
COMPUTER
SYSTEM DESIGN

ffirs01.indd iffirs01.indd i 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

www.allitebooks.com

http://www.allitebooks.org

COMPUTER
SYSTEM DESIGN

System-on-Chip

Michael J. Flynn

Wayne Luk

A JOHN WILEY & SONS, INC., PUBLICATION

ffirs02.indd iiiffirs02.indd iii 5/4/2011 9:54:46 AM5/4/2011 9:54:46 AM

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should he addressed to the
Permissions Department, John Wiley & Sons, Inc., II 1 River Street, Hoboken, NJ 07030, (201)
748-601 1, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifi cally disclaim any implied
warranties of merchantability or fi tness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Neither the publisher nor author shall be liable for any loss of profi t or any
other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general infor-nation on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Flynn, M. J. (Michael J.), 1934–
 Computer system design : system-on-chip / Michael J. Flynn, Wayne Luk.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-470-64336-5 (hardback)
 1. Systems on a chip. I. Luk, Wayne. II. Title.
 TK7895.E42F65 2011
 004.1–dc22
 2010040981

Printed in Singapore

oBook ISBN: 9781118009925
ePDF ISBN: 9781118009901
ePub ISBN: 9781118009918

10 9 8 7 6 5 4 3 2 1

ffirs03.indd ivffirs03.indd iv 5/4/2011 9:54:46 AM5/4/2011 9:54:46 AM

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

Preface xiii

List of Abbreviations and Acronyms xvii

1 Introduction to the Systems Approach 1

1.1 System Architecture: An Overview 1
1.2 Components of the System: Processors, Memories,

and Interconnects 2
1.3 Hardware and Software: Programmability

Versus Performance 5
1.4 Processor Architectures 7

1.4.1 Processor: A Functional View 8
1.4.2 Processor: An Architectural View 9

1.5 Memory and Addressing 19
1.5.1 SOC Memory Examples 20
1.5.2 Addressing: The Architecture of Memory 21
1.5.3 Memory for SOC Operating System 22

1.6 System-Level Interconnection 24
1.6.1 Bus-Based Approach 24
1.6.2 Network-on-Chip Approach 25

1.7 An Approach for SOC Design 26
1.7.1 Requirements and Specifi cations 26
1.7.2 Design Iteration 27

1.8 System Architecture and Complexity 29
1.9 Product Economics and Implications for SOC 31

1.9.1 Factors Affecting Product Costs 31
1.9.2 Modeling Product Economics and Technology

Complexity: The Lesson for SOC 33
1.10 Dealing with Design Complexity 34

1.10.1 Buying IP 34
1.10.2 Reconfi guration 35

1.11 Conclusions 37
1.12 Problem Set 38

v

ftoc.indd vftoc.indd v 5/4/2011 9:54:47 AM5/4/2011 9:54:47 AM

www.allitebooks.com

http://www.allitebooks.org

vi CONTENTS

2 Chip Basics: Time, Area, Power, Reliability,
and Confi gurability 39

2.1 Introduction 39
2.1.1 Design Trade-Offs 39
2.1.2 Requirements and Specifi cations 42

2.2 Cycle Time 43
2.2.1 Defi ning a Cycle 43
2.2.2 Optimum Pipeline 44
2.2.3 Performance 46

2.3 Die Area and Cost 47
2.3.1 Processor Area 47
2.3.2 Processor Subunits 50

2.4 Ideal and Practical Scaling 53
2.5 Power 57
2.6 Area–Time–Power Trade-Offs in

Processor Design 60
2.6.1 Workstation Processor 60
2.6.2 Embedded Processor 61

2.7 Reliability 62
2.7.1 Dealing with Physical Faults 62
2.7.2 Error Detection and Correction 65
2.7.3 Dealing with Manufacturing Faults 68
2.7.4 Memory and Function Scrubbing 69

2.8 Confi gurability 69
2.8.1 Why Reconfi gurable Design? 69
2.8.2 Area Estimate of Reconfi gurable Devices 70

2.9 Conclusion 71
2.10 Problem Set 71

3 Processors 74

3.1 Introduction 74
3.2 Processor Selection for SOC 76

3.2.1 Overview 76
3.2.2 Example: Soft Processors 76
3.2.3 Examples: Processor Core Selection 79

3.3 Basic Concepts in Processor Architecture 81
3.3.1 Instruction Set 81
3.3.2 Some Instruction Set Conventions 82
3.3.3 Branches 82
3.3.4 Interrupts and Exceptions 84

ftoc.indd viftoc.indd vi 5/4/2011 9:54:47 AM5/4/2011 9:54:47 AM

www.allitebooks.com

http://www.allitebooks.org

CONTENTS vii

3.4 Basic Concepts in Processor Microarchitecture 86
3.5 Basic Elements in Instruction Handling 88

3.5.1 The Instruction Decoder and Interlocks 88
3.5.2 Bypassing 90
3.5.3 Execution Unit 90

3.6 Buffers: Minimizing Pipeline Delays 91
3.6.1 Mean Request Rate Buffers 91
3.6.2 Buffers Designed for a Fixed or Maximum

Request Rate 92
3.7 Branches: Reducing the Cost of Branches 93

3.7.1 Branch Target Capture: Branch Target
Buffers (BTBs) 94

3.7.2 Branch Prediction 97
3.8 More Robust Processors: Vector, Very Long

Instruction Word (VLIW), and Superscalar 101
3.9 Vector Processors and Vector Instruction Extensions 101

3.9.1 Vector Functional Units 103
3.10 VLIW Processors 107
3.11 Superscalar Processors 108

3.11.1 Data Dependencies 109
3.11.2 Detecting Instruction Concurrency 110
3.11.3 A Simple Implementation 112
3.11.4 Preserving State with Out-of-Order

Execution 116
3.12 Processor Evolution and Two Examples 118

3.12.1 Soft and Firm Processor Designs:
The Processor as IP 118

3.12.2 High-Performance, Custom-Designed Processors 118
3.13 Conclusions 119
3.14 Problem Set 120

4 Memory Design: System-on-Chip and Board-Based Systems 123

4.1 Introduction 123
4.2 Overview 125

4.2.1 SOC External Memory: Flash 125
4.2.2 SOC Internal Memory: Placement 126
4.2.3 The Size of Memory 127

4.3 Scratchpads and Cache Memory 128
4.4 Basic Notions 129
4.5 Cache Organization 130
4.6 Cache Data 133
4.7 Write Policies 134

ftoc.indd viiftoc.indd vii 5/4/2011 9:54:47 AM5/4/2011 9:54:47 AM

www.allitebooks.com

http://www.allitebooks.org

viii CONTENTS

4.8 Strategies for Line Replacement at Miss Time 135
4.8.1 Fetching a Line 136
4.8.2 Line Replacement 136
4.8.3 Cache Environment: Effects of System,

Transactions, and Multiprogramming 137
4.9 Other Types of Cache 138
4.10 Split I- and D-Caches and the Effect of Code Density 138
4.11 Multilevel Caches 139

4.11.1 Limits on Cache Array Size 139
4.11.2 Evaluating Multilevel Caches 140
4.11.3 Logical Inclusion 143

4.12 Virtual-to-Real Translation 143
4.13 SOC (On-Die) Memory Systems 145
4.14 Board-based (Off-Die) Memory Systems 147
4.15 Simple DRAM and the Memory Array 149

4.15.1 SDRAM and DDR SDRAM 152
4.15.2 Memory Buffers 156

4.16 Models of Simple Processor–Memory Interaction 156
4.16.1 Models of Multiple Simple Processors

and Memory 157
4.16.2 The Strecker-Ravi Model 158
4.16.3 Interleaved Caches 160

4.17 Conclusions 161
4.18 Problem Set 161

5 Interconnect 165

5.1 Introduction 165
5.2 Overview: Interconnect Architectures 166
5.3 Bus: Basic Architecture 168

5.3.1 Arbitration and Protocols 170
5.3.2 Bus Bridge 171
5.3.3 Physical Bus Structure 171
5.3.4 Bus Varieties 172

5.4 SOC Standard Buses 173
5.4.1 AMBA 174
5.4.2 CoreConnect 177
5.4.3 Bus Interface Units: Bus Sockets and

Bus Wrappers 179
5.5 Analytic Bus Models 183

5.5.1 Contention and Shared Bus 183
5.5.2 Simple Bus Model: Without Resubmission 184
5.5.3 Bus Model with Request Resubmission 185

ftoc.indd viiiftoc.indd viii 5/4/2011 9:54:47 AM5/4/2011 9:54:47 AM

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

5.5.4 Using the Bus Model: Computing the
Offered Occupancy 185

5.5.5 Effect of Bus Transactions and
Contention Time 186

5.6 Beyond the Bus: NOC with Switch Interconnects 187
5.6.1 Static Networks 190
5.6.2 Dynamic Networks 192

5.7 Some NOC Switch Examples 194
5.7.1 A 2-D Grid Example of Direct Networks 194
5.7.2 Asynchronous Crossbar Interconnect for

Synchronous SOC (Dynamic Network) 196
5.7.3 Blocking versus Nonblocking 197

5.8 Layered Architecture and Network Interface Unit 197
5.8.1 NOC Layered Architecture 198
5.8.2 NOC and NIU Example 200
5.8.3 Bus versus NOC 201

5.9 Evaluating Interconnect Networks 201
5.9.1 Static versus Dynamic Networks 202
5.9.2 Comparing Networks: Example 204

5.10 Conclusions 205
5.11 Problem Set 206

6 Customization and Confi gurability 208

6.1 Introduction 208
6.2 Estimating Effectiveness of Customization 209
6.3 SOC Customization: An Overview 210
6.4 Customizing Instruction Processors 212

6.4.1 Processor Customization Approaches 214
6.4.2 Architecture Description 215
6.4.3 Identifying Custom Instructions Automatically 217

6.5 Reconfi gurable Technologies 218
6.5.1 Reconfi gurable Functional Units (FUs) 218
6.5.2 Reconfi gurable Interconnects 222
6.5.3 Software Confi gurable Processors 224

6.6 Mapping Designs Onto Reconfi gurable Devices 226
6.7 Instance-Specifi c Design 228
6.8 Customizable Soft Processor: An Example 231
6.9 Reconfi guration 235

6.9.1 Reconfi guration Overhead Analysis 235
6.9.2 Trade-Off Analysis: Reconfi gurable Parallelism 237

6.10 Conclusions 242
6.11 Problem Set 243

ftoc.indd ixftoc.indd ix 5/4/2011 9:54:47 AM5/4/2011 9:54:47 AM

www.allitebooks.com

http://www.allitebooks.org

x CONTENTS

7 Application Studies 246

7.1 Introduction 246
7.2 SOC Design Approach 246
7.3 Application Study: AES 251

7.3.1 AES: Algorithm and Requirements 251
7.3.2 AES: Design and Evaluation 253

7.4 Application Study: 3-D Graphics Processors 254
7.4.1 Analysis: Processing 255
7.4.2 Analysis: Interconnection 259
7.4.3 Prototyping 260

7.5 Application Study: Image Compression 262
7.5.1 JPEG Compression 262
7.5.2 Example JPEG System for Digital Still Camera 264

7.6 Application Study: Video Compression 266
7.6.1 MPEG and H.26X Video Compression:

Requirements 268
7.6.2 H.264 Acceleration: Designs 271

7.7 Further Application Studies 276
7.7.1 MP3 Audio Decoding 276
7.7.2 Software-Defi ned Radio with 802.16 279

7.8 Conclusions 281
7.9 Problem Set 282

8 What’s Next: Challenges Ahead 285

8.1 Introduction 285
8.2 Overview 286
8.3 Technology 288
8.4 Powering the ASOC 289
8.5 The Shape of the ASOC 292
8.6 Computer Module and Memory 293
8.7 RF or Light Communications 293

8.7.1 Lasers 294
8.7.2 RF 295
8.7.3 Potential for Laser/RF Communications 295
8.7.4 Networked ASOC 296

8.8 Sensing 296
8.8.1 Visual 296
8.8.2 Audio 297

8.9 Motion, Flight, and the Fruit Fly 298
8.10 Motivation 299
8.11 Overview 300
8.12 Pre-Deployment 302

ftoc.indd xftoc.indd x 5/4/2011 9:54:47 AM5/4/2011 9:54:47 AM

www.allitebooks.com

http://www.allitebooks.org

CONTENTS xi

8.13 Post-Deployment 307
8.13.1 Situation-Specifi c Optimization 308
8.13.2 Autonomous Optimization Control 309

8.14 Roadmap and Challenges 310
8.15 Summary 312

Appendix: Tools for Processor Evaluation 313

References 316

Index 329

ftoc.indd xiftoc.indd xi 5/4/2011 9:54:47 AM5/4/2011 9:54:47 AM

www.allitebooks.com

http://www.allitebooks.org

 PREFACE

 The next generation of computer system designers will be concerned more
about the elements of a system tailored to particular applications than with
the details of processors and memories.

 Such designers would have rudimentary knowledge of processors and other
elements in the system, but the success of their design would depend on their
skills in making system - level trade - offs that optimize the cost, performance,
and other attributes to meet application requirements.

 This text is organized to introduce issues in computer system design, par-
ticularly for system - on - chip (SOC). Managing such design requires knowledge
of a number of issues, as shown in Figure 1 .

 After Chapter 1 , the introduction chapter, Chapter 2 looks at issues that
defi ne the design space: area, speed, power consumption, and confi gurability.
Chapters 3 – 5 provide background knowledge of the basic elements in a system:
processor, memory, and interconnect.

 The succeeding chapters focus on computer systems tailored to specifi c
applications and technologies. Chapter 6 covers issues in customizing and
confi guring designs. Chapter 7 addresses system - level trade - offs for various
applications, bringing together earlier material in this study. Finally, Chapter
 8 presents future challenges for system design and SOC possibilities.

 The tools that illustrate the material in the text are still being developed.
The Appendix provides an overview of one such tool. Since our tools are
evolving, please check from time to time to see what is available at the com-
panion web site: www.soctextbook.com .

 Moreover, material useful for teaching, such as slides and answers to exer-
cises, is also being prepared.

 This book covers a particular approach to computer system design, with
emphasis on fundamental ideas and analytical techniques that are applicable
to a range of applications and architectures, rather than on specifi c applica-
tions, architectures, languages, and tools. We are aware of complementary
treatments on these and also on other topics, such as electronic system - level
design, embedded software development, and system - level integration and
test. We have included brief descriptions and references to these topics where
appropriate; a more detailed treatment can be covered in future editions or
in different volumes.

 SOC is a quickly developing fi eld. Although we focused on funda-
mental material, we were forced to draw a line on the inclusion of the latest

xiii

fpref.indd xiiifpref.indd xiii 5/4/2011 9:54:47 AM5/4/2011 9:54:47 AM

xiv PREFACE

 Figure 1 An approach to SOC system design described in this book.

Die size Design
specification

Run-time
requirements

Storage Size, volatility

Operating system On-die/off-die

Interconnect Topology/bandwidth/protocol

Processor

Cache features

Customization/
configurability

Initial design

Chapter 2

Chapter 4

Chapter 5

Chapter 3

Chapter 4

Chapter 6

No

Yes

Optimized design

Meet specification and
run-time requirements?

Finish

fpref.indd xivfpref.indd xiv 5/4/2011 9:54:47 AM5/4/2011 9:54:47 AM

PREFACE xv

technological advances for the sake of completing the book. Such advances,
instead, are captured as links to relevant sources of information at the com-
panion web site described above.

 Many colleagues and students, primarily at Imperial College London and
Stanford University, have contributed to this book. We are sorry that we are
not able to mention them all by name here. However, a number of individuals
deserve special acknowledgment. Peter Cheung worked closely with us from
the beginning; his contributions shaped the treatment of many topics, particu-
larly those in Chapter 5 . Tobias Becker, Ray Cheung, Rob Dimond, Scott Guo,
Shay Ping Seng, David Thomas, Steve Wilton, Alice Yu, and Chi Wai Yu con-
tributed signifi cant material to various chapters. Philip Leong and Roger
Woods read the manuscript many times carefully and provided many excellent
suggestions for improvement. We also greatly benefi ted from comments by
Jeffrey Arnold, Peter Boehm, Don Bouldin, Geoffrey Brown, Patrick Hung,
Sebastian Lopez, Oskar Mencer, Kevin Rudd, and several anonymous review-
ers. We thank Kubilay Atasu, Peter Collingbourne, James Huggett, Qiwei Jin,
Adrien Le Masle, Pete Sedcole, and Tim Todman, as well as those who prefer
to remain anonymous, for their invaluable assistance.

 Last, but not least, we thank Cassie Strickland, of Wiley, and Janet Hronek,
of Toppan Best - set, for their help in the timely completion of this text.

fpref.indd xvfpref.indd xv 5/4/2011 9:54:47 AM5/4/2011 9:54:47 AM

 LIST OF ABBREVIATIONS
AND ACRONYMS

 AC Autonomous chip
 A/D Analog to digital
 AES Advanced Encryption Standard
 AG Address generation
 ALU Arithmetic and logic unit
 AMBA Advanced Microcontroller Bus Architecture
 ASIC Application - specifi c integrated circuit
 ASIP Application - specifi c instruction processor
 ASOC Autonomous system - on - chip
 AXI Advanced eXtensible Interface
 BC Branch conditional
 BIST Built - in - self - test
 BRAM Block random access memory
 BTB Branch target buffer
 CAD Computer aided design
 CBWA Copy - back write allocate cache
 CC Condition codes
 CFA Color fi lter array
 CGRA Coarse - grained reconfi gurable architecture
 CIF Common Intermediate Format
 CISC Complex instruction set computer
 CLB Confi gurable Logic Block
 CMOS Complementary metal oxide semiconductor
 CORDIC COordinate Rotation Digital Computer
 CPI Cycles per instruction
 CPU Central processing unit
 DCT Discrete Cosine Transform
 DDR Double data rate
 DES Data Encryption Standard
 3DES Triple Data Encryption Standard

xvii

flast.indd xviiflast.indd xvii 5/4/2011 9:54:46 AM5/4/2011 9:54:46 AM

xviii LIST OF ABBREVIATIONS AND ACRONYMS

 DF Data fetch
 DMA Direct memory access
 DRAM Dynamic random access memory
 DSP Digital signal processing (or processor)
 DTMR Design Target Miss Rates
 ECC Error correcting code
 eDRAM Embedded dynamic random access memory
 EX Execute
 FIFO First in fi rst out
 FIR Finite impulse response
 FO4 Fan - out of four
 FP Floating - point
 FPGA Field programmable gate array
 FPR Floating - point register
 FPU Floating - point unit
 GB Giga bytes, a billion (10 9) bytes
 GIF Graphics interface
 GPP General - purpose processor
 GPR General - purpose register
 GPS Global Positioning System
 GSM Global System for Mobile Communications
 HDTV High defi nition television
 HPC High performance computing
 IC Integrated circuit
 ICU Interconnect interface unit
 ID Instruction decode
 IF Instruction fetch
 ILP Instruction - level parallelism
 I/O Input/output
 IP Intellectual property
 IR Instruction register
 ISA Instruction set architecture
 JPEG Joint Photographic Experts Group (image compression

standard)
 Kb Kilo bits, one thousand (10 3) bits
 KB Kilo bytes, one thousand bytes
 L1 Level 1 (for cache)
 L2 Level 2 (for cache)
 LE Logic Element

flast.indd xviiiflast.indd xviii 5/4/2011 9:54:46 AM5/4/2011 9:54:46 AM

LIST OF ABBREVIATIONS AND ACRONYMS xix

 LRU Least recently used
 L/S Load - store
 LSI Large scale integration
 LUT Lookup table
 Mb Mega bits, one million (10 6) bits
 MB Mega bytes, one million bytes
 MEMS Micro electro mechanical systems
 MIMD Multiple instruction streams, multiple data streams
 MIPS Million instructions per second
 MOPS Million operations per second
 MOS Metal oxide semiconductor
 MPEG Motion Picture Experts Group (video compression standard)
 MTBF Mean time between faults
 MUX Multiplexor
 NOC Network on chip
 OCP Open Core Protocol
 OFDM Orthogonal Frequency - Division Multiplexing
 PAN Personal area network
 PCB Printed circuit board
 PLCC Plastic leaded chip carrier
 PROM Programmable read only memory
 QCIF Quarter Common Intermediate Format
 RAM Random access memory
 RAND Random
 RAW Read - after - write
 rbe Register bit equivalent
 RF Radio frequency
 RFID Radio frequency identifi cation
 RISC Reduced instruction set computer
 R/M Register - memory
 ROM Read only memory
 RTL Register transfer language
 SAD Sum of the absolute differences
 SDRAM Synchronous dynamic random access memory
 SECDED Single error correction, double error detection
 SER Soft error rate
 SIA Semiconductor Industry Association
 SIMD Single instruction stream, multiple data streams
 SMT Simultaneous multithreading

flast.indd xixflast.indd xix 5/4/2011 9:54:46 AM5/4/2011 9:54:46 AM

xx LIST OF ABBREVIATIONS AND ACRONYMS

 SOC System on chip
 SRAM Static random access memory
 TLB Translation look - aside buffer
 TMR Triple modular redundancy
 UART Universal asynchronous receiver/transmitter
 UMTS Universal mobile telecommunications system
 UV Ultraviolet
 VCI Virtual Component Interface
 VLIW Very long instruction word
 VLSI Very large scale integration
 VPU Vector processing unit
 VR Vector register
 VSIA Virtual Socket Interface Alliance
 WAR Write after read
 WAW Write after write
 WB Write back
 WTNWA Write - through cache, no write allocate

flast.indd xxflast.indd xx 5/4/2011 9:54:46 AM5/4/2011 9:54:46 AM

 1 Introduction to the
Systems Approach

 1.1 SYSTEM ARCHITECTURE: AN OVERVIEW

 The past 40 years have seen amazing advances in silicon technology and result-
ing increases in transistor density and performance. In 1966, Fairchild
Semiconductor [84] introduced a quad two input NAND gate with about 10
transistors on a die. In 2008, the Intel quad - core Itanium processor has 2 billion
transistors [226] . Figures 1.1 and 1.2 show the unrelenting advance in improv-
ing transistor density and the corresponding decrease in device cost.

 The aim of this book is to present an approach for computer system design
that exploits this enormous transistor density. In part, this is a direct extension
of studies in computer architecture and design. However, it is also a study of
system architecture and design.

 About 50 years ago, a seminal text, Systems Engineering — An Introduction
to the Design of Large - Scale Systems [111] , appeared. As the authors, H.H.
Goode and R.E. Machol, pointed out, the system ’ s view of engineering was
created by a need to deal with complexity. As then, our ability to deal with
complex design problems is greatly enhanced by computer - based tools.

 A system - on - chip (SOC) architecture is an ensemble of processors, memo-
ries, and interconnects tailored to an application domain. A simple example
of such an architecture is the Emotion Engine [147, 187, 237] for the Sony
PlayStation 2 (Figure 1.3), which has two main functions: behavior simulation
and geometry translation. This system contains three essential components: a
main processor of the reduced instruction set computer (RISC) style [118] and
two vector processing units, VPU0 and VPU1, each of which contains four
parallel processors of the single instruction, multiple data (SIMD) stream style
 [97] . We provide a brief overview of these components and our overall
approach in the next few sections.

 While the focus of the book is on the system, in order to understand the
system, one must fi rst understand the components. So, before returning to the
issue of system architecture later in this chapter, we review the components
that make up the system.

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

1

c01.indd 1c01.indd 1 5/4/2011 9:53:47 AM5/4/2011 9:53:47 AM

2 INTRODUCTION TO THE SYSTEMS APPROACH

 1.2 COMPONENTS OF THE SYSTEM: PROCESSORS, MEMORIES,
AND INTERCONNECTS

 The term architecture denotes the operational structure and the user ’ s view
of the system. Over time, it has evolved to include both the functional speci-
fi cation and the hardware implementation. The system architecture defi nes
the system - level building blocks, such as processors and memories, and the

 Figure 1.1 The increasing transistor density on a silicon die.

 1

 100

 10,000

 1e + 06

 1e + 08

 1e + 10

 1960 1970 1980 1990 2000 2010

T
ra

ns
is

to
rs

Year

Transistors per die

 Figure 1.2 The decrease of transistor cost over the years.

 1e – 07

 1e – 06

 1e – 05

 1e – 04

 0.001

 0.01

 0.1

 1.0

1970 1980 1990 2000 2010

C
os

t

Year

Cost per transistor

c01.indd 2c01.indd 2 5/4/2011 9:53:47 AM5/4/2011 9:53:47 AM

COMPONENTS OF THE SYSTEM 3

interconnection between them. The processor architecture determines the
processor ’ s instruction set, the associated programming model, its detailed
implementation, which may include hidden registers, branch prediction cir-
cuits and specifi c details concerning the ALU (arithmetic logic unit). The
implementation of a processor is also known as microarchitecture (Figure 1.4).

 The system designer has a programmer ’ s or user ’ s view of the system com-
ponents, the system view of memory, the variety of specialized processors, and

 Figure 1.3 High - level functional view of a system - on - chip: the Emotion Engine of the
Sony PlayStation 2 [147, 187] .

4 FP SIMD
processor
(VPU1)

Tasks synchronized with
the rendering engine

(geometry translation)

BufferBuffer Buffer

Main
processor

(RISC core)

4 FP SIMD
processor
(VPU0)

Tasks synchronized with
the main processor

(behavior simulation)

Rendering
engine

DMA (direct memory
access) path

External memory

Arbiter

+

 Figure 1.4 The processor architecture and its implementation.

Architecture

Implementation

Data Paths Control

Registers

ALU

Memory

Hidden
Registers

Branch
Prediction

Microinstructions

Instruction Set

c01.indd 3c01.indd 3 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

www.allitebooks.com

http://www.allitebooks.org

4 INTRODUCTION TO THE SYSTEMS APPROACH

their interconnection. The next sections cover basic components: the processor
architecture, the memory, and the bus or interconnect architecture.

 Figure 1.5 illustrates some of the basic elements of an SOC system. These
include a number of heterogeneous processors interconnected to one or more
memory elements with possibly an array of reconfi gurable logic. Frequently,
the SOC also has analog circuitry for managing sensor data and analog - to -
 digital conversion, or to support wireless data transmission.

 As an example, an SOC for a smart phone would need to support, in addi-
tion to audio input and output capabilities for a traditional phone, Internet
access functions and multimedia facilities for video communication, document
processing, and entertainment such as games and movies. A possible confi gura-
tion for the elements in Figure 1.5 would have the core processor being imple-
mented by several ARM Cortex - A9 processors for application processing, and
the media processor being implemented by a Mali - 400MP graphics processor
and a Mali - VE video engine. The system components and custom circuitry
would interface with peripherals such as the camera, the screen, and the wire-
less communication unit. The elements would be connected together by AXI
(Advanced eXtensible Interface) interconnects.

 If all the elements cannot be contained on a single chip, the implementation
is probably best referred to as a system on a board, but often is still called a
SOC. What distinguishes a system on a board (or chip) from the conventional
general - purpose computer plus memory on a board is the specifi c nature of
the design target. The application is assumed to be known and specifi ed so
that the elements of the system can be selected, sized, and evaluated during
the design process. The emphasis on selecting, parameterizing, and confi guring
system components tailored to a target application distinguishes a system
architect from a computer architect.

 Figure 1.5 A basic SOC system model.

Media
Processor

Core
Processor

Vector
Coprocessor

Interconnects

Memory
Analog and

Custom
Circuitry

System
Components

c01.indd 4c01.indd 4 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

HARDWARE AND SOFTWARE 5

 In this chapter, we primarily look at the higher - level defi nition of the
processor — the programmer ’ s view or the instruction set architecture (ISA),
the basics of the processor microarchitecture, memory hierarchies, and the
interconnection structure. In later chapters, we shall study in more detail the
implementation issues for these elements.

 1.3 HARDWARE AND SOFTWARE: PROGRAMMABILITY
VERSUS PERFORMANCE

 A fundamental decision in SOC design is to choose which components in the
system are to be implemented in hardware and in software. The major benefi ts
and drawbacks of hardware and software implementations are summarized in
Table 1.1 .

 A software implementation is usually executed on a general - purpose pro-
cessor (GPP), which interprets instructions at run time. This architecture offers
fl exibility and adaptability, and provides a way of sharing resources among
different applications; however, the hardware implementation of the ISA is
generally slower and more power hungry than implementing the correspond-
ing function directly in hardware without the overhead of fetching and decod-
ing instructions.

 Most software developers use high - level languages and tools that enhance
productivity, such as program development environments, optimizing com-
pilers, and performance profi lers. In contrast, the direct implementation of
applications in hardware results in custom application - specifi c integrated
circuits (ASICs), which often provides high performance at the expense of
programmability — and hence fl exibility, productivity, and cost.

 Given that hardware and software have complementary features, many
SOC designs aim to combine the individual benefi ts of the two. The obvious
method is to implement the performance - critical parts of the application in
hardware, and the rest in software. For instance, if 90% of the software execu-
tion time of an application is spent on 10% of the source code, up to a 10 - fold
speedup is achievable if that 10% of the code is effi ciently implemented in
hardware. We shall make use of this observation to customize designs in
Chapter 6 .

 Custom ASIC hardware and software on GPPs can be seen as two extremes
in the technology spectrum with different trade - offs in programmability and

 TABLE 1.1 Benefi ts and Drawbacks of Software and Hardware Implementations

 Benefi ts Drawbacks

 Hardware Fast, low power consumption Infl exible, unadaptable, complex
to build and test

 Software Flexible, adaptable, simple to
build and test

 Slow, high power consumption

c01.indd 5c01.indd 5 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

6 INTRODUCTION TO THE SYSTEMS APPROACH

performance; there are various technologies that lie between these two
extremes (Figure 1.6). The two more well - known ones are application - specifi c
instruction processors (ASIPs) and fi eld - programmable gate arrays (FPGAs).

 An ASIP is a processor with an instruction set customized for a specifi c
application or domain. Custom instructions effi ciently implemented in hard-
ware are often integrated into a base processor with a basic instruction set.
This capability often improves upon the conventional approach of using
standard instruction sets to fulfi ll the same task while preserving its fl exibil-
ity. Chapters 6 and 7 explore further some of the issues involving custom
instructions.

 An FPGA typically contains an array of computation units, memories, and
their interconnections, and all three are usually programmable in the fi eld by
application builders. FPGA technology often offers a good compromise: It is
faster than software while being more fl exible and having shorter development
times than custom ASIC hardware implementations; like GPPs, they are
offered as off - the - shelf devices that can be programmed without going through
chip fabrication. Because of the growing demand for reducing the time to
market and the increasing cost of chip fabrication, FPGAs are becoming more
popular for implementing digital designs.

 Most commercial FPGAs contain an array of fi ne - grained logic blocks, each
only a few bits wide. It is also possible to have the following:

 Figure 1.6 A simplifi ed technology comparison: programmability versus performance.
GPP, general - purpose processor; CGRA, coarse - grained reconfi gurable architecture.

FPGA

Custom
ASIC

Structured
ASIC

CGRA

ASIP

DSP

GPP

Programmability

P
ea

k
pe

rf
or

m
an

ce
: n

um
be

r
of

 o
pe

ra
tio

ns
 p

er
 w

at
t

Low High

c01.indd 6c01.indd 6 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

PROCESSOR ARCHITECTURES 7

 • Coarse - Grained Reconfi gurable Architecture (CGRA) . It contains logic
blocks that process byte - wide or multiple byte - wide data, which can form
building blocks of datapaths.

 • Structured ASIC . It allows application builders to customize the resources
before fabrication. While it offers performance close to that of ASIC, the
need for chip fabrication can be an issue.

 • Digital Signal Processors (DSPs) . The organization and instruction set
for these devices are optimized for digital signal processing applications.
Like microprocessors, they have a fi xed hardware architecture that cannot
be reconfi gured.

 Figure 1.6 compares these technologies in terms of programmability and per-
formance. Chapters 6 – 8 provide further information about some of these
technologies.

 1.4 PROCESSOR ARCHITECTURES

 Typically, processors are characterized either by their application or by their
architecture (or structure), as shown in Tables 1.2 and 1.3 . The requirements
space of an application is often large, and there is a range of implementation
options. Thus, it is usually diffi cult to associate a particular architecture with
a particular application. In addition, some architectures combine different
implementation approaches as seen in the PlayStation example of Section
 1.1 . There, the graphics processor consists of a four - element SIMD array of
vector processing functional units (FUs). Other SOC implementations consist
of multiprocessors using very long instruction word (VLIW) and/or supersca-
lar processors.

 TABLE 1.2 Processor Examples as Identifi ed by Function

 Processor Type Application

 Graphics processing unit (GPU) 3 - D graphics; rendering, shading, texture
 Digital signal processor (DSP) Generic, sometimes used with wireless
 Media processor Video and audio signal processing
 Network processor Routing, buffering

 TABLE 1.3 Processor Examples as Identifi ed by Architecture

 Processor Type Architecture/Implementation Approach

 SIMD Single instruction applied to multiple functional units (processors)
 Vector (VP) Single instruction applied to multiple pipelined registers
 VLIW Multiple instructions issued each cycle under compiler control
 Superscalar Multiple instructions issued each cycle under hardware control

c01.indd 7c01.indd 7 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

8 INTRODUCTION TO THE SYSTEMS APPROACH

 From the programmer ’ s point of view, sequential processors execute
one instruction at a time. However, many processors have the capability to
execute several instructions concurrently in a manner that is transparent to
the programmer, through techniques such as pipelining, multiple execution
units, and multiple cores. Pipelining is a powerful technique that is used
in almost all current processor implementations. Techniques to extract and
exploit the inherent parallelism in the code at compile time or run time are
also widely used.

 Exploiting program parallelism is one of the most important goals in com-
puter architecture.

 Instruction - level parallelism (ILP) means that multiple operations can be
executed in parallel within a program. ILP may be achieved with hardware,
compiler, or operating system techniques. At the loop level, consecutive loop
iterations are ideal candidates for parallel execution, provided that there is no
data dependency between subsequent loop iterations. Next, there is parallel-
ism available at the procedure level, which depends largely on the algorithms
used in the program. Finally, multiple independent programs can execute in
parallel.

 Different computer architectures have been built to exploit this inherent
parallelism. In general, a computer architecture consists of one or more inter-
connected processor elements (PEs) that operate concurrently, solving a single
overall problem.

 1.4.1 Processor: A Functional View

 Table 1.4 shows different SOC designs and the processor used in each design.
For these examples, we can characterize them as general purpose, or special
purpose with support for gaming or signal processing applications. This func-
tional view tells little about the underlying hardware implementation. Indeed,
several quite different architectural approaches could implement the same
generic function. The graphics function, for example, requires shading, render-
ing, and texturing functions as well as perhaps a video function. Depending

 TABLE 1.4 Processor Models for Different SOC Examples

 SOC Application Base ISA Processor Description

 Freescale e600 [101] DSP PowerPC Superscalar with
vector extension

 ClearSpeed
CSX600 [59]

 General Proprietary ISA Array processor of 96
processing elements

 PlayStation 2
 [147, 187, 237]

 Gaming MIPS Pipelined with two
vector coprocessors

 ARM VFP11 [23] General ARM Confi gurable vector
coprocessor

c01.indd 8c01.indd 8 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

PROCESSOR ARCHITECTURES 9

on the relative importance of these functions and the resolution of the created
images, we could have radically different architectural implementations.

 1.4.2 Processor: An Architectural View

 The architectural view of the system describes the actual implementation at
least in a broad - brush way. For sophisticated architectural approaches, more
detail is required to understand the complete implementation.

 Simple Sequential Processor Sequential processors directly implement the
sequential execution model. These processors process instructions sequentially
from the instruction stream. The next instruction is not processed until all
execution for the current instruction is complete and its results have been
committed.

 The semantics of the instruction determines that a sequence of actions must
be performed to produce the specifi ed result (Figure 1.7). These actions can
be overlapped, but the result must appear in the specifi ed serial order. These
actions include

 1. fetching the instruction into the instruction register (IF),
 2. decoding the opcode of the instruction (ID),
 3. generating the address in memory of any data item residing there (AG),
 4. fetching data operands into executable registers (DF),
 5. executing the specifi ed operation (EX), and
 6. writing back the result to the register fi le (WB).

 A simple sequential processor model is shown in Figure 1.8 . During execution,
a sequential processor executes one or more operations per clock cycle from
the instruction stream. An instruction is a container that represents the small-
est execution packet managed explicitly by the processor. One or more opera-
tions are contained within an instruction. The distinction between instructions
and operations is crucial to distinguish between processor behaviors. Scalar
and superscalar processors consume one or more instructions per cycle, where
each instruction contains a single operation.

 Although conceptually simple, executing each instruction sequentially has
signifi cant performance drawbacks: A considerable amount of time is spent
on overhead and not on actual execution. Thus, the simplicity of directly imple-
menting the sequential execution model has signifi cant performance costs.

 Figure 1.7 Instruction execution sequence.

IF DFAGID WBEX

Instruction

c01.indd 9c01.indd 9 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

10 INTRODUCTION TO THE SYSTEMS APPROACH

 Pipelined Processor Pipelining is a straightforward approach to exploiting
parallelism that is based on concurrently performing different phases (instruc-
tion fetch, decode, execution, etc.) of processing an instruction. Pipelining
assumes that these phases are independent between different operations and
can be overlapped — when this condition does not hold, the processor stalls
the downstream phases to enforce the dependency. Thus, multiple operations
can be processed simultaneously with each operation at a different phase of
its processing. Figure 1.9 illustrates the instruction timing in a pipelined proces-
sor, assuming that the instructions are independent.

 For a simple pipelined machine, there is only one operation in each phase at
any given time; thus, one operation is being fetched (IF); one operation is being
decoded (ID); one operation is generating an address (AG); one operation is
accessing operands (DF); one operation is in execution (EX); and one opera-
tion is storing results (WB). Figure 1.10 illustrates the general form of a pipe-
lined processor. The most rigid form of a pipeline, sometimes called the static
pipeline, requires the processor to go through all stages or phases of the pipe-
line whether required by a particular instruction or not. A dynamic pipeline
allows the bypassing of one or more pipeline stages, depending on the require-
ments of the instruction. The more complex dynamic pipelines allow instruc-
tions to complete out of (sequential) order, or even to initiate out of order. The
out - of - order processors must ensure that the sequential consistency of the
program is preserved. Table 1.5 shows some SOC pipelined “ soft ” processors.

 Figure 1.9 Instruction timing in a pipelined processor.

IF DFAGID WBEX

Instruction #1

IF DFAGID WBEX

Instruction #2

IF DFAGID WBEX

Instruction #3

IF DFAGID WBEX

Instruction #4

Time

 Figure 1.8 Sequential processor model.

Memory/L2

Instruction
Cache

Data
Cache

Control Unit
Data

Registers
Decode Unit

Functional
Unit

c01.indd 10c01.indd 10 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

PROCESSOR ARCHITECTURES 11

 ILP While pipelining does not necessarily lead to executing multiple instruc-
tions at exactly the same time, there are other techniques that do. These tech-
niques may use some combination of static scheduling and dynamic analysis
to perform concurrently the actual evaluation phase of several different opera-
tions, potentially yielding an execution rate of greater than one operation every
cycle. Since historically most instructions consist of only a single operation, this
kind of parallelism has been named ILP (instruction level parallelism).

 Two architectures that exploit ILP are superscalar and VLIW processors.
They use different techniques to achieve execution rates greater than one
operation per cycle. A superscalar processor dynamically examines the instruc-
tion stream to determine which operations are independent and can be exe-
cuted. A VLIW processor relies on the compiler to analyze the available
operations (OP) and to schedule independent operations into wide instruc-
tion words, which then execute these operations in parallel with no further
analysis.

 Figure 1.11 shows the instruction timing of a pipelined superscalar or VLIW
processor executing two instructions per cycle. In this case, all the instructions
are independent so that they can be executed in parallel. The next two sections
describe these two architectures in more detail.

 Figure 1.10 Pipelined processor model.

Memory/L2

Instruction
Cache

Data
Cache

Control Unit
Data

Registers
Decode Unit

Integer FU

Floating-Point
FU

 TABLE 1.5 SOC Examples Using Pipelined Soft Processors [177, 178] . A Soft
Processor Is Implemented with FPGAs or Similar Reconfi gurable Technology

 Processor
 Word

Length (bit)
 Pipeline
Stages

 I/D - Cache *
Total (KB)

 Floating -
 Point Unit

(FPU)
 Usual
Target

 Xilinx MicroBlaze 32 3 0 – 64 Optional FPGA
 Altera Nios II fast 32 6 0 – 64 — FPGA
 ARC 600 [19] 16/32 5 0 – 32 Optional ASIC
 Tensilica Xtensa LX 16/24 5 – 7 0 – 32 Optional ASIC
 Cambridge XAP3a 16/32 2 — — ASIC

 * Means confi gurable I - cache and/or D - cache.

c01.indd 11c01.indd 11 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

12 INTRODUCTION TO THE SYSTEMS APPROACH

 Superscalar Processors Dynamic pipelined processors remain limited to
executing a single operation per cycle by virtue of their scalar nature. This
limitation can be avoided with the addition of multiple functional units and a
dynamic scheduler to process more than one instruction per cycle (Figure
 1.12). These superscalar processors [135] can achieve execution rates of several
instructions per cycle (usually limited to two, but more is possible depending
on the application). The most signifi cant advantage of a superscalar processor
is that processing multiple instructions per cycle is done transparently to the

 Figure 1.11 Instruction timing in a pipelined ILP processor.

IF DFAGID WBEX

Instruction #2

IF DFAGID WBEX

Instruction #3

IF DFAGID WBEX

Instruction #5

IF DFAGID WBEX

Instruction #6

Time

IF DFAGID WBEX

IF DFAGID WBEX

Instruction #4

Instruction #1

 Figure 1.12 Superscalar processor model.

Memory/L2

Instruction
Cache

Data
Cache

Control Unit
Data

Registers
Predecode

FU0

FU1

FU2

. . . .

Reorder
Buffer

Rename
BufferDecode Unit

Dispatch
Stack

c01.indd 12c01.indd 12 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

PROCESSOR ARCHITECTURES 13

user, and that it can provide binary code compatibility while achieving better
performance.

 Compared to a dynamic pipelined processor, a superscalar processor adds
a scheduling instruction window that analyzes multiple instructions from the
instruction stream in each cycle. Although processed in parallel, these instruc-
tions are treated in the same manner as in a pipelined processor. Before an
instruction is issued for execution, dependencies between the instruction and
its prior instructions must be checked by hardware.

 Because of the complexity of the dynamic scheduling logic, high - performance
superscalar processors are limited to processing four to six instructions per
cycle. Although superscalar processors can exploit ILP from the dynamic
instruction stream, exploiting higher degrees of parallelism requires other
approaches.

 VLIW Processors In contrast to dynamic analyses in hardware to determine
which operations can be executed in parallel, VLIW processors (Figure 1.13)
rely on static analyses in the compiler.

 VLIW processors are thus less complex than superscalar processors and
have the potential for higher performance. A VLIW processor executes opera-
tions from statically scheduled instructions that contain multiple independent
operations. Because the control complexity of a VLIW processor is not signifi -
cantly greater than that of a scalar processor, the improved performance
comes without the complexity penalties.

 VLIW processors rely on the static analyses performed by the compiler and
are unable to take advantage of any dynamic execution characteristics. For
applications that can be scheduled statically to use the processor resources
effectively, a simple VLIW implementation results in high performance.
Unfortunately, not all applications can be effectively scheduled statically. In
many applications, execution does not proceed exactly along the path defi ned

 Figure 1.13 VLIW processor model.

Memory/L2

Instruction
Cache

Data
Cache

Decode Unit
Data

Registers

FU0

FU1

FU2

. . . .

VLIW

Control Unit

c01.indd 13c01.indd 13 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

www.allitebooks.com

http://www.allitebooks.org

14 INTRODUCTION TO THE SYSTEMS APPROACH

by the code scheduler in the compiler. Two classes of execution variations can
arise and affect the scheduled execution behavior:

 1. delayed results from operations whose latency differs from the assumed
latency scheduled by the compiler and

 2. interruptions from exceptions or interrupts, which change the execution
path to a completely different and unanticipated code schedule.

 Although stalling the processor can control a delayed result, this solution can
result in signifi cant performance penalties. The most common execution delay
is a data cache miss. Many VLIW processors avoid all situations that can result
in a delay by avoiding data caches and by assuming worst - case latencies for
operations. However, when there is insuffi cient parallelism to hide the exposed
worst - case operation latency, the instruction schedule has many incompletely
fi lled or empty instructions, resulting in poor performance.

 Tables 1.6 and 1.7 describe some representative superscalar and VLIW
processors .

 SIMD Architectures: Array and Vector Processors The SIMD class of pro-
cessor architecture includes both array and vector processors. The SIMD pro-
cessor is a natural response to the use of certain regular data structures, such as
vectors and matrices. From the view of an assembly - level programmer, pro-
gramming SIMD architecture appears to be very similar to programming a
simple processor except that some operations perform computations on aggre-
gate data. Since these regular structures are widely used in scientifi c program-
ming, the SIMD processor has been very successful in these environments.

 The two popular types of SIMD processor are the array processor and the
vector processor. They differ both in their implementations and in their data

 TABLE 1.6 SOC Examples Using Superscalar Processors

 Device
 Number of

Functional Units Issue Width Base Instruction Set

 MIPS 74K Core [183] 4 2 MIPS32
 Infi neon TriCore2 [129] 4 3 RISC
 Freescale e600 [101] 6 3 PowerPC

 TABLE 1.7 SOC Examples Using VLIW Processors

 Device Number of Functional Units Issue Width

 Fujitsu MB93555A [103] 8 8
 TI TMS320C6713B [243] 8 8
 CEVA - X1620 [54] 30 8
 Philips Nexperia PNX1700 [199] 30 5

c01.indd 14c01.indd 14 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

PROCESSOR ARCHITECTURES 15

organizations. An array processor consists of many interconnected processor
elements, each having their own local memory space. A vector processor con-
sists of a single processor that references a global memory space and has
special function units that operate on vectors.

 An array processor or a vector processor can be obtained by extending the
instruction set to an otherwise conventional machine. The extended instruc-
tions enable control over special resources in the processor, or in some sort
of coprocessor. The purpose of such extensions is to enable increased perfor-
mance on special applications.

 Array Processors The array processor (Figure 1.14) is a set of parallel proces-
sor elements connected via one or more networks, possibly including local and
global interelement communications and control communications. Processor
elements operate in lockstep in response to a single broadcast instruction from
a control processor (SIMD). Each processor element (PE) has its own private
memory, and data are distributed across the elements in a regular fashion that
is dependent on both the actual structure of the data and also the computa-
tions to be performed on the data. Direct access to global memory or another
processor element ’ s local memory is expensive, so intermediate values are
propagated through the array through local interprocessor connections. This
requires that the data be distributed carefully so that the routing required to
propagate these values is simple and regular. It is sometimes easier to dupli-
cate data values and computations than it is to support a complex or irregular
routing of data between processor elements.

 Since instructions are broadcast, there is no means local to a processor
element of altering the fl ow of the instruction stream; however, individual
processor elements can conditionally disable instructions based on local status
information — these processor elements are idle when this condition occurs.
The actual instruction stream consists of more than a fi xed stream of opera-
tions. An array processor is typically coupled to a general - purpose control
processor that provides both scalar operations as well as array operations that
are broadcast to all processor elements in the array. The control processor
performs the scalar sections of the application, interfaces with the outside

 Figure 1.14 Array processor model.

Memory/L2

Instruction
Cache

Control Unit

PE0 PE1 PE2

Decode Unit

MEM/REG MEM/REG MEM/REG

Communication method (e.g., bus)

c01.indd 15c01.indd 15 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

16 INTRODUCTION TO THE SYSTEMS APPROACH

world, and controls the fl ow of execution; the array processor performs the
array sections of the application as directed by the control processor.

 A suitable application for use on an array processor has several key char-
acteristics: a signifi cant amount of data that have a regular structure, computa-
tions on the data that are uniformly applied to many or all elements of the
data set, and simple and regular patterns relating the computations and the
data. An example of an application that has these characteristics is the solution
of the Navier – Stokes equations, although any application that has signifi cant
matrix computations is likely to benefi t from the concurrent capabilities of an
array processor.

 Table 1.8 contains several array processor examples. The ClearSpeed pro-
cessor is an example of an array processor chip that is directed at signal pro-
cessing applications.

 Vector Processors A vector processor is a single processor that resembles a
traditional single stream processor, except that some of the function units (and
registers) operate on vectors — sequences of data values that are seemingly
operated on as a single entity. These function units are deeply pipelined and
have high clock rates. While the vector pipelines often have higher latencies
compared with scalar function units, the rapid delivery of the input vector data
elements, together with the high clock rates, results in a signifi cant throughput.

 Modern vector processors require that vectors be explicitly loaded into
special vector registers and stored back into memory — the same course that
modern scalar processors use for similar reasons. Vector processors have
several features that enable them to achieve high performance. One feature
is the ability to concurrently load and store values between the vector register
fi le and the main memory while performing computations on values in the
vector register fi le. This is an important feature since the limited length of
vector registers requires that vectors longer than the register length would be
processed in segments — a technique called strip mining. Not being able to
overlap memory accesses and computations would pose a signifi cant perfor-
mance bottleneck.

 Most vector processors support a form of result bypassing — in this case
called chaining — that allows a follow - on computation to commence as soon
as the fi rst value is available from the preceding computation. Thus, instead of
waiting for the entire vector to be processed, the follow - on computation can
be signifi cantly overlapped with the preceding computation that it is depen-
dent on. Sequential computations can be effi ciently compounded to behave as

 TABLE 1.8 SOC Examples Based on Array Processors

 Device Processors per Control Unit Data Size (bit)

 ClearSpeed CSX600 [59] 96 32
 Atsana J2211 [174] Confi gurable 16/32
 Xelerator X10q [257] 200 4

c01.indd 16c01.indd 16 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

PROCESSOR ARCHITECTURES 17

if they were a single operation, with a total latency equal to the latency of the
fi rst operation with the pipeline and chaining latencies of the remaining opera-
tions, but none of the start - up overhead that would be incurred without chain-
ing. For example, division could be synthesized by chaining a reciprocal with
a multiply operation. Chaining typically works for the results of load opera-
tions as well as normal computations.

 A typical vector processor confi guration (Figure 1.15) consists of a vector
register fi le, one vector addition unit, one vector multiplication unit, and one
vector reciprocal unit (used in conjunction with the vector multiplication unit
to perform division); the vector register fi le contains multiple vector registers
(elements).

 Table 1.9 shows examples of vector processors. The IBM mainframes have
vector instructions (and support hardware) as an option for scientifi c users.

 Multiprocessors Multiple processors can cooperatively execute to solve a
single problem by using some form of interconnection for sharing results. In

 Figure 1.15 Vector processor model.

Memory/L2

Instruction
Cache

Data
Cache

Control Unit
Integer

Registers
FU0

FU1

FU2

. . . .

Vector
Registers

Decode Unit

64

 TABLE 1.9 SOC Examples Using Vector Processor

 Device Vector Function Units Vector Registers

 Freescale e600 [101] 4 32 Confi gurable
 Motorola RSVP [58] 4 (64 bit partitionable at 16 bits) 2 streams (each 2 from,

1 to) memory
 ARM VFP11 [23] 3 (64 bit partitionable to 32 bits) 4 × 8, 32 bit

 Confi gurable implies a pool of N registers that can be confi gured as p register sets of N/p
elements.

c01.indd 17c01.indd 17 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

18 INTRODUCTION TO THE SYSTEMS APPROACH

this confi guration, each processor executes completely independently, although
most applications require some form of synchronization during execution to
pass information and data between processors. Since the multiple processors
share memory and execute separate program tasks (MIMD [multiple instruc-
tion stream, multiple data stream]), their proper implementation is signifi -
cantly more complex then the array processor. Most confi gurations are
homogeneous with all processor elements being identical, although this is not
a requirement. Table 1.10 shows examples of SOC multiprocessors.

 The interconnection network in the multiprocessor passes data between
processor elements and synchronizes the independent execution streams
between processor elements. When the memory of the processor is distributed
across all processors and only the local processor element has access to it, all
data sharing is performed explicitly using messages, and all synchronization is
handled within the message system. When the memory of the processor is
shared across all processor elements, synchronization is more of a problem —
 certainly, messages can be used through the memory system to pass data and
information between processor elements, but this is not necessarily the most
effective use of the system.

 When communications between processor elements are performed through
a shared memory address space — either global or distributed between proces-
sor elements (called distributed shared memory to distinguish it from distrib-
uted memory) — there are two signifi cant problems that arise. The fi rst is
maintaining memory consistency: the programmer - visible ordering effects on
memory references, both within a processor element and between different
processor elements. This problem is usually solved through a combination of
hardware and software techniques. The second is cache coherency — the
programmer - invisible mechanism to ensure that all processor elements see the
same value for a given memory location. This problem is usually solved exclu-
sively through hardware techniques.

 The primary characteristic of a multiprocessor system is the nature of the
memory address space. If each processor element has its own address space
(distributed memory), the only means of communication between processor
elements is through message passing. If the address space is shared (shared
memory), communication is through the memory system.

 TABLE 1.10 SOC Multiprocessors and Multithreaded Processors

 SOC
 Machanick

 [162]
 IBM Cell

 [141]
 Philips

PNX8500 [79]
 Lehtoranta

 [155]

 Number of CPUs 4 1 2 4
 Threads 1 Many 1 1
 Vector units 0 8 0 0
 Application Various Various HDTV MPEG decode
 Comment Proposal only Also called

Viper 2
 Soft processors

c01.indd 18c01.indd 18 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

MEMORY AND ADDRESSING 19

 The implementation of a distributed memory machine is far easier than the
implementation of a shared memory machine when memory consistency and
cache coherency are taken into account. However, programming a distributed
memory processor can be much more diffi cult since the applications must be
written to exploit and not to be limited by the use of message passing as the
only form of communication between processor elements. On the other hand,
despite the problems associated with maintaining consistency and coherency,
programming a shared memory processor can take advantage of whatever
communications paradigm is appropriate for a given communications require-
ment, and can be much easier to program.

 1.5 MEMORY AND ADDRESSING

 SOC applications vary signifi cantly in memory requirements. In one case, the
memory structure can be as simple as the program residing entirely in an on -
 chip read - only memory (ROM), with the data in on - chip RAM. In another
case, the memory system might support an elaborate operating system requir-
ing a large off - chip memory (system on a board), with a memory management
unit and cache hierarchy.

 Why not simply include memory with the processor on the die? This has
many attractions:

 1. It improves the accessibility of memory, improving both memory access
time and bandwidth.

 2. It reduces the need for large cache.
 3. It improves performance for memory - intensive applications.

 But there are problems. The fi rst problem is that DRAM memory process
technology differs from standard microprocessor process technology, and
would cause some sacrifi ce in achievable bit density. The second problem is
more serious: If memory were restricted to the processor die, its size would be
correspondingly limited. Applications that require very large real memory
space would be crippled. Thus, the conventional processor die model has
evolved (Figure 1.16) to implement multiple robust homogeneous processors
sharing the higher levels of a two - or three - level cache structure with the main
memory off - die, on its own multidie module.

 From a design complexity point of view, this has the advantage of being a
 “ universal ” solution: One implementation fi ts all applications, although not
necessarily equally well. So, while a great deal of design effort is required for
such an implementation, the production quantities can be large enough to
justify the costs.

 An alternative to this approach is clear. For specifi c applications, whose
memory size can be bounded, we can implement an integrated memory SOC.
This concept is illustrated in Figure 1.17 (also recall Figure 1.3).

c01.indd 19c01.indd 19 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

20 INTRODUCTION TO THE SYSTEMS APPROACH

 A related but separate question is: Does the application require virtual
memory (mapping disk space onto memory) or is all real memory suitable?
We look at the requirement for virtual memory addressing in the next section.

 Finally, the memory can be centralized or distributed. Even here, the
memory can appear to the programmer as a single (centralized) shared
memory, even though it is implemented in several distributed modules. Sev-
eral memory considerations are listed in Table 1.11 .

 The memory system comprises the physical storage elements in the memory
hierarchy. These elements include those specifi ed by the instruction set (reg-
isters, main memory, and disk sectors) as well as those elements that are largely
transparent to the user ’ s program (buffer registers, cache, and page mapped
virtual memory).

 1.5.1 SOC Memory Examples

 Table 1.12 shows a number of different SOC designs and their cache and
memory confi guration. It is important for SOC designers to consider whether
to put RAM and ROM on - die or off - die. Table 1.13 shows various examples
of SOC embedded memory macro cell.

 Figure 1.16 Processors with memory off - die.

Processor Multilevel
Cache

Bus
Control DRAM

Processor Die

 Figure 1.17 System on a chip: processors and memory.

Processor 1 Processor n...

Embedded memory ROM

System on die

c01.indd 20c01.indd 20 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

MEMORY AND ADDRESSING 21

 1.5.2 Addressing: The Architecture of Memory

 The user ’ s view of memory primarily consists of the addressing facilities avail-
able to the programmer. Some of these facilities are available to the applica-
tion programmer and some to the operating system programmer. Virtual
memory enables programs requiring larger storage than the physical memory
to run and allows separation of address spaces to protect unauthorized access
to memory regions when executing multiple application programs. When
virtual addressing facilities are properly implemented and programmed,
memory can be effi ciently and securely accessed.

 Virtual memory is often supported by a memory management unit.
Conceptually, the physical memory address is determined by a sequence of (at
least) three steps:

 TABLE 1.11 SOC Memory Considerations

 Issue Implementation Comment

 Memory placement On - die Limited and fi xed size
 Off - die System on a board, slow

access, limited bandwidth

 Addressing Real addressing Limited size, simple OS
 Virtual addressing Much more complex, require

TLB, in - order instruction
execution support

 Arrangement (as programmed
for multiple processors)

 Shared memory Requires hardware support
 Message passing Additional programming

 Arrangement (as
implemented)

 Centralized Limited by chip
considerations

 Distributed Can be clustered with a
processor or other
memory modules

 TABLE 1.12 Memory Hierarchy for Different SOC Examples

 SOC Application Cache Size
 On - Die/
Off - Die

 Real/
Virtual

 NetSilicon NET + 40
 [184]

 Networking 4 - KB I - cache,
4 - KB D - cache

 Off Real

 NetSilicon NS9775 [185] Printing 8 - KB I - cache,
4 - KB D - cache

 Off Virtual

 NXP LH7A404 [186] Networking 16 - KB I - cache,
8 KB D - Cache

 On Virtual

 Motorola RSVP [58] Multimedia Tile buffer memory Off Real

c01.indd 21c01.indd 21 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

22 INTRODUCTION TO THE SYSTEMS APPROACH

 1. The application produces a process address . This, together with the
 process or user ID , defi nes the virtual address : virtual address = offset +
 (program) base + index , where the offset is specifi ed in the instruction
while the base and index values are in specifi ed registers.

 2. Since multiple processes must cooperate in the same memory space, the
process addresses must be coordinated and relocated. This is typically
done by a segment table. Upper bits of the virtual address are used to
address a segment table, which has a (predetermined) base and bound
values for the process, resulting in a system address : system address = virtual
address + (process) base , where the system address must be less than the
 bound .

 3. Virtual versus real. For many SOC applications (and all generic systems),
the memory space exceeds the available (real) implemented memory.
Here the memory space is implemented on disk and only the recently
used regions (pages) are brought into memory. The available pages are
located by a page table. The upper bits of the system address access a
page table. If the data for this page have been loaded from the disk, the
location in memory will be provided as the upper address bits of the
 “ real ” or physical memory address. The lower bits of the real address are
the same as the corresponding lower bits of the virtual address.

 Usually, the tables (segment and page) performing address translation are in
memory, and a mechanism for the translation called the translation lookaside
buffer (TLB) must be used to speed up this translation. A TLB is a simple
register system, usually consisting of between 64 and 256 entries, that saves
recent address translations for reuse. A small number of (hashed) virtual
address bits address the TLB. The TLB entry has both the real address and
the complete virtual address (and ID). If the virtual address matches, the real
address from the TLB can be used. Otherwise, a not - in - TLB event occurs and
a complete translation must occur (Figure 1.18).

 1.5.3 Memory for SOC Operating System

 One of the most critical decisions (or requirements) concerning an SOC design
is the selection of the operating system and its memory management function-

 TABLE 1.13 Example SOC Embedded Memory Macro Cell (See Chapter 4 for
the Discussion on Cell Types)

 Vendor Cell Type (Typical) SOC User (Typical)

 Virage Logic 6T (SRAM) SigmaTel/ARM
 ATMOS 1T (eDRAM) Philips
 IBM 1T (eDRAM) IBM

 Note: T refers to the number of transistors in a 1 - bit cell.

c01.indd 22c01.indd 22 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

MEMORY AND ADDRESSING 23

ality. Of primary interest to the designer is the requirement for virtual memory.
If the system can be restricted to a real memory (physically, not virtually
addressed) and the size of the memory can be contained to the order of 10 s
of megabytes, the system can be implemented as a true system on a chip (all
memory on - die). The alternative, virtual memory, is often slower and signifi -
cantly more expensive, requiring a complex memory management unit. Table
 1.14 illustrates some current SOC designs and their operating systems.

 Figure 1.18 Virtual - to - real address mapping with a TLB bypass.

Virtual Address

User ID

Byte in a
Page

Page
Address

Segment
Table

TLB

Page Table

Physical Address

 TABLE 1.14 Operating Systems for SOC Designs

 OS Vendor Memory Model

 uClinux Open source Real
 VxWorks (RTOS) [254] Wind River Real
 Windows CE Microsoft Virtual
 Nucleus (RTOS) [175] Mentor Graphics Real
 MQX (RTOS) [83] ARC Real

c01.indd 23c01.indd 23 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

www.allitebooks.com

http://www.allitebooks.org

24 INTRODUCTION TO THE SYSTEMS APPROACH

 Of course, fast real memory designs come at the price of functionality. The
user has limited ways of creating new processes and of expanding the applica-
tion base of the systems.

 1.6 SYSTEM - LEVEL INTERCONNECTION

 SOC technology typically relies on the interconnection of predesigned circuit
modules (known as intellectual property [IP] blocks) to form a complete
system, which can be integrated onto a single chip. In this way, the design task
is raised from a circuit level to a system level. Central to the system - level
performance and the reliability of the fi nished product is the method of inter-
connection used. A well - designed interconnection scheme should have vigor-
ous and effi cient communication protocols, unambiguously defi ned as a
published standard. This facilitates interoperability between IP blocks designed
by different people from different organizations and encourages design reuse.
It should provide effi cient communication between different modules maxi-
mizing the degree of parallelism achieved.

 SOC interconnect methods can be classifi ed into two main approaches:
buses and network - on - chip, as illustrated in Figures 1.19 and 1.20 .

 1.6.1 Bus - Based Approach

 With the bus - based approach, IP blocks are designed to conform to published
bus standards (such as ARM ’ s Advanced Microcontroller Bus Architecture

 Figure 1.19 SOC system - level interconnection: bus - based approach.

CPU 1 CPU 2 Memory

High-Speed Bus

DSP Bus Bridge

Low-Speed Bus

c01.indd 24c01.indd 24 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

SYSTEM-LEVEL INTERCONNECTION 25

[AMBA] [21] or IBM ’ s CoreConnect [124]). Communication between modules
is achieved through the sharing of the physical connections of address, data,
and control bus signals. This is a common method used for SOC system - level
interconnect. Usually, two or more buses are employed in a system, organized
in a hierarchical fashion. To optimize system - level performance and cost, the
bus closest to the CPU has the highest bandwidth, and the bus farthest from
the CPU has the lowest bandwidth.

 1.6.2 Network - on - Chip Approach

 A network - on - chip system consists of an array of switches, either dynamically
switched as in a crossbar or statically switched as in a mesh.

 The crossbar approach uses asynchronous channels to connect synchronous
modules that can operate at different clock frequencies. This approach has the
advantage of higher throughput than a bus - based system while making inte-
gration of a system with multiple clock domains easier.

 In a simple statically switched network (Figure 1.20), each node contains
processing logic forming the core, and its own routing logic. The interconnect
scheme is based on a two - dimensional mesh topology. All communications
between switches are conducted through data packets, routed through the
router interface circuit within each node. Since the interconnections between
switches have a fi xed distance, interconnect - related problems such as wire
delay and cross talk noise are much reduced. Table 1.15 lists some interconnect
examples used in SOC designs.

 Figure 1.20 SOC system - level interconnection: network - on - chip approach.

CPU 1

Routing logic

CPU 2

MemoryMemory

DSP I/O controller

c01.indd 25c01.indd 25 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

26 INTRODUCTION TO THE SYSTEMS APPROACH

 1.7 AN APPROACH FOR SOC DESIGN

 Two important ideas in a design process are fi guring out the requirements and
specifi cations, and iterating through different stages of design toward an effi -
cient and effective completion.

 1.7.1 Requirements and Specifi cations

 Requirements and specifi cations are fundamental concepts in any system
design situation. There must be a thorough understanding of both before a
design can begin. They are useful at the beginning and at the end of the design
process: at the beginning, to clarify what needs to be achieved; and at the end,
as a reference against which the completed design can be evaluated.

 The system requirements are the largely externally generated criteria for
the system. They may come from competition, from sales insights, from cus-
tomer requests, from product profi tability analysis, or from a combination.
Requirements are rarely succinct or defi nitive of anything about the system.
Indeed, requirements can frequently be unrealistic: “ I want it fast, I want it
cheap, and I want it now! ”

 It is important for the designer to analyze carefully the requirements
expressions, and to spend suffi cient time in understanding the market situation
to determine all the factors expressed in the requirements and the priorities
those factors imply. Some of the factors the designer considers in determining
requirements include

 • compatibility with previous designs or published standards,
 • reuse of previous designs,
 • customer requests/complaints,
 • sales reports,
 • cost analysis,
 • competitive equipment analysis, and
 • trouble reports (reliability) of previous products and competitive

products.

 TABLE 1.15 Interconnect Models for Different SOC Examples

 SOC Application Interconnect Type

 ClearSpeed CSX600 [59] High Performance
Computing

 ClearConnect bus

 NetSilicon NET + 40 [184] Networking Custom bus
 NXP LH7A404 [186] Networking AMBA bus
 Intel PXA27x [132] Mobile/wireless PXBus
 Matsushita i - Platform [176] Media Internal connect bus
 Emulex InSpeed SOC320 [130] Switching Crossbar switch
 MultiNOC [172] Multiprocessing system Network - on - chip

c01.indd 26c01.indd 26 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

AN APPROACH FOR SOC DESIGN 27

 The designer can also introduce new requirements based on new technology,
new ideas, or new materials that have not been used in a similar systems
environment.

 The system specifi cations are the quantifi ed and prioritized criteria for the
target system design. The designer takes the requirements and must produce
a succinct and defi nitive set of statements about the eventual system. The
designer may have no idea of what the eventual system will look like, but
usually, there is some “ straw man ” design in mind that seems to provide a
feasibility framework to the specifi cation. In any effective design process, it
would be surprising if the fi nal design signifi cantly resembles the straw man
design.

 The specifi cation does not complete any part of the design process; it initial-
izes the process. Now the design can begin with the selection of components
and approaches, the study of alternatives, and the optimization of the parts of
the system.

 1.7.2 Design Iteration

 Design is always an iterative process. So, the obvious question is how to get
the very fi rst, initial design. This is the design that we can then iterate through
and optimize according to the design criteria. For our purposes, we defi ne
several types of designs based on the stage of design effort.

 Initial Design This is the fi rst design that shows promise in meeting the key
requirements, while other performance and cost criteria are not considered.
For instance, processor or memory or input/output (I/O) should be sized to
meet high - priority real - time constraints. Promising components and their
parameters are selected and analyzed to provide an understanding of their
expected idealized performance and cost. Idealized does not mean ideal; it
means a simplifi ed model of the expected area occupied and computational
or data bandwidth capability. It is usually a simple linear model of perfor-
mance, such as the expected million instructions per second (MIPS) rate of a
processor.

 Optimized Design Once the base performance (or area) requirements are
met and the base functionality is ensured, then the goal is to minimize the cost
(area) and/or the power consumption or the design effort required to complete
the design. This is the iterative step of the process. The fi rst steps of this process
use higher - fi delity tools (simulations, trial layouts, etc.) to ensure that the
initial design actually does satisfy the design specifi cations and requirements.
The later steps refi ne, complete, and improve the design according to the
design criteria.

 Figure 1.21 shows the steps in creating an initial design. This design is
detailed enough to create a component view of the design and a corresponding
projection of the component ’ s expected performance. This projection is, at this

c01.indd 27c01.indd 27 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

28 INTRODUCTION TO THE SYSTEMS APPROACH

step, necessarily simplifi ed and referenced to here as the idealized view of the
component (Figure 1.22).

 System performance is limited by the component with the least capability.
The other components can usually be modeled as simply presenting a delay
to the critical component. In a good design, the most expensive component is
the one that limits the performance of the system. The system ’ s ability to
process transactions should closely follow that of the limiting component.
Typically, this is the processor or memory complex.

 Usually, designs are driven by either (1) a specifi c real - time requirement,
after which functionality and cost become important, or (2) functionality and/
or throughput under cost – performance constraints. In case (1), the real - time
constraint is provided by I/O consideration, which the processor – memory –
 interconnect system must meet. The I/O system then determines the perfor-
mance, and any excess capability of the remainder of the system is usually used
to add functionality to the system. In case (2), the object is to improve task

 Figure 1.21 The SOC initial design process.

z

 Figure 1.22 Idealized SOC components.

Idealized
I/O

Idealized interconnect
(fixed access time and

ample bandwidth)

Idealized memory
(fixed access time)

P1 Pn

n idealized processors (P) selected by function

...

c01.indd 28c01.indd 28 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

SYSTEM ARCHITECTURE AND COMPLEXITY 29

throughput while minimizing the cost. Throughput is limited by the most con-
strained component, so the designer must fully understand the trade - offs at
that point. There is more fl exibility in these designs, and correspondingly more
options in determining the fi nal design.

 The purpose of this book is to provide an approach for determining the
initial design by

 (a) describing the range of components — processors, memories, and
interconnects — that are available in building an SOC;

 (b) providing examples of requirements for various domains of applica-
tions, such as data compression and encryption; and

 (c) illustrating how an initial design, or a reported implementation, can
show promise in meeting specifi c requirements.

 We explain this approach in Chapters 3 – 5 on a component by component basis
to cover (a), with Chapter 6 covering techniques for system confi guration and
customization. Chapter 7 contains application studies to cover (b) and (c).

 As mentioned earlier, the designer must optimize each component for pro-
cessing and storage. This optimization process requires extensive simulation.
We provide access to basic simulation tools through our associated web site.

 1.8 SYSTEM ARCHITECTURE AND COMPLEXITY

 The basic difference between processor architecture and system architecture
is that the system adds another layer of complexity, and the complexity of
these systems limits the cost savings. Historically, the notion of a computer is
a single processor plus a memory. As long as this notion is fi xed (within broad
tolerances), implementing that processor on one or more silicon die does not
change the design complexity. Once die densities enable a scalar processor to
fi t on a chip, the complexity issue changes.

 Suppose it takes about 100,000 transistors to implement a 32 - bit pipelined
processor with a small fi rst - level cache. Let this be a processor unit of design
complexity.

 As long as we need to implement the 100,000 transistor processors, addi-
tional transistor density on the die does not much affect design complexity.
More transistors per die, while increasing die complexity, simplify the problem
of interconnecting multiple chips that make up the processor. Once the unit
processor is implemented on a single die, the design complexity issue changes.
As transistor densities signifi cantly improve after this point, there are obvious
processor extension strategies to improve performance:

 1. Additional Cache . Here we add cache storage and, as large caches have
slower access times, a second - level cache.

c01.indd 29c01.indd 29 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

30 INTRODUCTION TO THE SYSTEMS APPROACH

 2. A More Advanced Processor . We implement a superscalar or a VLIW
processor that executes more than one instruction each cycle. Additionally,
we speed up the execution units that affect the critical path delay, espe-
cially the fl oating - point execution times.

 3. Multiple Processors . Now we implement multiple (superscalar) proces-
sors and their associated multilevel caches. This leaves us limited only by
the memory access times and bandwidth.

 The result of the above is a signifi cantly greater design complexity (see Figure
 1.23). Instead of the 100,000 transistor processors, our advanced processor has
millions of transistors; the multilevel caches are also complex, as is the need
to coordinate (synchronize) the multiple processors, since they require a con-
sistent image of the contents of memory.

 The obvious way to manage this complexity is to reuse designs. So, reusing
several simpler processor designs implemented on a die is preferable to a new,
more advanced, single processor. This is especially true if we can select specifi c
processor designs suited to particular parts of an application. For this to work,
we also need a robust interconnection mechanism to access the various proces-
sors and memory.

 So, when an application is well specifi ed, the system - on - a - chip approach
includes

 1. multiple (usually) heterogeneous processors, each specialized for specifi c
parts of the application;

 2. the main memory with (often) ROM for partial program storage;
 3. a relatively simple, small (single - level) cache structure or buffering

schemes associated with each processor; and
 4. a bus or switching mechanism for communications.

 Figure 1.23 Complexity of design.

 0.1

 1.0

 10.0

 100.0

 1000.0

 10,000.0

 1980 1985 1990 1995 2000 2005 2010

P
ro

ce
ss

or
s

(1
 =

 1
0

M
 tr

an
si

st
or

s)

Year

Small, limited

Robust

Multiple, SOC

Processor equivalents/die

c01.indd 30c01.indd 30 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

PRODUCT ECONOMICS AND IMPLICATIONS FOR SOC 31

 Even when the SOC approach is technically attractive, it has economic limita-
tions and implications. Given the processor and interconnect complexity, if
we limit the usefulness of an implementation to a particular application, we
have to either (1) ensure that there is a large market for the product or (2)
fi nd methods for reducing the design cost through design reuse or similar
techniques.

 1.9 PRODUCT ECONOMICS AND IMPLICATIONS FOR SOC

 1.9.1 Factors Affecting Product Costs

 The basic cost and profi tability of a product depend on many factors: its tech-
nical appeal, its cost, the market size, and the effect the product has on future
products. The issue of cost goes well beyond the product ’ s manufacturing cost.

 There are fi xed and variable costs, as shown in Figure 1.24 . Indeed, the
engineering costs, frequently the largest of the fi xed costs, are expended before
any revenue can be realized from sales (Figure 1.25).

 Depending on the complexity, designing a new chip requires a development
effort of anywhere between 12 and 30 months before the fi rst manufactured
unit can be shipped. Even a moderately sized project may require up to 30 or
more hardware and software engineers, CAD design, and support personnel.
For instance, the paper describing the Sony Emotion Engine has 22 authors
 [147, 187] . However, their salary and indirect costs might represent only a
fraction of the total development cost.

 Nonengineering fi xed costs include manufacturing start - up costs, inven-
tory costs, initial marketing and sales costs, and administrative overhead. The

 Figure 1.24 Project cost components.

Product cost

Manufacturing
costs

Engineering

Marketing,
sales,

administration

Fixed
costs

Variable costs

c01.indd 31c01.indd 31 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

32 INTRODUCTION TO THE SYSTEMS APPROACH

marketing costs include obvious items such as market research, strategic
market planning, pricing studies, and competitive analysis, and so on, as well
as sales planning and advertising costs. The concept of general and administra-
tive (G & A) “ overhead ” includes a proportional share of the “ front offi ce ” —
 the executive management, personnel department (human resources), fi nancial
offi ce, and other costs.

 Later, in the beginning of the manufacturing process, unit cost remains high.
It is not until many units are shipped that the marginal manufacturing cost
can approach the ultimate manufacturing costs.

 After this, manufacturing produces units at a cost increasingly approaching
the ultimate manufacturing cost. Still, during this time, there is a continuing
development effort focused on extending the life of the product and broaden-
ing its market applicability.

 Will the product make a profi t? From the preceding discussion, it is easy to
see how sensitive the cost is to the product life and to the number of products
shipped. If market forces or the competition is aggressive and produces rival
systems with expanded performance, the product life may be shortened and
fewer units may be delivered than expected. This could be disastrous even if
the ultimate manufacturing cost is reached; there may not be enough units to
amortize the fi xed costs and ensure profi t. On the other hand, if competition

 Figure 1.25 Engineering (development) costs.

Chip
design

CAD
support

Software

Verify and
test

Mask
costs

Capital
equipment

CAD
programs

Labor
costs

Fixed
project
costs

Engineering
costs

c01.indd 32c01.indd 32 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

PRODUCT ECONOMICS AND IMPLICATIONS FOR SOC 33

is not aggressive and the follow - on development team is successful in enhanc-
ing the product and continuing its appeal in the marketplace, the product can
become one of those jewels in a company ’ s repertoire, bringing fame to the
designers and smiles to the stockholders.

 1.9.2 Modeling Product Economics and Technology Complexity:
The Lesson for SOC

 To put all this into perspective, consider a general model of a product ’ s average
unit cost (as distinct from its ultimate manufactured cost):

 unit cost project cost number of units= () /().

 The product cost is simply the sum of all the fi xed and variable costs. We rep-
resent the fi xed cost as a constant, K f . It is also clear that the variable costs
are of the form K v × n , where n is the number of units. However, there are
certain ongoing engineering, sales, and marketing costs that are related to n
but are not necessarily linear.

 Let us assume that we can represent this effect as a term that starts as 0.1
of K f and then slowly increases with n , say, n3 . So, we get

 Product cost = + × × + ×K K n K nf f v0 1 3. . (1.1)

 We can use Equation 1.1 to illustrate the effects of advancing technology on
product design. We compare a design done in 1995 with a more complex 2005
design, which has a much lower production cost. With K f fi xed, Figure 1.26
shows the expected decrease in unit cost as the volume of 1995 products pro-
duced, n , increases. But the fi gure also shows that, if we increase the fi xed costs

 Figure 1.26 The effect of volume on unit cost.

 0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 100,000 2000 1000 500

C
os

t p
er

 u
ni

t

Units

1995
2005

c01.indd 33c01.indd 33 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

www.allitebooks.com

http://www.allitebooks.org

34 INTRODUCTION TO THE SYSTEMS APPROACH

(more complex designs) by 10 - fold, even if we cut the unit costs (K v) by the
same amount, the 2005 unit product costs remain high until much larger
volumes are reached. This might not be a problem for a “ universal ” processor
design with a mass market, but it can be a challenge for those SOC designs
targeted at specifi c applications, which may have limited production volume;
a more specifi c design will be more effi cient for a particular application, at the
expense of generality, which affects volume.

 1.10 DEALING WITH DESIGN COMPLEXITY

 As design cost and complexity increase, there is a basic trade - off between the
design optimization of the physical product and the cost of the design. This is
shown in Figure 1.27 . The balance point depends on n , the number of units
expected to be produced. There are several approaches to the design produc-
tivity problem. The most basic approaches are purchasing predesigned com-
ponents and utilizing reconfi gurable devices.

 1.10.1 Buying IP

 If the goal is to produce a design optimized in the use of the technology, the
fi xed costs will be high, so the result must be broadly applicable. The alterna-
tive to this is to “ reuse ” the existing design. These may be suboptimal for all
the nuances of a particular process technology, but the savings in design time
and effort can be signifi cant. The purchase of such designs from third parties
is referred to as the sale of IP .

 The use of IP reduces the risk in design development: It is intended to
reduce the design costs and improves the time to market. The cost of an IP
usually depends on the volume. Hence, the adoption of an IP approach tends
to reduce K f at the expense of increasing K v in Equation 1.1 .

 Figure 1.27 The design effort must balance volume.

Basic
physical

trade-offs
Design time
and effort

Balance point depends on
n, the number of units.

c01.indd 34c01.indd 34 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

DEALING WITH DESIGN COMPLEXITY 35

 Specialized SOC designs often use several different types of processors.
Noncritical and specialized processors are purchased as IP and are integrated
into the design. For example, the ARM7TDMA is a popular licensed 32 - bit
processor or “ core ” design. Generally, processor cores can be designed and
licensed in a number of ways as shown in Table 1.16 .

 Hard IPs are physical - level designs that use all features available in a
process technology, including circuit design and physical layout. Many analog
IPs and mixed - signal IPs (such as SRAM, phase - locked loop) are distributed
in this format to ensure optimal timing and other design characteristics. Firm
IPs are gate - level designs that include device sizing but are applicable to many
fab facilities with different processor technologies. Soft IPs are logic - level
designs in synthesizable format and are directly applicable to standard cell
technologies. This approach allows users to adapt the source code to fi t their
design over a broad range of situations.

 Clearly, the more optimized designs from the manufacturer are usually less
customizable by the user, but they often have better physical, cost – performance
trade - offs. There are potential performance – cost – power overheads in delaying
the customization process, since the design procedure and even the product
technology itself would have to support user customization. Moreover, cus-
tomizing a design may also necessitate reverifi cation to ensure its correctness.
Current technologies, such as the reconfi guration technology described below,
aim to maximize the advantages of late customization, such as risk reduction
and improvement of time to market. At the same time, they aim to minimize
the associated disadvantages, for instance, by introducing hardwired, nonpro-
grammable blocks to support common operations such as integer multiplica-
tion; such hardwired blocks are more effi cient than reconfi gurable resources,
but they are not as fl exible.

 1.10.2 Reconfi guration

 The term reconfi guration refers to a number of approaches that enable the
same circuitry to be reused in many applications. A reconfi gurable device can
also be thought of as a type of purchased IP in which the cost and risk of
fabrication are eliminated, while the support for user customization would

 TABLE 1.16 Types of Processor Cores Available as IP

 Type of Design Design Level Description

 Customized hard IP Physical level IP used in fi xed process, optimized
 Synthesized fi rm IP Gate level IP used in multiple processes but

some optimization possible
 Synthesizable soft IP Register transfer

level (RTL)
 IP used in any process, nonoptimized

c01.indd 35c01.indd 35 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

36 INTRODUCTION TO THE SYSTEMS APPROACH

raise the unit cost. In other words, the adoption of reconfi gurable devices
would tend to reduce K f at the expense of increasing K v in Equation 1.1 .

 The best - known example of this approach is FPGA technology. An FPGA
consists of a large array of cells. Each cell consists of a small lookup table, a
fl ip - fl op, and perhaps an output selector. The cells are interconnected by pro-
grammable connections, enabling fl exible routing across the array (Figure
 1.28). Any logic function can be implemented on the FPGA by confi guring
the lookup tables and the interconnections. Since an array can consist of over
100,000 cells, it can easily defi ne a processor. An obvious disadvantage of the
FPGA - based soft processor implementation is its performance – cost – power.
The approach has many advantages, however:

 1. Circuit fabrication costs increase exponentially with time; hence, it would
not be economical to fabricate a circuit unless it can support a large
volume. FPGAs themselves are general - purpose devices and are expected
to be produced in large volume.

 2. The design time for FPGA implementations is low compared to design-
ing a chip for fabrication. There are extensive libraries of designs avail-
able for use. This is particularly important for designs for which a short
time to market is critical.

 Figure 1.28 The FPGA array.

Logic
Cell

Logic
Cell

Switch
Box

Logic
Cell

Switch
Box

Logic
Cell

Logic
Cell

Logic
Cell

Switch
Box

Switch
Box

Logic
Cell

Logic
Cell

Logic
Cell

c01.indd 36c01.indd 36 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

CONCLUSIONS 37

 3. FPGAs can be used for rapid prototyping of circuits that would be fab-
ricated. In this approach, one or more FPGAs are confi gured according
to the proposed design to emulate it, as a form of “ in - circuit emulation. ”
Programs are run and design errors can be detected.

 4. The reconfi gurability of FPGAs enables in - system upgrade, which helps
to increase the time in market of a product; this capability is especially
valuable for applications where new functions or new standards tend to
emerge rapidly.

 5. The FPGA can be confi gured to suit a portion of a task and then recon-
fi gured for the remainder of the task (called “ run - time reconfi guration ”).
This enables specialized functional units for certain computations to
adapt to environmental changes.

 6. In a number of compute - intensive applications, FPGAs can be confi g-
ured as a very effi cient systolic computational array. Since each FPGA
cell has one or more storage elements, computations can be pipelined
with very fi ne granularity. This can provide an enormous computational
bandwidth, resulting in impressive speedup on selected applications.
Some devices, such as the Stretch S5 software confi gurable processor,
couple a conventional processor with an FPGA array [25] .

 Reconfi guration and FPGAs play an important part in effi cient SOC design.
We shall explore them in more detail in the next chapter.

 1.11 CONCLUSIONS

 Building modern processors or targeted application systems is a complex
undertaking. The great advantages offered by the technology — hundreds of
millions of transistors on a die — comes at a price, not the silicon itself, but the
enormous design effort that is required to implement and support the product.

 There are many aspects of SOC design, such as high - level descriptions,
compilation technologies, and design fl ow, that are not mentioned in this
chapter. Some of these will be covered later.

 In the following chapters, we shall fi rst take a closer look at basic trade - offs
in the technology: time, area, power, and reconfi gurability. Then, we shall look
at some of the details that make up the system components: the processor, the
cache, and the memory, and the bus or switch interconnecting them. Next, we
cover design and implementation issues from the perspective of customization
and confi gurability. This is followed by a discussion of SOC design fl ow and
application studies. Finally, some challenges facing future SOC technology are
presented.

 The goal of the text is to help system designers identify the most effi cient
design choices, together with the mechanisms to manage the design complexity
by exploiting the advances in technology.

c01.indd 37c01.indd 37 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

38 INTRODUCTION TO THE SYSTEMS APPROACH

 1.12 PROBLEM SET

 1. Suppose the TLB in Figure 1.18 had 256 entries (directly addressed). If
the virtual address is 32 bits, the real memory is 512 MB and the page size
is 4 KB, show the possible layout of a TLB entry. What is the purpose of
the user ID in Figure 1.18 and what is the consequence of ignoring it?

 2. Discuss possible arrangement of addressing the TLB.

 3. Find an actual VLIW instruction format. Describe the layout and the con-
straints on the program in using the applications in a single instruction.

 4. Find an actual vector instruction for vector ADD. Describe the instruction
layout. Repeat for vector load and vector store. Is overlapping of vector
instruction execution permitted? Explain.

 5. For the pipelined processor in Figure 1.9 , suppose instruction #3 sets the
CC (condition code that can be tested by following a branch instruction)
at the end of WB and instruction #4 is the condition branch. Without
additional hardware support, what is the delay in executing instruction #5
if the branch is taken and if the branch is not taken?

 6. Suppose we have four different processors; each does 25% of the applica-
tion. If we improve two of the processors by 10 times, what would be the
overall application speedup?

 7. Suppose we have four different processors and all but one are totally
limited by the bus. If we speed up the bus by three times and assume the
processor performance also scales, what is the application speedup?

 8. For the pipelined processor in Figure 1.9 , assume the cache miss rate is
0.05 per instruction execution and the total cache miss delay is 20 cycles.
For this processor, what is the achievable cycle per instruction (CPI)?
Ignore other delays, such as branch delays.

 9. Design validation is a very important SOC design consideration. Find
several approaches specifi c to SOC designs. Evaluate each from the per-
spective of a small SOC vendor.

 10. Find (from the Internet) two new VLIW DSPs. Determine the maximum
number of operations issued in each cycle and the makeup of the opera-
tions (number of integer, fl oating point, branch, etc.). What is the stated
maximum performance (operations per second)? Find out how this
number was computed.

 11. Find (from the Internet) two new, large FPGA parts. Determine the
number of logic blocks (confi gurable logic blocks [CLBs]), the minimum
cycle time, and the maximum allowable power consumption. What soft
processors are supported?

c01.indd 38c01.indd 38 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

 2 Chip Basics: Time, Area, Power,
Reliability, and Confi gurability

 2.1 INTRODUCTION

 The trade - off between cost and performance is fundamental to any system
design. Different designs result either from the selection of different points on
the cost – performance continuum or from differing assumptions about the
nature of cost or performance.

 The driving force in design innovation is the rapid advance in technology.
The Semiconductor Industry Association (SIA) regularly makes projections,
called the SIA road map, of technology advances, which become the basis and
assumptions for new chip designs. While the projections change, the advance
has been and is expected to continue to be formidable. Table 2.1 is a summary
of the roadmap projections for the microprocessors with the highest perfor-
mance introduced in a particular year [133] . With the advances in lithography,
the transistors are getting smaller. The minimum width of the transistor gates
is defi ned by the process technology. Table 2.1 refers to process technology
generations in terms of nanometers; older generations are referred to in terms
of microns (μ m). So the previous generations are 65 and 90 nm, and 0.13 and
0.18 μ m.

 2.1.1 Design Trade - Offs

 With increases in chip frequency and especially in transistor density, the
designer must be able to fi nd the best set of trade - offs in an environment of
rapidly changing technology. Already the chip frequency projections have
been called into question because of the resulting power requirements.

 In making basic design trade - offs, we have fi ve different considerations. The
fi rst is time , which includes partitioning instructions into events or cycles, basic
pipelining mechanisms used in speeding up the instruction execution, and
cycle time as a parameter for optimizing program execution. Second, we
discuss area . The cost or area occupied by a particular feature is another
important aspect of the architectural trade - off. Third, power consumption

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

39

c02.indd 39c02.indd 39 5/4/2011 10:35:10 AM5/4/2011 10:35:10 AM

40 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

affects both performance and implementation. Instruction sets that require
more implementation area are less valuable than instruction sets that use
less — unless, of course, they can provide commensurately better performance.
Long - term cost – performance ratio is the basis for most design decisions.
Fourth, reliability comes into play to cope with deep submicron effects. Fifth,
 confi gurability provides an additional opportunity for designers to trade off
recurring and nonrecurring design costs.

 TABLE 2.1 Technology Roadmap Projections

 Year 2010 2013 2016
 Technology generation (nm) 45 32 22
 Wafer size, diameter (cm) 30 45 45
 Defect density (per cm 2) 0.14 0.14 0.14
 μ P die size (cm 2) 1.9 2.6 2.6
 Chip frequency (GHz) 5.9 7.3 9.2
 Million transistors per square centimeter 1203 3403 6806
 Max power (W) high performance 146 149 130

 FIVE BIG ISSUES IN SYSTEM - ON - CHIP (SOC) DESIGN

 Four of the issues are obvious. Die area (manufacturing cost) and per-
formance (heavily infl uenced by cycle time) are important basic SOC
design considerations. Power consumption has also come to the fore as
a design limitation. As technology shrinks feature sizes, reliability will
dominate as a design consideration.

 The fi fth issue, confi gurability, is less obvious as an immediate design
consideration. However, as we saw in Chapter 1 , in SOC design, the non-
recurring design costs can dominate the total project cost. Making a
design fl exible through reconfi gurability is an important issue to broaden
the market — and reduce the per part cost — for SOC design.

 Confi gurability enables programmability in the fi eld and can be seen
to provide features that are “ standardized in manufacturing while cus-
tomized in application. ” The cyclical nature of the integrated circuit
industry between standardization and customization has been observed
by Makimoto [163] and is known as Makimoto ’ s wave, as shown in
Figure 2.1 .

 In terms of complexity, various trade - offs are possible. For instance, at a fi xed
feature size, area can be traded off for performance (expressed in term of
execution time, T). Very large scale integration (VLSI) complexity theorists
have shown that an A × T n bound exists for processor designs, where n usually
falls between 1 and 2 [247] . It is also possible to trade off time T for power P

c02.indd 40c02.indd 40 5/4/2011 10:35:10 AM5/4/2011 10:35:10 AM

INTRODUCTION 41

 Figure 2.1 Makimoto ’ s wave.

1957

1967 1977 1987 1997 2007 2017

Standardization

Customization

Standard
Discrete

Custom LSIs
for TVs,

Calculators

Memories
Microprocessor

ASICs

Field
Programmability

Standardized in
Manufacturing
but Customized
in Application System on

Chip

with a P × T 3 bound. Figure 2.2 shows the possible trade - off involving area,
time, and power in a processor design [98] . Embedded and high - end processors
operate in different design regions of this three - dimensional space. The power
and area axes are typically optimized for embedded processors, whereas the
time axis is typically for high - end processors.

 This chapter deals with design issues in making these trade - offs. It begins
with the issue of time. The ultimate measure of performance is the time
required to complete required system tasks and functions. This depends on
two factors: fi rst, the organization and size of the processors and memories,

 Figure 2.2 Processor design trade - offs.

Power (P)

Area (A)

Time (T)

P × T 3 = constant

A × T n = constant

High-performance
server processor

design

Cost and power-sensitive
client processor design

c02.indd 41c02.indd 41 5/4/2011 10:35:10 AM5/4/2011 10:35:10 AM

42 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

and the second, the basic frequency or clock rate at which these operate. We
deal with the fi rst factor in the next two chapters. In this chapter, we only look
at the basic processor cycle — specifi cally, how much delay is incurred in a cycle
and how instruction execution is partitioned into cycles. As almost all modern
processors are pipelined, we look at the cycle time of pipelined processors and
the partitioning of instruction execution into cycles. We next introduce a cost
(area) model to assist in making manufacturing cost trade - offs. This model is
restricted to on - chip or processor - type trade - offs, but it illustrates a type of
system design model. As mentioned in Chapter 1 , die cost is often but a small
part of the total cost, but an understanding of it remains essential. Power is
primarily determined by cycle time and the overall size of the design and its
components. It has become a major constraint in most SOC designs. Finally,
we look at reliability and reconfi guration and their impact on cost and
performance.

 2.1.2 Requirements and Specifi cations

 The fi ve basic SOC trade - offs provide a framework for analyzing SOC require-
ments so that these can be translated into specifi cations. Cost requirements
coupled with market size can be translated into die cost and process technol-
ogy. Requirements for wearables and weight limits translate into bounds on
power or energy consumption, and limitations on clock frequency, which can
affect heat dissipation. Any one of the trade - off criteria can, for a particular
design, have the highest priority. Consider some examples:

 • High - performance systems will optimize time at the expense of cost and
power (and probably confi gurability, too).

 • Low - cost systems will optimize die cost, reconfi gurability, and design
reuse (and perhaps low power).

 • Wearable systems stress low power, as the power supply determines the
system weight. Since such systems, such as cell phones, frequently have
real - time constraints, its performance cannot be ignored.

 • Embedded systems in planes and other safety - critical applications would
stress reliability, with performance and design lifetime (confi gurability)
being important secondary considerations.

 • Gaming systems would stress cost — especially production cost — and, sec-
ondarily, performance, with reliability being a lesser consideration.

 In considering requirements, the SOC designer should carefully consider each
trade - off item to derive corresponding specifi cations. This chapter, when
coupled with the essential understanding of the system components, which we
will see in later chapters, provides the elements for SOC requirements transla-
tion into specifi cations and the beginning of the study of optimization of design
alternatives.

c02.indd 42c02.indd 42 5/4/2011 10:35:10 AM5/4/2011 10:35:10 AM

CYCLE TIME 43

 2.2 CYCLE TIME

 The notion of time receives considerable attention from processor designers.
It is the basic measure of performance; however, breaking actions into cycles
and reducing both cycle count and cycle times are important but inexact
sciences.

 The way actions are partitioned into cycles is important. A common problem
is having unanticipated “ extra ” cycles required by a basic action such as a
cache miss. Overall, there is only a limited theoretical basis for cycle selection
and the resultant partitioning of instruction execution into cycles. Much design
is done on a pragmatic basis.

 In this section, we look at some techniques for instruction partitioning, that
is, techniques for breaking up the instruction execution time into manageable
and fi xed time cycles. In a pipelined processor, data fl ow through stages much
as items fl ow on an assembly line. At the end of each stage, a result is passed
on to a subsequent stage and new data enter. Within limits, the shorter the
cycle time, the more productive the pipeline. The partitioning process has its
own overhead, however, and very short cycle times become dominated by this
overhead. Simple cycle time models can optimize the number of pipeline
stages.

 THE PIPELINED PROCESSOR

 At one time, the concept of pipelining in a processor was treated as an
advanced processor design technique. For the past several decades, pipe-
lining has been an integral part of any processor or, indeed, controller
design. It is a technique that has become a basic consideration in defi ning
cycle time and execution time in a processor or system.

 The trade - off between cycle time and number of pipeline stages is
treated in the section on optimum pipeline .

 2.2.1 Defi ning a Cycle

 A cycle (of the clock) is the basic time unit for processing information. In
a synchronous system, the clock rate is a fi xed value and the cycle time is
determined by fi nding the maximum time to accomplish a frequent operation
in the machine, such as an add or register data transfer. This time must be
suffi cient for data to be stored into a specifi ed destination register (Figure
 2.3). Less frequent operations that require more time to complete require
multiple cycles.

 A cycle begins when the instruction decoder (based on the current instruc-
tion opcode) specifi es the values for the registers in the system. These control

c02.indd 43c02.indd 43 5/4/2011 10:35:10 AM5/4/2011 10:35:10 AM

www.allitebooks.com

http://www.allitebooks.org

44 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

values connect the output of a specifi ed register to another register or an adder
or similar object. This allows data from source registers to propagate through
designated combinatorial logic into the destination register. Finally, after a
suitable setup time, all registers are sampled by an edge or pulse produced by
the clocking system.

 In a synchronous system, the cycle time is determined by the sum of the
worst - case time for each step or action within the cycle. However, the clock
itself may not arrive at the anticipated time (due to propagation or loading
effects). We call the maximum deviation from the expected time of clock
arrival the (uncontrolled) clock skew.

 In an asynchronous system, the cycle time is simply determined by the
completion of an event or operation. A completion signal is generated, which
then allows the next operation to begin. Asynchronous design is not generally
used within pipelined processors because of the completion signal overhead
and pipeline timing constraints.

 2.2.2 Optimum Pipeline

 A basic optimization for the pipeline processor designer is the partitioning of
the pipeline into concurrently operating segments. A greater number of seg-
ments allow a higher maximum speedup. However, each new segment carries
clocking overhead with it, which can adversely affect performance.

 If we ignore the problem of fi tting actions into an integer number of cycles,
we can derive an optimal cycle time, Δ t , and hence the level of segmentation
for a simple pipelined processor.

 Assume that the total time to execute an instruction without pipeline seg-
ments is T nanoseconds (Figure 2.4 a). The problem is to fi nd the optimum
number of segments S to allow clocking and pipelining. The ideal delay through
a segment is T / S = T seg . Associated with each segment is partitioning overhead.
This clock overhead time C (in nanoseconds), includes clock skew and any
register requirements for data setup and hold.

 Figure 2.3 Possible sequence of actions within a cycle.

Control lines active

Data to ALU

Result to destination

Data stored in register

Sample signal

Skew

c02.indd 44c02.indd 44 5/4/2011 10:35:10 AM5/4/2011 10:35:10 AM

CYCLE TIME 45

 Now, the actual cycle time (Figure 2.4 c) of the pipelined processor is the
ideal cycle time T / S plus the overhead:

 Δt
T
S

C= + .

 In our idealized pipelined processor, if there are no code delays, it processes
instructions at the rate of one per cycle, but delays can occur (primarily due
to incorrectly guessed or unexpected branches). Suppose these interruptions
occur with frequency b and have the effect of invalidating the S − 1 instruc-
tions prepared to enter, or already in, the pipeline (representing a “ worst - case ”
disruption, Figure 2.4 d). There are many different types of pipeline interrup-
tion, each with a different effect, but this simple model illustrates the effect of
disruptions on performance.

 Considering pipeline interruption, the performance of the processor is

 Performance =
+ −()

1
1 1S b

 instructions per cycle.

 The throughput (G) can be defi ned as

G
t

S b T S C

=

=
+ −()

⎛
⎝⎜

⎞
⎠⎟

×
() +

⎛
⎝⎜

performance
instructions/ns

Δ
1

1 1
1

/
⎞⎞
⎠⎟

.

 If we fi nd the S for which

 Figure 2.4 Optimal pipelining. (a) Unclocked instruction execution time, T . (b) T is
partitioned into S segments. Each segment requires C clocking overhead. (c) Clocking
overhead and its effect on cycle time, T / S . (d) Effect of a pipeline disruption (or a stall
in the pipeline).

(a)

(b)

(c)

(d)

Disruption

Cycles delay Restart

Result available

Clock overhead
(c) plus skewClock overhead

C

S – 1

C

T/S

T/S

T

c02.indd 45c02.indd 45 5/4/2011 10:35:10 AM5/4/2011 10:35:10 AM

46 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

 dG
dS

= 0,

 we can fi nd S opt , the optimum number of pipeline segments:

 S
b T

bC
opt = −()1

.

 Once an initial S has been determined, the total instruction execution latency
(T instr) is

 T T S T SC S T S tinstr seg(clocking overhead) or (C)= + × = + + =, .Δ

 Finally, we compute the throughput performance G in (million) instructions
per second.

 Suppose T = 12.0 ns and b = 0.2, C = 0.5 ns. Then, S opt = 10 stages.
 This S opt as determined is simplistic — functional units cannot be arbitrarily

divided, integer cycle boundaries must be observed, and so on. Still, determin-
ing S opt can serve as a design starting point or as an important check on an
otherwise empirically optimized design.

 The preceding discussion considers a number of pipeline segments, S , on
the basis of performance. Each time a new pipeline segment is introduced,
additional cost is added, which is not factored into the analysis. Each new
segment requires additional registers and clocking hardware. Because of this,
the optimum number of pipeline segments (S opt) ought to be thought of as a
probable upper limit to the number of useful pipeline segments that a particu-
lar processor can employ.

 2.2.3 Performance

 High clock rates with small pipeline segments may or may not produce better
performance. Indeed, given problems in wire delay scaling, there is an immedi-
ate question of how projected clock rates are to be achieved. There are two
basic factors enabling clock rate advances: (1) increased control over clock
overhead and (2) an increased number of segments in the pipelines. Figure 2.5
shows that the length (in gate delays) of a pipeline segment has decreased
signifi cantly, probably by more than fi ve times, measured in units of a standard
gate delay. This standard gate has one input and drives four similar gates as
output. Its delay is referred to as a fan - out of four (FO4) gate delay.

 Low clock overhead (small C) may enable increased pipeline segmentation,
but performance does not correspondingly improve unless we also decrease
the probability of pipeline disruption, b . In order to accomplish this high clock
rate, processors also employ large branch table buffers and branch vector
prediction tables, signifi cantly decreasing delays due to branching. However,
disruptions can also come from cache misses, and this requires another strat-

c02.indd 46c02.indd 46 5/4/2011 10:35:11 AM5/4/2011 10:35:11 AM

DIE AREA AND COST 47

egy: multilevel, very large on - die caches. Often these cache structures occupy
80 – 90% of the die area. The underlying processor is actually less important
than the effi ciency of the cache memory system in achieving performance.

 2.3 DIE AREA AND COST

 Cycle time, machine organization, and memory confi guration determine
machine performance. Determining performance is relatively straightforward
when compared to the determination of overall cost.

 A good design achieves an optimum cost – performance trade - off at a par-
ticular target performance. This determines the quality of a processor design.

 In this section, we look at the marginal cost to produce a system as deter-
mined by the die area component. Of course, the system designer must be
aware of signifi cant side effects that die area has on the fi xed and other vari-
able costs. For example, a signifi cant increase in the complexity of a design
may directly affect its serviceability or its documentation costs, or the hard-
ware development effort and time to market. These effects must be kept in
mind, even when it is not possible to accurately quantify their extent.

 2.3.1 Processor Area

 SOCs usually have die sizes of about 10 – 15 mm on a side. This die is produced
in bulk from a larger wafer, perhaps 30 cm in diameter (about 12 in.). It might
seem that one could simply expand the chip size and produce fewer chips from
the wafer, and these larger chips could readily accommodate any function that
the designer might wish to include. Unfortunately, neither the silicon wafers
nor processing technologies are perfect. Defects randomly occur over the

 Figure 2.5 Number of gate delays (FO4) allowed in a cycle.

 0

 20

 40

 60

 80

 100

 120

 1996 1998 2000 2002 2004 2006 2008

G
at

e
de

la
ys

Year

FO4 gate delays per cycle

c02.indd 47c02.indd 47 5/4/2011 10:35:11 AM5/4/2011 10:35:11 AM

48 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

wafer surface (Figure 2.6). Large chip areas require an absence of defects over
that area. If chips are too large for a particular processing technology, there
will be little or no yield. Figure 2.7 illustrates yield versus chip area.

 A good design is not necessarily the one that has the maximum yield.
Reducing the area of a design below a certain amount has only a marginal
effect on yield. Additionally, small designs waste area because there is a
required area for pins and for separation between the adjacent die on a wafer.

 The area available to a designer is a function of the manufacturing process-
ing technology. This includes the purity of the silicon crystals, the absence of
dust and other impurities, and the overall control of the process technology.
Improved manufacturing technology allows larger dice to be realized with
higher yields. As photolithography and process technology improve, their

 Figure 2.6 Defect distribution on a wafer.

WaferDefect

Chip

 Figure 2.7 Yield versus chip area at various points in time.

100%

Yield

Chip area

Yield curve is also
 a function of time.

T1 T2

0

<

c02.indd 48c02.indd 48 5/4/2011 10:35:11 AM5/4/2011 10:35:11 AM

DIE AREA AND COST 49

design parameters do not scale uniformly. The successful designer must be
aggressive enough in anticipating the movement of technology so that, although
early designs may have low yield, with the advance of technology, the design
life is extended and the yield greatly improves, thus allowing the design team
to amortize fi xed costs over a broad base of products.

 Suppose a die with square aspect ratio has area A . About N of these dice
can be realized in a wafer of diameter d (Figure 2.8):

 N
A

d A≈ −()π
4

2
.

 This is the wafer area divided by the die area with diameter correction. Now
suppose there are N G good chips and N D point defects on the wafer. Even if
 N D > N , we might expect several good chips since the defects are randomly
distributed and several defects would cluster on defective chips, sparing a few.

 Following the analysis of Ghandi [109] , suppose we add a random defect to
a wafer; N G / N is the probability that the defect ruins a good die. Note that if
the defect hits an already bad die, it would cause no change to the number of
good die. In other words, the change in the number of good die (N G), with
respect to the change in the number of defects (N D), is

dN
dN

N
N

N
dN

N
dN

G

D

G

G
G D

= −

= −1 1
.

 Figure 2.8 Number of die (of area A) on a wafer of diameter d .

A

A A A

Diameter, D

Effective diameter, d – A

c02.indd 49c02.indd 49 5/4/2011 10:35:11 AM5/4/2011 10:35:11 AM

50 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

 Integrating and solving

 ln N
N
N

CG
D= − + .

 To evaluate C, note that when N G = N , then N D = 0; so, C must be ln(N).
 Then the yield is

 Yield = = −N
N

eG N ND / .

 This describes a Poisson distribution of defects.
 If ρ D is the defect density per unit area, then

 ND D= ×ρ (wafer area).

 For large wafers d A>> , the diameter of the wafer is signifi cantly larger than
the die side and

 d A d−() ≈
2 2

and

 N
N

AD
D= ρ ,

 so that

 Yield = −e DAρ .

 Figure 2.9 shows the projected number of good die as a function of die area
for several defect densities. Currently, a modern fab facility would have ρ D
between 0.15 – 0.5, depending on the maturity of the process and the expense
of the facility.

 Large die sizes are very costly. Doubling the die area has a signifi cant effect
on yield for an already large ρ D × A (≈ 5 – 10 or more). Thus, the large die
designer gambles that technology will lower ρ D in time to provide a suffi cient
yield for a profi table product.

 2.3.2 Processor Subunits

 Within a system or processor, the amount of area that a particular subunit of
a design occupies is a primary measure of its cost. In making design choices
or in evaluating the relative merits of a particular design choice, it is frequently
useful to use the principle of marginal utility: Assume we have a complete base
design and some additional pins/area available to enhance the design. We

c02.indd 50c02.indd 50 5/4/2011 10:35:11 AM5/4/2011 10:35:11 AM

DIE AREA AND COST 51

select the design enhancement that best uses the available pins and area. In
the absence of pinout information, we assume that area is a dominant factor
in a particular trade - off.

 The obvious unit of area is millimeter square , but since photolithography
and geometries ’ resulting minimum feature sizes are constantly shifting, a
dimensionless unit is preferred. Among others, Mead and Conway [170] used
the unit λ , the fundamental resolution, which is the distance from which a
geometric feature on any one layer of mask may be positioned from another.
The minimum size for a diffusion region would be 2 λ with a necessary allow-
ance of 3 λ between adjacent diffusion regions.

 If we start with a device 2 λ × 2 λ , then a device of nominal 2 λ × 2 λ can
extend to 4 λ × 4 λ . We need at least 1 λ isolation from any other device or 25 λ 2
for the overall device area. Thus, a single transistor is 4 λ 2 , positioned in a
minimum region of 25 λ 2 .

 The minimum feature size (f) is the length of one polysilicon gate, or the
length of one transistor, f = 2 λ . Clearly, we could defi ne our design in terms of
 λ 2 , and any other processor feature (gate, register size, etc.) can be expressed
as a number of transistors. Thus, the selection of the area unit is somewhat
arbitrary. However, a better unit represents primary architectural trade - offs.
One useful unit is the register bit equivalent (rbe). This is defi ned to be a six -
 transistor register cell and represents about 2700 λ 2 . This is signifi cantly more
than six times the area of a single transistor, since it includes larger transistors,
their interconnections, and necessary inter - bit isolating spaces.

 A staticRAM (SRAM) cell with lower bandwidth would use less area than
an rbe, and a DRAM bit cell would use still less. Empirically, they would have
the relationship shown in Table 2.2 .

 In the table, the area for the register fi le is determined by the number of
register bits and the number of ports (P) available to access the fi le:

 Figure 2.9 Number of good die versus die area for several defect densities.

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5

G
oo

d
di

e

Die area

Defect density = 0.2
Defect density = 0.5
Defect density = 1.0

c02.indd 51c02.indd 51 5/4/2011 10:35:12 AM5/4/2011 10:35:12 AM

52 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

 Area of register file (number of regs 3)(bits per reg 3)= + +P P rbe.

 The cache area uses the SRAM bit model and is determined by the total
number of cache bits, including the array, directory, and control bits.

 The number of rbe on a die or die section rapidly becomes very large, so it
is frequently easier to use a still larger unit. We refer to this unit simply as A
and defi ne it as 1 mm 2 of die area at f = 1 μ m. This is also the area occupied by
a 32 × 32 bit three - ported register fi le or 1481 rbe.

 Transistor density, rbe, and A all scale as the square of the feature size. As
seen from Table 2.3 , for feature size f , the number of A in 1 mm 2 is simply (1/ f) 2 .
There are almost 500 times as many transistors of rbe in 1 mm 2 of a technology
with a feature size of 45 nm as there are with the reference 1 - μ m feature size.

 TABLE 2.2 Summary of Technology - Independent Relative Area Measures, rbe
and A (These Can Be Converted to True Area for Any Given Feature Size, f)

 Item: Size in rbe

 1 register bit (rbe) 1.0 rbe
 1 static RAM bit in an on - chip cache 0.6 rbe
 1 DRAM bit 0.1 rbe
 rbe corresponds to (in feature size: f) 1 rbe = 675 f 2

 Item: Size in A Units

 A corresponds to 1 mm 2 with f = 1 μ m.
 1 A = f 2 × 10 6 (f in μ m)
 or about ≈ 1481 rbe
 A simple integer fi le (1 read + 1 read/write) with 32

words of 32 bits per word
 = 1444 rbe

 or about ≈ 1 A (= 0.975 A)
 A 4 - KB direct mapped cache = 23,542 rbe
 or about ≈ 16 A
 Generally a simple cache (whose tag and control bits

are less than one - fi fth the data bits) uses
 = 4 A / KB

 Simple Processors (Approximation)
 A 32 - bit processor (no cache and no fl oating point) = 50 A
 A 32 - bit processor (no cache but includes 64 - bit

fl oating point)
 = 100 A

 A 32 - bit (signal) processor, as above, with vector
facilities but no cache or vector memory

 = 200 A

 Area for interunit latches, buses, control, and clocking Allow an additional 50%
of the processor area.

 Xilinx FPGA
 A slice (2 LUTs + 2 FFs + MUX) = 700 rbe
 A confi gurable logic block (4 slices) Virtex 4 = 2800 rbe ≈ 1.9 A
 A 18 - KB block RAM = 12,600 rbe ≈ 8.7 A
 An embedded PPC405 core ≈ 250 A

c02.indd 52c02.indd 52 5/4/2011 10:35:12 AM5/4/2011 10:35:12 AM

IDEAL AND PRACTICAL SCALING 53

 2.4 IDEAL AND PRACTICAL SCALING

 As feature sizes shrink and transistors get smaller, one expects the transistor
density to improve with the square of the change in feature size. Similarly,
transistor delay (or gate delay) should decrease linearly with feature size (cor-
responding to the decrease in capacitance). Practical scaling is different as wire
delay, and wire density does not scale at the same rate as transistors scale. Wire
delay remains almost constant as feature sizes shrink since the increase in
resistance offsets the decrease in length and capacitance. Figure 2.10 illus-
trates the increasing dominance of wire delay over gate delay especially in
feature sizes less than 0.10 μ m. Similarly for feature sizes below 0.20 μ m, tran-
sistor density improves at somewhat less than the square of the feature size.
A suggested scaling factor of 1.5 is commonly considered more accurate, as
shown in Figure 2.11 ; that is, scaling occurs at (f 1 / f 2) 1.5 rather than at (f 1 / f 2) 2 .
What actually happens during scaling is more complex. Not only does the
feature size shrink but other aspects of a technology also change and usually

 TABLE 2.3 Density in A Units for Various Feature
Sizes

 Feature Size (μ m) Number of A per mm 2

 1.000 1.00
 0.350 8.16
 0.130 59.17
 0.090 123.46
 0.065 236.69
 0.045 493.93

 One A is 1481 rbe.

 Figure 2.10 The dominance of wire delay over gate delay.

 50

 100

 150

 200

 250

 300

 350

 400

 0.13 0.18 0.25 0.35 0.5 0.7

D
el

ay
 (

ps
)

Process Generation (um)

Gate Delay
Interconnect Delay

c02.indd 53c02.indd 53 5/4/2011 10:35:12 AM5/4/2011 10:35:12 AM

www.allitebooks.com

http://www.allitebooks.org

54 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

improve. Thus, copper wires become available as well as many more wiring
layers and improved circuit designs. Major technology changes can affect
scaling in a discontinuous manner. The effects of wire limitations can be dra-
matically improved, so long as the designer is able to use all the attributes of
the new technology generation. The simple scaling of a design might only scale
as 1.5, but a new implementation taking advantage of all technology features
could scale at 2. For simplicity in the remainder of the text, we will use ideal
scaling with the understanding as above.

 Figure 2.11 Area scaling with optimum and “ practical ” shrinkage.

 0

 2

 4

 6

 8

 10

 12

 14

 0.09 0.13 0.18 0.25 0.35

A
re

a
in

 m
m

 x
 m

m

Process generation

Optimum scaling
Scaled area

 Study 2.1 A Baseline SOC Area Model

 The key to effi cient system design is chip fl oor planning. The process of chip
fl oor planning is not much different from the process of fl oor - planning a resi-
dence. Each functional area of the processor must be allocated suffi cient room
for its implementation. Functional units that frequently communicate must be
placed close together. Suffi cient room must be allocated for connection paths.

 To illustrate possible trade - offs that can be made in optimizing the chip
fl oor plan, we introduce a baseline system with designated areas for various
functions. The area model is based upon empirical observations made of exist-
ing chips, design experience, and, in some cases, logical deduction (e.g., the
relationship between a fl oating - point adder and an integer ALU). The chip
described here ought not to be considered optimal in any particular sense, but
rather a typical example of a number of designs in the marketplace today.

 The Starting Point. The design process begins with an understanding of the
parameters of the semiconductor process. Suppose we expect to be able to use
a manufacturing process that has a defect density of 0.2 defect per square
centimeter; for economic reasons, we target an initial yield of about 95%:

c02.indd 54c02.indd 54 5/4/2011 10:35:13 AM5/4/2011 10:35:13 AM

IDEAL AND PRACTICAL SCALING 55

 Y e DA= −ρ ,

where ρ D = 0.2 defect per square centimeter, Y = 0.95. Then,

 A = 25 2 mm

 or approximately 0.25 cm 2 .
 So the chip area available to us is 25 mm 2 . This is the total die area of the

chip, but such things as pads for the wire bonds that connect the chip to the
external world, drivers for these connections, and power supply lines all act to
decrease the amount of chip area available to the designer. Suppose we allow
12% of the chip area — usually around the periphery of the chip — to accom-
modate these functions, then the net area will be 22 mm 2 (Figure 2.12).

 Feature Size. The smaller the feature size, the more logic that can be accom-
modated within a fi xed area. At f = 65 nm, we have about 5200 A or area units
in 22 mm 2 .

 The Architecture. Almost by defi nition, each system is different with different
objectives. For our example, assume that we need the following:

 • a small 32 - bit core processor with an 8 KB I - cache and a 16 KB D - cache;
 • two 32 - bit vector processors, each with 16 banks of 1 K × 32 b vector

memory; an 8 KB I - cache and a 16 KB D - cache for scalar data;
 • a bus control unit;
 • directly addressed application memory of 128 KB ; and
 • a shared L2 cache.

 Figure 2.12 Net die area.

Gross die area

Net die area

Input/output (IO) pads and
required framing area.

c02.indd 55c02.indd 55 5/4/2011 10:35:13 AM5/4/2011 10:35:13 AM

56 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

 An Area Model. The following is a breakdown of the area required for various
units used in the system.

 Unit Area (A)

 Core processor (32 b) 100
 Core cache (24 KB) 96
 Vector processor #1 200
 Vector registers and cache #1 256 + 96
 Vector processor #2 200
 Vector registers and cache #2 352
 Bus and bus control (50%) See below 650
 Application memory (128 KB) 512
 Subtotal 2462

 Latches, Buses, and (Interunit) Control. For each of the functional units, there
is a certain amount of overhead to accommodate nonspecifi c storage (latches),
interunit communications (buses), and interunit control. This is allocated as
10% overhead for latches and 40% overhead for buses, routing, clocking, and
overall control.

 Total System Area. The designated processor elements and storage occupy
2462 A . This leaves a net of 5200 − 2462 = 2738 A available for cache. Note that
the die is highly storage oriented. The remaining area will be dedicated to the
L2 cache.

 Cache Area. The net area available for cache is 2738 A . However, bits and
pieces that may be unoccupied on the chip are not always useful to the cache
designer. These pieces must be collected into a reasonably compact area that
accommodates effi cient cache designs.

 For example, where the available area has a large height/width (aspect)
ratio, it may be signifi cantly less useful than a more compact or square area.
In general, at this early stage of microprocessor fl oor planning, we allocate
another 10% overhead to aspect ratio mismatch. This leaves a net available
area for cache of about 2464 A .

 This gives us about 512 KB for the L2 cache. Is this reasonable? At this
point, all we can say is that this much cache fi ts on the die. We now must look
to the application and determine if this allocation gives the best performance.
Perhaps a larger application storage or another vector processor and a smaller
L2 would give better performance. Later in the text we consider such perfor-
mance issues.

 An example baseline fl oor plan is shown in Figure 2.13 . A summary of area
design rules follow:

 1. Compute the target chip size from the target yield and defect density.
 2. Compute the die cost and determine whether it is satisfactory.

c02.indd 56c02.indd 56 5/4/2011 10:35:13 AM5/4/2011 10:35:13 AM

POWER 57

 Figure 2.13 A baseline die fl oor plan.

Bus and interunit control

L2 cache

Scalar
core

processor

Vector
processor 1
(including

vector
registers
and L1
cache)

Vector
processor 2
(including

vector
registers
and L1
cache)

Addressable
application

storage

 3. Compute the net available area. Allow 10 – 20% (or other appropriate
factor) for pins, guard ring, power supplies, and so on.

 4. Determine the rbe size from the minimum feature size.
 5. Allocate the area based on a trial system architecture until the basic

system size is determined.
 6. Subtract the basic system size (5) from the net available area (3). This is

the die area available for cache and storage optimization.

 Note that in this study (and more surely with much small feature sizes), most
of the die area is dedicated to storage of one type or another. The basic proces-
sor area is around 20%, allowing for a partial allocation of bus and control
area. Thus, however rough our estimate of processor core and vector processor
area, it is likely to have little effect on the accuracy of the die allocation so long
as our storage estimates are accurate. There are a number of commercial tools
available for chip fl oor planning in specifi c design situations.

 2.5 POWER

 Growing demands for wireless and portable electronic appliances have focused
much attention recently on power consumption. The SIA road map points to

c02.indd 57c02.indd 57 5/4/2011 10:35:13 AM5/4/2011 10:35:13 AM

58 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

increasingly higher power for microprocessor chips because of their higher
operating frequency, higher overall capacitance, and larger size. Power scales
indirectly with feature size, as its primary determinate is frequency.

 Some power environments are shown in Table 2.4 .
 At the device level, total power dissipation (P total) has two major sources:

dynamic or switching power and static power caused by leakage current:

 P
CV

I Vtotal leakage
freq= +

2

2
,

where C is the device capacitance; V is the supply voltage; freq is the device
switching frequency; and I leakage is the leakage current. Until recently, switching
loss was the dominant factor in dissipation, but now static power is increasing.
On the other hand, gate delays are roughly proportional to CV /(V − V th) 2 ,
where V th is the threshold voltage (for logic - level switching) of the transistors.

 As feature sizes decrease, so do device sizes. Smaller device sizes result in
reduced capacitance. Decreasing the capacitance decreases both the dynamic
power consumption and the gate delays. As device sizes decrease, the electric
fi eld applied to them becomes destructively large. To increase the device reli-
ability, we need to reduce the supply voltage V . Reducing V effectively reduces
the dynamic power consumption but results in an increase in the gate delays.
We can avoid this loss by reducing V th . On the other hand, reducing V th
increases the leakage current and, therefore, the static power consumption.
This has an important effect on design and production; there are two device
designs that must be accommodated in production:

 1. the high - speed device with low V th and high static power; and
 2. the slower device maintaining V th and V at the expense of circuit density

and low static power.

 In either case, we can reduce switching loss by lowering the supply voltage, V .
Chen et al. [55] showed that the drain current is proportional to

 I V V= −()th
1.25,

where again V is the supply voltage.

 TABLE 2.4 Some Power Operating Environments [133]

 Type Power/Die Source and Environment

 Cooled high power 70.0 W Plug - in, chilled
 High power 10.0 – 50.0 W Plug - in, fan
 Low power 0.1 – 2.0 W Rechargeable battery
 Very low power 1.0 – 100.0 mW AA batteries
 Extremely low power 1.0 – 100.0 μ W Button battery

c02.indd 58c02.indd 58 5/4/2011 10:35:13 AM5/4/2011 10:35:13 AM

POWER 59

 From our discussion above, we can see that the signal transition time and
frequency scale with the charging current. So, the maximum operating fre-
quency is also proportional to (V − V th) 1.25 / V . For values of V and V th of inter-
est, this means that frequency scales with the supply voltage, V .

 Assume V th is 0.6 V; suppose we reduce the supply voltage by one - half, say,
from 3.0 to 1.5 V, the operating frequency is also reduced by about one - half.
So, reducing the supply voltage by half also reduces the operating frequency
by half.

 Now by the power equation (since the voltage and frequency were halved),
the total power consumption is one - eighth of the original. Thus, if we take an
existing design optimized for frequency and modify that design to operate at
a lower voltage, the frequency is reduced by approximately the cube root of
the original (dynamic) power:

 freq
freq

1

2

2

1

3= P
P

.

 It is important to understand the distinction between scaling the frequency of
an existing design and that of a power - optimized implementation. Power -
 optimized implementations differ from performance - optimized implementa-
tions in several ways.

 Power - optimized implementations use less chip area not only because of
reduced requirements for power supply and clock distributions but also, and
more importantly, because of reduced performance targets. Performance -
 oriented designs use a great deal of area to achieve marginally improved
performance, as in very large fl oating - point units, minimum - skew clock dis-
tribution networks, or maximally sized caches. Power dissipation, not per-
formance, is the most critical issue for applications such as portable and
wireless processors running on batteries. Some battery capacities are shown
in Table 2.5 .

 For SOC designs to run on battery power for an extended period, the entire
system power consumption must remain very small (in the order of a milli-
watt). As a result, power management must be implemented from the system
architecture and operating system down to the logic gate level.

 There is another power constraint, peak power , which the designer cannot
ignore. In any design, the power source can only provide a certain current at
the specifi ed voltage; going beyond this, even as a transient, can cause logic
errors or worse (damaging the power source).

 TABLE 2.5 Battery Capacity and Duty Cycle

 Type Energy Capacity (mAh) Duty Cycle/Lifetime At Power

 Rechargeable 10,000 50 h (10 – 20% duty) 400 mW – 4 W
 2 × AA 4000 0.5 year (10 – 20% duty) 1 – 10 mW
 Button 40 5 years (always on) 1 μ W

c02.indd 59c02.indd 59 5/4/2011 10:35:13 AM5/4/2011 10:35:13 AM

60 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

 2.6 AREA – TIME – POWER TRADE - OFFS IN PROCESSOR DESIGN

 Processor design trade - offs are quite different for our two general classes
of processors:

 1. Workstation Processor . These designs are oriented to high clock fre-
quency and AC power sources (excluding laptops). Since they are not
area limited as the cache occupies most die area, the designs are highly
elaborated (superscalar with multithreading).

 2. Embedded Processor Used in SOC . Processors here are generally simpler
in control structure but may be quite elaborate in execution facilities
(e.g., digital signal processor [DSP]). Area is a factor as is design time
and power.

 2.6.1 Workstation Processor

 To achieve a general - purpose performance, the designer assumes ample power.
The most basic trade - off is between high clock rates and the resulting power
consumption. Up until the early 1990s, emitter coupled logic (ECL) using
bipolar technology was dominant in high - performance applications (main-
frames and supercomputers). At power densities of 80 W/cm 2 , the module
package required some form of liquid cooling. An example from this period
is the Hitachi M - 880 (Figure 2.14). A 10 × 10 cm module consumed 800 W. The

 Figure 2.14 Hitachi processor module. The Hitachi M - 880 was introduced about 1991
 [143] . Module is 10.6 × 10.6 cm, water - cooled and dissipated at 800 W.

c02.indd 60c02.indd 60 5/4/2011 10:35:13 AM5/4/2011 10:35:13 AM

AREA–TIME–POWER TRADE-OFFS IN PROCESSOR DESIGN 61

 Figure 2.15 Processor frequency for bipolar and CMOS over time. Generally, CMOS
frequency scaling ceased in around 2003 at around 3.5 GHz due to power limitations.

 1

 10

 100

 1000

 2003 1993 1983 1973 1967

C
lo

ck
 F

re
qu

en
cy

 (
M

H
z)

Year

Bipolar
CMOS

module contained 40 dice, sealed in helium gas with chilled water pumped
across a water jacket at the top of the module. As CMOS performance
approached bipolar ’ s, the extraordinary cost of such a cooling system could
no longer be sustained, and the bipolar era ended (see Figure 2.15). Now
CMOS has reached the same power densities, and similar cooling techniques
would have to be reconsidered if chip frequencies were to continue to increase.
In fact, after 2003 the useful chip frequency stabilized at about 3.5 GHz.

 2.6.2 Embedded Processor

 System - on - a - chip - type implementations have a number of advantages. The
requirements are generally known. So, memory sizes and real - time delay con-
straints can be anticipated. Processors can be specialized to a particular func-
tion. In doing so, usually clock frequency (and power) can be reduced as
performance can be regained by straightforward concurrency in the architec-
ture (e.g., use of a simple very long instruction word [VLIW] for DSP applica-
tions). The disadvantages of SOC compared to processor chips are available
design time/effort and intra - die communications between functional units. In
SOC, the market for any specifi c system is relatively small; hence, the extensive
custom optimization used in processor dies is diffi cult to sustain, so off - the -
 shelf core processor designs are commonly used. As the storage size for pro-
grams and data may be known at design time, specifi c storage structures can
be included on - chip. These are either SRAM or a specially designed DRAM
(as ordinary DRAM uses an incompatible process technology). With multiple
storage units, multiple processors (some specialized, some generic), and spe-
cialized controllers, the problem is designing a robust bus hierarchy to ensure
timely communications. A comparison between the two design classes is shown
in Table 2.6 .

c02.indd 61c02.indd 61 5/4/2011 10:35:13 AM5/4/2011 10:35:13 AM

62 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

 2.7 RELIABILITY

 The fourth important design dimension is reliability [218] , also referred to as
dependability and fault tolerance. As with cost and power, there are many
more factors that contribute to reliability than what is done on a processor or
SOC die.

 Reliability is related to die area, clock frequency, and power. Die area
increases the amount of circuitry and the probability of a fault, but it also
allows the use of error correction and detection techniques. Higher clock
frequencies increase electrical noise and noise sensitivity. Faster circuits are
smaller and more susceptible to radiation.

 Not all failures or errors produce faults, and indeed not all faults result in
incorrect program execution. Faults, if detected, can be masked by error -
 correcting codes (ECCs), instruction retry, or functional reconfi guration.

 First, some defi nitions:

 1. A failure is a deviation from a design specifi cation.
 2. An error is a failure that results in an incorrect signal value
 3. A fault is an error that manifests itself as an incorrect logical result.
 4. A physical fault is a failure caused by the environment, such as aging,

radiation, temperature, or temperature cycling. The probability of physi-
cal faults increases with time.

 5. A design fault is a failure caused by a design implementation that is
inconsistent with the design specifi cation. Usually, design faults occur
early in the lifetime of a design and are reduced or eliminated over time.

 2.7.1 Dealing with Physical Faults

 From a system point of view, we need to create processor and subunit confi gu-
rations that are robust over time.

 Let the probability of a fault occurrence be P (t), and let T be the mean time
between faults (MTBF). So, if λ is the fault rate, then

 λ = 1
T

.

 TABLE 2.6 A Typical Processor Die Compared with a Typical SOC Die

 Processor on a Chip SOC

 Area used by storage 80% cache 50% ROM/RAM
 Clock frequency 3.5 GHz 0.5 GHz
 Power ≥ 50 W ≤ 10 W
 Memory ≥ 1 - GB DRAM Mostly on - die

c02.indd 62c02.indd 62 5/4/2011 10:35:14 AM5/4/2011 10:35:14 AM

RELIABILITY 63

 Now imagine that faults occur on the time axis in particular time units, sepa-
rated with mean, T . Using the same reasoning that we used to develop the
Poisson yield equation, we can get the Poisson fault equation:

 P t e e
t

T t() = =
−

− λ.

 Redundancy is an obvious approach to improved reliability (lower P (t)). A
well - known technique is triple modular redundancy (TMR). Three processors
execute the same computation and compare results. A voting mechanism
selects the output on which at least two processors agree. TMR works but
only up to a point. Beyond the obvious problem of the reliability of the
voting mechanism, there is a problem with the sheer amount of hardware.
Clearly, as time t approaches T , we expect to have more faults in the TMR
system than in a simple simplex system (Figure 2.16). Indeed, the probability
of a TMR fault (any two out of three processor faults) exceeds the simplex
system when

 t T e= × log .2

 Most fault - tolerant designs involve simpler hardware built around the
following:

 • Error Detection . The use of parity, residue, and other codes are essential
to reliable system confi gurations.

 • Instruction (Action) Retry . Once a fault is detected, the action can be
retried to overcome transient errors.

 Figure 2.16 TMR reliability compared to simplex reliability.

 0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ro

ba
bi

lit
y

of
 a

 fa
ul

t

Time

TMR
Simplex

c02.indd 63c02.indd 63 5/4/2011 10:35:14 AM5/4/2011 10:35:14 AM

64 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

 • Error Correction . Since most of the system is storage and memory, an
ECC can be effective in overcoming storage faults.

 • Reconfi guration . Once a fault is detected, it may be possible to reconfi g-
ure parts of the system so that the failing subsystem is isolated from
further computation.

 Note that with error detection, effi cient, reliable system confi gurations are
limited. As a minimum, most systems should incorporate error detection on
all parts of essential system components and should selectively use ECC and
other techniques to improve reliability.

 The IBM mainframe S/390 (Figure 2.17) is an example of a system oriented
to reliability. One model provides a module of 12 processors. Five pairs in
duplex confi guration (5 × 2) run fi ve independent tasks, and two processors
are used as monitor and spare. Within a duplex, the processor pairs share a
common cache and storage system. The processor pairs run the same task and
compare results. The processors use error detection wherever possible. The
cache and storage uses ECC, usually single error correction, double error
detection (SECDED).

 Recent research addresses reliability for multiprocessor SOC technology.
For instance, to improve reliability due to single - event upsets due to cosmic
rays, techniques involving voltage scaling and application task mapping can be
applied [214] .

 Figure 2.17 A duplex approach to fault tolerance using error detection.

Processor
A

Cache
Processor

B

Processor pair #1

Processor
A

Cache
Processor

B

Processor pair #2

Processor
A

Cache
Processor

B

Processor pair #3

Processor pair #4

Processor pair #5

Processor
A

Cache
Processor

B

Processor monitor/spare

c02.indd 64c02.indd 64 5/4/2011 10:35:14 AM5/4/2011 10:35:14 AM

RELIABILITY 65

 2.7.2 Error Detection and Correction

 The simplest type of error detection is parity. A bit is added (a check bit) to
every stored word or data transfer, which ensures that the sum of the number
of 1 ’ s in the word is even (or odd, by predetermined convention). If a single
error occurs to any bit in the word, the sum modulo two of the number of 1 ’ s
in the word is inconsistent with the parity assumption, and the memory word
is known to have been corrupted.

 Knowing that there is an error in the retrieved word is valuable. Often, a
simple reaccessing of the word may retrieve the correct contents. However,
often the data in a particular storage cell have been lost and no amount of
reaccessing can restore the true value of the data. Since such errors are likely
to occur in a large system, most systems incorporate hardware to automatically
correct single errors by making use of ECCs.

 The simplest code of this type consists of a geometric block code. The
message bits to be checked are arranged in a roughly square pattern, and the
message is augmented by a parity bit for each row and for each column. If a
row and a column indicate a fl aw when the message is decoded at the receiver,
the intersection is the damaged bit, which may be simply inverted for correc-
tion. If only a single row or a column or multiple rows or columns indicate a
parity failure, a multiple - bit error is detected and a noncorrectable state is
entered.

 For 64 message bits, we need to add 17 parity bits: eight for each of the rows
and columns and one additional parity bit to compute parity on the parity row
and column (Figure 2.18).

 It is more effi cient to consider the message bits as forming a hypercube, for
each message combination forms a particular point in this hypercube. If the

 Figure 2.18 Two - dimensional error - correcting codes (ECCs).

0 1 2 3 4

Col 0

1

2 (Data)

Column parity

Row parity

P0

C0

C1

C2

C3

C4

C5

C6

C7

P1 P2 P3 P4 P5 P6 P7

3

4

5

6

7

5 6 7 Row

c02.indd 65c02.indd 65 5/4/2011 10:35:14 AM5/4/2011 10:35:14 AM

66 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

hypercube can be enlarged so that each valid data point is surrounded by
associated invalid data points that are caused by a single - bit corruption in the
message, the decoder will recognize that the invalid data point belongs to the
valid point and will be able to restore the message to its original intended
form. This can be extended one more step by adding yet another invalid point
between two valid data combinations (Figure 2.19). The minimum number
of bits by which valid representations may differ is the code distance. This
third point indicates that two errors have occurred. Hence, either of two valid
code data points is equally likely, and the message is detectably fl awed but
noncorrectable. For a message of 64 bits, and for single - bit error correction,
each of the 2 64 combinations must be surrounded by, or must accommodate,
a failure of any of the 64 constituent bits (2 6 = 64). Thus, we need 2 64 + 6 total
code combinations to be able to identify the invalid states associated with
each valid state, or a total of 2 64 + 6 + 1 total data states. We can express this in
another way:

 2 1k m k≥ + + ,

where m is the number of message bits and k is the number of correction bits
that must be added to support single error correction.

 Hamming codes represent a realization of ECC based on hypercubes. Just
as in the block code before, a pair of parity failures addresses the location of
a fl awed bit. The k correction bits determine the address of a fl awed bit in a
Hamming code. The message bits must be arranged to provide an orthogonal
basis for the code (as in the case of the columns and rows of the block code).
Further, the correction bits must be included in this basis. An orthogonal basis
for 16 message bits is shown in Example 2.1 , together with the setting of the
fi ve correction bits. Adding another bit, a sixth bit, allows us to compute parity
on the entire m + k + 1 bit message. Now if we get an indication of a correct-
able error from the k correct bits, and no indication of parity failure from this
new d bit, we know that there is a double error and that any attempt at cor-
rection may be incorrect and should not be attempted. These codes are com-
monly called SECDED.

 Figure 2.19 ECC code distance.

X

X

Valid
data 1

X Y

(Double
error)

X

Valid
data 2

X Invalid representation
(single error)

c02.indd 66c02.indd 66 5/4/2011 10:35:14 AM5/4/2011 10:35:14 AM

RELIABILITY 67

 E XAMPLE 2.1 A H AMMING C ODE E XAMPLE

 Suppose we have a 16 - bit message, m = 16.
 2 k ≥ 16 + k + 1; therefore, k = 5.
 Thus, the message has 16 + 5 = 21 bits. The fi ve correction bits will be defi ned

by parity on the following groups, defi ned by base 2 hypercubes:

 k 5 bits 16 – 21.
 k 4 bits 8 – 15.
 k 3 bits 4 – 7, 12 – 15, and 20 – 21.
 k 2 bits 2 – 3, 6 – 7, 10 – 11, 14 – 15, and 18 – 19.
 k 1 bits 1, 3, 5, 7, 9 . . . , 19, 21.

 In other words, the 21 - bit formatted message bits f 1 − f 21 consist of original
message bits m 1 − m 16 and correction bits k 1 − k 5 . Each correction bit is sited
in a location within the group it checks.

 Suppose the message consists of f 1 − f 21 and m 1 − m 16 = 0101010101010101.
For simplicity of decoding, let us site the correction bits at locations that are
covered only by the designated correction bit (e.g., only k 5 covers bit 16):

 k 1 = f 1 .
 k 2 = f 2 .
 k 3 = f 4 .
 k 4 = f 8 .
 k 5 = f 16 .

 Now we have (m 1 is at f 3 , m 2 at f 5 , etc.)

 f1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 k k k k k1 2 3 4 50 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1.

 Thus, with even parity,

 k 5 = 1.
 k 4 = 1.
 k 3 = 1.
 k 2 = 0.
 k 1 = 1.

 Suppose this message is sent but received with f 8 = 0 (when it should be
 f 8 = k 4 = 1). When parity is recomputed at the receiver for each of the fi ve
correction groups, only one group covers f 8 .

c02.indd 67c02.indd 67 5/4/2011 10:35:14 AM5/4/2011 10:35:14 AM

68 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

 2.7.3 Dealing with Manufacturing Faults

 The traditional way of dealing with manufacturing faults is through testing. As
transistor density increases and the overall die transistor count increases pro-
portionally, the problem of testing increases even faster. The testable combina-
tions increase exponentially with transistor count. Without a testing
breakthrough, it is estimated that within a few years, the cost of die testing
will exceed the remaining cost of manufacturing.

 Assuring the integrity of a design a priori is a diffi cult, if not impossible,
task. Depending on the level at which the design is validated, various design
automation tools can be helpful. When a design is complete, the logical model
of the design can, in some cases, be validated . Design validation consists of
comparing the logical output of a design with the logical assertions specifying
the design. In areas such as storage (cache) or even fl oating - point arithmetic,
it is possible to have a reasonably comprehensive validation. More generalized
validation is a subject of ongoing research.

 Of course, the hardware designer can help the testing and validation effort,
through a process called design for testability [104] . Error detection hardware,
where applicable, is an obvious test assist. A technique to give testing access
to interior (not accessible from the instruction set) storage cells is called scan .
A scan chain in its simplest form consists of a separate entry and exit point
from each storage cell. Each of these points is MUXed (multiplexed) onto a
serial bus, which can be loaded from/to storage independent of the rest of the
system. Scan allows predetermined data confi gurations to be entered into
storage, and the output of particular confi gurations can be compared with
known correct output confi gurations. Scan techniques were originally devel-
oped in the 1960s as part of mainframe technology. They were largely aban-
doned later only to be rediscovered with the advent of high - density dice.

 Scan chains require numerous test confi gurations to cover large design;
hence, even scan is limited in its potential for design validation. Newer tech-
niques extend scan by compressing the number of patterns required and by
incorporating various built - in self - test features.

 In recomputing parity across the groups, we get

 ′k5 = 0 (i.e., there is no error in bits 16 – 21).
 ′k4 = 1.
 ′k3 = 0.
 ′k2 = 0.
 ′k1 = 0.

 The failure pattern 01000 is the binary representation for the incorrect bit (bit
8), which must be changed to correct the message.

c02.indd 68c02.indd 68 5/4/2011 10:35:14 AM5/4/2011 10:35:14 AM

CONFIGURABILITY 69

 2.7.4 Memory and Function Scrubbing

 Scrubbing is a technique that tests a unit by exercising it when it would oth-
erwise be idle or unavailable (such as on startup). It is most often used with
memory. When memory is idle, the memory cells are cycled with write and
read operations. This potentially detects damaged portions of memory, which
are then declared unavailable, and processes are relocated to avoid it.

 In principle, the same technique can be applied to functional units (such
as fl oating - point units). Clearly, it is most effective if there is a possibility
of reconfi guring units so that system operation can continue (at reduced
performance).

 2.8 CONFIGURABILITY

 This section covers two topics involving confi gurability, focusing on designs
that are reconfi gurable. First, we provide a number of motivations for recon-
fi gurable designs and include a simple example illustrating the basic ideas.
Second, we estimate the area cost of current reconfi gurable devices based on
the rbe model developed earlier in this chapter.

 2.8.1 Why Reconfi gurable Design?

 In Chapter 1 , we describe the motivation for adopting reconfi gurable designs,
mainly from the point of view of managing complexity based on high -
 performance intellectual properties (IPs) and avoiding the risks and delays
associated with fabrication. In this section, we provide three more reasons for
using reconfi gurable devices, such as FPGAs, based on the topics introduced
in the previous sections of this chapter: time, area, and reliability:

 Time . Since FPGAs, particularly the fi ne - grained ones, contain an abun-
dance of registers, they support highly pipelined designs. Another con-
sideration is parallelism: Instead of running a sequential processor at a
high clock rate, an FPGA - based processor at a lower clock rate can have
similar or even superior performance by having customized circuits exe-
cuting in parallel. In contrast, the instruction set and the pipeline struc-
ture of a microprocessor may not always fi t a given application. We shall
illustrate this point by a simple example later.

 Area . While it is true that the programmability of FPGAs would incur area
overheads, the regularity of FPGAs simplifi es the adoption of more
aggressive manufacturing process technologies than the ones for
application - specifi c integrated circuits (ASICs). Hence, FPGAs tend to
be able to exploit advances in process technologies more readily than
other forms of circuits. Furthermore, a small FPGA can support a large
design by time - division multiplex and run - time reconfi guration, enabling
trade - off in execution time and the amount of resources required. In the

c02.indd 69c02.indd 69 5/4/2011 10:35:15 AM5/4/2011 10:35:15 AM

70 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

next section, we shall estimate the size of some FPGA designs based on
the rbe model that we introduced earlier this chapter.

 Reliability . The regularity and homogeneity of FPGAs enable the introduc-
tion of redundant cells and interconnections into their architecture.
Various strategies have been developed to avoid manufacturing or run -
 time faults by means of such redundant structures. Moreover, the recon-
fi gurability of FPGAs has been proposed as a way to improve their
circuit yield and timing due to variations in the semiconductor fabrica-
tion process [212] .

 To illustrate the opportunity of using FPGAs for accelerating a demanding
application, lets us consider a simplifi ed example comparing HDTV process-
ing for microprocessors and for FPGAs. The resolution of HDTV is 1920 × 1080
pixels, or around 2 million pixels. At 30 Hz, it corresponds to 60 million pixels
per second. A particular application involves 100 operations, so the amount of
processing required is 6000 million operations per second.

 Consider a 3 - GHz microprocessor that takes, on average, fi ve cycles to
complete an operation. It can support 0.2 operation per cycle and, in aggregate,
only 600 million operations per second, 10 times slower than the required
processing rate.

 In contrast, consider a 100 - MHz FPGA design that can cover 60 operations
in parallel per cycle. This design meets the required processing rate of 6000
million operations per second, 10 times more than the 3 GHz microprocessor,
although its clock rate is only 1/30th of that of the microprocessor. The design
can exploit reconfi gurability in various ways, such as making use of instance -
 specifi c optimization to improve area, speed, or power consumption for spe-
cifi c execution data, or reconfi guring the design to adapt to run - time conditions.
Further discussions on confi gurability can be found in Chapter 6 .

 2.8.2 Area Estimate of Reconfi gurable Devices

 To estimate the area of reconfi gurable devices, we use the rbe, discussed earlier
as the basic measure. Recall, for instance, that in practical designs, the six -
 transistor register cell takes about 2700 λ 2 .

 There are around 7000 transistors required for confi guration, routing, and
logic for a “ slice ” in a Xilinx FPGA, and around 12,000 transistors in a logic
element (LE) of an Altera device. Empirically, each rbe contains around 10
logic transistors, so each slice contains 700 rbe. A large Virtex XC2V6000
device contains 33,792 slices, or 23.65 million rbe or 16,400 A .

 An 8 × 8 multiplier in this technology would take about 35 slices, or
24,500 rbe or 17 A . In contrast, given that a 1 - bit multiplier unit containing a
full adder and an AND gate has around 60 transistors in VLSI technology, the
same multiplier would have 64 × 60 = 3840 transistors, or around 384 rbe,
which is around 60 times smaller than the reconfi gurable version.

 Given that multipliers are used often in designs, many FPGAs now have
dedicated resources for supporting multipliers. This technique frees up recon-

c02.indd 70c02.indd 70 5/4/2011 10:35:15 AM5/4/2011 10:35:15 AM

PROBLEM SET 71

fi gurable resources to implement other functions rather than multipliers, at
the expense of making the device less regular and wasting area when the
design cannot use them.

 2.9 CONCLUSION

 Cycle time is of paramount importance in processor design. It is largely deter-
mined by technology but is signifi cantly infl uenced by secondary consider-
ations, such as clocking philosophy and pipeline segmentation.

 Once cycle time has been determined, the designer ’ s next challenge is to
optimize the cost – performance of a design by making maximum use of chip
area — using chip area to the best possible advantage of performance. A
technology - independent measure of area called the rbe provides the basis for
storage hierarchy trade - offs among a number of important architectural
considerations.

 While effi cient use of die area can be important, the power that a chip
consumes is equally (and sometime more) important. The performance – power
trade - off heavily favors designs that minimize the required clock frequency,
as power is a cubic function of frequency. As power enables many environ-
mental applications, particularly those wearable or sensor based, careful opti-
mization determines the success of a design, especially an SOC design.

 Reliability is usually an assumed requirement, but the ever smaller feature
sizes in the technology make designs increasingly sensitive to radiation and
similar hazards.

 Depending on the application, the designer must anticipate hazards and
incorporate features to preserve the integrity of the computation.

 The great conundrum in SOC design is how to use the advantages the
technology provides within a restricted design budget. Confi gurability is surely
one useful approach that has been emerging, especially the selected use of
FPGA technology.

 2.10 PROBLEM SET

 1. A four - segment pipeline implements a function and has the following
delays for each segment (b = 0.2):

 Segment # Maximum delay *

 1 1.7 ns
 2 1.5 ns
 3 1.9 ns
 4 1.4 ns

 * Excludes clock overhead of 0.2 ns.

c02.indd 71c02.indd 71 5/4/2011 10:35:15 AM5/4/2011 10:35:15 AM

72 CHIP BASICS: TIME, AREA, POWER, RELIABILITY, AND CONFIGURABILITY

 (a) What is the cycle time that maximizes performance without allocating
multiple cycles to a segment?

 (b) What is the total time to execute the function (through all stages)?
 (c) What is the cycle time that maximizes performance if each segment

can be partitioned into sub - segments?

 2. Repeat problem 1 if there is a 0.1 ns clock skew (uncertainty of ± 0.1 ns)
in the arrival of each clock pulse.

 3. We can generalize the equation for S opt by allowing for pipeline interrup-
tion delay of S − a cycles (rather than S − 1), where S > a ≥ 1. Find the new
expression for S opt .

 4. A certain pipeline has the following functions and functional unit delays
(without clocking overhead):

 Function Delay

 A 0.6
 B 0.8
 C 0.3
 D 0.7
 E 0.9
 F 0.5

 Function units B , D , and E can be subdivided into two equal delay
stages. If the expected occurrence of pipeline breaks is b = 0.25 and clock-
ing overhead is 0.1 ns:
 (a) What is the optimum number of pipeline segments (round down to

integer value)?
 (b) What cycle time does this give?
 (c) Compute the pipeline performance with this cycle time.

 5. A processor die (1.4 cm × 1.4 cm) will be produced for fi ve years. Over this
period, defect densities are expected to drop linearly from 0.5 defects/cm 2
to 0.1 defects/cm 2 . The cost of 20 cm wafer production will fall linearly from
$5,000 to $3,000, and the cost of 30 cm wafer production will fall linearly
from $10,000 to $6,000. Assume production of good devices is constant in
each year. Which production process should be chosen?

 6. DRAM chip design is a specialized art where extensive optimizations are
made to reduce cell size and data storage overhead. For a cell size of 135 λ 2 ,
fi nd the capacity of a DRAM chip. Process parameters are: yield = 80%,
 ρ D = 0.3 defects/cm 2 , feature size = 0.1 μ m, overhead consists of 10% for
drivers and sense amps. Overhead for pads, drivers, guard ring, etc., is 20%.
There are no buses or latches.

c02.indd 72c02.indd 72 5/4/2011 10:35:15 AM5/4/2011 10:35:15 AM

PROBLEM SET 73

 Since memory must be sized as an even power of 2, fi nd the capacity
and resize the die to the actual gross area (eliminating wasted space) and
fi nd the corresponding yield.

 7. Compute the cost of a 512 M × 1 b die, using the assumptions of problem 6.
Assume a 30 cm diameter wafer costs $15,000.

 8. Suppose a 2.3 cm 2 die can be fabricated on a 20 cm wafer at a cost of $5,000,
or on a 30 cm wafer at a cost of $8,000. Compare the effective cost per die
for defect densities of 0.2 defects/cm 2 and 0.5 defects/cm 2 .

 9. Following the reasoning of the yield equation derivation, show

 P t e
t

T() =
−

 10. Show that, for the triple modular system the expected time, t , for 2 modules

failure is

t T e= × log 2
 Hint: there are 3 modules, if any 2 (3 combinations) or all 3 fail, the

system fails.

 11. Design a Hamming code for a 32 bit message. Place the check bits in the
resulting message.

 12. Suppose we want to design a Hamming code for double error correct for
a 64 - bit message. How many correct bits are required? Explain.

c02.indd 73c02.indd 73 5/4/2011 10:35:15 AM5/4/2011 10:35:15 AM

 3 Processors

 3.1 INTRODUCTION

 Processors come in many types and with many intended uses. While much
attention is focused on high - performance processors in servers and worksta-
tions, by actual count, they are a small percentage of processors produced in
any year. Figure 3.1 shows the processor production profi le by annual produc-
tion count (not by dollar volume).

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

74

 THIS CHAPTER AND PROCESSOR DETAILS

 This chapter contains details about processor design issues, especially for
advanced processors in high - performance applications. Readers select-
ing processors from established alternatives may choose to skip some of
the details, such as sections about branch prediction and superscalar
processor control. We indicate such sections with an asterisk (*) in the
section title.

 Such details are important, even for those selecting a processor, for
two reasons:

 1. Year by year, SOC processors and systems are becoming more
complex. The SOC designer will be dealing with increasingly com-
plex processors.

 2. Processor performance evaluation tool sets (such as SimpleScalar
 [51]) provide options to specify issues such as branch prediction
and related parameters.

 Readers interested in application - specifi c instruction processors, intro-
duced in Section 1.3 , can fi nd relevant material in Sections 6.3 , 6.4 ,
and 6.8 .

c03.indd 74c03.indd 74 5/4/2011 9:54:05 AM5/4/2011 9:54:05 AM

INTRODUCTION 75

 Figure 3.1 Worldwide production of microprocessors and controllers [227] .

70%

17%

8%
3% 2%

4- and 8-bit MPUs
16- and 32-bit MPUs
DSP
Embedded MPUs
Computational MPUs

 Figure 3.2 Annual growth in demand for microprocessors and controllers [227] .

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

SOCsMPUs OverallComputational MPUs

A
nn

ua
l %

 G
ro

w
th

MPU Marketplace growth

 Clearly, controllers, embedded controllers, digital signal processors (DSPs),
and so forth, are the dominant processor types, providing the focus for much
of the processor design effort. If we look at the market growth, the same data
show that the demand for SOC and larger microcontrollers is growing at
almost three times that of microprocessor units (MPUs in Figure 3.2).
 Especially in SOC type applications, the processor itself is a small compo-
nent occupying just a few percent of the die. SOC designs often use many
different types of processors suiting the application. Often, noncritical proces-
sors are acquired (purchased) as design fi les (IP) and are integrated into the

c03.indd 75c03.indd 75 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

76 PROCESSORS

 TABLE 3.1 Optimized Designs Provide Better Area – Time Performance at the
Expense of Design Time

 Type of Design Design Level Relative Expected Area × Time

 Customized hard IP Complete physical 1.0
 Synthesized fi rm IP Generic physical 3.0 – 10.0
 Soft IP RTL or ASIC 10.0 – 100.0

SOC design. Therefore, a specialized SOC design may integrate generic pro-
cessor cores designed by other parties. Table 3.1 illustrates the relative advan-
tages of different choices of using intellectual property within SOC designs.

 3.2 PROCESSOR SELECTION FOR SOC

 3.2.1 Overview

 For many SOC design situations, the selection of the processor is the most
obvious task and, in some ways, the most restricted. The processor must run a
specifi c system software, so at least a core processor — usually a general -
 purpose processor (GPP) — must be selected for this function. In compute -
 limited applications, the primary initial design thrust is to ensure that the
system includes a processor confi gured and parameterized to meet this require-
ment. In some cases, it may be possible to merge these processors, but that is
usually an optimization consideration dealt with later. In determining the
processor performance and the system performance, we treat memory and
interconnect components as simple delay elements. These are referred to here
as idealized components since their behavior has been simplifi ed, but the
idealization should be done in such a way that the resulting characterization
is realizable. The idealized element is characterized by a conservative estimate
of its performance.

 Figure 3.3 shows the processor model used in the initial design process. The
process of selecting processors is shown in Figure 3.4 . The process of selection
is different in the case of compute - limited selection, as there can be a real - time
requirement that must be met by one of the selected processors. This becomes
a primary consideration at an early point in the initial SOC design phase. The
processor selection and parameterization should result in an initial SOC
design that appears to fully satisfy all functional and performance require-
ments set out in the specifi cations.

 3.2.2 Example: Soft Processors

 The term “ soft core ” refers to an instruction processor design in bitstream
format that can be used to program a fi eld programmable gate array (FPGA)

c03.indd 76c03.indd 76 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

PROCESSOR SELECTION FOR SOC 77

 Figure 3.3 Processors in the SOC model.

Idealized
I/O

Idealized interconnect
(fixed access time and

ample bandwidth)

Idealized memory
(fixed access delay)

P1 P2 Pn

N idealized processors selected by function
and real-time requirements

device. The 4 main reasons for using such designs, despite their large area –
 power – time cost, are

 1. cost reduction in terms of system - level integration,
 2. design reuse in cases where multiple designs are really just variations

on one,
 3. creating an exact fi t for a microcontroller/peripheral combination, and
 4. providing future protection against discontinued microcontroller variants.

 The main instruction processor soft cores include the following:

 • Nios II [12] . Developed by Altera for use on their range of FPGAs and
application-specifi c integrated circuits (ASICs).

 • MicroBlaze [258] . Developed by Xilinx for use on their range of FPGAs
and ASICs.

 • OpenRISC [190] . A free and open - source soft - core processor.
 • Leon [106] . Another free and open - source soft - core processor that imple-

ments a complete SPARC v8 compliant instruction set architecture (ISA).
It also has an optional high - speed fl oating - point unit called GRFPU,
which is free for download but is not open source and is only for evalua-
tion/research purposes.

 • OpenSPARC [235] . This SPARC T1 core supports single - and four -
 thread options on FPGAs.

c03.indd 77c03.indd 77 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

78 PROCESSORS

 There are many distinguishing features among all of these, but in essence, they
support a 32 - bit reduced instruction set computer (RISC) architecture (except
OpenSPARC, which is 64 bits) with single - issue fi ve - stage pipelines, have con-
fi gurable data/instruction caches, and have support for the Gnu compiler col-
lection (GCC) compiler tool chain. They also feature bus architectures suitable
for adding extra processing units as slaves or masters that could be used to
accelerate the algorithm, although some go further and allow the addition of
custom instructions/coprocessors.

 Figure 3.4 Process of processor core selection.

Initial computational
and real-time
requirements

Evaluate with all real
time constraints

Select GPP core and
system software

Parameterize/
customize

Define function
specific core for
primary real time

constraint

Evaluate
constraints

Parameterize/
customize

Select GPP core with
system software

Identify compute
requirements

All constraints
satisfied?

All constraints
satisfied?

Add another core or
reparameterize

No

Initial design complete

Yes

Compute limited Other limitations

Yes

Reconsider core or
reparameterize

No

c03.indd 78c03.indd 78 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

PROCESSOR SELECTION FOR SOC 79

 Table 3.2 contains a brief comparison of some of the distinguishing fea-
tures of these different SOCs. It should be noted that the measurements for
MIPS (million instructions per second) are mostly taken from marketing
material and are likely to fl uctuate wildly, depending on the specifi c confi gura-
tion of a particular processor.

 Now a simple comparison, we estimated in an earlier section that a 32 - bit
processor, without the fl oating - point unit, is around 60 A. We can see from Table
 3.2 that such a processor is around 15 – 30 times smaller than soft processors.

 3.2.3 Examples: Processor Core Selection

 Let us consider two examples that illustrate the steps shown in Figure 3.4 .

 Example 1: Processor Core Selection, General Core Path Consider the
 “ other limitation ” path in Figure 3.4 and look at some of the trade - offs. For
this simple analysis, we shall ignore the processor details and just assume that
the processor possibilities follow the AT 2 rule discussed in Chapter 2 . Assume
that an initial design had performance of 1 using 100K rbe (register bit equiva-
lent) of area, and we would like to have additional speed and functionality. So
we double the performance (half the T for the processor). This increases the
area to 400K rbe and the power by a factor of 8. Each rbe is now dissipating
twice the power as before. All this performance is modulated by the memory
system. Doubling the performance (instruction execution rate) doubles the
number of cache misses per unit time. The effect of this on realized system
performance depends signifi cantly on the average cache miss time; we will see
more of this in Chapter 4 .

 Suppose the effect of cache misses signifi cantly reduces the realized perfor-
mance; to recover this performance, we now need to increase the cache size.
The general rule cited in Chapter 4 is to half the miss rate, we need to double

 TABLE 3.2 Some Features of Soft - Core Processors

 Nios II

(fast) [13]
 MicroBlaze

 [260]
 OpenRISC

 [190]
 Leon4
 [106]

 Open source No No Yes Yes
 Hardware FPU Yes Yes No Yes
 Bus standard Avalon CoreConnect WISHBONE AMBA
 Integer division unit Yes Yes No Yes
 Custom coprocessors/

instructions
 Yes Yes Yes Yes

 Maximum frequency
on FPGA (MHz)

 290 200 47 125

 Max MIPS on FPGA 340 280 47 210
 Resources 1800 LE 1650 slices 2900 slices 4000 slices
 Area estimate 1500 A 800 A 1400 A 1900 A

c03.indd 79c03.indd 79 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

80 PROCESSORS

the cache size. If the initial cache size was also 100K rbe, the new design now
has 600K rbe and probably dissipates about 10 times the power of the initial
design.

 Is it worth it? If there is plenty of area while power is not a signifi cant
constraint, then perhaps it is worth it. The faster processor cache combination
may provide important functionality, such as additional security checking or
input/output (I/O) capability. At this point, the system designer refers back to
the design specifi cation for guidance.

 Example 2: Processor Core Selection, Compute Core Path Again refer to
Figure 3.4 , only now consider some trade - offs for the compute - limited path.
Suppose the application is generally parallelizable, and we have several dif-
ferent design approaches. One is a 10 - stage pipelined vector processor; the
other is multiple simpler processors. The application has performance of 1 with
the vector processor (area is 300K rbe) and half of that performance with a
single simpler processor (area is 100K rbe). In order to satisfy the real - time
compute requirements, we need to increase the performance to 1.5.

 Now we must evaluate the various ways of achieving the target perfor-
mance. Approach 1 is to increase the pipeline depth and double the number
of vector pipelines; this satisfi es the performance target. This increases the area
to 600K rbe and doubles the power, while the clock rate remains unchanged.
Approach 2 is to use an “ array ” of simpler interconnected processors. The
multiprocessor array is limited by memory and interconnect contention (we
will see more of these effects in Chapter 5). In order to achieve the target
performance, we need to have at least four processors: three for the basic
target and one to account for the overhead. The area is now 400K rbe plus the
interconnect area and the added memory sharing circuitry; this could also add
another 200K rbe. So we still have two approaches undifferentiated by area
or power considerations.

 So how do we pick one of these two alternatives? There are usually many
more than two. Now all depends on the secondary design targets, which we
only begin to list here:

 1. Can the application be easily partitioned to support both approaches?
 2. What support software (compilers, operating systems, etc.) exists for each

approach?
 3. Can we use the multiprocessor approach to gain at least some fault

tolerance?
 4. Can the multiprocessor approach be integrated with the other compute

path?
 5. Is there a signifi cant design effort to realize either of the enhanced

approaches?

 Clearly, there are many questions the system designer must answer. Tools and
analysis only eliminate the unsatisfactory approaches; after that, the real
system analysis begins.

c03.indd 80c03.indd 80 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

BASIC CONCEPTS IN PROCESSOR ARCHITECTURE 81

 The remainder of this chapter is concerned with understanding the proces-
sor, especially at the microarchitecture level, and how that affects performance.
This is essential in evaluating performance and in using simulation tools.

 WAYS TO ACHIEVE PERFORMANCE

 The examples used in Section 3.2 are quite simplistic. How does one
create designs that match the AT 2 design rule, or do even better? The
secret is in understanding design possibilities, the freedom to choose
among design alternatives. In order to do this, one must understand the
complexity of the modern processor and all of its ramifi cations. This
chapter presents a number of these alternatives, but it only touches the
most important, and many other techniques can serve the designer well
in specifi c situations. There is no substitute for understanding.

 3.3 BASIC CONCEPTS IN PROCESSOR ARCHITECTURE

 The processor architecture consists of the instruction set of the processor.
While the instruction set implies many implementation (microarchitecture)
details, the resulting implementation is a great deal more than the instruction
set. It is the synthesis of the physical device limitations with area – time – power
trade - offs to optimize specifi ed user requirements.

 3.3.1 Instruction Set

 The instruction set for most processors is based upon a register set to hold
operands and addresses. The register set size varies from 8 to 64 words or more,
each word consisting of 32 – 64 bits. An additional set of fl oating - point registers
(32 – 128 bits) is usually also available. A typical instruction set specifi es a
program status word, which consists of various types of control status informa-
tion, including condition codes (CCs) set by the instruction. Common instruc-
tion sets can be classifi ed by format differences into two basic types, the
load – store (L/S) architecture and the register – memory (R/M) architecture:

 • The L/S instruction set includes the RISC microprocessors. Arguments
must be in registers before execution. An ALU instruction has both
source operands and result specifi ed as registers. The advantages of the
L/S architecture are regularity of execution and ease of instruction
decode. A simple instruction set with straightforward timing is easily
implemented.

 • The R/M architectures include instructions that operate on operands in
registers or with one of the operands in memory. In the R/M architecture,
an ADD instruction might sum a register value and a value contained in

c03.indd 81c03.indd 81 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

82 PROCESSORS

memory, with the result going to a register. The R/M instruction sets trace
their evolution to the IBM mainframes and the Intel x86 series (now
called the Intel IA32).

 The trade - off in instruction sets is an area – time compromise. The R/M approach
offers a more concise program representation using fewer instructions of vari-
able size compared with L/S. Programs occupy less space in memory and
require smaller instruction caches. The variable instruction size makes decod-
ing more diffi cult. The decoding of multiple instructions requires predicting
the starting point of each. The R/M processors require more circuitry (and
area) to be devoted to instruction fetch and decode. Generally, the success of
Intel - type x86 implementations in achieving high clock rates has shown that
there is no decisive advantage of one approach over the other.

 Figure 3.5 shows a general outline of some instruction layouts for typical
machine instruction sets. RISC machines use a fi xed 32 - bit instruction size
or a 32 - bit format with 64 - bit instruction extensions. Intel IA32 and the IBM
System 390 (now called zSeries) mainframes use variable - size instructions.
Intel uses 8 - , 16 - , and 32 - bit instructions, while IBM uses 16 - , 32 - , and 48 - bit
instructions. Intel ’ s byte - sized instructions are possible because of the limited
register set size. The size variability and the R/M format gave good code
density, at the expense of decode complexity. The RISC - based ARM format
is an interesting compromise. It offers a 32 - bit instruction set with a built - in
conditional fi eld, so every instruction can be conditionally executed. It also
offers a 16 - bit instruction set (called the thumb instructions). The result offers
both decode effi ciency and code density.

 Recent developments in instruction set extension will be covered in
Chapter 6 .

 3.3.2 Some Instruction Set Conventions

 Table 3.3 is a list of basic instruction operations and commonly used mne-
monic representations. Frequently, there are different instructions for differing
data types (integer and fl oating point). To indicate the data type that the opera-
tion specifi es, the operation mnemonic is extended by a data - type indicator,
so OP.W might indicate an OP for integers, while OP.F indicates a fl oating -
 point operation. Typical data - type modifi ers are shown in Table 3.4 . A typical
instruction has the form OP.M destination, source 1, source 2 . The
source and destination specifi cation has the form of either a register or a
memory location (which is typically specifi ed as a base register plus an offset)

 3.3.3 Branches

 Branches (or jumps) manage program control fl ow. They typically consist of
unconditional BR, conditional BC, and subroutine call and return (link). The
BC tests the state of the CC, which usually consists of 4 bits in a program status

c03.indd 82c03.indd 82 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

BASIC CONCEPTS IN PROCESSOR ARCHITECTURE 83

or control register. Typically, the CC is set by an ALU instruction to record
one of several results (encoded in 2 or 4 bits), for example, specifying whether
the instruction has generated

 1. a positive result,
 2. a negative result,
 3. a zero result, or
 4. an overfl ow.

 Figure 3.5 Instruction size and format for typical processors.

OP Rd Addr

OP Rd Rs1 Rs2

L/S machines such
as MIPS, PowerPC

LD/ST

ADD, etc

32 bits

OP Rd, s

OP Rd, s Address: base + offset

R/M machines, Intel IA32, IBM mainframes

OP Rd, s Rs2

Rs28 bit

16 bit

32 bit

Intel only

Rd,s is used as both a source and
a destination

CDX OP Rd Rs1 Rs2

OP Rd Rs2CDX

Shift, etc.

Rs1

32 bit

16 bit

ARM L/S machine

Thumb instructions

c03.indd 83c03.indd 83 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

84 PROCESSORS

 Figure 3.6 illustrates the use of CCs by the BC instruction. The unconditional
branch (BR) is the BC with an all 1 ’ s mask setting (see fi gure). It is possible
(as in the ARM instruction set) to make all instructions conditional by includ-
ing a mask fi eld in each instruction.

 3.3.4 Interrupts and Exceptions

 Many embedded SOC controllers have external interrupts and internal excep-
tions, which indicate the need for attention by an interrupt manager (or han-
dler) program. These facilities can be managed and supported in various ways:

 1. User Requested versus Coerced. The former often covers erroneous exe-
cution, such as divide by zero, while the latter is usually triggered by
external events, such as device failure.

 2. Maskable versus Nonmaskable. The former type of event can be ignored
by setting a bit in an interrupt mask, while the latter cannot be ignored.

 TABLE 3.3 Instruction Set Mnemonic Operations

 Mnemonic Operation

 ADD Addition
 SUB Subtraction
 MPY Multiplication
 DIV Division
 CMP Compare
 LD Load (a register from memory)
 ST Store (a register to memory)
 LDM Load multiple registers
 STM Store multiple registers
 MOVE Move (register to register or memory to memory)
 SHL Shift left
 SHR Shift right
 BR Unconditional branch
 BC Conditional branch
 BAL Branch and link

 TABLE 3.4 Data - Type Modifi ers (OP.modifi er)

 Modifi er Data Type

 B Byte (8 bits)
 H Halfword (16 bits)
 W Word (32 bits)
 F Floating point (32 bits)
 D Double - precision fl oating point (64 bits)
 C Character or decimal in an 8 - bit format

c03.indd 84c03.indd 84 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

BASIC CONCEPTS IN PROCESSOR ARCHITECTURE 85

 3. Terminate versus Resume. An event such as divide by zero would termi-
nate ordinary processing, while a processor resumes operation.

 4. Asynchronous versus Synchronous. Interrupt events can occur in asyn-
chrony with the processor clock by an external agent or not, as when
caused by a program ’ s execution.

 5. Between versus Within Instructions. Interrupt events can be recognized
only between instructions or within an instruction execution.

 In general, the fi rst alternative of most of these pairs is easier to implement
and may be handled after the completion of the current instruction. Whether
the designer chooses to constrain the design only to precise exceptions, an
exception is precise if all the instructions before the exception fi nish correctly,
and all those after it do not change the state. Once the exception is handled,
the latter instructions are restarted from scratch.

 Moreover, some of these events may occur simultaneously and may even
be nested. There is a need to prioritize them. Controllers and general - purpose

 Figure 3.6 Examples of BC instruction using the condition code.

Setting the condition code

Using the condition code

If instruction result is then set condition code as
+

–
0

P = 1000

N = 0100
Z = 0010

O = 0001over/underflow

Program status

Mask

Mask = 0000 is no op, since all conditions are masked out—producing 0s
 from the ANDing operation.

Mask = 1111 is unconditional branch, since the previous computation
 produced some result (P, N, Z, O), and at least one mask
 AND condition will be true.
Mask = 1010 selects the condition P or Z, and branch is taken if result is ≥0
 (e.g., BC.GE).

Mask = 0110 Similarly, the condition selected is N or Z, and branch is taken
 if result is ≤0 (e.g., BC.LE).

BC

Condition code

A BC instruction tests for a particular condition or combination
of conditions. The 4-bit mask is ANDed with the four condition
code states, PNZO; these result bits are then ORed to
determine the outcome. If the result is “1,” the branch is taken
(i.e., is successful); if the result is “0,” the branch is not taken
and execution conditions in line.

c03.indd 85c03.indd 85 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

86 PROCESSORS

processors have special units to handle these problems and preserve the state
of the system in case of resuming exceptions.

 3.4 BASIC CONCEPTS IN PROCESSOR MICROARCHITECTURE

 Almost all modern processors use an instruction execution pipeline design.
Simple processors issue only one instruction for each cycle; others issue many.
Many embedded and some signal processors use a simple issue - one - instruction -
 per - cycle design approach. But the bulk of modern desktop, laptop, and server
systems issue multiple instructions for each cycle.

 Every processor (Figure 3.7) has a memory system, execution unit (data
paths), and instruction unit. The faster the cache and memory, the smaller
the number of cycles required for fetching instructions and data (IF and DF).
The more extensive the execution unit, the smaller the number of execution
cycles (EX). The control of the cache and execution unit is done by the instruc-
tion unit.

 The pipeline mechanism or control has many possibilities. Potentially, it can
execute one or more instructions for each cycle. Instructions may or may not
be decoded and/or executed in program order. Indeed, instructions from
several different programs can be executed in the same cycle in multithreaded
pipelines. Table 3.5 illustrates some of the possibilities.

 Regardless of the type of pipeline, “ breaks ” or delays are the major limit
on performance.

 Pipeline delays or breaks generally arise from one of three causes:

 1. Data Confl icts — Unavailability of a Source Operand. This can occur for
several reasons; typically, the current instruction requires an operand
that is the result of a preceding uncompleted instruction. Extensive buff-
ering of operands can minimize this effect.

 2. Resource Contention. Multiple successive instructions use the same
resource or an instruction with a long execution time delays a suc-
cessor instruction ’ s execution. Additional resources (fl oating - point
units, register ports, and out - of - order execution) contribute to reducing
contention.

 Figure 3.7 Processor units.

I-Unit

I-Registers

I-Buffer

Decoder

Address Generate

Interlocks
...

E-Unit

ALU

Registers

ALU.F

Registers

ALU.D

Integers/Operations

Floating Point

Decimal/Character

Memory Management

TLB

Cache Directory

Cache

Main Memory

c03.indd 86c03.indd 86 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

BASIC CONCEPTS IN PROCESSOR MICROARCHITECTURE 87

 3. Run - On Delays (in Order Execution Only). When instructions must
complete the WB (writeback) in program order, any delay in execution
(as in the case of multiply or divide) necessarily delays the instruction
execution in the pipeline.

 4. Branches. The pipeline is delayed because of branch resolution and/or
delay in the fetching of the branch target instruction before the pipeline
can resume execution. Branch prediction, branch tables, and buffers all
can be used to minimize the effect of branches.

 In the next section, we look at simple pipeline control and the operation of a
basic pipeline. These simple processors have minimum complexity but suffer
the most from (mostly branch) disruptions. Next, we consider the buffers
that are required to manage data movement both through the pipeline and
between units. Since the optimum pipeline layout (number of stages) is a
strong function of the frequency of breaks, we look at branches and techniques
for minimizing the effects of branch pipeline delays. Then, we look at multiple
instruction execution and more robust pipeline control. Table 3.6 describes the
architecture of some SOC processors.

 TABLE 3.5 Types of Pipelined Processors

 Type

 n Instructions
Decoded
per Cycle Comment

 Typical
Relative

Performance

 Partial or static pipeline 1 or less All actions in order 0.5 – 0.9
 Typical pipeline 1 All D and all

 WB in order
 1.0

 O.O.O. * pipeline 1 All D in order
 WB unordered

 1.2

 Multiple - issue superscalar n = 4 No order restriction † 2.5
 Multiple - issue VLIW n = 8 Ordered by compiler 3.0
 Superscalar with

multithreading
 n = 4 Two threads typically 3.0

 * Out of order (execution).
 † Ordered only by dependencies.

 TABLE 3.6 Processor Characteristics of Some SOC Designs

 SOC ISA Type Instruction Size Extension

 Freescale e600
 [101]

 PowerPC Load/store 32 bits Vector extension

 ClearSpeed
CSX600 [59]

 Proprietary Load/store 32 bits SIMD 96 PEs

 PlayStation 2
 [147, 187]

 MIPS Load/store 32 bits Vector extension

 AMD Geode
 [18]

 IA32 Register/
memory

 One byte or
more

 MMX, 3DNow!

c03.indd 87c03.indd 87 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

88 PROCESSORS

 3.5 BASIC ELEMENTS IN INSTRUCTION HANDLING

 An instruction unit consists of the state registers as defi ned by the instruction
set — the instruction register — plus the instruction buffer, decoder, and an
interlock unit. The instruction buffer ’ s function is to fetch instructions into
registers so that instructions can be rapidly brought into a position to be
decoded. The decoder has the responsibility for controlling the cache, ALU,
registers, and so on. Frequently, in pipelined systems, the instruction unit
sequencing is managed strictly by hardware, but the execution unit may be
microprogrammed so that each instruction that enters the execution phase will
have its own microinstruction associated with it. The interlock unit ’ s respon-
sibility is to ensure that the concurrent execution of multiple instructions has
the same result as if the instructions were executed completely serially.

 With instructions in various stages of execution, there are many design
considerations and trade - offs in even simple pipelined processors.

 Figure 3.8 shows the processor control or I - unit and basic communications
paths to memory.

 3.5.1 The Instruction Decoder and Interlocks

 When an instruction is decoded, the decoder must provide more than control
and sequencing information for that instruction. Proper execution of the

 Figure 3.8 I - unit.

IF from cache

IF address Address to cache

Address cache
Data to

Cache
access

controller

AG

Decoder

OP, R1

Data interlock

Store bufferStore
addr datainterlock

I-buffer

IR

D
B

X

X B

A.

B.

C.

D.

E.

Registers

<
<

<
<
<

c03.indd 88c03.indd 88 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

BASIC ELEMENTS IN INSTRUCTION HANDLING 89

current instruction depends on the other instructions in the pipeline. The
decoder (Figure 3.9)

 1. schedules the current instruction; the current instruction may be delayed
if a data dependency (e.g., at the address generate or AG cycle) occurs
or if an exception arises — for example, not in translation lookaside buffer
(TLB) and cache miss;

 2. schedules subsequent instructions; later instructions may be delayed to
preserve in - order completion if, for example, the current instruction has
multiple cycle execution; and

 3. selects (or predicts) the path on branch instruction.

 The data interlocks (subunit D in Figure 3.8) may be part of the decoder. This
determines register dependencies and schedules the AG and EX units. The
interlocks ensure that the current instruction does not use (depend on) a result
of a previous instruction until that result is available.

 The execution controller performs a similar function on subsequent instruc-
tions, ensuring that they do not enter the pipeline until the execution unit is
scheduled to complete the current instruction, and, if required, preserve the
execution order.

 The effect of the interlocks (Figure 3.10) is that for each instruction as it is
decoded, its source registers (for operands or addresses) must be compared
(indicated by “ C ” in Figure 3.10) against the destination registers of previously
issued but uncompleted instructions to determine dependencies. The opcode
itself usually establishes the number of EX cycles required (indicated by the
EX box in the fi gure). If this exceeds the number specifi ed by the timing tem-
plate, subsequent instructions must be delayed by that amount to preserve
in - order execution.

 The store interlocks (E) perform the same function as the data interlocks
for storage addresses. On STORE instructions, the address is sent to the store
interlocks so that subsequent reads either from the AG (data reads) or the IB

 Figure 3.9 Decoder functions.

Decoder Control signals

Schedule current instruction.

Schedule next instruction.

Predict branch outcome (static).

c03.indd 89c03.indd 89 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

90 PROCESSORS

(instruction reads) can be compared with pending stores and dependencies
detected.

 3.5.2 Bypassing

 Bypassing or forwarding is a data path that routes a result — usually from an
ALU — to a user (perhaps also the ALU), bypassing a destination register
(which is subsequently updated). This allows a result produced by the ALU to
be used at an earlier stage in the pipeline than would otherwise be possible.

 3.5.3 Execution Unit

 As with the cache, the execution unit (especially the fl oating - point unit) can
represent a signifi cant factor in both performance and area. Indeed, even a
straightforward fl oating - point unit can occupy as much or more area than a
basic integer core processor (without cache). In simple in - order pipelines, the
execution delay (run - on) can be a signifi cant factor in determining perfor-
mance. More robust pipelines use corresponding better arithmetic algorithms
for both integer and fl oating - point operations. Some typical area – time trade -
 offs in fl oating - point units are shown in Table 3.7 .

 Figure 3.10 Interlocks.

Current
instr (*)

Operand sources

OP R1

C C R destinations
* −m

·
·
·

* −1

R2

Decoder

EX delay

 TABLE 3.7 Characteristics of Some Floating - Point Implementations

 Implementation
 Word

Size (bit)
 Register

Set
 Execution Time
Add – Mul – Div Pipelined

 Area A
Units

 Minimal 32 4 3 – 8 – 30 No 25
 Typical 64 8 – 16 3 – 3 – 15 No 50
 Extended

arithmetic
 80 32 3 – 5 – 15 No 60

 Multiple issue 64 – 80 40 + 2 – 3 – 8 Yes 200 +

c03.indd 90c03.indd 90 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

BUFFERS: MINIMIZING PIPELINE DELAYS 91

 In the table, word size refers to the operand size (exponent and mantissa),
and the IEEE standard 754 format is assumed. The execution time is the esti-
mated total execution time in cycles. The pipelined column indicates the
throughput: whether the implementation supports the execution of a new
operation for each cycle. The fi nal column is an estimate of the units of area
needed for the implementation.

 The minimal implementation would probably only support specialized
applications and 32 - bit operands. The typical implementation refers to the
fl oating - point unit of a simple pipelined processor with 64 - bit operands.
Advanced processors support the extended IEEE format (80 bits), which pro-
tects the accuracy of intermediate computations. The multiple - issue implemen-
tation is a typical straightforward implementation. If the implementation is to
support issue rates greater than four, the size could easily double.

 3.6 BUFFERS: MINIMIZING PIPELINE DELAYS

 Buffers change the way instruction timing events occur by decoupling the time
at which an event occurs from the time at which the input data are used. It allows
the processor to tolerate some delay without affecting the performance. Buffers
enable latency tolerance as they hold the data awaiting entry into a stage.

 Buffers can be designed for a mean request rate [115] or for a maximum
request rate. In the former case, knowing the expected number of requests, we
can trade off buffer size against the probability of an overfl ow. Overfl ows per
se (where an action is lost) do not happen in internal CPU buffers, but an
 “ overfl ow ” condition — full buffer and a new request — will force the processor
to slow down to bring the buffer entries down below buffer capacity. Thus,
each time an overfl ow condition occurs, the processor pipeline stalls to allow
the overfl owing buffer to access memory (or other resources). The store buffer,
for example, is usually designed for a mean request rate.

 Maximum request rate buffers are used for request sources that dominate
performance, such as in - line instruction requests or data entry in a video
buffer. In this case, the buffer size should be suffi cient to match the processor
request rate with the cache or other storage service rate. A properly sized
buffer allows the processor to continue accessing instructions or data at its
maximum rate without the buffer running out of information.

 3.6.1 Mean Request Rate Buffers

 We assume that q is a random variable describing the request size (number of
pending requests) for a resource; Q is the mean of this distribution; and σ is
the standard deviation.

 Little ’ s Theorem The mean request size is equal to the mean request rate
(requests per cycle), multiplied by the mean time to service a request [142] .

c03.indd 91c03.indd 91 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

92 PROCESSORS

 We assume a buffer size of BF , and we defi ne the probability of a buffer
overfl ow as p . There are two upper bounds for p based on Markov ’ s and
Chebyshev ’ s inequalities.

 Markov ’ s Inequality

 Prob{ }q BF
Q

BF
≥ ≤

 Chebyshev ’ s Inequality

 Prob{ }
()

q BF
BF Q

≥ ≤
−

σ 2

2

 Using these two inequalities, for a given probability of overfl ow (p), we can
conservatively select BF , since either term provides an upper bound, as

 BF
Q
p

Q
p

= +
⎛
⎝⎜

⎞
⎠⎟

min , .
σ

 3.6.2 Buffers Designed for a Fixed or Maximum Request Rate

 A buffer designed to supply a fi xed rate is conceptually easy to design.
The primary consideration is masking the access latency. If we process one
item per cycle and it takes three cycles to access an item, then we need to
have a buffer space of at least three, or four, if we count the item being
processed.

 In general, the maximum rate buffer supplies a fi xed rate of data or instruc-
tions for processing. There are many examples of such buffers, including the
instruction buffer, video buffers, graphics, and multimedia buffers.

 In the general case where s items are processed for each cycle, and p items
are fetched from a storage with a fi xed access time, the buffer size, BF is

 E XAMPLE 3.1

 Suppose we wish to determine the effectiveness of a two - entry write buffer.
Assume the write request rate is 0.15 per cycle, and the expected number of
cycles to complete a store is two. The mean request size is 0.15 × 2 = 0.3, using
Little ’ s theorem. Assuming σ 2 = 0.3 for the request size, we can calculate an
upper bound on the probability of overfl ow as

 p
Q

BF BF Q
=

−
⎛
⎝⎜

⎞
⎠⎟

=max ,
()

. .
σ 2

2
0 10

c03.indd 92c03.indd 92 5/4/2011 9:54:06 AM5/4/2011 9:54:06 AM

BRANCHES: REDUCING THE COST OF BRANCHES 93

 BF s
p

= + ⋅⎡
⎣⎢

⎤
⎦⎥

1
access time cycles()

.

 The initial “ 1 ” is an allowance for a single entry buffer used for processing
during the current cycle. In some cases, it may not be necessary. The buffer
described here is designed to buffer entry into a functional unit or decoder
(as an I decoder); it is not exactly the same as the frame buffer or the image
buffer that manages transfers between the processor and a media device.
However, the same principles apply in the design to these media buffers.

 3.7 BRANCHES: REDUCING THE COST OF BRANCHES

 Branches represent one of the diffi cult issues in optimizing processor perfor-
mance. Typically, branches can signifi cantly reduce performance. For example,
the conditional branch instruction (BC) tests the CC set by a preceding instruc-
tion. There may be a number of cycles between the decoding of the branch
and the setting of the CC (see Figure 3.11). The simplest strategy is for the
processor to do nothing but simply to await the outcome of the CC set and to
defer the decoding of the instruction following the BC until the CC is known.
In case the branch is taken, the target is fetched during the time allocated to
a data fetch in an arithmetic instruction. This policy is simple to implement
and minimizes the amount of excess memory traffi c created by branch instruc-
tions. More complicated strategies that attempt to guess a particular path will
occasionally be wrong and will cause additional or excess instruction fetches
from memory.

 In Figure 3.11 , the actual decode is fi ve cycles late (i.e., a fi ve - cycle branch
penalty). This is not the whole effect, however. The timing of NEXT + 1 is
delayed an additional cycle when the target path is taken, as this instruction
has not been prefetched.

 Figure 3.11 The delay caused by a branch (BC).

IF IF D AG AG DF DF EX EX

IF IF D AG AG TIF TIF

D D’

SCHEDULED ACTUAL

C
C

 E
S

T

BC

NEXT
INSTRUCTION

c03.indd 93c03.indd 93 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

94 PROCESSORS

 Since branches are a major limitation to processor performance [75, 222] ,
there has been a great deal of effort to reduce the effect. There are two simple
and two substantial approaches to the branch problem. The simple approaches
are the following:

 1. Branch Elimination. For certain code sequences, we can replace the
branch with another operation.

 2. Simple Branch Speedup. This reduces the time required for target
instruction fetch and CC determination.

 The two more complex approaches are generalizations of the simple
approaches:

 1. Branch Target Capture. After a branch has been executed, we can keep
its target instruction (and its address) in a table for later use to avoid the
branch delay. If we could predict the branch path outcome and had the
target instruction in the buffer, there would be no branch delay.

 2. Branch Prediction. Using available information about the branch, one
can predict the branch outcome and can begin processing on the pre-
dicted program path. If the strategy is simple or trivial, for example,
always fetch in - line on true conditional branches, it is called a fi xed strat-
egy. If the strategy varies by opcode type or target direction, it is called
a static strategy. If the strategy varies according to current program
behavior, it is called a dynamic strategy (see Figure 3.12).

 Table 3.8 summarizes these techniques. In the following sections, we look at
two general approaches.

 3.7.1 Branch Target Capture: Branch Target Buffers (BTB s)

 The BTB (Figure 3.13) stores the target instruction of the previous execution
of the branch. Each BTB entry has the current instruction address (needed

 Figure 3.12 Branch prediction.

+

BC

OP History

Fixed

Always guess in-line
unless OP = BR

Guess based on
type of BC

Guess based on BC
and its recent history

DynamicStatic

c03.indd 94c03.indd 94 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

 TA
B

L
E

 3
.8

 B

ra
nc

h
M

an
ag

em
en

t T
ec

hn
iq

ue
s

 A
pp

ro
ac

h
 W

ha
t

It
 D

oe
s

 H
ar

dw
ar

e
C

os
t

 E
ff

ec
t

on
 B

ra
nc

h
D

el
ay

(T

ak
en

 B
ra

nc
h)

 E

ff
ec

t
on

 B
ra

nc
h

P
re

di
ct

io
n

 B
ra

nc
h

R
es

ol
ut

io
n

 E

ar
ly

 C
C

 s
et

 D

et
er

m
in

es
 t

he
 o

ut
co

m
e

of
 t

he

te
st

ed
 c

on
di

ti
on

 e
ar

ly

 N
il

 C
an

 s
av

e
a

cy
cl

e
 N

on
e

 D
el

ay
ed

 b
ra

nc
h

 D
et

er
m

in
es

 t
he

 o
ut

co
m

e
of

 t
he

te

st
ed

 c
on

di
ti

on
 e

ar
ly

 N

il
 ”

 N

on
e

 B
ra

nc
h

ad
de

r
 D

et
er

m
in

es
 t

he
 t

ar
ge

t
ad

dr
es

s
ea

rl
y

 N
il

 G
en

er
al

ly
 s

av
es

 a
 c

yc
le

 N

on
e

 R
ed

uc
in

g
B

ra
nc

h
Ta

rg
et

 D
el

ay

 B
ra

nc
h

ta
bl

e
bu

ff
er

 St

or
es

 t
he

 la
st

 t
ar

ge
t

in
st

ru
ct

io
n

fo
r

ea
ch

 b
ra

nc
h

in
 a

 s
pe

ci
al

ta

bl
e

(B
T

B
)

 Ta
bl

es
 c

an
 b

e
la

rg
e

 R
ed

uc
e

to
 z

er
o

 80
 – 9

0 +
 %

 h
it

 r
at

e,
 d

ep
en

ds

on
 s

iz
e

an
d

ap
pl

ic
at

io
n

 Im
pr

ov
in

g
B

ra
nc

h
P

re
di

ct
io

n
R

at
e

 St

at
ic

 U

se
s

br
an

ch
 o

pc
od

e
or

 t
es

t
to

pr

ed
ic

t
th

e
ou

tc
om

e
 Sm

al
l

 N
on

e
 70

 – 8
0%

 a
cc

ur
at

e

 T
hr

ee
 D

yn
am

ic
 T

ec
hn

iq
ue

s

 1.
 B

im
od

al

 2.
 T

w
o -

 le
ve

l a
da

pt
iv

e
 3.

 C
om

bi
ne

d
bi

m
od

al

an
d

tw
o -

 le
ve

l

 R
ec

or
ds

 o
ut

co
m

e
of

 e
ac

h
br

an
ch

 Sm

al
l t

ab
le

 N

on
e

 80
 – 9

0%
 a

cc
ur

at
e

 C
re

at
es

 v
ec

to
r

of
 b

ra
nc

h
ou

tc
om

es

 C
an

 b
e

16
 K

B
 +

 E

na
bl

es
 p

at
h

sp
ec

ul
at

io
n

 95
 + %

 a
cc

ur
ac

y

 U
se

s
be

st
 o

ut
co

m
e

 A
s

ab
ov

e
 A

s
ab

ov
e

 A
s

ab
ov

e

95

c03.indd 95c03.indd 95 5/4/2011 3:27:25 PM5/4/2011 3:27:25 PM

96 PROCESSORS

only if branch aliasing is a problem), the branch target address, and the most
recent target instruction. (The target address enables the initiation of the
target fetch earlier in the pipeline, since it is not necessary to wait for the
address generation to complete.) The BTB functions as follows: Each instruc-
tion fetch indexes the BTB. If the instruction address matches the instruction
addresses in the BTB, then a prediction is made as to whether the branch
located at that address is likely to be taken. If the prediction is that the branch
will occur, then the target instruction is used as the next instruction. When the
branch is actually resolved, at the execute stage, the BTB can be updated with
the corrected target information if the actual target differs from the stored
target.

 The BTB ’ s effectiveness depends on its hit ratio — the probability that a
branch is found in the BTB at the time it is fetched. The hit rate for a 512 - entry
BTB varies from about 70% to over 98%, depending on the application.

 BTBs can be used in conjunction with the I - cache. Suppose we have a con-
fi guration as shown in Figure 3.14 . The IF is made to both the BTB and I - cache.
If the IF “ hits ” in the BTB, the target instruction that was previously stored
in the BTB is now fetched and forwarded to the processor at its regularly
scheduled time. The processor will begin the execution of the target instruction
with no branch delay.

 The BTB provides both the target instruction and the new PC. There is now
no delay on a taken branch so long as the branch prediction is correct . Note
that the branch itself must still be fetched from the I - cache and must be fully
executed. If either the AG outcome or the CC outcome is not as expected, all
instructions in the target fetch path must be aborted. Clearly, no conditionally

 Figure 3.13 Branch target buffer (BTB) organization. The BTB is indexed by instruc-
tion bits. The particular branch can be confi rmed (avoiding an alias) by referencing an
instruction address fi eld in the table.

...
...

...

Instruction
address

Branch
target

address

Branch
target

c03.indd 96c03.indd 96 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

BRANCHES: REDUCING THE COST OF BRANCHES 97

 Figure 3.14 Typical BTB structure. If “ hit ” in the BTB, then the BTB returns the
target instruction to the processor; CPU guesses the target. If “ miss ” in the BTB, then
the cache returns the branch and in - line path; CPU guesses in - line.

+

BTB

I-cache

Instruction
requests

executed (target path) instruction can do a fi nal result write, as this would
make it impossible to recover in case of a misprediction.

 3.7.2 Branch Prediction

 Beyond the trivial fi xed prediction, there are two classes of strategies for guess-
ing whether or not a branch will be taken: a static strategy, which is based upon
the type of branch instruction, and a dynamic strategy, which is based upon
the recent history of branch activity.

 Even perfect prediction does not eliminate branch delay. Perfect prediction
simply converts the delay for the conditional branch into that for the uncon-
ditional branch (branch taken). So, it is important to have BTB support before
using a more robust (and expensive) predictor.

 Static Prediction Static prediction is based on the particular branch opcode
and/or the relative direction of the branch target. When a branch is decoded,
a guess is made on the outcome of the branch, and if it is determined that the
branch will be successful, the pipeline fetches the target instruction stream and
begins decoding from it. A simple approach is shown in Table 3.9 .

 TABLE 3.9 A Static Branch Prediction Strategy

 Instruction Class Instruction
 Guessed

Successful (S)
 Guessed

Unsuccessful (U)

 Unconditional branch BR Always Never
 Branch on condition BC Guess S on

backward *
 Guess U on

forward *
 Loop control BCT Always Never
 Call/return BAL Always Never

 * When the branch target is less than the current PC, assume a loop and take the target. Otherwise,
guess in - line.

c03.indd 97c03.indd 97 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

98 PROCESSORS

 The general effectiveness of a strategy described in Table 3.9 is typically
70 – 80%.

 Dynamic Prediction: Bimodal Dynamic strategies make predictions based
on past history; that is, the sequence of past actions of a branch — was it or was
it not taken? Table 3.10 from Lee and Smith [154] shows the effectiveness of
a branch prediction when prediction is based on a count of the outcome of
preceding executions of the branch in question. The prediction algorithm is
quite simple. In implementing this scheme, a small up/down saturating counter
is used. If the branch is taken, the counter is incremented up to a maximum
value (n). An unsuccessful branch decrements the counter. In a 2 - bit counter,
the values 00 and 01 would predict a branch not taken, while 10 and 11 predicts
a branch taken. The table can be separate or integrated into a cache is shown
in Figure 3.15 .

 Depending on the table organization, two branches can map into the same
history, creating an aliasing problem.

 A number of observations can be made from Table 3.10 . First, the predictive
accuracy very closely approaches its maximum with just a few bits. Second, the
predictive accuracy for a two bit counter varies from 83.4% to 96.5%, which

 Figure 3.15 Branch history counter can be kept in I - cache (above) or in a separate
table.

I-cache
directory

Line address

Count of history of branch outcomes
for a branch in this line

I-cache

Cache line

 TABLE 3.10 Percentage Correct Guess Using History
with n - bit Counters [154]

 n

 Mix Defi nition

 Compiler Business Scientifi c Supervisor

 0 64.1 64.4 70.4 54.0
 1 91.9 95.2 86.6 79.7
 2 93.3 96.5 90.8 83.4
 3 93.7 96.6 91.0 83.5
 4 94.5 96.8 91.8 83.7
 5 94.7 97.0 92.0 83.9

c03.indd 98c03.indd 98 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

BRANCHES: REDUCING THE COST OF BRANCHES 99

is much higher than the accuracy using only the branch opcode prediction
strategy of Table 3.9 . Third, the effectiveness of prediction in a standard test
suite (SPECmarks) is reported to be 93.5% using a very large table.

 Dynamic Prediction: Two - Level Adaptive Bimodal prediction is generally
limited to prediction rates around 90% across multiple environments. Yeh and
Patt [267, 268] have looked at adaptive branch prediction as a method of
raising prediction rates to 95%. The basic method consists of associating a shift
register with each branch in, for example, a branch table buffer. The shift
register records branch history. A branch twice taken and twice not taken, for
example, would be recorded as “ 1100. ” Each pattern acts as an address into
an array of counters, such as the 2 - bit saturating counters. Each time the
pattern 1100 is encountered, the outcome is recorded in the saturating counter.
If the branch is taken, the counter is incremented; if the branch is not taken,
it is decremented.

 Adaptive techniques can require a good deal of support hardware. Not only
must we have history bits associated with the possible branch entries but we
must also have a table of counters to store outcomes. The approach is more
effective in large programs where it is possible to establish a stable history
pattern.

 The average trace data from Yeh and Patt indicates that an adaptive strat-
egy using a 6 - bit entry provided a 92% correct prediction rate increasing to
95% with a 24 - bit entry. Notice that the published SPECmark performance is
signifi cantly higher than other data.

 The 2 - bit saturating counter achieves 89.3% averaged over all programs.
However, the data in Figure 3.16 is based on a different set of programs than
those presented in Table 3.10 .

 Figure 3.16 Branch prediction rates for a two - level adaptive predictor.

 88

 90

 92

 94

 96

 98

 100

 0 3 6 9 12 15 18 21 24

B
ra

nc
h

pr
ed

ic
tio

n
ra

te

History bits

Average prediction rate
SPECmark

Average static prediction (87.7%)
Average 2-bit bimodal (89.3%)

c03.indd 99c03.indd 99 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

100 PROCESSORS

 The adaptive results are shown for the prediction rate averaged over all
programs [267] . Differences between 89% and 95% may not seem signifi cant,
but overall execution delay is often dominated by mispredicted branches.

 Dynamic Prediction: Combined Methods The bimodal and the adaptive
approaches provide rather different information about the likelihood of a
branch path. Therefore, it is possible to combine these approaches by adding
another (vote) table of (2 - bit saturating) counters. When the outcomes differ,
the vote table selects between the two, and the fi nal result updates the count
in the vote table. This is referred to as combined prediction method and offers
an additional percent or so improvement in the prediction rate. Of course, one
can conceive of combining more than two predictions for an even more robust
predictor.

 The disadvantage of the two - level approach includes the hardware require-
ment for control and two serial table accesses. An approximation to it is called
the global adaptive predictor. It uses only one shift register for all branches
(global) to index into a single history table. While faster than the two - level in
prediction, its prediction accuracy is only comparable to the bimodal predictor.
But one can combine the bimodal predictor with the global adaptive predictor
to create an approximate combined method. This gives results comparable to
the two - level adaptive predictor.

 Some processor branch strategies are shown in Table 3.11 . Some SOC type
processor branch strategies are shown in Table 3.12 ; they are notably simpler
than workstation processors.

 TABLE 3.11 Some Typical Branch Strategies

 Workstation Processors Prediction Method Target Location

 AMD Bimodal: 16K × 2 bit BTB: 2K entries
 IBM G5 Three tables combined

method
 BTB

 Intel Itanium Two - level adaptive Targets in I - cache
with branch

 SOC processors Prediction method Target location

 Intel XScale (ARM v5) History bits BTB: 128 entries

 TABLE 3.12 Branch Prediction Strategies of Some SOC Designs

 SOC Strategy BTB Entries Branch History Entries

 Freescale e600 [101] Dynamic 128 2K
 MIPS 74K [183] Dynamic — 3 × 256
 Intel PXA27x [132] Dynamic 128 —
 ARC 600 [19] Static — —

c03.indd 100c03.indd 100 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

VECTOR PROCESSORS AND VECTOR INSTRUCTION EXTENSIONS 101

 3.8 MORE ROBUST PROCESSORS: VECTOR, VERY LONG
INSTRUCTION WORD (VLIW), AND SUPERSCALAR

 To go beyond one cycle per instruction (CPI), the processor must be able to
execute multiple instructions at the same time. Concurrent processors must be
able to make simultaneous accesses to instruction and data memory and to
simultaneously execute multiple operations. Processors that achieve a higher
degree of concurrency are called concurrent processors, short for processors
with instruction - level concurrency.

 For the moment, we restrict our attention to those processors that execute
only from one program stream. They are uniprocessors in that they have a
single instruction counter, but the instructions may have been signifi cantly
rearranged from the original program order so that concurrent instruction
execution can be achieved.

 Concurrent processors are more complex than simple pipelined processors.
In these processors, performance depends in greater measure on compiler
ability, execution resources, and memory system design. Concurrent processors
depend on sophisticated compilers to detect the instruction - level parallelism
that exists within a program. The compiler must restructure the code into a
form that allows the processor to use the available concurrency. Concurrent
processors require additional execution resources, such as adders and multipli-
ers, as well as an advanced memory system to supply the operand and instruc-
tion bandwidth required to execute programs at the desired rate [208, 250] .

 3.9 VECTOR PROCESSORS AND VECTOR
INSTRUCTION EXTENSIONS

 Vector instructions boost performance by

 1. reducing the number of instructions required to execute a program (they
reduce the I - bandwidth);

 2. organizing data into regular sequences that can be effi ciently handled by
the hardware; and

 3. representing simple loop constructs, thus removing the control overhead
for loop execution.

 Vector processing requires extensions to the instruction set, together with (for
best performance) extensions to the functional units, the register sets, and
particularly to the memory of the system.

 Vectors, as they are usually derived from large data arrays, are the one data
structure that is not well managed by a conventional data cache. Accessing
array elements, separated by an addressing distance (called the stride), can fi ll
a smaller - to intermediate - sized data cache with data of little temporal locality;
hence, there is no reuse of the localities before the items must be replaced
(Figure 3.17).

c03.indd 101c03.indd 101 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

102 PROCESSORS

 Figure 3.17 For an array in memory, different accessing patterns use different strides
in accessing memory.

Stride = n

Stride = 1

n

n

 Figure 3.18 The primary storage facilities in a vector processor. Vector LD/ST usually
bypasses the data cache.

Vector
register

Scalar FP
registers

Integer
registers

Data
cache

Vector load
and store

instructions

Memory

 Vector processors usually include vector register (VR) hardware to decou-
ple arithmetic processing from memory. The VR set is the source and destina-
tion for all vector operands. In many implementations, accesses bypass the
cache. The cache then contains only scalar data objects — objects not used in
the VRs (Figure 3.18).

c03.indd 102c03.indd 102 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

VECTOR PROCESSORS AND VECTOR INSTRUCTION EXTENSIONS 103

 3.9.1 Vector Functional Units

 The VRs typically consist of eight or more register sets, each consisting of
16 – 64 vector elements, where each vector element is a fl oating - point word.

 The VRs access memory with special load and store instructions. The vector
execution units are usually arranged as an independent functional unit for
each instruction class. These might include

 • add/subtract,
 • multiplication,
 • division or reciprocal, and
 • logical operations, including compare.

 Since the purpose of the vector vocabulary is to manage operations over a
vector of operands, once the vector operation is begun, it can continue at the
cycle rate of the system. Figure 3.19 shows timing for a sample four - stage
functional pipeline. A vector add (VADD) sequence passes through various
stages in the adder. The sum of the fi rst elements of VR1 and VR2 (labeled
VR1.1 and VR2.1) are stored in VR3 (actually, VR3.1) after the fourth adder
stage.

 Pipelining of the functional units is more important for vector functional
units than for scalar functional units, where latency is of primary importance.

 The advantage of vector processing is that fewer instructions are required
to execute the vector operations. A single (overlapped) vector load places the
information into the VRs. The vector operation executes at the clock rate of

 Figure 3.19 Approximate timing for a sample four - stage functional pipeline.

t1 t2 t3 t4 t5 t6 t7 t8

Pipeline
stages

Pre
no

rm
ali

ze

Fra
cti

on
 a

dd

Pos
tn

or
m

ali
ze

Rou
nd

to VR3.1
VR1.1

+
VR2.1

VR1.2
+

VR2.2
VR1.3

+
VR2.3

VR1.4
+

VR2.4

Time

to VR3.2

to VR3.3

to VR3.4

c03.indd 103c03.indd 103 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

104 PROCESSORS

the system (one cycle per executed operand), and an overlapped vector store
operation completes the vector transaction overlapped with subsequent
instruction operations (see Figure 3.20). Vector loads (VLD) must complete
before they can be used (Figure 3.21), since otherwise the processor would
have to recognize when operands are delayed in the memory system.

 The ability of the processor to concurrently execute multiple (independent)
vector instructions is also limited by the number of VR ports and vector execu-
tion units. Each concurrent vector load or store requires a VR port; vector
ALU operations require multiple ports.

 Under some conditions, it is possible to execute more than one vector arith-
metic operation per cycle. As with bypassing, the results of one vector arith-
metic operation can be directly used as an operand in subsequent vector
instructions without fi rst passing into a VR. Such an operation, shown in
Figures 3.22 and 3.23 , is called chaining. It is illustrated in Figure 3.22 by a
chained ADD - MPY with each functional unit having four stages. If the ADD - MPY
were unchained, it would take 4 (startup) + 64 (elements/VR) = 68 cycles for

 Figure 3.20 For logically independent vector instructions, the number of access paths
to the vector register (VR) set and vector units may limit performance. If there are
four read ports, the vector multiply (VMPY) can start on the second cycle. Otherwise,
with two ports, the VMPY must wait until the VADD completes use of the read ports.

e.g.,
VADD
VMPY

VADD

VMPY

Multiply starts
with four VR read ports

Last VADD cycle
...

Delayed if only two read ports

V3,
V6,

V2,
V4,

V1
V5

 Figure 3.21 While independent VLD and VADD may proceed concurrently (with suf-
fi cient VR ports), operations that use the results of VLD do not begin until the VLD is
fully complete.

e.g.,

VLD
VADD
VADD

VADD Vector functiton latency

...

...

V1, source (n)
V2, V3, V4
V5, V1, V6

VLD

VADD

c03.indd 104c03.indd 104 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

VECTOR PROCESSORS AND VECTOR INSTRUCTION EXTENSIONS 105

each instruction — a total of 136 cycles. With chaining, this is reduced to 4 (add
startup) + 4 (multiply startup) + 64 (elements/VR) = 72 cycles.

 One of the crucial aspects in achieving the performance potential of the
vector processor is the management of references to memory. Since arithmetic
operations complete one per cycle, a vector code makes repeated references
to memory to introduce new vectors in the VRs and to write out old results.
Thus, on the average, memory must have suffi cient bandwidth to support at
least a two - words - per - cycle execution rate (one read and one write), and pref-
erably three references per cycle (two reads and one write). This bandwidth
allows for two vector reads and one vector write to be initiated and executed
concurrently with the execution of a vector arithmetic operation. If there is
insuffi cient memory bandwidth from memory to the VRs, the processor neces-
sarily goes idle after the vector operation until the vector loads and stores are
complete. It is a signifi cant challenge to the designer of a processor not to
simply graft a vector processing extension onto a scalar processor design but
rather to adapt the scalar design — especially the memory system — to accom-
modate the requirements of fast vector execution (Table 3.13). If the memory

 Figure 3.22 Effect of vector chaining.

For these two instructions,

the timing would be

VADD

VADD

VMPY

VMPY

VR3,

VR5,

VR1,

VR3,

VR2

VR1.3
+

VR2.3

VR1.2
+

VR2.2

VR3.1
+

VR4.1

to VR3.1

result to both MPY
and VR5

VR4

 Figure 3.23 Vector chaining path.

Result
chaining

VADD VMPY

>
>

VRs

Source
Operands

c03.indd 105c03.indd 105 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

106 PROCESSORS

system bandwidth is insuffi cient, there is correspondingly less performance
improvement from the vector processing hardware.

 The major elements of the vector processor are shown in (Figure 3.24). The
functional units (add, multiply, etc.) and the two register sets (vector and
scalar, or general) are connected by one or more bus sets. If chaining (Figure
 3.23) is allowed, then three (or more) source operands are simultaneously
accessed from the VRs and a result is transmitted back to the VRs. Another
bus couples the VRs and the memory buffer. The remaining parts of the sys-
tem — I - cache, D - cache, general registers, and so on — are typical of pipelined
processors.

 Figure 3.24 Major data paths in a generic vector processor.

I-cache

D-cache

Memory

Memory
buffer

Scalar
reg.s

Address
unit

I-unit

Instructions

Addresses

VRs

Chained
result
bus

Arith
bus

Function units

 TABLE 3.13 Potential Memory Requirements
(Number of Accesses/Processor Cycles)

 I D

 Scalar unit 1.0 − * 1.0 *
 Vector unit 0.0 + † 2.0 – 3.0 ‡

 * Nominally. Reduced by I - buffer, I - cache.
 † Relatively small compared to other requirements.
 ‡ The minimum required is one vector load (VLD) and one vector
store (VST) concurrently; preferably two VLDs and one VST , all
concurrently.

c03.indd 106c03.indd 106 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

VLIW PROCESSORS 107

 3.10 VLIW PROCESSORS

 There are two broad classes of multiple - issue machines: statically scheduled
and dynamically scheduled. In principle, these two classes are quite similar.
Dependencies among groups of instructions are evaluated, and groups found
to be independent are simultaneously dispatched to multiple execution units.
For statically scheduled processors, this detection process is done by the com-
piler, and instructions are assembled into instruction packets, which are
decoded and executed at run time. For dynamically scheduled processors, the
detection of independent instructions may also be done at compile time and
the code can be suitably arranged to optimize execution patterns, but the
ultimate selection of instructions (to be executed or dispatched) is done by
the hardware in the decoder at run time. In principle, the dynamically sched-
uled processor may have an instruction representation and form that is indis-
tinguishable from slower pipeline processors. Statically scheduled processors
must have some additional information either implicitly or explicitly indicating
instruction packet boundaries.

 As mentioned in Chapter 1 , early VLIW machines [92] are typifi ed by pro-
cessors from Multifl ow and Cydrome. These machines use an instruction word
that consists of 10 instruction fragments. Each fragment controls a designated
execution unit; thus, the register set is extensively multiported to support
simultaneous access to the multiplicity of execution units. In order to accom-
modate the multiple instruction fragments, the instruction word is typically
over 200 bits long (see Figure 3.25). In order to avoid the obvious performance
limitations imposed by the occurrence of branches, a novel compiler technol-
ogy called trace scheduling was developed. By use of trace scheduling, the
dynamic frequency of branching is greatly reduced. Branches are predicted
where possible, and on the basis of the probable success rate, the predicted
path is incorporated into a larger basic block. This process continues until a
suitably sized basic block (code without branches) can be effi ciently scheduled.
If an unanticipated (or unpredicted) branch occurs during the execution of
the code, at the end of the basic block, the proper result is fi xed up for use by
a target basic block.

 More recent attempts at multiple - issue processors have been directed at
rather lower amounts of concurrency. However there has been increasing use
of simultaneous multithreading (SMT). In SMT, multiple programs (threads)
use the same processor execution hardware (adders, decoders, etc.) but have
their own register sets and instruction counter and register. Two processors

 Figure 3.25 A partial VLIW format. Each fragment concurrently accesses a single
centralized register set.

Operation #1 Operation #2

OP1 OP2 BRR1 R2 R3 R1 R2 R3

c03.indd 107c03.indd 107 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

108 PROCESSORS

(or cores) on the same die each using two - way SMT allows four programs to
be in simultaneous execution.

 Figure 3.26 shows the data paths for a generic VLIW machine. The extensive
use of register ports provides simultaneous access to data as required by a
VLIW processor. This suggests the register set may be a processor bottleneck.

 3.11 SUPERSCALAR PROCESSORS

 Superscalar processors can also be implemented by the data paths shown in
Figure 3.26 . Usually, such processors use multiple buses connecting the register
set and functional units, and each bus services multiple functional units. This
may limit the maximum degree of concurrency but can correspondingly reduce
the required number of register ports.

 The issue of detection of independence within or among instructions is
theoretically the same regardless of whether the detection process is done
statically or dynamically (although the realized effect is quite different). In the
next sections, we review the theory of instruction independence. In superscalar
processors, detection of independence must be done in hardware. This neces-
sarily complicates both the control hardware and the options in realizing the
processor. The remaining discussion in this section is somewhat more detailed
and complex than the discussion of other approaches.

 Figure 3.26 Major data paths in a generic VLIW processor.

I-cache

D-cache

Addresses
I-unit

Crossbar
switch

Address
arithmetic

Functional units

Registers

c03.indd 108c03.indd 108 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

SUPERSCALAR PROCESSORS 109

 3.11.1 Data Dependencies

 With out - of - order execution, three types of dependencies are possible between
two instructions, I i and I j (i precedes j in execution sequence). The fi rst, vari-
ously called a read - after - write (RAW) dependency or an essential dependency,
arises when the destination of I i is the same as the source of I j :

 D Si j= 1 or

 D Si j= 2

 This is a data or address dependency.
 Another condition that causes a dependency occurs when the destination

of instruction I j is the same as the source of a preceding instruction I i . This
occurs when

 D Sj i= 1 or

 D Sj i= 2 .

 This arises when an instruction in sequence is delayed and a following instruc-
tion is allowed to precede in execution order and to change the contents of
one of the original instruction ’ s source registers; as in the following example
(R3 is the destination),

 I 1 DIV R3, R1, R2
 I 2 ADD R5, R3, R4
 I 3 ADD R3, R6, R7.

 Instruction 2 is delayed by a divide operation in instruction 1. If instruction 3
is allowed to execute as soon as its operands are available, this might change
the register (R3) used in the computation of instruction 2. A dependency of
this type is called a write - after - read (WAR) dependency or an ordering depen-
dency, since it only happens when out - of - order execution is allowed.

 In the fi nal type of dependency, the destination of instruction I i , is the same
as the destination of instruction I j , or

 D Di j= .

 In this case, instruction I i could complete after instruction I j , and the result in
the register is that of instruction I i when it ought to be that of I j . This depen-
dency, called a write - after - write (WAW) dependency or an output dependency,
is somewhat debatable. If instruction I i produces a result that is not used by
an instruction that follows it until instruction I j produces a new result for
the same destination, then instruction I i was unnecessary in the fi rst place

c03.indd 109c03.indd 109 5/4/2011 9:54:07 AM5/4/2011 9:54:07 AM

110 PROCESSORS

 Figure 3.27 Detecting independent instructions.

 The fi rst example is a case of a redundant instruction (the DIV), whereas the
second has an output dependency, but also has an essential dependency; once
this essential dependency is dealt with, the output dependency is also covered.
The fewer the dependencies that arise in the code, the more concurrency avail-
able in the code and the faster the overall program execution.

 3.11.2 Detecting Instruction Concurrency

 Detection of instruction concurrency can be done at compile time, at run time
(by the hardware), or both. It is clearly best to use both the compiler and the
run - time hardware to support concurrent instruction execution. The compiler
can unroll loops and generally create larger basic block sizes, reducing branches.
However, it is only at run time that the complete machine state is known. For
example, an apparent resource dependency created by a sequence of divide ,
 load , divide instructions may not exist if, say, the intervening load instruc-
tion created a cache miss.

 Instructions are checked for dependencies during decode. If an instruction
is found to be independent of other, earlier instructions, and if there are avail-
able resources, the instruction is issued to the functional unit. The total number
of instructions checked determines the size of the instruction window (Figure
 3.28). Suppose the instruction window has N instructions, and at any given
cycle M instructions are issued. In the next cycle, the successor M instructions

 Example #1
 DIV R3, R1, R2

 ADD R3, R4, R5.

 Example #2
 DIV R3, R1, R2

 ADD R5, R3, R4
 ADD R3, R6, R7.

 Figure 3.27 . As this type of dependency is generally eliminated by an optimiz-
ing compiler, it can be largely ignored in our discussions. We illustrate this with
two examples:

c03.indd 110c03.indd 110 5/4/2011 9:54:08 AM5/4/2011 9:54:08 AM

SUPERSCALAR PROCESSORS 111

 Figure 3.28 Instruction window.

Instruction window

M
issued

N
instructions

The next M instructions are added to the window
for issue in the following cycle.

are brought into the buffer, and again N instructions are checked. Up to M
instructions may be issued in a single cycle.

 Ordering and output dependencies can be eliminated with suffi cient regis-
ters. When either of these dependencies is detected it is possible to rename
the dependent register to another register usually not available to the instruc-
tion set. This type of renaming requires that the register set be extended to
include rename registers . A typical processor may extend a 32 - register set
specifi ed by the instruction set to a set of 45 – 60 total registers, including the
rename registers (for SOC processor usage see Table 3.14).

 Figure 3.29 illustrates the overall layout of an M pipelined processor inspect-
ing N instructions and issuing M instructions.

 Any of the N instructions in the window are candidates for issue, depending
on whether they are independent and whether there are execution resources
available.

 If the processor, for example, can only accommodate two L/S instructions,
a fl oating - point instruction, and a fi xed - point instruction, then the decoder in
the instruction window must select these types of instructions for issue. So
three L/S instructions could not be issued even if they were all independent.

 Scheduling is the process of assigning specifi c instructions and their operand
values to designated resources at designated times. Scheduling can be done
either centrally or in a distributed manner by the functional units themselves

 TABLE 3.14 Renaming Characteristics of Some SOC Designs

 SOC Renaming Buffer Size Reservation Station Number

 Freescale e600 16 GPR, 16 FPR, 16 VR 8
 MIPS 74K 32 CB —

 GPR, general - purpose register; FPR, fl oating - point register; VR, vector register; CB, completion
buffer.

c03.indd 111c03.indd 111 5/4/2011 9:54:08 AM5/4/2011 9:54:08 AM

112 PROCESSORS

at execution time. The former approach is called control fl ow scheduling; the
latter is called datafl ow scheduling. In control fl ow scheduling, dependencies
are resolved during the decode cycle and the instructions are held (not issued)
until the dependencies have been resolved. In a datafl ow scheduling system,
the instructions leave the decode stage when they are decoded and are held
in buffers at the functional units until their operands and the functional unit
are available.

 Early machines used either control fl ow or datafl ow to ensure correct
operation of out - of - order instructions. The CDC 6600 [242] used a control fl ow
approach. The IBM 360 Model 91 [246] was the fi rst system to use datafl ow
scheduling.

 3.11.3 A Simple Implementation

 In this section, we look at a simple scheduling implementation. While it uses
 N = 1 and M = 1, it allows out - of - order execution and illustrates a basic strat-
egy in managing dependencies.

 Consider a system with multiple functional units, each of whose executions
may involve multiple cycles. Using the L/S architecture as our model, we
assume that there is a centralized single set of registers that provide operands
for the functional units.

 Suppose there are up to N instructions already dispatched for execution,
and we must determine how to issue an instruction currently at the decoder.
Issuing a single instruction in the presence of up to N − 1 unissued previous
instructions is equivalent to issuing that instruction as the last of N instructions
issued at one time.

 Figure 3.29 An M pipelined processor.

I-cache

BTB

I-window

M instructions per cycle

M instructions
per cycle

M instructions
per cycle

M
operands
per cycle

2M
operands
per cycle

N <

<

Registers
D-cache

Switch

M pipelines

c03.indd 112c03.indd 112 5/4/2011 9:54:08 AM5/4/2011 9:54:08 AM

SUPERSCALAR PROCESSORS 113

 We use an approach sometimes referred to as the datafl ow approach or a
tag - forwarding approach. It was fi rst suggested by Tomasulo [246] , and it is
also known by his name.

 Each register in the central register set is extended to include a tag that
identifi es the functional unit that produces a result to be placed in a particular
register. Similarly, each of the multiple functional units has one or more res-
ervation stations (Figure 3.30).

 The reservation station contains either a tag identifying another functional
unit or register, or it can contain the value needed . Operand values for a par-
ticular instruction need not be available for the instruction to be issued to the
reservation station; the tag of a particular register may be substituted for a
value, in which case the reservation station waits until the value is available.
Since the reservation station holds the current value of the available data, it
acts as a rename register, and thus the scheme avoids ordering and output
dependencies.

 Control is distributed within the functional units. Each reservation station
effectively defi nes its own functional unit; thus, two reservations for a fl oating -
 point multiplier are two functional unit tags: multiplier 1 and multiplier 2
(Figure 3.31). If operands can go directly into the multiplier, then there is

 Figure 3.30 Reservation stations are associated with function units. They contain
instruction opcode and data values or a tag corresponding to a data value pending
entry into a functional unit. They perform the function of a rename register.

DIV

MPY

ADD

Functional unit

OP D S1 S2

OP D S1 S2

OP D S1 S2

 Figure 3.31 Datafl ow. Each reservation station consists of registers to hold S 1 and S 2
values (if available), or tags to identify where the values come from.

Tag
S1

Tag

S2

F1

D

D

Reservation
station

Tag
S1

Tag

S2

F2

D

D

Reg

Tag

Bus

c03.indd 113c03.indd 113 5/4/2011 9:54:08 AM5/4/2011 9:54:08 AM

114 PROCESSORS

another tag: multiplier 3. Once a pair of operands has a designated functional
unit tag, that tag remains with that operand pair until the completion of the
operation. Any unit (or register) that depends on that result has a copy of the
functional unit tag and ingates the result that is broadcast on the bus.

 For the preceding example,

 DIV.F R3, R1, R2
 MPY.F R5, R3, R4
 ADD.F R4, R6, R7.

 The DIV.F is initially issued to the divide unit with values from R1 and R2 .
(Assuming they are available, they are fetched from the common bus.) A
divide unit tag is issued to R3 , indicating that it does not currently contain a
valid value. On the next cycle, the MPY.F is issued to the multiply unit, together
with the value from R4 and a TAG [DIV] from R3 . When the divide unit
completes, it broadcasts its result; this is ingated into the multiply unit reserva-
tion station, since it is holding a “ divide unit ” tag. In the meantime, the add
unit has been issued values from R6 and R7 and commences addition. R4 gets
the tag from the adder; no ordering dependency occurs since the multiplier
already has the old value of R4 .

 In the datafl ow approach, the results to a targeted register may never actu-
ally go to that register; in fact, the computation based on the load of a particu-
lar register may be continually forwarded to various functional units, so that
before the value is stored, a new value based upon a new computational
sequence (a new load instruction) is able to use the targeted register. This
approach partially avoids the use of a central register set, thereby avoiding the
register ordering and output dependencies.

 Whether the ordering and output dependencies are a serious problem or
not is the subject of some debate [228] . With a larger register set, an optimizing
compiler can distribute the usage of the registers across the set and avoid the
register – resource dependencies. Of course, all schemes are left with the essen-
tial (type 1) dependency. Large register sets may have their own disadvantages,
however, especially if save and restore traffi c due to interrupts becomes a
signifi cant consideration.

 Study 3.1 Sample Timing

 For the code sequence

 I 1 DIV.F R3, R1, R2
 I 2 MPY.F R5, R3, R4
 I 3 ADD.F R4, R6, R7,

c03.indd 114c03.indd 114 5/4/2011 9:54:08 AM5/4/2011 9:54:08 AM

SUPERSCALAR PROCESSORS 115

 assume three separate fl oating - point units with execution times:

 Divide Eight cycles
 Multiply Four cycles
 Add Three cycles

 and show the timing for a datafl ow.

 For this approach, we might have the following:

 Cycle 1 Decoder issues I 1 → DIV unit
 R1 → DIV Res Stn
 R2 → DIV Res Stn
 TAG_DIV → R3

 Cycle 2 Begin DIV.F
 Decoder issues I 2 → MPY unit
 TAG_DIV → MPY unit
 R4 → MPY Res Stn
 TAG_MPY → R5

 Cycle 3 Multiplier waits
 Decoder issues I 3 → ADD unit
 R6 → ADD Res Stn
 R7 → ADD Res Stn
 TAG_ADD → R4

 Cycle 4 Begin ADD.F
 Cycle 6 ADD unit requests broadcast next cycle (granted).

 ADD unit completes this cycle.
 Cycle 7 ADD unit result → R4
 Cycle 9 DIV unit requests broadcast next cycle (granted).

 DIV unit completes this cycle.
 Cycle 10 DIV unit → R3

 DIV unit → MPY unit
 Cycle 11 Begin MPY.F
 Cycle 14 Multiply completes and requests data broadcast (granted).
 Cycle 15 MPY unit result → R5 .

 As far as implementation is concerned, the issue logic is distributed in the
reservation stations. When multiple instructions are to be issued in the same
cycle, then there must be multiple separate buses to transmit the information:
operation, tag/value #1, tag/value #2, and destination. We assume that the

c03.indd 115c03.indd 115 5/4/2011 9:54:08 AM5/4/2011 9:54:08 AM

116 PROCESSORS

reservation stations are associated with the functional units. If we centralize
the reservation stations for implementation convenience, the design would be
generally similar to an improved control fl ow, or scoreboard .

 Action Summary We can summarize the basic rules:

 1. The decoder issues instructions to a functional unit reservation station
with data values if available otherwise with register tag.

 2. The destination register (specifi ed by instruction) gets the functional unit
tag.

 3. Continue issue until a type of reservation station is FULL. Unissued
instructions are held PENDING.

 4. Any instruction that depends on an unissued or pending instruction must
also be held in a pending state.

 3.11.4 Preserving State with Out - of - Order Execution

 Out - of - order execution leads to an apparently ill - defi ned machine state, even
as the code is executing correctly. If an interrupt arises or some sort of an
exception is taken (perhaps even a misguessed branch outcome), there can be
a general ambiguity as to the exact source of the exception or how the machine
state should be saved and restored for further instruction processing. There
are two basic approaches to this problem:

 1. Restrict the programmer ’ s model. This applies only to interrupts and
involves the use of a device called an imprecise interrupt, which simply
indicates that an exception has occurred someplace in some region
of code without trying to isolate it further. This simple approach may
be satisfactory for signal or embedded processors that use only real
(no virtual) memory but is generally unacceptable for virtual memory
processors.

 A load instruction that accesses a page not currently in memory can
have disastrous consequences if several instructions that followed it are
already in execution. When control returns to the process after the
missing page is loaded, the load can execute together with instructions
that depended upon it, but other instructions that were previously exe-
cuted should not be re - executed. The control for all this can be formi-
dable. The only acceptable alternative would be to require that all pages
used by a particular process be resident in memory before execution
begins. In programming environments where this is feasi ble and practi-
cal, such as in large scientifi c applications, this may be a solution.

 2. Create a write - back that preserves the ordered use of the register set or
at least allows the reconstruction of such an ordered register set.

c03.indd 116c03.indd 116 5/4/2011 9:54:08 AM5/4/2011 9:54:08 AM

SUPERSCALAR PROCESSORS 117

 Figure 3.32 Simple register fi le organization.

Operands

Sequential
state

register
file

Results

 Figure 3.33 Centralized reorder buffer method.

Reorder
buffer

OperandsResults

Sequential
state

register
file

 Figure 3.34 Distributed reorder buffer method.

Operands

Result
functional

unit n

Result
functional

unit 2

Result
functional

unit 1

Reorder
buffer 1

Reorder
buffer 2

Sequential
state

register
file

Reorder
buffer n

 In order to provide a sequential model of program execution, some mecha-
nism must be provided that properly manages the register fi le state. The key
to any successful scheme [135, 221] is the effi cient management of the register
set and its state. If instructions execute in order, then results are stored in the
register fi le (Figure 3.32). Instructions that can complete early must be held
pending the completion of previously issued but incomplete instructions. This
sacrifi ces performance.

 Another approach uses a reorder buffer (Figure 3.33). The results arrive at
the reorder buffer out of program sequence, but they are written back to the
sequential register fi le in program order, thus preserving the register fi le state.
In order to avoid confl icts at the reorder buffer, we can distribute the buffer
across the various functional units as shown in Figure 3.34 . Either of these
techniques allows out - of - order instruction execution but preserves in - order
write - back to the register set.

c03.indd 117c03.indd 117 5/4/2011 9:54:08 AM5/4/2011 9:54:08 AM

118 PROCESSORS

 3.12 PROCESSOR EVOLUTION AND TWO EXAMPLES

 We bring the concepts of the earlier sections together with a few observations
and then by looking at an example of a currently available high - performance
processor.

 3.12.1 Soft and Firm Processor Designs: The Processor as IP

 Processor designs for use in SOC and other application - specifi c areas require
more than just generic processor concepts. The designer is still faced with
achieving the best possible performance for a given number of transistors. The
object is to have effi cient, modular designs that can be readily adapted to a
number of situations. The better designs have

 1. an instruction set that makes effi cient use of both instruction memory
(code density) and data memory (several operand sizes);

 2. an effi cient microarchitecture that maintains performance across a broad
range of applications;

 3. a relatively simple base structure that is economical in its use of
transistors;

 4. a selected number of coprocessor extensions that can be readily added
to the base processor; these would include fl oating - point and vector
coprocessors; and

 5. full software support for all processor confi gurations; this includes com-
pilers and debuggers.

 A classic example of this type of processor design is the ARM 1020. It uses an
instruction set with both 16 - and 32 - bit instructions for improved code density.
The data paths for the 1020T are shown in Figure 3.35 . A debug and system
control coprocessor and/or a vector and fl oating - point coprocessor can be
added directly for enhanced performance. The ARM bus is also a standard for
SOC use.

 The instruction timing is a quite simple six - stage pipeline as shown in Figure
 3.36 . Because of its simplicity, it can achieve close to its peak performance of
one instruction for each cycle (ignoring cache misses).

 3.12.2 High - Performance, Custom - Designed Processors

 When the target is high - performance workstations, design effort is a secondary
issue to performance (but not to time - to - market). The result is that large teams
of designers focus on custom circuitry, clocking, algorithms and microarchitec-
ture to achieve performance on a schedule. An example is the Freescale e600
(Figure 3.37). Such processors use all the design techniques discussed in this
chapter plus others:

c03.indd 118c03.indd 118 5/4/2011 9:54:08 AM5/4/2011 9:54:08 AM

CONCLUSIONS 119

 Figure 3.35 ARM 1020 data paths [20].

Bus
Interface

D-Cache
32-KB

Write
Buffer

I-Cache
32-KB

Data MMU/TLB

Instr MMU/TLB

ARM Integer
Unit

 Figure 3.36 The ARM pipeline.

IF1 WB
EX/
DF

IF2 ID
EX/
AG

INTEGER PIPELINE

 1. With lots of area (transistors) available, we would expect to see large
branch tables, multiple execution units, multiple instruction issue, and
out - of - order instruction completion.

 2. With increased clock rates and a shorter cycle time, we would expect to
see some basic operations (e.g., I fetch) to take more than one cycle.
Overall, with shorter clocks and a much more elaborate pipeline, the
timing template is signifi cantly longer (a larger number of steps).

 3. Since large caches have a long access time, we would expect to see small
fi rst - level caches supported by a hierarchy of one or more levels of
increasing larger caches.

 3.13 CONCLUSIONS

 Pipelined processors have become the implementation of choice for almost
all machines from mainframes to microprocessors. High - density VLSI logic

c03.indd 119c03.indd 119 5/4/2011 9:54:08 AM5/4/2011 9:54:08 AM

120 PROCESSORS

technology, coupled with high - density memory, has made possible this move-
ment to increasingly complex processor implementations.

 In modeling the performance of pipelined processors, we generally allocate
a basic quantum of time for each instruction and then add to that the expected
delays due to dependencies that arise in code execution. These dependencies
usually arise from branches, dependent data, or limited execution resources.
For each type of dependency, there are implementation strategies that mitigate
the effect of the dependency. Implementing branch prediction strategies, for
example, mitigates the effect of branch delays. Dependency detection comes
at the expense of interlocks, however. The interlocks consist of logic associated
with the decoder to detect dependencies and to ensure proper logical opera-
tion of the machine in executing code sequences.

 3.14 PROBLEM SET

 1. Following Study 3.1 , show the timing for the following three instruction
sequences:

 Figure 3.37 Freescale e600 data paths [101].

Instruction Fetch
Branch Unit 32-KB

Instruction
Cache

Dispatch Unit

Branch History
Table (2048-Entry)

Vector Issue GPR Issue FPR Issue

Vector Functional
Unit

16 VR Rename
Buffer

General Purpose
Functional

Unit

16 GPR Rename
Buffer

Floating-point
Functional

Unit

16 FPR Rename
Buffer

32-KB
Data

Cache

1-MB Unified
L2 Cache

Reservation Station Reservation Station Reservation Station

Vector Register GP Register FP Register

c03.indd 120c03.indd 120 5/4/2011 9:54:08 AM5/4/2011 9:54:08 AM

PROBLEM SET 121

 2. From the Internet, fi nd three recent processor offerings and their corre-
sponding parameters.

 3. Suppose a vector processor achieves a speedup of 2.5 on vector code. In
an application whose code is 50% vectorizable, what is the overall speedup
over a nonvector machine? Contrast the expected speedup with a VLIW
machine that can execute a maximum of four arithmetic operations per
cycle (cycle time for VLIW and vector processor are the same).

 4. A certain store buffer has a size of four entries. The mean number used is
two entries.

 (a) Without knowing the variance, what is the probability of a “ buffer full
or overfl ow ” delay?

 (b) Now suppose the variance is known to be σ 2 = 0.5; what is the prob-
ability of such a delay?

 5. (a) Suppose a certain processor has the following BC behavior: a three -
 cycle penalty on correct guess of target, and a six - cycle penalty when
it incorrectly guesses the target and the code actually goes in - line.
Similarly, it has a zero - cycle penalty on correct in - line guess, but a
six - cycle penalty when it incorrectly guesses in - line and the target path
is taken. The target path should be guessed when the probability of
going to the target is known to exceed what percent?

 (b) For an L/S machine that has a three - cycle cache access and an 8 - byte
physical word, how many words (each 8 bytes) are required for the
in - line (primary) path of an I - buffer to avoid runout?

 6. (a) A branch table buffer (BTB) can be accessed while the branch is
decoded so that the target address (only) is available at the end of the
branch decode cycle.

 IF IF D AG AG DF DF EX EX

 For an R/M machine with BTB and timing template as shown in
the above chart (one decode each cycle), what is the BR penalty and
the BC penalty in cycles? (Assume that all of the BRs and 50% of the
BCs hit in the BTB, that 80% of those BCs that hit are actually taken,
and that 20% of those BCs that did not hit were actually taken.)

 (b) If target instructions are placed directly in the BTB, what is the penalty
for BR and for BC in cycles (same assumptions as [a])?

 7. A BTB can be used together with history bits to determine when to place
a target in the BTB. This might make small BTBs more effective. Below

 ADD.F R1, R2, R3
 SUB.F R3, R4, R5
 MPY.F R3, R1, R7

c03.indd 121c03.indd 121 5/4/2011 9:54:08 AM5/4/2011 9:54:08 AM

122 PROCESSORS

what size BTB would a 2 - bit branch history approach be attractive (for
the scientifi c environment)?

 8. Find a commercial VLIW machine and its instruction layout. Describe it
and then write an instruction sequence that could compute A 2 + 7 × B +
 A × C − D /(A × B). Load values into registers, then compute.

 9. Rename registers can take the place of a register set specifi ed by the
instruction set. Compare the approach of having no register set (as in a
single accumulator instruction set) and having no rename registers but
having a large register set in the instruction set.

 10. Find an SOC confi guration that uses a vector processor and describe the
architecture of the vector processor — number of register sets, register per
set, instruction format, and so on.

 11. Find an SOC confi guration that uses a superscalar processor and describe
the architecture of the processor — register sets, number of rename regis-
ters, control fl ow or datafl ow, instruction format, and so on.

c03.indd 122c03.indd 122 5/4/2011 9:54:08 AM5/4/2011 9:54:08 AM

 4 Memory Design: System - on - Chip
and Board - Based Systems

 4.1 INTRODUCTION

 Memory design is the key to system design. The memory system is often the
most costly (in terms of area or number of die) part of the system and it largely
determines the performance. Regardless of the processors and the intercon-
nect, the application cannot be executed any faster than the memory system,
which provides the instructions and the operands.

 Memory design involves a number of considerations. The primary con-
sideration is the application requirements: the operating system, the size,
and the variability of the application processes. This largely determines the
size of memory and how the memory will be addressed: real or virtual. Figure
 4.1 is an outline for memory design, while Table 4.1 compares the relative area
required for different memory technologies.

 We start by looking at issues in SOC external and internal memories. We
then examine scratchpad and cache memory to understand how they operate
and how they are designed. After that, we consider the main memory problem,
fi rst the on - die memory and then the conventional dynamic RAM (DRAM)
design. As part of the design of large memory systems, we look at multiple
memory modules, interleaving, and memory system performance. Figure 4.2
presents the SOC memory design issues. In this chapter the interconnect,
processors, and I/O are idealized so that the memory design trade-offs can be
characterized.

 Table 4.2 shows the types of memory that can be integrated into an SOC
design.

 Example. Required functionality can play a big role in achieving perfor-
mance. Consider the differences between the two paths of Figure 4.1 : the
maximum functionality path and the restricted functionality path. The differ-
ence seems slight, whether the memory is off - die or on - die. The resulting
performance difference can be great because of the long off - die access time.
If the memory (application data and program) can be contained in an on - die
memory, the access time will be 3 – 10 cycles.

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

123

c04.indd 123c04.indd 123 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

124 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 Off - die access times are an order of magnitude greater (30 – 100 cycles). To
achieve the same performance, the off - die memory design must have an order
of magnitude more cache, often split into multiple levels to meet access time
requirements. Indeed, a cache bit can be 50 times larger than an on - die embed-
ded DRAM (eDRAM) bit (see Chapter 2 and Section 4.13). So the true cost
of the larger cache required for off - die memory support may be 10 by 50 or
500 DRAM bits. If a memory system uses 10K rbe for cache to support an
on - die memory, the die would require 100K rbe to support off - die memory.
That 90K rbe difference could possibly accommodate 450K eDRAM bits.

 Figure 4.1 An outline for memory design.

Select operating
system and size the
application memory

requirements

Restricted functionality,
fits in less than 100 MB

Restricted functionality,

needs more than
100 MB

Maximum functionality,
large memory
requirement

Real memory on-die
SRAM or eDRAM, No

virtual tables, L1 cache
only

Real or virtual memory
with off-die portions of
memory; may need L2

cache

Virtual memory with
DRAM memory off-die;

L2 cache on-die

Select, size program
memory and I cache;

select SRAM or
eDRAM main (data)

memory, size D cache-

Design off-die DRAM;
size; consider

specialized on-die
function and program

memory, size L1
caches

Select and size DRAM
on board; select I/D L1
caches, optimize L2/L1

sizes

Understand requirements

Some possible outcomes

Memory implications

Design approaches

 TABLE 4.1 Area Comparison for Different Memory Technologies

 Memory Technology rbe KB per Unit A

 DRAM 0.05 – 0.1 1800 – 3600
 SRAM 0.6 300
 ROM/PROM 0.2 – 0.8 + 225 – 900
 eDRAM 0.15 1200
 Flash: NAND 0.02 10,000

c04.indd 124c04.indd 124 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

OVERVIEW 125

 4.2 OVERVIEW

 4.2.1 SOC External Memory: Flash

 Flash technology is a rapidly developing technology with improvements
announced regularly. Flash is not really a memory replacement but is probably
better viewed as a disk replacement. However, in some circumstances and
confi gurations, it can serve the dual purpose of memory and nonvolatile
backup storage.

 Flash memory consists of an array of fl oating gate transistors. These transis-
tors are similar to MOS transistors but with a two - gate structure: a control
gate and an insulated fl oating gate. Charge stored on the fl oating gate is
trapped there, providing a nonvolatile storage. While the data can be rewritten,
the current technology has a limited number of reliable rewrite cycles, usually

 Figure 4.2 The SOC memory model.

Idealized
I/O

Idealized interconnect
(fixed access time and

ample bandwidth)

n selected processors with idealized execution time

Off-die
memory

PROM eDRAM
L2/L3
cache

Data
structure
memory

L1 cache

P1

L1 cache

Pn

...

 TABLE 4.2 Some Flash Memory (NAND) Package Formats (2 - to 128 - GB Size)

 Format
 (Approx.)
Size (mm)

 Weight
(g)

 Speed (Read/
Write) (MBps)

 Typical
Applications

 Compact fl ash (CF) 36 × 43 × 3.3 11.4 22/18 Digital camera
 Secure digital (SD) 32 × 24 × 2.1 2.0 22/18 Digital/video

camera
 Mini SD 20 × 20 × 1.2 1.0 22/18 Cell phone, GPS
 Micro SD 15 × 11 × 0.7 0.5 22/15 Mini cell phone

c04.indd 125c04.indd 125 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

126 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

less than a million. Since degradation with use can be a problem, error detec-
tion and correction are frequently implemented.

 While the density is excellent for semiconductor devices, the write cycle
limitation generally restricts the usage to storing infrequently modifi ed data,
such as programs and large fi les.

 There are two types of fl ash implementations: NOR and NAND. The NOR
implementation is more fl exible, but the NAND provides a signifi cantly better
bit density. Hybrid NOR/NAND implementations are also possible with the
NOR array acting as a buffer to the larger NAND array. Table 4.3 provides a
comparison of these implementations.

 Flash memory cards come in various package formats; larger sizes are
usually older (see Table 4.2). Small fl ash dice can be “ stacked ” with an SOC
chip to present a single system/memory package. A fl ash die can also be
stacked to create large (64 – 256 GB) single memory packages.

 In current technology, fl ash usually is found in off - die implementations.
However, there are a number of fl ash variants that are specifi cally designed
to be compatible with ordinary SOC technology. SONOS [201] is a nonvolatile
example, and Z - RAM [91] is a DRAM replacement example. Neither seems
to suffer from rewrite cycle limitations. Z - RAM seems otherwise compatible
with DRAM speeds while offering improved density. SONOS offers density
but with slower access time than eDRAM.

 4.2.2 SOC Internal Memory: Placement

 The most important and obvious factor in memory system design is the place-
ment of the main memory: on - die (the same die as the processor) or off - die
(on its own die or on a module with multiple dice). As pointed out in Chapter
 1 , this factor distinguishes conventional workstation processors and application -
 oriented board designs from SOC designs.

 The design of the memory system is limited by two basic parameters that
determine memory systems performance. The fi rst is the access time. This is the

 TABLE 4.3 Comparison of Flash Memories

 Technology NOR NAND

 Bit density (KB/A) 1000 10,000
 Typical capacity 64 MB 16 GB (dice can be

stacked by 4 or more)
 Access time 20 – 70 ns 10 μ s
 Transfer rate

(MB per sec.)
 150 300

 Write time(μ s) 300 200
 Addressability Word or block Block
 Application Program storage and

limited data store
 Disk replacement

c04.indd 126c04.indd 126 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

OVERVIEW 127

time for a processor request to be transmitted to the memory system, access a
datum, and return it back to the processor. Access time is largely a function of
the physical parameters of the memory system — the physical distance between
the processor and the memory system, or the bus delay, the chip delay, and so
on. The second parameter is memory bandwidth , the ability of the memory to
respond to requests per unit time. Bandwidth is primarily determined by the
way the physical memory system is organized — the number of independent
memory arrays and the use of special sequential accessing modes.

 The cache system must compensate for limits on memory access time and
bandwidth.

 The workstation processor, targeting high performance, requires a very
effi cient memory system, a task made diffi cult by memory placement off - die.
Table 4.4 compares the memory system design environments.

 The workstation and board - based memory design is clearly a greater chal-
lenge for designers. Special attention must be paid to the cache, which must
make up for the memory placement diffi culties.

 4.2.3 The Size of Memory

 As it will become obvious in this chapter, designing for large off - die memory
is the key problem in system board designs. So why not limit memory to sizes
that could be incorporated on a die? In a virtual memory system, we can still
access large address spaces for applications. For workstations, the application
environment (represented by the operating system) has grown considerably
(see Figure 4.3). As the environment continues to grow, so too does the
working set or the active pages of storage. This requires more real (physical)
memory to hold a suffi cient number of pages to avoid excessive page swapping,

 TABLE 4.4 Comparing System Design Environments

 Item Workstation Type SOC Single Die SOC Board Based

 Processor Fastest available Smaller, perhaps
four to six
times slower

 As with SOC

 Cache Two to three levels,
very large (4 – 64 MB)

 Simple, single
level (256 KB)

 Single level,
multielement

 Memory bus Complex, slow pin
limited

 Internal, wide,
high bandwidth

 Mix

 Bus control Complex timing and
control

 Simple, internal Mix

 Memory Very large (16 + GB),
limited bandwidth

 Limited size
(256 MB),
relatively fast

 Specialized on
board

 Memory
access time

 20 – 30 ns 3 – 5 ns Mix

c04.indd 127c04.indd 127 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

128 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

which can destroy performance. Board - based systems face a slightly different
problem. Here, the media - based data sets are naturally very large and require
large bandwidths from memory and substantial processing ability from the
media processor. Board - based systems have an advantage, however, as the
access time is rarely a problem so long as the bandwidth requirements are met.
How much memory can we put on a die? Well, that depends on the technology
(feature size) and the required performance. Table 4.1 shows the area occupied
for various technologies. The eDRAM size assumes a relatively large memory
array (see later in this chapter). So, for example, in a 45 - nm technology, we
might expect to have about 49.2 kA/cm 2 or about 8 MB of eDRAM. Advancing
circuit design and technology could signifi cantly improve that, but it does seem
that about 64 MB would be a limit, unless a compatible fl ash technology
becomes available.

 4.3 SCRATCHPADS AND CACHE MEMORY

 Smaller memories are almost always faster than larger memory, so it is useful
to keep frequently used (or anticipated) instructions and data in a small, easily
accessible (one cycle access) memory. If this memory is managed directly by
the programmer, it is called a scratchpad memory; if it is managed by the
hardware, it is called a cache.

 Since management is a cumbersome process, most general - purpose com-
puters use only cache memory. SOC, however, offers the potential of having
the scratchpad alternative. Assuming that the application is well - known, the
programmer can explicitly control data transfers in anticipation of use.

 Figure 4.3 Required disk space for several generations of Microsoft ’ s Windows oper-
ating system. The newer Vista operating system requires 6 GB.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

XPME98NT95

D
is

k
S

pa
ce

 (
M

B
)

Windows OS

Required Disk Space

c04.indd 128c04.indd 128 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

BASIC NOTIONS 129

Eliminating the cache control hardware offers additional area for larger
scratchpad size, again improving performance.

 SOC implements scratchpads usually for data and not for instructions, as
simple caches work well for instructions. Furthermore, it is not worth the
programming effort to directly manage instruction transfers.

 The rest of this section treats the theory and experience of cache memory.
Because there has been so much written about cache, it is easy to forget the
simpler and older scratchpad approach, but with SOC, sometimes the simple
approach is best.

 Caches work on the basis of the locality of program behavior [113] . There
are three principles involved:

 1. Spatial Locality. Given an access to a particular location in memory,
there is a high probability that other accesses will be made to either that
or neighboring locations within the lifetime of the program.

 2. Temporal Locality. Given a sequence of references to n locations, there
will be references into the same locations with high probability.

 3. Sequentiality. Given that a reference has been made to location s , it is
likely that within the next few references, there will be a reference to the
location of s + 1. This is a special case of spatial locality.

 The cache designer must deal with the processor ’ s accessing requirements on
the one hand, and the memory system ’ s requirements on the other. Effective
cache designs balance these within cost constraints.

 4.4 BASIC NOTIONS

 Processor references contained in the cache are called cache hits. References
not found in the cache are called cache misses. On a cache miss, the cache
fetches the missing data from memory and places it in the cache. Usually, the
cache fetches an associated region of memory called the line. The line consists
of one or more physical words accessed from a higher - level cache or main
memory. The physical word is the basic unit of access to the memory.

 The processor – cache interface has a number of parameters. Those that
directly affect processor performance (Figure 4.4) include the following:

 1. Physical word — unit of transfer between processor and cache.
 Typical physical word sizes:
 2 – 4 bytes — minimum, used in small core - type processors
 8 bytes and larger — multiple instruction issue processors (superscalar)

 2. Block size (sometimes called line) — usually the basic unit of transfer
between cache and memory. It consists of n physical words transferred
from the main memory via the bus.

c04.indd 129c04.indd 129 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

130 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 3. Access time for a cache hit — this is a property of the cache size and
organization.

 4. Access time for a cache miss — property of the memory and bus.
 5. Time to compute a real address given a virtual address (not - in - transla-

tion lookaside buffer [TLB] time) — property of the address translation
facility.

 6. Number of processor requests per cycle.

 Cache performance is measured by the miss rate or the probability that a
reference made to the cache is not found. The miss rate times the miss time is
the delay penalty due to the cache miss. In simple processors, the processor
stalls on a cache miss.

 Figure 4.4 Parameters affecting processor performance.

Addresses Line
size

Physical
word
size

Access time for
cache miss

To processor

Cache

Cache size and
miss rate

Bus

Memory

TLB

Not-in-TLB
rate and penalty

 IS CACHE A PART OF THE PROCESSOR?

 For many IP designs, the fi rst - level cache is integrated into the processor
design, so what and why do we need to know cache details? The most
obvious answer is that an SOC consists of multiple processors that must
share memory, usually through a second - level cache. Moreover, the
details of the fi rst - level cache may be essential in achieving memory
consistency and proper program operation. So for our purpose, the cache
is a separate, important piece of the SOC. We design the SOC memory
hierarchy, not an isolated cache.

 4.5 CACHE ORGANIZATION

 A cache uses either a fetch - on - demand or a prefetch strategy. The former
organization is widely used with simple processors. A demand fetch cache

c04.indd 130c04.indd 130 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

CACHE ORGANIZATION 131

brings a new memory locality into the cache only when a miss occurs. The
prefetch cache attempts to anticipate the locality about to be requested and
 prefetches it. It is commonly used in I - caches.

 There are three basic types of cache organization: fully associative (FA)
mapping (Figure 4.5), direct mapping (Figure 4.6), and set associative mapping
(Figure 4.7 , which is really a combination of the other two). In an FA cache,
when a request is made, the address is compared (COMP) to the addresses of
all entries in the directory. If the requested address is found (a directory hit),
the corresponding location in the cache is fetched; otherwise, a miss occurs.

 In a direct - mapped cache, the lower - order line address bits access the direc-
tory (index bits in Figure 4.8). Since multiple line addresses map into the same
location in the cache directory, the upper line address bits (tag bits) must be
compared to the directory address to validate a hit. If a comparison is not
valid, the result is a miss. The advantage of the direct - mapped cache is that a
reference to the cache array itself can be made simultaneously with the access
to the directory .

 Figure 4.5 Fully associative mapping.

 Tag

To processor

Cache array

TLB

Virtual address

Directory
(associative

memory)

Address of word in cache

 Line address in cache

 Real
address

Addr

Virtual page number
(VPN)

Real page number
(RPN)

Tag

+

Address of
word in a line

c04.indd 131c04.indd 131 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

132 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 Figure 4.6 Direct mapping.

To
processor

COMP

Tag

Cache
array

Match enable
Data

Virtual

TLB

Real

Tag
Index

Cache
directory

Line and word address

Tag for each line
in cache

 The address given to the cache by the processor is divided into several
pieces, each of which has a different role in accessing data. In an address par-
titioned as in Figure 4.8 , the most signifi cant bits that are used for comparison
(with the upper portion of a line address contained in the directory) are called
the tag.

 The next fi eld is called the index , and it contains the bits used to address a
line in the cache directory. The tag plus the index is the line address in memory.

 The next fi eld is the offset , and it is the address of a physical word within
a line.

 Finally, the least signifi cant address fi eld specifi es a byte in a word . These
bits are not usually used by the cache since the cache references a word. (An
exception arises in the case of a write that modifi es only a part of a word.)

 The set associative cache is similar to the direct - mapped cache. Bits from the
line address are used to address a cache directory. However, now there are
multiple choices: Two, four, or more complete line addresses may be present in
the directory. Each address corresponds to a location in a subcache. The collec-
tion of these subcaches forms the total cache array. These subarrays can be
accessed simultaneously, together with the cache directory. If any of the entries
in the cache directory match the reference address, then there is a hit, and the
matched subcache array is sent back to the processor. While selection in the
matching process increases the cache access time, the set associative cache
access time is usually better than that of the fully associative mapped cache. But

c04.indd 132c04.indd 132 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

CACHE DATA 133

 Figure 4.7 Set associative (multiple direct - mapped caches) mapping.

Directory

Four tag entries Set 1

Set 2

Set 3

Set 4

Select set 1

Select set 2

Select set 3

Select set 4

C

C

C

C

M
U
X

 Output

Real address

Tag
Index

the direct - mapped cache provides the fastest processor access to cache data for
any given cache size.

 4.6 CACHE DATA

 Cache size largely determines cache performance (miss rate). The larger the
cache, the lower the miss rate. Almost all cache miss rate data are empiri-
cal and, as such, have certain limitations. Cache data are strongly program
dependent. Also, data are frequently based upon older machines, where the

 Figure 4.8 Address partitioned by cache usage.

Tag Index Offset Byte

Line address

Word address

Byte address

c04.indd 133c04.indd 133 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

134 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 Figure 4.9 A design target miss rate per reference to memory (fully associative,
demand fetch, fetch [allocate] on write, copy - back with LRU replacement) [223, 224] .

Cache size (bytes)

1,000,000100,00010,000100010010

0.001

0.01

0.1

1.0
Unified cache

D
es

ig
n

ta
rg

et
 m

is
s

ra
te

4
8
16
32
64
128

Line size (bytes)

memory and program size were fi xed and small. Such data show low miss rate
for relatively small size caches. Thus, there is a tendency for the measured miss
rate of a particular cache size to increase over time. This is simply the result
of measurements made on programs of increasing size. Some time ago, Smith
 [224] developed a series of design target miss rates (DTMRs) that represent
an estimate of what a designer could expect from an integrated (instruction
and data) cache. These data are presented in Figure 4.9 and give an idea of
typical miss rates as a function of cache and line sizes.

 For cache sizes larger than 1 MB, a general rule is that doubling the size halves
the miss rate. The general rule is less valid in transaction - based programs.

 4.7 WRITE POLICIES

 How is memory updated on a write? One could write to both cache and
memory (write - through or WT), or write only to the cache (copy - back or CB —
 sometimes called write - back), updating memory when the line is replaced.
These two strategies are the basic cache write policies (Figure 4.10).

 The write - through cache (Figure 4.10 a) stores into both cache and main
memory on each CPU store.

 Advantage: This retains a consistent (up - to - date) image of program activity
in memory.

 Disadvantage: Memory bandwidth may be high — dominated by write traffi c.
 In the copy - back cache (Figure 4.10 b), the new data are written to memory

when the line is replaced. This requires keeping track of modifi ed (or “ dirty ”)
lines, but results in reduced memory traffi c for writes:

c04.indd 134c04.indd 134 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

STRATEGIES FOR LINE REPLACEMENT AT MISS TIME 135

 Figure 4.10 Write policies: (a) write - through cache (no allocate on write) and (b) copy -
back cache (allocate on write).

(a) Write-through

Write

Write

(b) Write-back (copy-back)

Cache

Cache

Memory

If not in cache, update memory

Write line on
replacement

Memory

 1. Dirty bit is set if a write occurs anywhere in line.
 2. From various traces [223] , the probability that a line to be replaced is

dirty is 47% on average (ranging from 22% to 80%).
 3. Rule of thumb: Half of the data lines replaced are dirty. So, for a data

cache, assume 50% are dirty lines, and for an integrated cache, assume
30% are dirty lines.

 Most larger caches use copy - back; write - through is usually restricted to either
small caches or special - purpose caches that provide an up - to - date image of
memory. Finally, what should we do when a write (or store) instruction misses
in the cache? We can fetch that line from memory (write allocate or WA) or
just write into memory (no write allocate or NWA). Most write - through caches
do not allocate on writes (WTNWA) and most copy back caches do allocate
(CBWA).

 4.8 STRATEGIES FOR LINE REPLACEMENT AT MISS TIME

 What happens on a cache miss? If the reference address is not found in the
directory, a cache miss occurs. Two actions must promptly be taken: (1) The
missed line must be fetched from the main memory, and (2) one of the current

c04.indd 135c04.indd 135 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

136 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

cache lines must be designated for replacement by the currently accessed line
(the missed line).

 4.8.1 Fetching a Line

 In a write - through cache, fetching a line involves accessing the missed line and
the replaced line is discarded (written over).

 For a copy - back policy, we fi rst determine whether the line to be replaced
is dirty (has been written to) or not. If the line is clean, the situation is the
same as with the write - through cache. However, if the line is dirty, we must
write the replaced line back to memory.

 In accessing a line, the fastest approach is the nonblocking cache or the
 prefetching cache. This approach is applicable in both write - through and copy -
 back caches. Here, the cache has additional control hardware to allow the
cache miss to be handled (or bypassed), while the processor continues to
execute. This strategy only works when the miss is accessing cache data that
are not currently required by the processor. Nonblocking caches perform best
with compilers that provide prefetching of lines in anticipation of processor
use. The effectiveness of nonblocking caches depends on

 1. the number of misses that can be bypassed while the processor continues
to execute; and

 2. the effectiveness of the prefetch and the adequateness of the buffers to
hold the prefetch information; the longer the prefetch is made before
expected use, the less the miss delay, but this also means that the buffers
or registers are occupied and hence are not available for (possible)
current use.

 4.8.2 Line Replacement

 The replacement policy selects a line for replacement when the cache is full.
There are three replacement policies that are widely used:

 1. Least Recently Used (LRU). The line that was least recently accessed
(by a read or write) is replaced.

 2. First In – First Out (FIFO). The line that had been in the cache the longest
is replaced.

 3. Random Replacement (RAND). Replacement is determined randomly.

 Since the LRU policy corresponds to the concept of temporal locality, it is
generally the preferred policy. It is also the most complex to implement. Each
line has a counter that is updated on a read (or write). Since these counters
could be large, it is common to create an approximation to the true LRU with
smaller counters.

c04.indd 136c04.indd 136 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

STRATEGIES FOR LINE REPLACEMENT AT MISS TIME 137

 While LRU performs better than either FIFO or RAND, the use of the
simpler RAND or FIFO only amplifi es the LRU miss rate (DTMR) by about
1.10 (i.e., 10%) [223] .

 4.8.3 Cache Environment: Effects of System, Transactions,
and Multiprogramming

 Most available cache data are based upon trace studies of user applications.
Actual applications are run in the context of the system. The operating system
tends to slightly increase (20% or so) the miss rate experienced by a user
program [7] .

 Multiprogramming environments create special demands on a cache. In
such environments, the cache miss rates may not be affected by increasing
cache size. There are two environments:

 1. A Multiprogrammed Environment. The system, together with several
programs, is resident in memory. Control is passed from program to
program after a number of instructions, Q , have been executed, and
eventually returns to the fi rst program. This kind of environment results
in what is called a warm cache. When a process returns for continuing
execution, it fi nds some, but not all, of its most recently used lines in the
cache, increasing the expected miss rate (Figure 4.11 illustrates the
effect).

 2. Transaction Processing. While the system is resident in memory together
with a number of support programs, short applications (transactions) run

 Figure 4.11 Warm cache: cache miss rates for a multiprogrammed environment
switching processes after Q instructions.

0.001

0.01

0.1

1.0

Multiprogramming level = 2
Line size = 16 bytes

Cache size

M
is

s
ra

te

1,000,000100,00010,000100010010

100

1000

10,000

20,000

100,000

effects

(memory references)

DTMR

c04.indd 137c04.indd 137 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

138 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

through to completion. Each application consists of Q instructions. This
kind of environment is sometimes called a cold cache. Figure 4.12 illus-
trates the situation.

 Both of the preceding environments are characterized by passing control from
one program to another before completely loading the working set of the
program. This can signifi cantly increase the miss rate.

 4.9 OTHER TYPES OF CACHE

 So far, we have considered only the simple integrated cache (also called a
 “ unifi ed ” cache), which contains both data and instructions. In the next few
sections, we consider various other types of cache. The list we present (Table
 4.5) is hardly exhaustive, but it illustrates some of the variety of cache designs
possible for special or even commonplace applications.

 Most currently available microprocessors use split I - and D - caches, described
in the next section.

 4.10 SPLIT I - AND D - CACHES AND THE EFFECT
OF CODE DENSITY

 Multiple caches can be incorporated into a single processor design, each cache
serving a designated process or use. Over the years, special caches for systems

 Figure 4.12 Cold cache: cache miss rates for a transaction environment switching
processes after Q instructions.

10–2

10–1

100

101 102 103 104 105 106

16-byte line, four-way associative

Cache size (bytes)

M
is

s
ra

te

100

1000

10,000

20,000

100,000

with system
Single user

Design target

(memory references)
Average quantum size

miss rate

c04.indd 138c04.indd 138 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

MULTILEVEL CACHES 139

 TABLE 4.5 Common Types of Cache

 Type Where It Is Usually Used

 Integrated (or unifi ed) The basic cache that accommodates all references (I
and D). This is commonly used as the second - and
higher - level cache.

 Split caches I and D Provides additional cache access bandwidth with some
increase in the miss rate (MR). Commonly used as a
fi rst - level processor cache.

 Sectored cache Improves area effectiveness (MR for given area) for
on - chip cache.

 Multilevel cache The fi rst level has fast access; the second level is usually
much larger than the fi rst to reduce time delay in a
fi rst - level miss.

 Write assembly cache Specialized, reduces write traffi c, usually used with a WT
on - chip fi rst - level cache.

code and user code or even special input/output (I/O) caches have been con-
sidered. The most popular confi guration of partitioned caches is the use of
separate caches for instructions and data.

 Separate instruction and data caches provide signifi cantly increased cache
bandwidth, doubling the access capability of the cache ensemble. I - and
D - caches come at some expense, however; a unifi ed cache with the same size
as the sum of a data and instruction cache has a lower miss rate. In the unifi ed
cache, the ratio of instruction to data working set elements changes during the
execution of the program and is adapted to by the replacement strategy.

 Split caches have implementation advantages. Since the caches need not be
split equally, a 75 – 25% or other split may prove more effective. Also, the
I - cache is simpler as it is not required to handle stores.

 4.11 MULTILEVEL CACHES

 4.11.1 Limits on Cache Array Size

 The cache consists of a static RAM (SRAM) array of storage cells. As the
array increases in size, so does the length of the wires required to access its
most remote cell. This translates into the cache access delay, which is a function
of the cache size, organization, and the process technology (feature size, f).
McFarland [166] has modeled the delay and found that an approximation can
be represented as

 Access time ns() = + + +()() × + −()()0 35 3 8 0 006 0 025 1 0 3 1 1. ,f f C A

where f is the feature size in microns, C is the cache array capacity in kilobyte,
and A is the degree of associativity (where direct map = 1).

c04.indd 139c04.indd 139 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

140 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 The effect of this equation (for A = 1) can be seen in Figure 4.13 . If we limit
the level 1 access time to under 1 ns, we are probably limited to a cache array
of about 32 KB. While it is possible to interleave multiple arrays, the interleav-
ing itself has an overhead. So usually, L1 caches are less than 64 KB; L2 caches
are usually less than 512 KB (probably interleaved using smaller arrays); and
L3 caches use multiple arrays of 256 KB or more to create large caches, often
limited by die size.

 4.11.2 Evaluating Multilevel Caches

 In the case of a multilevel cache, we can evaluate the performance of both
levels using L1 cache data. A two - level cache system is termed inclusive if all
the contents of the lower - level cache (L1) are also contained in the higher -
 level cache (L2).

 Second - level cache analysis is achieved using the principle of inclusion; that
is, a large, second - level cache includes the same lines as in the fi rst - level cache.
Thus, for the purpose of evaluating performance, we can assume that the fi rst -
 level cache does not exist. The total number of misses that occur in a second -
 level cache can be determined by assuming that the processor made all of its
requests to the second - level cache without the intermediary fi rst - level cache.

 There are design considerations in accommodating a second - level cache to
an existing fi rst - level cache. The line size of the second - level cache should be
the same as or larger than the fi rst - level cache. Otherwise, if the line size in
the second - level cache were smaller, loading the line in the fi rst - level cache
would simply cause two misses in the second - level cache. Further, the second -
 level cache should be signifi cantly larger than the fi rst - level; otherwise, it
would have no benefi t.

 Figure 4.13 Cache access time (for a single array) as a function of cache array size.

 1

 2

 3

 4

 5

 6

 1 2 4 8 16 32 64 128 256 512

T
im

e
(n

s)

Size (KB)

f = 0.13
f = 0.09

f = 0.065

c04.indd 140c04.indd 140 5/4/2011 9:54:14 AM5/4/2011 9:54:14 AM

MULTILEVEL CACHES 141

 In a two - level system, as shown in Figure 4.14 , with fi rst - level cache, L1, and
second - level cache, L2, we defi ne the following miss rates [202] :

 1. A local miss rate is simply the number of misses experienced by the cache
divided by the number of references to it. This is the usual understanding
of miss rate .

 2. The global miss rate is the number of L2 misses divided by the number
of references made by the processor. This is our primary measure of the
L2 cache.

 3. The solo miss rate is the miss rate the L2 cache would have if it were the
only cache in the system. This is the miss rate defi ned by the principle of
inclusion. If L2 contains all of L1, then we can fi nd the number of L2
misses and the processor reference rate, ignoring the presence of the L1
cache. The principle of inclusion specifi es that the global miss rate is the
same as the solo miss rate, allowing us to use the solo miss rate to evalu-
ate a design.

 The preceding data (read misses only) illustrate some salient points in multi-
level cache analysis and design:

 1. So long as the L1 cache is the same as or larger than the L2 cache, analy-
sis by the principle of inclusion provides a good estimate of the behavior
of the L2 cache.

 2. When the L2 cache is signifi cantly larger than the L1 cache, it can be
considered independent of the L1 parameters. Its miss rate corresponds
to a solo miss rate.

 Figure 4.14 A two - level cache.

References

Processor

L1
cache

L2
cache

Memory

c04.indd 141c04.indd 141 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

142 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 TABLE 4.6 SOC Cache Organization

 SOC L1 Cache L2 Cache

 NetSilicon NS9775 [185] 8 - KB I - cache, 4 - KB D - cache —
 NXP LH7A404 [186] 8 - KB I - cache, 8 - KB D - cache —
 Freescale e600 [101] 32 - KB I - cache, 32 - KB D - cache 1 MB with ECC
 Freescale PowerQUICC

III [102]
 32 - KB I - cache, 32 - KB D - cache 256 KB with ECC

 ARM1136J(F) - S [24] 64 - KB I - cache, 64 - KB D - cache Max 512 KB

 E XAMPLE 4.1

 L1
L2

L2 more than four times the L1 size

 Miss penalties:

 Miss in L1, hit in L2: 2 cycles
 Miss in L1, miss in L2: 15 cycles

 Suppose we have a two - level cache with miss rates of 4% (L1) and 1% (L2).
Suppose the miss in L1 and the hit in L2 penalty is 2 cycles, and the miss
penalty in both caches is 15 cycles (13 cycles more than a hit in L2). If a pro-
cessor makes one reference per instruction, we can compute the excess cycles
per instruction (CPIs) due to cache misses as follows:

Excess CPI due to L misses

refr inst misses refr cyc

1

1 0 0 04 2= × ×. . lles miss

CPI= 0 08.

Excess CPI due to L misses

refr inst misses refr cy

2

1 0 0 01 13= × ×. . ccles miss

CPI= 0 13. .

 Note: the L2 miss penalty is 13 cycles, not 15 cycles, since the 1% L2 misses
have already been “ charged ” 2 cycles in the excess L1 CPI:

Total effect excess L CPI excess L CPI

CPI

= +
= +
=

1 2

0 08 0 13

0 21

. .

. .

 The cache confi gurations for some recent SOCs are shown in Table 4.6 .

c04.indd 142c04.indd 142 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

VIRTUAL-TO-REAL TRANSLATION 143

 4.11.3 Logical Inclusion

 True or logical inclusion, where all the contents of L1 reside also in L2, should
not be confused with statistical inclusion, where usually , L2 contains the L1
data. There are a number of requirements for logical inclusion. Clearly, the L1
cache must be write - through; the L2 cache need not be. If L1 were copy - back,
then a write to a line in L1 would not go immediately to L2, so L1 and L2
would differ in contents.

 When logical inclusion is required, it is probably necessary to actively force
the contents to be the same and to use consistent cache policies.

 Logical inclusion is a primary concern in shared memory multiprocessor
systems that require a consistent memory image.

 4.12 VIRTUAL - TO - REAL TRANSLATION

 The TLB provides the real addresses used by the cache by translating the
virtual addresses into real addresses.

 Figure 4.15 shows a two - way set associative TLB. The page address (the
upper bits of the virtual address) is composed of the bits that require transla-
tion. Selected virtual address bits address the TLB entries. These are selected

 Figure 4.15 TLB with two - way set associativity.

Tag

Index

Set 1 Set 2

R1 V1 R2 V2

MUX
Real high-order
address

AND
CompareCompare

Not
in

TLB

N

N

YY

Select R1 or R2

V = R
Low-order
address

R2

R1

TLB

Virtual address

c04.indd 143c04.indd 143 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

144 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 Figure 4.16 Not - in - TLB rate.

 0.0001

 0.001

 0.01

 0.1

 64 128 256 512 1024 2048 4096

M
is

s
ra

te

TLB entries (address pairs)

One way
Two way

FA

(or hashed) from the bits of the virtual address. This avoids too many address
collisions, as might occur when both address and data pages have the same,
say, “ 000, ” low - order page addresses. The size of the virtual address index is
equal to log 2 t , where t is the number of entries in the TLB divided by the
degree of set associativity. When a TLB entry is accessed, a virtual and real
translation pair from each entry is accessed. The virtual addresses are com-
pared to the virtual address tag (the virtual address bits that were not used in
the index). If a match is found, the corresponding real address is multiplexed
to the output of the TLB.

 With careful assignment of page addresses, the TLB access can occur at
the same time as the cache access. When a translation is not found in the
TLB, the process described in Chapter 1 must be repeated to create a correct
virtual - to - real address pair in the TLB. This may require more than 10 cycles;
TLB misses — called not - in - TLB — are costly to performance. TLB access in
many ways resembles cache access. FA organization of TLB is generally slow,
but four - way or higher set associative TLBs perform well and are generally
preferred.

 Typical TLB miss rates are shown in Figure 4.16 . FA data are similar to
four - way set associative.

 For those SOC or board - based systems that use virtual addressing, there
are additional considerations:

 1. Small TLBs may create excess not - in - TLB faults, adding time to program
execution.

 2. If the cache uses real addresses, the TLB access must occur before the
cache access, increasing the cache access time.

c04.indd 144c04.indd 144 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

SOC (ON-DIE) MEMORY SYSTEMS 145

 Excess not - in - TLB translations can generally be controlled through the use of
a well - designed TLB. The size and organization of the TLB depends on per-
formance targets.

 Typically, separate instruction and data TLBs are used. Both TLBs might
use 128 - entry, two - way set associative, and might use LRU replacement algo-
rithm. The TLB confl agrations of some recent SOCs are shown in Table 4.7 .

 4.13 SOC (ON - DIE) MEMORY SYSTEMS

 On - die memory design is a special case of the general memory system design
problem, considered in the next section. The designer has much greater fl ex-
ibility in the selection of the memory itself and the overall cache - memory
organization. Since the application is known, the general size of both the
program and data store can be estimated. Frequently, part of the program store
is designed as a fi xed ROM. The remainder of memory is realized with either
SRAM or DRAM. While the SRAM is realized in the same process technol-
ogy as the processor, usually DRAM is not. An SRAM bit consists of a six -
 transistor cell, while the DRAM uses only one transistor plus a deep trench
capacitor. The DRAM cell is designed for density; it uses few wiring layers.
DRAM design targets low refresh rates and hence low leakage currents. A
DRAM cell uses a nonminimum length transistor with a higher threshold
voltage, (V T), to provide a lower - leakage current. This leads to lower gate
overdrive and slower switching. For a stand - alone die, the result is that the
SRAM is 10 – 20 times faster and 10 or more times less dense than DRAM.

 eDRAM [33, 125] has been introduced as a compromise for use as an on - die
memory. Since there are additional process steps in realizing an SOC with
eDRAM, the macro to generate the eDRAM is fabrication specifi c and is
regarded as a hard (or at least fi rm) IP. The eDRAM has an overhead (Figure
 4.17) resulting in less density than DRAM. Process complexity for the eDRAM
can include generating three additional mask layers resulting in 20% addi-
tional cost than that for the DRAM.

 An SOC, using the eDRAM approach, integrates high - speed, high - leakage
logic transistors with lower - speed, lower - leakage memory transistors on the
same die. The advantage for eDRAM lies in its density as shown in Figure
 4.18 . Therefore, one key factor for selecting eDRAM over SRAM is the size
of the memory required.

 TABLE 4.7 SOC TLB Organization

 SOC Organization Number of Entries

 Freescale e600 [101] Separate I - TLB, D - TLB 128 - entry, two - way set
associative, LRU

 NXP LH7A404 [186] Separate I - TLB, D - TLB 64 - entry each
 NetSilicon NS9775

(ARM926EJ - S) [185]
 Mixed 32 - entry two - way set

associative

c04.indd 145c04.indd 145 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

146 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 Having paid the process costs for eDRAM, the timing parameters for
eDRAM are much better than conventional DRAM. The cycle time (and
access time) is much closer to SRAM, as shown in Figure 4.19 . All types of
on - die memory enjoy the advantage of bandwidth as a whole memory column
can be accessed at each cycle.

 A fi nal consideration in memory selection is the projected error rate due
to radiation (called the soft error rate or SER). Each DRAM cell stores sig-
nifi cantly larger amounts of charge than in the SRAM cell. The SRAM cells
are faster and easier to fl ip, with correspondingly higher SER. Additionally,
for an SRAM cell, as technology scales, the critical amount of charge for
determining an error decreases due to scaling of supply voltages and cell
capacitances. The differences are shown in Figure 4.20 . At even 130 - nm

 Figure 4.17 On - die SRAM and DRAM. The eDRAM must accommodate the process
requirements of the logic, representing an overhead. SRAM is unaffected.

On-die
eDRAM

On-die
SRAM

Process conversion
overhead area

 Figure 4.18 The relative density advantage eDRAM improves with memory size.

5

4

3

2

1
1 8

SRAM Memory Size (MB)

R
el

at
iv

e
eD

R
A

M
 S

iz
e

16

c04.indd 146c04.indd 146 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

BOARD-BASED (OFF-DIE) MEMORY SYSTEMS 147

 Figure 4.19 Cycle time for random memory accesses.

12

10

8

6

4

2

0
130 90

C
yc

le
 ti

m
e

(n
s)

Process (nm)

eDRAM

SRAM

65

feature size, the SER for SRAM is about 1800 times higher than for eDRAM.
Of course, more error - prone SRAM implementation can compensate by a
more extensive use of error - correcting codes (ECCs), but this comes with its
own cost.

 Ultimately, the selection of on - die memory technology depends on fabrica-
tion process access and memory size required.

 4.14 BOARD - BASED (OFF - DIE) MEMORY SYSTEMS

 In many processor design situations (probably all but the SOC case), the main
memory system is the principal design challenge.

 As processor ensembles can be quite complex, the memory system that
serves these processors is correspondingly complex.

 The memory module consists of all the memory chips needed to forward a
cache line to the processor via the bus. The cache line is transmitted as a burst
of bus word transfers. Each memory module has two important parameters:
module access time and module cycle time. The module access time is simply
the amount of time required to retrieve a word into the output memory buffer
register of a particular memory module, given a valid address in its address
register. Memory service (or cycle) time is the minimum time between requests
directed at the same module. Various technologies present a signifi cant range
of relationships between the access time and the service time. The access time
is the total time for the processor to access a line in memory. In a small, simple

c04.indd 147c04.indd 147 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

148 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 Figure 4.20 The ratio of soft error rates of SRAM to eDRAM.

2000

1500

1000

500
250 180

Process (nm)

R
at

io
 o

f s
of

t e
rr

or
 r

at
es

130

 Figure 4.21 Accessing delay in a complex memory system. Access time includes chip
accessing, module overhead, and bus transit.

Memory
module

DRAM
die

Die select

Bus
ECC,

bus control

Data

memory system, this may be little more than chip access time plus some mul-
tiplexing and transit delays. The service time is approximately the same as the
chip cycle time. In a large, multimodule memory system (Figure 4.21), the
access time may be greatly increased, as it now includes the module access
time plus transit time, bus accessing overhead, error detection, and correction
delay.

 After years of rather static evolution of DRAM memory chips, recent years
have brought about signifi cant new emphasis on the performance (rather than
simply the size) of memory chips.

c04.indd 148c04.indd 148 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

SIMPLE DRAM AND THE MEMORY ARRAY 149

 The fi rst major improvement to DRAM technology is synchronous DRAM
(SDRAM). This approach synchronizes the DRAM access and cycle time to
the bus cycle. Additional enhancements accelerate the data transfer and
improves the electrical characteristics of the bus and module. There are now
multiple types of SDRAM. The basic DRAM types are the following:

 1. DRAM. Asynchronous DRAM.
 2. SDRAM. The memory module timing is synchronized to the memory

bus clock.
 3. Double data rate (DDR) SDRAM. The memory module fetches a

double - sized transfer unit for each bus cycle and transmits at twice the
bus clock rate.

 In the next section, we present the basics of the (asynchronous) DRAM, fol-
lowing that of the more advanced SDRAMs.

 4.15 SIMPLE DRAM AND THE MEMORY ARRAY

 The simplest asynchronous DRAM consists of a single memory array with 1
(and sometimes 4 or 16) output bits. Internal to the chip is a two - dimensional
array of memory cells consisting of rows and columns. Thus, half of the memory
address is used to specify a row address, one of 2 n /2 row lines, and the other
half of the address is similarly used to specify one of 2 n /2 column lines (Figure
 4.22). The cell itself that holds the data is quite simple, consisting merely of a

 Figure 4.22 A memory chip.

CAS
/

Column decoder

Column address/
/

Address pins

/Row address

R
o
w

d
e
c
o
d
e
r

2n/2

2n

storage
cells

2n/2

Sense amps
/RAS

Dout

Din

/WE

c04.indd 149c04.indd 149 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

150 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

MOS transistor holding a charge (a capacitance). As this discharges over time,
it must continually be refreshed, once every several milliseconds.

 With large - sized memories, the number of address lines dominates the
pinout of the chip. In order to conserve these pins and to provide a smaller
package for better overall density, the row and column addresses are multi-
plexed onto the same lines (input pins) for entry onto the chip. Two additional
lines are important here: row address strobe (RAS) and column address strobe
(CAS). These gate fi rst the row address, then the column address into the chip.
The row and column addresses are then decoded to select one out of the 2 n /2
possible lines. The intersection of the active row and column lines is the desired
bit of information. The column line ’ s signals are then amplifi ed by a sense
amplifi er and are transmitted to the output pin (data out, or D out) during a
read cycle. During a write cycle, the write - enable (WE) signal stores the data -
 in (D in) signal to specify the contents of the selected bit address.

 All of these actions happen in a sequence approximated in the timing
diagram in Figure 4.23 . At the beginning of a read from memory, the RAS line
is activated. With the RAS active and the CAS inactive, the information on
the address lines is interpreted as the row address and is stored into the row
address register. This activates the row decoder and the selected row line in

 Figure 4.23 Asynchronous DRAM chip timing.

t nibble

Dout

 WE

WE

WE

Address

CAS

CAS

RAS

Read t chip cycle

Row Column

tchip access

Nibble (or burst) mode

RAS

Dout

c04.indd 150c04.indd 150 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

SIMPLE DRAM AND THE MEMORY ARRAY 151

 Figure 4.24 An asynchronous DRAM memory module.

Address
n bits

Dynamic
memory
controller

Memory
timing

controller

p bits (Data)

n/2 bits
(address)

Memory
chip

2n × 1

Dout

Bus drivers

← p bits →

the memory array. The CAS is then activated, which gates the column address
lines into a column address register. Note that

 1. the two rise times on CAS represent the earliest and latest that this signal
may rise with respect to the column address signals and

 2. WE is inactive during read operations.

 The column address decoder then selects a column line; at the intersection of
the row and column line is the desired data bit. During a read cycle, the WE
is inactive (low) and the output line (D out) is at a high - impedance state until
it is activated either high or low depending on the contents of the selected
memory cell.

 The time from the beginning of RAS until the data output line is activated
is a very important parameter in the memory module design. This is called the
chip access time or t chip access . The other important chip timing parameter is the
cycle time of the memory chip (t chip cycle). This is not the same as the access time,
as the selected row and column lines must recover before the next address can
be entered and the read process repeated.

 The asynchronous DRAM module does not simply consist of memory chips
(Figure 4.24). In a memory system with p bits per physical word, and 2 n words
in a module, the n address bits enter the module and are usually directed at a
dynamic memory controller chip. This chip, in conjunction with a memory
timing controller, provides the following functions:

 1. multiplexing the n address bits into a row and a column address for use
by the memory chips,

c04.indd 151c04.indd 151 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

152 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 2. the creation of the correct RAS and CAS signal lines at the appropriate
time, and

 3. providing a timely refresh of the memory system.

 Since the dynamic memory controller output drives all p bits, and hence p
chips, of the physical word, the controller output may also require buffering.
As the memory read operation is completed, the data - out signals are directed
at bus drivers, which then interface to the memory bus, which is the interface
for all of the memory modules.

 Two features found on DRAM chips affect the design of the memory
system. These “ burst ” mode - type features are called

 1. nibble mode and
 2. page mode.

 Both of these are techniques for improving the transfer rate of memory
words. In nibble mode, a single address (row and column) is presented to
the memory chip and the CAS line is toggled repeatedly. Internally, the chip
interprets this CAS toggling as a mod 2 w progression of low - order column
addresses. Thus, sequential words can be accessed at a higher rate from the
memory chip. For example, for w = 2, we could access four consecutive low -
 order bit addresses, for example:

 [00] → [01] → [10] → [11]

 and then return to the original bit address.
 In page mode, a single row is selected and nonsequential column addresses

may be entered at a high rate by repeatedly activating the CAS line (similar
to nibble mode, Figure 4.23). Usually, this is used to fi ll a cache line.

 While terminology varies, the nibble mode usually refers to the access of
(up to) four consecutive words (a nibble) starting on a quad word address
boundary. Table 4.8 illustrates some SOC memory size, position and type. The
newer DDR SDRAM and follow ons are discussed in the next section.

 4.15.1 SDRAM and DDR SDRAM

 The fi rst major improvement to the DRAM technology is the SDRAM. This
approach, as mentioned before, synchronizes the DRAM access and cycle to

 TABLE 4.8 SOC Memory Designs

 SOC Memory Type Memory Size Memory Position

 Intel PXA27x [132] SRAM 256 KB On - die
 Philips Nexperia

PNX1700 [199]
 DDR SDRAM 256 MB Off - die

 Intel IOP333 [131] DDR SDRAM 2 GB Off - die

c04.indd 152c04.indd 152 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

SIMPLE DRAM AND THE MEMORY ARRAY 153

the bus cycle. This has a number of signifi cant advantages. It eliminates the
need for separate memory clocking chips to produce the RAS and CAS
signals. The rising edge of the bus clock provides the synchronization. Also, by
extending the package to accommodate multiple output pins, versions that
have 4, 8, and 16 pins allow more modularity in memory sizing.

 With the focus on the bus and memory bus interface, we further improve
bus bandwidth by using differential data and address lines. Now when the
clock line rises, the complement clock falls, but midway through the cycle, the
clock line falls and the complement clock rises. This affords the possibility to
transmit synchronous data twice during each cycle: once on the rising edge of
the clock signal and once on the rising edge of the complement clock. By using
this, we are able to double the data rate transmitted on the bus. The resulting
memory chips are called DDR SDRAMs (Figure 4.25). Also, instead of select-
ing a row and a column for each memory reference, it is possible to select a
row and leave it selected (active) while multiple column references are made
to the same row (Figure 4.26).

 In cases where spatial locality permits, the read and write times are improved
by eliminating the row select delay. Of course, when a new row is referenced,

 Figure 4.25 Internal confi guration of DDR SDRAM.

Data mask and
select

3

2

1

Bank 0
array

Column decoder

text

Column decoder

Bank 3
row

decoderBank 2
row

decoderBank 1
row

decoder
Bank 0

row
decoder

2:1 MUX
Registers
Drivers

Address
register

Addresses

Row address

Column
address

2n bits n bits

c04.indd 153c04.indd 153 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

154 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

then the row activation time must be added to the access time. Another
improvement introduced in SDRAMs is the use of multiple DRAM arrays,
usually either four or eight. Depending on the chip implementation, these
multiple arrays can be independently accessed or sequentially accessed, as
programmed by the user. In the former case, each array can have an indepen-
dently activated row providing an interleaved access to multiple column
addresses. If the arrays are sequentially accessed, then the corresponding rows
in each array are activated and longer bursts of consecutive data can be sup-
ported. This is particularly valuable for graphics applications.

 The improved timing parameters of the modern memory chip results from
careful attention to the electrical characteristic of the bus and the chip. In
addition to the use of differential signaling (initially for data, now for all
signals), the bus is designed to be a terminated strip transmission line. With
the DDR3 (closely related to graphics double data rate [GDDR3]), the ter-
mination is on - die (rather than simply at the end of the bus), and special cali-
bration techniques are used to ensure accurate termination.

 The DDR chips that support interleaved row accesses with independent
arrays must carry out a 2n data fetch from the array to support the DDR. So,
a chip with four data out (n = 4) lines must have arrays that fetch 8 bits. The
DDR2 arrays typically fetch 4 n , so with n = 4, the array would fetch 16 bits.
This enables higher data transmission rates as the array is accessed only once
for every four - bus half - cycles.

 Some typical parameters are shown in Tables 4.9 and 4.10 . While represen-
tatives of all of these DRAMs are in production at the time of writing, the
asynchronous DRAM and the SDRAM are legacy parts and are generally not
used for new development. The DDR3 part was introduced for graphic appli-
cation confi gurations. For most cases, the parameters are typical and for
common confi gurations. For example, the asynchronous DRAM is available
with 1, 4, and 16 output pins. The DDR SDRAMs are available with 4, 8, and
16 output pins. Many other arrangements are possible.

 Multiple (up to four) DDR2 SDRAMs can be confi gured to share a common
bus (Figure 4.27). In this case, when a chip is “ active ” (i.e., it has an active row),

 Figure 4.26 A line fetch in DDR SDRAM.

Row and Bank
Address Active Column Address D1 D2 D3 D4

One Cycle One Cycle

c04.indd 154c04.indd 154 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

SIMPLE DRAM AND THE MEMORY ARRAY 155

 TABLE 4.9 Confi guration Parameters for Some Typical DRAM Chips Used
in a 64 - bit Module

 DRAM SDRAM DDR1 DDR2
 GDDR3
(DDR3)

 Typical chip capacity 1 Gb 1 Gb 1 Gb 256 Mb
 Output data pins/chip 1 4 4 4 32
 Array data bits

fetched
 1 4 8 16 32

 Number of arrays 1 4 4 8 4
 Number of chips/

module
 64 + 16 16 16 4

 Burst word transfers 1 – 4 1, 2, 4 2, 4, 8 4, 8 4, 8, 16
 Rows 16 K 16 K
 Columns 2048 × 8 512 × 16 512 × 32
 32 - byte lines/row/

array
 2048 1024 2048 × 4

 TABLE 4.10 Timing Parameters for Some Typical DRAM Modules (64 bits)

 DRAM SDRAM DDR1 DDR2 DDR3

 Bus clock rate (MHz) Asynchronous 100 133 266 600
 Active to CAS (ns) 30 30 20 15 12
 Column address to data

out 1 (read time) (ns)
 40 30 20 15 12

 Line access (accessing a
new row) (ns)

 140 90 51 36 28

 Line access (within an
active row) (ns)

 120 60 31 21 16

 Rows interleaving × 1 × 4 × 4 × 8 × 1

 Figure 4.27 SDRAM channels and controller.

Memory controller

Bus/channel

Bus/channel

Mod 0 Mod 3Mod 2Mod 1

Mod 0 Mod 3Mod 2Mod 1

c04.indd 155c04.indd 155 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

156 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

the on - die termination is unused. When there are no active rows on the die,
the termination is used. Typical server confi gurations then might have four
modules sharing a bus (called a channel) and a memory controller managing
up to two buses (see Figure 4.27). The limit of two is caused simply by the
large number of tuned strip and microstrip transmission lines that must connect
the controller to the buses. More advanced techniques place a channel buffer
between the module and a very high - speed channel. This advanced channel
has a smaller width (e.g., 1 byte) but a much higher data rate (e.g., 8 ×). The net
effect leaves the bandwidth per module the same, but now the number of wires
entering the controller has decreased, enabling the controller to manage more
channels (e.g., 8).

 4.15.2 Memory Buffers

 The processor can sustain only a limited number of outstanding memory refer-
ences before it suspends processing and the generation of further memory
references. This can happen either as a result of logical dependencies in the
program or because of an insuffi cient buffering capability for outstanding
requests. The signifi cance of this is that the achievable memory bandwidth is
decreased as a consequence of the pause in the processing, for the memory
can service only as many requests as are made by the processor.

 Examples of logical dependencies include branches and address interlocks.
The program must suspend computation until an item has been retrieved from
memory.

 Associated with each outstanding memory request is certain information
that specifi es the nature of the request (e.g., a read or a write operation), the
address of the memory location, and suffi cient information to route requested
data back to the requestor. All this information must be buffered either in the
processor or in the memory system until the memory reference is complete.
When the buffer is full, further requests cannot be accepted, requiring the
processor be stalled.

 In interleaved memory, the modules usually are not all equally congested.
So, it is useful to maximize the number of requests made by the processor, in
the hope that the additional references will be to relatively idle modules and
will lead to a net increase in the achieved bandwidth. If maximizing the band-
width of memory is a primary objective, we need buffering of memory requests
up to the point at which the logical dependencies in the program become the
limiting factor.

 4.16 MODELS OF SIMPLE PROCESSOR – MEMORY INTERACTION

 In systems with multiple processors or with complex single processors, requests
may congest the memory system. Either multiple requests may occur at the

c04.indd 156c04.indd 156 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

MODELS OF SIMPLE PROCESSOR–MEMORY INTERACTION 157

same time, providing bus or network congestion, or requests arising from dif-
ferent sources may request access to the memory system. Requests that cannot
be immediately honored by the memory system result in memory systems
contention. This contention degrades the bandwidth and is possible to achieve
from the memory system.

 In the simplest possible arrangement, a single simple processor makes a
request to a single memory module. The processor ceases activity (as with a
blocking cache) and waits for service from the module. When the module
responds, the processor resumes activity. Under such an arrangement, the
results are completely predictable. There can be no contention of the memory
system since only one request is made at a time to the memory module. Now
suppose we arrange to have n simple processors access m independent modules.
Contention develops when multiple processors access the same module.
Contention results in a reduced average bandwidth available to each of the
processors. Asymptotically, a processor with a nonblocking cache making n
requests to the memory system during a memory cycle resembles the n proces-
sor m module memory system, at least from a modeling point of view. But in
modern systems, processors are usually buffered from the memory system.
Whether or not a processor is slowed down by memory or bus contention
during cache access depends on the cache design and the service rate of pro-
cessors that share the same memory system.

 Given a collection of m modules each with service time T c , access time T a ,
and a certain processor request rate, how do we model the bandwidth available
from these memory modules, and how do we compute the overall effective
access time? Clearly, the modules in low - order interleave are the only ones
that can contribute to the bandwidth, and hence they determine m . From the
memory system ’ s point of view, it really does not matter whether the processor
system consists of n processors, each making one request every memory cycle
(i.e., one per T c), or one processor with n requests per T c , so long as the sta-
tistical distribution of the requests remains the same. Thus, to a fi rst approxi-
mation, the analysis of the memory system is equally applicable to the
multiprocessor system or the superscalar processor. The request rate, defi ned
as n requests per T c , is called the offered request rate, and it represents the
peak demand that the noncached processor system has on the main memory
system.

 4.16.1 Models of Multiple Simple Processors and Memory

 In order to develop a useful memory model, we need a model of the processor.
For our analysis, we model a single processor as an ensemble of multiple
simple processors. Each simple processor issues a request as soon as its previ-
ous request has been satisfi ed. Under this model, we can vary the number of
processors and the number of memory modules and maintain the address
request/data supply equilibrium. To convert the single processor model into

c04.indd 157c04.indd 157 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

158 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

an equivalent multiple processor, the designer must determine the number of
requests to the memory module per module service time, T s = T c .

 A simple processor makes a single request and waits for a response from
memory. A pipelined processor makes multiple requests for various buffers
before waiting for a memory response. There is an approximate equivalence
between n simple processors, each requesting once every T s , and one pipelined
processor making n requests every T s (Figure 4.28).

 In the following discussion, we use two symbols to represent the bandwidth
available from the memory system (the achieved bandwidth):

 1. B. The number of requests that are serviced each T s . Occasionally, we
also specify the arguments that B takes on, for example, B (m , n) or B
(m).

 2. Bw. The number of requests that are serviced per second: Bw = B / T s .

 To translate this into cache - based systems, the service time, T s , is the time that
the memory system is busy managing a cache miss. The number of memory
modules, m , is the maximum number of cache misses that the memory system
can handle at one time, and n is the total number of request per T s . This is the
total number of expected misses per processor per T s multiplied by the number
of processors making requests.

 4.16.2 The Strecker - Ravi Model

 This is a simple yet useful model for estimating contention. The original model
was developed by Strecker [229] and independently by Ravi [204] . It assumes
that there are n simple processor requests made per memory cycle and there
are m memory modules. Further, we assume that there is no bus contention.
The Strecker model assumes that the memory request pattern for the proces-
sors is uniform and the probability of any one request to a particular memory
module is simply 1/ m . The key modeling assumption is that the state of the

 Figure 4.28 Finding simple processor equivalence.

n processors
making one request

each Tc

One processor
making n requests

each Tc

Modeling assumption: Asymptotically, these are equivalent.

c04.indd 158c04.indd 158 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

MODELS OF SIMPLE PROCESSOR–MEMORY INTERACTION 159

memory system at the beginning of the cycle is not dependent upon any previ-
ous action on the part of the memory — hence, not dependent upon contention
in the past (i.e., Markovian). Unserved requests are discarded at the end of
the memory cycle.

 The following modeling approximations are made:

 1. A processor issues a request as soon as its previous request has been
satisfi ed.

 2. The memory request pattern from each processor is assumed to be uni-
formly distributed; that is, the probability of any one request being made
to a particular memory module is 1/ m .

 3. The state of the memory system at the beginning of each memory
cycle (i.e., which processors are awaiting service at which modules) is
ignored by assuming that all unserviced requests are discarded at the
end of each memory cycle and that the processors randomly issue new
requests.

 Analysis:

 Let the average number of memory requests serviced per memory cycle be
represented by B (m , n). This is also equal to the average number of memory
modules busy during each memory cycle. Looking at events from any given
module ’ s point of view during each memory cycle, we have

 Prob a given processor does not reference the module() = −1 1 m(()

Prob no processor references the module Prob the module is() = idle()

= −()1 1 m

 Prob the module is busy() = − −()1 1 1 m n

 B m n m m n, .() = = − −()()average number of busy modules 1 1 1

 The achieved memory bandwidth is less than the theoretical maximum due to
contention. By neglecting congestion in previous cycles, this analysis results in
an optimistic value for the bandwidth. Still, it is a simple estimate that should
be used conservatively.

 It has been shown by Bhandarkar [41] that B (m , n) is almost perfectly
symmetrical in m and n . He exploited this fact to develop a more accurate
expression for B (m , n), which is

 B m n K K l, ,() = − −()⎡⎣ ⎤⎦1 1 1

where K = max (m , n) and l = min (m , n).
 We can use this to model a typical processor ensemble.

c04.indd 159c04.indd 159 5/4/2011 9:54:15 AM5/4/2011 9:54:15 AM

160 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 E XAMPLE 4.3

 An early Intel Pentium ™ processor had an eight - way interleaved data cache.
It makes two references per processor cycle. The cache has the same cycle time
as the processor.

 For the Intel instruction set,

 Prob data references per instruction() = 0 6. .

 Since the Pentium tries to execute two instructions each cycle, we have

 n = 1 2, ,

 m = 8.

 Using Strecker ’ s model, we get

 E XAMPLE 4.2

 Suppose we have a two - processor die system sharing a common memory. Each
processor die is dual core with the two processors (four processors total)
sharing a 4 - MB level 2 cache. Each processor makes three memory references
per cycle and the clock rate is 4 GHz. The L2 cache has a miss rate of 0.001
misses per reference. The memory system has an average T s of 24 ns including
bus delay.

 We can ignore the details of the level 1 caches by inclusion. So each proces-
sor die creates 6 × 0.001 memory references per cycle or 0.012 references for
both cycles. Since there are 4 × 24 cycles in a T s , we have n = 1.152 processor
requests per T s . If we design the memory system to manage m = 4 requests
per T s , we compute the performance as

 B m n B, , . . .() = () =4 1 152 0 81

 The relative performance is

 P
B
n

rel = = =
0 81

1 152
0 7

.
.

. .

 Thus, the processor can only achieve 70% of its potential due to the memory
system. To do better, we need either a larger level 2 cache (or a level 3 cache)
or a much more elaborate memory system (m = 8).

 4.16.3 Interleaved Caches

 Interleaved caches can be handled in a manner analogous to interleaved
memory.

c04.indd 160c04.indd 160 5/4/2011 9:54:16 AM5/4/2011 9:54:16 AM

PROBLEM SET 161

 B m n B, , . . .() = () =8 1 2 1 18

 The relative performance is

 P
B
n

rel = = =
1 18
1 2

0 98
.
.

. ;

that is, the processor slows down by about 2% due to contention.

 4.17 CONCLUSIONS

 Cache provides the processor with a memory access time signifi cantly faster
than the memory access time. As such, the cache is an important constituent
in the modern processor. The cache miss rate is largely determined by the size
of the cache, but any estimate of miss rate must consider the cache organiza-
tion, the operating system, the system ’ s environment, and I/O effects. As cache
access time is limited by size, multilevel caches are a common feature of on - die
processor designs.

 On - die memory design seems to be relatively manageable especially with
the advent of eDRAM, but off - die memory design is an especially diffi cult
problem. The primary objective of such designs is capacity (or size); however,
large memory capacity and pin limitations necessarily imply slow access times.
Even if die access is fast, the system ’ s overhead, including bus signal transmis-
sion, error checking, and address distribution, adds signifi cant delay. Indeed,
these overhead delays have increased relative to decreasing machine cycle
times. Faced with a hundred - cycle memory access time, the designer can
provide adequate memory bandwidth to match the request rate of the proces-
sor only by a very large multilevel cache.

 4.18 PROBLEM SET

 1. A 128 KB cache has 64 bits lines, 8 bits physical word, 4 KB pages, and is four - way
set associative. It uses copy - back (allocate on write) and LRU replace-
ment. The processor creates 30 - bit (byte - addressed) virtual addresses that
are translated into 24 - bit (byte - addressed) real byte addresses (labeled
 A 0 − A 23 , from least to most signifi cant).
 (a) Which address bits are unaffected by translation (V = R)?
 (b) Which address bits are used to address the cache directories?
 (c) Which address bits are compared to entries in the cache directory?
 (d) Which address bits are appended to address bits in (b) to address the

cache array?

c04.indd 161c04.indd 161 5/4/2011 9:54:16 AM5/4/2011 9:54:16 AM

162 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 2. Show a layout of the cache in Problem 1. Present the details as in Figures
 4.5 – 4.7 .

 3. Plot traffi c (in bytes) as a function of line size for a DTMR cache (CBWA,
LRU) for
 (a) 4 KB cache,
 (b) 32 KB cache, and
 (c) 256 KB cache.

 4. Suppose we defi ne the miss rate at which a copy - back cache (CBWA)
and a write - through cache (WTNWA) have equal traffi c as the crossover
point.
 (a) For the DTMR cache, fi nd the crossover point (miss rate) for 16 B , 32 B ,

and 64 B lines. To what cache sizes do these correspond?
 (b) Plot line size against cache size for crossover.

 5. The cache in Problem 1 is now used with a 16 - byte line in a transaction
environment (Q = 20,000).
 (a) Compute the effective miss rate.
 (b) Approximately, what is the optimal cache size (the smallest cache size

that produces the lowest achievable miss rate)?

 6. In a two - level cache system, we have
 • L1 size 8 KB with four - way set associative, 16 - byte lines, and write -

 through (no allocate on writes); and
 • L2 size 64 - KB direct mapping, 64 - byte lines, and copy - back (with allo-

cate on writes).
 Suppose the miss in L1, hit in L2 delay is 3 cycles and the miss in L1, miss
in L2 delay is 10 cycles. The processor makes 1.5 refr/I.
 (a) What are the L1 and L2 miss rates?
 (b) What is the expected CPI loss due to cache misses?
 (c) Will all lines in L1 always reside in L2? Why?

 7. A certain processor has a two - level cache. L1 is 4 - KB direct - mapped,
WTNWA. The L2 is 8 - KB direct - mapped, CBWA. Both have 16 - byte lines
with LRU replacement.
 (a) Is it always true that L2 includes all lines at L1?
 (b) If the L2 is now 8 KB four - way set associative (CBWA), does L2

include all lines at L1?
 (c) If L1 is four - way set associative (CBWA) and L2 is direct - mapped,

does L2 include all lines of L1?

 8. Suppose we have the following parameters for an L1 cache with 4 KB and
an L2 cache with 64 KB.

c04.indd 162c04.indd 162 5/4/2011 9:54:16 AM5/4/2011 9:54:16 AM

PROBLEM SET 163

 The cache miss rate is

 4 KB 0.10 misses per reference
 64 KB 0.02 misses per reference
 1 refr/Instruction
 3 cycles L 1 miss, L 2 hit
 10 cycles Total time L 1 miss, L 2 miss

 What is the excess CPI due to cache misses?

 9. A certain processor produces a 32 - bit virtual address. Its address space is
segmented (each segment is 1 - MB maximum) and paged (512 - byte pages).
The physical word transferred to/from cache is 4 bytes.
 A TLB is to be used, organized set associative, 128 × 2. If the address bits
are labeled V 0 − V 31 for virtual address and R 0 − R 31 for real address, least to
most signifi cant,
 (a) Which bits are unaffected by translation (i.e., V i = R i)?
 (b) If the TLB is addressed by the low - order bits of the portion of the

address to be translated (i.e., no hashing), which bits are used to
address the TLB?

 (c) Which virtual bits are compared to virtual entries in the TLB to deter-
mine whether a TLB hit has occurred?

 (d) As a minimum, which real address bits does the TLB provide?

 10. For a 16 - KB integrated level 1 cache (direct mapped, 16 - byte lines) and a
128 - KB integrated level 2 cache (2 W set associative, 16 - byte lines), fi nd
the solo and local miss rate for the level 2 cache.

 11. A certain chip has an area suffi cient for a 16 - KB I - cache and a 16 - KB
D - cache, both direct mapped. The processor has a virtual address of 32 bits,
a real address of 26 bits, and uses 4 - KB pages. It makes 1.0 I - refr/I and
0.5 D - refr/I. The cache miss delay is 10 cycles plus 1 cycle for each 4 - byte
word transferred in a line. The processor is stalled until the entire line is
brought into the cache. The D - cache is CBWA; use dirty line ratio w = 0.5.
For both caches, the line size is 64 B. Find
 (a) The CPI lost due to I - misses and the CPI lost due to D - misses.
 (b) For the 64 - byte line, fi nd the number of I - and D - directory bits and

corresponding rbe (area) for both directories.

 12. Find two recent examples of DDR3 devices and for these devices, update
the entries of Tables 4.9 and 4.10 .

 13. List all the operations that must be performed after a “ not - in - TLB ” signal.
How would a designer minimize the not - in - TLB penalty?

c04.indd 163c04.indd 163 5/4/2011 9:54:16 AM5/4/2011 9:54:16 AM

164 MEMORY DESIGN: SYSTEM-ON-CHIP AND BOARD-BASED SYSTEMS

 14. In Example 4.2 , suppose we need a relative performance of 0.8. Would this
be achieved by interleaving at m = 8?

 15. Update the timing parameters for the NAND - based fl ash memory
described in Table 4.3 .

 16. Compare recent commercially available fl ash (NAND and NOR) with
recent eDRAM offerings.

c04.indd 164c04.indd 164 5/4/2011 9:54:16 AM5/4/2011 9:54:16 AM

 5 Interconnect

 5.1 INTRODUCTION

 SOC designs usually involve the integration of intellectual property (IP) cores,
each separately designed and verifi ed. System integrators can maximize the
reuse of design to reduce costs and to lower risks. Frequently the most impor-
tant issue confronting an SOC integrator is the method by which the IP cores
are connected together.

 SOC interconnect alternatives extend well beyond conventional computer
buses. We fi rst provide an overview of SOC interconnect architectures: bus
and network - on - chip (NOC). Bus architectures developed specifi cally for
SOC designs are described and compared. There are many switch - based alter-
natives to bus - based interconnects. We will not consider ad hoc or fully cus-
tomized switching interconnects that are not intended for use with a variety
of IP cores. Switch - based interconnects as used in SOC interconnects are
referred to as NOC technology.

 An NOC usually includes an interface level of abstraction, hiding the
underlying physical interconnects from the designer. We follow current SOC
usage and refer to interconnect as a bus or as an NOC implemented by a
switch. In the NOC the switch can be a crossbar, a directly linked interconnect,
or a multistage switching network.

 There is a great deal of bus and computer interconnect literature. The units
being connected are sometimes referred to as agents (in buses) or nodes (in
the general interconnect literature); we simply use the term units . Since current
SOC interconnects usually involve a modest number of units, the chapter
provides a simplifi ed view of the interconnect alternatives. A comprehensive
treatment of on - chip communication architectures is available elsewhere
 [193] . For a general discussion of computer interconnection networks, see any
of several standard texts [72, 78] .

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

165

c05.indd 165c05.indd 165 5/4/2011 9:54:26 AM5/4/2011 9:54:26 AM

166 INTERCONNECT

 5.2 OVERVIEW: INTERCONNECT ARCHITECTURES

 Figure 5.1 depicts a system that includes an SOC module. The SOC module
typically contains a number of IP blocks, one or more of which are processors.
In addition, there are various types of on - chip memory serving as cache, data,
or instruction storage. Other IP blocks serving application - specifi c functions,
such as graphics processors, video codecs, and network control units, are inte-
grated in the SOC.

 Figure 5.1 A simplifi ed block diagram of an SOC module in a system context.

Processor
On-chip
memory

IP block

IP block

On-chip
memoryProcessor

IP block

Off-chip
memory

Off-chip interconnect architecture

On-chip interconnect architecture

Bus
or

switch

I
C
U

I
C
U

I
C
U

I
C
U

I
C
U

I
C
U

I
C
U

I
C
U

Off-chip
peripheral

Off-chip
interface

Off-chip ASIC

 The IP blocks in the SOC module need to communicate with each other.
They do this through the interconnect, which is accessed through an intercon-
nect interface unit (ICU). The ICU enables a common interface protocol for
all SOC modules.

 External to the SOC module are off - chip memories, off - chip peripheral
devices, and mass storage devices. The cost and performance of the system,
therefore, depends on both on - chip and off - chip interconnect structures.

 Choosing a suitable interconnect architecture requires the understanding
of a number of system level issues and specifi cations. These are:

 1. Communication Bandwidth. The rate of information transfer between a
module and the surrounding environment in which it operates. Usually
measured in bytes per second, the bandwidth requirement of a module
dictates to a large extent the type of interconnection required in order
to achieve the overall system throughput specifi cation.

c05.indd 166c05.indd 166 5/4/2011 9:54:26 AM5/4/2011 9:54:26 AM

OVERVIEW: INTERCONNECT ARCHITECTURES 167

 2. Communication Latency. The time delay between a module requesting
data and receiving a response to the request. Latency may or may not
be important in terms of overall system performance. For example, long
latency in a video streaming application usually has little or no effect on
the user ’ s experience. Watching a movie that is a couple of seconds later
than when it is actually broadcast is of no consequence. In contrast, even
small, unanticipated latencies in a two - way mobile communication pro-
tocol can make it almost impossible to carry out a conversation.

 3. Master and Slave. These terms concern whether a unit can initiate or
react to communication requests. A master, such as a processor, controls
transactions between itself and other modules. A slave, such as memory,
responds to requests from the master. An SOC design typically has
several masters and numerous slaves.

 WHAT IS AN NOC ?

 As SOC terminology has evolved there seems to be only two intercon-
nect strategies: the bus or the NOC. So what exactly is the NOC?
Professor Nurmi (in a presentation reported by Leibson [156]) summa-
rized the NOC characteristics:

 1. The NOC is more than a single, shared bus.
 2. The NOC provides point - to - point connections between any two

hosts attached to the network either by crossbar switches or through
node - based switches.

 3. The NOC provides high aggregate bandwidth through parallel links.
 4. In the NOC, communication is separate from computation.
 5. The NOC uses a layered approach to communications, although

with few network layers due to complexity and expense.
 6. NOCs support pipelining and provide intermediate data buffering

between sender and receiver.

 In the context of the SOC when the designer fi nds that bus technology
provides insuffi cient bandwidth or connectivity, the obvious alternative
is some sort of switch. Any well - designed switched interconnect will
clearly satisfy points 2, 3, 4, and 6. Point 5 is not satisfi ed by ad hoc switch-
ing interconnects, where the processor nodes and switching intercon-
nect are interfaced by common, specialized design. But in the SOC,
incorporating various vendor IPs ad hoc interconnects is almost never
the case. The designer selects a common communications interface
(layer) separate from the processor node.

c05.indd 167c05.indd 167 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

168 INTERCONNECT

 4. Concurrency Requirement. The number of independent simultaneous
communication channels operating in parallel. Usually, additional chan-
nels improve system bandwidth.

 5. Packet or Bus Transaction. The size and defi nition of the information
transmitted in a single transaction. For a bus, this consists of an address
with control bits (read/write, etc.) and data. The same information in an
NOC is referred to as a packet . The packet consists of a header (address
and control) and data (sometimes called the payload).

 6. ICU. In an interconnect, this unit manages the interconnect protocol and
the physical transaction. It can be simple or complex, including out - of -
 order transaction buffering and management. If the IP core requires a
protocol translation to access the bus, the unit is called a bus wrapper .
In an NOC, this unit manages the protocol for transport of a packet from
the IP core to the switching network. It provides packet buffering and
out - of - order transaction transmission.

 7. Multiple Clock Domains. Different IP modules may operate at different
clock and data rates. For example, a video camera captures pixel data at
a rate governed by the video standard used, while a processor ’ s clock
rate is usually determined by the technology and architectural design. As
a result, IP blocks inside an SOC often need to operate at different clock
frequencies, creating separate timing regions known as clock domains.
Crossing between clock domains can cause deadlock and synchroniza-
tion problems without careful design.

 Given a set of communication specifi cations, a designer can explore the dif-
ferent bandwidth, latency, concurrency, and clock domain requirements of
different interconnect architectures, such as bus and NOC. Some examples of
these are given in Table 5.1 . Other examples include the Avalon Bus for Altera
fi eld - programmable gate arrays (FPGAs) [10] , the Wishbone Interconnect for
use in open - source cores and platforms [189] , and the AXI4 - Stream interface
protocol for FPGA implementation [74] .

 Designing the interconnect architecture for an SOC requires careful con-
sideration of many requirements, such as those listed above. The rest of this
chapter provides an introduction to two interconnect architectures: the bus
and the NOC.

 5.3 BUS: BASIC ARCHITECTURE

 The performance of a computer system is heavily dependent on the charac-
teristics of its interconnect architecture. A poorly designed system bus can
throttle the transfer of instructions and data between memory and proces-
sor, or between peripheral devices and memory. This communication bottle-
neck is the focus of attention among many microprocessor and system

c05.indd 168c05.indd 168 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

 TA
B

L
E

 5
.1

 E

xa
m

pl
es

 o
f

In
te

rc
on

ne
ct

 A
rc

hi
te

ct
ur

es
 [

16
7]

 Te
ch

no
lo

gy

 A
M

B
A

 A

X
I

(A
M

B
A

 3
)

 C
or

eC
on

ne
ct

 Sm

ar
t

In
te

rc
on

ne
ct

 I
P

 N

ex
us

 C

om
pa

ny

 A
R

M

 A
R

M

 IB
M

 So

ni
cs

 F

ul
cr

um

 C
or

e
ty

pe

 So
ft

/h
ar

d
 So

ft
/h

ar
d

 So
ft

 So

ft

 H
ar

d
 A

rc
hi

te
ct

ur
e

 B
us

 U

ni
di

re
ct

io
na

l c
ha

nn
el

s
 B

us

 B
us

 N

O
C

 u
si

ng
 d

ir
ec

t
sw

it
ch

 B

us
 w

id
th

 8 –

 10
24

 8 –

 10
24

 32

/6
4/

12
8

 16

 8 –
 12

8
 Fr

eq
ue

nc
y

 20
0

 M
H

z
 40

0
 M

H
z *

 10

0 –
 40

0
 M

H
z

 30
0

 M
H

z
 1

 G
H

z
 M

ax
im

um
 B

W
 (

G
B

/s
)

 3
 6.

4 *

 2.
5 –

 24

 4.
8

 72

 M
in

im
um

 la
te

nc
y

(n
s)

 5

 2.
5 *

 15

 n/

a
 2

 * A
s

im
pl

em
en

te
d

in
 t

he
 A

R
M

 P
L

33
0

hi
gh

 - s
pe

ed
 c

on
tr

ol
le

r.

 B
W

, b
an

dw
id

th
.

169

c05.indd 169c05.indd 169 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

170 INTERCONNECT

manufacturers who, over the last three decades, have adopted a number of bus
standards. These include the popular VME bus and the Intel Multibus - II. For
systems on a board and personal computers, the evolution includes the instruc-
tion set architecture (ISA) bus, the EISA bus, and the now prevalent PCI and
PCI Express buses. All these bus standards are designed to connect together
integrated circuits (ICs) on a printed circuit board (PCB) or PCBs in a system -
 on - board implementation.

 While these bus standards have served the computing community well, they
are not particularly suited for SOC technology. For example, all such system -
 level buses are designed to drive a backplane, either in a rack - mounted system
or on a computer motherboard. This imposes numerous constraints on the bus
architecture. For a start, the number of signals available is generally restricted
by the limited pin count on an IC package or the number of pins on the PCB
connector. Adding an extra pin on a package or a connector is expensive.
Furthermore, the speed at which the bus can operate is often limited by the
high capacitive load on each bus signal, the resistance of the contacts on the
connector, and the electromagnetic noise produced by such fast - switching
signals traveling down a PCB track. Finally, drivers for on - chip buses can be
much smaller, saving area and power.

 Before describing bus operations and bus structures in detail, we provide,
in Table 5.2 , a comparison of two different bus interconnect architectures,
showing size and speed estimates for a typical bus slave.

 5.3.1 Arbitration and Protocols

 Conceptually, the bus is just wires shared by multiple units. In practice, some
logic must be present to provide an orderly use of the bus; otherwise, two units
may send signals at the same time, causing confl icts. When a unit has exclusive
use of the bus, the unit is said to own the bus. Units can be either potentially
master units that can request ownership or slave units that are passive and
only respond to requests. A bus master is the unit that initiates communication
on a computer bus or input/output (I/O) paths. In an SOC, a bus master is a
component within the chip, such as a processor. Other units connected to an
on - chip bus, such as I/O devices and memory components, are the “ slaves. ”
The bus master controls the bus paths using specifi c slave addresses and
control signals. Moreover, the bus master also controls the fl ow of data signals
directly between the master and the slaves.

 TABLE 5.2 Comparison of Bus Interconnect Architectures [198]

 Standard Speed (MHz) Area (rbe *)

 AMBA(implementation dependent) 166 – 400 175,000
 CoreConnect 66/133/183 160,000

 * rbe = register bit equivalent; estimates are approximate and vary by implementation.

c05.indd 170c05.indd 170 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

BUS: BASIC ARCHITECTURE 171

 A process called arbitration determines ownership. A simple implementa-
tion has a centralized arbitration unit with an input from each potential
requesting unit. The arbitration unit then grants bus ownership to one request-
ing unit, as determined by the bus protocol.

 A bus protocol is an agreed set of rules for transmitting information between
two or more devices over a bus. The protocol determines the following:

 • the type and order of data being sent;
 • how the sending device indicates that it has fi nished sending the

information;
 • the data compression method used, if any;
 • how the receiving device acknowledges successful reception of the infor-

mation; and
 • how arbitration is performed to resolve contention on the bus and in

what priority, and the type of error checking to be used.

 5.3.2 Bus Bridge

 A bus bridge is a module that connects together two buses, which are not
necessarily of the same type. A typical bridge can serve three functions:

 1. If the two buses use different protocols, a bus bridge provides the neces-
sary format and standard conversion.

 2. A bridge is inserted between two buses to segment them and keep traffi c
contained within the segments. This improves concurrency: both buses
can operate at the same time.

 3. A bridge often contains memory buffers and the associated control cir-
cuits that allow write posting. When a master on one bus initiates a data
transfer to a slave module on another bus through the bridge, the data
is temporarily stored in the buffer, allowing the master to proceed to the
next transaction before the data are actually written to the slave. By
allowing transactions to complete quickly, a bus bridge can signifi cantly
improve system performance.

 5.3.3 Physical Bus Structure

 The nature of the bus transaction depends on the physical bus structure
(number of wire paths, cycle time, etc.) and the protocol (especially the arbi-
tration support). Multiple bus users must be arbitrated for access to the bus
in any given cycle. Thus, arbitration is part of the bus transaction. Simple arbi-
ters have a request cycle wherein signals from the users are prioritized, fol-
lowed by the acknowledge cycle selecting the user. More complex arbiters add
bus control lines and associated logic so that each user is aware of pending
bus status and priority. In such designs no cycles are added to the bus transac-
tion for arbitration.

c05.indd 171c05.indd 171 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

172 INTERCONNECT

 E XAMPLE 5.1 B US E XAMPLES

 There are many possible bus designs with varying combinations of physical
bus widths and arbitration protocols. The examples below consider some
obvious possibilities. Suppose the bus has a transmission delay of one proces-
sor cycle, and the memory (or shared cache) has a four - cycle access delay after
an initial address and requires an additional cycle for each sequential data
access. The memory is accessed 4 bytes at a time. The data to be transmitted
consist of a 16 - byte cache line. Address requests are 4 bytes.

 In these examples, T access is the time required to access the fi rst word from
memory after the address is issued, and line access is the time required to
access the remaining words. Also, the last byte of data arrives at the end of
the timing template and can be used only after that point.

 (a) Simple Bus. This is a single transaction bus with simple request/
acknowledge (ack) arbitration. It has a physical width of 4 bytes. The
request and ack signals are separate signals but assumed to be part of
the bus transaction, so the bus transaction latency is 11 cycles. The fi rst
word is sent from memory at the last cycle of T access , while the fourth
(and last) word is sent from memory at the last cycle of line access. The
fi nal bus cycle is to reset the arbiter.

re
qu

es
t

Taccess line accessac
k

ad
dr

es
s

bu
s

de
la

y

 (b) Bus with Arbitration Support. This bus has a more sophisticated arbiter
but still has a 4 - byte physical width and integrates address and data.
There is an additional access cycle (fi ve cycles instead of four) to rep-
resent the time to move the address from the bus receiver to the
memory. This is not shown in case (a), as simple buses are usually slower
with immediate coupling to memory. Now the initial cycles for request
and ack are overlapped with bus processing, and the fi nal cycle for
resetting the arbiter is not shown in the fi gure for case (b), so the bus
transaction now takes 10 cycles.

 5.3.4 Bus Varieties

 Buses may be unifi ed or split (address and data). In the unifi ed bus the address
is initially transmitted in a bus cycle followed by one or more data cycles; the
split bus has separate buses for each of these functions.

 Also, the buses may be single transaction or tenured . Tenured buses are
occupied by a transaction only during associated addresses or data cycles. Such
buses have unit receivers that buffer the messages and create separate address
and data transactions.

c05.indd 172c05.indd 172 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

SOC STANDARD BUSES 173

 Taccess line accessad
dr

es
s

 (c) Tenured Split Bus, 4 Bytes Wide. The assumption is that the requested
line is fetched into a buffer for fi ve cycles and then transmitted in
four cycles. While the transaction latency, including the cycle for the
address, is no different from that in case (b) at 10 cycles, the transac-
tion occupies the bus for less than half (four cycles) of that time. The
address bus is used for only one cycle out of 10. The remaining time is
available for other unrelated transactions to improve communication
performance.

5 cycles Bus transit<

addr

<< <

bus
Address

Data bus

 (d) Tenured Split Bus, 16 Bytes Wide, with a One - Cycle Bus Transaction
Time. As with case (c), the transaction latency is unaffected at 10 cycles.
Since the memory clearly limits the system, in this case the memory
fetches the entire 16 - byte cache line before transmitting it in a single
cycle. Both address and data buses are used for only one cycle per
transaction. Note that the fi gure for case (d) allows an additional cycle
to reaccess the bus, although this might not be needed and is not
accounted for in case (c).

Address

9 cycles< <

bus

Data bus

 Cases (c) and (d) are interesting, since the bus bandwidth exceeds the memory
bandwidth; for instance, in case (d), the memory is busy for seven cycles
(four cycles to access the fi rst word and three cycles to assess the remaining
words) but the bus is busy for only one cycle. In both of these cases, the “ bus ” –
 memory situation is memory limited since that is where the contention will
develop.

 5.4 SOC STANDARD BUSES

 Two commonly used SOC bus standards are the Advanced Microcontroller
Bus Architecture (AMBA) bus developed by ARM and the CoreConnect bus
developed by IBM. The latter has been adopted in Xilinx ’ s Virtex platform
FPGA families.

c05.indd 173c05.indd 173 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

174 INTERCONNECT

 5.4.1 AMBA

 The AMBA, introduced in 1997, had its origin from the ARM processor, which
is one of the most successful SOC processors used in the industry. The AMBA
bus is based on traditional bus architecture employing two levels of hierarchy.
Two buses are defi ned in the AMBA specifi cation [22] :

 • The Advanced High - Performance Bus (AHB) is designed to connect
embedded processors, such as an ARM processor core, to high -
 performance peripherals, direct memory access (DMA) controllers,
on - chip memory, and interfaces. It is a high - speed, high - bandwidth bus
architecture that uses separate address, read, and write buses. A minimum
of 32 - bit data operation is recommended in the standard and data widths
are extendable to 1024 bits. Concurrent multiple master/slave operations
are supported. It also supports burst mode data transfers and split trans-
actions. All transactions on the AHB bus are referenced to a single clock
edge, making system - level design easy to understand.

 • The Advanced Peripheral Bus (APB) has a lower performance than the
AHB bus, but is optimized for minimal power consumption and has
reduced interface complexity. It is designed for interfacing to slower
peripheral modules.

 A third bus, the Advanced System Bus (ASB), is an earlier incarnation of the
AHB, designed for lower performance systems using 16/32 - bit microcon-
trollers. It is used where cost, performance, and complexity of the AHB is not
justifi ed.

 The AMBA bus was designed to address a number of issues exposed by
users of the ARM processor bus in SOC integration. The goals achieved by its
design are [95] :

 1. Modular Design and Design Reuse. Since the ARM processor bus inter-
face is extremely fl exible, inexperienced designers could inadvertently
create ineffi cient or even unworkable designs by using ad hoc bus and
control logic. The AMBA specifi cation encourages a modular design
methodology that supports better design partitioning and design reuse.

 2. Well - Defi ned Interface Protocol, Clocking, and Reset. AMBA specifi es a
low - overhead bus interface and clocking structure that is simple yet fl ex-
ible. The performance of the AMBA bus is enhanced by its multimaster,
split transaction, and burst mode operations.

 3. Low - Power Support. One of the attractions of the ARM processor when
compared with other embedded processor cores is its power effi ciency.
The two - level partitioning of the AMBA buses ensures energy - effi cient
designs in the peripheral modules, which fi ts well with the low - power
CPU core.

c05.indd 174c05.indd 174 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

SOC STANDARD BUSES 175

 4. On - Chip Test Access. AMBA has an optional on - chip test access meth-
odology that reuses the basic bus infrastructure for testing modules that
are connected to the bus.

 The AHB Figure 5.2 depicts a typical system using the AMBA bus architec-
ture. The AHB forms the system backbone bus on which the ARM processor,
the high - bandwidth memory interface and random - access memory (RAM),
and the DMA devices reside. The interface between the AHB bus and the
slower APB bus is through a bus bridge module.

 The AMBA AHB bus protocol is designed to implement a multimaster
system. Unlike most bus architectures designed for PCB - based systems, the
AMBA AHB bus avoids tristate implementation by employing a central mul-
tiplexer interconnect scheme. This method of interconnect provides higher
performance and lower power than using tristate buffers. All bus masters
assert the address and control signals, indicating the type of transfer each
master requires. A central arbiter determines which master has its address and
control signal routed to all the slaves. A central decoder circuit selects the
appropriate read data and response acknowledge signal from the slave that is
involved in the transaction. Figure 5.3 depicts such a multiplexer interconnect
scheme for a system with three masters and four slaves.

 Transactions on the AHB bus involve the following steps:

 • Bus Master Obtains Access to the Bus. This process begins with the
master asserting a request signal to the arbiter. If more than one master
simultaneously requests the control of the bus, the arbiter determines
which of the requesting masters will be granted the use of the bus.

 • Bus Master Initiates Transfer. A granted bus master drives the address
and control signals with the address, direction, and width of the transfer.
It also indicates whether the transaction is part of a burst in the case of
burst mode operation. A write data bus operation moves data from the
master to a slave, while a read data bus operation moves data from a
slave to the master.

 Figure 5.2 A typical AMBA bus - based system [95] .

CPU On-chip RAM

AHB APB

DMA master

I/O

UART

B
R
I
D
G
E

Off-chip
DRAM

c05.indd 175c05.indd 175 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

176 INTERCONNECT

 • Bus Slave Provides a Response. A slave signals to the master the status
of the transfer such as whether it was successful, if it needs to be delayed,
or that an error occurred.

 Figure 5.4 a depicts a basic AHB transfer cycle. An AHB transfer consists of
two distinct phases: the address phase and the data phase. The master asserts
the address (ADDR) and control signals on the rising edge of the clock (CLK)
during the address phase, which always lasts for a single cycle. The slave then
samples the address and control signals and responds accordingly during the
data phase to a data read (RDATA) or write (WDATA) operation, and indi-
cates its completion with the READY signal. A slave may insert wait states
into any transfer by delaying the assertion of READY as shown in Figure 5.4 b.
For a write operation, the bus master holds the data stable throughout the
extended data cycles. For a read transfer the slave does not provide valid data
until the last cycle of the data phase.

 The AHB bus is a pipelined (tenured) bus. Therefore, the address phase of
any transfer can occur during the data phase of a previous transfer. This over-
lapping pipeline feature allows for high - performance operation.

 The APB The APB is optimized for minimal power and low complexity
instead of performance. It is used to interface to peripherals, which are low
bandwidth.

 Figure 5.3 Multiplexor (MUX) interconnection for a three masters/four slaves
system [22] .

Arbiter
Slave units

1

Data write

Data
read
from

Slaves

From decoder

2

3

Master units

M
U
X

M
U
X

M
U
X

S1
S1

S2

S3

S4

S2

S3

S4
S1

S2

S3

S4

Addresses

c05.indd 176c05.indd 176 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

SOC STANDARD BUSES 177

 The operation of the APB is straightforward and can be described by a state
diagram with three states. The APB either stays in the Idle state, or loops
around the Setup state and the Enable state during data transfer.

 5.4.2 Core C onnect

 As in the case of AMBA bus, IBM ’ s CoreConnect Bus is an SOC bus standard
designed around a specifi c processor core, the PowerPC, but it is also adaptable
to other processors. The CoreConnect Bus and the AMBA bus share many
common features. Both have a bus hierarchy to support different levels of bus
performance and complexity. Both have advanced bus features such as mul-
tiple master, separate read/write ports, pipelining, split transaction, burst mode
transfer, and extendable bus width.

 The CoreConnect architecture provides three buses for interconnecting
cores, library macros, and custom logic:

 • processor local bus (PLB),
 • on - chip peripheral bus (OPB),
 • device control register (DCR) bus.

 Figure 5.5 illustrates how the CoreConnect architecture can be used in an SOC
system built around a PowerPC. High - performance, high - bandwidth blocks
such as the PowerPC 440 CPU core, the PCI - X bus bridge, and the PC133/
DDR133 (DDR1 with a 133 MHz bus) synchronous dynamic RAM (SDRAM)
Controller are connected together using the PLB, while the OPB hosts
lower data rate on - chip peripherals. The daisy - chained DCR bus provides a

 Figure 5.4 A simple AHB transfer [22] . (a) No wait states in transfer; (b) with wait
states during transfer.

Address
cycle

Data cycle Address
cycle

Data cycles

CLK

(a) (b)

ADDR

Control

WDATA

READY

RDATA RDATA

READY

WDATA

Control

ADDR

CLK

c05.indd 177c05.indd 177 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

178 INTERCONNECT

relatively low - speed datapath for passing confi guration and status information
between the PowerPC 440 CPU core and other on - chip modules.

 The PLB The PLB is used for high - bandwidth, high - performance, and low -
 latency interconnections between the processors, memory, and DMA control-
lers [123] . It is a fully synchronous, split transaction bus with separate address,
read, and write data buses, allowing two simultaneous transfers per clock cycle.
All masters have their own Address, Read Data, Write Data, and control
signals called transfer qualifi er signals. Bus slaves also have Address, Read
Data, and Write Data buses, but these buses are shared.

 PLB transactions, as in the AMBA AHB, consist of multiple phases that
may last for one or more clock cycles, and involve the address and data buses
separately. Transactions involving the address bus have three phases: request
(RQ), transfer (XFER), and address acknowledge (ACK). A PLB transaction
begins when a master drives its address and transfer qualifi er signals and
requests ownership of the bus during the request phase of the address tenure.
Once the PLB arbiter grants bus ownership, the master ’ s address and transfer
qualifi ers are presented to the slave devices during the transfer phase. The
address cycle terminates when a slave latches the master ’ s address and transfer
qualifi ers during the address acknowledge phase.

 Figure 5.6 illustrates two deep read and write address pipelining along with
concurrent read and write data tenures. Master A and Master B represent the

 Figure 5.5 A CoreConnect - based SOC [123] .

CPU On-chip RAM

SDRAM

DMA master

I/O

UART

PLB (128 bits) OPB
(32 bits)

B
R
I
D
G
E

 Figure 5.6 PLB transfer protocol [123] .

 REQ/XFER/ACK

 REQ/XFER/ACKRQ/XFER/ACK

 XFER/ACK XFER/ACK XFER/ACK XFER/ACK

 XFER/ACK/ XFER/ACK

 XFER/ACK/ XFER/ACK

 XFER/ACK/ XFER/ACK

 XFER/ACK/ XFER/ACK

PLB CLOCK

MASTER A

MASTER B

ADDRESS

WRITE DATA

READ DATA

c05.indd 178c05.indd 178 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

SOC STANDARD BUSES 179

state of each master ’ s address and transfer qualifi ers. The PLB arbitrates
between these requests and passes the selected master ’ s request to the PLB
slave address bus. The trace labeled Address Phase shows the state of the PLB
slave address bus during each PLB clock.

 Each data beat in the data tenure has two phases: transfer and acknowledge.
During the transfer phase the master drives the write data bus for a write
transfer or samples the read data bus for a read transfer. As shown in Figure
 5.6 , the fi rst (or only) data beat of a write transfer coincides with the address
transfer phase.

 Split Transaction The PLB address, read data, and write data buses are
decoupled, allowing for address cycles to be overlapped with read or write
data cycles, and for read data cycles to be overlapped with write data cycles.
The PLB split bus transaction capability allows the address and data buses to
have different masters at the same time. Additionally, a second master may
request ownership of the PLB, via address pipelining, in parallel with the data
cycle of another master ’ s bus transfer. This situation is illustrated in Figure 5.6 ,
with the dependence of various signals indicated by arrows.

 The OPB The OPB is a secondary bus designed to alleviate system perfor-
mance bottlenecks by reducing capacitive loading on the PLB [126] . Peripherals
suitable for attachment to the OPB include serial ports, parallel ports, UARTs,
GPIO (general purpose I/O), timers, and other low - bandwidth devices. The
OPB is more sophisticated than the AMBA APB. It supports multiple masters
and slaves by implementing the address and data buses as a distributed mul-
tiplexer. This type of structure is suitable for the less data - intensive OPB bus
and allows peripherals to be added to a custom core logic design without
changing the I/O on either the OPB arbiter or existing peripherals. Figure
 5.7 shows one method of structuring the OPB address and data buses. Both
masters and slaves provide enable control signals for their outbound buses.
By requiring that each unit provide this signal, the associated bus combining
logic can be strategically placed throughout the chip. As shown in the fi gure,
either of the masters is capable of providing an address to the slaves, whereas
both masters and slaves are capable of driving and receiving the distributed
data bus.

 Table 5.3 shows a comparison between the AMBA and CoreConnect bus
standards.

 5.4.3 Bus Interface Units: Bus Sockets and Bus Wrappers

 Using a standard SOC bus for the integration of different reusable IP blocks
has one major drawback. Since standard buses specify protocols over wired
connections, an IP block that complies with one bus standard cannot be
reused with another block using a different bus standard. One approach to
alleviate this is to employ a hardware “ socket, ” which is an example of a
bus wrapper in Section 5.2 , to separate the interconnect logic from the IP

c05.indd 179c05.indd 179 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

180 INTERCONNECT

core using a well - defi ned IP core protocol that is independent of the physi-
cal bus protocol. Core - to - core communication is therefore handled by the
interface wrapper. This approach is taken by the Virtual Socket Interface
Alliance (VSIA) [44] with their virtual component interface (VCI) [249] , and
by Sonics Inc. employing the Open Core Protocol (OCP) and Silicon Backplane
 μ Network [225] .

 Figure 5.7 The on - chip peripheral bus (OPB) [126] .

Arbiter

1

Data write

Data
read
from
S1–S4

2

Master units

Slave units

OR

OR

OR

Addresses

S1
S1

S2

S3

S4

S2

S3

S4
S1

S2

S3

S4

 TABLE 5.3 Comparison between CoreConnect and AMBA Architectures [198]

 IBM CoreConnect PLB
 ARM AMBA 2.0 AMBA

High - Performance Bus

 Bus architecture 32, 64, and 128 bits,
extendable to 256 bits

 32, 64, and 128 bits

 Data buses Separate read and write Separate read and write
 Key capabilities Multiple bus masters Multiple bus masters

 Four - deep read pipelining,
two - deep write pipelining

 Pipelining

 Split transactions Split transactions
 Burst transfers Burst transfers
 Line transfers Line transfers

 OPB AMBA APB
 Masters supported Supports multiple masters Single master: The APB bridge
 Bridge function Master on PLB or OPB APB master only
 Data buses Separate read and write Separate or three - state

c05.indd 180c05.indd 180 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

SOC STANDARD BUSES 181

 VSIA proposes a set of standards and interfaces known as virtual socket
interface (VSI) that enables system - level interaction on a chip using prede-
signed blocks (called virtual components [VCs]) [249] . This encourages designs
using a component paradigm. The VCs, which are effectively IP blocks that
conform to the VSI specifi cations, can be one of three varieties. Hard VCs
consist of placed and routed gates with all silicon layers defi ned. It has predict-
able performance, area usage, and power consumption, but offers no fl exibility.
 Soft VCs are designed in some hardware description language representation,
which are mapped to physical design through synthesis, placement, and routing.
They can be easily modifi ed but generally take more effort to integrate and
verify in the SOC design as well as having less predictable performance.
Finally, fi rm VCs offer a compromise between the two. They come in the form
of generators or partially placed library blocks that require fi nal routing and/
or placement adjustment. This form of VCs provides more predictable perfor-
mance than soft VCs, but still offers some degree of fl exibility in aspect ratio
and confi guration.

 In order to connect these different VCs together, VSIA has developed a
VCI specifi cation to which other proprietary buses can interface. By following
the VCI specifi cation, a designer can take a VC and integrate it with any of
several buses in order to meet system performance requirements. The VCI
standard specifi es a family of protocols. Currently three protocols are defi ned:
the peripheral VCI (PVCI), the basic VCI (BVCI), and the advanced VCI
(AVCI) [249] . The PVCI is a low - performance protocol where the request and
the response data transfer occur during a single control handshake transaction.
It is therefore not a split - transaction protocol. The BVCI employs a split -
 transaction protocol, but responses must arrive in order. In other words, the
response data must be supplied in the same order in which the initiator gener-
ated the requests. The AVCI is similar to the BVCI, but out - of - order transac-
tions are allowed. Requests are tagged and transactions can be interleaved
and reordered.

 In addition to the specifi cation of the VCI, VSIA also specifi es a number
of abstraction layers to defi ne the representation views required to integrate
a VC into an SOC design [44] . The idea is that if both the IP block provider
(VC provider) and the system integrator (VC integrator) conform to the VSI
specifi cations at all levels of abstraction, SOC designs using an IP component
paradigm can proceed with lower risk of errors.

 An alternative to VCI is the OCP promoted by the Open Core Protocol
International Partnership (OCP - IP) [188] . The OCP defi nes a point - to - point
interface between two communicating entities such as two IP cores using a
core - centric protocol. An interface implementing the OCP assumes the attri-
butes of a socket , which, as explained earlier, is effectively a bus wrapper that
allows interfacing to the target bus. A system consisting of three IP core
modules using the OCP and bus wrappers is shown in Figure 5.8 . One module
is a system initiator, one is a system target, and another is both initiator and
target.

c05.indd 181c05.indd 181 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

182 INTERCONNECT

 Another layer of interconnection can be made above the OCP in order
to help IP integration further. Sonics Inc. proposes their proprietary
SiliconBackplane Protocol that seamlessly glues together IP blocks that uses
the OCP. The communication between different blocks takes place over the
Silicon Backplane μ Network, which has a scalable bandwidth of 50 – 4000 MB/s.
Figure 5.9 depicts how the Sonics μ Network components are connected
together [225] .

 Bus interface units using the wrapper - based approach have been demon-
strated to reduce the design time of SOC, but at a cost in terms of gates and
latency. Attaching simple wrapper hardware increases the access latencies and
incurs a hardware overhead of 3 – 5 K gates [160] .

 In addition, bus interface units can include fi rst - in – fi rst - out (FIFO) buffers
to improve performance. Figure 5.10 shows the amount of hardware overhead

 Figure 5.8 A three - core system using OCP and bus wrappers [225] .

System initator (master)

IP IP IP

Slave module Master module

Bus initator (master)

Bus wrapper interface module

Both Bus target

On-chip bus

Master Master Slave Slave

OCP

Either initator or target Target (slave)

 Figure 5.9 Sonics μ Network confi guration [225] . DSP, digital signal processor.

DSP CPU IP IP

AgentAgent

Agent Agent

Memory I/O I/O

OCP

Silicon backplane

c05.indd 182c05.indd 182 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

ANALYTIC BUS MODELS 183

incurred and performance improvement achieved by employing write data
buffers in a bus interface unit [9] .

 The write buffer provides several cycles improvement in latency and,
depending on the data size, more than 10% improvement in throughput.

 5.5 ANALYTIC BUS MODELS

 5.5.1 Contention and Shared Bus

 Contention occurs wherever two or more units request a shared resource that
cannot supply both at the same time. When contention occurs, either (1) it

 Figure 5.10 (a) Hardware overhead of write buffers; (b) performance impact of buffer
for burst mode transfer [9] .

0

10

20

30

40

50

60

8 16 32 64 128

Throughput
Improvement

Write Latency

Hardware (Gates)

Buffer Size (Bytes)

Buffer Size (Bytes)

W
ra

p
p

er
 H

ar
d

w
ar

e
(G

at
es

)
P

er
ce

n
t

Im
p

ro
ve

m
en

t
w

it
h

 B
u

rs
t

M
o

d
e

0

2000

4000

6000

8000

10,000

12,000

14,000

0 8 16 32 64 128

Hardware (Gates)

(a)

(b)

c05.indd 183c05.indd 183 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

184 INTERCONNECT

delays its request and is idle until the resource is available or (2) it queues its
request in a buffer and proceeds until the resource is available. Case (2) is
only possible when the requested item is not logically essential to program
execution (as in a cache prefetch, for example).

 Whether we need to analyze the bus as a source of contention depends on
its maximum (or offered) bandwidth relative to the memory bandwidth. As
contention and queues develop at the “ bottleneck ” in the system, the most
limiting resource is the source of the contention, and other parts of the system
simply act as delay elements. Thus buses must be analyzed for contention when
they are more restrictive (have less available bandwidth) than memory.

 Buses often have no buffering (queues), and access delays cause immediate
system slowdown. The analysis on the effects of bus congestion depends on
the access type and buffering.

 Generally there are two types of access patterns:

 1. Requests without Immediate Resubmissions. The denied request returns
with the same arrival distribution as the original request. Once a request
is denied, processing continues despite the delay in the resubmission of
the request. This is the case of a cache line prefetch, which is not currently
required for continued program execution.

 2. Requests Are Immediately Resubmitted. This is a more typical case, when
multiple independent processors access a common bus. A program
cannot proceed after a denied request. It is immediately resubmitted. The
processor is idle until the request is honored and serviced.

 5.5.2 Simple Bus Model: Without Resubmission

 In the following, we assume that each request occupies the bus for the same
service time (e.g., T line access). Even if we have two different types of bus users
(e.g., word requests and line requests on a single line or [dirty] double line
requests), most cases are reasonably approximated by simple computation of
the per - processor average (offered) bus occupancy, ρ , given by:

 ρ =
+

bus transaction time
processor time bus transaction time

.

 The processor time is the mean time the processor needs to compute before
making a bus request. Of course, it is possible for the processor to overlap
some of its compute time with the bus time. In this case, the processor time is
the net nonoverlapped time between bus requests. In any event, ρ ≤ 1.

 The simplest model for n processors accessing a bus is given by:

 Prob processor does not access bus() = −1 ρ

c05.indd 184c05.indd 184 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

ANALYTIC BUS MODELS 185

Prob bus is busy

fraction of bus bandwidth realize

() ()= −
=

1 ρ n

dd = B n(,).ρ

 The fraction of bandwidth realized times the maximum bus bandwidth gives
the realized (or achieved) bus bandwidth, Bw .

 The achieved bandwidth fraction (achieved occupancy) per processor (ρ a)
is given by:

n B n

B n
n

a

a

ρ ρ

ρ ρ
= ()

= ()
,

, .

 A processor slows down by ρ a / ρ due to bus congestion.

 5.5.3 Bus Model with Request Resubmission

 A model that supports request resubmission involves a more complex analysis
and requires an iterative solution. There are several solutions, each providing
similar results. The solution provided by Hwang and Briggs [122] is an iterative
pair of equations:

 a
a

=
+ () −()

ρ
ρ ρ ρ ρ1

and

 n aa
nρ = − −()1 1 ,

where a is the actual offered request rate. To fi nd a fi nal ρ a , initially set a = ρ
to begin the iteration. Convergence usually occurs within four iterations.

 5.5.4 Using the Bus Model: Computing the Offered Occupancy

 The model in the preceding section does not distinguish among types of trans-
actions. It just requires the mean bus transaction time, which is the average
number of cycles that the bus is busy managing a transaction. Then the issue
is fi nding the offered occupancy, ρ .

 The offered occupancy is the fraction of the time that the bus would be
busy if there were no contention among transactions (bounded by 0.0 and 1.0).
In order to fi nd this, we need to determine the mean time for a bus transaction
and the compute time between transactions.

 The nature of the processor initiating the transaction is another factor.
Simple processors make blocking transactions. In this case the processor is idle
after the bus request is made and resumes computation only after the bus
transaction is complete. The alternative for more complex processors is a

c05.indd 185c05.indd 185 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

186 INTERCONNECT

 buffered (or nonblocking) transaction. In this case the processor continues
processing after making a request, and may indeed make several requests
before completion of an initial request. Depending on the system confi gura-
tion, there are two common cases:

 1. A Single Bus Master with Blocking Transactions. In this case there is no
bus contention as the processor waits for the transaction to complete.
Here the achieved occupancy, ρ a , is the same as the offered occupancy,
and ρ = ρ a = (bus transaction time)/(compute time + bus transaction
time).

 2. Multiple (n) Bus Masters with Blocking Transactions. In this case the
offered occupancy is simply n ρ where ρ is as in case (1). Now contention
can develop so we use our bus model to determine the achieved occu-
pancy, ρ a .

 Example. Suppose a processor has bus transactions that consist of cache line
transfers. Assume that 80% of the transactions move a single line and occupy
the bus for 20 cycles and 20% of the transactions move a double line (as in
dirty line replacement), which takes 36 cycles. The mean bus transaction time
is 23.2 cycles. Now assume that a cache miss (transaction) occurs every 200
cycles.

 In case (1), the bus is occupied: ρ = ρ a = 23.2/223.2 = 0.10; there is no con-
tention, but the bus causes a system slow down, as discussed below.

 In case (2), suppose we have four processors. Now the offered occupancy
is ρ = 0.104 and we use our model to fi nd the contention time. Initially we set
 a = ρ = 0.104, n ρ a = 1 − (1 − a) n = 1 − (1 − 0.104) 4 ; now we fi nd ρ a and substi-
tute the value of ρ a for a and continue.

 So initially, ρ a = 0.089; after the next iteration, ρ a = 0.010; and after several
iterations, ρ a = 0.095. We always achieve less than what is offered and the dif-
ference is delay due to contention. So:

 ρa = =
+

0 095.
bus transaction time

compute time bus transaction ttime contention time+
.

 Solving for the contention time, we get about 21 cycles.

 5.5.5 Effect of Bus Transactions and Contention Time

 There are two separate effects of bus delays on overall system performance.
The fi rst is the obvious case of blocking, which simply inserts a transaction
delay into the program execution. The second effect is due to contention.
Contention reduces the rate of transaction fl ow into the bus and memory. This
reduces performance proportionally.

 In the case of blocking the processor simply slows down by the amount of
the bus transaction. So the relative performance compared to an ideal proces-
sor with no bus transactions is:

c05.indd 186c05.indd 186 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

BEYOND THE BUS: NOC WITH SWITCH INTERCONNECTS 187

 Relative performance
compute time

compute time bus transact
=

+ iion time
.

 In the case (1) example the processor slows down by 200/223.3 = 0.896.
 Contention, when present, adds additional delay. In case (2) the individual

processor slows down by 200/(223.2 + 21) = 0.819. The result of contention is
that it simply slows down the system (without contention) by the ratio of ρ a / ρ .
The supply of transactions is reduced by this ratio.

 5.6 BEYOND THE BUS: NOC WITH SWITCH INTERCONNECTS

 While bus interconnect has been the predominant architecture for SOC inter-
connections, it suffers from a number of drawbacks. Even a well - designed
bus - based system may suffer from data transfer bottlenecks, limiting the per-
formance of the entire system. It is also not inherently scalable. As more
modules are added to a bus, not only does data congestion increase, but power
consumption also rises due to the increased load presented to the bus driver
circuits. Switch - based NOC interconnections avoid some of these limitations.
However, switches are inherently more complex than buses and are most
useful in larger SOC confi gurations. There are broad trade - offs possible in
switch design. Large numbers of nodes can be interconnected with relatively
low latency but at exponentially increasing cost (as with crossbar switches) or
they can be implemented with relatively longer latency and with more modest
cost (as in a distributed interconnection).

 This section presents some basic concepts and alternatives in the design of
the physical interconnect network. This network consists of a confi guration
of switches to enable the interconnection of N units. The design effi ciency or
cost – performance of the interconnection network is determined by:

 1. The delay in connecting a requesting unit to its destination.
 2. The bandwidth between units and the number of connections that can

be carried on concurrently.
 3. The cost of the network.

 In a network, units communicate with one another via a link or a channel,
which can be either unidirectional or bidirectional. Links have bandwidth or
the number of bits per unit time that can be transmitted concurrently between
units (or nodes). The fanout of a node is the number of bidirectional channels
connecting it to its neighboring nodes (Figure 5.11).

 Networks can be static or dynamic. In a static network , the topology or the
relationship between nodes in the network is fi xed (Figure 5.12). The path
between two nodes does not change. In a dynamic network , the paths between

c05.indd 187c05.indd 187 5/4/2011 9:54:27 AM5/4/2011 9:54:27 AM

188 INTERCONNECT

 Figure 5.11 Node and channels; the node fanout is the number of channels connecting
a node to its neighbors.

Processor

Memory

Processor

Memory

Node fanout

ChannelNode Node

 Figure 5.12 Static network (links between units is fi xed).

Processor

Memory

Processor

Memory

Switch Switch

Switch Switch

 SOC INTERCONNECT SWITCHES.

 This section is an abstract of some of the basic concepts and results from
the computer interconnect literature. In SOC switching, currently the
number of nodes (units) is typically limited by die size to 16 – 64. Since
the units are on chip, the link bandwidth, w , is relatively large: 16 – 128
wires. In SOC, dynamic networks are dominant so far (either crossbar
or multistage); static networks, when used, tend to be a grid (torus). As
the number of SOC units increases, a greater variety of network imple-
mentations are expected.

c05.indd 188c05.indd 188 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

BEYOND THE BUS: NOC WITH SWITCH INTERCONNECTS 189

 Figure 5.13 Dynamic network (links between units vary to establish connection).

Processor

Memory

Switch(es)

Processor

Memory

Processor

Memory

 Figure 5.14 A switch - based interconnect scheme [66] .

CPU CPU CPU

Memory Memory

I/O I/O

Switch

nodes can be altered both to establish connectivity and also to improve
network bandwidth (Figure 5.13).

 A static network could consist of a 2 - D grid of switches [64] to connect
together SOC modules. A dynamic network could consist of a centralized
crossbar switch. Apart from the advantage of avoiding traffi c congestion, a
switch - based scheme may allow modules to operate at different clock frequen-
cies as well as alleviating the bus loading problem.

 Figure 5.14 shows a crossbar - based interconnect that connects some
locally synchronous blocks on the same chip [66] . The crossbar switch is fully

c05.indd 189c05.indd 189 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

190 INTERCONNECT

asynchronous. Inside the chip, clock domain converters are used to bridge the
asynchronous interconnect to the synchronous blocks.

 5.6.1 Static Networks

 In a static network the distance between two units is the smallest number of
links or channels (or hops) that must be traversed for establishing communica-
tions between them. The diameter of the network is the largest distance
(without backtracking) between any two units in the network. An example of
a static network in a linear network is found in Figure 5.15 a. Networks can be
open or closed. A closed network improves average distance and diameter by
converting a linear array into a ring (Figure 5.15 b). The most common type of
static network is the (k , d) network [70] . This is a regular array of nodes with
dimension d and with k nodes in each dimension. These networks are usually
closed as in the case of a ring, d = 1 or a torus, d = 2.

 Assume there are k nodes in a linear array and we wish to extend the
network. Instead of simply increasing the number of linear elements, we can
increase the dimensionality of the network, creating a grid network of two
dimensions, d = 2 (Figure 5.15 c). These (k , d) networks can be linear arrays,
 d = 1, 2 - D grids, d = 2, cubic arrays, d = 3, or hypercubes. Hypercubes are
usually limited to two elements per dimension, k = 2, with as many dimensions
as needed to contain the network. Higher dimensional networks improve the
connectivity but at the expense of connection switches. There must be a switch

 Figure 5.15 Example of static network without preferred sites. (a) Linear array;
(b) linear array with closure (a ring); (c) grid (2 - D mesh); (d) k × k grid with closure
(a 2 - D torus). These are also called (k , d) networks. In (a) and (b), we have k = 4, d = 1
(one dimensional). In (c) and (d), we have k = 3, d = 2.

(a)

(b)

(c)

k

k

(d)

c05.indd 190c05.indd 190 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

BEYOND THE BUS: NOC WITH SWITCH INTERCONNECTS 191

for each nearest neighbor and generally there are 2 d neighbors in a (k , d)
network. Figure 5.15 d represents a torus, commonly referred to as a nearest -
 neighbor mesh.

 In the special case of the binary cube, or hypercube, k = 2. The number of
hypercube nodes (N) and the diameter can be determined as follows: for (2,
 n), the binary n - cube with bidirectional channels has:

 N n= 2 ,

and for the (2, n) case:

 Diameter = n.

 For general (k , n) with n dimensions and with closure and bidirectional chan-
nels, we have

 N kn=

or

 n Nk= log

and

 Diameter =
−⎡

⎣⎢
⎤
⎦⎥

k
n

1
2

.

 Example. Suppose we have a 4 × 4 grid (torus as in Figure 5.15 d). In (k , d)
terms it is a (4, 2) network, N = 16 and n = 2, and the diameter is 4.

 In general, it is the dimension of the network and its maximum distance
that are important to cost and performance. Some cost and performance com-
parisons for various (k , d) static networks are shown in Table 5.4 .

 Links are characterized in three ways:

 1. The Cycle Time of the Link, T ch . This corresponds to the time it requires
to transmit between neighboring nodes. 1/ T ch is the bandwidth of a wire
in the link or channel.

 2. The Width of the Link, w . This determines the number of bits that may
be concurrently transmitted between two nodes.

 3. Whether the link is unidirectional or bidirectional.

 Associated with the link characterization is the length of the message in bits
(l) plus H header bits. The header is simply the address of the destination node.
Thus, T ch × (l + H)/ w will be the time required to transmit a message between
two adjacent units.

 Suppose unit A has a message for unit C, which must be transmitted via
unit B. If node B is available, the message is transmitted fi rst from A to B and
stored at B. After the message has been completely transmitted, node B
accesses node C and transmits the message to C if C is available. Rather than

c05.indd 191c05.indd 191 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

192 INTERCONNECT

storing the message at B, we can use wormhole routing [70] . As the message
is received at B, it is buffered only long enough to decode its header and
determine its destination. As soon as this minimal amount of information can
be determined, the message is retransmitted to C, assuming that C is available.
The amount of buffering then required at B is signifi cantly reduced and the
overall time of transmission is:

 T T d h l wchwormhole = ⋅ +(),

where h = [H / w].
 Example. In a 4 × 4 grid, (k , d) = (4, 2) and, assuming T ch = 1, let h = 1, l =

256 and w = 64. Then T wormhole = 2 + 4 = 6 cycles.
 Once the header is decoded at an intermediate node, that node can deter-

mine whether the message is for it or for another node. The intermediate node
selects a minimum distance path to the destination node. If multiple paths have
the same distance, then this intermediate node will select the path that is cur-
rently unblocked or available to it.

 5.6.2 Dynamic Networks

 The dynamic indirect network is shown in Figure 5.16 a and b.
 Typically, the basic element in the dynamic network is a crossbar switch

(Figure 5.17).
 The crossbar simply connects one of k points to any of another k points.

Multiple messages can be concurrently executed across the crossbar switch, so
long as two messages do not have the same destination. The cost of the cross-
bar switch increases as n 2 , so that for larger networks, use of a crossbar switch
only becomes prohibitively expensive. In order to contain the cost of the
switch, we can use a small crossbar switch as the basis of a multistage network,
frequently referred to as a MIN — multistage interconnection network [256] .

 TABLE 5.4 Some Cost and Performance Comparisons for Various (k , d) Static
Networks with 64 Nodes (N = 64)

 Ring
(64,1)

 Torus
(16,2)

 Cube
(4,3)

 Hypercube
(2,4)

 Performance
 Number of hops (average, dk /4) 16 8 3 2
 Diameter (hops) (maximum

internode distance, dk /2)
 32 16 6 4

 Cost
 Node fanout (ports), 2d 2 4 6 8
 Bisection BW, 2 wN / k 32 128 512 1024

 Links (and ports) are bidirectional with 16 wires (w = 16). Bisection bandwidth (BW) refers to
the number of wires intersected when a network is split into two equal halves.

c05.indd 192c05.indd 192 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

BEYOND THE BUS: NOC WITH SWITCH INTERCONNECTS 193

 Figure 5.16 A basic dynamic, indirect switching network. P, processor; M, memory.
Figure 5.16 a represents a centralized switching network, separate from the processors.
Figures 5.16 b shows a more distributed network.

Processor

Memory

Switch(es)

Processor

Memory

Processor

Memory

P

M

P

M

P

M

P

M

Switch Destination
node

Source
requests

(a)

(b)

 Figure 5.17 (a) A 2 × 2 crossbar with control c ; (b) this can be generalized to a k × k
crossbar switch.

c = 0

c = 1

k k

(a)

(b)

c05.indd 193c05.indd 193 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

194 INTERCONNECT

There are many types, including baseline, Benes, Clos, Omega [150] , and
Banyan networks. The baseline network is among the simplest, and is shown
in Figure 5.18 .

 The header causes successive stages of the switch to be set so that the
proper connection path is established between two nodes. For example, con-
sider a deterministic “ obvious ” routing algorithm for these M , N networks.
Suppose node 011 sends a message to destination 110. The switch outputs
labeled 1, 1, and 0 cause the message to be routed to the 110 destination node
by setting the control (c) so that either the upper output (“ 0 ”) or the lower
output (“ 1 ”) of each switch is selected. Similarly, the return path is simply 011.
The number of stages between two nodes is:

 Stages = []log ,k N

where k is the number of inputs to the crossbar element (k × k) and therefore
the total number of (k × k) switches required for a one - bit wide path is:

 N
k

Nk× []log .

 Other dynamic networks provide different trade - offs on achievable message
bandwidth, message delay, and fault tolerance. Table 5.5 summarizes some of
the attributes of some common dynamic networks.

 5.7 SOME NOC SWITCH EXAMPLES

 5.7.1 A 2 - D Grid Example of Direct Networks

 Data traffi c can be distributed over the entire NOC by connecting the user IP
cores through a direct interconnect network. Data transfer bottlenecks are

 Figure 5.18 Baseline dynamic network topology.

001

011

101

111

Source Destination

001

011

101

100

110

100

110

010010

000000

111

1

1

0

c05.indd 194c05.indd 194 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

SOME NOC SWITCH EXAMPLES 195

avoided because there are multiple paths between nodes and data transfers
can be performed simultaneously. Xfabric uses a 2 - D grid direct network
approach to connect user cores on a Xilinx FPGA as shown in Figure 5.19
 [64] . Data processing cores with one to four communication ports are intercon-
nected via a network of junction components (shown in gray). These data
routing junctions manage system data fl ow autonomously between multiple
user cores. Multiple instances of junctions form a direct two - dimensional grid
network that can interconnect up to 1024 single - port cores. Horizontal and
vertical data transport links between junction components enable effi cient
data communications between cores.

 TABLE 5.5 Dynamic Networks, Switching N Inputs × N Outputs Using k × k
Switches

 Network

 Other
Equivalent
Networks

 Stages of Delay
(in Units of k × k

Switch Delay) Blocking

 Approximate
Cost (k × k
Switches)

 Baseline Delta, Omega,
SW Banyan

 [log k N] Yes

 Benes — 2[log k N] − 1 Nonblocking if
reconfi gured

 Clos — 2[log k N] − 1 Strictly
nonblocking

N
k k Nlog[]

2N
k k Nlog[]

4N
k k Nlog[]

 Figure 5.19 Xfabric connecting data processing core via junction components [64] . It
is a direct switching network using a 2 - D grid topology.

c05.indd 195c05.indd 195 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

196 INTERCONNECT

 Figure 5.20 shows the functional schematic of a junction component. Each
junction consists of four Local Ports (from LPORT0 to LPORT3) and four
Global Ports (from GPORT0 to GPORT3). User cores send 48 - bit words and
receive 32 - bit words via Local Ports, while the 16 - bit Global Ports are used to
route data to adjacent junctions.

 Each junction component performs all the necessary routing and arbitra-
tion functions to deliver multiple parallel data streams between data sources
and destinations with minimum latency, thus avoiding transfer bottlenecks
found in bus - based systems.

 5.7.2 Asynchronous Crossbar Interconnect for Synchronous SOC
(Dynamic Network)

 Another NOC for SOC applications is the PivotPoint architecture by Fulcrum
 [66] . The center of the system is the Nexus crossbar switch (see Figure 5.14),
which has a data throughput rate of 1.6 Tbps. Nexus uses clockless asynchro-
nous circuits and has the advantages normally associated with this design style,
including adaptivity to process technology, environmental variations, and
lower system power consumption. The choice of asynchronous design style is
partly driven by the need for interconnecting multiple clock domain cores. The
synchronous cores can run at different frequencies with independent phase
relationships to each other. Clock - domain converters are required to interface
between the synchronous cores and the asynchronous crossbar. Since the

 Figure 5.20 Schematic diagram of a junction component [64] .

Local Data
Out Local Data

Out
Local Data

In

Local
Port 0

Local
Port 3

Local
Port 2

Local
Port 1Global

Port 0

Global
Port 1

Global
Port 2

Global
Port 3

Local Data
In

Global Data
Out

Global Data
Out

Global Data
In

Global Data
In

c05.indd 196c05.indd 196 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

LAYERED ARCHITECTURE AND NETWORK INTERFACE UNIT 197

crossbar switch does not use any clock signals, integrating different clock
domains require no extra effort. In this way, the system is globally asynchro-
nous, but locally synchronous, which is also known as a GALS system.

 Data transfer on Nexus is done through bursts. Each burst contains a vari-
able number of data words (36 - bit) and is terminated by a tail signal. A 4 - bit
control is used to indicate a destination channel (TO), which becomes the
source channel (FROM) when the burst leaves the crossbar. The format of the
burst is shown in Figure 5.21 . Bursts are automatically routed by the crossbar
and cannot be dropped, fragmented, or duplicated.

 The crossbar provides the routing through a physical link that is created
when the fi rst word of the burst enters the crossbar and is closed when the
last word leaves the crossbar.

 5.7.3 Blocking versus Nonblocking

 Nexus and PivotPoint are designed to avoid head - of - the - line (HOL) blocking.
HOL blocking occurs when one packet failing to progress results in other
unrelated packets behind it to be blocked. PivotPoint uses virtual channels
(also called ports) to transport separated traffi c streams simultaneously.
Blocked packets in one channel only blocks packets behind it on the same
channel. Packets on other channels are free to progress. In this way commu-
nication stalls are minimized.

 5.8 LAYERED ARCHITECTURE AND NETWORK
INTERFACE UNIT

 The network interface unit is a key component in the NOC, since it can over-
come a number of limitations found in the conventional bus - based approach

 Figure 5.21 Format of burst used on Nexus [66] .

Source burst Crossbar Destination

Data

Tail

Control

Crossbar

Dn

3
6
b
i
t
s

1
b

4
b

1 0 0 1 0 0

TO FROM

D1 D0 Dn D1 D0

c05.indd 197c05.indd 197 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

198 INTERCONNECT

 [40] . Although the bus standards discussed earlier provide some degree of
portability and reusability of IP cores, they are diffi cult to adapt to advances
in both process and bus interface technologies. The fundamental weakness of
buses is that they do not take a layered approach to interconnection: There is
no explicit separation between the transaction level communication in the
application layer and the interconnect signals in the physical layer. In contrast,
activities in NOC systems are generally separated into transaction, transport,
and physical layers as depicted in Figure 5.22 . As a result, NOC systems can
be adapted more easily to the rapid advances in process technology or in
system architecture.

 Figure 5.23 shows a general - purpose on - chip interconnect network com-
prising of a number of modules such as processors, memories, and IP blocks
organized as tiles. These module tiles are connected to the network that routes
packets of data between them. All communications between tiles are via the
network, and the area overhead of the network logic can be as low as 6.6%
 [71] . The key characteristics of such NOC architectures are that they have: (1)
a layered architecture that is easily scalable; (2) a fl exible switching topology
that can be confi gured by the user to optimize performance for different
applications; and (3) point - to - point communication that effectively decouples
the IP blocks from each other.

 5.8.1 NOC Layered Architecture

 Most NOC architectures adopt a three - layered communication scheme, as
shown in Figure 5.22 . The physical layer specifi es how packets are transmitted
over the physical interfaces. Any changes in process technology, interconnect-

 Figure 5.22 The layered architecture of NOC [26] .

TRANSACTION Layer
Load/Store

TRANSPORT Layer
Packets/Messages

PHYSICAL Layer
Wires/Paths/Logic

c05.indd 198c05.indd 198 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

LAYERED ARCHITECTURE AND NETWORK INTERFACE UNIT 199

ing switch structure, and clock frequency affect only this layer. Upper layers
are not compromised in any way.

 The transport layer defi nes how packets are routed through the switch
network. A small header cell in the packet is typically used to specify how
routing is to be done. The transaction layer defi nes the communication primi-
tives used to connect the IP blocks to the network. The NOC interface unit
(NIU) provides the transaction level services to the IP block, governing how
information is exchanged between NIUs to implement a particular transaction
(Figure 5.24).

 The layered architecture of NOC offers a number of benefi ts [26] :

 1. Physical and Transport Layers can be Independently Optimized. The
physical layer is governed mostly by process technology while the trans-
action layer is dependent on the particular application. The layered
approach allows them to be separately optimized without affecting each
other.

 2. Inherently Scalable. A properly designed switch fabric in an NOC can
be scaled to handle any amount of simultaneous transactions. The dis-
tributed nature of the architecture allows the switches to be optimized
to match the requirements. At the same time, the NIU responsible for
the transaction layer can be designed to satisfy the performance require-
ment of the IP block that it services with no effect on the confi guration
and performance of the switch fabric.

 3. Better Control of Quality - of - Service. Rules defi ned in the transport layer
can be used to distinguish between time - critical and best - effort traffi c.

 Figure 5.23 A typical NOC architecture [26] .

Source

IP

IP

IP

IP

Routing specified at lower level

IP IP

Destination

c05.indd 199c05.indd 199 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

200 INTERCONNECT

Prioritizing packets helps to achieve quality - of - service requirements
enabling real - time performance on critical modules.

 4. Flexible Throughput. By allocating multiple physical transport links,
throughput can be increased to meet the demand of a system statically
or dynamically.

 5. Multiple Clock Domain Operation. Since the notion of a clock only
applies to the physical layer and not to the transport and transaction
layers, an NOC is particularly suited to an SOC system containing IP
blocks that operate at different clock frequencies. Using suitable clock
synchronization circuits at the physical layer, modules with independent
clock domains can be combined with reduced timing convergence
problems.

 5.8.2 NOC and NIU Example

 For the Nexus crossbar switch in Section 5.7.2 , the NIU implements the
PivotPoint system architecture connecting nodes using the Nexus crossbar
switch. Figure 5.25 shows a simplifi ed PivotPoint architecture. In addition to
the Nexus crossbar switch, the FIFO buffer provides data - buffering function
for the transmit (TX) and the receive (RX) channels. The System Packet Inter-
face (SPI - 4.2, represented simply as SPI - 4 in the fi gure) implements a standard
protocol for chip - to - chip communication at data rates of 9.9 – 16 Gbps.

 Figure 5.24 The transaction, transport, and physical layers of an NOC [26] .

SOURCE

IP IP

NIU

DESTINATION

NIUNIU

NIU

SWITCH
PACKETS

WIRES, LOGIC

IP IP

c05.indd 200c05.indd 200 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

EVALUATING INTERCONNECT NETWORKS 201

 5.8.3 Bus versus NOC

 When compared with buses, NOC is not without drawbacks. Perhaps the most
signifi cant weakness of NOC is the extra latency that it introduces. Unlike data
communication networks, where quality of service is governed mainly by
bandwidth and throughput, SOC applications usually also have very strict
latency constraints. Furthermore, the NIU and the switch fabric add to the
area overhead of the system. Therefore, direct implementation of a conven-
tional network architecture in SOC generally results in unacceptable area and
latency overheads. Table 5.6 presents the pros and cons between buses and
NOC approaches to SOC interconnect qualitatively.

 5.9 EVALUATING INTERCONNECT NETWORKS

 There have been a number of important analyses about the comparative merits
of various network confi gurations [137, 145, 194] . The examples below illustrate
the use of simple analytic models in evaluating interconnect networks.

 Figure 5.25 PivotPoint architecture [66] .

CPU interface

SPI-4

SPI-4

SPI-4

SPI-4

16-KB
buffer

Route
table

Route
table

16-KB
buffer

16-KB
buffer

Nexus
crossbar

16-KB
buffer

SPI-4

SPI-4

Route
table

16-KB
buffer

16-KB
buffer

SPI-4

SPI-4

Route
table

16-KB
buffer

16-KB
buffer

SPI-4

SPI-4

16-KB
buffer

Route
table

16-KB
buffer

SPI-4

SPI-4

16-KB
buffer

Route
table

16-KB
buffer

c05.indd 201c05.indd 201 5/4/2011 9:54:28 AM5/4/2011 9:54:28 AM

202 INTERCONNECT

 5.9.1 Static versus Dynamic Networks

 In this section, we present the results and largely follow the analyses per-
formed by Agarwal [8] in his work on network performance.

 Dynamic Networks Assume we have a dynamic indirect network made up
of k × k switches with wormhole routing. Let us assume this network has n
stages and channel width w with message length l . In the indirect network, we
assume that the header network path address is transmitted in one cycle just
before the message leaves the node, so that there is only one cycle of header
overhead to set up the interconnect; see Figure 5.26 .

 TABLE 5.6 The Bus - versus - NOC Arguments [112]

 Bus Pros and Cons NOC Pros and Cons

 Every unit attached adds parasitic
capacitance (−)

 Only point - to - point one - way wires are
used for all network sizes (+)

 Bus timing is diffi cult in deep submicron
process (−)

 Network wires can be pipelined
because the network protocol is
globally asynchronous (+)

 Bus testability is problematic and slow (−) Built - in self - test (BIST) is fast and
complete (+)

 Bus arbiter delay grows with the number
of masters. The arbiter is also instance
specifi c (−)

 Routing decisions are distributed and
the same router is used for all
network sizes (+)

 Bandwidth is limited and shared by all
units attached (−)

 Aggregated bandwidth scales with the
network size (+)

 Bus latency is zero once arbiter has
granted control (+)

 Internal network contention causes a
small latency (−)

 The silicon cost of a bus is low for small
systems (+)

 The network has a signifi cant silicon
area (−)

 Any bus is almost directly compatible
with most available IPs, including
software running on CPUs (+)

 Bus - oriented IPs need smart
wrappers. Software needs clean
synchronization in multiprocessor
systems (−)

 The concepts are simple and well
understood (+)

 System designers need re - education
for new concepts (−)

 Figure 5.26 Message transmission from node to switch.

l/w

h

To network path

To network control

c05.indd 202c05.indd 202 5/4/2011 9:54:29 AM5/4/2011 9:54:29 AM

EVALUATING INTERCONNECT NETWORKS 203

 Assuming the switches have unit delay (T ch = one cycle), the total time for
a message to transit the network without contention is:

 T n
l
w

c = + + 1 cycles.

 For all our subsequent analysis we assume that n + l / w >> 1, so

 T n
l
w

c ≈ + cycles.

 In a blocking dynamic network, each network switch has a buffer. If a block
is detected, a queue develops at the node; so each of N units with occupancy
 ρ requests service from the network. Since the number of connection lines at
each network level is the same (N), then the expected occupancy for each is
 ρ . At each switch, the message transmits experiences a waiting time. Kruskal
and Snir [145] have shown that this waiting time is (assume that T ch = 1 cycle
and express time in cycles):

 T
l w k

w = () −()
−()

ρ
ρ

1 1
2 1

.

 The channel occupancy is

 ρ = m
l
w

,

where m is the probability that a node makes a request in a channel cycle.
 The total message transit time, T dynamic , is:

T T nT

n
l
w

np l
w

k T

c wdynamic

ch

= +

= + +
−()

⎛
⎝⎜

⎞
⎠⎟ −()⎛

⎝⎜
⎞
⎠⎟2 1

1 1
ρ

.

 Static Networks A similar analysis may be performed on a static (k , n)
network. Let k d be the average number of hops required for a message to
transit a single dimension. For a unidirectional network with closure kd

k= −()1
2

and for a bidirectional network k kd
k= ()4 even , the total time for a message

to pass from source to destination is:

 T h n k
l
w

Tc d= × × +⎛
⎝⎜

⎞
⎠⎟ ch.

 Again, we assume that T ch = 1 cycle and perform the remaining computations
on a cycle basis. Agarwal [8] computes the waiting time (M / G /1) as:

c05.indd 203c05.indd 203 5/4/2011 9:54:29 AM5/4/2011 9:54:29 AM

204 INTERCONNECT

 T
l
w

k
k

nw
d

d

=
−

−
+()ρ

ρ1
1

1 1
2

.

 The total transit time for a message to a destination (h = 1) is:

T T nk T

nk l w
nk l

wk
n

c d w

d
d

d

static = +

= + +
−

⎛
⎝⎜

⎞
⎠⎟ +()ρ

ρ1
1 1 .

 The preceding cannot be used for low k (i.e., k = 2, 3, 4). In this case [1] ,

 T
l
w

w =
−()
ρ

ρ2 1

and ρ =
mk l

w
d

2
 or, for hypercube, mk l

w
d .

 5.9.2 Comparing Networks: Example

 In the following example assume that m , the probability that a unit requests
service in any channel cycle, is 0.1; h = 1, l = 256, and w = 64. Compare a 4 × 4
grid (torus) static network with N = 16, k = 4, n = 2, and a MIN dynamic
network with N = 16, k = 2.

 For the dynamic network, the number of stages is:

 n = =log ,2 16 4

while the channel occupancy is:

 ρ = = =m
l
w

0 1
256
64

0 4. . .

 The message transit time without contention is:

 T n
l
w

c = + + = + + =1 4
256
64

1 9 cycles,

while the waiting time is:

 T
l w k

w = () −()
−()

= () −()
−()

= =
ρ

ρ
1 1

2 1
0 4 256 64 1 1 2

2 1 0 4
0 8
1 2

0 67
.

.
.
.

. cyycle.

 Hence the total message transit time is:

 T T nTc wdynamic cycles= + = + () =9 4 0 67 11 68. . .

c05.indd 204c05.indd 204 5/4/2011 9:54:29 AM5/4/2011 9:54:29 AM

CONCLUSIONS 205

 For the static network, the average number of hops k d = k /4 = 1, and the total
message time is:

 T h n k
l
w

Tc d= × × +⎛
⎝⎜

⎞
⎠⎟ = × × + ()() =ch 1 2 1 256 64 6.

 Since

 ρ = =
× ×

×
=

mk l
w

d

2
0 1 1 256

2 64
0 2

.
.

and T w for low k is given by:

 T
l
w

w =
−()

=
−()

=
ρ

ρ2 1
0 2

2 1 0 2
256
64

0 5
.

.
. ,

the waiting time is given by

T T nk Tc d wstatic

cycles

= +
= + ()()
=

6 2 1 0 5

7

. .

 5.10 CONCLUSIONS

 The interconnect subsystem is the backbone of the SOC. The system ’ s perfor-
mance can be throttled by limitations in the interconnect. Because of its
importance, a great deal of attention has been afforded to optimize cost –
 performance interconnect strategies.

 Excluding fully custom designs, there are two distinct approaches to SOC
interconnect: bus based and network based (NOC). However, even here these
can be complementary approaches. An NOC can connect nodes that can
themselves be a bus - based cluster of processors or other IPs.

 In the past most SOCs were predominantly bus based. The number of nodes
to be connected were small (perhaps four or eight IPs) and each node con-
sisted solely of a single IP. This remains a tried and tested method of intercon-
nect that is both familiar and easy to use. The use of standard protocols and
bus wrappers make the task of IP core integration less error prone. Also, the
large number of bus options available allows users to trade - off between com-
plexity, ease of use, performance, and universality.

 As the number of interconnected nodes increases, the bandwidth limita-
tions of bus - based approaches become more apparent. Switches overcome
the bandwidth limitations but with additional cost and, depending on the
confi guration, additional latency. As switches (whether static or dynamic) are

c05.indd 205c05.indd 205 5/4/2011 9:54:29 AM5/4/2011 9:54:29 AM

206 INTERCONNECT

translated into IP and supported with experience and the emergence of
tools, they will become the standard SOC interconnect especially for high -
 performance systems.

 Modeling the performance of either bus - or switch - based interconnects is
an important part of the SOC design. If initial analysis of bus - based intercon-
nection demonstrates insuffi cient bandwidth and system performance, switch -
 based design is the alternative. Initial analysis and design selection is usually
based on analytic models, but once the selection has been narrowed to a few
alternatives, a more thorough simulation should be used to validate the fi nal
selection. The performance of the SOC will depend on the confi guration and
capability of the interconnection scheme.

 In NOC implementations, the network interface unit has a key role. For a
relatively small overhead, it enables a layering of the interconnect implemen-
tation. This allows designs to be re - engineered and extended to include new
switches without affecting the upper level SOC implementation. Growth in
NOC adoption facilitates easier SOC development.

 There are various topics in SOC interconnect that are beyond the scope of
this chapter. Examples include combination of design and verifi cation of on -
 chip communication protocols [46] , self - timed packet switching [105] , func-
tional modeling and validation of NOC systems [210] , and the AMBA 4
technology optimized for reconfi gurable logic [74] . The material in this chapter,
and other relevant texts such as that by Pasricha and Dutt [193] , provide the
foundation on which the reader can follow and contribute to the advanced
development of SOC interconnect.

 5.11 PROBLEM SET

 1. A tenured split (address plus bidirectional data bus) bus is 32 + 64 bits wide.
A typical bus transaction (read or write) uses a 32 - bit memory address and
subsequently has a 128 - bit data transfer. If the memory access time is 12
cycles,
 (a) show a timing diagram for a read and a write (assuming no

contention).
 (b) what is the (data) bus occupancy for a single transaction?

 2. If four processors use the bus described above and ideally (without conten-
tion) each processor generates a transaction every 20 cycles,
 (a) what is the offered bus occupancy?
 (b) using the bus model without resubmissions, what is the achieved

occupancy?
 (c) using the bus model with resubmissions, what is the achieved

occupancy?
 (d) what is the effect on system performance for the (b) and (c) results?

c05.indd 206c05.indd 206 5/4/2011 9:54:29 AM5/4/2011 9:54:29 AM

PROBLEM SET 207

 3. Search for current products that use the AMBA bus; fi nd at least three
distinct systems and tabularize their respective parameters (AHB and
APB): bus width, bandwidth, and maximum number of IP users per bus.
Provide additional details as available.

 4. Search for current products that use the CoreConnect bus; fi nd at least
three distinct systems and tabularize their respective parameters (PLB and
OPB): bus width, bandwidth, and maximum number of IP users per bus.
Provide additional details as available.

 5. Discuss some of the problems that you would expect to encounter in creat-
ing a bus wrapper to convert from an AMBA bus to a CoreConnect bus.

 6. A static switching interconnect is implemented as a 4 × 4 torus (2 - D) with
wormhole routing. Each path is bidirectional with 32 wires; each wire can
be clocked at 400 Mbps. For a message consisting of an 8 - bit header and
128 - bit “ payload, ”
 (a) what is the expected latency (in cycles) for a message to transit from

one node to an adjacent node?
 (b) what is the average distance between nodes and the average message

latency (in cycles)?
 (c) if the network has an occupancy of 0.4, what is the delay due to conges-

tion (waiting time) for the message?
 (d) what is the total message transit time?

 7. A dynamic switching interconnect is to connect 16 nodes using a baseline
switching network implemented with 2 × 2 crossbars. It takes one cycle to
transit a 2 × 2. Each path is bidirectional with 32 wires; each wire can be
clocked at 400 Mbps. For a message consisting of an 8 bit header and 128
bit “ payload, ”
 (a) what is the expected latency (in cycles) for a message to transit from

one node to any other?
 (b) draw the network.
 (c) what is the message waiting time, if the network has an occupancy of

0.4?
 (d) what is the total message transit time?

 8. The bisection bandwidth of a switching interconnect is defi ned as the
maximum available bandwidth across a line dividing the network into two
equal parts (number of nodes). What is the bisection bandwidth for the
static and dynamic networks outlined above?

 9. Search for at least three distinct NOC systems; compare their underlying
switches (fi nd at least one dynamic and one static example). Provide details
in table form.

c05.indd 207c05.indd 207 5/4/2011 9:54:29 AM5/4/2011 9:54:29 AM

 6 Customization and
Confi gurability

 6.1 INTRODUCTION

 To broaden SOC applicability while reducing cost, one can adopt a common
hardware platform that can be customized to improve effi ciency for specifi c
applications. This chapter looks at different customization technologies, par-
ticularly those based on confi gurability . Here confi gurability covers both one -
 time confi gurability , when application - oriented customization takes place once
either before or after chip fabrication, and reconfi gurability , when customiza-
tion takes place multiple times after chip fabrication.

 Customization opportunities at design time, particularly those exploited in
device fabrication, often result in high performance but at the expense of fl ex-
ibility when the design is deployed. Such postfabrication fl exibility is achieved
by devices with various degrees of programmability, including coarse - grained
reconfi gurable architectures (CGRAs), application - specifi c instruction proces-
sors (ASIPs), fi ne - grained fi eld - programmable gate arrays (FPGAs), digital
signal processors (DSPs), and general - purpose processors (GPPs). The trade -
 off between programmability and performance is shown in Figure 6.1 , which
is introduced in Chapter 1 .

 Structured ASIC (application - specifi c integrated circuit) technology sup-
ports limited customization before fabrication compared with custom ASIC
technology. In Figure 6.1 , the ASIPs are assumed to be customized at fabrica-
tion in ASIC technology. ASIPs can also be customized at compile time if
implemented in FPGA technology as a soft processor; a customizable ASIP
processor will be presented in Section 6.8 .

 There are many ways of customizing SOC designs, and this chapter focuses
on three of them:

 1. customization of instruction processors (Sections 6.4 and 6.8), illus-
trating how (a) availability of processor families and (b) generation of
application - specifi c processors can offer architectural optimizations such
as very long instruction word (VLIW), vectorization, fused operation,

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

208

c06.indd 208c06.indd 208 5/4/2011 9:54:34 AM5/4/2011 9:54:34 AM

ESTIMATING EFFECTIVENESS OF CUSTOMIZATION 209

and multithreading to meet requirements in performance, area, energy
effi ciency, and costs;

 2. customization of reconfi gurable fabrics (Sections 6.5 and 6.6), showing
that fi ne - grained reconfi gurable functional units (FUs) and the related
interconnect resources are versatile but incur large overheads — hence
coarse - grained blocks are increasingly adopted to reduce such
overheads;

 3. customization techniques for optimizing implementations, such as
instance - specifi c design (Section 6.7) and run - time reconfi guration strat-
egies (Section 6.9), together with methods for assessing related trade - offs
in performance, size, power, and energy effi ciency.

 Other customization methods, such as those based on multiprocessors, would
not be treated in detail. Pointers to references on various related topics are
included in Section 6.10 .

 6.2 ESTIMATING EFFECTIVENESS OF CUSTOMIZATION

 It is important to be able to estimate and compare the effectiveness of differ-
ent ways of customization applied to part of a design. The method is simple.

 Figure 6.1 A simplifi ed comparison of different technologies: programmability versus
performance. GPP stands for general - purpose processor, while CGRA stands for
coarse - grained reconfi gurable architecture.

FPGA

Custom
ASIC

Structured
ASIC

CGRA

ASIP

P
ea

k
pe

rf
or

m
an

ce
: N

um
be

r
of

 o
pe

ra
tio

ns
 p

er
 w

at
t

DSP

GPP

Programmability
Low High

c06.indd 209c06.indd 209 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

210 CUSTOMIZATION AND CONFIGURABILITY

For a given metric such as delay, area, or power consumption, assume that α
is the factor of improvement applicable to a fraction β of a design. So the
metric is improved by:

 () .1− + ×β α β

 This metric is reminiscent of the parallel processor analysis of G. Amdahl. As
an example, consider the well - known 90:10 rule: a good candidate for accelera-
tion is the case when 10% of the code takes 90% of the time. What happens
if that 10% of the code can be accelerated k times?

 From the expression above with α = 1/ k , β = 0.9, we obtain (k + 9)/10 k .
Assuming k = 10, the execution time is reduced to 19% of the original, result-
ing in a speedup of 5.26 times.

 However, if the effect of the code that can be accelerated is reduced from
90% of the time to only 60% of the time, we can fi nd that the speedup is only
2.17 times — almost halved.

 Note that the amount of code, which provides an estimate of the amount
of effort required for customizing it, does not affect the above result; it is the
effect of the customizable fraction on the metric that matters, not the fraction
itself.

 This method can be applied in various ways. As another example, consider
the use of embedded coarse - grained blocks to customize a fi ne - grained recon-
fi gurable fabric, as we shall explain in a later section. Assume that 50% of the
fi ne - grained fabric can be replaced by coarse - grained blocks, which are three
times more effi cient in speed and 35 times more effi cient in area. One can
fi nd that the design could be improved up to 50% faster with its area reduced
by half.

 There are, however, several reasons against customizability. Tools for cus-
tomizable processors such as performance profi lers and optimizers are often
not as mature as those for noncustomizable processors; backwards compatibil-
ity and verifi cation can also become an issue. One approach is to develop
customizable processors that are compatible with existing noncustomizable
building blocks, such that there is interoperability between customizable and
noncustomizable technologies [94] .

 6.3 SOC CUSTOMIZATION: AN OVERVIEW

 Customization is the process of optimizing a design to meet application
requirements and implementation constraints. It can take place at design time
and at run time. Design time has two components: fabrication time and compile
time. During fabrication time, a physical device is constructed. If this device is
confi gurable, then after fabrication it can be customized by a program pro-
duced at compile time and executed at run time.

 There are three common means of implementing computations: standard
instruction processors, ASICs, and reconfi gurable devices.

c06.indd 210c06.indd 210 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

SOC CUSTOMIZATION: AN OVERVIEW 211

 1. For standard instruction processors such as those from ARM, AMD, and
Intel, fabrication - time customization produces a device supporting a fi xed
instruction set architecture, and compile - time customization produces
instructions for that architecture; run - time customization corresponds to
locating or generating appropriate code for execution at run time.

 2. For ASICs, much of the customization to perform application functions
takes place at fabrication time. Hence the high effi ciency but low fl exibil-
ity, since new functions not planned before fabrication cannot easily be
added. Structured ASICs, such as gate array or standard - cell technolo-
gies, reduce design effort by limiting the options of customization to the
user to, for instance, the metal layers. One - time customization of antifuse
technology can be performed in the fi eld.

 3. Reconfi gurable devices generally include FPGA and complex program-
mable logic device (CPLD) technology, as well as instruction processors
coupled with a reconfi gurable fabric to support custom instructions [25] .
In this case, fabrication - time customization produces a device with a
reconfi gurable fabric, typically containing reconfi gurable elements joined
together by reconfi gurable interconnections. At compile time, confi gura-
tion information is produced from a design description for customizing
the device at appropriate instants at run time.

 The standard instruction processors are general purpose. There are, however,
opportunities to customize the instruction set and the architecture for a spe-
cifi c application. For instance, the standard instruction set can be customized
to remove unused instructions or to include new instructions that would result
in improved performance. Custom instruction processors can be customized
during fabrication in ASIC technology or during confi guration in reconfi gu-
rable hardware technology.

 • Processors that are customized during fabrication include those from
ARC and Tensilica. Typically some of the building blocks are hardwired
at fabrication to support, for instance, domain - specifi c optimizations,
including instructions that are customized for specifi c applications. To
reduce risk, there are often reconfi gurable prototypes before designs are
implemented in ASIC technology.

 • For soft processors such as MicroBlaze [259] from Xilinx or Nios [11]
from Altera, the challenge is to support instruction processors effi ciently
using resources in a reconfi gurable fabric such as an FPGA. Effi ciency
can be improved by exploiting device - specifi c features or run - time recon-
fi gurability [213] .

 • Another alternative is to implement the instruction processor in ASIC
technology, and a suitable interface is developed to enable the processor
to benefi t from custom instructions implemented in a reconfi gurable
fabric. An example is the software confi gurable processor from Stretch
 [25] , which consists of the Xtensa instruction processor from Tensilica

c06.indd 211c06.indd 211 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

212 CUSTOMIZATION AND CONFIGURABILITY

and a coarse - grained reconfi gurable fabric. These devices can offer higher
effi ciency than FPGAs when an application requires resources that match
their architecture.

 A key consideration for deciding which technology to use is volume. Recall
from Chapter 1 that the product cost usually has a fi xed or nonrecurring com-
ponent that is independent of volume and has a variable or recurrent compo-
nent that varies with volume. Reconfi gurable technologies like FPGAs have
little fi xed cost, but have a higher unit cost than ASIC technologies. Hence,
below a certain volume threshold, reconfi gurable technologies offer the lowest
cost — and this threshold moves in favor of reconfi gurable technologies with
time, since the cost of mask sets and other fi xed fabrication costs increase
rapidly with each new generation of technology.

 There are various ways of classifying a customizable SOC. A customizable
SOC typically consists of one or more processors, reconfi gurable fabrics, and
memories. One way is to classify such SOCs according to the coupling between
the reconfi gurable fabric and the processor [61] .

 Figure 6.2 a shows the reconfi gurable fabric attached to the system bus.
Figure 6.2 b illustrates the situation when the reconfi gurable fabric is a copro-
cessor of the CPU, with a closer coupling between them than the ones in Figure
 6.2 a.

 Next, Figure 6.2 c shows an architecture in which the processor and the
fabric are tightly coupled. In this case, the reconfi gurable fabric is part of the
processor itself, perhaps forming a reconfi gurable subunit that supports custom
instructions. An example of this organization is the software confi gurable
processor from Stretch.

 Figure 6.2 d shows another organization. In this case, the processor is embed-
ded in the programmable fabric. The processor can either be a “ hard ” core
 [261] or can be a “ soft ” core, which is implemented using the resources of the
reconfi gurable fabric itself; examples include the MicroBlaze and the Nios
processors mentioned earlier.

 It is also possible to integrate confi gurable analog and digital functionality
on the same chip. For instance, the PSoC (programmable system on a chip)
device [68] from Cypress has an array of analog blocks that can be confi gured
as various combinations of comparators, fi lters, and analog - to - digital convert-
ers, with programmable interconnects. The inputs and outputs of these and the
reconfi gurable digital blocks can be fl exibly routed to the input/output (I/O)
pins. Moreover, these blocks can be reconfi gured to perform different func-
tions when the system is operating.

 6.4 CUSTOMIZING INSTRUCTION PROCESSORS

 Microprocessors in desktop machines are designed for general - purpose com-
putation. Instruction processors in an SOC are often specialized for particular

c06.indd 212c06.indd 212 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

CUSTOMIZING INSTRUCTION PROCESSORS 213

types of computations such as media processing or data encryption. Hence
they can benefi t from customization that is highly specifi c to their intended
function, eliminating hardware elements that would not be needed. Such
customization usually takes place before fabrication, although many tech-
niques can also be applied to the design of soft processors. Customization
allows designers to optimize their designs to meet requirements such as those

 Figure 6.2 Four classes of customizable SOC [61; 244] . The shaded box denotes the
reconfi gurable fabric. (a) Attached processing unit; (b) coprocessor; (c) reconfi gurable
FU; (d) processor embedded in a reconfi gurable fabric.

CPU

C
A

C
H

E

I/O
 IN

T
E

R
F

A
C

E

(a)

CPU

C
A

C
H

E

I/O
 IN

T
E

R
F

A
C

E

(b)

CPU

C
A

C
H

E

I/O
 IN

T
E

R
F

A
C

E

FU

(c)

Programmable
Fabric

CPU

(d)

c06.indd 213c06.indd 213 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

214 CUSTOMIZATION AND CONFIGURABILITY

in speed, area, power consumption, and accuracy, while improving product
differentiation.

 6.4.1 Processor Customization Approaches

 There are two main approaches for providing customized processors. The fi rst
approach is to provide families of processors customized for specifi c applica-
tion domains. For example, ARM provides the Cortex - A Series for supporting
applications with demanding computation, the Cortex - R Series for real - time
processing, the Cortex - M series for microcontrollers in embedded applications
(with the Cortex - M1 processors optimized for FPGA implementation), and
the SecurCore processors for tamper - resistant smart cards. Each series con-
tains a range of processors with different characteristics, allowing designers to
choose one that best fi ts their requirements in function and performance,
including power and energy consumption.

 The second approach is to provide the capability of generating customized
processors. Companies such as ARC and Tensilica provide design tools to
allow SOC designers to confi gure and extend a processor, either through a
graphical user interface or through tools based on an architecture description
language. Such tools enable designers to add only the features they need while
deleting the features they do not need. In addition, they allow designers to
extend the architecture of the core by adding custom instructions, allowing
further optimization of the processor for the end application.

 To help optimize the design for size, power, and application performance,
some SOC tools provide guidelines for fi nal silicon area and memory require-
ments. Designers are able to confi gure features around the core, such as the
type and size of caches, interrupts, DSP subsystem, timers, and debug compo-
nents, as well as features within the core, such as the type and size of core
registers, address widths, and instruction set options. The aim is to support
rapid performance and die - size trade - offs to provide an optimized solution.
Specifi c functions often included in SOC tools are:

 • Integration of intellectual properties from various sources.
 • Generation of simulation scripts and test benches for system

verifi cation.
 • Enhancement of software development tools to support, for instance,

custom instructions for the customizable processor.
 • Automated generation of FPGA designs for an emulation platform.
 • Documentation of selected confi guration for inclusion in licensees ’ chip

specifi cations and customer - level documentation.

 Such tools can usually confi gure and deliver a custom processor within minutes.
Also, by generating all confi guration - specifi c information required for testing,

c06.indd 214c06.indd 214 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

CUSTOMIZING INSTRUCTION PROCESSORS 215

downstream development tools, and documentation, the confi gurator reduces
time to silicon and reduces project risk.

 Further information about tools and applications of customizable embed-
ded processors can be found in various publications [127, 207] .

 6.4.2 Architecture Description

 As processors become increasingly complex, it is useful to provide a signifi cant
degree of automation in implementing both the processor and the software
tools associated with that processor. Without automation, much design and
verifi cation effort is needed to build a processor and its tools from scratch for
every application.

 To automate development of processors and tools, architecture description
languages or processor description languages can help [179] . Such languages
should be suffi ciently concise and high level for designers to adopt them for
different applications; they should also be comprehensive enough to produce
realistic, effi cient implementations. Many languages have been proposed for
describing instruction processors. The goal of these languages is to capture the
design of a processor so that supporting tools and the processor itself can be
automatically generated.

 Architecture description languages can be classifi ed by the description style
and by the level and type of automation provided. For example, one can clas-
sify architecture description languages as either behavioral, structural, or a
combination of the two.

 Behavioral descriptions are instruction - set centric: The designer specifi es
the instruction set and then uses tools to generate a compiler, assembler,
linker, and simulator. The nML [87] and TIE [240] languages fall into the
behavioral category. Automating generation of a compiler backend from a
behavioral description is facilitated when the instructions can be expressed as
a tree grammar for a code - generator - generator tool such as BURG [100] .
Many behavioral languages support synthesis of processor hard ware, and syn-
thesis tools are available for the above examples. In the case of TIE, synthesis
is simplifi ed since the base processor is fi xed and only extensions to this base
processor can be specifi ed by designers. The nML “ Go ” tool designs the pro-
cessor architecture automatically [86] from the instruction set, inferring struc-
ture from explicitly shared resources such as the register fi le.

 The main advantage of a behavioral description is the high level of abstrac-
tion: only an instruction set specifi cation is required to generate a custom
processor. The main disadvantage is the lack of fl exibility in the hardware
implementation. Synthesis tools must fi x some aspects of the microarchitec-
ture [87] or even the entire base processor [240] . Effi cient synthesis from an
instruction set alone is a diffi cult design automation problem when resource
sharing [50] is taken into account.

 Structural descriptions capture the FUs, storage resources, and interconnec-
tions of a processor. SPREE [269] is a library built onto C + + that generates

c06.indd 215c06.indd 215 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

216 CUSTOMIZATION AND CONFIGURABILITY

FPGA soft processors using a structural description. In particular, the designer
can remove instructions or change the implementation of FUs, since SPREE
provides a method for connecting functional blocks, with built - in support for
common functions such as forwarding networks and interlocks.

 The main advantage of structural descriptions is that they can be directly
converted into a form suitable for synthesis to hardware. Additionally, most
structural description styles maintain the generality of a hardware description
language (HDL). This generality provides much scope for describing diverse
microarchitectures, for example, superscalar or multithreaded ones. The prime
disadvantage is the lower level of abstraction: the designer needs to manually
specify FUs and control structures.

 We present a summary of existing processor description languages in Table
 6.1 . For each language, we indicate the description style, the scope (whole
processor or just instruction set), and the tools available to automate genera-
tion of a processor system.

 Some systems, such as LISA [119] , cover both structural and behavioral
information. This combines the advantages of pure behavioral and structural
descriptions, but there is a need to ensure that related behavioral and struc-
tural elements are consistent.

 All languages except TIE are whole processor descriptions, meaning that
the entire processor design is specifi ed, as opposed to just the instruction set.
However, many processor description languages are specifi c to a particular
basic processor architecture, such as in - order execution in the case of LISA
and nML. Customizable threaded architecture (CUSTARD) [77] , which would
be covered in Section 6.8 , is based on the MIPS instruction set while support-
ing various customization options, such as the type of multithreading and the
use of custom instructions.

 Possible tools for such languages include [179] :

 • Model Generation. Tools for producing hardware prototypes and valida-
tion models for checking that the architecture specifi cation captures the
requirements.

 TABLE 6.1 Features of Some Architecture Description Languages

 Feature
 Expression

 [114]
 CUSTARD

 [77]
 LISA
 [119]

 SPREE
 [269]

 nML
 [239]

 TIE
 [240]

 Whole processor √ √ √ √ √
 Toolchain

confi guration
 √ √ √ √ √ √

 Hardware
generation

 √ √ √ √ √

 Memory system √ √ √
 Behavioral √ √ √ √ √
 Structural √ √ √

c06.indd 216c06.indd 216 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

CUSTOMIZING INSTRUCTION PROCESSORS 217

 • Test Generation. Tools for producing test programs, assertions, and test
benches.

 • Toolkit Generation. Tools for profi ling, exploring, compiling, simulating,
assembling, and debugging designs.

 6.4.3 Identifying Custom Instructions Automatically

 Various approaches have been proposed for automatic identifi cation of instruc-
tion set extensions from high - level application descriptions. One can cluster
related datafl ow graph (DFG) nodes heuristically as sequential or parallel
templates. Input and output constraints are imposed on the subgraphs to
reduce the exponential search space.

 Various architectural optimizations — some described in the earlier
chapters — can benefi t the automatically generated designs, such as [110] :

 • VLIW techniques enable a single instruction to support multiple inde-
pendent operations. A VLIW format partitions an instruction into a
number of slots, each of which may contain one of a set of operations. If
the instruction set is designed to use VLIW, a source language compiler
can use software - pipelining and instruction - scheduling techniques to
pack multiple operations into a single VLIW instruction.

 • Vector operations increase throughput by creating operations that
operate on more than one data element. A vector operation is character-
ized by the operation it performs on each data element and by the
number of data elements that it operates on in parallel, that is, the vector
length. For example, a four - wide vector integer addition operation sums
two input vectors, each containing four integers, and produces a single
result vector of four integers.

 • Fused operations involve creating operations composed of several simple
operations. A fused operation potentially has one or more of the input
operands fi xed to a constant value. Using the fused operation in place of
the simple operations reduces code size and issue bandwidth, and may
reduce register fi le port requirements. Also, the latency of the fused opera-
tion may be lower than the combined latency of the simple operations.

 Application of constraint propagation techniques results in an effi cient enu-
merative algorithm. However, the applicability of this approach is limited to
DFGs with around 100 nodes. Search space can be further reduced by impos-
ing additional constraints such as single output, or connectivity constraints on
the subgraphs.

 The identifi cation of instruction set extensions under input and output
constraints can be formulated as an integer linear programming problem.
Biswas et al. [45] propose an extension to the Kernighan – Lin heuristic based
on input and output constraints. Optimality is often limited by either an
approximate search algorithm or some artifi cial constraints — such as I/O
constraints — to make subgraph enumeration tractable.

c06.indd 217c06.indd 217 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

218 CUSTOMIZATION AND CONFIGURABILITY

 An integer linear programming formulation can replace I/O constraints
with the actual data bandwidth constraints and data transfer costs. The instruc-
tion set extensions that are generated may have an unlimited number of inputs
and outputs. A baseline machine with architecturally visible state registers
makes this approach feasible. Promising results are obtained by integrating
the data bandwidth information directly into the optimization process, by
explicitly accounting for the cost of the data transfers between the core reg-
ister fi le and custom state registers [28] .

 There are many approaches in customizing instruction processors. A
technology - aware approach could involve a clustering strategy to estimate the
resource utilization of lookup table (LUT) - based FPGAs for specifi c custom
instructions, without going through the entire synthesis process [148] . An
application - aware approach could, in the case of video applications, exploit
appropriate intermediate representations and loop parallelism [165] . A
transformation - aware approach could adopt a method based on combined but
phased searching of the source - level transformation design space and the
instruction set extension design space [182] .

 6.5 RECONFIGURABLE TECHNOLOGIES

 Among various technologies, FPGAs are well known. Their capacity and capa-
bility have improved rapidly in the last few years to support high - performance
designs. Their low cost and support for rapid development make them ideal
for designs requiring fast time to market, as well as for education and student
projects.

 The following covers the reconfi gurable fabric that underpins FPGAs and
other reconfi gurable devices. The reconfi gurable fabric consists of a set of
reconfi gurable FUs, a reconfi gurable interconnect, and a fl exible interface to
connect the fabric to the rest of the system. We shall review each of these
components and show how they have been used in both commercial and aca-
demic reconfi gurable systems. The treatment here follows that of Todman
et al. [244] .

 In each component of the fabric, there is a trade - off between fl exibility and
effi ciency. A highly fl exible fabric is typically larger and slower than a less
fl exible fabric. On the other hand, a more fl exible fabric can better adapt to
application requirements. This kind of trade - off can infl uence the design of
reconfi gurable systems. A summary of the main features of various architec-
tures can be found in Table 6.2 . There are many related devices, such as those
from Elixent [82] , that we are unable to include due to limited space.

 6.5.1 Reconfi gurable Functional Units (FUs)

 Reconfi gurable FUs can be classifi ed as either coarse grained or fi ne grained.
A fi ne - grained FU can typically implement a single function on a single bit,

c06.indd 218c06.indd 218 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

 TA
B

L
E

 6
.2

 C

om
pa

ri
so

n
of

 R
ec

on
fi g

ur
ab

le
 F

ab
ri

cs
 a

nd
 D

ev
ic

es

 Fa
br

ic
 o

r
D

ev
ic

e
 G

ra
nu

la
ri

ty

 B
as

e
L

og
ic

C

om
po

ne
nt

 R

ou
ti

ng

A
rc

hi
te

ct
ur

e
 E

m
be

dd
ed

M

em
or

y
 Sp

ec
ia

l F
ea

tu
re

s

 A
ct

el
 A

xc
el

er
at

or
 [

2]

 Fi
ne

 Fo

ur
 - i

np
ut

 m
ux

 a
nd

in

ve
rt

er

 H
or

iz
on

ta
l a

nd

ve
rt

ic
al

 t
ra

ck
s

 4 -
 K

bi
t

bl
oc

ks

 A
nt

if
us

e,
 lo

w
 - p

ow
er

 m
od

e

 A
ct

el
 I

G
L

O
O

 [
3]

 ,
P

ro
A

SI
C

 [
4;

 5
]

 Fi
ne

 T

hr
ee

 - i
np

ut
 lo

gi
c

fu
nc

ti
on

 H

or
iz

on
ta

l a
nd

ve

rt
ic

al
 t

ra
ck

s
 4 -

 K
bi

t
bl

oc
ks

 o
r

1
 K

 F
la

sh
R

O
M

 F

la
sh

 - b
as

ed
, l

ow
 - p

ow
er

 m
od

e

 A
lt

er
a

St
ra

ti
x

II
I

 [1
5]

 , S
tr

at
ix

 I
V

 [
16

]
 Fi

ne

 E
ig

ht
 - i

np
ut

 a
da

pt
iv

e
lo

gi
c

m
od

ul
e

 H
or

iz
on

ta
l a

nd

ve
rt

ic
al

 t
ra

ck
s

 64
0 -

 bi
t,

9 -
 K

bi
t,

14
4 -

 K
bi

t
bl

oc
ks

 D

SP
 b

lo
ck

s,
1.

6 –
 8.

5
 G

bp
s

I/
O

s
pr

og
ra

m
m

ab
le

 p
ow

er

 X
ili

nx
 V

ir
te

x
II

 P
ro

 [2

62
] ,

V
ir

te
x

4
 [2

63
]

 Fi
ne

 Fo

ur
 - i

np
ut

 L
U

T
s

 H
or

iz
on

ta
l a

nd

ve
rt

ic
al

 t
ra

ck
s

 18
 - K

bi
t

bl
oc

ks

 B
lo

ck
 m

ul
ti

pl
ie

rs
, D

SP
 b

lo
ck

s,
Po

w
er

P
C

 4
05

 p
ro

ce
ss

or
,

3.
1 –

 6.
5

 G
bp

s
I/

O
s

 X
ili

nx
 V

ir
te

x
5

 [2
64

] ,
V

ir
te

x
6

 [2
65

]
 Fi

ne

 Si
x -

 in
pu

t
L

U
T

s
or

du

al
 fi

ve
 - i

np
ut

 H

or
iz

on
ta

l a
nd

ve

rt
ic

al
 t

ra
ck

s
 36

 - K
bi

t
bl

oc
ks

 D

SP
s,

6.
5

 G
bp

s
I/

O
s

Po
w

er
P

C

44
0

pr
oc

es
so

r
 L

at
ti

ce
 X

P
2

 [1
49

]
 Fi

ne

 Fo
ur

 - i
np

ut
 L

U
T

s
 H

or
iz

on
ta

l a
nd

ve

rt
ic

al
 t

ra
ck

s
 18

 - K
bi

t
bl

oc
ks

 D

SP
s,

in
te

rn
al

 fl
as

h
m

em
or

y

 Si
lic

on
B

lu
e

iC
E

65

 [2
19

]
 Fi

ne

 Fo
ur

 - i
np

ut
 L

U
T

s
 H

or
iz

on
ta

l a
nd

ve

rt
ic

al
 t

ra
ck

s
 4 -

 K
bi

t
bl

oc
ks

 L

ow
 p

ow
er

 m
od

e,
 in

te
rn

al

fl a
sh

 m
em

or
y

 Si
lic

on
 H

iv
e

A
vi

sp
a

 [2
20

]
 C

oa
rs

e
 A

L
U

s,
sh

if
te

rs
,

ac
cu

m
ul

at
or

s,
an

d
m

ul
ti

pl
ie

rs

 B
us

es

 4
 ×

 4
 K

 d
ua

l p
or

t
lo

ca
l d

at
a

m
em

or
ie

s

 75
 F

U
s,

95
 r

eg
is

te
r

fi l
es

,
O

F
D

M
 r

ad
io

 a
pp

lic
at

io
ns

 O
F

D
M

: o
rt

ho
go

na
l f

re
qu

en
cy

 - d
iv

is
io

n
m

ul
ti

pl
ex

in
g.

219

c06.indd 219c06.indd 219 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

220 CUSTOMIZATION AND CONFIGURABILITY

or a small number of bits. The most common kind of fi ne - grained FUs are the
small LUTs that are used to implement the bulk of the logic in a commercial
FPGA. A coarse - grained FU, on the other hand, is typically much larger, and
may consist of arithmetic and logic units (ALUs) and possibly even a signifi -
cant amount of storage. In this section, we describe the two types of FUs in
more detail.

 Many reconfi gurable systems use commercial FPGAs as a reconfi gurable
fabric. These commercial FPGAs contain many three to six input LUTs, each
of which can be thought of as a fi ne - grained FU. Figure 6.3 a illustrates a LUT;
by shifting in the correct pattern of bits, this FU can implement any single

 Figure 6.3 Fine - grained reconfi gurable FUs [244] . (a) Three - input LUT; (b) cluster of
LUTs.

B
its

tr
ea

m

Inputs

Output

(a)

Lo
ca

l I
nt

er
co

nn
ec

t

Inputs

Outputs

(b)

c06.indd 220c06.indd 220 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

RECONFIGURABLE TECHNOLOGIES 221

function of up to three inputs — the extension to LUTs with larger numbers of
inputs is clear. Typically, LUTs are combined into clusters, as shown in Figure
 6.3 b. Figure 6.4 shows clusters in two popular FPGA families. Figure 6.4 a
shows a cluster in the Altera Stratix device; Altera calls these clusters “ logic
array blocks ” (LABs) [14] . Figure 6.4 b shows a cluster in the Xilinx architec-
ture [262] ; Xilinx calls these clusters “ confi gurable logic blocks ” (CLBs). In
the Altera diagram, each block labeled “ LE ” is an LUT, while in the Xilinx
diagram, each “ Slice ” contains two LUTs.

 Reconfi gurable fabrics containing LUTs are fl exible and can be used to
implement any digital circuit. However, compared to the coarse - grained struc-
tures described below, these fi ne - grained structures have signifi cantly more

 Figure 6.4 Commercial logic block architectures. (a) Altera LAB [14] ; (b) Xilinx
CLB [262] .

LE

LE

LE

LE

LE

LE

LE

LE

LE

LE

Lo
ca

l i
nt

er
co

nn
ec

t

General-purpose
routing

General-purpose
routing

To left LAB

To right LAB

From right LAB

From left LAB

(a)

Switch
matrix

Slice

Slice

Slice

Slice

Fast connections
to neighbors

CIN

CIN
COUT

COUT(b)

c06.indd 221c06.indd 221 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

222 CUSTOMIZATION AND CONFIGURABILITY

area, delay, and power overhead. Recognizing that these fabrics are often used
for arithmetic purposes, FPGA companies have included additional features
such as carry chains and cascade chains to reduce the overhead when imple-
menting common arithmetic and logic functions.

 While the effi ciency of commercial FPGAs is improved by adding architec-
tural support for common functions, one can go further and embed signifi -
cantly larger, but less fl exible, reconfi gurable FUs. There are two kinds of
devices that contain coarse - grained FUs.

 First, many commercial FPGAs, which consist primarily of fi ne - grained
FUs, are increasingly enhanced by the inclusion of larger blocks. For instance,
the early Xilinx Virtex device contains embedded 18 × 18 bit multiplier units
 [262] . When implementing algorithms requiring a large amount of multiplica-
tion, these embedded units can signifi cantly improve the density, speed, and
power consumption. On the other hand, for algorithms that do not perform
multiplication, these blocks are rarely useful. The Altera Stratix devices contain
a larger, but more fl exible embedded block, called a DSP block, which can
perform accumulate functions as well as multiply operations. The comparison
between the two devices clearly illustrates the fl exibility and overhead trade -
 off: the Altera DSP block may be more fl exible than the Xilinx multiplier, but
it consumes more chip area and runs slower for the specifi c task of multiplica-
tion. Recent Xilinx devices have a more complex embedded unit, called
DSP48. It should be noted that, while such embedded blocks eliminate recon-
fi gurable interconnects within them, their fi xed location can cause wiring con-
gestion and overhead. Moreover, they would become an overhead for
applications that do not make use of them.

 Second, while commercial FPGAs described above contain both fi ne -
 grained and coarse - grained blocks, there are also devices that contain only
coarse - grained blocks. An example of a coarse - grained architecture is the
ADRES architecture, which is shown in Figure 6.5 [171] . Each reconfi gurable
FU in this device contains a 32 - bit ALU that can be confi gured to implement
one of several functions including addition, multiplication, and logic functions,
with two small register fi les. Clearly, such an FU is far less fl exible than the
fi ne - grained FUs described earlier; however, if the application requires func-
tions that match the capabilities of the ALU, these functions can be effi ciently
implemented in this architecture.

 6.5.2 Reconfi gurable Interconnects

 Regardless of whether a device contains fi ne - grained FUs, coarse - grained FUs,
or a mixture of the two, the FUs needed to be connected in a fl exible way.
Again, there is a trade - off between the fl exibility of the interconnect (and
hence the reconfi gurable fabric) and the speed, area, and power effi ciency of
the architecture.

 Reconfi gurable interconnect architectures can be classifi ed as fi ne grained
or coarse grained. The distinction is based on the granularity with which wires
are switched. This is illustrated in Figure 6.6 , which shows a fl exible intercon-

c06.indd 222c06.indd 222 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

RECONFIGURABLE TECHNOLOGIES 223

nect between two buses. In the fi ne - grained architecture in Figure 6.6 a, each
wire can be switched independently, while in Figure 6.6 b, the entire bus is
switched as a unit. The fi ne - grained routing architecture in Figure 6.6 a is more
fl exible, since not every bit needs to be routed in the same way; however, the
coarse - grained architecture in Figure 6.6 b contains fewer programming bits,
and hence has lower overhead.

 Fine - grained routing architectures are usually found in commercial FPGAs.
In these devices, the FUs are typically arranged in a grid pattern and they are
connected using horizontal and vertical channels. Signifi cant research has been
performed in the optimization of the topology of this interconnect [157] .

 Coarse - grained routing architectures are commonly used in devices con-
taining coarse - grained FUs. Figure 6.7 shows two examples of coarse - grained
routing architectures. The routing architecture in Figure 6.7 a is used in the

 Figure 6.5 ADRES reconfi gurable FU [171] . Pred is a one - bit control input selecting
either Src1 or Src2 for the functional unit.

Pred Src1

Result

Src2

Pred_out

Functional unit

mux mux

Register
file

Predicate
register

file

321

1

32

32

mux

 Inputs 32-bit inputs 32-bit inputs

Register

1-bit
predicate

32-bit
result

Multicontext
configuration

RAM

32 32
1

 Figure 6.6 Routing architectures. (a) Fine grained; (b) coarse grained.

Configuration Bit(a) (b)

c06.indd 223c06.indd 223 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

224 CUSTOMIZATION AND CONFIGURABILITY

Totem reconfi gurable system [60] ; the interconnect is designed to be fl exible
and to provide arbitrary connection patterns between FUs. On the other hand,
the routing architecture in Figure 6.7 b, which is used in the Silicon Hive recon-
fi gurable system, is less fl exible, but faster and smaller [220] . In the Silicon
Hive architecture, only connections between units that are likely to commu-
nicate are provided.

 6.5.3 Software Confi gurable Processors

 Software confi gurable processors are devices introduced by Stretch. They have
an architecture that couples a conventional instruction processor to a recon-
fi gurable fabric to allow application programs to dynamically customize the
instruction set. Such architectures have two benefi ts. First, they offer signifi cant
performance gains by exploiting data parallelism, operator specialization, and
deep pipelines. Second, application builders can develop their programs using
the Stretch C compiler without having expertise in electronic design.

 Figure 6.7 Examples of coarse - grained routing architectures. (a) Totem coarse -
 grained routing architecture [60] ; (b) Silicon Hive coarse - grained routing architecture
 [220] . GPR: General Purpose Registers, MULT: Multiplier. RF: register fi le, LS: Load/
Store Unit.

G
P

R

R
A

M

R
A

M

G
P

R

M
U

L
T

G
P

R

A
L

U

A
L

U

G
P

R

G
P

R

R
A

M

A
L

U

G
P

R

(a)

Interconnect

RF RF RF RF

ALU ALU LS Memory

Interconnect

(b)

c06.indd 224c06.indd 224 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

RECONFIGURABLE TECHNOLOGIES 225

 A software confi gurable processor consists of a conventional 32 - bit RISC
processor coupled with a programmable instruction set extension fabric
(ISEF). There are also an ALU for arithmetic and logic operations and a
fl oating - point unit (FPU) for fl oating - point operations. Figure 6.8 shows the
S6 Software Confi gurable Processor Engine.

 The ISEF consists of an array of blocks, each containing an array of 4 - bit
ALUs and an array of multiplier elements, interconnected by a programmable
routing fabric. The 4 - bit ALUs can be cascaded through a fast carry circuit to
form up to 64 - bit ALUs. Each 4 - bit ALU may also implement up to four
3 - input logic functions, with four register bits for extension instruction state
variables or for pipelining.

 The ISEF supports multiple application - specifi c instructions as extension
instructions. Arguments to extension instructions are provided from 32 wide
registers, which are 128 bits wide. Each extension instruction may read up
to three 128 - bit operands and write up to two 128 - bit results. A rich set of
dedicated load and store instructions are provided to move data between
the 128 - bit wide register and the 128 - bit wide cache and memory subsystem.
The ISEF supports deep pipelining by allowing extension instructions to be
pipelined.

 In addition to the load/store model, a group of extension instructions may
also defi ne arbitrary state variables to be held in registers within the ISEF.
State values may be read and modifi ed by any extension instruction in the
group, thereby reducing the Wide Register traffi c.

 In addition to the Software Confi gurable Processor Engine, there is also a
programmable accelerator, which consists of a list of functions implemented
in dedicated hardware. These functions include motion estimation for video
encoding, entropy coding for H.264 video, cryptographic operations based on

 Figure 6.8 The Stretch S6 Software Confi gurable Processor Engine [230] . IRAM
denotes embedded memory for the instruction set extension fabric (ISEF).

Local memory system

32 KB
I-cache

32 KB
D-cache

64 KB
Dual-port RAM

Execution unit

32-bit register 32-bit register 128-bit wide register

FPU ALU

ISEF

IRAM

c06.indd 225c06.indd 225 5/4/2011 9:54:35 AM5/4/2011 9:54:35 AM

226 CUSTOMIZATION AND CONFIGURABILITY

Advanced Encryption Standard (AES) and Triple Data Encryption Standard
(3DES) schemes, and various audio codecs including those for MP3 and AC3.

 To develop an application, the programmer identifi es critical sections to be
accelerated, writes one or more extension instructions as functions in a variant
of the C programming language called Stretch C, and accesses those functions
from the application program. Further information about application mapping
for software confi gurable processors can be found in the next section, and
related application studies for the Stretch S5 Software Confi gurable Processor
Engine can be found in Sections 7.6.2 and 7.7.2.

 6.6 MAPPING DESIGNS ONTO RECONFIGURABLE DEVICES

 The resources in a reconfi gurable device need to be confi gured appropriately
to implement a design for a given application. We shall look at the ways designs
are mapped onto an FPGA and onto a software confi gurable processor.

 A typical tool fl ow for an FPGA is shown in Figure 6.9 [56] . In the conven-
tional tool fl ow, HDLs such as VHDL and Verilog are widely used to target
commercial devices to describe the circuit to be implemented in the FPGA.
The description of the circuit is written at the register transfer level (RTL),
which specifi es the operations at each clock cycle. The description is then
synthesized to a netlist of logic blocks before being placed and routed for the
FPGA.

 In the fi rst stage of the synthesis process, the datapath operations in an RTL
design such as control logic, memory blocks, registers, adders, and multipliers
are identifi ed and elaborated into a set of basic boolean logic gates such as
AND, OR, and XOR.

 Next, the netlist of basic gates is optimized independent of the FPGA
architecture. The optimization includes: boolean expression minimization,
removing the redundant logic, buffering sharing, retiming, and fi nite - state
machine encoding. The optimized netlist of basic gates is then mapped to the
specifi c FPGA architecture such as Xilinx Virtex devices or Altera Stratix
devices. There is further optimization based on the specifi c architecture such
as carry chains for adders and dedicated shift functions in logic block for shift
registers. The fi nal stage in the synthesis process is packing and clustering
groups of several LUTs and registers into logic blocks like Figure 6.4 . The
packing and clustering minimize the number of connections between different
logic blocks. After the synthesis process, the logic blocks in the mapped netlist
are placed onto the FPGA based on the different optimization goals, such as
circuit speed, routability, and wire length. Once the location of the logic blocks
is determined, the connection between I/Os, logic blocks, and other embedded
elements are routed onto the programmable routing resources in FPGA. The
routing process determines which programmable switches should be used to
connect the logic block input and output pins. Finally, a confi guration bitstream
for all inputs and outputs, logic blocks, and routing resources for the circuit in
specifi c FPGA is generated.

c06.indd 226c06.indd 226 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

MAPPING DESIGNS ONTO RECONFIGURABLE DEVICES 227

 The above description covers design mapping for fi ne - grained FPGA
resources. Many reconfi gurable devices also have coarse - grained resources for
computation and for storage (see Section 6.5.1), so FPGA design tools need
to take such resources into account.

 To improve productivity, high - level programming languages are included in
the tool fl ow for FPGAs (the upper part of Figure 6.9). These languages and
tools, such as AutoPilot [272] , Harmonic [159] , and ROCC [248] , enable appli-
cation developers to produce designs without detailed knowledge of the
implementation technology. Some of these compilers are able to extract paral-
lelism in the computation from the source code, and to optimize for pipelining.
Such tools often improve productivity of application developers, at the expense

 Figure 6.9 Tool fl ow for FPGA.

Synthesis

Conventional
tool flow for

FPGA

High-level tool flow
to facilitate
hardware

development

High-level behavioral
description of application

Compiler

Hardware description language
(HDL) of design at register

transfer level (RTL)

RTL elaboration to
netlist of basic gates

Architecture-
independent
optimization

Technology mapping
and architecture-

specific optimization

Packing and
clustering

Netlist of
logic blocks

Placement of logic
blocks in FPGA

Netlist of
basic gates

Power
analysis

Area
analysis

Routing of
connections

Timing
analysis

Bitstream

c06.indd 227c06.indd 227 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

228 CUSTOMIZATION AND CONFIGURABILITY

of the quality of the design. However, since device capacity and capability
continue to increase rapidly, productivity of application developers is likely to
become the highest priority.

 Besides confi guring the circuit, there are tools that analyze the delay,
area, and power consumption of the implemented circuit. These tools are used
to check whether the circuit meets the requirements of the application
developer.

 For a Software Confi gurable Processor from Stretch, the compilation needs
to target both the execution unit and the ISEF shown in Figure 6.8 . The fi rst
stage of the Stretch C compiler [25] takes an extension instruction and applies
various optimizations, such as constant propagation, loop unrolling, and word -
 length optimization. In addition, sequences of operators are aggregated into
balanced trees where possible; operators are specialized with multiplication
by a constant converted into shifts and adds; and resources among operators
for different instructions are shared. The compiler then produces two main
outputs: instruction header and latency information including register usage
for the Xtensa compiler, and a structured netlist of the operators extracted
from the source code for mapping to the resources in the ISEF [25] .

 The Xtensa compiler compiles the application code with references to the
extension instructions. It uses the instruction header and timing data from the
Stretch C compiler to perform register allocation and optimized scheduling of
the instruction stream. The result is then linked to the ISEF bitstream.

 The ISEF bitstream generation stage in the Stretch compiler is similar to
the tool fl ow for FPGAs shown earlier. The four main stages are [25] :

 • Map. Performs module generation for the operators provided by the
initial stage of the Stretch C compiler.

 • Place. Assigns location to the modules generated by Map.
 • Route. Performs detailed, timing - driven routing on the placed netlist.
 • Retime. Moves registers to balance pipeline stage delays.

 The linker packages the components of the application into a single executable
fi le, which contains a directory of the ISEF confi gurations for the operating
system or the run - time system to locate instruction groups for dynamic
reconfi guration.

 6.7 INSTANCE - SPECIFIC DESIGN

 Instance - specifi c design is often used in customizing both hardware and soft-
ware. The aim for instance - specifi c design is to optimize an implementation
for a particular computation. The main benefi ts are improving speed and
reducing resource usage, leading to lower power and energy consumption at
the expense of fl exibility.

c06.indd 228c06.indd 228 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

INSTANCE-SPECIFIC DESIGN 229

 We describe three techniques for automating instance - specifi c design. The
fi rst technique is constant folding: propagating static input values through a
computation to eliminate unnecessary hardware or software. As an example,
an instance - specifi c version of the hardware design in Figure 6.10 specialized
to particular fi lter coeffi cients is shown in Figure 6.11 . The improvement in
effi ciency is due to the fact that one - input constant - coeffi cient multipliers are
smaller and faster than two - input multipliers.

 The ability to implement specialized designs, while at the same time provid-
ing fl exibility by allowing different specialized designs to be loaded onto a
device, can allow reconfi gurable logic to be more effective than ASICs in
implementing some applications. For other applications, performance improve-
ments from optimizing designs to a particular problem instance can help to
shift the price/performance ratio away from ASICs and toward FPGAs.

 Signifi cant benefi ts for instance - specifi c design have been reported for a
variety of applications. For FIR (Finite Impulse Response) fi lters, a modifi ed
common subexpression elimination algorithm can be used to reduce the
number of adders used in implementing constant - coeffi cient multiplication
 [180] . Up to 50% reduction in the number of FPGA slices and up to 75%

 Figure 6.10 An FIR fi lter containing two - input multipliers that support variable fi lter
coeffi cients. The triangular blocks denote registers [197] .

Multiplier Multiplier

Adder

Multiplier

Adder

Multiplier

Adder
Result

Input Value

Filter coefficients

 Figure 6.11 An FIR fi lter containing one - input constant - coeffi cient multipliers that
support instance - specifi c fi lter coeffi cients [197] .

Adder Adder Adder
Result

Input Value

Constant-
Coefficient
Multiplier

Constant-
Coefficient
Multiplier

Constant-
Coefficient
Multiplier

Constant-
Coefficient
Multiplier

c06.indd 229c06.indd 229 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

230 CUSTOMIZATION AND CONFIGURABILITY

reduction in the number of LUTs for fully parallel implementations have been
observed, in comparison to designs based on distributed arithmetic. Moreover,
there is up to 50% reduction in the total dynamic power consumption of the
FIR fi lters.

 Changing an instance - specifi c design at run time is usually much slower
than changing the inputs of a general circuit, since a new full or partial con-
fi guration must be loaded, which may take many tens or hundreds of millisec-
onds. It is therefore important to carefully choose how a design is specialized.
Related discussions on run - time reconfi guration can be found in Section 6.9 .

 The second technique for automating instance - specifi c design is function
adaptation, which involves changing a function in hardware or software to
achieve, for a specifi c application instance, the desired trade - off in the perfor-
mance or resource usage of the function and the quality of the result produced
by the function.

 An example of function adaptation is word - length optimization. Given the
fl exibility of fi ne - grain FPGA, it is desirable to automate the process of fi nding
a good custom data representation. An important implementation decision to
automate is the selection of an appropriate word length and scaling for each
signal in a DSP system. Unlike microprocessor - based implementations where
the word length is defi ned a priori by the hard - wired architecture of the pro-
cessor, reconfi gurable computing based on FPGAs allows the size of each
variable to be customized to produce the best trade - offs in numerical accuracy,
design size, speed, and power consumption.

 The third technique for automating instance - specifi c design is architecture
adaptation, which involves changing the hardware and software architecture
to optimize for a specifi c application instance, such as supporting relevant
custom instructions. We shall discuss this technique in more detail in the next
section.

 An illustration of the above three techniques is given in Table 6.3 . Further
information about instance - specifi c design can be found elsewhere [197] .

 TABLE 6.3 Some Illustrations of Instance - Specifi c Design

 Technique Purpose Example
 Benefi ts in
Example

 Constant
folding

 Optimize operation
for static input
values

 FIR fi lter [180] Up to 50%
reduction in
dynamic power
consumption

 Function
adaptation

 Optimize function for
quality of result

 Word - length
optimization [62]

 87% reduction
in power
consumption

 Architecture
adaptation

 Optimize architecture
for application
instance

 Instruction
processor
customization [77]

 Speed improved
by 72%, area
increased by 3%

c06.indd 230c06.indd 230 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

CUSTOMIZABLE SOFT PROCESSOR: AN EXAMPLE 231

 6.8 CUSTOMIZABLE SOFT PROCESSOR: AN EXAMPLE

 This section describes a multithreaded soft processor called CUSTARD with
a customizable instruction set [77] . It illustrates the material from the preced-
ing sections: we show how an instruction processor can be customized by
adapting the architecture to support different types of multithreading and
custom instructions; we then present the associated tool fl ow targeting recon-
fi gurable technology.

 CUSTARD supports multiple contexts within the same processor hard-
ware. A context is the state of a thread of execution, specifi cally the state of
the registers, stack, and program counter. Supporting threads at the hardware
level brings two signifi cant benefi ts. First, a context switch — changing the
active thread — can be accomplished within a single cycle, enabling a unipro-
cessor to interleave execution of independent threads with little or no over-
head. Second, a context switch can be used to hide latency where a single
thread would otherwise busy - wait.

 The major cost of supporting multiple threads stems from the additional
register fi les required for each context. Fortunately, current FPGAs are rich
in on - chip block memories that could be used to implement large register fi les.
Additional logic complexity must also be added to the control of the processor
and the current thread must be recorded at each pipeline stage. However, the
bulk of the pipeline and the FUs are effectively shared between multiple
threads, so we would expect a signifi cant area reduction over a multiprocessor
confi guration.

 Instances of CUSTARD processors are generated using a parameterizable
model. The key elements of this parameterizable model are shown in Figure
 6.12 . This model is used both in instantiating a synthesizable hardware descrip-
tion and in confi guring a cycle - accurate simulator.

 Figure 6.12 CUSTARD microarchitecture showing threading, register fi le, and for-
warding network parameterizations.

FORWARDING_MEM

FORWARDING_BRANCH

CUSTOM
EXECUTION

UNITS

FORWARDING_ALU

REGISTER FILE READ PORTS

REGISTER FILE

R0R0

R1

Rn

Rm

n REGISTERS

m THREADS

CONTROL
BRANCH DELAY
LOAD STALL

MEMORY
ALU

WRITEBACKFETCH

c06.indd 231c06.indd 231 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

232 CUSTOMIZATION AND CONFIGURABILITY

 The CUSTARD base architecture is typical of a soft processor, with a fully
bypassed and interlocked 4 - stage pipeline. It is a load/store RISC architecture
supporting the MIPS integer instruction set. It is also capable of augmenting
the pipeline with custom instructions using spare portions of the MIPS opcode
space.

 There are four sets of parameters for customizing CUSTARD. The fi rst set
covers multithreading support: one can specify the number of threads and the
threading type, either block multithreading (BMT) or interleaved multithread-
ing (IMT). The second set covers custom instructions and the associated data-
paths at the execution stage of the pipeline as well as custom memory blocks.
The third set covers the forwarding and interlock architecture: whether the
Branch delay slot, the Load delay slot, and the forwarding paths are necessary.
The fourth set covers the register fi le: the number of registers and the number
of register fi le ports.

 Two types of multithreading, BMT and IMT, are supported. Both types
simultaneously maintain the context — the state of registers, program counter,
and so on — of multiple independent threads. The types of threading differ in
the circumstances that context switches are triggered.

 BMT triggers a context switch as a result of some run - time event in the
currently active thread, for example, a cache miss, an explicit “ yield ” of control,
or the start of some long latency operation such as a custom instruction. When
only a single thread is available, the BMT processor behaves exactly as a
conventional single - threaded processor. When multiple threads are available,
any latency in the active thread is hidden by a context switch. The context
switch is triggered at the execution stage of the pipeline, such that the last
instruction fetched must be fl ushed and refi lled from the new active thread.

 IMT performs a mandatory context switch every single cycle, resulting in
interleaved execution of the available threads. IMT permits simplifi cation of
the processor pipeline since, given suffi cient threads, certain pipeline stages
are guaranteed to contain independent instructions. IMT thus removes pipe-
line hazards and permits simplifi cation of the forwarding and interlock network
designed to mitigate these hazards. The CUSTARD processor can exploit this
capability by selectively removing forwarding paths to optimize the processor
for a particular threading confi guration.

 Table 6.4 summarizes the customization of the forwarding and interlock
architecture for each multithreading confi guration. The forwarding paths,
BRANCH, ALU, and MEM, are illustrated in Figure 6.12 . The IMT columns
show how elements of the forwarding and interlock network can be removed
depending upon the number of available threads. For example, in the case of
two threads, the ALU forwarding logic can be removed. When two IMT
threads are available, any instruction entering the ALU stage of the pipeline
is independent of the instruction leaving the ALU stage. Removing interlocks
in situations highlighted by “ * ” constrains the ordering of the input instruc-
tions; the relevant parameters are made available to the compiler, which can
then adapt the scheduling of instructions.

c06.indd 232c06.indd 232 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

CUSTOMIZABLE SOFT PROCESSOR: AN EXAMPLE 233

 Multiple contexts are supported by multiple register fi les that are imple-
mented as dual - port RAM on the FPGA. Each register fi le access is indexed
by the register number and also the ID of the thread that generated the access.
Each register fi le is also parameterizable in terms of the number of ports and
the number of registers per thread. Increasing the number of register fi le ports
allows custom instructions to be selected by the compiler that take a greater
number of operands.

 An approach based on compiling a parallel imperative language into hard-
ware [191] is used to implement the parameterizable processor. This imple-
mentation of CUSTARD provides a framework for parameterization of the
processor together with a route to hardware. The associated compiler outputs
MIPS integer instructions and custom instructions to optimize CUSTARD
for a given application; Table 6.5 shows the custom instructions for some
benchmarks.

 Figure 6.13 shows the fl ow through the CUSTARD tools. Custom instruc-
tions are generated based on a technique known as similar sub - instructions
 [77] . Prior to fi nding custom instructions, a preoptimization stage performs
standard source - level optimizations together with loop unrolling to expose
loop parallelism. After custom instructions have been selected, custom and
base instructions are scheduled to minimize pipeline stalls. This scheduling
stage is parameterizable to support the microarchitectural changes afforded
by the CUSTARD multithreading modes.

 The result of compilation comprises hardware datapaths to implement
custom instructions and software to execute on the customized processor.
Custom instruction datapaths are added to the CUSTARD processor, and the
decoding logic is revised to map new instructions to unused portions of the
opcode space.

 There is a cycle - accurate simulator based upon the SimpleScalar framework
 [30] . The simulator can be confi gured directly from the processor hardware
description and simulates a parameterizable memory system.

 Five benchmarks — Blowfi sh, Colourspace, AES, discrete cosine transform
(DCT), and SUSAN — have been developed for a CUSTARD processor

 TABLE 6.4 Summary of Forwarding Paths (As Shown in Figure 5.12) and
Interlocks That Can Be “ Optimized Away ” for Single - Threaded, Block
Multithreaded (BMT), and Interleaved Multithreaded (IMT) Parameterizations

 Disable Confi guration Number of Threads BMT ≥ 1 IMT 2 IMT ≥ 4

 FORWARDING BRANCH √ √
 FORWARDING ALU √ √
 FORWARDING MEM √
 BRANCH DELAY √ * √ √
 LOAD INTERLOCK √ * √ √

 * Optimizing away this element in this confi guration changes the compiler scheduler behavior to
prevent hazards.

c06.indd 233c06.indd 233 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

234 CUSTOMIZATION AND CONFIGURABILITY

 Figure 6.13 Tool fl ow for the CUSTARD processor customized for a particular
application.

Processor
template

Multithreading: Type/number of threads
Register file: Ports/bitwidths/number

Memory system: Cache sizes/architecture
Application

Compiler

Generate
processor

FPGA
place and route

Cycle-accurate
simulator

Customized
processor

CUSTARD

Executable
code

Custom
instructions

 TABLE 6.5 A Summary of the Custom Instructions Automatically Generated for a
Set of Benchmarks

 Benchmark

 Custom Instruction(s)
(Input Registers r 0 − r 3 ,
Immediate Value imm 0)

 Num.
Uses

 Latency
(Cycles)

 BRAM
(Bytes)

 Blowfi sh LUT (r 0 >> 24) + LUT (r 1 >> 16) 2 1 1024
 LUT ([r 0 >> 8] & 255) 2 1

 Color space ([r 0 >> 8] & 0 xF F)|(r 1 & 0 xF F 00) 1 1 32
 |([r 2 << 8] & 0 xF F 0000)

 DCT LUT (r 1) + r 2 * (r 0 << 8) 65 2 64
 LUT (r 1) + r 2 * ([r 0 & 255] − 128) 65 2

 Edge detect LUT (r 0 + 1 + imm 0) 3 1 64

 Susan LUT (r 0) 31 1 516

 AES LUT (r 0) ∧ LUT (r 1 >> 8) 64 1 1024
 ∧ LUT (r 2 >> 16) ∧ LUT (r 3 >> 24)

 Inputs r 0 − r 3 are allocated to registers from the general purpose fi le. LUT (a) = table lookup from
dedicated block RAM (BRAM) address a . “ Num. Uses ” demonstrates the extent of reuse by
showing the number of times the instruction is used in the benchmark assembly code. Latency is
the number of execution cycles required before the output is available to the forwarding network
or in the register fi le.

c06.indd 234c06.indd 234 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

RECONFIGURATION 235

implemented on a Xilinx XC2V2000 FPGA. It is found that the IMT4 (IMT
with four threads) and BMT4 (BMT with four threads) confi gurations add
only 28% and 40% area, respectively, to the single - threaded processor, while
allowing interleaved execution of four threads with no software overhead.
Moreover, custom instructions give a signifi cant performance increase, an
average of 72% with a small area overhead above the same confi guration
without custom instructions, an average of only 3%. CUSTARD accelerates
AES by 355%.

 The IMT processors without custom instructions provide a higher maximum
clock rate than both BMT (41% higher) and single - threaded (5% higher)
processors. The number of cycles is also reduced by an average of 10%. The
IMT processors hide pipeline latencies by tightly interleaving independent
threads. We anticipate that the relatively low (10%) improvement is caused
by the short latency of the custom instructions generated (Table 6.5), at most
two cycles in every case. It is not possible to build longer latency instructions
within the register fi le port constraints, so we expect that deeply pipelined
processors or fl oating point custom instructions are needed to create latencies
long enough for signifi cant benefi t in this area. However, the IMT processors
allow a higher maximum clock rate by removing the forwarding logic around
the ALU. The ALU forwarding logic is necessarily on the critical path in the
BMT and single - threaded processors, as indicated by the timing analyzer
reports.

 6.9 RECONFIGURATION

 There are many motivations for reconfi guration. One motivation is to share
resources that are not required concurrently. Another motivation is to upgrade
to support new functions, new standards, or new protocols. A third reason is
to adapt the hardware based on run - time conditions.

 Run - time reconfi guration has shown promise for many applications, includ-
ing automotive systems [35] , high - performance computing [81] , interconnec-
tion networks [161] , video processing [211] , and adaptive Viterbi decoding
 [241] . The treatment below abstracts from the specifi c technology, focusing on
overhead analysis of designs involving run - time reconfi guration.

 6.9.1 Reconfi guration Overhead Analysis

 Adapting an architecture to specifi c applications aims to improve performance
by applying application - specifi c optimizations. However the performance
gained by adaptation has to outweigh the cost of reconfi guration. Consider a
software function f () that takes t si time to execute on an architecture with a
standard, general - purpose instruction set. When adapted to support a custom
instruction, it takes t ci time to execute, and can be expressed as a fraction of
the original execution time as α t si , where 0 < α < 1. The device on which f ()

c06.indd 235c06.indd 235 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

236 CUSTOMIZATION AND CONFIGURABILITY

executes requires t r time to reconfi gure. We defi ne a reconfi guration ratio R
that helps us decide if reconfi guration to this new architecture is desirable by
analyzing the overhead involved:

 R
t

t t
t

t t
si

ci r

si

si r

=
+

=
+α

. (6.1)

 The reconfi guration ratio R gives us a measure of the benefi ts of reconfi guring
to the new adapted architecture; R provides the improvement factor of the
new implementation after reconfi guration, over the current implementation.
The point where R = 1 is the threshold: if R > 1, reconfi guration will be benefi -
cial. It is, however, important to note that an R value of 2 does not necessarily
translate to an overall twofold system performance increase. The maximum
reconfi guration ratio R max is a measure of the absolute performance gain, dis-
counting reconfi guration time. It is the maximum possible R value for a custom
instruction. This is determined as follows:

 R R
t
t

max
t

si

cir
= = =

→
lim .

0

1
α

 (6.2)

 The maximum potential reconfi guration ratio R pot is a measure of the maximum
rate at which performance improvement is possible; it gives an idea of how
quickly a custom instruction will cross the reconfi guration threshold:

 R R
t
t

pot
si

r

= =
→

lim .
α 0

 (6.3)

 R pot provides an indication on the granularity of reconfi guration and size of
functions that will benefi t from adaptation. A function with a higher R pot value
can be adapted more easily. It can be shown that:

t
t

R

R
ci

si

pot

pot

=
− 1

. (6.4)

 Hence an R pot of 5 means that the custom instruction produced need only be
four - fi fths the speed of the original software version, before it becomes worth
implementing. An R pot of 4 requires the custom instruction to be three - fourths
the speed of the original, while an R pot of 3, two - thirds the speed of the original,
and so on.

 If function f () has an R pot value of 1, the adaptation and subsequent recon-
fi guration of that function will not be benefi cial.

 The reconfi guration ratio can also be described in terms of the number of
clock cycles of an FIP. Consider a software function f (), which takes t si units
of time to execute. The function takes n si clock cycles to execute, and the cycle

c06.indd 236c06.indd 236 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

RECONFIGURATION 237

time is T si . The function f () is called F times over the period we are investigat-
ing, in this case one execution of the application. Similarly with t ci :

t n T F

t n T F
si si si

ci ci ci

=
= .

 (6.5)

 The reconfi guration time t r can be rewritten as the product of the reconfi gura-
tion cycle time T r and the number of confi guration cycles n r . The reconfi gura-
tion cycle time, T r , is platform dependent and is independent of the cycle time
of designs implemented on the programmable device. The number of confi gu-
ration cycles models the time required for either full or partial reconfi guration.
In full reconfi guration, n r is a constant associated with a particular program-
mable device; in partial reconfi guration, n r varies with the amount of changes
in the confi guration. n r may also be reduced through improvements in technol-
ogy and architectures that support fast reconfi guration through caches or
context switches. There is a factor τ that represents certain reconfi guration
overheads, such as stopping of the device prior to reconfi guration and starting
of the device after reconfi guration:

 t n Tr r r= + τ . (6.6)

 In modern programmable devices, the time taken to start and stop a device
can often be ignored. For instance, in Xilinx Virtex devices, this value can be
as small as 10% of the time required to reconfi gure a frame, the smallest
atomic reconfi gurable unit.

 Other overheads include the time taken to save and restore the state of the
processor. In the most extreme case, the state of the processor includes all
storage components in the processor, for instance the register fi le, pipeline
registers, program counter, or cache. By reinstating the state of a processor, a
processor can be put back into the condition it was in when the state was saved.

 After substituting Equations 6.5 and 6.6 into Equation 6.1 , the reconfi gura-
tion ratio R becomes:

 R
t

t t
n T F

n T F n T
si

ci r

si si

ci ci r r

=
+

=
+ + τ

. (6.7)

 This equation can be used to produce a graph showing how R changes with
increasing F , the number of times that the function f () is called. When R > 1,
then reconfi guration is profi table. More information about this approach can
be found in a description of the adaptive fl exible instruction processor [213] .

 6.9.2 Trade - Off Analysis: Reconfi gurable Parallelism

 In the following we describe a simple analytical model [37] for devices that
are partially reconfi gurable: the larger the confi gured area, the longer the

c06.indd 237c06.indd 237 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

238 CUSTOMIZATION AND CONFIGURABILITY

confi guration time. For applications involving repeated independent process-
ing of the same task on units of data that can be supplied sequentially or
concurrently, increasing parallelism reduces processing time but increases con-
fi guration time. The model below would help identify the optimal trade - off:
the amount of parallelism that would result in the fastest overall combination
of processing time and confi guration time.

 The three implementation attributes are performance, area, and storage:
processing time t p for one unit of data, with area A , confi guration time t r , and
confi guration storage size Ψ . There are s processing steps, and the amount of
parallelism is P .

 We can also identify parameters of the application: the required data
throughput is ϕ app , while there are n units of data n processed between succes-
sive confi gurations. The reconfi gurable device has available area A max . The
data throughput of the confi guration interface is ϕ confi g .

 Designs on volatile FPGAs require external storage for the initial confi gu-
ration bitstream. Designs using partial run - time reconfi guration also need
additional storage for the precompiled confi guration bitstreams of the recon-
fi gurable modules. Given A denotes the size of a reconfi gurable module in
FPGA tiles (e.g., CLBs) and Θ denotes a device - specifi c parameter that speci-
fi es the number of bytes required to confi gure one tile, the partial bitstream
size and storage requirement Ψ (in bytes) of a reconfi gurable module is directly
related to its area A :

 Ψ Θ Θ= ⋅ + ≈ ⋅A h A , (6.8)

where h denotes the header of confi guration bitstreams. In most cases, this can
be neglected because the header size is very small.

 The time overhead of run - time reconfi guration can consist of multiple
components, such as scheduling, context save and restore, as well as the con-
fi guration process itself. In our case there is no scheduling overhead as modules
are loaded directly as needed. There is also no context that needs to be saved
or restored since signal processing components do not contain a meaningful
state once a dataset has passed through. The reconfi guration time is propor-
tional to the size of the partial bitstream and can be calculated as follows:

 t
A

r
config config

= ≈
⋅Ψ Θ

φ φ
. (6.9)

 ϕ confi g is the confi guration data rate and measured in bytes per second . This
parameter not only depends on the native speed of the confi guration interface
but also on the confi guration controller and the data rate of the memory where
the confi guration data are stored.

 We can distinguish between run - time reconfi gurable scenarios where data
do not have to be buffered during reconfi guration and scenarios where data

c06.indd 238c06.indd 238 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

RECONFIGURATION 239

buffering is needed during reconfi guration. For the latter case we can calculate
the buffer size B depending on reconfi guration time t r and the application data
throughput ϕ app :

 B tapp r
app

config

= ⋅ = ⋅φ
φ

φ
Ψ. (6.10)

 Table 6.6 outlines the buffer size for several receiver functions and a range of
reconfi guration times. We can observe that the data rate is reduced through
all stages of the receiver. Hence, a reconfi guration - during - call scenario becomes
easier to implement toward the end of the receiver chain. Obviously, the buffer
size also increases with the bandwidth of the communication standard and the
duration of the reconfi guration time.

 A buffer can be implemented with on - chip or off - chip resources. Most
modern FPGAs provide fast, embedded RAM blocks that can be used to
implement fi rst in – fi rst out buffers. For example, Xilinx Virtex - 5 FPGAs
contain between 1 and 10 Mbit of RAM blocks. Larger buffers have to be
realized with off - chip memories.

 The performance of a run - time reconfi gurable system is dictated by the
reconfi guration downtime. If reconfi gurable hardware is used as an accelerator
for software functions, overall performance is usually improved despite the
confi guration overhead. In our case, we use reconfi guration to support mul-
tiple hardware functions in order to improve fl exibility and reduce area
requirements. In this case, the reconfi gurable version of a design will have a
performance penalty over a design that does not use reconfi guration. The
reconfi guration of hardware usually takes much longer than a context switch
on a processor. This is due to the relatively large amount of confi guration data
that need to be loaded into the device. The effi ciency I of a reconfi gurable
design compared to a static design can be expressed as:

 TABLE 6.6 Buffer Size for Various Functions and Reconfi guration Times

 Function
 Data

Throughput

 Buffer Size for a Given Reconfi guration
Time

 100 ms 10 ms 1 ms

 Downconversion (16 bits) 800 Mbit/s 80 Mbit 8 Mbit 800 Kbit
 Downconversion (14 bits) 700 Mbit/s 70 Mbit 7 Mbit 700 Kbit
 Demodulation UMTS 107.52 Mbit/s 10.75 Mbit 1.07 Mbit 107 Kbit
 Demodulation GSM 7.58 Mbit/s 758 Kbit 75.8 Kbit 7.58 Kbit
 Error correction UMTS 6 Mbit/s 600 Kbit 60 Kbit 6 Kbit
 Error correction GSM 22.8 Kbit/s 2.28 Kbit 228 bit 22.8 bit
 Decryption UMTS 2 Mbits/s 200 Kbit 20 Kbit 2 Kbit
 Encryption GSM 13 Kbit/s 1.3 Kbit 130 bit 13 bit

 UMTS: Universal Mobile Telecommunications System, GSM: Global System for Mobile
Communications

c06.indd 239c06.indd 239 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

240 CUSTOMIZATION AND CONFIGURABILITY

I

t
t

n t

n t t
n

n
t
t

static

reconf

p

p r r

p

= =
⋅

⋅ +
=

+
.
 (6.11)

 The reconfi gurable system becomes more effi cient by processing more data
between confi gurations and by improving the ratio of confi guration time to
processing time. We propose a more detailed analysis where we consider the
effect of parallelism on processing time and confi guration time. Many applica-
tions can be scaled between a small and slow serial implementation, and a
large and fast parallel or pipelined implementation. FIR fi lter, AES encryp-
tion, or CORDIC (COordinate Rotation DIgital Computer) are examples of
such algorithms.

 Figure 6.14 illustrates the different spatial and temporal mappings of an
algorithm with regard to processing time, area, and reconfi guration time. The
processing time per datum t p is inversely proportional to the degree of paral-
lelism P . It can be calculated based on t p , e , the basic processing time of one
processing element, s , the number of steps or iterations in the algorithm, and
 P , the degree of parallelism:

 t
t s

p
p

p e=
⋅, . (6.12)

 Parallelism speeds up the processing of data but slows down reconfi guration.
This is because a parallel implementation is larger than a sequential one, and
the reconfi guration time is directly proportional to the area as shown in
Equation 6.9 . The reconfi guration time t r is directly proportional to the degree
of parallelism P , where t r , e is the basic reconfi guration time for one processing
element:

 t t pr r e= ⋅, . (6.13)

 We can now calculate the total processing time for a workload of n data items:

 t n t t
t s n

p
t ptotal p r

p e
r e= ⋅ + =

⋅ ⋅
+ ⋅,

, . (6.14)

 Figure 6.14 Different spatial and temporal mappings of an algorithm with s = 4 steps.

tp tp tpparallel, p = 4

A, tr

tr,e

tp,e

A, tr A, tr

intermediate, p = 2 serial, p = 1

c06.indd 240c06.indd 240 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

RECONFIGURATION 241

 Figure 6.15 illustrates how parallelism can affect the optimality of the process-
ing time. We consider an algorithm with s = 256 steps, which is inspired by the
observation that fi lters can have orders of 200 or higher. The plots are normal-
ized to processing time per datum and we assume that the reconfi guration time
 t r , e of one processing element is 5000 times the processing time t p , e of one pro-
cessing element. This value can vary depending on the application and target
device but we estimate that at least the order of magnitude is realistic for
current devices. We can observe that fully sequential implementations are
benefi cial for small workloads. In this case, the short confi guration time out-
weighs the longer processing time. However, the overall time is still high due
to the large infl uence of the confi guration time. Large workloads benefi t from
a fully parallel implementation since the processing time is more dominant
than reconfi guration time. In case of medium workloads, the degree of paral-
lelism can be tuned to optimize the processing time.

 In order to fi nd the optimal degree of parallelism, we calculate the partial
derivative of the function given in Equation 6.14 with respect to P :

∂

∂
=

⋅ ⋅
+

t
p

t s n

p
ttotal p e
r e

,
, .

2 (6.15)

 To fi nd the minimum, we set Equation 6.15 to 0 and solve for P :

 p
s n t

t
opt

p e

r e

=
⋅ ⋅ ,

,

. (6.16)

 The result p opt is usually a real number, which is not a feasible value to specify
parallelism. In order to determine a practical value for P , p opt can be inter-
preted according to Table 6.7 .

 Figure 6.15 Normalized processing times for a range of workload sizes n and different
levels of parallelism p . The number of steps s is set to 256 and we assume t r , e = 5000 t p , e .

1000

900

800

700

600

500

400

300

200

100
0

1 2 4 8 16
Degree of parallelism

32 64

n = 1000

n = 100
n = 10

N
or

m
al

iz
ed

 p
ro

ce
ss

in
g

tim
e

pe
r

da
ta

 it
em

n = 10,000

n = 100,000

128 256

c06.indd 241c06.indd 241 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

242 CUSTOMIZATION AND CONFIGURABILITY

 After determining the optimal degree of parallelism that reduces the overall
processing time per workload and hence maximizes performance, it is still
necessary to check if the implementation meets the throughput requirements
of the application Φ app :

n

t p total
hw app

()
.= ≥Φ Φ (6.17)

 The resulting area requirement A also has to be feasible within the total avail-
able area A max . In summary, to implement an optimized design according to
our model, the following steps have to be carried out:

 1. Derive Φ app , s and n from application.
 2. Obtain Φ confi g for target technology.
 3. Develop one design and determine t p and A .
 4. Calculate t r , t p , e , and t r , e using Equations 6.9 , 6.12 , and 6.13 .
 5. Find p opt from Equation 6.16 and fi nd a feasible value according to

Table 6.7 .
 6. Calculate t total using Equation 6.14 and verify throughput using

Equation 6.17 .
 7. Implement design with P from step 5 and verify if its actual throughput

satisfi es the requirement.
 8. Calculate buffer size B using Equation 6.10 and check A ≤ A max .

 The above methodology can be adopted for a wide variety of applications and
target technologies; it will fi nd the highest performing version of the design.
In order to fi nd the smallest design that satisfi es a given throughput require-
ment, one can try smaller values for P while checking Equation 6.17 .

 This approach can also be extended to address energy effi ciency for recon-
fi gurable designs [38] ; a reconfi gurable FIR fi lter is shown to be up to 49%
more energy effi cient and up to 87% more area effi cient than a nonreconfi gu-
rable design.

 6.10 CONCLUSIONS

 Customization techniques can be applied in various ways to ASIC and to
confi gurable technologies. We provide an overview of such techniques and

 TABLE 6.7 Interpretation of p opt to Determine a Practical Value for p

 0 < p opt ≤ 1 Fully serial implementation, p = 1
 1 < p opt < s Choose P such that s / P ∈ Z and | p opt − p | minimal
 S ≤ p opt Fully parallel implementation, p = s

c06.indd 242c06.indd 242 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

PROBLEM SET 243

show how instance - specifi c designs and custom instruction processors can
exploit customizability.

 As technology advances, two effects become increasingly prominent:

 1. integrated - circuit mask costs grow rapidly, making ASIC less affordable,
 2. complexity of SOC design and verifi cation keeps rising.

 The technologies discussed in this chapter address these issues directly: various
degrees of prefabrication customization reduce both the need for ASIC tech-
nology and the design complexity. Reconfi gurable technologies such as FPGAs
offer signifi cant fl exibility in the form of postfabrication customization, at the
expense of overheads in speed, area, and power consumption.

 Customization and confi gurability, in addition to their widespread adoption
in commercial systems, also constitute exciting research areas, with recent prog-
ress in SOC design reuse [215] , synthesizable datapath fabric [253] , dynami-
cally extensible microprocessors [48] , customizable multiprocessors [90] , and
many others. Moreover, dynamically reconfi gurable processors are beginning
to be adopted commercially, such as the D - Fabrix from Panasonic, DRP - 1
from NEC Electronics, and FE - GA from Hitachi [17] . It is also reported [74]
that ARM processor and interconnect technologies, including ARM cell librar-
ies and AMBA interconnect technology, would be adopted and optimized for
Xilinx FPGA architectures. There is little doubt that customization and con-
fi gurability will continue to play an important part in electronic systems for
many years to come.

 6.11 PROBLEM SET

 1. Provide examples for several application domains that would benefi t from
postfabrication customization.

 2. Some reconfi gurable devices support pipelined interconnects. What are the
pros and cons of pipelined interconnects?

 3. Some FPGA companies provide a way of producing a structured ASIC
implementation of an FPGA design, effectively removing the reconfi gu-
rability. Why do they do that?

 4. Early FPGAs contain just a homogeneous array of fi ne - grained logic cells,
while more recent ones are more heterogeneous; in addition to the fi ne -
 grained cells, they also contain confi gurable memory blocks, multiplier arrays,
and even processor cores. Explain this evolution of FPGA architectures.

 5. A subset of the instructions for a machine M can be accelerated by n times
using a coprocessor C.
 (a) A program P is compiled into instructions of M such that a fraction k

belongs to this subset. What is the overall speedup that can be achieved
using C with M?

c06.indd 243c06.indd 243 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

244 CUSTOMIZATION AND CONFIGURABILITY

 (b) The coprocessor C in part (a) above costs j times as much as M.
Calculate the minimum fraction of instructions for a program that C
has to accelerate, so that the combined system of M and C is j times
faster than M.

 (c) The performance of M is improving by m times per month. How many
months will pass before M alone, without the coprocessor C, can execute
the program P in part (a) as fast as the current combined system of M
and C?

 6. Explain how Equation 6.7 can be generalized to cover m custom
instructions.

 7. A database search engine makes use of run - time reconfi guration of the hash
functions to reduce the amount of processing resources. The search engine
contains P processors operating in parallel; each processor can be reconfi g-
ured to implement one of h hash functions. The total number of words, w ,
in the input dataset is divided into ℓ subsets of words; each subset is pro-
cessed using a particular hash function with one bit per word used to indi-
cate whether a match has occurred. The indicator bit is stored along with
the corresponding word in temporary memory, and such temporary data
are processed by the next hash function in the processor after reconfi gura-
tion. The match indicator bit is updated in each iteration and the process
continues until the data have been processed by all h hash functions. Let
 T h denote the critical path delay of the hash function processor, and T r is
the time for reconfi guring the processor to support a different hash func-
tion. It takes m cycles to access the memory, and the average number of
characters per word is c . Consider the worst case that all the hash functions
are required all the time — the analysis will become more complex if it is
possible to abort the matching process if a match does not occur.
 (a) How long does it take to process one subset of data?
 (b) How long does it take to process all the data?
 (c) Given that each character contains b bits, how many bits are required

for the temporary storage?

 8. To assess the effect of reconfi guration overheads on energy effi ciency, con-
sider developing an analytical model in the same spirit as the one in Section
 6.9.2 , involving an application with:

 • n , the number of packets or data items processed between two successive
reconfi gurations,

 • s , the number of processing steps in the algorithm.
 A reconfi gurable implementation is characterized by the following
parameters:

 • A , the area requirement of the implementation,
 • P , the amount of parallelism in the implementation,
 • t p , the processing time for one packet or datum,

c06.indd 244c06.indd 244 5/4/2011 9:54:36 AM5/4/2011 9:54:36 AM

PROBLEM SET 245

 • t r , the reconfi guration time,
 • P p , the power consumed during processing,
 • P c , the computation power which is a component of P p ,
 • P o , the power overhead which is a component of P p ,
 • Pr , the power consumed during reconfi guration.
 The reconfi gurable device is characterized by:

 • ϕ confi g , the data throughput of the confi guration interface,
 • Θ , the confi guration size per resource or unit of area.
 Recall that energy is the product of power consumption and the associated
time duration.

 Given power consumption for computation, P c , is directly proportional
to P , the degree of parallelism, and there is a constant power consumption
overhead, P o , and a constant power consumption for reconfi guration, P r :

 (a) What is the computation energy E c for processing n data items?
 (b) What is the energy overhead E o due to P o ?
 (c) What is the energy for reconfi guration E r , given that the reconfi gura-

tion time is directly proportional to P ?
 (d) What is the total energy per data item involved in computation and

reconfi guration?
 (e) Find the optimal degree of parallelism that minimizes the energy per

datum.

c06.indd 245c06.indd 245 5/4/2011 9:54:37 AM5/4/2011 9:54:37 AM

 7 Application Studies

 7.1 INTRODUCTION

 This chapter describes various applications to illustrate the opportunities and
trade - offs in SOC design. It also shows how some of the techniques described
in earlier chapters can be applied.

 We fi rst present an approach for developing SOC designs. Then we illustrate
the proposed techniques in analyzing simple designs for the Advanced
Encryption Standard (AES). Next, we have a look at 3 - D computer graphics,
showing the use of analysis and prototyping techniques and their application
to a simplifi ed PS2 system. After that we describe compression methods for
still image and real - time video, as well as a few other applications to illustrate
the variety of requirements and architectures of SOCs.

 Our discussion separates requirements from designs that can be shown to
meet the requirements. Requirements cover what are needed, while a design
includes suffi cient implementation detail for it to be evaluated against the
requirements.

 7.2 SOC DESIGN APPROACH

 Figure 7.1 shows a simplifi ed SOC design approach based on the material from
the preceding chapters. Chapter 2 introduces fi ve big issues in SOC design:
performance, die area, power consumption, reliability, and confi gurability.
These issues provide the basis on which design specifi cation and run - time
requirements for SOC designs can be captured. An initial design can then be
developed, which would show promise in meeting the key requirements. This
initial design can then be systematically optimized by addressing issues related
to memory (Chapter 4), interconnect (Chapter 5), processor (Chapter 3) and
cache (Chapter 4), and customization and confi gurability (Chapter 6). This
process is repeated until reaching a design that meets the specifi cation and
run - time requirements. More details will be given later in this section.

 Following this approach, however, can appear to be a formidable task.
System design is often more challenging than component or processor design,

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

246

c07.indd 246c07.indd 246 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

SOC DESIGN APPROACH 247

 Figure 7.1 An approach for designing SOC devices.

Die size Design
specification

Run-time
requirements

Storage Size, volatility

Operating system On-die/off-die

Interconnect Topology/bandwidth/protocol

Processor

Cache features

Customization
/configurability

Initial design

Chapter 2

Chapter 4

Chapter 5

Chapter 3

Chapter 4

Chapter 6

No

Yes

Optimized design

Meet specification and
run-time requirements?

Finish

c07.indd 247c07.indd 247 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

248 APPLICATION STUDIES

and it often takes many iterations through the design to ensure that (1) the
design requirements are satisfi ed and (2) the design is close to optimal, where
optimality includes considerations for overall cost (including design, manu-
facturing, and other costs) and performance (including market size and
competition).

 The usual starting point for a design is an initial project plan. As discussed
in Chapter 1 , this includes a budget allocation for product development, a
schedule, a market estimate (and a corresponding competitive product analy-
sis), and some measure of targeted product performance and cost. As shown
in Figure 7.2 , the next step is to create an initial product design. This design is
merely a placeholder (or “ straw man ”) that has a good chance of meeting
requirements in target product performance and cost. Further analysis may
prove that it may or may not satisfy the requirements. An important part of
this initial analysis is to develop a complete understanding of the performance
and functional requirements and their inter - relationship. The various pieces of
the application are specifi ed and formally defi ned, and appropriate analytic
and simulation models are developed. These models should provide an idea
of the performance – functionality trade - off for the application and the imple-
mentation technology, which would be important in meeting run - time require-
ments such as those shown in Table 7.1 .

 With the design specifi cation ready, we propose an initial system design
(Figure 7.3). Design specifi cations usually anticipate the general product
layout, addressing issues such as having all on one die or system on a board,
operating system selection, total size of memory, and backing store. The devel-
opment of the initial design then proceeds as follows, to ensure that the critical
requirements are met:

 Figure 7.2 The system design process.

Initial program plan

Initial product design

Optimized product design

Final product design

Final program plan

Design iteration

c07.indd 248c07.indd 248 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

SOC DESIGN APPROACH 249

 TABLE 7.1 Run - Time Requirements Showing Various Constraints to Be Met for
Some Video and Graphics Applications

 Application
 Real - Time

Constraint (fps) Other Constraints

 Video conference 16 Frame size, error rate, missed frames
 3 - D graphics 30 Image size, shading, texture, color

 1. Selection and allocation of memory and backing store. This generally
follows the discussions in Chapter 4 .

 2. Once the memory has been allocated, the processor(s) are selected.
Usually a simple base processor is selected to run the operating system
and manage the application control functions. Time critical processes can
be assigned to special processors (such as VLIW and SIMD processors
discussed in Chapter 1 and Chapter 3) depending on the nature of the
critical computation.

 3. The layout of the memory and the processors generally defi nes the inter-
connect architecture covered in Chapter 5 . Now the bandwidth require-
ments must be determined. Again the design specifi cations and processor
target performance largely determine the overall requirement but cache
memory can act as an important buffer element in meeting specifi cations.

 REQUIREMENTS AND DESIGN

 The input to the requirement understanding task is usually a requirement
specifi cation from customers or from a marketing study. The output is
often a functional requirement specifi cation for the design. The specifi ca-
tion may be detailed and carefully written for review; this is the case in
large companies. However, the specifi cation may also be brief, captured,
for example, in a spreadsheet; this is often the case in small companies
and startups. The specifi cation, whether detailed or brief, is essential for
design review, documentation, and verifi cation, and must be clear and
consistent. Moreover, mathematical, executable, or diagrammatic descrip-
tions can be used to capture data fl ow and control fl ow for the main
operations or selected functions of the SOC, during various system
design stages. Such descriptions can help design ers to understand the
functional requirements. Once the functional requirements are under-
stood, these descriptions can be mapped to possible implementations of
the main components and their interactions in the SOC.

c07.indd 249c07.indd 249 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

250 APPLICATION STUDIES

Usually the initial design assumes that the interconnect bandwidth is
suffi cient to match the bandwidth of memory.

 4. The memory elements are analyzed to assess their effects on latency
and bandwidth. The caches or data buffers are sized to meet the memory
and interconnect bandwidth requirements. Some details can be covered
later, so for instance bus latency is usually determined without consider-
ing the effects of bus contention. Processor performance models are
developed.

 5. Some applications require peripheral selection and design, which must
also meet bandwidth requirements. Example peripherals are shown in
Section 7.5.1 , which covers the JPEG system for a digital still camera,
and also in Section 8.7 , which covers radio frequency and optical com-
munications for future autonomous SOCs.

 6. Rough estimates of overall cost and performance are determined.

 Following initial design, the design optimization and verifi cation phase begins.
This phase is supported by various tools, including profi ling facilities and opti-
mizing compilers. All components and allocations are reassessed with the view
toward lowering cost (area) and improving both performance and functional-
ity. For instance, customization and confi gurability techniques, such as the use
of custom instructions or the adoption of run - time reconfi guration as discussed
in Chapter 6 , can be applied to enhance fl exibility or performance. As another
example, software optimizations, such as those that improve locality of refer-

 Figure 7.3 An example of an initial design, with three processors P1, P2, and P3.

P1

P2

P3

Cache
1

Cache
2

Cache
3

PROM

eDRAM

Bus
bridge

Bus1

DRAM

Backing
store

Bus
bridge

Sensor inputs

Display outputs

Bus2

Bus3

On die

On board

c07.indd 250c07.indd 250 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

APPLICATION STUDY: AES 251

ence, can often provide large performance improvement for little hardware
cost. The optimization would, where applicable, involve repartitioning between
hardware and software, which could affect the complexity of embedded soft-
ware programs [151] and the choice of real - time operating systems [34] .

 After each optimization, its impact on accuracy, performance, resource
usage, power and energy consumption, and so on needs to be analyzed.
Also the design needs to be verifi ed to make sure that its correctness would
not be affected by the optimizations [53] . Such analysis and verifi cation can
often be supported by electronic system - level design tools (see box), as well
as by prototyping.

 ESL : ELECTRONIC SYSTEM LEVEL DESIGN
AND VERIFICATION

 There does not seem to be a standard description of what ESL covers.
Wikipedia describes ESL design and verifi cation to be “ an emerging
electronic design methodology that focuses on the higher abstraction
level concerns fi rst and foremost. ” Another defi nition of ESL is the uti-
lization of appropriate abstractions in order to increase comprehension
about a system, and to enhance the probability of a successful implemen-
tation of functionality in a cost - effective manner [32] . Various ESL tools
have been developed, which are capable of supporting a design fl ow that
can generate systems across hardware and software boundaries from an
algorithmic description [108] .

 When the design appears optimal after several iterations, another complete
program plan is developed to understand any changes made to schedule fi xed
costs and to address issues involved in system integration and testing. Finally,
the product market is assessed based on the fi nal design and the overall
program profi tability can be assessed.

 7.3 APPLICATION STUDY: AES

 We adopt the AES as a case study to illustrate how techniques discussed in
the preceding chapters can be used for exploring designs that meet specifi ed
requirements.

 7.3.1 AES : Algorithm and Requirements

 The AES cipher standard [69] has three block sizes: 128 (AES - 128), 192
(AES - 192), and 256 (AES - 256) bits. The whole process from original data to

c07.indd 251c07.indd 251 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

252 APPLICATION STUDIES

encrypted data involves one initial round, r − 1 standard rounds, and one fi nal
round. The major transformations involve the following steps (Figure 7.4):

 • SubBytes. An input block is transformed byte by byte by using a special
design substitution box (S - Box).

 • ShiftRows. The bytes of the input are arranged into four rows. Each row
is then rotated with a predefi ned step according to its row value.

 • MixColumns. The arranged four - row structure is then transformed by
using polynomial multiplication over GF (2 8) per column basis.

 • AddRoundKey. The input block is XOR - ed with the key in that round.

 There is one round AddRoundKey operation in the initial round; the standard
round consists of all four operations above; and the MixColumns operation is
removed in the fi nal round operation, while the other three operations remain.
On the other hand, the inverse transformations are applied for decryption. The
round transformation can be parallelized for fast implementation.

 Besides the above four main steps, the AES standard includes three block
sizes: 128 (AES - 128), 192 (AES - 192), and 256 (AES - 256) bits. The whole block
encryption is divided into different rounds. The design supporting AES - 128
standard consists of 10 rounds.

 Run - time requirements are shown in Table 7.2 for various applications, such
as Wi - Fi and VoIP (Voice over Internet Protocol); our task is to fi nd designs
that meet one or more of these throughput requirements.

 Figure 7.4 Fully pipelined AES architecture [107] .

Key 0 Key 1 Key 10

Add
Key

Round
1

Byte Substitution Shift Row Mix Column Key Addition
S

M
ix

C
ol
1

M
ix

C
ol
2 X

O
R

M
ix

C
ol
3

M
ix

C
ol
4

S

R
ound D

ata

Round Key

Round
10

c07.indd 252c07.indd 252 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

APPLICATION STUDY: AES 253

 7.3.2 AES : Design and Evaluation

 Our initial design starts with a die size, design specifi cation, and run - time
requirement (Figure 7.1). We assume that the requirements specify the use of
a PLCC68 (Plastic Leaded Chip carrier) package, with a die size of
24.2 × 24.2 mm 2 .

 Our task is to select a processor that meets the area constraint while capable
of performing a required function. Let us consider ARM7TDMI, a 32 - bit
RISC processor. Its die size is 0.59 mm 2 for a 180 nm process, and 0.18 mm 2 for
a 90 nm process. Clearly, both processors can fi t into the initial area require-
ment for the PLCC68 package. The cycle count for executing AES from the
SimpleScalar tool set is 16,511, so the throughput, given an 115 - MHz clock (as
advertised by the vendor) with the 180 - nm device, is (115 × 32)/16,511 =
222.9 Kbps; for a 236 - MHz clock with the 90 - nm device, the throughput is
457.4 Kbps. Hence the 180 - nm ARM7 device is likely to be capable of perform-
ing only VoIP in Table 7.2 , while the 90 nm ARM7 device should be able to
support PAN 802.15 TG4 as well.

 Let us explore optimization of this SOC chip such that we can improve the
total system throughput without violating the initial area constraint. We would
apply the technique used in Chapter 4 for modifying the cache size and evalu-
ate its effect, using facilities such as the SimpleScalar tool set [30] if a software
model for the application is available.

 Using SimpleScalar with an AES software model, we explore the effects of
doubling the block size of a 512 - set L1 direct mapped instruction cache from
32 bytes to 64 bytes; the AES cycle count reduces from 16,511 to 16,094, or
2.6%. Assume that the initial area of the processor with the basic confi guration
without cache is 60K rbe, and the L1 instruction cache has 8K rbe. If we double
the size of the cache, we get a total of 76K rbe instead of 68K. The total area
increase is over 11%, which does not seem worthwhile for a 2.6% speed
improvement.

 The ARM7 is already a pipelined instruction processor. Other architectural
styles, such as parallel pipelined datapaths, have much potential as shown in
Table 7.3 ; these FPGA designs meet the throughput requirements for all the

 TABLE 7.2 Different Application Throughput Requirements, PAN: Personal Area
Network

 Application Throughput requirement

 Wi - Fi 802.11b 11 Mbps
 Wi - Fi 802.11g 54 Mbps
 Wi - Fi 802.11i/802.11n 500 Mbps
 Metropolitan area network (MAN) 802.16a 75 Mbps
 PAN 802.15 TG4 (low rate) 250 Kbps
 PAN 802.15 TG3 (high rate) 55 Mbps
 VoIP 64 Kbps
 Cisco PIX fi rewall router 370 Mbps

c07.indd 253c07.indd 253 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

254 APPLICATION STUDIES

applications in Table 7.2 , at the expense of larger area and power consumption
than ASICs [146] . Another alternative, mentioned in Chapter 6 , is to extend
the instruction set of a processor by custom instructions [28] ; in this case they
would be specifi c to AES.

 A note of caution: the above discussion is intended to illustrate what con-
clusions can be drawn given a set of conditions. In practice, various other
factors should be taken into account, such as how representative are the
numbers derived from, for instance, benchmark results or application sce-
narios based on the SimpleScalar tool set. In any case, such analysis should
only be used for producing evaluations similar to those from back - of - envelope
estimates — useful in providing a feel for promising solutions, which should
then be confi rmed by detailed design using appropriate design tools.

 Two further considerations. First, as shown in Figure 7.4 , an AES design can
be fully pipelined and fi tted into an FPGA device. To achieve over 21 Gbit/s
throughput, the implementation exploits technology - specifi c architectures in
FPGAs, such as block memories and block multipliers [107] .

 Second, AES cores are often used as part of a larger system. Figure 7.5
shows one such possibility for implementing the AES core, in the ViaLink
FPGA fabric on a QuickMIPS device [116] . This device has a separate 32 - bit
MIPS 4Kc processor core and various memory and interface elements. Another
possibility is to use AES in the implementation of designs involving secure
hash methods [88] .

 7.4 APPLICATION STUDY: 3 - D GRAPHICS PROCESSORS

 This section considers 3 - D graphics accelerators, similar to the Sony PS2 archi-
tecture [237] . Our study illustrates two useful techniques in deriving an initial
design:

 TABLE 7.3 Performance and Area Trade - off on a Xilinx Virtex XCV - 1000
 FPGA [107]

 Basic

Iterative
 Inner - Round

Pipelined Fully Pipelined

 Maximum clock frequency
(MHz)

 47 80 95

 Encrypt/decrypt throughput
(128 bits) (Mbps)

 521 888 11,300

 Area (number of slices) 1228 2398 12,600
 Area (number of BRAM) 18 18 80
 Slices and BRAM usages 10% and 56% 19% and 56% 103% and 250%

 BRAM: block RAM. Note that a fully pipelined design requires more resources than the XCV -
 1000 device can support.

c07.indd 254c07.indd 254 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

APPLICATION STUDY: 3-D GRAPHICS PROCESSORS 255

 Figure 7.5 QuickMIPS block diagram for the AES SOC system [116] .

ViaLink FPGA
Fabric

MII MII

10/100
Ethernet

10/100
Ethernet

AHB
Master

AHB
Slave

APB
Slave (3)

32 Bit System Bus (AMBA)

Low-speed
Peripherals

PCI
Controller

32-bit MIPS
4Kc

16K
D-cache

16K
I-cache

Memory
Controller

PCI 32/66 SDRAM

16K
SRAM

SRAM

 • Analysis. The application is viewed as a high - level algorithm for back -
 of - envelope - type estimates about, for instance, the amount of computa-
tion and communication so that a preliminary choice of design styles and
components can be made.

 • Prototyping. A simplifi ed version of the application is developed using
common software tools and off - the - shelf hardware platforms, for example
using a standard PC or a general - purpose FPGA platform. The experi-
ence gained will suggest areas that are likely to require attention, such
as performance bottlenecks. It may also help identify noncritical compo-
nents that do not need to be optimized, saving development time.

 The analysis and prototyping activities can often be assisted by ESL tech-
niques and tools [32, 108] .

 7.4.1 Analysis: Processing

 In 3 - D graphics, objects are represented by a collection of triangles in 3 - D
space, and there are lighting and texture effects on each picture element — or
pixel — to make objects look realistic. Such 3 - D representations are trans-
formed into a 2 - D space for viewing. Animation consists of providing succes-
sive frames of pixels over time.

 There are two main stages in the graphics pipeline (Figure 7.6): transforma-
tion and lighting, and rasterization. We cover them in turn.

c07.indd 255c07.indd 255 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

256 APPLICATION STUDIES

 Requirements For transformation and lighting, consider v visible triangles
per frame, and l light sources; the realism and complexity of the objects
improve with larger v and l . To facilitate perspective projection, a system
of four coordinates is used: three space dimensions and one homogeneous
component capturing the location of the plane to which the 3 - D image is
projected.

 During transformation and lighting, each triangle vertex is transformed
from world space to view space, requiring a 4 × 4 matrix multiplication; then
projected into 2 - D, requiring a division and a further four multiplies for per-
spective correction. This can be approximated as about 24 FMACs (fl oating -
 point multiply and accumulate) per vertex, where a fl oating - point division
(FDIV) is assumed to take the equivalent of four FMACs. The lighting process
requires another 4 × 4 multiplication to rotate the vertex normal, followed by
a dot product and some further calculations. This is approximated as 20 FMACs
per light source. This results in 24 + 20 l FMACs per vertex. In the worst case
of three distinct vertices per triangle, v (72 + 60 l) FMACs are needed per
frame; if vertices between adjacent triangles can be shared, we would only
need v (24 + 20 l) in the best case.

 Let n be the number of triangles processed per second and m be the number
of FMAC per second. Given there are f frames per second (fps), n = fv and:

 Figure 7.6 3 - D graphics pipeline.

Textures

Triangles and vertices in 3-D world coordinates

Lit triangles and vertices in 3-D world coordinates

Lit triangles and vertices in 3-D view coordinates

Visible lit triangles and vertices in 3-D view coordinates

Visible lit triangles and vertices in 2-D dislay coordinates

Pixels fragments to render

Rendered 2-D frames

Display

Pixel Calculation

Rasterization

Projection

Clipping

Transformation

Lighting

World Management

c07.indd 256c07.indd 256 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

APPLICATION STUDY: 3-D GRAPHICS PROCESSORS 257

 n l m n l× + ≤ ≤ × +() ().24 20 72 60 (7.1)

 If n = 50 M (M = 10 6) triangles per second and no lights (l = 0), then
1200 M ≤ m ≤ 3600 M ; if n = 30 × 10 6 triangles per second and with one light
(l = 1), then 1320 M ≤ m ≤ 3960 M .

 Design Let us describe how we come up with a design that meets the require-
ments. Our initial design is based on the simple structure in Figure 7.7 , intro-
duced in Chapter 1 .

 The proposed design is inspired by the Emotion Engine, which contains two
groups of processors as shown in Figure 7.8 . The fi rst group of processors
includes:

 • CPU, a MIPS - III processor with 32 registers, 128 bits, dual issue;
 • Floating - point unit (FPU), supporting basic FMAC and fl oating - point

division;
 • VPU0, a vector processing unit that can operate as a slave to the MIPS

or as an independent SIMD/VLIW processor.
 • IPU, an image processing unit for decoding compressed video streams.

 These components are connected by a 128 - bit bus at 150 MHz.

 Figure 7.7 Idealized SOC architecture.

Idealized
I/O

Idealized memory
(fixed access delay)

Idealized interconnect
(fixed access time and

ample bandwidth)

P1 P2

N idealized processors selected by function

Pn

c07.indd 257c07.indd 257 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

258 APPLICATION STUDIES

 The second group of processors includes:

 • VPU1, the same as VPU0, but only operates as a SIMD/VLIW processor.
 • GIF, a graphics interface that mainly shunts data onto the graphics syn-

thesizer using a dedicated 128 - bit bus.

 Since VPU0 and VPU1 each contains four fl oating - point multipliers at
300 MHz, their performance is given by 300 MHz × 8 = 2400 M FMAC/s; this
value is within the range of 1200 M ≤ m ≤ 3960 M derived earlier.

 There are other components that we do not cover in detail. An example is
IPU, an image processing unit for decoding compressed video streams.

 Requirements The rasterization process needs to scan convert each 2 - D
triangle, calculating the set of output pixels corresponding to each triangle.
This is usually performed by stepping vertically along the edges of the tri-
angles using DDA (digital differential analyzer) or another line - drawing
method, allowing each horizontal span to be handled at once. Within each
span, it is necessary to use more DDAs to interpolate the values of Z (for
occlusion testing), color, and texture coordinates where appropriate. We
ignore the vertical DDAs and approximate this as requiring 2 + 2 t DDA steps
per pixel.

 Design If each DDA step requires four integer instructions, and the opera-
tion at each pixel (such as comparing updating frame and z - buffer) also
requires four integer instructions, then the number of instructions for each
rendered pixel is:

 4 8 1+ +().t (7.2)

 Figure 7.8 Initial design for 3 - D graphics engine.

128-bit bus

high-speed memory I/O

IPU

I/O GIF

CPU
+

FPU
VPU0 VPU1

c07.indd 258c07.indd 258 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

APPLICATION STUDY: 3-D GRAPHICS PROCESSORS 259

 These steps must be performed each time a pixel is rendered, even if the pixel
has already been rendered. Given there are o output pixels in each frame and
each output pixel needs to be recalculated p times due to overlapping shapes,
the total number of instructions required per frame is

 () .12 8+ × ×t o p (7.3)

 We would use this result in the prototyping process below. Note that we have
ignored the time taken to perform the vertical DDAs, so we would expect
there to be some additional computation time that varies with v , but overall
computation time is dominated by the per - pixel operation time.

 7.4.2 Analysis: Interconnection

 In our model of the 3 - D graphics pipelines, there are two main intertask logical
communications channels: lists of 3 - D triangles passed from the creation/
management task to the transformation task, and lists of 2 - D triangles passed
from the transformation task to the rendering task. Both these channels are
essentially unidirectional: once a task has passed a set of triangles (2 - D or 3 - D)
onto the next stage, there is no substantial fl ow of data needed in the other
direction apart from obvious data fl ow signals such as status indicators.

 Requirements In the fi rst channel, between world management and transfor-
mation, all the 3 - D coordinates consist of three single - precision fl oating point
components, requiring 4 × 3 = 12 bytes. The minimal triangle size, where each
triangle consists only of three coordinates, requires 3 × 12 = 36 bytes. However,
in most cases there will need to be additional information, such as texture
information and lighting information. In order to support lighting, it is suffi -
cient to store the surface normal at each vertex. This applies no matter how
many lights are applied, so the size of each vertex then becomes 3 × (12 +
12 × min(l ,1)). Texture information additionally requires the storage of a 2 - D
texture coordinate for each vertex; assuming fl oating - point texture coordi-
nates, this adds 8 bytes to each vertex per applied texture. With n visible tri-
angles, the total bandwidth on the channel is:

 3 12 12 1 8n l t× + × +(min(,)). (7.4)

 As an example, given n = 50 × 10 6 , l = 0, t = 1, the bandwidth required is 3 GB/s;
for n = 30 × 10 6 , l = 1, t = 1, the bandwidth required is 2.88 GB/s.

 In the second channel, each point is now in screen coordinates, so each point
can be represented as two 16 - bit integers. In addition the depth of each pixel
is needed, but this is stored in greater precision, so the total size is 4 bytes per
vertex. Assuming that lights have been applied, the vertices also require a color
intensity, requiring 1 byte per channel, or approximately 4 bytes per vertex:
4 + 4 min(l ,1). Each texture coordinate must still be applied individually at

c07.indd 259c07.indd 259 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

260 APPLICATION STUDIES

rasterization, so a 4 - byte (2 × 16 bit integers) coordinate must be retained. This
results in a total required bandwidth for the second channel as:

 3 4 4 1 4n l t× + × +(min(,)). (7.5)

 This time, given n = 50 × 10 6 , l = 0, t = 1, the bandwidth required is 1.2 GB/s;
for n = 30 × 10 6 , l = 1, t = 1, the bandwidth required is 1.08 GB/s.

 Design As shown in Figure 7.8 , the interconnect consists of a 128 - bit bus.
Since the peak transfer rate of a 128 - bit bus at 150 MHz is 2.4 GB/s, which
meets the bandwidth required for the second channel but not the fi rst, an
additional 64 - bit dedicated interface to the rendering engine is included.

 7.4.3 Prototyping

 A prototype 3 - D renderer is written in the C language. This prototype incor-
porates a world management stage that creates a random pattern of triangles,
a transformation stage that projects triangles into 2 - D using a single - precision
fl oating point, and a z - buffer - based renderer using integer DDAs. Among the
parameters of the renderer that can be varied are:

 • number of triangles;
 • size of triangles;
 • width and height of output.

 By adjusting these parameters, it is possible to selectively adjust parameters
such as o , v , and p . For example, p can be varied by increasing the size of tri-
angles, as this increases the chance that each triangle is covered by another.

 Figure 7.9 shows the changes in execution time on an Athlon 1200 when
the number of output pixels are increased. As expected, both the creation and
transformation stages show no signifi cant variation as the number of output
pixels is increased. In contrast, the rendering stage ’ s execution time is clearly
increasing linearly with output pixel count. The fi tted line has a correlation
coeffi cient of 0.9895, showing a good linear fi t. The fi tted linear relationship
between rasterization time and pixel count is given by Equation 7.3 :
 t = o × 5 × 10 − 8 + 0.0372. The large offset of 0.0372 is caused by the per - triangle
setup time mentioned (and ignored) in the analysis section. Based on this
prototype we might now feel it appropriate to include the effects, as they are
clearly more signifi cant than expected.

 According to Equation 7.2 , the instructions per output pixel is p × 12 in the
case that no textures are applied (t = 0). In this experiment P = 1.3, so the
instructions per frame should be 15.6. The reported performance in million
instructions per second (MIPS) of the Athlon 1200 is 1400, so according to the
model each extra pixel should require 15.6/1.4 × 10 − 9 = 1.1 × 10 − 8 . Comparing
the predicted growth of 1.1 × 10 − 8 with the observed growth of 5 × 10 − 8 , we see
that they differ by a factor of 5. The majority of this error can probably be

c07.indd 260c07.indd 260 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

APPLICATION STUDY: 3-D GRAPHICS PROCESSORS 261

 Figure 7.9 Increase in execution times of stages as pixel count increases.

y = 5E-08x + 0.0372

R 2 = 0.9895

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 500 1000 1500 2000 2500 3000

KPixels/frame

T
im

e/
st

ag
e

(s
)

Create
Transform
Render
Linear render fit

 Figure 7.10 Graph of transform stage execution time for different numbers of FPUs
when original version is compared to fully unrolled version. The size of the queues,
issue width, and commit width are held at a constant (fairly large) value.

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

4.00E+07

4.50E+07

1 2 3 4 5 6 7 8

Number of FP multipliers

S
im

u
la

te
d

 c
yc

le
s

p
er

 s
ta

g
e

Transform (loop)

Transform (unrolled)

Rasterize

attributed to the unoptimized nature of the prototype and to the approxima-
tions in our models.

 In Figure 7.10 and Figure 7.11 the performance of the transformation stage
for different numbers of FPUs is tested using the PISA simulator [30] . When
four multipliers are used the performance increases signifi cantly, although
there is little benefi t when more than four are used. This suggests that a VLIW
or SIMD processor that can perform four fl oating - point operations at once
would be effi cient. Also shown in the graph is the performance when the
matrix multiply loop is unrolled, rather than being implemented as a doubly
nested loop. The unrolling allows the processor to use the FPUs to better
advantage, but the cost is still signifi cant compared to the speedup. Finally,

c07.indd 261c07.indd 261 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

262 APPLICATION STUDIES

Figure 7.12 shows that the highest performance per unit area is achieved with
eight fl oating - point multipliers and 16 ALUs.

 This section has demonstrated that application modeling can provide useful
predictions of the broad computational characteristics of a 3 - D engine. While
the predicted times may not be accurate due to the need for estimating instruc-
tion counts, the overall trends can usually be used as a basis for further devel-
opment. The only trend not predicted by our simple analysis is the growth in
rasterizer time due to increasing numbers of triangles.

 7.5 APPLICATION STUDY: IMAGE COMPRESSION

 A number of intraframe operations are common to both still image compres-
sion methods such as JPEG, and video compression methods such as MPEG
and H.264. These include color space transformation and entropy coding (EC).
Video compression methods usually also include interframe operations, such
as motion compensation (MC), to take advantage of the fact that successive
video frames are often similar; these will be described in Section 7.6 .

 7.5.1 JPEG Compression

 The JPEG method involves 24 bits per pixel, eight each of red, green, and blue
(RGB). It can deal with both lossy and lossless compression. There are three
main steps [42] .

 Figure 7.11 Graph of transform stage execution time for different numbers of FPUs
when the original version is compared with the fully unrolled version. The size of the
queues, issue width, and commit width are also scaled with the number of FPUs. The
approximate area in rbes is also shown, for the whole processor and for just the FPUs.

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

7.E+07

1/1 1/4 4/8 8/16 16/32

Number of floating-point units (mult/ALU)

S
im

u
la

te
d

 t
im

e
(c

yc
le

s)

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

6.E+05

7.E+05

A
re

a
(r

b
e)

Original
Unrolled
Total area
FP area

c07.indd 262c07.indd 262 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

APPLICATION STUDY: IMAGE COMPRESSION 263

 First, color space transformation. The image is converted from RGB into a
different color space such as YCbCr. The Y component represents the bright-
ness of a pixel, while the Cb and Cr components together represent the chro-
minance or color. The human eye can see more detail in the Y component
than in Cb and Cr, so the latter two are reduced by downsampling. The ratios
at which the downsampling can be done on JPEG are 4:4:4 (no downsam-
pling), 4:2:2 (reduce by factor of 2 in horizontal direction), and most commonly
4:2:0 (reduce by factor of 2 in horizontal and vertical directions). For the rest
of the compression process, Y, Cb, and Cr are processed separately in a similar
manner. These three components form the input in Figure 7.13 .

 Second, discrete cosine transform (the DCT block in Figure 7.13). Each
component (Y, Cb, Cr) of the image is arranged into tiles of 8 × 8 pixels each,
then each tile is converted to frequency space using a two - dimensional forward

 Figure 7.12 Comparison of increases in area and performance for unrolled transform
stage. The maximum performance per area is achieved with eight fl oating - point multi-
pliers (mult) and 16 ALUs.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1/1 1/4 4/8 8/16 16/32

Number of floating-point units (mult/ALU)

R
el

at
iv

e
p

er
fo

rm
an

ce
Performance

Area

Perf/Area

 Figure 7.13 Block diagram for JPEG compression. Color space transformation is not
shown.

DCT Quantizaton

Quanti.
Tables

Coding
Tables

Entropy
Coding

Header

Tables

Data
DPCM

RLC

DC

AC

Z
igzag

c07.indd 263c07.indd 263 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

264 APPLICATION STUDIES

DCT (DCT, type II) by multiplication with an 8 × 8 matrix. Since much infor-
mation is covered by the low - frequency pixels, one could apply quantization —
 another matrix operation — to reduce the high - frequency components.

 Third, EC. EC is a special form of lossless data compression. It involves
arranging the image components in a “ zigzag ” order accessing low - frequency
components fi rst, employing run - length coding (RLC) algorithm to group
similar frequencies together in the AC component and differential pulse code
modulation (DPCM) on the DC component, and then using Huffman coding
or arithmetic coding on what is left. Although arithmetic coding tends to
produce better results, the decoding process is more complex.

 As an example for estimating the amount of operations, consider a 2 - D
DCT involving k × k blocks. We need to compute:

 y c ji i j

j k

= ×
< ≤
∑ ,

0

 for 0 < i ≤ k , input x , DCT coeffi cients c , and output y . We would need k image
data loads, k coeffi cient data loads, k multiply accumulations, and 1 data store.
So in total there are 3 k + 1 operations/pixel. Hence each k × k block DCT with
row – column decomposition has 2 k 2 (3 k + 1) operations.

 For frames of n × n resolution at f fps, the number of operations is
2 fn (3 k + 1). Two common formats are CIF (Common Intermediate Format)
and QCIF (Quarter CIF), which correspond, respectively, to a resolution of
352 × 288 pixels and 176 × 144 pixels.

 For a YCbCr QCIF frame with 4:2:0 sampling ratio, which has 594 tiles of
8 × 8 blocks, at 15 fps the total number of operations is: 2 × 15 × 594 × 8 × 8
× (24 + 1) = 28.5 million operations per second (MOPS). For a CIF frame, 114
MOPS are required.

 Typically, lossless compression can achieve up to three times reduction in
size, while lossy compression can achieve up to 25 times reduction.

 7.5.2 Example JPEG System for Digital Still Camera

 A typical imaging pipeline for a still image camera is shown in Figure 7.14
 [128] . The TMS320C549 processor, receiving 16 × 16 blocks of pixels from
SDRAM, implements this imaging pipeline.

 Since the TMS320C549 has 32K of 16 - bit RAM and 16K of 16 - bit ROM,
all imaging pipeline operations can be executed on chip since only a small
16 × 16 block of the image is used. In this way, the processing time is kept
short, because there is no need for slow external memory.

 This device offers performance up to 100 MIPS, with low power consump-
tion in the region of 0.45 mA/MIPS. Table 7.4 illustrates a detailed cycle count
for the different stages of the imaging pipeline software. The entire imaging
pipeline, including JPEG, takes about 150 cycles/pixel, or about 150 instructions/
pixel given a device of 100 MIPS at 100 MHz.

 A TMS320C54x processor at 100 MHz can process 1 megapixel CCD
(charge coupled devices) image in 1.5 second. This processor supports a

c07.indd 264c07.indd 264 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

APPLICATION STUDY: IMAGE COMPRESSION 265

 Figure 7.14 Block diagram for a still image camera [128] . A/D: analog to digital con-
version; CFA: color fi lter array.

 TABLE 7.4 TMS320C54X Performance [128]

 Task Cycles/Pixel

 Preprocessing: for example, gain, white balancing 22
 Color space conversion 10
 Interpolation 41
 Edge enhancement, false color suppression 27
 4:1:1 decimation, JPEG encoding 62
 Total 152

2 second shot - to - shot delay, including data movement from external memory
to on - chip memory. Digital cameras should also allow users to display the
captured images on the LCD screen on the camera, or on an external TV
monitor. Since the captured images are stored on a fl ash memory card,
playback - mode software is also needed on this SOC.

 If the images are stored as JPEG bitstreams, the playback - mode software
would decode them, scale the decoded images to appropriate spatial resolu-
tions, and display them on the LCD screen and/or the external TV monitor.
The TMS320C54x playback - mode software can execute 100 cycles/pixel to
support a 1 second playback of a megapixel image.

 This processor requires 1.7 KB for program memory and 4.6 KB for data
memory to support the imaging pipeline and compress the image according
to the JPEG standard. The complete imaging pipeline software is stored on -
 chip, which reduces external memory accesses and allows the use of slower

c07.indd 265c07.indd 265 5/4/2011 9:54:40 AM5/4/2011 9:54:40 AM

266 APPLICATION STUDIES

external memory. This organization not just improves performance, but it also
lowers the system cost and enhances power effi ciency.

 More recent chips for use in digital cameras would need to support, in addi-
tion to image compression, also video compression, audio processing, and
wireless communication [217] . Figure 7.15 shows some of the key elements in
such a chip.

 7.6 APPLICATION STUDY: VIDEO COMPRESSION

 Table 7.5 summarizes the common video formats used in various applications,
together with the associated compression methods such as MPEG1, MPEG2,
and MPEG4. Video quality depends on the bitrate and the video resolution —
 higher bitrate and higher resolution generally mean better video quality, but
requiring higher bandwidth.

 There is another set of compression methods known as H.261, H.262, H.363,
and H.264; some of these are related to the MPEG methods, for instance
MPEG2 and H.262 are the same and H.264 corresponds to MPEG4/Part 10.
Generally the more recent methods such as H.264 offer higher quality and

 Figure 7.15 Block diagram for a camera chip with video, audio, and networking
capabilities.

Control and Processing

Image/Video
Control

Motor
Control

Audio
Control

Power
Control

JPEG
Codec

MPEG
Codec

MP3
Codec

Memory

Display
Control

Media
Drivers

User
Interface

File
System

LCD
Display

USB

Network
Interface

User
Input

Storage
SD Card

Imager
Motors
Lens

Sensor

Audio
Microphone

Speaker

Power
Battery

c07.indd 266c07.indd 266 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

 TA
B

L
E

 7
.5

 So

m
e

C
om

m
on

 V
id

eo
 F

or
m

at
s

 Fo
rm

at

 V
C

D

 SV
C

D

 D
V

D

 H
D

D
V

D
 H

D
T

V

(W
M

V
H

D
)

 A
V

I
D

iv
X

X

vi
D

 W
M

V

 M
O

V
 Q

ui
ck

 - T
im

e

 R
es

ol
ut

io
n

 35
2

 ×
 24

0
 48

0
 ×

 48
0

 72
0

 ×
 48

0 *

 19
20

 ×
 1

08
0 *

 64

0
 ×

 48
0 *

 64

0
 ×

 48
0 *

 N

T
SC

/P
A

L

 35
2

 ×
 28

8
 48

0
 ×

 57
6

 72
0

 ×
 57

6 *

 12
80

 ×
 7

20
 *

 V
id

eo

co
m

pr
es

si
on

 M

P
E

G
1

 M
P

E
G

2
 M

P
E

G
2,

 M
P

E
G

1
 M

P
E

G
2

(W
M

V
 - M

P
E

G
4)

 M

P
E

G
4

 M
P

E
G

4
(f

ro
m

So

re
ns

on

M
ed

ia
)

 V
id

eo
 b

it
ra

te

 11
50

 K
bp

s
 20

00
 K

bp
s †

 50

00
 K

bp
s †

 20

 M
bp

s †
 (

8
 M

bp
s †

)
 10

00
 K

bp
s †

 10

00
 K

bp
s †

 Si

ze
/m

in

 10
 M

B
/m

in

 10
 – 2

0
 M

B
/m

in

 30
 – 7

0
 M

B
/m

in

 15
0

 M
B

/m
in

 †
(6

0
 M

B
/m

in
 †)

 4 –

 10
 M

B
/m

in

 4 –
 20

 M
B

/m
in

 Fr
om

 h
tt

p:
//w

w
w

.v
id

eo
he

lp
.c

om
/s

vc
d .

 * A

pp
ro

xi
m

at
e

re
so

lu
ti

on
, c

an
 b

e
hi

gh
er

 o
r

lo
w

er
.

 † A
pp

ro
xi

m
at

e
bi

tr
at

e,
 c

an
 b

e
hi

gh
er

 o
r

lo
w

er
.

 K
bp

s,
th

ou
sa

nd
 b

it
s

pe
r

se
co

nd
; M

bp
s,

m
ill

io
n

bi
ts

 p
er

 s
ec

on
d;

 m
in

, m
in

ut
es

.

267

c07.indd 267c07.indd 267 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

268 APPLICATION STUDIES

higher compression ratio. In the following we shall provide an overview of some
of these video compression methods [42, 270] , without going into the details.

 7.6.1 MPEG and H.26X Video Compression: Requirements

 In addition to intraframe compression methods for still images described
earlier, video compression methods also deploy interframe compression
methods such as motion estimation. Motion estimation is one of the most
demanding operations in standard - based video coding, as shown in the require-
ment below for H.261 involving CIF images with 352 × 288 pixels at 30 fps:

 968 MOPS for compression:

 Entropy decode 17
 Inverse quantization 9
 Inverse DCT (IDCT) 60
 Loop fi lter 55
 Prediction 30
 YCbCr to RGB 27

 Most compression standards involve asymmetric computations, such that
decompression is usually much less demanding than compression. For instance,
for H.261, the amount of operations for decompression (around 200 MOPS)
is around 20% of that for compression (about 1000 MOPS):

 198 MOPS for decompression:

 RGB to YCbCr 27
 Motion estimation 608 (25 searches in 16 × 16 region)
 Inter/intraframe coding 40
 Loop fi ltering 55
 Pixel prediction 18
 2 - D DCT 60
 Quant., zigzag scanning 44
 EC 17
 Frame reconstruct 99

 The motion estimation method involves three kinds of frames (Figure 7.16).
First, the intrapicture I, which does not include motion information, so it is
like lossy JPEG. Second, the picture P, which covers motion prediction based
on earlier I frames; it contains motion vectors (MVs) and error terms. Since
error terms are small, quantizing gives good compression. Third, the bidirec-
tional picture B, which supports motion prediction based on past and future I
or P frames.

 The goal of the motion estimator is to describe the information in the
current frame based on information in its reference frame. The reference
frame is typically the reconstructed version of the immediately preceding
frame in the sequence, which is known to both the encoder and decoder.

c07.indd 268c07.indd 268 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

APPLICATION STUDY: VIDEO COMPRESSION 269

 In the motion estimator for video compression methods such as H.264, pixel
values are examined between these pairs of frames. Based on the operations
of the motion estimator, the pixel values in the current frame can be alter-
nately represented by a combination of two quantities: pixel values from a
predictor based on the reference frame plus a prediction error that represents
the difference between the predictor values and the actual pixel values in the
current frame.

 The function of the motion estimator can be interpreted in the following
way. Suppose that the image of a moving object is represented by a group of
pixels in the current frame of the original video sequence, as well as by a group
of pixels in the previous frame of the reconstructed sequence. The recon-
structed sequence is the designated reference frame. To achieve compression,
the pixel representation of the object in the current frame is deduced from
the pixel values in the reference frame. The pixel values representing the
object in the reference frame is called the predictor, because it predicts the
object ’ s pixel values in the current frame. Some changes are usually needed
in the predictor to attain the true pixel values of the object in the current
frame; these differences are known as the prediction error.

 In block - based motion estimation, the boundaries of objects represented in
the current frame are assumed to approximately align along the boundaries
of macroblocks. Based on this assumption, objects depicted in the frame can
be represented well by one or more macroblocks. All pixels within a macrob-
lock share the same motion characteristics. These motion characteristics are

 Figure 7.16 Three kinds of frames in MPEG motion estimation.

• I frame is encoded as a still
 image and doesn’t depend on
 any reference frame

• P frame depends on previously
 displayed reference frame

• B frame depends on previous
 and future reference frames

B

P

I

c07.indd 269c07.indd 269 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

270 APPLICATION STUDIES

described by the macroblock ’ s MV, which is a vector that points from the pixel
location of the macroblock in the current frame to the pixel location of its
predictor. Video coding standards do not dictate how the MV and prediction
error are obtained.

 Figure 7.17 illustrates the process of motion estimation. Typically, the motion
estimator examines only the luminance portion of the frame, so each macro-
block corresponds to 16 × 16 luminance pixels. The current frame is subdivided
into nonoverlapping macroblocks. To each macroblock, the motion estimator
assigns a predictor, which must necessarily also be a square region of the size
of 16 × 16 luminance pixels. The predictor can also be considered a macrob-
lock. It is chosen based on the “ similarity ” between it and the macroblock in
the current frame.

 The similarity metric for the macroblocks is not specifi ed by video coding
standards such as H.264; a commonly used one is the SAD (sum of the abso-
lute difference) metric, which computes the SAD between the values of cor-
responding luminance pixels in two macroblocks.

 All macroblocks in a search region of the reference frame are evaluated
against the current macroblock using the SAD metric. A larger SAD value
indicates a greater difference between two macroblocks. The predictor mac-
roblock is chosen to be the one which has the lowest SAD.

 Many video compression standards require the search region to be rectan-
gular and located about the coordinates of the original macroblock. The
dimensions of the rectangle are adjustable but may not exceed a standard -
 specifi ed maximum value.

 The search strategy used to fi nd the best - matching predictor macroblock,
called the motion search, is usually not specifi ed by the standard. Many motion
search algorithms have been proposed. One possible motion search is an
exhaustive (or full) search over all possible macroblocks in the search region;
this strategy guarantees a global SAD minimum within the search region.
However, exhaustive search is computationally expensive and is therefore
primarily adopted by hardware designers, due to its regularity.

 Figure 7.18 summarizes bandwidth and storage requirements of different
compression methods for 90 minutes of DVD - quality video.

 Figure 7.17 Motion estimation process.

(x,y)

v=(Δx,Δy)

Predictor

Macroblock

Current Y Frame

Reference Y Frame

Original Predictor

– =

Prediction
Error

SAD

c07.indd 270c07.indd 270 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

APPLICATION STUDY: VIDEO COMPRESSION 271

 If we look at the percentage execution time of the operations in a com-
pression or a decompression algorithm, it can be seen that motion compensa-
tion and motion estimation usually take the lion ’ s share. For instance, H.264/
AVC (Advanced Video Coding) decompression contains four major kernels:
motion compensation, integer transform, entropy coding, and deblocking fi lter-
ing. Motion compensation is the most time - consuming module; see Figure 7.19 .

 Similar results have been reported for compression as well. For instance,
Figure 7.20 shows that motion estimation can take over 95% of execution time
in a software H.263 encoder [270] .

 7.6.2 H.264 Acceleration: Designs

 One of the most common digital video formats is H.264. It is an interna-
tional standard that has been adopted by many broadcasting and mobile

 Figure 7.18 Bandwidth (a) and storage (b) of different video compression methods.
ASP stands for Active Simple Profi le, a version of MPEG - 4.

Bandwidth (Mbps) Storage (MB)

25003.5
3

2.5
2

1.5
1

0.5
0

2000

1500

1000

500

0
MPEG-2 MPEG-4 (ASP)

(b)

H.264MPEG-2 MPEG-4 (ASP)

(a)

H.264

 Figure 7.19 Comparing kernels in H.264/AVC decompression.

Motion
Compensation

45%

 Deblocking
Filtering

6%

Integer
Transform

11%

Others
7%

Entropy Coding
31%

c07.indd 271c07.indd 271 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

272 APPLICATION STUDIES

communication standards, such as DVB and 3G. Its coding effi ciency has
enabled new applications for streaming video.

 Advanced algorithms are included in H.264 for motion estimation and for
other methods for video compression. For motion estimation, blocks from
16 × 16 to 4 × 4 pixels are supported. Residual data transforms are applied to
4 × 4 blocks with modifi ed integer DCT to prevent rounding errors.

 H.264 provides better results than previous standards, due to the adoption
of wider search ranges, multiple reference frames, and smaller macroblocks
for motion estimation and motion compensation — at the expense of increased
load in computation. It requires, for example, high - speed memory and highly
pipelined designs, to meet the demand of various encoding tasks, such as those
in motion estimation.

 Let us consider two approaches. The fi rst approach is to implement the tasks
in programmable or dedicated hardware. For instance, a recent design of a
baseline H.264/AVC encoder core [158] has been implemented in various
hardware technologies, including:

 1. 4CIF (704 × 576) at 30 fps with low - cost FPGAs: Xilinx Spartan - 3 and
Altera Cyclone - II,

 2. 720 pixels (1280 × 720) at 30 fps with high - end FPGAs: Xilinx Virtex - 4
and Altera Stratix - II,

 3. 1080 pixels (1920 × 1080) at 30 fps with 0.13 - μ m ASIC.

 The features of these implementations are summarized in Table 7.6 .
 The second approach is to implement the tasks on a software confi gurable

processor introduced in Section 6.5.3 , which has an instruction set extension
fabric (ISEF) to support demanding operations implemented as custom instruc-
tions (also called extension instructions). The one used here is a 300 - MHz

 Figure 7.20 Comparing kernels in H.263 compression with a basic encoder using half -
 pel exhaustive motion search [270] .

Motion Estimation
95.40%

DCT/Quantization
2.56%

Reconstruction
1.26%

Other 0.78%

c07.indd 272c07.indd 272 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

APPLICATION STUDY: VIDEO COMPRESSION 273

Stretch S5 processor, which achieves H.264 encoding of Standard Defi nition
(SD) video at 30 fps [152] . We shall look at this approach in more detail below.

 Successful real - time video encoding applications have to deliver the best
image quality feasible for a particular screen resolution, given real - world
operating constraints. For example, an uncompressed video stream has an
image size of 720 × 480 pixels and requires 1.5 bytes for color per pixel. Such
a stream has 518 KB per frame, and at 30 fps it consumes 15.5 MB per second
storage and bandwidth.

 Figure 7.21 shows the architecture of an H.264 encoder. The effi ciency of
the encoder can be found in the implementation of the following functions:

 TABLE 7.6 FPGA and ASIC Designs for H .264/ AVC Encoding [158]

 Technology Approximate Area
 Speed
(MHz) Video Throughput

 0.13 μ m LV 178K gates + 106 Kbits RAM,
optimized for speed

 ∼ 250 1920 × 1080 (1080p)
at 30 fps 0.9 V, 125 C

 0.18 μ m slow
process

 129K gates + 106 Kbits RAM,
optimized for area

 ∼ 50 4 CIF (704 × 576)
at 30 fps

 StratixllC3 17,511 ALUTs + 5 M512 + 51
M4K + 3 DSPs

 ∼ 118 1280 × 720 (720p)
at 32 fps

 CyclonellC6 18,510 M4K + 5 M512 + 51
M4K + 3 DSPs

 ∼ 65 4 CIF (704 × 576)
at 40 fps

 Virtex4 - 12 10,500 slices + 3 multipliers + 33
RAM blocks

 ∼ 110 1280 × 720 (720p)
at 30 fps

 Spartan3 - 4 10,500 slices + 3 multipliers + 33
RAM blocks

 ∼ 50 4 CIF (704 × 576)
at 30 fps

 ALUT, Adaptive Lookup Table; M4K, a confi gurable memory block with a total of 4,608 bits.

 Figure 7.21 H.264 encoder architecture [152] . ME, motion estimation; MC, motion
compensation; Quant, quantization.

Select
Intraprediction

Frame
Store

ME

MC
Inter

Forward
Transform

+

+

+

-
Quant

Entropy
Coder

Inverse
Transform

Inverse
Quant

Intra
Intraprediction

Deblocking
Filter

Interprediction

Source
Picture

c07.indd 273c07.indd 273 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

274 APPLICATION STUDIES

 1. forward DCT and IDCT,
 2. intraprediction utilizing forward and inverse quantization,
 3. deblocking fi ltering, and
 4. motion estimation employing interframe comparisons.

 The above are prime candidates for hardware acceleration because of the
amount of computation required. Additional acceleration can be achieved by
taking advantage of the inherent parallelism in these algorithms.

 DCT Consider the processing of 4 × 4 blocks of luma pixels through a 2 - D
DCT and quantization step. The computations for the DCT portion of the
matrix computation can be reduced to 64 add and subtract operations by
taking advantage of symmetry and common subexpressions. All 64 operations
can be combined into a single custom instruction for the ISEF.

 Quantization (Q) This follows the DCT. The division operation, which is
costly, is avoided by implementing quantization as a simple multiply and shift
operation. Total processing required for luma encode and decode using
DCT + Q + IDCT + IQ involves about 594 additions, 16 multiplications, and
288 decisions (using multiplexers).

 Deblocking Filtering The 128 - bit bus to the ISEF takes a single cycle to load
a row of eight 16 - bit prediction data. So one ISEF instruction can replace many
conventional instructions, provided that the compiler can recognize the inher-
ent parallelism in the function. The total number of cycles to perform these
operations on a 4 × 4 block using a standard processor is over 1000 cycles. The
same processing can be done in the software confi gurable proces sor in 105
cycles, offering more than 10 times acceleration. Hence a video stream of
720 × 480 pixels at 30 fps would only require 14.2% utilization of the RISC
processor, since the bulk of the task is off - loaded to the ISEF. Increasing sub -
 block sizes enhances parallelism: for example, operating on two 4 × 4 blocks in
parallel reduces execution time in half, dropping the utilization of the RISC
processor to 7.1% as the ISEF takes on a heavier load.

 Accelerating deblocking requires developers to minimize conditional code.
Instead of determining which values to calculate, it is often more effi cient to
create a single custom instruction that calculates all the results in hardware
and then select the appropriate result.

 Reordering the 128 - bit result from the IDCT stage simplifi es packing of
16 8 - bit edge data pixels into a single 128 - bit wide datum to feed the deblock-
ing custom instruction. Precalculating macroblock parameters is another opti-
mization option supported by the state registers inside the ISEF and the
instruction.

c07.indd 274c07.indd 274 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

APPLICATION STUDY: VIDEO COMPRESSION 275

 The fi lter ’ s inner loop loads the 128 - bit register and executes the deblock-
Filter() custom instruction, computing two edges per instruction. Because the
same custom instruction can be used for both horizontal and vertical fi ltering,
there is zero overhead.

 This inner loop takes three cycles and is executed twice (horizontal and
vertical), with about 20 cycles for loop overhead. With 64 edges in each MB
of data, there are approximately 416 (64/4 × 26) cycles required per MB. For
a video stream of resolution 720 × 480 pixels at 30 fps, this results in 16.8
Mcycles/s, or approximately 5.2% processor utilization.

 Motion Estimation This is known to consume much of the processor budget
(50 – 60%). The key computation requirements are the repeated SAD calcula-
tions used in determining the best MV match.

 The data calculations and comparisons are repetitive, with many of the
intermediate results needing to be reused. These large data sets do not fi t well
within the limited register space of the traditional processor and digital signal
processor (DSP) architectures. Also, these processors and DSP implementa-
tions struggle to feed the fi xed arithmetic and multiplier units from the data
cache.

 With the Stretch S5 Software Confi gurable Processor, the ISEF custom
processing unit is capable of performing computations in parallel and holding
the intermediate results in the state registers while executing fully pipelined
SAD instructions.

 Motion estimation consists of potentially 41 SAD and 41 MVs calculations
per macroblock. A full motion search on a single macroblock requires 262K
operations for a video stream at 30 fps, for a total of 10.6 giga operations per
second (GOPS).

 By using heuristic algorithms for many implementations, the application
developer can minimize the computations to meet target image quality and/
or bitrate requirements.

 Custom algorithms optimized to perform estimates across different search
areas, numbers of frames, or the number of MVs needing to be calculated can
easily be converted to ISEF instructions. A single custom instruction can
replace multiple computations, as well as pipeline many of the computations
using intermediate results.

 For example, a single custom instruction can perform 64 SAD calculations.
The ISEF maintains the 64 partial sums to reduce the number of data transfers
and to reuse the results in the next instruction. The ISEF instructions can be
pipelined to improve compute capacity.

 Motion estimation also involves various pixel predictions that require
nine SADs computed in nine directions around the pixel. By using custom
instructions, a 16 × 16 SAD calculation with quarter pixel precision takes
133 cycles, and a 4 × 4 SAD calculation with quarter pixel precision takes 50
cycles.

c07.indd 275c07.indd 275 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

276 APPLICATION STUDIES

 The above discussion covers the Stretch S5 processor. The Stretch S6 pro-
cessor comes with a programmable accelerator that supports a dedicated
hardware block for motion estimation, so there is no need to implement this
operation in the ISEF for the S6 processor.

 7.7 FURTHER APPLICATION STUDIES

 This section covers a number of applications to illustrate the variety of require-
ments and SOC solutions.

 7.7.1 MP3 Audio Decoding

 MP3, short for MPEC - 1/2 Audio layer - 3, is probably the most popular format
for high - quality compressed audio. In this section we outline the basic algo-
rithm [42] and describe two implementations: one in ASIC, the other in an
FPGA [117] .

 Requirements The MPEG - 1 standard involves compressing digital video and
audio at a combined bitrate of 1.5 Mbps. The standard is divided into a few
parts, with Part 3 dealing with audio compression. The audio compression
standard contains three layers according to different levels of complexity and
performance; the Layer 3 standard — commonly referred to as MP3 — performs
best but is also the most complex.

 The MP3 audio algorithm involves perceptual encoding; a block diagram is
shown in Figure 7.22 . The algorithm is based on associating a psychoacoustic
model to a hybrid sub - band/transform coding scheme. The audio signal is
divided into 32 sub - band signals, and a modifi ed discrete cosine transform
(MDCT) is applied to each sub - band signal. The transform coeffi cients are
encoded according to a psychoacoustically motivated perceptual error measure,
using scalar quantization and variable - length Huffman coding.

 Figure 7.22 Block diagram for perceptual encoding and decoding [42] .

Audio
In

Audio
Out

Bitstream
In

Bitstream
Out

Analysis
filterbank

Quantization
and coding

Inverse
quantization

Synthesis
filterbank

Encoding of
bitstream

Perceptual
Model

Decoding of
bitstream

c07.indd 276c07.indd 276 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

FURTHER APPLICATION STUDIES 277

 The MP3 bitstream is a concatenation of sequence of data “ frames, ” where
each frame corresponds to two “ granules ” of audio such that each granule is
defi ned as precisely 576 consecutive audio samples. A granule may sometimes
be divided into three shorter ones of 192 samples each.

 There are three main steps involved in decoding an MP3 frame. First, syn-
chronize to the start of the frame and decode header information. Second,
decode the side information including scale factor selection information, block
splitting information, and table selection information. Third, decode the main
data for both granules, including the Huffman bits for the transform coeffi -
cients, and scale factors. The main data may overfl ow into adjoining frames, so
multiple frames of data may need to be buffered.

 After the frame bits have been parsed, the next stage is to reconstruct the
audio for each granule from the decoded bits; the following steps are involved:

 1. Dequantizing the transform coeffi cients from the main and side informa-
tion. A nonlinear transformation is applied to the decoded coeffi cients.

 2. In the case of short blocks, the dequantized coeffi cients may be reor-
dered and divided into three sets of coeffi cients, one per block.

 3. In the case of certain stereo signals where the right (R) and left (L)
channels may be jointly encoded, the transform coeffi cients are recast
into L and R channel coeffi cients via a channel transformation.

 4. An “ alias reduction ” step is applied for long blocks.
 5. The inverse MDCT (IMDCT) module is applied for coeffi cients corre-

sponding to each of the 32 sub - bands in each channel.
 6. An overlap - add mechanism is used on the IMDCT outputs generated in

consecutive frames. Specifi cally, the fi rst half of the IMDCT outputs arc
overlapped and added with the second half of the IMDCT outputs gener-
ated in the corresponding sub - band in the previous granule.

 7. The fi nal step is performed by an inverse polyphase fi lterbank for com-
bining the 32 sub - band signals back into a full - bandwidth, time - domain
signal.

 Design Function - level profi ling for an ARM processor and a DSP proces-
sor reveals that the synthesis fi lter bank is the most time - consuming task
(Table 7.7).

 An ASIC prototype has been fabricated in a fi ve metal layer 350 nm CMOS
process from AMI Semiconductor [117] . The chip contains fi ve RAMs includ-
ing the main memory, and a ROM for the Huffman tables (Table 7.8). The
core size is approximately 13 mm 2 . The power consumption is 40 mW at 2 V
and 12 MHz. It is possible to lower the clock frequency to 4 – 6 MHz while still
complying with the real - time constraints.

 The real - time requirement for the decoding process is determined by the
audio information in an MP3 frame. Table 7.9 presents the computation time
for the different sub - blocks for a 24 MHz system clock [117] . The total time

c07.indd 277c07.indd 277 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

278 APPLICATION STUDIES

for the decoding process is 2.3 ms, which results in a slack of 24.7 ms. This shows
that the clock speed for the decoder can be reduced, and that resources can
be shared to lower costs.

 The resource utilization on a Virtex - II 1000 FPGA is also reported in Table
 7.9 . This design takes up 56% of the FPGA slices, 15% of the fl ip - fl ops, 45%
of the four - input lookup tables, and 57% of the block RAMs. Moreover, a
32 × 32 bit multiplier, which is shared among the sub - blocks, is made from four
of the available 18 × 18 bit multipliers.

 TABLE 7.7 MP 3 Profi ling Results for ARM and DSP Processors

 Module
 Percentage Time

on ARM
 Percentage Time

on DSP

 Header, side intonnation,
decoding scale factors

 7 13

 Huffman decode, stereo
processing

 10 30

 Alias reduction, IMDCT 18 15
 Synthesis fi lter bank 65 42

 TABLE 7.8 MP 3 Decoding Blocks in 350 - nm ASIC Technology [117]

 Decoder blocks Memory (bits) ROM Tables (bits)
 Equivalent
Gate Count

 Synchronizer 8192 0 3689
 Shared main memory 24,064 0 1028
 Huffman 0 45,056 10,992
 Requantizer 0 0 21,583
 Reorder 0 0 3653
 AntiAlias 0 0 13,882
 IMDCT 24,064 0 61,931
 Filterbank 26,112 0 31,700
 I 2 S 9216 0 949
 Total 91,648 45,056 149,407

 TABLE 7.9 Resource Utilization and Computation Time for MP 3 Decoding
Blocks in Xilinx Virtex - II 1000 FPGA Technology [117]

 Decoder blocks Slices (%) Block RAM (%) Computation time (μ s)

 Synchronizer 15 10 140
 Huffman 11 7 120
 Requantizer 12 5 140
 Reorder 1 12 10
 AntiAlias 3 0 83
 IMDCT 8 13 678
 Filterbank 6 10 1160
 Total 56 51 2300

c07.indd 278c07.indd 278 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

FURTHER APPLICATION STUDIES 279

 As indicated above, there is scope for reducing the area and power con-
sumption of this design by resource sharing among sub - blocks. However, such
resource sharing may complicate control and implementation, for instance by
introducing routing bottlenecks; hence, its pros and cons must be evaluated
before adoption.

 7.7.2 Software - Defi ned Radio with 802.16

 The WiMAX or IEEE 802.16 wireless communications standard, along with a
variety of other wireless communication standards, attempts to increase the
data transfer rates to meet the demands for end applications and to reduce
deployment costs. The techniques used to identify the digital data in the pres-
ence of large amounts of noise stress the computational capabilities of most
processors. With the standards still evolving and the requirements changing, a
programmable solution is particularly attractive.

 Requirements The basic transmitter block diagram for an 802.16 implemen-
tation is shown in Figure 7.23 [169] . At the high level, the physical layer (PHY)
on the transmitter is responsible for converting the raw digital data stream to
a complex data stream ready for upconverting to an analog radio signal. The
PHY on the receiver is responsible for extracting the complex data stream and
decoding the data back to the original form.

 The blocks in PHY that are computationally demanding include fast Fourier
transforms (FFT) and its inverse, forward error correction (FEC) including
block coding such as Reed – Solomon codec and bit - level coding such as con-
volution encoding and Viterbi decoding, quadrature amplitude modulation
(QAM), interleaving, and scrambling. The media access control (MAC) layer
provides the interface between the PHY and the network layer. The MAC
processing is much more control oriented as it takes packets from the network
layer and schedules the data to be sent according to the quality of service
(QoS) requirements; while at the receiver end, the MAC reassembles the data

 Figure 7.23 802.16 transmitter block diagram [169] IP stack, internet protocol stack;
ARQ, automatic repeat reQuest; IFFT, inverse FFT; LPF, low - pass fi lter; PAPR, peak
to average power ratio; RF, radio frequency.

IFFTLPF
PAPR

Reduction

IP Stack
Wireless

Stack
QOS

Router
Scheduler

Messaging

IP Segmenter

ARQ

Airframe
Creation

Frequency
Predistorter

Interleaver
QAM

Mapper
FEC

Encoder

PHY

MAC

RF

Ethernet

c07.indd 279c07.indd 279 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

280 APPLICATION STUDIES

for handing back to the network layer. The MAC layer also includes the neces-
sary messaging to maintain communications between the base and the sub-
scriber stations as well as automatically requesting the retransmission of any
bad packets. The network layer is the interface to the application. A TCP/IP
network stack is the most common networking stack in use today. For a com-
plete wireless solution, all layers must be connected.

 Design The physical layer PHY in the 802.16 WiMAX standard performs
256 - point FFT and orthogonal frequency - division multiplexing (OFDM). On
a Stretch S5 Software Confi gurable Processor (Section 6.5.3), the OFDM can
be confi gured to operate in channel widths of 3.5, 7, and 10 MHz [169] .
Modulation support includes BPSK (Binary Phase Shift Keying), QPSK
(Quadrature Phase Shift Keying), 16 QAM or 64 QAM. For noisy environ-
ments, the FEC is a requirement, with the standard allowing a variety of
choices. Note that a conventional RISC or DSP processor does not have
enough power to support the high demand of WiMAX baseband processing
and the control tasks at the same time. A single software confi gurable proces-
sor meets the demand of all the heavy - duty WiMax signal processing and
control tasks such as a base MAC layer and full TCP/IP stack to achieve full
bitrate for all three channel widths on a single chip.

 The Stretch Software Confi gurable Processor adopts a Radix - 2 FFT design
through defi ning a custom instruction as an extension instruction, which sup-
ports sixteen 16 × 16 multiplies, eight 32 - bit adds, and sixteen 16 - bit adds with
rounding and rescaling operation. This custom instruction makes use of the 128 -
 bit wide registers to pass three sets of four complex values to the ISEF for paral-
lel operations. This results in performing 256 - point FFT in 4 μ s. Implementing a
Radix - 4 FFT provides an additional 28% performance improvement.

 The FEC block is another one that benefi ts from fl exibility and perfor-
mance. Forward error correction increases data throughput in the presence of
channel noise by introducing data redundancy on the transmitter side, and
errors are corrected on the receiver side. In convolutional coding, every
encoded bit is generated by convolving the input bit with the previous input
bits. The constraint length is the number of bits used in the computation and
the rate is the number of input bits per output bit. The WiMax standard uses
convolutional encoding with the constraint length of 7 and a rate of 1/2. Other
rates can also be supported.

 RISC processors are often not suffi ciently effi cient for the bit - level opera-
tions involved in convolutional encoding. In the Stretch Software Confi gurable
Processor, bit - level operations can be optimized by making use of the custom
processing unit ISEF. A custom instruction is implemented to take 64 bits from
the input to generate 128 outputs. This custom instruction uses internal states
to keep six state bits; it performs parallel processing of 64 input bits by con-
volving the input bits with the state bits to produce 128 outputs.

 The bitstreams generated by convolutional encoding can be decoded by
using a trellis diagram to fi nd the most likely sequence of codes. A Viterbi

c07.indd 280c07.indd 280 5/4/2011 9:54:41 AM5/4/2011 9:54:41 AM

CONCLUSIONS 281

decoder is an effi cient way to decode the bitstream by limiting the number of
sequences needed to be examined. It keeps a record of the most likely path
for each state at each trellis stage. Viterbi decoding is computationally demand-
ing; it requires add – compare – selection (ACS) for each state at each stage, as
well as keeping the history of the selected path. It involves three main steps:
(1) branch metric computation, (2) ACS for each state at each stage, and (3)
traceback.

 In the trellis diagram, there is a metric associated with each branch, called
branch metric, which measures the distance between a received signal and the
output branch labels. Branch metric is computed as the Euclidean distance
between the received sample and branch label.

 One custom instruction, EI_ACS64, is created to perform the branch metric
computation, addition of the branch metric with the path metric at the previ-
ous stage, comparing the path metrics of the two incoming paths, and updating
the path metric with the maximum and then selecting the path. This EI_ACS64
instruction does this ACS operation for all the states at one trellis stage in
parallel. In other words, this custom instruction performs 32 butterfl y opera-
tions in parallel. The 64 path metrics are stored as internal states in ISEF. As
we move from one stage to the next stage, EI_ACS64 also updates output wide
registers with 1 bit for each state, which indicates the selected path. As we
traverse four trellis stages, it will accumulate 4 bits for each state. In total, it
accumulates 4 × 64 = 256 bits for all the states. Two store instructions
(WRAS128IU) can then be used to move these bits to memory.

 The actual decoding of symbols back to the original data is accomplished
by tracing backwards through the trellis along the maximum likelihood path.
The length of the traceback is commonly four to fi ve times the constraint
length of the convolutional encoder. In some cases, the entire frame of data is
received before beginning traceback. We traverse the trellis in reverse direc-
tion to decode the input bitstream. Assume the state reached at the last trellis
stage is in a known state, typically state 0. This can be achieved by sending
additional K − 1 bits of 0 to bring all the states to 0. The bit stored for each
state tells which branch to traverse as we traverse from stage j to j − 1. Another
custom instruction is created, VITERBI_TB, which does traceback for four
trellis stages, uses an internal state to keep the previous state for the next
round of traceback, and outputs 4 bits for the decoded bitstream. The
VITERBI_TB instruction is called twice before the 8 - bit decoded bitstream
is stored back to memory.

 7.8 CONCLUSIONS

 We hope that the material in this chapter has illustrated the variety of SOC
applications and the range of design techniques and SOC architectures —
 ranging from embedded ARM processors to reconfi gurable devices from
Xilinx and Stretch — many of which have been introduced in the preceding

c07.indd 281c07.indd 281 5/4/2011 9:54:42 AM5/4/2011 9:54:42 AM

282 APPLICATION STUDIES

chapters. Interestingly, the rapid increase in performance requirements in
multimedia, cryptography, communications, and other key applications has led
to a wave of start - ups, such as Achronix, Element CXI, Silicon Hive, Stretch,
and Tabula; time will tell which are the winners.

 We have not, however, attempted to provide a detailed and complete
account of design development for a specifi c application or design style using
the latest tools. Such accounts are already available: for instance, Fisher et al
 [93] and Rowen and Leibson [207] have dedicated their treatment, respec-
tively, to VLIW architectures and to confi gurable processors. SOC design
examples [164] and methodologies [32] from an industrial perspective are also
available. Those interested in detailed examples involving application of ana-
lytical techniques to processor design are referred to the textbooks by Flynn
 [96] and by Hennessy and Patterson [118] .

 7.9 PROBLEM SET

 1. How fast would a 32 - bit processor with the ARM7 instruction set need to
run to be able to support AES for Wi - Fi 802.11b? How about a 64 - bit
processor?

 2. Estimate the number of operations per second involved in computing the
DCT for high - resolution images of 1920 × 1080 pixels at 30 fps.

 3. Explain how the JPEG system for the camera in Figure 7.14 can be revised
to support 10 megapixel images.

 4. Estimate the size in number of rbes of the FPGA and ASIC designs in Table
 7.6 , assuming that the FPGAs are produced in a 90 nm process.

 5. Compare the pros and cons of the FPGA and ASIC designs in Table 7.6 ,
assuming that the FPGAs are produced in a 90 nm process. How would your
answer change when both the FPGAs and the ASIC are produced in a
45 nm process?

 6. Consider a 3 - D graphics application designed to deal with k nonclipped
triangles, each covering an average of p pixels and a fraction α of which
being obscured by other triangles. Ambient and diffuse illumination models
and Gouraud shading are used. The display has a resolution of m × n pixels,
updated at f fps. Estimate:
 (a) the number of fl oating - point operations for geometry operations,
 (b) the number of integer operations for computing pixel values, and
 (c) the number of memory access for rasterization.

 7. Table 7.10 shows data for the ARM1136J - S PXP system. The datapath runs
at a maximum of 350 MHz for the 16K instruction cache plus 16K data

c07.indd 282c07.indd 282 5/4/2011 9:54:42 AM5/4/2011 9:54:42 AM

 TA
B

L
E

 7
.1

0
 M

P
E

G
 4

D
ec

od
e

P
er

fo
rm

an
ce

 o
n

 A
R

M
 11

36
J -

 S
 P

X
P

 S
ys

te
m

 L
1

ca
ch

e
si

ze

 16
K

 +
 1

6K

 32
K

 +
 3

2K

 64
K

 +
 6

4K

 16
K

 +
 1

6K

 16
K

 +
 1

6K

 16
K

 +
 1

6K

 32
K

 +
 3

2K

 32
K

 +
 3

2K

 L
2

ca
ch

e
si

ze

 —

 —

 —

 12
8K

 25

6K

 51
2K

 25

6K

 51
2K

 Sp

ee
d

(M
H

z)

 35
0

 32
4

 27
7

 35
0

 35
0

 32
4

 32
4

 32
4

 A
re

a
(m

m
 2)

 2.
3

 3.
3

 6
 8.

3
 12

.3

 21

 13
.3

 22

 R

un
 t

im
e

(m
s)

 12

2.
6

 96
.7

 93

.8

 70
.6

 60

.7

 60
.0

 63

.6

 63
.2

 A
re

a
va

lu
es

 in
cl

ud
e

th
at

 o
f

L
2

w
he

re
 a

pp
ro

pr
ia

te
.

283

c07.indd 283c07.indd 283 5/4/2011 9:54:42 AM5/4/2011 9:54:42 AM

284 APPLICATION STUDIES

cache; the 32K + 32K and 64K + 64K implementations are limited in speed
by their cache implementations.
 (a) Comment on the effect of increasing the size of L1 on performance.
 (b) Suggest reasons to explain why the design with the largest cache area

is not the fastest.
 (c) Compare the fastest design and the one just behind that one. Which

one is more cost effective and why?

 8. Figure 7.24 shows a convolution algorithm between an H 1 × W 1 image (I 1)
and an H 2 × W 2 image (I 2), which have optional masks M 1 and M 2 , respec-
tively, of the same width and height. Given that H 2 > H 1 and W 2 > W 1 , and
 f 3 , f 12 , f 11 , and f 22 are pure functions — that is, they have no internal state and
their results depend only on their parameters:
 (a) What are the values of M 1 , M 2 and f 3 , f 12 , f 11 , and f 22 for (1) SAD correla-

tion, (2) normalized correlation, and (3) Gaussian blur?
 (b) What is the resolution of the result image I c ?
 (c) How many cycles are needed to produce the resulting image I c ?

 Figure 7.24 Convolution algorithm with resulting image I c .

c07.indd 284c07.indd 284 5/4/2011 9:54:42 AM5/4/2011 9:54:42 AM

 8 What ’ s Next: Challenges Ahead

 8.1 INTRODUCTION

 With rapid advances in transistor density, it is time to look ahead to the future.
One extreme is the completely autonomous system - on - chip (ASOC): a con-
vergence of RFID (radio - frequency identifi cation) technology with SOC tech-
nology coupled with transducers, sensor controllers, and battery, all on the
same die. The major architectural implication is design for extremely low
power (down to 1 μ W or less) and a strict energy budget. This requires rethink-
ing of clocking, memory organization, and processor organization. The use of
deposited thin fi lm batteries, extremely effi cient radio frequency (RF) com-
munications, digital sensors, and microelectromechanical systems (MEMS)
completes the ASOC plan. Short of this extreme, there are many system con-
fi gurations providing various trade - offs across power, RF, and speed budgets.

 Throughout this text, it is clear that design time and cost are the major SOC
limitations now and even more so in the future. One way to address these
limitations is to develop a design process in which components can optimize
and verify themselves to improve effi ciency, reuse, and correctness, the three
design challenges identifi ed by the International Technology Roadmap for
Semiconductors. Self - optimization and self - verifi cation before and after design
deployment are key to future SOC design.

 This chapter has two parts. Part I covers the future system: ASOC. Part II
covers the future design process: self - optimization and self - verifi cation. There
are various challenges which, if met, would enable the opportunities outlined
in this chapter. We highlight some of these challenges in the text.

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

285

c08.indd 285c08.indd 285 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

286 WHAT’S NEXT: CHALLENGES AHEAD

 I. THE FUTURE SYSTEM: AUTONOMOUS SYSTEM - ON - CHIP

 8.2 OVERVIEW

 SOC technology represents an expanding part of the microprocessor market-
place; growing at 20% per annum rate, there ’ s much more to come [134] .

 The typical SOC consists of multiple heterogeneous processors and con-
trollers, and several types of memory (read - only memory [ROM], cache, and
embedded dynamic random access memory [eDRAM]. The various processors
are oriented toward one or more types of media processing. Typical applications
include cell phones, digital cameras, MP3 players, and various gaming devices.

 Another fast - growing chip marketplace is autonomous chips (ACs). These
have little processing power or memory, but have RF communications and
some type of self - contained power source or power management. The more
elaborate ACs also contain or are coupled with some types of sensors. The
simple versions include RFID chips [205] , smart cards, and chip - implanted
credit cards.

 The simplest AC is the passively powered RFID. The chip simply refl ects
the source RF carrier and modulates it (using carrier power) to indicate its
ID. More complex examples include the patient monitoring alarm [31] and the
Smart Dust research program [63, 181] of the 1990s. Both of these used
battery - powered RF to broadcast an ID on a detected sensor input.

 The various Smart Cards and Money Cards include VISA cards and Hong
Kong ’ s Octopus Card. All (except those that require contact) use a form of
RFID. The simplest cards are passive without on - card writeable memory.
Records are updated centrally. Implementation is frequently based on Java
Card [234] . Based on the extraordinary interest, there are a series of contact-
less identifi cation cards (RFID) standards:

 • ISO 10536 close coupling cards (0 – 1 cm),
 • ISO 14443 proximity coupling cards (0 – 10 cm),
 • ISO 15693 vicinity coupling (0 – 1 m).

 The future autonomous SOC or ASOC is the combination of the SOC with
the AC technology (Table 8.1). While conceptually simple, the engineering
details are formidable as it involves rethinking the whole of processor archi-
tecture and implementation to optimize designs for very low power operation —
 in the submicrowatt region.

 The motivation for ASOC follows the Smart Dust project [63] , which started
in the early 1990s and pioneered signifi cant work in the sensor and RF areas.
That project targeted sensor plus RF integrated into a form factor of the
order of 1 mm 3 called motes. As a power source it relied on AA type batteries.
That project was targeted at sensing an “ event, ” such as a moving object or a
thermal signal.

c08.indd 286c08.indd 286 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

 TA
B

L
E

 8
.1

 So

m
e

 A
SO

C
 E

xa
m

pl
es

 Sy
st

em

 P
as

si
ve

 I
D

 A

ct
iv

e
ID

 R

F
 S

en
so

r
 A

SO
C

 E
xa

m
pl

e
 R

F
ID

, S
m

ar
t

ca
rd

 (
si

m
pl

e)

 Sm
ar

t
ca

rd
, a

ct
iv

e
R

F
ID

 Sm

ar
t

D
us

t;
R

F
ID

 +
 s

en
so

r

 Po
w

er
 s

ou
rc

e
 N

on
e

 Sh
or

t -
 te

rm
 b

at
te

ry

 B
at

te
ry

 In

te
gr

at
ed

 B
at

te
ry

 M

ax
im

um
 m

em
or

y
 R

O
M

 I
D

 (
1

 K
B

)
 R

/W
 I

D
 +

 p
ar

am
et

er
s

(2
 K

B
)

 R
/W

 e
xt

en
si

ve
 (

10
0

 M
B

)
 R

F
 r

an
ge

 (
m

et
er

s)

 P
as

si
ve

; o
rd

er
 o

f
ce

nt
im

et
er

 A

ct
iv

e
1 –

 10

 10
 – 2

0
 10

 +

 C
om

pu
te

 N

on
e

 F
SM

 F

SM

 1
or

 m
or

e
C

P
U

 F
SM

 r
ep

re
se

nt
s

a
si

m
pl

e
fi n

it
e

st
at

e
m

ac
hi

ne
 o

r
m

ic
ro

co
nt

ro
lle

r;
R

/W
: R

ea
d/

W
ri

te
 m

em
or

y.

287

c08.indd 287c08.indd 287 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

288 WHAT’S NEXT: CHALLENGES AHEAD

 ASOC is an updated extension of that work that places more emphasis on
computational ability and memory capacity; as well as fully integrating a
power source on die.

 A simplifi ed classifi cation of ACs, by their level of sophistication, is:

 1. Simple identifi cation of the die itself (as in RFID) with RF response.
 2. Identifi cation of a sensor - detected “ event ” with RF response (as in Smart

Dust and many Smart Cards).
 3. Detection of an “ event ” and processing (classifi cation, recognition, ana-

lyzing) the event (ASOC) with RF response of the result.

 The ability of the ASOC to process data is clearly valuable in reducing the
amount of sensor data required to be transmitted. It enables applications (such
as supporting planetary exploration) where interactive computational support
is impossible; so too with the recognition of a rare bird or other species in
remote areas; or swallowing an ASOC “ pill ” for diagnosis of the gastrointes-
tinal tract. Not all dimensions of ASOC are equally important in all applica-
tions. A rare species “ listening ” post may require little size concern and may
have ample battery support. We look at ASOC as a toolkit for the new systems
designer, offering the ability to confi gure systems to respond to an almost
endless set of environmental and computational requirements.

 In the next few sections we consider the evolution of silicon technology,
limits on batteries and energy, architecture implications, communications,
sensors, and applications.

 8.3 TECHNOLOGY

 As we saw in the earlier chapters over the next few years transistor and memory
density is expected to increase 10 - fold [134] to several billion transistors/cm 2 .
Since a reasonable powerful processor can be realized with a few 100,000 tran-
sistors, there are a lot of possibilities for ASOC applications.

 This density, however, has a price. Very small devices pose signifi cant per-
formance problems in traditional workstation implementations. Simply the
dopant variability (number of dopant atoms needed to create a device) causes
variability in delay from device to device. Small structures involve large elec-
tric fi elds causing reliability problems: electromigration in conductors and
diaelectric fatigue. These are not signifi cant problems for ASOC at the very
low projected power and speed employed.

 The main problem for useful ASOC is battery power or stored energy. In
dealing with this issue recall two general relationships discussed in Chapter 2,
relating silicon area A , algorithmic execution time T , and power consumption
 P (in these expressions k is a constant):

c08.indd 288c08.indd 288 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

POWERING THE ASOC 289

 AT k2 = . (8.1)

 This result [247] simply related area (the number of transistors) to the execu-
tion time required to complete an operation. The more area (transistors) used,
the faster (smaller) the execution time. Recall from chapter 2 the relationship
between execution time and power [99].

 T P k3 = . (8.2)

 It is easy to see that as voltage is decreased power is reduced by the square
but speed is reduced linearly. But in transistors the charging current (repre-
senting delay) and voltage have a nonlinear relationship. As we saw in Chapter
 2 , this gives the cubic result:

 P P F F2 1 2 1
3/ (/) .= (8.3)

 So if we want to double the frequency we should expect the design to use
eight times more power. While the range of applicability of expression 8.2
is not precise, suppose we use it to project the frequency of a processor
design that operates at a microwatt. The best power – performance design
of today might consume 1 W and achieve 1 GHz (corresponding perhaps to
1000 million instructions per second [MIPS]); this may be optimistic. Reducing
the power by a factor of 10 6 should reduce frequency by a factor of 100 or
10 MHz. Within the past 2 years a sensor processor has been built that achieves
almost 0.5 MIPS/ μ W [271] . While this is an order of magnitude away from
our target of 10 MHz/ μ W, silicon scaling projections may compensate for the
difference.

 CHALLENGE

 Is the T 3 P = k rule robust down to microwatts?
 We know that this rule seems valid at the usual operating conditions,

but how can we scale it to microwatts? What circuits and devices are
required?

 8.4 POWERING THE ASOC

 The key problems in forming robust ASOC are energy and lifetime. Both
relate to the power source, that is, the battery. Batteries can be charged once
or are rechargeable (with varying recharge cycles). For ASOC purposes,
rechargeable batteries use scavenged energy from the environment. The
capacity of the battery is usually measured in milliamp - hours; which we convert

c08.indd 289c08.indd 289 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

290 WHAT’S NEXT: CHALLENGES AHEAD

to joules (watt - seconds) at about 1.5 V. Both capacity and rechargeability
depend on size, which we assume is generally consistent with the size and
weight of the ASOC die (about 1 cm 2 surface area).

 In Table 8.2 we list three common battery types: the printed [47, 203] and thin
fi lm batteries [67] can be directly integrated into the ASOC die (usually the
reverse side); button batteries are external and are less than 1 cm in diameter.

 Printed batteries are formed by printing with special inks in a fl at surface;
thin fi lm batteries are deposited on silicon much as the system die itself.

 TABLE 8.2 Batteries of ASOC

 Type Energy (J) Recharge Y/N Thickness (μ m)

 Printed 2/cm 2 N 20
 Thin fi lm 10/cm 2 Y 100
 Button 200 Y 500 stand alone

 TABLE 8.3 Some Energy - Scavenging Sources [173, 195, 206]

 Source Charge rate Comment

 Solar 65 (milliwatts per square
centimeter)

 Ambient light 2 (milliwatts per square
centimeter)

 Strain and acoustic A force (sound) changes
alignment of crystal
structure, creating voltage

 Piezoelectric effect

 RF An electric fi eld of 10 V/m
yields 16 μ W/cm 2 of antenna

 See Yeatman [266]

 Temperature difference
(Peltier effect)

 40 (microwatts per 5 ° C
difference)

 Needs temperature
differential

 CHALLENGE

 Battery technology that can provide over 100 J in form factor of 1 cm 2 ×
100 μ m that can be deposited on a silicon substrate.

 Microbattery technology is emerging as a critical new need for many
applications.

 Energy may be scavenged from many sources (some are illustrated in Table
 8.3); usually the larger the battery format, the more the charge. Much depends
on the system environment as to which, if any, scavenging is suitable.

 Assuming ASOC consumption of 1 μ W (when active), the operational life-
time between charges is plotted in Figure 8.1 . Duty cycle can play an important

c08.indd 290c08.indd 290 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

POWERING THE ASOC 291

role in expending the ASOC serviceability. The assumption is that a passive
sensor can detect an event and power up the system for analysis.

 Comparing Figures 8.1 and 8.2 , if we can confi gure the ASOC to use of the
order of 1 μ W we should be able to incorporate a suitable battery technology
especially if we have the ability to scavenge some addition energy.

 Figure 8.1 Maximum time between recharge for 1 μ W of continuous power
consumption.

0.1

1

10

100

1000

1 10 100

Capacity (joules)

T
im

e
 (

m
o

n
th

s)
100% duty cycle

10% duty cycle

 Figure 8.2 The area – time – power trade - off.

Power

T
3P = k

AT
2 = kTime

Area

 CHALLENGE

 Scavenge energy from many more sources with ready implementation
technologies.

 To date, most attention on energy scavenging has been restricted to
light and possibly RF (as in RFID). We need an integrated study of
alternatives, especially when the amount scavenged is in microwatts. In
the past, such low power recovery was considered useless; with ASOC it
becomes useful.

c08.indd 291c08.indd 291 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

292 WHAT’S NEXT: CHALLENGES AHEAD

 8.5 THE SHAPE OF THE ASOC

 The logical pieces of the ASOC die are shown in Figure 8.3 . It consists of the
power source, sensors(s), main computer and memory, and the communica-
tions module. What distinguishes the ASOC from the earlier RFID plus sensor
technology is the compute power and memory. It is this facility that enables
the system to analyze and distinguish patterns, to synthesize responses before
communicating with the external environment.

 Physically the ASOC is just a silicon die, probably 1 cm 2 in surface area.
Surface size is dictated by cost, which is determined by defect density. Current
technology gives excellent yields for 1 cm 2 and smaller die sizes. Much below
1 cm 2 costs are limited by testing and handling so this represents the preferred
size for most applications. Die thickness is limited by wafer fabrication con-
siderations and is about 600 μ m. A thin fi lm battery deposited in the reverse
side might add another 50 μ m. The resultant ASOC would be 65 mm 3 and
weigh about 0.2 g. From Figure 8.4 it could have of the order of 1 billion tran-
sistors. These transistors would realize the sensors, computer, memory, and RF;
the battery is on the reverse side.

 Figure 8.3 An ASOC die.

 Figure 8.4 ITRS [134] projection for transistor density.

Megabytes/cm2

M transistors/cm2

Tr
an

si
st

o
r

d
en

si
ty

F
la

sh
 m

em
o

ry
 d

en
si

t

c08.indd 292c08.indd 292 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

RF OR LIGHT COMMUNICATIONS 293

 8.6 COMPUTER MODULE AND MEMORY

 With a power budget of only 1 μ W the microarchitecture of the computer is
considerably different from the conventional processor:

 1. Asynchronous clocking: Data state transitions must be minimized to
reduce dynamic power. There may be only one - tenth asynchronous tran-
sitions required compared to a clocked system.

 2. Use of VLIW: Transistors are plentiful but power is scarce, so the effort
is to use any available parallelism to recover performance.

 3. Beckett and Goldstein [39] have shown that by careful device design
(lowering drive current and managing leakage), it is possible to arrange
for overall die power to be a reducing function of die area. This sacrifi ces
maximum operating frequency but the additional area can more than
compensate by parallelizing aspects of the architecture.

 4. Minimum and simple cache system: The memory and processor are in
relatively closer time proximity if the processor is performing an action
once every 0.1 μ s and the fl ash memory has access time between 1 and
10 μ s. A small instruction cache and explicitly managed data buffers seem
most suitable in the context of specifi ed applications.

 The fl ash memory is another essential piece of the system as it has a persistent
data image even without power. Current densities (NAND - based fl ash) give
excellent access times, 10 μ s, and ASOC capacity of perhaps 16 – 64 MB.

 As the technology is currently confi gured, Flash is largely incompatible with
integrated CMOS technology and seems restricted to off - die implementations.
However, there are a number of Flash variants that are specifi cally designed
to be compatible with ordinary SOC technology. SONOS [233] is a nonvolatile
example and Z - RAM [91] is a DRAM replacement example. Neither seems
to suffer from the conventional Flash rewrite cycle limitations (the order of
100,000 writes).

 Even though the Flash memory consumes no power when it is not being
used, when it is accessed the power consumption is proportional to the active
memory array size; that is, the number of memory cells connected to each bit
and word - line (assuming 2 - D square structure). In the context of ASOC this
implies a memory partitioned into smaller units, which may be most effective
from both a power and access time basis.

 8.7 RF OR LIGHT COMMUNICATIONS

 One of the great challenges of ASOC is communications. There are two
obvious approaches: laser and RF communications.

c08.indd 293c08.indd 293 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

294 WHAT’S NEXT: CHALLENGES AHEAD

 CHALLENGE

 Extremely low power processors that achieve perhaps 1/100 of the per-
formance of a conventional processor with microwatt power.

 This requires a rethinking of processor design issues from the device
level (absolutely minimum static power) to new circuit technology (sub-
threshold or adiabatic circuits); new clocking; and fi nally, a completely
new look at architectures.

 8.7.1 Lasers

 Integrating laser with silicon is an emerging technology. A recent development
 [85] uses an Indium Phosphide laser with silicon waveguide bonded directly
to a silicon chip. Using lasers for optical free - space communications has pos-
sibilities and diffi culties.

 Optical sensors are quite responsive [136] ; reception of 1 μ W supports about
100 MHz data rates (Figure 8.5). The diffi culty is that reception is subject to
ambient light (noise). In general the signal must be 10 times greater than the
noise. The other diffi culty is beam divergence (especially in laser diodes). This
requires optics to collimate the beam for low divergence [192] .

 The beam should not be too narrow (focused) as communications with the
receiver must be spatially and temporally synchronized. With a coherent
narrow beam, light must be diffused to allow for movement between source
and receiver. A slight movement (vibration) can cause an angular displace-
ment of α either vertically or horizontally over distance d . This results in an
uncertainty of δ at the receiver. So the receiver must accommodate signals
across a box of area R × R ; see Figure 8.6 .

 Since R > δ = α d in both x - and y - axes, signal is lost at a rate of k (1/ d 2).

 Figure 8.5 Photo detector sensitivity is a function of pulse width.

Pulse width (ns)

1 10 100 1000 Microwatts

10

1

0.1

0.01

P
o

w
er

c08.indd 294c08.indd 294 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

RF OR LIGHT COMMUNICATIONS 295

 Figure 8.6 Free space light communications.

R

d

Source

Receiver

 Given the limitations, the use of laser free space (as distinct from fi ber
optics) for communication is probably a secondary prospect for ASOC.

 8.7.2 RF

 The work of the Smart Dust program seems to the most relevant and useful
here [63, 181] . That program demonstrated the integration of low - power RF
into an SOC chip. To summarize some of their many fi ndings:

 1. A feasibility study realized a transceiver achieving 100 Kbps over a 20 - m
distance with an energy budget of 25 nJ/bit. This corresponds to about
10 11 bits/J/m. One joule of battery energy allows 100 Gbits to be trans-
ferred across 1 m [181] .

 2. Expressing data volume on a per - meter basis (as above) might imply
a linear relation between signal loss and distance. This is incorrect. As
with light, RF signal strength is a function of at least distance, d , squared;
but it is also a function of frequency, f . At best the RF signal is pro-
portional to k (1/ fd 2). In many situations the signal may be refl ected and
arrives at the receiver in multiple uncoordinated modes. This multipath
signal represents additional signal loss. It is usually expressed as k (1/ fd 2)
(d 0 / d) n , where d 0 is a standard distance (usually 1 m) and typically n is
3 or 4.

 3. Communications with less than 1 mW was not only feasible but likely to
be commercialized. With typical duty cycle of less than 1% the average
power consumption was between 1 and 10 μ W.

 4. There is a large data packet overhead (including start - up and synchro-
nization, start symbol, address, packet length, encryption, and error cor-
rection). Short messages can have as little as 3% payload packet effi ciency.
It is better to create fewer longer messages.

 5. As a result of (2) and (3), the system designer will want to minimize the
number of transmissions and maximize the data packet payload.

 8.7.3 Potential for Laser/ RF Communications

 Table 8.4 summarizes and compares the communications (data volume or total
number of bits) potential per joule of energy. While laser light seems to offer
more bits per joule, its limitations restrict its use.

c08.indd 295c08.indd 295 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

296 WHAT’S NEXT: CHALLENGES AHEAD

 8.7.4 Networked ASOC

 In many situations multiple ASOCs form a network connecting an ultimate
sender and receiver across several intermediate nodes. For such a system to
be viable and connected, the ASOC placement must be constrained to a
maximum average distance between nodes. This maximum distance depends
on path loss characteristics. In RF, the Smart Dust experiment showed that
this distance could vary from 1 km to 10 m as n varies from 2 to 4. It is impor-
tant to remember that the message bits passed across the network comes with
a (sometimes large) overhead due to synchronization. Spatial and temporal
synchronization requires adaptation and signaling overhead. This can be of the
order of 100 bits/message for time synchronization alone. Ideally, the system
would have infrequent but long messages so as to minimize this overhead.

 TABLE 8.4 Comparing Communication Technologies

 Sources Losses Bits/J/m at 10 m Comment

 Laser Distance; ambient light noise 10 10 – 10 12
 RF at 1 GHz Distance; multipath, frequency 10 8 – 10 11 [63, 181]

 CHALLENGE

 Adaptive and optimized communications including hyperdirectional
antennae for RF and adaptive special synchronization for light and
transmission.

 Protocols are needed to support short broadly directional initial trans-
mission, which enables sender and receiver to align for optimum path
transmission.

 CHALLENGE

 Communications technology that minimizes synchronization (both
special and temporal) overhead.

 In order to enable effi cient short message communications, it is essen-
tial to reduce overhead to the order of 10s of bits rather than much more.

 8.8 SENSING

 8.8.1 Visual

 Vision and motion sensors are usually confi gured as an array of photodiodes,
with array sizes varying from 64 × 64 to 4000 × 4000 or more [144] . Each pho-

c08.indd 296c08.indd 296 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

SENSING 297

todiode represents a pixel in the image (for grayscale digital images). Three
or more diodes are needed for colored and multiple spectrum images. To
conserve power and reduce state transitions an ASOC would probably imple-
ment the vision processor as an array with a single element per pixel.

 In either image recognition or motion detection and recognition, it is nec-
essary to fi nd either the correspondence with a reference image or the direc-
tion in which a block in one image shifts with respect to a previous image [65] .
Determining the match between two images or successive frames of the same
scene requires that the image be partitioned into blocks. The blocks of one
image are compared to the reference or previous image block by block in a
spiral pattern. Each comparison involves computing the SAD (sum of abso-
lute difference) index. When the image confi guration with the minimum SAD
index is found, the recognition or motion fl ow is resolved. While image recog-
nition should be possible in milliseconds, the challenge for vision sensors is
to meet the computational requirements of relatively fast - moving objects
(Figure 8.7).

 While it is clear that the image sensors can be integrated in the ASOC,
optics for focusing distant object in varying amounts of light can improve
performance.

 8.8.2 Audio

 As mentioned above the piezoelectric effect applied to silicon crystal can be
used to record sounds and is the basis for many simple sound detection and
microphone systems. Alternatively, in specialized applications such as hearing
aids, it is sometimes important to mimic the action of the ear. Various cochlear
chips have been realized using a sequence of low - pass fi lters to emulate the
operation of the cochlea. In one silicon implementation [251] , 360 cells each
containing dual low - pass fi lters are arranged as a linear array. Cochlea - type
implementations are usually preferred when speech recognition is required:

 Figure 8.7 Visual processing.

Object recognition with color (RGB to HSI)
128 × 64 pixel element array
Uses SAD array scan to match against 32
templates (432 bits each)

Achieves 30 frames per second with 1 mW

Image array

Image processing

Templates

T
e
m
p
l
a
t
e
m
a
t
c
h

c08.indd 297c08.indd 297 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

298 WHAT’S NEXT: CHALLENGES AHEAD

they form the frontend signal processing of the auditory system, separating
sound waves and mapping them into the frequency domain (Figure 8.8).

 Since audible sound frequencies are relatively low there are few real - time
constraints for an ASOC.

 8.9 MOTION, FLIGHT, AND THE FRUIT FLY

 Of course, the ultimate ASOC can both move and fl y. Given a weight of only
0.2 g motion per se is not a problem when the ASOC has associated MEMS.
MEMS and nanomotors are used to anchor and move the ASOC across a
surface. The energy required to move on a surface is simply the force to start
(accelerate) and then to overcome friction. One joule of energy translates into
10 7 ergs. An erg is the energy required to move a gram for 1 cm with the force
of a dyne. So slow motion (order of 1 – 2 cm/s) that occurs relatively infre-
quently (less than 1% duty cycle) should not cause signifi cant ASOC energy
dissipation.

 The motion of fl ight is by far the most complex. Various attempts [273] have
been made for small vehicle autonomous fl ight. Flight encapsulates many of
the ASOC challenges: power, vision (avoiding obstructions), environment
(wind, etc.), and communications. While the fl ying ASOC is a way off, such
systems are feasible as any small fruit fl y [209] knows!

 It is interesting to note that even the ambitious ASOC described here has
modest specifi cations when compared with biological creatures such as a fruit
fl y (Figure 8.9). A fruit fl y has a typical length of 2.5 mm, occupies a volume of
2 mm 3 , and weighs less than 20 mg. Typically it has only a 1 - month lifetime.

 Its vision processing is quite impressive. It has 800 vision receptor units, each
with eight photoreceptors for colors through the ultraviolet (using 200,000 neu-
rons out of a total of about 1 million). It is estimated that it has 10 times better

Speech processor,
transmitter

Receiver, electrodes

RF

 Figure 8.8 Audio processing (Cochlear implant from Wikipedia).

c08.indd 298c08.indd 298 5/4/2011 9:54:44 AM5/4/2011 9:54:44 AM

MOTIVATION 299

 Figure 8.9 The fruit fl y (from Wikipedia).

temporal vision than the human vision system. When coupled with processing
for olfaction, audition, learning/memory, and communications with other nodes
(fl ies), it represents an elegant ASOC. Its ability in fl ight just further impresses:
its wings beat 220 times per second and can move at 10 cm/s and rotate 90
degrees in 50 ms. Its energy source is scavenged rotting fruit.

 There have been recent proposals about the development of robotic fl ies
with control systems inspired by the real ones [255] . Clearly the designer of
silicon - based ASOC described here has much to learn from the fruit fl y.

 CHALLENGE

 Sensor miniaturization and integration of transducers for measurement
of temperature and strain, and movement and pressure.

 At present, there is an assumption that these units will be off die and
hence large. At issue is how to miniaturize and integrate these into an
ASOC.

 II. THE FUTURE DESIGN PROCESS: SELF - OPTIMIZATION
AND SELF - VERIFICATION

 8.10 MOTIVATION

 The remaining sections of this chapter cover an approach that can be used to
develop advanced SOC including the ASOC described earlier.

c08.indd 299c08.indd 299 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

300 WHAT’S NEXT: CHALLENGES AHEAD

 A good design is effi cient and meets requirements. Optimization enhances
effi ciency, while verifi cation demonstrates that requirements are met.
Unfortunately, many existing designs are either ineffi cient, incorrect, or both.

 Optimization and verifi cation are recognized to be of major importance at
all levels of abstraction in design. A recent International Technology Roadmap
for Semiconductors listed “ cost - driven design optimization ” and “ verifi cation
and testing ” as two of the three overall challenges in design; the remaining
challenge is “ reuse. ”

 What would a future be like in which these three challenges are met? Let
us imagine that building blocks for use in design are endowed with the capa-
bility of optimizing and verifying themselves. A new design can be completed
in the following ways:

 1. Characterize the desired attributes of the design that defi ne the require-
ments, such as its function, accuracy, timing, power consumption, and
preferred technology.

 2. Develop or select an architecture that is likely to meet the requirements
and explore appropriate instantiations of its building blocks.

 3. Decide whether existing building blocks meet requirements; if not, either
start a new search, or develop new optimizable and verifi able building
blocks, or adapt requirements to what can be realized.

 4. After confi rming that the optimized and verifi ed design meets the
requirements, organize the optimization and verifi cation steps to enable
the design to become self - optimizing and self - verifying.

 5. Generalize the design and the corresponding self - optimization and self -
 verifi cation capabilities to enhance its applicability and reusability.

 A key consideration is to be able to preserve self - optimization and self -
 verifi cation in the design process: starting from components with such proper-
ties, the composite design is also self - optimizing and self - verifying. In the next
few sections, we include more information about this approach.

 8.11 OVERVIEW

 Optimization can be used to transform an obvious but ineffi cient design into
one that is effi cient but no longer obvious. Verifi cation can then show, for
instance, that the optimization preserves functional behavior subject to certain
preconditions. A common error in design is to apply optimizations disregard-
ing such preconditions. Verifi cation can also be used to check whether a design
possesses desirable properties, such as safety and security, to a particular
standard.

 Optimization and verifi cation, when combined with a generic design
style, supports reuse in three main ways. First, an optimized generic design

c08.indd 300c08.indd 300 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

OVERVIEW 301

provides abstraction from details, enabling designers to focus on the avail-
able optimization options and their effects. Second, a generic design offers
choices at multiple levels of abstraction, from algorithms and architectures to
technology - specifi c elements. Third, a verifi ed optimization process improves
confi dence in the correctness of its optimized designs. Correctness must be
established before a design can be reused. In the event of errors, one can check
whether the verifi cation is incorrect or whether the design is applied in a
context outside the scope of the verifi cation.

 We take a broad view of self - optimization and self - verifi cation. One way is
to think of a design — which can include both hardware and software — and its
characterization about the key properties that an implementation should
possess. Such properties include functional correctness, type compatibility,
absence of arithmetic underfl ow or overfl ow, and so on. The characterization
can include prescriptions about how the design can be optimized or verifi ed
by specifi c tools locally or remotely. Various mechanisms, from script - driven
facilities to machine learning procedures, can be used in the self - optimization
and self - verifi cation processes, making use of context information where avail-
able. Designers can focus on optimizing and verifying particular aspects; for
instance, one may wish to obtain the smallest design for computing Advanced
Encryption Standard (AES) encryption on 128 - bit data streams with a 512 - bit
key at 500 MHz.

 The proposed design fl ow involves self - optimization and self - verifi cation
before and after deployment (Table 8.5). Before deployment, compilation
produces an initial implementation and its characterization. The characteriza-
tion contains information about how the design has been optimized and veri-
fi ed, and also about opportunities for further optimization and verifi cation;
such opportunities can then be explored after deployment at run time for a
particular context to improve effi ciency and confi dence of correctness.

 The self - optimization of a design depends on context. Before deployment,
the context is the design tool environment; the context can be acquired by
identifying parameters that affect design tool performance. While automated
facilities, possibly self - improving, attempt to fi gure out what combinations of

 TABLE 8.5 Context for Predeployment and Postdeployment

 Predeployment Postdeployment

 Focus context Designer productivity design
tool environment, often static

 Design effi ciency operation
environment, often dynamic

 Acquire context From parameters affecting tool
performance

 From data input, for example,
sensors

 Optimize/verify Optimize/verify initial
postdeployment design

 Optimize according to
situation

 Planning Plan postdeployment optimize/
verify

 Plan to meet postdeployment
goals

 External control Frequent Infrequent

c08.indd 301c08.indd 301 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

302 WHAT’S NEXT: CHALLENGES AHEAD

libraries and tools would produce a design that best meets the requirements,
designers can optionally control the tools to ensure such self - optimization and
self - verifi cation proceed in the right direction. In contrast, after deployment
such external control is usually less frequent, for instance if the design is part
of a spacecraft. To summarize, predeployment tasks are mainly strategic and
try to proactively determine possible courses of action that might take place
at run time; postdeployment tasks are mainly tactical and must choose between
the set of possible actions to react to the changing run - time context.

 Our approach has three main benefi ts. First, it enhances confi dence in
design correctness and reliability by automating the verifi cation process.
Second, it improves design effi ciency by automating the optimization process
and exploiting run - time adaptivity. Third, it raises productivity by enabling
reuse of designs and their optimization and verifi cation.

 However, adopting systematic design reuse — especially when self -
 optimization and self - verifi cation are involved — can require more initial effort
than doing a one - off design. The designer needs to organize, generalize, and
document the designs appropriately. Only after some time, design reuse would
become worthwhile (Figure 8.10). Moreover, there can be large overheads
involved in supporting optimization and verifi cation after deployment. In the
long term, however, those who invest in capabilities for design reuse and
design adaptability are likely to achieve substantial improvement in design
effi ciency and productivity.

 8.12 PRE - DEPLOYMENT

 Before deployment, a designer has the characterization of a desired design
and has access to building blocks and their characterization. The task is to
develop an architecture that defi nes how selected building blocks are instanti-

 Figure 8.10 Design effort: The impact of reuse.

Little reuse

Much reuse

Number of new designs

C
um

ul
at

iv
e

de
si

gn
 e

ffo
rt

c08.indd 302c08.indd 302 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

PRE-DEPLOYMENT 303

ated and composed to produce an initial design that either meets the require-
ments, or can be further optimized to do so, after deployment at run time.
Postdeployment optimization and verifi cation have to be planned carefully to
avoid becoming an unaffordable overhead.

 We assume that, at compile time before deployment,

 1. the available computing resources are adequate to support the design
and the tools, but

 2. there is a limit on how much optimization and verifi cation can take place
since, for instance, some data values useful for optimization are only
known at run time, and it is impractical to compute all possibilities for
such values.

 As a simple example, given that one of the two operands of an n - bit adder is
a constant whose value is only known after deployment at run time, we wish
to optimize the adder by constant propagation. It is, however, impractical to
precompute the confi guration of all 2 n possibilities, unless n is a small number.
Fortunately, if we target a bit - slice architecture, then it may suffi ce to precom-
pute only two confi gurations for each of the n bits so that, at run time when
the value is known, the appropriate confi guration can be placed at the right
location at the right time [216] .

 Designers may have to prioritize or to change their requirements until a
feasible implementation is found. For instance, one may want the most power -
 effi cient design that meets a particular timing constraint or the smallest design
that satisfi es a given numerical accuracy. Other factors, such as safety or secu-
rity issues, may also need to be taken into account.

 Given that predeployment optimization is to produce an optimized design
that would, where appropriate, be further optimized after deployment, the

 CHALLENGE

 Capture composable generic descriptions of design and context, together
with their optimization and verifi cation characterization, at various
levels of abstraction.

 Composition is a convenient way of reuse, but it may not be straight-
forward, other than for those that adopt simple communication regimes
such as streaming. In particular, before composing heterogeneous com-
ponents, they may need to be transformed to support a common com-
munication and synchronization infrastructure. System - level design
composition is challenging, since not only the designs themselves are
composed, but also their corresponding optimization and verifi cation
procedures.

c08.indd 303c08.indd 303 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

304 WHAT’S NEXT: CHALLENGES AHEAD

following are some examples of optimizations that can take place before
deployment:

 1. Choose a circuit technology in which the design would be implemented.
The two common technologies are application - specifi c integrated circuit
(ASIC) and fi eld - programmable gate array (FPGA); the choice of tech-
nology depends on volume and fl exibility (Figure 8.11). For instance,
cell - based ASIC tends to be cheaper at large volume since they have
large nonrecurring engineering cost, while FPGA is the other way around
with structured ASIC somewhere in between. While ASIC technology
can be used to implement adaptive instruction processors with, for
instance, custom instruction extensions [29] or a reconfi gurable cache
 [76] , all the options for reconfi guration have to be known before fabrica-
tion. Adaptive instruction processors can also be implemented in FPGA
technology [77, 269] , which allows them much more fl exibility at the
expense of speed and area overheads in supporting reconfi gurability.

 2. Choose the granularity and synchronization regime for the confi gurable
units. Current commercial FPGAs are mainly fi ne - grained devices with
one or more global clocks, but other architectures are emerging: there
are coarse - grained devices containing an array of multi - bit ALUs (arith-
metic logic units) executing in parallel [25, 80] , as well as architectures
based on self - synchronizing technology to enhance scalability [52] .
Generally, fi ne - grained devices have a better chance to be tailored to
match closely with what is required. For instance, if a 9 - bit ALU is
needed, nine bit - level cells in an FPGA would be confi gured to form that
9 - bit ALU. For a coarse - grained device containing cells with 8 - bit ALUs,
two such cells would be needed. However, fi ne - grained devices tend to
have a large overhead in speed, area, power consumption, and so on,

 Figure 8.11 Comparing cost and volume for FPGA and ASIC technologies.

Volume

C
os

t

Structured
ASIC

Cell-based
ASIC

FPGA

c08.indd 304c08.indd 304 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

PRE-DEPLOYMENT 305

since there are more resources that can be confi gured. Coarse - grained
devices, in contrast, have lower overheads at the expense of fl exibility.

 3. For instruction processors with support for custom instructions [29, 77] ,
choose the granularity of custom instructions to achieve the right balance
between speed and area. Coarse - grained custom instructions are usually
faster but require more area than fi ne - grained ones. For instance, if the
same result can be achieved using: (a) one coarse - grained custom instruc-
tion, or (b) 50 fi ne - grained custom instructions, then (a) is likely to be
more effi cient since there are fewer instruction fetch/decode, and there
are more opportunities to customize the instruction to do exactly what
is needed. However, since the more coarse - grained an instruction, the
more specifi c it can become, there would be fewer ways for reusing a
coarse - grained custom instruction than a fi ne - grained one.

 4. Choose the amount of parallelism and hardware/software partitioning to
match performance or size constraints by determining, for instance, the
number of processing elements, the level of pipelining, or the extent of
task sharing for each processing element. Various factors, such as the
speed and size of control logic and on - chip memory, and interfaces to
other elements such as memory or sensors, would also need to be taken
into account. As an example, Figure 8.12 shows how speedup varies with
the number of processors targeting an FPGA for a multiprocessor archi-
tecture specialized for accelerating inductive logic programming applica-
tions [89] . Since the amount of FPGA on - chip memory is fi xed, increasing
the number of processors reduces the amount of cache memory for each
processor; hence, the linear speedup until there are 16 processors. After

 Figure 8.12 Variation of speedup and aggregate miss rate against the number of
processors for the Arvand multiprocessor system targeting the XC2V6000 FPGA.

 0

 5

 10

 15

 20

 25

 30

5 10 15 20 25 30
 0.1

 1

 10

 100

 1000

S
pe

ed
up

A
gg

re
ga

te
 m

is
s

ra
te

Number of processors

Immunoglobulin
Head cache size

4k 2k 1k
Speedup

Miss rate

c08.indd 305c08.indd 305 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

306 WHAT’S NEXT: CHALLENGES AHEAD

this optimal point, adding more processors reduces the speedup since the
cache for each processor becomes too small.

 5. Choose data representations and the corresponding operations. Trade -
 offs in adopting different kinds of arithmetic representations are well
known: for instance, redundant arithmetic tends to produce faster designs,
since no carry chain is required at the expense of size. Since fi ne - grained
FPGAs support designs with any word length, various static and dynamic
word - length optimization algorithms can be used for providing designs
with the best trade - off between performance, size, power consumption,
and accuracy in terms of, for instance, signal - to - noise ratio [62] . Models
and facilities to support exceptions, such as arithmetic overfl ow and
underfl ow, should also be considered [153] .

 6. Choose placement strategies for processing and memory elements on the
physical device, such as those interacting frequently are placed close to
one another to improve performance, area, and power consumption. It
may be possible to automate the optimization of placement by a combi-
nation of heuristics and search - based autotuners [27] that generate and
evaluate various implementation options; such methods would need to
take into account various architectural constraints, such as the presence
of embedded computational or memory elements [36] .

 Each example above has aspects that would benefi t from verifi cation, from
high - level compilation [43] to fl attening procedures [168] and placement
strategies [196] . There are verifi cation platforms [236] enabling consistent
application of verifi cation facilities such as symbolic simulators, model check-
ers, and theorem provers. Such platforms show promise in supporting self -
 verifi cation for complex designs, but much remains to be done to verify designs
involving various technologies and across multiple levels of abstraction. Also,
many of these platforms and facilities may be able to benefi t from automatic
tuning [121] .

 One important predeployment task is to plan self - optimization and self -
 verifi cation after deployment. This plan would depend on how much run - time
information after deployment is available. For instance, if some inputs to a
design are constant, then such constants can be propagated through the design
by boolean optimization and retiming. Such techniques can be extended to
cover placement strategies for producing parametric descriptions of compact
layout [168] . Another possibility is to select appropriate architectural tem-
plates to facilitate run - time resource integration [211] .

 Before deployment, if verifi cation already covers optimizations and all
other postdeployment operations, then there is no need for further verifi ca-
tion. However, if certain optimizations and verifi cations are found useful but
cannot be supported by the particular design, it may be possible for such
optimizations and verifi cations to take place remotely, so that the optimized
and verifi ed design would be downloaded securely into the running system at
an appropriate time, minimizing interruption of service.

c08.indd 306c08.indd 306 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

POST-DEPLOYMENT 307

 8.13 POST - DEPLOYMENT

 The purpose of optimization is to tailor a design to best meet its requirements.
Increasingly, however, such requirements no longer stay the same after the
design is commissioned; for instance, new standards may need to be met, or
errors may need to be fi xed. Hence there is a growing need for upgradable
designs that support postdeployment optimization. Besides upgradability,
postdeployment optimization also enables resource sharing, error removal,
and adaptation to run - time conditions — for instance, selecting appropriate
error - correcting codes depending on the noise variation.

 Clearly any programmable device would be capable of postdeployment
optimization. As we described earlier, fi ne - grained devices have greater oppor-
tunities of adapting themselves than coarse - grained devices, at the expense of
larger overheads.

 In the following we focus on two themes in postdeployment optimization:
situation - specifi c optimization and autonomous optimization control. In both
cases, any untrusted postdeployment optimizations should be verifi ed by light-
weight verifi ers; possible techniques include proof - carrying code checkers
 [252] . Such checkers support parameters that capture the safety conditions for
particular operations. A set of proof rules are used to establish acceptable ways
of constructing the proofs for the safety conditions.

 As mentioned in the preceding section, should heavy - duty optimizations
and verifi cations become desirable, it may be possible for such tasks to be
carried out by separate trusted agents remotely and downloaded into the
operational device in a secure way, possibly based on digital signatures that
can verify senders ’ identity. Otherwise it would be prudent to include a time -
 out facility to prevent nontermination of self - optimization and self - verifi cation
routines that do not produce results before completion.

 CHALLENGE

 Develop techniques and tools for specifying and analyzing require-
ments of self - optimizing and self - verifying systems, and methods for
automating optimization and verifi cation of operations and data
representations.

 Relevant optimization techniques include scheduling, retiming, and
word - length optimization, while relevant verifi cation techniques include
program analysis, model checking, and theorem proving. Their effective
tuning and combination, together with new methods that explore, for
instance, appropriate arithmetic schemes and their impact, would enable
effi cient designs to be produced with reduced effort.

c08.indd 307c08.indd 307 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

308 WHAT’S NEXT: CHALLENGES AHEAD

 Besides having a time - out facility, postdeployment verifi cation should be
capable of dealing with other forms of exceptions, such as verifi cation failure
or occurrence of arithmetic errors. There should be error recovery procedures,
together with techniques that decide whether to avoid or to correct similar
errors in the future. For some applications, on - chip debug facilities [120] would
be useful; such facilities can themselves be adapted to match the operational
and buffering requirements of different applications.

 8.13.1 Situation - Specifi c Optimization

 One way to take advantage of postdeployment optimization in a changing
operational environment is to continuously adapt to the changing situation,
such as temperature, noise, process variation, and so on. For instance, it has
been shown [241] that dynamic reconfi guration of a Viterbi decoder to adapt
the error - correcting convolutional codes to the variation of communication
channel noise conditions can result in almost 70% reduction in decoder power
consumption, with no loss of decode accuracy.

 Figure 8.13 shows a reconfi guration schedule that optimally adapts to the
program phase behavior of the SPECviewperf benchmark 9 [232] . A program
phase is an interval over which the working set of the program remains largely
constant; our purpose is to support a dynamic optimization regime that makes
use of program phase information to optimize designs at run time. The regime
consists of a hardware compilation scheme for generating confi gurations that
exploit program branch probability [231] and other opportunities to optimize
for different phases of execution, and a run - time system that manages inter-
change of confi gurations to maintain optimization between phase transitions.
The idea is to accelerate the hardware for branches that occur frequently in a
particular program phase; when the beginning of the next program phase is
detected, the hardware would be reconfi gured to optimize the new program
phase.

 In addition to improving performance by exploiting, for instance, program
phase behavior, postdeployment optimization also has the potential to improve

 Figure 8.13 Optimal reconfi guration schedule for upper bound performance measure,
SPECviewperf benchmark 9. The dotted and solid lines show, respectively, the branch
probabilities of the inner and outer loop over time.

1 43 447 447 447 447 447 447 447 447 447 447 43 47 43427 447 47444447 4447434447

B
ra

nc
h

pr
ob

ab
ili

ty

0.8

0.6

0.4

0.2

0
0 20 40 60 80

Time (10-megapixel intervals)

100 120 140

c08.indd 308c08.indd 308 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

POST-DEPLOYMENT 309

power consumption. Figure 8.14 shows a possible variation of power consump-
tion over time. Comparing to a static design, a postdeployment optimizable
design can be confi gured to a situation - specifi c design with the lowest possible
power consumption for that situation, although there could be power surges
when the device is being reconfi gured. Techniques have been proposed for
FPGAs that would automatically adjust their run - time clock speed [49] or
exploit dynamic voltage scaling [57] ; related methods have been reported for
microprocessors [73] . Such techniques would be able to take advantage of
run - time conditions after deployment, as well as adapting to effects of process
variation in deep submicron technology.

 A useful method for supporting situation - specifi c optimization is to inte-
grate domain - specifi c customizations into a high - performance virtual machine,
to which both static and dynamic information from postdeployment instru-
mentation is made available. Such information can be used in various situa-
tions for self - optimization and self - verifi cation, such as optimizing the way
hardware or software libraries are used based on special properties of the
library code and context from postdeployment operation.

 8.13.2 Autonomous Optimization Control

 “ Autonomic computing ” [139] has been proposed for systems that support
self - management, self - optimization, and even self - healing and self - protection.
It is motivated by the increasing complexity of computer systems that require
signifi cant efforts to install, confi gure, tune, and maintain. In contrast, we focus
on the design process that can support and benefi t from self - optimizing and
self - verifying components.

 An evolving control strategy for self - optimization can be based on event -
 driven, just - in - time reconfi guration methods for producing software code and

 Figure 8.14 Possible variation of instantaneous power consumption over time. The
two narrow spikes indicate power consumption during two reconfi gurations for run -
 time optimization.

Time

P
ow

er
 c

on
su

m
pt

io
n

Static design

Reconfigurable
design

c08.indd 309c08.indd 309 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

310 WHAT’S NEXT: CHALLENGES AHEAD

hardware confi guration information according to run - time conditions, while
hiding confi guration latency. One direction is to develop the theory and prac-
tice for adaptive components involving both hardware and software elements,
based on component metadata description [138] . Such descriptions character-
ize available optimizations and provide a model of performance together with
a composition metaprogram that uses component metadata to fi nd and con-
fi gure the optimum implementation for a given context. This work can be
combined with current customizable hardware compilation techniques [245] ,
which make use of metadata descriptions in a contract - based approach, as well
as research on adaptive software component technology.

 Another direction is to investigate high - level descriptions of desirable
autonomous behavior and how such descriptions can be used to produce a
reactive plan. A reactive plan adapts to a changing environment by assigning
an action toward a goal for every state from which the goal can be reached
 [238] . Dynamic reconfi guration can be driven by a plan specifying the proper-
ties a confi guration should support.

 Other promising directions for autonomous optimization control include
those based on machine learning [6] , inductive logic programming [89] , and
self - organizing feature maps [200] . Examples of practical self - adaptive systems,
such as those targeting space missions [140] , should also be studied to explore
their potential for widening applicability and for inspiring theoretical develop-
ment. It would be interesting to fi nd an appropriate notion of verifi ability for
these optimization methods.

 CHALLENGE

 Find strategies that provide the best partitioning between co - optimization
and coverifi cation before and after deployment.

 The more work is done before deployment, the more effi cient the
postdeployment design for a given application tends to become, but at
the expense of fl exibility. Strategies for getting the right balance between
predeployment and postdeployment optimization and verifi cation will
be useful.

 8.14 ROADMAP AND CHALLENGES

 In the short term, we need to understand how to compose self - optimizing and
self - verifying components, such that the resulting composite design is still self -
 optimizing and self - verifying. A key step is to provide both theoretical and
practical connections between relevant design models and representations, as
well as their corresponding optimization and verifi cation procedures, to ensure

c08.indd 310c08.indd 310 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

ROADMAP AND CHALLENGES 311

consistency between semantic models and compatibility between interfaces of
different tools.

 It seems a good idea to begin by studying self - optimizing and self - verifying
design in specifi c application domains. Experience gained from such studies
would enable the discovery of fundamental principles and theories concerning
the scope and capability of self - optimizing and self - verifying design that tran-
scend the particularities of individual applications.

 Another direction is to explore a platform - based approach for developing
self - optimizing and self - verifying systems. Promising work [236] has been
reported in combining various tools for verifying complex designs; such work
provides a basis on which further research on self - optimization and self -
 verifi cation can be built. Open - access repositories that enable shared designs
and tools would be useful; in particular, the proposed approach would benefi t
from, and also contribute to, the verifi ed software repository [43] , currently
being developed as part of the UK Grand Challenge project in dependable
systems evolution.

 Clearly, much research remains to be done to explore the potential for self -
 optimizing and self - verifying design. Progress in various areas is required to
enhance self - optimization and self - verifi cation for future development.

 Challenge. So far, we focus on designing a single element that may
operate autonomously. The criteria for optimality and correctness
become more complex for a network of autonomous elements, especially
if the control is also distributed. We need to develop theoretical and
practical connections between the optimality and correctness of the
individual elements, and the optimality and correctness of the network
as a whole.

 Challenge. Design reuse would only become widespread if there are
open standards about the quality of the re - usable components as well as
the associated optimization and verifi cation processes. Such standards
cover a collection of methods for verifying functional and performance
requirements, including simulation, hardware emulation, and formal
verifi cation, at different levels of abstraction.

 Challenge. There is a clear need for a sound foundation to serve as the
basis for engineering effective self - optimization and self - verifi cation
methodologies that closely integrate with design exploration, prototyp-
ing, and testing. The challenge is that adaptability, while improving fl ex-
ibility, tends to complicate optimization and verifi cation.

c08.indd 311c08.indd 311 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

312 WHAT’S NEXT: CHALLENGES AHEAD

 8.15 SUMMARY

 There is a whole new fi eld to be explored based on the next generation of
SOC and ASOC. As we have seen, transistor density improvements will enable
a billion transistors per square centimeter. This enormous computational
potential has a major limitation: limited electrical energy. There is a new direc-
tion opening in computer architecture, nanocomputing , to contrast with his-
torical efforts in supercomputing. The target of this fi eld is to produce the
algorithms and architectural approaches for high performance at less than 1
millionth of the current levels of power dissipation, freeing the chip from
external power coupling.

 For untethered operation, a form of wireless communication is required.
This is another signifi cant challenge, especially with a power budget also in
the order of microwatts. While RF is the conventional approach, some form
of light or infrared may offer an alternative.

 In addition, digitizing the sensors and even the transducers offers a fi nal
challenge where multiple sensors are integrated into a seamless SOC.

 The chapter also projects a vision of design with self - optimizing and self -
 verifying components, to address the design challenges identifi ed by the
International Technology Roadmap for Semiconductors. Tasks for self -
 optimization and self - verifi cation before and after deployment are described,
together with a discussion of possible benefi ts and challenges. Making progress
in theory and practice for self - optimization and self - verifi cation would con-
tribute to our goal: enabling designers to produce better designs more rapidly.

 The best designs anticipate system complexity and deal effectively with the
unanticipated. System complexity includes many issues overlooked in this
chapter: component design and suppliers, design tools, validation and testing,
security, and so on. Successful trade - offs across a myriad of issues defi ne effec-
tive design.

 While there is little expectation that all of the ASOC components discussed
here will actually be integrated into a single die, there are many different pos-
sible combinations. Each combination with its own system requirements must
be optimized across all of the constituent components. Designers, with the help
of a self - optimizing and self - verifying development approach, are now no
longer concerned about a component but only about the fi nal system; they
become the ultimate systems engineers .

c08.indd 312c08.indd 312 5/4/2011 9:54:45 AM5/4/2011 9:54:45 AM

 Given the complexity of many processor confi gurations, it is not always pos-
sible to predict performance or the area required for many designs without
the help of simulation or prediction tools. In this text, we provide simple tools
that can give reasonable estimates of many design parameters.

 The SimpleScalar tool set is used for exploring the design space for instruc-
tion processors. Its backend has been precompiled to support four architec-
tures: Alpha, ARM, PISA (a variant of MIPS), and x86.

 Figure A.1 shows the setting for the SimpleScalar web interface. Figures
 A.2 and A.3 present two simulated results using different L1 cache confi gura-
tions and different translation lookaside buffer (TLB) confi gurations.

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

313

 Figure A.1 Web interface for selecting different user options.

� ARM + fmath + sim-bpred + not-taken

� ARM + fmath + sim-bpred + bimod with large table size

� x86 + Ilong + sim-outorder + 2 i-ALU + 2 f-ALU

� x86 + Ilong + sim-outorder + 6 i-ALU + 6 f-ALU

Option x-axis

Option

sim_IPC

Area

y-axis

Series

L1 cache

L2 cache

TLB

� PISA + math + sim-cache

�

�

�

�

�

� �

�

 APPENDIX

Tools for Processor Evaluation

bapp.indd 313bapp.indd 313 5/4/2011 9:53:40 AM5/4/2011 9:53:40 AM

314 APPENDIX: TOOLS FOR PROCESSOR EVALUATION

 Figure A.3 Variations of different L1 cache settings against simulated IPC.

0.95

0.9

0.85

0.8

0.75

0.7
64

si
m

_I
P

C

128 256 512
L1 cache

4, 8 8, 16 16, 32 32, 64 64, 128

1024

 Figure A.2 Variations of different TLB settings against simulated IPC.

0.54

0.52

0.5

0.48

0.46

0.44
4, 8

si
m

_I
P

C

8, 16 16, 32 32, 64
TLB

64 128 256 512 1024

64, 128

 This web interface provides the following key features to users:

 • enabling different instruction set architectures (ISAs) such as PISA,
ARM, and x86;

 • enabling different benchmark programs such as math.c, fmath.c, and
llong.c;

bapp.indd 314bapp.indd 314 5/4/2011 9:53:40 AM5/4/2011 9:53:40 AM

APPENDIX: TOOLS FOR PROCESSOR EVALUATION 315

 • enabling different SimpleScalar simulators for various processor infor-
mation; and

 • providing a dynamic and real - time update to the generated fi gure from
the web user browser.

 If we want to produce a fi gure from the SimpleScalar web interface, we need
to fi rst select the architecture, then select the option according to the type of
simulation that we want, such as getting the L1 cache or the TLB information.
Finally, we can choose the simulated instructions per cycle (IPC) value or area
information.

 As shown in Figure A.2 , the x - axis shows different TLB values and the y -
 axis shows different simulated IPC values. Each line in the plot refers to a
single confi guration of the L1 cache value.

bapp.indd 315bapp.indd 315 5/4/2011 9:53:40 AM5/4/2011 9:53:40 AM

 REFERENCES

 [1] S. Abraham and K. Padmanabhan , “ Performance of direct binary n - cube net-
works for multiprocessors , ” IEEE Transactions on Computers , 38 (7): 1000 – 1111 ,
 1989 .

 [2] Actel , Axcelerator Family FPGAs, v2.8 , 2009 .
 [3] Actel , IGLOO Handbook, v1.2 , 2009 .
 [4] Actel , ProASIC Plus Family Flash FPGAs, v3.5 , 2004 .
 [5] Actel , ProASIC3 Handbook, v1.4 , 2009 .
 [6] F. Agakov et al., “ Using machine learning to focus iterative optimization , ” Pro-

ceedings of the International Symposium on Code Generation and Optimization ,
 IEEE , 2006 , pp. 295 – 305 .

 [7] A. Agarwal , Analysis of Cache Performance of Operating Systems and Multi-
programming , PhD thesis, Computer Systems Laboratory, Stanford University,
published as CSL - TR - 87 - 332, 1987 .

 [8] A. Agarwal , “ Limits on interconnection network performance , ” IEEE Transac-
tions on Parallel and Distributed Systems , 2 (4): 398 – 412 , 1991 .

 [9] K. Ajo , A. Okamura and M. Motomura , “ Wrapper - based bus implementation
techniques for performance improvement and cost reduction , ” IEEE Journal of
Solid - State Circuits , 39 (5): 804 – 817 , 2004 .

 [10] Altera , Avalon Interface Specifi cations, Version 1.2 , 2009 .
 [11] Altera , Nios embedded processor , http://www.altera.com/products/ip/processors/

nios/nio - index.html , 2010 .
 [12] Altera , Nios II Processor Reference Handbook Ver. 9.1 , 2009 .
 [13] Altera , Nios II Performance Benchmarks , 2010 .
 [14] Altera , Stratix II Device Handbook, SII5V1 - 4.4 , 2009 .
 [15] Altera , Stratix III Device Handbook, Version 2.0 , 2010 .
 [16] Altera , Stratix IV Device Handbook, Version 4.2 , 2010 .
 [17] H. Amano , “ Japanese dynamically reconfi gurable processors , ” Proceedings of

ERSA , 2009 , pp. 19 – 28 .
 [18] AMD , AMD Geode Brochure , 2005 .
 [19] ARC , ARC 600 , Confi gurable 32 - bit CPU core Description, 2005 .
 [20] ARM , ARM 1020E , Technical Reference Manual, rev. r1p7, 2003 .
 [21] ARM , AMBA Bus Standard Specifi cations , 2010 .

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

316

bref.indd 316bref.indd 316 5/4/2011 9:53:41 AM5/4/2011 9:53:41 AM

REFERENCES 317

 [22] ARM , AMBA Specifi cation, Rev 2.0 , ARM - IHI - 0011A.
 [23] ARM , ARM VFP11, Vector Floating - Point Coprocessor for ARM1136JF - S

Processor r1p5, Technical Reference Manual , 2007 .
 [24] ARM , ARM1136J(F) - S Processor Specifi cations , 2010 .
 [25] J.M. Arnold , “ The architecture and development fl ow of the S5 software confi gu-

rable processor , ” Journal of VLSI Signal Processing , 47 (1): 3 – 14 , 2007 .
 [26] Arteris , “ A comparison of network - on - chip and busses , ” White Paper, 2005 .
 [27] K. Asanovic et al., The landscape of parallel computing research: A view from

Berkeley , Technical Report No. UCB/EECS - 2006 - 183 , 2006 .
 [28] K. Atasu et al., “ CHIPS: Custom hardware instruction processor synthesis , ”

 IEEE Transactions on Computer - Aided Design , 27 (3): 528 – 541 , 2008 .
 [29] K. Atasu et al., “ Optimizing instruction - set extensible processors under data

bandwidth constraints , ” Proceedings of Design, Automation and Test in Europe
Conference , IEEE , 2007 , pp. 1 – 6 .

 [30] T. Austin , E. Larson and D. Ernst , “ SimpleScalar: An infrastructure for computer
system modeling , ” IEEE Computer , 35 (2): 59 – 67 , 2002 .

 [31] B. Bacheldor , “ Belgium hospital combines RFID, sensors to monitor heart
patients , ” RFID Journal , March 6 , 2007 .

 [32] B. Bailey , G. Martin and A. Piziali , ESL Design and Verifi cation: A Prescription
for Electronic System - Level Methodology , Morgan Kaufmann , 2007 .

 [33] J.E. Barth et al., “ Embedded DRAM design and architecture for the IBM 0.11 -
 μ m ASIC offering , ” IBM Journal of Research and Developmental , 46 (6): 675 – 689 ,
 2002 .

 [34] S. Baskiyar and N. Meghanathan , “ A survey of contemporary real - time operating
systems , ” Informatica , 29 : 233 – 240 , 2005 .

 [35] J. Becker , M. Hubner , G. Hettich , R. Constapel , J. Eisenmann and J. Luka ,
 “ Dynamic and partial FPGA exploitation , ” Proceedings of the IEEE , 95 (2): 438 –
 452 , 2007 .

 [36] T. Becker , W. Luk and P.Y.K. Cheung , “ Enhancing relocatability of partial
bitstreams for run - time reconfi guration , ” Proceedings of the IEEE Interna-
tional Symposium on Field - Programmable Custom Computing Machines , 2007 ,
pp. 35 – 44 .

 [37] T. Becker , W. Luk and P.Y.K. Cheung , “ Parametric design for reconfi gurable
software - defi ned radio , ” Reconfi gurable Computing: Architectures, Tools and
Applications , LNCS 5453, J. Becker et al. (eds.), Springer , 2009 .

 [38] T. Becker , W. Luk and P.Y.K. Cheung , “ Energy - aware optimisation for run - time
reconfi guration , ” Proceedings of the IEEE Symposium on Field - Programmable
Custom Computing Machines , 2010 , pp. 55 – 62 .

 [39] P. Beckett and S. Goldstein , “ Why area might reduce power in nanoscale CMOS , ”
 IEEE International Symposium on Circuits and Systems , 3 : 2329 – 2332 , 2005 .

 [40] L. Benini and G. De Micheli , “ Networks on chips: A new SOC paradigm , ” IEEE
Computer , 35 (1): 70 – 78 , 2002 .

 [41] D.P. Bhandarkar , “ Analysis of memory interference in multiprocessors , ” IEEE
Transactions on Computers , C - 24 (9): 897 – 908 , 1975 .

 [42] V. Bhaskaran and K. Konstantinides , Image and Video Compression Standards:
Algorithms and Architectures , (2nd ed.), Kluwer , 1997 .

bref.indd 317bref.indd 317 5/4/2011 9:53:41 AM5/4/2011 9:53:41 AM

318 REFERENCES

 [43] J. Bicarregui , C.A.R. Hoare and J.C.P. Woodcock , “ The verifi ed software reposi-
tory: A step towards the verifying compiler , ” Formal Aspects of Computing ,
 18 (2): 143 – 151 , 2006 .

 [44] M. Birnbaum and H. Sachs , “ How VSIA answers the SOC dilemma , ” IEEE
Computer , 32 (6): 42 – 50 , 1999 .

 [45] P. Biswas et al., “ ISEGEN: Generation of high - quality instruction set extensions
by iterative improvement , ” Proceedings of DATE , 2005 , pp. 1246 – 1251 .

 [46] P. Boehm and T. Melham , Design and verifi cation of on - chip communication
protocols , Oxford University Computing Laboratory Research Report, RR - 08 -
 05 , 2008 .

 [47] K. Bonsor , “ How power paper will work, ” How Stuff Works , 12 January 2001.
 [48] M. Borgatti et al., “ A reconfi gurable system featuring dynamically extensible

embedded microprocessor, FPGA, and customizable I/O , ” IEEE Journal of
Solid - State Circuits , 38 (3): 521 – 529 , 2003 .

 [49] J.A. Bower et al., “ Dynamic clock - frequencies for FPGAs , ” Microprocessors and
Microsystems , 30 (6): 388 – 397 , 2006 .

 [50] P. Brisk , A. Kaplan and M. Sarrafzadeh , “ Area - effi cient instruction set synthesis for
reconfi gurable system - on - chip designs , ” Proceedings of DAC , 2004 , pp. 395 – 400 .

 [51] D.C. Burger and T.M. Austin , “ The SimpleScalar Tool Set, Version 2.0 , ” Computer
Architecture News , 25 (3): 13 – 25 , 1997 .

 [52] M. Butts , A.M. Jones and P. Wasson , “ A structural object programming model,
architecture, chip and tools for reconfi gurable computing , ” Proceedings of the
IEEE International Symposium on Field - Programmable Custom Computing
Machines , IEEE , 2007 , pp. 55 – 64 .

 [53] Cadence Design Systems Inc , Palladium Datasheet , 2004 .
 [54] CEVA , Ceva X - 1620 Product Note , 2005 .
 [55] K. Chen et al., “ Predicting CMOS speed with gate oxide and voltage scaling and

interconnect loading effects , ” IEEE Transactions of the Electron Devices ,
 44 (11): 1951 – 1957 , 1997 .

 [56] D. Chen , J. Cong and P. Pan , “ FPGA design automation: A survey , ” Foundations
and Trends in in Electronic Design Automation , 1 (3): 139 – 169 , 2006 .

 [57] C.T. Chow , L.S.M. Tsui , P.H.W. Leong , W. Luk and S. Wilton , “ Dynamic voltage
scaling for commercial FPGA , ” Proceedings of the IEEE International Conference
on Field - Programmable Technology , National University of Singapore , 2005 ,
pp. 173 – 180 .

 [58] S. Ciricescu et al., “ The reconfi gurable streaming vector processor (RSVP) , ”
IEEE/ACM International Symposium on Microarchitecture MICRO - 36,
pp. 141 – 150 , 2003 .

 [59] ClearSpeed , ClearSpeed CSX600 Datasheet , 2006 .
 [60] K. Compton and S. Hauck , “ Totem: Custom reconfi gurable array generation , ”

 Proceedings of the Symposium on Field - Programmable Custom Computing
Machines , IEEE Computer Society Press , 2001 , pp. 111 – 119 .

 [61] K. Compton and S. Hauck , “ Reconfi gurable computing: A survey of systems and
software , ” ACM Computing Surveys , 34 (2): 171 – 210 , 2002 .

 [62] G.A. Constantinides , “ Word - length optimization for differentiable nonlinear
systems , ” ACM Transactions on Design Automation of Electronic Systems , 11 (1):
 26 – 43 , 2006 .

bref.indd 318bref.indd 318 5/4/2011 9:53:41 AM5/4/2011 9:53:41 AM

REFERENCES 319

 [63] B.W. Cook , S. Lanzisera and K.S.J. Pister , “ SoC issues for RF Smart Dust , ”
 Proceedings of the IEEE , 94 (6): 1177 – 1196 , 2006 .

 [64] CrossBow Technologies , Xfabric Core Connectivity Junction, Preliminary
Product Specifi cation , 2004 .

 [65] R. Etienne - Cummings , P. Pouliquen and M.A. Lewis , “ A vision chip for color
segmentation and pattern matching , ” EURASIP Journal on Applied Signal
Processing , 2003 (7): 703 – 712 , 2003 .

 [66] U. Cummings , “ PivotPoint: Clockless crossbar switch for high - performance
embedded systems , ” IEEE Micro , 24 (2): 48 – 59 , 2004 .

 [67] Cymbet , The POWER FAB (Thin Film Lithium Ion Cell) Battery System , 2007 .
 [68] Cypress semiconductor , CY8C41123 and CY8C41223 Linear Power PSoC

Devices , 2005 .
 [69] J. Daemen and V. Rijmen , The Design of Rijndael: AES — The Advanced

Encryption Standard , Springer - Verlag , 2002 .
 [70] W.J. Dally , “ Performance analysis of k - ary n - cube interconnection networks , ”

 IEEE Transactions on Computers , 39 (6): 775 – 785 , 1990 .
 [71] W.J. Dally and B. Towles , “ Route packets, not wires: On - chip interconnection

networks , ” Proceedings of the Design Automation Conference , 2001 .
 [72] W.J. Dally and B. Towles , Principles and Practices of Interconnection Networks ,

 Morgan Kaufmann , 2004 .
 [73] S. Das et al., “ A self - tuning DVS processor using delay - error detection and cor-

rection , ” IEEE Journal of Solid - State Circuits , 41 (4): 792 – 804 , 2006 .
 [74] K. DeHaven , “ Extensible processing platform ideal solution for a wide range of

embedded systems , ” Xilinx White Paper WP369 (v1.0), 2010 .
 [75] J.A. DeRosa and H.M. Levy , “ An evaluation of branch architectures , ” Proceedings

of the 14th Annual Symposium on Computer Architecture , ACM , 10 – 16 , 1987 .
 [76] A.S. Dhodapkarm and J.E. Smith , “ Tuning adaptive microarchitectures , ”

 International Journal of Embedded Systems , 2 (1/2): 39 – 50 , 2006 .
 [77] R. Dimond , O. Mencer and W. Luk , “ Application - specifi c customisation of multi -

 threaded soft processors , ” IEE Proceedings — Computers and Digital Techniques ,
 153 (3): 173 – 180 , 2006 .

 [78] J. Duato , S. Yalamanchili and L. Ni , Interconnection Networks , Morgan Kaufmann ,
 2003 .

 [79] S. Dutta , “ Architecture and implementation of multiprocessor SOCs for advanced
set - top boxes and digital TV systems , ” Proceedings of the 16th Symposium on
Integrated Circuits and System Design , 2003 , pp. 145 – 146 .

 [80] C. Ebeling et al., “ Implementing an OFDM receiver on the RaPiD reconfi gurable
architecture , ” IEEE Transactions on Computers , 53 (11): 1436 – 1448 , 2004 .

 [81] E. El - Araby , I. Gonzalez and T. El - Ghazawi , “ Exploiting partial runtime recon-
fi guration for high - performance reconfi gurable computing , ” ACM Transactions
on Reconfi gurable Technology and Systems , 1 (4): 21 , 2009 .

 [82] Elixent Corporation , DFA 1000 Accelerator Datasheet , 2003 .
 [83] Embedded Access , MQX RTOS Product Description , 2010 .
 [84] Fairchild Semiconductor , Two Input NAND Gate Layout , 1966 .
 [85] A. Fang et al., “ Integrated hybrid silicon evanescent racetrack laser and photo-

detector , ” 12th OptoElectronics and Communications Conference , 2007 .

bref.indd 319bref.indd 319 5/4/2011 9:53:41 AM5/4/2011 9:53:41 AM

320 REFERENCES

 [86] A. Fauth , M. Freericks and A. Knoll , “ Generation of hardware machine models
from instruction set descriptions , ” Proceedings of the IEEE Workshop VLSI
Signal Processing , IEEE , 242 – 250 , 1993 .

 [87] A. Fauth , J. Van Praet and M. Freericks , “ Describing instruction set processors
using nML , ” Proceedings of DATE , IEEE , 503 – 507 , March 1995 .

 [88] Federal Information Processing Standards publication 180 - 2 , Secure Hash
Standard , August 2002.

 [89] A.K. Fidjeland and W. Luk , “ Customising application - specifi c multiprocessor
systems: A case study , ” Proceedings of the IEEE International Conference on
Application - Specifi c Systems, Architectures and Processors , IEEE , 239 – 244 , 2005 .

 [90] A. Fidjeland , W. Luk and S. Muggleton , “ A customisable multiprocessor for
application - optimised inductive logic programming , ” Proceedings of the Visions
of Computer Science — BCS International Academic Conference , September 2008 ,
pp. 319 – 330 .

 [91] D. Fisch , A. Singh and G. Popov , “ Z - RAM ultra - dense memory for 90nm and
below , ” Hot Chips 18, August 2006 .

 [92] J.A. Fisher , “ Very long instruction word architectures and the ELI - 512 , ”
 Proceedings of the 10th Symposium on Computer Architecture , ACM , 140 – 150 ,
 1983 .

 [93] J.A. Fisher , P. Faraboschi and C. Young , Embedded Computing , Elsevier , 2005 .
 [94] J.A. Fisher , P. Faraboschi and C. Young , “ Customizing processors: Lofty ambi-

tions, stark realities , ” Customizable Embedded Processors , P. Ienne and R.
 Leupers (eds.), pp. 39 – 55 , Morgan Kaufmann , 2007 .

 [95] D. Flynn , “ AMBA: Enabling reusable on - chip designs , ” IEEE Micro , 17 (4): 20 – 27 ,
 1997 .

 [96] M.J. Flynn , Computer Architecture , Jones and Bartlett , 1995 .
 [97] M.J. Flynn , “ Some computer organizations and their effectiveness , ” IEEE

Transactions on Computing , 21 (9): 948 – 960 , 1972 .
 [98] M.J. Flynn and P. Hung , “ Microprocessor design issues: Thoughts on the road

ahead , ” IEEE Micro , 25 (3): 16 – 31 , 2005 .
 [99] M.J. Flynn , P. Hung and K.W. Rudd , “ Deep - submicron microprocessor design

issues , ” IEEE Micro , 19 (4): 11 – 22 , 1999 .
 [100] C.W. Fraser , D.R. Hanson and T.A. Proebsting , “ Engineering a simple, effi cient

code - generator generator , ” ACM Letters on Programming Languages and Sys-
tems , 1 (3): 213 – 226 , 1992 .

 [101] Freescale Semiconductor , Freescale e600 Core Product Brief , Rev.0, 2004 .
 [102] Freescale Semiconductor , Freescale MPC8544E PowerQUICC III Integrated

Processor , Hardware Specifi cations, Rev.2, 2009 .
 [103] Fujitsu , MB93555A Product Description , 2010 .
 [104] H. Fujiwara , Logic Testing and Design for Testability , MIT Press , 1985 .
 [105] S. Furber and J. Bainbridge , “ Future trends in SoC interconnect , ” Proceedings of

the International Symposium on System - on - Chip , 2005 , pp. 183 – 186 .
 [106] Gaisler , Leon 4 Product Description , 2010 .
 [107] K. Gaj and P. Chodowiec , “ Fast implementation and fair comparison of the fi nal

candidates for advanced encryption standard using fi eld programmable gate
arrays , ” Proceedings of the RSA Security Conference , 2001 , pp. 84 – 99 .

bref.indd 320bref.indd 320 5/4/2011 9:53:41 AM5/4/2011 9:53:41 AM

REFERENCES 321

 [108] A. Gerstlauer et al., “ Electronic system - level synthesis methodologies , ” IEEE
Transactions on Computer - Aided Design , 28 (10): 1517 – 1530 , 2009 .

 [109] S.K. Ghandi , VLSI Fabrication Principles , (2nd ed.), Morgan Kaufmann
Publishers , 1994 .

 [110] D. Goodwin and D. Petkow , “ Automatic generation of application specifi c proces-
sors , ” Proceedings of the International Conference on Compilers, Architecture and
Synthesis for Embedded Systems , 2003 , pp. 137 – 147 .

 [111] H.H. Goode and R.E. Machol , System Engineering — An Introduction to the
Design of Large - Scale Systems , McGraw - Hill , 1957 .

 [112] P. Guerrier and A. Grenier , “ A generic architecture for on - chip packet - switched
interconnections , ” Proceedings of the IEEE Design Automation and Test in
Europe , IEEE , 250 – 256 , 2000 .

 [113] I.J. Haikala , Program behavior in memory hierarchies , PhD thesis (Technical
Report A - 1986 - 2), University of Helsinki, 1986 .

 [114] A. Halambi and P. Grun , “ Expression: A language for architecture exploration
through compiler/simulator retargetability , ” Proceedings of DATE , March 1999 ,
pp. 485 – 490 .

 [115] J. Hayter , Probability and Statistics for Engineers and Scientists , Duxbury Press ,
 2006 .

 [116] J. Heape and N. Stollon , “ Embedded logic analyzer speeds SoPC design , ” Chip
Design Magazine , August/September 2004 .

 [117] H. Hedberg , T. Lenart and H. Svensson , “ A complete MP3 decoder on a chip , ”
 Proceedings of the IEEE International Conference on Microelectronic Systems
Education , 2005 , pp. 103 – 104 .

 [118] J.L. Hennessy and D.A. Patterson , Computer Architecture: A Quantitative
Approach , (4th ed.), Morgan Kaufmann , 2006 .

 [119] M. Hohenauer and R. Leupers , C Compilers for Asips: Automatic Compiler
Generation with LISA , Springer , 2009 .

 [120] A.B.T. Hopkins and K.D. McDonald - Maier , “ A generic on - chip debugger for
wireless sensor networks , ” Proceedings of the 1st NASA/ESA Conference on
Adaptive Hardware and Systems , IEEE , 338 – 342 , 2006 .

 [121] F. Hutter et al., “ Boosting verifi cation by automatic tuning of decision proce-
dures , ” Proceedings of the International Conference on Formal Methods in
Computer - Aided Design , IEEE , 27 – 34 , 2007 .

 [122] K. Hwang and F.A. Briggs , Computer Architecture and Parallel Processing ,
 McGraw - Hill , 1984 .

 [123] IBM , 128 - Bit Processor Logic Bus — Architecture Specifi cation , Version 4.4, SA -
 14 - 2538 - 02, 2001 .

 [124] IBM , CoreConnect Bus Architecture , https://www - 01.ibm.com/chips/techlib/
techlib.nsf/productfamilies/CoreConnect_Bus_Architecture , 2010 .

 [125] IBM , Embedded DRAM Comparison Charts , IBM Microelectronics Presentation,
December 2003 .

 [126] IBM , On - chip Peripheral Bus — Architecture Specifi cation , Version 2.1, SA - 14 -
 2528 - 02, 2001 .

 [127] P. Ienne and R. Leupers (eds.), Customizable Embedded Processors , Morgan
Kaufmann , 2007 .

bref.indd 321bref.indd 321 5/4/2011 9:53:41 AM5/4/2011 9:53:41 AM

322 REFERENCES

 [128] K. Illgner et al., “ Programmable DSP platform for digital still cameras , ’ Pro-
ceedings of the International Conference on Acoustics, Speech, and Signal Process-
ing , 4 : 2235 – 2238 , 1999 .

 [129] Infi neon , TriCore2, Synthesizable Processor Core , 2010 .

 [130] InSpeed , InSpeed SOC320, Emulex Overview , 2010 .

 [131] Intel , Intel IOP333 I/O Processor Datasheet , July 2005 .

 [132] Intel , Intel PXA27x Overview , 2010 .

 [133] ITRS , International Technology Roadmap for Semiconductors , 2009 .

 [134] ITRS , ITRS Roadmap Summary , 2006 .

 [135] M. Johnson , Superscalar Microprocessor Design , Prentice - Hall , 1991 .

 [136] D. Johnson , Handbook of Optical through the Air Communications, Imagineering
E - Zine , 2008 .

 [137] J.R. Jump and S. Lakshmanamurthy , “ NETSIM: A general - purpose interconnec-
tion network simulator , ” International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems , H.D. Schwetman et al.
(eds.), pp. 121 – 125 , Society for Computer Simulation International , 1993 .

 [138] P.H.J. Kelly et al., “ THEMIS: Component dependence metadata in adaptive
parallel applications , ” Parallel Processing Letters , 11 (4): 455 – 470 , 2001 .

 [139] J.O. Kephart and D.M. Chess , “ The vision of autonomic computing , ” IEEE
Computer , 36 (1): 41 – 50 , 2003 .

 [140] D. Keymeulen et al., “ Self - adaptive system based on fi eld programmable gate
array for extreme temperature electronics , ” Proceedings of the 1st NASA/ESA
Conference on Adaptive Hardware and Systems , IEEE , 296 – 300 , 2006 .

 [141] M. Kistler , M. Perrone and F. Petrini , “ Cell multiprocessor communication
network: Built for speed , ’ IEEE Micro , 26 (3): 10 – 23 , 2006 .

 [142] L. Kleinrock , Queueing Systems: Theory, Vol. 1, Theory , John Wiley and Sons ,
 1975 .

 [143] F. Kobayashi et al., “ Hardware technology for Hitachi M - 880 processor group , ”
 Proceedings of the Electronic Components and Technologies Conference , 693 –
 703 , 1991 .

 [144] T. Komuro , S. Kagami and M. Ishikawa , “ A dynamically reconfi gurable simd
processor for a vision chip , ” IEEE Journal of Solid - State Circuits , 39 (1): 265 – 268 ,
 2004 .

 [145] C. Kruskal and M. Snir , “ The performance of multistage interconnection net-
works for multiprocessors , ” IEEE Transactions on Computers , C - 32 (12): 1091 –
 1098 , 1983 .

 [146] I. Kuon and J. Rose , “ Measuring the gap between FPGAs and ASICs , ” IEEE
Transactions on Computer - Aided Design of Integrated Circuits and Systems ,
 26 (2): 203 – 215 , 2007 .

 [147] K. Kutaragi et al., “ A microprocessor with a 128 bit CPU, 10 fl oating - point MACs,
4 fl oating - point dividers, and an MPEG2 decoder , ” IEEE International Solid -
 State Circuits Conference , IEEE , 256 – 257 , 1999 .

 [148] S.K. Lam and T. Srikanthan , “ Rapid design of area - effi cient custom instructions
for reconfi gurable embedded processing , ” Journal of Systems Architecture ,
 55 (1): 1 – 14 , 2009 .

bref.indd 322bref.indd 322 5/4/2011 9:53:41 AM5/4/2011 9:53:41 AM

REFERENCES 323

 [149] Lattice Semiconductor , Lattice XP2 Family Handbook , HB1004 Version 02.5 ,
 2010 .

 [150] D. Lawrie , “ Access and alignment of data in an array processor , ” IEEE
Transactions on Computers , 24 (12): 1145 – 1154 , 1975 .

 [151] E.A. Lee , “ Embedded software , ” Advances in Computers , 56 : 56 – 97 , 2002 .
 [152] F. Lee and A. Dolgoeorodov , “ Implementation of H.264 encoding algorithms on

a software - confi gurable processor , ” Proc. GSPx , 2005 .
 [153] D. Lee et al., “ Accuracy - guaranteed bit - width optimization , ” IEEE Transactions

on Computer - Aided Design , 25 (10): 1990 – 2000 , 2006 .
 [154] J.K.F. Lee and A.J. Smith , “ Analysis of branch prediction strategies and branch

target buffer design , ” IEEE Computer , 17 (1): 6 – 22 , 1984 .
 [155] O. Lehtoranta et al., “ A parallel MPEG - 4 encoder for FPGA based multiproces-

sor SOC , ” Proceedings of the IEEE ISCAS , 2005 .
 [156] S. Leibson , “ NOC, NOC, NOCing on heaven ’ s door: Beyond MPSOCs , ”

 Electronics Design, Strategy, News , 8 December 2005 .
 [157] G. Lemieux and D. Lewis , Design of Interconnect Networks for Programmable

Logic , Kluwer , 2004 .
 [158] V. Liguori and K. Wong , “ Designing a real - time HDTV 1080p baseline H.264/

AVC encoder core , ” Proceedings of DesignCon , 2006 .
 [159] W. Luk et al., “ A high - level compilation toolchain for heterogeneous systems , ”

 Proceedings of the IEEE International SOC Conference , 2009 , pp. 9 – 18 .
 [160] D. Lyonnard , S. Yoo , A. Baghdadi and A.A. Jerraya , “ Automatic generation of

application - specifi c architectures for heterogeneous multiprocessor system - on -
 chip , ” Proc. Design Automation Conference , 518 – 523 , IEEE , May 2001 .

 [161] P. Lysaght and D. Levi , “ Of gates and wires , ” International Parallel and Distributed
Processing Symposium , 2004 .

 [162] P. Machanick , “ SMP - SOC is the answer you get if you ask the right questions , ”
 Proceedings of SAICSIT , SAICSIT , 12 – 21 , 2006 .

 [163] T. Makimoto , “ The hot decade of fi eld programmable technologies , ” Proceedings
of the IEEE International Conference on Field - Programmable Technology , IEEE ,
 3 – 6 , 2002 .

 [164] G. Martin and H. Chang (eds.), Winning the SoC Revolution , Kluwer , 2003 .
 [165] M.M. Mbaye , N. Blanger , Y. Savaria and S. Pierre , “ A novel application - specifi c

instruction - set processor design approach for video processing acceleration , ”
 Journal of VLSI Signal Processing Systems , 47 (3): 297 – 315 , 2007 .

 [166] G. McFarland , CMOS Technology Scaling and its Impact on Cache Delay , PhD
thesis, Stanford University, 1997 .

 [167] J. McGregor , Interconnects target SoC design , Microprocessor Report, 2004 .
 [168] S. McKeever and W. Luk , “ Provably - correct hardware compilation tools based

on pass separation techniques , ” Formal Aspects of Computing , 18 (2): 120 – 142 ,
 2006 .

 [169] B. McNamara , M. Ji and M. Leabman , “ Implementing 802.16 SDR using a soft-
ware - confi gurable processor , ” Proceedings of GSPx , 2005 .

 [170] C.A. Mead and L.A. Conway , Introduction to VLSI Systems , Addison - Wesley ,
 1980 .

bref.indd 323bref.indd 323 5/4/2011 9:53:41 AM5/4/2011 9:53:41 AM

324 REFERENCES

 [171] B. Mei et al., “ ADRES: An architecture with tightly coupled VLIW processor
and coarse - grained reconfi gurable matrix , ” Field - Programmable Logic and
Applications , LNCS 2778, P.Y.K. Cheung , G.A. Constantinides and J.T. de Sousa
(eds.), Springer , 2003 .

 [172] A. Mello , L. Moller , N. Calazans and F. Moraes , “ MultiNoC: A multiprocessing
system enabled by a network on chip , ” Proceedings of Design, Automation and
Test in Europe , IEEE , 234 – 239 , 2005 .

 [173] S. Meninger et al., “ Vibration - to - electric energy conversion , ” IEEE Transactions
of the VLSI Systems , 9 (1): 64 – 76 , 2001 .

 [174] Mentor Graphics , Atsana Semiconductor J2211 Product Description , 2010 .

 [175] Mentor Graphics , Nucleus Operating System , 2010 .

 [176] Microprocessor Report , Matsushita Integrated Platform , 2005 .

 [177] Microprocessor Report , MicroBlaze Can Float , 5/17/05 - 02, 2005 .

 [178] Microprocessor Report , XAP3 Takes the Stage , 6/13/05 - 01, 2005 .

 [179] P. Mishra and N. Dutt (eds.), Processor Description Languages, Applications and
Methodologies , Morgan Kaufmann , 2008 .

 [180] S. Mirzaei , A. Hosangadi and R. Kastner , “ FPGA implementation of high speed
FIR fi lters using add and shift method , ” Proceedings of ICCD , 2006 , pp. 308 – 313 .

 [181] A. Molnar et al., “ An ultra low power 900 MHz RF transceiver for wireless sensor
output , ” Proceedings of the Custom Integrated Circuits Conference , IEEE , 2004 ,
pp. 401 – 404 .

 [182] A.C. Murray , R.V. Bennett , B. Franke and N. Topham , “ Code transformation and
instruction set extension , ” ACM Transactions on Embedded Computing , 8 (4),
Article 26, 2009 .

 [183] MIPS , MIPS 74K Core Product Description , 2010 .

 [184] NetSilicon , NET + Works for NET + ARM, Hardware Reference Guide , 2000 .

 [185] NetSilicon , NetSilicon NS9775 Datasheet , Rev. C, January 2005 .

 [186] NXP , LH7A404, 32 - Bit System - on - Chip , Preliminary data sheet, July 2007 .

 [187] M. Oka and M. Suzuoki , “ Designing and programming the Emotion Engine , ”
 IEEE Micro , 19 (6): 20 – 28 , 1999 .

 [188] Open Core Protocol International Partners , Open Core Protocol Specifi cation
1.0 , OCP - IP Association, Document Version 002, 2001 .

 [189] OpenCores , Wishbone B4 , 2010 .

 [190] OpenCores , OpenRISC , 2010 .

 [191] I. Page and W. Luk , “ Compiling occam into FPGAs , ” FPGAs , W. Moore and
 W. Luk (eds.), pp. 271 – 283 , Abingdon EE & CS books , 1991 .

 [192] R. Paschotta , Encyclopedia of Laser Physics and Technology , RP Photonics, 2010 .

 [193] S. Pasricha and N. Dutt , On - Chip Communication Architectures , Morgan
Kaufmann , 2008 .

 [194] J.H. Patel , “ Performance of processor – memory interconnections for multiproces-
sors , ” IEEE Transactions on Computers , 30 (10): 771 – 780 , 1981 .

 [195] L.D. Partain , Solar Cells and Their Applications , Wiley , 2004 .

 [196] O. Pell , “ Verifi cation of FPGA layout generators in higher order logic , ” Journal
of Automated Reasoning , 37 (1 – 2): 117 – 152 , 2006 .

bref.indd 324bref.indd 324 5/4/2011 9:53:41 AM5/4/2011 9:53:41 AM

REFERENCES 325

 [197] O. Pell and W. Luk , “ Instance - specifi c design , ” Reconfi gurable Compuing , S.
 Hauck and A. DeHon (eds.), pp. 455 – 474 , Morgan Kaufmann , 2008 .

 [198] P. Pelgrims , T. Tierens and D. Driessens , Evaluation Report OCIDEC - Case , De
Nayer Instituut., 2003 .

 [199] Philips , Nexperia PNX1700 Connected Media Processor , 2007 .
 [200] M. Porrmann , U. Witkowski and U. Rueckert , “ Implementation of self - organizing

feature maps in reconfi gurable hardware , ” FPGA Implementations of Neural
Networks , A.R. Omondi and J.C. Rajapakse (eds.), 247 – 269 , Springer , 2006 .

 [201] E.J. Prinz et al., “ Sonos: An embedded 90 nm SONOS fl ash EEPROM utilizing
hot electron injection programming and 2 - sided hot hole injection erase , ” IEDM
Conference Record , 2002 .

 [202] S. Przybylski , M. Horowitz and J. Hennessy , “ Characteristics of performance
optimal multi - level cache hierarchies , ” Proceedings of the 16th Symposium on
Computer Architecture , ACM , 114 – 121 , June 1989 .

 [203] V.L. Pushparaj et al., “ Flexible energy storage devices based on nanocomposite
paper , ” Proceedings of the National Academy of the USA , 104 (34): 13574 – 13577 ,
 2007 .

 [204] C.V. Ravi , “ On the bandwidth and interference in interleaved memory systems , ”
 IEEE Transactions on Computers , 21 (8): 899 – 901 , 1972 .

 [205] RFID Journal , http://www.rfi djournal.com .
 [206] S. Roundy et al., “ Power sources for wireless sensor networks , ” Proceedings of

the 1st European Workshop on Wireless Sensor Networks , 2004 , pp. 1 – 17 .
 [207] C. Rowen and S. Leibson , Engineering the Complex SoC , Prentice Hall , 2004 .
 [208] R.M. Russell , “ The CRAY - 1 computer system , ” Communications of the ACM ,

 21 (1): 63 – 72 , 1978 .
 [209] S. Sane , “ The aerodynamics of insect fl ight , ” The Journal of Experimental Biology ,

 206 : 4191 – 4208 , 2003 .
 [210] J. Schmaltz and D. Borrione , “ A generic network on chip model , ” Theorem

Proving in Higher Order Logics , LNCS 3603, J. Hurd and T. Melham (eds.),
pp. 310 – 325 , Springer , 2005 .

 [211] P. Sedcole et al., “ Run - time integration of reconfi gurable video processing
systems , ” IEEE Transactions on VLSI Systems , 15 (9): 1003 – 1016 , 2007 .

 [212] P. Sedcole and P.Y.K. Cheung , “ Parametric yield modelling and simulations of
FPGA circuits considering within - die delay variations , ” ACM Transactions on
Reconfi gurable Technology and Systems , 1 (2), Article 10, 2008 .

 [213] S. Seng , W. Luk and P.Y.K. Cheung , “ Run - time adaptable fl exible instruction
processors , ” Field Programmable Logic and Applications , LNCS 2438, M. Glesner ,
 P. Zipf and M. Renovell (eds.), pp. 545 – 555 , 2002 .

 [214] R.A. Shafi k , B.H. Al - Hashimi and K. Chakrabarty , “ Soft error - aware design
optimization of low power and time - constrained embedded systems , ” Proceedings
of DATE , IEEE , 1462 – 1467 , 2010 .

 [215] L. Shannon and P. Chow , “ SIMPPL: An adaptable SoC framework using a pro-
grammable controller IP interface to facilitate design reuse , ” IEEE Transactions
on VLSI Systems , 15 (4): 377 – 390 , 2007 .

 [216] N. Shirazi , W. Luk and P.Y.K. Cheung , “ Run - time management of dynamically
reconfi gurable designs , ” Field - Programmable Logic and Applications , LNCS
1482, R.W. Hartenstein and A. Keevallik (eds.), pp. 59 – 68 , Springer , 1998 .

bref.indd 325bref.indd 325 5/4/2011 9:53:41 AM5/4/2011 9:53:41 AM

326 REFERENCES

 [217] M. Shirvaikar and L. Estevez , “ Digital camera design with JPEG, MPEG4, MP3
and 802.11 features , ” Embedded Systems Conference , 2006 .

 [218] M.L. Shooman , Reliability of Computer Systems and Networks: Fault Tolerance,
Analysis, and Design , Wiley , 2001 .

 [219] SiliconBlue , iCE65 Ultra Low - Power Mobile FPFA Family , 2.1.1, 2010 .
 [220] Silicon Hive , Avispa block accelerator , Product Brief, 2003 .
 [221] A.J. Smith , “ Cache evaluation and the impact of workload choice , ” Proceedings

of the 12th International Symposium on Computer Architecture , pp. 64 – 73 , ACM ,
 1985 .

 [222] J.E. Smith , “ A study of branch prediction strategies , ” Proceedings of the
Symposium on Computer Architecture , pp. 135 – 148 , ACM , 1981 .

 [223] A.J. Smith , “ Cache memories , ” ACM Computing Surveys , 14 (3): 473 – 530 , 1982 .
 [224] A.J. Smith , “ Cache evaluation and the impact of workload choice , ” Proceed-

ings of the International Symposium on Computer Architecture , pp. 64 – 73 , ACM ,
 1985 .

 [225] Sonics Inc , Sonics μ Network Technical Overview , Document Revision 1, 2002.
 [226] B. Stackhouse el al. “ A 65 nm 2 - billion - transistor quad - core Itanium processor , ”

 IEEE Journal of Solid - State Circuits , 44 (1): 18 – 31 , 2009 .
 [227] T. Starnes , Programmable Microcomponent Forecast through 2006 , Gartner

Market Statistics, 2003 .
 [228] H.S. Stone , High - Performance Computer Architecture , (2nd ed.), AddisonWesley ,

 1990 .
 [229] W.D. Strecker , Analysis of the Instruction Execution Rate in Certain Computer

Systems , PhD thesis, Carnegie - Mellon University, 1970 .
 [230] Stretch , “ The S6000 family of processors , ” Architecture White Paper, 2009 .
 [231] H.E. Styles and W. Luk , “ Exploiting program branch probabilities in hardware

compilation , ” IEEE Transactions on Computers , 53 (1): 1408 – 1419 , 2004 .
 [232] H.E. Styles and W. Luk , “ Compilation and management of phase - optimized

reconfi gurable systems , ” Proceedings of the International Conference on Field -
 Programmable Logic and Applications , IEEE , 311 – 316 , 2005 .

 [233] T. Sugizaki et al., “ Novel multi - bit sonos type fl ash memory using a high - k charge
trapping layer , ” IEEE Symposium on VLSI Technology, Digest of Technical
Papers , IEEE , 27 – 28 , June 2003 .

 [234] Sun , “ Java Card 3 Platform , ” White Paper, 2008 .
 [235] Sun , OpenSPARC T1 FPGA Implementation , Release 1.6 Update, 2008 .
 [236] K.W. Susanto , “ An integrated formal approach for system on chip , ” Proceed-

ings of the International Workshop in IP Based Design , 119 – 123 , October 2002 .
 [237] M. Suzuoki et al., “ A microprocessor with a 128 - bit CPU, ten fl oating - point

MAC ’ s, four fl oating - point dividers, and an MPEG - 2 decoder , ” IEEE Journal of
Solid - State Circuits , 34 (11): 1608 – 1618 , 1999 .

 [238] D. Sykes et al., “ Plan - directed architectural change for autonomous systems , ”
 Proceedings of the International Workshop on Specifi cation and Verifi cation of
Component - Based Systems , 2007 , pp. 15 – 21 .

 [239] Target Compiler Technologies , The nML Processor Description Language , 2002 .

bref.indd 326bref.indd 326 5/4/2011 9:53:41 AM5/4/2011 9:53:41 AM

REFERENCES 327

 [240] Tensilica , Tensilica Instruction Extension (TIE) Language Reference Manual ,
 2006 .

 [241] R. Tessier et al., “ A reconfi gurable, power - effi cient adaptive Viterbi decoder , ”
 IEEE Transactions on VLSI Systems , 13 (4): 484 – 488 , 2005 .

 [242] J.E. Thornton , Design of a Computer: The Control Data 6600 , Scott, Foresman
and Co. , 1970 .

 [243] Texas Instruments , TMS320C6713B, Floating point digital signal processor
Datasheet , Rev. B, 2006 .

 [244] T.J. Todman et al., “ Reconfi gurable computing: Architectures and design
methods , ” IEE Proceedings — Computers and Digital Techniques , 152 (2): 193 – 207 ,
 2005 .

 [245] T. Todman , J.G. de , F. Coutinho and W. Luk , “ Customisable hardware compila-
tion , ” The Journal of Supercomputing , 32 (2): 119 – 137 , 2005 .

 [246] R.M. Tomasulo , “ An effi cient algorithm for exploiting multiple arithmetic units , ”
 IBM Journal of Research and Development , 11 (1): 25 – 33 , 1967 .

 [247] J.D. Ullman , Computational Aspects of VLSI , Computer Science Press , 1984 .
 [248] J. Villarreal , A. Park , W. Najjar and R. Halstead , “ Designing modular hardware

accelerators in C with ROCCC 2.0 , ” Proceedings of the IEEE Symposium on
Field - Programmable Custom Computing Machines , 2010 .

 [249] Virtual Socket Interface Alliance , On - Chip Bus DWG , Virtual Component
Interface (VCI) Specifi cation Version 2, OCB 2 2.0, 2001 .

 [250] W.J. Watson , “ The TI ASC: A highly modular and fl exible super computer archi-
tecture , ” Proceedings of the AFIPS , 41 (1): 221 – 228 , 1972 .

 [251] B. Wen and K. Boahen , “ Active bidirectional coupling in a cochlear chip , ”
 Advances in Neural Information Processing Systems 17 , B. Sholkopf and Y. Weiss
(eds.), MIT Press , 2006 .

 [252] N. Whitehead , M. Abadim and G. Necula , “ By reason and authority: A system
for authorization of proof - carrying code , ” Proceedings of the IEEE Computer
Security Foundations Workshop , IEEE , 236 – 250 , 2004 .

 [253] S.J.E. Wilton et al., “ A synthesizable datapath - oriented embedded FPGA fabric
for silicon debug applications , ” ACM Transactions on Reconfi gurable Technology
and Systems , 1 (1), Article 7, 2008 .

 [254] Wind River , Wind River VxWorks , http://www.windriver.com/products/vxworks ,
 2010 .

 [255] R. Wood , “ Fly, robot fl y , ” IEEE Spectrum , 45 (3): 21 – 25 , 2008 .
 [256] C. - L. Wu and T. - Y. Feng , “ On a class of multistage interconnection networks , ”

 IEEE Transactions on Computers , 29 (8): 694 – 702 , 1980 .
 [257] Xelerated , Xelerator X10q Network Processors , Product Brief, 2004 .
 [258] Xilinx , MicroBlaze Processor Reference Guide, EDK 11.4 , 2009 .
 [259] Xilinx , Microblaze Processor Reference Guide , 2004 .
 [260] Xilinx , MicroBlaze Soft Processor Core , http://www.xilinx.com/tools/microblaze.

htm , 2010 .
 [261] Xilinx , PowerPC 405 Processor Block Reference Guide , 2003 .
 [262] Xilinx , Virtex II Datasheet , 2004 .

bref.indd 327bref.indd 327 5/4/2011 9:53:41 AM5/4/2011 9:53:41 AM

328 REFERENCES

 [263] Xilinx , Virtex 4 FPGA User Guide, v2.6 , 2008 .
 [264] Xilinx , Virtex 5 FPGA User Guide, v5.3 , 2010 .
 [265] Xilinx , Virtex - 6 Family Overview, v2.2 , 2010 .
 [266] E.M. Yeatman , “ Advances in power sources for wireless sensor nodes , ”

 Proceedings of the 1st International Workshop on Body Sensor Networks , 2004 .
 [267] T. - Y. Yeh and Y.N. Patt , “ Alternative implementations of two - level adaptive

branch prediction , ” Proceedings of the International Symposium on Computer
Architecture , ACM , 124 – 134 , May 1992 .

 [268] T. - Y. Yeh and Y.N. Patt , “ Two - level adaptive training branch prediction , ”
 Proceedings of the International Symposium on Microarchitecture , IEEE , 51 – 61 ,
November 1991 .

 [269] P. Yianancouras , J.G. Steffan and J. Rose , “ Exploration and customization of
FPGA - based soft processors , ” IEEE Transactions on Computer - Aided Design ,
 26 (2): 266 – 277 , 2007 .

 [270] A.C. Yu , Improvement of Video Coding Effi ciency for Multimedia Processing ,
PhD thesis, Stanford University, 2002 .

 [271] B. Zhai et al., “ A 2.60pJ/inst subthreshold sensor processor for optimal energy
effi ciency , ” IEEE Symposium on VLSI Circuits, Digest of Technical Papers , IEEE ,
 2006 , pp. 154 – 155 .

 [272] Z. Zhang et al., “ AutoPilot: A platform - based ESL synthesis system , ” HighLevel
Synthesis: From Algorithm to Digital Circuit , P. Coussy and A. Morawiec (eds.),
 Springer Publishers , 2008 .

 [273] J. Zufferey and D. Floreano , “ Toward 30 - gram autonomous indoor aircraft:
Vision - based obstacle avoidance and altitude control , ” Proceedings of the IEEE
International Conference on Robotics and Automation , 2005 , pp. 2594 – 2599 .

bref.indd 328bref.indd 328 5/4/2011 9:53:41 AM5/4/2011 9:53:41 AM

INDEX

access time, 29, 92, 126, 130
accessing patterns, 102
adaptive branch prediction, 99
advanced encryption standard, 226, 246,

301
advanced high-performance bus, 174
AES, 226, 246, 301
AHB, 174
AMBA, 25, 173
analytic bus models, 183
application, specifi c

instruction processors, 6, 74, 208
integrated circuit, 5, 69, 77

application studies, 246
application throughput requirements, 253
arbitration, 170
architecture, 2
architecture description, 214, 215
area, 27, 29, 41, 209
area model, 56
ARM pipeline, 119
array processors, 15
ASICs, 5, 41, 69, 77, 210, 229
ASIP, 6, 208
ASOC, 285
aspect ratio, 49, 56, 181
associative mapped, 132
asynchronous crossbar interconnect, 196
asynchronous system, 44
audio, 4, 7, 226, 266, 276
autonomous optimization control, 307,

310

baseline dynamic network, 194
baseline SOC area model, 54
battery capacity, 59

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

329

battery power, 59, 286, 288
bimodal, 95
block size, 110, 129, 251, 274
blocking, 157, 185, 195, 197, 203
branch, 93–122

elimination, 94
history, 98–100, 120
management techniques, 95
prediction, 97
table buffer, 95
target buffer, 96
target capture, 94

branch prediction
dynamic, 94, 97
static, 94, 97

branch speedup, 94
branches, 82, 87, 93
breaks, 72, 86, 87
BTB, 94–96, 112, 121
buffer, 91

design, 91
mean request, 91

buffers, 91
bus, 165

bridge, 24, 171, 175, 177, 250
transaction, 168, 186
varieties, 172
wrappers, 181, 205

bus based approach, 24, 197, 205
bus versus NOC, 201
bypassing, 90

cache, 123
directory, 131
hits, 129
index, 132

bindex.indd 329bindex.indd 329 5/5/2011 4:15:10 PM5/5/2011 4:15:10 PM

330 INDEX

misses, 129, 135
offset, 132
tag, 132

cache data, 133
cache memory, 128
CAS, 150, 152
CGRA, 6, 7, 208, 209
chaining, 16, 104
Chebyshev’s inequality, 92
chip fl oor planning, 54
chip implanted credit card, 286
CLBs, 38, 221, 238
clock overhead, 44, 46
clock skew, 44
coarse grained reconfi gurable

architecture, 6, 7, 209
code density, 138
column address strobe, 150
combined prediction method, 100
communication bandwidth, 166
communication latency, 167
communications laser, 293
comparing networks, 204
completion signal, 44
complex programmable logic device, 211
concurrent processors, 101
condition code, 38, 81, 85
confi gurability, 40, 69
confi gurable logic block, 38, 221
contention time, 186
control fl ow scheduling, 112
copy-back, 134
CoreConnect bus, 24, 79, 169, 173, 177
cost-performance ratio, 40
CPLD, 211
custom instructions, 217, 231
customisation, 209
customizing instruction processors, 212
cycle, 43
cycle time, 39, 43

D-caches, 138
data dependencies, 109
data fl ow scheduling, 111
data interlocks, 89
data type modifi ers, 84
datafl ow, 113
datafl ow graph, 217

DCT, 233, 263, 268, 272, 278, 282
DDR SDRAM, 149
defect density, 50
defects, 47, 48
deployment, 302
design complexity, 29, 34
design effort, 302
design fault, 62
design for testability, 68
design iteration, 27, 248
design mapping, 227
design target miss rate, 134, 138
detecting instruction concurrency, 110
diameter of the network, 190
die, 47
die area, 40
die fl oorplan, 57
digital still camera, 250
direct mapping, 131
direct networks, 194
directory hit, 131
dirty bit, 135
dirty line, 136
distance, 190
distributed memory, 18
divide unit, 114
DRAM, 149
DSP, 208
DSP processors, 7
DTMR, 134
dynamic memory controller chip, 151
dynamic network, 189, 192, 202
dynamic pipelined processor, 86
dynamic prediction, 98–100
dynamic random access memory,

148–152
dynamic strategy, 94

ECC, 98–100
economics of a processor, 33
eDRAM, 128, 145
802.16, 279
embedded DRAM, 145
embedded processor, 61
emotion engine, 1
error, 62

correcting codes, 65–68
correction, 64
detection, 63

cache (cont’d)

bindex.indd 330bindex.indd 330 5/5/2011 4:15:10 PM5/5/2011 4:15:10 PM

INDEX 331

essential dependency, 109–110
exceptions, 84
execution unit, 90

failure, 62
fault, 62
FDIV, 256
feature size, 51, 55
fetch on demand, 130
fi eld programmable gate array, 6, 36, 208,

304
FIFO, 136
fi rst in–fi rst out, 136
fi xed strategy, 94
fl ash, 126
fl ight, 298
FMAC, 256–258
forwarding, 90
FPGA, 6, 36, 208, 304
fruit fl y, 298
fully associative mapping, 131
fundamental resolution, 51

gate delay, 46
general-purpose processors, 6, 209
geometric block code, 65
global miss rate, 141
GPP, 6, 209

H.263, 271
H.264, 272
Hamming code, 66
hit ratio, 96
hypercube, 65, 190

I-buffer, 94
I-caches, 138
ideal and practical scaling, 53
ILP, 8, 101
image compression, 262
imprecise interrupt, 116
index bits, 131
initial design, 27
initial system design, 248
instance-specifi c design, 228
instruction (action) retry, 63
instruction decoder, 43

data interlocks, 89
instruction packets, 107

instruction set, 5
architecture, 81
mnemonic, 84

instruction unit, 86, 88
instruction window, 110
instruction-level parallelism, 8, 101
integrated, 138

cache, 135, 138
Intel Pentium, 160
intellectual property, 24, 76, 165
interconnect

architectures, 166
interface, 166
network, 18

interleaved caches, 160
interleaved memory, 156, 160
interlock unit, 88
interlocks, 88, 89
interrupts, 84
Itanium, 1

JPEG compression, 263

(k, d) networks, 190

least recently used, 136
Leon, 77
line, 129
line replacement, 135
line size, 129
lithography, 39, 48, 51
Little’s theorem, 91
load-store architecture, 81
local miss rate, 141
logical inclusion, 143
LRU, 136

Makimoto’s wave, 41
manufacturing faults, 68
mapping designs onto reconfi gurable

devices, 226
marginal utility, 50
Markov’s inequality, 92
maximum rate buffer, 92
maximum request rate buffers, 91
mean request rate buffers, 91
memory bandwidth, 127

buffers, 156
chip, 149

bindex.indd 331bindex.indd 331 5/5/2011 4:15:10 PM5/5/2011 4:15:10 PM

332 INDEX

consistency, 18, 19, 120
design, 123
model, 125
module, 151

memory timing controller, 151
microarchitecture, 3
MicroBlaze, 77
MIMD, 18
modeling product economics, 33
module access time, 147
module cycle time, 147
motion, 298
motion estimation, 225, 268–276
MP3 audio decoding, 276
multi-level cache, 139
multiple clock domains, 168
multiple-issue machines, 107
multiple-issue pipelined processor, 86
multiprogrammed environment, 137
multiprogramming effects, 137
multistage interconnection network,

192

NAND, 126
net die area, 55
network interface unit, 197
network on a chip, 25, 167
networked ASOC, 296
nibble mode, 152
Nios, 77
NOC, 187
NOC layered architecture, 198
nonblocking, 197
nonblocking cache, 136
NOR, 126
not-in-TLB, 22, 144

rate, 130, 144
time, 130

offered occupancy, 185
offered request rate, 185
on-chip peripheral bus, 177
on-die memory design, 145
OPB, 179
OpenRISC, 77
OpenSPARC, 77
optimal pipelining, 45
optimized design, 27

optimum pipeline, 44
ordering dependency, 109, 114
out-of-order execution, 116
output dependency, 109

page mode, 152
parity, 65
performance, 40, 47
physical fault, 62
physical word sizes, 129
pipeline delays, 86
pipelined processor, 10, 43, 107
PlayStation, 1
PLB, 178
Poisson

distribution, 50
distribution of defects, 50
fault equation, 63

post-deployment, 307
power, 57
power consumption, 39
power operating environments, 58
prefetch, 130
prefetching cache, 131
principle of inclusion, 140
printed batteries, 290
process address, 22
processor, 74

core selection, 78
customization approaches, 214
cycle, 42
local bus, 177
sub-units, 50

product costs, 34
product economics, 31
protocols, 170
prototyping, 255

quality-of-service, 199
quantization, 264, 268, 272–276

random replacement (RAND), 136
RAS, 150, 152
RAW, 109
rbe, 51, 70, 79
re-use, 302
read after write, 109
read-only memory, 19
rechargeable batteries, 289

memory bandwidth (cont’d)

bindex.indd 332bindex.indd 332 5/5/2011 4:15:10 PM5/5/2011 4:15:10 PM

INDEX 333

reconfi gurable
designs, 69
devices, 69, 211
fabric, 211
functional units, 209
interconnects, 222
logic, 4
technologies, 218

reconfi guration, 35, 64, 235
overhead analysis, 235

register bit equivalent, 51, 79
register bypassing, 90
register-memory architecture, 81
reliability, 40, 62
rename registers, 111
reorder buffer, 12, 117
requirements, 26
reservation stations, 113, 115, 116
result bypassing, 16
RF, 293
RFID, 286
RISC, 1, 82
ROM, 19
routing architecture, 223
row address strobe, 150

saturating counter, 98
scavenged energy, 289
scheduling, 111
scratchpad memory, 128
scrubbing, 69
SDRAM, 149
SECDED, 64, 66
sectored cache, 139
self-optimization, 285
self-verifi cation, 285
sensing, 296
sequentiality, 129
SER, 146
set associative mapping, 131, 133
shared memory, 18
SIMD, 1, 7, 249, 257, 261

architectures, 14
array, 7

simple processor, 158
simple sequential processor, 9
SimpleScalar toolset, 253
situation-specifi c optimization, 307,

309

smart card, 286
Smart Dust, 286
SOC

memory considerations, 21
standard buses, 173
system model, 4

soft and fi rm processor, 118
soft error rate, 146
soft processor, 76, 148, 231
software confi gurable processors, 224
software defi ned radio, 279
solo miss rate, 141
spatial locality, 129
specifi cations, 26
split cache, 139
split I and D caches, 138
static

interlocks, 89
power, 58
prediction, 97
strategy, 94, 97

static networks, 190, 203
static pipelined processor, 87
Strecker’s model, 158
stride, 101, 102
structured ASIC, 7
superscalar, 7, 101

machines, 108
processors, 12, 108

switching power, 58
synchronous system, 44
system design process, 248
system effects, 137
system on a board, 4
systems engineering, 1

tag, 132
temporal locality, 129
tenured buses, 172, 176
3D graphics processors, 254
thumb instructions, 82
TLB, 22, 143
TMR, 63
trace scheduling, 107
transaction effects, 137
transaction processing, 137
translation lookaside buffer, 22, 143
triple modular redundancy, 63
true inclusion, 143

bindex.indd 333bindex.indd 333 5/5/2011 4:15:10 PM5/5/2011 4:15:10 PM

334 INDEX

2D grid, 194
two-level adaptive, 99
two-level cache, 141
types of pipelined processors, 87

unifi ed bus, 172
unifi ed cache, 120, 134, 139

VCI, 180
vector

chaining, 105
processor, 7, 101, 106
registers, 6

vector functional units, 103
video compression, 268
virtual address, 22

virtual component interface, 180
virtual-to-real translation, 143
visual, 296
VLIW, 7, 13, 101, 107

wafer, 47
WAR, 109
WAW, 109
wormhole routing, 192
write after read, 109
write after write, 109
write assembly cache, 139
write back, 134
write-through cache, 134

yield, 48–50

bindex.indd 334bindex.indd 334 5/5/2011 4:15:10 PM5/5/2011 4:15:10 PM

