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     Figure 1.4     The processor architecture and its implementation.  
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4  INTRODUCTION TO THE SYSTEMS APPROACH 

their interconnection. The next sections cover basic components: the processor 
architecture, the memory, and the bus or interconnect architecture. 

 Figure  1.5  illustrates some of the basic elements of an SOC system. These 
include a number of heterogeneous processors interconnected to one or more 
memory elements with possibly an array of reconfi gurable logic. Frequently, 
the SOC also has analog circuitry for managing sensor data and analog - to -
 digital conversion, or to support wireless data transmission.   

 As an example, an SOC for a smart phone would need to support, in addi-
tion to audio input and output capabilities for a traditional phone, Internet 
access functions and multimedia facilities for video communication, document 
processing, and entertainment such as games and movies. A possible confi gura-
tion for the elements in Figure  1.5  would have the core processor being imple-
mented by several ARM Cortex - A9 processors for application processing, and 
the media processor being implemented by a Mali - 400MP graphics processor 
and a Mali - VE video engine. The system components and custom circuitry 
would interface with peripherals such as the camera, the screen, and the wire-
less communication unit. The elements would be connected together by AXI 
(Advanced eXtensible Interface) interconnects. 

 If all the elements cannot be contained on a single chip, the implementation 
is probably best referred to as a system on a board, but often is still called a 
SOC. What distinguishes a system on a board (or chip) from the conventional 
general - purpose computer plus memory on a board is the specifi c nature of 
the design target. The application is assumed to be known and specifi ed so 
that the elements of the system can be selected, sized, and evaluated during 
the design process. The emphasis on selecting, parameterizing, and confi guring 
system components tailored to a target application distinguishes a system 
architect from a computer architect. 

     Figure 1.5     A basic SOC system model.  
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HARDWARE AND SOFTWARE  5

 In this chapter, we primarily look at the higher - level defi nition of the 
processor — the programmer ’ s view or the instruction set architecture (ISA), 
the basics of the processor microarchitecture, memory hierarchies, and the 
interconnection structure. In later chapters, we shall study in more detail the 
implementation issues for these elements.  

   1.3    HARDWARE AND SOFTWARE: PROGRAMMABILITY 
VERSUS PERFORMANCE 

 A fundamental decision in SOC design is to choose which components in the 
system are to be implemented in hardware and in software. The major benefi ts 
and drawbacks of hardware and software implementations are summarized in 
Table  1.1 .   

 A software implementation is usually executed on a general - purpose pro-
cessor (GPP), which interprets instructions at run time. This architecture offers 
fl exibility and adaptability, and provides a way of sharing resources among 
different applications; however, the hardware implementation of the ISA is 
generally slower and more power hungry than implementing the correspond-
ing function directly in hardware without the overhead of fetching and decod-
ing instructions. 

 Most software developers use high - level languages and tools that enhance 
productivity, such as program development environments, optimizing com-
pilers, and performance profi lers. In contrast, the direct implementation of 
applications in hardware results in custom application - specifi c integrated 
circuits (ASICs), which often provides high performance at the expense of 
programmability — and hence fl exibility, productivity, and cost. 

 Given that hardware and software have complementary features, many 
SOC designs aim to combine the individual benefi ts of the two. The obvious 
method is to implement the performance - critical parts of the application in 
hardware, and the rest in software. For instance, if 90% of the software execu-
tion time of an application is spent on 10% of the source code, up to a 10 - fold 
speedup is achievable if that 10% of the code is effi ciently implemented in 
hardware. We shall make use of this observation to customize designs in 
Chapter  6 . 

 Custom ASIC hardware and software on GPPs can be seen as two extremes 
in the technology spectrum with different trade - offs in programmability and 

  TABLE 1.1    Benefi ts and Drawbacks of Software and Hardware Implementations 

        Benefi ts     Drawbacks  

  Hardware    Fast, low power consumption    Infl exible, unadaptable, complex 
to build and test  

  Software    Flexible, adaptable, simple to 
build and test  

  Slow, high power consumption  
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6  INTRODUCTION TO THE SYSTEMS APPROACH 

performance; there are various technologies that lie between these two 
extremes (Figure  1.6 ). The two more well - known ones are application - specifi c 
instruction processors (ASIPs) and fi eld - programmable gate arrays (FPGAs).   

 An ASIP is a processor with an instruction set customized for a specifi c 
application or domain. Custom instructions effi ciently implemented in hard-
ware are often integrated into a base processor with a basic instruction set. 
This capability often improves upon the conventional approach of using 
standard instruction sets to fulfi ll the same task while preserving its fl exibil-
ity. Chapters  6  and  7  explore further some of the issues involving custom 
instructions. 

 An FPGA typically contains an array of computation units, memories, and 
their interconnections, and all three are usually programmable in the fi eld by 
application builders. FPGA technology often offers a good compromise: It is 
faster than software while being more fl exible and having shorter development 
times than custom ASIC hardware implementations; like GPPs, they are 
offered as off - the - shelf devices that can be programmed without going through 
chip fabrication. Because of the growing demand for reducing the time to 
market and the increasing cost of chip fabrication, FPGAs are becoming more 
popular for implementing digital designs. 

 Most commercial FPGAs contain an array of fi ne - grained logic blocks, each 
only a few bits wide. It is also possible to have the following:

     Figure 1.6     A simplifi ed technology comparison: programmability versus performance. 
GPP, general - purpose processor; CGRA, coarse - grained reconfi gurable architecture.  
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PROCESSOR ARCHITECTURES  7

    •      Coarse - Grained Reconfi gurable Architecture (CGRA) .      It contains logic 
blocks that process byte - wide or multiple byte - wide data, which can form 
building blocks of datapaths.  

   •      Structured ASIC .      It allows application builders to customize the resources 
before fabrication. While it offers performance close to that of ASIC, the 
need for chip fabrication can be an issue.  

   •      Digital Signal Processors (DSPs) .      The organization and instruction set 
for these devices are optimized for digital signal processing applications. 
Like microprocessors, they have a fi xed hardware architecture that cannot 
be reconfi gured.    

 Figure  1.6  compares these technologies in terms of programmability and per-
formance. Chapters  6  –  8  provide further information about some of these 
technologies.  

   1.4    PROCESSOR ARCHITECTURES 

 Typically, processors are characterized either by their application or by their 
architecture (or structure), as shown in Tables  1.2  and  1.3 . The requirements 
space of an application is often large, and there is a range of implementation 
options. Thus, it is usually diffi cult to associate a particular architecture with 
a particular application. In addition, some architectures combine different 
implementation approaches as seen in the PlayStation example of Section 
 1.1 . There, the graphics processor consists of a four - element SIMD array of 
vector processing functional units (FUs). Other SOC implementations consist 
of multiprocessors using very long instruction word (VLIW) and/or supersca-
lar processors.   

  TABLE 1.2    Processor Examples as Identifi ed by Function 

   Processor Type     Application  

  Graphics processing unit (GPU)    3 - D graphics; rendering, shading, texture  
  Digital signal processor (DSP)    Generic, sometimes used with wireless  
  Media processor    Video and audio signal processing  
  Network processor    Routing, buffering  

  TABLE 1.3    Processor Examples as Identifi ed by Architecture 

   Processor Type     Architecture/Implementation Approach  

  SIMD    Single instruction applied to multiple functional units (processors)  
  Vector (VP)    Single instruction applied to multiple pipelined registers  
  VLIW    Multiple instructions issued each cycle under compiler control  
  Superscalar    Multiple instructions issued each cycle under hardware control  
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8  INTRODUCTION TO THE SYSTEMS APPROACH 

 From the programmer ’ s point of view, sequential processors execute 
one instruction at a time. However, many processors have the capability to 
execute several instructions concurrently in a manner that is transparent to 
the programmer, through techniques such as pipelining, multiple execution 
units, and multiple cores. Pipelining is a powerful technique that is used 
in almost all current processor implementations. Techniques to extract and 
exploit the inherent parallelism in the code at compile time or run time are 
also widely used. 

 Exploiting program parallelism is one of the most important goals in com-
puter architecture. 

  Instruction - level parallelism  (ILP) means that multiple operations can be 
executed in parallel within a program. ILP may be achieved with hardware, 
compiler, or operating system techniques. At the loop level, consecutive loop 
iterations are ideal candidates for parallel execution, provided that there is no 
data dependency between subsequent loop iterations. Next, there is parallel-
ism available at the procedure level, which depends largely on the algorithms 
used in the program. Finally, multiple independent programs can execute in 
parallel. 

 Different computer architectures have been built to exploit this inherent 
parallelism. In general, a computer architecture consists of one or more inter-
connected processor elements (PEs) that operate concurrently, solving a single 
overall problem. 

   1.4.1    Processor: A Functional View 

 Table  1.4  shows different SOC designs and the processor used in each design. 
For these examples, we can characterize them as general purpose, or special 
purpose with support for gaming or signal processing applications. This func-
tional view tells little about the underlying hardware implementation. Indeed, 
several quite different architectural approaches could implement the same 
generic function. The graphics function, for example, requires shading, render-
ing, and texturing functions as well as perhaps a video function. Depending 

  TABLE 1.4    Processor Models for Different  SOC  Examples 

   SOC     Application     Base ISA     Processor Description  

  Freescale e600  [101]     DSP    PowerPC    Superscalar with 
vector extension  

  ClearSpeed 
CSX600  [59]   

  General    Proprietary ISA    Array processor of 96 
processing elements  

  PlayStation 2 
 [147, 187, 237]   

  Gaming    MIPS    Pipelined with two 
vector coprocessors  

  ARM VFP11  [23]     General    ARM    Confi gurable vector 
coprocessor  
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PROCESSOR ARCHITECTURES  9

on the relative importance of these functions and the resolution of the created 
images, we could have radically different architectural implementations.    

   1.4.2    Processor: An Architectural View 

 The architectural view of the system describes the actual implementation at 
least in a broad - brush way. For sophisticated architectural approaches, more 
detail is required to understand the complete implementation. 

  Simple Sequential Processor     Sequential processors directly implement the 
sequential execution model. These processors process instructions sequentially 
from the instruction stream. The next instruction is not processed until all 
execution for the current instruction is complete and its results have been 
committed. 

 The semantics of the instruction determines that a sequence of actions must 
be performed to produce the specifi ed result (Figure  1.7 ). These actions can 
be overlapped, but the result must appear in the specifi ed serial order. These 
actions include 

  1.     fetching the instruction into the instruction register (IF),    
  2.     decoding the opcode of the instruction (ID),  
  3.     generating the address in memory of any data item residing there (AG),  
  4.     fetching data operands into executable registers (DF),  
  5.     executing the specifi ed operation (EX), and  
  6.     writing back the result to the register fi le (WB).    

 A simple sequential processor model is shown in Figure  1.8 . During execution, 
a sequential processor executes one or more operations per clock cycle from 
the instruction stream. An instruction is a container that represents the small-
est execution packet managed explicitly by the processor. One or more opera-
tions are contained within an instruction. The distinction between instructions 
and operations is crucial to distinguish between processor behaviors. Scalar 
and superscalar processors consume one or more instructions per cycle, where 
each instruction contains a single operation.   

 Although conceptually simple, executing each instruction sequentially has 
signifi cant performance drawbacks: A considerable amount of time is spent 
on overhead and not on actual execution. Thus, the simplicity of directly imple-
menting the sequential execution model has signifi cant performance costs.  

     Figure 1.7     Instruction execution sequence.  

IF DFAGID WBEX
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10  INTRODUCTION TO THE SYSTEMS APPROACH 

  Pipelined Processor     Pipelining is a straightforward approach to exploiting 
parallelism that is based on concurrently performing different phases (instruc-
tion fetch, decode, execution, etc.) of processing an instruction. Pipelining 
assumes that these phases are independent between different operations and 
can be overlapped — when this condition does not hold, the processor stalls 
the downstream phases to enforce the dependency. Thus, multiple operations 
can be processed simultaneously with each operation at a different phase of 
its processing. Figure  1.9  illustrates the instruction timing in a pipelined proces-
sor, assuming that the instructions are independent.   

 For a simple pipelined machine, there is only one operation in each phase at 
any given time; thus, one operation is being fetched (IF); one operation is being 
decoded (ID); one operation is generating an address (AG); one operation is 
accessing operands (DF); one operation is in execution (EX); and one opera-
tion is storing results (WB). Figure  1.10  illustrates the general form of a pipe-
lined processor. The most rigid form of a pipeline, sometimes called the static 
pipeline, requires the processor to go through all stages or phases of the pipe-
line whether required by a particular instruction or not. A dynamic pipeline 
allows the bypassing of one or more pipeline stages, depending on the require-
ments of the instruction. The more complex dynamic pipelines allow instruc-
tions to complete out of (sequential) order, or even to initiate out of order. The 
out - of - order processors must ensure that the sequential consistency of the 
program is preserved. Table  1.5  shows some SOC pipelined  “ soft ”  processors.      

     Figure 1.9     Instruction timing in a pipelined processor.  

IF DFAGID WBEX

Instruction #1

IF DFAGID WBEX

Instruction #2

IF DFAGID WBEX

Instruction #3

IF DFAGID WBEX

Instruction #4

Time

     Figure 1.8     Sequential processor model.  
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PROCESSOR ARCHITECTURES  11

   ILP      While pipelining does not necessarily lead to executing multiple instruc-
tions at exactly the same time, there are other techniques that do. These tech-
niques may use some combination of static scheduling and dynamic analysis 
to perform concurrently the actual evaluation phase of several different opera-
tions, potentially yielding an execution rate of greater than one operation every 
cycle. Since historically most instructions consist of only a single operation, this 
kind of parallelism has been named ILP (instruction level parallelism). 

 Two architectures that exploit ILP are  superscalar  and  VLIW  processors. 
They use different techniques to achieve execution rates greater than one 
operation per cycle. A superscalar processor dynamically examines the instruc-
tion stream to determine which operations are independent and can be exe-
cuted. A VLIW processor relies on the compiler to analyze the available 
operations (OP) and to schedule independent operations into wide instruc-
tion words, which then execute these operations in parallel with no further 
analysis. 

 Figure  1.11  shows the instruction timing of a pipelined superscalar or VLIW 
processor executing two instructions per cycle. In this case, all the instructions 
are independent so that they can be executed in parallel. The next two sections 
describe these two architectures in more detail.   

     Figure 1.10     Pipelined processor model.  
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  TABLE 1.5    SOC Examples Using Pipelined Soft Processors  [177, 178] . A Soft 
Processor Is Implemented with FPGAs or Similar Reconfi gurable Technology 

   Processor  
   Word 

Length (bit)  
   Pipeline 
Stages  

   I/D - Cache  *   
Total (KB)  

   Floating -
 Point Unit 

(FPU)  
   Usual 
Target  

  Xilinx MicroBlaze    32    3    0 – 64    Optional    FPGA  
  Altera Nios II fast    32    6    0 – 64     —     FPGA  
  ARC 600  [19]     16/32    5    0 – 32    Optional    ASIC  
  Tensilica Xtensa LX    16/24    5 – 7    0 – 32    Optional    ASIC  
  Cambridge XAP3a    16/32    2     —      —     ASIC  

    *   Means confi gurable I - cache and/or D - cache.   
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12  INTRODUCTION TO THE SYSTEMS APPROACH 

  Superscalar Processors     Dynamic pipelined processors remain limited to 
executing a single operation per cycle by virtue of their scalar nature. This 
limitation can be avoided with the addition of multiple functional units and a 
dynamic scheduler to process more than one instruction per cycle (Figure 
 1.12 ). These superscalar processors  [135]  can achieve execution rates of several 
instructions per cycle (usually limited to two, but more is possible depending 
on the application). The most signifi cant advantage of a superscalar processor 
is that processing multiple instructions per cycle is done transparently to the 

     Figure 1.11     Instruction timing in a pipelined ILP processor.  
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     Figure 1.12     Superscalar processor model.  
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user, and that it can provide binary code compatibility while achieving better 
performance.   

 Compared to a dynamic pipelined processor, a superscalar processor adds 
a scheduling instruction window that analyzes multiple instructions from the 
instruction stream in each cycle. Although processed in parallel, these instruc-
tions are treated in the same manner as in a pipelined processor. Before an 
instruction is issued for execution, dependencies between the instruction and 
its prior instructions must be checked by hardware. 

 Because of the complexity of the dynamic scheduling logic, high - performance 
superscalar processors are limited to processing four to six instructions per 
cycle. Although superscalar processors can exploit ILP from the dynamic 
instruction stream, exploiting higher degrees of parallelism requires other 
approaches.  

   VLIW  Processors     In contrast to dynamic analyses in hardware to determine 
which operations can be executed in parallel, VLIW processors (Figure  1.13 ) 
rely on static analyses in the compiler.   

 VLIW processors are thus less complex than superscalar processors and 
have the potential for higher performance. A VLIW processor executes opera-
tions from statically scheduled instructions that contain multiple independent 
operations. Because the control complexity of a VLIW processor is not signifi -
cantly greater than that of a scalar processor, the improved performance 
comes without the complexity penalties. 

 VLIW processors rely on the static analyses performed by the compiler and 
are unable to take advantage of any dynamic execution characteristics. For 
applications that can be scheduled statically to use the processor resources 
effectively, a simple VLIW implementation results in high performance. 
Unfortunately, not all applications can be effectively scheduled statically. In 
many applications, execution does not proceed exactly along the path defi ned 

     Figure 1.13     VLIW processor model.  
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14  INTRODUCTION TO THE SYSTEMS APPROACH 

by the code scheduler in the compiler. Two classes of execution variations can 
arise and affect the scheduled execution behavior:

   1.     delayed results from operations whose latency differs from the assumed 
latency scheduled by the compiler and  

  2.     interruptions from exceptions or interrupts, which change the execution 
path to a completely different and unanticipated code schedule.    

 Although stalling the processor can control a delayed result, this solution can 
result in signifi cant performance penalties. The most common execution delay 
is a data cache miss. Many VLIW processors avoid all situations that can result 
in a delay by avoiding data caches and by assuming worst - case latencies for 
operations. However, when there is insuffi cient parallelism to hide the exposed 
worst - case operation latency, the instruction schedule has many incompletely 
fi lled or empty instructions, resulting in poor performance. 

 Tables  1.6  and  1.7  describe some representative  superscalar  and  VLIW 
processors .     

   SIMD  Architectures: Array and Vector Processors     The SIMD class of pro-
cessor architecture includes both array and vector processors. The SIMD pro-
cessor is a natural response to the use of certain regular data structures, such as 
vectors and matrices. From the view of an assembly - level programmer, pro-
gramming SIMD architecture appears to be very similar to programming a 
simple processor except that some operations perform computations on aggre-
gate data. Since these regular structures are widely used in scientifi c program-
ming, the SIMD processor has been very successful in these environments. 

 The two popular types of SIMD processor are the array processor and the 
vector processor. They differ both in their implementations and in their data 

  TABLE 1.6     SOC  Examples Using Superscalar Processors 

   Device  
   Number of 

Functional Units     Issue Width     Base Instruction Set  

  MIPS 74K Core  [183]     4    2    MIPS32  
  Infi neon TriCore2  [129]     4    3    RISC  
  Freescale e600  [101]     6    3    PowerPC  

  TABLE 1.7     SOC  Examples Using  VLIW  Processors 

   Device     Number of Functional Units     Issue Width  

  Fujitsu MB93555A  [103]     8    8  
  TI TMS320C6713B  [243]     8    8  
  CEVA - X1620  [54]     30    8  
  Philips Nexperia PNX1700  [199]     30    5  
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organizations. An array processor consists of many interconnected processor 
elements, each having their own local memory space. A vector processor con-
sists of a single processor that references a global memory space and has 
special function units that operate on vectors. 

 An array processor or a vector processor can be obtained by extending the 
instruction set to an otherwise conventional machine. The extended instruc-
tions enable control over special resources in the processor, or in some sort 
of coprocessor. The purpose of such extensions is to enable increased perfor-
mance on special applications. 

  Array Processors     The array processor (Figure  1.14 ) is a set of parallel proces-
sor elements connected via one or more networks, possibly including local and 
global interelement communications and control communications. Processor 
elements operate in lockstep in response to a single broadcast instruction from 
a control processor (SIMD). Each processor element (PE) has its own private 
memory, and data are distributed across the elements in a regular fashion that 
is dependent on both the actual structure of the data and also the computa-
tions to be performed on the data. Direct access to global memory or another 
processor element ’ s local memory is expensive, so intermediate values are 
propagated through the array through local interprocessor connections. This 
requires that the data be distributed carefully so that the routing required to 
propagate these values is simple and regular. It is sometimes easier to dupli-
cate data values and computations than it is to support a complex or irregular 
routing of data between processor elements.   

 Since instructions are broadcast, there is no means local to a processor 
element of altering the fl ow of the instruction stream; however, individual 
processor elements can conditionally disable instructions based on local status 
information — these processor elements are idle when this condition occurs. 
The actual instruction stream consists of more than a fi xed stream of opera-
tions. An array processor is typically coupled to a general - purpose control 
processor that provides both scalar operations as well as array operations that 
are broadcast to all processor elements in the array. The control processor 
performs the scalar sections of the application, interfaces with the outside 

     Figure 1.14     Array processor model.  
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world, and controls the fl ow of execution; the array processor performs the 
array sections of the application as directed by the control processor. 

 A suitable application for use on an array processor has several key char-
acteristics: a signifi cant amount of data that have a regular structure, computa-
tions on the data that are uniformly applied to many or all elements of the 
data set, and simple and regular patterns relating the computations and the 
data. An example of an application that has these characteristics is the solution 
of the Navier – Stokes equations, although any application that has signifi cant 
matrix computations is likely to benefi t from the concurrent capabilities of an 
array processor. 

 Table  1.8  contains several array processor examples. The ClearSpeed pro-
cessor is an example of an array processor chip that is directed at signal pro-
cessing applications.    

  Vector Processors     A vector processor is a single processor that resembles a 
traditional single stream processor, except that some of the function units (and 
registers) operate on vectors — sequences of data values that are seemingly 
operated on as a single entity. These function units are deeply pipelined and 
have high clock rates. While the vector pipelines often have higher latencies 
compared with scalar function units, the rapid delivery of the input vector data 
elements, together with the high clock rates, results in a signifi cant throughput. 

 Modern vector processors require that vectors be explicitly loaded into 
special vector registers and stored back into memory — the same course that 
modern scalar processors use for similar reasons. Vector processors have 
several features that enable them to achieve high performance. One feature 
is the ability to concurrently load and store values between the vector register 
fi le and the main memory while performing computations on values in the 
vector register fi le. This is an important feature since the limited length of 
vector registers requires that vectors longer than the register length would be 
processed in segments — a technique called strip mining. Not being able to 
overlap memory accesses and computations would pose a signifi cant perfor-
mance bottleneck. 

 Most vector processors support a form of result bypassing — in this case 
called chaining — that allows a follow - on computation to commence as soon 
as the fi rst value is available from the preceding computation. Thus, instead of 
waiting for the entire vector to be processed, the follow - on computation can 
be signifi cantly overlapped with the preceding computation that it is depen-
dent on. Sequential computations can be effi ciently compounded to behave as 

  TABLE 1.8     SOC  Examples Based on Array Processors 

   Device     Processors per Control Unit     Data Size (bit)  

  ClearSpeed CSX600  [59]     96    32  
  Atsana J2211  [174]     Confi gurable    16/32  
  Xelerator X10q  [257]     200    4  
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if they were a single operation, with a total latency equal to the latency of the 
fi rst operation with the pipeline and chaining latencies of the remaining opera-
tions, but none of the start - up overhead that would be incurred without chain-
ing. For example, division could be synthesized by chaining a reciprocal with 
a multiply operation. Chaining typically works for the results of load opera-
tions as well as normal computations. 

 A typical vector processor confi guration (Figure  1.15 ) consists of a vector 
register fi le, one vector addition unit, one vector multiplication unit, and one 
vector reciprocal unit (used in conjunction with the vector multiplication unit 
to perform division); the vector register fi le contains multiple vector registers 
(elements).   

 Table  1.9  shows examples of vector processors. The IBM mainframes have 
vector instructions (and support hardware) as an option for scientifi c users.     

  Multiprocessors     Multiple processors can cooperatively execute to solve a 
single problem by using some form of interconnection for sharing results. In 

     Figure 1.15     Vector processor model.  
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  TABLE 1.9     SOC  Examples Using Vector Processor 

   Device     Vector Function Units     Vector Registers  

  Freescale e600  [101]     4    32 Confi gurable  
  Motorola RSVP  [58]     4 (64 bit partitionable at 16 bits)    2 streams (each 2 from, 

1 to) memory  
  ARM VFP11  [23]     3 (64 bit partitionable to 32 bits)    4    ×    8, 32 bit  

   Confi gurable implies a pool of N registers that can be confi gured as p register sets of N/p 
elements.   
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18  INTRODUCTION TO THE SYSTEMS APPROACH 

this confi guration, each processor executes completely independently, although 
most applications require some form of synchronization during execution to 
pass information and data between processors. Since the multiple processors 
share memory and execute separate program tasks (MIMD [multiple instruc-
tion stream, multiple data stream]), their proper implementation is signifi -
cantly more complex then the array processor. Most confi gurations are 
homogeneous with all processor elements being identical, although this is not 
a requirement. Table  1.10  shows examples of SOC multiprocessors.   

 The interconnection network in the multiprocessor passes data between 
processor elements and synchronizes the independent execution streams 
between processor elements. When the memory of the processor is distributed 
across all processors and only the local processor element has access to it, all 
data sharing is performed explicitly using messages, and all synchronization is 
handled within the message system. When the memory of the processor is 
shared across all processor elements, synchronization is more of a problem —
 certainly, messages can be used through the memory system to pass data and 
information between processor elements, but this is not necessarily the most 
effective use of the system. 

 When communications between processor elements are performed through 
a shared memory address space — either global or distributed between proces-
sor elements (called distributed shared memory to distinguish it from distrib-
uted memory) — there are two signifi cant problems that arise. The fi rst is 
maintaining memory consistency: the programmer - visible ordering effects on 
memory references, both within a processor element and between different 
processor elements. This problem is usually solved through a combination of 
hardware and software techniques. The second is cache coherency — the 
programmer - invisible mechanism to ensure that all processor elements see the 
same value for a given memory location. This problem is usually solved exclu-
sively through hardware techniques. 

 The primary characteristic of a multiprocessor system is the nature of the 
memory address space. If each processor element has its own address space 
(distributed memory), the only means of communication between processor 
elements is through message passing. If the address space is shared (shared 
memory), communication is through the memory system. 

  TABLE 1.10     SOC  Multiprocessors and Multithreaded Processors 

   SOC  
   Machanick 

 [162]   
   IBM Cell 

 [141]   
   Philips 

PNX8500  [79]   
   Lehtoranta 

 [155]   

  Number of CPUs    4    1    2    4  
  Threads    1    Many    1    1  
  Vector units    0    8    0    0  
  Application    Various    Various    HDTV    MPEG decode  
  Comment    Proposal only        Also called 

Viper 2  
  Soft processors  
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 The implementation of a distributed memory machine is far easier than the 
implementation of a shared memory machine when memory consistency and 
cache coherency are taken into account. However, programming a distributed 
memory processor can be much more diffi cult since the applications must be 
written to exploit and not to be limited by the use of message passing as the 
only form of communication between processor elements. On the other hand, 
despite the problems associated with maintaining consistency and coherency, 
programming a shared memory processor can take advantage of whatever 
communications paradigm is appropriate for a given communications require-
ment, and can be much easier to program.    

   1.5    MEMORY AND ADDRESSING 

 SOC applications vary signifi cantly in memory requirements. In one case, the 
memory structure can be as simple as the program residing entirely in an on -
 chip read - only memory (ROM), with the data in on - chip RAM. In another 
case, the memory system might support an elaborate operating system requir-
ing a large off - chip memory (system on a board), with a memory management 
unit and cache hierarchy. 

 Why not simply include memory with the processor on the die? This has 
many attractions:

   1.     It improves the accessibility of memory, improving both memory access 
time and bandwidth.  

  2.     It reduces the need for large cache.  
  3.     It improves performance for memory - intensive applications.    

 But there are problems. The fi rst problem is that DRAM memory process 
technology differs from standard microprocessor process technology, and 
would cause some sacrifi ce in achievable bit density. The second problem is 
more serious: If memory were restricted to the processor die, its size would be 
correspondingly limited. Applications that require very large real memory 
space would be crippled. Thus, the conventional processor die model has 
evolved (Figure  1.16 ) to implement multiple robust homogeneous processors 
sharing the higher levels of a two -  or three - level cache structure with the main 
memory off - die, on its own multidie module.   

 From a design complexity point of view, this has the advantage of being a 
 “ universal ”  solution: One implementation fi ts all applications, although not 
necessarily equally well. So, while a great deal of design effort is required for 
such an implementation, the production quantities can be large enough to 
justify the costs. 

 An alternative to this approach is clear. For specifi c applications, whose 
memory size can be bounded, we can implement an integrated memory SOC. 
This concept is illustrated in Figure  1.17  (also recall Figure  1.3 ).   
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20  INTRODUCTION TO THE SYSTEMS APPROACH 

 A related but separate question is: Does the application require virtual 
memory (mapping disk space onto memory) or is all real memory suitable? 
We look at the requirement for virtual memory addressing in the next section. 

 Finally, the memory can be centralized or distributed. Even here, the 
memory can appear to the programmer as a single (centralized) shared 
memory, even though it is implemented in several distributed modules. Sev-
eral memory considerations are listed in Table  1.11 .   

 The  memory system  comprises the physical storage elements in the memory 
hierarchy. These elements include those specifi ed by the instruction set (reg-
isters, main memory, and disk sectors) as well as those elements that are largely 
transparent to the user ’ s program (buffer registers, cache, and page mapped 
virtual memory). 

   1.5.1     SOC  Memory Examples 

 Table  1.12  shows a number of different SOC designs and their cache and 
memory confi guration. It is important for SOC designers to consider whether 
to put RAM and ROM on - die or off - die. Table  1.13  shows various examples 
of SOC embedded memory macro cell.    

     Figure 1.16     Processors with memory off - die.  
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     Figure 1.17     System on a chip: processors and memory.  
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   1.5.2    Addressing: The Architecture of Memory 

 The user ’ s view of memory primarily consists of the addressing facilities avail-
able to the programmer. Some of these facilities are available to the applica-
tion programmer and some to the operating system programmer. Virtual 
memory enables programs requiring larger storage than the physical memory 
to run and allows separation of address spaces to protect unauthorized access 
to memory regions when executing multiple application programs. When 
virtual addressing facilities are properly implemented and programmed, 
memory can be effi ciently and securely accessed. 

 Virtual memory is often supported by a memory management unit. 
Conceptually, the physical memory address is determined by a sequence of (at 
least) three steps:

  TABLE 1.11     SOC  Memory Considerations 

   Issue     Implementation     Comment  

  Memory placement    On - die    Limited and fi xed size  
  Off - die    System on a board, slow 

access, limited bandwidth  

  Addressing    Real addressing    Limited size, simple OS  
  Virtual addressing    Much more complex, require 

TLB, in - order instruction 
execution support  

  Arrangement (as programmed 
for multiple processors)  

  Shared memory    Requires hardware support  
  Message passing    Additional programming  

  Arrangement (as 
implemented)  

  Centralized    Limited by chip 
considerations  

  Distributed    Can be clustered with a 
processor or other 
memory modules  

  TABLE 1.12    Memory Hierarchy for Different  SOC  Examples 

   SOC     Application     Cache Size  
   On - Die/
Off - Die  

   Real/
Virtual  

  NetSilicon NET    +    40 
 [184]   

  Networking    4 - KB I - cache, 
4 - KB D - cache  

  Off    Real  

  NetSilicon NS9775  [185]     Printing    8 - KB I - cache, 
4 - KB D - cache  

  Off    Virtual  

  NXP LH7A404  [186]     Networking    16 - KB I - cache, 
8   KB D - Cache  

  On    Virtual  

  Motorola RSVP  [58]     Multimedia    Tile buffer memory    Off    Real  
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   1.     The application produces a  process address . This, together with the 
 process or user ID , defi nes the  virtual address :  virtual address     =     offset     +    
 (program) base     +     index , where the  offset  is specifi ed in the instruction 
while the  base  and  index  values are in specifi ed registers.  

  2.     Since multiple processes must cooperate in the same memory space, the 
process addresses must be coordinated and relocated. This is typically 
done by a segment table. Upper bits of the  virtual address  are used to 
address a segment table, which has a (predetermined)  base  and  bound  
values for the process, resulting in a  system address :  system address     =     virtual 
address     +     (process) base , where the  system address  must be less than the 
 bound .  

  3.      Virtual versus real.  For many SOC applications (and all generic systems), 
the memory space exceeds the available (real) implemented memory. 
Here the memory space is implemented on disk and only the recently 
used regions (pages) are brought into memory. The available pages are 
located by a page table. The upper bits of the system address access a 
page table. If the data for this page have been loaded from the disk, the 
location in memory will be provided as the upper address bits of the 
 “ real ”  or physical memory address. The lower bits of the real address are 
the same as the corresponding lower bits of the virtual address.    

 Usually, the tables (segment and page) performing address translation are in 
memory, and a mechanism for the translation called the translation lookaside 
buffer (TLB) must be used to speed up this translation. A TLB is a simple 
register system, usually consisting of between 64 and 256 entries, that saves 
recent address translations for reuse. A small number of (hashed) virtual 
address bits address the TLB. The TLB entry has both the real address and 
the complete virtual address (and ID). If the virtual address matches, the real 
address from the TLB can be used. Otherwise, a  not - in - TLB  event occurs and 
a complete translation must occur (Figure  1.18 ).    

   1.5.3    Memory for  SOC  Operating System 

 One of the most critical decisions (or requirements) concerning an SOC design 
is the selection of the operating system and its memory management function-

  TABLE 1.13    Example  SOC  Embedded Memory Macro Cell (See Chapter  4  for 
the Discussion on Cell Types) 

   Vendor     Cell Type (Typical)     SOC User (Typical)  

  Virage Logic    6T (SRAM)    SigmaTel/ARM  
  ATMOS    1T (eDRAM)    Philips  
  IBM    1T (eDRAM)    IBM  

   Note: T refers to the number of transistors in a 1 - bit cell.   
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ality. Of primary interest to the designer is the requirement for virtual memory. 
If the system can be restricted to a real memory (physically, not virtually 
addressed) and the size of the memory can be contained to the order of 10   s 
of megabytes, the system can be implemented as a true system on a chip (all 
memory on - die). The alternative, virtual memory, is often slower and signifi -
cantly more expensive, requiring a complex memory management unit. Table 
 1.14  illustrates some current SOC designs and their operating systems.   

     Figure 1.18     Virtual - to - real address mapping with a TLB bypass.  
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  TABLE 1.14    Operating Systems for  SOC  Designs 

   OS     Vendor     Memory Model  

  uClinux    Open source    Real  
  VxWorks (RTOS)  [254]     Wind River    Real  
  Windows CE    Microsoft    Virtual  
  Nucleus (RTOS)  [175]     Mentor Graphics    Real  
  MQX (RTOS)  [83]     ARC    Real  
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24  INTRODUCTION TO THE SYSTEMS APPROACH 

 Of course, fast real memory designs come at the price of functionality. The 
user has limited ways of creating new processes and of expanding the applica-
tion base of the systems.   

   1.6    SYSTEM - LEVEL INTERCONNECTION 

 SOC technology typically relies on the interconnection of predesigned circuit 
modules (known as intellectual property [IP] blocks) to form a complete 
system, which can be integrated onto a single chip. In this way, the design task 
is raised from a circuit level to a system level. Central to the system - level 
performance and the reliability of the fi nished product is the method of inter-
connection used. A well - designed interconnection scheme should have vigor-
ous and effi cient communication protocols, unambiguously defi ned as a 
published standard. This facilitates interoperability between IP blocks designed 
by different people from different organizations and encourages design reuse. 
It should provide effi cient communication between different modules maxi-
mizing the degree of parallelism achieved. 

 SOC interconnect methods can be classifi ed into two main approaches: 
buses and network - on - chip, as illustrated in Figures  1.19  and  1.20 .   

   1.6.1    Bus - Based Approach 

 With the bus - based approach, IP blocks are designed to conform to published 
bus standards (such as ARM ’ s Advanced Microcontroller Bus Architecture 

     Figure 1.19     SOC system - level interconnection: bus - based approach.  
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[AMBA]  [21]  or IBM ’ s CoreConnect  [124] ). Communication between modules 
is achieved through the sharing of the physical connections of address, data, 
and control bus signals. This is a common method used for SOC system - level 
interconnect. Usually, two or more buses are employed in a system, organized 
in a hierarchical fashion. To optimize system - level performance and cost, the 
bus closest to the CPU has the highest bandwidth, and the bus farthest from 
the CPU has the lowest bandwidth.  

   1.6.2    Network - on - Chip Approach 

 A network - on - chip system consists of an array of switches, either dynamically 
switched as in a crossbar or statically switched as in a mesh. 

 The crossbar approach uses asynchronous channels to connect synchronous 
modules that can operate at different clock frequencies. This approach has the 
advantage of higher throughput than a bus - based system while making inte-
gration of a system with multiple clock domains easier. 

 In a simple statically switched network (Figure  1.20 ), each node contains 
processing logic forming the core, and its own routing logic. The interconnect 
scheme is based on a two - dimensional mesh topology. All communications 
between switches are conducted through data packets, routed through the 
router interface circuit within each node. Since the interconnections between 
switches have a fi xed distance, interconnect - related problems such as wire 
delay and cross talk noise are much reduced. Table  1.15  lists some interconnect 
examples used in SOC designs.     

     Figure 1.20     SOC system - level interconnection: network - on - chip approach.  
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   1.7    AN APPROACH FOR  SOC  DESIGN 

 Two important ideas in a design process are fi guring out the requirements and 
specifi cations, and iterating through different stages of design toward an effi -
cient and effective completion. 

   1.7.1    Requirements and Specifi cations 

 Requirements and specifi cations are fundamental concepts in any system 
design situation. There must be a thorough understanding of both before a 
design can begin. They are useful at the beginning and at the end of the design 
process: at the beginning, to clarify what needs to be achieved; and at the end, 
as a reference against which the completed design can be evaluated. 

 The system requirements are the largely externally generated criteria for 
the system. They may come from competition, from sales insights, from cus-
tomer requests, from product profi tability analysis, or from a combination. 
Requirements are rarely succinct or defi nitive of anything about the system. 
Indeed, requirements can frequently be unrealistic:  “ I want it fast, I want it 
cheap, and I want it now! ”  

 It is important for the designer to analyze carefully the requirements 
expressions, and to spend suffi cient time in understanding the market situation 
to determine all the factors expressed in the requirements and the priorities 
those factors imply. Some of the factors the designer considers in determining 
requirements include 

   •      compatibility with previous designs or published standards,  
   •      reuse of previous designs,  
   •      customer requests/complaints,  
   •      sales reports,  
   •      cost analysis,  
   •      competitive equipment analysis, and  
   •      trouble reports (reliability) of previous products and competitive 

products.    

  TABLE 1.15    Interconnect Models for Different  SOC  Examples 

   SOC     Application     Interconnect Type  

  ClearSpeed CSX600  [59]     High Performance 
Computing  

  ClearConnect bus  

  NetSilicon NET  + 40  [184]     Networking    Custom bus  
  NXP LH7A404  [186]     Networking    AMBA bus  
  Intel PXA27x  [132]     Mobile/wireless    PXBus  
  Matsushita i - Platform  [176]     Media    Internal connect bus  
  Emulex InSpeed SOC320  [130]     Switching    Crossbar switch  
  MultiNOC  [172]     Multiprocessing system    Network - on - chip  
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 The designer can also introduce new requirements based on new technology, 
new ideas, or new materials that have not been used in a similar systems 
environment. 

 The system specifi cations are the quantifi ed and prioritized criteria for the 
target system design. The designer takes the requirements and must produce 
a succinct and defi nitive set of statements about the eventual system. The 
designer may have no idea of what the eventual system will look like, but 
usually, there is some  “ straw man ”  design in mind that seems to provide a 
feasibility framework to the specifi cation. In any effective design process, it 
would be surprising if the fi nal design signifi cantly resembles the straw man 
design. 

 The specifi cation does not complete any part of the design process; it initial-
izes the process. Now the design can begin with the selection of components 
and approaches, the study of alternatives, and the optimization of the parts of 
the system.  

   1.7.2    Design Iteration 

 Design is always an iterative process. So, the obvious question is how to get 
the very fi rst, initial design. This is the design that we can then iterate through 
and optimize according to the design criteria. For our purposes, we defi ne 
several types of designs based on the stage of design effort. 

  Initial Design     This is the fi rst design that shows promise in meeting the key 
requirements, while other performance and cost criteria are not considered. 
For instance, processor or memory or input/output (I/O) should be sized to 
meet high - priority real - time constraints. Promising components and their 
parameters are selected and analyzed to provide an understanding of their 
expected idealized performance and cost. Idealized does not mean ideal; it 
means a simplifi ed model of the expected area occupied and computational 
or data bandwidth capability. It is usually a simple linear model of perfor-
mance, such as the expected million instructions per second (MIPS) rate of a 
processor.  

  Optimized Design     Once the base performance (or area) requirements are 
met and the base functionality is ensured, then the goal is to minimize the cost 
(area) and/or the power consumption or the design effort required to complete 
the design. This is the iterative step of the process. The fi rst steps of this process 
use higher - fi delity tools (simulations, trial layouts, etc.) to ensure that the 
initial design actually does satisfy the design specifi cations and requirements. 
The later steps refi ne, complete, and improve the design according to the 
design criteria. 

 Figure  1.21  shows the steps in creating an initial design. This design is 
detailed enough to create a component view of the design and a corresponding 
projection of the component ’ s expected performance. This projection is, at this 
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step, necessarily simplifi ed and referenced to here as the idealized view of the 
component (Figure  1.22 ).   

 System performance is limited by the component with the least capability. 
The other components can usually be modeled as simply presenting a delay 
to the critical component. In a good design, the most expensive component is 
the one that limits the performance of the system. The system ’ s ability to 
process transactions should closely follow that of the limiting component. 
Typically, this is the processor or memory complex. 

 Usually, designs are driven by either (1) a specifi c real - time requirement, 
after which functionality and cost become important, or (2) functionality and/
or throughput under cost – performance constraints. In case (1), the real - time 
constraint is provided by I/O consideration, which the processor – memory –
 interconnect system must meet. The I/O system then determines the perfor-
mance, and any excess capability of the remainder of the system is usually used 
to add functionality to the system. In case (2), the object is to improve task 

     Figure 1.21     The SOC initial design process.  
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throughput while minimizing the cost. Throughput is limited by the most con-
strained component, so the designer must fully understand the trade - offs at 
that point. There is more fl exibility in these designs, and correspondingly more 
options in determining the fi nal design. 

 The purpose of this book is to provide an approach for determining the 
initial design by 

   (a)     describing the range of components — processors, memories, and 
interconnects — that are available in building an SOC;  

   (b)     providing examples of requirements for various domains of applica-
tions, such as data compression and encryption; and  

   (c)     illustrating how an initial design, or a reported implementation, can 
show promise in meeting specifi c requirements.    

 We explain this approach in Chapters  3  –  5  on a component by component basis 
to cover (a), with Chapter  6  covering techniques for system confi guration and 
customization. Chapter  7  contains application studies to cover (b) and (c). 

 As mentioned earlier, the designer must optimize each component for pro-
cessing and storage. This optimization process requires extensive simulation. 
We provide access to basic simulation tools through our associated web site.    

   1.8    SYSTEM ARCHITECTURE AND COMPLEXITY 

 The basic difference between processor architecture and system architecture 
is that the system adds another layer of complexity, and the complexity of 
these systems limits the cost savings. Historically, the notion of a computer is 
a single processor plus a memory. As long as this notion is fi xed (within broad 
tolerances), implementing that processor on one or more silicon die does not 
change the design complexity. Once die densities enable a scalar processor to 
fi t on a chip, the complexity issue changes. 

 Suppose it takes about 100,000 transistors to implement a 32 - bit pipelined 
processor with a small fi rst - level cache. Let this be a processor unit of design 
complexity. 

 As long as we need to implement the 100,000 transistor processors, addi-
tional transistor density on the die does not much affect design complexity. 
More transistors per die, while increasing die complexity, simplify the problem 
of interconnecting multiple chips that make up the processor. Once the unit 
processor is implemented on a single die, the design complexity issue changes. 
As transistor densities signifi cantly improve after this point, there are obvious 
processor extension strategies to improve performance:

   1.     Additional Cache .      Here we add cache storage and, as large caches have 
slower access times, a second - level cache.  

c01.indd   29c01.indd   29 5/4/2011   9:53:49 AM5/4/2011   9:53:49 AM



30  INTRODUCTION TO THE SYSTEMS APPROACH 

  2.     A More Advanced Processor .      We implement a superscalar or a VLIW 
processor that executes more than one instruction each cycle. Additionally, 
we speed up the execution units that affect the critical path delay, espe-
cially the fl oating - point execution times.  

  3.     Multiple Processors .      Now we implement multiple (superscalar) proces-
sors and their associated multilevel caches. This leaves us limited only by 
the memory access times and bandwidth.    

 The result of the above is a signifi cantly greater design complexity (see Figure 
 1.23 ). Instead of the 100,000 transistor processors, our advanced processor has 
millions of transistors; the multilevel caches are also complex, as is the need 
to coordinate (synchronize) the multiple processors, since they require a con-
sistent image of the contents of memory.   

 The obvious way to manage this complexity is to reuse designs. So, reusing 
several simpler processor designs implemented on a die is preferable to a new, 
more advanced, single processor. This is especially true if we can select specifi c 
processor designs suited to particular parts of an application. For this to work, 
we also need a robust interconnection mechanism to access the various proces-
sors and memory. 

 So, when an application is well specifi ed, the system - on - a - chip approach 
includes 

  1.     multiple (usually) heterogeneous processors, each specialized for specifi c 
parts of the application;  

  2.     the main memory with (often) ROM for partial program storage;  
  3.     a relatively simple, small (single - level) cache structure or buffering 

schemes associated with each processor; and  
  4.     a bus or switching mechanism for communications.    

     Figure 1.23     Complexity of design.  
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 Even when the SOC approach is technically attractive, it has economic limita-
tions and implications. Given the processor and interconnect complexity, if 
we limit the usefulness of an implementation to a particular application, we 
have to either (1) ensure that there is a large market for the product or (2) 
fi nd methods for reducing the design cost through design reuse or similar 
techniques.  

   1.9    PRODUCT ECONOMICS AND IMPLICATIONS FOR  SOC  

   1.9.1    Factors Affecting Product Costs 

 The basic cost and profi tability of a product depend on many factors: its tech-
nical appeal, its cost, the market size, and the effect the product has on future 
products. The issue of cost goes well beyond the product ’ s manufacturing cost. 

 There are fi xed and variable costs, as shown in Figure  1.24 . Indeed, the 
engineering costs, frequently the largest of the fi xed costs, are expended before 
any revenue can be realized from sales (Figure  1.25 ).   

 Depending on the complexity, designing a new chip requires a development 
effort of anywhere between 12 and 30 months before the fi rst manufactured 
unit can be shipped. Even a moderately sized project may require up to 30 or 
more hardware and software engineers, CAD design, and support personnel. 
For instance, the paper describing the Sony Emotion Engine has 22 authors 
 [147, 187] . However, their salary and indirect costs might represent only a 
fraction of the total development cost. 

 Nonengineering fi xed costs include manufacturing start - up costs, inven-
tory costs, initial marketing and sales costs, and administrative overhead. The 

     Figure 1.24     Project cost components.  
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marketing costs include obvious items such as market research, strategic 
market planning, pricing studies, and competitive analysis, and so on, as well 
as sales planning and advertising costs. The concept of general and administra-
tive (G  &  A)  “ overhead ”  includes a proportional share of the  “ front offi ce ”  —
 the executive management, personnel department (human resources), fi nancial 
offi ce, and other costs. 

 Later, in the beginning of the manufacturing process, unit cost remains high. 
It is not until many units are shipped that the marginal manufacturing cost 
can approach the ultimate manufacturing costs. 

 After this, manufacturing produces units at a cost increasingly approaching 
the ultimate manufacturing cost. Still, during this time, there is a continuing 
development effort focused on extending the life of the product and broaden-
ing its market applicability. 

 Will the product make a profi t? From the preceding discussion, it is easy to 
see how sensitive the cost is to the product life and to the number of products 
shipped. If market forces or the competition is aggressive and produces rival 
systems with expanded performance, the product life may be shortened and 
fewer units may be delivered than expected. This could be disastrous even if 
the ultimate manufacturing cost is reached; there may not be enough units to 
amortize the fi xed costs and ensure profi t. On the other hand, if competition 

     Figure 1.25     Engineering (development) costs.  
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is not aggressive and the follow - on development team is successful in enhanc-
ing the product and continuing its appeal in the marketplace, the product can 
become one of those jewels in a company ’ s repertoire, bringing fame to the 
designers and smiles to the stockholders.  

   1.9.2    Modeling Product Economics and Technology Complexity: 
The Lesson for  SOC  

 To put all this into perspective, consider a general model of a product ’ s  average  
unit cost (as distinct from its ultimate manufactured cost):

   unit cost project cost number of units= ( ) /( ).   

 The product cost is simply the sum of all the fi xed and variable costs. We rep-
resent the fi xed cost as a constant,  K f  . It is also clear that the variable costs 
are of the form  K v      ×     n , where  n  is the number of units. However, there are 
certain ongoing engineering, sales, and marketing costs that are related to  n  
but are not necessarily linear. 

 Let us assume that we can represent this effect as a term that starts as 0.1 
of  K f   and then slowly increases with  n , say,   n3 . So, we get

    Product cost = + × × + ×K K n K nf f v0 1 3. .     (1.1)   

 We can use Equation  1.1  to illustrate the effects of advancing technology on 
product design. We compare a design done in 1995 with a more complex 2005 
design, which has a much lower production cost. With  K f   fi xed, Figure  1.26  
shows the expected decrease in unit cost as the volume of 1995 products pro-
duced,  n , increases. But the fi gure also shows that, if we increase the fi xed costs 

     Figure 1.26     The effect of volume on unit cost.  
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34  INTRODUCTION TO THE SYSTEMS APPROACH 

(more complex designs) by 10 - fold, even if we cut the unit costs ( K v  ) by the 
same amount, the 2005 unit product costs remain high until much larger 
volumes are reached. This might not be a problem for a  “ universal ”  processor 
design with a mass market, but it can be a challenge for those SOC designs 
targeted at specifi c applications, which may have limited production volume; 
a more specifi c design will be more effi cient for a particular application, at the 
expense of generality, which affects volume.     

   1.10    DEALING WITH DESIGN COMPLEXITY 

 As design cost and complexity increase, there is a basic trade - off between the 
design optimization of the physical product and the cost of the design. This is 
shown in Figure  1.27 . The balance point depends on  n , the number of units 
expected to be produced. There are several approaches to the design produc-
tivity problem. The most basic approaches are purchasing predesigned com-
ponents and utilizing reconfi gurable devices.   

   1.10.1    Buying  IP  

 If the goal is to produce a design optimized in the use of the technology, the 
fi xed costs will be high, so the result must be broadly applicable. The alterna-
tive to this is to  “ reuse ”  the existing design. These may be suboptimal for all 
the nuances of a particular process technology, but the savings in design time 
and effort can be signifi cant. The purchase of such designs from third parties 
is referred to as the sale of  IP . 

 The use of IP reduces the risk in design development: It is intended to 
reduce the design costs and improves the time to market. The cost of an IP 
usually depends on the volume. Hence, the adoption of an IP approach tends 
to reduce  K f   at the expense of increasing  K v   in Equation  1.1 . 

     Figure 1.27     The design effort must balance volume.  
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 Specialized SOC designs often use several different types of processors. 
Noncritical and specialized processors are purchased as IP and are integrated 
into the design. For example, the ARM7TDMA is a popular licensed 32 - bit 
processor or  “ core ”  design. Generally, processor cores can be designed and 
licensed in a number of ways as shown in Table  1.16 .   

 Hard IPs are physical - level designs that use all features available in a 
process technology, including circuit design and physical layout. Many analog 
IPs and mixed - signal IPs (such as SRAM, phase - locked loop) are distributed 
in this format to ensure optimal timing and other design characteristics. Firm 
IPs are gate - level designs that include device sizing but are applicable to many 
fab facilities with different processor technologies. Soft IPs are logic - level 
designs in synthesizable format and are directly applicable to standard cell 
technologies. This approach allows users to adapt the source code to fi t their 
design over a broad range of situations. 

 Clearly, the more optimized designs from the manufacturer are usually less 
customizable by the user, but they often have better physical, cost – performance 
trade - offs. There are potential performance – cost – power overheads in delaying 
the customization process, since the design procedure and even the product 
technology itself would have to support user customization. Moreover, cus-
tomizing a design may also necessitate reverifi cation to ensure its correctness. 
Current technologies, such as the reconfi guration technology described below, 
aim to maximize the advantages of late customization, such as risk reduction 
and improvement of time to market. At the same time, they aim to minimize 
the associated disadvantages, for instance, by introducing hardwired, nonpro-
grammable blocks to support common operations such as integer multiplica-
tion; such hardwired blocks are more effi cient than reconfi gurable resources, 
but they are not as fl exible.  

   1.10.2    Reconfi guration 

 The term  reconfi guration  refers to a number of approaches that enable the 
same circuitry to be reused in many applications. A reconfi gurable device can 
also be thought of as a type of purchased IP in which the cost and risk of 
fabrication are eliminated, while the support for user customization would 

  TABLE 1.16    Types of Processor Cores Available as  IP  

   Type of Design     Design Level     Description  

  Customized hard IP    Physical level    IP used in fi xed process, optimized  
  Synthesized fi rm IP    Gate level    IP used in multiple processes but 

some optimization possible  
  Synthesizable soft IP    Register transfer 

level (RTL)  
  IP used in any process, nonoptimized  
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raise the unit cost. In other words, the adoption of reconfi gurable devices 
would tend to reduce  K f   at the expense of increasing  K v   in Equation  1.1 . 

 The best - known example of this approach is FPGA technology. An FPGA 
consists of a large array of cells. Each cell consists of a small lookup table, a 
fl ip - fl op, and perhaps an output selector. The cells are interconnected by pro-
grammable connections, enabling fl exible routing across the array (Figure 
 1.28 ). Any logic function can be implemented on the FPGA by confi guring 
the lookup tables and the interconnections. Since an array can consist of over 
100,000 cells, it can easily defi ne a processor. An obvious disadvantage of the 
FPGA - based soft processor implementation is its performance – cost – power. 
The approach has many advantages, however:

   1.     Circuit fabrication costs increase exponentially with time; hence, it would 
not be economical to fabricate a circuit unless it can support a large 
volume. FPGAs themselves are general - purpose devices and are expected 
to be produced in large volume.    

  2.     The design time for FPGA implementations is low compared to design-
ing a chip for fabrication. There are extensive libraries of designs avail-
able for use. This is particularly important for designs for which a short 
time to market is critical.  

     Figure 1.28     The FPGA array.  
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  3.     FPGAs can be used for rapid prototyping of circuits that would be fab-
ricated. In this approach, one or more FPGAs are confi gured according 
to the proposed design to emulate it, as a form of  “ in - circuit emulation. ”  
Programs are run and design errors can be detected.  

  4.     The reconfi gurability of FPGAs enables in - system upgrade, which helps 
to increase the time in market of a product; this capability is especially 
valuable for applications where new functions or new standards tend to 
emerge rapidly.  

  5.     The FPGA can be confi gured to suit a portion of a task and then recon-
fi gured for the remainder of the task (called  “ run - time reconfi guration ” ). 
This enables specialized functional units for certain computations to 
adapt to environmental changes.  

  6.     In a number of compute - intensive applications, FPGAs can be confi g-
ured as a very effi cient systolic computational array. Since each FPGA 
cell has one or more storage elements, computations can be pipelined 
with very fi ne granularity. This can provide an enormous computational 
bandwidth, resulting in impressive speedup on selected applications. 
Some devices, such as the Stretch S5 software confi gurable processor, 
couple a conventional processor with an FPGA array  [25] .    

 Reconfi guration and FPGAs play an important part in effi cient SOC design. 
We shall explore them in more detail in the next chapter.   

   1.11    CONCLUSIONS 

 Building modern processors or targeted application systems is a complex 
undertaking. The great advantages offered by the technology — hundreds of 
millions of transistors on a die — comes at a price, not the silicon itself, but the 
enormous design effort that is required to implement and support the product. 

 There are many aspects of SOC design, such as high - level descriptions, 
compilation technologies, and design fl ow, that are not mentioned in this 
chapter. Some of these will be covered later. 

 In the following chapters, we shall fi rst take a closer look at basic trade - offs 
in the technology: time, area, power, and reconfi gurability. Then, we shall look 
at some of the details that make up the system components: the processor, the 
cache, and the memory, and the bus or switch interconnecting them. Next, we 
cover design and implementation issues from the perspective of customization 
and confi gurability. This is followed by a discussion of SOC design fl ow and 
application studies. Finally, some challenges facing future SOC technology are 
presented. 

 The goal of the text is to help system designers identify the most effi cient 
design choices, together with the mechanisms to manage the design complexity 
by exploiting the advances in technology.  
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   1.12    PROBLEM SET 

     1.      Suppose the TLB in Figure  1.18  had 256 entries (directly addressed). If 
the virtual address is 32   bits, the real memory is 512   MB and the page size 
is 4   KB, show the possible layout of a TLB entry. What is the purpose of 
the user ID in Figure  1.18  and what is the consequence of ignoring it?  

   2.      Discuss possible arrangement of addressing the TLB.  

   3.      Find an actual VLIW instruction format. Describe the layout and the con-
straints on the program in using the applications in a single instruction.  

   4.      Find an actual vector instruction for vector ADD. Describe the instruction 
layout. Repeat for vector load and vector store. Is overlapping of vector 
instruction execution permitted? Explain.  

   5.      For the pipelined processor in Figure  1.9 , suppose instruction #3 sets the 
CC (condition code that can be tested by following a branch instruction) 
at the end of WB and instruction #4 is the condition branch. Without 
additional hardware support, what is the delay in executing instruction #5 
if the branch is taken and if the branch is not taken?  

   6.      Suppose we have four different processors; each does 25% of the applica-
tion. If we improve two of the processors by 10 times, what would be the 
overall application speedup?  

   7.      Suppose we have four different processors and all but one are totally 
limited by the bus. If we speed up the bus by three times and assume the 
processor performance also scales, what is the application speedup?  

   8.      For the pipelined processor in Figure  1.9 , assume the cache miss rate is 
0.05 per instruction execution and the total cache miss delay is 20 cycles. 
For this processor, what is the achievable cycle per instruction (CPI)? 
Ignore other delays, such as branch delays.  

   9.      Design validation is a very important SOC design consideration. Find 
several approaches specifi c to SOC designs. Evaluate each from the per-
spective of a small SOC vendor.  

   10.      Find (from the Internet) two new VLIW DSPs. Determine the maximum 
number of operations issued in each cycle and the makeup of the opera-
tions (number of integer, fl oating point, branch, etc.). What is the stated 
maximum performance (operations per second)? Find out how this 
number was computed.  

   11.      Find (from the Internet) two new, large FPGA parts. Determine the 
number of logic blocks (confi gurable logic blocks [CLBs]), the minimum 
cycle time, and the maximum allowable power consumption. What soft 
processors are supported?       
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  2    Chip Basics: Time, Area, Power, 
Reliability, and Confi gurability     

    2.1    INTRODUCTION 

 The trade - off between cost and performance is fundamental to any system 
design. Different designs result either from the selection of different points on 
the cost – performance continuum or from differing assumptions about the 
nature of cost or performance. 

 The driving force in design innovation is the rapid advance in technology. 
The Semiconductor Industry Association (SIA) regularly makes projections, 
called the SIA road map, of technology advances, which become the basis and 
assumptions for new chip designs. While the projections change, the advance 
has been and is expected to continue to be formidable. Table  2.1  is a summary 
of the roadmap projections for the microprocessors with the highest perfor-
mance introduced in a particular year  [133] . With the advances in lithography, 
the transistors are getting smaller. The minimum width of the transistor gates 
is defi ned by the process technology. Table  2.1  refers to process technology 
generations in terms of nanometers; older generations are referred to in terms 
of microns (  μ  m). So the previous generations are 65 and 90   nm, and 0.13 and 
0.18     μ  m.   

   2.1.1    Design Trade - Offs 

 With increases in chip frequency and especially in transistor density, the 
designer must be able to fi nd the best set of trade - offs in an environment of 
rapidly changing technology. Already the chip frequency projections have 
been called into question because of the resulting power requirements. 

 In making basic design trade - offs, we have fi ve different considerations. The 
fi rst is  time , which includes partitioning instructions into events or cycles, basic 
pipelining mechanisms used in speeding up the instruction execution, and 
cycle time as a parameter for optimizing program execution. Second, we 
discuss  area . The cost or area occupied by a particular feature is another 
important aspect of the architectural trade - off. Third,  power consumption  
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affects both performance and implementation. Instruction sets that require 
more implementation area are less valuable than instruction sets that use 
less — unless, of course, they can provide commensurately better performance. 
Long - term  cost – performance ratio  is the basis for most design decisions. 
Fourth,  reliability  comes into play to cope with deep submicron effects. Fifth, 
 confi gurability  provides an additional opportunity for designers to trade off 
recurring and nonrecurring design costs. 

   

  TABLE 2.1    Technology Roadmap Projections 

  Year    2010    2013    2016  
  Technology generation (nm)    45    32    22  
  Wafer size, diameter (cm)    30    45    45  
  Defect density (per cm 2 )    0.14    0.14    0.14  
    μ  P die size (cm 2 )    1.9    2.6    2.6  
  Chip frequency (GHz)    5.9    7.3    9.2  
  Million transistors per square centimeter    1203    3403    6806  
  Max power (W) high performance    146    149    130  

 FIVE BIG ISSUES IN SYSTEM - ON - CHIP ( SOC ) DESIGN 

 Four of the issues are obvious.  Die area  (manufacturing cost) and  per-
formance  (heavily infl uenced by cycle time) are important basic SOC 
design considerations. Power consumption has also come to the fore as 
a design limitation. As technology shrinks feature sizes, reliability will 
dominate as a design consideration. 

 The fi fth issue, confi gurability, is less obvious as an immediate design 
consideration. However, as we saw in Chapter  1 , in SOC design, the non-
recurring design costs can dominate the total project cost. Making a 
design fl exible through reconfi gurability is an important issue to broaden 
the market — and reduce the per part cost — for SOC design. 

 Confi gurability enables programmability in the fi eld and can be seen 
to provide features that are  “ standardized in manufacturing while cus-
tomized in application. ”  The cyclical nature of the integrated circuit 
industry between standardization and customization has been observed 
by Makimoto  [163]  and is known as Makimoto ’ s wave, as shown in 
Figure  2.1 .   

 In terms of complexity, various trade - offs are possible. For instance, at a fi xed 
feature size, area can be traded off for performance (expressed in term of 
execution time,  T ). Very large scale integration (VLSI) complexity theorists 
have shown that an A    ×     T n   bound exists for processor designs, where  n  usually 
falls between 1 and 2  [247] . It is also possible to trade off time  T  for power  P  
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     Figure 2.1     Makimoto ’ s wave.  
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with a  P     ×     T  3  bound. Figure  2.2  shows the possible trade - off involving area, 
time, and power in a processor design  [98] . Embedded and high - end processors 
operate in different design regions of this three - dimensional space. The power 
and area axes are typically optimized for embedded processors, whereas the 
time axis is typically for high - end processors.   

 This chapter deals with design issues in making these trade - offs. It begins 
with the issue of time. The ultimate measure of performance is the time 
required to complete required system tasks and functions. This depends on 
two factors: fi rst, the organization and size of the processors and memories, 

     Figure 2.2     Processor design trade - offs.  
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and the second, the basic frequency or clock rate at which these operate. We 
deal with the fi rst factor in the next two chapters. In this chapter, we only look 
at the basic  processor cycle  — specifi cally, how much delay is incurred in a cycle 
and how instruction execution is partitioned into cycles. As almost all modern 
processors are pipelined, we look at the cycle time of pipelined processors and 
the partitioning of instruction execution into cycles. We next introduce a cost 
(area) model to assist in making manufacturing cost trade - offs. This model is 
restricted to on - chip or processor - type trade - offs, but it illustrates a type of 
system design model. As mentioned in Chapter  1 , die cost is often but a small 
part of the total cost, but an understanding of it remains essential. Power is 
primarily determined by cycle time and the overall size of the design and its 
components. It has become a major constraint in most SOC designs. Finally, 
we look at reliability and reconfi guration and their impact on cost and 
performance.  

   2.1.2    Requirements and Specifi cations 

 The fi ve basic SOC trade - offs provide a framework for analyzing SOC require-
ments so that these can be translated into specifi cations. Cost requirements 
coupled with market size can be translated into die cost and process technol-
ogy. Requirements for wearables and weight limits translate into bounds on 
power or energy consumption, and limitations on clock frequency, which can 
affect heat dissipation. Any one of the trade - off criteria can, for a particular 
design, have the highest priority. Consider some examples:

    •      High - performance systems will optimize time at the expense of cost and 
power (and probably confi gurability, too).  

   •      Low - cost systems will optimize die cost, reconfi gurability, and design 
reuse (and perhaps low power).  

   •      Wearable systems stress low power, as the power supply determines the 
system weight. Since such systems, such as cell phones, frequently have 
real - time constraints, its performance cannot be ignored.  

   •      Embedded systems in planes and other safety - critical applications would 
stress reliability, with performance and design lifetime (confi gurability) 
being important secondary considerations.  

   •      Gaming systems would stress cost — especially production cost — and, sec-
ondarily, performance, with reliability being a lesser consideration.    

 In considering requirements, the SOC designer should carefully consider each 
trade - off item to derive corresponding specifi cations. This chapter, when 
coupled with the essential understanding of the system components, which we 
will see in later chapters, provides the elements for SOC requirements transla-
tion into specifi cations and the beginning of the study of optimization of design 
alternatives.   
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   2.2    CYCLE TIME 

 The notion of time receives considerable attention from processor designers. 
It is the basic measure of performance; however, breaking actions into cycles 
and reducing both cycle count and cycle times are important but inexact 
sciences. 

 The way actions are partitioned into cycles is important. A common problem 
is having unanticipated  “ extra ”  cycles required by a basic action such as a 
cache miss. Overall, there is only a limited theoretical basis for cycle selection 
and the resultant partitioning of instruction execution into cycles. Much design 
is done on a pragmatic basis. 

 In this section, we look at some techniques for instruction partitioning, that 
is, techniques for breaking up the instruction execution time into manageable 
and fi xed time cycles. In a pipelined processor, data fl ow through stages much 
as items fl ow on an assembly line. At the end of each stage, a result is passed 
on to a subsequent stage and new data enter. Within limits, the shorter the 
cycle time, the more productive the pipeline. The partitioning process has its 
own overhead, however, and very short cycle times become dominated by this 
overhead. Simple cycle time models can optimize the number of pipeline 
stages. 

   
 THE PIPELINED PROCESSOR 

 At one time, the concept of  pipelining  in a processor was treated as an 
advanced processor design technique. For the past several decades, pipe-
lining has been an integral part of any processor or, indeed, controller 
design. It is a technique that has become a basic consideration in defi ning 
cycle time and execution time in a processor or system. 

 The trade - off between cycle time and number of pipeline stages is 
treated in the section on  optimum pipeline . 

   2.2.1    Defi ning a Cycle 

 A cycle (of the clock) is the basic time unit for processing information. In 
a synchronous system, the clock rate is a fi xed value and the cycle time is 
determined by fi nding the maximum time to accomplish a frequent operation 
in the machine, such as an add or register data transfer. This time must be 
suffi cient for data to be stored into a specifi ed destination register (Figure 
 2.3 ). Less frequent operations that require more time to complete require 
multiple cycles.   

 A cycle begins when the instruction decoder (based on the current instruc-
tion opcode) specifi es the values for the registers in the system. These control 
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values connect the output of a specifi ed register to another register or an adder 
or similar object. This allows data from source registers to propagate through 
designated combinatorial logic into the destination register. Finally, after a 
suitable setup time, all registers are sampled by an edge or pulse produced by 
the clocking system. 

 In a synchronous system, the cycle time is determined by the sum of the 
worst - case time for each step or action within the cycle. However, the clock 
itself may not arrive at the anticipated time (due to propagation or loading 
effects). We call the maximum deviation from the expected time of clock 
arrival the (uncontrolled) clock skew. 

 In an asynchronous system, the cycle time is simply determined by the 
completion of an event or operation. A completion signal is generated, which 
then allows the next operation to begin. Asynchronous design is not generally 
used within pipelined processors because of the completion signal overhead 
and pipeline timing constraints.  

   2.2.2    Optimum Pipeline 

 A basic optimization for the pipeline processor designer is the partitioning of 
the pipeline into concurrently operating segments. A greater number of seg-
ments allow a higher maximum speedup. However, each new segment carries 
clocking overhead with it, which can adversely affect performance. 

 If we ignore the problem of fi tting actions into an integer number of cycles, 
we can derive an optimal cycle time,  Δ  t , and hence the level of segmentation 
for a simple pipelined processor. 

 Assume that the total time to execute an instruction without pipeline seg-
ments is  T  nanoseconds (Figure  2.4 a). The problem is to fi nd the optimum 
number of segments  S  to allow clocking and pipelining. The ideal delay through 
a segment is  T / S     =     T  seg . Associated with each segment is partitioning overhead. 
This clock overhead time  C  (in nanoseconds), includes clock skew and any 
register requirements for data setup and hold.   

     Figure 2.3     Possible sequence of actions within a cycle.  
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 Now, the actual cycle time (Figure  2.4 c) of the pipelined processor is the 
ideal cycle time  T / S  plus the overhead:

   Δt
T
S

C= + .   

 In our idealized pipelined processor, if there are no code delays, it processes 
instructions at the rate of one per cycle, but delays can occur (primarily due 
to incorrectly guessed or unexpected branches). Suppose these interruptions 
occur with frequency  b  and have the effect of invalidating the  S     −    1 instruc-
tions prepared to enter, or already in, the pipeline (representing a  “ worst - case ”  
disruption, Figure  2.4 d). There are many different types of pipeline interrup-
tion, each with a different effect, but this simple model illustrates the effect of 
disruptions on performance. 

 Considering pipeline interruption, the performance of the processor is 
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     Figure 2.4     Optimal pipelining. (a) Unclocked instruction execution time,  T . (b)  T  is 
partitioned into  S  segments. Each segment requires  C  clocking overhead. (c) Clocking 
overhead and its effect on cycle time,  T / S . (d) Effect of a pipeline disruption (or a  stall  
in the pipeline).  
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   dG
dS

= 0,   

 we can fi nd  S  opt , the optimum number of pipeline segments:

   S
b T

bC
opt = −( )1

.   

 Once an initial  S  has been determined, the total instruction execution latency 
( T  instr ) is

   T T S T SC S T S tinstr seg(clocking overhead) or ( C)= + × = + + =, .Δ   

 Finally, we compute the throughput performance  G  in (million) instructions 
per second. 

 Suppose  T     =    12.0   ns and  b     =    0.2,  C     =    0.5   ns. Then,  S  opt     =    10 stages. 
 This  S  opt  as determined is simplistic — functional units cannot be arbitrarily 

divided, integer cycle boundaries must be observed, and so on. Still, determin-
ing  S  opt  can serve as a design starting point or as an important check on an 
otherwise empirically optimized design. 

 The preceding discussion considers a number of pipeline segments,  S , on 
the basis of performance. Each time a new pipeline segment is introduced, 
additional cost is added, which is not factored into the analysis. Each new 
segment requires additional registers and clocking hardware. Because of this, 
the optimum number of pipeline segments ( S  opt ) ought to be thought of as a 
probable upper limit to the number of useful pipeline segments that a particu-
lar processor can employ.  

   2.2.3    Performance 

 High clock rates with small pipeline segments may or may not produce better 
performance. Indeed, given problems in wire delay scaling, there is an immedi-
ate question of how projected clock rates are to be achieved. There are two 
basic factors enabling clock rate advances: (1) increased control over clock 
overhead and (2) an increased number of segments in the pipelines. Figure  2.5  
shows that the length (in gate delays) of a pipeline segment has decreased 
signifi cantly, probably by more than fi ve times, measured in units of a standard 
gate delay. This standard gate has one input and drives four similar gates as 
output. Its delay is referred to as a fan - out of four (FO4) gate delay.   

 Low clock overhead (small  C ) may enable increased pipeline segmentation, 
but performance does not correspondingly improve unless we also decrease 
the probability of pipeline disruption,  b . In order to accomplish this high clock 
rate, processors also employ large branch table buffers and branch vector 
prediction tables, signifi cantly decreasing delays due to branching. However, 
disruptions can also come from cache misses, and this requires another strat-
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egy: multilevel, very large on - die caches. Often these cache structures occupy 
80 – 90% of the die area. The underlying processor is actually less important 
than the effi ciency of the cache memory system in achieving performance.   

   2.3    DIE AREA AND COST 

 Cycle time, machine organization, and memory confi guration determine 
machine performance. Determining performance is relatively straightforward 
when compared to the determination of overall cost. 

 A good design achieves an optimum cost – performance trade - off at a par-
ticular target performance. This determines the  quality  of a processor design. 

 In this section, we look at the marginal cost to produce a system as deter-
mined by the die area component. Of course, the system designer must be 
aware of signifi cant side effects that die area has on the fi xed and other vari-
able costs. For example, a signifi cant increase in the complexity of a design 
may directly affect its serviceability or its documentation costs, or the hard-
ware development effort and time to market. These effects must be kept in 
mind, even when it is not possible to accurately quantify their extent. 

   2.3.1    Processor Area 

 SOCs usually have die sizes of about 10 – 15   mm on a side. This die is produced 
in bulk from a larger wafer, perhaps 30   cm in diameter (about 12   in.). It might 
seem that one could simply expand the chip size and produce fewer chips from 
the wafer, and these larger chips could readily accommodate any function that 
the designer might wish to include. Unfortunately, neither the silicon wafers 
nor processing technologies are perfect. Defects randomly occur over the 

     Figure 2.5     Number of gate delays (FO4) allowed in a cycle.  
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wafer surface (Figure  2.6 ). Large chip areas require an absence of defects over 
that area. If chips are too large for a particular processing technology, there 
will be little or no yield. Figure  2.7  illustrates yield versus chip area.   

 A good design is not necessarily the one that has the maximum yield. 
Reducing the area of a design below a certain amount has only a marginal 
effect on yield. Additionally, small designs waste area because there is a 
required area for pins and for separation between the adjacent die on a wafer. 

 The area available to a designer is a function of the manufacturing process-
ing technology. This includes the purity of the silicon crystals, the absence of 
dust and other impurities, and the overall control of the process technology. 
Improved manufacturing technology allows larger dice to be realized with 
higher yields. As photolithography and process technology improve, their 

     Figure 2.6     Defect distribution on a wafer.  
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design parameters do not scale uniformly. The successful designer must be 
aggressive enough in anticipating the movement of technology so that, although 
early designs may have low yield, with the advance of technology, the design 
life is extended and the yield greatly improves, thus allowing the design team 
to amortize fi xed costs over a broad base of products. 

 Suppose a die with square aspect ratio has area  A . About  N  of these dice 
can be realized in a wafer of diameter  d  (Figure  2.8 ):

   N
A

d A≈ −( )π
4

2
.     

 This is the wafer area divided by the die area with diameter correction. Now 
suppose there are  N G   good chips and  N D   point defects on the wafer. Even if 
 N D      >     N , we might expect several good chips since the defects are randomly 
distributed and several defects would cluster on defective chips, sparing a few. 

 Following the analysis of Ghandi  [109] , suppose we add a random defect to 
a wafer;  N G  / N  is the probability that the defect ruins a good die. Note that if 
the defect hits an already bad die, it would cause no change to the number of 
good die. In other words, the change in the number of good die ( N G  ), with 
respect to the change in the number of defects ( N D  ), is

   

dN
dN

N
N

N
dN

N
dN

G

D

G

G
G D

= −

= −1 1
.
  

     Figure 2.8     Number of die (of area  A ) on a wafer of diameter  d .  
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 Integrating and solving

   ln N
N
N

CG
D= − + .   

 To evaluate C, note that when  N G      =     N , then  N D      =    0; so, C must be ln( N ). 
 Then the yield is

   Yield = = −N
N

eG N ND / .   

 This describes a Poisson distribution of defects. 
 If   ρ   D  is the defect density per unit area, then

   ND D= ×ρ (wafer area).   

 For large wafers   d A>> , the diameter of the wafer is signifi cantly larger than 
the die side and

   d A d−( ) ≈
2 2  

and

   N
N

AD
D= ρ ,   

 so that

   Yield = −e DAρ .   

 Figure  2.9  shows the projected number of good die as a function of die area 
for several defect densities. Currently, a modern fab facility would have   ρ  D   
between 0.15 – 0.5, depending on the maturity of the process and the expense 
of the facility.   

 Large die sizes are very costly. Doubling the die area has a signifi cant effect 
on yield for an already large   ρ  D      ×     A  ( ≈ 5 – 10 or more). Thus, the large die 
designer gambles that technology will lower   ρ  D   in time to provide a suffi cient 
yield for a profi table product.  

   2.3.2    Processor Subunits 

 Within a system or processor, the amount of area that a particular subunit of 
a design occupies is a primary measure of its cost. In making design choices 
or in evaluating the relative merits of a particular design choice, it is frequently 
useful to use the principle of marginal utility: Assume we have a complete base 
design and some additional pins/area available to enhance the design. We 
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select the design enhancement that best uses the available pins and area. In 
the absence of pinout information, we assume that area is a dominant factor 
in a particular trade - off. 

 The obvious unit of area is  millimeter square , but since photolithography 
and geometries ’  resulting minimum feature sizes are constantly shifting, a 
dimensionless unit is preferred. Among others, Mead and Conway  [170]  used 
the unit   λ  , the fundamental resolution, which is the distance from which a 
geometric feature on any one layer of mask may be positioned from another. 
The minimum size for a diffusion region would be 2  λ   with a necessary allow-
ance of 3  λ   between adjacent diffusion regions. 

 If we start with a device 2  λ      ×    2  λ  , then a device of nominal 2  λ      ×    2  λ   can 
extend to 4  λ      ×    4  λ  . We need at least 1  λ   isolation from any other device or 25  λ   2  
for the overall device area. Thus, a single transistor is 4  λ   2 , positioned in a 
minimum region of 25  λ   2 . 

 The minimum feature size ( f ) is the length of one polysilicon gate, or the 
length of one transistor,  f     =    2  λ  . Clearly, we could defi ne our design in terms of 
  λ   2 , and any other processor feature (gate, register size, etc.) can be expressed 
as a number of transistors. Thus, the selection of the area unit is somewhat 
arbitrary. However, a better unit represents primary architectural trade - offs. 
One useful unit is the register bit equivalent (rbe). This is defi ned to be a six -
 transistor register cell and represents about 2700  λ   2 . This is signifi cantly more 
than six times the area of a single transistor, since it includes larger transistors, 
their interconnections, and necessary inter - bit isolating spaces. 

 A staticRAM (SRAM) cell with lower bandwidth would use less area than 
an rbe, and a DRAM bit cell would use still less. Empirically, they would have 
the relationship shown in Table  2.2 .   

 In the table, the area for the register fi le is determined by the number of 
register bits and the number of ports ( P ) available to access the fi le:

     Figure 2.9     Number of good die versus die area for several defect densities.  
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   Area of register file (number of regs 3 )(bits per reg 3 )= + +P P   rbe.   

 The cache area uses the SRAM bit model and is determined by the total 
number of cache bits, including the array, directory, and control bits. 

 The number of rbe on a die or die section rapidly becomes very large, so it 
is frequently easier to use a still larger unit. We refer to this unit simply as  A  
and defi ne it as 1   mm 2  of die area at  f     =    1     μ  m. This is also the area occupied by 
a 32    ×    32   bit three - ported register fi le or 1481   rbe. 

 Transistor density, rbe, and  A  all scale as the square of the feature size. As 
seen from Table  2.3 , for feature size  f , the number of  A  in 1   mm 2  is simply (1/ f ) 2 . 
There are almost 500 times as many transistors of rbe in 1   mm 2  of a technology 
with a feature size of 45   nm as there are with the reference 1 -   μ  m feature size.     

  TABLE 2.2    Summary of Technology - Independent Relative Area Measures, rbe 
and  A  (These Can Be Converted to True Area for Any Given Feature Size,  f ) 

  Item: Size in rbe  

  1 register bit (rbe)    1.0 rbe  
  1 static RAM bit in an on - chip cache    0.6 rbe  
  1 DRAM bit    0.1 rbe  
  rbe corresponds to (in feature size:  f )    1 rbe    =    675 f  2   

  Item: Size in  A  Units      

   A  corresponds to 1   mm 2  with  f     =    1     μ  m.  
  1    A      =  f  2     ×    10 6  ( f  in   μ  m)  
  or about     ≈ 1481 rbe  
  A simple integer fi le (1 read    +    1 read/write) with 32 

words of 32   bits per word  
   = 1444 rbe  

  or about     ≈ 1    A  ( = 0.975    A )  
  A 4 - KB direct mapped cache     = 23,542 rbe  
  or about     ≈ 16    A   
  Generally a simple cache (whose tag and control bits 

are less than one - fi fth the data bits) uses  
   = 4    A / KB   

  Simple Processors (Approximation)  
  A 32 - bit processor (no cache and no fl oating point)     = 50    A   
  A 32 - bit processor (no cache but includes 64 - bit 

fl oating point)  
   = 100    A   

  A 32 - bit (signal) processor, as above, with vector 
facilities but no cache or vector memory  

   = 200    A   

  Area for interunit latches, buses, control, and clocking    Allow an additional 50% 
of the processor area.  

  Xilinx FPGA  
  A slice (2 LUTs    +    2 FFs    +    MUX)     = 700 rbe  
  A confi gurable logic block (4 slices) Virtex 4     = 2800 rbe    ≈    1.9   A  
  A 18 - KB block RAM     = 12,600 rbe    ≈    8.7   A  
  An embedded PPC405 core     ≈ 250    A   
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   2.4    IDEAL AND PRACTICAL SCALING 

 As feature sizes shrink and transistors get smaller, one expects the transistor 
density to improve with the square of the change in feature size. Similarly, 
transistor delay (or gate delay) should decrease linearly with feature size (cor-
responding to the decrease in capacitance). Practical scaling is different as wire 
delay, and wire density does not scale at the same rate as transistors scale. Wire 
delay remains almost constant as feature sizes shrink since the increase in 
resistance offsets the decrease in length and capacitance. Figure  2.10  illus-
trates the increasing dominance of wire delay over gate delay especially in 
feature sizes less than 0.10     μ  m. Similarly for feature sizes below 0.20     μ  m, tran-
sistor density improves at somewhat less than the square of the feature size. 
A suggested scaling factor of 1.5 is commonly considered more accurate, as 
shown in Figure  2.11 ; that is, scaling occurs at ( f  1 / f  2 ) 1.5  rather than at ( f  1 / f  2 ) 2 . 
What actually happens during scaling is more complex. Not only does the 
feature size shrink but other aspects of a technology also change and usually 

  TABLE 2.3    Density in  A  Units for Various Feature 
Sizes 

   Feature Size (  μ  m)     Number of  A  per mm 2   

  1.000    1.00  
  0.350    8.16  
  0.130    59.17  
  0.090    123.46  
  0.065    236.69  
  0.045    493.93  

   One  A  is 1481 rbe.   

     Figure 2.10     The dominance of wire delay over gate delay.  
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improve. Thus, copper wires become available as well as many more wiring 
layers and improved circuit designs. Major technology changes can affect 
scaling in a discontinuous manner. The effects of wire limitations can be dra-
matically improved, so long as the designer is able to use all the attributes of 
the new technology generation. The simple scaling of a design might only scale 
as 1.5, but a new implementation taking advantage of all technology features 
could scale at 2. For simplicity in the remainder of the text, we will use ideal 
scaling with the understanding as above.     

     Figure 2.11     Area scaling with optimum and  “ practical ”  shrinkage.  

 0

 2

 4

 6

 8

 10

 12

 14

 0.09 0.13 0.18 0.25 0.35

A
re

a 
in

 m
m

 x
 m

m

Process generation

Optimum scaling
Scaled area

 Study 2.1   A Baseline  SOC  Area Model 

    The key to effi cient system design is chip fl oor planning. The process of chip 
fl oor planning is not much different from the process of fl oor - planning a resi-
dence. Each functional area of the processor must be allocated suffi cient room 
for its implementation. Functional units that frequently communicate must be 
placed close together. Suffi cient room must be allocated for connection paths. 

 To illustrate possible trade - offs that can be made in optimizing the chip 
fl oor plan, we introduce a baseline system with designated areas for various 
functions. The area model is based upon empirical observations made of exist-
ing chips, design experience, and, in some cases, logical deduction (e.g., the 
relationship between a fl oating - point adder and an integer ALU). The chip 
described here ought not to be considered optimal in any particular sense, but 
rather a typical example of a number of designs in the marketplace today.  

  The Starting Point.     The design process begins with an understanding of the 
parameters of the semiconductor process. Suppose we expect to be able to use 
a manufacturing process that has a defect density of 0.2 defect per square 
centimeter; for economic reasons, we target an initial yield of about 95%:
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   Y e DA= −ρ ,  

where   ρ  D      =    0.2 defect per square centimeter,  Y     =    0.95. Then,

   A = 25 2 mm   

 or approximately 0.25   cm 2 . 
 So the chip area available to us is 25   mm 2 . This is the total die area of the 

chip, but such things as pads for the wire bonds that connect the chip to the 
external world, drivers for these connections, and power supply lines all act to 
decrease the amount of chip area available to the designer. Suppose we allow 
12% of the chip area — usually around the periphery of the chip — to accom-
modate these functions, then the net area will be 22   mm 2  (Figure  2.12 ).    

  Feature Size.     The smaller the feature size, the more logic that can be accom-
modated within a fi xed area. At  f     =    65   nm, we have about 5200   A or area units 
in 22   mm 2 .  

  The Architecture.     Almost by defi nition, each system is different with different 
objectives. For our example, assume that we need the following:

    •      a small 32 - bit core processor with an 8    KB  I - cache and a 16    KB  D - cache;  
   •      two 32 - bit vector processors, each with 16 banks of 1 K     ×    32 b  vector 

memory; an 8    KB  I - cache and a 16    KB  D - cache for scalar data;  
   •      a bus control unit;  
   •      directly addressed application memory of 128    KB ; and  
   •      a shared L2 cache.     

     Figure 2.12     Net die area.  
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  An Area Model.     The following is a breakdown of the area required for various 
units used in the system. 

  Unit    Area ( A )  

  Core processor (32  b  )    100  
  Core cache (24    KB )    96  
  Vector processor #1    200  
  Vector registers and cache #1    256    +    96  
  Vector processor #2    200  
  Vector registers and cache #2    352  
  Bus and bus control (50%)    See below 650  
  Application memory (128   KB)    512  
  Subtotal    2462  

  Latches, Buses, and (Interunit) Control.     For each of the functional units, there 
is a certain amount of overhead to accommodate nonspecifi c storage (latches), 
interunit communications (buses), and interunit control. This is allocated as 
10% overhead for latches and 40% overhead for buses, routing, clocking, and 
overall control.  

  Total System Area.     The designated processor elements and storage occupy 
2462    A . This leaves a net of 5200    −    2462    =    2738    A  available for cache. Note that 
the die is highly storage oriented. The remaining area will be dedicated to the 
L2 cache.  

  Cache Area.     The net area available for cache is 2738    A . However, bits and 
pieces that may be unoccupied on the chip are not always useful to the cache 
designer. These pieces must be collected into a reasonably compact area that 
accommodates effi cient cache designs. 

 For example, where the available area has a large height/width (aspect) 
ratio, it may be signifi cantly less useful than a more compact or square area. 
In general, at this early stage of microprocessor fl oor planning, we allocate 
another 10% overhead to aspect ratio mismatch. This leaves a net available 
area for cache of about 2464    A . 

 This gives us about 512    KB  for the L2 cache. Is this reasonable? At this 
point, all we can say is that this much cache fi ts on the die. We now must look 
to the application and determine if this allocation gives the best performance. 
Perhaps a larger application storage or another vector processor and a smaller 
L2 would give better performance. Later in the text we consider such perfor-
mance issues. 

 An example baseline fl oor plan is shown in Figure  2.13 . A summary of area 
design rules follow:

   1.     Compute the target chip size from the target yield and defect density.    
  2.     Compute the die cost and determine whether it is satisfactory.  
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     Figure 2.13     A baseline die fl oor plan.  
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  3.     Compute the net available area. Allow 10 – 20% (or other appropriate 
factor) for pins, guard ring, power supplies, and so on.  

  4.     Determine the  rbe  size from the minimum feature size.  
  5.     Allocate the area based on a trial system architecture until the basic 

system size is determined.  
  6.     Subtract the basic system size (5) from the net available area (3). This is 

the die area available for cache and storage optimization.     

 Note that in this study (and more surely with much small feature sizes), most 
of the die area is dedicated to storage of one type or another. The basic proces-
sor area is around 20%, allowing for a partial allocation of bus and control 
area. Thus, however rough our estimate of processor core and vector processor 
area, it is likely to have little effect on the accuracy of the die allocation so long 
as our storage estimates are accurate. There are a number of commercial tools 
available for chip fl oor planning in specifi c design situations.  

   2.5    POWER 

 Growing demands for wireless and portable electronic appliances have focused 
much attention recently on power consumption. The SIA road map points to 
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increasingly higher power for microprocessor chips because of their higher 
operating frequency, higher overall capacitance, and larger size. Power scales 
indirectly with feature size, as its primary determinate is frequency. 

 Some power environments are shown in Table  2.4 .   
 At the device level, total power dissipation ( P  total ) has two major sources: 

dynamic or switching power and static power caused by leakage current:

   P
CV

I Vtotal leakage
freq= +

2

2
,  

where  C  is the device capacitance;  V  is the supply voltage; freq is the device 
switching frequency; and  I  leakage  is the leakage current. Until recently, switching 
loss was the dominant factor in dissipation, but now static power is increasing. 
On the other hand, gate delays are roughly proportional to  CV /( V     −     V  th ) 2 , 
where  V  th  is the threshold voltage (for logic - level switching) of the transistors. 

 As feature sizes decrease, so do device sizes. Smaller device sizes result in 
reduced capacitance. Decreasing the capacitance decreases both the dynamic 
power consumption and the gate delays. As device sizes decrease, the electric 
fi eld applied to them becomes destructively large. To increase the device reli-
ability, we need to reduce the supply voltage  V . Reducing  V  effectively reduces 
the dynamic power consumption but results in an increase in the gate delays. 
We can avoid this loss by reducing  V  th . On the other hand, reducing  V  th  
increases the leakage current and, therefore, the static power consumption. 
This has an important effect on design and production; there are two device 
designs that must be accommodated in production:

   1.     the high - speed device with low  V  th  and high static power; and  
  2.     the slower device maintaining  V  th  and  V  at the expense of circuit density 

and low static power.    

 In either case, we can reduce switching loss by lowering the supply voltage,  V . 
Chen et al.  [55]  showed that the drain current is proportional to

   I V V= −( )th
1.25,  

where again  V  is the supply voltage. 

  TABLE 2.4    Some Power Operating Environments   [133]   

   Type     Power/Die     Source and Environment  

  Cooled high power    70.0   W    Plug - in, chilled  
  High power    10.0 – 50.0   W    Plug - in, fan  
  Low power    0.1 – 2.0   W    Rechargeable battery  
  Very low power    1.0 – 100.0   mW    AA batteries  
  Extremely low power    1.0 – 100.0     μ  W    Button battery  
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 From our discussion above, we can see that the signal transition time and 
frequency scale with the charging current. So, the maximum operating fre-
quency is also proportional to ( V     −     V  th ) 1.25 / V . For values of  V  and  V  th  of inter-
est, this means that frequency scales with the supply voltage,  V . 

 Assume  V  th  is 0.6   V; suppose we reduce the supply voltage by one - half, say, 
from 3.0 to 1.5   V, the operating frequency is also reduced by about one - half. 
So, reducing the supply voltage by half also reduces the operating frequency 
by half. 

 Now by the power equation (since the voltage and frequency were halved), 
the total power consumption is one - eighth of the original. Thus, if we take an 
existing design optimized for frequency and modify that design to operate at 
a lower voltage, the frequency is reduced by approximately the cube root of 
the original (dynamic) power:

   freq
freq

1

2

2

1

3= P
P

.   

 It is important to understand the distinction between scaling the frequency of 
an existing design and that of a power - optimized implementation. Power -
 optimized implementations differ from performance - optimized implementa-
tions in several ways. 

 Power - optimized implementations use less chip area not only because of 
reduced requirements for power supply and clock distributions but also, and 
more importantly, because of reduced performance targets. Performance -
 oriented designs use a great deal of area to achieve marginally improved 
performance, as in very large fl oating - point units, minimum - skew clock dis-
tribution networks, or maximally sized caches. Power dissipation, not per-
formance, is the most critical issue for applications such as portable and 
wireless processors running on batteries. Some battery capacities are shown 
in Table  2.5 .   

 For SOC designs to run on battery power for an extended period, the entire 
system power consumption must remain very small (in the order of a milli-
watt). As a result, power management must be implemented from the system 
architecture and operating system down to the logic gate level. 

 There is another power constraint,  peak power , which the designer cannot 
ignore. In any design, the power source can only provide a certain current at 
the specifi ed voltage; going beyond this, even as a transient, can cause logic 
errors or worse (damaging the power source).  

  TABLE 2.5    Battery Capacity and Duty Cycle 

   Type     Energy Capacity (mAh)     Duty Cycle/Lifetime     At Power  

  Rechargeable    10,000    50   h (10 – 20% duty)    400   mW – 4   W  
  2    ×    AA    4000    0.5 year (10 – 20% duty)    1 – 10   mW  
  Button    40    5 years (always on)    1     μ  W  
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   2.6    AREA – TIME – POWER TRADE - OFFS IN PROCESSOR DESIGN 

 Processor design trade - offs are quite different for our two general classes 
of processors:

   1.     Workstation Processor .      These designs are oriented to high clock fre-
quency and AC power sources (excluding laptops). Since they are not 
area limited as the cache occupies most die area, the designs are highly 
elaborated (superscalar with multithreading).  

  2.     Embedded Processor Used in SOC .      Processors here are generally simpler 
in control structure but may be quite elaborate in execution facilities 
(e.g., digital signal processor [DSP]). Area is a factor as is design time 
and power.    

   2.6.1    Workstation Processor 

 To achieve a general - purpose performance, the designer assumes ample power. 
The most basic trade - off is between high clock rates and the resulting power 
consumption. Up until the early 1990s, emitter coupled logic (ECL) using 
bipolar technology was dominant in high - performance applications (main-
frames and supercomputers). At power densities of 80   W/cm 2 , the module 
package required some form of liquid cooling. An example from this period 
is the Hitachi M - 880 (Figure  2.14 ). A 10    ×    10   cm module consumed 800   W. The 

     Figure 2.14     Hitachi processor module. The Hitachi M - 880 was introduced about 1991 
 [143] . Module is 10.6    ×    10.6   cm, water - cooled and dissipated at 800   W.  
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     Figure 2.15     Processor frequency for bipolar and CMOS over time. Generally, CMOS 
frequency scaling ceased in around 2003 at around 3.5   GHz due to power limitations.  
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module contained 40 dice, sealed in helium gas with chilled water pumped 
across a water jacket at the top of the module. As CMOS performance 
approached bipolar ’ s, the extraordinary cost of such a cooling system could 
no longer be sustained, and the bipolar era ended (see Figure  2.15 ). Now 
CMOS has reached the same power densities, and similar cooling techniques 
would have to be reconsidered if chip frequencies were to continue to increase. 
In fact, after 2003 the useful chip frequency stabilized at about 3.5   GHz.    

   2.6.2    Embedded Processor 

 System - on - a - chip - type implementations have a number of advantages. The 
requirements are generally known. So, memory sizes and real - time delay con-
straints can be anticipated. Processors can be specialized to a particular func-
tion. In doing so, usually clock frequency (and power) can be reduced as 
performance can be regained by straightforward concurrency in the architec-
ture (e.g., use of a simple very long instruction word [VLIW] for DSP applica-
tions). The disadvantages of SOC compared to processor chips are available 
design time/effort and intra - die communications between functional units. In 
SOC, the market for any specifi c system is relatively small; hence, the extensive 
custom optimization used in processor dies is diffi cult to sustain, so off - the -
 shelf core processor designs are commonly used. As the storage size for pro-
grams and data may be known at design time, specifi c storage structures can 
be included on - chip. These are either SRAM or a specially designed DRAM 
(as ordinary DRAM uses an incompatible process technology). With multiple 
storage units, multiple processors (some specialized, some generic), and spe-
cialized controllers, the problem is designing a robust bus hierarchy to ensure 
timely communications. A comparison between the two design classes is shown 
in Table  2.6 .     
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   2.7    RELIABILITY 

 The fourth important design dimension is reliability  [218] , also referred to as 
dependability and fault tolerance. As with cost and power, there are many 
more factors that contribute to reliability than what is done on a processor or 
SOC die. 

 Reliability is related to die area, clock frequency, and power. Die area 
increases the amount of circuitry and the probability of a fault, but it also 
allows the use of error correction and detection techniques. Higher clock 
frequencies increase electrical noise and noise sensitivity. Faster circuits are 
smaller and more susceptible to radiation. 

 Not all failures or errors produce faults, and indeed not all faults result in 
incorrect program execution. Faults, if detected, can be masked by error -
 correcting codes (ECCs), instruction retry, or functional reconfi guration. 

 First, some defi nitions:

   1.     A  failure  is a deviation from a design specifi cation.  
  2.     An  error  is a failure that results in an incorrect signal value  
  3.     A  fault  is an error that manifests itself as an incorrect logical result.  
  4.     A  physical fault  is a failure caused by the environment, such as aging, 

radiation, temperature, or temperature cycling. The probability of physi-
cal faults increases with time.  

  5.     A  design fault  is a failure caused by a design implementation that is 
inconsistent with the design specifi cation. Usually, design faults occur 
early in the lifetime of a design and are reduced or eliminated over time.    

   2.7.1    Dealing with Physical Faults 

 From a system point of view, we need to create processor and subunit confi gu-
rations that are robust over time. 

 Let the probability of a fault occurrence be  P ( t ), and let  T  be the  mean time 
between faults  (MTBF). So, if   λ   is the fault rate, then

   λ = 1
T

.   

  TABLE 2.6    A Typical Processor Die Compared with a Typical  SOC  Die 

        Processor on a Chip     SOC  

  Area used by storage    80% cache    50% ROM/RAM  
  Clock frequency    3.5   GHz    0.5   GHz  
  Power     ≥ 50   W     ≤ 10   W  
  Memory     ≥ 1 - GB DRAM    Mostly on - die  
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 Now imagine that faults occur on the time axis in particular time units, sepa-
rated with mean,  T . Using the same reasoning that we used to develop the 
Poisson yield equation, we can get the Poisson fault equation:

   P t e e
t

T t( ) = =
−

− λ.   

 Redundancy is an obvious approach to improved reliability (lower  P ( t )). A 
well - known technique is  triple modular redundancy  (TMR). Three processors 
execute the same computation and compare results. A voting mechanism 
selects the output on which at least two processors agree. TMR works but 
only up to a point. Beyond the obvious problem of the reliability of the 
voting mechanism, there is a problem with the sheer amount of hardware. 
Clearly, as time  t  approaches  T , we expect to have more faults in the TMR 
system than in a simple simplex system (Figure  2.16 ). Indeed, the probability 
of a TMR fault (any two out of three processor faults) exceeds the simplex 
system when

   t T e= × log .2     

 Most fault - tolerant designs involve simpler hardware built around the 
following:

    •      Error Detection .      The use of parity, residue, and other codes are essential 
to reliable system confi gurations.  

   •      Instruction (Action) Retry .      Once a fault is detected, the action can be 
retried to overcome transient errors.  

     Figure 2.16     TMR reliability compared to simplex reliability.  
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   •      Error Correction .      Since most of the system is storage and memory, an 
ECC can be effective in overcoming storage faults.  

   •      Reconfi guration .      Once a fault is detected, it may be possible to reconfi g-
ure parts of the system so that the failing subsystem is isolated from 
further computation.    

 Note that with error detection, effi cient, reliable system confi gurations are 
limited. As a minimum, most systems should incorporate error detection on 
all parts of essential system components and should selectively use ECC and 
other techniques to improve reliability. 

 The IBM mainframe S/390 (Figure  2.17 ) is an example of a system oriented 
to reliability. One model provides a module of 12 processors. Five pairs in 
duplex confi guration (5    ×    2) run fi ve independent tasks, and two processors 
are used as monitor and spare. Within a duplex, the processor pairs share a 
common cache and storage system. The processor pairs run the same task and 
compare results. The processors use error detection wherever possible. The 
cache and storage uses ECC, usually single error correction, double error 
detection (SECDED).   

 Recent research addresses reliability for multiprocessor SOC technology. 
For instance, to improve reliability due to single - event upsets due to cosmic 
rays, techniques involving voltage scaling and application task mapping can be 
applied  [214] .  

     Figure 2.17     A duplex approach to fault tolerance using error detection.  
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   2.7.2    Error Detection and Correction 

 The simplest type of error detection is parity. A bit is added (a check bit) to 
every stored word or data transfer, which ensures that the sum of the number 
of 1 ’ s in the word is even (or odd, by predetermined convention). If a single 
error occurs to any bit in the word, the sum modulo two of the number of 1 ’ s 
in the word is inconsistent with the parity assumption, and the memory word 
is known to have been corrupted. 

 Knowing that there is an error in the retrieved word is valuable. Often, a 
simple reaccessing of the word may retrieve the correct contents. However, 
often the data in a particular storage cell have been lost and no amount of 
reaccessing can restore the true value of the data. Since such errors are likely 
to occur in a large system, most systems incorporate hardware to automatically 
correct single errors by making use of ECCs. 

 The simplest code of this type consists of a geometric block code. The 
message bits to be checked are arranged in a roughly square pattern, and the 
message is augmented by a parity bit for each row and for each column. If a 
row and a column indicate a fl aw when the message is decoded at the receiver, 
the intersection is the damaged bit, which may be simply inverted for correc-
tion. If only a single row or a column or multiple rows or columns indicate a 
parity failure, a multiple - bit error is detected and a noncorrectable state is 
entered. 

 For 64 message bits, we need to add 17 parity bits: eight for each of the rows 
and columns and one additional parity bit to compute parity on the parity row 
and column (Figure  2.18 ).   

 It is more effi cient to consider the message bits as forming a hypercube, for 
each message combination forms a particular point in this hypercube. If the 

     Figure 2.18     Two - dimensional error - correcting codes (ECCs).  
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hypercube can be enlarged so that each valid data point is surrounded by 
associated invalid data points that are caused by a single - bit corruption in the 
message, the decoder will recognize that the invalid data point belongs to the 
valid point and will be able to restore the message to its original intended 
form. This can be extended one more step by adding yet another invalid point 
between two valid data combinations (Figure  2.19 ). The minimum number 
of bits by which valid representations may differ is the code distance. This 
third point indicates that two errors have occurred. Hence, either of two valid 
code data points is equally likely, and the message is detectably fl awed but 
noncorrectable. For a message of 64 bits, and for single - bit error correction, 
each of the 2 64  combinations must be surrounded by, or must accommodate, 
a failure of any of the 64 constituent bits (2 6     =    64). Thus, we need 2 64 + 6  total 
code combinations to be able to identify the invalid states associated with 
each valid state, or a total of 2 64 + 6 + 1  total data states. We can express this in 
another way:

   2 1k m k≥ + + ,  

where  m  is the number of message bits and  k  is the number of correction bits 
that must be added to support single error correction.   

 Hamming codes represent a realization of ECC based on hypercubes. Just 
as in the block code before, a pair of parity failures addresses the location of 
a fl awed bit. The  k  correction bits determine the address of a fl awed bit in a 
Hamming code. The message bits must be arranged to provide an orthogonal 
basis for the code (as in the case of the columns and rows of the block code). 
Further, the correction bits must be included in this basis. An orthogonal basis 
for 16 message bits is shown in Example  2.1 , together with the setting of the 
fi ve correction bits. Adding another bit, a sixth bit, allows us to compute parity 
on the entire  m     +     k     +    1 bit message. Now if we get an indication of a correct-
able error from the  k  correct bits, and no indication of parity failure from this 
new  d  bit, we know that there is a double error and that any attempt at cor-
rection may be incorrect and should not be attempted. These codes are com-
monly called SECDED.    

     Figure 2.19     ECC code distance.  

X

X

Valid
data 1

X Y

(Double
error)

X

Valid
data 2

X Invalid representation
(single error)

c02.indd   66c02.indd   66 5/4/2011   10:35:14 AM5/4/2011   10:35:14 AM



RELIABILITY  67

 E XAMPLE  2.1   A H AMMING  C ODE  E XAMPLE  

    Suppose we have a 16 - bit message,  m     =    16. 
 2  k      ≥    16    +     k     +    1; therefore,  k     =    5. 
 Thus, the message has 16    +    5    =    21   bits. The fi ve correction bits will be defi ned 

by parity on the following groups, defi ned by base 2 hypercubes:

   k  5          bits 16 – 21.  
  k  4          bits 8 – 15.  
  k  3          bits 4 – 7, 12 – 15, and 20 – 21.  
  k  2          bits 2 – 3, 6 – 7, 10 – 11, 14 – 15, and 18 – 19.  
  k  1          bits 1, 3, 5, 7, 9    . . .    , 19, 21.    

 In other words, the 21 - bit formatted message bits  f  1     −     f  21  consist of original 
message bits  m  1     −     m  16  and correction bits  k  1     −     k  5 . Each correction bit is sited 
in a location within the group it checks. 

 Suppose the message consists of  f  1     −     f  21  and  m  1     −     m  16     =    0101010101010101. 
For simplicity of decoding, let us site the correction bits at locations that are 
covered only by the designated correction bit (e.g., only  k  5  covers bit 16):

   k  1        =     f  1 .  
  k  2        =     f  2 .  
  k  3        =     f  4 .  
  k  4        =     f  8 .  
  k  5        =     f  16 .    

 Now we have ( m  1  is at  f  3 ,  m  2  at  f  5 , etc.)

   f f f f f f f f f f f f f f f f f f f f f1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

   k k k k k1 2 3 4 50 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1.   

 Thus, with even parity, 

  k  5        =    1.  
  k  4        =    1.  
  k  3        =    1.  
  k  2        =    0.  
  k  1        =    1.    

 Suppose this message is sent but received with  f  8     =    0 (when it should be 
 f  8     =     k  4     =    1). When parity is recomputed at the receiver for each of the fi ve 
correction groups, only one group covers  f  8 . 
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   2.7.3    Dealing with Manufacturing Faults 

 The traditional way of dealing with manufacturing faults is through testing. As 
transistor density increases and the overall die transistor count increases pro-
portionally, the problem of testing increases even faster. The testable combina-
tions increase exponentially with transistor count. Without a testing 
breakthrough, it is estimated that within a few years, the cost of die testing 
will exceed the remaining cost of manufacturing. 

 Assuring the integrity of a design a priori is a diffi cult, if not impossible, 
task. Depending on the level at which the design is validated, various design 
automation tools can be helpful. When a design is complete, the logical model 
of the design can, in some cases, be  validated . Design validation consists of 
comparing the logical output of a design with the logical assertions specifying 
the design. In areas such as storage (cache) or even fl oating - point arithmetic, 
it is possible to have a reasonably comprehensive validation. More generalized 
validation is a subject of ongoing research. 

 Of course, the hardware designer can help the testing and validation effort, 
through a process called  design for testability   [104] . Error detection hardware, 
where applicable, is an obvious test assist. A technique to give testing access 
to interior (not accessible from the instruction set) storage cells is called  scan . 
A scan chain in its simplest form consists of a separate entry and exit point 
from each storage cell. Each of these points is MUXed (multiplexed) onto a 
serial bus, which can be loaded from/to storage independent of the rest of the 
system. Scan allows predetermined data confi gurations to be entered into 
storage, and the output of particular confi gurations can be compared with 
known correct output confi gurations. Scan techniques were originally devel-
oped in the 1960s as part of mainframe technology. They were largely aban-
doned later only to be rediscovered with the advent of high - density dice. 

 Scan chains require numerous test confi gurations to cover large design; 
hence, even scan is limited in its potential for design validation. Newer tech-
niques extend scan by compressing the number of patterns required and by 
incorporating various  built - in self - test  features.  

 In recomputing parity across the groups, we get

    ′k5        =    0 (i.e., there is no error in bits 16 – 21).  
   ′k4        =    1.  
   ′k3        =    0.  
   ′k2        =    0.  
   ′k1        =    0.    

 The failure pattern 01000 is the binary representation for the incorrect bit (bit 
8), which must be changed to correct the message.  
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   2.7.4    Memory and Function Scrubbing 

  Scrubbing  is a technique that tests a unit by exercising it when it would oth-
erwise be idle or unavailable (such as on startup). It is most often used with 
memory. When memory is idle, the memory cells are cycled with write and 
read operations. This potentially detects damaged portions of memory, which 
are then declared unavailable, and processes are relocated to avoid it. 

 In principle, the same technique can be applied to functional units (such 
as fl oating - point units). Clearly, it is most effective if there is a possibility 
of reconfi guring units so that system operation can continue (at reduced 
performance).   

   2.8    CONFIGURABILITY 

 This section covers two topics involving confi gurability, focusing on designs 
that are reconfi gurable. First, we provide a number of motivations for recon-
fi gurable designs and include a simple example illustrating the basic ideas. 
Second, we estimate the area cost of current reconfi gurable devices based on 
the rbe model developed earlier in this chapter. 

   2.8.1    Why Reconfi gurable Design? 

 In Chapter  1 , we describe the motivation for adopting reconfi gurable designs, 
mainly from the point of view of managing complexity based on high -
 performance intellectual properties (IPs) and avoiding the risks and delays 
associated with fabrication. In this section, we provide three more reasons for 
using reconfi gurable devices, such as FPGAs, based on the topics introduced 
in the previous sections of this chapter: time, area, and reliability:

   Time .      Since FPGAs, particularly the fi ne - grained ones, contain an abun-
dance of registers, they support highly pipelined designs. Another con-
sideration is parallelism: Instead of running a sequential processor at a 
high clock rate, an FPGA - based processor at a lower clock rate can have 
similar or even superior performance by having customized circuits exe-
cuting in parallel. In contrast, the instruction set and the pipeline struc-
ture of a microprocessor may not always fi t a given application. We shall 
illustrate this point by a simple example later.  

  Area .      While it is true that the programmability of FPGAs would incur area 
overheads, the regularity of FPGAs simplifi es the adoption of more 
aggressive manufacturing process technologies than the ones for 
application - specifi c integrated circuits (ASICs). Hence, FPGAs tend to 
be able to exploit advances in process technologies more readily than 
other forms of circuits. Furthermore, a small FPGA can support a large 
design by time - division multiplex and run - time reconfi guration, enabling 
trade - off in execution time and the amount of resources required. In the 
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next section, we shall estimate the size of some FPGA designs based on 
the rbe model that we introduced earlier this chapter.  

  Reliability .      The regularity and homogeneity of FPGAs enable the introduc-
tion of redundant cells and interconnections into their architecture. 
Various strategies have been developed to avoid manufacturing or run -
 time faults by means of such redundant structures. Moreover, the recon-
fi gurability of FPGAs has been proposed as a way to improve their 
circuit yield and timing due to variations in the semiconductor fabrica-
tion process  [212] .    

 To illustrate the opportunity of using FPGAs for accelerating a demanding 
application, lets us consider a simplifi ed example comparing HDTV process-
ing for microprocessors and for FPGAs. The resolution of HDTV is 1920    ×    1080 
pixels, or around 2 million pixels. At 30   Hz, it corresponds to 60 million pixels 
per second. A particular application involves 100 operations, so the amount of 
processing required is 6000   million operations per second. 

 Consider a 3 - GHz microprocessor that takes, on average, fi ve cycles to 
complete an operation. It can support 0.2 operation per cycle and, in aggregate, 
only 600 million operations per second, 10 times slower than the required 
processing rate. 

 In contrast, consider a 100 - MHz FPGA design that can cover 60 operations 
in parallel per cycle. This design meets the required processing rate of 6000 
million operations per second, 10 times more than the 3   GHz microprocessor, 
although its clock rate is only 1/30th of that of the microprocessor. The design 
can exploit reconfi gurability in various ways, such as making use of instance -
 specifi c optimization to improve area, speed, or power consumption for spe-
cifi c execution data, or reconfi guring the design to adapt to run - time conditions. 
Further discussions on confi gurability can be found in Chapter  6 .  

   2.8.2    Area Estimate of Reconfi gurable Devices 

 To estimate the area of reconfi gurable devices, we use the rbe, discussed earlier 
as the basic measure. Recall, for instance, that in practical designs, the six -
 transistor register cell takes about 2700  λ   2 . 

 There are around 7000 transistors required for confi guration, routing, and 
logic for a  “ slice ”  in a Xilinx FPGA, and around 12,000 transistors in a logic 
element (LE) of an Altera device. Empirically, each rbe contains around 10 
logic transistors, so each slice contains 700   rbe. A large Virtex XC2V6000 
device contains 33,792 slices, or 23.65 million rbe or 16,400    A . 

 An 8    ×    8 multiplier in this technology would take about 35 slices, or 
24,500   rbe or 17    A . In contrast, given that a 1 - bit multiplier unit containing a 
full adder and an AND gate has around 60 transistors in VLSI technology, the 
same multiplier would have 64    ×    60    =    3840 transistors, or around 384   rbe, 
which is around 60 times smaller than the reconfi gurable version. 

 Given that multipliers are used often in designs, many FPGAs now have 
dedicated resources for supporting multipliers. This technique frees up recon-
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fi gurable resources to implement other functions rather than multipliers, at 
the expense of making the device less regular and wasting area when the 
design cannot use them.   

   2.9    CONCLUSION 

 Cycle time is of paramount importance in processor design. It is largely deter-
mined by technology but is signifi cantly infl uenced by secondary consider-
ations, such as clocking philosophy and pipeline segmentation. 

 Once cycle time has been determined, the designer ’ s next challenge is to 
optimize the cost – performance of a design by making maximum use of chip 
area — using chip area to the best possible advantage of performance. A 
technology - independent measure of area called the rbe provides the basis for 
storage hierarchy trade - offs among a number of important architectural 
considerations. 

 While effi cient use of die area can be important, the power that a chip 
consumes is equally (and sometime more) important. The performance – power 
trade - off heavily favors designs that minimize the required clock frequency, 
as power is a cubic function of frequency. As power enables many environ-
mental applications, particularly those wearable or sensor based, careful opti-
mization determines the success of a design, especially an SOC design. 

 Reliability is usually an assumed requirement, but the ever smaller feature 
sizes in the technology make designs increasingly sensitive to radiation and 
similar hazards. 

 Depending on the application, the designer must anticipate hazards and 
incorporate features to preserve the integrity of the computation. 

 The great conundrum in SOC design is how to use the advantages the 
technology provides within a restricted design budget. Confi gurability is surely 
one useful approach that has been emerging, especially the selected use of 
FPGA technology.  

  2.10   PROBLEM SET 

       1.    A four - segment pipeline implements a function and has the following 
delays for each segment ( b     =    0.2):

   Segment #     Maximum delay  *    

  1    1.7   ns  
  2    1.5   ns  
  3    1.9   ns  
  4    1.4   ns  

    *   Excludes clock overhead of 0.2   ns.      
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   (a)     What is the cycle time that maximizes performance without allocating 
multiple cycles to a segment?  

   (b)     What is the total time to execute the function (through all stages)?  
   (c)     What is the cycle time that maximizes performance if each segment 

can be partitioned into sub - segments?      

    2.    Repeat problem 1 if there is a 0.1 ns clock skew (uncertainty of  ± 0.1 ns) 
in the arrival of each clock pulse.   

    3.    We can generalize the equation for  S  opt  by allowing for pipeline interrup-
tion delay of  S     −     a  cycles (rather than  S     −    1), where  S     >     a     ≥    1. Find the new 
expression for S opt .   

    4.    A certain pipeline has the following functions and functional unit delays 
(without clocking overhead):

   Function     Delay  

  A    0.6  
  B    0.8  
  C    0.3  
  D    0.7  
  E    0.9  
  F    0.5  

 Function units  B ,  D , and  E  can be subdivided into two equal delay 
stages. If the expected occurrence of pipeline breaks is  b     =    0.25 and clock-
ing overhead is 0.1   ns:
    (a)     What is the optimum number of pipeline segments (round down to 

integer value)?  
   (b)     What cycle time does this give?  
   (c)     Compute the pipeline performance with this cycle time.      

    5.    A processor die (1.4   cm    ×    1.4   cm) will be produced for fi ve years. Over this 
period, defect densities are expected to drop linearly from 0.5 defects/cm 2  
to 0.1 defects/cm 2 . The cost of 20   cm wafer production will fall linearly from 
$5,000 to $3,000, and the cost of 30   cm wafer production will fall linearly 
from $10,000 to $6,000. Assume production of good devices is constant in 
each year. Which production process should be chosen?   

    6.    DRAM chip design is a specialized art where extensive optimizations are 
made to reduce cell size and data storage overhead. For a cell size of 135 λ  2 , 
fi nd the capacity of a DRAM chip. Process parameters are: yield    =    80%, 
  ρ   D     =    0.3 defects/cm 2 , feature size    =    0.1     μ  m, overhead consists of 10% for 
drivers and sense amps. Overhead for pads, drivers, guard ring, etc., is 20%. 
There are no buses or latches. 
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 Since memory must be sized as an even power of 2, fi nd the capacity 
and resize the die to the  actual gross area  (eliminating wasted space) and 
fi nd the corresponding yield.   

    7.    Compute the cost of a 512  M      ×    1  b   die, using the assumptions of problem 6. 
Assume a 30   cm diameter wafer costs $15,000.   

    8.    Suppose a 2.3   cm 2  die can be fabricated on a 20   cm wafer at a cost of $5,000, 
or on a 30   cm wafer at a cost of $8,000. Compare the effective cost per die 
for defect densities of 0.2 defects/cm 2  and 0.5 defects/cm 2 .   

    9.    Following the reasoning of the yield equation derivation, show

 P t e
t

T( ) =
−

      
    10.    Show that, for the triple modular system the expected time,  t , for 2 modules 

failure is

t T e= × log 2      
 Hint: there are 3 modules, if any 2 (3 combinations) or all 3 fail, the 

system fails.   

    11.    Design a Hamming code for a 32   bit message. Place the check bits in the 
resulting message.   

    12.    Suppose we want to design a Hamming code for double error correct for 
a 64 - bit message. How many correct bits are required? Explain.       
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  3    Processors     

    3.1    INTRODUCTION 

 Processors come in many types and with many intended uses. While much 
attention is focused on high - performance processors in servers and worksta-
tions, by actual count, they are a small percentage of processors produced in 
any year. Figure  3.1  shows the processor production profi le by annual produc-
tion count (not by dollar volume).   

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
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 THIS CHAPTER AND PROCESSOR DETAILS 

 This chapter contains details about processor design issues, especially for 
advanced processors in high - performance applications. Readers select-
ing processors from established alternatives may choose to skip some of 
the details, such as sections about branch prediction and superscalar 
processor control. We indicate such sections with an asterisk ( * ) in the 
section title. 

 Such details are important, even for those selecting a processor, for 
two reasons:

   1.     Year by year, SOC processors and systems are becoming more 
complex. The SOC designer will be dealing with increasingly com-
plex processors.  

  2.     Processor performance evaluation tool sets (such as SimpleScalar 
 [51] ) provide options to specify issues such as branch prediction 
and related parameters.    

 Readers interested in application - specifi c instruction processors, intro-
duced in Section  1.3 , can fi nd relevant material in Sections  6.3 ,  6.4 , 
and  6.8 . 
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     Figure 3.1     Worldwide production of microprocessors and controllers  [227] .  
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     Figure 3.2     Annual growth in demand for microprocessors and controllers  [227] .  
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 Clearly, controllers, embedded controllers, digital signal processors (DSPs), 
and so forth, are the dominant processor types, providing the focus for much 
of the processor design effort. If we look at the market growth, the same data 
show that the demand for SOC and larger microcontrollers is growing at 
almost three times that of microprocessor units (MPUs in Figure  3.2 ).   
    Especially in SOC type applications, the processor itself is a small compo-
nent occupying just a few percent of the die. SOC designs often use many 
different types of processors suiting the application. Often, noncritical proces-
sors are acquired (purchased) as design fi les (IP) and are integrated into the 
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  TABLE 3.1    Optimized Designs Provide Better Area – Time Performance at the 
Expense of Design Time 

   Type of Design     Design Level     Relative Expected Area    ×    Time  

  Customized hard IP    Complete physical    1.0  
  Synthesized fi rm IP    Generic physical    3.0 – 10.0  
  Soft IP    RTL or ASIC    10.0 – 100.0  

SOC design. Therefore, a specialized SOC design may integrate generic pro-
cessor cores designed by other parties. Table  3.1  illustrates the relative advan-
tages of different choices of using intellectual property within SOC designs.    

   3.2    PROCESSOR SELECTION FOR  SOC  

   3.2.1    Overview 

 For many SOC design situations, the selection of the processor is the most 
obvious task and, in some ways, the most restricted. The processor must run a 
specifi c system software, so at least a core processor — usually a general -
 purpose processor (GPP) — must be selected for this function. In compute -
 limited applications, the primary initial design thrust is to ensure that the 
system includes a processor confi gured and parameterized to meet this require-
ment. In some cases, it may be possible to merge these processors, but that is 
usually an optimization consideration dealt with later. In determining the 
processor performance and the system performance, we treat memory and 
interconnect components as simple delay elements. These are referred to here 
as idealized components since their behavior has been simplifi ed, but the 
idealization should be done in such a way that the resulting characterization 
is realizable. The idealized element is characterized by a conservative estimate 
of its performance. 

 Figure  3.3  shows the processor model used in the initial design process. The 
process of selecting processors is shown in Figure  3.4 . The process of selection 
is different in the case of compute - limited selection, as there can be a real - time 
requirement that must be met by one of the selected processors. This becomes 
a primary consideration at an early point in the initial SOC design phase. The 
processor selection and parameterization should result in an initial SOC 
design that appears to fully satisfy all functional and performance require-
ments set out in the specifi cations.    

   3.2.2    Example: Soft Processors 

 The term  “ soft core ”  refers to an instruction processor design in bitstream 
format that can be used to program a fi eld programmable gate array (FPGA) 
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     Figure 3.3     Processors in the SOC model.  
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device. The 4 main reasons for using such designs, despite their large area –
 power – time cost, are 

  1.     cost reduction in terms of system - level integration,  
  2.     design reuse in cases where multiple designs are really just variations 

on one,  
  3.     creating an exact fi t for a microcontroller/peripheral combination, and  
  4.     providing future protection against discontinued microcontroller variants.    

 The main instruction processor soft cores include the following:

    •      Nios II  [12] .     Developed by Altera for use on their range of FPGAs and 
application-specifi c integrated circuits (ASICs).  

   •      MicroBlaze  [258] .     Developed by Xilinx for use on their range of FPGAs 
and ASICs.  

   •      OpenRISC  [190] .     A free and open - source soft - core processor.  
   •      Leon  [106] .     Another free and open - source soft - core processor that imple-

ments a complete SPARC v8 compliant instruction set architecture (ISA). 
It also has an optional high - speed fl oating - point unit called GRFPU, 
which is free for download but is not open source and is only for evalua-
tion/research purposes.  

   •      OpenSPARC  [235] .     This SPARC T1 core supports single -  and four -
 thread options on FPGAs.    
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 There are many distinguishing features among all of these, but in essence, they 
support a 32 - bit reduced instruction set computer (RISC) architecture (except 
OpenSPARC, which is 64   bits) with single - issue fi ve - stage pipelines, have con-
fi gurable data/instruction caches, and have support for the Gnu compiler col-
lection (GCC) compiler tool chain. They also feature bus architectures suitable 
for adding extra processing units as slaves or masters that could be used to 
accelerate the algorithm, although some go further and allow the addition of 
custom instructions/coprocessors. 

     Figure 3.4     Process of processor core selection.  
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 Table  3.2  contains a brief comparison of some of the distinguishing fea-
tures of these different SOCs. It should be noted that the measurements for 
MIPS (million instructions per second) are mostly taken from marketing 
material and are likely to fl uctuate wildly, depending on the specifi c confi gura-
tion of a particular processor.   

 Now a simple comparison, we estimated in an earlier section that a 32 - bit 
processor, without the fl oating - point unit, is around 60   A. We can see from Table 
 3.2  that such a processor is around 15 – 30 times smaller than soft processors.  

   3.2.3    Examples: Processor Core Selection 

 Let us consider two examples that illustrate the steps shown in Figure  3.4 . 

  Example 1: Processor Core Selection, General Core Path     Consider the 
 “ other limitation ”  path in Figure  3.4  and look at some of the trade - offs. For 
this simple analysis, we shall ignore the processor details and just assume that 
the processor possibilities follow the  AT  2  rule discussed in Chapter  2 . Assume 
that an initial design had performance of 1 using 100K rbe (register bit equiva-
lent) of area, and we would like to have additional speed and functionality. So 
we double the performance (half the  T  for the processor). This increases the 
area to 400K rbe and the power by a factor of 8. Each rbe is now dissipating 
twice the power as before. All this performance is modulated by the memory 
system. Doubling the performance (instruction execution rate) doubles the 
number of cache misses per unit time. The effect of this on realized system 
performance depends signifi cantly on the average cache miss time; we will see 
more of this in Chapter  4 . 

 Suppose the effect of cache misses signifi cantly reduces the realized perfor-
mance; to recover this performance, we now need to increase the cache size. 
The general rule cited in Chapter  4  is to half the miss rate, we need to double 

  TABLE 3.2    Some Features of Soft - Core Processors 

     
   Nios II 

(fast)  [13]   
   MicroBlaze 

 [260]   
   OpenRISC 

 [190]   
   Leon4 
 [106]   

  Open source    No    No    Yes    Yes  
  Hardware FPU    Yes    Yes    No    Yes  
  Bus standard    Avalon    CoreConnect    WISHBONE    AMBA  
  Integer division unit    Yes    Yes    No    Yes  
  Custom coprocessors/

instructions  
  Yes    Yes    Yes    Yes  

  Maximum frequency 
on FPGA (MHz)  

  290    200    47    125  

  Max MIPS on FPGA    340    280    47    210  
  Resources    1800 LE    1650 slices    2900 slices    4000 slices  
  Area estimate    1500    A     800    A     1400    A     1900    A   
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the cache size. If the initial cache size was also 100K rbe, the new design now 
has 600K rbe and probably dissipates about 10 times the power of the initial 
design. 

 Is it worth it? If there is plenty of area while power is not a signifi cant 
constraint, then perhaps it is worth it. The faster processor cache combination 
may provide important functionality, such as additional security checking or 
input/output (I/O) capability. At this point, the system designer refers back to 
the design specifi cation for guidance.  

  Example 2: Processor Core Selection, Compute Core Path     Again refer to 
Figure  3.4 , only now consider some trade - offs for the compute - limited path. 
Suppose the application is generally parallelizable, and we have several dif-
ferent design approaches. One is a 10 - stage pipelined vector processor; the 
other is multiple simpler processors. The application has performance of 1 with 
the vector processor (area is 300K rbe) and half of that performance with a 
single simpler processor (area is 100K rbe). In order to satisfy the real - time 
compute requirements, we need to increase the performance to 1.5. 

 Now we must evaluate the various ways of achieving the target perfor-
mance. Approach 1 is to increase the pipeline depth and double the number 
of vector pipelines; this satisfi es the performance target. This increases the area 
to 600K rbe and doubles the power, while the clock rate remains unchanged. 
Approach 2 is to use an  “ array ”  of simpler interconnected processors. The 
multiprocessor array is limited by memory and interconnect contention (we 
will see more of these effects in Chapter  5 ). In order to achieve the target 
performance, we need to have at least four processors: three for the basic 
target and one to account for the overhead. The area is now 400K rbe plus the 
interconnect area and the added memory sharing circuitry; this could also add 
another 200K rbe. So we still have two approaches undifferentiated by area 
or power considerations. 

 So how do we pick one of these two alternatives? There are usually many 
more than two. Now all depends on the secondary design targets, which we 
only begin to list here:

   1.     Can the application be easily partitioned to support both approaches?  
  2.     What support software (compilers, operating systems, etc.) exists for each 

approach?  
  3.     Can we use the multiprocessor approach to gain at least some fault 

tolerance?  
  4.     Can the multiprocessor approach be integrated with the other compute 

path?  
  5.     Is there a signifi cant design effort to realize either of the enhanced 

approaches?    

 Clearly, there are many questions the system designer must answer. Tools and 
analysis only eliminate the unsatisfactory approaches; after that, the real 
system analysis begins. 
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 The remainder of this chapter is concerned with understanding the proces-
sor, especially at the microarchitecture level, and how that affects performance. 
This is essential in evaluating performance and in using simulation tools. 

       WAYS TO ACHIEVE PERFORMANCE 

 The examples used in Section  3.2  are quite simplistic. How does one 
create designs that match the  AT  2  design rule, or do even better? The 
secret is in understanding design possibilities, the freedom to choose 
among design alternatives. In order to do this, one must understand the 
complexity of the modern processor and all of its ramifi cations. This 
chapter presents a number of these alternatives, but it only touches the 
most important, and many other techniques can serve the designer well 
in specifi c situations. There is no substitute for understanding. 

   3.3    BASIC CONCEPTS IN PROCESSOR ARCHITECTURE 

 The processor architecture consists of the  instruction set  of the processor. 
While the instruction set implies many implementation (microarchitecture) 
details, the resulting implementation is a great deal more than the instruction 
set. It is the synthesis of the physical device limitations with area – time – power 
trade - offs to optimize specifi ed user requirements. 

   3.3.1    Instruction Set 

 The instruction set for most processors is based upon a register set to hold 
operands and addresses. The register set size varies from 8 to 64 words or more, 
each word consisting of 32 – 64   bits. An additional set of fl oating - point registers 
(32 – 128   bits) is usually also available. A typical instruction set specifi es a 
program status word, which consists of various types of control status informa-
tion, including condition codes (CCs) set by the instruction. Common instruc-
tion sets can be classifi ed by format differences into two basic types, the 
load – store ( L/S ) architecture and the register – memory ( R/M ) architecture:

    •      The L/S instruction set includes the RISC microprocessors. Arguments 
must be in registers before execution. An ALU instruction has both 
source operands and result specifi ed as registers. The advantages of the 
L/S architecture are regularity of execution and ease of instruction 
decode. A simple instruction set with straightforward timing is easily 
implemented.  

   •      The R/M architectures include instructions that operate on operands in 
registers or with one of the operands in memory. In the R/M architecture, 
an ADD instruction might sum a register value and a value contained in 
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memory, with the result going to a register. The R/M instruction sets trace 
their evolution to the IBM mainframes and the Intel x86 series (now 
called the Intel IA32).    

 The trade - off in instruction sets is an area – time compromise. The R/M approach 
offers a more concise program representation using fewer instructions of vari-
able size compared with L/S. Programs occupy less space in memory and 
require smaller instruction caches. The variable instruction size makes decod-
ing more diffi cult. The decoding of multiple instructions requires predicting 
the starting point of each. The R/M processors require more circuitry (and 
area) to be devoted to instruction fetch and decode. Generally, the success of 
Intel - type x86 implementations in achieving high clock rates has shown that 
there is no decisive advantage of one approach over the other. 

 Figure  3.5  shows a general outline of some instruction layouts for typical 
machine instruction sets. RISC machines use a fi xed 32 - bit instruction size 
or a 32 - bit format with 64 - bit instruction extensions. Intel IA32 and the IBM 
System 390 (now called zSeries) mainframes use variable - size instructions. 
Intel uses 8 - , 16 - , and 32 - bit instructions, while IBM uses 16 - , 32 - , and 48 - bit 
instructions. Intel ’ s byte - sized instructions are possible because of the limited 
register set size. The size variability and the R/M format gave good code 
density, at the expense of decode complexity. The RISC - based ARM format 
is an interesting compromise. It offers a 32 - bit instruction set with a built - in 
conditional fi eld, so every instruction can be conditionally executed. It also 
offers a 16 - bit instruction set (called the thumb instructions). The result offers 
both decode effi ciency and code density.   

 Recent developments in instruction set extension will be covered in 
Chapter  6 .  

   3.3.2    Some Instruction Set Conventions 

 Table  3.3  is a list of basic instruction operations and commonly used mne-
monic representations. Frequently, there are different instructions for differing 
data types (integer and fl oating point). To indicate the data type that the opera-
tion specifi es, the operation mnemonic is extended by a data - type indicator, 
so  OP.W  might indicate an  OP  for integers, while  OP.F  indicates a fl oating -
 point operation. Typical data - type modifi ers are shown in Table  3.4 . A typical 
instruction has the form  OP.M destination, source 1, source 2 . The 
source and destination specifi cation has the form of either a register or a 
memory location (which is typically specifi ed as a base register plus an offset)    

   3.3.3    Branches 

  Branches  (or  jumps ) manage program control fl ow. They typically consist of 
unconditional BR, conditional BC, and subroutine call and return (link). The 
BC tests the state of the CC, which usually consists of 4   bits in a program status 
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or control register. Typically, the CC is set by an ALU instruction to record 
one of several results (encoded in 2 or 4   bits), for example, specifying whether 
the instruction has generated 

  1.     a positive result,  
  2.     a negative result,  
  3.     a zero result, or  
  4.     an overfl ow.    

     Figure 3.5     Instruction size and format for typical processors.  
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 Figure  3.6  illustrates the use of CCs by the BC instruction. The unconditional 
branch (BR) is the BC with an all 1 ’ s mask setting (see fi gure). It is possible 
(as in the ARM instruction set) to make all instructions conditional by includ-
ing a mask fi eld in each instruction.    

   3.3.4    Interrupts and Exceptions 

 Many embedded SOC controllers have external interrupts and internal excep-
tions, which indicate the need for attention by an interrupt manager (or han-
dler) program. These facilities can be managed and supported in various ways:

   1.     User Requested versus Coerced.     The former often covers erroneous exe-
cution, such as divide by zero, while the latter is usually triggered by 
external events, such as device failure.  

  2.     Maskable versus Nonmaskable.     The former type of event can be ignored 
by setting a bit in an interrupt mask, while the latter cannot be ignored.  

  TABLE 3.3    Instruction Set Mnemonic Operations 

   Mnemonic     Operation  

   ADD     Addition  
   SUB     Subtraction  
   MPY     Multiplication  
   DIV     Division  
   CMP     Compare  
   LD     Load (a register from memory)  
   ST     Store (a register to memory)  
   LDM     Load multiple registers  
   STM     Store multiple registers  
   MOVE     Move (register to register or memory to memory)  
   SHL     Shift left  
   SHR     Shift right  
   BR     Unconditional branch  
   BC     Conditional branch  
   BAL     Branch and link  

  TABLE 3.4    Data - Type Modifi ers ( OP.modifi er ) 

   Modifi er     Data Type  

   B     Byte (8   bits)  
   H     Halfword (16   bits)  
   W     Word (32   bits)  
   F     Floating point (32   bits)  
   D     Double - precision fl oating point (64   bits)  
   C     Character or decimal in an 8 - bit format  
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  3.     Terminate versus Resume.     An event such as divide by zero would termi-
nate ordinary processing, while a processor resumes operation.  

  4.     Asynchronous versus Synchronous.     Interrupt events can occur in asyn-
chrony with the processor clock by an external agent or not, as when 
caused by a program ’ s execution.  

  5.     Between versus Within Instructions.     Interrupt events can be recognized 
only between instructions or within an instruction execution.    

 In general, the fi rst alternative of most of these pairs is easier to implement 
and may be handled after the completion of the current instruction. Whether 
the designer chooses to constrain the design only to precise exceptions, an 
exception is precise if all the instructions before the exception fi nish correctly, 
and all those after it do not change the state. Once the exception is handled, 
the latter instructions are restarted from scratch. 

 Moreover, some of these events may occur simultaneously and may even 
be nested. There is a need to prioritize them. Controllers and general - purpose 

     Figure 3.6     Examples of BC instruction using the condition code.  
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processors have special units to handle these problems and preserve the state 
of the system in case of resuming exceptions.   

   3.4    BASIC CONCEPTS IN PROCESSOR MICROARCHITECTURE 

 Almost all modern processors use an instruction execution pipeline design. 
Simple processors issue only one instruction for each cycle; others issue many. 
Many embedded and some signal processors use a simple issue - one - instruction -
 per - cycle design approach. But the bulk of modern desktop, laptop, and server 
systems issue multiple instructions for each cycle. 

 Every processor (Figure  3.7 ) has a memory system, execution unit (data 
paths), and instruction unit. The faster the cache and memory, the smaller 
the number of cycles required for fetching instructions and data (IF and DF). 
The more extensive the execution unit, the smaller the number of execution 
cycles (EX). The control of the cache and execution unit is done by the instruc-
tion unit.   

 The pipeline mechanism or control has many possibilities. Potentially, it can 
execute one or more instructions for each cycle. Instructions may or may not 
be decoded and/or executed in program order. Indeed, instructions from 
several  different  programs can be executed in the same cycle in multithreaded 
pipelines. Table  3.5  illustrates some of the possibilities.   

 Regardless of the type of pipeline,  “ breaks ”  or delays are the major limit 
on performance. 

 Pipeline delays or  breaks  generally arise from one of three causes:

   1.     Data Confl icts — Unavailability of a Source Operand.     This can occur for 
several reasons; typically, the current instruction requires an operand 
that is the result of a preceding uncompleted instruction. Extensive buff-
ering of operands can minimize this effect.  

  2.     Resource Contention.     Multiple successive instructions use the same 
resource or an instruction with a long execution time delays a suc-
cessor instruction ’ s execution. Additional resources (fl oating - point 
units, register ports, and out - of - order execution) contribute to reducing 
contention.  

     Figure 3.7     Processor units.  
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BASIC CONCEPTS IN PROCESSOR MICROARCHITECTURE  87

  3.     Run - On Delays (in Order Execution Only).     When instructions must 
complete the WB (writeback) in program order, any delay in execution 
(as in the case of multiply or divide) necessarily delays the instruction 
execution in the pipeline.  

  4.     Branches.     The pipeline is delayed because of branch resolution and/or 
delay in the fetching of the branch target instruction before the pipeline 
can resume execution. Branch prediction, branch tables, and buffers all 
can be used to minimize the effect of branches.    

 In the next section, we look at simple pipeline control and the operation of a 
basic pipeline. These simple processors have minimum complexity but suffer 
the most from (mostly branch) disruptions. Next, we consider the buffers 
that are required to manage data movement both through the pipeline and 
between units. Since the optimum pipeline layout (number of stages) is a 
strong function of the frequency of breaks, we look at branches and techniques 
for minimizing the effects of branch pipeline delays. Then, we look at multiple 
instruction execution and more robust pipeline control. Table  3.6  describes the 
architecture of some SOC processors.
    

  TABLE 3.5    Types of Pipelined Processors 

   Type  

    n  Instructions 
Decoded 
per Cycle     Comment  

   Typical 
Relative 

Performance  

  Partial or static pipeline    1 or less    All actions in order    0.5 – 0.9  
  Typical pipeline    1    All D and all 

 WB in order  
  1.0  

  O.O.O.  *   pipeline    1    All D in order 
 WB unordered  

  1.2  

  Multiple - issue superscalar     n     =    4    No order restriction  †      2.5  
  Multiple - issue VLIW     n     =    8    Ordered by compiler    3.0  
  Superscalar with 

multithreading  
   n     =    4    Two threads typically    3.0  

    *   Out of order (execution).  
   †   Ordered only by dependencies.   

  TABLE 3.6    Processor Characteristics of Some  SOC  Designs 

   SOC     ISA     Type     Instruction Size     Extension  

  Freescale e600 
 [101]   

  PowerPC    Load/store    32   bits    Vector extension  

  ClearSpeed 
CSX600  [59]   

  Proprietary    Load/store    32   bits    SIMD 96 PEs  

  PlayStation 2 
 [147, 187]   

  MIPS    Load/store    32   bits    Vector extension  

  AMD Geode 
 [18]   

  IA32    Register/
memory  

  One byte or 
more  

  MMX, 3DNow!  
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88  PROCESSORS

   3.5    BASIC ELEMENTS IN INSTRUCTION HANDLING 

 An instruction unit consists of the state registers as defi ned by the instruction 
set — the instruction register — plus the instruction buffer, decoder, and an 
interlock unit. The instruction buffer ’ s function is to fetch instructions into 
registers so that instructions can be rapidly brought into a position to be 
decoded. The decoder has the responsibility for controlling the cache, ALU, 
registers, and so on. Frequently, in pipelined systems, the instruction unit 
sequencing is managed strictly by hardware, but the execution unit may be 
microprogrammed so that each instruction that enters the execution phase will 
have its own microinstruction associated with it. The interlock unit ’ s respon-
sibility is to ensure that the concurrent execution of multiple instructions has 
the same result as if the instructions were executed completely serially. 

 With instructions in various stages of execution, there are many design 
considerations and trade - offs in even simple pipelined processors. 

 Figure  3.8  shows the processor control or I - unit and basic communications 
paths to memory.   

   3.5.1    The Instruction Decoder and Interlocks 

 When an instruction is decoded, the decoder must provide more than control 
and sequencing information for that instruction. Proper execution of the 

     Figure 3.8     I - unit.  
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BASIC ELEMENTS IN INSTRUCTION HANDLING  89

current instruction  depends  on the other instructions in the pipeline. The 
decoder (Figure  3.9 ) 

  1.     schedules the current instruction; the current instruction may be delayed 
if a data dependency (e.g., at the address generate or AG cycle) occurs 
or if an exception arises — for example,  not in translation lookaside buffer 
(TLB)  and cache miss;    

  2.     schedules subsequent instructions; later instructions may be delayed to 
preserve in - order completion if, for example, the current instruction has 
multiple cycle execution; and  

  3.     selects (or predicts) the path on branch instruction.    

 The data interlocks (subunit D in Figure  3.8 ) may be part of the decoder. This 
determines  register  dependencies and schedules the AG and EX units. The 
interlocks ensure that the current instruction does not  use  (depend on) a result 
of a previous instruction until that result is available. 

 The execution controller performs a similar function on  subsequent  instruc-
tions, ensuring that they do not enter the pipeline until the execution unit is 
scheduled to complete the current instruction, and, if required, preserve the 
execution order. 

 The effect of the interlocks (Figure  3.10 ) is that for each instruction as it is 
decoded, its source registers (for operands or addresses) must be compared 
(indicated by  “ C ”  in Figure  3.10 ) against the destination registers of previously 
issued but uncompleted instructions to determine dependencies. The opcode 
itself usually establishes the number of EX cycles required (indicated by the 
EX box in the fi gure). If this exceeds the number specifi ed by the timing tem-
plate, subsequent instructions must be delayed by that amount to preserve 
in - order execution.   

 The store interlocks (E) perform the same function as the data interlocks 
for storage addresses. On  STORE  instructions, the address is sent to the store 
interlocks so that subsequent reads either from the AG (data reads) or the IB 

     Figure 3.9     Decoder functions.  

Decoder Control signals

Schedule current instruction.

Schedule next instruction.

Predict branch outcome (static).

c03.indd   89c03.indd   89 5/4/2011   9:54:06 AM5/4/2011   9:54:06 AM



90  PROCESSORS

(instruction reads) can be compared with pending stores and dependencies 
detected.  

   3.5.2    Bypassing 

 Bypassing or forwarding is a data path that routes a result — usually from an 
ALU — to a user (perhaps also the ALU), bypassing a destination register 
(which is subsequently updated). This allows a result produced by the ALU to 
be used at an earlier stage in the pipeline than would otherwise be possible.  

   3.5.3    Execution Unit 

 As with the cache, the execution unit (especially the fl oating - point unit) can 
represent a signifi cant factor in both performance and area. Indeed, even a 
straightforward fl oating - point unit can occupy as much or more area than a 
basic integer core processor (without cache). In simple in - order pipelines, the 
execution delay (run - on) can be a signifi cant factor in determining perfor-
mance. More robust pipelines use corresponding better arithmetic algorithms 
for both integer and fl oating - point operations. Some typical area – time trade -
 offs in fl oating - point units are shown in Table  3.7 .   

     Figure 3.10     Interlocks.  

Current
instr (*)

Operand sources

OP R1

C C R destinations 
* −m

·
·
·

* −1

R2

Decoder

EX delay

  TABLE 3.7    Characteristics of Some Floating - Point Implementations 

   Implementation  
   Word 

Size (bit)  
   Register 

Set  
   Execution Time 
Add – Mul – Div     Pipelined  

   Area  A  
Units  

  Minimal    32    4    3 – 8 – 30    No    25  
  Typical    64    8 – 16    3 – 3 – 15    No    50  
  Extended 

arithmetic  
  80    32    3 – 5 – 15    No    60  

  Multiple issue    64 – 80    40 +     2 – 3 – 8    Yes    200 +   
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 In the table, word size refers to the operand size (exponent and mantissa), 
and the IEEE standard 754 format is assumed. The execution time is the esti-
mated total execution time in cycles. The pipelined column indicates the 
throughput: whether the implementation supports the execution of a new 
operation for each cycle. The fi nal column is an estimate of the units of area 
needed for the implementation. 

 The minimal implementation would probably only support specialized 
applications and 32 - bit operands. The typical implementation refers to the 
fl oating - point unit of a simple pipelined processor with 64 - bit operands. 
Advanced processors support the extended IEEE format (80   bits), which pro-
tects the accuracy of intermediate computations. The multiple - issue implemen-
tation is a typical straightforward implementation. If the implementation is to 
support issue rates greater than four, the size could easily double.   

   3.6    BUFFERS: MINIMIZING PIPELINE DELAYS 

 Buffers change the way instruction timing events occur by decoupling the time 
at which an event occurs from the time at which the input data are used. It allows 
the processor to tolerate some delay without affecting the performance. Buffers 
enable latency tolerance as they hold the data awaiting entry into a stage. 

 Buffers can be designed for a  mean  request rate  [115]  or for a  maximum  
request rate. In the former case, knowing the expected number of requests, we 
can trade off buffer size against the probability of an overfl ow. Overfl ows per 
se (where an action is lost) do not happen in internal CPU buffers, but an 
 “ overfl ow ”  condition — full buffer and a new request — will force the processor 
to slow down to bring the buffer entries down below buffer capacity. Thus, 
each time an overfl ow condition occurs, the processor pipeline stalls to allow 
the overfl owing buffer to access memory (or other resources). The store buffer, 
for example, is usually designed for a mean request rate. 

 Maximum request rate buffers are used for request sources that dominate 
performance, such as in - line instruction requests or data entry in a video 
buffer. In this case, the buffer size should be suffi cient to match the processor 
request rate with the cache or other storage service rate. A properly sized 
buffer allows the processor to continue accessing instructions or data at its 
maximum rate without the buffer running out of information. 

   3.6.1    Mean Request Rate Buffers 

 We assume that  q  is a random variable describing the request size (number of 
pending requests) for a resource;  Q  is the mean of this distribution; and   σ   is 
the standard deviation. 

  Little ’ s Theorem     The mean request size is equal to the mean request rate 
(requests per cycle), multiplied by the mean time to service a request  [142] . 
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92  PROCESSORS

 We assume a buffer size of  BF , and we defi ne the probability of a buffer 
overfl ow as  p . There are two upper bounds for  p  based on Markov ’ s and 
Chebyshev ’ s inequalities.  

  Markov ’ s Inequality     

   Prob{ }q BF
Q

BF
≥ ≤    

  Chebyshev ’ s Inequality     

   Prob{ }
( )

q BF
BF Q

≥ ≤
−

σ 2

2   

 Using these two inequalities, for a given probability of overfl ow ( p ), we can 
conservatively select  BF , since either term provides an upper bound, as

   BF
Q
p

Q
p

= +
⎛
⎝⎜

⎞
⎠⎟

min , .
σ

 

     

   3.6.2    Buffers Designed for a Fixed or Maximum Request Rate 

 A buffer designed to supply a fi xed rate is conceptually easy to design. 
The primary consideration is masking the access latency. If we process one 
item per cycle and it takes three cycles to access an item, then we need to 
have a buffer space of at least three, or four, if we count the item being 
processed. 

 In general, the maximum rate buffer supplies a fi xed rate of data or instruc-
tions for processing. There are many examples of such buffers, including the 
instruction buffer, video buffers, graphics, and multimedia buffers. 

 In the general case where  s  items are processed for each cycle, and  p  items 
are fetched from a storage with a fi xed access time, the buffer size,  BF  is

 E XAMPLE  3.1 

    Suppose we wish to determine the effectiveness of a two - entry write buffer. 
Assume the write request rate is 0.15 per cycle, and the expected number of 
cycles to complete a store is two. The mean request size is 0.15    ×    2    =    0.3, using 
Little ’ s theorem. Assuming   σ   2     =    0.3 for the request size, we can calculate an 
upper bound on the probability of overfl ow as

   p
Q

BF BF Q
=

−
⎛
⎝⎜

⎞
⎠⎟

=max ,
( )

. .
σ 2

2
0 10    
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   BF s
p

= + ⋅⎡
⎣⎢

⎤
⎦⎥

1
access time cycles( )

.   

 The initial  “ 1 ”  is an allowance for a single entry buffer used for processing 
during the current cycle. In some cases, it may not be necessary. The buffer 
described here is designed to buffer entry into a functional unit or decoder 
(as an I decoder); it is not exactly the same as the frame buffer or the image 
buffer that manages transfers between the processor and a media device. 
However, the same principles apply in the design to these media buffers.   

   3.7    BRANCHES: REDUCING THE COST OF BRANCHES 

 Branches represent one of the diffi cult issues in optimizing processor perfor-
mance. Typically, branches can signifi cantly reduce performance. For example, 
the conditional branch instruction (BC) tests the CC set by a preceding instruc-
tion. There may be a number of cycles between the decoding of the branch 
and the setting of the CC (see Figure  3.11 ). The simplest strategy is for the 
processor to do nothing but simply to await the outcome of the CC set and to 
defer the decoding of the instruction following the BC until the CC is known. 
In case the branch is taken, the target is fetched during the time allocated to 
a data fetch in an arithmetic instruction. This policy is simple to implement 
and minimizes the amount of excess memory traffi c created by branch instruc-
tions. More complicated strategies that attempt to guess a particular path will 
occasionally be wrong and will cause additional or excess instruction fetches 
from memory.   

 In Figure  3.11 , the actual decode is fi ve cycles late (i.e., a fi ve - cycle branch 
penalty). This is not the whole effect, however. The timing of NEXT    +    1 is 
delayed an additional cycle when the target path is taken, as this instruction 
has not been prefetched. 

     Figure 3.11     The delay caused by a branch (BC).  
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94  PROCESSORS

 Since branches are a major limitation to processor performance  [75, 222] , 
there has been a great deal of effort to reduce the effect. There are two simple 
and two substantial approaches to the branch problem. The simple approaches 
are the following:

   1.     Branch Elimination.     For certain code sequences, we can replace the 
branch with another operation.  

  2.     Simple Branch Speedup.     This reduces the time required for target 
instruction fetch and CC determination.    

 The two more complex approaches are generalizations of the simple 
approaches:

   1.     Branch Target Capture.     After a branch has been executed, we can keep 
its target instruction (and its address) in a table for later use to avoid the 
branch delay. If we could predict the branch path outcome and had the 
target instruction in the buffer, there would be no branch delay.  

  2.     Branch Prediction.     Using available information about the branch, one 
can predict the branch outcome and can begin processing on the pre-
dicted program path. If the strategy is simple or trivial, for example, 
always fetch in - line on true conditional branches, it is called a fi xed strat-
egy. If the strategy varies by opcode type or target direction, it is called 
a static strategy. If the strategy varies according to current program 
behavior, it is called a dynamic strategy (see Figure  3.12 ).      

 Table  3.8  summarizes these techniques. In the following sections, we look at 
two general approaches.   

   3.7.1    Branch Target Capture: Branch Target Buffers ( BTB  s ) 

 The BTB (Figure  3.13 ) stores the target instruction of the previous execution 
of the branch. Each BTB entry has the current instruction address (needed 

     Figure 3.12     Branch prediction.  
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96  PROCESSORS

only if branch aliasing is a problem), the branch target address, and the most 
recent target instruction. (The target address enables the initiation of the 
target fetch earlier in the pipeline, since it is not necessary to wait for the 
address generation to complete.) The BTB functions as follows: Each instruc-
tion fetch indexes the BTB. If the instruction address matches the instruction 
addresses in the BTB, then a prediction is made as to whether the branch 
located at that address is likely to be taken. If the prediction is that the branch 
will occur, then the target instruction is used as the next instruction. When the 
branch is actually resolved, at the execute stage, the BTB can be updated with 
the corrected target information if the actual target differs from the stored 
target.   

 The BTB ’ s effectiveness depends on its hit ratio — the probability that a 
branch is found in the BTB at the time it is fetched. The hit rate for a 512 - entry 
BTB varies from about 70% to over 98%, depending on the application. 

 BTBs can be used in conjunction with the I - cache. Suppose we have a con-
fi guration as shown in Figure  3.14 . The IF is made to both the BTB and I - cache. 
If the IF  “ hits ”  in the BTB, the target instruction that was previously stored 
in the BTB is now fetched and forwarded to the processor at its regularly 
scheduled time. The processor will begin the execution of the target instruction 
with no branch delay.   

 The BTB provides both the target instruction and the new PC. There is now 
no delay on a taken branch  so long as the branch prediction is correct . Note 
that the branch itself must still be fetched from the I - cache and must be fully 
executed. If either the AG outcome or the CC outcome is not as expected, all 
instructions in the target fetch path must be aborted. Clearly, no conditionally 

     Figure 3.13     Branch target buffer (BTB) organization. The BTB is indexed by instruc-
tion bits. The particular branch can be confi rmed (avoiding an alias) by referencing an 
instruction address fi eld in the table.  
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BRANCHES: REDUCING THE COST OF BRANCHES  97

     Figure 3.14     Typical BTB structure. If  “ hit ”  in the BTB, then the BTB returns the 
target instruction to the processor; CPU guesses the target. If  “ miss ”  in the BTB, then 
the cache returns the branch and in - line path; CPU guesses in - line.  

+

BTB

I-cache

Instruction
requests

executed (target path) instruction can do a fi nal result write, as this would 
make it impossible to recover in case of a misprediction.  

   3.7.2    Branch Prediction 

 Beyond the trivial fi xed prediction, there are two classes of strategies for guess-
ing whether or not a branch will be taken: a static strategy, which is based upon 
the type of branch instruction, and a dynamic strategy, which is based upon 
the recent history of branch activity. 

 Even perfect prediction does not eliminate branch delay. Perfect prediction 
simply converts the delay for the conditional branch into that for the uncon-
ditional branch (branch taken). So, it is important to have BTB support before 
using a more robust (and expensive) predictor. 

  Static Prediction     Static prediction is based on the particular branch opcode 
and/or the relative direction of the branch target. When a branch is decoded, 
a guess is made on the outcome of the branch, and if it is determined that the 
branch will be successful, the pipeline fetches the target instruction stream and 
begins decoding from it. A simple approach is shown in Table  3.9 .   

  TABLE 3.9    A Static Branch Prediction Strategy 

   Instruction Class     Instruction  
   Guessed 

Successful (S)  
   Guessed 

Unsuccessful (U)  

  Unconditional branch     BR     Always    Never  
  Branch on condition     BC     Guess S on 

backward  *    
  Guess U on 

forward  *    
  Loop control     BCT     Always    Never  
  Call/return     BAL     Always    Never  

    *   When the branch target is less than the current PC, assume a loop and take the target. Otherwise, 
guess in - line.   
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98  PROCESSORS

 The general effectiveness of a strategy described in Table  3.9  is typically 
70 – 80%.  

  Dynamic Prediction: Bimodal     Dynamic strategies make predictions based 
on past history; that is, the sequence of past actions of a branch — was it or was 
it not taken? Table  3.10  from Lee and Smith  [154]  shows the effectiveness of 
a branch prediction when prediction is based on a count of the outcome of 
preceding executions of the branch in question. The prediction algorithm is 
quite simple. In implementing this scheme, a small up/down saturating counter 
is used. If the branch is taken, the counter is incremented up to a maximum 
value ( n ). An unsuccessful branch decrements the counter. In a 2 - bit counter, 
the values 00 and 01 would predict a branch not taken, while 10 and 11 predicts 
a branch taken. The table can be separate or integrated into a cache is shown 
in Figure  3.15 .     

 Depending on the table organization, two branches can map into the same 
history, creating an aliasing problem. 

 A number of observations can be made from Table  3.10 . First, the predictive 
accuracy very closely approaches its maximum with just a few bits. Second, the 
predictive accuracy for a two bit counter varies from 83.4% to 96.5%, which 

     Figure 3.15     Branch history counter can be kept in I - cache (above) or in a separate 
table.  

I-cache
directory

Line address

Count of history of branch outcomes
for a branch in this line

I-cache
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  TABLE 3.10    Percentage Correct Guess Using History 
with  n  - bit Counters  [154]  

    n   

   Mix Defi nition  

   Compiler     Business     Scientifi c     Supervisor  

  0    64.1    64.4    70.4    54.0  
  1    91.9    95.2    86.6    79.7  
  2    93.3    96.5    90.8    83.4  
  3    93.7    96.6    91.0    83.5  
  4    94.5    96.8    91.8    83.7  
  5    94.7    97.0    92.0    83.9  
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is much higher than the accuracy using only the branch opcode prediction 
strategy of Table  3.9 . Third, the effectiveness of prediction in a standard test 
suite (SPECmarks) is reported to be 93.5% using a very large table.  

  Dynamic Prediction: Two - Level Adaptive     Bimodal prediction is generally 
limited to prediction rates around 90% across multiple environments. Yeh and 
Patt  [267, 268]  have looked at adaptive branch prediction as a method of 
raising prediction rates to 95%. The basic method consists of associating a shift 
register with each branch in, for example, a branch table buffer. The shift 
register records branch history. A branch twice taken and twice not taken, for 
example, would be recorded as  “ 1100. ”  Each pattern acts as an address into 
an array of counters, such as the 2 - bit saturating counters. Each time the 
pattern 1100 is encountered, the outcome is recorded in the saturating counter. 
If the branch is taken, the counter is incremented; if the branch is not taken, 
it is decremented. 

 Adaptive techniques can require a good deal of support hardware. Not only 
must we have history bits associated with the possible branch entries but we 
must also have a table of counters to store outcomes. The approach is more 
effective in large programs where it is possible to establish a stable history 
pattern. 

 The average trace data from Yeh and Patt indicates that an adaptive strat-
egy using a 6 - bit entry provided a 92% correct prediction rate increasing to 
95% with a 24 - bit entry. Notice that the published SPECmark performance is 
signifi cantly higher than other data. 

 The 2 - bit saturating counter achieves 89.3% averaged over all programs. 
However, the data in Figure  3.16  is based on a different set of programs than 
those presented in Table  3.10 .   

     Figure 3.16     Branch prediction rates for a two - level adaptive predictor.  
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 The adaptive results are shown for the prediction rate averaged over all 
programs  [267] . Differences between 89% and 95% may not seem signifi cant, 
but overall execution delay is often dominated by mispredicted branches.  

  Dynamic Prediction: Combined Methods     The bimodal and the adaptive 
approaches provide rather different information about the likelihood of a 
branch path. Therefore, it is possible to combine these approaches by adding 
another (vote) table of (2 - bit saturating) counters. When the outcomes differ, 
the vote table selects between the two, and the fi nal result updates the count 
in the vote table. This is referred to as  combined prediction  method and offers 
an additional percent or so improvement in the prediction rate. Of course, one 
can conceive of combining more than two predictions for an even more robust 
predictor. 

 The disadvantage of the two - level approach includes the hardware require-
ment for control and two serial table accesses. An approximation to it is called 
the global adaptive predictor. It uses only one shift register for all branches 
(global) to index into a single history table. While faster than the two - level in 
prediction, its prediction accuracy is only comparable to the bimodal predictor. 
But one can combine the bimodal predictor with the global adaptive predictor 
to create an  approximate combined  method. This gives results comparable to 
the two - level adaptive predictor. 

 Some processor branch strategies are shown in Table  3.11 . Some SOC type 
processor branch strategies are shown in Table  3.12 ; they are notably simpler 
than workstation processors.      

  TABLE 3.11    Some Typical Branch Strategies 

   Workstation Processors     Prediction Method     Target Location  

  AMD    Bimodal: 16K    ×    2   bit    BTB: 2K entries  
  IBM G5    Three tables combined 

method  
  BTB  

  Intel Itanium    Two - level adaptive    Targets in I - cache 
with branch  

  SOC processors    Prediction method    Target location  

  Intel XScale (ARM v5)    History bits    BTB: 128 entries  

  TABLE 3.12    Branch Prediction Strategies of Some  SOC  Designs 

   SOC     Strategy     BTB Entries     Branch History Entries  

  Freescale e600  [101]     Dynamic    128    2K  
  MIPS 74K  [183]     Dynamic     —     3    ×    256  
  Intel PXA27x  [132]     Dynamic    128     —   
  ARC 600  [19]     Static     —      —   
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   3.8    MORE ROBUST PROCESSORS: VECTOR, VERY LONG 
INSTRUCTION WORD ( VLIW ), AND SUPERSCALAR 

 To go beyond one cycle per instruction (CPI), the processor must be able to 
execute multiple instructions at the same time. Concurrent processors must be 
able to make simultaneous accesses to instruction and data memory and to 
simultaneously execute multiple operations. Processors that achieve a higher 
degree of concurrency are called concurrent processors, short for processors 
with instruction - level concurrency. 

 For the moment, we restrict our attention to those processors that execute 
only from one program stream. They are  uniprocessors  in that they have a 
single instruction counter, but the instructions may have been signifi cantly 
rearranged from the original program order so that concurrent instruction 
execution can be achieved. 

 Concurrent processors are more complex than simple pipelined processors. 
In these processors, performance depends in greater measure on compiler 
ability, execution resources, and memory system design. Concurrent processors 
depend on sophisticated compilers to detect the instruction - level parallelism 
that exists within a program. The compiler must restructure the code into a 
form that allows the processor to use the available concurrency. Concurrent 
processors require additional execution resources, such as adders and multipli-
ers, as well as an advanced memory system to supply the operand and instruc-
tion bandwidth required to execute programs at the desired rate  [208, 250] .  

   3.9    VECTOR PROCESSORS AND VECTOR 
INSTRUCTION EXTENSIONS 

 Vector instructions boost performance by 

  1.     reducing the number of instructions required to execute a program (they 
reduce the I - bandwidth);  

  2.     organizing data into regular sequences that can be effi ciently handled by 
the hardware; and  

  3.     representing simple loop constructs, thus removing the control overhead 
for loop execution.    

 Vector processing requires extensions to the instruction set, together with (for 
best performance) extensions to the functional units, the register sets, and 
particularly to the memory of the system. 

 Vectors, as they are usually derived from large data arrays, are the one data 
structure that is not well managed by a conventional data cache. Accessing 
array elements, separated by an addressing distance (called the stride), can fi ll 
a smaller -  to intermediate - sized data cache with data of little temporal locality; 
hence, there is no reuse of the localities before the items must be replaced 
(Figure  3.17 ).   
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     Figure 3.17     For an array in memory, different accessing patterns use different strides 
in accessing memory.  

Stride = n 
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     Figure 3.18     The primary storage facilities in a vector processor. Vector  LD/ST  usually 
bypasses the data cache.  
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 Vector processors usually include vector register (VR) hardware to decou-
ple arithmetic processing from memory. The VR set is the source and destina-
tion for all vector operands. In many implementations, accesses bypass the 
cache. The cache then contains only scalar data objects — objects not used in 
the VRs (Figure  3.18 ).   
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   3.9.1    Vector Functional Units 

 The VRs typically consist of eight or more register sets, each consisting of 
16 – 64 vector elements, where each vector element is a fl oating - point word. 

 The VRs access memory with special load and store instructions. The vector 
execution units are usually arranged as an independent functional unit for 
each instruction class. These might include 

   •      add/subtract,  
   •      multiplication,  
   •      division or reciprocal, and  
   •      logical operations, including compare.    

 Since the purpose of the vector vocabulary is to manage operations over a 
vector of operands, once the vector operation is begun, it can continue at the 
cycle rate of the system. Figure  3.19  shows timing for a sample four - stage 
functional pipeline. A vector add (VADD) sequence passes through various 
stages in the adder. The sum of the fi rst elements of VR1 and VR2 (labeled 
VR1.1 and VR2.1) are stored in VR3 (actually, VR3.1) after the fourth adder 
stage.   

 Pipelining of the functional units is more important for vector functional 
units than for scalar functional units, where latency is of primary importance. 

 The advantage of vector processing is that fewer instructions are required 
to execute the vector operations. A single (overlapped) vector load places the 
information into the VRs. The vector operation executes at the clock rate of 

     Figure 3.19     Approximate timing for a sample four - stage functional pipeline.  
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the system (one cycle per executed operand), and an overlapped vector store 
operation completes the vector transaction overlapped with subsequent 
instruction operations (see Figure  3.20 ). Vector loads (VLD) must complete 
before they can be used (Figure  3.21 ), since otherwise the processor would 
have to recognize when operands are delayed in the memory system.   

 The ability of the processor to concurrently execute multiple (independent) 
vector instructions is also limited by the number of VR ports and vector execu-
tion units. Each concurrent vector load or store requires a VR port; vector 
ALU operations require multiple ports. 

 Under some conditions, it is possible to execute more than one vector arith-
metic operation per cycle. As with bypassing, the results of one vector arith-
metic operation can be directly used as an operand in subsequent vector 
instructions without fi rst passing into a VR. Such an operation, shown in 
Figures  3.22  and  3.23 , is called chaining. It is illustrated in Figure  3.22  by a 
chained  ADD - MPY  with each functional unit having four stages. If the  ADD - MPY  
were unchained, it would take 4 (startup)    +    64 (elements/VR)    =    68 cycles for 

     Figure 3.20     For logically independent vector instructions, the number of access paths 
to the vector register (VR) set and vector units may limit performance. If there are 
four read ports, the vector multiply (VMPY) can start on the second cycle. Otherwise, 
with two ports, the VMPY must wait until the VADD completes use of the read ports.  
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     Figure 3.21     While independent  VLD  and  VADD  may proceed concurrently (with suf-
fi cient VR ports), operations that use the results of  VLD  do not begin until the  VLD  is 
fully complete.  
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each instruction — a total of 136 cycles. With chaining, this is reduced to 4 (add 
startup)    +    4 (multiply startup)    +    64 (elements/VR)    =    72 cycles.   

 One of the crucial aspects in achieving the performance potential of the 
vector processor is the management of references to memory. Since arithmetic 
operations complete one per cycle, a vector code makes repeated references 
to memory to introduce new vectors in the VRs and to write out old results. 
Thus, on the average, memory must have suffi cient bandwidth to support at 
least a two - words - per - cycle execution rate (one read and one write), and pref-
erably three references per cycle (two reads and one write). This bandwidth 
allows for two vector reads and one vector write to be initiated and executed 
concurrently with the execution of a vector arithmetic operation. If there is 
insuffi cient memory bandwidth from memory to the VRs, the processor neces-
sarily goes idle after the vector operation until the vector loads and stores are 
complete. It is a signifi cant challenge to the designer of a processor not to 
simply graft a vector processing extension onto a scalar processor design but 
rather to adapt the scalar design — especially the memory system — to accom-
modate the requirements of fast vector execution (Table  3.13 ). If the memory 

     Figure 3.22     Effect of vector chaining.  
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     Figure 3.23     Vector chaining path.  
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system bandwidth is insuffi cient, there is correspondingly less performance 
improvement from the vector processing hardware.   

 The major elements of the vector processor are shown in (Figure  3.24 ). The 
functional units (add, multiply, etc.) and the two register sets (vector and 
scalar, or general) are connected by one or more bus sets. If chaining (Figure 
 3.23 ) is allowed, then three (or more) source operands are simultaneously 
accessed from the VRs and a result is transmitted back to the VRs. Another 
bus couples the VRs and the memory buffer. The remaining parts of the sys-
tem — I - cache, D - cache, general registers, and so on — are typical of pipelined 
processors.     

     Figure 3.24     Major data paths in a generic vector processor.  
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  TABLE 3.13    Potential Memory Requirements 
(Number of Accesses/Processor Cycles) 

         I       D   

  Scalar unit    1.0  −    *      1.0  *    
  Vector unit    0.0  +    †      2.0 – 3.0  ‡    

    *   Nominally. Reduced by I - buffer, I - cache.  
   †   Relatively small compared to other requirements.  
   ‡   The minimum required is one vector load (VLD) and one vector 
store (VST) concurrently; preferably two  VLDs  and one  VST , all 
concurrently.   
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   3.10     VLIW  PROCESSORS 

 There are two broad classes of multiple - issue machines: statically scheduled 
and dynamically scheduled. In principle, these two classes are quite similar. 
Dependencies among groups of instructions are evaluated, and groups found 
to be independent are simultaneously dispatched to multiple execution units. 
For statically scheduled processors, this detection process is done by the com-
piler, and instructions are assembled into instruction packets, which are 
decoded and executed at run time. For dynamically scheduled processors, the 
detection of independent instructions may also be done at compile time and 
the code can be suitably arranged to optimize execution patterns, but the 
ultimate selection of instructions (to be executed or dispatched) is done by 
the hardware in the decoder at run time. In principle, the dynamically sched-
uled processor may have an instruction representation and form that is indis-
tinguishable from slower pipeline processors. Statically scheduled processors 
must have some additional information either implicitly or explicitly indicating 
instruction packet boundaries. 

 As mentioned in Chapter  1 , early VLIW machines  [92]  are typifi ed by pro-
cessors from Multifl ow and Cydrome. These machines use an instruction word 
that consists of 10 instruction fragments. Each fragment controls a designated 
execution unit; thus, the register set is extensively multiported to support 
simultaneous access to the multiplicity of execution units. In order to accom-
modate the multiple instruction fragments, the instruction word is typically 
over 200   bits long (see Figure  3.25 ). In order to avoid the obvious performance 
limitations imposed by the occurrence of branches, a novel compiler technol-
ogy called trace scheduling was developed. By use of trace scheduling, the 
dynamic frequency of branching is greatly reduced. Branches are predicted 
where possible, and on the basis of the probable success rate, the predicted 
path is incorporated into a larger basic block. This process continues until a 
suitably sized basic block (code without branches) can be effi ciently scheduled. 
If an unanticipated (or unpredicted) branch occurs during the execution of 
the code, at the end of the basic block, the proper result is fi xed up for use by 
a target basic block.   

 More recent attempts at multiple - issue processors have been directed at 
rather lower amounts of concurrency. However there has been increasing use 
of simultaneous multithreading (SMT). In SMT, multiple programs (threads) 
use the same processor execution hardware (adders, decoders, etc.) but have 
their own register sets and instruction counter and register. Two processors 

     Figure 3.25     A partial VLIW format. Each fragment concurrently accesses a single 
centralized register set.  
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(or cores) on the same die each using two - way SMT allows four programs to 
be in simultaneous execution. 

 Figure  3.26  shows the data paths for a generic VLIW machine. The extensive 
use of register ports provides simultaneous access to data as required by a 
VLIW processor. This suggests the register set may be a processor bottleneck.    

   3.11    SUPERSCALAR PROCESSORS 

 Superscalar processors can also be implemented by the data paths shown in 
Figure  3.26 . Usually, such processors use multiple buses connecting the register 
set and functional units, and each bus services multiple functional units. This 
may limit the maximum degree of concurrency but can correspondingly reduce 
the required number of register ports. 

 The issue of detection of independence within or among instructions is 
theoretically the same regardless of whether the detection process is done 
statically or dynamically (although the realized effect is quite different). In the 
next sections, we review the theory of instruction independence. In superscalar 
processors, detection of independence must be done in hardware. This neces-
sarily complicates both the control hardware and the options in realizing the 
processor. The remaining discussion in this section is somewhat more detailed 
and complex than the discussion of other approaches. 

     Figure 3.26     Major data paths in a generic VLIW processor.  
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   3.11.1    Data Dependencies 

 With out - of - order execution, three types of dependencies are possible between 
two instructions,  I i   and  I j   ( i  precedes  j  in execution sequence). The fi rst, vari-
ously called a read - after - write (RAW) dependency or an essential dependency, 
arises when the destination of  I i   is the same as the source of  I j  :

   D Si j= 1 or  

   D Si j= 2   

 This is a data or address dependency. 
 Another condition that causes a dependency occurs when the destination 

of instruction  I j   is the same as the source of a preceding instruction  I i  . This 
occurs when

   D Sj i= 1 or  

   D Sj i= 2 .   

 This arises when an instruction in sequence is delayed and a following instruc-
tion is allowed to precede in execution order and to change the contents of 
one of the original instruction ’ s source registers; as in the following example 
( R3  is the destination), 

     

   I  1     DIV    R3,    R1,    R2  
   I  2     ADD    R5,    R3,    R4  
   I  3     ADD    R3,    R6,    R7.  

 Instruction 2 is delayed by a divide operation in instruction 1. If instruction 3 
is allowed to execute as soon as its operands are available, this might change 
the register ( R3 ) used in the computation of instruction 2. A dependency of 
this type is called a write - after - read (WAR) dependency or an ordering depen-
dency, since it only happens when out - of - order execution is allowed. 

 In the fi nal type of dependency, the destination of instruction  I i  , is the same 
as the destination of instruction  I j  , or

   D Di j= .   

 In this case, instruction  I i   could complete after instruction  I j  , and the result in 
the register is that of instruction  I i   when it ought to be that of  I j  . This depen-
dency, called a write - after - write (WAW) dependency or an output dependency, 
is somewhat debatable. If instruction  I i   produces a result that is not used by 
an instruction that follows it until instruction  I j   produces a new result for 
the same destination, then instruction  I i   was unnecessary in the fi rst place 

c03.indd   109c03.indd   109 5/4/2011   9:54:07 AM5/4/2011   9:54:07 AM



110  PROCESSORS

     Figure 3.27     Detecting independent instructions.  

 The fi rst example is a case of a redundant instruction (the  DIV ), whereas the 
second has an output dependency, but also has an essential dependency; once 
this essential dependency is dealt with, the output dependency is also covered. 
The fewer the dependencies that arise in the code, the more concurrency avail-
able in the code and the faster the overall program execution.  

   3.11.2    Detecting Instruction Concurrency 

 Detection of instruction concurrency can be done at compile time, at run time 
(by the hardware), or both. It is clearly best to use both the compiler and the 
run - time hardware to support concurrent instruction execution. The compiler 
can unroll loops and generally create larger basic block sizes, reducing branches. 
However, it is only at run time that the complete machine state is known. For 
example, an apparent resource dependency created by a sequence of  divide , 
 load ,  divide  instructions may not exist if, say, the intervening load instruc-
tion created a cache miss. 

 Instructions are checked for dependencies during decode. If an instruction 
is found to be independent of other, earlier instructions, and if there are avail-
able resources, the instruction is issued to the functional unit. The total number 
of instructions checked determines the size of the instruction window (Figure 
 3.28 ). Suppose the instruction window has  N  instructions, and at any given 
cycle  M  instructions are issued. In the next cycle, the successor  M  instructions 

  Example #1  
       DIV    R3,    R1,    R2  

  ADD    R3,    R4,    R5.    

  Example #2  
       DIV      R3,      R1,      R2    

  ADD      R5,      R3,      R4    
  ADD      R3,      R6,      R7.    

 Figure  3.27  . As this type of dependency is generally eliminated by an optimiz-
ing compiler, it can be largely ignored in our discussions. We illustrate this with 
two examples:   
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     Figure 3.28     Instruction window.  
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are brought into the buffer, and again  N  instructions are checked. Up to  M  
instructions may be issued in a single cycle.   

 Ordering and output dependencies can be eliminated with suffi cient regis-
ters. When either of these dependencies is detected it is possible to rename 
the dependent register to another register usually not available to the instruc-
tion set. This type of renaming requires that the register set be extended to 
include  rename registers . A typical processor may extend a 32 - register set 
specifi ed by the instruction set to a set of 45 – 60 total registers, including the 
rename registers (for SOC processor usage see Table  3.14 ).   

 Figure  3.29  illustrates the overall layout of an  M  pipelined processor inspect-
ing  N  instructions and issuing  M  instructions.   

 Any of the  N  instructions in the window are candidates for issue, depending 
on whether they are independent and whether there are execution resources 
available. 

 If the processor, for example, can only accommodate two L/S instructions, 
a fl oating - point instruction, and a fi xed - point instruction, then the decoder in 
the instruction window must select these types of instructions for issue. So 
three L/S instructions could not be issued even if they were all independent. 

 Scheduling is the process of assigning specifi c instructions and their operand 
values to designated resources at designated times. Scheduling can be done 
either centrally or in a distributed manner by the functional units themselves 

  TABLE 3.14    Renaming Characteristics of Some  SOC  Designs 

   SOC     Renaming Buffer Size     Reservation Station Number  

  Freescale e600    16 GPR, 16 FPR, 16 VR    8  
  MIPS 74K    32 CB     —   

   GPR, general - purpose register; FPR, fl oating - point register; VR, vector register; CB, completion 
buffer.   
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at execution time. The former approach is called control fl ow scheduling; the 
latter is called datafl ow scheduling. In control fl ow scheduling, dependencies 
are resolved during the decode cycle and the instructions are held (not issued) 
until the dependencies have been resolved. In a datafl ow scheduling system, 
the instructions leave the decode stage when they are decoded and are held 
in buffers at the functional units until their operands and the functional unit 
are available. 

 Early machines used either control fl ow or datafl ow to ensure correct 
operation of out - of - order instructions. The CDC 6600  [242]  used a control fl ow 
approach. The IBM 360 Model 91  [246]  was the fi rst system to use datafl ow 
scheduling.  

   3.11.3    A Simple Implementation 

 In this section, we look at a simple scheduling implementation. While it uses 
 N     =    1 and  M     =    1, it allows out - of - order execution and illustrates a basic strat-
egy in managing dependencies. 

 Consider a system with multiple functional units, each of whose executions 
may involve multiple cycles. Using the L/S architecture as our model, we 
assume that there is a centralized single set of registers that provide operands 
for the functional units. 

 Suppose there are up to  N  instructions already dispatched for execution, 
and we must determine how to issue an instruction currently at the decoder. 
Issuing a single instruction in the presence of up to  N     −    1 unissued previous 
instructions is equivalent to issuing that instruction as the last of  N  instructions 
issued at one time. 

     Figure 3.29     An  M  pipelined processor.  
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SUPERSCALAR PROCESSORS  113

 We use an approach sometimes referred to as the datafl ow approach or a 
tag - forwarding approach. It was fi rst suggested by Tomasulo  [246] , and it is 
also known by his name. 

 Each register in the central register set is extended to include a tag that 
identifi es the functional unit that produces a result to be placed in a particular 
register. Similarly, each of the multiple functional units has one or more res-
ervation stations (Figure  3.30 ).   

 The reservation station contains either a tag identifying another functional 
unit or register,  or it can contain the value needed . Operand values for a par-
ticular instruction need not be available for the instruction to be issued to the 
reservation station; the tag of a particular register may be substituted for a 
value, in which case the reservation station waits until the value is available. 
Since the reservation station holds the current  value  of the available data, it 
acts as a rename register, and thus the scheme avoids ordering and output 
dependencies. 

 Control is distributed within the functional units. Each reservation station 
effectively defi nes its own functional unit; thus, two reservations for a fl oating -
 point multiplier are two functional unit tags: multiplier 1 and multiplier 2 
(Figure  3.31 ). If operands can go directly into the multiplier, then there is 

     Figure 3.30     Reservation stations are associated with function units. They contain 
instruction opcode and data values or a tag corresponding to a data value pending 
entry into a functional unit. They perform the function of a rename register.  
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another tag: multiplier 3. Once a pair of operands has a designated functional 
unit tag, that tag remains with that operand pair until the completion of the 
operation. Any unit (or register) that depends on that result has a copy of the 
functional unit tag and ingates the result that is broadcast on the bus.   

 For the preceding example, 
     

   DIV.F      R3,      R1,      R2   
   MPY.F      R5,      R3,      R4   
   ADD.F      R4,      R6,      R7.   

 The  DIV.F  is initially issued to the divide unit with values from  R1  and  R2 . 
(Assuming they are available, they are fetched from the common bus.) A 
divide unit tag is issued to  R3 , indicating that it does not currently contain a 
valid value. On the next cycle, the  MPY.F  is issued to the multiply unit, together 
with the value from  R4  and a TAG [DIV] from  R3 . When the divide unit 
completes, it broadcasts its result; this is ingated into the multiply unit reserva-
tion station, since it is holding a  “ divide unit ”  tag. In the meantime, the add 
unit has been issued values from  R6  and  R7  and commences addition.  R4  gets 
the tag from the adder; no ordering dependency occurs since the multiplier 
already has the old value of  R4 . 

 In the datafl ow approach, the results to a targeted register may never actu-
ally go to that register; in fact, the computation based on the load of a particu-
lar register may be continually forwarded to various functional units, so that 
before the value is stored, a new value based upon a new computational 
sequence (a new load instruction) is able to use the targeted register. This 
approach partially avoids the use of a central register set, thereby avoiding the 
register ordering and output dependencies. 

 Whether the ordering and output dependencies are a serious problem or 
not is the subject of some debate  [228] . With a larger register set, an optimizing 
compiler can distribute the usage of the registers across the set and avoid the 
register – resource dependencies. Of course, all schemes are left with the essen-
tial (type 1) dependency. Large register sets may have their own disadvantages, 
however, especially if save and restore traffi c due to interrupts becomes a 
signifi cant consideration. 

 Study 3.1   Sample Timing 

    For the code sequence 

   I  1      DIV.F      R3,      R1,      R2   
   I  2      MPY.F      R5,      R3,      R4   
   I  3      ADD.F      R4,      R6,      R7,   
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 assume three separate fl oating - point units with execution times: 

  Divide    Eight cycles  
  Multiply    Four cycles  
  Add    Three cycles  

 and show the timing for a datafl ow. 

 For this approach, we might have the following: 

  Cycle 1    Decoder issues  I  1     →     DIV  unit  
  R1    →     DIV  Res Stn  
  R2    →     DIV  Res Stn  
   TAG_DIV     →    R3  

  Cycle 2    Begin  DIV.F   
  Decoder issues  I  2     →     MPY  unit  
       TAG_DIV     →     MPY  unit  
       R4     →     MPY  Res Stn  
       TAG_MPY     →     R5   

  Cycle 3    Multiplier waits  
  Decoder issues  I  3     →     ADD  unit  
       R6     →     ADD  Res Stn  
       R7     →     ADD  Res Stn  
       TAG_ADD     →     R4   

  Cycle 4    Begin  ADD.F   
  Cycle 6     ADD  unit requests broadcast next cycle (granted).  

   ADD  unit completes this cycle.  
  Cycle 7     ADD  unit result    →     R4   
  Cycle 9     DIV  unit requests broadcast next cycle (granted).  

   DIV  unit completes this cycle.  
  Cycle 10     DIV  unit    →     R3   

   DIV  unit    →     MPY  unit  
  Cycle 11    Begin  MPY.F   
  Cycle 14    Multiply completes and requests data broadcast (granted).  
  Cycle 15     MPY  unit result    →     R5 .  

 As far as implementation is concerned, the issue logic is distributed in the 
reservation stations. When multiple instructions are to be issued in the same 
cycle, then there must be multiple separate buses to transmit the information: 
operation, tag/value #1, tag/value #2, and destination. We assume that the 
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reservation stations are associated with the functional units. If we centralize 
the reservation stations for implementation convenience, the design would be 
generally similar to an improved control fl ow, or  scoreboard . 

  Action Summary     We can summarize the basic rules:

   1.     The decoder issues instructions to a functional unit reservation station 
with data values if available otherwise with register tag.  

  2.     The destination register (specifi ed by instruction) gets the functional unit 
tag.  

  3.     Continue issue until a type of reservation station is FULL. Unissued 
instructions are held PENDING.  

  4.     Any instruction that depends on an unissued or pending instruction must 
also be held in a pending state.      

   3.11.4    Preserving State with Out - of - Order Execution 

 Out - of - order execution leads to an apparently ill - defi ned machine state, even 
as the code is executing correctly. If an interrupt arises or some sort of an 
exception is taken (perhaps even a misguessed branch outcome), there can be 
a general ambiguity as to the exact source of the exception or how the machine 
state should be saved and restored for further instruction processing. There 
are two basic approaches to this problem:

   1.     Restrict the programmer ’ s model. This applies only to interrupts and 
involves the use of a device called an imprecise interrupt, which simply 
indicates that an exception has occurred someplace in some region 
of code without trying to isolate it further. This simple approach may 
be satisfactory for signal or embedded processors that use only real 
(no virtual) memory but is generally unacceptable for virtual memory 
processors. 

 A load instruction that accesses a page not currently in memory can 
have disastrous consequences if several instructions that followed it are 
already in execution. When control returns to the process after the 
missing page is loaded, the load can execute together with instructions 
that depended upon it, but other instructions that were previously exe-
cuted should not be re - executed. The control for all this can be formi-
dable. The only acceptable alternative would be to require that all pages 
used by a particular process be resident in memory before execution 
begins. In programming environments where this is feasi ble and practi-
cal, such as in large scientifi c applications, this may be a solution.  

  2.     Create a write - back that preserves the ordered use of the register set or 
at least allows the reconstruction of such an ordered register set.    
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     Figure 3.32     Simple register fi le organization.  
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     Figure 3.34     Distributed reorder buffer method.  
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 In order to provide a sequential model of program execution, some mecha-
nism must be provided that properly manages the register fi le state. The key 
to any successful scheme  [135, 221]  is the effi cient management of the register 
set and its state. If instructions execute in order, then results are stored in the 
register fi le (Figure  3.32 ). Instructions that can complete early must be held 
pending the completion of previously issued but incomplete instructions. This 
sacrifi ces performance.   

 Another approach uses a reorder buffer (Figure  3.33 ). The results arrive at 
the reorder buffer out of program sequence, but they are written back to the 
sequential register fi le in program order, thus preserving the register fi le state. 
In order to avoid confl icts at the reorder buffer, we can distribute the buffer 
across the various functional units as shown in Figure  3.34 . Either of these 
techniques allows out - of - order instruction execution but preserves in - order 
write - back to the register set.     
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   3.12    PROCESSOR EVOLUTION AND TWO EXAMPLES 

 We bring the concepts of the earlier sections together with a few observations 
and then by looking at an example of a currently available high - performance 
processor. 

   3.12.1    Soft and Firm Processor Designs: The Processor as  IP  

 Processor designs for use in SOC and other application - specifi c areas require 
more than just generic processor concepts. The designer is still faced with 
achieving the best possible performance for a given number of transistors. The 
object is to have effi cient, modular designs that can be readily adapted to a 
number of situations. The better designs have 

  1.     an instruction set that makes effi cient use of both instruction memory 
(code density) and data memory (several operand sizes);  

  2.     an effi cient microarchitecture that maintains performance across a broad 
range of applications;  

  3.     a relatively simple base structure that is economical in its use of 
transistors;  

  4.     a selected number of coprocessor extensions that can be readily added 
to the base processor; these would include fl oating - point and vector 
coprocessors; and  

  5.     full software support for all processor confi gurations; this includes com-
pilers and debuggers.    

 A classic example of this type of processor design is the ARM 1020. It uses an 
instruction set with both 16 -  and 32 - bit instructions for improved code density. 
The data paths for the 1020T are shown in Figure  3.35 . A debug and system 
control coprocessor and/or a vector and fl oating - point coprocessor can be 
added directly for enhanced performance. The ARM bus is also a standard for 
SOC use.   

 The instruction timing is a quite simple six - stage pipeline as shown in Figure 
 3.36 . Because of its simplicity, it can achieve close to its peak performance of 
one instruction for each cycle (ignoring cache misses).    

   3.12.2    High - Performance, Custom - Designed Processors 

 When the target is high - performance workstations, design effort is a secondary 
issue to performance (but not to time - to - market). The result is that large teams 
of designers focus on custom circuitry, clocking, algorithms and microarchitec-
ture to achieve performance on a schedule. An example is the Freescale e600 
(Figure  3.37 ). Such processors use all the design techniques discussed in this 
chapter plus others:
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     Figure 3.35     ARM 1020 data paths  [20].   
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     Figure 3.36     The ARM pipeline.  

IF1 WB
EX/
DF

IF2 ID
EX/
AG

INTEGER PIPELINE

   1.     With lots of area (transistors) available, we would expect to see large 
branch tables, multiple execution units, multiple instruction issue, and 
out - of - order instruction completion.    

  2.     With increased clock rates and a shorter cycle time, we would expect to 
see some basic operations (e.g., I fetch) to take more than one cycle. 
Overall, with shorter clocks and a much more elaborate pipeline, the 
timing template is signifi cantly longer (a larger number of steps).  

  3.     Since large caches have a long access time, we would expect to see small 
fi rst - level caches supported by a hierarchy of one or more levels of 
increasing larger caches.      

   3.13    CONCLUSIONS 

 Pipelined processors have become the implementation of choice for almost 
all machines from mainframes to microprocessors. High - density VLSI logic 
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technology, coupled with high - density memory, has made possible this move-
ment to increasingly complex processor implementations. 

 In modeling the performance of pipelined processors, we generally allocate 
a basic quantum of time for each instruction and then add to that the expected 
delays due to dependencies that arise in code execution. These dependencies 
usually arise from branches, dependent data, or limited execution resources. 
For each type of dependency, there are implementation strategies that mitigate 
the effect of the dependency. Implementing branch prediction strategies, for 
example, mitigates the effect of branch delays. Dependency detection comes 
at the expense of interlocks, however. The interlocks consist of logic associated 
with the decoder to detect dependencies and to ensure proper logical opera-
tion of the machine in executing code sequences. 

   3.14     PROBLEM SET 

       1.    Following Study  3.1 , show the timing for the following three instruction 
sequences:   

       

     Figure 3.37     Freescale e600 data paths  [101].   
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    2.    From the Internet, fi nd three recent processor offerings and their corre-
sponding parameters.   

    3.    Suppose a vector processor achieves a speedup of 2.5 on vector code. In 
an application whose code is 50% vectorizable, what is the overall speedup 
over a nonvector machine? Contrast the expected speedup with a VLIW 
machine that can execute a maximum of four arithmetic operations per 
cycle (cycle time for VLIW and vector processor are the same).   

    4.    A certain store buffer has a size of four entries. The mean number used is 
two entries.

    (a)     Without knowing the variance, what is the probability of a  “ buffer full 
or overfl ow ”  delay?  

   (b)     Now suppose the variance is known to be   σ   2     =    0.5; what is the prob-
ability of such a delay?      

     5.     (a)    Suppose a certain processor has the following  BC  behavior: a three -
 cycle penalty on correct guess of target, and a six - cycle penalty when 
it incorrectly guesses the target and the code actually goes in - line. 
Similarly, it has a zero - cycle penalty on correct in - line guess, but a 
six - cycle penalty when it incorrectly guesses in - line and the target path 
is taken. The target path should be guessed when the probability of 
going to the target is known to exceed what percent? 

   (b)     For an L/S machine that has a three - cycle cache access and an 8 - byte 
physical word, how many words (each 8 bytes) are required for the 
in - line (primary) path of an I - buffer to avoid runout?      

     6.       (a)     A branch table buffer (BTB) can be accessed while the branch is 
decoded so that the target address (only) is available at the end of the 
branch decode cycle. 

    IF IF D AG AG DF DF EX EX  

 For an R/M machine with BTB and timing template as shown in 
the above chart (one decode each cycle), what is the  BR  penalty and 
the  BC  penalty in cycles? (Assume that all of the BRs and 50% of the 
BCs hit in the BTB, that 80% of those BCs that hit are actually taken, 
and that 20% of those BCs that did not hit were actually taken.)  

   (b)     If target instructions are placed directly in the BTB, what is the penalty 
for  BR  and for  BC  in cycles (same assumptions as [a])?      

    7.    A BTB can be used together with history bits to determine when to place 
a target in the BTB. This might make small BTBs more effective. Below 

   ADD.F      R1,      R2,      R3   
   SUB.F      R3,      R4,      R5   
   MPY.F      R3,      R1,      R7   
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what size BTB would a 2 - bit branch history approach be attractive (for 
the scientifi c environment)?   

    8.    Find a commercial VLIW machine and its instruction layout. Describe it 
and then write an instruction sequence that could compute  A  2     +    7    ×     B     +    
 A     ×     C     −     D /( A     ×     B ). Load values into registers, then compute.   

    9.    Rename registers can take the place of a register set specifi ed by the 
instruction set. Compare the approach of having no register set (as in a 
single accumulator instruction set) and having no rename registers but 
having a large register set in the instruction set.   

    10.    Find an SOC confi guration that uses a vector processor and describe the 
architecture of the vector processor — number of register sets, register per 
set, instruction format, and so on.   

    11.    Find an SOC confi guration that uses a superscalar processor and describe 
the architecture of the processor — register sets, number of rename regis-
ters, control fl ow or datafl ow, instruction format, and so on.        
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  4    Memory Design: System - on - Chip 
and Board - Based Systems     

    4.1    INTRODUCTION 

 Memory design is the key to system design. The memory system is often the 
most costly (in terms of area or number of die) part of the system and it largely 
determines the performance. Regardless of the processors and the intercon-
nect, the application cannot be executed any faster than the memory system, 
which provides the instructions and the operands. 

 Memory design involves a number of considerations. The primary con-
sideration is the application requirements: the operating system, the size, 
and the variability of the application processes. This largely determines the 
size of memory and how the memory will be addressed: real or virtual. Figure 
 4.1  is an outline for memory design, while Table  4.1  compares the relative area 
required for different memory technologies.     

 We start by looking at issues in SOC external and internal memories. We 
then examine scratchpad and cache memory to understand how they operate 
and how they are designed. After that, we consider the main memory problem, 
fi rst the on - die memory and then the conventional dynamic RAM (DRAM) 
design. As part of the design of large memory systems, we look at multiple 
memory modules, interleaving, and memory system performance. Figure  4.2  
presents the SOC memory design issues. In this chapter the interconnect, 
processors, and I/O are idealized so that the memory design trade-offs can be 
characterized.   

 Table  4.2  shows the types of memory that can be integrated into an SOC 
design.   

  Example.  Required functionality can play a big role in achieving perfor-
mance. Consider the differences between the two paths of Figure  4.1 : the 
maximum functionality path and the restricted functionality path. The differ-
ence seems slight, whether the memory is off - die or on - die. The resulting 
performance difference can be great because of the long off - die access time. 
If the memory (application data and program) can be contained in an on - die 
memory, the access time will be 3 – 10 cycles. 

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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 Off - die access times are an order of magnitude greater (30 – 100 cycles). To 
achieve the same performance, the off - die memory design must have an order 
of magnitude more cache, often split into multiple levels to meet access time 
requirements. Indeed, a cache bit can be 50 times larger than an on - die embed-
ded DRAM (eDRAM) bit (see Chapter  2  and Section  4.13 ). So the true cost 
of the larger cache required for off - die memory support may be 10 by 50 or 
500 DRAM bits. If a memory system uses 10K rbe for cache to support an 
on - die memory, the die would require 100K rbe to support off - die memory. 
That 90K rbe difference could possibly accommodate 450K eDRAM bits.  

     Figure 4.1     An outline for memory design.  
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  TABLE 4.1    Area Comparison for Different Memory Technologies 

   Memory Technology     rbe     KB per Unit A  

  DRAM    0.05 – 0.1    1800 – 3600  
  SRAM    0.6    300  
  ROM/PROM    0.2 – 0.8 +     225 – 900  
  eDRAM    0.15    1200  
  Flash: NAND    0.02    10,000  
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   4.2    OVERVIEW 

   4.2.1     SOC  External Memory: Flash 

 Flash technology is a rapidly developing technology with improvements 
announced regularly. Flash is not really a memory replacement but is probably 
better viewed as a disk replacement. However, in some circumstances and 
confi gurations, it can serve the dual purpose of memory and nonvolatile 
backup storage. 

 Flash memory consists of an array of fl oating gate transistors. These transis-
tors are similar to MOS transistors but with a two - gate structure: a control 
gate and an insulated fl oating gate. Charge stored on the fl oating gate is 
trapped there, providing a nonvolatile storage. While the data can be rewritten, 
the current technology has a limited number of reliable rewrite cycles, usually 

     Figure 4.2     The SOC memory model.  
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  TABLE 4.2    Some Flash Memory ( NAND ) Package Formats (2 -  to 128 -  GB  Size) 

   Format  
   (Approx.) 
Size (mm)  

   Weight 
(g)  

   Speed (Read/
Write) (MBps)  

   Typical 
Applications  

  Compact fl ash (CF)    36    ×    43    ×    3.3    11.4    22/18    Digital camera  
  Secure digital (SD)    32    ×    24    ×    2.1    2.0    22/18    Digital/video 

camera  
  Mini SD    20    ×    20    ×    1.2    1.0    22/18    Cell phone, GPS  
  Micro SD    15    ×    11    ×    0.7    0.5    22/15    Mini cell phone  
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less than a million. Since degradation with use can be a problem, error detec-
tion and correction are frequently implemented. 

 While the density is excellent for semiconductor devices, the write cycle 
limitation generally restricts the usage to storing infrequently modifi ed data, 
such as programs and large fi les. 

 There are two types of fl ash implementations: NOR and NAND. The NOR 
implementation is more fl exible, but the NAND provides a signifi cantly better 
bit density. Hybrid NOR/NAND implementations are also possible with the 
NOR array acting as a buffer to the larger NAND array. Table  4.3  provides a 
comparison of these implementations.   

 Flash memory cards come in various package formats; larger sizes are 
usually older (see Table  4.2 ). Small fl ash dice can be  “ stacked ”  with an SOC 
chip to present a single system/memory package. A fl ash die can also be 
stacked to create large (64 – 256   GB) single memory packages. 

 In current technology, fl ash usually is found in off - die implementations. 
However, there are a number of fl ash variants that are specifi cally designed 
to be compatible with ordinary SOC technology. SONOS  [201]  is a nonvolatile 
example, and Z - RAM  [91]  is a DRAM replacement example. Neither seems 
to suffer from rewrite cycle limitations. Z - RAM seems otherwise compatible 
with DRAM speeds while offering improved density. SONOS offers density 
but with slower access time than eDRAM.  

   4.2.2     SOC  Internal Memory: Placement 

 The most important and obvious factor in memory system design is the place-
ment of the main memory: on - die (the same die as the processor) or off - die 
(on its own die or on a module with multiple dice). As pointed out in Chapter 
 1 , this factor distinguishes conventional workstation processors and application -
 oriented board designs from SOC designs. 

 The design of the memory system is limited by two basic parameters that 
determine memory systems performance. The fi rst is the access time. This is the 

  TABLE 4.3    Comparison of Flash Memories 

   Technology     NOR     NAND  

  Bit density (KB/A)    1000    10,000  
  Typical capacity    64   MB    16   GB (dice can be 

stacked by 4 or more)  
  Access time    20 – 70   ns    10     μ  s  
  Transfer rate 

(MB per sec.)  
  150    300  

  Write time(  μ  s)    300    200  
  Addressability    Word or block    Block  
  Application    Program storage and 

limited data store  
  Disk replacement  
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time for a processor request to be transmitted to the memory system, access a 
datum, and return it back to the processor. Access time is largely a function of 
the physical parameters of the memory system — the physical distance between 
the processor and the memory system, or the bus delay, the chip delay, and so 
on. The second parameter is  memory bandwidth , the ability of the memory to 
respond to requests per unit time. Bandwidth is primarily determined by the 
way the physical memory system is organized — the number of independent 
memory arrays and the use of special sequential accessing modes. 

 The cache system must compensate for limits on memory access time and 
bandwidth. 

 The workstation processor, targeting high performance, requires a very 
effi cient memory system, a task made diffi cult by memory placement off - die. 
Table  4.4  compares the memory system design environments.   

 The workstation and board - based memory design is clearly a greater chal-
lenge for designers. Special attention must be paid to the cache, which must 
make up for the memory placement diffi culties.  

   4.2.3    The Size of Memory 

 As it will become obvious in this chapter, designing for large off - die memory 
is the key problem in system board designs. So why not limit memory to sizes 
that could be incorporated on a die? In a virtual memory system, we can still 
access large address spaces for applications. For workstations, the application 
environment (represented by the operating system) has grown considerably 
(see Figure  4.3 ). As the environment continues to grow, so too does the 
working set or the active pages of storage. This requires more real (physical) 
memory to hold a suffi cient number of pages to avoid excessive page swapping, 

  TABLE 4.4    Comparing System Design Environments 

   Item     Workstation Type     SOC Single Die     SOC Board Based  

  Processor    Fastest available    Smaller, perhaps 
four to six 
times slower  

  As with SOC  

  Cache    Two to three levels, 
very large (4 – 64   MB)  

  Simple, single 
level (256   KB)  

  Single level, 
multielement  

  Memory bus    Complex, slow pin 
limited  

  Internal, wide, 
high bandwidth  

  Mix  

  Bus control    Complex timing and 
control  

  Simple, internal    Mix  

  Memory    Very large (16 +    GB), 
limited bandwidth  

  Limited size 
(256   MB), 
relatively fast  

  Specialized on 
board  

  Memory 
access time  

  20 – 30   ns    3 – 5   ns    Mix  
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128  MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

which can destroy performance. Board - based systems face a slightly different 
problem. Here, the media - based data sets are naturally very large and require 
large bandwidths from memory and substantial processing ability from the 
media processor. Board - based systems have an advantage, however, as the 
access time is rarely a problem so long as the bandwidth requirements are met. 
How much memory can we put on a die? Well, that depends on the technology 
(feature size) and the required performance. Table  4.1  shows the area occupied 
for various technologies. The eDRAM size assumes a relatively large memory 
array (see later in this chapter). So, for example, in a 45 - nm technology, we 
might expect to have about 49.2   kA/cm 2  or about 8   MB of eDRAM. Advancing 
circuit design and technology could signifi cantly improve that, but it does seem 
that about 64   MB would be a limit, unless a compatible fl ash technology 
becomes available.     

   4.3    SCRATCHPADS AND CACHE MEMORY 

 Smaller memories are almost always faster than larger memory, so it is useful 
to keep frequently used (or anticipated) instructions and data in a small, easily 
accessible (one cycle access) memory. If this memory is managed directly by 
the programmer, it is called a scratchpad memory; if it is managed by the 
hardware, it is called a cache. 

 Since management is a cumbersome process, most general - purpose com-
puters use only cache memory. SOC, however, offers the potential of having 
the scratchpad alternative. Assuming that the application is well - known, the 
programmer can explicitly control data transfers in anticipation of use. 

     Figure 4.3     Required disk space for several generations of Microsoft ’ s Windows oper-
ating system. The newer Vista operating system requires 6   GB.  
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Eliminating the cache control hardware offers additional area for larger 
scratchpad size, again improving performance. 

 SOC implements scratchpads usually for data and not for instructions, as 
simple caches work well for instructions. Furthermore, it is not worth the 
programming effort to directly manage instruction transfers. 

 The rest of this section treats the theory and experience of cache memory. 
Because there has been so much written about cache, it is easy to forget the 
simpler and older scratchpad approach, but with SOC, sometimes the simple 
approach is best. 

 Caches work on the basis of the locality of program behavior  [113] . There 
are three principles involved:

   1.     Spatial Locality.     Given an access to a particular location in memory, 
there is a high probability that other accesses will be made to either that 
or neighboring locations within the lifetime of the program.  

  2.     Temporal Locality.     Given a sequence of references to  n  locations, there 
will be references into the same locations with high probability.  

  3.     Sequentiality.     Given that a reference has been made to location  s , it is 
likely that within the next few references, there will be a reference to the 
location of  s     +    1. This is a special case of spatial locality.    

 The cache designer must deal with the processor ’ s accessing requirements on 
the one hand, and the memory system ’ s requirements on the other. Effective 
cache designs balance these within cost constraints.  

   4.4    BASIC NOTIONS 

 Processor references contained in the cache are called cache hits. References 
not found in the cache are called cache misses. On a cache miss, the cache 
fetches the missing data from memory and places it in the cache. Usually, the 
cache fetches an associated region of memory called the line. The line consists 
of one or more physical words accessed from a higher - level cache or main 
memory. The physical word is the basic unit of access to the memory. 

 The processor – cache interface has a number of parameters. Those that 
directly affect processor performance (Figure  4.4 ) include the following:

   1.     Physical word — unit of transfer between processor and cache.   
 Typical physical word sizes: 
 2 – 4 bytes — minimum, used in small core - type processors 
 8 bytes and larger — multiple instruction issue processors (superscalar)  

  2.     Block size (sometimes called  line ) — usually the basic unit of transfer 
between cache and memory. It consists of  n  physical words transferred 
from the main memory via the bus.  
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130  MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

  3.     Access time for a cache hit — this is a property of the cache size and 
organization.  

  4.     Access time for a cache miss — property of the memory and bus.  
  5.     Time to compute a real address given a virtual address (not - in - transla-

tion lookaside buffer [TLB] time) — property of the address translation 
facility.  

  6.     Number of processor requests per cycle.    

 Cache performance is measured by the miss rate or the probability that a 
reference made to the cache is not found. The miss rate times the miss time is 
the delay penalty due to the cache miss. In simple processors, the processor 
stalls on a cache miss. 

    

     Figure 4.4     Parameters affecting processor performance.  
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 IS CACHE A PART OF THE PROCESSOR? 

 For many IP designs, the fi rst - level cache is integrated into the processor 
design, so what and why do we need to know cache details? The most 
obvious answer is that an SOC consists of multiple processors that must 
share memory, usually through a second - level cache. Moreover, the 
details of the fi rst - level cache may be essential in achieving memory 
consistency and proper program operation. So for our purpose, the cache 
is a separate, important piece of the SOC. We design the SOC memory 
hierarchy, not an isolated cache. 

   4.5    CACHE ORGANIZATION 

 A cache uses either a fetch - on - demand or a prefetch strategy. The former 
organization is widely used with simple processors. A demand fetch cache 
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brings a new memory locality into the cache only when a miss occurs. The 
prefetch cache attempts to anticipate the locality about to be requested and 
 prefetches  it. It is commonly used in I - caches. 

 There are three basic types of cache organization: fully associative (FA) 
mapping (Figure  4.5 ), direct mapping (Figure  4.6 ), and set associative mapping 
(Figure  4.7 , which is really a combination of the other two). In an FA cache, 
when a request is made, the address is compared (COMP) to the addresses of 
all entries in the directory. If the requested address is found (a directory hit), 
the corresponding location in the cache is fetched; otherwise, a  miss  occurs.   

 In a direct - mapped cache, the lower - order line address bits access the direc-
tory (index bits in Figure  4.8 ). Since multiple line addresses map into the same 
location in the cache directory, the upper line address bits (tag bits) must be 
compared to the directory address to validate a hit. If a comparison is not 
valid, the result is a miss. The advantage of the direct - mapped cache is that a 
reference to the cache array itself can be made  simultaneously with the access 
to the directory .   

     Figure 4.5     Fully associative mapping.  
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     Figure 4.6     Direct mapping.  
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 The address given to the cache by the processor is divided into several 
pieces, each of which has a different role in accessing data. In an address par-
titioned as in Figure  4.8 , the most signifi cant bits that are used for comparison 
(with the upper portion of a line address contained in the directory) are called 
the tag. 

 The next fi eld is called the  index , and it contains the bits used to address a 
line in the cache directory. The  tag  plus the  index  is the line address in memory. 

 The next fi eld is the  offset , and it is the address of a physical word within 
a line. 

 Finally, the least signifi cant address fi eld specifi es a  byte in a word . These 
bits are not usually used by the cache since the cache references a word. (An 
exception arises in the case of a  write  that modifi es only a part of a word.) 

 The set associative cache is similar to the direct - mapped cache. Bits from the 
line address are used to address a cache directory. However, now there are 
multiple choices: Two, four, or more complete line addresses may be present in 
the directory. Each address corresponds to a location in a subcache. The collec-
tion of these subcaches forms the total cache array. These subarrays can be 
accessed simultaneously, together with the cache directory. If any of the entries 
in the cache directory match the reference address, then there is a hit, and the 
matched subcache array is sent back to the processor. While selection in the 
matching process increases the cache access time, the set associative cache 
access time is usually better than that of the fully associative mapped cache. But 
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     Figure 4.7     Set associative (multiple direct - mapped caches) mapping.  
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the direct - mapped cache provides the fastest processor access to cache data for 
any given cache size.  

   4.6    CACHE DATA 

 Cache size largely determines cache performance (miss rate). The larger the 
cache, the lower the miss rate. Almost all cache miss rate data are empiri-
cal and, as such, have certain limitations. Cache data are strongly program 
dependent. Also, data are frequently based upon older machines, where the 

     Figure 4.8     Address partitioned by cache usage.  
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     Figure 4.9     A design target miss rate per reference to memory (fully associative, 
demand fetch, fetch [allocate] on write, copy - back with LRU replacement)  [223, 224] .  
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memory and program size were fi xed and small. Such data show low miss rate 
for relatively small size caches. Thus, there is a tendency for the measured miss 
rate of a particular cache size to increase over time. This is simply the result 
of measurements made on programs of increasing size. Some time ago, Smith 
 [224]  developed a series of design target miss rates (DTMRs) that represent 
an estimate of what a designer could expect from an integrated (instruction 
and data) cache. These data are presented in Figure  4.9  and give an idea of 
typical miss rates as a function of cache and line sizes.   

 For cache sizes larger than 1   MB, a general rule is that doubling the size halves 
the miss rate. The general rule is less valid in transaction - based programs.  

   4.7    WRITE POLICIES 

 How is memory updated on a write? One could write to both cache and 
memory (write - through or WT), or write only to the cache (copy - back or CB —
 sometimes called write - back), updating memory when the line is replaced. 
These two strategies are the basic cache write policies (Figure  4.10 ).   

 The write - through cache (Figure  4.10 a) stores into both cache and main 
memory on each CPU store. 

 Advantage: This retains a consistent (up - to - date) image of program activity 
in memory. 

 Disadvantage: Memory bandwidth may be high — dominated by write traffi c. 
 In the copy - back cache (Figure  4.10 b), the new data are written to memory 

when the line is replaced. This requires keeping track of modifi ed (or  “ dirty ” ) 
lines, but results in reduced memory traffi c for writes:
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     Figure 4.10     Write policies: (a) write - through cache (no allocate on write) and (b) copy - 
back cache (allocate on write).  
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   1.     Dirty bit is set if a write occurs anywhere in line.  
  2.     From various traces  [223] , the probability that a line to be replaced is 

dirty is 47% on average (ranging from 22% to 80%).  
  3.     Rule of thumb: Half of the data lines replaced are dirty. So, for a data 

cache, assume 50% are dirty lines, and for an integrated cache, assume 
30% are dirty lines.    

 Most larger caches use copy - back; write - through is usually restricted to either 
small caches or special - purpose caches that provide an up - to - date image of 
memory. Finally, what should we do when a write (or store) instruction misses 
in the cache? We can fetch that line from memory (write allocate or WA) or 
just write into memory (no write allocate or NWA). Most write - through caches 
do not allocate on writes (WTNWA) and most copy back caches do allocate 
(CBWA).  

   4.8    STRATEGIES FOR LINE REPLACEMENT AT MISS TIME 

 What happens on a cache miss? If the reference address is not found in the 
directory, a  cache miss  occurs. Two actions must promptly be taken: (1) The 
missed line must be fetched from the main memory, and (2) one of the current 
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cache lines must be designated for replacement by the currently accessed line 
(the missed line). 

   4.8.1    Fetching a Line 

 In a write - through cache, fetching a line involves accessing the missed line and 
the replaced line is discarded (written over). 

 For a copy - back policy, we fi rst determine whether the line to be replaced 
is  dirty  (has been written to) or not. If the line is clean, the situation is the 
same as with the write - through cache. However, if the line is dirty, we must 
write the replaced line back to memory. 

 In accessing a line, the fastest approach is the  nonblocking  cache or the 
 prefetching  cache. This approach is applicable in both write - through and copy -
 back caches. Here, the cache has additional control hardware to allow the 
cache miss to be handled (or bypassed), while the processor continues to 
execute. This strategy only works when the miss is accessing cache data that 
are not currently required by the processor. Nonblocking caches perform best 
with compilers that provide prefetching of lines in anticipation of processor 
use. The effectiveness of nonblocking caches depends on 

  1.     the number of misses that can be bypassed while the processor continues 
to execute; and  

  2.     the effectiveness of the prefetch and the adequateness of the buffers to 
hold the prefetch information; the longer the prefetch is made before 
expected use, the less the miss delay, but this also means that the buffers 
or registers are occupied and hence are not available for (possible) 
current use.     

   4.8.2    Line Replacement 

 The replacement policy selects a line for replacement when the cache is full. 
There are three replacement policies that are widely used:

   1.     Least Recently Used (LRU).     The line that was least recently accessed 
(by a read or write) is replaced.  

  2.     First In – First Out (FIFO).     The line that had been in the cache the longest 
is replaced.  

  3.     Random Replacement (RAND).     Replacement is determined randomly.    

 Since the LRU policy corresponds to the concept of temporal locality, it is 
generally the preferred policy. It is also the most complex to implement. Each 
line has a counter that is updated on a read (or write). Since these counters 
could be large, it is common to create an approximation to the true LRU with 
smaller counters. 
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 While LRU performs better than either FIFO or RAND, the use of the 
simpler RAND or FIFO only amplifi es the LRU miss rate (DTMR) by about 
1.10 (i.e., 10%)  [223] .  

   4.8.3    Cache Environment: Effects of System, Transactions, 
and Multiprogramming 

 Most available cache data are based upon trace studies of user applications. 
Actual applications are run in the context of the system. The operating system 
tends to slightly increase (20% or so) the miss rate experienced by a user 
program  [7] . 

 Multiprogramming environments create special demands on a cache. In 
such environments, the cache miss rates may not be affected by increasing 
cache size. There are two environments:

   1.     A Multiprogrammed Environment.     The system, together with several 
programs, is resident in memory. Control is passed from program to 
program after a number of instructions,  Q , have been executed, and 
eventually returns to the fi rst program. This kind of environment results 
in what is called a  warm  cache. When a process returns for continuing 
execution, it fi nds some, but not all, of its most recently used lines in the 
cache, increasing the expected miss rate (Figure  4.11  illustrates the 
effect).    

  2.     Transaction Processing.     While the system is resident in memory together 
with a number of support programs, short applications (transactions) run 

     Figure 4.11     Warm cache: cache miss rates for a multiprogrammed environment 
switching processes after  Q  instructions.  
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through to completion. Each application consists of  Q  instructions. This 
kind of environment is sometimes called a  cold  cache. Figure  4.12  illus-
trates the situation.      

 Both of the preceding environments are characterized by passing control from 
one program to another before completely loading the working set of the 
program. This can signifi cantly increase the miss rate.   

   4.9    OTHER TYPES OF CACHE 

 So far, we have considered only the simple integrated cache (also called a 
 “ unifi ed ”  cache), which contains both data and instructions. In the next few 
sections, we consider various other types of cache. The list we present (Table 
 4.5 ) is hardly exhaustive, but it illustrates some of the variety of cache designs 
possible for special or even commonplace applications.   

 Most currently available microprocessors use split I -  and D - caches, described 
in the next section.  

   4.10    SPLIT I -  AND D - CACHES AND THE EFFECT 
OF CODE DENSITY 

 Multiple caches can be incorporated into a single processor design, each cache 
serving a designated process or use. Over the years, special caches for systems 

     Figure 4.12     Cold cache: cache miss rates for a transaction environment switching 
processes after  Q  instructions.  
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  TABLE 4.5    Common Types of Cache 

   Type     Where It Is Usually Used  

  Integrated (or unifi ed)    The basic cache that accommodates all references (I 
and D). This is commonly used as the second -  and 
higher - level cache.  

  Split caches I and D    Provides additional cache access bandwidth with some 
increase in the miss rate (MR). Commonly used as a 
fi rst - level processor cache.  

  Sectored cache    Improves area effectiveness (MR for given area) for 
on - chip cache.  

  Multilevel cache    The fi rst level has fast access; the second level is usually 
much larger than the fi rst to reduce time delay in a 
fi rst - level miss.  

  Write assembly cache    Specialized, reduces write traffi c, usually used with a WT 
on - chip fi rst - level cache.  

code and user code or even special input/output (I/O) caches have been con-
sidered. The most popular confi guration of partitioned caches is the use of 
separate caches for instructions and data. 

 Separate instruction and data caches provide signifi cantly increased cache 
bandwidth, doubling the access capability of the cache ensemble. I -  and 
D - caches come at some expense, however; a unifi ed cache with the same size 
as the sum of a data and instruction cache has a lower miss rate. In the unifi ed 
cache, the ratio of instruction to data working set elements changes during the 
execution of the program and is adapted to by the replacement strategy. 

 Split caches have implementation advantages. Since the caches need not be 
split equally, a 75 – 25% or other split may prove more effective. Also, the 
I - cache is simpler as it is not required to handle stores.  

   4.11    MULTILEVEL CACHES 

   4.11.1    Limits on Cache Array Size 

 The cache consists of a static RAM (SRAM) array of storage cells. As the 
array increases in size, so does the length of the wires required to access its 
most remote cell. This translates into the cache access delay, which is a function 
of the cache size, organization, and the process technology (feature size,  f ). 
McFarland  [166]  has modeled the delay and found that an approximation can 
be represented as

   Access time ns( ) = + + +( )( ) × + −( )( )0 35 3 8 0 006 0 025 1 0 3 1 1. . . . . ,f f C A  

where  f  is the feature size in microns,  C  is the cache array capacity in kilobyte, 
and  A  is the degree of associativity (where direct map    =    1). 
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 The effect of this equation (for  A     =    1) can be seen in Figure  4.13 . If we limit 
the level 1 access time to under 1   ns, we are probably limited to a cache array 
of about 32   KB. While it is possible to interleave multiple arrays, the interleav-
ing itself has an overhead. So usually, L1 caches are less than 64   KB; L2 caches 
are usually less than 512   KB (probably interleaved using smaller arrays); and 
L3 caches use multiple arrays of 256   KB or more to create large caches, often 
limited by die size.    

   4.11.2    Evaluating Multilevel Caches 

 In the case of a multilevel cache, we can evaluate the performance of both 
levels using L1 cache data. A two - level cache system is termed  inclusive  if all 
the contents of the lower - level cache (L1) are also contained in the higher -
 level cache (L2). 

 Second - level cache analysis is achieved using the principle of inclusion; that 
is, a large, second - level cache includes the same lines as in the fi rst - level cache. 
Thus, for the purpose of evaluating performance, we can assume that the fi rst -
 level cache does not exist. The total number of misses that occur in a second -
 level cache can be determined by assuming that the processor made all of its 
requests to the second - level cache without the intermediary fi rst - level cache. 

 There are design considerations in accommodating a second - level cache to 
an existing fi rst - level cache. The line size of the second - level cache should be 
the same as or larger than the fi rst - level cache. Otherwise, if the line size in 
the second - level cache were smaller, loading the line in the fi rst - level cache 
would simply cause two misses in the second - level cache. Further, the second -
 level cache should be signifi cantly larger than the fi rst - level; otherwise, it 
would have no benefi t. 

     Figure 4.13     Cache access time (for a single array) as a function of cache array size.  
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 In a two - level system, as shown in Figure  4.14 , with fi rst - level cache, L1, and 
second - level cache, L2, we defi ne the following miss rates  [202] :

   1.     A local miss rate is simply the number of misses experienced by the cache 
divided by the number of references to it. This is the usual understanding 
of  miss rate .    

  2.     The global miss rate is the number of L2 misses divided by the number 
of references made by the processor. This is our primary measure of the 
L2 cache.  

  3.     The solo miss rate is the miss rate the L2 cache would have if it were the 
only cache in the system. This is the miss rate defi ned by the principle of 
inclusion.  If  L2 contains  all  of L1, then we can fi nd the number of L2 
misses and the processor reference rate, ignoring the presence of the L1 
cache. The principle of inclusion specifi es that the global miss rate is the 
same as the solo miss rate, allowing us to use the solo miss rate to evalu-
ate a design.    

 The preceding data (read misses only) illustrate some salient points in multi-
level cache analysis and design:

   1.     So long as the L1 cache is the same as or larger than the L2 cache, analy-
sis by the principle of inclusion provides a good estimate of the behavior 
of the L2 cache.  

  2.     When the L2 cache is signifi cantly larger than the L1 cache, it can be 
considered independent of the L1 parameters. Its miss rate corresponds 
to a solo miss rate.       

     Figure 4.14     A two - level cache.  
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  TABLE 4.6     SOC  Cache Organization 

   SOC     L1 Cache     L2 Cache  

  NetSilicon NS9775  [185]     8 - KB I - cache, 4 - KB D - cache     —   
  NXP LH7A404  [186]     8 - KB I - cache, 8 - KB D - cache     —   
  Freescale e600  [101]     32 - KB I - cache, 32 - KB D - cache    1   MB with ECC  
  Freescale PowerQUICC 

III  [102]   
  32 - KB I - cache, 32 - KB D - cache    256   KB with ECC  

  ARM1136J(F) - S  [24]     64 - KB I - cache, 64 - KB D - cache    Max 512   KB  

 E XAMPLE  4.1 

      L1
L2

L2 more than four times the L1 size

 

 Miss penalties:   

  Miss in L1, hit in L2:    2 cycles  
  Miss in L1, miss in L2:    15 cycles  

 Suppose we have a two - level cache with miss rates of 4% (L1) and 1% (L2). 
Suppose the miss in L1 and the hit in L2 penalty is 2 cycles, and the miss 
penalty in both caches is 15 cycles (13 cycles more than a hit in L2). If a pro-
cessor makes one reference per instruction, we can compute the excess cycles 
per instruction (CPIs) due to cache misses as follows:

   

Excess CPI due to L misses

refr inst misses refr cyc

1

1 0 0 04 2= × ×. . lles miss

CPI= 0 08.
 

   

Excess CPI due to L misses

refr inst misses refr cy

2

1 0 0 01 13= × ×. . ccles miss

CPI= 0 13. .
  

 Note: the L2 miss penalty is 13 cycles, not 15 cycles, since the 1% L2 misses 
have already been  “ charged ”  2 cycles in the excess L1 CPI:

   

Total effect excess L CPI excess L CPI

CPI

= +
= +
=

1 2

0 08 0 13

0 21

. .

. .
  

 The cache confi gurations for some recent SOCs are shown in Table  4.6 .    
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   4.11.3    Logical Inclusion 

 True or logical inclusion, where  all  the contents of L1 reside also in L2, should 
not be confused with statistical inclusion, where  usually , L2 contains the L1 
data. There are a number of requirements for logical inclusion. Clearly, the L1 
cache must be write - through; the L2 cache need not be. If L1 were copy - back, 
then a write to a line in L1 would not go immediately to L2, so L1 and L2 
would differ in contents. 

 When logical inclusion is required, it is probably necessary to actively force 
the contents to be the same and to use consistent cache policies. 

 Logical inclusion is a primary concern in shared memory multiprocessor 
systems that require a consistent memory image.   

   4.12    VIRTUAL - TO - REAL TRANSLATION 

 The TLB provides the real addresses used by the cache by translating the 
virtual addresses into real addresses. 

 Figure  4.15  shows a two - way set associative TLB. The page address (the 
upper bits of the virtual address) is composed of the bits that require transla-
tion. Selected virtual address bits address the TLB entries. These are selected 

     Figure 4.15     TLB with two - way set associativity.  
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     Figure 4.16     Not - in - TLB rate.  
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(or  hashed ) from the bits of the virtual address. This avoids too many address 
collisions, as might occur when both address and data pages have the same, 
say,  “ 000, ”  low - order page addresses. The size of the virtual address index is 
equal to log 2   t , where  t  is the number of entries in the TLB divided by the 
degree of set associativity. When a TLB entry is accessed, a virtual and real 
translation pair from each entry is accessed. The virtual addresses are com-
pared to the virtual address tag (the virtual address bits that were not used in 
the index). If a match is found, the corresponding real address is multiplexed 
to the output of the TLB.   

 With careful assignment of page addresses, the TLB access can occur at 
the same time as the cache access. When a translation is not found in the 
TLB, the process described in Chapter  1  must be repeated to create a correct 
virtual - to - real address pair in the TLB. This may require more than 10 cycles; 
TLB misses — called not - in - TLB — are costly to performance. TLB access in 
many ways resembles cache access. FA organization of TLB is generally slow, 
but four - way or higher set associative TLBs perform well and are generally 
preferred. 

 Typical TLB miss rates are shown in Figure  4.16 . FA data are similar to 
four - way set associative.   

 For those SOC or board - based systems that use virtual addressing, there 
are additional considerations:

   1.     Small TLBs may create excess not - in - TLB faults, adding time to program 
execution.  

  2.     If the cache uses real addresses, the TLB access must occur before the 
cache access, increasing the cache access time.    
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 Excess not - in - TLB translations can generally be controlled through the use of 
a well - designed TLB. The size and organization of the TLB depends on per-
formance targets. 

 Typically, separate instruction and data TLBs are used. Both TLBs might 
use 128 - entry, two - way set associative, and might use LRU replacement algo-
rithm. The TLB confl agrations of some recent SOCs are shown in Table  4.7 .    

   4.13     SOC  (ON - DIE) MEMORY SYSTEMS 

 On - die memory design is a special case of the general memory system design 
problem, considered in the next section. The designer has much greater fl ex-
ibility in the selection of the memory itself and the overall cache - memory 
organization. Since the application is known, the general size of both the 
program and data store can be estimated. Frequently, part of the program store 
is designed as a fi xed ROM. The remainder of memory is realized with either 
SRAM or DRAM. While the SRAM is realized in the same process technol-
ogy as the processor, usually DRAM is not. An SRAM bit consists of a six -
 transistor cell, while the DRAM uses only one transistor plus a deep trench 
capacitor. The DRAM cell is designed for density; it uses few wiring layers. 
DRAM design targets low refresh rates and hence low leakage currents. A 
DRAM cell uses a nonminimum length transistor with a higher threshold 
voltage, ( V T  ), to provide a lower - leakage current. This leads to lower gate 
overdrive and slower switching. For a stand - alone die, the result is that the 
SRAM is 10 – 20 times faster and 10 or more times less dense than DRAM. 

 eDRAM  [33, 125]  has been introduced as a compromise for use as an on - die 
memory. Since there are additional process steps in realizing an SOC with 
eDRAM, the macro to generate the eDRAM is fabrication specifi c and is 
regarded as a hard (or at least fi rm) IP. The eDRAM has an overhead (Figure 
 4.17 ) resulting in less density than DRAM. Process complexity for the eDRAM 
can include generating three additional mask layers resulting in 20% addi-
tional cost than that for the DRAM.   

 An SOC, using the eDRAM approach, integrates high - speed, high - leakage 
logic transistors with lower - speed, lower - leakage memory transistors on the 
same die. The advantage for eDRAM lies in its density as shown in Figure 
 4.18 . Therefore, one key factor for selecting eDRAM over SRAM is the size 
of the memory required.   

  TABLE 4.7     SOC   TLB  Organization 

   SOC     Organization     Number of Entries  

  Freescale e600  [101]     Separate I - TLB, D - TLB    128 - entry, two - way set 
associative, LRU  

  NXP LH7A404  [186]     Separate I - TLB, D - TLB    64 - entry each  
  NetSilicon NS9775 

(ARM926EJ - S)  [185]   
  Mixed    32 - entry two - way set 

associative  

c04.indd   145c04.indd   145 5/4/2011   9:54:15 AM5/4/2011   9:54:15 AM



146  MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 Having paid the process costs for eDRAM, the timing parameters for 
eDRAM are much better than conventional DRAM. The cycle time (and 
access time) is much closer to SRAM, as shown in Figure  4.19 . All types of 
on - die memory enjoy the advantage of bandwidth as a whole memory column 
can be accessed at each cycle.   

 A fi nal consideration in memory selection is the projected error rate due 
to radiation (called the  soft error rate  or  SER ). Each DRAM cell stores sig-
nifi cantly larger amounts of charge than in the SRAM cell. The SRAM cells 
are faster and easier to fl ip, with correspondingly higher SER. Additionally, 
for an SRAM cell, as technology scales, the critical amount of charge for 
determining an error decreases due to scaling of supply voltages and cell 
capacitances. The differences are shown in Figure  4.20 . At even 130 - nm 

     Figure 4.17     On - die SRAM and DRAM. The eDRAM must accommodate the process 
requirements of the logic, representing an overhead. SRAM is unaffected.  
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     Figure 4.18     The relative density advantage eDRAM improves with memory size.  
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     Figure 4.19     Cycle time for random memory accesses.  
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feature size, the SER for SRAM is about 1800 times higher than for eDRAM. 
Of course, more error - prone SRAM implementation can compensate by a 
more extensive use of error - correcting codes (ECCs), but this comes with its 
own cost.   

 Ultimately, the selection of on - die memory technology depends on fabrica-
tion process access and memory size required.  

   4.14    BOARD - BASED (OFF - DIE) MEMORY SYSTEMS 

 In many processor design situations (probably all but the SOC case), the main 
memory system is the principal design challenge. 

 As processor ensembles can be quite complex, the memory system that 
serves these processors is correspondingly complex. 

 The memory module consists of all the memory chips needed to forward a 
cache line to the processor via the bus. The cache line is transmitted as a burst 
of bus word transfers. Each memory module has two important parameters: 
module access time and module cycle time. The module access time is simply 
the amount of time required to retrieve a word into the output memory buffer 
register of a particular memory module, given a valid address in its address 
register. Memory service (or cycle) time is the minimum time between requests 
directed at the same module. Various technologies present a signifi cant range 
of relationships between the access time and the service time. The access time 
is the total time for the processor to access a line in memory. In a small, simple 
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     Figure 4.20     The ratio of soft error rates of SRAM to eDRAM.  

2000

1500

1000

500
250 180

Process (nm)

R
at

io
 o

f s
of

t e
rr

or
 r

at
es

130

     Figure 4.21     Accessing delay in a complex memory system. Access time includes chip 
accessing, module overhead, and bus transit.  
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memory system, this may be little more than chip access time plus some mul-
tiplexing and transit delays. The service time is approximately the same as the 
chip cycle time. In a large, multimodule memory system (Figure  4.21 ), the 
access time may be greatly increased, as it now includes the module access 
time plus transit time, bus accessing overhead, error detection, and correction 
delay.   

 After years of rather static evolution of DRAM memory chips, recent years 
have brought about signifi cant new emphasis on the performance (rather than 
simply the size) of memory chips. 
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 The fi rst major improvement to DRAM technology is synchronous DRAM 
(SDRAM). This approach synchronizes the DRAM access and cycle time to 
the bus cycle. Additional enhancements accelerate the data transfer and 
improves the electrical characteristics of the bus and module. There are now 
multiple types of SDRAM. The basic DRAM types are the following:

   1.     DRAM.     Asynchronous DRAM.  
  2.     SDRAM.     The memory module timing is synchronized to the memory 

bus clock.  
  3.     Double data rate (DDR) SDRAM.     The memory module fetches a 

double - sized transfer unit for each bus cycle and transmits at twice the 
bus clock rate.    

 In the next section, we present the basics of the (asynchronous) DRAM, fol-
lowing that of the more advanced SDRAMs.  

   4.15    SIMPLE  DRAM  AND THE MEMORY ARRAY 

 The simplest asynchronous DRAM consists of a single memory array with 1 
(and sometimes 4 or 16) output bits. Internal to the chip is a two - dimensional 
array of memory cells consisting of rows and columns. Thus, half of the memory 
address is used to specify a row address, one of 2  n   /2  row lines, and the other 
half of the address is similarly used to specify one of 2  n   /2  column lines (Figure 
 4.22 ). The cell itself that holds the data is quite simple, consisting merely of a 

     Figure 4.22     A memory chip.  
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MOS transistor holding a charge (a capacitance). As this discharges over time, 
it must continually be refreshed, once every several milliseconds.   

 With large - sized memories, the number of address lines dominates the 
pinout of the chip. In order to conserve these pins and to provide a smaller 
package for better overall density, the row and column addresses are multi-
plexed onto the same lines (input pins) for entry onto the chip. Two additional 
lines are important here: row address strobe (RAS) and column address strobe 
(CAS). These gate fi rst the row address, then the column address into the chip. 
The row and column addresses are then decoded to select one out of the 2  n   /2  
possible lines. The intersection of the active row and column lines is the desired 
bit of information. The column line ’ s signals are then amplifi ed by a sense 
amplifi er and are transmitted to the output pin (data out, or  D  out ) during a 
read cycle. During a write cycle, the write - enable (WE) signal stores the data -
 in ( D  in ) signal to specify the contents of the selected bit address. 

 All of these actions happen in a sequence approximated in the timing 
diagram in Figure  4.23 . At the beginning of a read from memory, the RAS line 
is activated. With the RAS active and the CAS inactive, the information on 
the address lines is interpreted as the row address and is stored into the row 
address register. This activates the row decoder and the selected row line in 

     Figure 4.23     Asynchronous DRAM chip timing.  
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     Figure 4.24     An asynchronous DRAM memory module.  
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the memory array. The CAS is then activated, which gates the column address 
lines into a column address register. Note that 

  1.     the two rise times on CAS represent the earliest and latest that this signal 
may rise with respect to the column address signals and    

  2.     WE is inactive during read operations.    

 The column address decoder then selects a column line; at the intersection of 
the row and column line is the desired data bit. During a read cycle, the WE 
is inactive (low) and the output line ( D  out ) is at a high - impedance state until 
it is activated either high or low depending on the contents of the selected 
memory cell. 

 The time from the beginning of RAS until the data output line is activated 
is a very important parameter in the memory module design. This is called the 
chip access time or  t  chip access . The other important chip timing parameter is the 
cycle time of the memory chip ( t  chip cycle ). This is not the same as the access time, 
as the selected row and column lines must recover before the next address can 
be entered and the read process repeated. 

 The asynchronous DRAM module does not simply consist of memory chips 
(Figure  4.24 ). In a memory system with  p  bits per physical word, and 2  n   words 
in a module, the  n  address bits enter the module and are usually directed at a 
dynamic memory controller chip. This chip, in conjunction with a memory 
timing controller, provides the following functions:

   1.     multiplexing the  n  address bits into a row and a column address for use 
by the memory chips,    
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  2.     the creation of the correct RAS and CAS signal lines at the appropriate 
time, and  

  3.     providing a timely refresh of the memory system.    

 Since the dynamic memory controller output drives all  p  bits, and hence  p  
chips, of the physical word, the controller output may also require buffering. 
As the memory read operation is completed, the data - out signals are directed 
at bus drivers, which then interface to the memory bus, which is the interface 
for all of the memory modules. 

 Two features found on DRAM chips affect the design of the memory 
system. These  “ burst ”  mode - type features are called 

  1.     nibble mode and  
  2.     page mode.    

 Both of these are techniques for improving the transfer rate of memory 
words. In nibble mode, a single address (row and column) is presented to 
the memory chip and the CAS line is toggled repeatedly. Internally, the chip 
interprets this CAS toggling as a  mod  2  w   progression of low - order column 
addresses. Thus, sequential words can be accessed at a higher rate from the 
memory chip. For example, for  w     =    2, we could access four consecutive low -
 order bit addresses, for example: 

   [00] → [01] → [10] → [11]  

 and then return to the original bit address. 
 In page mode, a single row is selected and nonsequential column addresses 

may be entered at a high rate by repeatedly activating the CAS line (similar 
to nibble mode, Figure  4.23 ). Usually, this is used to fi ll a cache line. 

 While terminology varies, the nibble mode usually refers to the access of 
(up to) four consecutive words (a nibble) starting on a quad word address 
boundary. Table  4.8  illustrates some SOC memory size, position and type. The 
newer DDR SDRAM and follow ons are discussed in the next section.   

   4.15.1     SDRAM  and  DDR   SDRAM  

 The fi rst major improvement to the DRAM technology is the SDRAM. This 
approach, as mentioned before, synchronizes the DRAM access and cycle to 

  TABLE 4.8     SOC  Memory Designs 

   SOC     Memory Type     Memory Size     Memory Position  

  Intel PXA27x  [132]     SRAM    256   KB    On - die  
  Philips Nexperia 

PNX1700  [199]   
  DDR SDRAM    256   MB    Off - die  

  Intel IOP333  [131]     DDR SDRAM    2   GB    Off - die  
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the bus cycle. This has a number of signifi cant advantages. It eliminates the 
need for separate memory clocking chips to produce the RAS and CAS 
signals. The rising edge of the bus clock provides the synchronization. Also, by 
extending the package to accommodate multiple output pins, versions that 
have 4, 8, and 16 pins allow more modularity in memory sizing. 

 With the focus on the bus and memory bus interface, we further improve 
bus bandwidth by using differential data and address lines. Now when the 
clock line rises, the complement clock falls, but midway through the cycle, the 
clock line falls and the complement clock rises. This affords the possibility to 
transmit synchronous data twice during each cycle: once on the rising edge of 
the clock signal and once on the rising edge of the complement clock. By using 
this, we are able to double the data rate transmitted on the bus. The resulting 
memory chips are called DDR SDRAMs (Figure  4.25 ). Also, instead of select-
ing a row and a column for each memory reference, it is possible to select a 
row and leave it selected (active) while multiple column references are made 
to the same row (Figure  4.26 ).   

 In cases where spatial locality permits, the read and write times are improved 
by eliminating the row select delay. Of course, when a new row is referenced, 

     Figure 4.25     Internal confi guration of DDR SDRAM.  
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then the row activation time must be added to the access time. Another 
improvement introduced in SDRAMs is the use of multiple DRAM arrays, 
usually either four or eight. Depending on the chip implementation, these 
multiple arrays can be independently accessed or sequentially accessed, as 
programmed by the user. In the former case, each array can have an indepen-
dently activated row providing an interleaved access to multiple column 
addresses. If the arrays are sequentially accessed, then the corresponding rows 
in each array are activated and longer bursts of consecutive data can be sup-
ported. This is particularly valuable for graphics applications. 

 The improved timing parameters of the modern memory chip results from 
careful attention to the electrical characteristic of the bus and the chip. In 
addition to the use of differential signaling (initially for data, now for all 
signals), the bus is designed to be a terminated strip transmission line. With 
the DDR3 (closely related to graphics double data rate [GDDR3]), the ter-
mination is on - die (rather than simply at the end of the bus), and special cali-
bration techniques are used to ensure accurate termination. 

 The DDR chips that support interleaved row accesses with independent 
arrays must carry out a  2n  data fetch from the array to support the DDR. So, 
a chip with four data out ( n     =    4) lines must have arrays that fetch 8   bits. The 
DDR2 arrays typically fetch 4 n , so with  n     =    4, the array would fetch 16   bits. 
This enables higher data transmission rates as the array is accessed only once 
for every four - bus half - cycles. 

 Some typical parameters are shown in Tables  4.9  and  4.10 . While represen-
tatives of all of these DRAMs are in production at the time of writing, the 
asynchronous DRAM and the SDRAM are legacy parts and are generally not 
used for new development. The DDR3 part was introduced for graphic appli-
cation confi gurations. For most cases, the parameters are typical and for 
common confi gurations. For example, the asynchronous DRAM is available 
with 1, 4, and 16 output pins. The DDR SDRAMs are available with 4, 8, and 
16 output pins. Many other arrangements are possible.   

 Multiple (up to four) DDR2 SDRAMs can be confi gured to share a common 
bus (Figure  4.27 ). In this case, when a chip is  “ active ”  (i.e., it has an active row), 

     Figure 4.26     A line fetch in DDR SDRAM.  
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  TABLE 4.9    Confi guration Parameters for Some Typical  DRAM  Chips Used 
in a 64 - bit Module 

        DRAM     SDRAM     DDR1     DDR2  
   GDDR3 
(DDR3)  

  Typical chip capacity        1   Gb    1   Gb    1   Gb    256   Mb  
  Output data pins/chip    1    4    4    4    32  
  Array data bits 

fetched  
  1    4    8    16    32  

  Number of arrays    1    4    4    8    4  
  Number of chips/

module  
  64 +     16    16    16    4  

  Burst word transfers    1 – 4    1, 2, 4    2, 4, 8    4, 8    4, 8, 16  
  Rows            16   K    16   K      
  Columns            2048    ×    8    512    ×    16    512    ×    32  
  32 - byte lines/row/

array  
          2048    1024    2048    ×    4  

  TABLE 4.10    Timing Parameters for Some Typical  DRAM  Modules (64   bits) 

        DRAM     SDRAM     DDR1     DDR2     DDR3  

  Bus clock rate (MHz)    Asynchronous    100    133    266    600  
  Active to CAS (ns)    30    30    20    15    12  
  Column address to data 

out 1 (read time) (ns)  
  40    30    20    15    12  

  Line access (accessing a 
new row) (ns)  

  140    90    51    36    28  

  Line access (within an 
active row) (ns)  

  120    60    31    21    16  

  Rows interleaving     × 1     × 4     × 4     × 8     × 1  

     Figure 4.27     SDRAM channels and controller.  
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the on - die termination is unused. When there are no active rows on the die, 
the termination is used. Typical server confi gurations then might have four 
modules sharing a bus (called a channel) and a memory controller managing 
up to two buses (see Figure  4.27 ). The limit of two is caused simply by the 
large number of tuned strip and microstrip transmission lines that must connect 
the controller to the buses. More advanced techniques place a channel buffer 
between the module and a very high - speed channel. This advanced channel 
has a smaller width (e.g., 1   byte) but a much higher data rate (e.g., 8 × ). The net 
effect leaves the bandwidth per module the same, but now the number of wires 
entering the controller has decreased, enabling the controller to manage more 
channels (e.g., 8).    

   4.15.2    Memory Buffers 

 The processor can sustain only a limited number of outstanding memory refer-
ences before it suspends processing and the generation of further memory 
references. This can happen either as a result of logical dependencies in the 
program or because of an insuffi cient buffering capability for outstanding 
requests. The signifi cance of this is that the achievable memory bandwidth is 
decreased as a consequence of the pause in the processing, for the memory 
can service only as many requests as are made by the processor. 

 Examples of logical dependencies include branches and address interlocks. 
The program must suspend computation until an item has been retrieved from 
memory. 

 Associated with each outstanding memory request is certain information 
that specifi es the nature of the request (e.g., a read or a write operation), the 
address of the memory location, and suffi cient information to route requested 
data back to the requestor. All this information must be buffered either in the 
processor or in the memory system until the memory reference is complete. 
When the buffer is full, further requests cannot be accepted, requiring the 
processor be stalled. 

 In interleaved memory, the modules usually are not all equally congested. 
So, it is useful to maximize the number of requests made by the processor, in 
the hope that the additional references will be to relatively idle modules and 
will lead to a net increase in the achieved bandwidth. If maximizing the band-
width of memory is a primary objective, we need buffering of memory requests 
up to the point at which the logical dependencies in the program become the 
limiting factor.   

   4.16    MODELS OF SIMPLE PROCESSOR – MEMORY INTERACTION 

 In systems with multiple processors or with complex single processors, requests 
may congest the memory system. Either multiple requests may occur at the 
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same time, providing bus or network congestion, or requests arising from dif-
ferent sources may request access to the memory system. Requests that cannot 
be immediately honored by the memory system result in memory systems 
contention. This contention degrades the bandwidth and is possible to achieve 
from the memory system. 

 In the simplest possible arrangement, a single simple processor makes a 
request to a single memory module. The processor ceases activity (as with a 
blocking cache) and waits for service from the module. When the module 
responds, the processor resumes activity. Under such an arrangement, the 
results are completely predictable. There can be no contention of the memory 
system since only one request is made at a time to the memory module. Now 
suppose we arrange to have  n  simple processors access  m  independent modules. 
Contention develops when multiple processors access the same module. 
Contention results in a reduced average bandwidth available to each of the 
processors. Asymptotically, a processor with a nonblocking cache making  n  
requests to the memory system during a memory cycle resembles the  n  proces-
sor  m  module memory system, at least from a modeling point of view. But in 
modern systems, processors are usually buffered from the memory system. 
Whether or not a processor is slowed down by memory or bus contention 
during cache access depends on the cache design and the service rate of pro-
cessors that share the same memory system. 

 Given a collection of  m  modules each with service time  T c  , access time  T a  , 
and a certain processor request rate, how do we model the bandwidth available 
from these memory modules, and how do we compute the overall effective 
access time? Clearly, the modules in low - order interleave are the only ones 
that can contribute to the bandwidth, and hence they determine  m . From the 
memory system ’ s point of view, it really does not matter whether the processor 
system consists of  n  processors, each making one request every memory cycle 
(i.e., one per  T c  ), or one processor with  n  requests per  T c  , so long as the sta-
tistical distribution of the requests remains the same. Thus, to a fi rst approxi-
mation, the analysis of the memory system is equally applicable to the 
multiprocessor system or the superscalar processor. The request rate, defi ned 
as  n  requests per  T c  , is called the offered request rate, and it represents the 
peak demand that the noncached processor system has on the main memory 
system. 

   4.16.1    Models of Multiple Simple Processors and Memory 

 In order to develop a useful memory model, we need a model of the processor. 
For our analysis, we model a single processor as an ensemble of multiple 
simple processors. Each simple processor issues a request as soon as its previ-
ous request has been satisfi ed. Under this model, we can vary the number of 
processors and the number of memory modules and maintain the address 
request/data supply equilibrium. To convert the single processor model into 
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an equivalent multiple processor, the designer must determine the number of 
requests to the memory module per module service time,  T s      =     T c  . 

 A simple processor makes a single request and waits for a response from 
memory. A  pipelined processor  makes multiple requests for various buffers 
before waiting for a memory response. There is an approximate equivalence 
between  n  simple processors, each requesting once every  T s  , and one pipelined 
processor making  n  requests every  T s   (Figure  4.28 ).   

 In the following discussion, we use two symbols to represent the bandwidth 
available from the memory system (the achieved bandwidth):

   1.     B.     The number of requests that are serviced each  T s  . Occasionally, we 
also specify the arguments that  B  takes on, for example,  B  ( m ,  n ) or  B  
( m ).  

  2.     Bw.     The number of requests that are serviced per second:  Bw     =     B / T s  .    

 To translate this into cache - based systems, the service time,  T s  , is the time that 
the memory system is busy managing a cache miss. The number of memory 
modules,  m , is the maximum number of cache misses that the memory system 
can handle at one time, and  n  is the total number of request per  T s  . This is the 
total number of expected misses per processor per  T s   multiplied by the number 
of processors making requests.  

   4.16.2    The Strecker - Ravi Model 

 This is a simple yet useful model for estimating contention. The original model 
was developed by Strecker  [229]  and independently by Ravi  [204] . It assumes 
that there are  n  simple processor requests made per memory cycle and there 
are  m  memory modules. Further, we assume that there is no bus contention. 
The Strecker model assumes that the memory request pattern for the proces-
sors is uniform and the probability of any one request to a particular memory 
module is simply 1/ m . The key modeling assumption is that the state of the 

     Figure 4.28     Finding simple processor equivalence.  

n processors
making one request

each Tc

One processor
making n requests

each Tc

Modeling assumption: Asymptotically, these are equivalent.
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memory system at the beginning of the cycle is not dependent upon any previ-
ous action on the part of the memory — hence, not dependent upon contention 
in the past (i.e., Markovian). Unserved requests are discarded at the end of 
the memory cycle. 

 The following modeling approximations are made:

   1.     A processor issues a request as soon as its previous request has been 
satisfi ed.  

  2.     The memory request pattern from each processor is assumed to be uni-
formly distributed; that is, the probability of any one request being made 
to a particular memory module is 1/ m .  

  3.     The state of the memory system at the beginning of each memory 
cycle (i.e., which processors are awaiting service at which modules) is 
ignored by assuming that all unserviced requests are discarded at the 
end of each memory cycle and that the processors randomly issue new 
requests.    

 Analysis: 

 Let the average number of memory requests serviced per memory cycle be 
represented by  B  ( m ,  n ). This is also equal to the average number of memory 
modules busy during each memory cycle. Looking at events from any given 
module ’ s point of view during each memory cycle, we have

   Prob a given processor does not reference the module( ) = −1 1 m(( )  

   
Prob no processor references the module Prob the module is( ) =   idle( )

= −( )1 1 m
 

   Prob the module is busy( ) = − −( )1 1 1 m n  

   B m n m m n, .( ) = = − −( )( )average number of busy modules 1 1 1   

 The achieved memory bandwidth is less than the theoretical maximum due to 
contention. By neglecting congestion in previous cycles, this analysis results in 
an optimistic value for the bandwidth. Still, it is a simple estimate that should 
be used conservatively. 

 It has been shown by Bhandarkar  [41]  that  B  ( m ,  n ) is almost perfectly 
symmetrical in  m  and  n . He exploited this fact to develop a more accurate 
expression for  B  ( m ,  n ), which is

   B m n K K l, ,( ) = − −( )⎡⎣ ⎤⎦1 1 1  

where  K     =    max ( m ,  n ) and  l     =    min ( m ,  n ). 
 We can use this to model a typical processor ensemble.  
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 E XAMPLE  4.3 

    An early Intel Pentium ™  processor had an eight - way interleaved data cache. 
It makes two references per processor cycle. The cache has the same cycle time 
as the processor. 

 For the Intel instruction set,

   Prob data references per instruction( ) = 0 6. .   

 Since the Pentium tries to execute two instructions each cycle, we have

   n = 1 2, ,  

   m = 8.   

 Using Strecker ’ s model, we get

 E XAMPLE  4.2 

    Suppose we have a two - processor die system sharing a common memory. Each 
processor die is dual core with the two processors (four processors total) 
sharing a 4 - MB level 2 cache. Each processor makes three memory references 
per cycle and the clock rate is 4   GHz. The L2 cache has a miss rate of 0.001 
misses per reference. The memory system has an average  T s   of 24   ns including 
bus delay. 

 We can ignore the details of the level 1 caches by inclusion. So each proces-
sor die creates 6    ×    0.001 memory references per cycle or 0.012 references for 
both cycles. Since there are 4    ×    24 cycles in a  T s  , we have  n     =    1.152 processor 
requests per  T s  . If we design the memory system to manage  m     =    4 requests 
per  T s  , we compute the performance as

   B m n B, , . . .( ) = ( ) =4 1 152 0 81   

 The relative performance is

   P
B
n

rel = = =
0 81

1 152
0 7

.
.

. .   

 Thus, the processor can only achieve 70% of its potential due to the memory 
system. To do better, we need either a larger level 2 cache (or a level 3 cache) 
or a much more elaborate memory system ( m     =    8).  

   4.16.3    Interleaved Caches 

 Interleaved caches can be handled in a manner analogous to interleaved 
memory.     
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   B m n B, , . . .( ) = ( ) =8 1 2 1 18   

 The relative performance is

   P
B
n

rel = = =
1 18
1 2

0 98
.
.

. ;  

that is, the processor slows down by about 2% due to contention.  

   4.17    CONCLUSIONS 

 Cache provides the processor with a memory access time signifi cantly faster 
than the memory access time. As such, the cache is an important constituent 
in the modern processor. The cache miss rate is largely determined by the size 
of the cache, but any estimate of miss rate must consider the cache organiza-
tion, the operating system, the system ’ s environment, and I/O effects. As cache 
access time is limited by size, multilevel caches are a common feature of on - die 
processor designs. 

 On - die memory design seems to be relatively manageable especially with 
the advent of eDRAM, but off - die memory design is an especially diffi cult 
problem. The primary objective of such designs is capacity (or size); however, 
large memory capacity and pin limitations necessarily imply slow access times. 
Even if die access is fast, the system ’ s overhead, including bus signal transmis-
sion, error checking, and address distribution, adds signifi cant delay. Indeed, 
these overhead delays have increased relative to decreasing machine cycle 
times. Faced with a hundred - cycle memory access time, the designer can 
provide adequate memory bandwidth to match the request rate of the proces-
sor only by a very large multilevel cache. 

   4.18     PROBLEM SET 

       1.    A 128 KB  cache has 64 bits  lines, 8 bits  physical word, 4 KB  pages, and is four - way 
set associative. It uses copy - back (allocate on write) and LRU replace-
ment. The processor creates 30 - bit (byte - addressed) virtual addresses that 
are translated into 24 - bit (byte - addressed) real byte addresses (labeled 
 A  0  −  A  23 , from least to most signifi cant). 
     (a)     Which address bits are unaffected by translation ( V     =     R )?  
   (b)     Which address bits are used to address the cache directories?  
   (c)     Which address bits are compared to entries in the cache directory?  
   (d)     Which address bits are appended to address bits in (b) to address the 

cache array?      
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    2.    Show a layout of the cache in Problem 1. Present the details as in Figures 
 4.5 – 4.7 .   

    3.    Plot traffi c (in bytes) as a function of line size for a DTMR cache (CBWA, 
LRU) for 
   (a)     4 KB  cache,  
   (b)     32 KB  cache, and  
   (c)     256 KB  cache.      

    4.    Suppose we defi ne the miss rate at which a copy - back cache (CBWA) 
and a write - through cache (WTNWA) have equal traffi c as the crossover 
point.
    (a)     For the DTMR cache, fi nd the crossover point (miss rate) for 16 B , 32 B , 

and 64 B  lines. To what cache sizes do these correspond?  
   (b)     Plot line size against cache size for crossover.      

    5.    The cache in Problem 1 is now used with a 16 - byte line in a transaction 
environment ( Q     =    20,000).
    (a)     Compute the effective miss rate.  
   (b)     Approximately, what is the optimal cache size (the smallest cache size 

that produces the lowest achievable miss rate)?      

    6.    In a two - level cache system, we have 
   •      L1 size 8   KB with four - way set associative, 16 - byte lines, and write -

 through (no allocate on writes); and  
   •      L2 size 64 - KB direct mapping, 64 - byte lines, and copy - back (with allo-

cate on writes).    
 Suppose the miss in L1, hit in L2 delay is 3 cycles and the miss in L1, miss 
in L2 delay is 10 cycles. The processor makes 1.5   refr/I.
    (a)     What are the L1 and L2 miss rates?  
   (b)     What is the expected CPI loss due to cache misses?  
   (c)     Will  all  lines in L1 always reside in L2? Why?      

    7.    A certain processor has a two - level cache. L1 is 4 - KB direct - mapped, 
WTNWA. The L2 is 8 - KB direct - mapped, CBWA. Both have 16 - byte lines 
with LRU replacement.
    (a)     Is it always true that L2 includes all lines at L1?  
   (b)     If the L2 is now 8   KB four - way set associative (CBWA), does L2 

include all lines at L1?  
   (c)     If L1 is four - way set associative (CBWA) and L2 is direct - mapped, 

does L2 include all lines of L1?      

    8.    Suppose we have the following parameters for an L1 cache with 4   KB and 
an L2 cache with 64   KB. 
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 The cache miss rate is
    

  4   KB    0.10   misses per reference  
  64   KB    0.02   misses per reference  
  1   refr/Instruction      
  3   cycles     L 1 miss,  L 2 hit  
  10   cycles    Total time  L 1 miss,  L 2 miss  

 What is the excess CPI due to cache misses?   

    9.    A certain processor produces a 32 - bit virtual address. Its address space is 
segmented (each segment is 1 - MB maximum) and paged (512 - byte pages). 
The physical word transferred to/from cache is 4 bytes. 
 A TLB is to be used, organized set associative, 128    ×    2. If the address bits 
are labeled  V  0  −  V  31  for virtual address and  R  0  −  R  31  for real address, least to 
most signifi cant, 
   (a)     Which bits are unaffected by translation (i.e.,  V i      =     R i  )?  
   (b)     If the TLB is addressed by the low - order bits of the portion of the 

address to be translated (i.e., no hashing), which bits are used to 
address the TLB?  

   (c)     Which virtual bits are compared to virtual entries in the TLB to deter-
mine whether a TLB hit has occurred?  

   (d)     As a minimum, which real address bits does the TLB provide?      

    10.    For a 16 - KB integrated level 1 cache (direct mapped, 16 - byte lines) and a 
128 - KB integrated level 2 cache (2   W set associative, 16 - byte lines), fi nd 
the solo and local miss rate for the level 2 cache.   

    11.    A certain chip has an area suffi cient for a 16 - KB I - cache and a 16 - KB 
D - cache, both direct mapped. The processor has a virtual address of 32   bits, 
a real address of 26   bits, and uses 4 - KB pages. It makes 1.0   I - refr/I and 
0.5   D - refr/I. The cache miss delay is 10 cycles plus 1 cycle for each 4 - byte 
word transferred in a line. The processor is stalled until the entire line is 
brought into the cache. The D - cache is CBWA; use dirty line ratio  w     =    0.5. 
For both caches, the line size is 64   B. Find 
   (a)     The CPI lost due to I - misses and the CPI lost due to D - misses.  
   (b)     For the 64 - byte line, fi nd the number of I -  and D - directory bits and 

corresponding rbe (area) for both directories.      

    12.    Find two recent examples of DDR3 devices and for these devices, update 
the entries of Tables  4.9  and  4.10 .   

    13.    List all the operations that must be performed after a  “ not - in - TLB ”  signal. 
How would a designer minimize the not - in - TLB penalty?   

c04.indd   163c04.indd   163 5/4/2011   9:54:16 AM5/4/2011   9:54:16 AM



164  MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

    14.    In Example  4.2 , suppose we need a relative performance of 0.8. Would this 
be achieved by interleaving at  m     =    8?     

    15.    Update the timing parameters for the NAND - based fl ash memory 
described in Table  4.3 .   

    16.    Compare recent commercially available fl ash (NAND and NOR) with 
recent eDRAM offerings.        
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  5    Interconnect     

    5.1    INTRODUCTION 

 SOC designs usually involve the integration of intellectual property (IP) cores, 
each separately designed and verifi ed. System integrators can maximize the 
reuse of design to reduce costs and to lower risks. Frequently the most impor-
tant issue confronting an SOC integrator is the method by which the IP cores 
are connected together. 

 SOC interconnect alternatives extend well beyond conventional computer 
buses. We fi rst provide an overview of SOC interconnect architectures: bus 
and network - on - chip (NOC). Bus architectures developed specifi cally for 
SOC designs are described and compared. There are many switch - based alter-
natives to bus - based interconnects. We will not consider ad hoc or fully cus-
tomized switching interconnects that are not intended for use with a variety 
of IP cores. Switch - based interconnects as used in SOC interconnects are 
referred to as NOC technology. 

 An NOC usually includes an interface level of abstraction, hiding the 
underlying physical interconnects from the designer. We follow current SOC 
usage and refer to interconnect as a bus or as an NOC implemented by a 
switch. In the NOC the switch can be a crossbar, a directly linked interconnect, 
or a multistage switching network. 

 There is a great deal of bus and computer interconnect literature. The units 
being connected are sometimes referred to as agents (in buses) or nodes (in 
the general interconnect literature); we simply use the term  units . Since current 
SOC interconnects usually involve a modest number of units, the chapter 
provides a simplifi ed view of the interconnect alternatives. A comprehensive 
treatment of on - chip communication architectures is available elsewhere 
 [193] . For a general discussion of computer interconnection networks, see any 
of several standard texts  [72, 78] .  

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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166  INTERCONNECT

   5.2    OVERVIEW: INTERCONNECT ARCHITECTURES 

 Figure  5.1  depicts a system that includes an SOC module. The SOC module 
typically contains a number of IP blocks, one or more of which are processors. 
In addition, there are various types of on - chip memory serving as cache, data, 
or instruction storage. Other IP blocks serving application - specifi c functions, 
such as graphics processors, video codecs, and network control units, are inte-
grated in the SOC.   

   

     Figure 5.1     A simplifi ed block diagram of an SOC module in a system context.  
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 The IP blocks in the SOC module need to communicate with each other. 
They do this through the interconnect, which is accessed through an intercon-
nect interface unit (ICU). The ICU enables a common interface protocol for 
all SOC modules. 

 External to the SOC module are off - chip memories, off - chip peripheral 
devices, and mass storage devices. The cost and performance of the system, 
therefore, depends on both on - chip and off - chip interconnect structures. 

 Choosing a suitable interconnect architecture requires the understanding 
of a number of system level issues and specifi cations. These are:

   1.     Communication Bandwidth.     The rate of information transfer between a 
module and the surrounding environment in which it operates. Usually 
measured in bytes per second, the bandwidth requirement of a module 
dictates to a large extent the type of interconnection required in order 
to achieve the overall system throughput specifi cation.  
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  2.     Communication Latency.     The time delay between a module requesting 
data and receiving a response to the request. Latency may or may not 
be important in terms of overall system performance. For example, long 
latency in a video streaming application usually has little or no effect on 
the user ’ s experience. Watching a movie that is a couple of seconds later 
than when it is actually broadcast is of no consequence. In contrast, even 
small, unanticipated latencies in a two - way mobile communication pro-
tocol can make it almost impossible to carry out a conversation.  

  3.     Master and Slave.     These terms concern whether a unit can initiate or 
react to communication requests. A master, such as a processor, controls 
transactions between itself and other modules. A slave, such as memory, 
responds to requests from the master. An SOC design typically has 
several masters and numerous slaves.  

 WHAT IS AN  NOC ? 

 As SOC terminology has evolved there seems to be only two intercon-
nect strategies: the bus or the NOC. So what exactly is the NOC? 
Professor Nurmi (in a presentation reported by Leibson  [156] ) summa-
rized the NOC characteristics:

   1.     The NOC is more than a single, shared bus.  
  2.     The NOC provides point - to - point connections between any two 

hosts attached to the network either by crossbar switches or through 
node - based switches.  

  3.     The NOC provides high aggregate bandwidth through parallel links.  
  4.     In the NOC, communication is separate from computation.  
  5.     The NOC uses a layered approach to communications, although 

with few network layers due to complexity and expense.  
  6.     NOCs support pipelining and provide intermediate data buffering 

between sender and receiver.    

 In the context of the SOC when the designer fi nds that bus technology 
provides insuffi cient bandwidth or connectivity, the obvious alternative 
is some sort of switch. Any well - designed switched interconnect will 
clearly satisfy points 2, 3, 4, and 6. Point 5 is not satisfi ed by ad hoc switch-
ing interconnects, where the processor nodes and switching intercon-
nect are interfaced by common, specialized design. But in the SOC, 
incorporating various vendor IPs ad hoc interconnects is almost never 
the case. The designer selects a common communications interface 
(layer) separate from the processor node. 
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  4.     Concurrency Requirement.     The number of independent simultaneous 
communication channels operating in parallel. Usually, additional chan-
nels improve system bandwidth.  

  5.     Packet or Bus Transaction.     The size and defi nition of the information 
transmitted in a single transaction. For a bus, this consists of an address 
with control bits (read/write, etc.) and data. The same information in an 
NOC is referred to as a  packet . The packet consists of a header (address 
and control) and data (sometimes called the payload).  

  6.     ICU.     In an interconnect, this unit manages the interconnect protocol and 
the physical transaction. It can be simple or complex, including out - of -
 order transaction buffering and management. If the IP core requires a 
protocol translation to access the bus, the unit is called a  bus wrapper . 
In an NOC, this unit manages the protocol for transport of a packet from 
the IP core to the switching network. It provides packet buffering and 
out - of - order transaction transmission.  

  7.     Multiple Clock Domains.     Different IP modules may operate at different 
clock and data rates. For example, a video camera captures pixel data at 
a rate governed by the video standard used, while a processor ’ s clock 
rate is usually determined by the technology and architectural design. As 
a result, IP blocks inside an SOC often need to operate at different clock 
frequencies, creating separate timing regions known as clock domains. 
Crossing between clock domains can cause deadlock and synchroniza-
tion problems without careful design.    

 Given a set of communication specifi cations, a designer can explore the dif-
ferent bandwidth, latency, concurrency, and clock domain requirements of 
different interconnect architectures, such as bus and NOC. Some examples of 
these are given in Table  5.1 . Other examples include the Avalon Bus for Altera 
fi eld - programmable gate arrays (FPGAs)  [10] , the Wishbone Interconnect for 
use in open - source cores and platforms  [189] , and the AXI4 - Stream interface 
protocol for FPGA implementation  [74] .   

 Designing the interconnect architecture for an SOC requires careful con-
sideration of many requirements, such as those listed above. The rest of this 
chapter provides an introduction to two interconnect architectures: the bus 
and the NOC.  

   5.3    BUS: BASIC ARCHITECTURE 

 The performance of a computer system is heavily dependent on the charac-
teristics of its interconnect architecture. A poorly designed system bus can 
throttle the transfer of instructions and data between memory and proces-
sor, or between peripheral devices and memory. This communication bottle-
neck is the focus of attention among many microprocessor and system 
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manufacturers who, over the last three decades, have adopted a number of bus 
standards. These include the popular VME bus and the Intel Multibus - II. For 
systems on a board and personal computers, the evolution includes the instruc-
tion set architecture (ISA) bus, the EISA bus, and the now prevalent PCI and 
PCI Express buses. All these bus standards are designed to connect together 
integrated circuits (ICs) on a printed circuit board (PCB) or PCBs in a system -
 on - board implementation. 

 While these bus standards have served the computing community well, they 
are not particularly suited for SOC technology. For example, all such system -
 level buses are designed to drive a backplane, either in a rack - mounted system 
or on a computer motherboard. This imposes numerous constraints on the bus 
architecture. For a start, the number of signals available is generally restricted 
by the limited pin count on an IC package or the number of pins on the PCB 
connector. Adding an extra pin on a package or a connector is expensive. 
Furthermore, the speed at which the bus can operate is often limited by the 
high capacitive load on each bus signal, the resistance of the contacts on the 
connector, and the electromagnetic noise produced by such fast - switching 
signals traveling down a PCB track. Finally, drivers for on - chip buses can be 
much smaller, saving area and power. 

 Before describing bus operations and bus structures in detail, we provide, 
in Table  5.2 , a comparison of two different bus interconnect architectures, 
showing size and speed estimates for a typical bus slave.   

   5.3.1    Arbitration and Protocols 

 Conceptually, the bus is just wires shared by multiple units. In practice, some 
logic must be present to provide an orderly use of the bus; otherwise, two units 
may send signals at the same time, causing confl icts. When a unit has exclusive 
use of the bus, the unit is said to own the bus. Units can be either potentially 
master units that can request ownership or slave units that are passive and 
only respond to requests. A bus master is the unit that initiates communication 
on a computer bus or input/output (I/O) paths. In an SOC, a bus master is a 
component within the chip, such as a processor. Other units connected to an 
on - chip bus, such as I/O devices and memory components, are the  “ slaves. ”  
The bus master controls the bus paths using specifi c slave addresses and 
control signals. Moreover, the bus master also controls the fl ow of data signals 
directly between the master and the slaves. 

  TABLE 5.2    Comparison of Bus Interconnect Architectures  [198]  

   Standard     Speed (MHz)     Area (rbe  *  )  

  AMBA(implementation dependent)    166 – 400    175,000  
  CoreConnect    66/133/183    160,000  

    *   rbe    =    register bit equivalent; estimates are approximate and vary by implementation.   
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 A process called arbitration determines ownership. A simple implementa-
tion has a centralized arbitration unit with an input from each potential 
requesting unit. The arbitration unit then grants bus ownership to one request-
ing unit, as determined by the bus protocol. 

 A bus protocol is an agreed set of rules for transmitting information between 
two or more devices over a bus. The protocol determines the following:

    •      the type and order of data being sent;  
   •      how the sending device indicates that it has fi nished sending the 

information;  
   •      the data compression method used, if any;  
   •      how the receiving device acknowledges successful reception of the infor-

mation; and  
   •      how arbitration is performed to resolve contention on the bus and in 

what priority, and the type of error checking to be used.     

   5.3.2    Bus Bridge 

 A bus bridge is a module that connects together two buses, which are not 
necessarily of the same type. A typical bridge can serve three functions:

   1.     If the two buses use different protocols, a bus bridge provides the neces-
sary format and standard conversion.  

  2.     A bridge is inserted between two buses to segment them and keep traffi c 
contained within the segments. This improves concurrency: both buses 
can operate at the same time.  

  3.     A bridge often contains memory buffers and the associated control cir-
cuits that allow write posting. When a master on one bus initiates a data 
transfer to a slave module on another bus through the bridge, the data 
is temporarily stored in the buffer, allowing the master to proceed to the 
next transaction before the data are actually written to the slave. By 
allowing transactions to complete quickly, a bus bridge can signifi cantly 
improve system performance.     

   5.3.3    Physical Bus Structure 

 The nature of the bus transaction depends on the physical bus structure 
(number of wire paths, cycle time, etc.) and the protocol (especially the arbi-
tration support). Multiple bus users must be arbitrated for access to the bus 
in any given cycle. Thus, arbitration is part of the bus transaction. Simple arbi-
ters have a request cycle wherein signals from the users are prioritized, fol-
lowed by the acknowledge cycle selecting the user. More complex arbiters add 
bus control lines and associated logic so that each user is aware of pending 
bus status and priority. In such designs no cycles are added to the bus transac-
tion for arbitration.  
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 E XAMPLE  5.1   B US  E XAMPLES  

    There are many possible bus designs with varying combinations of physical 
bus widths and arbitration protocols. The examples below consider some 
obvious possibilities. Suppose the bus has a transmission delay of one proces-
sor cycle, and the memory (or shared cache) has a four - cycle access delay after 
an initial address and requires an additional cycle for each sequential data 
access. The memory is accessed 4 bytes at a time. The data to be transmitted 
consist of a 16 - byte cache line. Address requests are 4 bytes. 

 In these examples,  T  access  is the time required to access the fi rst word from 
memory after the address is issued, and line access is the time required to 
access the remaining words. Also, the last byte of data arrives at the end of 
the timing template and can be used only after that point.

    (a)     Simple Bus.     This is a single transaction bus with simple request/
acknowledge (ack) arbitration. It has a physical width of 4 bytes. The 
request and ack signals are separate signals but assumed to be part of 
the bus transaction, so the bus transaction latency is 11 cycles. The fi rst 
word is sent from memory at the last cycle of  T  access , while the fourth 
(and last) word is sent from memory at the last cycle of line access. The 
fi nal bus cycle is to reset the arbiter.
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Taccess line accessac
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s 
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   (b)     Bus with Arbitration Support.     This bus has a more sophisticated arbiter 
but still has a 4 - byte physical width and integrates address and data. 
There is an additional access cycle (fi ve cycles instead of four) to rep-
resent the time to move the address from the bus receiver to the 
memory. This is not shown in case (a), as simple buses are usually slower 
with immediate coupling to memory. Now the initial cycles for request 
and ack are overlapped with bus processing, and the fi nal cycle for 
resetting the arbiter is not shown in the fi gure for case (b), so the bus 
transaction now takes 10 cycles.

   5.3.4    Bus Varieties 

 Buses may be  unifi ed  or  split  (address and data). In the unifi ed bus the address 
is initially transmitted in a bus cycle followed by one or more data cycles; the 
split bus has separate buses for each of these functions. 

 Also, the buses may be single transaction or  tenured . Tenured buses are 
occupied by a transaction only during associated addresses or data cycles. Such 
buses have unit receivers that buffer the messages and create separate address 
and data transactions.     
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  Taccess line accessad
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   (c)     Tenured Split Bus, 4 Bytes Wide.     The assumption is that the requested 
line is fetched into a buffer for fi ve cycles and then transmitted in 
four cycles. While the transaction latency, including the cycle for the 
address, is no different from that in case (b) at 10 cycles, the transac-
tion occupies the bus for less than half (four cycles) of that time. The 
address bus is used for only one cycle out of 10. The remaining time is 
available for other unrelated transactions to improve communication 
performance.

  

5 cycles Bus transit<

addr

<< <

bus
Address

Data bus

  

  (d)     Tenured Split Bus, 16 Bytes Wide, with a One - Cycle Bus Transaction 
Time.     As with case (c), the transaction latency is unaffected at 10 cycles. 
Since the memory clearly limits the system, in this case the memory 
fetches the entire 16 - byte cache line before transmitting it in a single 
cycle. Both address and data buses are used for only one cycle per 
transaction. Note that the fi gure for case (d) allows an additional cycle 
to reaccess the bus, although this might not be needed and is not 
accounted for in case (c).

  

Address

9 cycles< <

bus

Data bus 

    

 Cases (c) and (d) are interesting, since the bus bandwidth exceeds the memory 
bandwidth; for instance, in case (d), the memory is busy for seven cycles 
(four cycles to access the fi rst word and three cycles to assess the remaining 
words) but the bus is busy for only one cycle. In both of these cases, the  “ bus ”  –
 memory situation is memory limited since that is where the contention will 
develop.  

   5.4     SOC  STANDARD BUSES 

 Two commonly used SOC bus standards are the Advanced Microcontroller 
Bus Architecture (AMBA) bus developed by ARM and the CoreConnect bus 
developed by IBM. The latter has been adopted in Xilinx ’ s Virtex platform 
FPGA families. 
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   5.4.1     AMBA  

 The AMBA, introduced in 1997, had its origin from the ARM processor, which 
is one of the most successful SOC processors used in the industry. The AMBA 
bus is based on traditional bus architecture employing two levels of hierarchy. 
Two buses are defi ned in the AMBA specifi cation  [22] :

    •      The Advanced High - Performance Bus (AHB) is designed to connect 
embedded processors, such as an ARM processor core, to high -
 performance peripherals, direct memory access (DMA) controllers, 
on - chip memory, and interfaces. It is a high - speed, high - bandwidth bus 
architecture that uses separate address, read, and write buses. A minimum 
of 32 - bit data operation is recommended in the standard and data widths 
are extendable to 1024 bits. Concurrent multiple master/slave operations 
are supported. It also supports burst mode data transfers and split trans-
actions. All transactions on the AHB bus are referenced to a single clock 
edge, making system - level design easy to understand.  

   •      The Advanced Peripheral Bus (APB) has a lower performance than the 
AHB bus, but is optimized for minimal power consumption and has 
reduced interface complexity. It is designed for interfacing to slower 
peripheral modules.    

 A third bus, the Advanced System Bus (ASB), is an earlier incarnation of the 
AHB, designed for lower performance systems using 16/32 - bit microcon-
trollers. It is used where cost, performance, and complexity of the AHB is not 
justifi ed. 

 The AMBA bus was designed to address a number of issues exposed by 
users of the ARM processor bus in SOC integration. The goals achieved by its 
design are  [95] :

   1.     Modular Design and Design Reuse.     Since the ARM processor bus inter-
face is extremely fl exible, inexperienced designers could inadvertently 
create ineffi cient or even unworkable designs by using ad hoc bus and 
control logic. The AMBA specifi cation encourages a modular design 
methodology that supports better design partitioning and design reuse.  

  2.     Well - Defi ned Interface Protocol, Clocking, and Reset.     AMBA specifi es a 
low - overhead bus interface and clocking structure that is simple yet fl ex-
ible. The performance of the AMBA bus is enhanced by its multimaster, 
split transaction, and burst mode operations.  

  3.     Low - Power Support.     One of the attractions of the ARM processor when 
compared with other embedded processor cores is its power effi ciency. 
The two - level partitioning of the AMBA buses ensures energy - effi cient 
designs in the peripheral modules, which fi ts well with the low - power 
CPU core.  
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  4.     On - Chip Test Access.     AMBA has an optional on - chip test access meth-
odology that reuses the basic bus infrastructure for testing modules that 
are connected to the bus.    

  The  AHB      Figure  5.2  depicts a typical system using the AMBA bus architec-
ture. The AHB forms the system backbone bus on which the ARM processor, 
the high - bandwidth memory interface and random - access memory (RAM), 
and the DMA devices reside. The interface between the AHB bus and the 
slower APB bus is through a bus bridge module.   

 The AMBA AHB bus protocol is designed to implement a multimaster 
system. Unlike most bus architectures designed for PCB - based systems, the 
AMBA AHB bus avoids tristate implementation by employing a central mul-
tiplexer interconnect scheme. This method of interconnect provides higher 
performance and lower power than using tristate buffers. All bus masters 
assert the address and control signals, indicating the type of transfer each 
master requires. A central arbiter determines which master has its address and 
control signal routed to all the slaves. A central decoder circuit selects the 
appropriate read data and response acknowledge signal from the slave that is 
involved in the transaction. Figure  5.3  depicts such a multiplexer interconnect 
scheme for a system with three masters and four slaves.   

 Transactions on the AHB bus involve the following steps:

    •      Bus Master Obtains Access to the Bus.     This process begins with the 
master asserting a request signal to the arbiter. If more than one master 
simultaneously requests the control of the bus, the arbiter determines 
which of the requesting masters will be granted the use of the bus.  

   •      Bus Master Initiates Transfer.     A granted bus master drives the address 
and control signals with the address, direction, and width of the transfer. 
It also indicates whether the transaction is part of a burst in the case of 
burst mode operation. A write data bus operation moves data from the 
master to a slave, while a read data bus operation moves data from a 
slave to the master.  

     Figure 5.2     A typical AMBA bus - based system  [95] .  

CPU On-chip RAM

AHB APB

DMA master

I/O

UART

B
R
I
D
G
E

Off-chip
DRAM

c05.indd   175c05.indd   175 5/4/2011   9:54:27 AM5/4/2011   9:54:27 AM



176  INTERCONNECT

   •      Bus Slave Provides a Response.     A slave signals to the master the status 
of the transfer such as whether it was successful, if it needs to be delayed, 
or that an error occurred.    

 Figure  5.4 a depicts a basic AHB transfer cycle. An AHB transfer consists of 
two distinct phases: the address phase and the data phase. The master asserts 
the address (ADDR) and control signals on the rising edge of the clock (CLK) 
during the address phase, which always lasts for a single cycle. The slave then 
samples the address and control signals and responds accordingly during the 
data phase to a data read (RDATA) or write (WDATA) operation, and indi-
cates its completion with the READY signal. A slave may insert wait states 
into any transfer by delaying the assertion of READY as shown in Figure  5.4 b. 
For a write operation, the bus master holds the data stable throughout the 
extended data cycles. For a read transfer the slave does not provide valid data 
until the last cycle of the data phase.   

 The AHB bus is a pipelined (tenured) bus. Therefore, the address phase of 
any transfer can occur during the data phase of a previous transfer. This over-
lapping pipeline feature allows for high - performance operation.  

  The  APB      The APB is optimized for minimal power and low complexity 
instead of performance. It is used to interface to peripherals, which are low 
bandwidth. 

     Figure 5.3     Multiplexor (MUX) interconnection for a three masters/four slaves 
system  [22] .  
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 The operation of the APB is straightforward and can be described by a state 
diagram with three states. The APB either stays in the Idle state, or loops 
around the Setup state and the Enable state during data transfer.   

   5.4.2    Core C onnect 

 As in the case of AMBA bus, IBM ’ s CoreConnect Bus is an SOC bus standard 
designed around a specifi c processor core, the PowerPC, but it is also adaptable 
to other processors. The CoreConnect Bus and the AMBA bus share many 
common features. Both have a bus hierarchy to support different levels of bus 
performance and complexity. Both have advanced bus features such as mul-
tiple master, separate read/write ports, pipelining, split transaction, burst mode 
transfer, and extendable bus width. 

 The CoreConnect architecture provides three buses for interconnecting 
cores, library macros, and custom logic:

    •      processor local bus (PLB),  
   •      on - chip peripheral bus (OPB),  
   •      device control register (DCR) bus.    

 Figure  5.5  illustrates how the CoreConnect architecture can be used in an SOC 
system built around a PowerPC. High - performance, high - bandwidth blocks 
such as the PowerPC 440 CPU core, the PCI - X bus bridge, and the PC133/
DDR133 (DDR1 with a 133   MHz bus) synchronous dynamic RAM (SDRAM) 
Controller are connected together using the PLB, while the OPB hosts 
lower data rate on - chip peripherals. The daisy - chained DCR bus provides a 

     Figure 5.4     A simple AHB transfer  [22] . (a) No wait states in transfer; (b) with wait 
states during transfer.  

Address
cycle

Data cycle Address
cycle

Data cycles

CLK

(a) (b)

ADDR

Control

WDATA

READY

RDATA RDATA

READY

WDATA

Control

ADDR

CLK

c05.indd   177c05.indd   177 5/4/2011   9:54:27 AM5/4/2011   9:54:27 AM



178  INTERCONNECT

relatively low - speed datapath for passing confi guration and status information 
between the PowerPC 440 CPU core and other on - chip modules.   

  The  PLB      The PLB is used for high - bandwidth, high - performance, and low -
 latency interconnections between the processors, memory, and DMA control-
lers  [123] . It is a fully synchronous, split transaction bus with separate address, 
read, and write data buses, allowing two simultaneous transfers per clock cycle. 
All masters have their own Address, Read Data, Write Data, and control 
signals called transfer qualifi er signals. Bus slaves also have Address, Read 
Data, and Write Data buses, but these buses are shared. 

 PLB transactions, as in the AMBA AHB, consist of multiple phases that 
may last for one or more clock cycles, and involve the address and data buses 
separately. Transactions involving the address bus have three phases: request 
(RQ), transfer (XFER), and address acknowledge (ACK). A PLB transaction 
begins when a master drives its address and transfer qualifi er signals and 
requests ownership of the bus during the request phase of the address tenure. 
Once the PLB arbiter grants bus ownership, the master ’ s address and transfer 
qualifi ers are presented to the slave devices during the transfer phase. The 
address cycle terminates when a slave latches the master ’ s address and transfer 
qualifi ers during the address acknowledge phase. 

 Figure  5.6  illustrates two deep read and write address pipelining along with 
concurrent read and write data tenures. Master A and Master B represent the 

     Figure 5.5     A CoreConnect - based SOC  [123] .  
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     Figure 5.6     PLB transfer protocol  [123] .  
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state of each master ’ s address and transfer qualifi ers. The PLB arbitrates 
between these requests and passes the selected master ’ s request to the PLB 
slave address bus. The trace labeled Address Phase shows the state of the PLB 
slave address bus during each PLB clock.   

 Each data beat in the data tenure has two phases: transfer and acknowledge. 
During the transfer phase the master drives the write data bus for a write 
transfer or samples the read data bus for a read transfer. As shown in Figure 
 5.6 , the fi rst (or only) data beat of a write transfer coincides with the address 
transfer phase.  

  Split Transaction     The PLB address, read data, and write data buses are 
decoupled, allowing for address cycles to be overlapped with read or write 
data cycles, and for read data cycles to be overlapped with write data cycles. 
The PLB split bus transaction capability allows the address and data buses to 
have different masters at the same time. Additionally, a second master may 
request ownership of the PLB, via address pipelining, in parallel with the data 
cycle of another master ’ s bus transfer. This situation is illustrated in Figure  5.6 , 
with the dependence of various signals indicated by arrows.  

  The  OPB      The OPB is a secondary bus designed to alleviate system perfor-
mance bottlenecks by reducing capacitive loading on the PLB  [126] . Peripherals 
suitable for attachment to the OPB include serial ports, parallel ports, UARTs, 
GPIO (general purpose I/O), timers, and other low - bandwidth devices. The 
OPB is more sophisticated than the AMBA APB. It supports multiple masters 
and slaves by implementing the address and data buses as a distributed mul-
tiplexer. This type of structure is suitable for the less data - intensive OPB bus 
and allows peripherals to be added to a custom core logic design without 
changing the I/O on either the OPB arbiter or existing peripherals. Figure 
 5.7  shows one method of structuring the OPB address and data buses. Both 
masters and slaves provide enable control signals for their outbound buses. 
By requiring that each unit provide this signal, the associated bus combining 
logic can be strategically placed throughout the chip. As shown in the fi gure, 
either of the masters is capable of providing an address to the slaves, whereas 
both masters and slaves are capable of driving and receiving the distributed 
data bus.   

 Table  5.3  shows a comparison between the AMBA and CoreConnect bus 
standards.     

   5.4.3    Bus Interface Units: Bus Sockets and Bus Wrappers 

 Using a standard SOC bus for the integration of different reusable IP blocks 
has one major drawback. Since standard buses specify protocols over wired 
connections, an IP block that complies with one bus standard cannot be 
reused with another block using a different bus standard. One approach to 
alleviate this is to employ a hardware  “ socket, ”  which is an example of a 
bus wrapper in Section  5.2 , to separate the interconnect logic from the IP 
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core using a well - defi ned IP core protocol that is independent of the physi-
cal bus protocol. Core - to - core communication is therefore handled by the 
interface wrapper. This approach is taken by the Virtual Socket Interface 
Alliance (VSIA)  [44]  with their virtual component interface (VCI)  [249] , and 
by Sonics Inc. employing the Open Core Protocol (OCP) and Silicon Backplane 
  μ  Network  [225] . 

     Figure 5.7     The on - chip peripheral bus (OPB)  [126] .  

Arbiter

1

Data write

Data
read
from
S1–S4

2

Master units

Slave units

OR

OR

OR

Addresses

S1
S1

S2

S3

S4

S2

S3

S4
S1

S2

S3

S4

  TABLE 5.3    Comparison between CoreConnect and  AMBA  Architectures  [198]  

        IBM CoreConnect PLB  
   ARM AMBA 2.0 AMBA 

High - Performance Bus  

  Bus architecture    32, 64, and 128 bits, 
extendable to 256 bits  

  32, 64, and 128 bits  

  Data buses    Separate read and write    Separate read and write  
  Key capabilities    Multiple bus masters    Multiple bus masters  

  Four - deep read pipelining, 
two - deep write pipelining  

  Pipelining  

  Split transactions    Split transactions  
  Burst transfers    Burst transfers  
  Line transfers    Line transfers  

      OPB    AMBA APB  
  Masters supported    Supports multiple masters    Single master: The APB bridge  
  Bridge function    Master on PLB or OPB    APB master only  
  Data buses    Separate read and write    Separate or three - state  
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 VSIA proposes a set of standards and interfaces known as virtual socket 
interface (VSI) that enables system - level interaction on a chip using prede-
signed blocks (called virtual components [VCs])  [249] . This encourages designs 
using a component paradigm. The VCs, which are effectively IP blocks that 
conform to the VSI specifi cations, can be one of three varieties.  Hard  VCs 
consist of placed and routed gates with all silicon layers defi ned. It has predict-
able performance, area usage, and power consumption, but offers no fl exibility. 
 Soft  VCs are designed in some hardware description language representation, 
which are mapped to physical design through synthesis, placement, and routing. 
They can be easily modifi ed but generally take more effort to integrate and 
verify in the SOC design as well as having less predictable performance. 
Finally,  fi rm  VCs offer a compromise between the two. They come in the form 
of generators or partially placed library blocks that require fi nal routing and/
or placement adjustment. This form of VCs provides more predictable perfor-
mance than soft VCs, but still offers some degree of fl exibility in aspect ratio 
and confi guration. 

 In order to connect these different VCs together, VSIA has developed a 
VCI specifi cation to which other proprietary buses can interface. By following 
the VCI specifi cation, a designer can take a VC and integrate it with any of 
several buses in order to meet system performance requirements. The VCI 
standard specifi es a family of protocols. Currently three protocols are defi ned: 
the peripheral VCI (PVCI), the basic VCI (BVCI), and the advanced VCI 
(AVCI)  [249] . The PVCI is a low - performance protocol where the request and 
the response data transfer occur during a single control handshake transaction. 
It is therefore not a split - transaction protocol. The BVCI employs a split -
 transaction protocol, but responses must arrive in order. In other words, the 
response data must be supplied in the same order in which the initiator gener-
ated the requests. The AVCI is similar to the BVCI, but out - of - order transac-
tions are allowed. Requests are tagged and transactions can be interleaved 
and reordered. 

 In addition to the specifi cation of the VCI, VSIA also specifi es a number 
of abstraction layers to defi ne the representation views required to integrate 
a VC into an SOC design  [44] . The idea is that if both the IP block provider 
(VC provider) and the system integrator (VC integrator) conform to the VSI 
specifi cations at all levels of abstraction, SOC designs using an IP component 
paradigm can proceed with lower risk of errors. 

 An alternative to VCI is the OCP promoted by the Open Core Protocol 
International Partnership (OCP - IP)  [188] . The OCP defi nes a point - to - point 
interface between two communicating entities such as two IP cores using a 
core - centric protocol. An interface implementing the OCP assumes the attri-
butes of a  socket , which, as explained earlier, is effectively a bus wrapper that 
allows interfacing to the target bus. A system consisting of three IP core 
modules using the OCP and bus wrappers is shown in Figure  5.8 . One module 
is a system initiator, one is a system target, and another is both initiator and 
target.   
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 Another layer of interconnection can be made above the OCP in order 
to help IP integration further. Sonics Inc. proposes their proprietary 
SiliconBackplane Protocol that seamlessly glues together IP blocks that uses 
the OCP. The communication between different blocks takes place over the 
Silicon Backplane   μ  Network, which has a scalable bandwidth of 50 – 4000   MB/s. 
Figure  5.9  depicts how the Sonics   μ  Network components are connected 
together  [225] .   

 Bus interface units using the wrapper - based approach have been demon-
strated to reduce the design time of SOC, but at a cost in terms of gates and 
latency. Attaching simple wrapper hardware increases the access latencies and 
incurs a hardware overhead of 3 – 5   K gates  [160] . 

 In addition, bus interface units can include fi rst - in – fi rst - out (FIFO) buffers 
to improve performance. Figure  5.10  shows the amount of hardware overhead 

     Figure 5.8     A three - core system using OCP and bus wrappers  [225] .  
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     Figure 5.9     Sonics   μ  Network confi guration  [225] . DSP, digital signal processor.  
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incurred and performance improvement achieved by employing write data 
buffers in a bus interface unit  [9] .   

 The write buffer provides several cycles improvement in latency and, 
depending on the data size, more than 10% improvement in throughput.   

   5.5    ANALYTIC BUS MODELS 

   5.5.1    Contention and Shared Bus 

 Contention occurs wherever two or more units request a shared resource that 
cannot supply both at the same time. When contention occurs, either (1) it 

     Figure 5.10     (a) Hardware overhead of write buffers; (b) performance impact of buffer 
for burst mode transfer  [9] .  
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delays its request and is idle until the resource is available or (2) it queues its 
request in a buffer and proceeds until the resource is available. Case (2) is 
only possible when the requested item is not logically essential to program 
execution (as in a cache prefetch, for example). 

 Whether we need to analyze the bus as a source of contention depends on 
its maximum (or offered) bandwidth relative to the memory bandwidth. As 
contention and queues develop at the  “ bottleneck ”  in the system, the most 
limiting resource is the source of the contention, and other parts of the system 
simply act as delay elements. Thus buses must be analyzed for contention when 
they are more restrictive (have less available bandwidth) than memory. 

 Buses often have no buffering (queues), and access delays cause immediate 
system slowdown. The analysis on the effects of bus congestion depends on 
the access type and buffering. 

 Generally there are two types of access patterns:

   1.     Requests without Immediate Resubmissions.     The denied request returns 
with the same arrival distribution as the original request. Once a request 
is denied, processing continues despite the delay in the resubmission of 
the request. This is the case of a cache line prefetch, which is not currently 
required for continued program execution.  

  2.     Requests Are Immediately Resubmitted.     This is a more typical case, when 
multiple independent processors access a common bus. A program 
cannot proceed after a denied request. It is immediately resubmitted. The 
processor is idle until the request is honored and serviced.     

   5.5.2    Simple Bus Model: Without Resubmission 

 In the following, we assume that each request occupies the bus for the same 
service time (e.g.,  T  line access ). Even if we have two different types of bus users 
(e.g., word requests and line requests on a single line or [dirty] double line 
requests), most cases are reasonably approximated by simple computation of 
the per - processor average (offered) bus occupancy,   ρ  , given by:

   ρ =
+

bus transaction time
processor time bus transaction time

.   

 The processor time is the mean time the processor needs to compute before 
making a bus request. Of course, it is possible for the processor to overlap 
some of its compute time with the bus time. In this case, the processor time is 
the net nonoverlapped time between bus requests. In any event,   ρ      ≤    1. 

 The simplest model for  n  processors accessing a bus is given by:

   Prob processor does not access bus( ) = −1 ρ  
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Prob bus is busy

fraction of bus bandwidth realize

( ) ( )= −
=

1 ρ n

dd = B n( , ).ρ
  

 The fraction of bandwidth realized times the maximum bus bandwidth gives 
the realized (or achieved) bus bandwidth,  Bw . 

 The achieved bandwidth fraction (achieved occupancy) per processor (  ρ  a  ) 
is given by:

   
n B n

B n
n

a

a

ρ ρ

ρ ρ
= ( )

= ( )
,

, .   

 A processor slows down by   ρ  a  /  ρ   due to bus congestion.  

   5.5.3    Bus Model with Request Resubmission 

 A model that supports request resubmission involves a more complex analysis 
and requires an iterative solution. There are several solutions, each providing 
similar results. The solution provided by Hwang and Briggs  [122]  is an iterative 
pair of equations:

   a
a

=
+ ( ) −( )

ρ
ρ ρ ρ ρ1

 

and

   n aa
nρ = − −( )1 1 ,  

where  a  is the actual offered request rate. To fi nd a fi nal   ρ  a  , initially set  a     =      ρ   
to begin the iteration. Convergence usually occurs within four iterations.  

   5.5.4    Using the Bus Model: Computing the Offered Occupancy 

 The model in the preceding section does not distinguish among types of trans-
actions. It just requires the mean bus transaction time, which is the average 
number of cycles that the bus is busy managing a transaction. Then the issue 
is fi nding the offered occupancy,   ρ  . 

 The offered occupancy is the fraction of the time that the bus would be 
busy if there were no contention among transactions (bounded by 0.0 and 1.0). 
In order to fi nd this, we need to determine the mean time for a bus transaction 
and the compute time between transactions. 

 The nature of the processor initiating the transaction is another factor. 
Simple processors make  blocking  transactions. In this case the processor is idle 
after the bus request is made and resumes computation only after the bus 
transaction is complete. The alternative for more complex processors is a 
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 buffered  (or nonblocking) transaction. In this case the processor continues 
processing after making a request, and may indeed make several requests 
before completion of an initial request. Depending on the system confi gura-
tion, there are two common cases:

   1.     A Single Bus Master with Blocking Transactions.     In this case there is no 
bus contention as the processor waits for the transaction to complete. 
Here the achieved occupancy,   ρ  a  , is the same as the offered occupancy, 
and   ρ      =      ρ  a      =    (bus transaction time)/(compute time    +    bus transaction 
time).  

  2.     Multiple ( n ) Bus Masters with Blocking Transactions.     In this case the 
offered occupancy is simply  n ρ   where   ρ   is as in case (1). Now contention 
can develop so we use our bus model to determine the achieved occu-
pancy,   ρ  a  .    

  Example.    Suppose a processor has bus transactions that consist of cache line 
transfers. Assume that 80% of the transactions move a single line and occupy 
the bus for 20 cycles and 20% of the transactions move a double line (as in 
dirty line replacement), which takes 36 cycles. The mean bus transaction time 
is 23.2 cycles. Now assume that a cache miss (transaction) occurs every 200 
cycles. 

 In case (1), the bus is occupied:   ρ      =      ρ  a      =    23.2/223.2    =    0.10; there is no con-
tention, but the bus causes a system slow down, as discussed below. 

 In case (2), suppose we have four processors. Now the offered occupancy 
is   ρ      =    0.104 and we use our model to fi nd the contention time. Initially we set 
 a     =      ρ      =    0.104,  n ρ  a      =    1    −    (1    −     a )  n      =    1    −    (1    −    0.104) 4 ; now we fi nd   ρ  a   and substi-
tute the value of   ρ  a   for  a  and continue. 

 So initially,   ρ  a      =    0.089; after the next iteration,   ρ  a      =    0.010; and after several 
iterations,   ρ  a      =    0.095. We always achieve less than what is offered and the dif-
ference is delay due to contention. So:

   ρa = =
+

0 095.
bus transaction time

compute time bus transaction ttime contention time+
.   

 Solving for the contention time, we get about 21 cycles.  

   5.5.5    Effect of Bus Transactions and Contention Time 

 There are two separate effects of bus delays on overall system performance. 
The fi rst is the obvious case of blocking, which simply inserts a transaction 
delay into the program execution. The second effect is due to contention. 
Contention reduces the rate of transaction fl ow into the bus and memory. This 
reduces performance proportionally. 

 In the case of blocking the processor simply slows down by the amount of 
the bus transaction. So the relative performance compared to an ideal proces-
sor with no bus transactions is:
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   Relative performance
compute time

compute time bus transact
=

+ iion time
.   

 In the case (1) example the processor slows down by 200/223.3    =    0.896. 
 Contention, when present, adds additional delay. In case (2) the individual 

processor slows down by 200/(223.2    +    21)    =    0.819. The result of contention is 
that it simply slows down the system (without contention) by the ratio of   ρ  a  /  ρ  . 
The supply of transactions is reduced by this ratio.   

   5.6    BEYOND THE BUS: NOC WITH SWITCH INTERCONNECTS 

 While bus interconnect has been the predominant architecture for SOC inter-
connections, it suffers from a number of drawbacks. Even a well - designed 
bus - based system may suffer from data transfer bottlenecks, limiting the per-
formance of the entire system. It is also not inherently scalable. As more 
modules are added to a bus, not only does data congestion increase, but power 
consumption also rises due to the increased load presented to the bus driver 
circuits. Switch - based NOC interconnections avoid some of these limitations. 
However, switches are inherently more complex than buses and are most 
useful in larger SOC confi gurations. There are broad trade - offs possible in 
switch design. Large numbers of nodes can be interconnected with relatively 
low latency but at exponentially increasing cost (as with crossbar switches) or 
they can be implemented with relatively longer latency and with more modest 
cost (as in a distributed interconnection). 

 This section presents some basic concepts and alternatives in the design of 
the physical interconnect network. This network consists of a confi guration 
of switches to enable the interconnection of  N  units. The design effi ciency or 
cost – performance of the interconnection network is determined by:

   1.     The delay in connecting a requesting unit to its destination.  
  2.     The bandwidth between units and the number of connections that can 

be carried on concurrently.  
  3.     The cost of the network.    

   
 In a network, units communicate with one another via a link or a channel, 
which can be either unidirectional or bidirectional. Links have bandwidth or 
the number of bits per unit time that can be transmitted concurrently between 
units (or nodes). The fanout of a node is the number of bidirectional channels 
connecting it to its neighboring nodes (Figure  5.11 ).   

 Networks can be static or dynamic. In a  static network , the topology or the 
relationship between nodes in the network is fi xed (Figure  5.12 ). The path 
between two nodes does not change. In a  dynamic network , the paths between 
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     Figure 5.11     Node and channels; the node fanout is the number of channels connecting 
a node to its neighbors.  
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     Figure 5.12     Static network (links between units is fi xed).  
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  SOC  INTERCONNECT SWITCHES. 

 This section is an abstract of some of the basic concepts and results from 
the computer interconnect literature. In SOC switching, currently the 
number of nodes (units) is typically limited by die size to 16 – 64. Since 
the units are on chip, the link bandwidth,  w , is relatively large: 16 – 128 
wires. In SOC, dynamic networks are dominant so far (either crossbar 
or multistage); static networks, when used, tend to be a grid (torus). As 
the number of SOC units increases, a greater variety of network imple-
mentations are expected. 
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     Figure 5.13     Dynamic network (links between units vary to establish connection).  
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     Figure 5.14     A switch - based interconnect scheme  [66] .  
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nodes can be altered both to establish connectivity and also to improve 
network bandwidth (Figure  5.13 ).   

 A static network could consist of a 2 - D grid of switches  [64]  to connect 
together SOC modules. A dynamic network could consist of a centralized 
crossbar switch. Apart from the advantage of avoiding traffi c congestion, a 
switch - based scheme may allow modules to operate at different clock frequen-
cies as well as alleviating the bus loading problem. 

 Figure  5.14  shows a crossbar - based interconnect that connects some 
locally synchronous blocks on the same chip  [66] . The crossbar switch is fully 
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asynchronous. Inside the chip, clock domain converters are used to bridge the 
asynchronous interconnect to the synchronous blocks.   

   5.6.1    Static Networks 

 In a static network the  distance  between two units is the smallest number of 
links or channels (or hops) that must be traversed for establishing communica-
tions between them. The  diameter  of the network is the largest distance 
(without backtracking) between any two units in the network. An example of 
a static network in a linear network is found in Figure  5.15 a. Networks can be 
open or closed. A closed network improves average distance and diameter by 
converting a linear array into a ring (Figure  5.15 b). The most common type of 
static network is the ( k ,  d ) network  [70] . This is a regular array of nodes with 
dimension  d  and with  k  nodes in each dimension. These networks are usually 
closed as in the case of a ring,  d     =    1 or a torus,  d     =    2.   

 Assume there are  k  nodes in a linear array and we wish to extend the 
network. Instead of simply increasing the number of linear elements, we can 
increase the dimensionality of the network, creating a grid network of two 
dimensions,  d     =    2 (Figure  5.15 c). These ( k ,  d ) networks can be linear arrays, 
 d     =    1, 2 - D grids,  d     =    2, cubic arrays,  d     =    3, or hypercubes. Hypercubes are 
usually limited to two elements per dimension,  k     =    2, with as many dimensions 
as needed to contain the network. Higher dimensional networks improve the 
connectivity but at the expense of connection switches. There must be a switch 

     Figure 5.15     Example of static network without preferred sites. (a) Linear array; 
(b) linear array with closure (a ring); (c) grid (2 - D mesh); (d)  k     ×     k  grid with closure 
(a 2 - D torus). These are also called ( k ,  d ) networks. In (a) and (b), we have  k     =    4,  d     =    1 
(one dimensional). In (c) and (d), we have  k     =    3,  d     =    2.  
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for each nearest neighbor and generally there are 2 d  neighbors in a ( k ,  d ) 
network. Figure  5.15 d represents a torus, commonly referred to as a nearest -
 neighbor mesh. 

 In the special case of the binary cube, or hypercube,  k     =    2. The number of 
hypercube nodes ( N ) and the diameter can be determined as follows: for (2, 
 n ), the binary  n  - cube with bidirectional channels has:

   N n= 2 ,  

and for the (2,  n ) case:

   Diameter = n.   

 For general ( k ,  n ) with  n  dimensions and with closure and bidirectional chan-
nels, we have

   N kn=  

or

   n Nk= log  

and

   Diameter =
−⎡

⎣⎢
⎤
⎦⎥

k
n

1
2

.   

  Example.    Suppose we have a 4    ×    4 grid (torus as in Figure  5.15 d). In ( k ,  d ) 
terms it is a (4, 2) network,  N     =    16 and  n     =    2, and the diameter is 4. 

 In general, it is the dimension of the network and its maximum distance 
that are important to cost and performance. Some cost and performance com-
parisons for various ( k ,  d ) static networks are shown in Table  5.4 .   

 Links are characterized in three ways:

   1.     The Cycle Time of the Link,  T ch  .     This corresponds to the time it requires 
to transmit between neighboring nodes. 1/ T ch   is the bandwidth of a wire 
in the link or channel.  

  2.     The Width of the Link,  w .     This determines the number of bits that may 
be concurrently transmitted between two nodes.  

  3.     Whether the link is unidirectional or bidirectional.    

 Associated with the link characterization is the length of the message in bits 
( l ) plus  H  header bits. The header is simply the address of the destination node. 
Thus,  T ch      ×    ( l     +     H )/ w  will be the time required to transmit a message between 
two adjacent units. 

 Suppose unit A has a message for unit C, which must be transmitted via 
unit B. If node B is available, the message is transmitted fi rst from A to B and 
stored at B. After the message has been completely transmitted, node B 
accesses node C and transmits the message to C if C is available. Rather than 
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storing the message at B, we can use  wormhole routing   [70] . As the message 
is received at B, it is buffered only long enough to decode its header and 
determine its destination. As soon as this minimal amount of information can 
be determined, the message is retransmitted to C, assuming that C is available. 
The amount of buffering then required at B is signifi cantly reduced and the 
overall time of transmission is:

   T T d h l wchwormhole = ⋅ +( ),  

where  h     =    [ H / w ]. 
  Example.    In a 4    ×    4 grid, ( k ,  d )    =    (4, 2) and, assuming  T ch      =    1, let  h     =    1,  l     =    

256 and  w     =    64. Then  T wormhole      =    2    +    4    =    6 cycles. 
 Once the header is decoded at an intermediate node, that node can deter-

mine whether the message is for it or for another node. The intermediate node 
selects a minimum distance path to the destination node. If multiple paths have 
the same distance, then this intermediate node will select the path that is cur-
rently unblocked or available to it.  

   5.6.2    Dynamic Networks 

 The dynamic indirect network is shown in Figure  5.16 a and b.   
 Typically, the basic element in the dynamic network is a crossbar switch 

(Figure  5.17 ).   
 The crossbar simply connects one of  k  points to any of another  k  points. 

Multiple messages can be concurrently executed across the crossbar switch, so 
long as two messages do not have the same destination. The cost of the cross-
bar switch increases as  n  2 , so that for larger networks, use of a crossbar switch 
only becomes prohibitively expensive. In order to contain the cost of the 
switch, we can use a small crossbar switch as the basis of a multistage network, 
frequently referred to as a MIN —  multistage interconnection network   [256] . 

  TABLE 5.4    Some Cost and Performance Comparisons for Various ( k ,  d  ) Static 
Networks with 64 Nodes ( N     =    64) 

     
   Ring 
(64,1)  

   Torus 
(16,2)  

   Cube 
(4,3)  

   Hypercube 
(2,4)  

  Performance                  
     Number of hops (average,  dk /4)    16    8    3    2  
     Diameter (hops) (maximum 

internode distance,  dk /2)  
  32    16    6    4  

  Cost                  
     Node fanout (ports),  2d     2    4    6    8  
     Bisection BW, 2    wN / k     32    128    512    1024  

   Links (and ports) are bidirectional with 16 wires ( w     =    16). Bisection bandwidth (BW) refers to 
the number of wires intersected when a network is split into two equal halves.   
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     Figure 5.16     A basic dynamic, indirect switching network. P, processor; M, memory. 
Figure  5.16 a represents a centralized switching network, separate from the processors. 
Figures  5.16 b shows a more distributed network.  
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     Figure 5.17     (a) A 2    ×    2 crossbar with control  c ; (b) this can be generalized to a  k     ×     k  
crossbar switch.  
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There are many types, including baseline, Benes, Clos, Omega  [150] , and 
Banyan networks. The baseline network is among the simplest, and is shown 
in Figure  5.18 .   

 The header causes successive stages of the switch to be set so that the 
proper connection path is established between two nodes. For example, con-
sider a deterministic  “ obvious ”  routing algorithm for these  M ,  N  networks. 
Suppose node 011 sends a message to destination 110. The switch outputs 
labeled 1, 1, and 0 cause the message to be routed to the 110 destination node 
by setting the control ( c ) so that either the upper output ( “ 0 ” ) or the lower 
output ( “ 1 ” ) of each switch is selected. Similarly, the return path is simply 011. 
The number of stages between two nodes is:

   Stages = [ ]log ,k N  

where  k  is the number of inputs to the crossbar element ( k     ×     k ) and therefore 
the total number of ( k     ×     k ) switches required for a one - bit wide path is:

   N
k

Nk× [ ]log .   

 Other dynamic networks provide different trade - offs on achievable message 
bandwidth, message delay, and fault tolerance. Table  5.5  summarizes some of 
the attributes of some common dynamic networks.     

   5.7    SOME  NOC  SWITCH EXAMPLES 

   5.7.1    A 2 - D Grid Example of Direct Networks 

 Data traffi c can be distributed over the entire NOC by connecting the user IP 
cores through a direct interconnect network. Data transfer bottlenecks are 

     Figure 5.18     Baseline dynamic network topology.  
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avoided because there are multiple paths between nodes and data transfers 
can be performed simultaneously. Xfabric uses a 2 - D grid direct network 
approach to connect user cores on a Xilinx FPGA as shown in Figure  5.19  
 [64] . Data processing cores with one to four communication ports are intercon-
nected via a network of junction components (shown in gray). These data 
routing junctions manage system data fl ow autonomously between multiple 
user cores. Multiple instances of junctions form a direct two - dimensional grid 
network that can interconnect up to 1024 single - port cores. Horizontal and 
vertical data transport links between junction components enable effi cient 
data communications between cores.   

  TABLE 5.5    Dynamic Networks, Switching  N  Inputs    ×     N  Outputs Using  k     ×     k  
Switches 

   Network  

   Other 
Equivalent 
Networks  

   Stages of Delay 
(in Units of  k     ×     k  

Switch Delay)     Blocking  

   Approximate 
Cost ( k     ×     k  
Switches)  

  Baseline    Delta, Omega, 
SW Banyan  

  [log  k    N ]    Yes        

  Benes     —     2[log  k    N ]    −    1    Nonblocking if 
reconfi gured  

      

  Clos     —     2[log  k    N ]    −    1    Strictly 
nonblocking  

      

N
k k Nlog[ ]

2N
k k Nlog[ ]

4N
k k Nlog[ ]

     Figure 5.19     Xfabric connecting data processing core via junction components  [64] . It 
is a direct switching network using a 2 - D grid topology.  
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 Figure  5.20  shows the functional schematic of a junction component. Each 
junction consists of four Local Ports (from LPORT0 to LPORT3) and four 
Global Ports (from GPORT0 to GPORT3). User cores send 48 - bit words and 
receive 32 - bit words via Local Ports, while the 16 - bit Global Ports are used to 
route data to adjacent junctions.   

 Each junction component performs all the necessary routing and arbitra-
tion functions to deliver multiple parallel data streams between data sources 
and destinations with minimum latency, thus avoiding transfer bottlenecks 
found in bus - based systems.  

   5.7.2    Asynchronous Crossbar Interconnect for Synchronous  SOC  
(Dynamic Network) 

 Another NOC for SOC applications is the PivotPoint architecture by Fulcrum 
 [66] . The center of the system is the Nexus crossbar switch (see Figure  5.14 ), 
which has a data throughput rate of 1.6   Tbps. Nexus uses clockless asynchro-
nous circuits and has the advantages normally associated with this design style, 
including adaptivity to process technology, environmental variations, and 
lower system power consumption. The choice of asynchronous design style is 
partly driven by the need for interconnecting multiple clock domain cores. The 
synchronous cores can run at different frequencies with independent phase 
relationships to each other. Clock - domain converters are required to interface 
between the synchronous cores and the asynchronous crossbar. Since the 

     Figure 5.20     Schematic diagram of a junction component  [64] .  

Local Data
Out Local Data

Out
Local Data

In

Local
Port 0

Local
Port 3

Local
Port 2

Local
Port 1Global

Port 0

Global
Port 1

Global
Port 2

Global
Port 3

Local Data
In

Global Data
Out

Global Data
Out

Global Data
In

Global Data
In

c05.indd   196c05.indd   196 5/4/2011   9:54:28 AM5/4/2011   9:54:28 AM



LAYERED ARCHITECTURE AND NETWORK INTERFACE UNIT  197

crossbar switch does not use any clock signals, integrating different clock 
domains require no extra effort. In this way, the system is globally asynchro-
nous, but locally synchronous, which is also known as a GALS system. 

 Data transfer on Nexus is done through bursts. Each burst contains a vari-
able number of data words (36 - bit) and is terminated by a tail signal. A 4 - bit 
control is used to indicate a destination channel (TO), which becomes the 
source channel (FROM) when the burst leaves the crossbar. The format of the 
burst is shown in Figure  5.21 . Bursts are automatically routed by the crossbar 
and cannot be dropped, fragmented, or duplicated.   

 The crossbar provides the routing through a physical link that is created 
when the fi rst word of the burst enters the crossbar and is closed when the 
last word leaves the crossbar.  

   5.7.3    Blocking versus Nonblocking 

 Nexus and PivotPoint are designed to avoid head - of - the - line (HOL) blocking. 
HOL blocking occurs when one packet failing to progress results in other 
unrelated packets behind it to be blocked. PivotPoint uses virtual channels 
(also called ports) to transport separated traffi c streams simultaneously. 
Blocked packets in one channel only blocks packets behind it on the same 
channel. Packets on other channels are free to progress. In this way commu-
nication stalls are minimized.   

   5.8    LAYERED ARCHITECTURE AND NETWORK 
INTERFACE UNIT 

 The network interface unit is a key component in the NOC, since it can over-
come a number of limitations found in the conventional bus - based approach 

     Figure 5.21     Format of burst used on Nexus  [66] .  
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198  INTERCONNECT

 [40] . Although the bus standards discussed earlier provide some degree of 
portability and reusability of IP cores, they are diffi cult to adapt to advances 
in both process and bus interface technologies. The fundamental weakness of 
buses is that they do not take a layered approach to interconnection: There is 
no explicit separation between the transaction level communication in the 
application layer and the interconnect signals in the physical layer. In contrast, 
activities in NOC systems are generally separated into transaction, transport, 
and physical layers as depicted in Figure  5.22 . As a result, NOC systems can 
be adapted more easily to the rapid advances in process technology or in 
system architecture.   

 Figure  5.23  shows a general - purpose on - chip interconnect network com-
prising of a number of modules such as processors, memories, and IP blocks 
organized as tiles. These module tiles are connected to the network that routes 
packets of data between them. All communications between tiles are via the 
network, and the area overhead of the network logic can be as low as 6.6% 
 [71] . The key characteristics of such NOC architectures are that they have: (1) 
a layered architecture that is easily scalable; (2) a fl exible switching topology 
that can be confi gured by the user to optimize performance for different 
applications; and (3) point - to - point communication that effectively decouples 
the IP blocks from each other.   

   5.8.1     NOC  Layered Architecture 

 Most NOC architectures adopt a three - layered communication scheme, as 
shown in Figure  5.22 . The  physical layer  specifi es how packets are transmitted 
over the physical interfaces. Any changes in process technology, interconnect-

     Figure 5.22     The layered architecture of NOC  [26] .  
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ing switch structure, and clock frequency affect only this layer. Upper layers 
are not compromised in any way. 

 The  transport layer  defi nes how packets are routed through the switch 
network. A small header cell in the packet is typically used to specify how 
routing is to be done. The  transaction layer  defi nes the communication primi-
tives used to connect the IP blocks to the network. The NOC interface unit 
(NIU) provides the transaction level services to the IP block, governing how 
information is exchanged between NIUs to implement a particular transaction 
(Figure  5.24 ).   

 The layered architecture of NOC offers a number of benefi ts  [26] :

   1.     Physical and Transport Layers can be Independently Optimized.     The 
physical layer is governed mostly by process technology while the trans-
action layer is dependent on the particular application. The layered 
approach allows them to be separately optimized without affecting each 
other.  

  2.     Inherently Scalable.     A properly designed switch fabric in an NOC can 
be scaled to handle any amount of simultaneous transactions. The dis-
tributed nature of the architecture allows the switches to be optimized 
to match the requirements. At the same time, the NIU responsible for 
the transaction layer can be designed to satisfy the performance require-
ment of the IP block that it services with no effect on the confi guration 
and performance of the switch fabric.  

  3.     Better Control of Quality - of - Service.     Rules defi ned in the transport layer 
can be used to distinguish between time - critical and best - effort traffi c. 

     Figure 5.23     A typical NOC architecture  [26] .  

Source

IP

IP

IP

IP

Routing specified at lower level

IP IP

Destination

c05.indd   199c05.indd   199 5/4/2011   9:54:28 AM5/4/2011   9:54:28 AM



200  INTERCONNECT

Prioritizing packets helps to achieve quality - of - service requirements 
enabling real - time performance on critical modules.  

  4.     Flexible Throughput.     By allocating multiple physical transport links, 
throughput can be increased to meet the demand of a system statically 
or dynamically.  

  5.     Multiple Clock Domain Operation.     Since the notion of a clock only 
applies to the physical layer and not to the transport and transaction 
layers, an NOC is particularly suited to an SOC system containing IP 
blocks that operate at different clock frequencies. Using suitable clock 
synchronization circuits at the physical layer, modules with independent 
clock domains can be combined with reduced timing convergence 
problems.     

   5.8.2     NOC  and  NIU  Example 

 For the Nexus crossbar switch in Section  5.7.2 , the NIU implements the 
PivotPoint system architecture connecting nodes using the Nexus crossbar 
switch. Figure  5.25  shows a simplifi ed PivotPoint architecture. In addition to 
the Nexus crossbar switch, the FIFO buffer provides data - buffering function 
for the transmit (TX) and the receive (RX) channels. The System Packet Inter-
face (SPI - 4.2, represented simply as SPI - 4 in the fi gure) implements a standard 
protocol for chip - to - chip communication at data rates of 9.9 – 16   Gbps.    

     Figure 5.24     The transaction, transport, and physical layers of an NOC  [26] .  
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   5.8.3    Bus versus  NOC  

 When compared with buses, NOC is not without drawbacks. Perhaps the most 
signifi cant weakness of NOC is the extra latency that it introduces. Unlike data 
communication networks, where quality of service is governed mainly by 
bandwidth and throughput, SOC applications usually also have very strict 
latency constraints. Furthermore, the NIU and the switch fabric add to the 
area overhead of the system. Therefore, direct implementation of a conven-
tional network architecture in SOC generally results in unacceptable area and 
latency overheads. Table  5.6  presents the pros and cons between buses and 
NOC approaches to SOC interconnect qualitatively.     

   5.9    EVALUATING INTERCONNECT NETWORKS 

 There have been a number of important analyses about the comparative merits 
of various network confi gurations  [137, 145, 194] . The examples below illustrate 
the use of simple analytic models in evaluating interconnect networks. 

     Figure 5.25     PivotPoint architecture  [66] .  
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   5.9.1    Static versus Dynamic Networks 

 In this section, we present the results and largely follow the analyses per-
formed by Agarwal  [8]  in his work on network performance. 

  Dynamic Networks     Assume we have a dynamic indirect network made up 
of  k     ×     k  switches with wormhole routing. Let us assume this network has  n  
stages and channel width  w  with message length  l . In the indirect network, we 
assume that the header network path address is transmitted in one cycle just 
before the message leaves the node, so that there is only one cycle of header 
overhead to set up the interconnect; see Figure  5.26 .   

  TABLE 5.6    The Bus - versus -  NOC  Arguments  [112]  

   Bus Pros and Cons     NOC Pros and Cons  

  Every unit attached adds parasitic 
capacitance ( − )  

  Only point - to - point one - way wires are 
used for all network sizes ( + )  

  Bus timing is diffi cult in deep submicron 
process ( − )  

  Network wires can be pipelined 
because the network protocol is 
globally asynchronous ( + )  

  Bus testability is problematic and slow ( − )    Built - in self - test (BIST) is fast and 
complete ( + )  

  Bus arbiter delay grows with the number 
of masters. The arbiter is also instance 
specifi c ( − )  

  Routing decisions are distributed and 
the same router is used for all 
network sizes ( + )  

  Bandwidth is limited and shared by all 
units attached ( − )  

  Aggregated bandwidth scales with the 
network size ( + )  

  Bus latency is zero once arbiter has 
granted control ( + )  

  Internal network contention causes a 
small latency ( − )  

  The silicon cost of a bus is low for small 
systems ( + )  

  The network has a signifi cant silicon 
area ( − )  

  Any bus is almost directly compatible 
with most available IPs, including 
software running on CPUs ( + )  

  Bus - oriented IPs need smart 
wrappers. Software needs clean 
synchronization in multiprocessor 
systems ( − )  

  The concepts are simple and well 
understood ( + )  

  System designers need re - education 
for new concepts ( − )  

     Figure 5.26     Message transmission from node to switch.  
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 Assuming the switches have unit delay ( T  ch     =    one cycle), the total time for 
a message to transit the network without contention is:

   T n
l
w

c = + + 1 cycles.   

 For all our subsequent analysis we assume that  n     +     l / w     >>    1, so

   T n
l
w

c ≈ + cycles.   

 In a blocking dynamic network, each network switch has a buffer. If a block 
is detected, a queue develops at the node; so each of  N  units with occupancy 
  ρ   requests service from the network. Since the number of connection lines at 
each network level is the same ( N ), then the expected occupancy for each is 
  ρ  . At each switch, the message transmits experiences a waiting time. Kruskal 
and Snir  [145]  have shown that this waiting time is (assume that  T  ch     =    1 cycle 
and express time in cycles):

   T
l w k

w = ( ) −( )
−( )

ρ
ρ

1 1
2 1

.   

 The channel occupancy is

   ρ = m
l
w

,  

where  m  is the probability that a node makes a request in a channel cycle. 
 The total message transit time,  T  dynamic , is:

   

T T nT

n
l
w

np l
w

k T

c wdynamic

ch

= +

= + +
−( )

⎛
⎝⎜

⎞
⎠⎟ −( )⎛

⎝⎜
⎞
⎠⎟2 1

1 1
ρ

.
   

  Static Networks     A similar analysis may be performed on a static ( k ,  n ) 
network. Let  k d   be the average number of hops required for a message to 
transit a single dimension. For a unidirectional network with closure   kd

k= −( )1
2  

and for a bidirectional network   k kd
k= ( )4 even , the total time for a message 

to pass from source to destination is:

   T h n k
l
w

Tc d= × × +⎛
⎝⎜

⎞
⎠⎟ ch.   

 Again, we assume that  T  ch     =    1 cycle and perform the remaining computations 
on a cycle basis. Agarwal  [8]  computes the waiting time ( M / G /1) as:
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   T
l
w

k
k

nw
d

d

=
−

−
+( )ρ

ρ1
1

1 1
2

.   

 The total transit time for a message to a destination ( h     =    1) is:

   

T T nk T

nk l w
nk l

wk
n

c d w

d
d

d

static = +

= + +
−

⎛
⎝⎜

⎞
⎠⎟ +( )ρ

ρ1
1 1 .

  

 The preceding cannot be used for low  k  (i.e.,  k     =    2, 3, 4). In this case  [1] ,

   T
l
w

w =
−( )
ρ

ρ2 1
 

and   ρ =
mk l

w
d

2
 or, for hypercube,   mk l

w
d .   

   5.9.2    Comparing Networks: Example 

 In the following example assume that  m , the probability that a unit requests 
service in any channel cycle, is 0.1;  h     =    1,  l     =    256, and  w     =    64. Compare a 4    ×    4 
grid (torus) static network with  N     =    16,  k     =    4,  n     =    2, and a MIN dynamic 
network with  N     =    16,  k     =    2. 

 For the dynamic network, the number of stages is:

   n = =log ,2 16 4  

while the channel occupancy is:

   ρ = = =m
l
w

0 1
256
64

0 4. . .   

 The message transit time without contention is:

   T n
l
w

c = + + = + + =1 4
256
64

1 9 cycles,  

while the waiting time is:

   T
l w k

w = ( ) −( )
−( )

= ( ) −( )
−( )

= =
ρ

ρ
1 1

2 1
0 4 256 64 1 1 2

2 1 0 4
0 8
1 2

0 67
.

.
.
.

. cyycle.   

 Hence the total message transit time is:

   T T nTc wdynamic cycles= + = + ( ) =9 4 0 67 11 68. . .   
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 For the static network, the average number of hops  k d      =     k /4    =    1, and the total 
message time is:

   T h n k
l
w

Tc d= × × +⎛
⎝⎜

⎞
⎠⎟ = × × + ( )( ) =ch 1 2 1 256 64 6.   

 Since

   ρ = =
× ×

×
=

mk l
w

d

2
0 1 1 256

2 64
0 2

.
.  

and  T w   for low  k  is given by:

   T
l
w

w =
−( )

=
−( )

=
ρ

ρ2 1
0 2

2 1 0 2
256
64

0 5
.

.
. ,  

the waiting time is given by

   

T T nk Tc d wstatic

cycles

= +
= + ( )( )
=

6 2 1 0 5

7

. .     

   5.10    CONCLUSIONS 

 The interconnect subsystem is the backbone of the SOC. The system ’ s perfor-
mance can be throttled by limitations in the interconnect. Because of its 
importance, a great deal of attention has been afforded to optimize cost –
 performance interconnect strategies. 

 Excluding fully custom designs, there are two distinct approaches to SOC 
interconnect: bus based and network based (NOC). However, even here these 
can be complementary approaches. An NOC can connect nodes that can 
themselves be a bus - based cluster of processors or other IPs. 

 In the past most SOCs were predominantly bus based. The number of nodes 
to be connected were small (perhaps four or eight IPs) and each node con-
sisted solely of a single IP. This remains a tried and tested method of intercon-
nect that is both familiar and easy to use. The use of standard protocols and 
bus wrappers make the task of IP core integration less error prone. Also, the 
large number of bus options available allows users to trade - off between com-
plexity, ease of use, performance, and universality. 

 As the number of interconnected nodes increases, the bandwidth limita-
tions of bus - based approaches become more apparent. Switches overcome 
the bandwidth limitations but with additional cost and, depending on the 
confi guration, additional latency. As switches (whether static or dynamic) are 
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translated into IP and supported with experience and the emergence of 
tools, they will become the standard SOC interconnect especially for high -
 performance systems. 

 Modeling the performance of either bus -  or switch - based interconnects is 
an important part of the SOC design. If initial analysis of bus - based intercon-
nection demonstrates insuffi cient bandwidth and system performance, switch -
 based design is the alternative. Initial analysis and design selection is usually 
based on analytic models, but once the selection has been narrowed to a few 
alternatives, a more thorough simulation should be used to validate the fi nal 
selection. The performance of the SOC will depend on the confi guration and 
capability of the interconnection scheme. 

 In NOC implementations, the network interface unit has a key role. For a 
relatively small overhead, it enables a layering of the interconnect implemen-
tation. This allows designs to be re - engineered and extended to include new 
switches without affecting the upper level SOC implementation. Growth in 
NOC adoption facilitates easier SOC development. 

 There are various topics in SOC interconnect that are beyond the scope of 
this chapter. Examples include combination of design and verifi cation of on -
 chip communication protocols  [46] , self - timed packet switching  [105] , func-
tional modeling and validation of NOC systems  [210] , and the AMBA 4 
technology optimized for reconfi gurable logic  [74] . The material in this chapter, 
and other relevant texts such as that by Pasricha and Dutt  [193] , provide the 
foundation on which the reader can follow and contribute to the advanced 
development of SOC interconnect.   

  5.11     PROBLEM SET 

       1.    A tenured split (address plus bidirectional data bus) bus is 32    +    64 bits wide. 
A typical bus transaction (read or write) uses a 32 - bit memory address and 
subsequently has a 128 - bit data transfer. If the memory access time is 12 
cycles, 
   (a)     show a timing diagram for a read and a write (assuming no 

contention).  
   (b)     what is the (data) bus occupancy for a single transaction?      

    2.    If four processors use the bus described above and ideally (without conten-
tion) each processor generates a transaction every 20 cycles, 
   (a)     what is the offered bus occupancy?  
   (b)     using the bus model without resubmissions, what is the achieved 

occupancy?  
   (c)     using the bus model with resubmissions, what is the achieved 

occupancy?  
   (d)     what is the effect on system performance for the (b) and (c) results?      

c05.indd   206c05.indd   206 5/4/2011   9:54:29 AM5/4/2011   9:54:29 AM



PROBLEM SET  207

    3.    Search for current products that use the AMBA bus; fi nd at least three 
distinct systems and tabularize their respective parameters (AHB and 
APB): bus width, bandwidth, and maximum number of IP users per bus. 
Provide additional details as available.   

    4.    Search for current products that use the CoreConnect bus; fi nd at least 
three distinct systems and tabularize their respective parameters (PLB and 
OPB): bus width, bandwidth, and maximum number of IP users per bus. 
Provide additional details as available.   

    5.    Discuss some of the problems that you would expect to encounter in creat-
ing a bus wrapper to convert from an AMBA bus to a CoreConnect bus.   

    6.    A static switching interconnect is implemented as a 4    ×    4 torus (2 - D) with 
wormhole routing. Each path is bidirectional with 32 wires; each wire can 
be clocked at 400   Mbps. For a message consisting of an 8 - bit header and 
128 - bit  “ payload, ”  
   (a)     what is the expected latency (in cycles) for a message to transit from 

one node to an adjacent node?  
   (b)     what is the average distance between nodes and the average message 

latency (in cycles)?  
   (c)     if the network has an occupancy of 0.4, what is the delay due to conges-

tion (waiting time) for the message?  
   (d)     what is the total message transit time?      

    7.    A dynamic switching interconnect is to connect 16 nodes using a baseline 
switching network implemented with 2    ×    2 crossbars. It takes one cycle to 
transit a 2    ×    2. Each path is bidirectional with 32 wires; each wire can be 
clocked at 400   Mbps. For a message consisting of an 8 bit header and 128 
bit  “ payload, ”  
   (a)     what is the expected latency (in cycles) for a message to transit from 

one node to any other?  
   (b)     draw the network.  
   (c)     what is the message waiting time, if the network has an occupancy of 

0.4?  
   (d)     what is the total message transit time?      

    8.    The bisection bandwidth of a switching interconnect is defi ned as the 
maximum available bandwidth across a line dividing the network into two 
equal parts (number of nodes). What is the bisection bandwidth for the 
static and dynamic networks outlined above?   

    9.    Search for at least three distinct NOC systems; compare their underlying 
switches (fi nd at least one dynamic and one static example). Provide details 
in table form.       
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  6    Customization and 
Confi gurability     

    6.1    INTRODUCTION 

 To broaden SOC applicability while reducing cost, one can adopt a common 
hardware platform that can be customized to improve effi ciency for specifi c 
applications. This chapter looks at different  customization  technologies, par-
ticularly those based on  confi gurability . Here confi gurability covers both  one -
 time confi gurability , when application - oriented customization takes place once 
either before or after chip fabrication, and  reconfi gurability , when customiza-
tion takes place multiple times after chip fabrication. 

 Customization opportunities at design time, particularly those exploited in 
device fabrication, often result in high performance but at the expense of fl ex-
ibility when the design is deployed. Such postfabrication fl exibility is achieved 
by devices with various degrees of programmability, including coarse - grained 
reconfi gurable architectures (CGRAs), application - specifi c instruction proces-
sors (ASIPs), fi ne - grained fi eld - programmable gate arrays (FPGAs), digital 
signal processors (DSPs), and general - purpose processors (GPPs). The trade -
 off between programmability and performance is shown in Figure  6.1 , which 
is introduced in Chapter  1 .   

 Structured ASIC (application - specifi c integrated circuit) technology sup-
ports limited customization before fabrication compared with custom ASIC 
technology. In Figure  6.1 , the ASIPs are assumed to be customized at fabrica-
tion in ASIC technology. ASIPs can also be customized at compile time if 
implemented in FPGA technology as a soft processor; a customizable ASIP 
processor will be presented in Section  6.8 . 

 There are many ways of customizing SOC designs, and this chapter focuses 
on three of them:

   1.     customization of instruction processors (Sections  6.4  and  6.8 ), illus-
trating how (a) availability of processor families and (b) generation of 
application - specifi c processors can offer architectural optimizations such 
as very long instruction word (VLIW), vectorization, fused operation, 

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
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and multithreading to meet requirements in performance, area, energy 
effi ciency, and costs;  

  2.     customization of reconfi gurable fabrics (Sections  6.5  and  6.6 ), showing 
that fi ne - grained reconfi gurable functional units (FUs) and the related 
interconnect resources are versatile but incur large overheads — hence 
coarse - grained blocks are increasingly adopted to reduce such 
overheads;  

  3.     customization techniques for optimizing implementations, such as 
instance - specifi c design (Section  6.7 ) and run - time reconfi guration strat-
egies (Section  6.9 ), together with methods for assessing related trade - offs 
in performance, size, power, and energy effi ciency.    

 Other customization methods, such as those based on multiprocessors, would 
not be treated in detail. Pointers to references on various related topics are 
included in Section  6.10 .  

   6.2    ESTIMATING EFFECTIVENESS OF CUSTOMIZATION 

 It is important to be able to estimate and compare the effectiveness of differ-
ent ways of customization applied to part of a design. The method is simple. 

     Figure 6.1     A simplifi ed comparison of different technologies: programmability versus 
performance. GPP stands for general - purpose processor, while CGRA stands for 
coarse - grained reconfi gurable architecture.  
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For a given metric such as delay, area, or power consumption, assume that   α   
is the factor of improvement applicable to a fraction   β   of a design. So the 
metric is improved by:

   ( ) .1− + ×β α β   

 This metric is reminiscent of the parallel processor analysis of G. Amdahl. As 
an example, consider the well - known 90:10 rule: a good candidate for accelera-
tion is the case when 10% of the code takes 90% of the time. What happens 
if that 10% of the code can be accelerated  k  times? 

 From the expression above with   α      =    1/ k ,   β      =    0.9, we obtain ( k     +    9)/10 k . 
Assuming  k     =    10, the execution time is reduced to 19% of the original, result-
ing in a speedup of 5.26 times. 

 However, if the effect of the code that can be accelerated is reduced from 
90% of the time to only 60% of the time, we can fi nd that the speedup is only 
2.17 times — almost halved. 

 Note that the amount of code, which provides an estimate of the amount 
of effort required for customizing it, does not affect the above result; it is the 
effect of the customizable fraction on the metric that matters, not the fraction 
itself. 

 This method can be applied in various ways. As another example, consider 
the use of embedded coarse - grained blocks to customize a fi ne - grained recon-
fi gurable fabric, as we shall explain in a later section. Assume that 50% of the 
fi ne - grained fabric can be replaced by coarse - grained blocks, which are three 
times more effi cient in speed and 35 times more effi cient in area. One can 
fi nd that the design could be improved up to 50% faster with its area reduced 
by half. 

 There are, however, several reasons against customizability. Tools for cus-
tomizable processors such as performance profi lers and optimizers are often 
not as mature as those for noncustomizable processors; backwards compatibil-
ity and verifi cation can also become an issue. One approach is to develop 
customizable processors that are compatible with existing noncustomizable 
building blocks, such that there is interoperability between customizable and 
noncustomizable technologies  [94] .  

   6.3     SOC  CUSTOMIZATION: AN OVERVIEW 

 Customization is the process of optimizing a design to meet application 
requirements and implementation constraints. It can take place at design time 
and at run time. Design time has two components: fabrication time and compile 
time. During fabrication time, a physical device is constructed. If this device is 
confi gurable, then after fabrication it can be customized by a program pro-
duced at compile time and executed at run time. 

 There are three common means of implementing computations: standard 
instruction processors, ASICs, and reconfi gurable devices.
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   1.     For standard instruction processors such as those from ARM, AMD, and 
Intel, fabrication - time customization produces a device supporting a fi xed 
instruction set architecture, and compile - time customization produces 
instructions for that architecture; run - time customization corresponds to 
locating or generating appropriate code for execution at run time.  

  2.     For ASICs, much of the customization to perform application functions 
takes place at fabrication time. Hence the high effi ciency but low fl exibil-
ity, since new functions not planned before fabrication cannot easily be 
added. Structured ASICs, such as gate array or standard - cell technolo-
gies, reduce design effort by limiting the options of customization to the 
user to, for instance, the metal layers. One - time customization of antifuse 
technology can be performed in the fi eld.  

  3.     Reconfi gurable devices generally include FPGA and complex program-
mable logic device (CPLD) technology, as well as instruction processors 
coupled with a reconfi gurable fabric to support custom instructions  [25] . 
In this case, fabrication - time customization produces a device with a 
reconfi gurable fabric, typically containing reconfi gurable elements joined 
together by reconfi gurable interconnections. At compile time, confi gura-
tion information is produced from a design description for customizing 
the device at appropriate instants at run time.    

 The standard instruction processors are general purpose. There are, however, 
opportunities to customize the instruction set and the architecture for a spe-
cifi c application. For instance, the standard instruction set can be customized 
to remove unused instructions or to include new instructions that would result 
in improved performance. Custom instruction processors can be customized 
during fabrication in ASIC technology or during confi guration in reconfi gu-
rable hardware technology.

    •      Processors that are customized during fabrication include those from 
ARC and Tensilica. Typically some of the building blocks are hardwired 
at fabrication to support, for instance, domain - specifi c optimizations, 
including instructions that are customized for specifi c applications. To 
reduce risk, there are often reconfi gurable prototypes before designs are 
implemented in ASIC technology.  

   •      For soft processors such as MicroBlaze  [259]  from Xilinx or Nios  [11]  
from Altera, the challenge is to support instruction processors effi ciently 
using resources in a reconfi gurable fabric such as an FPGA. Effi ciency 
can be improved by exploiting device - specifi c features or run - time recon-
fi gurability  [213] .  

   •      Another alternative is to implement the instruction processor in ASIC 
technology, and a suitable interface is developed to enable the processor 
to benefi t from custom instructions implemented in a reconfi gurable 
fabric. An example is the software confi gurable processor from Stretch 
 [25] , which consists of the Xtensa instruction processor from Tensilica 
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and a coarse - grained reconfi gurable fabric. These devices can offer higher 
effi ciency than FPGAs when an application requires resources that match 
their architecture.    

 A key consideration for deciding which technology to use is volume. Recall 
from Chapter  1  that the product cost usually has a fi xed or nonrecurring com-
ponent that is independent of volume and has a variable or recurrent compo-
nent that varies with volume. Reconfi gurable technologies like FPGAs have 
little fi xed cost, but have a higher unit cost than ASIC technologies. Hence, 
below a certain volume threshold, reconfi gurable technologies offer the lowest 
cost — and this threshold moves in favor of reconfi gurable technologies with 
time, since the cost of mask sets and other fi xed fabrication costs increase 
rapidly with each new generation of technology. 

 There are various ways of classifying a customizable SOC. A customizable 
SOC typically consists of one or more processors, reconfi gurable fabrics, and 
memories. One way is to classify such SOCs according to the coupling between 
the reconfi gurable fabric and the processor  [61] . 

 Figure  6.2 a shows the reconfi gurable fabric attached to the system bus. 
Figure  6.2 b illustrates the situation when the reconfi gurable fabric is a copro-
cessor of the CPU, with a closer coupling between them than the ones in Figure 
 6.2 a.   

 Next, Figure  6.2 c shows an architecture in which the processor and the 
fabric are tightly coupled. In this case, the reconfi gurable fabric is part of the 
processor itself, perhaps forming a reconfi gurable subunit that supports custom 
instructions. An example of this organization is the software confi gurable 
processor from Stretch. 

 Figure  6.2 d shows another organization. In this case, the processor is embed-
ded in the programmable fabric. The processor can either be a  “ hard ”  core 
 [261]  or can be a  “ soft ”  core, which is implemented using the resources of the 
reconfi gurable fabric itself; examples include the MicroBlaze and the Nios 
processors mentioned earlier. 

 It is also possible to integrate confi gurable analog and digital functionality 
on the same chip. For instance, the PSoC (programmable system on a chip) 
device  [68]  from Cypress has an array of analog blocks that can be confi gured 
as various combinations of comparators, fi lters, and analog - to - digital convert-
ers, with programmable interconnects. The inputs and outputs of these and the 
reconfi gurable digital blocks can be fl exibly routed to the input/output (I/O) 
pins. Moreover, these blocks can be reconfi gured to perform different func-
tions when the system is operating.  

   6.4    CUSTOMIZING INSTRUCTION PROCESSORS 

 Microprocessors in desktop machines are designed for general - purpose com-
putation. Instruction processors in an SOC are often specialized for particular 
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types of computations such as media processing or data encryption. Hence 
they can benefi t from customization that is highly specifi c to their intended 
function, eliminating hardware elements that would not be needed. Such 
customization usually takes place before fabrication, although many tech-
niques can also be applied to the design of soft processors. Customization 
allows designers to optimize their designs to meet requirements such as those 

     Figure 6.2     Four classes of customizable SOC  [61; 244] . The shaded box denotes the 
reconfi gurable fabric. (a) Attached processing unit; (b) coprocessor; (c) reconfi gurable 
FU; (d) processor embedded in a reconfi gurable fabric.  
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in speed, area, power consumption, and accuracy, while improving product 
differentiation. 

   6.4.1    Processor Customization Approaches 

 There are two main approaches for providing customized processors. The fi rst 
approach is to provide families of processors customized for specifi c applica-
tion domains. For example, ARM provides the Cortex - A Series for supporting 
applications with demanding computation, the Cortex - R Series for real - time 
processing, the Cortex - M series for microcontrollers in embedded applications 
(with the Cortex - M1 processors optimized for FPGA implementation), and 
the SecurCore processors for tamper - resistant smart cards. Each series con-
tains a range of processors with different characteristics, allowing designers to 
choose one that best fi ts their requirements in function and performance, 
including power and energy consumption. 

 The second approach is to provide the capability of generating customized 
processors. Companies such as ARC and Tensilica provide design tools to 
allow SOC designers to confi gure and extend a processor, either through a 
graphical user interface or through tools based on an architecture description 
language. Such tools enable designers to add only the features they need while 
deleting the features they do not need. In addition, they allow designers to 
extend the architecture of the core by adding custom instructions, allowing 
further optimization of the processor for the end application. 

 To help optimize the design for size, power, and application performance, 
some SOC tools provide guidelines for fi nal silicon area and memory require-
ments. Designers are able to confi gure features around the core, such as the 
type and size of caches, interrupts, DSP subsystem, timers, and debug compo-
nents, as well as features within the core, such as the type and size of core 
registers, address widths, and instruction set options. The aim is to support 
rapid performance and die - size trade - offs to provide an optimized solution. 
Specifi c functions often included in SOC tools are:

    •      Integration of intellectual properties from various sources.  
   •      Generation of simulation scripts and test benches for system 

verifi cation.  
   •      Enhancement of software development tools to support, for instance, 

custom instructions for the customizable processor.  
   •      Automated generation of FPGA designs for an emulation platform.  
   •      Documentation of selected confi guration for inclusion in licensees ’  chip 

specifi cations and customer - level documentation.    

 Such tools can usually confi gure and deliver a custom processor within minutes. 
Also, by generating all confi guration - specifi c information required for testing, 
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downstream development tools, and documentation, the confi gurator reduces 
time to silicon and reduces project risk. 

 Further information about tools and applications of customizable embed-
ded processors can be found in various publications  [127, 207] .  

   6.4.2    Architecture Description 

 As processors become increasingly complex, it is useful to provide a signifi cant 
degree of automation in implementing both the processor and the software 
tools associated with that processor. Without automation, much design and 
verifi cation effort is needed to build a processor and its tools from scratch for 
every application. 

 To automate development of processors and tools, architecture description 
languages or processor description languages can help  [179] . Such languages 
should be suffi ciently concise and high level for designers to adopt them for 
different applications; they should also be comprehensive enough to produce 
realistic, effi cient implementations. Many languages have been proposed for 
describing instruction processors. The goal of these languages is to capture the 
design of a processor so that supporting tools and the processor itself can be 
automatically generated. 

 Architecture description languages can be classifi ed by the description style 
and by the level and type of automation provided. For example, one can clas-
sify architecture description languages as either behavioral, structural, or a 
combination of the two. 

  Behavioral descriptions  are instruction - set centric: The designer specifi es 
the instruction set and then uses tools to generate a compiler, assembler, 
linker, and simulator. The nML  [87]  and TIE  [240]  languages fall into the 
behavioral category. Automating generation of a compiler backend from a 
behavioral description is facilitated when the instructions can be expressed as 
a tree grammar for a code - generator - generator tool such as BURG  [100] . 
Many behavioral languages support synthesis of processor hard ware, and syn-
thesis tools are available for the above examples. In the case of TIE, synthesis 
is simplifi ed since the base processor is fi xed and only extensions to this base 
processor can be specifi ed by designers. The nML  “ Go ”  tool designs the pro-
cessor architecture automatically  [86]  from the instruction set, inferring struc-
ture from explicitly shared resources such as the register fi le. 

 The main advantage of a behavioral description is the high level of abstrac-
tion: only an instruction set specifi cation is required to generate a custom 
processor. The main disadvantage is the lack of fl exibility in the hardware 
implementation. Synthesis tools must fi x some aspects of the microarchitec-
ture  [87]  or even the entire base processor  [240] . Effi cient synthesis from an 
instruction set alone is a diffi cult design automation problem when resource 
sharing  [50]  is taken into account. 

  Structural descriptions  capture the FUs, storage resources, and interconnec-
tions of a processor. SPREE  [269]  is a library built onto C +  +  that generates 
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FPGA soft processors using a structural description. In particular, the designer 
can remove instructions or change the implementation of FUs, since SPREE 
provides a method for connecting functional blocks, with built - in support for 
common functions such as forwarding networks and interlocks. 

 The main advantage of structural descriptions is that they can be directly 
converted into a form suitable for synthesis to hardware. Additionally, most 
structural description styles maintain the generality of a hardware description 
language (HDL). This generality provides much scope for describing diverse 
microarchitectures, for example, superscalar or multithreaded ones. The prime 
disadvantage is the lower level of abstraction: the designer needs to manually 
specify FUs and control structures. 

 We present a summary of existing processor description languages in Table 
 6.1 . For each language, we indicate the description style, the scope (whole 
processor or just instruction set), and the tools available to automate genera-
tion of a processor system.   

 Some systems, such as LISA  [119] , cover both structural and behavioral 
information. This combines the advantages of pure behavioral and structural 
descriptions, but there is a need to ensure that related behavioral and struc-
tural elements are consistent. 

 All languages except TIE are whole processor descriptions, meaning that 
the entire processor design is specifi ed, as opposed to just the instruction set. 
However, many processor description languages are specifi c to a particular 
basic processor architecture, such as in - order execution in the case of LISA 
and nML. Customizable threaded architecture (CUSTARD)  [77] , which would 
be covered in Section  6.8 , is based on the MIPS instruction set while support-
ing various customization options, such as the type of multithreading and the 
use of custom instructions. 

 Possible tools for such languages include  [179] :

    •      Model Generation.     Tools for producing hardware prototypes and valida-
tion models for checking that the architecture specifi cation captures the 
requirements.  

  TABLE 6.1    Features of Some Architecture Description Languages 

   Feature  
   Expression 

 [114]   
   CUSTARD 

 [77]   
   LISA 
 [119]   

   SPREE 
 [269]   

   nML 
 [239]   

   TIE 
 [240]   

  Whole processor     √      √      √      √      √       
  Toolchain 

confi guration  
   √      √      √      √      √      √   

  Hardware 
generation  

       √      √      √      √      √   

  Memory system     √      √      √               
  Behavioral     √      √      √          √      √   
  Structural     √          √      √           
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   •      Test Generation.     Tools for producing test programs, assertions, and test 
benches.  

   •      Toolkit Generation.     Tools for profi ling, exploring, compiling, simulating, 
assembling, and debugging designs.     

   6.4.3    Identifying Custom Instructions Automatically 

 Various approaches have been proposed for automatic identifi cation of instruc-
tion set extensions from high - level application descriptions. One can cluster 
related datafl ow graph (DFG) nodes heuristically as sequential or parallel 
templates. Input and output constraints are imposed on the subgraphs to 
reduce the exponential search space. 

 Various architectural optimizations — some described in the earlier 
chapters — can benefi t the automatically generated designs, such as  [110] :

    •      VLIW techniques enable a single instruction to support multiple inde-
pendent operations. A VLIW format partitions an instruction into a 
number of slots, each of which may contain one of a set of operations. If 
the instruction set is designed to use VLIW, a source language compiler 
can use software - pipelining and instruction - scheduling techniques to 
pack multiple operations into a single VLIW instruction.  

   •      Vector operations increase throughput by creating operations that 
operate on more than one data element. A vector operation is character-
ized by the operation it performs on each data element and by the 
number of data elements that it operates on in parallel, that is, the vector 
length. For example, a four - wide vector integer addition operation sums 
two input vectors, each containing four integers, and produces a single 
result vector of four integers.  

   •      Fused operations involve creating operations composed of several simple 
operations. A fused operation potentially has one or more of the input 
operands fi xed to a constant value. Using the fused operation in place of 
the simple operations reduces code size and issue bandwidth, and may 
reduce register fi le port requirements. Also, the latency of the fused opera-
tion may be lower than the combined latency of the simple operations.    

 Application of constraint propagation techniques results in an effi cient enu-
merative algorithm. However, the applicability of this approach is limited to 
DFGs with around 100 nodes. Search space can be further reduced by impos-
ing additional constraints such as single output, or connectivity constraints on 
the subgraphs. 

 The identifi cation of instruction set extensions under input and output 
constraints can be formulated as an integer linear programming problem. 
Biswas et al.  [45]  propose an extension to the Kernighan – Lin heuristic based 
on input and output constraints. Optimality is often limited by either an 
approximate search algorithm or some artifi cial constraints — such as I/O 
constraints — to make subgraph enumeration tractable. 
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 An integer linear programming formulation can replace I/O constraints 
with the actual data bandwidth constraints and data transfer costs. The instruc-
tion set extensions that are generated may have an unlimited number of inputs 
and outputs. A baseline machine with architecturally visible state registers 
makes this approach feasible. Promising results are obtained by integrating 
the data bandwidth information directly into the optimization process, by 
explicitly accounting for the cost of the data transfers between the core reg-
ister fi le and custom state registers  [28] . 

 There are many approaches in customizing instruction processors. A 
technology - aware approach could involve a clustering strategy to estimate the 
resource utilization of lookup table (LUT) - based FPGAs for specifi c custom 
instructions, without going through the entire synthesis process  [148] . An 
application - aware approach could, in the case of video applications, exploit 
appropriate intermediate representations and loop parallelism  [165] . A 
transformation - aware approach could adopt a method based on combined but 
phased searching of the source - level transformation design space and the 
instruction set extension design space  [182] .   

   6.5    RECONFIGURABLE TECHNOLOGIES 

 Among various technologies, FPGAs are well known. Their capacity and capa-
bility have improved rapidly in the last few years to support high - performance 
designs. Their low cost and support for rapid development make them ideal 
for designs requiring fast time to market, as well as for education and student 
projects. 

 The following covers the reconfi gurable fabric that underpins FPGAs and 
other reconfi gurable devices. The reconfi gurable fabric consists of a set of 
reconfi gurable FUs, a reconfi gurable interconnect, and a fl exible interface to 
connect the fabric to the rest of the system. We shall review each of these 
components and show how they have been used in both commercial and aca-
demic reconfi gurable systems. The treatment here follows that of Todman 
et al.  [244] . 

 In each component of the fabric, there is a trade - off between fl exibility and 
effi ciency. A highly fl exible fabric is typically larger and slower than a less 
fl exible fabric. On the other hand, a more fl exible fabric can better adapt to 
application requirements. This kind of trade - off can infl uence the design of 
reconfi gurable systems. A summary of the main features of various architec-
tures can be found in Table  6.2 . There are many related devices, such as those 
from Elixent  [82] , that we are unable to include due to limited space.   

   6.5.1    Reconfi gurable Functional Units (FUs) 

 Reconfi gurable FUs can be classifi ed as either coarse grained or fi ne grained. 
A fi ne - grained FU can typically implement a single function on a single bit, 
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220  CUSTOMIZATION AND CONFIGURABILITY

or a small number of bits. The most common kind of fi ne - grained FUs are the 
small LUTs that are used to implement the bulk of the logic in a commercial 
FPGA. A coarse - grained FU, on the other hand, is typically much larger, and 
may consist of arithmetic and logic units (ALUs) and possibly even a signifi -
cant amount of storage. In this section, we describe the two types of FUs in 
more detail. 

 Many reconfi gurable systems use commercial FPGAs as a reconfi gurable 
fabric. These commercial FPGAs contain many three to six input LUTs, each 
of which can be thought of as a fi ne - grained FU. Figure  6.3 a illustrates a LUT; 
by shifting in the correct pattern of bits, this FU can implement any single 

     Figure 6.3     Fine - grained reconfi gurable FUs  [244] . (a) Three - input LUT; (b) cluster of 
LUTs.  
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function of up to three inputs — the extension to LUTs with larger numbers of 
inputs is clear. Typically, LUTs are combined into clusters, as shown in Figure 
 6.3 b. Figure  6.4  shows clusters in two popular FPGA families. Figure  6.4 a 
shows a cluster in the Altera Stratix device; Altera calls these clusters  “ logic 
array blocks ”  (LABs)  [14] . Figure  6.4 b shows a cluster in the Xilinx architec-
ture  [262] ; Xilinx calls these clusters  “ confi gurable logic blocks ”  (CLBs). In 
the Altera diagram, each block labeled  “ LE ”  is an LUT, while in the Xilinx 
diagram, each  “ Slice ”  contains two LUTs.   

 Reconfi gurable fabrics containing LUTs are fl exible and can be used to 
implement any digital circuit. However, compared to the coarse - grained struc-
tures described below, these fi ne - grained structures have signifi cantly more 

     Figure 6.4     Commercial logic block architectures. (a) Altera LAB   [14] ; (b) Xilinx 
CLB  [262] .  
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area, delay, and power overhead. Recognizing that these fabrics are often used 
for arithmetic purposes, FPGA companies have included additional features 
such as carry chains and cascade chains to reduce the overhead when imple-
menting common arithmetic and logic functions. 

 While the effi ciency of commercial FPGAs is improved by adding architec-
tural support for common functions, one can go further and embed signifi -
cantly larger, but less fl exible, reconfi gurable FUs. There are two kinds of 
devices that contain coarse - grained FUs. 

 First, many commercial FPGAs, which consist primarily of fi ne - grained 
FUs, are increasingly enhanced by the inclusion of larger blocks. For instance, 
the early Xilinx Virtex device contains embedded 18    ×    18 bit multiplier units 
 [262] . When implementing algorithms requiring a large amount of multiplica-
tion, these embedded units can signifi cantly improve the density, speed, and 
power consumption. On the other hand, for algorithms that do not perform 
multiplication, these blocks are rarely useful. The Altera Stratix devices contain 
a larger, but more fl exible embedded block, called a DSP block, which can 
perform accumulate functions as well as multiply operations. The comparison 
between the two devices clearly illustrates the fl exibility and overhead trade -
 off: the Altera DSP block may be more fl exible than the Xilinx multiplier, but 
it consumes more chip area and runs slower for the specifi c task of multiplica-
tion. Recent Xilinx devices have a more complex embedded unit, called 
DSP48. It should be noted that, while such embedded blocks eliminate recon-
fi gurable interconnects within them, their fi xed location can cause wiring con-
gestion and overhead. Moreover, they would become an overhead for 
applications that do not make use of them. 

 Second, while commercial FPGAs described above contain both fi ne -
 grained and coarse - grained blocks, there are also devices that contain only 
coarse - grained blocks. An example of a coarse - grained architecture is the 
ADRES architecture, which is shown in Figure  6.5   [171] . Each reconfi gurable 
FU in this device contains a 32 - bit ALU that can be confi gured to implement 
one of several functions including addition, multiplication, and logic functions, 
with two small register fi les. Clearly, such an FU is far less fl exible than the 
fi ne - grained FUs described earlier; however, if the application requires func-
tions that match the capabilities of the ALU, these functions can be effi ciently 
implemented in this architecture.    

   6.5.2    Reconfi gurable Interconnects 

 Regardless of whether a device contains fi ne - grained FUs, coarse - grained FUs, 
or a mixture of the two, the FUs needed to be connected in a fl exible way. 
Again, there is a trade - off between the fl exibility of the interconnect (and 
hence the reconfi gurable fabric) and the speed, area, and power effi ciency of 
the architecture. 

 Reconfi gurable interconnect architectures can be classifi ed as fi ne grained 
or coarse grained. The distinction is based on the granularity with which wires 
are switched. This is illustrated in Figure  6.6 , which shows a fl exible intercon-
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nect between two buses. In the fi ne - grained architecture in Figure  6.6 a, each 
wire can be switched independently, while in Figure  6.6 b, the entire bus is 
switched as a unit. The fi ne - grained routing architecture in Figure  6.6 a is more 
fl exible, since not every bit needs to be routed in the same way; however, the 
coarse - grained architecture in Figure  6.6 b contains fewer programming bits, 
and hence has lower overhead.   

 Fine - grained routing architectures are usually found in commercial FPGAs. 
In these devices, the FUs are typically arranged in a grid pattern and they are 
connected using horizontal and vertical channels. Signifi cant research has been 
performed in the optimization of the topology of this interconnect  [157] . 

 Coarse - grained routing architectures are commonly used in devices con-
taining coarse - grained FUs. Figure  6.7  shows two examples of coarse - grained 
routing architectures. The routing architecture in Figure  6.7 a is used in the 

     Figure 6.5     ADRES reconfi gurable FU  [171] . Pred is a one - bit control input selecting 
either Src1 or Src2 for the functional unit.  
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Totem reconfi gurable system  [60] ; the interconnect is designed to be fl exible 
and to provide arbitrary connection patterns between FUs. On the other hand, 
the routing architecture in Figure  6.7 b, which is used in the Silicon Hive recon-
fi gurable system, is less fl exible, but faster and smaller  [220] . In the Silicon 
Hive architecture, only connections between units that are likely to commu-
nicate are provided.    

   6.5.3    Software Confi gurable Processors 

 Software confi gurable processors are devices introduced by Stretch. They have 
an architecture that couples a conventional instruction processor to a recon-
fi gurable fabric to allow application programs to dynamically customize the 
instruction set. Such architectures have two benefi ts. First, they offer signifi cant 
performance gains by exploiting data parallelism, operator specialization, and 
deep pipelines. Second, application builders can develop their programs using 
the Stretch C compiler without having expertise in electronic design. 

     Figure 6.7     Examples of coarse - grained routing architectures. (a) Totem coarse -
 grained routing architecture  [60] ; (b) Silicon Hive coarse - grained routing architecture 
 [220] . GPR: General Purpose Registers, MULT: Multiplier. RF: register fi le, LS: Load/
Store Unit.  
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 A software confi gurable processor consists of a conventional 32 - bit RISC 
processor coupled with a programmable instruction set extension fabric 
(ISEF). There are also an ALU for arithmetic and logic operations and a 
fl oating - point unit (FPU) for fl oating - point operations. Figure  6.8  shows the 
S6 Software Confi gurable Processor Engine.   

 The ISEF consists of an array of blocks, each containing an array of 4 - bit 
ALUs and an array of multiplier elements, interconnected by a programmable 
routing fabric. The 4 - bit ALUs can be cascaded through a fast carry circuit to 
form up to 64 - bit ALUs. Each 4 - bit ALU may also implement up to four 
3 - input logic functions, with four register bits for extension instruction state 
variables or for pipelining. 

 The ISEF supports multiple application - specifi c instructions as extension 
instructions. Arguments to extension instructions are provided from 32 wide 
registers, which are 128 bits wide. Each extension instruction may read up 
to three 128 - bit operands and write up to two 128 - bit results. A rich set of 
dedicated load and store instructions are provided to move data between 
the 128 - bit wide register and the 128 - bit wide cache and memory subsystem. 
The ISEF supports deep pipelining by allowing extension instructions to be 
pipelined. 

 In addition to the load/store model, a group of extension instructions may 
also defi ne arbitrary state variables to be held in registers within the ISEF. 
State values may be read and modifi ed by any extension instruction in the 
group, thereby reducing the Wide Register traffi c. 

 In addition to the Software Confi gurable Processor Engine, there is also a 
programmable accelerator, which consists of a list of functions implemented 
in dedicated hardware. These functions include motion estimation for video 
encoding, entropy coding for H.264 video, cryptographic operations based on 

     Figure 6.8     The Stretch S6 Software Confi gurable Processor Engine  [230] . IRAM 
denotes embedded memory for the instruction set extension fabric (ISEF).  
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Advanced Encryption Standard (AES) and Triple Data Encryption Standard 
(3DES) schemes, and various audio codecs including those for MP3 and AC3. 

 To develop an application, the programmer identifi es critical sections to be 
accelerated, writes one or more extension instructions as functions in a variant 
of the C programming language called Stretch C, and accesses those functions 
from the application program. Further information about application mapping 
for software confi gurable processors can be found in the next section, and 
related application studies for the Stretch S5 Software Confi gurable Processor 
Engine can be found in Sections 7.6.2 and 7.7.2.   

   6.6    MAPPING DESIGNS ONTO RECONFIGURABLE DEVICES 

 The resources in a reconfi gurable device need to be confi gured appropriately 
to implement a design for a given application. We shall look at the ways designs 
are mapped onto an FPGA and onto a software confi gurable processor. 

 A typical tool fl ow for an FPGA is shown in Figure  6.9   [56] . In the conven-
tional tool fl ow, HDLs such as VHDL and Verilog are widely used to target 
commercial devices to describe the circuit to be implemented in the FPGA. 
The description of the circuit is written at the register transfer level (RTL), 
which specifi es the operations at each clock cycle. The description is then 
synthesized to a netlist of logic blocks before being placed and routed for the 
FPGA.   

 In the fi rst stage of the synthesis process, the datapath operations in an RTL 
design such as control logic, memory blocks, registers, adders, and multipliers 
are identifi ed and elaborated into a set of basic boolean logic gates such as 
AND, OR, and XOR. 

 Next, the netlist of basic gates is optimized independent of the FPGA 
architecture. The optimization includes: boolean expression minimization, 
removing the redundant logic, buffering sharing, retiming, and fi nite - state 
machine encoding. The optimized netlist of basic gates is then mapped to the 
specifi c FPGA architecture such as Xilinx Virtex devices or Altera Stratix 
devices. There is further optimization based on the specifi c architecture such 
as carry chains for adders and dedicated shift functions in logic block for shift 
registers. The fi nal stage in the synthesis process is packing and clustering 
groups of several LUTs and registers into logic blocks like Figure  6.4 . The 
packing and clustering minimize the number of connections between different 
logic blocks. After the synthesis process, the logic blocks in the mapped netlist 
are placed onto the FPGA based on the different optimization goals, such as 
circuit speed, routability, and wire length. Once the location of the logic blocks 
is determined, the connection between I/Os, logic blocks, and other embedded 
elements are routed onto the programmable routing resources in FPGA. The 
routing process determines which programmable switches should be used to 
connect the logic block input and output pins. Finally, a confi guration bitstream 
for all inputs and outputs, logic blocks, and routing resources for the circuit in 
specifi c FPGA is generated. 
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 The above description covers design mapping for fi ne - grained FPGA 
resources. Many reconfi gurable devices also have coarse - grained resources for 
computation and for storage (see Section  6.5.1 ), so FPGA design tools need 
to take such resources into account. 

 To improve productivity, high - level programming languages are included in 
the tool fl ow for FPGAs (the upper part of Figure  6.9 ). These languages and 
tools, such as AutoPilot  [272] , Harmonic  [159] , and ROCC  [248] , enable appli-
cation developers to produce designs without detailed knowledge of the 
implementation technology. Some of these compilers are able to extract paral-
lelism in the computation from the source code, and to optimize for pipelining. 
Such tools often improve productivity of application developers, at the expense 

     Figure 6.9     Tool fl ow for FPGA.  
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of the quality of the design. However, since device capacity and capability 
continue to increase rapidly, productivity of application developers is likely to 
become the highest priority. 

 Besides confi guring the circuit, there are tools that analyze the delay, 
area, and power consumption of the implemented circuit. These tools are used 
to check whether the circuit meets the requirements of the application 
developer. 

 For a Software Confi gurable Processor from Stretch, the compilation needs 
to target both the execution unit and the ISEF shown in Figure  6.8 . The fi rst 
stage of the Stretch C compiler  [25]  takes an extension instruction and applies 
various optimizations, such as constant propagation, loop unrolling, and word -
 length optimization. In addition, sequences of operators are aggregated into 
balanced trees where possible; operators are specialized with multiplication 
by a constant converted into shifts and adds; and resources among operators 
for different instructions are shared. The compiler then produces two main 
outputs: instruction header and latency information including register usage 
for the Xtensa compiler, and a structured netlist of the operators extracted 
from the source code for mapping to the resources in the ISEF  [25] . 

 The Xtensa compiler compiles the application code with references to the 
extension instructions. It uses the instruction header and timing data from the 
Stretch C compiler to perform register allocation and optimized scheduling of 
the instruction stream. The result is then linked to the ISEF bitstream. 

 The ISEF bitstream generation stage in the Stretch compiler is similar to 
the tool fl ow for FPGAs shown earlier. The four main stages are  [25] :

    •      Map.     Performs module generation for the operators provided by the 
initial stage of the Stretch C compiler.  

   •      Place.     Assigns location to the modules generated by Map.  
   •      Route.     Performs detailed, timing - driven routing on the placed netlist.  
   •      Retime.     Moves registers to balance pipeline stage delays.    

 The linker packages the components of the application into a single executable 
fi le, which contains a directory of the ISEF confi gurations for the operating 
system or the run - time system to locate instruction groups for dynamic 
reconfi guration.  

   6.7    INSTANCE - SPECIFIC DESIGN 

 Instance - specifi c design is often used in customizing both hardware and soft-
ware. The aim for instance - specifi c design is to optimize an implementation 
for a particular computation. The main benefi ts are improving speed and 
reducing resource usage, leading to lower power and energy consumption at 
the expense of fl exibility. 
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 We describe three techniques for automating instance - specifi c design. The 
fi rst technique is constant folding: propagating static input values through a 
computation to eliminate unnecessary hardware or software. As an example, 
an instance - specifi c version of the hardware design in Figure  6.10  specialized 
to particular fi lter coeffi cients is shown in Figure  6.11 . The improvement in 
effi ciency is due to the fact that one - input constant - coeffi cient multipliers are 
smaller and faster than two - input multipliers.   

 The ability to implement specialized designs, while at the same time provid-
ing fl exibility by allowing different specialized designs to be loaded onto a 
device, can allow reconfi gurable logic to be more effective than ASICs in 
implementing some applications. For other applications, performance improve-
ments from optimizing designs to a particular problem instance can help to 
shift the price/performance ratio away from ASICs and toward FPGAs. 

 Signifi cant benefi ts for instance - specifi c design have been reported for a 
variety of applications. For FIR (Finite Impulse Response) fi lters, a modifi ed 
common subexpression elimination algorithm can be used to reduce the 
number of adders used in implementing constant - coeffi cient multiplication 
 [180] . Up to 50% reduction in the number of FPGA slices and up to 75% 

     Figure 6.10     An FIR fi lter containing two - input multipliers that support variable fi lter 
coeffi cients. The triangular blocks denote registers  [197] .  
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reduction in the number of LUTs for fully parallel implementations have been 
observed, in comparison to designs based on distributed arithmetic. Moreover, 
there is up to 50% reduction in the total dynamic power consumption of the 
FIR fi lters. 

 Changing an instance - specifi c design at run time is usually much slower 
than changing the inputs of a general circuit, since a new full or partial con-
fi guration must be loaded, which may take many tens or hundreds of millisec-
onds. It is therefore important to carefully choose how a design is specialized. 
Related discussions on run - time reconfi guration can be found in Section  6.9 . 

 The second technique for automating instance - specifi c design is function 
adaptation, which involves changing a function in hardware or software to 
achieve, for a specifi c application instance, the desired trade - off in the perfor-
mance or resource usage of the function and the quality of the result produced 
by the function. 

 An example of function adaptation is word - length optimization. Given the 
fl exibility of fi ne - grain FPGA, it is desirable to automate the process of fi nding 
a good custom data representation. An important implementation decision to 
automate is the selection of an appropriate word length and scaling for each 
signal in a DSP system. Unlike microprocessor - based implementations where 
the word length is defi ned a priori by the hard - wired architecture of the pro-
cessor, reconfi gurable computing based on FPGAs allows the size of each 
variable to be customized to produce the best trade - offs in numerical accuracy, 
design size, speed, and power consumption. 

 The third technique for automating instance - specifi c design is architecture 
adaptation, which involves changing the hardware and software architecture 
to optimize for a specifi c application instance, such as supporting relevant 
custom instructions. We shall discuss this technique in more detail in the next 
section. 

 An illustration of the above three techniques is given in Table  6.3 . Further 
information about instance - specifi c design can be found elsewhere  [197] .    

  TABLE 6.3    Some Illustrations of Instance - Specifi c Design 

   Technique     Purpose     Example  
   Benefi ts in 
Example  

  Constant 
folding  

  Optimize operation 
for static input 
values  

  FIR fi lter  [180]     Up to 50% 
reduction in 
dynamic power 
consumption  

  Function 
adaptation  

  Optimize function for 
quality of result  

  Word - length 
optimization  [62]   

  87% reduction 
in power 
consumption  

  Architecture 
adaptation  

  Optimize architecture 
for application 
instance  

  Instruction 
processor 
customization  [77]   

  Speed improved 
by 72%, area 
increased by 3%  
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   6.8    CUSTOMIZABLE SOFT PROCESSOR: AN EXAMPLE 

 This section describes a multithreaded soft processor called CUSTARD with 
a customizable instruction set  [77] . It illustrates the material from the preced-
ing sections: we show how an instruction processor can be customized by 
adapting the architecture to support different types of multithreading and 
custom instructions; we then present the associated tool fl ow targeting recon-
fi gurable technology. 

 CUSTARD supports multiple contexts within the same processor hard-
ware. A context is the state of a thread of execution, specifi cally the state of 
the registers, stack, and program counter. Supporting threads at the hardware 
level brings two signifi cant benefi ts. First, a context switch — changing the 
active thread — can be accomplished within a single cycle, enabling a unipro-
cessor to interleave execution of independent threads with little or no over-
head. Second, a context switch can be used to hide latency where a single 
thread would otherwise busy - wait. 

 The major cost of supporting multiple threads stems from the additional 
register fi les required for each context. Fortunately, current FPGAs are rich 
in on - chip block memories that could be used to implement large register fi les. 
Additional logic complexity must also be added to the control of the processor 
and the current thread must be recorded at each pipeline stage. However, the 
bulk of the pipeline and the FUs are effectively shared between multiple 
threads, so we would expect a signifi cant area reduction over a multiprocessor 
confi guration. 

 Instances of CUSTARD processors are generated using a parameterizable 
model. The key elements of this parameterizable model are shown in Figure 
 6.12 . This model is used both in instantiating a synthesizable hardware descrip-
tion and in confi guring a cycle - accurate simulator.   

     Figure 6.12     CUSTARD microarchitecture showing threading, register fi le, and for-
warding network parameterizations.  
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 The CUSTARD base architecture is typical of a soft processor, with a fully 
bypassed and interlocked 4 - stage pipeline. It is a load/store RISC architecture 
supporting the MIPS integer instruction set. It is also capable of augmenting 
the pipeline with custom instructions using spare portions of the MIPS opcode 
space. 

 There are four sets of parameters for customizing CUSTARD. The fi rst set 
covers multithreading support: one can specify the number of threads and the 
threading type, either block multithreading (BMT) or interleaved multithread-
ing (IMT). The second set covers custom instructions and the associated data-
paths at the execution stage of the pipeline as well as custom memory blocks. 
The third set covers the forwarding and interlock architecture: whether the 
Branch delay slot, the Load delay slot, and the forwarding paths are necessary. 
The fourth set covers the register fi le: the number of registers and the number 
of register fi le ports. 

 Two types of multithreading, BMT and IMT, are supported. Both types 
simultaneously maintain the context — the state of registers, program counter, 
and so on — of multiple independent threads. The types of threading differ in 
the circumstances that context switches are triggered. 

 BMT triggers a context switch as a result of some run - time event in the 
currently active thread, for example, a cache miss, an explicit  “ yield ”  of control, 
or the start of some long latency operation such as a custom instruction. When 
only a single thread is available, the BMT processor behaves exactly as a 
conventional single - threaded processor. When multiple threads are available, 
any latency in the active thread is hidden by a context switch. The context 
switch is triggered at the execution stage of the pipeline, such that the last 
instruction fetched must be fl ushed and refi lled from the new active thread. 

 IMT performs a mandatory context switch every single cycle, resulting in 
interleaved execution of the available threads. IMT permits simplifi cation of 
the processor pipeline since, given suffi cient threads, certain pipeline stages 
are guaranteed to contain independent instructions. IMT thus removes pipe-
line hazards and permits simplifi cation of the forwarding and interlock network 
designed to mitigate these hazards. The CUSTARD processor can exploit this 
capability by selectively removing forwarding paths to optimize the processor 
for a particular threading confi guration. 

 Table  6.4  summarizes the customization of the forwarding and interlock 
architecture for each multithreading confi guration. The forwarding paths, 
BRANCH, ALU, and MEM, are illustrated in Figure  6.12 . The IMT columns 
show how elements of the forwarding and interlock network can be removed 
depending upon the number of available threads. For example, in the case of 
two threads, the ALU forwarding logic can be removed. When two IMT 
threads are available, any instruction entering the ALU stage of the pipeline 
is independent of the instruction leaving the ALU stage. Removing interlocks 
in situations highlighted by  “  *  ”  constrains the ordering of the input instruc-
tions; the relevant parameters are made available to the compiler, which can 
then adapt the scheduling of instructions.   
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 Multiple contexts are supported by multiple register fi les that are imple-
mented as dual - port RAM on the FPGA. Each register fi le access is indexed 
by the register number and also the ID of the thread that generated the access. 
Each register fi le is also parameterizable in terms of the number of ports and 
the number of registers per thread. Increasing the number of register fi le ports 
allows custom instructions to be selected by the compiler that take a greater 
number of operands. 

 An approach based on compiling a parallel imperative language into hard-
ware  [191]  is used to implement the parameterizable processor. This imple-
mentation of CUSTARD provides a framework for parameterization of the 
processor together with a route to hardware. The associated compiler outputs 
MIPS integer instructions and custom instructions to optimize CUSTARD 
for a given application; Table  6.5  shows the custom instructions for some 
benchmarks.   

 Figure  6.13  shows the fl ow through the CUSTARD tools. Custom instruc-
tions are generated based on a technique known as similar sub - instructions 
 [77] . Prior to fi nding custom instructions, a preoptimization stage performs 
standard source - level optimizations together with loop unrolling to expose 
loop parallelism. After custom instructions have been selected, custom and 
base instructions are scheduled to minimize pipeline stalls. This scheduling 
stage is parameterizable to support the microarchitectural changes afforded 
by the CUSTARD multithreading modes.   

 The result of compilation comprises hardware datapaths to implement 
custom instructions and software to execute on the customized processor. 
Custom instruction datapaths are added to the CUSTARD processor, and the 
decoding logic is revised to map new instructions to unused portions of the 
opcode space. 

 There is a cycle - accurate simulator based upon the SimpleScalar framework 
 [30] . The simulator can be confi gured directly from the processor hardware 
description and simulates a parameterizable memory system. 

 Five benchmarks — Blowfi sh, Colourspace, AES, discrete cosine transform 
(DCT), and SUSAN — have been developed for a CUSTARD processor 

  TABLE 6.4    Summary of Forwarding Paths (As Shown in Figure  5.12 ) and 
Interlocks That Can Be  “ Optimized Away ”  for Single - Threaded, Block 
Multithreaded ( BMT ), and Interleaved Multithreaded ( IMT ) Parameterizations 

   Disable     Confi guration Number of Threads     BMT    ≥    1     IMT 2     IMT    ≥    4  

  FORWARDING BRANCH         √      √   
  FORWARDING ALU     √      √       
  FORWARDING MEM         √       
  BRANCH DELAY     √   *       √      √   
  LOAD INTERLOCK     √   *       √      √   

    *   Optimizing away this element in this confi guration changes the compiler scheduler behavior to 
prevent hazards.   
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     Figure 6.13     Tool fl ow for the CUSTARD processor customized for a particular 
application.  
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  TABLE 6.5    A Summary of the Custom Instructions Automatically Generated for a 
Set of Benchmarks 

   Benchmark  

   Custom Instruction(s) 
(Input Registers  r  0     −     r  3 , 
Immediate Value  imm  0 )  

   Num. 
Uses  

   Latency 
(Cycles)  

   BRAM 
(Bytes)  

  Blowfi sh     LUT ( r  0     >>    24)    +     LUT ( r  1     >>    16)    2    1    1024  
   LUT ([ r  0     >>    8] & 255)    2    1  

  Color space    ([ r  0     >>    8] & 0 xF F )|( r  1  & 0 xF F 00)    1    1    32  
  |([ r  2     <<    8] & 0 xF F 0000)  

  DCT     LUT ( r  1 )    +     r  2   *  ( r  0     <<    8)    65    2    64  
   LUT ( r  1 )    +     r  2   *  ([ r  0  & 255]    −    128)    65    2  

  Edge detect     LUT ( r  0     +    1    +     imm  0 )    3    1    64  

  Susan     LUT ( r  0 )    31    1    516  

  AES     LUT ( r  0 )    ∧     LUT ( r  1     >>    8)    64    1    1024  
   ∧  LUT ( r  2     >>    16)    ∧     LUT ( r  3     >>    24)  

   Inputs  r  0     −     r  3  are allocated to registers from the general purpose fi le.  LUT ( a )    =    table lookup from 
dedicated block RAM (BRAM) address  a .  “ Num. Uses ”  demonstrates the extent of reuse by 
showing the number of times the instruction is used in the benchmark assembly code. Latency is 
the number of execution cycles required before the output is available to the forwarding network 
or in the register fi le.   
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implemented on a Xilinx XC2V2000 FPGA. It is found that the IMT4 (IMT 
with four threads) and BMT4 (BMT with four threads) confi gurations add 
only 28% and 40% area, respectively, to the single - threaded processor, while 
allowing interleaved execution of four threads with no software overhead. 
Moreover, custom instructions give a signifi cant performance increase, an 
average of 72% with a small area overhead above the same confi guration 
without custom instructions, an average of only 3%. CUSTARD accelerates 
AES by 355%. 

 The IMT processors without custom instructions provide a higher maximum 
clock rate than both BMT (41% higher) and single - threaded (5% higher) 
processors. The number of cycles is also reduced by an average of 10%. The 
IMT processors hide pipeline latencies by tightly interleaving independent 
threads. We anticipate that the relatively low (10%) improvement is caused 
by the short latency of the custom instructions generated (Table  6.5 ), at most 
two cycles in every case. It is not possible to build longer latency instructions 
within the register fi le port constraints, so we expect that deeply pipelined 
processors or fl oating point custom instructions are needed to create latencies 
long enough for signifi cant benefi t in this area. However, the IMT processors 
allow a higher maximum clock rate by removing the forwarding logic around 
the ALU. The ALU forwarding logic is necessarily on the critical path in the 
BMT and single - threaded processors, as indicated by the timing analyzer 
reports.  

   6.9    RECONFIGURATION 

 There are many motivations for reconfi guration. One motivation is to share 
resources that are not required concurrently. Another motivation is to upgrade 
to support new functions, new standards, or new protocols. A third reason is 
to adapt the hardware based on run - time conditions. 

 Run - time reconfi guration has shown promise for many applications, includ-
ing automotive systems  [35] , high - performance computing  [81] , interconnec-
tion networks  [161] , video processing  [211] , and adaptive Viterbi decoding 
 [241] . The treatment below abstracts from the specifi c technology, focusing on 
overhead analysis of designs involving run - time reconfi guration. 

   6.9.1    Reconfi guration Overhead Analysis 

 Adapting an architecture to specifi c applications aims to improve performance 
by applying application - specifi c optimizations. However the performance 
gained by adaptation has to outweigh the cost of reconfi guration. Consider a 
software function  f () that takes  t si   time to execute on an architecture with a 
standard, general - purpose instruction set. When adapted to support a custom 
instruction, it takes  t ci   time to execute, and can be expressed as a fraction of 
the original execution time as   α t si  , where 0    <      α      <    1. The device on which  f () 
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executes requires  t r   time to reconfi gure. We defi ne a reconfi guration ratio  R  
that helps us decide if reconfi guration to this new architecture is desirable by 
analyzing the overhead involved:

    R
t

t t
t

t t
si

ci r

si

si r

=
+

=
+α

.     (6.1)   

 The reconfi guration ratio  R  gives us a measure of the benefi ts of reconfi guring 
to the new adapted architecture;  R  provides the improvement factor of the 
new implementation after reconfi guration, over the current implementation. 
The point where  R     =    1 is the threshold: if  R     >    1, reconfi guration will be benefi -
cial. It is, however, important to note that an  R  value of 2 does not necessarily 
translate to an overall twofold system performance increase. The maximum 
reconfi guration ratio  R max   is a measure of the absolute performance gain, dis-
counting reconfi guration time. It is the maximum possible  R  value for a custom 
instruction. This is determined as follows:

    R R
t
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t

si
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→
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0

1
α

    (6.2)   

 The maximum potential reconfi guration ratio  R pot   is a measure of the maximum 
rate at which performance improvement is possible; it gives an idea of how 
quickly a custom instruction will cross the reconfi guration threshold:

    R R
t
t

pot
si

r

= =
→

lim .
α 0

    (6.3)   

  R pot   provides an indication on the granularity of reconfi guration and size of 
functions that will benefi t from adaptation. A function with a higher  R pot   value 
can be adapted more easily. It can be shown that:

    
t
t

R

R
ci

si

pot

pot

=
− 1

.     (6.4)   

 Hence an  R pot   of 5 means that the custom instruction produced need only be 
four - fi fths the speed of the original software version, before it becomes worth 
implementing. An  R pot   of 4 requires the custom instruction to be three - fourths 
the speed of the original, while an  R pot   of 3, two - thirds the speed of the original, 
and so on. 

 If function  f () has an  R pot   value of 1, the adaptation and subsequent recon-
fi guration of that function will not be benefi cial. 

 The reconfi guration ratio can also be described in terms of the number of 
clock cycles of an FIP. Consider a software function  f (), which takes  t si   units 
of time to execute. The function takes  n si   clock cycles to execute, and the cycle 
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time is  T si  . The function  f () is called  F  times over the period we are investigat-
ing, in this case one execution of the application. Similarly with  t ci  :

    
t n T F

t n T F
si si si

ci ci ci

=
= .

    (6.5)   

 The reconfi guration time  t r   can be rewritten as the product of the reconfi gura-
tion cycle time  T r   and the number of confi guration cycles  n r  . The reconfi gura-
tion cycle time,  T r  , is platform dependent and is independent of the cycle time 
of designs implemented on the programmable device. The number of confi gu-
ration cycles models the time required for either full or partial reconfi guration. 
In full reconfi guration,  n r   is a constant associated with a particular program-
mable device; in partial reconfi guration,  n r   varies with the amount of changes 
in the confi guration.  n r   may also be reduced through improvements in technol-
ogy and architectures that support fast reconfi guration through caches or 
context switches. There is a factor   τ   that represents certain reconfi guration 
overheads, such as stopping of the device prior to reconfi guration and starting 
of the device after reconfi guration:

    t n Tr r r= + τ .     (6.6)   

 In modern programmable devices, the time taken to start and stop a device 
can often be ignored. For instance, in Xilinx Virtex devices, this value can be 
as small as 10% of the time required to reconfi gure a frame, the smallest 
atomic reconfi gurable unit. 

 Other overheads include the time taken to save and restore the state of the 
processor. In the most extreme case, the state of the processor includes all 
storage components in the processor, for instance the register fi le, pipeline 
registers, program counter, or cache. By reinstating the state of a processor, a 
processor can be put back into the condition it was in when the state was saved. 

 After substituting Equations  6.5  and  6.6  into Equation  6.1 , the reconfi gura-
tion ratio  R  becomes:

    R
t

t t
n T F

n T F n T
si

ci r

si si

ci ci r r

=
+

=
+ + τ

.     (6.7)   

 This equation can be used to produce a graph showing how  R  changes with 
increasing  F , the number of times that the function  f () is called. When  R     >    1, 
then reconfi guration is profi table. More information about this approach can 
be found in a description of the adaptive fl exible instruction processor  [213] .  

   6.9.2    Trade - Off Analysis: Reconfi gurable Parallelism 

 In the following we describe a simple analytical model  [37]  for devices that 
are partially reconfi gurable: the larger the confi gured area, the longer the 
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confi guration time. For applications involving repeated independent process-
ing of the same task on units of data that can be supplied sequentially or 
concurrently, increasing parallelism reduces processing time but increases con-
fi guration time. The model below would help identify the optimal trade - off: 
the amount of parallelism that would result in the fastest overall combination 
of processing time and confi guration time. 

 The three implementation attributes are performance, area, and storage: 
processing time  t p   for one unit of data, with area  A , confi guration time  t r  , and 
confi guration storage size  Ψ . There are  s  processing steps, and the amount of 
parallelism is  P . 

 We can also identify parameters of the application: the required data 
throughput is   ϕ  app  , while there are  n  units of data  n  processed between succes-
sive confi gurations. The reconfi gurable device has available area  A max  . The 
data throughput of the confi guration interface is   ϕ  confi g  . 

 Designs on volatile FPGAs require external storage for the initial confi gu-
ration bitstream. Designs using partial run - time reconfi guration also need 
additional storage for the precompiled confi guration bitstreams of the recon-
fi gurable modules. Given  A  denotes the size of a reconfi gurable module in 
FPGA tiles (e.g., CLBs) and  Θ  denotes a device - specifi c parameter that speci-
fi es the number of bytes required to confi gure one tile, the partial bitstream 
size and storage requirement  Ψ  (in bytes) of a reconfi gurable module is directly 
related to its area  A :

    Ψ Θ Θ= ⋅ + ≈ ⋅A h A ,     (6.8)  

where  h  denotes the header of confi guration bitstreams. In most cases, this can 
be neglected because the header size is very small. 

 The time overhead of run - time reconfi guration can consist of multiple 
components, such as scheduling, context save and restore, as well as the con-
fi guration process itself. In our case there is no scheduling overhead as modules 
are loaded directly as needed. There is also no context that needs to be saved 
or restored since signal processing components do not contain a meaningful 
state once a dataset has passed through. The reconfi guration time is propor-
tional to the size of the partial bitstream and can be calculated as follows:

    t
A

r
config config

= ≈
⋅Ψ Θ

φ φ
.     (6.9)   

   ϕ  confi g   is the confi guration data rate and measured in  bytes per second . This 
parameter not only depends on the native speed of the confi guration interface 
but also on the confi guration controller and the data rate of the memory where 
the confi guration data are stored. 

 We can distinguish between run - time reconfi gurable scenarios where data 
do not have to be buffered during reconfi guration and scenarios where data 
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buffering is needed during reconfi guration. For the latter case we can calculate 
the buffer size  B  depending on reconfi guration time  t r   and the application data 
throughput   ϕ  app  :

    B tapp r
app

config

= ⋅ = ⋅φ
φ

φ
Ψ.     (6.10)   

 Table  6.6  outlines the buffer size for several receiver functions and a range of 
reconfi guration times. We can observe that the data rate is reduced through 
all stages of the receiver. Hence, a reconfi guration - during - call scenario becomes 
easier to implement toward the end of the receiver chain. Obviously, the buffer 
size also increases with the bandwidth of the communication standard and the 
duration of the reconfi guration time.   

 A buffer can be implemented with on - chip or off - chip resources. Most 
modern FPGAs provide fast, embedded RAM blocks that can be used to 
implement fi rst in – fi rst out buffers. For example, Xilinx Virtex - 5 FPGAs 
contain between 1 and 10   Mbit of RAM blocks. Larger buffers have to be 
realized with off - chip memories. 

 The performance of a run - time reconfi gurable system is dictated by the 
reconfi guration downtime. If reconfi gurable hardware is used as an accelerator 
for software functions, overall performance is usually improved despite the 
confi guration overhead. In our case, we use reconfi guration to support mul-
tiple hardware functions in order to improve fl exibility and reduce area 
requirements. In this case, the reconfi gurable version of a design will have a 
performance penalty over a design that does not use reconfi guration. The 
reconfi guration of hardware usually takes much longer than a context switch 
on a processor. This is due to the relatively large amount of confi guration data 
that need to be loaded into the device. The effi ciency  I  of a reconfi gurable 
design compared to a static design can be expressed as:

  TABLE 6.6    Buffer Size for Various Functions and Reconfi guration Times 

   Function  
   Data 

Throughput  

   Buffer Size for a Given Reconfi guration 
Time  

   100   ms     10   ms     1   ms  

  Downconversion (16 bits)    800   Mbit/s    80   Mbit    8   Mbit    800   Kbit  
  Downconversion (14 bits)    700   Mbit/s    70   Mbit    7   Mbit    700   Kbit  
  Demodulation UMTS    107.52   Mbit/s    10.75   Mbit    1.07   Mbit    107   Kbit  
  Demodulation GSM    7.58   Mbit/s    758   Kbit    75.8   Kbit    7.58   Kbit  
  Error correction UMTS    6   Mbit/s    600   Kbit    60   Kbit    6   Kbit  
  Error correction GSM    22.8   Kbit/s    2.28   Kbit    228   bit    22.8   bit  
  Decryption UMTS    2   Mbits/s    200   Kbit    20   Kbit    2   Kbit  
  Encryption GSM    13   Kbit/s    1.3   Kbit    130   bit    13   bit  

   UMTS: Universal Mobile Telecommunications System, GSM: Global System for Mobile 
Communications    
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 The reconfi gurable system becomes more effi cient by processing more data 
between confi gurations and by improving the ratio of confi guration time to 
processing time. We propose a more detailed analysis where we consider the 
effect of parallelism on processing time and confi guration time. Many applica-
tions can be scaled between a small and slow serial implementation, and a 
large and fast parallel or pipelined implementation. FIR fi lter, AES encryp-
tion, or CORDIC (COordinate Rotation DIgital Computer) are examples of 
such algorithms. 

 Figure  6.14  illustrates the different spatial and temporal mappings of an 
algorithm with regard to processing time, area, and reconfi guration time. The 
processing time per datum  t p   is inversely proportional to the degree of paral-
lelism  P . It can be calculated based on  t p   ,   e  , the basic processing time of one 
processing element,  s , the number of steps or iterations in the algorithm, and 
 P , the degree of parallelism:  

    t
t s

p
p

p e=
⋅, .     (6.12)   

 Parallelism speeds up the processing of data but slows down reconfi guration. 
This is because a parallel implementation is larger than a sequential one, and 
the reconfi guration time is directly proportional to the area as shown in 
Equation  6.9 . The reconfi guration time  t r   is directly proportional to the degree 
of parallelism  P , where  t r   ,   e   is the basic reconfi guration time for one processing 
element:

    t t pr r e= ⋅, .     (6.13)   

 We can now calculate the total processing time for a workload of  n  data items:

    t n t t
t s n

p
t ptotal p r

p e
r e= ⋅ + =

⋅ ⋅
+ ⋅,

, .     (6.14)   

     Figure 6.14     Different spatial and temporal mappings of an algorithm with  s     =    4 steps.  
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 Figure  6.15  illustrates how parallelism can affect the optimality of the process-
ing time. We consider an algorithm with  s     =    256 steps, which is inspired by the 
observation that fi lters can have orders of 200 or higher. The plots are normal-
ized to processing time per datum and we assume that the reconfi guration time 
 t r   ,   e   of one processing element is 5000 times the processing time  t p   ,   e   of one pro-
cessing element. This value can vary depending on the application and target 
device but we estimate that at least the order of magnitude is realistic for 
current devices. We can observe that fully sequential implementations are 
benefi cial for small workloads. In this case, the short confi guration time out-
weighs the longer processing time. However, the overall time is still high due 
to the large infl uence of the confi guration time. Large workloads benefi t from 
a fully parallel implementation since the processing time is more dominant 
than reconfi guration time. In case of medium workloads, the degree of paral-
lelism can be tuned to optimize the processing time.   

 In order to fi nd the optimal degree of parallelism, we calculate the partial 
derivative of the function given in Equation  6.14  with respect to  P :

    
∂

∂
=

⋅ ⋅
+

t
p

t s n

p
ttotal p e
r e

,
, .

2     (6.15)   

 To fi nd the minimum, we set Equation  6.15  to 0 and solve for  P :

    p
s n t

t
opt

p e

r e

=
⋅ ⋅ ,

,

.     (6.16)   

 The result  p opt   is usually a real number, which is not a feasible value to specify 
parallelism. In order to determine a practical value for  P ,  p opt   can be inter-
preted according to Table  6.7 .   

     Figure 6.15     Normalized processing times for a range of workload sizes  n  and different 
levels of parallelism  p . The number of steps  s  is set to 256 and we assume  t r   ,   e      =    5000 t p   ,   e  .  
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 After determining the optimal degree of parallelism that reduces the overall 
processing time per workload and hence maximizes performance, it is still 
necessary to check if the implementation meets the throughput requirements 
of the application  Φ   app  :

    
n

t p total
hw app

( )
.= ≥Φ Φ     (6.17)   

 The resulting area requirement  A  also has to be feasible within the total avail-
able area  A max  . In summary, to implement an optimized design according to 
our model, the following steps have to be carried out:

   1.     Derive  Φ   app  ,  s  and  n  from application.  
  2.     Obtain  Φ   confi g   for target technology.  
  3.     Develop one design and determine  t p   and  A .  
  4.     Calculate  t r  ,  t p   ,   e  , and  t r   ,   e   using Equations  6.9 ,  6.12 , and  6.13 .  
  5.     Find  p opt   from Equation  6.16  and fi nd a feasible value according to 

Table  6.7 .  
  6.     Calculate  t total   using Equation  6.14  and verify throughput using 

Equation  6.17 .  
  7.     Implement design with  P  from step 5 and verify if its actual throughput 

satisfi es the requirement.  
  8.     Calculate buffer size  B  using Equation  6.10  and check  A     ≤     A max  .    

 The above methodology can be adopted for a wide variety of applications and 
target technologies; it will fi nd the highest performing version of the design. 
In order to fi nd the smallest design that satisfi es a given throughput require-
ment, one can try smaller values for  P  while checking Equation  6.17 . 

 This approach can also be extended to address energy effi ciency for recon-
fi gurable designs  [38] ; a reconfi gurable FIR fi lter is shown to be up to 49% 
more energy effi cient and up to 87% more area effi cient than a nonreconfi gu-
rable design.   

   6.10    CONCLUSIONS 

 Customization techniques can be applied in various ways to ASIC and to 
confi gurable technologies. We provide an overview of such techniques and 

  TABLE 6.7    Interpretation of  p opt   to Determine a Practical Value for  p  

  0    <     p opt      ≤    1    Fully serial implementation,  p     =    1  
  1    <     p opt      <     s     Choose  P  such that  s / P  ∈  Z  and | p opt      −     p | minimal  
   S     ≤     p opt      Fully parallel implementation,  p     =     s   
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show how instance - specifi c designs and custom instruction processors can 
exploit customizability. 

 As technology advances, two effects become increasingly prominent:

   1.     integrated - circuit mask costs grow rapidly, making ASIC less affordable,  
  2.     complexity of SOC design and verifi cation keeps rising.    

 The technologies discussed in this chapter address these issues directly: various 
degrees of prefabrication customization reduce both the need for ASIC tech-
nology and the design complexity. Reconfi gurable technologies such as FPGAs 
offer signifi cant fl exibility in the form of postfabrication customization, at the 
expense of overheads in speed, area, and power consumption. 

 Customization and confi gurability, in addition to their widespread adoption 
in commercial systems, also constitute exciting research areas, with recent prog-
ress in SOC design reuse  [215] , synthesizable datapath fabric  [253] , dynami-
cally extensible microprocessors  [48] , customizable multiprocessors  [90] , and 
many others. Moreover, dynamically reconfi gurable processors are beginning 
to be adopted commercially, such as the D - Fabrix from Panasonic, DRP - 1 
from NEC Electronics, and FE - GA from Hitachi  [17] . It is also reported  [74]  
that ARM processor and interconnect technologies, including ARM cell librar-
ies and AMBA interconnect technology, would be adopted and optimized for 
Xilinx FPGA architectures. There is little doubt that customization and con-
fi gurability will continue to play an important part in electronic systems for 
many years to come.   

  6.11     PROBLEM SET 

       1.    Provide examples for several application domains that would benefi t from 
postfabrication customization.   

    2.    Some reconfi gurable devices support pipelined interconnects. What are the 
pros and cons of pipelined interconnects?   

    3.    Some FPGA companies provide a way of producing a structured ASIC 
implementation of an FPGA design, effectively removing the reconfi gu-
rability. Why do they do that?   

    4.    Early FPGAs contain just a homogeneous array of fi ne - grained logic cells, 
while more recent ones are more heterogeneous; in addition to the fi ne -
 grained cells, they also contain confi gurable memory blocks, multiplier arrays, 
and even processor cores. Explain this evolution of FPGA architectures.   

    5.    A subset of the instructions for a machine M can be accelerated by  n  times 
using a coprocessor C.
    (a)     A program  P  is compiled into instructions of M such that a fraction  k  

belongs to this subset. What is the overall speedup that can be achieved 
using C with M?  
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   (b)     The coprocessor C in part (a) above costs  j  times as much as M. 
Calculate the minimum fraction of instructions for a program that C 
has to accelerate, so that the combined system of M and C is  j  times 
faster than M.  

   (c)     The performance of M is improving by  m  times per month. How many 
months will pass before M alone, without the coprocessor C, can execute 
the program P in part (a) as fast as the current combined system of M 
and C?      

    6.    Explain how Equation  6.7  can be generalized to cover  m  custom 
instructions.   

    7.    A database search engine makes use of run - time reconfi guration of the hash 
functions to reduce the amount of processing resources. The search engine 
contains  P  processors operating in parallel; each processor can be reconfi g-
ured to implement one of  h  hash functions. The total number of words,  w , 
in the input dataset is divided into   ℓ   subsets of words; each subset is pro-
cessed using a particular hash function with one bit per word used to indi-
cate whether a match has occurred. The indicator bit is stored along with 
the corresponding word in temporary memory, and such temporary data 
are processed by the next hash function in the processor after reconfi gura-
tion. The match indicator bit is updated in each iteration and the process 
continues until the data have been processed by all  h  hash functions. Let 
 T h   denote the critical path delay of the hash function processor, and  T r   is 
the time for reconfi guring the processor to support a different hash func-
tion. It takes  m  cycles to access the memory, and the average number of 
characters per word is  c . Consider the worst case that all the hash functions 
are required all the time — the analysis will become more complex if it is 
possible to abort the matching process if a match does not occur.
    (a)     How long does it take to process one subset of data?  
   (b)     How long does it take to process all the data?  
   (c)     Given that each character contains  b  bits, how many bits are required 

for the temporary storage?      

    8.    To assess the effect of reconfi guration overheads on energy effi ciency, con-
sider developing an analytical model in the same spirit as the one in Section 
 6.9.2 , involving an application with:

    •       n , the number of packets or data items processed between two successive 
reconfi gurations,  

   •       s , the number of processing steps in the algorithm.    
 A reconfi gurable implementation is characterized by the following 
parameters:

    •       A , the area requirement of the implementation,  
   •       P , the amount of parallelism in the implementation,  
   •       t p  , the processing time for one packet or datum,  
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   •       t r  , the reconfi guration time,  
   •       P p  , the power consumed during processing,  
   •       P c  , the computation power which is a component of  P p  ,  
   •       P o  , the power overhead which is a component of  P p  ,  
   •       Pr , the power consumed during reconfi guration.    
 The reconfi gurable device is characterized by:

    •        ϕ  confi g  , the data throughput of the confi guration interface,  
   •       Θ , the confi guration size per resource or unit of area.    
 Recall that energy is the product of power consumption and the associated 
time duration. 

 Given power consumption for computation,  P c  , is directly proportional 
to  P , the degree of parallelism, and there is a constant power consumption 
overhead,  P o  , and a constant power consumption for reconfi guration,  P r  :

    (a)     What is the computation energy  E c   for processing  n  data items?  
   (b)     What is the energy overhead  E o   due to  P o  ?  
   (c)     What is the energy for reconfi guration  E r  , given that the reconfi gura-

tion time is directly proportional to  P ?  
   (d)     What is the total energy per data item involved in computation and 

reconfi guration?  
   (e)     Find the optimal degree of parallelism that minimizes the energy per 

datum.          
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  7    Application Studies     

    7.1    INTRODUCTION 

 This chapter describes various applications to illustrate the opportunities and 
trade - offs in SOC design. It also shows how some of the techniques described 
in earlier chapters can be applied. 

 We fi rst present an approach for developing SOC designs. Then we illustrate 
the proposed techniques in analyzing simple designs for the Advanced 
Encryption Standard (AES). Next, we have a look at 3 - D computer graphics, 
showing the use of analysis and prototyping techniques and their application 
to a simplifi ed PS2 system. After that we describe compression methods for 
still image and real - time video, as well as a few other applications to illustrate 
the variety of requirements and architectures of SOCs. 

 Our discussion separates  requirements  from  designs  that can be shown to 
meet the requirements. Requirements cover what are needed, while a design 
includes suffi cient implementation detail for it to be evaluated against the 
requirements.  

   7.2     SOC  DESIGN APPROACH 

 Figure  7.1  shows a simplifi ed SOC design approach based on the material from 
the preceding chapters. Chapter  2  introduces fi ve big issues in SOC design: 
performance, die area, power consumption, reliability, and confi gurability. 
These issues provide the basis on which design specifi cation and run - time 
requirements for SOC designs can be captured. An initial design can then be 
developed, which would show promise in meeting the key requirements. This 
initial design can then be systematically optimized by addressing issues related 
to memory (Chapter  4 ), interconnect (Chapter  5 ), processor (Chapter  3 ) and 
cache (Chapter  4 ), and customization and confi gurability (Chapter  6 ). This 
process is repeated until reaching a design that meets the specifi cation and 
run - time requirements. More details will be given later in this section.   

 Following this approach, however, can appear to be a formidable task. 
System design is often more challenging than component or processor design, 

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
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     Figure 7.1     An approach for designing SOC devices.  
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and it often takes many iterations through the design to ensure that (1) the 
design requirements are satisfi ed and (2) the design is close to optimal, where 
optimality includes considerations for overall cost (including design, manu-
facturing, and other costs) and performance (including market size and 
competition). 

 The usual starting point for a design is an initial project plan. As discussed 
in Chapter  1 , this includes a budget allocation for product development, a 
schedule, a market estimate (and a corresponding competitive product analy-
sis), and some measure of targeted product performance and cost. As shown 
in Figure  7.2 , the next step is to create an initial product design. This design is 
merely a placeholder (or  “ straw man ” ) that has a good chance of meeting 
requirements in target product performance and cost. Further analysis may 
prove that it may or may not satisfy the requirements. An important part of 
this initial analysis is to develop a complete understanding of the performance 
and functional requirements and their inter - relationship. The various pieces of 
the application are specifi ed and formally defi ned, and appropriate analytic 
and simulation models are developed. These models should provide an idea 
of the performance – functionality trade - off for the application and the imple-
mentation technology, which would be important in meeting run - time require-
ments such as those shown in Table  7.1 .        

 With the design specifi cation ready, we propose an initial system design 
(Figure  7.3 ). Design specifi cations usually anticipate the general product 
layout, addressing issues such as having all on one die or system on a board, 
operating system selection, total size of memory, and backing store. The devel-
opment of the initial design then proceeds as follows, to ensure that the critical 
requirements are met:

     Figure 7.2     The system design process.  
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  TABLE 7.1    Run - Time Requirements Showing Various Constraints to Be Met for 
Some Video and Graphics Applications 

   Application  
   Real - Time 

Constraint (fps)     Other Constraints  

  Video conference    16    Frame size, error rate, missed frames  
  3 - D graphics    30    Image size, shading, texture, color  

   1.     Selection and allocation of memory and backing store. This generally 
follows the discussions in Chapter  4 .    

  2.     Once the memory has been allocated, the processor(s) are selected. 
Usually a simple base processor is selected to run the operating system 
and manage the application control functions. Time critical processes can 
be assigned to special processors (such as VLIW and SIMD processors 
discussed in Chapter  1  and Chapter  3 ) depending on the nature of the 
critical computation.  

  3.     The layout of the memory and the processors generally defi nes the inter-
connect architecture covered in Chapter  5 . Now the bandwidth require-
ments must be determined. Again the design specifi cations and processor 
target performance largely determine the overall requirement but cache 
memory can act as an important buffer element in meeting specifi cations. 

 REQUIREMENTS AND DESIGN 

 The input to the requirement understanding task is usually a requirement 
specifi cation from customers or from a marketing study. The output is 
often a functional requirement specifi cation for the design. The specifi ca-
tion may be detailed and carefully written for review; this is the case in 
large companies. However, the specifi cation may also be brief, captured, 
for example, in a spreadsheet; this is often the case in small companies 
and startups. The specifi cation, whether detailed or brief, is essential for 
design review, documentation, and verifi cation, and must be clear and 
consistent. Moreover, mathematical, executable, or diagrammatic descrip-
tions can be used to capture data fl ow and control fl ow for the main 
operations or selected functions of the SOC, during various system 
design stages. Such descriptions can help design ers to understand the 
functional requirements. Once the functional requirements are under-
stood, these descriptions can be mapped to possible implementations of 
the main components and their interactions in the SOC. 
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Usually the initial design assumes that the interconnect bandwidth is 
suffi cient to match the bandwidth of memory.  

  4.     The memory elements are analyzed to assess their effects on latency 
and bandwidth. The caches or data buffers are sized to meet the memory 
and interconnect bandwidth requirements. Some details can be covered 
later, so for instance bus latency is usually determined without consider-
ing the effects of bus contention. Processor performance models are 
developed.  

  5.     Some applications require peripheral selection and design, which must 
also meet bandwidth requirements. Example peripherals are shown in 
Section  7.5.1 , which covers the JPEG system for a digital still camera, 
and also in Section  8.7 , which covers radio frequency and optical com-
munications for future autonomous SOCs.  

  6.     Rough estimates of overall cost and performance are determined.    

 Following initial design, the design optimization and verifi cation phase begins. 
This phase is supported by various tools, including profi ling facilities and opti-
mizing compilers. All components and allocations are reassessed with the view 
toward lowering cost (area) and improving both performance and functional-
ity. For instance, customization and confi gurability techniques, such as the use 
of custom instructions or the adoption of run - time reconfi guration as discussed 
in Chapter  6 , can be applied to enhance fl exibility or performance. As another 
example, software optimizations, such as those that improve locality of refer-

     Figure 7.3     An example of an initial design, with three processors P1, P2, and P3.  
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ence, can often provide large performance improvement for little hardware 
cost. The optimization would, where applicable, involve repartitioning between 
hardware and software, which could affect the complexity of embedded soft-
ware programs  [151]  and the choice of real - time operating systems  [34] . 

 After each optimization, its impact on accuracy, performance, resource 
usage, power and energy consumption, and so on needs to be analyzed. 
Also the design needs to be verifi ed to make sure that its correctness would 
not be affected by the optimizations  [53] . Such analysis and verifi cation can 
often be supported by electronic system - level design tools (see box), as well 
as by prototyping. 

   
  ESL : ELECTRONIC SYSTEM LEVEL DESIGN 
AND VERIFICATION 

 There does not seem to be a standard description of what ESL covers. 
Wikipedia describes ESL design and verifi cation to be  “ an emerging 
electronic design methodology that focuses on the higher abstraction 
level concerns fi rst and foremost. ”  Another defi nition of ESL is the uti-
lization of appropriate abstractions in order to increase comprehension 
about a system, and to enhance the probability of a successful implemen-
tation of functionality in a cost - effective manner  [32] . Various ESL tools 
have been developed, which are capable of supporting a design fl ow that 
can generate systems across hardware and software boundaries from an 
algorithmic description  [108] . 

 When the design appears optimal after several iterations, another complete 
program plan is developed to understand any changes made to schedule fi xed 
costs and to address issues involved in system integration and testing. Finally, 
the product market is assessed based on the fi nal design and the overall 
program profi tability can be assessed.  

   7.3    APPLICATION STUDY:  AES  

 We adopt the AES as a case study to illustrate how techniques discussed in 
the preceding chapters can be used for exploring designs that meet specifi ed 
requirements. 

   7.3.1     AES : Algorithm and Requirements 

 The AES cipher standard  [69]  has three block sizes: 128 (AES - 128), 192 
(AES - 192), and 256 (AES - 256) bits. The whole process from original data to 

c07.indd   251c07.indd   251 5/4/2011   9:54:40 AM5/4/2011   9:54:40 AM



252  APPLICATION STUDIES

encrypted data involves one initial round,  r     −    1 standard rounds, and one fi nal 
round. The major transformations involve the following steps (Figure  7.4 ):

    •      SubBytes.     An input block is transformed byte by byte by using a special 
design substitution box (S - Box).    

   •      ShiftRows.     The bytes of the input are arranged into four rows. Each row 
is then rotated with a predefi ned step according to its row value.  

   •      MixColumns.     The arranged four - row structure is then transformed by 
using polynomial multiplication over  GF  (2 8 ) per column basis.  

   •      AddRoundKey.     The input block is XOR - ed with the key in that round.    

 There is one round  AddRoundKey  operation in the initial round; the standard 
round consists of all four operations above; and the  MixColumns  operation is 
removed in the fi nal round operation, while the other three operations remain. 
On the other hand, the inverse transformations are applied for decryption. The 
round transformation can be parallelized for fast implementation. 

 Besides the above four main steps, the AES standard includes three block 
sizes: 128 (AES - 128), 192 (AES - 192), and 256 (AES - 256) bits. The whole block 
encryption is divided into different rounds. The design supporting AES - 128 
standard consists of 10 rounds. 

 Run - time requirements are shown in Table  7.2  for various applications, such 
as Wi - Fi and VoIP (Voice over Internet Protocol); our task is to fi nd designs 
that meet one or more of these throughput requirements.    

     Figure 7.4     Fully pipelined AES architecture  [107] .  
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   7.3.2     AES : Design and Evaluation 

 Our initial design starts with a die size, design specifi cation, and run - time 
requirement (Figure  7.1 ). We assume that the requirements specify the use of 
a PLCC68 (Plastic Leaded Chip carrier) package, with a die size of 
24.2    ×    24.2   mm 2 . 

 Our task is to select a processor that meets the area constraint while capable 
of performing a required function. Let us consider ARM7TDMI, a 32 - bit 
RISC processor. Its die size is 0.59   mm 2  for a 180   nm process, and 0.18   mm 2  for 
a 90   nm process. Clearly, both processors can fi t into the initial area require-
ment for the PLCC68 package. The cycle count for executing AES from the 
SimpleScalar tool set is 16,511, so the throughput, given an 115 - MHz clock (as 
advertised by the vendor) with the 180 - nm device, is (115    ×    32)/16,511    =    
222.9   Kbps; for a 236 - MHz clock with the 90 - nm device, the throughput is 
457.4   Kbps. Hence the 180 - nm ARM7 device is likely to be capable of perform-
ing only VoIP in Table  7.2 , while the 90   nm ARM7 device should be able to 
support PAN 802.15 TG4 as well. 

 Let us explore optimization of this SOC chip such that we can improve the 
total system throughput without violating the initial area constraint. We would 
apply the technique used in Chapter  4  for modifying the cache size and evalu-
ate its effect, using facilities such as the SimpleScalar tool set  [30]  if a software 
model for the application is available. 

 Using SimpleScalar with an AES software model, we explore the effects of 
doubling the block size of a 512 - set L1 direct mapped instruction cache from 
32 bytes to 64 bytes; the AES cycle count reduces from 16,511 to 16,094, or 
2.6%. Assume that the initial area of the processor with the basic confi guration 
without cache is 60K rbe, and the L1 instruction cache has 8K rbe. If we double 
the size of the cache, we get a total of 76K rbe instead of 68K. The total area 
increase is over 11%, which does not seem worthwhile for a 2.6% speed 
improvement. 

 The ARM7 is already a pipelined instruction processor. Other architectural 
styles, such as parallel pipelined datapaths, have much potential as shown in 
Table  7.3 ; these FPGA designs meet the throughput requirements for all the 

  TABLE 7.2    Different Application Throughput Requirements, PAN: Personal Area 
Network 

   Application     Throughput requirement  

  Wi - Fi 802.11b    11   Mbps  
  Wi - Fi 802.11g    54   Mbps  
  Wi - Fi 802.11i/802.11n    500   Mbps  
  Metropolitan area network (MAN) 802.16a    75   Mbps  
  PAN 802.15 TG4 (low rate)    250   Kbps  
  PAN 802.15 TG3 (high rate)    55   Mbps  
  VoIP    64   Kbps  
  Cisco PIX fi rewall router    370   Mbps  
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applications in Table  7.2 , at the expense of larger area and power consumption 
than ASICs  [146] . Another alternative, mentioned in Chapter  6 , is to extend 
the instruction set of a processor by custom instructions  [28] ; in this case they 
would be specifi c to AES.   

 A note of caution: the above discussion is intended to illustrate what con-
clusions can be drawn given a set of conditions. In practice, various other 
factors should be taken into account, such as how representative are the 
numbers derived from, for instance, benchmark results or application sce-
narios based on the SimpleScalar tool set. In any case, such analysis should 
only be used for producing evaluations similar to those from back - of - envelope 
estimates — useful in providing a feel for promising solutions, which should 
then be confi rmed by detailed design using appropriate design tools. 

 Two further considerations. First, as shown in Figure  7.4 , an AES design can 
be fully pipelined and fi tted into an FPGA device. To achieve over 21   Gbit/s 
throughput, the implementation exploits technology - specifi c architectures in 
FPGAs, such as block memories and block multipliers  [107] . 

 Second, AES cores are often used as part of a larger system. Figure  7.5  
shows one such possibility for implementing the AES core, in the ViaLink 
FPGA fabric on a QuickMIPS device  [116] . This device has a separate 32 - bit 
MIPS 4Kc processor core and various memory and interface elements. Another 
possibility is to use AES in the implementation of designs involving secure 
hash methods  [88] .     

   7.4    APPLICATION STUDY: 3 - D GRAPHICS PROCESSORS 

 This section considers 3 - D graphics accelerators, similar to the Sony PS2 archi-
tecture  [237] . Our study illustrates two useful techniques in deriving an initial 
design:

  TABLE 7.3    Performance and Area Trade - off on a Xilinx Virtex  XCV  - 1000 
 FPGA   [107]  

     
   Basic 

Iterative  
   Inner - Round 

Pipelined     Fully Pipelined  

  Maximum clock frequency 
(MHz)  

  47    80    95  

  Encrypt/decrypt throughput 
(128 bits) (Mbps)  

  521    888    11,300  

  Area (number of slices)    1228    2398    12,600  
  Area (number of BRAM)    18    18    80  
  Slices and BRAM usages    10% and 56%    19% and 56%    103% and 250%  

   BRAM: block RAM. Note that a fully pipelined design requires more resources than the XCV -
 1000 device can support.   
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     Figure 7.5     QuickMIPS block diagram for the AES SOC system  [116] .  
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    •      Analysis.     The application is viewed as a high - level algorithm for back -
 of - envelope - type estimates about, for instance, the amount of computa-
tion and communication so that a preliminary choice of design styles and 
components can be made.  

   •      Prototyping.     A simplifi ed version of the application is developed using 
common software tools and off - the - shelf hardware platforms, for example 
using a standard PC or a general - purpose FPGA platform. The experi-
ence gained will suggest areas that are likely to require attention, such 
as performance bottlenecks. It may also help identify noncritical compo-
nents that do  not  need to be optimized, saving development time.    

 The analysis and prototyping activities can often be assisted by ESL tech-
niques and tools  [32, 108] . 

   7.4.1    Analysis: Processing 

 In 3 - D graphics, objects are represented by a collection of triangles in 3 - D 
space, and there are lighting and texture effects on each picture element — or 
pixel — to make objects look realistic. Such 3 - D representations are trans-
formed into a 2 - D space for viewing. Animation consists of providing succes-
sive frames of pixels over time. 

 There are two main stages in the graphics pipeline (Figure  7.6 ): transforma-
tion and lighting, and rasterization. We cover them in turn.   
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  Requirements     For transformation and lighting, consider  v  visible triangles 
per frame, and  l  light sources; the realism and complexity of the objects 
improve with larger  v  and  l . To facilitate perspective projection, a system 
of four coordinates is used: three space dimensions and one homogeneous 
component capturing the location of the plane to which the 3 - D image is 
projected. 

 During transformation and lighting, each triangle vertex is transformed 
from world space to view space, requiring a 4    ×    4 matrix multiplication; then 
projected into 2 - D, requiring a division and a further four multiplies for per-
spective correction. This can be approximated as about 24 FMACs (fl oating -
 point multiply and accumulate) per vertex, where a fl oating - point division 
(FDIV) is assumed to take the equivalent of four FMACs. The lighting process 
requires another 4    ×    4 multiplication to rotate the vertex normal, followed by 
a dot product and some further calculations. This is approximated as 20 FMACs 
per light source. This results in 24    +    20 l  FMACs per vertex. In the worst case 
of three distinct vertices per triangle,  v (72    +    60 l ) FMACs are needed per 
frame; if vertices between adjacent triangles can be shared, we would only 
need  v (24    +    20 l ) in the best case. 

 Let  n  be the number of triangles processed per second and  m  be the number 
of FMAC per second. Given there are  f  frames per second (fps),  n     =     fv  and:

     Figure 7.6     3 - D graphics pipeline.  
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    n l m n l× + ≤ ≤ × +( ) ( ).24 20 72 60     (7.1)   

 If  n     =    50 M  ( M     =    10 6 ) triangles per second and no lights ( l     =    0), then 
1200 M     ≤     m     ≤    3600 M ; if  n     =    30    ×    10 6  triangles per second and with one light 
( l     =    1), then 1320  M     ≤     m     ≤    3960 M .  

  Design     Let us describe how we come up with a design that meets the require-
ments. Our initial design is based on the simple structure in Figure  7.7 , intro-
duced in Chapter  1 .   

 The proposed design is inspired by the Emotion Engine, which contains two 
groups of processors as shown in Figure  7.8 . The fi rst group of processors 
includes:

    •      CPU, a MIPS - III processor with 32 registers, 128 bits, dual issue;    
   •      Floating - point unit (FPU), supporting basic FMAC and fl oating - point 

division;  
   •      VPU0, a vector processing unit that can operate as a slave to the MIPS 

or as an independent SIMD/VLIW processor.  
   •      IPU, an image processing unit for decoding compressed video streams.    

 These components are connected by a 128 - bit bus at 150   MHz. 

     Figure 7.7     Idealized SOC architecture.  
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258  APPLICATION STUDIES

 The second group of processors includes:

    •      VPU1, the same as VPU0, but only operates as a SIMD/VLIW processor.  
   •      GIF, a graphics interface that mainly shunts data onto the graphics syn-

thesizer using a dedicated 128 - bit bus.    

 Since VPU0 and VPU1 each contains four fl oating - point multipliers at 
300   MHz, their performance is given by 300   MHz    ×    8    =    2400 M  FMAC/s; this 
value is within the range of 1200 M     ≤    m    ≤    3960 M  derived earlier. 

 There are other components that we do not cover in detail. An example is 
IPU, an image processing unit for decoding compressed video streams.  

  Requirements     The rasterization process needs to scan convert each 2 - D 
triangle, calculating the set of output pixels corresponding to each triangle. 
This is usually performed by stepping vertically along the edges of the tri-
angles using DDA (digital differential analyzer) or another line - drawing 
method, allowing each horizontal span to be handled at once. Within each 
span, it is necessary to use more DDAs to interpolate the values of  Z  (for 
occlusion testing), color, and texture coordinates where appropriate. We 
ignore the vertical DDAs and approximate this as requiring 2    +    2 t  DDA steps 
per pixel.  

  Design     If each DDA step requires four integer instructions, and the opera-
tion at each pixel (such as comparing updating frame and  z  - buffer) also 
requires four integer instructions, then the number of instructions for each 
rendered pixel is:

    4 8 1+ +( ).t     (7.2)   

     Figure 7.8     Initial design for 3 - D graphics engine.  
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APPLICATION STUDY: 3-D GRAPHICS PROCESSORS  259

 These steps must be performed each time a pixel is rendered, even if the pixel 
has already been rendered. Given there are  o  output pixels in each frame and 
each output pixel needs to be recalculated  p  times due to overlapping shapes, 
the total number of instructions required per frame is

    ( ) .12 8+ × ×t o p     (7.3)   

 We would use this result in the prototyping process below. Note that we have 
ignored the time taken to perform the vertical DDAs, so we would expect 
there to be some additional computation time that varies with  v , but overall 
computation time is dominated by the per - pixel operation time.   

   7.4.2    Analysis: Interconnection 

 In our model of the 3 - D graphics pipelines, there are two main intertask logical 
communications channels: lists of 3 - D triangles passed from the creation/
management task to the transformation task, and lists of 2 - D triangles passed 
from the transformation task to the rendering task. Both these channels are 
essentially unidirectional: once a task has passed a set of triangles (2 - D or 3 - D) 
onto the next stage, there is no substantial fl ow of data needed in the other 
direction apart from obvious data fl ow signals such as status indicators. 

  Requirements     In the fi rst channel, between world management and transfor-
mation, all the 3 - D coordinates consist of three single - precision fl oating point 
components, requiring 4    ×    3    =    12 bytes. The minimal triangle size, where each 
triangle consists only of three coordinates, requires 3    ×    12    =    36 bytes. However, 
in most cases there will need to be additional information, such as texture 
information and lighting information. In order to support lighting, it is suffi -
cient to store the surface normal at each vertex. This applies no matter how 
many lights are applied, so the size of each vertex then becomes 3    ×    (12    +    
12    ×    min( l ,1)). Texture information additionally requires the storage of a 2 - D 
texture coordinate for each vertex; assuming fl oating - point texture coordi-
nates, this adds 8   bytes to each vertex per applied texture. With  n  visible tri-
angles, the total bandwidth on the channel is:

    3 12 12 1 8n l t× + × +( min( , ) ).     (7.4)   

 As an example, given  n     =    50    ×    10 6 ,  l     =    0,  t     =    1, the bandwidth required is 3   GB/s; 
for  n     =    30    ×    10 6 ,  l     =    1,  t     =    1, the bandwidth required is 2.88   GB/s. 

 In the second channel, each point is now in screen coordinates, so each point 
can be represented as two 16 - bit integers. In addition the depth of each pixel 
is needed, but this is stored in greater precision, so the total size is 4   bytes per 
vertex. Assuming that lights have been applied, the vertices also require a color 
intensity, requiring 1   byte per channel, or approximately 4   bytes per vertex: 
4    +    4 min( l ,1). Each texture coordinate must still be applied individually at 
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rasterization, so a 4 - byte (2    ×    16 bit integers) coordinate must be retained. This 
results in a total required bandwidth for the second channel as:

    3 4 4 1 4n l t× + × +( min( , ) ).     (7.5)   

 This time, given  n     =    50    ×    10 6 ,  l     =    0,  t     =    1, the bandwidth required is 1.2   GB/s; 
for  n     =    30    ×    10 6 ,  l     =    1,  t     =    1, the bandwidth required is 1.08   GB/s.  

  Design     As shown in Figure  7.8 , the interconnect consists of a 128 - bit bus. 
Since the peak transfer rate of a 128 - bit bus at 150   MHz is 2.4   GB/s, which 
meets the bandwidth required for the second channel but not the fi rst, an 
additional 64 - bit dedicated interface to the rendering engine is included.   

   7.4.3    Prototyping 

 A prototype 3 - D renderer is written in the C language. This prototype incor-
porates a world management stage that creates a random pattern of triangles, 
a transformation stage that projects triangles into 2 - D using a single - precision 
fl oating point, and a  z  - buffer - based renderer using integer DDAs. Among the 
parameters of the renderer that can be varied are:

    •      number of triangles;  
   •      size of triangles;  
   •      width and height of output.    

 By adjusting these parameters, it is possible to selectively adjust parameters 
such as  o ,  v , and  p . For example,  p  can be varied by increasing the size of tri-
angles, as this increases the chance that each triangle is covered by another. 

 Figure  7.9  shows the changes in execution time on an Athlon 1200 when 
the number of output pixels are increased. As expected, both the creation and 
transformation stages show no signifi cant variation as the number of output 
pixels is increased. In contrast, the rendering stage ’ s execution time is clearly 
increasing linearly with output pixel count. The fi tted line has a correlation 
coeffi cient of 0.9895, showing a good linear fi t. The fi tted linear relationship 
between rasterization time and pixel count is given by Equation  7.3 : 
 t     =     o     ×    5    ×    10  − 8     +    0.0372. The large offset of 0.0372 is caused by the per - triangle 
setup time mentioned (and ignored) in the analysis section. Based on this 
prototype we might now feel it appropriate to include the effects, as they are 
clearly more signifi cant than expected.   

 According to Equation  7.2 , the instructions per output pixel is  p     ×    12 in the 
case that no textures are applied ( t     =    0). In this experiment  P     =    1.3, so the 
instructions per frame should be 15.6. The reported performance in million 
instructions per second (MIPS) of the Athlon 1200 is 1400, so according to the 
model each extra pixel should require 15.6/1.4    ×    10  − 9     =    1.1    ×    10  − 8 . Comparing 
the predicted growth of 1.1    ×    10  − 8  with the observed growth of 5    ×    10  − 8 , we see 
that they differ by a factor of 5. The majority of this error can probably be 
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     Figure 7.9     Increase in execution times of stages as pixel count increases.  
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     Figure 7.10     Graph of transform stage execution time for different numbers of FPUs 
when original version is compared to fully unrolled version. The size of the queues, 
issue width, and commit width are held at a constant (fairly large) value.  
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attributed to the unoptimized nature of the prototype and to the approxima-
tions in our models. 

 In Figure  7.10  and Figure  7.11  the performance of the transformation stage 
for different numbers of FPUs is tested using the PISA simulator  [30] . When 
four multipliers are used the performance increases signifi cantly, although 
there is little benefi t when more than four are used. This suggests that a VLIW 
or SIMD processor that can perform four fl oating - point operations at once 
would be effi cient. Also shown in the graph is the performance when the 
matrix multiply loop is unrolled, rather than being implemented as a doubly 
nested loop. The unrolling allows the processor to use the FPUs to better 
advantage, but the cost is still signifi cant compared to the speedup. Finally, 
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Figure  7.12  shows that the highest performance per unit area is achieved with 
eight fl oating - point multipliers and 16 ALUs.   

 This section has demonstrated that application modeling can provide useful 
predictions of the broad computational characteristics of a 3 - D engine. While 
the predicted times may not be accurate due to the need for estimating instruc-
tion counts, the overall trends can usually be used as a basis for further devel-
opment. The only trend not predicted by our simple analysis is the growth in 
rasterizer time due to increasing numbers of triangles.   

   7.5    APPLICATION STUDY: IMAGE COMPRESSION 

 A number of intraframe operations are common to both still image compres-
sion methods such as JPEG, and video compression methods such as MPEG 
and H.264. These include color space transformation and entropy coding (EC). 
Video compression methods usually also include interframe operations, such 
as motion compensation (MC), to take advantage of the fact that successive 
video frames are often similar; these will be described in Section  7.6 . 

   7.5.1     JPEG  Compression 

 The JPEG method involves 24   bits per pixel, eight each of red, green, and blue 
(RGB). It can deal with both lossy and lossless compression. There are three 
main steps  [42] . 

     Figure 7.11     Graph of transform stage execution time for different numbers of FPUs 
when the original version is compared with the fully unrolled version. The size of the 
queues, issue width, and commit width are also scaled with the number of FPUs. The 
approximate area in rbes is also shown, for the whole processor and for just the FPUs.   
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APPLICATION STUDY: IMAGE COMPRESSION  263

 First, color space transformation. The image is converted from RGB into a 
different color space such as YCbCr. The Y component represents the bright-
ness of a pixel, while the Cb and Cr components together represent the chro-
minance or color. The human eye can see more detail in the Y component 
than in Cb and Cr, so the latter two are reduced by downsampling. The ratios 
at which the downsampling can be done on JPEG are 4:4:4 (no downsam-
pling), 4:2:2 (reduce by factor of 2 in horizontal direction), and most commonly 
4:2:0 (reduce by factor of 2 in horizontal and vertical directions). For the rest 
of the compression process, Y, Cb, and Cr are processed separately in a similar 
manner. These three components form the input in Figure  7.13 .   

 Second, discrete cosine transform (the DCT block in Figure  7.13 ). Each 
component (Y, Cb, Cr) of the image is arranged into tiles of 8    ×    8 pixels each, 
then each tile is converted to frequency space using a two - dimensional forward 

     Figure 7.12     Comparison of increases in area and performance for unrolled transform 
stage. The maximum performance per area is achieved with eight fl oating - point multi-
pliers (mult) and 16 ALUs.  
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     Figure 7.13     Block diagram for JPEG compression. Color space transformation is not 
shown.  
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DCT (DCT, type II) by multiplication with an 8    ×    8 matrix. Since much infor-
mation is covered by the low - frequency pixels, one could apply quantization —
 another matrix operation — to reduce the high - frequency components. 

 Third, EC. EC is a special form of lossless data compression. It involves 
arranging the image components in a  “ zigzag ”  order accessing low - frequency 
components fi rst, employing run - length coding (RLC) algorithm to group 
similar frequencies together in the AC component and differential pulse code 
modulation (DPCM) on the DC component, and then using Huffman coding 
or arithmetic coding on what is left. Although arithmetic coding tends to 
produce better results, the decoding process is more complex. 

 As an example for estimating the amount of operations, consider a 2 - D 
DCT involving  k     ×     k  blocks. We need to compute:

   y c ji i j

j k

= ×
< ≤
∑ ,

0
  

 for 0    <     i     ≤     k , input  x , DCT coeffi cients  c , and output  y . We would need  k  image 
data loads,  k  coeffi cient data loads,  k  multiply accumulations, and 1 data store. 
So in total there are 3 k     +    1   operations/pixel. Hence each  k     ×     k  block DCT with 
row – column decomposition has 2 k  2  (3 k     +    1) operations. 

 For frames of  n     ×     n  resolution at  f  fps, the number of operations is 
2 fn (3 k     +    1). Two common formats are CIF (Common Intermediate Format) 
and QCIF (Quarter CIF), which correspond, respectively, to a resolution of 
352    ×    288 pixels and 176    ×    144 pixels. 

 For a YCbCr QCIF frame with 4:2:0 sampling ratio, which has 594 tiles of 
8    ×    8 blocks, at 15   fps the total number of operations is: 2    ×    15    ×    594    ×    8    ×    8    
×    (24    +    1)    =    28.5 million operations per second (MOPS). For a CIF frame, 114 
MOPS are required. 

 Typically, lossless compression can achieve up to three times reduction in 
size, while lossy compression can achieve up to 25 times reduction.  

   7.5.2    Example  JPEG  System for Digital Still Camera 

 A typical imaging pipeline for a still image camera is shown in Figure  7.14  
 [128] . The TMS320C549 processor, receiving 16    ×    16 blocks of pixels from 
SDRAM, implements this imaging pipeline.   

 Since the TMS320C549 has 32K of 16 - bit RAM and 16K of 16 - bit ROM, 
all imaging pipeline operations can be executed on chip since only a small 
16    ×    16 block of the image is used. In this way, the processing time is kept 
short, because there is no need for slow external memory. 

 This device offers performance up to 100   MIPS, with low power consump-
tion in the region of 0.45   mA/MIPS. Table  7.4  illustrates a detailed cycle count 
for the different stages of the imaging pipeline software. The entire imaging 
pipeline, including JPEG, takes about 150   cycles/pixel, or about 150 instructions/
pixel given a device of 100   MIPS at 100   MHz.   

 A TMS320C54x processor at 100   MHz can process 1 megapixel CCD 
(charge coupled devices) image in 1.5 second. This processor supports a 
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     Figure 7.14     Block diagram for a still image camera  [128] . A/D: analog to digital con-
version; CFA: color fi lter array.   

  TABLE 7.4    TMS320C54X Performance  [128]  

   Task     Cycles/Pixel  

  Preprocessing: for example, gain, white balancing    22  
  Color space conversion    10  
  Interpolation    41  
  Edge enhancement, false color suppression    27  
  4:1:1 decimation, JPEG encoding    62  
  Total    152  

2 second shot - to - shot delay, including data movement from external memory 
to on - chip memory. Digital cameras should also allow users to display the 
captured images on the LCD screen on the camera, or on an external TV 
monitor. Since the captured images are stored on a fl ash memory card, 
playback - mode software is also needed on this SOC. 

 If the images are stored as JPEG bitstreams, the playback - mode software 
would decode them, scale the decoded images to appropriate spatial resolu-
tions, and display them on the LCD screen and/or the external TV monitor. 
The TMS320C54x playback - mode software can execute 100   cycles/pixel to 
support a 1 second playback of a megapixel image. 

 This processor requires 1.7   KB for program memory and 4.6   KB for data 
memory to support the imaging pipeline and compress the image according 
to the JPEG standard. The complete imaging pipeline software is stored on -
 chip, which reduces external memory accesses and allows the use of slower 
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external memory. This organization not just improves performance, but it also 
lowers the system cost and enhances power effi ciency. 

 More recent chips for use in digital cameras would need to support, in addi-
tion to image compression, also video compression, audio processing, and 
wireless communication  [217] . Figure  7.15  shows some of the key elements in 
such a chip.   

   7.6    APPLICATION STUDY: VIDEO COMPRESSION 

 Table  7.5  summarizes the common video formats used in various applications, 
together with the associated compression methods such as MPEG1, MPEG2, 
and MPEG4. Video quality depends on the bitrate and the video resolution —
 higher bitrate and higher resolution generally mean better video quality, but 
requiring higher bandwidth.   

 There is another set of compression methods known as H.261, H.262, H.363, 
and H.264; some of these are related to the MPEG methods, for instance 
MPEG2 and H.262 are the same and H.264 corresponds to MPEG4/Part 10. 
Generally the more recent methods such as H.264 offer higher quality and 

     Figure 7.15     Block diagram for a camera chip with video, audio, and networking 
capabilities.  
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higher compression ratio. In the following we shall provide an overview of some 
of these video compression methods  [42, 270] , without going into the details. 

   7.6.1     MPEG  and H.26X Video Compression: Requirements 

 In addition to intraframe compression methods for still images described 
earlier, video compression methods also deploy interframe compression 
methods such as motion estimation. Motion estimation is one of the most 
demanding operations in standard - based video coding, as shown in the require-
ment below for H.261 involving CIF images with 352    ×    288 pixels at 30   fps: 

 968   MOPS for compression:        

  Entropy decode    17  
  Inverse quantization    9  
  Inverse DCT (IDCT)    60  
  Loop fi lter    55  
  Prediction    30  
  YCbCr to RGB    27  

     Most compression standards involve asymmetric computations, such that 
decompression is usually much less demanding than compression. For instance, 
for H.261, the amount of operations for decompression (around 200   MOPS) 
is around 20% of that for compression (about 1000   MOPS): 

 198   MOPS for decompression:        

  RGB to YCbCr    27  
  Motion estimation    608 (25 searches in 16    ×    16 region)  
  Inter/intraframe coding    40  
  Loop fi ltering    55  
  Pixel prediction    18  
  2 - D DCT    60  
  Quant., zigzag scanning    44  
  EC    17  
  Frame reconstruct    99  

     The motion estimation method involves three kinds of frames (Figure  7.16 ). 
First, the intrapicture I, which does not include motion information, so it is 
like lossy JPEG. Second, the picture P, which covers motion prediction based 
on earlier I frames; it contains motion vectors (MVs) and error terms. Since 
error terms are small, quantizing gives good compression. Third, the bidirec-
tional picture B, which supports motion prediction based on past and future I 
or P frames.   

 The goal of the motion estimator is to describe the information in the 
current frame based on information in its reference frame. The reference 
frame is typically the reconstructed version of the immediately preceding 
frame in the sequence, which is known to both the encoder and decoder. 
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APPLICATION STUDY: VIDEO COMPRESSION  269

 In the motion estimator for video compression methods such as H.264, pixel 
values are examined between these pairs of frames. Based on the operations 
of the motion estimator, the pixel values in the current frame can be alter-
nately represented by a combination of two quantities: pixel values from a 
predictor based on the reference frame plus a prediction error that represents 
the difference between the predictor values and the actual pixel values in the 
current frame. 

 The function of the motion estimator can be interpreted in the following 
way. Suppose that the image of a moving object is represented by a group of 
pixels in the current frame of the original video sequence, as well as by a group 
of pixels in the previous frame of the reconstructed sequence. The recon-
structed sequence is the designated reference frame. To achieve compression, 
the pixel representation of the object in the current frame is deduced from 
the pixel values in the reference frame. The pixel values representing the 
object in the reference frame is called the predictor, because it predicts the 
object ’ s pixel values in the current frame. Some changes are usually needed 
in the predictor to attain the true pixel values of the object in the current 
frame; these differences are known as the prediction error. 

 In block - based motion estimation, the boundaries of objects represented in 
the current frame are assumed to approximately align along the boundaries 
of macroblocks. Based on this assumption, objects depicted in the frame can 
be represented well by one or more macroblocks. All pixels within a macrob-
lock share the same motion characteristics. These motion characteristics are 

     Figure 7.16     Three kinds of frames in MPEG motion estimation.  
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described by the macroblock ’ s MV, which is a vector that points from the pixel 
location of the macroblock in the current frame to the pixel location of its 
predictor. Video coding standards do not dictate how the MV and prediction 
error are obtained. 

 Figure  7.17  illustrates the process of motion estimation. Typically, the motion 
estimator examines only the luminance portion of the frame, so each macro-
block corresponds to 16    ×    16 luminance pixels. The current frame is subdivided 
into nonoverlapping macroblocks. To each macroblock, the motion estimator 
assigns a predictor, which must necessarily also be a square region of the size 
of 16    ×    16 luminance pixels. The predictor can also be considered a macrob-
lock. It is chosen based on the  “ similarity ”  between it and the macroblock in 
the current frame.   

 The similarity metric for the macroblocks is not specifi ed by video coding 
standards such as H.264; a commonly used one is the SAD (sum of the abso-
lute difference) metric, which computes the SAD between the values of cor-
responding luminance pixels in two macroblocks. 

 All macroblocks in a search region of the reference frame are evaluated 
against the current macroblock using the SAD metric. A larger SAD value 
indicates a greater difference between two macroblocks. The predictor mac-
roblock is chosen to be the one which has the lowest SAD. 

 Many video compression standards require the search region to be rectan-
gular and located about the coordinates of the original macroblock. The 
dimensions of the rectangle are adjustable but may not exceed a standard -
 specifi ed maximum value. 

 The search strategy used to fi nd the best - matching predictor macroblock, 
called the motion search, is usually not specifi ed by the standard. Many motion 
search algorithms have been proposed. One possible motion search is an 
exhaustive (or full) search over all possible macroblocks in the search region; 
this strategy guarantees a global SAD minimum within the search region. 
However, exhaustive search is computationally expensive and is therefore 
primarily adopted by hardware designers, due to its regularity. 

 Figure  7.18  summarizes bandwidth and storage requirements of different 
compression methods for 90   minutes of DVD - quality video.   

     Figure 7.17     Motion estimation process.  
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 If we look at the percentage execution time of the operations in a com-
pression or a decompression algorithm, it can be seen that motion compensa-
tion and motion estimation usually take the lion ’ s share. For instance, H.264/
AVC (Advanced Video Coding) decompression contains four major kernels: 
motion compensation, integer transform, entropy coding, and deblocking fi lter-
ing. Motion compensation is the most time - consuming module; see Figure  7.19 .   

 Similar results have been reported for compression as well. For instance, 
Figure  7.20  shows that motion estimation can take over 95% of execution time 
in a software H.263 encoder  [270] .    

   7.6.2    H.264 Acceleration: Designs 

 One of the most common digital video formats is H.264. It is an interna-
tional standard that has been adopted by many broadcasting and mobile 

     Figure 7.18     Bandwidth (a) and storage (b) of different video compression methods. 
ASP stands for Active Simple Profi le, a version of MPEG - 4.  
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     Figure 7.19     Comparing kernels in H.264/AVC decompression.  
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communication standards, such as DVB and 3G. Its coding effi ciency has 
enabled new applications for streaming video. 

 Advanced algorithms are included in H.264 for motion estimation and for 
other methods for video compression. For motion estimation, blocks from 
16    ×    16 to 4    ×    4 pixels are supported. Residual data transforms are applied to 
4    ×    4 blocks with modifi ed integer DCT to prevent rounding errors. 

 H.264 provides better results than previous standards, due to the adoption 
of wider search ranges, multiple reference frames, and smaller macroblocks 
for motion estimation and motion compensation — at the expense of increased 
load in computation. It requires, for example, high - speed memory and highly 
pipelined designs, to meet the demand of various encoding tasks, such as those 
in motion estimation. 

 Let us consider two approaches. The fi rst approach is to implement the tasks 
in programmable or dedicated hardware. For instance, a recent design of a 
baseline H.264/AVC encoder core  [158]  has been implemented in various 
hardware technologies, including:

   1.     4CIF (704    ×    576) at 30   fps with low - cost FPGAs: Xilinx Spartan - 3 and 
Altera Cyclone - II,  

  2.     720 pixels (1280    ×    720) at 30   fps with high - end FPGAs: Xilinx Virtex - 4 
and Altera Stratix - II,  

  3.     1080 pixels (1920    ×    1080) at 30   fps with 0.13 -   μ  m ASIC.    

 The features of these implementations are summarized in Table  7.6 .   
 The second approach is to implement the tasks on a software confi gurable 

processor introduced in Section  6.5.3 , which has an instruction set extension 
fabric (ISEF) to support demanding operations implemented as custom instruc-
tions (also called extension instructions). The one used here is a 300 - MHz 

     Figure 7.20     Comparing kernels in H.263 compression with a basic encoder using half -
 pel exhaustive motion search  [270] .  

Motion Estimation
95.40%

DCT/Quantization
2.56%

Reconstruction
1.26%

Other 0.78%

c07.indd   272c07.indd   272 5/4/2011   9:54:41 AM5/4/2011   9:54:41 AM



APPLICATION STUDY: VIDEO COMPRESSION  273

Stretch S5 processor, which achieves H.264 encoding of Standard Defi nition 
(SD) video at 30   fps  [152] . We shall look at this approach in more detail below. 

 Successful real - time video encoding applications have to deliver the best 
image quality feasible for a particular screen resolution, given real - world 
operating constraints. For example, an uncompressed video stream has an 
image size of 720    ×    480 pixels and requires 1.5   bytes for color per pixel. Such 
a stream has 518   KB per frame, and at 30   fps it consumes 15.5   MB per second 
storage and bandwidth. 

 Figure  7.21  shows the architecture of an H.264 encoder. The effi ciency of 
the encoder can be found in the implementation of the following functions:

  TABLE 7.6     FPGA  and  ASIC  Designs for  H .264/ AVC  Encoding  [158]  

   Technology     Approximate Area  
   Speed 
(MHz)     Video Throughput  

  0.13     μ  m LV    178K gates    +    106   Kbits RAM, 
optimized for speed  

   ∼ 250    1920    ×    1080 (1080p) 
at 30   fps    0.9   V, 125 C  

  0.18     μ  m slow 
process  

  129K gates    +    106   Kbits RAM, 
optimized for area  

   ∼ 50    4 CIF (704    ×    576) 
at 30   fps  

  StratixllC3    17,511 ALUTs    +    5 M512    +    51 
M4K    +    3 DSPs  

   ∼ 118    1280    ×    720 (720p) 
at 32   fps  

  CyclonellC6    18,510 M4K    +    5 M512    +    51 
M4K    +    3 DSPs  

   ∼ 65    4 CIF (704    ×    576) 
at 40   fps  

  Virtex4 - 12    10,500 slices    +    3 multipliers    +    33 
RAM blocks  

   ∼ 110    1280    ×    720 (720p) 
at 30   fps  

  Spartan3 - 4    10,500 slices    +    3 multipliers    +    33 
RAM blocks  

   ∼ 50    4 CIF (704    ×    576) 
at 30   fps  

   ALUT, Adaptive Lookup Table; M4K, a confi gurable memory block with a total of 4,608 bits.    

     Figure 7.21     H.264 encoder architecture  [152] . ME, motion estimation; MC, motion 
compensation; Quant, quantization.  
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   1.     forward DCT and IDCT,    
  2.     intraprediction utilizing forward and inverse quantization,  
  3.     deblocking fi ltering, and  
  4.     motion estimation employing interframe comparisons.    

 The above are prime candidates for hardware acceleration because of the 
amount of computation required. Additional acceleration can be achieved by 
taking advantage of the inherent parallelism in these algorithms. 

   DCT      Consider the processing of 4    ×    4 blocks of luma pixels through a 2 - D 
DCT and quantization step. The computations for the DCT portion of the 
matrix computation can be reduced to 64 add and subtract operations by 
taking advantage of symmetry and common subexpressions. All 64 operations 
can be combined into a single custom instruction for the ISEF.  

  Quantization (Q)     This follows the DCT. The division operation, which is 
costly, is avoided by implementing quantization as a simple multiply and shift 
operation. Total processing required for luma encode and decode using 
DCT    +    Q    +    IDCT    +    IQ involves about 594 additions, 16 multiplications, and 
288 decisions (using multiplexers).  

  Deblocking Filtering     The 128 - bit bus to the ISEF takes a single cycle to load 
a row of eight 16 - bit prediction data. So one ISEF instruction can replace many 
conventional instructions, provided that the compiler can recognize the inher-
ent parallelism in the function. The total number of cycles to perform these 
operations on a 4    ×    4 block using a standard processor is over 1000 cycles. The 
same processing can be done in the software confi gurable proces sor in 105 
cycles, offering more than 10 times acceleration. Hence a video stream of 
720    ×    480 pixels at 30   fps would only require 14.2% utilization of the RISC 
processor, since the bulk of the task is off - loaded to the ISEF. Increasing sub -
 block sizes enhances parallelism: for example, operating on two 4    ×    4 blocks in 
parallel reduces execution time in half, dropping the utilization of the RISC 
processor to 7.1% as the ISEF takes on a heavier load. 

 Accelerating deblocking requires developers to minimize conditional code. 
Instead of determining which values to calculate, it is often more effi cient to 
create a single custom instruction that calculates all the results in hardware 
and then select the appropriate result. 

 Reordering the 128 - bit result from the IDCT stage simplifi es packing of 
16 8 - bit edge data pixels into a single 128 - bit wide datum to feed the deblock-
ing custom instruction. Precalculating macroblock parameters is another opti-
mization option supported by the state registers inside the ISEF and the 
instruction. 
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 The fi lter ’ s inner loop loads the 128 - bit register and executes the deblock-
Filter() custom instruction, computing two edges per instruction. Because the 
same custom instruction can be used for both horizontal and vertical fi ltering, 
there is zero overhead. 

 This inner loop takes three cycles and is executed twice (horizontal and 
vertical), with about 20 cycles for loop overhead. With 64 edges in each MB 
of data, there are approximately 416 (64/4    ×    26) cycles required per MB. For 
a video stream of resolution 720    ×    480 pixels at   30 fps, this results in 16.8 
Mcycles/s, or approximately 5.2% processor utilization.  

  Motion Estimation     This is known to consume much of the processor budget 
(50 – 60%). The key computation requirements are the repeated SAD calcula-
tions used in determining the best MV match. 

 The data calculations and comparisons are repetitive, with many of the 
intermediate results needing to be reused. These large data sets do not fi t well 
within the limited register space of the traditional processor and digital signal 
processor (DSP) architectures. Also, these processors and DSP implementa-
tions struggle to feed the fi xed arithmetic and multiplier units from the data 
cache. 

 With the Stretch S5 Software Confi gurable Processor, the ISEF custom 
processing unit is capable of performing computations in parallel and holding 
the intermediate results in the state registers while executing fully pipelined 
SAD instructions. 

 Motion estimation consists of potentially 41 SAD and 41 MVs calculations 
per macroblock. A full motion search on a single macroblock requires 262K 
operations for a video stream at 30   fps, for a total of 10.6 giga operations per 
second (GOPS). 

 By using heuristic algorithms for many implementations, the application 
developer can minimize the computations to meet target image quality and/
or bitrate requirements. 

 Custom algorithms optimized to perform estimates across different search 
areas, numbers of frames, or the number of MVs needing to be calculated can 
easily be converted to ISEF instructions. A single custom instruction can 
replace multiple computations, as well as pipeline many of the computations 
using intermediate results. 

 For example, a single custom instruction can perform 64 SAD calculations. 
The ISEF maintains the 64 partial sums to reduce the number of data transfers 
and to reuse the results in the next instruction. The ISEF instructions can be 
pipelined to improve compute capacity. 

 Motion estimation also involves various pixel predictions that require 
nine SADs computed in nine directions around the pixel. By using custom 
instructions, a 16    ×    16 SAD calculation with quarter pixel precision takes 
133 cycles, and a 4    ×    4 SAD calculation with quarter pixel precision takes 50 
cycles. 
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 The above discussion covers the Stretch S5 processor. The Stretch S6 pro-
cessor comes with a programmable accelerator that supports a dedicated 
hardware block for motion estimation, so there is no need to implement this 
operation in the ISEF for the S6 processor.    

   7.7    FURTHER APPLICATION STUDIES 

 This section covers a number of applications to illustrate the variety of require-
ments and SOC solutions. 

   7.7.1    MP3 Audio Decoding 

 MP3, short for MPEC - 1/2 Audio layer - 3, is probably the most popular format 
for high - quality compressed audio. In this section we outline the basic algo-
rithm  [42]  and describe two implementations: one in ASIC, the other in an 
FPGA  [117] . 

  Requirements     The MPEG - 1 standard involves compressing digital video and 
audio at a combined bitrate of 1.5   Mbps. The standard is divided into a few 
parts, with Part 3 dealing with audio compression. The audio compression 
standard contains three layers according to different levels of complexity and 
performance; the Layer 3 standard — commonly referred to as MP3 — performs 
best but is also the most complex. 

 The MP3 audio algorithm involves perceptual encoding; a block diagram is 
shown in Figure  7.22 . The algorithm is based on associating a psychoacoustic 
model to a hybrid sub - band/transform coding scheme. The audio signal is 
divided into 32 sub - band signals, and a modifi ed discrete cosine transform 
(MDCT) is applied to each sub - band signal. The transform coeffi cients are 
encoded according to a psychoacoustically motivated perceptual error measure, 
using scalar quantization and variable - length Huffman coding.   

     Figure 7.22     Block diagram for perceptual encoding and decoding  [42] .  
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 The MP3 bitstream is a concatenation of sequence of data  “ frames, ”  where 
each frame corresponds to two  “ granules ”  of audio such that each granule is 
defi ned as precisely 576 consecutive audio samples. A granule may sometimes 
be divided into three shorter ones of 192 samples each. 

 There are three main steps involved in decoding an MP3 frame. First, syn-
chronize to the start of the frame and decode header information. Second, 
decode the side information including scale factor selection information, block 
splitting information, and table selection information. Third, decode the main 
data for both granules, including the Huffman bits for the transform coeffi -
cients, and scale factors. The main data may overfl ow into adjoining frames, so 
multiple frames of data may need to be buffered. 

 After the frame bits have been parsed, the next stage is to reconstruct the 
audio for each granule from the decoded bits; the following steps are involved:

   1.     Dequantizing the transform coeffi cients from the main and side informa-
tion. A nonlinear transformation is applied to the decoded coeffi cients.  

  2.     In the case of short blocks, the dequantized coeffi cients may be reor-
dered and divided into three sets of coeffi cients, one per block.  

  3.     In the case of certain stereo signals where the right (R) and left (L) 
channels may be jointly encoded, the transform coeffi cients are recast 
into L and R channel coeffi cients via a channel transformation.  

  4.     An  “ alias reduction ”  step is applied for long blocks.  
  5.     The inverse MDCT (IMDCT) module is applied for coeffi cients corre-

sponding to each of the 32 sub - bands in each channel.  
  6.     An overlap - add mechanism is used on the IMDCT outputs generated in 

consecutive frames. Specifi cally, the fi rst half of the IMDCT outputs arc 
overlapped and added with the second half of the IMDCT outputs gener-
ated in the corresponding sub - band in the previous granule.  

  7.     The fi nal step is performed by an inverse polyphase fi lterbank for com-
bining the 32 sub - band signals back into a full - bandwidth, time - domain 
signal.     

  Design     Function - level profi ling for an ARM processor and a DSP proces-
sor reveals that the synthesis fi lter bank is the most time - consuming task 
(Table  7.7 ).   

 An ASIC prototype has been fabricated in a fi ve metal layer 350   nm CMOS 
process from AMI Semiconductor  [117] . The chip contains fi ve RAMs includ-
ing the main memory, and a ROM for the Huffman tables (Table  7.8 ). The 
core size is approximately 13   mm 2 . The power consumption is 40   mW at 2   V 
and 12   MHz. It is possible to lower the clock frequency to 4 – 6   MHz while still 
complying with the real - time constraints.   

 The real - time requirement for the decoding process is determined by the 
audio information in an MP3 frame. Table  7.9  presents the computation time 
for the different sub - blocks for a 24   MHz system clock  [117] . The total time 
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for the decoding process is 2.3   ms, which results in a slack of 24.7   ms. This shows 
that the clock speed for the decoder can be reduced, and that resources can 
be shared to lower costs.   

 The resource utilization on a Virtex - II 1000 FPGA is also reported in Table 
 7.9 . This design takes up 56% of the FPGA slices, 15% of the fl ip - fl ops, 45% 
of the four - input lookup tables, and 57% of the block RAMs. Moreover, a 
32    ×    32   bit multiplier, which is shared among the sub - blocks, is made from four 
of the available 18    ×    18   bit multipliers. 

  TABLE 7.7     MP 3 Profi ling Results for  ARM  and  DSP  Processors 

   Module  
   Percentage Time 

on ARM  
   Percentage Time 

on DSP  

  Header, side intonnation, 
decoding scale factors  

  7    13  

  Huffman decode, stereo 
processing  

  10    30  

  Alias reduction, IMDCT    18    15  
  Synthesis fi lter bank    65    42  

  TABLE 7.8     MP 3 Decoding Blocks in 350 - nm  ASIC  Technology  [117]  

   Decoder blocks     Memory (bits)     ROM Tables (bits)  
   Equivalent 
Gate Count  

  Synchronizer    8192    0    3689  
  Shared main memory    24,064    0    1028  
  Huffman    0    45,056    10,992  
  Requantizer    0    0    21,583  
  Reorder    0    0    3653  
  AntiAlias    0    0    13,882  
  IMDCT    24,064    0    61,931  
  Filterbank    26,112    0    31,700  
  I 2 S    9216    0    949  
  Total    91,648    45,056    149,407  

  TABLE 7.9    Resource Utilization and Computation Time for  MP 3 Decoding 
Blocks in Xilinx Virtex - II 1000  FPGA  Technology  [117]  

   Decoder blocks     Slices (%)     Block RAM (%)     Computation time (  μ  s)  

  Synchronizer    15    10    140  
  Huffman    11    7    120  
  Requantizer    12    5    140  
  Reorder    1    12    10  
  AntiAlias    3    0    83  
  IMDCT    8    13    678  
  Filterbank    6    10    1160  
  Total    56    51    2300  
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 As indicated above, there is scope for reducing the area and power con-
sumption of this design by resource sharing among sub - blocks. However, such 
resource sharing may complicate control and implementation, for instance by 
introducing routing bottlenecks; hence, its pros and cons must be evaluated 
before adoption.   

   7.7.2    Software - Defi ned Radio with 802.16 

 The WiMAX or IEEE 802.16 wireless communications standard, along with a 
variety of other wireless communication standards, attempts to increase the 
data transfer rates to meet the demands for end applications and to reduce 
deployment costs. The techniques used to identify the digital data in the pres-
ence of large amounts of noise stress the computational capabilities of most 
processors. With the standards still evolving and the requirements changing, a 
programmable solution is particularly attractive. 

  Requirements     The basic transmitter block diagram for an 802.16 implemen-
tation is shown in Figure  7.23   [169] . At the high level, the physical layer (PHY) 
on the transmitter is responsible for converting the raw digital data stream to 
a complex data stream ready for upconverting to an analog radio signal. The 
PHY on the receiver is responsible for extracting the complex data stream and 
decoding the data back to the original form.   

 The blocks in PHY that are computationally demanding include fast Fourier 
transforms (FFT) and its inverse, forward error correction (FEC) including 
block coding such as Reed – Solomon codec and bit - level coding such as con-
volution encoding and Viterbi decoding, quadrature amplitude modulation 
(QAM), interleaving, and scrambling. The media access control (MAC) layer 
provides the interface between the PHY and the network layer. The MAC 
processing is much more control oriented as it takes packets from the network 
layer and schedules the data to be sent according to the quality of service 
(QoS) requirements; while at the receiver end, the MAC reassembles the data 

     Figure 7.23     802.16 transmitter block diagram  [169]  IP stack, internet protocol stack; 
ARQ, automatic repeat reQuest; IFFT, inverse FFT; LPF, low - pass fi lter; PAPR, peak 
to average power ratio; RF, radio frequency.  

IFFTLPF
PAPR

Reduction

IP Stack
Wireless

Stack
QOS

Router
Scheduler

Messaging

IP Segmenter

ARQ

Airframe
Creation

Frequency
Predistorter

Interleaver
QAM

Mapper
FEC

Encoder

PHY

MAC

RF

Ethernet

c07.indd   279c07.indd   279 5/4/2011   9:54:41 AM5/4/2011   9:54:41 AM



280  APPLICATION STUDIES

for handing back to the network layer. The MAC layer also includes the neces-
sary messaging to maintain communications between the base and the sub-
scriber stations as well as automatically requesting the retransmission of any 
bad packets. The network layer is the interface to the application. A TCP/IP 
network stack is the most common networking stack in use today. For a com-
plete wireless solution, all layers must be connected.  

  Design     The physical layer PHY in the 802.16 WiMAX standard performs 
256 - point FFT and orthogonal frequency - division multiplexing (OFDM). On 
a Stretch S5 Software Confi gurable Processor (Section  6.5.3 ), the OFDM can 
be confi gured to operate in channel widths of 3.5, 7, and 10   MHz  [169] . 
Modulation support includes BPSK (Binary Phase Shift Keying), QPSK 
(Quadrature Phase Shift Keying), 16   QAM or 64   QAM. For noisy environ-
ments, the FEC is a requirement, with the standard allowing a variety of 
choices. Note that a conventional RISC or DSP processor does not have 
enough power to support the high demand of WiMAX baseband processing 
and the control tasks at the same time. A single software confi gurable proces-
sor meets the demand of all the heavy - duty WiMax signal processing and 
control tasks such as a base MAC layer and full TCP/IP stack to achieve full 
bitrate for all three channel widths on a single chip. 

 The Stretch Software Confi gurable Processor adopts a Radix - 2 FFT design 
through defi ning a custom instruction as an extension instruction, which sup-
ports sixteen 16    ×    16 multiplies, eight 32 - bit adds, and sixteen 16 - bit adds with 
rounding and rescaling operation. This custom instruction makes use of the 128 -
 bit wide registers to pass three sets of four complex values to the ISEF for paral-
lel operations. This results in performing 256 - point FFT in 4     μ  s. Implementing a 
Radix - 4 FFT provides an additional 28% performance improvement. 

 The FEC block is another one that benefi ts from fl exibility and perfor-
mance. Forward error correction increases data throughput in the presence of 
channel noise by introducing data redundancy on the transmitter side, and 
errors are corrected on the receiver side. In convolutional coding, every 
encoded bit is generated by convolving the input bit with the previous input 
bits. The constraint length is the number of bits used in the computation and 
the rate is the number of input bits per output bit. The WiMax standard uses 
convolutional encoding with the constraint length of 7 and a rate of 1/2. Other 
rates can also be supported. 

 RISC processors are often not suffi ciently effi cient for the bit - level opera-
tions involved in convolutional encoding. In the Stretch Software Confi gurable 
Processor, bit - level operations can be optimized by making use of the custom 
processing unit ISEF. A custom instruction is implemented to take 64   bits from 
the input to generate 128 outputs. This custom instruction uses internal states 
to keep six state bits; it performs parallel processing of 64 input bits by con-
volving the input bits with the state bits to produce 128 outputs. 

 The bitstreams generated by convolutional encoding can be decoded by 
using a trellis diagram to fi nd the most likely sequence of codes. A Viterbi 
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decoder is an effi cient way to decode the bitstream by limiting the number of 
sequences needed to be examined. It keeps a record of the most likely path 
for each state at each trellis stage. Viterbi decoding is computationally demand-
ing; it requires add – compare – selection (ACS) for each state at each stage, as 
well as keeping the history of the selected path. It involves three main steps: 
(1) branch metric computation, (2) ACS for each state at each stage, and (3) 
traceback. 

 In the trellis diagram, there is a metric associated with each branch, called 
branch metric, which measures the distance between a received signal and the 
output branch labels. Branch metric is computed as the Euclidean distance 
between the received sample and branch label. 

 One custom instruction, EI_ACS64, is created to perform the branch metric 
computation, addition of the branch metric with the path metric at the previ-
ous stage, comparing the path metrics of the two incoming paths, and updating 
the path metric with the maximum and then selecting the path. This EI_ACS64 
instruction does this ACS operation for all the states at one trellis stage in 
parallel. In other words, this custom instruction performs 32 butterfl y opera-
tions in parallel. The 64 path metrics are stored as internal states in ISEF. As 
we move from one stage to the next stage, EI_ACS64 also updates output wide 
registers with 1   bit for each state, which indicates the selected path. As we 
traverse four trellis stages, it will accumulate 4   bits for each state. In total, it 
accumulates 4    ×    64    =    256   bits for all the states. Two store instructions 
(WRAS128IU) can then be used to move these bits to memory. 

 The actual decoding of symbols back to the original data is accomplished 
by tracing backwards through the trellis along the maximum likelihood path. 
The length of the traceback is commonly four to fi ve times the constraint 
length of the convolutional encoder. In some cases, the entire frame of data is 
received before beginning traceback. We traverse the trellis in reverse direc-
tion to decode the input bitstream. Assume the state reached at the last trellis 
stage is in a known state, typically state 0. This can be achieved by sending 
additional  K     −    1   bits of 0 to bring all the states to 0. The bit stored for each 
state tells which branch to traverse as we traverse from stage  j  to  j     −    1. Another 
custom instruction is created, VITERBI_TB, which does traceback for four 
trellis stages, uses an internal state to keep the previous state for the next 
round of traceback, and outputs 4   bits for the decoded bitstream. The 
VITERBI_TB instruction is called twice before the 8 - bit decoded bitstream 
is stored back to memory.    

   7.8    CONCLUSIONS 

 We hope that the material in this chapter has illustrated the variety of SOC 
applications and the range of design techniques and SOC architectures —
 ranging from embedded ARM processors to reconfi gurable devices from 
Xilinx and Stretch — many of which have been introduced in the preceding 
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chapters. Interestingly, the rapid increase in performance requirements in 
multimedia, cryptography, communications, and other key applications has led 
to a wave of start - ups, such as Achronix, Element CXI, Silicon Hive, Stretch, 
and Tabula; time will tell which are the winners. 

 We have not, however, attempted to provide a detailed and complete 
account of design development for a specifi c application or design style using 
the latest tools. Such accounts are already available: for instance, Fisher et   al 
 [93]  and Rowen and Leibson  [207]  have dedicated their treatment, respec-
tively, to VLIW architectures and to confi gurable processors. SOC design 
examples  [164]  and methodologies  [32]  from an industrial perspective are also 
available. Those interested in detailed examples involving application of ana-
lytical techniques to processor design are referred to the textbooks by Flynn 
 [96]  and by Hennessy and Patterson  [118] . 

  7.9   PROBLEM SET 

       1.    How fast would a 32 - bit processor with the ARM7 instruction set need to 
run to be able to support AES for Wi - Fi 802.11b? How about a 64 - bit 
processor?   

    2.    Estimate the number of operations per second involved in computing the 
DCT for high - resolution images of 1920    ×    1080 pixels at 30   fps.   

    3.    Explain how the JPEG system for the camera in Figure  7.14  can be revised 
to support 10   megapixel images.   

    4.    Estimate the size in number of rbes of the FPGA and ASIC designs in Table 
 7.6 , assuming that the FPGAs are produced in a 90   nm process.   

    5.    Compare the pros and cons of the FPGA and ASIC designs in Table  7.6 , 
assuming that the FPGAs are produced in a 90   nm process. How would your 
answer change when both the FPGAs and the ASIC are produced in a 
45   nm process?   

    6.    Consider a 3 - D graphics application designed to deal with  k  nonclipped 
triangles, each covering an average of  p  pixels and a fraction   α   of which 
being obscured by other triangles. Ambient and diffuse illumination models 
and Gouraud shading are used. The display has a resolution of  m     ×     n  pixels, 
updated at  f    fps. Estimate:
    (a)     the number of fl oating - point operations for geometry operations,  
   (b)     the number of integer operations for computing pixel values, and  
   (c)     the number of memory access for rasterization.      

    7.    Table  7.10  shows data for the ARM1136J - S PXP system. The datapath runs 
at a maximum of 350   MHz for the 16K instruction cache plus 16K data 
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cache; the 32K    +    32K and 64K    +    64K implementations are limited in speed 
by their cache implementations.
    (a)     Comment on the effect of increasing the size of L1 on performance.    
   (b)     Suggest reasons to explain why the design with the largest cache area 

is not the fastest.  
   (c)     Compare the fastest design and the one just behind that one. Which 

one is more cost effective and why?      

    8.    Figure  7.24  shows a convolution algorithm between an  H  1     ×     W  1  image ( I  1 ) 
and an  H  2     ×     W  2  image ( I  2 ), which have optional masks  M  1  and  M  2 , respec-
tively, of the same width and height. Given that  H  2     >     H  1  and  W  2     >     W  1 , and 
 f  3 ,  f  12 ,  f  11 , and  f  22  are pure functions — that is, they have no internal state and 
their results depend only on their parameters:
    (a)     What are the values of  M  1 ,  M  2  and  f  3 ,  f  12 ,  f  11 , and  f  22  for (1) SAD correla-

tion, (2) normalized correlation, and (3) Gaussian blur?    
   (b)     What is the resolution of the result image  I c  ?  
   (c)     How many cycles are needed to produce the resulting image  I c  ?           

     Figure 7.24     Convolution algorithm with resulting image  I c  .  
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  8    What ’ s Next: Challenges Ahead     

    8.1    INTRODUCTION 

 With rapid advances in transistor density, it is time to look ahead to the future. 
One extreme is the completely autonomous system - on - chip (ASOC): a con-
vergence of RFID (radio - frequency identifi cation) technology with SOC tech-
nology coupled with transducers, sensor controllers, and battery, all on the 
same die. The major architectural implication is design for extremely low 
power (down to 1     μ  W or less) and a strict energy budget. This requires rethink-
ing of clocking, memory organization, and processor organization. The use of 
deposited thin fi lm batteries, extremely effi cient radio frequency (RF) com-
munications, digital sensors, and microelectromechanical systems (MEMS) 
completes the ASOC plan. Short of this extreme, there are many system con-
fi gurations providing various trade - offs across power, RF, and speed budgets. 

 Throughout this text, it is clear that design time and cost are the major SOC 
limitations now and even more so in the future. One way to address these 
limitations is to develop a design process in which components can optimize 
and verify themselves to improve effi ciency, reuse, and correctness, the three 
design challenges identifi ed by the International Technology Roadmap for 
Semiconductors. Self - optimization and self - verifi cation before and after design 
deployment are key to future SOC design. 

 This chapter has two parts. Part I covers the future system: ASOC. Part II 
covers the future design process: self - optimization and self - verifi cation. There 
are various challenges which, if met, would enable the opportunities outlined 
in this chapter. We highlight some of these challenges in the text.  

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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   I.    THE FUTURE SYSTEM: AUTONOMOUS SYSTEM - ON - CHIP 

   8.2    OVERVIEW 

 SOC technology represents an expanding part of the microprocessor market-
place; growing at 20% per annum rate, there ’ s much more to come  [134] . 

 The typical SOC consists of multiple heterogeneous processors and con-
trollers, and several types of memory (read - only memory [ROM], cache, and 
embedded dynamic random access memory [eDRAM]. The various processors 
are oriented toward one or more types of media processing. Typical applications 
include cell phones, digital cameras, MP3 players, and various gaming devices. 

 Another fast - growing chip marketplace is autonomous chips (ACs). These 
have little processing power or memory, but have RF communications and 
some type of self - contained power source or power management. The more 
elaborate ACs also contain or are coupled with some types of sensors. The 
simple versions include RFID chips  [205] , smart cards, and chip - implanted 
credit cards. 

 The simplest AC is the passively powered RFID. The chip simply refl ects 
the source RF carrier and modulates it (using carrier power) to indicate its 
ID. More complex examples include the patient monitoring alarm  [31]  and the 
Smart Dust research program  [63, 181]  of the 1990s. Both of these used 
battery - powered RF to broadcast an ID on a detected sensor input. 

 The various Smart Cards and Money Cards include VISA cards and Hong 
Kong ’ s Octopus Card. All (except those that require contact) use a form of 
RFID. The simplest cards are passive without on - card writeable memory. 
Records are updated centrally. Implementation is frequently based on Java 
Card  [234] . Based on the extraordinary interest, there are a series of contact-
less identifi cation cards (RFID) standards:

    •      ISO 10536 close coupling cards (0 – 1   cm),  
   •      ISO 14443 proximity coupling cards (0 – 10   cm),  
   •      ISO 15693 vicinity coupling (0 – 1   m).    

 The future autonomous SOC or ASOC is the combination of the SOC with 
the AC technology (Table  8.1 ). While conceptually simple, the engineering 
details are formidable as it involves rethinking the whole of processor archi-
tecture and implementation to optimize designs for very low power operation —
 in the submicrowatt region.   

 The motivation for ASOC follows the Smart Dust project  [63] , which started 
in the early 1990s and pioneered signifi cant work in the sensor and RF areas. 
That project targeted sensor plus RF integrated into a form factor of the 
order of 1   mm 3  called motes. As a power source it relied on AA type batteries. 
That project was targeted at sensing an  “ event, ”  such as a moving object or a 
thermal signal. 
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288  WHAT’S NEXT: CHALLENGES AHEAD

 ASOC is an updated extension of that work that places more emphasis on 
computational ability and memory capacity; as well as fully integrating a 
power source on die. 

 A simplifi ed classifi cation of ACs, by their level of sophistication, is:

   1.     Simple identifi cation of the die itself (as in RFID) with RF response.  
  2.     Identifi cation of a sensor - detected  “ event ”  with RF response (as in Smart 

Dust and many Smart Cards).  
  3.     Detection of an  “ event ”  and processing (classifi cation, recognition, ana-

lyzing) the event (ASOC) with RF response of the result.    

 The ability of the ASOC to process data is clearly valuable in reducing the 
amount of sensor data required to be transmitted. It enables applications (such 
as supporting planetary exploration) where interactive computational support 
is impossible; so too with the recognition of a rare bird or other species in 
remote areas; or swallowing an ASOC  “ pill ”  for diagnosis of the gastrointes-
tinal tract. Not all dimensions of ASOC are equally important in all applica-
tions. A rare species  “ listening ”  post may require little size concern and may 
have ample battery support. We look at ASOC as a toolkit for the new systems 
designer, offering the ability to confi gure systems to respond to an almost 
endless set of environmental and computational requirements. 

 In the next few sections we consider the evolution of silicon technology, 
limits on batteries and energy, architecture implications, communications, 
sensors, and applications.  

   8.3    TECHNOLOGY 

 As we saw in the earlier chapters over the next few years transistor and memory 
density is expected to increase 10 - fold  [134]  to several billion transistors/cm 2 . 
Since a reasonable powerful processor can be realized with a few 100,000 tran-
sistors, there are a lot of possibilities for ASOC applications. 

 This density, however, has a price. Very small devices pose signifi cant per-
formance problems in traditional workstation implementations. Simply the 
dopant variability (number of dopant atoms needed to create a device) causes 
variability in delay from device to device. Small structures involve large elec-
tric fi elds causing reliability problems: electromigration in conductors and 
diaelectric fatigue. These are not signifi cant problems for ASOC at the very 
low projected power and speed employed. 

 The main problem for useful ASOC is battery power or stored energy. In 
dealing with this issue recall two general relationships discussed in Chapter 2, 
relating silicon area  A , algorithmic execution time  T , and power consumption 
 P  (in these expressions  k  is a constant):
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    AT k2 = .     (8.1)   

 This result  [247]  simply related area (the number of transistors) to the execu-
tion time required to complete an operation. The more area (transistors) used, 
the faster (smaller) the execution time. Recall from chapter 2 the relationship 
between execution time and power [99].

    T P k3 = .     (8.2)   

 It is easy to see that as voltage is decreased power is reduced by the square 
but speed is reduced linearly. But in transistors the charging current (repre-
senting delay) and voltage have a nonlinear relationship. As we saw in Chapter 
 2 , this gives the cubic result:

    P P F F2 1 2 1
3/ ( / ) .=     (8.3)   

 So if we want to double the frequency we should expect the design to use 
eight times more power. While the range of applicability of expression 8.2 
is not precise, suppose we use it to project the frequency of a processor 
design that operates at a microwatt. The best power – performance design 
of today might consume 1   W and achieve 1   GHz (corresponding perhaps to 
1000 million instructions per second [MIPS]); this may be optimistic. Reducing 
the power by a factor of 10 6  should reduce frequency by a factor of 100 or 
10   MHz. Within the past 2 years a sensor processor has been built that achieves 
almost 0.5   MIPS/  μ  W  [271] . While this is an order of magnitude away from 
our target of 10   MHz/  μ  W, silicon scaling projections may compensate for the 
difference. 

     CHALLENGE 

 Is the  T  3  P     =     k  rule robust down to microwatts? 
 We know that this rule seems valid at the usual operating conditions, 

but how can we scale it to microwatts? What circuits and devices are 
required? 

   8.4    POWERING THE  ASOC  

 The key problems in forming robust ASOC are energy and lifetime. Both 
relate to the power source, that is, the battery. Batteries can be charged once 
or are rechargeable (with varying recharge cycles). For ASOC purposes, 
rechargeable batteries use scavenged energy from the environment. The 
capacity of the battery is usually measured in milliamp - hours; which we convert 
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to joules (watt - seconds) at about 1.5   V. Both capacity and rechargeability 
depend on size, which we assume is generally consistent with the size and 
weight of the ASOC die (about 1   cm 2  surface area). 

 In Table  8.2  we list three common battery types: the printed  [47, 203]  and thin 
fi lm batteries  [67]  can be directly integrated into the ASOC die (usually the 
reverse side); button batteries are external and are less than 1   cm in diameter.   

 Printed batteries are formed by printing with special inks in a fl at surface; 
thin fi lm batteries are deposited on silicon much as the system die itself. 

   

  TABLE 8.2    Batteries of  ASOC  

   Type     Energy (J)     Recharge Y/N     Thickness (  μ  m)  

  Printed    2/cm 2     N    20  
  Thin fi lm    10/cm 2     Y    100  
  Button    200    Y    500 stand alone  

  TABLE 8.3    Some Energy - Scavenging Sources  [173, 195, 206]  

   Source     Charge rate     Comment  

  Solar    65 (milliwatts per square 
centimeter)  

    

  Ambient light    2 (milliwatts per square 
centimeter)  

    

  Strain and acoustic    A force (sound) changes 
alignment of crystal 
structure, creating voltage  

  Piezoelectric effect  

  RF    An electric fi eld of 10   V/m 
yields 16     μ  W/cm 2  of antenna  

  See Yeatman  [266]   

  Temperature difference 
(Peltier effect)  

  40 (microwatts per 5 ° C 
difference)  

  Needs temperature 
differential  

 CHALLENGE 

 Battery technology that can provide over 100   J in form factor of 1   cm 2     ×    
100     μ  m that can be deposited on a silicon substrate. 

 Microbattery technology is emerging as a critical new need for many 
applications. 

 Energy may be scavenged from many sources (some are illustrated in Table 
 8.3 ); usually the larger the battery format, the more the charge. Much depends 
on the system environment as to which, if any, scavenging is suitable.   

 Assuming ASOC consumption of 1     μ  W (when active), the operational life-
time between charges is plotted in Figure  8.1 . Duty cycle can play an important 
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role in expending the ASOC serviceability. The assumption is that a passive 
sensor can detect an event and power up the system for analysis.   

 Comparing Figures  8.1  and  8.2 , if we can confi gure the ASOC to use of the 
order of 1     μ  W we should be able to incorporate a suitable battery technology 
especially if we have the ability to scavenge some addition energy.   

    

     Figure 8.1     Maximum time between recharge for 1     μ  W of continuous power 
consumption.  
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     Figure 8.2     The area – time – power trade - off.  
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 CHALLENGE 

 Scavenge energy from many more sources with ready implementation 
technologies. 

 To date, most attention on energy scavenging has been restricted to 
light and possibly RF (as in RFID). We need an integrated study of 
alternatives, especially when the amount scavenged is in microwatts. In 
the past, such low power recovery was considered useless; with ASOC it 
becomes useful. 
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   8.5    THE SHAPE OF THE  ASOC  

 The logical pieces of the ASOC die are shown in Figure  8.3 . It consists of the 
power source, sensors(s), main computer and memory, and the communica-
tions module. What distinguishes the ASOC from the earlier RFID plus sensor 
technology is the compute power and memory. It is this facility that enables 
the system to analyze and distinguish patterns, to synthesize responses before 
communicating with the external environment.   

 Physically the ASOC is just a silicon die, probably 1   cm 2  in surface area. 
Surface size is dictated by cost, which is determined by defect density. Current 
technology gives excellent yields for 1   cm 2  and smaller die sizes. Much below 
1   cm 2  costs are limited by testing and handling so this represents the preferred 
size for most applications. Die thickness is limited by wafer fabrication con-
siderations and is about 600     μ  m. A thin fi lm battery deposited in the reverse 
side might add another 50     μ  m. The resultant ASOC would be 65   mm 3  and 
weigh about 0.2   g. From Figure  8.4  it could have of the order of 1 billion tran-
sistors. These transistors would realize the sensors, computer, memory, and RF; 
the battery is on the reverse side.    

     Figure 8.3     An ASOC die.  

     Figure 8.4     ITRS  [134]  projection for transistor density.  
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   8.6    COMPUTER MODULE AND MEMORY 

 With a power budget of only 1     μ  W the microarchitecture of the computer is 
considerably different from the conventional processor:

   1.     Asynchronous clocking: Data state transitions must be minimized to 
reduce dynamic power. There may be only one - tenth asynchronous tran-
sitions required compared to a clocked system.  

  2.     Use of VLIW: Transistors are plentiful but power is scarce, so the effort 
is to use any available parallelism to recover performance.  

  3.     Beckett and Goldstein  [39]  have shown that by careful device design 
(lowering drive current and managing leakage), it is possible to arrange 
for overall die power to be a reducing function of die area. This sacrifi ces 
maximum operating frequency but the additional area can more than 
compensate by parallelizing aspects of the architecture.  

  4.     Minimum and simple cache system: The memory and processor are in 
relatively closer time proximity if the processor is performing an action 
once every 0.1     μ  s and the fl ash memory has access time between 1 and 
10     μ  s. A small instruction cache and explicitly managed data buffers seem 
most suitable in the context of specifi ed applications.    

 The fl ash memory is another essential piece of the system as it has a persistent 
data image even without power. Current densities (NAND - based fl ash) give 
excellent access times, 10     μ  s, and ASOC capacity of perhaps 16 – 64   MB. 

 As the technology is currently confi gured, Flash is largely incompatible with 
integrated CMOS technology and seems restricted to off - die implementations. 
However, there are a number of Flash variants that are specifi cally designed 
to be compatible with ordinary SOC technology. SONOS  [233]  is a nonvolatile 
example and Z - RAM  [91]  is a DRAM replacement example. Neither seems 
to suffer from the conventional Flash rewrite cycle limitations (the order of 
100,000 writes). 

 Even though the Flash memory consumes no power when it is not being 
used, when it is accessed the power consumption is proportional to the active 
memory array size; that is, the number of memory cells connected to each bit 
and word - line (assuming 2 - D square structure). In the context of ASOC this 
implies a memory partitioned into smaller units, which may be most effective 
from both a power and access time basis. 
    

   8.7     RF  OR LIGHT COMMUNICATIONS 

 One of the great challenges of ASOC is communications. There are two 
obvious approaches: laser and RF communications. 
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 CHALLENGE 

 Extremely low power processors that achieve perhaps 1/100 of the per-
formance of a conventional processor with microwatt power. 

 This requires a rethinking of processor design issues from the device 
level (absolutely minimum static power) to new circuit technology (sub-
threshold or adiabatic circuits); new clocking; and fi nally, a completely 
new look at architectures. 

   8.7.1    Lasers 

 Integrating laser with silicon is an emerging technology. A recent development 
 [85]  uses an Indium Phosphide laser with silicon waveguide bonded directly 
to a silicon chip. Using lasers for optical free - space communications has pos-
sibilities and diffi culties.   

 Optical sensors are quite responsive  [136] ; reception of 1     μ  W supports about 
100   MHz data rates (Figure  8.5 ). The diffi culty is that reception is subject to 
ambient light (noise). In general the signal must be 10 times greater than the 
noise. The other diffi culty is beam divergence (especially in laser diodes). This 
requires optics to collimate the beam for low divergence  [192] . 

 The beam should not be too narrow (focused) as communications with the 
receiver must be spatially and temporally synchronized. With a coherent 
narrow beam, light must be diffused to allow for movement between source 
and receiver. A slight movement (vibration) can cause an angular displace-
ment of   α   either vertically or horizontally over distance  d . This results in an 
uncertainty of   δ   at the receiver. So the receiver must accommodate signals 
across a box of area  R     ×     R ; see Figure  8.6 .   

 Since  R     >      δ      =      α d  in both  x  -  and  y  - axes, signal is lost at a rate of  k (1/ d  2 ). 

     Figure 8.5     Photo detector sensitivity is a function of pulse width.  
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     Figure 8.6     Free space light communications.  
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 Given the limitations, the use of laser free space (as distinct from fi ber 
optics) for communication is probably a secondary prospect for ASOC.  

   8.7.2     RF  

 The work of the Smart Dust program seems to the most relevant and useful 
here  [63, 181] . That program demonstrated the integration of low - power RF 
into an SOC chip. To summarize some of their many fi ndings:

   1.     A feasibility study realized a transceiver achieving 100   Kbps over a 20 - m 
distance with an energy budget of 25   nJ/bit. This corresponds to about 
10 11    bits/J/m. One joule of battery energy allows 100   Gbits to be trans-
ferred across 1   m  [181] .  

  2.     Expressing data volume on a per - meter basis (as above) might imply 
a linear relation between signal loss and distance. This is incorrect. As 
with light, RF signal strength is a function of at least distance,  d , squared; 
but it is also a function of frequency,  f . At best the RF signal is pro-
portional to  k (1/ fd  2 ). In many situations the signal may be refl ected and 
arrives at the receiver in multiple uncoordinated modes. This multipath 
signal represents additional signal loss. It is usually expressed as  k (1/ fd  2 )
( d  0 / d )  n  , where  d  0  is a standard distance (usually 1   m) and typically  n  is 
3 or 4.  

  3.     Communications with less than 1   mW was not only feasible but likely to 
be commercialized. With typical duty cycle of less than 1% the average 
power consumption was between 1 and 10     μ  W.  

  4.     There is a large data packet overhead (including start - up and synchro-
nization, start symbol, address, packet length, encryption, and error cor-
rection). Short messages can have as little as 3% payload packet effi ciency. 
It is better to create fewer longer messages.  

  5.     As a result of (2) and (3), the system designer will want to minimize the 
number of transmissions and maximize the data packet payload.     

   8.7.3    Potential for Laser/ RF  Communications 

 Table  8.4  summarizes and compares the communications (data volume or total 
number of bits) potential per joule of energy. While laser light seems to offer 
more bits per joule, its limitations restrict its use.   
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   8.7.4    Networked  ASOC  

 In many situations multiple ASOCs form a network connecting an ultimate 
sender and receiver across several intermediate nodes. For such a system to 
be viable and connected, the ASOC placement must be constrained to a 
maximum average distance between nodes. This maximum distance depends 
on path loss characteristics. In RF, the Smart Dust experiment showed that 
this distance could vary from 1   km to 10   m as  n  varies from 2 to 4. It is impor-
tant to remember that the message bits passed across the network comes with 
a (sometimes large) overhead due to synchronization. Spatial and temporal 
synchronization requires adaptation and signaling overhead. This can be of the 
order of 100   bits/message for time synchronization alone. Ideally, the system 
would have infrequent but long messages so as to minimize this overhead. 

     

  TABLE 8.4    Comparing Communication Technologies 

   Sources     Losses     Bits/J/m at 10   m     Comment  

  Laser    Distance; ambient light noise    10 10  – 10 12       
  RF at 1   GHz    Distance; multipath, frequency    10 8  – 10 11      [63, 181]   

 CHALLENGE 

 Adaptive and optimized communications including hyperdirectional 
antennae for RF and adaptive special synchronization for light and 
transmission. 

 Protocols are needed to support short broadly directional initial trans-
mission, which enables sender and receiver to align for optimum path 
transmission. 

 CHALLENGE 

 Communications technology that minimizes synchronization (both 
special and temporal) overhead. 

 In order to enable effi cient short message communications, it is essen-
tial to reduce overhead to the order of 10s of bits rather than much more. 

   8.8    SENSING 

   8.8.1    Visual 

 Vision and motion sensors are usually confi gured as an array of photodiodes, 
with array sizes varying from 64    ×    64 to 4000    ×    4000 or more  [144] . Each pho-
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todiode represents a pixel in the image (for grayscale digital images). Three 
or more diodes are needed for colored and multiple spectrum images. To 
conserve power and reduce state transitions an ASOC would probably imple-
ment the vision processor as an array with a single element per pixel. 

 In either image recognition or motion detection and recognition, it is nec-
essary to fi nd either the correspondence with a reference image or the direc-
tion in which a block in one image shifts with respect to a previous image  [65] . 
Determining the match between two images or successive frames of the same 
scene requires that the image be partitioned into blocks. The blocks of one 
image are compared to the reference or previous image block by block in a 
spiral pattern. Each comparison involves computing the SAD (sum of abso-
lute difference) index. When the image confi guration with the minimum SAD 
index is found, the recognition or motion fl ow is resolved. While image recog-
nition should be possible in milliseconds, the challenge for vision sensors is 
to meet the computational requirements of relatively fast - moving objects 
(Figure  8.7 ).   

 While it is clear that the image sensors can be integrated in the ASOC, 
optics for focusing distant object in varying amounts of light can improve 
performance.  

   8.8.2    Audio 

 As mentioned above the piezoelectric effect applied to silicon crystal can be 
used to record sounds and is the basis for many simple sound detection and 
microphone systems. Alternatively, in specialized applications such as hearing 
aids, it is sometimes important to mimic the action of the ear. Various cochlear 
chips have been realized using a sequence of low - pass fi lters to emulate the 
operation of the cochlea. In one silicon implementation  [251] , 360 cells each 
containing dual low - pass fi lters are arranged as a linear array. Cochlea - type 
implementations are usually preferred when speech recognition is required: 

     Figure 8.7     Visual processing.  
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they form the frontend signal processing of the auditory system, separating 
sound waves and mapping them into the frequency domain (Figure  8.8 ).   

 Since audible sound frequencies are relatively low there are few real - time 
constraints for an ASOC.   

   8.9    MOTION, FLIGHT, AND THE FRUIT FLY 

 Of course, the ultimate ASOC can both move and fl y. Given a weight of only 
0.2   g motion per se is not a problem when the ASOC has associated MEMS. 
MEMS and nanomotors are used to anchor and move the ASOC across a 
surface. The energy required to move on a surface is simply the force to start 
(accelerate) and then to overcome friction. One joule of energy translates into 
10 7    ergs. An erg is the energy required to move a gram for 1   cm with the force 
of a dyne. So slow motion (order of 1 – 2   cm/s) that occurs relatively infre-
quently (less than 1% duty cycle) should not cause signifi cant ASOC energy 
dissipation. 

 The motion of fl ight is by far the most complex. Various attempts  [273]  have 
been made for small vehicle autonomous fl ight. Flight encapsulates many of 
the ASOC challenges: power, vision (avoiding obstructions), environment 
(wind, etc.), and communications. While the fl ying ASOC is a way off, such 
systems are feasible as any small fruit fl y  [209]  knows! 

 It is interesting to note that even the ambitious ASOC described here has 
modest specifi cations when compared with biological creatures such as a fruit 
fl y (Figure  8.9 ). A fruit fl y has a typical length of 2.5   mm, occupies a volume of 
2   mm 3 , and weighs less than 20   mg. Typically it has only a 1 - month lifetime.   

 Its vision processing is quite impressive. It has 800 vision receptor units, each 
with eight photoreceptors for colors through the ultraviolet (using 200,000 neu-
rons out of a total of about 1 million). It is estimated that it has 10 times better 

Speech processor,
transmitter

Receiver, electrodes

RF

     Figure 8.8     Audio processing (Cochlear implant from Wikipedia).  
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     Figure 8.9     The fruit fl y (from Wikipedia).  

temporal vision than the human vision system. When coupled with processing 
for olfaction, audition, learning/memory, and communications with other nodes 
(fl ies), it represents an elegant ASOC. Its ability in fl ight just further impresses: 
its wings beat 220 times per second and can move at 10   cm/s and rotate 90 
degrees in 50   ms. Its energy source is scavenged rotting fruit. 

 There have been recent proposals about the development of robotic fl ies 
with control systems inspired by the real ones  [255] . Clearly the designer of 
silicon - based ASOC described here has much to learn from the fruit fl y. 

      CHALLENGE 

 Sensor miniaturization and integration of transducers for measurement 
of temperature and strain, and movement and pressure. 

 At present, there is an assumption that these units will be off die and 
hence large. At issue is how to miniaturize and integrate these into an 
ASOC. 

  II.   THE FUTURE DESIGN PROCESS: SELF - OPTIMIZATION 
AND SELF - VERIFICATION 

   8.10    MOTIVATION 

 The remaining sections of this chapter cover an approach that can be used to 
develop advanced SOC including the ASOC described earlier. 

c08.indd   299c08.indd   299 5/4/2011   9:54:45 AM5/4/2011   9:54:45 AM



300  WHAT’S NEXT: CHALLENGES AHEAD

 A good design is effi cient and meets requirements. Optimization enhances 
effi ciency, while verifi cation demonstrates that requirements are met. 
Unfortunately, many existing designs are either ineffi cient, incorrect, or both. 

 Optimization and verifi cation are recognized to be of major importance at 
all levels of abstraction in design. A recent International Technology Roadmap 
for Semiconductors listed  “ cost - driven design optimization ”  and  “ verifi cation 
and testing ”  as two of the three overall challenges in design; the remaining 
challenge is  “ reuse. ”  

 What would a future be like in which these three challenges are met? Let 
us imagine that building blocks for use in design are endowed with the capa-
bility of optimizing and verifying themselves. A new design can be completed 
in the following ways:

   1.     Characterize the desired attributes of the design that defi ne the require-
ments, such as its function, accuracy, timing, power consumption, and 
preferred technology.  

  2.     Develop or select an architecture that is likely to meet the requirements 
and explore appropriate instantiations of its building blocks.  

  3.     Decide whether existing building blocks meet requirements; if not, either 
start a new search, or develop new optimizable and verifi able building 
blocks, or adapt requirements to what can be realized.  

  4.     After confi rming that the optimized and verifi ed design meets the 
requirements, organize the optimization and verifi cation steps to enable 
the design to become self - optimizing and self - verifying.  

  5.     Generalize the design and the corresponding self - optimization and self -
 verifi cation capabilities to enhance its applicability and reusability.    

 A key consideration is to be able to preserve self - optimization and self -
 verifi cation in the design process: starting from components with such proper-
ties, the composite design is also self - optimizing and self - verifying. In the next 
few sections, we include more information about this approach.  

   8.11    OVERVIEW 

 Optimization can be used to transform an obvious but ineffi cient design into 
one that is effi cient but no longer obvious. Verifi cation can then show, for 
instance, that the optimization preserves functional behavior subject to certain 
preconditions. A common error in design is to apply optimizations disregard-
ing such preconditions. Verifi cation can also be used to check whether a design 
possesses desirable properties, such as safety and security, to a particular 
standard. 

 Optimization and verifi cation, when combined with a generic design 
style, supports reuse in three main ways. First, an optimized generic design 
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provides abstraction from details, enabling designers to focus on the avail-
able optimization options and their effects. Second, a generic design offers 
choices at multiple levels of abstraction, from algorithms and architectures to 
technology - specifi c elements. Third, a verifi ed optimization process improves 
confi dence in the correctness of its optimized designs. Correctness must be 
established before a design can be reused. In the event of errors, one can check 
whether the verifi cation is incorrect or whether the design is applied in a 
context outside the scope of the verifi cation. 

 We take a broad view of self - optimization and self - verifi cation. One way is 
to think of a design — which can include both hardware and software — and its 
characterization about the key properties that an implementation should 
possess. Such properties include functional correctness, type compatibility, 
absence of arithmetic underfl ow or overfl ow, and so on. The characterization 
can include prescriptions about how the design can be optimized or verifi ed 
by specifi c tools locally or remotely. Various mechanisms, from script - driven 
facilities to machine learning procedures, can be used in the self - optimization 
and self - verifi cation processes, making use of context information where avail-
able. Designers can focus on optimizing and verifying particular aspects; for 
instance, one may wish to obtain the smallest design for computing Advanced 
Encryption Standard (AES) encryption on 128 - bit data streams with a 512 - bit 
key at 500   MHz. 

 The proposed design fl ow involves self - optimization and self - verifi cation 
before and after deployment (Table  8.5 ). Before deployment, compilation 
produces an initial implementation and its characterization. The characteriza-
tion contains information about how the design has been optimized and veri-
fi ed, and also about opportunities for further optimization and verifi cation; 
such opportunities can then be explored after deployment at run time for a 
particular context to improve effi ciency and confi dence of correctness.   

 The self - optimization of a design depends on context. Before deployment, 
the context is the design tool environment; the context can be acquired by 
identifying parameters that affect design tool performance. While automated 
facilities, possibly self - improving, attempt to fi gure out what combinations of 

  TABLE 8.5    Context for Predeployment and Postdeployment 

        Predeployment     Postdeployment  

  Focus context    Designer productivity design 
tool environment, often static  

  Design effi ciency operation 
environment, often dynamic  

  Acquire context    From parameters affecting tool 
performance  

  From data input, for example, 
sensors  

  Optimize/verify    Optimize/verify initial 
postdeployment design  

  Optimize according to 
situation  

  Planning    Plan postdeployment optimize/
verify  

  Plan to meet postdeployment 
goals  

  External control    Frequent    Infrequent  
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libraries and tools would produce a design that best meets the requirements, 
designers can optionally control the tools to ensure such self - optimization and 
self - verifi cation proceed in the right direction. In contrast, after deployment 
such external control is usually less frequent, for instance if the design is part 
of a spacecraft. To summarize, predeployment tasks are mainly strategic and 
try to proactively determine possible courses of action that might take place 
at run time; postdeployment tasks are mainly tactical and must choose between 
the set of possible actions to react to the changing run - time context. 

 Our approach has three main benefi ts. First, it enhances confi dence in 
design correctness and reliability by automating the verifi cation process. 
Second, it improves design effi ciency by automating the optimization process 
and exploiting run - time adaptivity. Third, it raises productivity by enabling 
reuse of designs and their optimization and verifi cation. 

 However, adopting systematic design reuse — especially when self -
 optimization and self - verifi cation are involved — can require more initial effort 
than doing a one - off design. The designer needs to organize, generalize, and 
document the designs appropriately. Only after some time, design reuse would 
become worthwhile (Figure  8.10 ). Moreover, there can be large overheads 
involved in supporting optimization and verifi cation after deployment. In the 
long term, however, those who invest in capabilities for design reuse and 
design adaptability are likely to achieve substantial improvement in design 
effi ciency and productivity.   
    

   8.12    PRE - DEPLOYMENT 

 Before deployment, a designer has the characterization of a desired design 
and has access to building blocks and their characterization. The task is to 
develop an architecture that defi nes how selected building blocks are instanti-

     Figure 8.10     Design effort: The impact of reuse.  
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ated and composed to produce an initial design that either meets the require-
ments, or can be further optimized to do so, after deployment at run time. 
Postdeployment optimization and verifi cation have to be planned carefully to 
avoid becoming an unaffordable overhead. 

 We assume that, at compile time before deployment, 

  1.     the available computing resources are adequate to support the design 
and the tools, but  

  2.     there is a limit on how much optimization and verifi cation can take place 
since, for instance, some data values useful for optimization are only 
known at run time, and it is impractical to compute all possibilities for 
such values.    

 As a simple example, given that one of the two operands of an  n  - bit adder is 
a constant whose value is only known after deployment at run time, we wish 
to optimize the adder by constant propagation. It is, however, impractical to 
precompute the confi guration of all 2  n   possibilities, unless  n  is a small number. 
Fortunately, if we target a bit - slice architecture, then it may suffi ce to precom-
pute only two confi gurations for each of the  n  bits so that, at run time when 
the value is known, the appropriate confi guration can be placed at the right 
location at the right time  [216] . 

 Designers may have to prioritize or to change their requirements until a 
feasible implementation is found. For instance, one may want the most power -
 effi cient design that meets a particular timing constraint or the smallest design 
that satisfi es a given numerical accuracy. Other factors, such as safety or secu-
rity issues, may also need to be taken into account. 

 Given that predeployment optimization is to produce an optimized design 
that would, where appropriate, be further optimized after deployment, the 

 CHALLENGE 

 Capture composable generic descriptions of design and context, together 
with their optimization and verifi cation characterization, at various 
levels of abstraction. 

 Composition is a convenient way of reuse, but it may not be straight-
forward, other than for those that adopt simple communication regimes 
such as streaming. In particular, before composing heterogeneous com-
ponents, they may need to be transformed to support a common com-
munication and synchronization infrastructure. System - level design 
composition is challenging, since not only the designs themselves are 
composed, but also their corresponding optimization and verifi cation 
procedures. 
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following are some examples of optimizations that can take place before 
deployment:

   1.     Choose a circuit technology in which the design would be implemented. 
The two common technologies are application - specifi c integrated circuit 
(ASIC) and fi eld - programmable gate array (FPGA); the choice of tech-
nology depends on volume and fl exibility (Figure  8.11 ). For instance, 
cell - based ASIC tends to be cheaper at large volume since they have 
large nonrecurring engineering cost, while FPGA is the other way around 
with structured ASIC somewhere in between. While ASIC technology 
can be used to implement adaptive instruction processors with, for 
instance, custom instruction extensions  [29]  or a reconfi gurable cache 
 [76] , all the options for reconfi guration have to be known before fabrica-
tion. Adaptive instruction processors can also be implemented in FPGA 
technology  [77, 269] , which allows them much more fl exibility at the 
expense of speed and area overheads in supporting reconfi gurability.    

  2.     Choose the granularity and synchronization regime for the confi gurable 
units. Current commercial FPGAs are mainly fi ne - grained devices with 
one or more global clocks, but other architectures are emerging: there 
are coarse - grained devices containing an array of multi - bit ALUs (arith-
metic logic units) executing in parallel  [25, 80] , as well as architectures 
based on self - synchronizing technology to enhance scalability  [52] . 
Generally, fi ne - grained devices have a better chance to be tailored to 
match closely with what is required. For instance, if a 9 - bit ALU is 
needed, nine bit - level cells in an FPGA would be confi gured to form that 
9 - bit ALU. For a coarse - grained device containing cells with 8 - bit ALUs, 
two such cells would be needed. However, fi ne - grained devices tend to 
have a large overhead in speed, area, power consumption, and so on, 

     Figure 8.11     Comparing cost and volume for FPGA and ASIC technologies.  
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since there are more resources that can be confi gured. Coarse - grained 
devices, in contrast, have lower overheads at the expense of fl exibility.  

  3.     For instruction processors with support for custom instructions  [29, 77] , 
choose the granularity of custom instructions to achieve the right balance 
between speed and area. Coarse - grained custom instructions are usually 
faster but require more area than fi ne - grained ones. For instance, if the 
same result can be achieved using: (a) one coarse - grained custom instruc-
tion, or (b) 50 fi ne - grained custom instructions, then (a) is likely to be 
more effi cient since there are fewer instruction fetch/decode, and there 
are more opportunities to customize the instruction to do exactly what 
is needed. However, since the more coarse - grained an instruction, the 
more specifi c it can become, there would be fewer ways for reusing a 
coarse - grained custom instruction than a fi ne - grained one.  

  4.     Choose the amount of parallelism and hardware/software partitioning to 
match performance or size constraints by determining, for instance, the 
number of processing elements, the level of pipelining, or the extent of 
task sharing for each processing element. Various factors, such as the 
speed and size of control logic and on - chip memory, and interfaces to 
other elements such as memory or sensors, would also need to be taken 
into account. As an example, Figure  8.12  shows how speedup varies with 
the number of processors targeting an FPGA for a multiprocessor archi-
tecture specialized for accelerating inductive logic programming applica-
tions  [89] . Since the amount of FPGA on - chip memory is fi xed, increasing 
the number of processors reduces the amount of cache memory for each 
processor; hence, the linear speedup until there are 16 processors. After 

     Figure 8.12     Variation of speedup and aggregate miss rate against the number of 
processors for the Arvand multiprocessor system targeting the XC2V6000 FPGA.  
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this optimal point, adding more processors reduces the speedup since the 
cache for each processor becomes too small.    

  5.     Choose data representations and the corresponding operations. Trade -
 offs in adopting different kinds of arithmetic representations are well 
known: for instance, redundant arithmetic tends to produce faster designs, 
since no carry chain is required at the expense of size. Since fi ne - grained 
FPGAs support designs with any word length, various static and dynamic 
word - length optimization algorithms can be used for providing designs 
with the best trade - off between performance, size, power consumption, 
and accuracy in terms of, for instance, signal - to - noise ratio  [62] . Models 
and facilities to support exceptions, such as arithmetic overfl ow and 
underfl ow, should also be considered  [153] .  

  6.     Choose placement strategies for processing and memory elements on the 
physical device, such as those interacting frequently are placed close to 
one another to improve performance, area, and power consumption. It 
may be possible to automate the optimization of placement by a combi-
nation of heuristics and search - based autotuners  [27]  that generate and 
evaluate various implementation options; such methods would need to 
take into account various architectural constraints, such as the presence 
of embedded computational or memory elements  [36] .    

 Each example above has aspects that would benefi t from verifi cation, from 
high - level compilation  [43]  to fl attening procedures  [168]  and placement 
strategies  [196] . There are verifi cation platforms  [236]  enabling consistent 
application of verifi cation facilities such as symbolic simulators, model check-
ers, and theorem provers. Such platforms show promise in supporting self -
 verifi cation for complex designs, but much remains to be done to verify designs 
involving various technologies and across multiple levels of abstraction. Also, 
many of these platforms and facilities may be able to benefi t from automatic 
tuning  [121] . 

 One important predeployment task is to plan self - optimization and self -
 verifi cation after deployment. This plan would depend on how much run - time 
information after deployment is available. For instance, if some inputs to a 
design are constant, then such constants can be propagated through the design 
by boolean optimization and retiming. Such techniques can be extended to 
cover placement strategies for producing parametric descriptions of compact 
layout  [168] . Another possibility is to select appropriate architectural tem-
plates to facilitate run - time resource integration  [211] . 

 Before deployment, if verifi cation already covers optimizations and all 
other postdeployment operations, then there is no need for further verifi ca-
tion. However, if certain optimizations and verifi cations are found useful but 
cannot be supported by the particular design, it may be possible for such 
optimizations and verifi cations to take place remotely, so that the optimized 
and verifi ed design would be downloaded securely into the running system at 
an appropriate time, minimizing interruption of service. 
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   8.13    POST - DEPLOYMENT 

 The purpose of optimization is to tailor a design to best meet its requirements. 
Increasingly, however, such requirements no longer stay the same after the 
design is commissioned; for instance, new standards may need to be met, or 
errors may need to be fi xed. Hence there is a growing need for upgradable 
designs that support postdeployment optimization. Besides upgradability, 
postdeployment optimization also enables resource sharing, error removal, 
and adaptation to run - time conditions — for instance, selecting appropriate 
error - correcting codes depending on the noise variation. 

 Clearly any programmable device would be capable of postdeployment 
optimization. As we described earlier, fi ne - grained devices have greater oppor-
tunities of adapting themselves than coarse - grained devices, at the expense of 
larger overheads. 

 In the following we focus on two themes in postdeployment optimization: 
situation - specifi c optimization and autonomous optimization control. In both 
cases, any untrusted postdeployment optimizations should be verifi ed by light-
weight verifi ers; possible techniques include proof - carrying code checkers 
 [252] . Such checkers support parameters that capture the safety conditions for 
particular operations. A set of proof rules are used to establish acceptable ways 
of constructing the proofs for the safety conditions. 

 As mentioned in the preceding section, should heavy - duty optimizations 
and verifi cations become desirable, it may be possible for such tasks to be 
carried out by separate trusted agents remotely and downloaded into the 
operational device in a secure way, possibly based on digital signatures that 
can verify senders ’  identity. Otherwise it would be prudent to include a time -
 out facility to prevent nontermination of self - optimization and self - verifi cation 
routines that do not produce results before completion. 

 CHALLENGE 

 Develop techniques and tools for specifying and analyzing require-
ments of self - optimizing and self - verifying systems, and methods for 
automating optimization and verifi cation of operations and data 
representations. 

 Relevant optimization techniques include scheduling, retiming, and 
word - length optimization, while relevant verifi cation techniques include 
program analysis, model checking, and theorem proving. Their effective 
tuning and combination, together with new methods that explore, for 
instance, appropriate arithmetic schemes and their impact, would enable 
effi cient designs to be produced with reduced effort. 
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 Besides having a time - out facility, postdeployment verifi cation should be 
capable of dealing with other forms of exceptions, such as verifi cation failure 
or occurrence of arithmetic errors. There should be error recovery procedures, 
together with techniques that decide whether to avoid or to correct similar 
errors in the future. For some applications, on - chip debug facilities  [120]  would 
be useful; such facilities can themselves be adapted to match the operational 
and buffering requirements of different applications. 

   8.13.1    Situation - Specifi c Optimization 

 One way to take advantage of postdeployment optimization in a changing 
operational environment is to continuously adapt to the changing situation, 
such as temperature, noise, process variation, and so on. For instance, it has 
been shown  [241]  that dynamic reconfi guration of a Viterbi decoder to adapt 
the error - correcting convolutional codes to the variation of communication 
channel noise conditions can result in almost 70% reduction in decoder power 
consumption, with no loss of decode accuracy. 

 Figure  8.13  shows a reconfi guration schedule that optimally adapts to the 
program phase behavior of the SPECviewperf benchmark 9  [232] . A program 
phase is an interval over which the working set of the program remains largely 
constant; our purpose is to support a dynamic optimization regime that makes 
use of program phase information to optimize designs at run time. The regime 
consists of a hardware compilation scheme for generating confi gurations that 
exploit program branch probability  [231]  and other opportunities to optimize 
for different phases of execution, and a run - time system that manages inter-
change of confi gurations to maintain optimization between phase transitions. 
The idea is to accelerate the hardware for branches that occur frequently in a 
particular program phase; when the beginning of the next program phase is 
detected, the hardware would be reconfi gured to optimize the new program 
phase.   

 In addition to improving performance by exploiting, for instance, program 
phase behavior, postdeployment optimization also has the potential to improve 

     Figure 8.13     Optimal reconfi guration schedule for upper bound performance measure, 
SPECviewperf benchmark 9. The dotted and solid lines show, respectively, the branch 
probabilities of the inner and outer loop over time.  
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power consumption. Figure  8.14  shows a possible variation of power consump-
tion over time. Comparing to a static design, a postdeployment optimizable 
design can be confi gured to a situation - specifi c design with the lowest possible 
power consumption for that situation, although there could be power surges 
when the device is being reconfi gured. Techniques have been proposed for 
FPGAs that would automatically adjust their run - time clock speed  [49]  or 
exploit dynamic voltage scaling  [57] ; related methods have been reported for 
microprocessors  [73] . Such techniques would be able to take advantage of 
run - time conditions after deployment, as well as adapting to effects of process 
variation in deep submicron technology.   

 A useful method for supporting situation - specifi c optimization is to inte-
grate domain - specifi c customizations into a high - performance virtual machine, 
to which both static and dynamic information from postdeployment instru-
mentation is made available. Such information can be used in various situa-
tions for self - optimization and self - verifi cation, such as optimizing the way 
hardware or software libraries are used based on special properties of the 
library code and context from postdeployment operation.  

   8.13.2    Autonomous Optimization Control 

  “ Autonomic computing ”   [139]  has been proposed for systems that support 
self - management, self - optimization, and even self - healing and self - protection. 
It is motivated by the increasing complexity of computer systems that require 
signifi cant efforts to install, confi gure, tune, and maintain. In contrast, we focus 
on the design process that can support and benefi t from self - optimizing and 
self - verifying components. 

 An evolving control strategy for self - optimization can be based on event -
 driven, just - in - time reconfi guration methods for producing software code and 

     Figure 8.14     Possible variation of instantaneous power consumption over time. The 
two narrow spikes indicate power consumption during two reconfi gurations for run -
 time optimization.  
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hardware confi guration information according to run - time conditions, while 
hiding confi guration latency. One direction is to develop the theory and prac-
tice for adaptive components involving both hardware and software elements, 
based on component metadata description  [138] . Such descriptions character-
ize available optimizations and provide a model of performance together with 
a composition metaprogram that uses component metadata to fi nd and con-
fi gure the optimum implementation for a given context. This work can be 
combined with current customizable hardware compilation techniques  [245] , 
which make use of metadata descriptions in a contract - based approach, as well 
as research on adaptive software component technology. 

 Another direction is to investigate high - level descriptions of desirable 
autonomous behavior and how such descriptions can be used to produce a 
reactive plan. A reactive plan adapts to a changing environment by assigning 
an action toward a goal for every state from which the goal can be reached 
 [238] . Dynamic reconfi guration can be driven by a plan specifying the proper-
ties a confi guration should support. 

 Other promising directions for autonomous optimization control include 
those based on machine learning  [6] , inductive logic programming  [89] , and 
self - organizing feature maps  [200] . Examples of practical self - adaptive systems, 
such as those targeting space missions  [140] , should also be studied to explore 
their potential for widening applicability and for inspiring theoretical develop-
ment. It would be interesting to fi nd an appropriate notion of verifi ability for 
these optimization methods. 

     
 CHALLENGE 

 Find strategies that provide the best partitioning between co - optimization 
and coverifi cation before and after deployment. 

 The more work is done before deployment, the more effi cient the 
postdeployment design for a given application tends to become, but at 
the expense of fl exibility. Strategies for getting the right balance between 
predeployment and postdeployment optimization and verifi cation will 
be useful. 

   8.14    ROADMAP AND CHALLENGES 

 In the short term, we need to understand how to compose self - optimizing and 
self - verifying components, such that the resulting composite design is still self -
 optimizing and self - verifying. A key step is to provide both theoretical and 
practical connections between relevant design models and representations, as 
well as their corresponding optimization and verifi cation procedures, to ensure 
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consistency between semantic models and compatibility between interfaces of 
different tools. 

 It seems a good idea to begin by studying self - optimizing and self - verifying 
design in specifi c application domains. Experience gained from such studies 
would enable the discovery of fundamental principles and theories concerning 
the scope and capability of self - optimizing and self - verifying design that tran-
scend the particularities of individual applications. 

 Another direction is to explore a platform - based approach for developing 
self - optimizing and self - verifying systems. Promising work  [236]  has been 
reported in combining various tools for verifying complex designs; such work 
provides a basis on which further research on self - optimization and self -
 verifi cation can be built. Open - access repositories that enable shared designs 
and tools would be useful; in particular, the proposed approach would benefi t 
from, and also contribute to, the verifi ed software repository  [43] , currently 
being developed as part of the UK Grand Challenge project in dependable 
systems evolution. 

 Clearly, much research remains to be done to explore the potential for self -
 optimizing and self - verifying design. Progress in various areas is required to 
enhance self - optimization and self - verifi cation for future development. 
    

    Challenge.  So far, we focus on designing a single element that may 
operate autonomously. The criteria for optimality and correctness 
become more complex for a network of autonomous elements, especially 
if the control is also distributed. We need to develop theoretical and 
practical connections between the optimality and correctness of the 
individual elements, and the optimality and correctness of the network 
as a whole. 

  Challenge.  Design reuse would only become widespread if there are 
open standards about the quality of the re - usable components as well as 
the associated optimization and verifi cation processes. Such standards 
cover a collection of methods for verifying functional and performance 
requirements, including simulation, hardware emulation, and formal 
verifi cation, at different levels of abstraction. 

  Challenge.  There is a clear need for a sound foundation to serve as the 
basis for engineering effective self - optimization and self - verifi cation 
methodologies that closely integrate with design exploration, prototyp-
ing, and testing. The challenge is that adaptability, while improving fl ex-
ibility, tends to complicate optimization and verifi cation. 
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   8.15    SUMMARY 

 There is a whole new fi eld to be explored based on the next generation of 
SOC and ASOC. As we have seen, transistor density improvements will enable 
a billion transistors per square centimeter. This enormous computational 
potential has a major limitation: limited electrical energy. There is a new direc-
tion opening in computer architecture,  nanocomputing , to contrast with his-
torical efforts in supercomputing. The target of this fi eld is to produce the 
algorithms and architectural approaches for high performance at less than 1 
millionth of the current levels of power dissipation, freeing the chip from 
external power coupling. 

 For untethered operation, a form of wireless communication is required. 
This is another signifi cant challenge, especially with a power budget also in 
the order of microwatts. While RF is the conventional approach, some form 
of light or infrared may offer an alternative. 

 In addition, digitizing the sensors and even the transducers offers a fi nal 
challenge where multiple sensors are integrated into a seamless SOC. 

 The chapter also projects a vision of design with self - optimizing and self -
 verifying components, to address the design challenges identifi ed by the 
International Technology Roadmap for Semiconductors. Tasks for self -
 optimization and self - verifi cation before and after deployment are described, 
together with a discussion of possible benefi ts and challenges. Making progress 
in theory and practice for self - optimization and self - verifi cation would con-
tribute to our goal: enabling designers to produce better designs more rapidly. 

 The best designs anticipate system complexity and deal effectively with the 
unanticipated. System complexity includes many issues overlooked in this 
chapter: component design and suppliers, design tools, validation and testing, 
security, and so on. Successful trade - offs across a myriad of issues defi ne effec-
tive design. 

 While there is little expectation that all of the ASOC components discussed 
here will actually be integrated into a single die, there are many different pos-
sible combinations. Each combination with its own system requirements must 
be optimized across all of the constituent components. Designers, with the help 
of a self - optimizing and self - verifying development approach, are now no 
longer concerned about a component but only about the fi nal system; they 
become the ultimate  systems engineers .     
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     Given the complexity of many processor confi gurations, it is not always pos-
sible to predict performance or the area required for many designs without 
the help of simulation or prediction tools. In this text, we provide simple tools 
that can give reasonable estimates of many design parameters. 

 The SimpleScalar tool set is used for exploring the design space for instruc-
tion processors. Its backend has been precompiled to support four architec-
tures: Alpha, ARM, PISA (a variant of MIPS), and x86. 

 Figure  A.1  shows the setting for the SimpleScalar web interface. Figures 
 A.2  and  A.3  present two simulated results using different L1 cache confi gura-
tions and different translation lookaside buffer (TLB) confi gurations.   
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     Figure A.1     Web interface for selecting different user options.  
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     Figure A.3     Variations of different L1 cache settings against simulated IPC.  
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     Figure A.2     Variations of different TLB settings against simulated IPC.  
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 This web interface provides the following key features to users:

    •      enabling different instruction set architectures (ISAs) such as PISA, 
ARM, and x86;  

   •      enabling different benchmark programs such as math.c, fmath.c, and 
llong.c;  
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   •      enabling different SimpleScalar simulators for various processor infor-
mation; and  

   •      providing a dynamic and real - time update to the generated fi gure from 
the web user browser.    

 If we want to produce a fi gure from the SimpleScalar web interface, we need 
to fi rst select the architecture, then select the option according to the type of 
simulation that we want, such as getting the L1 cache or the TLB information. 
Finally, we can choose the simulated instructions per cycle (IPC) value or area 
information. 

 As shown in Figure  A.2 , the  x  - axis shows different TLB values and the  y  -
 axis shows different simulated IPC values. Each line in the plot refers to a 
single confi guration of the L1 cache value.    
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