
Computing Networks 

www.allitebooks.com

http://www.allitebooks.org


Computing Networks 
from cluster to cloud computing 

 
 
 
 
 
 
 
 
 

Pascale Vicat-Blanc 
Sébastien Soudan 
Romaric Guillier 

Brice Goglin 
 
 
 
 
 
 
 
 
 
 

 

  
 

www.allitebooks.com

http://www.allitebooks.org


 
 
 
 
 
 
 
 

First published 2011 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. 

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as 
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, 
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, 
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the  
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the 
undermentioned address: 

ISTE Ltd  John Wiley & Sons, Inc.  
27-37 St George’s Road  111 River Street 
London SW19 4EU Hoboken, NJ 07030 
UK  USA  

www.iste.co.uk  www.wiley.com 

© ISTE Ltd 2011 
 
The rights of Pascale Vicat-Blanc, Sébastien Soudan, Romaric Guillier, Brice Goglin to be identified as 
the authors of this work have been asserted by them in accordance with the Copyright, Designs and 
Patents Act 1988. 

____________________________________________________________________________________ 
Library of Congress Cataloging-in-Publication Data 

 
Reseaux de calcul. English 
  Computing networks : from cluster to cloud computing / Pascale Vicat-Blanc ... [et al.]. 
       p. cm. 
  Includes bibliographical references and index. 
  ISBN 978-1-84821-286-2 
 1.  Computer networks.  I. Vicat-Blanc, Pascale. II. Title.  
  TK5105.5.R448613 2011 
  004.6--dc22 

                                                            2011006658 
 

British Library Cataloguing-in-Publication Data 
A CIP record for this book is available from the British Library  
ISBN 978-1-84821-286-2 
 
Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne. 
 

 

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 1. From Multiprocessor Computers
to the Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1. The explosion of demand for computing power . . . . . 21
1.2. Computer clusters . . . . . . . . . . . . . . . . . . . . . 24

1.2.1. The emergence of computer clusters . . . . . . . . 24
1.2.2. Anatomy of a computer cluster . . . . . . . . . . . 24

1.3. Computing grids . . . . . . . . . . . . . . . . . . . . . . 26
1.3.1. High-performance computing grids . . . . . . . . 29
1.3.2. Peer-to-peer computing grids . . . . . . . . . . . . 30

1.4. Computing in a cloud . . . . . . . . . . . . . . . . . . . 32
1.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 2. Utilization of Network Computing
Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1. Anatomy of a distributed computing application . . . . 39
2.1.1. Parallelization and distribution of an algorithm . . 41

2.1.1.1. Embarrassingly parallel applications . . . . . 42
2.1.1.2. Fine-grained parallelism . . . . . . . . . . . 43

2.1.2. Modeling parallel applications . . . . . . . . . . . 44
2.1.3. Example of a grid application . . . . . . . . . . . . 44
2.1.4. General classification of distributed

applications . . . . . . . . . . . . . . . . . . . . . . 47

5

www.allitebooks.com

http://www.allitebooks.org


6 Computing Networks

2.1.4.1. Widely distributed computing . . . . . . . . 48
2.1.4.2. Loosely coupled computing . . . . . . . . . . 49
2.1.4.3. Pipeline computing . . . . . . . . . . . . . . 50
2.1.4.4. Highly synchronized computing . . . . . . . 50
2.1.4.5. Interactive and collaborative computing . . . 51
2.1.4.6. Note . . . . . . . . . . . . . . . . . . . . . . . 51

2.2. Programming models of distributed parallel
applications . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.1. Main models . . . . . . . . . . . . . . . . . . . . . 52
2.2.2. Constraints of fine-grained-parallelism

applications . . . . . . . . . . . . . . . . . . . . . . 53
2.2.3. The MPI communication library . . . . . . . . . . 54

2.3. Coordination of distributed resources in a grid . . . . . 57
2.3.1. Submission and execution of a distributed

application . . . . . . . . . . . . . . . . . . . . . . 57
2.3.2. Grid managers . . . . . . . . . . . . . . . . . . . . 59

2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 3. Specificities of Computing Networks . . . . . . . 63

3.1. Typology of computing networks . . . . . . . . . . . . . 63
3.1.1. Cluster networks . . . . . . . . . . . . . . . . . . . 65
3.1.2. Grid networks . . . . . . . . . . . . . . . . . . . . 65
3.1.3. Computing cloud networks . . . . . . . . . . . . . 67

3.2. Network transparency . . . . . . . . . . . . . . . . . . . 68
3.2.1. The advantages of transparency . . . . . . . . . . . 68
3.2.2. Foundations of network transparency . . . . . . . 69
3.2.3. The limits of TCP and IP in clusters . . . . . . . . 72
3.2.4. Limits of TCP and network transparency

in grids . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.5. TCP in a high bandwidth-delay product

network . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.6. Limits of the absence of communication

control . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3. Detailed analysis of characteristics expected from

protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1. Topological criteria . . . . . . . . . . . . . . . . . 78

www.allitebooks.com

http://www.allitebooks.org


Table of Contents 7

3.3.1.1. Number of sites involved . . . . . . . . . . . 78
3.3.1.2. Number of users involved . . . . . . . . . . . 79
3.3.1.3. Resource-localization constraints . . . . . . 79

3.3.2. Performance criteria . . . . . . . . . . . . . . . . . 80
3.3.2.1. Degree of inter-task coupling . . . . . . . . . 80
3.3.2.2. Sensitivity to latency and throughput . . . . 81
3.3.2.3. Sensitivity to throughput and its control . . . 83
3.3.2.4. Sensitivity to confidentiality and security . . 84
3.3.2.5. Summary of requirements . . . . . . . . . . . 84

3.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 4. The Challenge of Latency in Computing
Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1. Key principles of high-performance networks for
clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2. Software support for high-performance networks . . . . 90
4.2.1. Zero-copy transfers . . . . . . . . . . . . . . . . . 90
4.2.2. OS-bypass . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.3. Event notification . . . . . . . . . . . . . . . . . . 91
4.2.4. The problem of address translation . . . . . . . . . 93
4.2.5. Non-blocking programming models . . . . . . . . 95

4.2.5.1. Case 1: message-passing . . . . . . . . . . . 96
4.2.5.2. Case 2: remote access model . . . . . . . . . 97

4.3. Description of the main high-performance networks . . 99
4.3.1. Dolphins SCI . . . . . . . . . . . . . . . . . . . . . 99
4.3.2. Myricom Myrinet and Myri-10G . . . . . . . . . . 100
4.3.3. Quadrics QsNet . . . . . . . . . . . . . . . . . . . . 104
4.3.4. InfiniBand . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.5. Synthesis of the characteristics of

high-performance networks . . . . . . . . . . . . . 107
4.4. Convergence between fast and traditional networks . . 108
4.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter 5. The Challenge of Throughput and Distance . . . 113
5.1. Obstacles to high rate . . . . . . . . . . . . . . . . . . . 113
5.2. Operating principle and limits of TCP congestion

control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

www.allitebooks.com

http://www.allitebooks.org


8 Computing Networks

5.2.1. Slow Start . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.2. Congestion avoidance . . . . . . . . . . . . . . . . 117
5.2.3. Fast Retransmit . . . . . . . . . . . . . . . . . . . . 117
5.2.4. Analytical model . . . . . . . . . . . . . . . . . . . 119

5.3. Limits of TCP over long distances . . . . . . . . . . . . 120
5.4. Configuration of TCP for high speed . . . . . . . . . . . 122

5.4.1. Hardware configurations . . . . . . . . . . . . . . 123
5.4.2. Software configuration . . . . . . . . . . . . . . . . 124
5.4.3. Parameters of network card drivers . . . . . . . . . 126

5.5. Alternative congestion-control approaches to that
of standard TCP . . . . . . . . . . . . . . . . . . . . . . 126

5.5.1. Use of parallel flows . . . . . . . . . . . . . . . . . 127
5.5.2. TCP modification . . . . . . . . . . . . . . . . . . 129

5.5.2.1. Slow Start modifications . . . . . . . . . . . 129
5.5.2.2. Methods of congestion detection . . . . . . . 130
5.5.2.3. Bandwidth-control methods . . . . . . . . . 131

5.5.3. UDP-based approaches . . . . . . . . . . . . . . . 132
5.6. Exploration of TCP variants for very high rate . . . . . 133

5.6.1. HighSpeed TCP . . . . . . . . . . . . . . . . . . . 133
5.6.2. Scalable . . . . . . . . . . . . . . . . . . . . . . . . 134
5.6.3. BIC-TCP . . . . . . . . . . . . . . . . . . . . . . . 134
5.6.4. H-TCP . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.6.5. CUBIC . . . . . . . . . . . . . . . . . . . . . . . . 135

5.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 136

Chapter 6. Measuring End-to-End Performances . . . . . . 139

6.1. Objectives of network measurement and forecast
in a grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1.1. Illustrative example: network performance and
data replication . . . . . . . . . . . . . . . . . . . . 140

6.1.2. Objectives of a performance-measurement
system in a grid . . . . . . . . . . . . . . . . . . . . 143

6.2. Problem and methods . . . . . . . . . . . . . . . . . . . 144
6.2.1. Terminology . . . . . . . . . . . . . . . . . . . . . 145
6.2.2. Inventory of useful characteristics in a grid . . . . 149
6.2.3. Measurement methods . . . . . . . . . . . . . . . . 152

www.allitebooks.com

http://www.allitebooks.org


Table of Contents 9

6.2.3.1. Active method . . . . . . . . . . . . . . . . . 152
6.2.3.2. Passive method . . . . . . . . . . . . . . . . . 152
6.2.3.3. Measurement tools . . . . . . . . . . . . . . . 154

6.3. Grid network-performance measurement systems . . . 155
6.3.1. e2emonit . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.2. PerfSONAR . . . . . . . . . . . . . . . . . . . . . . 155
6.3.3. Architectural considerations . . . . . . . . . . . . 156
6.3.4. Sensor deployment in the grid . . . . . . . . . . . 160
6.3.5. Measurement coordination . . . . . . . . . . . . . 161

6.4. Performance forecast . . . . . . . . . . . . . . . . . . . 164
6.4.1. The Network Weather Service tool . . . . . . . . . 164
6.4.2. Network-cost function . . . . . . . . . . . . . . . . 166
6.4.3. Formulating the cost function . . . . . . . . . . . . 167
6.4.4. Estimate precision . . . . . . . . . . . . . . . . . . 169

6.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 170

Chapter 7. Optical Technology and Grids . . . . . . . . . . . 171

7.1. Optical networks and switching paradigms . . . . . . . 172
7.1.1. Optical communications . . . . . . . . . . . . . . . 172

7.1.1.1. Wavelength multiplexing . . . . . . . . . . . 173
7.1.1.2. Optical add-drop multiplexers . . . . . . . . 174
7.1.1.3. Optical cross-connect . . . . . . . . . . . . . 175

7.1.2. Optical switching paradigms . . . . . . . . . . . . 176
7.1.2.1. Optical packet switching . . . . . . . . . . . 176
7.1.2.2. Optical burst switching . . . . . . . . . . . . 177
7.1.2.3. Optical circuit switching . . . . . . . . . . . 177

7.1.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . 179
7.2. Functional planes of transport networks . . . . . . . . . 179

7.2.1. Data plane . . . . . . . . . . . . . . . . . . . . . . . 181
7.2.2. Control plane . . . . . . . . . . . . . . . . . . . . . 182

7.2.2.1. Routing . . . . . . . . . . . . . . . . . . . . . 182
7.2.2.2. Signaling . . . . . . . . . . . . . . . . . . . . 182

7.2.3. Management plane . . . . . . . . . . . . . . . . . . 182
7.2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . 184

7.3. Unified control plane: GMPLS/automatic switched
transport networks . . . . . . . . . . . . . . . . . . . . . 184

www.allitebooks.com

http://www.allitebooks.org


10 Computing Networks

7.3.1. Label-switching . . . . . . . . . . . . . . . . . . . 184
7.3.2. Protocols: OSPF-TE/RSVP-TE/LMP/PCEP . . . 185
7.3.3. GMPLS service models . . . . . . . . . . . . . . . 187
7.3.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . 188

Chapter 8. Bandwidth on Demand . . . . . . . . . . . . . . . 189

8.1. Current service model: network neutrality . . . . . . . 190
8.1.1. Structure . . . . . . . . . . . . . . . . . . . . . . . 191
8.1.2. Limits and problems . . . . . . . . . . . . . . . . . 192
8.1.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . 193

8.2. Peer model for bandwidth-delivery services . . . . . . . 194
8.2.1. UCLP/Ca*net . . . . . . . . . . . . . . . . . . . . . 194
8.2.2. GLIF . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.2.3. Service-oriented peer model . . . . . . . . . . . . 195
8.2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . 196

8.3. Overlay model for bandwidth-providing services . . . . 196
8.3.1. GNS-WSI . . . . . . . . . . . . . . . . . . . . . . . 196
8.3.2. Carriocas . . . . . . . . . . . . . . . . . . . . . . . 197
8.3.3. StarPlane . . . . . . . . . . . . . . . . . . . . . . . 198
8.3.4. Phosphorus . . . . . . . . . . . . . . . . . . . . . . 198
8.3.5. DRAGON . . . . . . . . . . . . . . . . . . . . . . . 198
8.3.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . 199

8.4. Bandwidth market . . . . . . . . . . . . . . . . . . . . . 200
8.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 201

Chapter 9. Security of Computing Networks . . . . . . . . . 203

9.1. Introductory example . . . . . . . . . . . . . . . . . . . 203
9.2. Principles and methods . . . . . . . . . . . . . . . . . . 205

9.2.1. Security principles . . . . . . . . . . . . . . . . . . 206
9.2.2. Controlling access to a resource . . . . . . . . . . 207
9.2.3. Limits of the authentication approach . . . . . . . 209
9.2.4. Authentication versus authorization . . . . . . . . 210
9.2.5. Decentralized approaches . . . . . . . . . . . . . . 211

9.3. Communication security . . . . . . . . . . . . . . . . . . 212
9.4. Network virtualization and security . . . . . . . . . . . 213

www.allitebooks.com

http://www.allitebooks.org


Table of Contents 11

9.4.1. Classic network-virtualization approaches . . . . . 213
9.4.2. The HIP protocol . . . . . . . . . . . . . . . . . . . 215

9.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 216

Chapter 10. Practical Guide for the Configuration of
High-speed Networks . . . . . . . . . . . . . . . . . . . . . . . 217

10.1. Hardware configuration . . . . . . . . . . . . . . . . . . 218
10.1.1. Buffer memory . . . . . . . . . . . . . . . . . . . . 218
10.1.2. PCI buses . . . . . . . . . . . . . . . . . . . . . . . 218
10.1.3. Computing power: CPU . . . . . . . . . . . . . . 219
10.1.4. Random access memory: RAM . . . . . . . . . . 220
10.1.5. Disks . . . . . . . . . . . . . . . . . . . . . . . . . 220

10.2. Importance of the tuning of TCP parameters . . . . . . 221
10.3. Short practical tuning guide . . . . . . . . . . . . . . . 222

10.3.1. Computing the bandwidth delay product . . . . . 223
10.3.2. Software configuration . . . . . . . . . . . . . . . 224
10.3.3. Other solutions . . . . . . . . . . . . . . . . . . . . 225

10.4. Use of multi-flow . . . . . . . . . . . . . . . . . . . . . 226
10.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 228

Conclusion: From Grids to the Future Internet . . . . . . . 229

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Acronyms and Definitions . . . . . . . . . . . . . . . . . . . . 251

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

www.allitebooks.com

http://www.allitebooks.org


Introduction

Since the advent of the computer in 1940, computing power needs
have not ceased to increase. Today, great scientific fields such as
high-energy physics, astrophysics, climatology, biology and medical
imagery rely on new mutualization technologies and worldwide sharing
of computer potential across international grids to meet the huge
demand for data processing. Every day, researchers submit hundreds
of computations to large-scale distributed infrastructures such as
the European Enabling Grids for E-sciencE grid (EGEE) [EGE 04],
which gathers more than 100,000 processors. Soon European Grid
Infrastructure (EGI) and TeraGrid [PRO 11] in the United States will
each be able to aggregate more than double this number of processors.
In the near future many industrial domains, such as automobile, energy
and transport, which are increasingly relying on digital simulation, will
be able to benefit from large shared reservoirs of computer resources.
This approach will shortly be extended to e-commerce, finance and the
leisure industry.

Over the past 15 years, three key technologies have followed each
other in response to this growing computing power demand. These
technologies embody the revolution of network computing: computer
clusters, computing grids and computing clouds. A quick definition of
these is as follows:

– a computing cluster is a collection of PCs interconnected via
local-area, very-low-latency, high-speed networks;

13



14 Computing Networks

– a computing grid is the aggregation of a very large number
of distributed computing and storage resources, interconnected via
wide-area networks. There are computing grids dedicated to intensive
computations of data grids that store, process and give access to massive
amounts of data in the order of hundreds of gigabytes or even several
terabytes;

– a computing cloud provides access services to resources via
the Internet. The underlying infrastructure is totally concealed from
users. The available resources are generally virtual machines housed
in resource centers, also called data centers.

Originally, it was the spectacular advances in transmission and
communication technologies that enabled researchers to imagine these
distributed architectures. These technologies made the aggregation
and mutualization of computer equipment possible, which led to the
rise in power of global computing. The hardware and software of
interconnection networks, which are transparent in appearance, play a
complex role that is difficult to grasp and not often studied. Yet the
place of the network is central and its evolution will certainly be a key
to ubiquitous computer systems to come.

Indeed, to make full use of a mutualized communication network,
sharing policies implemented by robust and scalable arbitration and
orchestration mechanisms are necessary. Today these mechanisms are
included in distributed software called communication protocols. These
protocols mask the complexity of the hardware and the organization
of exchanges. Services of information transfer over a network rely
on communication protocols and software that are built according
to a layered model and the end-to-end principle. These architectural
principles offer an interesting and robust compromise between the
need for reliability and that for performance. They are well adapted
for low-to-average speeds and unreliable network infrastructures, both
when transport needs are relatively homogeneous and when security
constraints are rather low. In the context of high-speed networks and
computing grid environments, the orders of magnitude and ratios of
the constants in use are quite far from the hypotheses initially made



Introduction 15

for communication software protocols and architecture design. For
example, the size of an Ethernet frame (between 64 and 1,500 bytes) – a
parameter that indirectly conditions the maximum size of transfer units
sent over an IP network – was defined to satisfy propagation constraints
on a 200 m coaxial cable and a throughput of 10 Mbit/s. Today optical
links are used and throughputs can be greater than 10 Gbit/s. At the time
when the Internet Protocol (IP) was being designed, access rates were
in the order of 64 kbit/s in wide-area networks. Today, optical fibers are
deployed with access rates from 100 Mbit/s to 1 Gbit/s. There are links
of over 100 Gbit/s in network cores.

In the Internet, since the workload is not controlled by the network
itself, it is traditionally the transport layer – the first end-to-end
layer – that carries out the adaptation to fluctuations in performance
linked to load changes. The complexity of the transport layer depends
on the quality of service offered by the underlying network in terms
of strict delay or loss-ratio service guarantees. In the IP model, which
offers a best-effort network service, two main transport protocols are
classically used:

– a rudimentary protocol, the User Datagram Protocol or UDP,
which only carries out stream multiplexing; and

– a very sophisticated reliable protocol, Transmission Control
Protocol or TCP, which carries out the adaptation to packet losses as
well as congestion control by send-rate control. TCP was designed for a
network layer with no guaranteed quality of service (IP), for local-area
networks and low-speed wide-area networks, and for a limited number
of application classes.

The transport protocols are not really well adapted to
very-high-speed infrastructures. Let us take the example of a simple
TCP connection over a link between Lyon (France) and Montreal
(Canada), with a round trip delay in the order of 100 ms and a
10 Gbit end-to-end throughput. Due to the design of the TCP
congestion-avoidance algorithm, if one single packet is lost, it will take
one hour and 40 minutes to repair and regain maximum speed. The
TCP protocol is designed to react dynamically (i.e. in an interval of a



16 Computing Networks

few milliseconds) to congestion phenomena. It is not very reactive,
however, in such conditions!

Over the past 10 years, a certain number of alternatives to TCP have
been put forward and introduced in modern exploitation systems.

The protocol aspect is not the sole parameter to take into
consideration for evaluating and improving end-to-end performance.
Actually, in the very core of the communication nodes used, delays due
to different data movement and control operations within a machine are
significant compared to the delays encountered on the network itself
(cables and routers). The heterogeneity of performance needs must also
be taken into consideration.

The protocols used in the context of distributed computing have
gradually became increasingly diverse because of the heterogeneity of
the underlying physical technologies and applications needs. When the
end-user of a cluster or a grid struggles to obtain the performance,
however, he or she could expect delays with regard to the theoretical
performance of the hardware used. He or she often has difficulties
understanding where the problems with performance come from.

For this reason, this book invites the reader to concentrate more
specifically on the core of distributed multi-machine architectures:
the interconnection network and its communication protocols. The
objective is to present, synthesize and articulate the different network
technologies used by current and future distributed computing
infrastructures. As these technologies are very heterogeneous in their
physical characteristics and software, our aim is to propose the correct
level of abstraction to help the reader structure and understand the
main problems. It distinguishes the guidelines that, on the one hand,
have oriented the technological evolution at the hardware and software
levels, and on the other hand can guide programmers and users of
distributed computing applications to adopt a programming model and
an infrastructure adapted to their specific needs.



Introduction 17

This book therefore has two objectives:

– to enable the reader who is familiar with communication networks
to better understand the stakes and challenges that the new distributed
computing revolution poses to networks and to their communication
software;

– to enable the reader who is familiar with distributed computing to
better understand the limits of current hardware and software tools, and
how he or she can best adapt his or her application to the computing and
communication infrastructure that is at his or her disposal to obtain the
best possible performance.

To achieve these two objectives, we alternately move from one
point of view to the other, introducing the core principles of
distributed computing and networks and progressively detailing the
most innovative approaches in these two fields.

In Chapter 1, we identify the needs, motivations and forces pushing
the computer sector, over the years, towards distributed computing and
the massive use of computing networks. We go into the details of the
different network computing technologies that have evolved and show
the technological and conceptual differences between them.

In Chapter 2 we classify distributed computing applications and
analyze the communication specificities and constraints of each one
of these classes of applications. In particular, we introduce the
Message-Passing Interface communication library, or MPI, which is
frequently used by distributed parallel application programmers.

In Chapter 3 we review the core principles of traditional
communication networks and their protocols. We make an inventory
of their limits compared to distributed computing constraints, which
are introduced in the previous chapter. We then analyze the path of
communications in a TCP/IP context.

The next two chapters are devoted to a detailed analysis of two major
challenges that distributed computing poses to the network: latency and



18 Computing Networks

throughput. Two types of characteristic applications serve to illustrate
their aim:

– delay-sensitive parallel computing applications; and

– communication-intensive, throughput-sensitive applications

In these chapters, we also discuss the direct interaction between
the hardware level and the software level – a characteristic element of
distributed computing.

Chapter 4 studies how the challenge of latency was overcome in
computer cluster infrastructures to address the needs of applications
that are very sensitive to information-routing delay between computing
units.

Chapter 5 focuses on the needs of applications transferring
significant masses of data in order to take them from their acquisition
point to the computing centers where they are processed as well as
to move them between storage spaces to conserve them and make
them available to large and very scattered communities. We therefore
study how the TCP protocol reacts in high bandwidth-delay product
environments and detail the different approaches put forward to enable
high-speed transport of information over very long distances.

Chapter 6 deals with performance measurement and prediction. It
enables the reader, coming from the field of distributed computing,
to understand the contributions of network performance measurement,
prediction infrastructures and tools.

Chapter 7 shows how new optical switching technologies make it
possible to provide a protected access to a communication capability
adapted to the needs of each application.

Chapter 8 presents new dynamic bandwidth-management services,
such as those currently proposed in the Open Grid Forum that suggest
solutions for applications with sporadic needs relating to speeds that are
not very high.



Introduction 19

Chapter 9 introduces the issue of security and its principles in
computing networks. This chapter presents the main solutions currently
deployed as well as a few keys capable of increasing user confidence in
distributed computing infrastructures.

Chapter 10 proposes a few protocol- and system-parameterization
examples and exercises for obtaining high performance in a
very-high-speed network with tools currently available in the Linux
system.

To conclude, we summarize the different network technologies and
protocols used in network computing, and provide a few perspectives
for future networks that will integrate, among other things, our future
worldwide computing power reserve.



Chapter 1

From Multiprocessor Computers
to the Clouds

1.1. The explosion of demand for computing power

The demand for computing power continues to grow because of the
technological advances in methods of digital acquisition and processing,
the subsequent explosion of volumes of data, and the expansion of
connectivity and information exchange. This ever-increasing demand
varies depending on the scientific, industrial and domestic sectors
considered.

Scientific applications have always needed increasing computing
resources. Nevertheless, a new fact has appeared in the past few years:
today’s science relies on a very complex interdependence between
disciplines, technologies and equipment.

In many disciplines the scientist can no longer work alone at his
or her table or with his or her blank sheet of paper. He or she must
rely on other specialists to provide him or her with the complementary
and indispensable technical and methodological tools for his or her own
research. This is what is called the development of multidisciplinarity.

21



22 Computing Networks

For example, life science researchers today have to analyze
enormous quantities of experimental data that can only be processed
by multidisciplinary teams of experts carrying out complex studies and
experiments and requiring extensive calculations. The organization of
communities and the intensification of exchanges between researchers
that has occurred over the past few years has increased the need to
mutualize data and collaborate directly.

Thus these teams, gathering diverse and complementary expertise,
demand cooperative work environments that enable them to analyze and
visualize large groups of biological data, discuss the results and address
questions of biological data in an interactive manner.

These environments must combine advanced visualization
resources, broadband connectivity and access to important reserves of
computing resources. With such environments, biologists hope, for
example, to be able to analyze cell images at very high resolution.
Current devices only enable portions of cells to be visualized, and this
at a low level of resolution. It is also impossible to obtain contextual
information such as the location in the cell, the type of cell or the
metabolic state.

Another example is that of research on climate change. One of
the main objectives is to calculate an adequate estimate of statistics
of the variability of climate and thus anticipate the increase in
greenhouse gas concentration. The study areas are very varied, going
from ocean circulation stability to changes in atmospheric circulation
on a continent. It also includes statistics on extreme events. It is a
fundamental domain that requires the combination of a lot of data
originating from sources that are very heterogeneous and by nature
geographically remote. It involves the coupling of diverse mathematical
models and crossing the varied and complementary points of view of
experts.

As for industrial applications, the expansion and use of digital
simulation increases the need for computing power. Digital simulation
is a tool that enables the simulation of real and complex physical



From Multiprocessor Computers to the Clouds 23

phenomena (resistance of a material, wearing away of a mechanism
under different types of operating conditions, etc.) using a computer
program. The engineer can therefore study the operation and properties
of the system modeled and predict its evolution. Scientific digital
simulations rely on the implementation of mathematical models that
are often based on the finite elements technique and the visualization
of computing results by computer-generated images. All of these
calculations require great processing power.

In addition to this, the efficiency of computer infrastructure is
a crucial factor in business. The cost of maintenance, but also,
increasingly the cost of energy, can become prohibitive. Moreover, the
need to access immense computing power can be sporadic. A business
does not need massive resources to be continuously available. Only
a few hours or a few nights per week can suffice: externalization
and virtualization of computer resources has become increasingly
interesting in this sector.

The domestic sector is also progressively requiring increased
computing, storage and communication power. The Internet is now
found in most homes in industrialized countries. The asymmetric digital
subscriber line, otherwise known as ADSL is commonplace. In the near
future Fiber To The Home (FTTH) will enable the diffusion of new
domestic, social and recreational applications based, for example, on
virtual-reality or increased-reality technologies, requiring tremendous
computing capacities.

Computing resource needs are growing exponentially. Added to
this, thanks to the globalization of trade, the geographical distribution
of communicating entities has been amplified. To face these new
challenges, three technologies have been developed in the past few
years:

– computer clusters;

– computing grids; and

– computing and storage clouds.

www.allitebooks.com

http://www.allitebooks.org


24 Computing Networks

In the following sections, we analyze the specificities of these
different network computing technologies based on the most advanced
communication methods and software.

1.2. Computer clusters

1.2.1. The emergence of computer clusters

The NOW [AND 95] and Beowulf [STE 95] projects in the 1990s
launched the idea of aggregating hundreds of standard machines in
order to form a high-power computing cluster. The initial interest
lay in the highly beneficial performance/price relationship because
aggregating standard materials was a lot cheaper than purchasing
the specialized supercomputers that existed at the time. Despite this
concept, achieving high computing power actually requires masking the
structure of a cluster, particularly the time- and bandwidth-consuming
communications between the different nodes. Many works were
therefore carried out on the improvement of these communications in
conjunction with the particular context of parallel applications that are
executed on these clusters.

1.2.2. Anatomy of a computer cluster

Server clusters or computer farms designate the local collection of
several independent computers (called nodes) that are globally run and
destined to surpass the limitations of a single computer. They do this in
order to:

– increase computing power and availability;

– facilitate load increase;

– enable load balancing;

– simplify the management of resources (central processing unit or
CPU, memory, disks and network bandwidth).

Figure 1.1 highlights the hierarchical structure of a cluster organized
around a network of interconnected equipment (switches). The



From Multiprocessor Computers to the Clouds 25

Figure 1.1. Typical architecture of a computer cluster

machines making up a server cluster are generally of the same type.
They are stacked up in racks and connected to switches. Therefore
systems can evolve based on need: nodes are added and connected on
demand. This type of aggregate, much cheaper than a multiprocessor
server, is frequently used for parallel computations. Optimized use of
resources enables the distribution of data processing on the different
nodes. Clients communicate with a cluster as if it were a single machine.
Clusters are normally made up of three or four types of nodes:

– computing nodes (the most numerous – there are generally 16, 32,
64, 128 or 256 of them);

– storage nodes (fewer than about 10);

– front-end nodes (one or more);

– there may also be additional nodes dedicated to system
surveillance and measurement.

Nodes can be linked to each other by several networks:

– the computing network, for exchanges between processes; and

– the administration and control network (loading of system images
on nodes, follow-up, load measurement, etc.).

To ensure a large enough bandwidth during the computing phases,
computing network switches generally have a large number of ports.
Each machine, in theory, has the same bandwidth for communicating
with other machines linked to the same equipment. This is called
full bandwidth bisection. The computing network is characterized by



26 Computing Networks

a very broad bandwidth and above all has a very low latency. This
network is a high performance network and is often based on a specific
communication topology and technology (see Chapter 2). The speeds
of computing networks can reach 10 Gbit/s between each machine,
and latency can be as low as a few nanoseconds. The control network
is a classic Ethernet local area network with a speed of 100 Mbit/s
or 1 Gbit/s. The parallel programs executed on clusters often use the
Message Passing Interface communication library, enabling messages to
be exchanged between the different processors distributed on the nodes.
Computing clusters are used for high performance computing in digital
imagery, especially for computer-generated images computed in render
farms.

Should a server fail, the administration software of the cluster is
capable of transferring the tasks executed on the faulty server to the
other servers in the cluster. This technology is used in information
system management to increase the availability of systems. Disk farms
shared and linked by a storage area network are an example of this
technology.

1.3. Computing grids

The term “grid” was introduced at the end of the 1990s by Ian
Foster and Carl Kesselman [FOS 04] and goes back to the idea of
aggregating and sharing the distributed computing power inherent in
the concept of metacomputing which has been studied since the 1980s.
The principal specificity of grids is to enable the simple and transparent
use of computing resources as well data spread out across the world
without worrying about their location.

Computing grids are distributed systems that combine
heterogeneous and high-performance resources connected by a
wide-area network (WAN). The underlying vision of the grid concept is
to offer access to a quasi-unlimited capacity of information-processing
facilities – computing power – in a way that is as simple and ubiquitous
as electric power access. Therefore, a simple connection enables us to



From Multiprocessor Computers to the Clouds 27

get access to a global and virtual computer. According to this vision,
computing power would be delivered by many computing resources,
such as computing servers and data servers available to all through a
universal network.

In a more formal and realistic way, grid computing is an
evolution of distributed computing based on dynamic resource sharing
between participants, organizations and businesses. It aims to mutualize
resources to execute intensive computing applications or to process
large volumes of data.

Indeed, whereas the need for computing power is becoming
increasingly important, it has become ever more sporadic. Computing
power is only needed during certain hours of the day, certain periods of
the year or in the face of certain exceptional events. Each organization
or business, not being able to acquire oversized computing equipment
for temporary use, decides to mutualize its computing resources with
those of other organizations. Mutualization on an international scale
offers the advantage of benefiting from time differences and re-using
the resources of others during the day where it is nighttime where
they are. The grid therefore appeared as a new approach promising
to provide a large number of scientific domains, and more recently
industrial communities, with the computing power they need.

Time-sharing of resources offers an economical and flexible solution
to access the power required. From the user’s point of view, theoretically
the origin of the resources used is totally abstract and transparent. The
user, in the end, should not worry about anything: neither the power
necessary for his or her applications, nor the type of machines used.
He or she should worry even less about the physical location of the
machines being used. Ideally, it is the grid platform management and
supervision software that runs all these aspects.

The concept of the grid is therefore particularly powerful because
it offers many perspectives to the computer science domain. Indeed, it
enables providers of computing facilities to:

– make the resource available at the time it is necessary;



28 Computing Networks

Figure 1.2. Systematic architecture of a computing grid: interconnection of
clusters across a wide-area network

– make the resource consumable on an on-demand basis, and this in
a simple and transparent way;

– make it possible to use and share the capacity of unused resources;

– limit the cost of the computer resource to the part that is really
consumed.

Furthermore, for the user, the reasons that justify the development
and deployment of applications on computing grids are mainly:

– the increase in and sporadic nature of computing power demand;

– the need for dynamic resolution of increasingly complex problems;

– the need for large-scale sharing of information or rare and costly
equipment.

The grid concept has been studied intensely by researchers since the end
of the 1990s. The concept and its definition have not stopped evolving
over time. The technologies and standards that materialize from the
use of grids follow their maturing process. From the time it appeared,
the grid concept – which is much more ambitious than that of the
cluster – has raised very strong interest in the scientific community
as well as the general public. It has been seen as the new level of



From Multiprocessor Computers to the Clouds 29

computing technology in general. The main reason is that the term
“grid computing” refers to an analogy with the electricity distribution
network, which is called the power grid.

The grid was first defined as a material and software infrastructure
giving reliable and universal access to very high-performance
computing and storage resources. This definition was revised in the
2000s. The notion of service was substituted for the concept of resource.
The Open Grid Services Architecture or OGSA, for example, merges
the concepts of the grid and web services. The coordination of shared
resources, dynamic problem-solving and concurrent use by different
communities (or virtual organizations) became the leading topics.
Today the resources considered are not only distributed computers
and shared storage facilities, but also network elements, mobile
terminals, sensor networks, large data-acquisition instruments, very
high-definition viewing devices as well as databases and application
codes. The term “grid” is therefore often associated with a large variety
of different meanings and notions.

Two large grid system families have been developed:

– high-performance grids; and

– peer-to-peer grids.

1.3.1. High-performance computing grids

The objective of a high-performance grid is to provide very large
computing power by a high-powered computer or computer cluster
aggregation. These grids are generally made up of resources from
virtual organizations that decide to mutualize their resources. They are
generally designed for processing massive amounts of data from large
scientific communities. In principle, the resources contribute 100%
of their time to the global infrastructure. In general, an adequately
dimensioned optical network, which is often dedicated to the role,
interconnects the different participating sites. The resources of these
systems are relatively static.



30 Computing Networks

1.3.2. Peer-to-peer computing grids

The objective of a “peer-to-peer” or P2P grid is to enable large
computations to be solved by benefiting from the unused computing
capacity of participating nodes. These worker nodes are usually isolated
and made available by dispersed users. The equipment is voluntarily
enrolled by its owner, who permits it to be used by a collective
P2P computing application when idling. In these grids, resources are
therefore volatile and the performance of communications is very hard
to predict.

The term grid remains associated with the scientific domain. In
theory, grid computing tends to go beyond the services offered by
the traditional Internet, by making computing and communications
converge. In practice, however, this concept is very difficult to
implement and use. The deployment and use of current grids requires
significant expertise as well as a non-negligible investment on the user’s
part. Therefore, outside a few limited applications such as SETI@home,
the grid has failed to gain popularity with the general public and small-
to medium-sized businesses.

The ideal of a grid that exploits all unused resources from each
computer has remained the preserve of a minority of businesses. What
is possible for large businesses or research centers, however, could
also be achieved by the general public, be it at an individual or a
local community level. The latter actually have large number of pieces
of computer equipment and in the near future will need computer
power 10 times as great in order to be able to use the new virtual
reality and 3D simulation tools. Many communities could organize their
computer equipment into grids, without any price increase, in order to
have computing power at their disposal corresponding to their future
needs. This would be done by making some of the communities’ servers
available to other communities.

As a first step, businesses or communities could create a grid
that places a few dozen specialized and standardized servers in a
network. These servers would be linked to each other by a high-speed



From Multiprocessor Computers to the Clouds 31

link and carry out computations for researchers working for a public
organization or a large business. For example, many research and
development centers could mutualize all their computers to carry out
jobs that are particularly demanding in computing power.

It is this idea that was successfully developed and implemented in
the experimental Grid5000, which is the daily work tool for several
hundreds of computer science researchers and students in France
[BOL 06a, CAP 05].

Grid5000 is an experimental grid platform, the purpose of which is to
study algorithms and protocols for intensive distributed computing and
P2P applications. This instrument, the only one of its kind in the world
because of its technical specificities, gathers more than 5,000 computing
cores. These are divided into nine clusters located in different
regions of France and interconnected by a dedicated optical network,
provided by the French National Telecommunications Network for
Technology, Teaching and Research (RENATER). Grid5000 has a
very powerful mechanism for automatic reconfiguration of all the
processors. Researchers can therefore deploy, install, run and execute
their operating system images – including their own stack of network
protocols – in order to communicate on the private network. This
capability for reconfiguration has led users of Grid5000 to adopt the
following workflow:

(1) reserve a partition of Grid5000 (group of machines);

(2) deploy a software image on each of the reserved nodes;

(3) reboot all the machines of the partition with this new software
image;

(4) run the experiment;

(5) collect results;

(6) release the machines in an automated operation that re-initializes
the memory and temporary files.

Grid5000 enables the reproduction of experimental conditions:
network links are dedicated, users can reserve exactly the same set



32 Computing Networks

of resources during successive experiments, install and activate their
own experimental conditions and measurement software. For a time
limited to the reservation period, the user has total control over the set
of reserved resources. The Grid5000 infrastructure gradually extends
internationally and integrates remote sites via virtual private links, as
indicated in Figure 3.1.

Netherlands

France

Japan

Figure 1.3. The international infrastructure of Grid5000

1.4. Computing in a cloud

Having emerged in 2007, the concept of cloud computing pushes the
idea of transparency and virtualization of resources even further than
grid computing does. Cloud computing is a concept that refers to the use
of processing and storage capacities of servers distributed throughout
the world and linked by a network, such as the Internet.

The basic principle is similar to the initial vision of grid computing,
but it is essentially the implementation of cloud computing that
differentiates it. Indeed, unlike the grid, the communities of users



From Multiprocessor Computers to the Clouds 33

or individual users do not own the computer servers making up the
infrastructure. They access external resources online without having to
manage the underlying hardware, which is complex to install, configure
and keep up-to-date, and is subject to failures. Whereas in the grid the
economic model is based on the reciprocity of supply and maintenance
of resources, in cloud computing the user pays per use (typically, a few
dollars to rent a remote processor for a few hours). The applications and
data are not deployed on the user’s local computer, but – metaphorically
speaking – in a cloud composed of a huge number of interconnected
remote servers. The computation results are retransmitted to the client
or sent over other specified sites. Access to the service is through a
readily available standard application, usually a web browser. In the grid
the user invokes a job execution service by using a specific description
language (Job Description Language or JDL). To use the computing
power in the cloud, on the other hand, an access service to virtual
resources is invoked. The service given is of a lower abstraction level
and is therefore easier to account and bill than in a grid.

The cloud therefore represents an abstract infrastructure supplying
resources and their associated services via the Internet. It is primarily
aimed at customers that were not able to access the grid: private
individuals and small- and medium-sized businesses. Every type of
management, communication, business and/or leisure application is
capable of using the resource services offered by cloud computing
technology because it is available from any computer connected to the
Internet.

Various types of clouds are available:

– a storage cloud offers storage services (services at the block or file
level);

– a data cloud provides data-management services (based on records,
columns or objects); and

– a computing cloud exposes data-processing services.

These clouds are often organized into layers and present a
stack of cloud services that act as a computing platform for

www.allitebooks.com

http://www.allitebooks.org


34 Computing Networks

developing distributed applications. By providing an invisible and
extendable infrastructure service, the infrastructure as a service (IaaS)
paradigm perfectly completes the software as a service (SaaS)
concept, which deals with the management of software licenses
that are predeployed and made available to users. The majority of
cloud computing infrastructures are made up of reliable services
provided by data-processing centers that rely on computing- and
storage-virtualization technologies.

Cloud computing relies on the Internet’s availability and
connectivity. Nevertheless, excellent bandwidth will quickly be
mandatory to the fluidity of such a system. Finely-tuned, high-speed
Internet connections are seen as a major factor of the deployment of
cloud computing, enabling optimization of the response time of an
infrastructure currently designed in a centralized way.

Figure 1.4. Systematic architecture of a computing cloud

Cloud computing has created a true revolution in the computing
world. Led by software and Internet service companies, such as Amazon
and Google, as well as by suppliers of computer equipment, such as
IBM or SUN, this new wave has completely overshadowed the grid
world, from which it took its initial vision. It has introduced it on a large



From Multiprocessor Computers to the Clouds 35

scale to the general public and small businesses. The most significant
examples of cloud computing services are:

– EC2 infrastructures (Elastic Compute Cloud);

– S3 storage cloud;

– Amazon’s SimpleDB data cloud;

– Google File System (GFS);

– Google BigTable;

– Google MapReduce; and

– the open-source system Hadoop.

Google GFS is, for example, capable of running petabytes of data.
Three levels of cloud services are distinguished:

– IaaS;

– platform as a service (PaaS); and

– SaaS.

Below we concentrate more on the aspect of IaaS, which deals with
the supply of digital resources over the Internet.

Returning to the idea of the grid and the metaphor of the
electric power distribution system, the concept of cloud computing
above all introduces an economic model, a very simple security
model and architecture. Computing and information-storage power is
offered for consumption by specialized companies. The customer only
communicates with a single supplying entity that offers a unique portal
and, quite often, relies on a centralized infrastructure. For this reason,
businesses no longer need to acquire and maintain their own servers
but can invest in renting this resource from a service supplier who
guarantees computing and storage power on demand. Billing is based
on the computing power and duration actually consumed.

By being less complex than the grid, cloud computing can easily
be used by small – and medium – sized businesses and the general
public. Data clouds provide important advantages compared to other



36 Computing Networks

technologies in the management and analysis of data. For the majority
of applications, databases make up the preferred infrastructure for
managing data sets. As the size of these data sets increases and reaches
several hundred terabytes, more specialized solutions such as storage
services will become more competitive than classic databases.

1.5. Conclusion

In the previous sections, we have seen that the concepts of computing
clusters, grids and clouds have followed each other by subtly competing
with one another. Clusters aggregate individual computers that are
interconnected by a local network in order to supply a greater computing
power at low cost. Grids link up heterogeneous resources, often
computer clusters, via a WAN to mutualize and spread out resources.
The cloud, through a paid and secured service, enables the remote and
transparent use of clusters or grids composed of rare and/or powerful
resources whether interconnected with each other or not. Furthermore,
for intensive computing infrastructures there is a return in interest
with regards to massive parallelism using multicore approaches and
petascale systems. For the sake of coherence and conciseness, in this
book we do not develop these new approaches as, from the point of
view of the network, they pose problems similar to those encountered
in high-performance networks for computer clusters studied, which is
discussed in Chapter 4.

Developed about 10 years ago and having stimulated a large amount
of research and experiments, grid platforms fill the gap between science
and technology and provide the infrastructure and resources required by
science today. It is believed that, in the near future, these technologies
will be combined with other innovations and will be fully integrated
in the Internet to supply the computing, storage and cooperation power
required by our modern companies. This will be achieved in an efficient,
economic and ecological way. Cloud computing is the new wave that
overshadows this formidable mutation.



From Multiprocessor Computers to the Clouds 37

In Chapter 2 we detail the different classes of applications that run
on these computing infrastructures. These very diverse applications
can have different sensitivities to the performance of communications.
We analyze, in particular, the place and constraints of the network
within these infrastructures. We present the challenges posed to network
technologies to enable computing networks to reach their full potential
and for their users to benefit to the greatest degree from them.

Appearance Unit component Type of network Use

Supercomputer 1980s processor internal bus intensive parallel

Cluster 1990 standard PC high performance intensive parallel

Grid 1999 PC or PC cluster high speed intensive distributed

Multicores 2005 processor high performance intensive parallel

Cloud 2007 PC, cluster, grid Internet remote computing

Petascale machines 2010 multicore blades high performance intensive parallel

Table 1.1. Classification of distributed and parallel computing infrastructures



Chapter 2

Utilization of Network Computing
Technologies

In less than 20 years, parallel and distributed computing
infrastructures have experienced three profound revolutions: clusters,
grids and clouds. Each of these technologies is more or less adapted
to certain types of use. In this chapter we present the anatomy of
distributed computing applications and then give a classification of these
applications. The objective is to highlight factors that should guide the
user when choosing one or other type of infrastructure and the network
or protocol designer when choosing this or that technical approach.

2.1. Anatomy of a distributed computing application

Digital simulation and complex analyses of large quantities of
data are characteristic examples of applications that can benefit
from a high-performance distributed computing environment. Digitally
simulating a physical system (a car, plane, nuclear power plant, etc.)
consists of solving equations that model the system’s behavior in space.
Typically, the problem is broken down into a spatial mesh divided into
several parts. As an example, the digital model of the plane or that of
the space in which it will evolve can be considered as being divided

39



40 Computing Networks

into several pieces. Next, piece by piece, the interactions between these
different systems are calculated. Then, to simulate the system’s behavior
in time, these equation sets are resolved iteratively.

In another family of applications – called stochastic or optimization
applications – the problem is split up into independent parts, or several
instances of the same problem are calculated independently in parallel.

Therefore, these applications often use parallel-computing
techniques to accelerate the resolution of a problem that can be very
large in size and can sometimes require several days of computing on a
simple processor.

When the job is distributed, each part or instance of the problem is
calculated by a different computer. When the distributed tasks work in
parallel, they sometimes have data or intermediate results to exchange.

For example, in Figure 2.1, the program is broken down into six
tasks (P1 to P6), also sometimes called processes or jobs. P1, P2 and P3
are executed in parallel and are synchronized at the level of task P4. P4
then distributes the job so that P5 and P6 can be executed in parallel. The
input data of this program are File 1 and File 2. The result is returned at
the end of the program in File 3.

Figure 2.1. Task sequence of a complex application



Utilization of Network Computing Technologies 41

Figure 2.2. Diagram of the distribution of a multiprocess application

Figure 2.2 shows how the different tasks of the application above can
be distributed (or mapped) over desktop computers.

2.1.1. Parallelization and distribution of an algorithm

The nature and intensity of communications between tasks greatly
influence computing time and therefore the choice of distributed
infrastructure. Exchanges between blocks are very quick on a parallel
machine because they are done directly through shared memory. In
a cluster, messages pass through the interconnection network. If the
application is run on a computing grid where the network latency
is greater than a millisecond, coupling between tasks or computing
blocks will be more relaxed than when it is run on a cluster or a
parallel computer. Applications are often classified according to how
often their subtasks need to synchronize or communicate with each
other. An application exhibits fine-grained parallelism if its subtasks
must communicate many times per second; it exhibits coarse-grained
parallelism if they do not communicate many times per second, and it is
embarrassingly parallel if they rarely or never have to communicate.
Embarrassingly parallel applications are considered the easiest to
parallelize.



42 Computing Networks

2.1.1.1. Embarrassingly parallel applications

In some applications, data domains can be completely divided in
advance and the data distributed upon initialization. These applications
are said to be embarrassingly parallel. The distribution of initial
data on different computers corresponds to the preprocessing phase
(stage-in). In general, a process, called the master process, is in charge
of data distribution and activation of processes called workers. Each
process works on its own data on an independent computer. In the
end, the results are collected to be stored or displayed. This is the
post-processing phase (stage-out).

The programming model “MapReduce” for processing masses of
data on a large number of computers is a very popular, particularly in
the case of this type of embarrassingly parallel application. Processing
can be carried out on data stored in a file system (unstructured) or in a
database (structured). This framework corresponds to a large number of
data-mining applications, e.g. searches for web pages containing a key
word (search engine).

In the Map stage, a master node takes the mass of input data and cuts
it up finely into sub-problems, which it distributes to worker nodes. A
worker node can in turn re-do some cutting, which leads to a multilevel
tree structure. In the Reduce stage, the master node takes the answers
for all of the sub-problems and combines them in such a way as to get
the answer to the problems submitted. The advantage of MapReduce
is that it enables all the operations to be processed in a distributed
and theoretically parallel way. Today MapReduce can be used on a
large-sized server cluster to sort a petabyte of data in only a few hours.
Parallelism also offers the possibility of supporting server or storage
breakdowns during the operation: if a mapper or a reducer fails, the job
can be transferred to another processor.

The distribution, Map and the Reduce functions of MapReduce are
defined in relation to data structured in (key, value) pairs. Map takes one
pair of data with a type in the data domain and returns a list of pairs in



Utilization of Network Computing Technologies 43

a different domain:

Map(k1, v1) −→ list(k2, v2).

2.1.1.1.1. The Map function

The Map function is applied in parallel to each element in the input
dataset. This produces a list of (k2, v2) pairs for each call. After that,
MapReduce collects all the pairs with the same key from all the lists and
groups them together, thus creating a group for each of the different keys
generated. The Reduce function is then applied in parallel to each group
which, in turn, produces a collection of values in the same domain:

Reduce
(
k2, list(v2)

) −→ list(v3)

2.1.1.1.2. The Reduce call

Each Reduce call generally produces either a value, v3, or an empty
return. The returns of all calls are collected in the desired results list.
Thus, the MapReduce framework transforms a list of (key, value) pairs
into a list of values. In MapReduce, data exchanges are produced at the
end of each processing step. The tasks are completely independent.

2.1.1.2. Fine-grained parallelism

When in the parallelization phase of an application, data split-up
cannot be completely clear and a non-empty intersection remains
between the subdomains. Intermediate data must be communicated
from one computer to the other. These exchanges take place during
the processing phase, at each iteration step for example. This is
called inter-process communication (IPC). Parallel applications that
communicate during computing phases are said to exhibit fine-grained
parallelism.

Some applications can show a hybrid structure or be even
more complex. For example, the family of physical simulation
applications – which includes applications for structural mechanics,
fluid dynamics, molecular dynamics, electromagnetics, chemistry,



44 Computing Networks

materials science, seismology, reservoirs, meteorology, virtual reality,
etc. – are often heterogeneous and consume large volumes of data. They
often have distributed and asynchronous control and are constructed
in layers and by composition. In these applications, a large number of
proprietary components are found. Each component implements a part
or a stage of the simulation that can be implemented in parallel with, for
example, the Message Passing Interface or MPI library, threads or even
vector processing.

2.1.2. Modeling parallel applications

Parallel applications are generally modeled in the form of graphs
representing the logical progression of the processing. Some complex
applications are expressed using workflows; others are carried out in
batch sequential processing via batch queues on computers with varied
architecture. Workflows used for describing complex applications are
graphs indicating the modules to execute and the existing relations
or data dependencies between the modules. Figure 2.3 represents a
workflow of an application for processing medical images. To run such
applications on computing grids, specific tools capable of analyzing
and executing a workflow description file were developed [GLA 08].
Figure 2.4 represents a distribution of the tasks of this medical
application. For fine-grained applications, the dependences between
elementary tasks are generally represented by a graph of tasks or
directed acyclic graph (DAG).

2.1.3. Example of a grid application

One of the great challenges of modern physics is to answer the
fundamental question: why do particles have a mass? For this, we must
explore the physical world in a state similar to that at the time of the
Big Bang. Such a study requires very costly machines (similar to large
microscopes) and work programs that can last more than 20 years. This
is the reason why the community of high-energy physicians became
equipped with a 17 km ring constructed at the European Organization

www.allitebooks.com

http://www.allitebooks.org


Utilization of Network Computing Technologies 45

Figure 2.3. Workflow of a medical-imagery application

for Nuclear Research or CERN in Switzerland. It forms a global
instrument shared by 2,000 physicians belonging to 150 universities
distributed in 34 countries and is called the Large Hadron Collider or
LHC.

The energy level required by these experiments is seven times
greater than that required by traditional instruments used by physicians
and the rate of data generated is 40 times greater. In this ring, 150
million sensors acquire petabytes of data per second. These raw data are
filtered and coded and generate 15 petabytes of data each year. These
data require immense storage space and about 100,000 processors for
processing them. These enormous data collections are shared by a very
large number of users, each with unforeseeable data-access patterns.

Therefore, instead of creating a gigantic and extremely difficult to
maintain computing center, the community preferred to equip the LHC
with a worldwide computing grid. The Large Collider Grid or LCG is
the operating infrastructure for data generated by the CERN’s LHC. The



46 Computing Networks

Moteur

CrestLines

PFRegister

middleware

database

CrestMatch

Yasmina

PFMatchICP
Baladin

Figure 2.4. Task graph of the medical application in Figure 2.3

model adopted in order to store and process data is highly hierarchical,
as shown in Figure 2.5.

CERN is at the top of this hierarchical data tree (level-0 tier). About
10 big computing centers (level-1 tiers) are distributed throughout the
continents. These centers replicate, store and process all the data. Below
this, there are level-2 and level-3 tiers that are available to researchers
in their respective regions. In this grid, the wide-area network (WAN)
plays a central role. It is a private optical network that links CERN’s
site with the first-level (tier 1) sites in a star topology and then the
second-level (tier 2) sites in series; see Figure 2.5. This network is based
on virtual private network services at 1 or 10 Gbit/s (see Chapter 6)
supplied by national and international research networks, for example
GEANT in Europe.



Utilization of Network Computing Technologies 47

Figure 2.5. Hierarchical architecture of the LCG data grid

2.1.4. General classification of distributed applications

Intensive distributed computing applications are classified according
to two important characteristics: computing intensity and data intensity.
Computing intensity is defined as being the computing quantity per unit
of data transferred between processes or read from a storage space. Data
intensity is the opposite of computing intensity, i.e. the quantity of data
processed per computing unit.

The useful metrics for these two types of applications are run time
and processing speed. Run time (turnaround or completion time) is
the duration that separates a task being started and the results being
obtained. It is the performance metric in which the user of a computing
infrastructure is most interested. Throughput is the volume of entries
possible without affecting the run time of individual applications. It is
this usage metric that the system’s owner tries to optimize.

There are several classifications of computing applications [FOS 04,
VIC 07]. Analysis of underlying algorithms and scenarios for the use of



48 Computing Networks

grid applications has brought five main application classes to the fore
that are differentiated by their computing intensity in terms of memory
space required, data locality and inter-task communication needs. Thus,
in this book we distinguish the following five classes, ordered according
to the severity of their resource constraints:

– widely distributed computing;

– loosely coupled computing;

– pipeline computing;

– highly synchronized computing;

– interactive and collaborative computing.

2.1.4.1. Widely distributed computing

The applications of this class perform research or modifications, or
they unify distributed databases, for example. Computing, memory and
data needs are low. The main problem to solve involves effectively
enabling remote access to co-localized data and processing resources,
with different updating rights and operations. They are applications that
are often data-related but not necessarily data-intensive. Computing on
demand (cloud computing), which requires access to remote resources
to execute a computation, also fall into this category.

Figure 2.6. Principles of stage-in and stage-out phases in a distributed
application



Utilization of Network Computing Technologies 49

Figure 2.7. Deployment of a distributed application over three servers and
stage-in and stage-out phases

2.1.4.2. Loosely coupled computing

The applications in this category are composed of bags-of-tasks
with low memory needs, few data per task and little inter-task
communication. When there are a very large number of such
tasks showing low coupling, it is called high-throughput computing.
Communications between the computer, the source(s) and/or data
sink(s) are often intense in the pre-processing (stage-in) or
post-processing (stage-out) phases. Figure 2.6 explains the logical
sequence of stage-in and stage-out phases with the rest of the
computation. Figure 2.7 shows the communications necessary for
routing input data during the stage-in phase to computing resources.
Data sources can be digital libraries, sensor networks, acquisition
instruments, distributed databases and warehouses. Typical examples of
this group include:

– data-grid applications, such as the CERN’s LCG grid;

– biocomputing;

– finance; and

– networks for fast reaction to natural disasters.



50 Computing Networks

Thus, they are computing-intensive but can be conveniently executed
on clusters that are highly distributed and connected by low-bandwidth,
high-latency networks. On the other hand, interconnections between
data warehouses and computers must enable high-speed transfers during
the pre- and post-processing phases.

2.1.4.3. Pipeline computing

Pipeline computing applications absorb continuous (streamed)
or real-time data. The underlying algorithms are generally
memory-consuming and data-intensive. They have an embarrassingly
parallel inter-task communication, whereas the tasks themselves
are highly parallel. Their data-storage and memory needs are
more important than in widely distributed computing, as are their
communication needs during the processing phase. Typical examples in
this class are real-time signal processing applications and applications
related to the filtering/storage of data captured by satellites, sensors,
microscopes, etc. By nature, problems are distributed: acquisition
resources cannot be co-localized with computing resources or storage
spaces.

2.1.4.4. Highly synchronized computing

Applications from this class have very frequent inter-task
synchronizations. Such applications include, for example, applications
of climate modeling, or physical or molecular phenomena based on
explicit iterative methods (cellular automata).

These distributed parallel-computing applications are initially
created to use tightly coupled platforms, such as the large parallel
systems or large computer clusters. They are implemented by several
iterative and competing threads that strongly interact during computing.
This task parallelism enables greater computation, at a faster rate. Large
volumes of data can be manipulated. Computing power and memory
needs can be significant. They can therefore be simultaneously data-
and computing-intensive and inherit the need for pipeline computing.
They add an extra demand regarding network infrastructure because
they require a significant amount of fine-grained communications.



Utilization of Network Computing Technologies 51

Applications of this class require so-called high-performance
computing (HPC) systems. They are the most difficult applications to
distribute.

2.1.4.5. Interactive and collaborative computing

This class of application is characterized by the potential interaction
of the user during computing. In collaborative applications, several
users can intervene during processing or visualize the results. It is often
necessary to implement an entire collaborative environment with audio
and video facilities to facilitate interactions and decisions.

Collaborative use of the grid accelerates interaction between
geographically-distributed users thanks to shared visual spaces. The
application for interactive visualization of digital simulation results
on a very large video wall (5 m × 3 m) studied in the Carriocas
project is a good example of this [AUD 09]. These applications have
external sources of information (which can themselves be other grid
applications), a remote display and information-processing pipelines
that link the source to the display.

2.1.4.6. Note

This classification does not capture all the possible dimensions
of distributed intensive-computing applications. Reality is often
considerably more complex. Some real applications cover several
classes. This classification, however, highlights reasonably strong
locality and performance criteria (quality of service or QoS), directly
influencing the choice of the type of infrastructure. Also, as we will see
in the next chapter, it influences the characteristics expected from the
interconnection network and its protocols. Typically, tightly coupled
applications are very sensitive to latency and are most efficient when
executed on a computing cluster with a high-performance network (see
Chapter 3). High-speed applications are those that can best benefit
from the computing grid; whereas individual, on-demand computing
applications run efficiently on a computing cloud.



52 Computing Networks

2.2. Programming models of distributed parallel applications

2.2.1. Main models

Communication programming models enable the application
programmer to define the system mechanisms used by the different
parallel and/or distributed computing tasks. Different programming
models authorize different communication styles between application
processes during the execution of an application. These models are
distinguished by their level of abstraction and their ability to mask the
exchanges and hardware details of the network.

The main paradigms are the following:

(1) basic socket programming;

(2) message-passing via a specialized library (e.g. MPI);

(3) shared memory;

(4) remote calling;

(5) remote access.

Many distributed applications communicate using the Socket
interface, which traditionally uses the Transport Control Protocol (TCP)
or User Datagram Protocol (UDP). Parallel applications generally rely
on dedicated paradigms of the message-passing or shared-memory type
in which communication details are concealed. In applications based on
the client-server model, the remote method invocation (RMI, CORBA)
or remote procedure call (RPC) is very wide spread. Programming
multiprocess applications are complex, even if these models and the
tools that come with them aim to limit the complexity. These different
models were adapted with relative success and performance to the
different infrastructures, whether homogeneous or heterogeneous.

The choice of programming model is left to the application
programmer, who tends to favor the approach he or she knows best.
There is therefore a very large diversity in the use of these paradigms
and there is no clearly-established relationship between the model and



Utilization of Network Computing Technologies 53

type of application seen in the classification above, even if some models
are theoretically better adapted than others to certain use cases.

2.2.2. Constraints of fine-grained-parallelism applications

Intensive scientific computing displays very specific and different
needs from communications-based distributed systems, for example,
on the client-server model. With the objective being the execution of
computing as quickly as possible, this type of processing is distributed
across different machines. The total quantity of data to process can
currently reach the terabyte level. It therefore cannot be stored in each of
the nodes but must be distributed. The greater the computing needs, the
higher the number of machines necessary. Modern clusters often gather
together several thousand machines. Finally, interdependence between
different computing methods implies simultaneous execution, and
comparatively periodic synchronizations and communications between
the different processes in order to exchange intermediary results. The
final aspect of a parallel application therefore consists of running a
similar program in each processor of each node that works on a specific
subset of data and regularly exchanges information.

This model is very different from the general distributed-systems
model, where a variable number of machines can run rather random
applications and communicate rather haphazardly. Parallel applications
have better-mastered communication diagrams (as they are defined
according to the algorithm implemented by the application) but also
have significant synchronization and communication requirements, and
this with a potentially vast number of machines. Thus, in a cluster,
geographically-close machines (gathered in a single room) will be
preferred to very distant machines. This proximity drastically modifies
retransmission and congestion-control needs.

Adapted protocols have proven to be necessary. Parallel-computing
applications are therefore not satisfied with the additional costs
imposed by classic communication protocols, which are due to
different execution conditions (distance, reliability, etc.). Besides, the



54 Computing Networks

memory copies imposed by the operating system’s protocol layers limit
communication speed and consume processor time that the application
could have at its disposal. The additional latency costs imposed by
the crossing of these software layers and the notification of network
events can noticeably slow down the applications. The specific needs
of parallel-application communications have therefore favored the
emergence of a dedicated programming interface – the MPI, the details
of which we will go into in the next section. In addition to this, many
reflections have been carried out on network hardware and the software
stack exploiting it, the details of which we will go into in Chapter 3.

2.2.3. The MPI communication library

In order to be better adapted to the very specific context and needs
of scientific parallel-computing applications, a dedicated programming
interface was put forward challenging the standard Socket interface.
The first version was introduced in 1994 by the MPI Forum [FOR 94].
MPI is neither a language nor a layout. It is a standard designed for
parallelizing scientific computing applications on parallel machines and
clusters. It is a set of C and Fortran functions implemented by many
libraries, the most famous of which are MPICH and OpenMPI.

MPI’s programming paradigm is the passage of messages. In
contrast to data streams in the synchronous connections of the Socket
model, each message-sending operation corresponds exactly to a
message reception, whatever the size may be. For example, if an
application wants to send four bytes then six, it will be able to receive
the 10 bytes in one go with the Socket interface. On the other hand, in
MPI it will be necessary to post two reception requests: one for each one
sent. The notion of “request” is at the heart of the programming model
because all communication operations are based on it. It is therefore
a matter of posting point-to-point communication requests (sending
or receiving) or collective operations. The operations supported are in
fact strongly linked to the needs of parallel applications, particularly
those linear algebra ones where sets of matrix blocks must frequently
be exchanged. For example an all-to-all communication enables data

www.allitebooks.com

http://www.allitebooks.org


Utilization of Network Computing Technologies 55

exchange between all processes, as represented in Figure 2.8, whereas
a Reduce communication will accumulate data from all processes on
one specific process in order to synthesize its contributions at the end of
computing.

Figure 2.8. MPI all-to-all communication

Submitting these requests can be non-blocking and the application
will then have to test the request terminations later. The non-blocking
aspect is primordial because theoretically it enables computing to
overlap communications, instead of waiting without doing anything
until the request is terminated. The application can therefore benefit by
using the available processing time to carry out useful jobs. Different
tags can, in addition, be used in order to mark different types of
independent communication, for example control and data messages.
The operation associating an input message and a reception request
available with the same tag is called matching.

More than the operations themselves, it is the entire communication
model that is different. First of all, each process participating in the
execution of a parallel application can be identified by a rank that
enables communication with it, much like an IP address and a process
identifier. Indeed, since parallel applications execute a set of identical
processes simultaneously on a set of known machines, each process has
knowledge of all the others and is therefore easily able to communicate
with them, thanks to this rank.



56 Computing Networks

Then, since parallel computing, e.g. matrix computing, often hands
out different subsets of work to different subsets of processes, the
notions of communicator and groups were defined. Each process has
a rank in each communicator to which it belongs and it is thus, for
example, possible to implement collective operations based solely on
one subset of processes.

Finally, MPI enables the application to clearly expose the
organization of data in memory in order to benefit from potential
software or hardware optimizations. Datatypes, for example, allow a
matrix column to be sent by specifying its characteristics, without
giving the set of positions of the different memory segments. During
reception, the application can use another datatype to receive data
based on another memory organization, which, for example, enables the
implementation of an on-the-fly matrix transposition.

The MPI interface initially seemed very complex but was finally
imposed as the communication standard for parallel applications,
for lack of better options. Industrialists attempted to impose other
programming interfaces, Virtual Interface Architecture (VIA) in
particular [SPE 99] and more recently Direct Access Portable Layer
(DAPL) [COL 07], which offer non-blocking primitives in connected
mode. This model was never imposed, however, mainly because
the message-passing model put forward by MPI turned out to
be more practical and efficient for receiving parallel computing
applications [BRI 00].

The MPI norm has been regularly extended since its creation in 1993.
It saw the addition of dynamic process management in MPI-21 and
was generalized for input-output to storage with extension MPI-IO2.
Ongoing discussions to define the third version of the norm aim, among
other things, to add the support of non-blocking collective operations in

1. MPI-2: Extensions to the Message Passing Interface, http://www.mpi-forum.org/
docs/mpi-20-html/mpi2-report.html.
2. MPI-IO: I/O Extensions to the Message Passing Interface, http://www.mpi-forum.
org/docs/mpi-20-html/node172.htm.



Utilization of Network Computing Technologies 57

order to authorize greater overlap and fault tolerance. These jobs should
provide an efficient answer to the requirements of modern parallel
applications that are much more consuming and complex than those of
the 1990s.

Replacing the Socket interface with MPI in clusters was not the
only reason for the leap in parallel computing performance. It was
accompanied by the development of dedicated networks that enabled
the most to be got out of the advantages of the programming interface
by adapting the underlying hardware. Indeed, the specific context of
computing clusters – where a closed network (not connected to the
Internet) links nodes – the QoS and protocols offered to applications
can be adapted.

2.3. Coordination of distributed resources in a grid

2.3.1. Submission and execution of a distributed application

Beyond the modifications it imposes on application programming,
the use of a distributed infrastructure such as a computing cluster or
grid introduces a certain number of new steps:

(1) user authentication enables the system to acquire the user’s
identity and to grant him or her access to the cluster;

(2) the user enters his or her job-execution request via a portal or
directly thanks to a description language specific to each infrastructure.
The main languages currently used in computing grids are:

- Job Submission Description Language (JSDL),
- Globus Resource Specification Language (RSL),
- Job Description Language (JDL), and
- Job Description Language (LDT);

(3) the system allocates resources to the user that match his or her
needs;

(4) the authorization mechanisms, generally based on access-control
lists, enable the user to create processes on different machines;



58 Computing Networks

(5) each process is composed of one or more control tasks, sharing a
similar address space that is created on the machine that was allocated;

(6) during computing, processes can communicate with each other in
order to progress with problem solving;

(7) after computing, the results are given directly to the user or are
stored in a space chosen by the user during the submission.

A specific process, created when a job is entered, acts on behalf
of the user for the entire duration of this job. The mission of this
process is to acquire the resources necessary for running the application,
depending on the user’s rights. On the environment’s side, a set of
mechanisms and policies must be laid down and activated to enable
access, sharing and the use of these resources.

The manager of the cluster or grid, called middleware, is in charge
of the global management of all of the environment’s resources. It
is this manager that ensures and coordinates execution of all these
steps in direct collaboration with the workflow manager. The role of
the middleware (or global operating system) is to hide the system’s
complexity from applications and provide the abstractions suited to
application programming. Functionalities of such an abstract grid
machine are listed below:

– security mechanisms management (access control);

– resource discovery;

– resource selection and mapping;

– secured placement of codes and data;

– running of executables on target machines.

Even if the functionalities required to manage a cluster or grid are
roughly the same, the grid, compared to the computing cluster, changes
the order of magnitude in terms of:

– the number of pieces and heterogeneity of cooperating equipment;

– size of communities of users; numbers of interdependent
processes; and also

– processing, bandwidth and storage capacities.



Utilization of Network Computing Technologies 59

We move from 10 or 100 to 1,000 processors, users, processes.
Making this set of remote and heterogeneous hardware and software
communicate and cooperate efficiently at these larger scales clearly
poses different and complex problems. This is the reason why much
of the research, throughout the past decade has centered on grid
management and usage issues. More recently, the arrival of mega
data centers and cloud computing have raised new technological and
scientific challenges to even more impressive scales. Indeed, a data
center can contain several hundreds of thousands of machines.

2.3.2. Grid managers

Two large middleware families were put forward to manage grid
resources and users:

– Massive grid environments aim to share server clusters that are
generally localized in computing centers. The management of these
environments can be relatively centralized or slightly decentralized.

– Desktop grid environments enable the use of very widely-spread
desktop computers. For example, home PCs connected to the Internet
via ADSL links can contribute to the computing platform during their
standby period. These environments initially rely on a completely
distributed technology, called peer-to-peer or P2P.

Desktop grid technology has shown great benefit for large-scale
use in programs such as SETI@home and, at the same time, on a
lower scale in business intranets. This is because it allows low-cost
deployment. The constraints of this technology are essentially due to the
necessary split of executable files and data sets to sizes small enough
to be executed on desktop computers. Furthermore, this technology
is reserved for applications that can function in a reduced-reliability
environment. These applications must be robust so as to avoid security
problems linked to execution on unmonitored hardware.



60 Computing Networks

It is OGF3 that standardizes the roles, architecture and interfaces
of massive grid middleware. The main managers are Globus4 and
Unicore5.

Globus [FOS 97] aims to offer secure remote process running
and user-control services at the network system level. The
performance, control and transparency level offered is relatively low.
Nevertheless, large-scale deployment of software such as provided
by Globus [FOS 04] and standards such as OGSA [FOS 02] and
Web Services Resource Framework within national or international
projects (TeraGrid, EU DataGRID, Naregi, NorduGRID, Enabling
Grids for E-sciencE and LCG) has enabled large communities
of potential users to become familiar with wide-area distributed
computing. It is up to us to experiment with and to imagine the
benefits of this approach. The designers themselves noticed and
identified its main limits: insufficiency and indeterminism of network
performance as well as the difficulty in globally securing a distributed
infrastructure [VIC 02, MAR 05a]. Thus, over the years new methods,
services and protocols have been introduced to remedy this.

2.4. Conclusion

In this chapter, we have seen that the concepts of computer clusters,
grids and clouds have been successively developed to respond to
an increasing and diversified demand for computing facilities. These
different concepts complete rather than oppose each other. Clusters
aggregate PCs interconnected by a local network to provide a computing
power that is greater than a simple machine, and at a much lower
cost than a multiprocessor supercomputer. Grids link heterogeneous
resources – often computer clusters – via a WAN to enable several
organizations to mutualize their dispersed resources. Clouds, through
a paid and secure service, enable the remote and transparent use of

3. OGF: The Open Grid Forum, www.ogf.org.
4. Globus toolkit, www.globus.org.
5. Unicore toolkit, www.unicore.org.



Utilization of Network Computing Technologies 61

clusters or grids composed of rare and/or powerful resources, whether
interconnected to each other or not. Furthermore, we have shown that
applications being run on these computing infrastructures have different
requirements in terms of the performance criteria of communications.
In the next chapter, we provide a more precise analysis of the place and
constraints of the network within these infrastructures and we present
the challenges posed to network technologies to enable computing
networks to reach their full potential and their users to receive the
greatest benefit from them.



Chapter 3

Specificities of Computing Networks

In the context of computing networks, the network, its protocols
and its associated software tools must offer programmers and users
efficient interconnection and communication mechanisms between
distributed entities. It must also provide simple and quasi-transparent
communication and network-monitoring services. These service needs
are very different depending on the applications (massively parallel,
loosely coupled or collaborative) and environments in which they are
executed.

This chapter classifies computing networks, gives an inventory of
the performance and service constraints imposed by each context, and
studies the limits of traditional protocols with regard to these needs.
We will develop the different solutions put forward to address these
constraints in later chapters.

3.1. Typology of computing networks

In Chapter 1 we classified distributed computing environments into
three large families: clusters, grids and clouds. The main differences
between these environments are the characteristics of the aggregated

63



64 Computing Networks

resources, the geographical distribution, and the entity in charge of
managing these resources. The central and recurring element of all these
environments is the interconnection network, whose main function is
to ensure connectivity between resources. Each level of aggregation of
physical components has a corresponding network and a set of functions
and associated services.

We therefore distinguish between cluster networks, grid networks
and cloud networks. It must be noted that there are also networks
internal to machines, particularly in multicore architectures or at the
very core of these machines’ hardware components (known as network
on chip or NOC). In this book we do not consider these internal
networks, but instead concentrate on the interconnection networks of
computing machines. In addition to this, we solely consider wired
networks. Nevertheless, the problems and solutions proposed can, in
quite a few cases, be extended to the domain of wireless networks.

At the most abstract level, all these networks can be represented by
graphs. A graph is a G = (V, E) couple formed from a set of nodes and
a finite set of arcs. The machines are the end nodes of this graph. The
other nodes, having several arcs, represent the pieces of equipment in
the network whose role is to retransmit information from the sender to
the receiver. Table 3.1 gives the main attributes of the different networks
considered in this book.

Characteristics Cluster Grid Cloud
Type of network Local Wide-area Internet

Yes Yes No
Homogeneous machines Yes No Unknown

Latency Low High High
Throughput High High Low

Type of network protocol Ethernet or dedicated IP IP
Robustness of communications Yes Yes Yes

Predictability of communications Yes No No
Security of communications Yes No No

Table 3.1. Principal properties of computing networks



Specificities of Computing Networks 65

3.1.1. Cluster networks

In clusters that aim to offer a low-cost powerful computing
environment to applications that are often parallel, the local network
and its performances play a dominant role. Applications, aware of
the existence of a specific network, try to make the best use of it to
maximize their overall performance. Two types of network are used in
this context:

– high-performance dedicated networks (see Chapter 4); and

– a very high-speed Ethernet network (1 Gbit/s or 10 Gbit/s). This
network serves for inter-process communications and potentially for
input/output operations. In computing clusters, it is often doubled with
a lower speed, Ethernet-based control network.

3.1.2. Grid networks

In grids, the primary goal is to connect heterogeneous equipment
via a wide-area network (WAN) to mutualize dispersed resources.
The grid network is made by interconnecting local cluster networks
that aggregate resources on the same site and those that interconnect
sites. The grid network is therefore a complex interconnection of
heterogeneous networks that can be dedicated. We distinguish three
levels in this interconnection:

– the local-area network level;

– the access-link level; and

– the wide-area network level.

Within the various sites of the grid, the local-area network is
often based on high-speed Ethernet technology (1 or 10 Gbit/s). To
interconnect the remote sites, long-distance links are provided by a
network operator. Depending on the service supplied by this operator,
the grid will be supported either by provisioned virtual private links
based on a technology such as Multi Protocol Label Switching with
Traffic Engineering (MPLS-TE) or by dedicated optical links (lambda

www.allitebooks.com

http://www.allitebooks.org


66 Computing Networks

path). In the case of desktop computer grids, the wide-area network is
the Internet.

In current international grids such as the Enabling Grids for
E-sciencE or EGEE [EGE 04], local-area networks are typically
high-speed packet-switching Ethernet networks (1 or 10 Gbit/s). In the
Grid5000 [BOL 06b], local-area networks are 1 or 10 Gbit/s Ethernet
networks are doubled with dedicated high-performance networks.
Access links are 10 Gbit/s. In research grids, virtual private links are
supplied by national research and education networks, such as France’s
National Telecommunication Network for Technology, Education
and Research (RENATER) for Grid5000, or the pan-European data
communications network, GEANT, for EGI.

In order to profit as much as possible from these infrastructures, it
is necessary to share the network between the different grid users while
providing an abundant bandwidth for each application. Whether over
the Internet or a private network, the critical issue is sharing the capacity
of the site’s link to the wide-area network. The bottleneck is generally
located at this level. Figure 3.1, which represents the structure of the
interconnection network of the Grid5000 platform, highlights the strong
aggregation at the level of the access points to the wide-area network.
The individual capacity of each machine connected to the grid is of the
same order of magnitude as the access link (for example 1 or 10 Gbit/s).
The rate of aggregation, K, is the ratio of the uplink capacity, Caccess,
and total capacity of the source, Csource. K = Caccess/Csource at the
access point. In the Internet, this rate of aggregation is in the order of
1,000 or 10,000. Indeed, for an Internet provider with an access link
of the order of 1 Gbit/s, the machine’s throughput or that of the client’s
ADSL link is in the order of 10 Mbit/s. In a grid, this rate is 1 or 10.
The rate of potential congestion at the point of access, CP , defined by
CP = n ∗ Csource/Caccess = n/K, is therefore inversely proportional
to the rate of aggregation. CP increases linearly with the number of
local machines simultaneously trying to communicate with one of the
grid’s external machines. This rate of potential congestion very quickly



Specificities of Computing Networks 67

exceeds the critical value of 1, which expresses congestion if all the
machines simultaneously communicate in the middle of the operation.

Figure 3.1. Model of the Grid5000’s core network

To access remote computers or files, distributed applications use the
standard communication interface and protocols of current operating
systems: Transport Control Protocol (TCP)/Internet Protocol (IP)
sockets and protocols.

3.1.3. Computing cloud networks

In the case of cloud computing, computer access remote and is even
more transparent than in grids. Users connect to the cloud through a
web portal and all exchanges with the allocated resources are done via



68 Computing Networks

the user’s Internet link. Data and codes are sent to available remote
machines and can be co-localized there. Applications are not informed
of the nature and distribution of resources that are attributed to them and
therefore cannot optimize communications between processes. Each
program is supposed to be executed autonomously on a computer or
an independent virtual machine. The cloud service takes charge of all
the potential transfers between machines. The programming model is
still very simple but could become more complex in the future if cloud
technology spreads more widely.

3.2. Network transparency

3.2.1. The advantages of transparency

Grids are characterized by:

– a significant heterogeneity of the aggregation resources and their
interconnection networks;

– the strong dynamic of these resources and networks;

– a large diversity of needs and often a difficulty in specifying them;

– a high need for performance that is often at the limits of the
hardware’s capacity;

– an intense load variability;

– a multi-domain context (private, public);

– multiple policies (multi-user, multiple organizations);

– varied and potentially multipoint communication schemes
(multicast, all-to-all, etc.).

One of the main objectives of grid software was to make all of
these factors, and the network in particular, as transparent as possible
to users. Let us note that this objective has characterized distributed
systems since the beginning of the 1990s. In the very heterogeneous and
multi-domain context of grids, this objective is even more important.

Programming applications on such systems can be very complicated.
Programming on a grid adds new levels of complexity compared to



Specificities of Computing Networks 69

programming a parallel application, which requires specific expertise
to start with. Parallel-programming approaches based on message
communication libraries, such as the Message-Passing Interface or
MPI, require the programmer to explicitly describe communications
between processes. Distributed systems and grids additionally require
the software interfaces to be remotely accessible through unreliable and
nondeterministic network connections. Ideally, such access should thus
be transparent, i.e. connections should not be explicitly described by
the programmer. The gap separating the system from the application
programmer increases when going from parallel systems to distributed
systems to grids.

To enable the programming and execution of a distributed
application, the network and communication tools must offer
basic functions, such as connection, sending and receiving of
messages or files. Thus, to create and use a complex aggregation
of widely-distributed resources and have basic communication
functionalities, communities of middleware designers and
grid-application programmers naturally relied on the Internet’s
packet-switching technology. Indeed, this technology addresses
interoperability demands, masks equipment and technology
heterogeneity, and shows robustness and scalability properties.
Furthermore, to send messages or files, applications distributed on
a grid use the TCP or User Datagram Protocol (UDP). Both of these
protocols are widely diffused and available on computing nodes, and
enable communication over both short- and long-distance links. Thus,
in the grids deployed and used today, the network is transparent and the
protocols used inherit the same characteristics as those of the Internet.

3.2.2. Foundations of network transparency

To mask network heterogeneity, the International Organization for
Standardization proposed the Open Systems Interconnection or OSI
model; see Figure 3.2. This is a model of open-systems interconnection
that has been a reference for 40 years.



70 Computing Networks

Figure 3.2. The International Organization for Standardization’s OSI model

This model defines seven layers, each providing a specific service.
For example, the data-link layer (level 2) provides the service enabling
access and control when sharing the physical medium. In this model, a
level-N layer solely calls on the layer immediately below1 and data pass
from one layer to the next, while being encapsulated (i.e. each layer only
adds the necessary headers for service management at its level to the
above level’s data). This model was used and simplified in the TCP/IP
Internet protocol architecture that governs all communications on the
planet.

The fourth layer, the transport layer, is very important because it
is the first level that has an end-to-end view of the network. It is
this layer that provides the means of communication between two
application processes. Its role is to ensure that information is transported
from one end of the network to the other, correcting possible errors
introduced by network elements. The most well-known and frequently
used transport protocol is TCP. This is the same TCP of the Internet’s
TCP/IP architecture represented in Figure 3.3. Studies have shown that

1. This isolation can pose problems, since some useful information is not brought back
up to the upper layers. This, for example, can lead to the model not being able to
distinguish a loss due to corruption from a loss due to congestion.



Specificities of Computing Networks 71

Figure 3.3. Protocol layer stack

80–95% of the Internet’s current traffic is made up of TCP streams. This
success is due to the presence of this protocol in all the major operating
systems and to the fact that free implementation has been available since
the time the protocol was introduced. The following list presents a few
of the TCP’s main properties:

(1) reliability: TCP is in charge of packet-routing and ensures the
integrity of such packets;

(2) scalability capacity: TCP is used by almost all of the Internet’s
end hosts (billions of machines);

(3) stability: regardless of disturbances, TCP ensures the system’s
convergence towards stable and efficient operation;

(4) robustness: TCP can function in extreme conditions of loss rate
and latency;

(5) fair sharing: TCP enables different users to have a proportional
part of the bandwidth.



72 Computing Networks

TCP enables a connection to be established with a destination from
a source by enabling them to agree on a sequence number (a three-way
handshake), which counts the number of bytes sent by the source.
The destination returns packets containing a sequence number, which
correspond to the acknowledgement of the highest continuous-sequence
number received. This mechanism allows reliable data forwarding (i.e.
it means that it is possible to detect the loss of packets).

A TCP connection is identified by a digit couple, a source port and
a destination port, enabling the process to clearly identify (by adding
the IP address couple) what it is trying to communicate with. Data are
transmitted and received across Sockets, which are the logical entities
representing the endpoints of the pipe.

3.2.3. The limits of TCP and IP in clusters

IP networks were invented at the end of the 1970s. Even though
a few optimizations have been carried out since, the implementation
of TCP/IP layers in modern operating systems is based on the same
principles. Figure 3.4 presents the different layers of the network-access
software in the UNIX system.

 

Figure 3.4. Access to Ethernet networks through the TCP and UDP protocols
and the Socket interface



Specificities of Computing Networks 73

Applications communicate through the Socket interface, which
enables access to a reliable and connected transport service – TCP – and
to an unreliable and unconnected transport service – UDP. These two
services are implemented by the protocols of the same name and take
charge of high-level data transmission between remote applications. The
IP layer carries out packet-routing across various types of intermediary
equipment (routers and gateways) up to the receiver. Finally, the
link-level layer, typically Ethernet in local-area networks, is in charge
of packet-transmission on the physical link using frames. This layered
model allows many advanced functionalities that are unfortunately not
very interesting in computing clusters because routing is often useless
in them, whereas retransmission and congestion control are much more
important.

The network-access Socket interface offers a syntax of the same type
as the UNIX file-access interface. Upon sending, the system copies the
data in a special area (the Socket buffer) then returns to the application;
see Figure 3.5. The operating system is then in charge of sending the
data in the background from this area to the network interface card
through direct memory access. Thus, the application is only blocked
during copying, instead of having to wait for the last acknowledgement
message of the last packet to be received (which can take a long time
if the receiver is on the other side of the world). On reception, the
strategy is symmetrical but the receiver is blocked until data arrives in
the user memory. This communication model is synchronous and even
if non-blocking variations exist the application cannot truly work during
communication processing.

This model also has the drawback of being demanding in processing
time and memory-bus occupation. (There are three accesses on the
sender’s end and three on the receiver’s end.) This is because a memory
copy must be created upon sending and receiving. Furthermore,
stacking different protocols is quite cumbersome because they each
add their header to the packets and require the computation of
checksums to verify data integrity. High-speed communications will
therefore consume a very large quantity of processing time. For



74 Computing Networks

Figure 3.5. Data transfer using the socket interface

example, the protocol processing of a 10 Gbit/s connection saturates
a modern processor’s core. In addition, these protocol processes
increase communication latency. This model’s ability to provide fast
notifications of network events (data reception or sending termination)
is limited. Indeed, when simultaneous communications have been
sent to numerous nodes, the Socket interface requires the explicit
verification of the state of each connection to determine whether the
data have arrived. The classic event notification strategy (poll/select)
turned out to be unable to efficiently handle a large number of
connections. The results of the research carried out for the web
servers can also be applied to large computing systems. This was
reflected by new variations of poll, enabling sources of interest to be
recorded [BAN 99]. The new variations of poll eventually appeared
in operating systems, first with kevent/kqueue in FreeBSD, then with
epoll in Linux. Other works considered using threads to process these
network events. Threads were not designed for highly event-based
applications but rather for applications necessitating a real concurrence
between execution queues [OUS 96]. The compromise consisting of
distributing the sources of events across a certain number of threads



Specificities of Computing Networks 75

has, however, proved its efficiency2. These new implementations have
enabled applications to be scaled to large distributed systems by
efficiently handling network communications to a very large number
of machines. Event notification still suffers from a significant latency,
however, notably because of the system-call necessary to access
network events.

3.2.4. Limits of TCP and network transparency in grids

The Internet’s best-effort service provides the ubiquitous
connectivity necessary and allows abstraction from the high
heterogeneity of interconnection. The level of abstraction and service
supplied by the TCP and IP, however, does not enable efficient
execution of applications. Thus, whereas functional transparency
vis-à-vis programming is very noticeable, there is no transparency in
performance. Moreover, providing a sufficient throughput from one
end of the distributed computing environment to the other is a major
challenge in ensuring that the global computing system is efficient and
fluid. Moving a volume of one terabyte from one end of a European
grid to the other can take more than a week when the average speed of
network links is 10 Mbit/s (the typical speed of an ADSL link). If it is a
dedicated 1 Gbit/s network, the transfer time will only be a few hours.

3.2.5. TCP in a high bandwidth-delay product network

Delivering high-performance communications in a high-bandwidth
delay-product network is a significant challenge for a simple
point-to-point communication. The Internet’s traditional transport
protocol, TCP, as well as its variations were developed for shared
networks in which link bandwidth is a critical resource. Therefore,
congestion-control mechanisms, aiming to manage internal contention,
try to find the correct balance between competition that is not
too aggressive and acceptable end-to-end performance. A slow-start
therefore forces TCP to wait a long time before reaching maximum

2. Input/output event handling under Linux, www.atnf.csiro.au/people/rgooch/linux/
docs/io-events.html.

www.allitebooks.com

http://www.allitebooks.org


76 Computing Networks

speed when the distance between the sender and receiver is significant.
There is also a considerable delay in reaching maximum speed after
packet loss. In a network in which internal congestion events are rare,
the problem of speed and congestion control moves to the endpoints (or
access links), which become bottlenecks. Furthermore, in a multipoint
context where streams can have variable bandwidth-delay products, the
allocation of throughput between streams is not fair. We study these
high-speed transfer problems in Chapter 5.

3.2.6. Limits of the absence of communication control

The generalized use of the TCP in a grid ensures equitable sharing
of overall bandwidth and that of access links in particular. Nevertheless,
such an approach does not guarantee a minimum throughput. Variability
in load-performance is not always suitable for the user’s objective
of performance, which is to minimize the total execution time of
applications. A simple connectivity service is therefore neither sufficient
nor satisfactory.

The performance of application execution is largely determined
by the movements of data. With the TCP/IP approach, it is difficult
to predict and obtain in practice. The possibility of message loss,
significant and variable transmission delays, and the dynamic behavior
of links between remote processes are a significant challenge for
the models and techniques developed in the context of parallel and
distributed computing on computing clusters. Consequently, whereas
several grids exist today and are used daily, such as the EGEE [EGE 04],
it is commonly admitted that they are far from being easy to use
technological platforms. They are not sufficiently robust and do not
provide a high enough performance to serve the needs of each
application scenario. This is because of the characteristics of the
communications protocols used.

To increase performance, application programmers therefore seek
to distinguish between local-area and wide-area communications. In
the second generation of grids, middleware is also equipped with
network-monitoring and measurement functionalities. Applications or



Specificities of Computing Networks 77

services can consequently monitor network load and optimize their
performance by being based on predictions offered by environments
of network-performance measurement and estimation, such as NWS
(Network Weather Service) systems [WOL 99].

This approach causes the level of complexity of programming
applications on a grid to increase for the following reasons:

– computing resources are heterogeneous in terms of architecture as
well as performance;

– network resources are very heterogeneous in terms of bandwidth
and latency, in space and in time;

– as each part of a distributed application generally depends on one
or more other parts, a non-optimal allocation of tasks to servers can lead
to long processing delays. To get good performance, task sequencing on
resources has become more complex.

Today, distributed applications can monitor the network’s state.
The network itself still remains unaware of the constraints of the
applications that are executed, however, and does not provide specific
bandwidth services or quality of service (QoS). In Chapter 6, we
will see that the technological advances in optical networks offer new
dynamic services that are very interesting for grids. The challenge is to
make the ever-increasing capacities and the increasingly sophisticated
services supplied by the optical network infrastructures accessible to
middleware and applications. For this, the global cloud network must
be considered a resource in and by itself, and its sharing mode must be
globally controlled. The performance, security and functionalities must
be rendered deterministic and compatible with computing algorithms.

In summary, the grid context, and by extension that of very
large-scale computing, is very different from that of the traditional
Internet, for which the TCP and IP were designed. This is because:

– control over latencies and throughputs is critical for the global
performance of infrastructure and applications;

– certain communications can tolerate packet losses and do not
systematically require messages to occur in a specific order;



78 Computing Networks

– the models of cooperation between remote entities are multipoint
(of the N -N type) rather than point-to-point (of the 1-1 type), as in the
client-server mode on which the main Internet applications are based;

– the communication paths between remote processes are very
hierarchically structured, with some the nodes of the interconnection
graph having a very high density. These nodes correspond to
aggregation points bordering the wide-area network and are therefore
often susceptible to congestion;

– control over resource usage is important to be able to develop a
solid economical model;

– trust domains must be well delimited, and this must occur in a
dynamic way.

3.3. Detailed analysis of characteristics expected from protocols

The classification of grid applications presented in Chapter 2
highlighted comparatively strong locality and performance (QoS)
criteria, which are directly linked to the network. The analysis of
applications according to this classification showed that network
needs are different depending on the application’s phases (preparation,
execution, post-processing). Throughput performance (low latency),
needs are more demanding during execution phases, in which costly
resources (computing, instruments and users) are simultaneously active
and tightly coupled. Phases of exchanges with storage spaces are more
demanding in bandwidth but more relaxed in delay constraints. The
design and composition constraints of a grid’s network and protocols
depend on topological criteria (number of sites, number of users
and localization constraints) and on performance criteria (degree of
coupling of targeted applications that directly influence the traditional
QoS parameters: throughput, delay, reliability and robustness).

3.3.1. Topological criteria

3.3.1.1. Number of sites involved

Two typical organizations can be distinguished regarding
interactions between the processes making up a distributed application.



Specificities of Computing Networks 79

In the first type, single-site applications do not use the network
during the execution phase. Only the initialization, input data transfer,
or result recovery and termination phases use the network. This
organization is present in local simulations on computing grids. On the
one hand, the network’s performance needs in terms of delay are less
critical than during the execution phase; on the other hand, bandwidth
needs can be very significant.

The other type of organization is called multi-site. In this,
processes interact more during execution. For certain simulations,
synchronization between processes is required at each iteration step.
This stronger coupling between processes requires a stable network
capacity throughout execution. In the case of remote visualization, the
need for interactivity is very strong. Multi-site applications can display
simple virtual topologies (chain of resources, as in the pipeline case)
or more complex ones (in the case of distributed computing on several
randomly chosen sites).

3.3.1.2. Number of users involved

The number of users is another topological criterion. Single-user
applications are typically computing applications in which a single user
runs the application and waits for the results. Multi-user applications
are those that offer the possibility of collaborative work. This second
type needs a high level of interactivity, and therefore a high level of
connectivity with all the users who interact in real time through the
application.

3.3.1.3. Resource-localization constraints

The possibility of choosing the location of a resource influences
the interconnection’s composition constraints. Data-acquisition (sensor
networks) or visualization instruments are by nature often very
localized, as for example in the case of a medical imaging application
such as the one displayed in Figure 3.6. Storage spaces or even
data-based resources, however, have more flexible constraints with
regards to location. Finally, computing resources are very often generic.
As with users they are localized as in the case of a fixed-network



80 Computing Networks

connection, or mobile, as in the case of a radio-network connection.
Collaborative multi-site applications provide the greatest constraint for
composing a connection graph.

Figure 3.6. Distribution of entities in a medical-imagery application displayed
on a grid

3.3.2. Performance criteria

3.3.2.1. Degree of inter-task coupling

It is the degree of inter-task synchronization and coupling
that defines the application’s sensitivity to communication latency.
Returning to the classification in Chapter 2, applications of the
resource-sharing class often need to synchronize computing phases and
exchange data during execution. Data updating can be controlled by
distributed file systems, with competition control done by transactions
or any other technique/algorithm that is used to solve the problem of
multiple write access to a shared resource, such as software locks.
These applications do not have interactivity constraints. They show a
variable level of coupling between processes, which can influence the
choice of resources (whether they must be near each other or not, for
example). Scheduling needs are low once the tasks have been allocated
to the resources, but the placement can be requested at very short-term
intervals, imposing a certain degree of reactivity to the allocation
process. The requesting of resources can take place in advance, from the
moment users plan their load needs (this can be automated by heuristics,
time series, etc.).



Specificities of Computing Networks 81

In the class of high-performance distributed computing applications,
two degrees of coupling are found:

– loose coupling exists between various long computing phases,
between which large quantities of data need to be transferred;

– tight coupling exists in each long phase, where several parallel
execution streams cooperate by sharing data space between computing
resources.

This cooperation is also done in stages, where data coherence
occurs; generally via exchanges on the space sharing’s borders.
These applications therefore require synchronizations, which are
generally associated with (large and small) data exchanges. These
synchronizations do not have real-time constraints, however, and the
next step can be started as soon as data from the neighbors or from the
phase before have arrived.

To avoid resource idleness, it is a good thing to orchestrate the
execution of cooperating phases in such a way as to make them
progress at the same speed. Determining the duration of the phases
can enable better reservation of the network. From the point of view of
interactivity, distributed-computing applications have little interactivity
requirements. In this application class, the needs identified are the
transfers of large amounts of data, burst transfers and workflow
management.

3.3.2.2. Sensitivity to latency and throughput

Each application class presented in Chapter 2 exhibits different
delay, throughput, reliability and robustness needs. In the group of
distributed parallel computing applications, tasks calculate more data
and the interaction is fine-grained. Sensitivity to latency is therefore
very high. In contrast to the case of distributed parallel computing,
high-speed computing tasks do not communicate with each other
(or they communicate little). Their throughput needs, for computing
preparation and data routing, can be significant. For on-demand
computing, tasks are allocated to any of the computers based on specific
criteria. It is difficult to evaluate throughput- or delay-sensitivity. These



82 Computing Networks

metrics, without being critical, influence the overall performance of
the system and the degree of user satisfaction. For the group of
data-intensive applications, complexity lies in the combined allocation
of several tasks as well as in the availability of data.

Class E applications aggregate a certain number of users who wish to
simultaneously modify the virtual space where they collaborate. These
applications are very sensitive to latency. Applications belonging to
the cooperation and visualization class require high network reactivity.
Updates must be done in real time so as not to compromise the
visualization. Some can tolerate reductions in quality. With critical data
paths it is necessary to guarantee that the computations carried out
remotely quickly become visible. It does seem possible, however, to
determine the throughput necessary for a given resolution at a given
frame rate with data from a known origin.

In collaborative-work applications, several users on different sites
interact. Remote visualization is a simplification of collaborative work
where a single user operates on the data. The application’s role is often
to develop complex projects, such as in the automobile industry and
the electronics or environment domains. Users participate in real time
and modify the state of the project. These modifications must have an
immediate effect on the project that is visible to the other users. It is
necessary to have a multipoint communication. Latency must ideally
remain in the order of one millisecond and the network must guarantee
a certain throughput for each user, possibly rented on an on-demand
basis. Some applications require distributed archive systems due to the
volume of data manipulated or to act as a local cache for the visualized
data.

To conclude this study of application classes, we note that only
distributed parallel computing and collaborative computing use the
network during the execution phases; the other application classes do
not. These two application classes will be the most sensitive to latency.
In addition, distributed parallel computing requires communications to
be 100% reliable, unlike collaborative computing.



Specificities of Computing Networks 83

3.3.2.3. Sensitivity to throughput and its control

Applications for high-speed computing, on-demand computing
and data-intensive computing should work on local data. The
implementation of these applications must therefore guarantee that the
data are locally present or that remote access is efficient. This implies a
high demand in throughput during the preparation and post-processing
phases. It is not necessary to guarantee a high level of service, however,
for the communication streams.

The transfer time, T , of a volume of data, V , from one point to
another is expressed, in a simplified way, by: T = V/r + d where r
is the actual end-to-end throughput between the two communicating
processes, and d the end-to-end delay. d is a very complex sum of
variable and fixed delays depending directly on the network’s load at
time t, whereas r is the sample minimum of the throughput of each of
the path’s numerous segments. Depending on whether V will be very
big or very small, factors r or d will be dominant. In addition to the
intrinsic value of r or d, their variability can also be very detrimental
to a computing application or to the distributed system as a whole.
This variability depends directly on the interactions between the streams
internal and external to the grid.

Grid technologies facilitate resource allocation to multiple
applications running simultaneously. The activities associated with a
user or an organization can therefore influence the performance seen
by other processes being executed on the same platform. The problem
is in providing tools for control or even performance isolation. One of
the most significant problems currently faced by grid communities is
that, although they provide access to several heterogeneous resources,
the available ones seldom meet the needs of a specific application or
service. In an environment where resource availability and software
demands quickly increase, it is possible to end up with:

– a suboptimal use of resources;

– user frustration; or



84 Computing Networks

– efforts wasted trying to establish connections between the
applications and resources.

It is therefore desirable that grids meet the needs in terms of network
QoS and performance control, in addition to meeting those related to
access to diverse, rare and powerful resources.

Figure 3.7. Cost of file transfer in a grid: local and system costs must be
added to the cost of wide-area network feed-through

Figure 3.7 illustrates the different networks crossed during a file
transfer. The QoS and performances of each one of these segments must
be carefully examined to maximize the performance of the transfer.

3.3.2.4. Sensitivity to confidentiality and security

Applications created for industrial purposes have strong concerns
regarding confidentiality. They require secure connections, to the point
that they prevent the application from being deployed outside the
company’s grounds. The aspect of security is fundamental, especially
when a business must run its application on several sites or an external
site. A secure network is necessary not only to keep communications
secret but also to ensure controlled access to end resources.

3.3.2.5. Summary of requirements

Most applications would benefit from a high-performance (very
low latency) network to achieve better results, but only the strongly



Specificities of Computing Networks 85

synchronized applications are particularly sensitive to it. Some
applications can have particular security (encrypted channels) and
interactivity requirements. The majority of applications need a high
transfer rate, particularly to access data sources and results. Finally,
distributed applications on grids could benefit from functionalities, such
as advanced reservation and (possibly secured) deterministic scheduling
of network transfers. The discovery of network capacity, monitoring
of service level, synchronization of communication and computing,
negotiation of bandwidth and performant transport protocols are
functionalities capable of improving grid usage.

This analysis shows that the description of the application’s behavior
is necessary to allow an easier and more informed choice about
the network and the communication protocols to be used. Ideally,
it is the workflow that should incorporate information on inter-task
communications, specifying the deadline, volume, direction, profile or
quality desired. In general, the workflow does not give this explicit
description. Means for automatically obtaining or predicting this
description should be provided.

3.4. Conclusion

In this chapter we identified four main challenges related to the
interconnection network and protocols in order to support network
computing applications:

– latency;

– distance;

– throughput; and

– security.

Of course, other challenges face networks and protocols in
the context of an increasingly massive deployment of grid and
cloud-computing technologies:

– the integration of wireless networks and mobility;

– the dynamicity of links and resources;



86 Computing Networks

– robustness and fault-tolerance; and

– the definition of a viable economic model.

It is fundamental to ensure that the considerable potential offered
by resource aggregation does not remain unexploited, or even
wasted, because of the inadequacy of the communication models
and mechanisms implemented. Recent technological evolutions give a
glimpse of a large number of new solutions just waiting to be exploited.
It is these proposed evolutions and software solutions that we develop
in the rest of this book. We attempt to show how these new approaches
address the four main challenges: latency, distance, throughput and
security.

We study the specific problem of cluster networks in Chapter 4. In
that chapter, we specifically analyze the constraints of grid networks.
We develop the related issues of throughput and distance in Chapter 5.
In Chapter 6 we examine performance monitoring.

In Chapter 7, we study the various optical technologies that address
the need for very high throughputs. In Chapter 8, we show how a
bandwidth-on-demand service allows us to offer a controlled very-high
throughput for a limited period of time. The chapter deals with the issues
of communication- and access-security in a distributed computing
network. Chapter 10 gives a short guide for tuning your network and
end protocols.



Chapter 4

The Challenge of Latency in Computing
Clusters

The aim of this chapter is to present the key principles of
high-performance networks of computing clusters, their associated
protocols and their actual implementation in the operating system (OS)
and the hardware.

The specific needs of parallel computing applications in the 1990s
led to the development of research on specific networks, protocols
and programming interfaces that are much more performant than the
traditional technologies. The bandwidth of these high-performance
networks has long exceeded 10 Gbit/s, whereas latency easily reaches
a few microseconds. Whereas in a traditional Ethernet-type network
bandwidth can now reach comparable values, latency still remains
significantly longer than a microsecond, which is limiting for very
high-performance computing.

The design of these new networks relies on a deep modification
of the system and hardware layers in order to facilitate data transfer
between user processes.

87



88 Computing Networks

Indeed, the quality of service (QoS) provided by these networks was
designed specifically for the needs of parallel applications in computing
clusters, allowing protocols to be closely adapted to them.

In this chapter, we define the key principles of computer-cluster
networks and then detail the specific software mechanisms that were
introduced in this high-performance context. Finally, we present the
different high-performance network technologies introduced over the
last 15 years to interconnect the different computers making up a
cluster. It must be noted that the principles, software mechanisms and
technological innovations exposed in this chapter have been re-used
in other, less-demanding contexts, particularly high-speed Ethernet
networks, as we show at the end of this chapter.

4.1. Key principles of high-performance networks for clusters

The communication needs of parallel applications being very
particular, highly specific networks and protocols were invented for this
context. The general idea is to reduce the latency introduced by the
network and its protocols. It is done by shortening, as much as possible,
the critical path followed by the data exchanged between two processes
that are being executed on different nodes. To do this, the specificities
of the context and of the programming interface used (Message Passing
Interface or MPI) are taken into consideration to suppress costly steps
that are useless here. The main mechanisms proposed are:

(1) Zero-copy communications: parallel applications should not
waste processing time on communications. It is possible to suppress
the intermediate copies, which consume a lot of processing time using
an interface card capable of initiating direct memory access (DMA) to
directly transfer data between the applications’ user memory and the
network, without using the central processor.

(2) Removing the OS from the critical path: the cost of a system call
is in the order of a few hundreds of nanoseconds on modern machines. It
is possible to avoid system calls (OSbypass) by authorizing applications
to directly access the network interface card. The gain in latency is



Latency in Computing Clusters 89

noticeable, since latencies are of a similar order of magnitude (a few
microseconds).

(3) Reactivity to events: peripheral devices can notify the central
processor of a network event by interrupting it. The cost of an
interruption being quite high (several microseconds), however, polling
enables faster recovery of events. The counterpart is that polling
consumes processing time. Clever mixing of polling (for early-arriving
events) and interrupts (for late-arriving events) enables all network
events to be recovered with a good balance between reactivity and
processor consumption [MAQ 96].

(4) Protocol processing in the interface card: the simplicity of the
protocol specifically designed for computing clusters enables interface
cards equipped with on-board processor and memory to process part or
all of it. The application submits its communication requests to the card
and then the card handles them in the background while the application
can overlap the processing with computation.

(5) Reliable physical network: cluster topologies are static and closed
and traffic is quite deterministic therein. It is therefore possible to
anticipate the quantity of data that can circulate in the different links.
Sufficient dimensioning of the network core enables congestion, and
therefore loss of messages, to be avoided. In addition, the short
length and the reliability of physical links prevent data corruption.
Transmission (and retransmission in the case of error) protocols are
therefore much less complex and costly than those found in the Internet
(Transmission Control Protocol/Internet Protocolor TCP/IP), which is
in essence an unreliable and highly congested network. The protocol
can therefore be optimized for the errorless case, while error processing
can be slow because it is very rarely used.

(6) Source routing: cluster networks are regular and static, allowing
routing to be fixed. The processor embedded in the interface card can
place routing information at the start of the packet. The role of switches
is then reduced to extracting this small header and then directing the
packet, which improves performance. Congestion can be managed using
very simple flow control at the data-link level, which enables a receiver
to inform the sender that it must wait before sending the next packets.



90 Computing Networks

4.2. Software support for high-performance networks

We now detail the different software innovations that enable
parallel applications to have excellent performance thanks to MPI
implementations on high-performance networks.

4.2.1. Zero-copy transfers

The first innovation linked to high-performance networks is the
possibility of transferring data directly between the application and
the network without intermediate memory-copy like in regular layers,
such as TCP/IP. These so-called zero-copy data transfers have the
advantage of not using the central processor to carry out a memory
copy, which would be very costly for large messages (it takes about one
millisecond to copy a megabyte). Zero-copy is implemented by data
transfers through DMA, see Figure 4.1. It is initiated by the peripheral
device from or to the machine’s central memory. In addition to this,
modern network cards are capable of computing checksums to verify
data integrity: data can be directly transferred through DMA without
requiring intervention from the OS. Therefore, it is now possible to
saturate physical links, i.e. reaching more than 1 GB/s these days,
without saturating the central processor because of copies or checksum
computations (The bandwidth of the common Peripheral Component
Interconnect or PCI Express buses and the links of the most advanced
network technology is 1 GB/s.).

These DMAs have the disadvantage of having significant
initialization and termination costs, because it is necessary to give
the peripheral device the target memory addresses in advance. DMA
must therefore only be used when a sufficient quantity of data must be
transferred, typically at least 10 KB.

4.2.2. OS-bypass

The second innovation of high-performance networks concerns
small messages. Whereas zero-copy communications are preferred for
large messages, this is not the case for small messages where latency



Latency in Computing Clusters 91

Figure 4.1. Zero-copy data transfer on a cluster network

is crucial, and currently reaches about 1 microsecond. Indeed, for a
latency d and a bandwidth r, the transfer time of a message of size V is
T = V/r + d. Since here, d is in the order of the microsecond and r in
the order of 1 gigabyte per second, T � d for V in the order of 1 KB.

The initialization cost of a DMA is a few hundred nanoseconds,
which is too high compared to the communication’s global latency. For
small messages it is necessary to shorten the path between the sending
application and its target on another node by as much as possible. This
is achieved by shortening all of the steps, particularly the transfers
between the application and the peripheral device.

To do so, a novel idea was proposed to take the OS out of the critical
path, i.e. directly submitting requests to the card from applications in
the user space (OS-bypass). Indeed, the cost of a system call has long
been in the order of 1 microsecond, which has greatly limited latency
reduction. Techniques for projecting the peripheral devices’ resources
into the applications’ memory have been used, so that the latter has
been able to write commands directly in the former, using programmed
input/output (PIO), which is the processor writing in the resources of a
peripheral device. This requires the OS to work during initialization but
considerably simplifies things later on.

4.2.3. Event notification

In the same way that the OS is avoided during sending in order
to reduce latency, it can also be avoided during event notification



92 Computing Networks

when receiving. The peripheral device will put events directly in
the application’s memory space. The application can then scan the
designated memory area to immediately obtain these events. The
duration of polling is of the same order of magnitude as network
latency, which is very low in this instance. This polling therefore does
not last very long and is not costly for the application. This waste of
a few processing cycles enables very low end-to-end latencies to be
achieved for small messages thanks to fast notification without paying
the prohibitive extra cost of an interrupt (several microseconds).

For big messages, during the DMA’s termination, it is also necessary
for the peripheral device to be able to notify the application when it
reaches the end of its job. This requires either an explicit interruption
of the central processor by the peripheral device or, conversely, active
polling of the peripheral device by the processor. With the cost of
interrupts of a few microseconds being negligible compared to the
transfer time of a message of several dozen kilobytes, this strategy is
often preferred.

Fast notification of the termination of requests is an important point
in the design of high-performance networks. In fact, the techniques used
mix polling, for early notifications (the application does the polling),
and interrupts for late notifications (the application sleeps and is awoken
by an interrupt from the network card). These mechanisms allow the
quick notification of an application that has requested to be blocked
until a request is terminated.

Furthermore, it can be important to notify the application without
it being forced to interrupt computing to explicitly request the status
of on-going requests. Most programming interfaces for fast networks
only make communications progress when the application explicitly
calls a library function. It is sometimes desirable, however, to process
tasks in the background without waiting for the application to intervene,
for example to release resources or answer a remote request, such as
a rendezvous request. To do this, the active messages (AM) [EIC 92]
programming interface uses a special thread in charge of calling
the routines (receive handler) for processing the messages received.



Latency in Computing Clusters 93

Therefore, instead of only allowing communications to progress when
the application calls library functions, exchanges continue continuously
in the background. This further enables us to improve the overlap of
communications by computing because the application can concentrate
on the latter. The Myricom MX communication library also uses
a strategy like this to process rendezvous and connections in the
background.

These notification methods are effective but are considerably
different from standard strategies, such as poll/select or – more recently
in Linux – epoll. Indeed, the latter two are explicitly handled by the
OS that is in charge of manipulating several sources, advancing in the
background, etc. They have enabled applications to efficiently wait for
network events (in particular the arrival of messages in TCP or User
Datagram Protocol or UDP connections) without being impacted by the
number of sources that must be listened to simultaneously. This model
is quite different from user-space notifications in libraries managing
fast networks, which makes their joint use very difficult. For example,
it is impossible to uniformly receive events from high-performance
networks and from the discs, which can reduce the efficiency of a
distributed storage server.

4.2.4. The problem of address translation

The application’s direct submission (using OS bypass) of requests
involving DMA between the application’s memory and the network
has raised a rather new technical problem. Generally the application
only uses virtual addresses, whereas the hardware only uses physical
addresses. Translation is normally carried out in the OS: the application
passes virtual addresses to the kernel using a system call and then the
kernel translates them into physical addresses before giving them to the
hardware.

In high-performance networks, OS bypass communications avoid
the OS in order to reduce latency. This therefore prevents the OS
from helping to translate addresses. The most widespread strategy



94 Computing Networks

for solving this problem is called memory registration. This consists
of declaring the memory areas that will be used in communications
during initialization. A system call is then made to translate the
memory addresses and permanently register the correspondence in the
interface card (see Figure 4.2(a)). All communications can then be
OS bypass, with the application passing virtual addresses to the card
and the card translating them using the pre-registered correspondences
(Figure 4.2(b)). This idea was first introduced in research on the U-Net
system [EIC 95] in the form of a statically pre-registered zone. It was
then generalized in the U-Net/MM system [WEL 97].

Memory registration is an effective method but it has two significant
drawbacks. First, applications are not usually written to adequately
prepare the memory areas used for input/output (I/O) operations. Using
such a model in a normal application can therefore be difficult. One
commonly used solution consists of putting a shared library in charge
of on-the-fly and transparent registration of the memory areas used by
the application in its I/O operations.

The second problem is the often very high cost of registering and
deregistering memory, which can be in the order of 100 microseconds.
This cost is notably much higher than the latency of small messages (a
few microseconds). It is therefore only profitable if the memory areas
are large and/or re-used several times. For small messages, it remains
preferable to use an intermediate copy in a statically pre-registered
memory area. Wasting a few processor cycles is, in the end, more
economical than registering.

In other cases, a strategy called recording memory cache [TEZ 98]
is used. Rather than deregistering a memory area from the moment
the communication it was involved in is terminated, deregistration of
memory areas is slowed down by as much as possible. Indeed, as
long as it is possible to record new pages, it is useless to waste time
deregistering old ones. The cost of actual deregistration is therefore
avoided. In addition, if an area is left registered in the cache, its
subsequent re-uses will not require new registration. The overall cost



Latency in Computing Clusters 95

(a) Memory registration

(b) OSbypass zero-copy communication after
registration

Figure 4.2. OSbypass zero-copy model with memory registration

is therefore greatly reduced, particularly if the same memory areas are
re-used several times.

This effective strategy poses many technical problems related to
detecting areas kept registered when the application has released them.
It is necessary to be able to keep the cache up-to-date with the
modifications of the application’s addressing space, which is generally
difficult. Works have been proposed to modify the OS to this end
[GOG 04]. A similar implementation should be integrated in the Linux
kernel in the near future.

4.2.5. Non-blocking programming models

Support for zero-copy communications and OS bypass relies on the
card, not the OS, processing communication requests by the card and



96 Computing Networks

not by the OS. This idea enables non-blocking programming models to
be implemented.

The application submits requests to the card, overlaps their
processing with computations, and then tests their termination later
on. These requests come in two types, which correspond to the two
programming paradigms for parallel application:

– message passing; and

– remote memory-access.

4.2.5.1. Case 1: message-passing

In the first case, requests are of the message-sending and -receiving
type, like in MPI. The parameters of these requests are compared to find
out which sending will be received by which receiving request. This
matching can be carried out in the host (which reduces recovery) or in
the interface card (which can necessitate a lot of memory and on-board
power resources).

Figure 4.3. Time diagram of a communication based on the message-passing
paradigm. The sending node’s application posts a send request (SendReq)

while the receiver posts a receive request (RecvReq). Network interface cards
(NIC) process this communication (Comm) in the background while the
applications continue their computations. The applications later test the

requests’ terminations (SendEvent and RecvEvent)



Latency in Computing Clusters 97

Message-passing may or may not be carried out after a rendezvous,
i.e. a synchronization operation that enables the sender to find out
whether the receiver is ready to receive. In this way, synchronizations
and data transfers can be combined in a single communication. This
operation necessitates a round-trip between the two machines to
synchronize them. It therefore has a significant latency cost. From a
positive point of view, the rendezvous prevents the receiver from having
to copy unexpected data in an intermediate memory area. A balance
is needed between the rendezvous’s additional latency (which is to be
avoided in order to benefit from the low latency of small messages)
and the additional cost of a memory copy if the receiver was not ready
(to be avoided if the message is large). The decision is left to the
application by the MPI interface, depending on whether it wishes the
communications to be synchronous or not, and is sometimes also left to
the MPI implementation itself, depending on network priorities.

4.2.5.2. Case 2: remote access model

In the second model, the communication primitives are
remote-memory reading or writing, i.e. RDMA. The application
defines windows (RDMA windows) in advance, the identifiers of
which it gives to the other nodes. These nodes can then read and write
remotely in the memory areas described by these windows. Here too,
the more hardware resources and evolved functionalities offered by the
card, the more the protocol can be offloaded there, and the more the
overlap in the host will be improved.

In the message-passing model, two nodes are involved to establish
the communication: data transfer is cooperative. Both nodes must
submit a request and each is notified of its termination, see Figure 4.3;
it is a two-sided communication. No change in the receiving process’s
address space is possible without its explicit participation. On the
other hand, during an RDMA the target application has nothing to do
(apart from creating the RDMA window in advance). It is therefore not
notified of the termination of the communication; see Figure 4.4; it is a
one-sided communication.



98 Computing Networks

Figure 4.4. Time diagram of a remote-memory read by RDMA. The
application on the target node creates an RDMA window while the initiator

posts a request (RDMAReq). Network interface cards (NIC) process this
communication (Comm) in the background while the applications continue

their computations. The initiating application later tests the request’s
termination (RDMAEvent)

It must be noted that the notion of rendezvous does not exist for
RDMA because the target node is not involved and has necessarily
prepared the window in advance. One-sided communications therefore
decouple the data transfers and the synchronization operations. These
characteristics are summed up in Table 4.1.

Type of Class Initiator Target Rendezvous Data

communication operation

Message-passing Two-sided Send Recv Possible to target

RDMA Put One-sided Put No to target

RDMA Get One-sided Get No to initiator

Table 4.1. Summary of the characteristics of data transfer by message-passing
or RDMA. Notification of an operation is only sent to the node that submits it

Whereas it is quite easy to set up remote memory accesses
on a message-passing-type programming interface, the contrary, i.e.
integrating a message-passing interface on a remote-memory access
mechanism, can be difficult. Indeed, the absence of notification on



Latency in Computing Clusters 99

the target node forces polling to be used, which consumes processing
time, particularly if it is necessary to wait for different messages being
sent from different sources simultaneously. Furthermore, as several
messages can be placed in the same RDMA window without the target
application needing to reset this window, the different senders must be
synchronized or use independent target windows. The popularity of MPI
has forced extensive work so that it can be efficiently implemented on
RDMA-based programming interfaces.

4.3. Description of the main high-performance networks

Here we present the main network technologies that have dominated
the domain of computer clusters for about 15 years. We will follow them
in chronological order and present Scalable Coherent Interface (SCI)
first, then Myricom and Quadrics, before ending with the InfiniBand
standard, which is much more recent.

4.3.1. Dolphins SCI

The SCI [GUS 92] technology was introduced at the beginning of
the 1990s by Dolphin1.

Its aim is to provide a very-low-latency, shared-memory mechanism.
To do this, the interface cards develop a bridge between the memory bus
of a machine and those of the remote nodes over the network.

The SCI network can be used by the SISCI (Software Interface
for SCI) programming interface. It offers two main methods of
communication by remote memory access. The first one consists of
projecting remote memory segments in the local virtual memory (shared
memory). Access to this projected memory produces rerouting through
the interface card in a way that is transparent to the application. This
enables a distributed shared memory to be very easily set up. The

1. Dolphin Interconnect Solutions, www.dolphinics.com.



100 Computing Networks

second method consists of explicitly requesting remote memory access
by primitives of the RDMA type.

These innovations have enabled SCI to be used in many works in the
field of clusters. Recent models offer remote-memory-access latency of
1.4 μs, while bandwidth theoretically reaches 340 MB/s. Despite these
positive factors, this technology does have certain limits:

– First, the network topology is a two-dimensional or
three-dimensional ring or torus. The bandwidth sharing implied
by this limits the actual throughput experienced by the applications. It
also limits the possibility to increase the scale to large clusters.

– Second, communication processing is predominantly carried out
by the host’s processor, which considerably reduces the capacity for
communication overlap.

– Finally, the shared memory-oriented programming model makes it
difficult for the model to be used in large parallel applications because
the message-passing model is very different. In fact, the implementation
of the MPI interface on top of SISCI causes the latency experienced by
the application to jump from about 1.5 to 4.5 μs. In addition to this, the
amount of memory that can be projected into the remote memory is very
limited. This makes it difficult for the shared memory-oriented model to
be used on real applications, where resource needs are often great.

These different limits have led SCI technology to gradually disappear
from the high-performance-computing market.

4.3.2. Myricom Myrinet and Myri-10G

Myricom2 has long been the market leader in interconnection
networks for computing clusters. The Myrinet network [BOD 95]
appeared in 1995 and was involved very early on in the development of
the specificities of fast networks, which we have listed in the previous
section. Its main characteristics are that it is a technology designed

2. Myricom, Inc., www.myri.com.



Latency in Computing Clusters 101

to meet the needs of the MPI interface and high-performance and
easy-to-program cards.

Myrinet technology has quickly become known for its excellent
ability to scale to large clusters, thanks in part to its software drivers
being designed for this context and in part to its network topology.
Myrinet networks are organized in clos networks using switches that
can assemble up to 512 links. The protocol uses source routing, which
enables fast packet-transfer on the physical network, while reliability is
ensured by checksum verification in the hardware. These characteristics
have, for example, allowed the establishment of the MareNostrum
cluster composed of 2,560 nodes in Barcelona. Supercomputing The
flexible and programmable technology still remains a favored ground
for experiments on routing strategies in clusters [GEO 08].

The interface cards embed a reduced instruction set computer
(RISC) processor, the LANai, the latest versions of which run at more
than 300 MHz. It has its own very fast (accessible in a few cycles)
static RAM memory (generally 2 MB) and a powerful direct memory
access engine. The open specifications of this hardware, the power
of LANai and these cards’ ease of reprogramming have led many to
academic works on network protocols being carried out on Myrinet.
Examples of such network protocol works include, for example, in
Virtual Memory-Mapped Communication (VMMC) [DUB 97] and
FastMessages (FM) [LAU 98].

Among the most interesting works, we must mention Basic Interface
for Parallelism or BIP [PRY 97], which was developed in Lyon, France,
and has long been the reference for the effective use of Myrinet
networks. Its independent optimizations of small (using PIO and OS
bypass) and large messages (using direct memory access and zero-copy)
very early on has enabled a record latency of 3 μs to be reached and
96% of the links’ capacity to be used. Use of the central processor is
very low, which has enabled a very good overlap of communication by
computing.



102 Computing Networks

The official driver for Myrinet networks has long been GM (Group
Message). Its interface is message-passing oriented. It is more robust
than the academic software BIP but has inferior performance. Latency
barely reaches 6 μs on the most high-performance machines, at the
price of rather significant processor consumption. The bandwidth
observed with GM is good but this forces the application to explicitly
record the memory areas involved in the communications. Furthermore,
notification methods are very limited. Waiting for the termination of a
particular request is impossible. This necessitates the use of a thread
receiving network events in a single queue and the thread concerned to
be woken up by the event received.

The average performances of GM, particularly compared to BIP, has
led Myricom to develop a new driver called MX (Myrinet Express). The
primary objective of MX is to provide performances similar to BIP with
the robustness of GM and a more flexible programming interface. With
most of the applications running on clusters with MPI applications,
MX actually offers an interface that is very similar to MPI3, based
on the submission of non-blocking requests. Send and receive requests
are associated by a flexible method of comparison of their parameters
(matching). These advantages have led to its very fast deployment on
most modern Myrinet clusters. Its latency today approaches 2 μs, while
it easily saturates the physical links.

The third generation of Myricom hardware, Myri-10G, appeared in
2005. It enables MX to reach 10 Gbit/s by keeping the same latency.
MX is now capable of supporting several links per card or aggregating
several cards from the same machine. For example, it allows Tokyo’s
T2K Open Supercomputer reach 40 Gbit/s.

Besides this, Myricom has introduced convergence between
fast cluster networks and traditional Ethernet networks. Like most
fast-network software stacks, GM and MX have long offered the

3. Myrinet Express (MX): is a high-performance, low-level, message-passing interface
for Myrinet. For further details, see www.myri.com/scs/MX/doc/mx.pdf.



Latency in Computing Clusters 103

encapsulation of traditional TCP/IP traffic in Myrinet packets in order
to allow traditional applications to benefit to some extent from the
fast network. This advantage of Myrinet technologies is that they
have enabled us to physically connect Ethernet and Myrinet networks,
ensuring, at the switch level, the translation of Ethernet packets
encapsulated in GM or MX into native Ethernet frames.

This convergence reached its apex with Myri-10G cards, since
Myrinet 10 G’s physical cables are now the same as that of
10 G Ethernet. Myri-10G cards are therefore capable of speaking
native MX or Ethernet, depending on the driver used by the
OS. Only the packet-routing headers are different. This has
naturally enabled the development of an MX solution transported
on a traditional Ethernet network (MX-over-Ethernet or MXoE).
With high-performance Ethernet switches (low latency between
ports and high-performance flow control), this solution enables
the implementation of high-performance message passing on small
Ethernet networks as well as on native Myricom networks.

Next, the addition of translation functionalities between MX
and Ethernet routing headers in switches allowed the creation of
a transparent network mixing Ethernet and Myri-10G hosts as
well as traditional MX and TCP/IP protocols. This, for example,
enables specific machines such as BLUEGENE/P to access storage
servers benefiting from MX performances without having to use MX
themselves.

It is now possible to use the MX protocol on non-Myricom standard
hardware, thanks to the software stack OPEN-MX [GOG 08a].

Traditional TCP/IP protocols can therefore be mixed with the MX
protocol optimized for MPI regardless of whether the machine is
equipped with standard Ethernet or Myri-10G hardware. Thanks to this
concrete convergence, Myricom has succeeded in extending its market
to that of standard Ethernet hardware in the world of storage and servers.



104 Computing Networks

4.3.3. Quadrics QsNet

Quadrics4 QsNet networks have long considered the Rolls Royce of
fast networks, with exorbitant prices but unparalleled performance of
close to 1 μs of latency and 900 MB/s of bandwidth. To achieve this,
QsNet technology relies on very high-performance hardware and a few
interesting software innovations.

The network is composed of switches forming a clos topology.
The interface cards (called ELAN) are also very powerful and feature
advanced functionalities. Unlike Myrinet, however, little research has
been carried out on this material, mainly because its specifications are
not open.

One of the particularities of ELAN cards is that they have
an embedded Memory Management Unit (MMU), like machine
processors. This circuit is capable of translating the virtual addresses
passed by the application into physical addresses. It is a significant
advantage where competitors must emulate MMU software to carry
out this translation. This technological innovation is assisted by a
modification in the OS that keeps the card’s MMU constantly updated
with the host’s MMU. Therefore, zero-copy communications become
very easy. It is through such innovations, along with the power of the
hardware, that have enabled a very low latency and very high bandwidth
to be achieved [PET 03].

QsNet networks are driven by the Elanlib programming interface,
which is of the remote-memory-access type. To address applications of
the MPI type, Quadrics has also supplied a dedicated interface called
TPORTS (tagged message ports).

Quadrics had announced its intention to move towards convergence
between Ethernet and fast networks, especially with “QsTenG” Ethernet
switches, which were also expected to be capable of communicating
with the future QsNet3 interfaces. However, with the former QsNet2

4. Quadrics, www.quadrics.com



Latency in Computing Clusters 105

technology being largely surpassed by Myri-10G or InfiniBand, and
a large delay having been accumulated during QsNet3’s development,
Quadrics had to shut down in mid-2009.

4.3.4. InfiniBand

InfiniBand is a standard created at the end of the 1990s by a
consortium of computer hardware manufacturers in order to define
the architecture of future I/O operations. The initial idea was to
define a standard input-output bus to replace the PCI bus as well
storage and network5 access systems. Finally, after some manufacturers
dropped out – including Intel who announced that it had created
PCI Express to replace the PCI bus – research was re-focused on
high-performance networks [PFI 01]. This research has mainly been
related to communications in computing clusters, but has also covered
access storage devices, particularly Fiber Channel.

The processors of InfiniBand interface cards are now usually
produced by Mellanox. The very attractive standard led to re-purchasing
of most of the initial start-ups by large companies, which has led the
current market to be dominated by Mellanox, Voltaire, Qlogic and
Cisco.

The standard’s specifications detail both hardware and software
implementation. Each retailer can distribute its own software
network-access software layers that more or less respect the norm.

The OpenIB6 project has offered a free alternative to those produced
by various proprietary software distributors. It is now distributed by
the OpenFabrics7 alliance, which became the official support body for
InfiniBand networks and the technologies revolving around it, such as
iWarp.

5. Details of the architecture specifications for InfiniBand Trade Association can be
found at www.infinibandta.org.
6. OpenIB Alliance, www.openib.org.
7. Open Fabrics Alliance, www.openfabrics.org.



106 Computing Networks

The design of the InfiniBand network is actually looking
increasingly like a high-performance Ethernet network rather than a
network that is fundamentally designed for computing clusters. It is
intrinsically incompatible with Ethernet, which limits its adoption in
markets outside scientific computing. Its low-level protocol is, however,
similar to Ethernet. The topology is not fixed and routing is carried out
in switches. The network can therefore be organized in a clos network
or in simpler topologies, depending on the needs.

The main interface is the Verbs Application Programming
Interface (VAPI) which resembles VIA (Virtual Interface Architecture).
Low-level communications benefit from the hardware’s RDMA
capacities to get very good performance. Parallel applications continue
to use MPI on InfiniBand, either through the OpenMPI project
[GAB 04] that is backed by many manufacturers and supports a wide
range of hardware, or by the specific implementation of MVAPICH8

within which a great deal of experimental research on InfiniBand is
carried out.

The theoretical bandwidth is currently 1.6 GB/s using interface cards
with two InfiniBand 4× double data rate9 links. Despite this, the
limits of the I/O buses of the machines still make such performances
difficult to achieve. The generalization of PCI Express should solve this
problem, but the announcement of Quad Data Rate cards should re-open
the gap between theoretical and observed performance.

The latency obtained on InfiniBand, which is between 5 and 10 μs,
has long been a big problem for the generalization of the standard
because other high-performance networks have easily reduced their
latency to less than 3 μs. In practice, the implementation is entirely
based on RDMA, which poses scalability problems, but has also
strongly impacted latency. The standard and implementation have

8. MVAPICH stands for MPI for InfiniBand over VAPI Layer and is based in the
Network-Based Computing Lab at the Ohio State University. Details about the VAPI
Layer can be found at nowlab.cse.ohio-state.edu/projects/mpi-iba/.
9. 4 × 250 MB/s ××2 (double data rate) ×× 0.8 (encoding 8/10) = 1.6 GB/s.



Latency in Computing Clusters 107

recently been reviewed to fix this problem. The use of PIO instead of
RDMA for small messages now enables Mellanox’s Connectx cards to
approach 1 μs of latency.

The scalability problem was due in part to the high memory
consumption of connections and in part to the necessity to poll a
specific resource at each connection when a message is expected on a
specific connection. Indeed, as for SISCI, the absence of notification
on the RDMA’s target machine forces it to use polling. In addition
to consuming processing time, this strategy is not scalable when the
number of messages or nodes increases. The recent introduction of the
Shared Receive Queue (SRQ) concept has enabled the factorization
of these needs and therefore the reduction of their cost in very large
clusters. This is, in fact, a disguised dropping of the all-RDMA concept
(which was originally InfiniBand’s slogan) to give way to a strategy
similar to message-passing, which has made the Myrinet and QsNet
networks successful in the past.

4.3.5. Synthesis of the characteristics of high-performance networks

Table 4.2 summarizes the main characteristics of the different
high-performance networks used in computing clusters. Cluster
networks obtain higher performances than Ethernet by using dedicated
programming interfaces and advanced functionalities in the card.

To this day, the InfiniBand technology has a significant lead in
terms of performance, achieving close to 3 GB/s in bandwidth and
1 μs in latency. This is reflected by the use of InfiniBand in 30%
of the biggest computers (Top500 [SIT 09], classification of the most
powerful machines in the world). In addition to its opening the
traditional Ethernet technologies market, Myri-10G is the technology
that is best equipped to challenge InfiniBand. This is thanks, in
particular, to a model that is perfectly adapted to message-passing,
where InfiniBand continues to suffer from its RDMA model. The
difference in performance is such, however, that applications that prefer
Myricom technologies are increasingly rare.



108 Computing Networks

Technology Ethernet10G SCI Myri-10G QsNet InfiniBand
(protocol) (IP) (SISCI) (MX) (Elanlib) (Verbs)

Interface Socket RDMA messages RDMA RDMA

+ notification + SRQ

Zero-copy no no except small except small except small

messages messages messages

Registration no yes yes no if system Yes

modified

CPU use large large low low low

(copy) (PIO copy) (DMA) (DMA) (DMA)

Topology Variable ring or Clos Clos Clos or

torus variable

Theoretical � 1, 250 340 1, 250 900 1, 500

bandwidth (MB/s) +1, 250 shared +1, 250 +900 +1, 500

Latency � 15–50 1–3 2–3 1–2 1–5

(μs)

Ethernet and Yes No Yes Soon? No

IP compatibility Yes No Yes Yes Yes

Table 4.2. Comparison of high-performance networks in terms of
programming interface, zero-copy communications, need to prepare
memory-areas involved (registering), use of the central processor to

process communications, topology, raw performances, and
compatibility with IP and Ethernet

4.4. Convergence between fast and traditional networks

The hegemony of fast networks in the domain of computing clusters
is increasingly contested. In the past 12 years, clusters have emerged
that use traditional networks – Fast Ethernet, Gigabit Ethernet and
more recently 10-Gigabit Ethernet – and occupy more than half of the
Top500. This is partly due to the transfer of technological advances from
the fast networks to the regular ones. Indeed, innovations such as DMA,
which used to be the brand image of Myrinet and the like, are now used
by every Ethernet card to reduce the central processor’s load.

A great deal of research has been carried out to improve
the performance of protocol layers with help from the hardware.
Programmable cards have been proposed, as well as advanced



Latency in Computing Clusters 109

functionalities such as TCP Offload Engine (TOE), which relieves the
host from network management. However, these complex technologies
were not easily adopted. Now, the cards are used for simpler operations
that do not need to be synchronized with the host (stateless offload).
This is the case of transmit segmentation offload (TSO) and large
receive offload (LRO), which considerably reduce the number of
packets needed to be processed in the host by using the card to cut them
up into Ethernet frames and then re-assemble them. These strategies
mean that now 10G-Ethernet cards are prevented from saturating the
central processor of the machine, without the necessity for intrusive
modification of the software layers.

Even if the performance for throughput and processor consumption
is very good, however, they remain quite a long way from fast networks,
especially in terms of latency. As is often the case, the TCP/IP software
stack, with its interface ill-adapted to parallel applications, is considered
responsible. Many works are emerging with the aim of implementing a
software stack based on Ethernet adapted to computing clusters.

In fact, Ethernet is increasingly appearing to be an interesting
transport layer for local networks and clusters. The AOE10 protocol
was a precursor in the domain. It offered storage sharing directly over
the Ethernet. Today, the popularization of FCOE11 has confirmed this
tendency. Beyond storage, the question of MPI-like communications
over Ethernet is posed.

Research started about 15 years ago on efficient Ethernet
exploitation for MPI communications. For example, the GAMMA
project [CIA 00] suggested modifying Ethernet drivers. Latency can
reach 6 μs, which is very interesting, taking into consideration the price
of the hardware used. The necessity to modify drivers at the expense
of traditional TCP/IP communication, however, severely hinders the
expansion of this idea.

10. ATA-over-Ethernet, www.coraid.com.
11. Fiber Channel over Ethernet, www.fcoe.com.



110 Computing Networks

A more standardized approach was proposed with iWarp, which
has now been integrated with OpenIB by the Open Fabrics
Alliance. iWarp suggested an RDMA-type interface over Ethernet,
similar to the interface based on the fast network technologies that
InfiniBand proposes. iWarp was designed for advanced Ethernet
cards (RDMA-enabled NIC), which are capable of processing remote
memory access in Internet protocol-type connections. This enables
memory copies to be suppressed, thus avoiding the cost of the usual
TCP/IP protocol layers.

This model allows interesting performances [RAS 07], but they are
limited to these special Ethernet cards. The hardware being rather
uncommon and expensive, it is hard to justify choosing it over a
fast network with better performance. In the case of long-distance
communication where fast networks cannot be used, however, the iWarp
idea is somewhat interesting.

The convergence between Ethernet and Myrinet networks (see
section 4.3.2) proposed by Myricom already allows the execution of
MPI applications with a very low latency (2 μs) and a high speed on
a standard 10 Gbit/s Ethernet network. It requires Myri-10G interface
cards to function in native MX mode and not just any standard Ethernet
interface, which limits its dissemination and that of iWarp. Works
on OPEN-MX crossed this gap by offering software implementation
of MX on any Ethernet hardware interface. By combining this
implementation with the advanced functionalities of modern I/O
controllers, such as the offloading of memory copies12, it is possible to
get very good performance [GOG 08b] without making modified cards
mandatory, in the way that iWarp does.

It therefore appears to be increasingly clear that Ethernet networks
will be part of the future of scientific computing and parallel
applications. Many works have been proposed in order to improve

12. Intel I/O Acceleration Technology, http://www.intel.com/network/connectivity/
vtc_ioat.htm.



Latency in Computing Clusters 111

performance and integrate them with fast networks. The form this
convergence will take remains to be seen.

4.5. Conclusion

Table 4.3 presents a summary of the principles mentioned in this
chapter.

Principle Type Other context of exploitation

Zero-copy communications software Yes

OS bypass software Multimedia applications-ALF

Interrupt management software 1 or 10 Gbit/s high speed Ethernet

Offload of processing to the card (NIC) software 1 or 10 Gbit/s high speed Ethernet

Increase of network reliability hardware Wide-area optical networks

Source routing software, hardware ?

Table 4.3. Summary of the principles implemented in high-performance
cluster networks to reduce latency



Chapter 5

The Challenge of Throughput and Distance

5.1. Obstacles to high rate

In Chapter 1, we saw that the grid paradigm had been introduced to
respond to significant needs in terms of computing, as well as in terms
of processing and storage of large quantities of information, such as in
CERN’s Large Hadron Collider Computing Grid1 project.

Beyond this symbolic example, other domains have identified
the grid as the ideal tool for processing their very large databases.
In the medical domain, the grid paradigm is explored for very
large-scale applications, such as epidemiology, statistical analysis of
large populations, medical simulation or research on rare diseases.
For example, the annual image production of a radiology department
exceeds 10 terabytes. Similarly, in the domain of genomics, the flood of
biological data produced by very large-scale experiments will be one of
the greatest challenges of the next few years. These applications need
to transfer significant amounts of data, not only from their acquisition
point to computing centers for processing, but also to move them

1. http://lcg.web.cern.ch/LCG/.

113



114 Computing Networks

between the storage spaces, store them and make them available to large
and very wide-spread communities.

In [SAN 05], the need for high throughput to carry out these massive
data transfers was identified as the main challenge for grid networks.
In this document, the OGF (Open Grid Forum) alerts grid users about
the limits of the common protocols and their software. It shows, in
particular, the difficulties related to the use of the Transport Control
Protocol or TCP in grid contexts. As for [VIC 05b], it summarizes the
variations of TCP that are proposed for very high-speed networks.

In this chapter, we analyze this specific issue and detail the
principles, mechanisms and alternatives used today by programmers
and users of intensive, distributed computing and storage
infrastructures. We note that this problem of high-speed massive
transfers in a long-distance context is shared by content delivery
networks, and that some solutions advocated here can therefore be
adapted to it and vice versa.

Obtaining high throughput in a computing grid is a complex
problem, in part because of the heterogeneous nature of the underlying
network interconnection, and in part due to the intrinsic inadequacy of
the TCP protocol, designed for fair bandwidth sharing and not for the
individual performance of streams. Highlighting its inadequacy to long
distances has increased the amount of research on congestion control
using an anticipation mechanism based on sliding windows, as well
as the amount of high-speed TCP variants. Today it is difficult for
grid-application users or programmers to know which solution to adopt
to benefit the most from their infrastructure.

Below, we list the main obstacles preventing users from obtaining a
high throughput:

– congestion on one of the two end systems (sender or receiver);

– badly-configured protocol;

– inefficient and unadapted protocol;

– blocking operations;

– application programming interface limitations.



The Challenge of Throughput and Distance 115

The main paths possible for getting around them, which are
presented in the rest of this chapter, are:

– adjustment of the configuration parameters;

– use of parallel connections;

– increase in size of the packets transmitted;

– explicit congestion notification;

– protocol modification;

– reuse of the techniques for high-performance cluster networks;

– use of the techniques for overlay networks;

– setup of dedicated optical paths.

In the following sections, these different alternatives are discussed.
They are illustrated in Chapter 10. Prior to this, we review the
characteristics of TCP, which is the most frequently used protocol for
transferring data in a grid. We highlight the design choices, in particular
the congestion-control mechanism, that prevent individual connection
from reaching a high average throughput.

5.2. Operating principle and limits of TCP congestion control

One of TCP’s most important and critical mechanisms is the
congestion-control mechanism defined to ensure fair bandwidth sharing
between all users of a network. This mechanism was introduced
at the end of the 1980s, following persistent anomalies where the
throughput of applications ended up being abnormally reduced. This
phenomenon was caused by an influx of users that was too great for
the network capacities (causing congestion) and by bad handling of the
retransmission of packets lost due to that congestion.

Anticipated by John Nagle [NAG 84] as early as 1984, this type
of anomaly is commonly called congestion collapse. In the years
1986–1988, the effective throughput of the link joining the Lawrence
Berkeley Laboratory (LBL) to the University of California, Berkeley,



116 Computing Networks

although less than 400 m long, regularly went from 32 kbit/s to 40 bit/s,
a throughput reduction by a factor of 1,000.

To counter these performance problems, Van Jacobson of the
LBL, suggested in 1988 [JAC 88] introducing a series of distributed
algorithms in the TCP protocol to be in charge of controlling network
congestion. The main idea was to propose a robust mechanism capable
of quickly and effectively detecting signs of congestion. Since, by
design, an Internet Protocol (IP) network does not give off any explicit
signal indicating the congestion status, the detection of packet loss is
interpreted as a saturation of the capacity of the network equipment
crossed by the TCP connection. Losses are detected based on a timer’s
expiration (RTO (Retransmission Timeout)) calculated using the round
trip time (RTT) or the reception of acknowledgements for duplicated
packets.

The first mechanism introduced consists in forcing every new
connection to gradually increase its throughput according to the Slow
Start algorithm, to prevent its network path from becoming saturated
too quickly.

5.2.1. Slow Start

In this phase, the sending process seeks to estimate the maximum
quantity of packets it can transmit before causing a loss in the network.
The quantity of packets transmissible (called a congestion window) at
a given moment is internally represented by the variable cwnd. Cwnd is
incremented each time a packet acquittal is received:

ACK: cwnd←− cwnd + 1 [5.1]

In spite of its name, it is a rather aggressive phase because the
number of packets sent doubles every RTT. The left part of Figure 5.1
illustrates the evolution of the congestion window’s size during the
Slow Start phase. However, this exponential increase is limited by the



The Challenge of Throughput and Distance 117

Slow Start threshold (ssthreshold), beyond which the evolution of the
congestion window’s size enters the congestion avoidance phase.

In the case of packet-loss before this threshold is crossed, the
congestion window and the ssthreshold are divided by two and the
algorithm moves on to the next phase. A loss too early in the Slow
Start phase can severely penalize a stream because it will start the next
phase much further from the maximum network capacity. It also has
consequences in the long term because the output threshold is reduced.

5.2.2. Congestion avoidance

This phase consists of slowly increasing the size of the congestion
window to try to send as much as possible, and quickly decreasing
the window size in the case of packet-loss, as a conservative measure.
For this, an algorithm called Additive Increase Multiplicative Decrease
(AIMD) is used. Its stability and convergence properties were proven
by Jain in 1989 [CHI 89]:

ACK: cwnd←− cwnd +
α

cwnd
[5.2]

With delayed acknowledgements or accurate byte counting (ABC –
counting the congestion window in bytes rather than in packets), we end
up with a congestion-window increase of 1 per RTT, as illustrated on the
right of Figure 5.1.

In case of packet loss due to the timer’s expiration (RTO), the
algorithm returns to the Slow Start phase.

5.2.3. Fast Retransmit

To avoid false detection of the expiration of a packet’s timer, the
timer value used – the RTO – must be very large compared to the
RTT (typically around four times bigger than the RTT with a minimum
value of 200 ms). The drawback is then that it is necessary to wait for,



118 Computing Networks

Figure 5.1. Evolution of the size of the congestion window in the Slow Start
and congestion avoidance phases

potentially, a very long time before being able to retransmit and send
new packets. This can dramatically reduce the send rate. To overcome
this problem, the mechanism called Fast Retransmit is used if three
duplicate acknowledgements matching the same sequence number are
received. The packet just after this sequence number is then considered
to have been lost and is immediately retransmitted. The TCP variant that
uses this Fast Retransmit mechanism is TCP NewReno.

Loss: cwnd←− cwnd− β ∗ cwnd [5.3]

In Van Jacobson’s proposition, the value of the constants used for the
increment α is 1 and decrement β is 1

2 . Disregarding implementation
subtleties, delayed acknowledgements or ABC, we end up with a
congestion-window increase of 1 per RTT, as illustrated on the right
of Figure 5.1.

In the case of packet loss due to the timer’s expiration (RTO), the
algorithm returns to the Slow Start phase.



The Challenge of Throughput and Distance 119

Figure 5.2 gives an idea of the evolution of the size of the congestion
window over time when these two algorithms are used. W designates
the maximum size of the congestion window that the connection can
achieve.

Later on, many improvements were suggested to improve congestion
control in specific cases (SACK (Selective Acknowledgment) for
detecting multiple losses, for example). For 20 years now, all the
implementations of the TCP stack have been based on these principles.

The current reference version of TCP is called TCPReno (or
NewReno, which optimizes the retransmission mechanism as described
above). In the rest of this chapter, the term TCP refers to TCP NewReno.

Figure 5.2. Evolution of the congestion window for two TCP connections with
an RTT value of t and 2t, respectively

5.2.4. Analytical model

Models were proposed to analyze TCP’s performance depending
on characteristic network parameters. The most well-known is the one
suggested by Padhye in 1998 [PAD 98a], which defines a TCP response
function (the achievable throughput) that depends on the loss rate (p),
the RTT, the value of the RTO timer and the maximum size of TCP
segments (maximum segment size or MSS):

R =
MSS

RTT ∗
√

2p
3 + RTO ∗min(1, 3

√
3p/8) ∗ p(1 + 32p2)

[5.4]



120 Computing Networks

The simplified model proposed by Mathis [MAT 97] is often used:

R =
MSS

RTT
∗ C

pd
[5.5]

It does not take into consideration certain aspects of congestion
control, such as the packet-retransmission mechanism. It has the
advantage of being simple. C, the coefficient of proportionality,
is a constant that integrates aspects related to the implementation
of congestion control (i.e. AIMD constants), acknowledgement
management (i.e. whether sending is delayed or not on the receiver)
or loss distribution in the network (i.e. random losses or losses solely
on congestion). d represents the cost of the protocol’s response in the
face of a given loss rate over throughput.

In the case of TCP, with losses on congestion only and no

delayed-acknowledgement, C is
√

3
2 and d is 1

2 .

This model is compatible with Padhye’s in the case of a low loss rate
(which is often the case in modern wired networks). It is valid when
assuming to be in a permanent regime with data to transmit continuously
(massive data transfers, not short-duration ones) and that the RTT is
constant (absence of congestion and/or state variations of the routers’
waiting queues).

Figure 5.2 also illustrates the impact of the RTT on TCP. Indeed,
the TCP feedback loop is based on the RTT: the progression
of the congestion window is limited by the return time of the
acknowledgements. If the RTT doubles, the congestion window’s
growth speed is divided by two. This is problematic when the RTT is
very high.

5.3. Limits of TCP over long distances

This section presents a few of the limitations of TCP over long
distances.



The Challenge of Throughput and Distance 121

The model presented in section 5.2.4 highlights the impact of the
value of RTT on performance. At constant rate, to compensate for an
RTT multiplied by 10, the loss-rate would need to be divided by 100
to keep the same throughput. Thus, to obtain a continuous 10 Gbit/s
transfer on a link with 100 ms of RTT using 1,500-byte packets, only
one loss every 5E9 packets should occur, at worst, which is difficult to
guarantee even on optical networks.

Table 5.1 [FLO 03] presents the highest possible loss rates
acceptable in order to achieve a given average throughput.

In addition to this, if the buffer memory is not large enough (for
example if the edge router is not correctly dimensioned) the protocol
will only be able to operate at 75% of its capacity, on average. This
is problematic at 10 Gbit/s, because 25% of 10 Gbit/s corresponds to
a very significant throughput loss. Another limit of the protocol is the
fact that it is impossible to distinguish losses due to congestion from
losses due to a bad-quality link, which is typically the case for wireless
networks. The protocol therefore cannot operate optimally when this
type of network is present in the grid interconnection.

TCP throughput Delay between cwnd max p max
(Mbit/s) two losses

1 5.5 8.3 0.02
10 55.5 83.3 0.0002
100 555.5 833.3 0.000002

1,000 5555.5 8333.3 0.00000002
10,000 55555.5 83333.3 0.0000000002

Table 5.1. Delay (in number of RTTs) between two loss events for TCP with
1,500-byte packets and an RTT of 100 ms, maximum size of congestion

window (in number of segments) and loss rates

It is also noteworthy that the receiver can explicitly limit the size of
the sender’s congestion window by using the advertised window field
in the acknowledgements it returns. This option is typically used if the
receiver considers itself to be incapable of processing all the packets at



122 Computing Networks

the speed imposed by the sender (flow-control mechanism). This can be
a major cause of performance loss.

Also worth noting is that TCP is not a good protocol for flows
operating with different RTTs. The flows with the lowest RTTs will be
favored because they are capable of receiving acknowledgements from
their receiver much faster, and therefore they are capable of increasing
the rate they use at greater speed, to the detriment of flows with longer
RTTs.

The format of TCP headers was not designed for such a significant
increase in the order of magnitude of network rates. For this reason,
in the TCP specification the maximum size of the usable window was
initially 64 kB. An option, called window scale was added to allow this
to be multiplied by a power of two. Window sizes going up to 1 GB can
now be used: TCP could therefore theoretically still be functional on
100 Gbit/s links if the RTT is less than 80 ms.

5.4. Configuration of TCP for high speed

The machines connected to the grid often have high-speed interfaces
(typically 1 Gbit/s). As we saw in Chapter 4, different hardware
configuration problems can prevent a high speed being obtained
compared to the theoretical speed of the interface card. In the case of the
massive transfers considered here, exchanges are carried out between
the discs of two remote systems and no longer between two application
processes, as in the case of interprocess communications.

Furthermore, the TCP protocol requires a specific configuration for
the high-speed and long-latency context, to allow the default values of
the operating system to be changed – these are often configured for
the traditional Internet. All this constitutes what is commonly called
the wizard gap [MAT 03] and is a true headache for grid programmers
and users. Indeed, the latter must know their hardware and software
architecture perfectly in order to be able to optimize the system’s
configuration and obtain the desired performances. This is the reason



The Challenge of Throughput and Distance 123

that we detail the main factors of configuration to be considered as well
as the nominal values to choose below.

5.4.1. Hardware configurations

Figure 5.3 is a synthetic presentation of the different steps necessary
for sending data from disk to disk on a network:

(1) data copy from disk to RAM via the PCI (Peripheral Component
Interconnect) bus;

(2) data routing to the processor for processing (splitting up into
packets);

(3) packet copy in RAM in the transmission queue;

(4) packet copy in the card via the PCI bus;

(5) packet routing on the network after waiting in a queue;

(6) packet processing in a router after waiting in a queue.

Figure 5.3. Different bottlenecks in traditional hardware architectures

Receiver-side similar (symmetrical) operations are carried out to
route packets from the network card to the disk. The ellipses indicate
the places where potential hardware bottlenecks exist: input/output on
disks, the PCI bus, the CPU, the RAM and the buffer memory. These
potential bottlenecks are sometimes difficult to locate. The user will



124 Computing Networks

therefore need to use an automatic detection tool, such as the PATHNIF
tool created by the French National Institute for Research in Computer
Science and Control (INRIA).

5.4.2. Software configuration

To succeed in maintaining the maximum speed, it is necessary to
use a buffer (TCP socket buffer) with a size greater than or equal to the
bandwidth-delay product. One of the main problems with this approach
is that it significantly increases latency on the path, which can have
inconveniences for applications that are very latency-sensitive (voice
applications). In the default configuration of many operating systems,
the value is too low to achieve good performances (for example 64 kB
for the GNU/Linux kernel). It is this last parameter that is typically the
source of 95% of TCP configuration problems.

Figure 5.4 suggests the quantity of buffer memory necessary for
emission. By adopting a fluid view of the network, the bandwidth-delay
product (BDP) represents the quantity of data that must be transmitted in
order to completely fill a pipe where the length is delay and the diameter
is bandwidth. This represents the optimal use of the resource when the
path experiences no congestion.

In the first scenario, the size of the congestion window is less than
the BDP. It is necessary, with TCP, to wait until the acknowledgements
matching the data have been received before continuing to transmit, so
moments of silence are observed between two emissions of a packet
group (TCP sends packets in bursts).

In the second scenario, the size of the congestion window is more
than the BDP: a sufficient quantity of packets can be sent for the
acknowledgements unblocking new packet emissions to arrive, at the
latest, when the last packet is sent. If the size of the buffer memory
used by the sender is equal to at least twice the BDP, it is possible to
continually send at maximum speed if there is no congestion. If a packet
is lost, even after dividing the congestion window, it is still possible to
send a number of packets equal to BDP on the link, thereby completely



The Challenge of Throughput and Distance 125

filling it. However, this causes a significant increase in delay because of
the time necessary to cross queues.

 

Figure 5.4. Importance of the relative size of the congestion window and the
bandwidth-delay product

In the GNU/Linux kernel, four parameters are used to define
buffer memory: rmem_max and wmem_max to determine, respectively,
the maximum read and write size (in bytes) available for all open
connections; tcp_rmem and tcp_wmem that are triplets of values (in
bytes) corresponding to the minimum, initial and maximum memory
value that the TCP sockets can occupy during read and write,
respectively. It is therefore necessary to ensure that a minimum value
equal to the BDP can be allocated so that the performance is not
reduced.

Since 2001, a mechanism for the autoconfiguration of the size of the
memory allocated to a TCP socket has been implemented in the kernel.
It consists of increasing the size of the memory allocated to a socket
when its needs increase, i.e. when the size of the congestion window
increases. However, it is still necessary to make sure that the values
provided in the parameters presented above allow a value of at least one
BDP to be reached.



126 Computing Networks

It is noteworthy that if setsockopt() (a function for updating the
parameters of a socket) is called to update the size of TCP buffers, then
the value provided is automatically doubled by the kernel if possible.
The autoconfiguration mechanism is then deactivated.

5.4.3. Parameters of network card drivers

Interrupt Coalescence (IC) is a method that consists of waiting for a
certain number of packets to be received before raising the interrupt that
signals to the kernel that it can extract packets from the network card.
The effect is therefore similar to an aggregation of these interrupts to
limit the number of times the kernel is interrupted to get packets.

NAPI is the new application programming interface used by the
GNU/Linux kernel to process packets, no longer one by one but all
those that are available in a network card at the time the kernel comes
to get packets. It is preferable to activate this functionality when a very
high-speed network is used.

One parameter that should also be correctly positioned is txqueuelen.
It corresponds to the maximum number of packets that can be placed in
the queue before the network card. If this number is too small, in some
cases the card cannot be fed packets quickly enough and performance
decreases. Ten thousand is a good value for a 1 Gbit/s link with 100 ms
of RTT. The point here is that every time the card looks for packets in
the queue, it finds some; this is guaranteed if txqueuelen is of the same
order of magnitude as the maximum size of the congestion window.
This has a greater impact on the sender.

Table 5.2 sums up the parameters that need to be used to obtain an
optimum value.

5.5. Alternative congestion-control approaches to that of standard
TCP

This section presents a few large families of solutions that have
been introduced over the past few years in order to correct TCP’s



The Challenge of Throughput and Distance 127

Name Parametering Ca = 1 Gbit/s Ca = 10 Gbit/s

TCP buffer memory > Ca ∗ RTT 11.9 MB 119 MB
txqueuelen > W 10,000 100,000

ndev_max_bklg ndev_max_bklg∗ 350 3,500
HZ ∗ s̄ > Ca

Table 5.2. Summary table of software parameters for TCP and examples for
300 HZ and RTT = 100 ms

performance problem. It should be noted that the problematic point is
TCP’s congestion control, which is not reactive enough in the context
of long latencies. The other properties of TCP, such as reliable transport
or fair bandwidth sharing, are more than desired and should become
essential. These properties should be part of a solution that, in the long
run, will replace TCP in any context.

5.5.1. Use of parallel flows

The first approach adopted by grid users to solve TCP’s performance
problems was to implement massive data transfers by multiplexing
several parallel connections. The idea, as shown in Figure 5.5, is to
interleave the different sawtooth waves of several TCP flows in order
to maximize the quantity of data sent, and therefore the throughput.

Figure 5.5. Interleaving of several parallel flows



128 Computing Networks

In [ALT 06], Altman showed that it was possible to tend towards a
theoretical throughput limit by increasing the number of parallel flows
used. In practice, when reaching a certain number of flows, performance
drops because of the software cost of using several processes and due to
the limited space in the routers’ buffers:

x̄(N) = C ∗
(

1− 1

1 + 1+β
1−β ∗N

)
[5.6]

In practice, this technique turns out to be relatively efficient and
is very often adopted, directly in grid applications or via adapted
file-transfer services. It is notably the technique used by the GridFTP
software [ALL 03], from Globus middleware. GridFTP, defined as an
extension of FTP that enables the use of parallel flows to carry out file
transfers, was standardized by the OGF. The file to transfer is divided
into several chunks whose emission is shared over several different
flows, whether from several machines or a single one. It is up to the users
to indicate the number of parallel flows they wish to use by providing a
minimum and a maximum value; they must do the same for the buffer
memory’s size; which must be explicitly specified.

The biggest problem with this approach is succeeding to determine
the ideal number of parallel flows required in order to get an optimum
result, while trying to limit the impact on the other communications that
find themselves faced with a traffic that is n times more aggressive than
a normal TCP flow.

The well-known advantage of stream parallelization is that it
compensates for performance problems without solving them, whether
they are due to the hardware of end systems or to the configuration or
type of protocol used. This approach is compatible with all the other
improvements and alternatives presented below and can therefore be
combined with them. The approach of transfer by stream parallelization
was also used in “peer-to-peer” networks, and in particular in the
BitTorrent software. Furthermore, it must be noted that this approach
does not respect the principle of fair bandwidth sharing and must



The Challenge of Throughput and Distance 129

therefore be adopted cautiously in the Internet, and preferably only in
dedicated networks.

5.5.2. TCP modification

The analysis in section 5.5.1 showed that in the case of long
distances, TCP requires modifications to reduce the long latency of the
feedback loop. The protocol has therefore been improved on several
points.

5.5.2.1. Slow Start modifications

In theory and according to Padhye’s formula, to achieve a window
size W (typically BDP or 2 * BDP) at the end of the Slow Start phase,
it is necessary to wait log2W ∗ RTT seconds. This phase can be very
long if the RTT is significant, for example in the order of 100 ms, as
is the case in a transfer between Europe and America. To solve this
problem, different solutions were proposed. Some consider an even
faster growth in the size of the congestion window (Limited Slow-Start,
Fast Start [PAD 98b]), or even completely short-circuiting the Slow
Start phase or try to get indications from intermediate equipment to
quickly determine at what rate to start sending (Quick-Start [SAR 06]).

Slow Start’s acceleration is important when the transfer ends before
the Slow Start phase does. Its interest is more limited for massive
data transfers in which Slow Start only represents a low percentage
of the total transfer time. In the case of a transfer of 1 gigabyte on a
network with a 1 Gbit/s rate and 100 ms RTT, the BDP is equal to about
12 MB. During the Slow Start phase, about 2W packets will be sent,
which corresponds to a little more than 2% of the total transfer. This
is negligible compared to the rest of the transfer. It is assumed that the
only time Slow Start is used is in a massive data transfer.

It must be noted, however, that when an application stops
communicating, even for a few fractions of a second, the connection
returns into Slow Start mode. In the case of sporadic transfers of very
large Message-Passing Interface messages, it is thus possible to end up



130 Computing Networks

in such a situation of frequent Slow Starts. In these applications, Slow
Start modifications often turn out to be very useful.

5.5.2.2. Methods of congestion detection

5.5.2.2.1. Loss

The most traditional method for detecting congestion is detection by
loss. Congestion is considered to exist from the moment it is noticed that
a packet has been lost (explicit loss notification, timer expiry on waiting
for acknowledgement, reception of duplicated acknowledgements, etc.).

It is used in TCP as well as in the majority of its variants for
large-BDP networks such as, for example, HighSpeed-TCP [FLO 03],
Hamilton-TCP [SHO 04] or CUBIC [RHE 05].

5.5.2.2.2. Delay

Another congestion indicator is the increase in the size of queues in
the network. This is generally done by tracking the evolution of delay
in the network. Congestion is detected when the delay exceeds a certain
threshold relative to the delay expected on the network path.

TCP-Vegas [BRA 94] and FAST-TCP [WEI 06] are examples of
TCP variants that use this method. Their implementations are rather
unpopular because delay measurement lacks accuracy and cannot
guarantee sufficient system stability.

5.5.2.2.3. Hybrid

A third category of congestion detection is a combination of the
two previous ones. Generally, one of the types of indicators (typically
detection by losses) serves as a primary congestion detector and its
effect is moderated or accentuated by the other method (typically
detection by delay).

TCP-Illinois [LIU 06] and TCP Compound [TAN 06] are examples
of TCP variants using this model.



The Challenge of Throughput and Distance 131

5.5.2.2.4. Assistance of network equipment

One last large category is that of TCP variations that use information
provided by intermediate equipment (where losses due to congestion
are known or are expected to occur). This is generally done by using
one or several bit(s) from TCP headers to feed information back to
the sender. It is used by many variations such as ECN [RAM 99] and
XCP [KAT 02]. The main problem with this category is that it requires
the use of specific hardware in routers, which poses a very significant
deployment problem in a system on the scale of the Internet.

5.5.2.3. Bandwidth-control methods

5.5.2.3.1. Control by window size

This method is the one that is traditionally used by TCP. It consists of
making packet sending dependent upon the existence of credits, created
by a congestion window, that are consumed and regenerated2 as packets
are sent and acknowledgements received.

It is more difficult to foresee the throughput of a source from its
congestion window when there are queues. This control mechanism
contributes to the appearance of traffic bursts in the network because,
except for the intervention of a packet-spacing mechanism, packets
will be sent at the time when credits are renewed, i.e. upon
acknowledgement reception.

5.5.2.3.2. Control by rate

This method consists of sending only a limited quantity of data
during a given time interval. The rate at which a source is allowed to
send is thus fixed. An additional mechanism can be added to make what
can be sent vary over time in order to dynamically adapt to the evolution
of network parameters.

One of the examples is TFRC [FLO 00] for TCP Friendly Rate
Control. It uses the rate equation proposed by Padhye [PAD 98a] and

2. Even increased in algorithms used by TCP, see section 5.2.



132 Computing Networks

an estimator of loss rates for determining the rate at which to send. It
was designed to offer an equitable bandwidth when it occurs with TCP
flows, but still maintains a bandwidth that is much less variable than
with TCP. As a consequence, it is much less reactive to abrupt changes
in bandwidth. This is also the case for the User Datagram Protocol
(UDP) or DCCP (Datagram Congestion Control Protocol).

5.5.3. UDP-based approaches

Using another transport protocol can also be a solution to the
problem of latency. UDP [POS 80] is a very simple transport protocol
thatprovides only packet-sending and segment-integrity-control
services. It is traditionally used in all applications for which TCP’s
retransmission on loss can strongly deteriorate performances. (In other
words, it can be used for applications that rely heavily on inter-packet
latency, such as voice-over-IP, video-on-demand, etc.).

These approaches nevertheless can necessitate the implementation
of a reliability mechanism at the application level since UDP does not
provide this service. It is therefore up to the application to control
the sending rate in order to prevent the network from becoming too
congested, thus reducing performance for all users. If the situation is
favorable, for example a private link with few losses little concurrent
traffic, UDP-based approaches enable continuous sending at a given rate
and enable us to do without TCP’s congestion-avoidance mechanism.

UDT (UDP-based Data Transfer) [GU 07] is an example of
such a UDP-based variation. It is placed at the application level
to manage a reliable end-to-end connection by using UDP as a
transport protocol. It uses an explicit mechanism of acknowledgements
and non-acknowledgements in order to manage reliability and
retransmissions.

This protocol was developed to also enable a high modularity of
the congestion control used at the application level. Therefore UDT is
capable of emulating the behavior of any congestion-control method in
order to adapt to the context of concurrent flows on the network.



The Challenge of Throughput and Distance 133

Finally, even though UDP was developed for controlled
environments where few flows occur at the same time, it is also
possible to use it in a shared-network context such as the Internet
because congestion control is supposed to be sufficiently adaptive to
attenuate UDP’s aggressiveness on the network.

5.6. Exploration of TCP variants for very high rate

Since the beginning of the 2000s, several research teams have
endeavored to propose a TCP variant that is better adapted to high
bandwidth-delay products. Table 5.3 gives a few examples of values
used by some TCP variations for the AIMD parameters. The idea is
of course to propose values giving the best possible function. The
whole difficulty resides in the fact that the solution must preserve
fair bandwidth sharing and not be too aggressive towards other flows,
regardless of the transport protocol used.

TCP variant α β

TCP Reno 1
1

2

BIC-TCP 1 or bin.search
1

8

CUBIC cub(cwnd, history)
1

5

HighSpeed TCP inc(cwnd) decr(cwnd)

Hamilton TCP f(lastloss) 1 − RTTmin

RTTmax

Scalable TCP 0.01 ∗ cwnd
1

8

Table 5.3. Values of AIMD constants used by some TCP variations for
large bandwidth-delay networks

We present these variations in chronological order of appearance.

5.6.1. HighSpeed TCP

Proposed by Sally Floyd in 2003, HighSpeed TCP aimed to solve
the issue of TCP requiring a long time to recover from a loss



134 Computing Networks

event. HighSpeed TCP modifies α and β values by replacing them,
respectively, with an increasing function and a decreasing function
of the actual size of the congestion window. HighSpeed is therefore
capable of adapting and being more aggressive as the link’s rate
increases.

This function is only activated when the window’s size starts
exceeding a certain number of packets (38).

5.6.2. Scalable

In 2003, Tom Kelly proposed Scalable-TCP, a TCP variant for
networks with a very high bandwidth-delay product. It consists of
constantly increasing the size of the congestion window without taking
into consideration the actual value and decrementing less (1

8 instead of
1
2 ). Therefore, at constant RTT, Scalable manages to have a constant
time between a loss and a return to the value before the loss, regardless
of the link’s rate (hence its name).

This function is only activated when the window’s size starts
exceeding a certain number of packets (16).

5.6.3. BIC-TCP

BIC-TCP [XU 04] is a TCP variant introduced in 2004 by Injong
Rhee. It is designed for networks with a high bandwidth-delay product.
As its full name (Binary Increase congestion Control) indicates that
during the congestion avoidance phase it adds a mechanism of binary
search for the optimum operating point by using two bounds, Wmin and
Wmax, that correspond to the last value of the congestion window for
which sending did not cause packet loss and to the one corresponding
to the last packet loss, respectively. If the upper boundary ends up being
exceeded (thus indicating that it is not the maximum), the protocol
returns to a phase of faster incrementation of the congestion window
(called Max Probing) in order to find a more adequate Wmax value.



The Challenge of Throughput and Distance 135

5.6.4. H-TCP

Doug Leith proposed H-TCP in 2004 to try to solve a certain
number of problems encountered by HighSpeed TCP and BIC-TCP.
The main problem was that these protocols become more aggressive as
their congestion window grows, which is a disadvantage for new flows
arriving in the system. He suggested solving this by using a function that
uses the date of the last loss to modify the increase of the congestion
window’s size. To reduce the window size in case of loss, it uses the
current RTT measurement to modulate the β parameter. Therefore, in a
situation where the network’s queues are completely saturated (thereby
increasing the delay measured), the window will be reduced that much
more in order to try to return to a more stable situation.

5.6.5. CUBIC

Proposed in 2005 by Injong Rhee, CUBIC [RHE 05] builds upon
some of the ideas used in BIC regarding the way it increases the
congestion window’s size. It does this according to a cubic function
– hence its name. A history (based on the date of the last loss) is used
to regularly update the size of the congestion window (in a way that is
unrelated to the value of RTT). Strictly speaking, CUBIC does not use
AIMD.

This TCP variant automatically goes into TCP NewReno mode if the
protocol detects that it is in conditions of low bandwidth-delay product.

Table 5.4 gives the parameters of the response function of the TCP
variants presented. Figure 5.6 gives the corresponding graphs.

For some variants, like CUBIC, it is not easy to apply this simple
model because it was designed to behave as fairly as TCP when the
BDP or RTT are low, and more aggressively when it is in the conditions
of a network with a high BDP. Some TCP variants use a cutting value
that is fixed in number of packets (for example about 30 for HSTCP) to
move from a TCP-friendly mode to a high-speed mode where it will try
to use the capacities of the network more intensively.



136 Computing Networks

CP variant C d

TCP Reno 1.22 0.5

BIC 15.5 0.5

HighSpeed TCP 0.12 0.835

Hamilton TCP 0.12 0.835

Scalable 0.08 1.0

Table 5.4. Parameters of the response function of some TCP variants,
R = MSS

RTT
∗ C

pd

Figure 5.6. Comparison of the different response functions of some TCP
variants

5.7. Conclusion

Transporting large volumes of information over long distances
requires hardware and software configuration of the sending and
receiving equipment as well as an adapted transport protocol. This
chapter has shown us that obtaining an optimum performance in the
context of flow interaction is a technical problem that remains difficult



The Challenge of Throughput and Distance 137

to solve and often necessitates the use of diagnosis and calibration
tools such as PATHNIF [GUI 09]. The use of parallel flows is a
technique frequently applied by grid users to compensate for the
difficulties of parameterization or the deficiencies of certain hardware
configurations. The user must nevertheless be conscious of the fact
that this approach does not respect the principle of fair bandwidth
sharing, which is one of the critical foundations of the Internet. It is
therefore advisable to use it only in dedicated high-speed networks.
Today high-speed transport protocols having the same fairness and
convergence properties as TCP are available. For the most part,
they are installed in modern operating systems. They help users to
considerably increase performances on the Internet’s links, which have
very high bandwidth-delay products. Chapter 10 gives examples of
TCP configurations and of the system that allow us to obtain adequate
transport performances in a high-performance environment.



Chapter 6

Measuring End-to-End Performances

6.1. Objectives of network measurement and forecast in a grid

End-to-end characterization of the links that connect all the sites
of a distributed system, and of a grid in particular, aims to enable
applications to monitor and improve their performance themselves
when transport services are not optimized for machine-to-machine
computing and communication. When a distributed application is
designed, the designer makes decisions regarding network adaptation
and the choice of communication tools to use. Actually, application
programmers can develop appropriate optimization strategies and
algorithms for both task distribution and communication programming.
If they have raw performance measurements or functions synthesizing
a network’s cost based on these measurements, their decisions will be
that much more efficient.

Programmers now have a greater knowledge of the semantics
of flows and the importance of data movements in the progression
of computing. With these measurements, they can better adapt and
interleave computing phases and communication phases to overcome
the performance problems of the network or its underlying protocols.

139



140 Computing Networks

It must be noted, however, that while this method, based on
adaptation at the application level, is often used in current grids
to compensate for the network’s weaknesses, it requires more work
and expertise from application programmers. It nevertheless remains
complementary to the optimizations and adaptations of the network
protocols presented in the previous chapters. The purpose of these
approaches is to fully exploit the functionalities and specificities of
the communication infrastructure and to make things simpler for the
users. These approaches are incrementally deployed in distributed
environments.

6.1.1. Illustrative example: network performance and data
replication

Data replication is often used in a grid to provide users and
applications with fast and reliable access to data [STO 01]. To this end,
instead of having only one storage space, data grids provide replicated
data warehouses that are distributed, just like users. Data replication has
two main objectives:

– fault tolerance; and

– data-access optimization.

To tolerate file-server faults or copy errors, different data copies are
kept on different and remote sites. The optimization of data-access
performance aims to minimize the time spent by an end user or its
application in reading or writing data on the remote server.

The optimization of replicated-data access covers two aspects:

(1) minimization of response times during data access;

(2) minimization of the time to dynamically create new replicas.

In both cases, the aim is to minimize a response time. In the first
case, the main job of optimization is to find a resource that has a copy
of the data element requested so that information can be recovered at
minimum cost. In the second case, it involves creating new data that are



Measuring End-to-End Performances 141

replicated from existing data, so that the transfer from the source space
to the destination is minimal.

The issue of updates for data synchronization is not taken into
account here: the only interest lies in the minimization of transfer time.
In the remainder of this section, we assume that replication granularity
is at the file level, i.e. the smallest unit of data considered for transfers
is a single file, even if the applications can use remote input-output
libraries or other primitive libraries to locally or remotely access parts
of a file. We also assume that data are partially, rather than completely,
replicated. This means that, at any moment, not all of the files are
present everywhere.

The problem of replication optimization (also called best-replica
selection) is described as follows.

Consider the example of a user located at the Fermilab site in the
United States who wishes to access file1.dbf, which is reproduced at
CERN (in Switzerland), in Italy and France but not at Fermilab. It is
assumed that a replication manager implements the replica-selection
service and that, at each of the four sites, the same grid middleware
is installed.

The Fermilab user sends his request for access to file1.dbf to
Fermilab’s local replication manager, whose task is to provide the
file locally in the Fermilab data warehouse. The replication manager
has to first communicate with a catalog of replicas in order to obtain
information on the file’s physical location before it can then trigger the
file transfer.

Three replicas of the requested file exist on three different and
remote sites, and the replication manager needs to decide which is the
best replica, i.e. the best place to get the file from in the fastest way
possible. The best from the user’s point of view means that the file
requested is created locally with a minimum delay between the request
and actual local access to the file. In other words, the response time to
access file1.dbf must be minimized. This corresponds to minimization



142 Computing Networks

of data migration. Therefore the three sites can have storage hardware
and network connections with different access times. The replication
process from the CERN could take five minutes whereas file transfers
from France or Italy could take eight or 10 minutes. In this case, the
replica at the CERN is the best location, and a data transfer from the
CERN to the Fermilab will be initiated by the replication manager.

In this context, we want large data sets (files) in the order of
the mega or gigabyte size, where transfer time has a considerable
impact on the performance of a data-intensive application. We must
consider a distributed community of users with regard to accessing
these files. Even if a remote access mechanism is used, network traffic
can be significant and therefore the load, capacity and availability of
the network links used during data transfers can significantly lower
application performance.

This example illustrates why it can be important for the middleware
(here one of its components, called the replication manager) and the
users to have information on the performance regarding access to
the complex set of interconnected resources, as well as knowledge
of the end-to-end transmission capacities on the network. The global
cloud network must therefore be characterized by simple and pertinent
parameters and its core properties must be measured.

Selecting the best source for reading data requires the characteristics
of the path between the destination and each possible source to be
forecasted. The exact forecast of the performances obtained for each
source requires, in particular, a measurement of the available bandwidth,
both end-to-end and hop-by-hop, of the latency and of the packet-loss
rate.

It can also be interesting to determine whether there would be an
advantage in splitting up the copy. For example, the copy of the first
half of the file would be done from site B while the parallel copy of the
second half of the file would come from site C. To make this decision,
information on the performance of each element (hop) on the network
path is required. If the bottleneck is a link shared by two connections,



Measuring End-to-End Performances 143

however, the transfer time cannot be reduced by splitting up the file in
this way. For there to be a real interest in data fragmentation, the paths
must be disjointed.

Besides this, several works [HAC 02] have shown that the total rate
of parallel streams increases on paths with little congestion.

Nevertheless, the effect is reversed and more severe if parallel
streams are used on an already-congested path.

Consequently, extra measurements, such as packet delay and loss,
can be necessary in order to determine the number of parallel streams
that should be used. Even in the case of one single stream, accurate
measurements of the network can be used to improve performance and
resource allocation.

6.1.2. Objectives of a performance-measurement system in a grid

In a vast grid infrastructure, the activity of supervision is essential
for the system to function well globally. Network supervision is
an important component of this activity and must be harmoniously
integrated into it. Indeed, by their very nature, grid infrastructures are
distributed and involve many different sites. The correct functioning of
the infrastructure is therefore completely dependent on availability of
the network connecting the different sites.

Performance tracking is a crucial problem in any network. In
general, the performance-tracking system of a network shows the status
of the network to the network managers. In the case of grids, this status
must also be shown to the end-users. This tracking enables them to
effectively choose the best network links at all times.

The main objectives of the supervision, measurement and estimation
of the network’s performance in a grid environment are:

– the discovery and diagnosis of network problems that have an
effect on the performance of distributed computing applications;



144 Computing Networks

– the tuning of network parameters in order to improve the
performance of distributed-computing applications;

– better use of the available network capacities;

– the collection of the data necessary for providing information on
the network’s status.

A large number of network-supervision tools are available. The
problem is in deploying them wisely in the grid and providing
high-performance access to the data collected by these tools [WAH 00].
This general goal implies two distinct tasks:

– the supply and collection of supervision data, which is useful for
both the infrastructure’s management and applications;

– the means of access to data collected in a useful and usable format.

6.2. Problem and methods

Having identified the why of network-performance supervision in
a grid and having shown that the spectrum of users was vast – going
from the user to the manager and including distributed applications –
the problems that are then posed are of the what (what exactly must be
measured?) and the how variety.

Defining a grid’s network-measurement architecture requires:

– the choice of measurement parameters relevant to the grid’s usage
context;

– the choice of the methodology and tools to carry out the
measurement;

– the choice of the system’s architecture and its integration in the
global supervision system;

– the decision of localization and strategy for sensor deployment;

– the scheduling of sensor measurement and coordination.

The subject of end-to-end measurement of a network has been
explored over several years. The Internet Engineering Task Force, via



Measuring End-to-End Performances 145

the IP Performance Metrics group [STE 05], as well as national research
networks such as GEANT or Internet2 have active programs in place.
A framework for Internet protocol (IP) performance metrics and a
debate on questions related to network supervision are presented in
[PAX 98a, PAX 98c].

The OGF’s Network Measurement Work Group (NM-WG)
identified and explained the characteristics of network performances
corresponding to the specific grid context [LOW 04].

Basing our discussion on this document, in the following sections
we detail the general principles of network-performance measurement
in a grid.

6.2.1. Terminology

The OGF’s NM-WG defined a common nomenclature of the
observations linked to the measurements taken by different systems.
The aim of this nomenclature is to enable supervision systems
to classify the measurements they take. With this nomenclature,
measurements can be grouped according to the methodology used,
the characteristics they measure and the entities measured. In general,
systems maintain original measurement data as well as synthesized
characteristics.

There are two important elements for describing network
measurement. The first element is measurement of the characteristic
measured. The second element is the network entity that the
measurement describes: the path, the hop, etc.

Networks are often represented in the form of graphs, with network
entities being divided into nodes and paths. A node does not necessarily
correspond solely to a single physical entity, but can represent a range
of devices, especially an autonomous system, switch or virtual node. A
path is a unidirectional connection from one node to another node and is
represented by the ordered pair of end-points. One path exists between



146 Computing Networks

the two nodes used as measurement parameters. Figure 6.1 is a UML1

diagrammatic representation of the main network entities considered in
measurement and the relationships between them.

Figure 6.1. Representation of network entities proposed
by the OGF’s NM-WG

Three important terms were defined:

– network characteristics are the intrinsic properties of a portion of
the network and are linked to the network’s performance and reliability;

– measurement methods are the methods and techniques of
measurement of these characteristics;

– an observation is a piece of information obtained by the
application of the measurement methodology.

The relationship between these terms is illustrated in Figure 6.2.
Many network characteristics are intrinsically hop-by-hop values,
whereas most measurement methodologies are end-to-end.

1. In the UML notation, the arrows with white heads represent a heritage.



Measuring End-to-End Performances 147

Consequently, what is effectively declared by the measurements can
be the result obtained for the smallest segment: the bottleneck. We
distinguish between links (hop-by-hop) and paths (end-to-end) when
required. As illustrated by Figure 6.2, characteristics are applied to
network entities. As pointed out above, network entity is a generic term
that encompasses nodes, paths and autonomous systems.

Figure 6.2. Terminology used by the NM-WG nomenclature

The three main parts of the system illustrated in Figure 6.2 are:

– Characteristics: a characteristic is an intrinsic property that is
linked to the performance and reliability of a network entity. More
specifically, a characteristic is a primary property of the network or its
traffic. A characteristic is the property itself, and not an observation of
this property. One example of a characteristic is bottleneck capacity. It is
worth noting that a characteristic is not necessarily associated with one
unique value. For example, packet loss is an important characteristic of
paths. Nevertheless, this loss rate can be expressed as a fraction of all the
traffic sent or more specifically as a loss profile with detailed statistical
properties.

– Measurement method: this is a technique for recording or
estimating a characteristic. In general, there are several ways to
measure a given characteristic. Raw-measurement methodologies use
a technique that gives a direct measurement of the characteristic, while
derived-measurement methodologies can be an aggregate or an estimate
based on a measurement set. For example, the statistical analysis of
packet bursts can be used to estimate the bandwidth capacity.



148 Computing Networks

As an example, let us consider the round trip delay as a characteristic
to be measured. It can be:

- measured directly using the Ping tool;
- calculated using the transmission time of a Transport Control

Protocol (TCP) packet and the reception of the matching ACK; or
- estimated using the information on the links’ propagation or the

queues’ size.

Each of these techniques is different with advantages and drawbacks
in terms of exactitude, precision and ease of use.

– Observations: a piece of data produced from a measurement
methodology is an observation. An observation can be:

- a singleton, which is the smallest personal observation;
- a sample, which is a number of singletons of the characteristic

from the same set; or
- a statistic observation, which is derived from a statistic

computation on a sample of observations.

A classification of the observations is given in the RFC2330
[PAX 98b]. As network characteristics are very dynamic, temporal
information must be associated with each observation recorded. This
information indicates on what date the observation was made. For
singleton observations, a simple time stamping can suffice. For
statistical observations, it is the beginning and the end of the observation
time’s interval that must be indicated. In general, observations must be
recorded with attributes describing the conditions that prevailed at the
time of observation.

For certain characteristics, the measurement reports must specify the
level of the network layer being studied. Being specific, for throughput
measurements, the headers added by each layer must be deduced
from the effective bandwidth for the user. In general, measurements
are taken at the level of layers 3 and 4 of the Open Systems
Interconnection reference model, where layer 1 is hardware support,
layer 2 is the data-link layer dealing with the frame’s format (e.g.
SDH/SONET or Ethernet), layer 3 is the network layer (IP) and layer 4



Measuring End-to-End Performances 149

is the transport layer (e.g. User Datagram Protocol (UDP), Real-time
Transport Protocol+UDP, TCP).

Problems related to determining the network entity measured can
include:

– the choice of protocol that can influence the network’s behavior;

– the different quality of service (QoS) levels that influence all
aspects of the network’s behavior. In fact, certain QoS policies can
specify different links between the same host couple with different
traffic levels or classes;

– the instabilities that can mean that the same path end-point
experiences a completely different environment at each instant;

– in high-bandwidth environments, hosts often measure the
characteristics of the bottleneck, rather than that of the whole network
path.

In the next section we detail the characteristics, as well as the
measurement methods and tools with which to evaluate them.

6.2.2. Inventory of useful characteristics in a grid

This section proposes a standard set of network characteristics
and a hierarchical classification of these characteristics that are useful
for grid applications and services. The nomenclature and hierarchy
presented offer a common dictionary of terms and relations between
commonly-used measurements. The hierarchy enables measurements to
be grouped depending on the characteristics measured.

Figure 6.3 details the set of metrics. The main ones are:

– the round trip delay;

– the one-way delay’

– the TCP and UDP packet loss;

– the throughput;

– the site’s connectivity; and

– the service’s availability.



150 Computing Networks

Figure 6.3. Hierarchy of metrics proposed by the NM-WG group of the OGF

The bandwidth characteristic is the most important metric for
characterizing an end-to-end network service. Bandwidth can be
measured as a metric of the usage of a router’s aggregated link
and as a flow metric associated with a transfer time. Throughput
(send bandwidth) is different from goodput (reception bandwidth).
The goodput and a portion of the throughput represent the effective
bandwidth without protocol information and retransmissions. The
available bandwidth of a link can be defined as a function of two other
characteristics: capacity and usage. Usage corresponds to the quantity
of traffic using the path. The available bandwidth can also be measured
directly by injecting traffic into the network.



Measuring End-to-End Performances 151

According to the definitions of the characteristics and of the
measurement methods presented above, the available bandwidth is a
characteristic because its measurements are not equivalent to those
of any other characteristic. This gives it a very specific place in the
hierarchy.

goodput: gi = 1
Ti

∑Ti
t=0 gi(t)

aggregate goodput: G(t) =
∑N

i=1 gi(t)

goodput variation:

σi =

√√√√ 1
Ti

Ti∑
t=0

(
gi(t)− gi

)2

standard distribution:{
pi,k = p

(
k

100
∗ Ca ≤ gi(t) <

k + 1
100

∗ Ca

)
| k ∈ [[0; 100[[

}

aggregate throughput: X(t) =
∑N

i=1 xi(t)

maximum transfer time: Tmax = max(Ti)

average transfer time: T = 1
Nforward

∑Nforward
i=1 Ti

minimum transfer time: Tmin = min(Ti)

transfer time variation:

σTi =

√√√√ 1
Nforward

Nforward∑
n=1

(
Ti − T

)2

where gi is the goodput, Ti the transfer time of the ith file, and Nforward

corresponds to numbers of files transferred.



152 Computing Networks

6.2.3. Measurement methods

To collect the data that enable us to extract end-to-end
characteristics, a series of network-supervision tools are available.
These tools belong to two families: active probes and passive probes.
The next two sections present these two measurement approaches
traditionally used in generalist networks and in computing networks
in order to understand their behavior and highlight the interactions
between applications and the network.

6.2.3.1. Active method

Active measurement consists of generating traffic at one point in the
network (at one end point or at the core of the network) and injecting it
into one or several network paths, then observing the end-to-end effects
(i.e. between the generator and the receiver): loss rate, delay, Round
Trip Time (RTT), etc.

Active measurements enable the user to measure the characteristics
of his network path, from the source to the chosen destination. The main
drawback of this approach is its intrusiveness. Measurement traffic,
notably introduced for throughput estimation, can be voluminous and
introduce a disturbance that causes the network status to evolve and
skews the measurement.

Several slightly intrusive techniques have been studied over the
last few years. These techniques, which derive throughput from the
measurement of a delay variation between consecutive packet pairs
(called packet-pair methods), are often unreliable in very-high-speed
networks. Consequently, despite their notable intrusiveness, the
throughput-measurement methods that fill the pipe to evaluate its width
remain widely used in high-speed grids because they are accurate.

6.2.3.2. Passive method

Unlike the active approach, the passive-measurement approach is not
based on the injection of extra, non-useful traffic into the network. It
involves passively observing traffic in transit and studying its properties
in one or more points of the network.



Measuring End-to-End Performances 153

The advantage of passive measurements is that they are not intrusive
and do not change the status of the network. However, it is very difficult
to determine end-to-end performance from the pieces of information
(the aggregate throughput, the queues’ sizes) gathered passively within
the network. Still, the passive measurements carried out, notably, on
the effective transfers at sender or receiver level can be used for
performance forecasts. In this case, for example, it is a matter of keeping
a history of the durations of recent file transfers, depending on their
volume.

Passive-metrology systems are differentiated depending on the mode
of analysis of traces: whether they are measured in real-time or not.

In real-time or online analysis, computations are carried out during
the time it takes the packet to cross the measurement probe. This
approach has the advantage of not necessitating data storage. Since it
consumes little network and storage capacity, this method can be used
to analyze the network’s behavior over very long periods. The statistics
are therefore reliable and significant. The authorized computation time
being limited, however, so is the complexity of the possible analyses.

In an offline analysis, the traffic trace is entirely captured and
analysis is carried out later. Such an approach requires enormous storage
resources and, consequently, does not allow statistical studies to be
carried out on very long traces. On the other hand, an offline analysis
allows complex and diversified analyses that lead to a refined traffic
characterization.

Passive-measurement probes are often localized in routers. The tools
NetFlow and sFlow analyze the traffic moving through the routers
and regularly generate statistical information on the average observed
throughput during a given time interval. More performant probes, based
on network processors or Field-programmable Gate Arrays, enable
more fine-grained analyses, packet by packet.



154 Computing Networks

6.2.3.3. Measurement tools

Many software tools for network-performance measurement have
been proposed in the literature. The Cooperative Association for
Internet Data Analysis website regularly inventories them. Here, we
only present a few examples of tools, among them most popular and
most widely deployed in grid-supervision systems.

The Ping tool is an active measurement tool that is frequently used
to measure the RTT and the performance loss of a link. Based on the
Internet Control Message Protocol, it gives:

– the duration of loops in milliseconds (ms);

– the packet loss in percentages;

– the short-term variability of the response-time (time scale of a
second); and

– the lack of accessibility, i.e. the absence of response for a
succession of tests.

The Traceroute tool is an active measurement tool that gives the list
of routers traversed by packets sent up to their destination and gives an
indication of the passage time at each of these nodes. Iperf [IPE] is an
active tool that is used to measure the maximum TCP or UDP bandwidth
that is usable from end to end. Iperf is very useful for adjusting diverse
TCP parameters. Based on an active method, Iperf is a very intrusive
method that tries to fill the link with TCP streams in order to measure the
maximum throughput of a TCP connection between two points. Iperf
gives:

– the bandwidth;

– the variation of delay between packets (jitter); and

– the datagram losses.

This tool is very often used in grids.



Measuring End-to-End Performances 155

6.3. Grid network-performance measurement systems

Since the beginning of the 2000s, different systems for grid-network
supervision have been developed and deployed in grid environments.
Among the most well-known are e2emonit [EGE 09], PerfSonar
[HAN 05] and Ganglia [MAS 04].

6.3.1. e2emonit

e2emonit [EGE 09] is a collection of tools providing end-to-end
measurement data. It has been developed within the Datagrid European
project (EUD [EUD 01]) and then improved in EGEE-I. It is based
on a set of scripts, written in Perl, that control the measurement tools
themselves as well as the process of data production and storage for
later uses.

The measurement tools included in e2emonit are Ping, Iperf [IPE]
and udpmon [JON 06]. These tools enable a certain number of different
parameters to be measured:

– the RTT

– the achievable TCP throughput;

– the achievable UDP throughput;

– the packet delay variation; and

– a packet-loss rate.

6.3.2. PerfSONAR

PerfSONAR [HAN 05] is a set of services enabling the exchange of
supervision data between different network domains. The protocol used
for data exchange is based on the diagrams from the OGF’s NM-WG.
One of the most largely deployed PerfSONAR services today is the
measurement-archiving service. It enables us to use data collected from
routers and is useful for accurately locating congestion in a network
path.



156 Computing Networks

Metric Tool

Traffic measurement on a link PerfSONAR
Round trip time Ping
Packet loss between two pings Ping
Achievable TCP throughput Iperf TCP
Achievable UDP throughput udpmon
One-way packet loss udpmon
Average variation in delay udpmon

Table 6.1. Metrics and tools used by PerfSONAR and e2emonit

Table 6.1 describes the metrics provided by the combination of
PerfSONAR and e2emonit.

6.3.3. Architectural considerations

The global information service gathers and maintains end-to-end
metrics by regularly collecting data from the local monitors.
Information systems are based either on Lightweight Directory Access
Protocol (LDAP, like Monitoring and Discovery Service [MDS]
Globus) or on SQL (like GMA or R-GMA).

Figure 6.4 illustrates the architectural principle of the
network-supervision system enabling the acquisition of measurements
and their availability to users, as well as its integration in the global
supervision system of the grid.

The components of a grid-supervision system must first meet
fault-tolerance prerequisites. The faults that can occur in a grid
are generally servers going down or a degradation of network
performance. The supervision system must allow automatic re-starting
of the monitoring servers, duplication or replication of data on other
backup servers and, for network aspects, dynamic reconnecting and
re-synchronizing of links. The management system for data distributed
on the grid adapts to changes in the performance conditions.



Measuring End-to-End Performances 157

 

Figure 6.4. Information system’s network sensors

The dynamic estimation of performance fluctuations must not render
data management impossible or inaccessible. All the components of the
supervision system are extensible and reusable after a re-dimensioning
of the grid’s characteristics (number of users and servers).

Data monitoring is generally managed in a distributed way to avoid
having a centralized reservoir – a weak point that can threaten the
entire grid system. The components (at the level of servers and nodes)
must be able to continue to function, even in case of momentary
network disconnection. During uses when data are frequently updated,
a centralized approach is not satisfactory because a bottleneck can
occur (by information streams – statuses, performances, etc. – sent
back to the central server). The system components must not be too
resource-consuming (CPU, communication, memory and needs) so as
not to impact the target machine’s performance too greatly.

The choice of data format is important: a compromise is sought
between ease of exploitation and performance cost (large ASCII files
sent on the network will take up greater bandwidth than compressed
files).



158 Computing Networks

Similarly, the monitoring system must have components enabling
these transfers to be carried out in a more compact, or partial, way.

Finally, security standards must be respected: use of identification
certificates by agents and virtual organizations, encryption of sensitive
data transiting the network, etc.

Figure 6.5. Architecture of the surveillance system of the network for
European DataGrid, a precursor of EGEE

The middleware and the applications access the raw measurements
or characteristics estimated and stored in the grid’s information system
according to a pre-defined process. For example, a web service can
provide an analysis of packet losses or of the distribution of RTT
measurements in charts or tables. The data are also collected at the
central level so that daily or monthly statistics can be kept for all sites
or for certain selected sites seen from the local monitor point.

Figure 6.5 gives a simplified view of the architecture of the
DataGrid supervision system. At the bottom of the figure the different
tracking tools, implemented via a set of sensors deployed in each
site, are represented. The next layer corresponds to the storage level
of measurement data. Data are kept and organized within databases



Measuring End-to-End Performances 159

accessible via protocols such as Lightweight Directory Access Protocol
or Java Servlet.

In a grid, there are a large number of potential data consumers
who, by using a client tool, must be able to access these numerous
network-data sources. These constraints have naturally led developers
to build access software as web services. Network-measurement data
are exchanged as eXtended Markup Language (XML) documents.

The mediator (such as MapCenter, represented in Figure 6.6) is a
key element of the grid network-measurement architecture. Acting as
a central point of contact or portal for clients, the mediator provides
a service that enables the available information on measurement data
to be discovered. This mediation eliminates the necessity for clients to
know the location of monitors, and can be used to keep clients confined
to the links around their local monitors.

Figure 6.6. Integration of the mediator in the supervision infrastructure



160 Computing Networks

6.3.4. Sensor deployment in the grid

To create a grid network-supervision system, it is necessary to
deploy a set of sensors at each place in the grid. This set of
sensors must be capable of representing a large set of computing and
storage resources. The sensors, called network-supervision elements,
are localized in such a way that they can provide measurements
enabling any host machine to find out the conditions of access to any
other remote host in the grid. To avoid the active measurements from
being too intrusive and to enable the extensibility of the measurement
system, it is recommended that the number of sensors and aggregate the
measurements be limited.

Therefore, end machines representing the site that are capable of
generating tests and collecting measurements are deployed in each site
of the grid, as illustrated in Figure 6.7. The data measured are then
archived in databases and made available across web services.

Figure 6.7. Location of measurement sensors in the grid

Furthermore, sequencing policies are implemented to control the
measurements carried out by each sensor [HAR 05]. For example,
in DataGrid’s test bench, Iperf measurements are initiated every
30 minutes in different time slots for each network-supervision



Measuring End-to-End Performances 161

Figure 6.8. Organization of sensors in a clique within a grid

element. The data collected by the different tools are locally stored
on network-supervision elements. Figure 6.8 shows the principle of
round-robin scheduling active measurements.

6.3.5. Measurement coordination

As already described in this chapter, a large grid infrastructure
needs reliable measurements of the performance of its cloud network.
In order to be significant for the performance of real applications,
some of these measurements must be carried out from one end to the
other: it is the measurement of the performance of an entire network
path, from one computer to another. Nevertheless, all these end-to-end
measurements, because of their nature, are very intrusive because they
consume bandwidth that could be used by applications themselves. In
addition to this, in order to obtain reliable measurements, the different
measurements must not overlap. For example, if two sites try to measure
the achievable bandwidth on a third site at the same time, the result will
probably not be so reliable. Therefore, end-to-end measurements must
be programmed to take these constraints into consideration. The first
e2emonit deployments were manually programmed using “cron” tasks.



162 Computing Networks

This is difficult to maintain, however, and badly handles deployment
beyond a handful of sites.

In order to overcome this sequencing problem, a Probes
Coordination Protocol (PCP) software was proposed [HAR 05] and was
deployed in the EGEE grid (EGE [EGE 04]). PCP enables sequencing
of activities that must occur at the level of a site or a set of sites. An
activity is generally a script or an executable, for example the execution
of a measurement probe. A set of sites constitutes a clique. A particular
site can be a member of several cliques at a time, as illustrated in
Figure 6.9.

Figure 6.9. Recording of the same sensor in several cliques

Programming is carried out by inserting a token around the clique:
a site will only launch an activity if it is in possession of a token
(see Figure 6.10). When it executes an activity the token is locked,
thus reducing the possibility of measurements overlapping. The token
defines the activity that must be executed and enables two independent



Measuring End-to-End Performances 163

Figure 6.10. Example of the injection of a clique token in a grid

periods to be specified. The first of them is the period between each
execution of an activity on a particular site and the second is the delay
in this activity being executed on different sites. A specific protocol
was defined to synchronize the different cliques, as represented in
Figure 6.11.

Figure 6.11. Principles of the inter-clique protocol

It must be noted that PCP also provides measurements on demand.
In this case, the token presented must specify that the supervision probe
must be executed without delay, while no other site is involved in the



164 Computing Networks

clique. Once the probe has been executed, the token is deleted from
the site. In addition, although designed for the execution of supervision
probes, PCP can be used to program or synchronize all types of
distributed activity.

6.4. Performance forecast

Several efforts have been made in the grid community to better
predict bulk data transfer delays using the network’s characteristics
[CHE 02, VAZ 01, WOL 99].

6.4.1. The Network Weather Service tool

The Network Weather Service or NWS [WOL 98] is certainly the
most well-known forecast tool in computing networks. It proposes
a general architecture for measuring and predicting performance in
distributed-computing environments. NWS gives performance forecasts
for the network as well as the processor and storage elements. Its
forecast models are based on estimates of the available bandwidth,
calculated from chronological series gathered by frequent active
measurements. NWS seeks a good balance between precision and the
low intrusiveness of probes. Many forecast methods can be applied
to these time series. The originality of NWS is that it dynamically
evaluates a certain number of methods and chooses the most appropriate
one on-the-fly.

The characteristics of NWS are the following:

– low intrusiveness;

– longevity of execution;

– precision of forecasts;

– ubiquity.

The NWS system is based on four different components:



Measuring End-to-End Performances 165

– a name server (NWS-name-server) that records all the system’s
entities (memory components, sensors, prediction functions and
measurement tasks). It is a central source of information for the system;

– a memory service (NWS-memory) that safeguards all
measurements in a circular queue and delivers them on demand;

– a forecast service (NWS-forecaster) that constitutes the computing
core of the predictions of the NWS system;

– sensors (NWS-sensor) that correspond to the measurement
processes carrying out all the measures.

A sensor runs on each of the supervised sites and provides
measurements of the CPU used, available CPU, memory and hard disk,
as well as the network. Network measurements are the TCP throughput,
connection time and latency (TCP throughput, TCP connect-time, TCP
latency). To get the highest precision without overloading the machines
and the network too much, the NWS sensors use a combination of
passive and active measurement methods.

NWS was designed to be the least intrusive possible. Thus, its CPU
use is limited to 3%, its memory use to 3 MB and its disk use depends
on the number of measurement series but is in the order of 20 MB.

For measurement coordination, two modes are proposed:

– a periodic regime in which experiments are periodically launched,
with a definite periodicity; or

– a regime in clique, in which the experiments are sequenced in such
a way that in a given time interval there is at most only one single
ongoing experiment. The clique protocol operates on the basis of a token
exchanged between the sites measured (see PCP).

NWS proposes a distributed data-storage system. Each
NWS-memory process is registered, along with all the measurement
series of a given period, to the NWS-name-server. This enables data
to be accessed later on, without necessarily knowing where they are
recorded.



166 Computing Networks

The aim and main originality of the NWS system is prediction
(NWS-forecast). This forecaster generates short-term estimates. NWS
embeds a series of forecast methods that are dynamically chosen
depending on the forecast error obtained in each context. NWS-forecast
provides a programming interface that allows us to add new forecast
methods as well as a set of functions to include calls to the estimator
from within an application.

In [PRI 02], the precision of NWS forecasts was studied on a real
grid network. It turns out that NWS underestimates the actual TCP
throughput in high-speed environments, but gives good predictions
in very loaded or weakly provisioned environments. NWS therefore
cannot be used for bulk data transfers in a high-performance grid but
brings good results in an environment that is averagely provisioned.

Another performance-forecast approach was put forward in
[VAZ 01]. It is based on performance information of previous real
transfers, collected by the instrumented GridFTP application and not
on active measurements. This passive method that exploits real results
is therefore less intrusive for the network. The instrumentation of
applications and the trace collection can load the computing end points.
Furthermore, traces depend on the actual activity of the grid. Traces
therefore do not constitute regular time series on which robust statistical
analyses are carried out. This method can provide acceptable values if
the network’s activity is regular. If not, the forecasts are unreliable. This
is the reason for which, in production grids, a forecast service rigorously
exploiting network-measurement data is implemented. We describe this
in the next section.

6.4.2. Network-cost function

The different measurement systems presented in the previous
sections gather and publish pertinent and detailed tracking information
in the grid’s global information system, like MDS [CZA 01] or R-GMA
[BYR 02]. Nevertheless, in order to optimize application performance,
a component of grid middleware – such as the replication management



Measuring End-to-End Performances 167

seen in our introductory example – needs global and simple estimates
of transfer costs between two defined end point machines.

Basing our discussion on the proposed network-supervision
infrastructures, an independent service in charge of supplying an
estimate of network performance on demand was defined. This service
was studied in the DataGrid project and then deployed in the EGEE
production grid.

Let us consider the following example. Given a site source, src, two
destination sites, dest1 and dest2, and a quantity of data to transfer,
volume, the effective data transfer time is obtained by the formula:

TTi = volume/xi

with TTi being the transfer time and xi the goodput between src and
desti.

These linear relations enable the estimation of transfer time in
advance by estimating the useful throughput between src and desti that
the application will obtain at the time of transfer.

With X1 and X2 the TCP throughputs of links 1 and 2 representing,
respectively, end-to-end paths (src, dest1) and (src, dest2), the cost
function, f , for each destination can be expressed as a transfer delay,
i.e.:

f(dest1) =
(
volume/X1

)
f(dest2) =

(
volume/X2

)
.

In this particular scenario, comparing f(dest1) and f(dest2) from
the source src becomes possible.

6.4.3. Formulating the cost function

The transfer cost function is calculated from the systematic raw
measurement of network performances. This approach provides a robust



168 Computing Networks

network-forecast service that can be used to improve the grid’s resource
management or the applications’ execution. Such a service simplifies
the exploitation of network-supervision data by users. It has also been
shown that certain approximations are useful in certain cases. They
allow a good balance between precision, efficiency and evolutivity. In
general, it is possible to define an abstract cost for each type of network
transfer. This cost can be expressed in the form of a time necessary
for transferring a dataset, or an access time in the case of an interactive
session. It can also represent a real cost in the case of a business session.

The formula for the function that expresses the network cost is
therefore different depending on context and demand. This function
can take on a simple form in the case of bulk data transfers or be
more complex in the case of a combination of interactive data and large
transfers carried out using interconnections provided by a commercial
network. Since the set of possible functions is large and the context
widened, the network cost-estimate service, as well as its interface, are
open and extensible.

The ultimate goal of a network-cost estimate function is to provide
a simple service with variable input and output parameters. It must
also derive performance forecasts with variable precision. This network
service is connected to the grid’s network-supervision infrastructure
and information system at the same time. It provides an extensible
application programming interface (API) and an open framework for
accessing the different data-publication services such as LDAP/MDS,
R-GMA or a web service.

A network-cost estimate service was developed in DataGrid projects
and in EGEE. It is interfaced with several data sources. The dedicated
API enables the function to be called directly using optimization
tools. This API offers an initialization function to implement service
parameters: the type and localization of the information service, the
estimate function and input parameters, as well as a generic call to
access the estimation value.



Measuring End-to-End Performances 169

For example, the function NetworkCost (SrcSE, DestSE, file-size)
carries out the following steps:

– recovery of the source and destination addresses of the sensor
representing the site:

(1) SourceNM = Map(SourceSE),
(2) DestNM = Map(DestSE);

– collection of the set of supervision data required:
(3) NMdata = Collect(CostFunctionType, SourceNM,

DestNM);
– invocation of the estimate process and return of the result:

(4) E2Ecost = CostFunction(NMdata, file-size).

6.4.4. Estimate precision

The precision required for cost estimation depends on what the result
is to be used for. For example, to compare two destinations, as in our
previous scenario, a classification of the transfer times estimated using
data from local representatives will suffice. In certain cases, though,
more precise transfer-time estimates will need to be compared.

In the case of bulk data transfer, the effective bandwidth the user will
obtain strongly depends on low-level parameters or network conditions
that are difficult to control, as we showed in Chapter 5, such as:

– the transport protocol used for the actual transfer;

– the size of the window if the transport protocol used is TCP;

– the number of parallel flows, for example when GridFTP is used;

– the network’s load during transfer.

All these factors are examined in Chapter 5 as well as in [HAC 02,
MIL 00]. This dependence on the set of low-level parameters makes
the design of a generic estimate function very difficult. It is to counter
this difficulty – while preserving evolutivity, non-intrusiveness and
precision – that a modular architecture was chosen for the design of
this service. This modular design enables the progressive integration



170 Computing Networks

of new forecast functions, characteristics, active or passive sensors and
processing processes.

6.5. Conclusion

Supervision of the network’s status and performance turns out to be a
very important functionality for grids. Indeed, as the number of potential
sources is very high, the absence of such a global network-measurement
service can lead to a significant and useless overload of the system
and network if users want to estimate performance by themselves. A
service mutualizing measurements generally relies on the metrology
research and tools coming from the general context of IP networks.
The multipoint and multidomain context of grids requires us to consider
the location of the sensors and information storage spaces, as well as
measurement coordination.

This chapter developed the problems and solutions deployed in
current grids for the measurement and analysis of the grid network’s
performance so that applications and middleware components can
exploit it optimally. The solutions proposed here are open and
extensible. They can adapt to the future evolutions of network
services, particularly to on-demand bandwidth or QoS services. The
system of measurement and estimation of the network’s performance
completes the grid’s global supervision system and provides the general
information system with dynamic information. Furthermore, the regular
collection and storage of measurement information enables us to
calculate estimates that are simple to use and relatively reliable.



Chapter 7

Optical Technology and Grids

Chapter 4 showed us how cluster-network technology has been
influenced by the use of these infrastructures and, in particular, by the
programming models adopted by applications programmers. Contrary
to Internet applications that adapt – to some extent – to a best-effort
network, parallel applications executed on clusters are optimized by
their programmers to take full advantage of the hardware. Chapter
5 exposed the limits of the current programs to address the demands
of grid applications and detailed the main alternatives adopted today in
these environments. The evolutions of wide-area-network technology
and, particularly, optical networks gives us a glimpse not only of
an explosion in the capacities of future networks but also of the
deployment of new services. These services, very much adapted to
the resource-mutualization paradigm as defined in grids but also
intrinsically in computing clouds, could significantly improve the
network’s flexibility and quality of service (QoS).

This chapter presents the state of the art of optical technologies and,
in particular, the existing solutions for making the network dynamically
reconfigurable and able to provide bandwidth services on-demand or
by advanced reservation. Such services, breaking network transparency
as well as the hermetic-layer model, could – similarly to the services

171



172 Computing Networks

offered by cluster networks – offer grid-application programmers the
personalization functionalities necessary to execute and optimize their
very diverse applications.

Section 7.1 of this chapter introduces the different switching
paradigms used for optical communications. Section 7.2 deals with
the functional aspects of transport networks and their classification in
processing planes. Section 7.3 presents the unification of switching
paradigms and communication technologies thanks to unified control
planes. Using these technical elements, in Chapter 8 we present
the mechanisms that are proposed to provide grid users with a
bandwidth-on-demand service.

7.1. Optical networks and switching paradigms

7.1.1. Optical communications

The development of lasers since the 1960s, associated with the
discovery that attenuation in optical fibers could be reduced, has made
optical communications possible. Signal mitigation is now less than
that observed in coaxial cables. The bandwidth that can be obtained
on optical fibers is also greatly superior to such cables. In September
2006, Japanese company NTT carried out a 14 Tbit/s transmission over
a distance of 160 km on a single fiber [NTT 09]. In addition, whereas
there can be interferences between electric signals passing in different
cables, optical signals do not interfere with each over. This enables a
large number of fibers to be grouped and installed together between
buildings, countries and even continents.

The packet-switching paradigm has been used in traditional data
networks because of the scarcity of resources and bandwidth. With the
increase in communication capacities offered by optical technology, this
problem has become null and void. Nevertheless, this immense optical
capacity has raised new problems. In fact, it is the software processing
of these communications at the end points (sender and receiver, see
Chapter 6) as well as at the intersection points (routers) that have



Optical Technology and Grids 173

become the bottleneck. Processing an exponential number of packets
poses a true challenge regarding the speed of access to a piece of
equipment’s memory and its energy consumption.

We note here that the high-performance problems analyzed in
Chapter 4 are moved to the network’s internal equipment. The solutions
proposed in clusters could, to some extent, apply to long-haul optical
networks.

Although the optical packet-switching paradigm has been studied
for about 10 years, the current state of the art does not allow its
implementation in production networks. The tendency is to avoid data
processing on intermediate network elements by as much as possible
and to try to establish end-to-end optical connections. In the absence of
packets and optical bursts, this approach implies a return to circuits for
data networks or at least for their support. Indeed, the current transport
networks are organized into layers of transmission technologies and the
circuits can be used in the lower layers to provide reservable resources
in order to transmit packets to the upper layers.

Before describing the different optical-switching paradigms, we will
review the key components of optical communication technologies that
enable the deployment of large capacities in the networks of today and
tomorrow.

7.1.1.1. Wavelength multiplexing

The digital data produced by distributed applications are processed
by electronic devices and are therefore available in the form of electric
signals. To transmit them via optical fibers, they must be converted into
optical signals. An optical signal is a light wave that propagates along
the fiber that acts as a waveguide. The optical transmission operation
is carried out by a transceiver. A laser emitting in a very narrow
waveband at a very high speed and with great precision is normally
used to send the optical signal. It is a reverse process at the receiving
end based on a photodiode that converts light into an electric signal.
The sending and receiving devices are the most costly elements of the
optical-transmission chain.



174 Computing Networks

Data are encoded according to a channel code that defines how a bit
(or a group of bits) is represented by the optical signal.

To increase the efficiency of optical fibers, the wavelength-division
multiplexing (WDM) technique was introduced about 15 years ago.
It is a multiplexing method used to transport several different optical
signals on one single fiber. The frequency grid (central wavelength
of each channel and channel spacing) is defined by ITU-T [G.602].
For example, the dense WDM (DWDM) technology allows up to 160
channels. Coarse WDM (CWDM) is a more economical version with
a larger waveband that tolerates greater frequency dispersion. It has 18
wavelengths, each with a capacity of 2.5 Gbit/s.

In addition to an immense capacity, the WDM technology now also
offers all-optical switching across the entire network. This contributes
to reducing the latency induced by the O-E-O (optical-electric-optical)
conversions. The switching is done by optical add-drop multiplexers
(OADMs).

7.1.1.2. Optical add-drop multiplexers

An OADM or a reconfigurable OADM is a device composed of two
different types of input ports and the same two output ports. These ports
are fibers with WDM signals and isolated signals on wavelengths.

Figure 7.1. An optical add-drop multiplexer

As its name indicates, an OADM has two functions: add and drop.
Figure 7.1 shows an OADM that extracts three lambdas (λ2, λ4, and



Optical Technology and Grids 175

λ5) from a fiber and replaces them wihe λ∗
2, λ∗

4, and λ∗
5, while the

others are simply transmitted. Its core function is to extract some of the
wavelengths of a WDM signal, drop them, from the WDM signal’s point
of view, and replace them with a new signal (add function). This device
is the cornerstone of all-optical networks. The extracted wavelengths
can then be terminated on optical receivers and converted into electric
signals or injected into a different fiber.

7.1.1.3. Optical cross-connect

Optical Cross-Connect (OXC) is the optical equipment that enables
network operators to interconnect fibers and control wavelength
switching in the network. Different sub-categories exist. If the OXC
uses only OADM, it is said to be transparent because there is no O-E-O
conversion, the OXC is independent of the network protocols. If the
OXC is composed of transceivers and an electric switching matrix, the
OXC is said to be opaque because it can only forward the signals of
protocols it understands. Figure 7.2 shows an OXC with two input and
two output ports. The two OADMs enable the extraction of wavelengths
that are switched in the switching matrix before being injected in a new
fiber or terminated.

The OXCs being composed of input or output ports or fibers – which
themselves contain wavelengths – require control to indicate which
wavelength must be switched to a specific output wavelength.

The resulting configuration is a match between inputs and outputs in
the bipartite graph. This configuration can be set for varying durations.
The timescale defines the switching paradigm:

– shortest duration: optical packet switching (OPS);

– average duration: optical burst switching (OBS);

– longest duration: optical circuit switching (OCS).

These paradigms are detailed in the next section.



176 Computing Networks

Figure 7.2. Optical cross-connect

7.1.2. Optical switching paradigms

Three different switching paradigms has been proposed for optical
communications.

7.1.2.1. Optical packet switching

With OPS, data are transmitted in a non-connected mode and routing
decisions are taken at each node [YAO 00]. This is similar to the Internet
Protocol (IP), except that it is done exclusively in the optical domain.

This paradigm is not currently implemented in commercial
equipment because optical memory does not exist and it is difficult to
process the header without any way of storing the payload. To overcome
this, some of the mechanisms proposed for burst technology (OBS) use
a signal message that is similar to a header and sent in advance of the
data. Furthermore, it is also very difficult to switch packets without
having buffer memory to absorb load variations.



Optical Technology and Grids 177

7.1.2.2. Optical burst switching

In the next two models, OBS and OCS, signalization is used to warn
network equipment that data will follow.

OBS [QIA 99] was proposed with different signaling mechanisms.
Some use one-way signaling and others use signaling with
acknowledgement. In the first case, a blockage can occur in any switch
because nothing guarantees the availability of resources nor the capacity
to place data in the buffer memory between sender and receiver.

This led [ZAL 09] to propose the classification of switching
paradigms into either OBS “if blocking is possible [in a switch]” or
into OCS “if no blocking is possible”. Let us note that signaling can
occur in-band or out-of-band if the signaling message is sent on a
different channel to that of the data. According to this classification,
the tell-and-wait [WID 95] signaling mechanism for OBS and the
wavelength-based routing for OCS are part of the OCS category, to
which we will return in section 7.1.2.3.

The tell-and-go mechanism [VAR 97] sends signaling messages
just before the data and thus requires a buffer at the routers.
Just-enough-time/just-in-time [ACQ 08] sends the signal with an
advance that depends on the number of hops, so that the signaling
and configuration can be done before the data reach the equipment.
Nevertheless, since the sender does not wait for a reception
acknowledgement before sending data, there is a risk of blocking at each
switch due to potential contention with another competing stream. In
this configuration, the signal message is sent sufficiently in advance to
configure the switching matrix of each intermediate router. Horizon and
LAUC-VF [XIO 00] add the length of the burst and the delay between
the signal and the data so that the routers have a schedule of the future
use of their resources.

7.1.2.3. Optical circuit switching

OCS systematically uses two-way signaling and therefore waits
for an acknowledgement before sending data. This acknowledgement



178 Computing Networks

can be two-way and involve a round trip between the source and
the destination, in a manner similar to Resource Reservation Protocol
(RSVP), or one-way, coming from a centralized broker.

According to the classification presented in the previous section,
the OCS paradigm groups the sharing solutions where data cannot
be blocked at the switch. Manually-established static optical circuits
belong to this category, and so do dynamically established circuits
because data cannot be blocked in a switch.

To ensure that data will not be blocked at the switch, two-way
signaling mechanisms must be used to make sure that every switch is
fine with this circuit before sending data. The configuration process is
called lambda-path setup. A reciprocal process, called tear down, is
used for the release of the circuit.

The selection of the switches used to establish a circuit can be made
at each hop, as in [WID 95], or by using source routing. This type of
network is therefore relatively easy to control as exogenous sharing
decisions can be taken into account and it is possible to decide the path
that will be used to create a circuit. This enables traffic engineering
or on-demand bandwidth brokerage, depending on whether control is
given to internal or external customers. In addition, call admission
control can be applied to these requests.

This controllability makes optical circuits associated with
time-division multiplexing, such as SONET (Synchronous Optical
NETworking) or SDH, (Synchronous Digital Hierarchy), key
components of current transport networks [ELL 05]. Despite this,
control has its drawbacks. It is necessary to collect and distribute
information, make decisions and send signaling messages. All these
functions are now well determined, and the complexity of managing
such networks has been diluted in the functional planes of transport
networks.



Optical Technology and Grids 179

7.1.3. Conclusion

A few figures and key properties of the three switching paradigms
are given in Table 7.1, inspired by [NOR 03].

OCS OBS OPS

Suitable transfer size > Gb Dozens of kB Size of an IP packet

Bandwidth guarantee Yes No No

Possible blocking At setup At each switch At each switch

Table 7.1. Brief comparison of the OPS, OBS and OCS paradigms

Today, commercial equipment only supports optical circuits. OBS,
and therefore OPS, are technologies envisioned for the future but are not
yet used in the production networks of computing grids or clouds. Many
of the optical networks in operational today are static. The configuration
of the switching points has often been done manually. To meet the
frequently changing needs of the grid’s users, however, dynamically
reconfigurable OCS networks are being deployed in the networks of
public and private operators.

Let us note that the dynamically reconfigurable OCS paradigm is
similar to the public switched telephone networks that have been in
use for decades. The main difference comes from the nature of the
end-to-end signals exchanged: OCS uses optical signals; while the
telephone network uses electrical signals.

7.2. Functional planes of transport networks

Dynamically reconfigurable OCS networks are of great interest
in the computing grids and clouds sector. Their implementation
necessitates a sophistication of the control of these networks. To
understand how this control could be transferred to the user or grid
middleware, we must first study the different functional planes of
a transport network and locate the different control functions of a
network.



180 Computing Networks

In [G.800], ITU-T gives the following definition of transport
network: the functional resources of the network that convey user
information between different locations.

Transport networks are divided along three axes: (i) authoritative
boundaries; (ii) technology layers; and (iii) functional planes.

The authoritative boundaries limit the extent of the part of the
network under a given authority: this is usually called a domain.
Each network provider can have several domains with different
technologies, aims or types of customers. The domains are, in general,
interconnected with other domains. The division between domains is
called partitioning.

A layer is defined by the technology used and groups the equipment
or agents that can convey data from one piece of equipment or agent
to another. Within a domain, different technology layers can coexist:
this is the layering of transport networks. Let us consider an IP/
Multi Protocol Label Switching (MPLS)-over-Ethernet network that
uses SONET circuits on an optical physical layer (i.e. fibers) and
coarse wavelength division multiplexing (CWDM) as the multiplexing
technology. In this example, the layers are IP, MPLS, Ethernet, SONET,
CWDM and L1 fibers.

Each technology brings its constraints, control and management
properties. In addition to this, and in a functional vision of the
transport network, the functional planes define the local organization
of the functions that the network accomplishes, and that can be used
to use and control it. This model is normally composed of three
planes: the data plane (or transmission plane) is in charge of data
transmission; the control plane provides the information and functions
for the configuration of the data plane by handling the routing aspects;
and finally the management plane accomplishes monitoring tasks (for
example, the protection of certain circuits or traffic engineering) to
improve the operational performance or collect statistics. Figure 7.3
represents a domain with its functional planes. These planes can be seen
as groups of functions carrying out operations at different timescales.



Optical Technology and Grids 181

At one end of this scale is the data plane, which runs transmission
operations: it takes 12 μs to send a 1,500-byte packet on a 1 Gbit/s
Ethernet link. The timescale of the control plane is greater because
routing information is less volatile and used for traffic aggregates
composed of many packets. Finally, the timescale of management
operations is in the order of minutes for recovery following failure, and
can take an hour or month for network evolution planning.

Figure 7.3. Network with its functional planes: management plane, control
plane (signaling plane and routing plane) and data plane

The next three sections will describe these planes, before going into
the details of the control plane, using generalized multi protocol label
switching (GMPLS) as the example of a unified control plane.

7.2.1. Data plane

The data plane is for forwarding the data along a trail, i.e. an
end-to-end connection that can be used by a client and is composed
of network connections.



182 Computing Networks

The transmission process can, potentially, necessitate a move from
one layer to the other (for example, IP packets inserted in SONET
frames). This is done by adaptation and termination. Adaptation
describes how to adapt the data from one layer to the other and
termination adds information so that the adapted data can be transmitted
to the destination layer. The reverse process is carried out at the
destination.

7.2.2. Control plane

The data plane is configured using the control plane. This requires
the execution of signaling and routing functions, which are sometimes
referred to as the signaling plane and routing plane, respectively.

7.2.2.1. Routing

This refers to the process of distributing routing information, i.e. the
connectivity and the attributes of links, such as distance, capacity or any
information that can be used to compute a path.

7.2.2.2. Signaling

Once a path has been determined, signaling is the process
of distributing the information to be able to forward the data.
In circuit-switched approaches, it can be the distribution of the
configurations of switches on the selected path. This process can also
inform the source that this configuration is not possible, for example
because of competition on the selected path.

7.2.3. Management plane

The International Organization for Standardization (ISO) proposed
the Fault, Configuration, Accounting, Performance, Security (FCAPS)
management model for telecommunications networks. FCAPS was then
refined by ITU-T in [M.300b].

Fault management handles alerts, fault detection and network
recovery following failure. Configuration management is responsible



Optical Technology and Grids 183

for network provisioning (preparing the network to serve the
customers), resource discovery, backup and restoration. It coordinates
the addition, modification or removal of equipment or resources.
Accounting management tracks service usage. Performance
management collects statistics for reporting and deals with problems
linked to the general network performance. Finally, security
management takes care of protecting the network from unauthorized
users. It includes user authentication and authorization through the use
of permissions, admission rules and activity logs.

ITU-T G.872 [G.801b] concentrates on optical transport networks.
It defines the following management capacities:

– connectivity supervision, to monitor the integrity of connection
routing;

– signal-quality supervision, to ensure the performance of
connections;

– protection control, to manage the protections (1 + 1 or m : n) of
connections. 1 + 1 means that each line is doubled with a backup line.
With an m : n protection, m is used as a backup for n lines.

Finally, operational support systems must be mentioned: they are
the elements of the architecture that handle the management aspects
for a telecommunications service provider. Closer to the customers, the
business support system manages the products, customers, the revenues,
and orders. Both operate closely together.

In the telecommunications management network model of the ITU-T
[M.300a], network management as defined above is not the only
component. It is accompanied by business management or service
management, among others. The whole defines the core functionalities
needed to operate a network and supply customers.

The TeleManagement Forum, an international organization for
service providers and suppliers of the communications industry,
provides a framework on which to build interoperable operational
support systems.



184 Computing Networks

7.2.4. Conclusion

As seen in this section, the networks and functional representation
of transport networks are described in a functional way by the
telecommunications industry, their standardization organization and the
Internet Standardization Organization. The configuration of equipment
to provide a service is part of this and occurs in the control plane, but
provisioning is a management function.

7.3. Unified control plane: GMPLS/automatic switched transport
networks

In the previous section, we described the environment of the
control plane and, to a lesser extent, the functions it implements.
This section describes the functions and protocols used in unified
control planes such as GMPLS [FAR 05] or automatic switched
transport networks (ASTN). Section 7.3.1 presents the generalized
label-switching approach as an extension of MPLS and section
7.3.2 presents the protocols that make up the GMPLS architecture.
The extension towards multidomains is then presented, as are the
architectural models of GMPLS networks.

7.3.1. Label-switching

Let us recall that MPLS is a transmission mechanism that can be
used to create circuits based on IP packets, and thus avoid the usual
per-packet routing process. These circuits are called label switched
paths (LSP). Similarly to OCS, since it is also a circuit, the switches’
configuration must be deployed. This configuration informs each
switch that the MPLS packets entering with a certain label must
leave the switch through a predefined port, with a given new label.
The configuration is distributed on the path by RSVP (a reservation
protocol) [BRA 97]. MPLS manages label stacking, which enables the
encapsulation of circuits in other circuits. It has been generalized to
technologies other than IP.



Optical Technology and Grids 185

It is worth noting that many things can be used as labels, e.g.
wavelength, MPLS label, slot number in a time multiplexing technology
(for example SONET) or an Ethernet virtual local area network (VLAN)
label. It should be noted, too, that an order in these multiplexing
solutions is possible. This order is given by the hierarchy of the
switching types: packet switching, layer-2 switching (for example
VLAN or ATM), time-division multiplexing wavelength switching, and
fiber. It is observed that, in GMPLS, stacking can occur on different
layers. In GMPLS, LSPs have a guaranteed bandwidth.

ITU-T proposes a similar architecture to automatically provide
a transport service: ASTN/Automatically Switched Optical
Network [G.801a]. The following sections describe the protocols of the
GMPLS control plane in detail before presenting the extension towards
multidomains, then the different architectural models that have been
proposed that use GMPLS.

7.3.2. Protocols: OSPF-TE/RSVP-TE/LMP/PCEP

GMPLS equipment is broken down into two parts: a switching
matrix of one or several of the switching capabilities mentioned above,
and their instantiation of the following protocols. This makes up part
of the control plane. Routers exchange information via a traditional IP
network.

GMPLS is made up of the following three protocols:

(1) open shortest path first (OSPF)-TE [KOM 05] is an extension
of OSPF, a protocol for routing-information diffusion. This extension
is considered to be traffic engineering because it helps during
traffic-management operations, such as traffic grooming. This OSPF
can have two types of elements: TE-Links and TE LSPs. The former
describe the resources that can be used to transmit data: a fiber with
the wavelengths it can transmit and how many of them are available, a
SONET OC-48 line and its time slots, etc. TE LSPs are LSPs presented
as TE-Links. This means that they can be used by new LSPs of a higher
order in the hierarchy of switching capabilities. It is then easy, using



186 Computing Networks

the OSPF-TE Link-State database, to compute a path using constrained
shortest-path first (CSPF) by eliminating links that do not satisfy the
constraints and by computing the shortest path in the resulting graph.
Other path-computing methods can also be used.

(2) RSVP-TE [KOM 04] is the RSVP extension that enables LSP to
be created in GMPLS, with Explicit Route Object describing the list
of routers that must be crossed. Two-way signaling is then carried out
using PATH/RESV messages;

(3) The Link Management Protocol (LMP) is used for parameter
negotiation between neighboring routers that share a TE-Link. It also
enables fault-detection, such as a loss of light.

Actually, each of these three protocols has an alternative defined in
the GMPLS architecture, but these are the most common.

OSPF-TE broadcasts the routing information, so GMPLS can only
be used in one domain for reasons of confidentiality and extensibility.
The routers on the edges of this domain that adapt the traffic entering or
leaving from another network are called label edge routers whereas the
internal routers are called label switching routers.

To provide a path-computing service to entities outside of the
domain, the path computation element (PCE) [FAR 06] was proposed.
This computing entity, being part of the domain, receives OSPF-TE
messages and can therefore maintain the OSPF-TE database. The PCE
can be used to compute an inter-domain path. The PCE Communication
Protocol (PCEP) [VAS 09] can be used to contact a PCE and ask it to
compute a path.

The PCE suffers from many defects and imperfections. Due to the
asynchronous nature of the database-updating process, when several
paths are requested from PCE at the same time, or if new LSPs have
been signaled and PCE has not yet been updated, the paths given by
PCE can interfere with each other and not be possible at the same time.
Another problem is the difficulty in computing a path to a node that is



Optical Technology and Grids 187

outside the PCE’s visibility. A lot of development is being done on the
PCEP. It is increasingly being used in operator networks.

In traditional IP networks, there is no PCE. Each domain uses OSPF
for its intra-domain routing, and Border Gateway Protocol (BGP) for
the inter-domain routing. BGP, as a path-vector protocol, announces
routes and not link states. Routes between domains can then be used to
determine where to go to reach a given destination. Intra-domain routing
instances are used to determine paths within domains.

7.3.3. GMPLS service models

A service model is the description of how a user, or another GMPLS
domain, can use the resources of a GMPLS domain. GMPLS was
designed with three models in mind: the peer model; the overlay model;
and the hybrid model.

In the peer model, the upper layer is supposed to have complete
access to the routing information from the lower layers. Likewise, the
signaling messages are supposed to be able to move from one end of the
network interconnection to the other. In this model, the LSP – which
might have been triggered in the lower layer, once established – is
presented as a TE-LSP. Therefore, the remaining capacity can be used
by new requests from the upper layers. This model nevertheless has a
major drawback: privacy. Networks must expose their internal structures
as well as the availability of their resources to their peers.

The overlay model is closer to the customer/provider relationship
model in the sense that the domains are distinct and do not exchange
information, apart from via a service interface. In this model, the LSP
can be stitched to another network at the boundaries of each domain to
create a single end-to-end circuit.

The hybrid model is a mix of the two previous ones: privileged
peers have access to some information and control facilities that normal
users cannot use. Normal users have to use a different interface to



188 Computing Networks

mandate an agent to provision circuits on their behalf. This motivates
the existence of several interfaces to access a domain’s control plane: the
network-to-network interface (NNI) and the user-to-network interface
(UNI) [SWA 05].

7.3.4. Conclusion

We saw in this section, that control facilities that unify multiplexing
technologies through label switching have been proposed. They are
domain-centric and cannot scale as-is to the Internet. They will therefore
very likely remain a federation of domains, each with its control
facilities.

For now, network operators use the control plane mainly for internal
use, such as traffic engineering, for example to improve the QoS of
regular IP traffic.

Finally, time is not managed by the control plane and planning
must be done in the management plane. Several solutions have been
deployed in grids to enable users or grid managers to directly access
the control functions of the optical network to dynamically provision
very-high-speed links and solve their bulk-transfer problems.



Chapter 8

Bandwidth on Demand

In this chapter, we explore a new type of service that is starting
to be commercialized and has very interesting advantages in the
context of computing networks. Such a service can be invoked either
for database-transfer operations during the computation’s initialization
phase (stage-in) or for an entire session duration, particularly to ensure
fluid access to the remotely stored data.

In this chapter, the term service can be taken in the economic sense
(a non-material good) or in the sense of the implementation pattern
used to provide it. The network services traditionally offered by Internet
service providers, e.g. xDSL, consist of providing an access link with
a maximum throughput, without guaranteeing that the throughput can
be achieved towards a given destination. A circuit with guaranteed
throughput between two network destinations is another type of service
with a different specification.

Transport networks and their functional planes can be used to
provide on-demand network services to users. While the business
models for traditional Internet accesses are relatively well-defined,
they still need to be established for providing guaranteed resources
on demand in a service-oriented model. This business model is not

189



190 Computing Networks

clear yet, even though several approaches have been explored. Another
problem associated with the business model is the inter-domain context,
because it requires clarification of the relations between participants
(users and domains). In a finite world where resources have finite
capacities, defining this business model means defining resource sharing
and defining who can legitimately access a given quantity of resources.

For years, the tendency has been to find out how to expose services
based on this control plane, i.e. to add a service plane to the functional
model. The benefit of such guaranteed services has been discussed from
the perspective of the user’s quality of service (QoS), especially in
grid-computing communities [JUK 07, DEL 06].

In the next three sections, we present the different services that
have been proposed to provide bandwidth: the Internet model, called
network neutrality because it is its guiding principle, the peer model
that, like the GMPLS service model, exposes a lot of information
to customers; and the overlay model, where clients access a limited
quantity of information. Finally, we will study models based on markets
where providers and clients publish their bids and requests, and where
a third entity – the market maker – carries out the operation.

8.1. Current service model: network neutrality

The current service model for high-speed Internet access is mainly
based on fixed-price billing. Customers pay for an access link with a
given maximum capacity, whether they use it or not. The throughput,
descending or ascending, that their streams will have is not guaranteed
and is determined by many parameters. The principle of network
neutrality defines what must and must not be done with user traffic.

There is no single definition of the principle of network neutrality,
but all of the definitions assert that all Internet traffic should be dealt
with in the same way. The question of finding out whether this principle
must always be applied in order to support innovation on the Internet,
nuanced in order to provide QoS, or abandoned to favor the provider’s
profits, is actively debated.



Bandwidth on Demand 191

According to this principle, streams obtain resources depending
on global mechanisms such as Transport Control Protocol’s (TCP’s)
congestion control and the queue-management algorithm of Internet
Protocol (IP) routers. Some hold that packets must be processed based
on the first come, first served principle to satisfy the principle of network
neutrality. In this model, QoS for users (absence of loss, absence of
severe congestion, bandwidth) is obtained by overprovisioning the core
infrastructure.

The next section presents the architecture or ecosystem of the
Internet’s current model, focusing on the agents and how they accept
traffic from other agents. The limitations of this model are then
reviewed.

8.1.1. Structure

This ecosystem is made up of customers (C) or users, access
providers (APs), transit providers (TPs), and content providers (CPs).
The distinction can be made between business and home in customers’
groups to push the analysis further [DHA 08b, XIA 08]. An example of
this type of ecosystem is presented in Figure 8.1.

Figure 8.1. Network-neutrality ecosystem: customers, access providers, transit
providers, content providers



192 Computing Networks

Customers mainly access the content provided by CPs. APs are
connected to customers and must negotiate connections to content in
order to attract users.

The interconnections of the networks mentioned above are done
in Internet eXchange Points (IXP) [AWD 98]. There are two types
of relationships between providers: peering and transit. Whereas the
peering relation involves a reciprocal access to each other’s contacts, the
transit relation provides unilateral access against remuneration. These
are business decisions and, as such, based on immediate or expected
profitability [BAA 99, CHA 06]. It must be noted that Border Gateway
Protocol the inter-domain routing protocol used in the Internet, is
particularly well adapted to the implementation of such contracts. By
not announcing its routes to neighboring domains, it prevents them from
using a given domain for transit because they do not know how to reach
their destination via this domain.

As a consequence, the global structure of the Internet is made up
of domains (autonomous systems) interconnected differently depending
on the type of provider they belong to [MAG 01]. Access networks are
connected to customers but have an asymmetric need for bandwidth
from the other providers since their customers receive more data or
content than they send. User traffic is mainly directed to CPs, who
might not be directly accessible to the AP. In this case, the AP must
buy a transit agreement from a TP. The AP can also convince the CP to
establish a direct connection. The customers of TPs are APs and CPs,
with the former wanting to reach the latter. CPs also wish to be reachable
in order to increase their visibility.

8.1.2. Limits and problems

Ensuring network neutrality by processing all traffic in the same way
would prevent any improvement in the QoS of a part of traffic. Network
neutrality is supposed to offer fair processing of traffic that is the same
for everyone. Since different streams can have different needs, this
would penalize applications with greater needs, such as high-definition
video-conferencing. This is why, depending on the utility obtained for



Bandwidth on Demand 193

a given value of a QoS parameter (e.g. bandwidth) and the purpose this
flow serves, a fair throughput allocation can in fact result in an unfair
allocation of actual user utility. As all kinds of utilities can be imagined
and they vary depending on clients, this debate is endless and pointless:
a system that is fair according to one parameter will be unfair according
to another. This is also the case for social welfare.

This is why [DHA 08a] re-focus the debate on the question
of profitability for Internet APs. They propose a study of this
profitability, under the assumptions of heavy-tail traffic distribution,
strong popularity of CPs, and different pricing models considered to
be network neutral as they are not based on the content’s source. These
schemes: charge heavy consumers; limit volume for heavy consumers;
or charge CPs.

[DHA 08a] conclude two things from their quantitative study: first,
that strategies based on charging are rarely profitable or are highly
sensitive to factors over which the AP does not have control; second,
that direct peering with major CPs can be profitable, even if it does not
respect network neutrality.

8.1.3. Conclusion

In this model, the bandwidth provided by adding new fibers or by
implementing a new optical circuit is not directly offered to users, but to
the network. Bandwidth is then redistributed among flows by the sharing
mechanisms of the TCP/IP protocol suite.

To conclude this section, we refer to [CRO 07], which attempts to
list the different aspects of the issues related to network neutrality. It
concludes that the latter never existed and that it must remain an ideal
and not a static constraint limiting innovation.

Following this overview of the current service models and how
bandwidth is provided to the user, we move on to the models for network
services on demand: peer and overlay models for bandwidth-delivery
services; and market-based models.



194 Computing Networks

8.2. Peer model for bandwidth-delivery services

In the peer model, resource descriptions are communicated to users.
They can include the fibers and the internal network elements, like
routers or switches, or can be made of abstract services that can be
composed by users.

Those users can then decide what they will use, depending on their
needs and the resource availability published by the network owner.
Then, they inform the network of the resources they will use.

In the following sections, we present a few of the projects and
propositions revolving around this model. Some are new architectural
elements providing functions that can be grouped in a new functional
plane (the services plane); some are infrastructures, experimental
platforms or research projects.

8.2.1. UCLP/Ca*net

User Controlled LightPath (UCLP) [WU 02] is a solution to
configure, partition and expose the light paths and elements of a physical
network. It manipulates light paths like objects and enables users to
create their own topologies. This solution was suggested for Ca*net, the
Canadian National Research and Education Network (NREN). UCLP
has since been developed as a commercial product under the name
Argia. Manticore extends this model to layer 3 and provides IP slices.

8.2.2. GLIF

In addition to being an organization encouraging the use of
optical networks for scientific applications and proposing technical
solutions via its work groups, GLIF (Global Lambda Integrated
Facility) is a federation of optical-network owners that propose optical
interconnections for research and e-science. The topology of this
network is composed of exchange points, the GOLE (GLIF Open
Lightpath Exchanges) interconnected by lambdas. Since this topology



Bandwidth on Demand 195

is public (see Figure 8.2), and a connection across this network can
be requested, GLIF falls in the peer models for bandwidth on demand
group.

Figure 8.2. Exchange points and GLIF lambdas (source www.glif.is)

8.2.3. Service-oriented peer model

The peer model was also studied with a service-oriented
architecture.

Service Oriented ASTN (SO-ASTN) [BAR 05] is the proposition
of a service plane on top of the automatic switched transport
networks architecture. Its applications-oriented interface proposes to
query information like delay, dit error ratio or the usable or available
bandwidth of a set of resources corresponding to the virtual topology
requested.

Similarly, [VER 07] proposes a service-oriented architecture where
domains publish the services they propose in a directory. Users choose
which service corresponds to their needs and invoke it.

8.2.4. Conclusion

In this peer model, descriptions and information on resources are
made available to the user, who can choose those he wishes to use



196 Computing Networks

before requesting them from the broker. In this model, the service is
composed of users with the knowledge of what can be offered by the
provider. This leads to privacy problems. Whereas this model is adapted
to National Research and Education Networks (NRENs), network
providers today still raise objections. It is worth noting that GEANT2,
which links European NRENs, proposes a provisioning service that uses
the overlay model via AutoBAHN (Automated Bandwidth Allocation
across Heterogeneous Networks) [CAM 06].

8.3. Overlay model for bandwidth-providing services

Another model for resource reservation is possible. In this model,
users specify their constraints and insert them into requests that they
send to a broker. Depending on resource availability, the policies and
the constraints expressed by the user, the broker will assign resources to
serve the request.

In this model, it is not necessary to provide other information on
what is available or not. Like in the public switched telephone work,
when a user calls someone he implicitly sends a request for a voice
circuit between two points in the network. If the network has enough
resources and the receiver is available, the call is carried out and
resources are devoted to it. Otherwise, the call is simply rejected. The
establishment of rented connection lines is done in a similar fashion,
except that it involves manual operations.

8.3.1. GNS-WSI

Grid Network Service – Web Services Interface (GNS-WSI) is an
interface that has been proposed to perform bandwidth reservation in
networks. With this interface, users can request end-to-end paths in
advance. The underlying network is abstracted as a cloud. This interface
can be used: between customers and resource managers (the resources
belong to them), or between customers and resource coordinators
(the resources do not belong to them, but they sell those they obtain



Bandwidth on Demand 197

from resource managers or other resource coordinators, using the same
interface). Figure 8.3 shows this stacking via the interfaces represented
by arrows.

This interface was proposed by G-Lambda [WEB 08], a research
project carried out at the National Institute of Advanced Industrial
Science and Technology, KDDI R&D Laboratories, NTT, and the
National Institute of Information and Communications Technology.

Figure 8.3. Links between clients, resource coordinators and resource
managers

8.3.2. Carriocas

In the Carriocas project (Distributed Computing over Ultra High
Optical Internet Network) [AUD 07, VIC 09b], the scheduling and
reconfiguration service accepts requests from clients, which can be
higher-order service providers, and serves them using its internal
representation of the network and computing resources. The service
assumes network resources are provided by a network operator
as a connection service described by end points and capacities.
Similarly, computing resources are published in the scheduling and
reconfiguration service by their owner.



198 Computing Networks

8.3.3. StarPlane

The StarPlane project enables the dynamic configuration of the
optical network supporting DAS-3, the Dutch grid. The network control
plane is based on DRAC (Dynamic Resource Allocation Controller).
This interface provides both information about the availability of
resources and the means to reserve them. The StarPlane Management
Plane [GRO 09] provides applications with an interface that enables
constraints to be specified on the feasible abstracted services.

8.3.4. Phosphorus

European project Phosphorus proposes a service plane for grids that
manages both the computing resources and the network – the Network
Service Plane – which receives requests from grid middleware. Based
on the knowledge it has, this service plane determines an end-to-end
path across domains [FIG 07]. This service plane is connected, to
the south, to network resource provisioning systems such as UCLP,
DRAC or ARGON (Allocation and Reservation in Grid-enabled Optic
Networks). In this context, Grid-GMPLS (G2MPLS) [CIU 08], an
extension of GMPLS, has been proposed to act as a control plane taking
computing resources into account.

8.3.5. DRAGON

The Dynamic Resource Allocation via GMPLS Optical Networks
(DRAGON) project aims to develop the technologies required to
perform dynamic and in-advance reservations of network resources
in a heterogeneous and multi-domain network. The domains show an
abstract version of their internal topology to other domains. DRAGON
provides advance circuit reservation, carried out from a client-side
application programming interface. This application programming
interface communicates with the application specific topology builder,
which finds the resources adapted to this request. DRAGON can manage
multi-domain networks. Each network has its own network aware



Bandwidth on Demand 199

resource broker that can exchange routing and signaling information
with other domains.

8.3.6. Conclusion

In the overlay model, no information is provided to users apart
from the information they obtain when notified their request has been
accepted, which cannot be avoided. Nevertheless, the information must
be exchanged between domains in the case of a multi-domain request,
if this is implemented by a chain model where each domain forwards
requests to the next one for validation (see Figure 8.4a).

(a) Tree (b) Chain

Figure 8.4. The tree- and chain-models for reservation

If a multi-domain is implemented using the tree model, domain
composition can be done by a third entity having a customer/provider
relation with both domains. This requires a minimum amount of
topological information, such as the domain’s peering points. If the
customers know the resource managers, it is a possible alternative, as
shown in Figure 8.4b.

8.4. Bandwidth market

In the two sections above, we saw two different models. One in
which users choose the resources they want to use, and one in which the



200 Computing Networks

network provider chooses resources based on user constraints. There is
a third solution for resource allocation: a commodity market where both
sides announce their buying and selling bids [CHE 01].

In these commodity markets, sellers propose bandwidth at a given
price (ask), buyers request it at another price (bid), and the market
maker carries out the operations. Different types of auctions are
possible, but double auctions are usually used: buyers and sellers
propose a price and a description of the goods; then the market maker
sets a price so that the market is cleared of the transactions that can be
made given each proposal. All the sellers that have requested less than
this price sell to all buyers have that offered more.

A commodity market implies that bandwidth has been transformed
into a commodity, by defining standardized contracts to describe offers
in order to have a liquid market in which goods are not too specific
and adapted to precise situations [FUS 02]. When the commodity is
a segment (a point-to-point connection), its source and destination
must be specified, as well as its QoS attributes, the duration of the
“reservation” and the date at which it will begin.

Segments can be combined and possibly re-sold, enabling arbitrage
if the equivalent paths do not all have the same spot price. The
possibility of combining segments and buying a set (a path) led Jain
and Varaiya [JAI 05] to suggest combinatorial double auctions with an
integer linear program to realize the operations.

Advance bandwidth reservation can be seen as a derivative of the
commodity as a futures contract. Other derivatives, such as options,
could also be used. This market would require risk transfer, hedging
and speculation on future bandwidth needs or shortages between certain
exchange points. All this would make the bandwidth’s spot price
comparable to that of petrol or cotton, in that it would vary depending
on supply/demand and speculation.

Bandwidth is similar to energy in that it is not a storable good.
At the beginning of the 2000s, however, some petrol companies like



Bandwidth on Demand 201

Enron, had created a bandwidth market. This market failed to mature
and disappeared with Enron. The reasons for this failure are not clear,
but some explanations proposed include the relatively low price of
bandwidth, as well as the technical difficulties in providing bandwidth
on demand at the beginning of the 2000s.

8.5. Conclusion

The increase in demand from some users has led network operators
affirm that the current Internet model is not viable. In addition to this,
with the current model not being in a position to provide guaranteed
bandwidth to users who want to pay for this service, new sharing
models are being studied or have been deployed in specific contexts (e.g.
NRENs). These reservation models fall into three categories, depending
on whether the allocation decisions are taken by customers, resource
managers or coordinators/market makers. All the models presented are
focused on bandwidth requests, even if the Phosphorous deliverable
mentions that malleable requests can also be proposed in the interface.
In the mechanism design theory, two typical solutions to the problem
of resource allocation exist [HUR 06]: parameter transfer (the client
submits a request to the operator or the operator exposes the availability
of its resources to users); and direct revelation (client and operator give
details of their parameters to a third agent). It is likely that network
operators will favor solutions where they do not need to provide any
information.

Optical networks provide a huge amount of bandwidth. The
switching paradigm currently used is optical circuit switching, and
requires configuration and control. To do this, the functions required
for manipulating a network have been grouped into different functional
planes.

Unified control planes such as GMPLS offer a set of functions to
control these networks and establish circuits for different technologies.
In addition to this, management planes enable the management of



202 Computing Networks

configuration-, supervision- and performance-related functions. These
technologies have been designed for the operator itself.

For some time now, however, research and network communities
have been trying to provide users with provisioning on demand.
Different approaches have been studied for different contexts: NRENs,
private networks, telcos and the Internet.

Among them, the service-on-demand approach for bandwidth
delivery establishes a clear interface between customer and provider,
where the former expresses his constraints in a request addressed to
the latter. If it is accepted, this specification acts as a contract, like a
service level agreement. These solutions are of interest to users because
they move the risk of blocking, which exists for each packet in a packet
network, of the reservation procedure. With this method, and provided
that the request is not rejected, users could plan their network use and
get the resources they need to accomplish their tasks as planned.

For now, network neutrality is the dominant model and bandwidth
allocation is determined by: the TCP/IP protocol suite; TCP’s control
and congestion algorithms; losses and arrivals; and departures of users.

The service provided is the right to use the access links provided
by the network operator, but it is not based on the bandwidth obtained
by one flow in particular. There is no agreement between the user
and the network provider regarding bandwidth allocation because the
latter only manages the network’s capacity and not the exact way in
which it is shared. In this context, the user cannot predict performance.
Predictability is important when the network is not the only resource
used. For example, if the network is used to interconnect different
sites for video-conferencing, in the absence of sufficient network
performance the conference is affected. If a dataset has not reached the
machine where it is supposed to be processed at the time the reservation
starts, there is a waste of CPU time or money.



Chapter 9

Security of Computing Networks

This chapter focuses on the requirements of network security in
distributed systems, by taking an example from among the most
demanding areas: medical applications. It then reviews the techniques
encountered in traditional grid systems and explains how they
correspond or not to needs.

9.1. Introductory example

The medical imagery community is confronted with several
challenges that make it one of the most constrained communities for
distributed infrastructures [VIC 09a]:

– the quantity of data to process, which is several dozens of terabytes
annually;

– the distribution of data sources over territories;

– the heterogeneity of data to be processed;

– the confidentiality of medical data, which is necessary for
preserving the privacy of patients.

Security demands are important and must imperatively be addressed
by the solutions implemented in the systems in order for distributed

203



204 Computing Networks

computing to be accepted by the medical community. All the data for
which confidentiality must be preserved belong to patients. Strict rules
for the protection of personal medical information must be followed,
particularly when the data are transported from acquisition sources
to remote processing and storage sites. The development of secure
communication channels is indispensable. Nevertheless it is not enough
to guarantee the protection of the stored data and associated metadata.
For example, a file’s name usually carries significant information by
itself, and possibly even extra information that may be sensitive.
The process of data analysis applied is sensitive in itself, because
it characterizes the nature of the pathology that affects the patient.
Many scientific studies of medical data are carried out from sets of
anonymized data, and on local resources only, in order to apply these
constraints that are strongly delimited by law. Despite such a need for
data privacy, the use of new data is important for clinical applications
and can even be an obligation imposed by clinical ethical committees.
The potential advantages for a patient whose data are used in a scientific
study should actually always be applicable to this person.

It is not acceptable, for a clinical institution, that the access to
its data resources should be managed externally by a centralized
organization. Access control policies must ensure that each organization
can control its own medical data and no other organization’s data.
The access-control technique must enable the implementation of fast
access-control rules in the context of medical studies whose lifespan
is short (typically a few weeks), as well as the composition of very
dynamic groups (such as the small groups of specialists involved in
each study). Despite these strong constraints, computing grids were
identified as an important tool for supporting various biomedical
research activities, including the processing of: large medical databases;
large-scale epidemiology studies; statistical population studies; medical
simulation; and research on rare diseases.

To summarize, medical applications require the distributed
computing environment to guarantee data protection and confidentiality
as well as adaptable and dynamic access control:



Security of Computing Networks 205

(1) ensuring data protection: data are not accessible to any stranger
even if the execution infrastructures can physically extend to multiple
organizations. In particular, data must not be exposed during transfer or
during the storage on disk;

(2) confidentiality to ensure that no external, unauthorized person is
capable of following the data stream or the computations applied to the
data of any patient in particular. It is also necessary to ensure that no-one
from the outside can access the data;

(3) dynamic and adaptable access control to enable a entirely
personalized and clearly defined context.

In the next section we explain how security layers existing in the
current production grids partially cover data- and resource-protection
needs, and then show their limits and present a few new techniques
based in particular on infrastructure-virtualization techniques.

9.2. Principles and methods

Grid infrastructures allow the large-scale alliance of communities
of users and their institutional resources. The resources considered are
hardware processing and storage resources as well as scientific data,
computing procedures or data-analysis algorithms. One of the main
obligations of the middleware is therefore to precisely control the way
in which the resources used are shared: access control, delegation and
enforcement of policies on a large scale – even sometimes at a global
level.

The main security needs in a grid are:

– user authentication;

– authorization of access to distributed resources;

– integrity of the data and codes stored and moved;

– confidentiality of the data and codes stored and moved;

– non-repudiation.



206 Computing Networks

Ten years ago, it was acknowledged that Internet technologies only
brought partial answers to these questions. The Internet architecture
manages the communication and exchange of information between
computers but does not provide integrated approaches for the
coordinated use of resources over several sites. As a result, specific
security solutions were deployed that supported rights and policies
management when computations extend to several institutions, as well
as resource- and service-management protocols that secured the remote
accesses to computing resources and data.

9.2.1. Security principles

Below we restate the security principle set out in [SAL 75] that must
guide the design of any security system:

– Economy of mechanism: the security system must be as simple
and as small as possible. One single well-locked access must be enough
to protect the treasure hidden in the safe.

– Fail-safe default: by default, permissions are not granted.
Authorization is given explicitly and as nominatively as possible. The
door is automatically closed. It is only opened to those who are invited.

– Separation of privileges: when possible, install a protection
mechanism that requires two different keys to unlock. This method is
more robust than the one that allows access with a single key. Preferably,
two different locks will be put in.

– Least privilege: every program and every user of the system must
be able to operate by using the smallest set of privileges possible to
complete the job.

– Least common mechanism: minimize the number of mechanisms
that are common to more than one user.

– Psychological acceptability: it is essential that the man-machine
interface be designed to facilitate usage, so that users regularly and
automatically apply the protection mechanism correctly. An unused
security system is useless. It is useless to put in a lock if the door of
the safe is always left open.



Security of Computing Networks 207

9.2.2. Controlling access to a resource

The sharing of distributed resources within a multi-domain
environment raises complex security-policy questions, at the core of
which is the capacity to make an authorization decision when a shared
resource is accessed. The fundamental question that is posed each time
a resource is invoked is: “does this user (or his program) have the
permission to access this resource?”

In traditional grid security systems, the first resource the user
accesses authenticates him using his certificate provided by a public
key infrastructure (PKI). This resource, through a trusted third party,
controls the association of the public key provided and provides a user
identifier (for example a connection name or a unique Lightweight
Directory Access Protocol name). Resources can then consult (directly
or indirectly through another entity) access control list (ACL) bases
that indicate the permissions associated with this user. Authorization
is then granted or witheld, depending on this ACL. Figure 9.1, taken
from [FOS 98], is a diagram of the main steps necessary for authorizing
access to a grid resource.

Security solutions for grid services [FOS 98] are generally based on
the combination of a Global PKI for the network environment and one
ACL per resource. The resource proceeds to user authentication on the
basis of the authentication certificate provided by the user and makes an
authorization decision based on the ACL of the resource and the identity
of the user (for example a connection name or the distinguished name).

In grids, communities of users are identified as virtual organizations
(VOs) that group together users and computer resources from the
same establishment and collaborate in the context of a common
objective. Technically, VOs are implemented in grid infrastructures
using the security layer that is the very basis of grid middleware. The
implementation of VOs necessitates at least user authentication.

The most widespread grid security infrastructure is Grid Security
Infrastructure or GSI, the security infrastructure of the Globus system



208 Computing Networks

 

Figure 9.1. Steps necessary to authorize access to a grid resource [FOS 98]

that is an extension of the X509-certificate standard based on PKI
security.

The GSI generates certificates that conform to the X.509 standard
and include four primary parts:

– the name of the subject representing the certificate;

– the public key of the subject;

– the identity of the certification authority (CA) that signs the
certificate;

– the signature of the CA.



Security of Computing Networks 209

This model was widely used in grid infrastructures, including
the very-large-scale European grid (Enabling Grids for EsciencE or
EGEE)1 and the American Open Science Grid2.

The GSI offers fundamental security functionalities, such as user
authentication and encryption of the transferred data. The authentication
functionality is used to control the access to resources.

When the grid paradigm was first explored, the emphasis was placed
on the large-scale sharing of computing resources. Access control was
developed at a very crude level. The minimum requirement to access
resources via GSI requires a user to possess a valid user certificate that
was issued by a known CA. Consequently, network access is controlled
by the high-level organization, with a CA generally being used at a
national level. Nevertheless, network access must often be controlled at
a smaller scale, and complementary access-control services have been
provided. For example, in the EGEE grid, VO-management servers
were introduced with the aim of providing per-VO access-control
management. Each server manages VOs independently via a local VO
administrator.

Users can also be linked to different roles and groups within the
same VO. However, few grid services currently available take into
consideration the granularity of groups and roles.

9.2.3. Limits of the authentication approach

The traditional authentication approach has drawbacks in terms of
evolutivity regarding the number of participating domains. In particular,
the load necessary for reconfiguring the shared environment (for
example, adding or dropping a resource, a user or an organization)
is rather high compared to the envisioned dynamic resource sharing.
Although it can be legitimate to require user authentication at the

1. www.eu-egee.org.
2. www.opensciencegrid.org.



210 Computing Networks

level of a local site, authentication at the resource-sharing level is not
necessary in itself in order to make an authorization decision.

A major inconvenience of the authentication approach is that it often
requires a global PKI, which requires that all of the grid’s entities
trust all the CAs of the security domains that make up the grid.
Consequently, if one of the domains is compromised, the entire grid can
be compromised, rather than just the elements in direct relation with the
compromised node. The flexibility of these grids is also affected by the
fact that adding or dropping a domain from the grid generates enormous
administrative overheads. In other words, when the size of the grid
environment increases, its global properties of robustness, flexibility
and security decrease, which severely limits the evolutivity of these
environments.

9.2.4. Authentication versus authorization

Looking at the authorization problems that have contributed to
the implementation of security solutions in distributed networks and
systems, it appears that there are many examples where these problems
have been solved by an authorization-centered approach [IOA 00,
NIK 99, NIK 03] rather than by an authentication-centered approach.

All these solutions are built around a distributed
security-infrastructure model like Simple PKI or SPKI [ELL 99]. These
models are based on the assumption that when a security decision must
be taken, authentication is not necessary in itself, but it is, above all,
authorization that matters. When an entity exposes a resource and
makes it accessible to other users, it is more interested in verifying that
an entity (e.g. a user or a group) is authorized to access this resource
rather than knowing what its name is. In addition, knowledge of the
entity’s name is, in general, insufficient to make the authorization
decision. It is often necessary to examine an ACL defining what this
entity is authorized to do. The ACL associates a name with particular
rights (authorization, capacity or permission).



Security of Computing Networks 211

For example, in a distributed implementation of a firewall [IOA 00],
the firewall needs to know whether a particular packet is authorized to
cross it. If the authorization decision process relies on authentication,
clearly knowing the name of the packet’s sender (e.g. Bob Smith) is
not sufficient to make the authorization decision. The firewall must also
be configured to search an ACL for the definition of what this sender
is authorized to do (e.g. send only Transport Control Protocol [TCP]
packets with port number 80 as a destination through this firewall).

In the authorization approach, the name of the entity required
is the public key only. The true name (for example Bob Smith, Foo
Company) is not used for decision-making when an entity attempts
to access a resource. Therefore, when the entity initiates a transaction
to the resource, it sends its public key and signs the message with
a chain of certificates. This certificate chain is made up of multiple
ordered authorization certificates, each of them delivered by a public
key (the sender) to another public key (the subject) and granting
specific permissions (e.g. a rwxr-xr-x file permissions mask or
an operator.reboot .* privilege). To grant authorization, the
resource controller must examine such a certificate chain from the
resource controller’s public key up to the public key of the entity
accessing the resource. The subject and the sender of each intermediate
certificate must, respectively, be the sender of the next certificate in
the chain or the subject of the previous certificate in the chain. The
intersection of the permissions granted by the certificates in the chain
must be a superset of the permissions required by the access policy of
the resource.

9.2.5. Decentralized approaches

Taking into consideration the recent innovations in operating
systems and IP technologies, a decentralized and distributed approach
to security for grid multi-domain environments has been proposed
in [LAG 05]. The argument put forward is that limited evolutivity of
existing solutions is not inherent to problems that have to be solved, but
rather a consequence of the a priori choice of a technology, namely,
authentificating users on the global scale at the point of access, and



212 Computing Networks

sharing of resources. The basic idea of this alternative approach relies
on the fact that systematic user authentification is not necessary in itself
for taking an authorization decision at the level of the shared resource.
The approach proposed reuses and combines basic security blocks
that enable a totally distributed security architecture to be constructed.
These blocks are network virtualization, Host Identity Protocol (HIP),
authorization delegation and certificates provided by Simple Public Key
Infrastructure.

9.3. Communication security

Beside access control, channel protection is also critical in
distributed environments. A grid environment must provide the same
three fundamental services as a computer: computing, storage and
communication. While network communication is, in a way, an add-on
to the regular personal computer, it is important to understand that the
situation is very different with a distributed system like the grid: the
communication channels constitute the backbone of the grid because
the geographically distributed computing and storage units cannot
collaborate without communicating with each other.

Consequently, and because of the core security principles set
out above, secure communication channels must be the foundations
on which a secure grid is built. In addition to this, these secure
communication channels should be available in an environment where:

– the relations between grid entities – for example users, services,
resources, organizations, etc. – are dynamic and can have a short
duration;

– the network’s interconnection can increase, decrease, move, etc. It
is not a fixed entity regarding location and composition;

– the entities should be able to use the communication infrastructure
in a transparent way: the end user, applications, tools and application
programming interfaces behave as if they were using an ordinary
TCP/IP network, be it the Internet or an intranet.

The deployment and management of secure communication
channels between very dynamic node coalitions must be carried out



Security of Computing Networks 213

by the communicating end points themselves because they have a
better view of what the user and the application need in terms of
communication security.

To ensure communication security, several solutions of physical or
virtual private networks have been proposed and deployed in grids.
Below, we list the different approaches that are based on the OSI model
and inherit the advantages and drawbacks from the corresponding layer
of abstraction:

– securing at the session level. Securing at the session level is very
much used in the Internet. It involves techniques such as SSL and SSH.
It is very close to the user but requires explicit management from the
programmer;

– securing at the transport level. Securing at the transport level is
done mainly across the TLS layer. This level offers more transparency
to the user. Security in Globus and the derived middleware (gLite of the
EGEE) happens at this level;

– securing at the network level. It is possible to create virtual private
networks and establish secure communications at the network-layer
level. It is done with either IP encapsulation within IP or with the IPsec
protocol.

We do not detail these different security technologies, which are
common in the Internet. The interested reader can refer to specialized
books on Internet security.

9.4. Network virtualization and security

Virtualization turned out to be a very useful mechanism for solving
various security and administration problems for sharing a computing
or network resource between several entities or administrative domains.

9.4.1. Classic network-virtualization approaches

Network virtualization exists both at the layer-2 (the link layer) and
layer-3 (network layer) levels of the Open Systems Interconnection
reference model:



214 Computing Networks

– the IEEE 802.1Q Virtual Local Area Network (VLAN) standard
is an example of layer-2 virtualization: VLANs are multiple logical
instances that can coexist on the same physical local network;

– the IPsec standard is an example of layer-3 virtualization: an
IPsec tunnel (with encapsulation within ESP (Encapsulating Security
Payload) or AH (Authentication Header)) gives the illusion of a secure
point-to-point connection, while packets effectively travel using a
multi-hop protocol on an insecure path.

These two solutions also provide access-control functionalities. A
VLAN can be configured by port or by network identifier to process,
receive, send and forward only the packets labeled with correct VLAN
identifiers. This enables different virtual local networks to remain
isolated from each other.

An IPsec stack is associated with a security policy database that
specifies the node’s access-control policy, which is similar to a routing
table or a firewall except that the input rules are generally indexed by a
5-tuple (the source address, source port, destination address, destination
port, protocol number). This policy also specifies what action should
be carried out on the packet. For example, besides IPSec processing
(encryption and/or protection of integrity), actions can also include
packet rerouting or dropping.

Other network-virtualization solutions, based on encapsulations
(IP-in-IP tunnel) or the addition of an identifier (multi protocol label
switching) also enable traffic and communications to be isolated. This
is called L3VPN or L2VPN, depending on the level of abstraction
(network layer or datalink layer) considered.

If the communication that needs to be secured occurs between
numerous distinct entities belonging to numerous administrative
domains, the point-to-point VPN model is not a convenient solution
because the number of tunnels to manage increases with the square of
the number of entities.



Security of Computing Networks 215

New technologies were therefore designed at the level of layers
2 and 3 to enable the management and deployment of the so-called
Provider-Provisioned VPN (PPVPN), in which a service provider is
responsible for managing and deploying a superposition of network
meshes between several remote sites. The links of these meshes are
point-to-point VPN tunnels.

Nevertheless, VPN management and deployment between very
dynamic node coalitions are best solved by the end points themselves
(rather than trusted third parties). This is because they have a better
view of what the user and the communication applications need. It is
possible to use a protocol such as Host Identity Protocol, which enables
true end-to-end VPN solution.

9.4.2. The HIP protocol

In the traditional TCP/IP stack, the IP address plays two independent
roles: location and identification.

The network-level protocols (for example IPv4 and IPv6) use the
location role of the IP address to route packets, while the high-level
protocols (for example TCP and User Datagram Protocol) use the
identification role of an IP address by naming the end points (for
example sockets).

This deliberate confusion between these different roles means
that high-level layers are dependent on location. These layers break
and infringe the end-to-end principle when network mobility and
multi-homing cause modification of the IP address.

The HIP protocol [MOS 06] proposed by the Internet Engineering
Task Force splits up these two roles, while keeping a link between
identifiers and locators. It is a virtualization of the network
infrastructure from a higher layer. The space of identification names
defined by HIP contains the host’s public key, which is called a host
identity.



216 Computing Networks

Since an identifier must sometimes be incorporated in the fixed-size
field of an existing protocol or application programming interface, the
HIP specification also defines the host identity tag, a hash of the public
key truncated to 128 bits.

A typical application of this protocol is to no longer directly use IP
addresses as identifier, but rather the host identity or the host identity
tag. The HIP layer is in charge of the address’s conversion into an
appropriate locator IP, representing the node’s address.

9.5. Conclusion

Security is a very critical aspect of computing networks that
includes, on the one hand, access control to distributed and mutualized
resources, and on the other hand communication security. The most
common solution is the GSI system that uses public-key cryptography
and brings:

– a secure communication (authentication and confidentiality);

– a relatively centralized security system;

– single sign on with delegation of credentials.

In this chapter, we have shown that addressing security needs can
be very demanding. The solutions deployed today in grids do not
fully address these needs but enable their robust usage by scientific
communities. The extension of network-computing technologies to
the industrial world and to the general public requires simpler, more
flexible and extensible solutions. Infrastructure virtualization as well
as distributed-security approaches are very promising solutions for the
dynamic creation of personalized and adaptable trust domains.



Chapter 10

Practical Guide for the Configuration of
High-speed Networks

Transporting large volumes of data over long distances requires a
hardware and software configuration of the equipment used for sending
and receiving as well as an adapted transport protocol. Using parallel
flows is a technique often applied by grid users to compensate for
parametering difficulties or for the shortcomings of certain hardware
configurations.

Furthermore, today high-speed transport protocols with the same
fairness and convergence properties as Transport Control Protocol
(TCP) are available. For the most part, they are available by default
in modern operating systems. They help users to considerably increase
performance on Internet links with very high bandwidth-delay products.

Chapter 5 has shown that obtaining optimal performances in a
multi-flow context is a technical problem that remains difficult to solve.
It is therefore necessary to use diagnostic and calibration tools, such as
PATHNIF [GUI 09].

217



218 Computing Networks

In the following, we provide a few practical tips for choosing the
hardware configuration and then adjusting the software configuration to
improve communication performance in a very high-speed network.

10.1. Hardware configuration

10.1.1. Buffer memory

Buffer memory is designed to temporarily store packets in
intermediary equipment throughout their journey along a network path.
It is one of the most common and most efficient ways for limiting the
impact of traffic bursts and softening the effects of congestion. These
buffer memories can be put at the sender and the receiver, as well as at
all the network’s packet routers and switches.

To get good performance, potentially all the flows carrying out bulk
transfers would need to have access to a buffer memory space of the
same order of magnitude as their bandwidth-delay product. Indeed,
this value corresponds to the maximum quantity of data that can be in
transit in the network and has not yet been acknowledged. A smaller
quantity in the sending host, for example, does not allow congestion
events in the network to be anticipated. A larger quantity is useless.
In principle, when the emitter receives a packet acknowledgment, it
releases the packet that had been copied in buffer memory for possible
retransmission in case of error.

There are also buffer memories in intermediate routers. Over the
past few years, numerous studies have tried to determine the ideal size
of buffer memory to use in routers. There is no consensus yet on this
issue, and the size used by most router vendors remains that of a 100 ms
bandwidth-delay product shared by all flows. Nevertheless it would
seem that the optimal size is smaller and inversely proportional to the
number of flows traversing the router.

10.1.2. PCI buses

The PCI (Peripheral Component Interconnect) bus (like its later
versions) is a serial local bus that has been used in most computers



Practical Guide 219

since the 1990s. The advantage of this architecture is that it enables two
peripheral devices connected to it to communicate without having to go
through the processor. The PCI bus can become a bottleneck, however,
because data must pass at least once through it before being sent by the
network card.

Indeed the first version of the PCI-X standard, with its theoretical
maximum throughput of 1,066 MB/s, does not allow the optimal use
of a 10 Gbit/s card but is more than enough to allow a 1 Gbit/s1 card
to operate at nominal speed. As a comparison, as one PCI-express
line (a new high-performance standard evolved from PCI) is able to
achieve a full-duplex throughput of 2,000 Mbit/s, a PCI-express card x8
(using eight PCI-express lines) is necessary to be able to make 10 Gbit/s
transfers.

10.1.3. Computing power: CPU

A few years ago, the equation 1 GHz = 1 Gbit/s was often
mentioned to highlight the existence of a bottleneck at the level of the
processor, which is used for data processing, packeting and copying
the packets multiple times into the right queues. This is less often
the case these days because of the systematic use of direct memory
access to offload memory-copy operations from the CPU and because
of the evolution of CPU frequencies and architectures (the switch
to multi-CPU/multi-core architectures). The problem can, however,
reappear for 10 Gbit/s interfaces because the number of packets to
process per second significantly increases.

One solution to reduce the processor’s workload is to increase the
size of packets, if this feature is available in the network interface card.
In this case, jumbo-frames are used. In this instance, it is necessary to
make sure that large frames are supported by all the network equipment
on the path (path maximum transfer unit). If the processor is composed

1. The PCI-X standard had been proposed with the aim of replacing “normal” PCI
cards, whose throughput is limited to 1,064 Mbit/s.



220 Computing Networks

of several cores, it also possible to share the load more efficiently
between the different cores by using several processes to carry out
the transfer task. It is nevertheless necessary to check that packets
transmitted and received in parallel are replaced in the correct order.

The processing required by some protocols can be costly, for
example in the case of the selective acknowledgment or SACK
optimization, which improves the detection of simultaneous multiple
losses. When many packets are in flight and non-adjacent losses are
observed, the protocol must analyze the complete data structure to find
the actual losses.

10.1.4. Random access memory: RAM

The speed of access to the random access memory (RAM) also
impacts performance. During a network transmission, there are on
average four exchanges with the RAM. The current RAM modules
have enough bandwidth to handle very high throughputs. For example,
for a DDR200 PC1600 module operating at 200 MHz on a 100 MHz
bus (FSB), the theoretical maximum throughput is 12.8 Gbit/s. The
technique, called dual channel (use of RAM modules in identical pairs),
allows the RAM’s bandwidth to be doubled.

Nevertheless, the RAM is shared by the entire system and it is
therefore necessary to correctly dimension this component to prevent it
from becoming a bottleneck. Since at least four RAM reads/writes are
necessary when routing a packet in the network card, it is necessary to
provision five to six times more bandwidth than the network throughput
sought.

The ideal RAM size will depend on the volume of data to be sent;
it is necessary to have at least the capacity to put all the buffer memory
used by TCP into RAM in order to avoid round trips with the disk.

10.1.5. Disks

Read and write operations on disks are necessary for moving the
data to be processed. A bottleneck can therefore appear at this level. In



Practical Guide 221

addition to the limitations related to the type of bus and disk interface
(SATA 2,400 Mbit/s, IDE 1,064 Mbit/s, SCSI up to 2,560 Mbit/s), the
properties of the hard disk must also be taken into consideration.
Typical transfer speeds for modern disks range between 400 Mbit/s and
800 Mbit/s, which is not enough to handle a 1 Gbit/s data stream.

To limit the impact of this parameter, a common technique used
is to perform simultaneous parallel writes on multiple disks. This
can typically be done using the redundant array of independent disks
technology. Faster disks can also be used, such as those using the solid
state drive technology. They also have drawbacks, however, including
limited size, high cost, etc. Using a larger memory cache can also
contribute to improving performance.

10.2. Importance of the tuning of TCP parameters

This section presents the importance and necessity to tune the
TCP parameters in order to obtain satisfying performances in the case
of very-high-speed networks. Taking into consideration the overhead
caused by TCP, IP and Ethernet headers, the maximum throughput that
can be obtained at the application level on a 1 Gbit/s Ethernet link is
941.5 Mbit/s. In grids, however, users who might not be network experts
can rarely obtain such performances.

This problem is illustrated in Tables 10.1 and 10.2, taken from
[GUI 06]. Table 10.1 corresponds to the matrix of the average
application throughput (averaged over 300 s of continuous transfer with
Iperf ) for a single TCP flow between two 1 Gbit/s machines located
on different physical sites of the Grid50002 platform at the time of its
launch in 2005. The experiment was carried out using the default TCP
parameters of the GNU/Linux images installed on the different sites.
Some sites, such as Orsay or Nancy, had a different initial configuration
(especially the size of buffer memory used by TCP, which was greater
than the default value of 256 KB used in the GNU/Linux kernel), which

2. www.grid5000.org.



222 Computing Networks

explains their better performance. For most site couples, the average
application throughput is below 100 Mbit/s, which corresponds to a
performance deficit of more than 90%.

Source
Bordeaux Grenoble Lille Lyon Nancy Orsay Rennes Sophia Toulouse

D
es

ti
na

ti
on

Bordeaux 58,1 61,8 55,9 81,2 111 76,3 68,9 181
Grenoble 32,3 34,0 151 39,8 33,7 34,3 52,6 48,4

Lille 53,3 70,0 53,6 112 199 55,0 44,3 33,9
Lyon 61,5 230 71,2 97,6 106 49,8 100 72,0

Nancy 48,0 162 78,5 52,4 777 54,7 43,3 32,0
Orsay 67,8 54,1 150 58,8 936 68,7 36,2 50,8

Rennes 64,2 33,6 46,6 41,4 45,5 56,5 27,4 26,3
Sophia 47,0 46,1 29,5 67,4 28,9 22,3 25,1 34,0

Toulouse 166 47,6 29,8 65,7 29,7 44,3 26,3 36,1

Table 10.1. Average throughput matrix for an unadjusted TCP stream between
two nodes located in two different sites of Grid5000 at the time the platform
was created in 2005. The expected throughput is 941 Mbit/s because each

sender has a 1 Gbit/s interface

Table 10.2 presents the results of the same experiment after having
put in a more appropriate value for the buffer memory used by TCP.
In our scenario, the value chosen is 4 MB, which is greater than the
bandwidth delay product of all the possible network paths (because
the maximum round trip time – RTT – on Grid5000 is a bit more
than 20 ms). In this case, a clear improvement in the performance of
the various flows is observed. The average application throughput on
most site couples is greater than 800 Mbit/s, which corresponds to a
performance loss of about 15% only.

Consequently, it was possible to modify the default kernel images
of the sites in order for all users to be able to benefit from adequate
performance without worrying too much about fine-tuning TCP.

10.3. Short practical tuning guide

This section summarizes the elements presented in Chapter 5 and
illustrates the different practical steps a user has to follow to correctly
configure a path between two end hosts in order to benefit from



Practical Guide 223

Source
Bordeaux Grenoble Lille Lyon Nancy Orsay Rennes Sophia Toulouse

D
es

ti
na

ti
on

Bordeaux 771 725 862 911 884 852 875 685
Grenoble 900 701 925 812 893 787 911 647

Lille 738 838 120 922 848 916 598 579
Lyon 425 912 786 904 740 864 926 730

Nancy 725 851 742 865 854 938 931 622
Orsay 799 866 777 869 936 849 878 523

Rennes 912 831 787 859 914 912 839 651
Sophia 901 839 653 543 611 900 321 694

Toulouse 928 859 784 882 933 923 939 909

Table 10.2. Average throughput matrix for a TCP stream between two nodes
on two different Grid5000 sites after tuning the configuration

good performance during the transfer of a large quantity of data on
GNU/Linux systems.

10.3.1. Computing the bandwidth delay product

The first step consists in trying to identify the values of some
characteristics of the path crossed. This can also be a maximum value
of these characteristics in order to configure a worse/better case. To
compute the bandwidth delay product, estimation of the RTT and of
the maximum capacity of the path is needed.

The estimation of the RTT can be done very easily by using the Ping
utility, which can also collect information on the average loss rate, p,
of the path. This tool enables an estimate of the average throughput
attainable using a response function to be computed from the transport
protocol used (which will give a maximum boundary). However in the
case of a network that is not very congested, the loss rates are so low
that they are sometimes difficult to measure.

The link’s maximum capacity is harder to estimate. A link-capacity
detection application like pathload3 can be used. Pathload uses the

3. See www.cc.gatech.edu/fac/Constantinos.Dovrolis/bw-est/.



224 Computing Networks

spread of a packet train to calculate an estimator. The nominal capacity
displayed on the network interface can also be used in to get a
worse/better scenario.

10.3.2. Software configuration

The two most important parameters are the size of the buffer memory
used by TCP and the size of the queue in the network card’s driver.

Depending on the position of the end host, it will be necessary to
modify the size of buffers: the write buffers for data sending (tcp_wmem
and wmem_max, which are found respectively in /proc/sys/net/ipv4 and
/proc/sys/net/core); and the read buffers for data reception (tcp_rmem
and rmem_max).

The tcp_*mem are value triplets that correspond to the minimum, the
initial and the maximum memory value that can be attributed to a TCP
socket. The *mem_max corresponds to the total memory available for
the various open TCP connections. In each case, the max value must be
at least equal to the bandwidth delay product.

The other parameter, txqueuelen, must be configured using ifconfig,
the standard GNU/Linux utility for configuring network interfaces. The
command line to use looks like this:

ifconfig IF txqueuelen VALUE

where IF is the name of the network interface considered and VALUE
the value of txqueulen to use. This number is computed relative to the
maximum size of the congestion window wanted. In the ideal case, it
must be possible to place the entire window in the queue, therefore:
V ALUE � BDP/1, 5004.

4. 1,500 is the approximate value of an Ethernet packet’s maximum size.



Practical Guide 225

It should be noted that it might not be possible to modify this
parameter. The ability to modify the parameter will depend on the
implementation of the network card’s driver.

10.3.3. Other solutions

If, after this software configuration phase, the performances obtained
are still not satisfactory, it is possible to explore the following options:

– if the RTT or the loss rate, p, is significant, it can be advantageous
to use a high-speed TCP variant such as those presented in Chapter 5.
This is done by simply changing the value of the tcp_congestion_control
variable that is found in /proc/sys/net/ipv4/ in order to change the TCP
variant that will be used by all TCP connections opened from then on5;

– the use of several parallel TCP flows can significantly improve the
performances, as shown in Chapter 5;

– in order to achieve more significant throughputs, it is also
possible to use larger packet sizes (maximum transfer unit), called
jumbo-frames, from end-to-end in the intermediary equipment. This
has the effect of reducing the headers’ overhead and increasing the
effective throughput of the network (going from a throughput loss of
52/1, 500 = 3.5% per packet to 52/8, 192 = 0.6%, for example);

– it can also be interesting to study the characteristics of the
hardware used in end hosts in order to determine whether there is
already a hardware bottleneck. It is not unusual for the PCI bus to be
under-dimensioned compared to throughput needs.

PATHNIF6 explores all these possibilities, helps users to configure
end hosts in the best way, and determines where the bottlenecks are
located on a network path.

NOTE. It is important to be aware of the impact of adding buffer
memory on a network path, especially regarding latency increase.

5. It is only valid if the modules (or the kernel) corresponding to these variants were
compiled.
6. See http://ens-lyon.fr/LIP/RESO/Software/PATHNIF/.



226 Computing Networks

This type of operation is necessary to obtain good performance with
applications necessitating a significant network throughput (e.g. File
Transfer Protocol or FTP, video streaming video), but it can have a
negative impact on all of the applications that depend strongly on
latency (e.g. voice-over-IP and online games). To solve this type of
problem, it is advisable to implement a quality of service policy in order
to give greater priority to packets sent by applications penalized by a
high latency.

10.4. Use of multi-flow

This section presents an experiment that illustrates the benefit of
using parallel flows in order to obtain better performance from the
network.

Parallel flows can be used in different ways. Some applications can
natively use several parallel flows, such as Iperf, the application that
was used to carry out the following experiment. This is also the case of
most peer-to-peer applications that use a large number of simultaneous
connections to carry out a file transfer. The other way consists of
using a software library such as PSockets [SIV 00], which transforms
the standard calls to the socket library in order to use parallel flows.
This does, however, require specific recompiling of the applications
concerned.

In this experiment, carried out between the Grid5000 sites of Nancy
and Rennes (France), the number of parallel flows used for making
simultaneous, one-way transfers between 11 node couples was made
to vary. Each node is capable (and configured to this end) of sending
at 1 Gbit/s and all of them share a 10 Gbit/s bottleneck. The link has
an RTT of about 11 ms. The TCP variant used in this experiment is
BIC-TCP. Each flow is started separately (with a one-second interval)
in order to avoid interactions during the Slow Start phase.

Figure 10.1 shows the impact of the number of parallel flows on the
aggregate average application throughput. It can be noted that, as the
number of flows is increased, a smoother and greater aggregate average



Practical Guide 227

application throughput is obtained, which represents a better use of the
link’s capacity.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 0  100  200  300  400  500  600  700

A
gg

re
ga

te
d 

go
od

pu
t (

M
bp

s)

Time (s)

Aggregated goodput

(a) 1 flow per transfer

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 10500

 0  100  200  300  400  500  600  700

A
gg

re
ga

te
d 

go
od

pu
t (

M
bp

s)

Time (s)

Aggregated goodput

(b) 2 flows per transfer

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 0  100  200  300  400  500  600  700

A
gg

re
ga

te
d 

go
od

pu
t (

M
bp

s)

Time (s)

Aggregated goodput

(c) 5 flows per transfer

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 0  100  200  300  400  500  600  700  800

A
gg

re
ga

te
d 

go
od

pu
t (

M
bp

s)

Time (s)

Aggregated goodput

(d) 10 flows per transfer

Figure 10.1. Example of the impact of the number of parallel flows on the
aggregate average application throughput

Table 10.3 summarizes the results obtained in this experiment. We
observe an increase in the application throughput that can go up to 10%.
Jain’s fairness index [JAI 91] is an index that enables the fair sharing of
a resource to be quantified. In the case of this experiment, we notice that
the fairness is not impaired by the use of these parallel flows.

NOTE. The use of parallel flows has a strong impact on network sharing
between different hosts sharing a link. Indeed, while TCP allows fair
bandwidth sharing, this occurs at the flow level. A host that uses a larger
number of flows7 than the others will obtain a larger share of bandwidth

7. As long as it does not congest its own access link.



228 Computing Networks

Number of flows per host 1 2 5 10

Total number of flows 11 22 55 110

Aggregate average application throughput (Mbit/s) 8,353.66 8,793.92 8,987.49 9,207.78

Average application throughput per flow (Mbit/s) 761.70 399.83 163.53 83.71

Application throughput gain — 4.9% 7.3% 9.8%

Jain fairness index per flow 0.9993 0.9979 0.9960 0.9973

Jain fairness index per transfer 0.9993 0.9994 0.9998 0.9998

Table 10.3. Results of the experiment using multiple parallel flows

than them. Mechanisms have been proposed – especially at the router
level – to try to solve this problem, but are not currently deployed on
the Internet.

10.5. Conclusion

In this chapter, we highlighted the hardware and software factors
influencing the end-to-end performances obtained by a TCP connection.
We provided a brief guide to tuning the configuration parameters,
enabling users to improve the performance of their transfers in
very-high-speed networks.



Conclusion

From Grids to the Future Internet

Since their invention two decades ago, the Internet and the Web
have had a very significant impact on our lives. By enabling us to
discover and access information on a global scale, they have enabled
the very rapid expansion of a completely new industry and brought a
new meaning to the verb to surf. Despite this, simply being capable of
accessing information, as numerous and diversified as it is, is becoming
increasingly insufficient. We would also like to be able to process this
information and, progressively, want to exploit it in a cooperative way,
in distributed teams. It is this need that has pushed the creation of the
grid – an infrastructure that enables us to share capacities, to temporarily
integrate new services and resources in and between businesses, and that
enables active collaborations in distributed environments belonging to
multiple organizations and groups.

Today the massive deployment of optical fibers to homes is on
the way to revolutionizing not only the field of telecommunications
but also that of computation, and even of the computing sector as
a whole. The massive increase in access rates and connectivity will
enable the globalization of computer resources and the construction
of high-performance or ubiquitous distributed systems that are able to
address the increasing computing needs of large scientific applications,
and also of many industrial, domestic and entertainment applications.

229



230 Computing Networks

This book has endeavored to show that these hardware advancements
and the evolutions of uses push the software and protocols necessary for
network use and coordination of exchanges to their limits. Traditional
approaches do not in any way guarantee that the potentially accessible
capacity is actually achievable.

For example, we explained that in a simple computing session in a
distributed environment, an initiator sends data and control programs to
a set of computing resources, waits for the results, iterates this process
a certain number of times and finally ends the session. The finer the
computing grain, the more significant the end-to-end transmission delay
becomes until it risks damaging the entire application.

It is also desirable, at the level of computing nodes, to minimize
the processing cost related to transmissions. The volume of data
transported by applications in many scientific domains (for example
genomics, medical imagery, particle physics and astrophysics) is on the
way to reaching the scale of the terabyte. Problems linked mainly to the
scale factor, heterogeneity and dynamicity at multiple levels are starting
to appear. These problems call for appropriate programming paradigms
and control software, as well as efficient and specific communication
protocols.

The transportation of massive amounts of data is likely to congest
current links (or certain critical points) for very long periods without
necessarily guaranteeing an effective and correct transfer of all the
data. Certain sessions that are too long can fail and simultaneously
prevent the circulation of short and urgent messages. Communications
taking place on a computing grid also intensively use reliable data
distribution and collective-operations mechanisms that we do not know
how to efficiently process with traditional point-to-point protocols. This
is added to by the instability of the load and availability of the network
links used during transfers, which can handicap the job scheduler in
charge of determining an efficient job sequence.

We have shown that new challenges must be overcome at
the level of communication software and protocols to make these



Conclusion 231

infrastructures efficient. The extreme heterogeneity of performance
and reliability of the cloud network must be reconciled with
intense data movements, which are critical determinants of an
application’s performance. Therefore, although grids offer considerable
potential through aggregation of resources, good application-execution
performance can be hard to obtain in practice because of the inadequacy
of the data-transfer protocols and software. The different chapters of
this book have detailed the facets of performance, quality of service
and communications security in distributed computing environments.
They have listed the needs and presented the different solutions that are
functional today and will be more widely diffused in the future, such as
bandwidth services and performance measurement on-demand.

Indeed, pushed by the needs of on-demand access to computing
resources, transparent access to data and dynamic composition of
distributed services, the grid and its successor – the computing cloud
– promise to offer completely innovative means of interacting with our
information technology infrastructures, doing business and practicing
science. This mutation could represent the latest stage of the migration
of computing tasks out of our homes – from our computer rooms
to our societies – along with telephone relays, electric generators
and other invisible technologies that drive our modern world. Future
applications will no longer only use personal computers but a large set
of interconnected resources.

This scenario of computing and data grids has attracted a lot of
attention from both application scientists and the main companies
involved in computing. In addition to the complexity that is inherent to
the current powerful end systems, resource-sharing and the transparency
of available resources has introduced not only new scientific challenges
but also a completely new vision and innovative approaches to
the design, construction and use of future communication and
information-processing systems.

The grid is a vision that has raised a lot of interest and led to a
considerable amount of research and development. While several grids
exist today and are used daily, it has, however been recognized that after



232 Computing Networks

a decade they are far from being technological platforms that can be
used by the general public and are not robust enough to address the
needs of every application scenario. In addition to this, it is obvious
that programming applications in such systems pose several new and
complex challenges.

We have shown that in the future, if network technologies allow,
it will be desirable to have the middleware and the network cooperate
closely with each other to simplify the programmer’s work without the
loss of performance. An autonomous grid infrastructure will therefore
be capable of self-configuration, self-optimization and self-adaptation
to the specific needs of each application. Innovation is needed at the
level of the cross-layering software mechanisms and of the associated
means of performance measurement and adaptation.

Like the Internet, the domain of the grid has evolved from the
needs of science. The Internet was developed to respond to the
requirement for a means of communication between large computing
centers funded in an amalgamated way. These communication links
have enabled the sharing of resources and information between these
centers, and also enabled other users to access these resources. Ad hoc
resource-sharing procedures between original groups has highlighted
the need for the standardization of protocols in order to communicate
with heterogeneous administrative domains. The first-generation grid
technology can be seen as an extension or an application of this
framework to create a more generic resource-sharing context.

The research that has been carried out the past few years has revealed
that grid technology has been raising new challenges regarding network
usage as well as transport protocols and paradigm architecture [BAS 05,
MAR 05b, SPI 09]. A large deployment of the grid technology and,
now, of cloud technology can modify and influence the design of
the future Internet, like all of the other transmission technologies and
communication applications.

The diversification of network protocols to adapt to specific needs
of delay or throughput-guarantee, as well as the advanced use of



Conclusion 233

optical technology, are the main vectors of inspiration and renewing
of network approaches that the computing problem brings to the
field of communications. These new protocols and services [AGA 09,
SOU 09a, SOU 09b, VIC 05a] associated with security techniques
adapted to this type of sensitive context will, without a doubt, have
a key role to play in the future Internet, which will undoubtedly host
an increasing number of applications and services consuming a lot of
processing and storage resources. They will be the true springboard of
a new efficient and durable technology of autonomous and transparent
services, called cloud services.



Bibliography

[ACQ 08] ACQUAAH P., LIU J.-M. and CHAN H. A., “Emission and discard
priority scheme for optical burst switched networks”, Journal of Optical
Networking, vol. 7, no. 12, pp. 977–988, OSA, 2008.

[AGA 09] AGAPI A., SOUDAN S., PASIN M., VICAT-BLANC PRIMET P. and
KIELMANN T., “Optimizing deadline-driven bulk data transfers in overlay
networks”, International Conference of Computer Communication and
Networking (ICCCN), Track on Pervasive Computing and Grid Networking
(PCGN), San Francisco, USA, 2009.

[ALL 03] ALLCOCK W., “GridFTP: protocol extension to FTP for the grid”,
Grid Forum Document 20, April 2003.

[ALT 06] ALTMAN E., BARMAN D., TUFFIN B. and VOJNOVIC M.,
“Parallel TCP sockets: simple model, throughput and validation”,
INFOCOM 2006: Proceedings of the 25th IEEE International Conference
on Computer Communications, pp. 1–12, April 2006.

[AND 95] ANDERSON T. E., CULLER D. E. and PATTERSON D. A., “A
case for NOW (networks of workstations)”, IEEE Micro, vol. 15, no. 1,
pp. 54–64, 1995.

[AUD 07] AUDOUIN O., ERASME D., JOUVIN M., LECLERC O.,
MOUTON C., VICAT-BLANC PRIMET P., RODRIGUES D. and THUAL L.,
“CARRIOCAS project: an experimental high bit rate optical network for
for computing intensive distributed applications”, BroadBand Europe’07,
December 2007.



236 Computing Networks

[AUD 09] AUDOUIN O., BARTH D., GAGNAIRE M., MOUTON C.,
VICAT-BLANC PRIMET P., RODRIGUES D., THUAL L. and VERCHÈRE

D., “CARRIOCAS project: towards converged Internet infrastructures
supporting high performance distributed applications”, Journal of
Lightwave Technology, vol. 27, no. 12, pp. 1928–1940, 2009.

[AWD 98] AWDUCHE D. O., AGOGBUA J. and MCMANUS J., “An
approach to optimal peering between autonomous systems in the Internet”,
IC3N ’98: Proceedings of the International Conference on Computer
Communications and Networks, Washington, DC, USA, IEEE Computer
Society, p. 346, 1998.

[BAA 99] BAAKE P. and WICHMANN T., “On the economics of Internet
peering”, Netnomics, vol. 1, no. 1, pp. 89–105, Kluwer Academic
Publishers, 1999.

[BAN 99] BANGA G., MOGUL J. C. and DRUSCHEL P., “A scalable and
explicit event delivery mechanism for UNIX”, USENIX Annual Technical
Conference, pp. 253–265, June 1999.

[BAR 05] BARONCELLI F., MARTINI B., VALCARENGHI L. and CASTOLDI

P., “A service oriented network architecture suitable for global grid
computing”, Conference on Optical Network Design and Modeling,
pp. 283–293, 2005.

[BAS 05] BASSI A., BECK M., CHANUSSOT F., GELAS J.-P., HARAKALY

R., LEFÈVRE L., MOORE T., PLANK J. and VICAT-BLANC PRIMET

P., “Active and logistical networking for grid computing: the e-toile
architecture”, The International Journal of Future Generation Computer
Systems (FGCS) – Grid Computing: Theory, Methods and Applications,
vol. 21, no. 1, pp. 199–208, 2005.

[BOD 95] BODEN N. J., COHEN D., FELDERMAN R. E., KULAWIK

A. E., SEITZ C. L., SEIZOVIC J. N. and SU W.-K., “Myrinet: a
gigabit-per-second local area network”, IEEE Micro, vol. 15, no. 1,
pp. 29–36, 1995.

[BOL 06a] BOLZE R., CAPPELLO F., CARON E., DAYDÉ M., DESPREZ

F., JEANNOT E., JÉGOU Y., LANTERI S., LEDUC J., MELAB N.,
MORNET G., NAMYST R., PRIMET P., QUETIER B., RICHARD O., TALBI

E.-G. and IRENA T., “Grid’5000: a large scale and highly reconfigurable
experimental grid testbed”, International Journal of High Performance
Computing Applications, vol. 20, no. 4, pp. 481–494, 2006.



Bibliography 237

[BOL 06b] BOLZE R., CAPPELLO F., CARON E., DAYDÉ M., DESPREZ

F., JEANNOT E., JÉGOU Y., LANTERI S., LEDUC J., MELAB N.,
MORNET G., NAMYST R., PRIMET P., QUETIER B., RICHARD O., TALBI

E.-G. and IRENA T., “Grid’5000: a large scale and highly reconfigurable
experimental Grid testbed”, International Journal of High Performance
Computing Applications, vol. 20, no. 4, pp. 481–494, 2006.

[BRA 94] BRAKMO L. S., O’MALLEY S. W. and PETERSON L. L.,
“TCP vegas: new techniques for congestion detection and avoidance”,
SIGCOMM, pp. 24–35, 1994.

[BRA 97] BRADEN R., ZHANG L., BERSON S., HERZOG S. and JAMIN S.,
Resource reservation protocol (RSVP) – Version 1 functional specification,
RFC 2205 (Proposed Standard), September 1997, Updated by RFCs 2750,
3936, 4495.

[BRI 00] BRIGHTWELL R. and MACCABE A., “Scalability limitations of
VIA-based technologies in supporting MPI”, Proceedings of the Fourth
MPI Developer’s and User’s Conference, March 2000.

[BYR 02] BYROM R. et al., “R-GMA: a relational grid information and
monitoring system”, 2nd Krakow Grid Workshop, December, 11–14 2002.

[CAM 06] CAMPANELLA M., KRZYWANIA R., REIJS V. and SEVASTI

A., “The bandwidth on demand service for the European research and
education networks”, International Conference on Photonics in Switching,
pp. 1–4, October 2006.

[CAP 05] CAPPELLO F., DESPREZ F., DAYDE M., JEANNOT E., JEGOU

Y., LANTERI S., MELAB N., NAMYST R., VICAT-BLANC PRIMET P.,
RICHARD O., CARON E., LEDUC J. and MORNET G., “Grid’5000: a
large scale, reconfigurable, controlable and monitorable grid platform”, 6th
IEEE/ACM International Workshop on Grid Computing, 2005.

[CHA 06] CHANG H. and JAMIN S., “To peer or not to peer: modeling
the evolution of the Internet’s AS-level topology”, INFOCOM 2006:
Proceedings of the 25th IEEE International Conference on Computer
Communications, April 2006.

[CHE 01] CHELIOTIS G., Structure and Dynamics of Bandwidth Markets,
PhD thesis, National Technical University of Athens, November 2001.



238 Computing Networks

[CHE 02] CHERVENAK A., DEELMAN E., FOSTER I., GUY L., IAMNITCHI

A., KESSELMANAND C., HOSCHEK W., RIPEANU M., SCHWARTZKOPF

B., STOCKINGER H., STOCKINGER K. and TIERNEY B., “Giggle: a
framework for constructing scalable replica location services”, SC’2002,
Baltimore, USA, November 2002.

[CHI 89] CHIU D. and JAIN R., “Analysis of the increase/decrease algorithms
for congestion avoidance in computer networks”, Journal of Computer
Networks and ISDN, vol. 17, no. 1, pp. 1–14, 1989.

[CIA 00] CIACCIO G. and CHIOLA G., “GAMMA and MPI/GAMMA
on GigabitEthernet”, Proceedings of 7th EuroPVM-MPI Conference,
Balatonfured, Hungary, September 2000.

[CIU 08] CIULLI N., CARROZZO G., GIORGI G., ZERVAS G., ESCALONA

E., QIN Y., NEJABATI R., SIMEONIDOU D., CALLEGATI F., CAMPI

A., CERRONI W., BELTER B., BINCZEWSKI A., STROINSKI M.,
TZANAKAKI A. and MARKIDIS G., “Architectural approaches for the
integration of the service plane and control plane in optical networks”,
Optical Switching and Networking, vol. 5, no. 2-3, pp. 94–106, 2008.

[COL 07] COLLABORATIVE D., User direct access transport APIs (UDAPL),
2007, http://www.datcollaborative.org/udapl.html.

[CRO 07] CROWCROFT J., “Net neutrality: the technical side of the debate:
a white paper”, SIGCOMM Comput. Commun. Rev., vol. 37, no. 1,
pp. 49–56, ACM, 2007.

[CZA 01] CZAJKOWSKI K., FITZGERALD S., FOSTER I. and
KESSELMAN C., “Grid information services for distributed resource
sharing”, Proceedings of the 10th IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), IEEE Press,
August 2001.

[DEL 06] DE LEENHEER M., THYSEBAERT P., VOLCKAERT B., DE TURCK

F., DHOEDT B., DEMEESTER P., SIMEONIDOU D., NEJABATI R.,
ZERVAS G., KLONIDIS D. and O’MAHONY M., “A view on
enabling-consumer oriented grids through optical burst switching”,
Communications Magazine, IEEE, vol. 44, no. 3, pp. 124–131, 2006.

[DHA 08a] DHAMDHERE A. and DOVROLIS C., “Can ISPs be profitable
without violating “network neutrality”?”, NetEcon’08: Proceedings of the
3rd International Workshop on Economics of Networked Systems, New
York, USA, ACM, pp. 13–18, 2008.



Bibliography 239

[DHA 08b] DHAMDHERE A. and DOVROLIS C., “Ten years in the evolution
of the Internet ecosystem”, IMC ’08: Proceedings of the 8th ACM
SIGCOMM Conference on Internet Measurement, New York, USA, ACM,
pp. 183–196, 2008.

[DUB 97] DUBNICKI C., BILAS A., LI K. and PHILBIN J., “Design and
implementation of virtual memory-mapped communication on myrinet”,
Proceedings of the 11th International Symposium on Parallel Processing
(IPPS), p. 388, 1997.

[EGE 04] EGEE: ENABLING GRIDS FOR E-SCIENCE, 2004, http://www.
eu-egee.org.

[EGE 09] EGEE, e2emonit project website, June 2009, http://www.
egee-npm.org/e2emonit.

[EIC 92] VON EICKEN T., CULLER D. E., GOLDSTEIN S. C. and
SCHAUSER K. E., “Active messages: a mechanism for integrated
communication and computation”, Proceedings of the 19th Int’l Symp. on
Computer Architecture, Gold Coast, Australia, May 1992.

[EIC 95] VON EICKEN T., BASU A., BUCH V. and VOGELS W., “U-net: a
user-level network interface for parallel and distributed computing”, 15th
ACM Symposium on Operating Systems Principles (SOSP), pp. 40–53,
December 1995.

[ELL 99] ELLISON C. et al., SPKI Certificate Theory, IETF, RFC 2693,
September 1999.

[ELL 05] ELLANTI M. N., GORSHE S. S., RAMAN L. G. and GROVER

W. D., Next Generation Transport Networks: Data, Management, and
Control Planes, Springer-Verlag, New York, USA, 2005.

[EUD 01] EU DATAGRID H. P., http://www.eu-datagrid.org, 2001.

[FAR 05] FARREL A. and BRYSKIN I., GMPLS: Architecture and
Applications (The Morgan Kaufmann Series in Networking), Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[FAR 06] FARREL A., VASSEUR J.-P. and ASH J., A path computation
element (PCE)-based architecture, RFC 4655 (Informational), August
2006.



240 Computing Networks

[FIG 07] FIGUEROLA S., CIULLI N., DE LEENHEER M., DEMCHENKO

Y., ZIEGLER W. and BINCZEWSKI A., “PHOSPHORUS: single-step
on-demand services across multi-domain networks for e-science”, WANG

J., CHANG G.-K., ITAYA Y. and ZECH H.(Eds), Proceedings of SPIE, the
International Society for Optical Engineering, vol. 6784, SPIE, 2007.

[FLO 00] FLOYD S., HANDLEY M., PADHYE J. and WIDMER J.,
“Equation-based congestion control for unicast applications”, SIGCOMM,
August 2000.

[FLO 03] FLOYD S., HighSpeed TCP for large congestion windows, RFC
3649, December 2003.

[FOR 94] FORUM M. P. I., MPI: A Message-Passing Interface Standard,
Report no. UT-CS-94-230, 1994.

[FOS 97] FOSTER I. and KESSELMAN C., “Globus: a metacomputing
infrastructure toolkit”, The International Journal of Supercomputer
Applications and High Performance Computing, vol. 11, no. 2,
pp. 115–128, 1997.

[FOS 98] FOSTER I., KESSELMAN C., TSUDIK G. and TUECKE S., “A
security architecture for computational grids”, Proc. 5th ACM Conference
on Computer and Communications Security Conference, pp. 83–92, 1998.

[FOS 02] FOSTER I., KESSELMAN C., NICK J. and TUECKE S., “The
physiology of the grid: an open grid services architecture for distributed
systems integration”, Open Grid Service Infrastructure WG, Global Grid
Forum, 2002.

[FOS 04] FOSTER I., The Grid 2: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 2004.

[FUS 02] FUSARO P. C., Energy Convergence: the Beginning of the
Multi-Commodity Market, John Wiley & Sons, 2002.

[G.602] ITU-T Recommendation G.694.1: Spectral grids for WDM
applications: DWDM frequency grid, Report, International
Telecommunication Union, June 2002.

[G.800] ITU-T Recommendation G.805: Generic functional architecture
of transport networks, Report, International Telecommunication Union,
March 2000.

[G.801a] ITU-T Recommendation G.8080: Architecture for the
automatically switched optical network (ASON), Report, International
Telecommunication Union, November 2001.



Bibliography 241

[G.801b] ITU-T Recommendation G.872: Architecture of optical transport
networks, Report, International Telecommunication Union, November
2001.

[GAB 04] GABRIEL E., FAGG G. E., BOSILCA G., ANGSKUN T.,
DONGARRA J. J., SQUYRES J. M., SAHAY V., KAMBADUR P., BARRETT

B., LUMSDAINE A., CASTAIN R. H., DANIEL D. J., GRAHAM R. L.
and WOODALL T. S., “Open MPI: goals, concept, and design of a
next generation MPI implementation”, Proceedings of the 11th European
PVM/MPI Users’ Group Meeting, Budapest, Hungary, pp. 97–104,
September 2004.

[GEO 08] GEOFFRAY P. and HOEFLER T., “Adaptive routing strategies for
modern high performance networks”, Proceedings of the 16th Annual IEEE
Symposium on High-Performance Interconnects, August 2008.

[GLA 08] GLATARD T., MONTAGNAT J., LINGRAND D. and PENNEC

X., “Flexible and efficient workflow deployement of data-intensive
applications on grids with MOTEUR”, International Journal of High
Performance Computing and Applications (IJHPCA), vol. 22, no. 3,
pp. 347–360, 2008.

[GOG 04] GOGLIN B., PRYLLI L. and GLÜCK O., “Optimizations of client’s
side communications in a distributed file system within a myrinet cluster”,
Proceedings of the IEEE Workshop on High-Speed Local Networks
(HSLN), Tampa, Florida, IEEE Computer Society Press, pp. 726–733,
November 2004.

[GOG 08a] GOGLIN B., “Design and implementation of open-MX:
high-performance message passing over generic ethernet hardware”, CAC
2008: Workshop on Communication Architecture for Clusters, Miami, FL,
IEEE, April 2008.

[GOG 08b] GOGLIN B., “Improving message passing over ethernet with
I/OAT copy offload in Open-MX”, Proceedings of the IEEE International
Conference on Cluster Computing, Tsukuba, Japan, IEEE Computer
Society Press, September 2008.

[GRO 09] GROSSO P., MARSAL D., MAASSEN J., BERNIER E., XU L. and
DE LAAT C., “Dynamic photonic lightpaths in the StarPlane network”,
Future Generation Computer Systems, vol. 25, no. 2, pp. 132–136, 2009.

[GU 07] GU Y. and GROSSMAN R. L., “UDT: UDP-based data transfer
for high-speed wide area networks”, Comput. Networks, vol. 51, no. 7,
pp. 1777–1799, 2007.



242 Computing Networks

[GUI 06] GUILLIER R., HABLOT L., VICAT-BLANC PRIMET P. and
SOUDAN S., Evaluation des liens 10 GbE de Grid’5000, Research Report
no. 6047, INRIA, 2006.

[GUI 09] GUILLIER R. and VICAT-BLANC PRIMET P., “A tool to diagnose
hardware and software bottlenecks on an end to end path”, 2009,
http://www.ens-lyon.fr/LIP/RESO/Software/PATHNIF/index.html.

[GUS 92] GUSTAVSON D. B., “The scalable coherent interface and related
standard projects”, IEEE Micro, vol. 12, no. 1, pp. 10–22, 1992.

[HAC 02] HACKER T., ATHEY B. and NOBLE B., “The end-to-end
performance effects of parallel TCP sockets on a lossy wide-area
network”, Proc. 16th IEEE-CS/ACM International Parallel and Distributed
Processing Symposium (IPDPS), 2002.

[HAN 05] HANEMANN A., BOOTE J. W., BOYD E. L., DURAND

J., KUDARIMOTI L., LAPACZ R., SWANY D. M., ZURAWSKI J.
and TROCHA S., “PerfSONAR: a service oriented architecture for
multi-domain network monitoring”, Proceedings of the 3rd International
Conference on Service Oriented Computing, Springer Verlag, LNCS 3826,
pp. 241–254, December 2005.

[HAR 05] HARAKALY R., PRIMET P., BONNASSIEUX F. and GAIDIOZ B.,
“Probes coordination protocol for network performance measurement in
GRID environment”, Scalable Computing: Practice and Experience, vol. 6,
no. 1, pp. 71–80, 2005.

[HUR 06] HURWICZ L. and REITER S., Designing Economic Mechanisms,
Cambridge University Press, 2006,

[IOA 00] IOANNIDIS S., KEROMYTIS A., BELLOVIN S. and SMITH J.,
“Implementing a distributed firewall”, Proceedings of the 7th ACM
Conference on Computer and Communications Security, 2000.

[IPE] IPERF H. P., http://dast.nlanr.net/Projects/Iperf.

[JAC 88] JACOBSON V., “Congestion avoidance and control”, SIGCOMM
’88: Symposium Proceedings on Communications Architectures and
Protocols, New York, USA, ACM, pp. 314–329, 1988.

[JAI 91] JAIN R., The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and
Modeling, Wiley-Interscience, New York, USA, April 1991.



Bibliography 243

[JAI 05] JAIN R. and VARAIYA P., “Efficient market mechanisms for network
resource allocation”, 44th IEEE Conference on Decision and Control,
pp. 1056–1061, December 2005.

[JON 06] JONES R. H., UDPmon project website, June 2006, http://www.
hep.man.ac.uk/u/rich/net/index.html.

[JUK 07] JUKAN A. and KARMOUS-EDWARDS G., “Optical control plane
for the grid community”, Communications Surveys & Tutorials, IEEE,
vol. 9, no. 3, pp. 30–44, 2007.

[KAT 02] KATABI D., HANDLEY M. and ROHRS C., “Congestion control for
high bandwidth-delay product networks”, SIGCOMM Comput. Commun.
Rev., vol. 32, no. 4, pp. 89–102, ACM, 2002.

[KOM 04] KOMPELLA K. and LANG J., Procedures for modifying the
resource reservation protocol (RSVP), RFC 3936 (Best Current Practice),
October 2004.

[KOM 05] KOMPELLA K. and REKHTER Y., OSPF extensions in support of
generalized multi-protocol label switching (GMPLS), RFC 4203 (Proposed
Standard), October 2005.

[LAG 05] LAGANIER J. and VICAT-BLANC PRIMET P., “HIPernet: a
decentralized security infrastructure for large scale grid environments”, 6th
IEEE/ACM International Conference on Grid Computing (GRID 2005),
Seattle, Washington, USA, pp. 140–147, 2005.

[LAU 98] LAURIA M., PAKIN S. and CHIEN A. A., “Efficient layering for
high speed communication: fast messages 2.x”, HPDC, pp. 10–20, 1998.

[LIU 06] LIU S., BASAR T. and SRIKANT R., “TCP-Illinois: a loss
and delay-based congestion control algorithm for high-speed networks”,
VALUETOOL, October 2006.

[LOW 04] LOWEKAMP B. B., TIERNEY B., COTTRELL L., HUGHES-JONES

R., KIELMANN T. and SWANY M., A hierarchy of network performance
characteristics for grid applications and services, Global Grid Forum
Proposed Recommendation, May 2004.

[M.300a] ITU-T Recommendation M.3010: Principles for a
telecommunications management network, Report, International
Telecommunication Union, February 2000.

[M.300b] ITU-T Recommendation M.3400: TMN management functions,
Report, International Telecommunication Union, February 2000.



244 Computing Networks

[MAG 01] MAGONI D. and PANSIOT J. J., “Analysis of the autonomous
system network topology”, SIGCOMM Comput. Commun. Rev., vol. 31,
no. 3, pp. 26–37, ACM, 2001.

[MAQ 96] MAQUELIN O., GAO G. R., HUM H. H. J., THEOBALD K. B.
and TIAN X.-M., “Polling watchdog: combining polling and interrupts for
efficient message handling”, ISCA, pp. 179–188, 1996.

[MAR 05a] MARTIN-FLATIN J.-P. and VICAT-BLANC PRIMET P.,
“Editorial of the special issue high performance networking and services
in grids: the dataTAG project”, International Journal of Future Generation
Computer System, vol. 21, no. 4, pp. 439–623, 2005.

[MAR 05b] MARTIN-FLATIN J.-P. and VICAT-BLANC PRIMET P., “Special
issue high performance networking and services in grids: the dataTAG
project”, International Journal of Future Generation Computer System,
vol. 21, no. 4, pp. 439–623, 2005.

[MAS 04] MASSIE M. L., CHUN B. N. and CULLER D. E., “The ganglia
distributed monitoring system: design, implementation, and experience”,
Parallel Computing, vol. 30, no. 5-6, pp. 817–840, 2004.

[MAT 97] MATHIS M., SEMKE J., MAHDAVI J. and OTT T., “The
macroscopic behavior of the TCP congestion avoidance algorithm”,
Computer Communication Review, vol. 27, no. 3, 1997.

[MAT 03] MATHIS M., HEFFNER J. and REDDY R., “Web100: extended
TCP instrumentation for research, education and diagnosis”, SIGCOMM
Comput. Commun. Rev., vol. 33, no. 3, pp. 69–79, 2003.

[MIL 00] MILLER N. and STEENKISTE P., “Collecting network status
information for network-aware applications”, INFOCOM (2), pp. 641–650,
2000.

[MOS 06] MOSKOWITZ R. and NIKANDER P., “Host identity protocol (HIP)
architecture”, IETF Request for Comments, RFC 4423, May 2006.

[NAG 84] NAGLE J., “Congestion control in IP/TCP internetworks”,
SIGCOMM, vol. 14, no. 4, 1984.

[NIK 99] NIKANDER P., An Architecture for Authorization and Delegation
in Distributed Object-Oriented Agent Systems, PhD Dissertation, Helsinki
University of Technology, April 1999.

[NIK 03] NIKANDER P. and ARKKO J., “Delegation of signalling rights”,
Proceedings of the 10th Intl. Workshop on Security Protocols, Cambridge,
UK, April 2003.



Bibliography 245

[NOR 03] NORD M., BJORNSTAD S. and GAUGER C., “OPS or OBS in the
core network”, Proceedings of the 7th IFIP Working Conference on Optical
Network Design & Modeling, 2003.

[NTT 09] 14 Tbps over a Single Optical Fiber: Successful Demonstration
of World’s Largest Capacity, Press release, July 2009, http://www.ntt.co.
jp/news/news06e/0609/060929a.html.

[OUS 96] OUSTERHOUT J. K., “Why threads are a bad idea (for most
purposes)?”, USENIX Technical Conference, January 1996.

[PAD 98a] PADHYE J., FIROIU V., TOWSLEY D. and KUROSE J., “Modeling
TCP throughput: a simple model and its empirical validation”, ACM
SIGCOMM ’98, 1998.

[PAD 98b] PADMANABHAN V. and KATZ R., “TCP fast start: a technique for
speeding up web transfers”, GLOBECOM, 1998.

[PAX 98a] PAXSON V., ALMES G., MAHDAVI J. and MATHIS M.,
Framework for IP Performance Metrics, RFC no. 2330, IETF, May 1998.

[PAX 98b] PAXSON V., ALMES G., MAHDAVI J. and MATHIS M.,
Framework for IP performance metrics, RFC 2330 (Informational), 1998.

[PAX 98c] PAXSON V., MAHDAVI J., ADAMS A. and MATHIS M., “An
architecture for large-scale Internet measurement”, IEEE Communications,
vol. 36, no. 8, pp. 48–54, 1998.

[PET 03] PETRINI F., FRACHTENBERG E., HOISIE A. and COLL S.,
“Performance evaluation of the quadrics interconnection network”, Journal
of Cluster Computing, vol. 6, no. 2, pp. 125–142, 2003.

[PFI 01] PFISTER G. F., “Aspects of the infiniBandTM architecture”,
Proceedings of the 2001 IEEE International Conference on Cluster
Computing, Newport Beach, CA, pp. 369–371, October 2001.

[POS 80] POSTEL J., User datagram protocol, RFC 768, August 1980.

[PRI 02] PRIMET P. and HARAKALY R., “Experiment of the NWS (network
weather service) network forecasting for Grid Networking”, IEEE
(Ed.), Proceedings the Proceedings of the IEEE Conference on Cluster
Computing and Grid2002, Berlin, June 2002.

[PRO 11] PROJECT T., http://www.teragrid.org, 2011.

[PRY 97] PRYLLI L. and TOURANCHEAU B., Protocol design for high
performance networking: a myrinet experience, Technical Report 97-22,
LIP-ENS Lyon, 69364 Lyon, France, 1997.



246 Computing Networks

[QIA 99] QIAO C. and YOO M., “Optical burst switching-a new paradigm
for an optical Internet”, Journal on High-Speed Networks, vol. 8, no. 1,
pp. 69–84, 1999.

[RAM 99] RAMAKRISHNAN K. and FLOYD S., A proposal to add Explicit
Congestion Notification (ECN) to IP, RFC no. 2481, IETF, June 1999.

[RAS 07] RASHTI M. J. and AFSAHI A., “10-gigabit iWARP ethernet:
comparative performance analysis with infiniBand and myrinet-10G”,
Proceedings of the International Workshop on Communication
Architecture for Clusters (CAC), Long Beach, CA, p. 234, March
2007.

[RHE 05] RHEE I. and XU L., “CUBIC: a new TCP-friendly high-speed TCP
variants”, PFLDnet, February 2005.

[SAL 75] SALTZER J. H. and SCHROEDER M. D., “The protection of
information in computer systems”, Proceedings of the IEEE, vol. 63, no. 9,
pp. 1278–1308, 1975.

[SAN 05] SANDER V., “Networking issues for grid infrastructure”,
Informational, June 2005.

[SAR 06] SAROLAHTI P., ALLMAN M. and FLOYD S., “Determining an
appropriate sending rate over an underutilized network path”, Computer
Networks, vol. 51, no. 7, pp. 1815–1832, 2006.

[SHO 04] SHORTEN R. and LEITH D., “H-TCP: TCP for high-speed and
long-distance networks”, International Conference on Protocols for very
Long Distance (PFLDnet’0’), Argonne, Illinois, USA, February 2004.

[SIT 09] TOP500 SUPERCOMPUTING SITES, http://top500.org, 2009.

[SIV 00] SIVAKUMAR H., BAILEY S. and GROSSMAN R., “PSockets: the
case for application-level network stripping for data intensivve applications
using high speed wide area networks”, SuperComputing, November 2000.

[SOU 09a] SOUDAN S., Bandwidth sharing and control in high-speed
networks: combining packet- and circuit-switching paradigms, PhD thesis,
ENS-Lyon, University of Lyon, France, 2009.

[SOU 09b] SOUDAN S., CHEN B. and VICAT-BLANC PRIMET P., “Flow
scheduling and endpoint rate control in GridNetworks”, International
Journal of Future Generation Computer Systems (FGCS), vol. 25, no. 8,
pp. 904–911, 2009.



Bibliography 247

[SPE 99] SPEIGHT E., ABDEL-SHAFI H. and BENNETT J. K., “Realizing the
performance potential of the virtual interface architecture”, International
Conference on Supercomputing, pp. 184–192, 1999.

[SPI 09] SPINNATO P., VICAT-BLANC PRIMET P., EDWARDS C. and
WELZL M., “Editorial: special section on networks for grid applications”,
International Journal on Future Generation Computer Systems (FGCS),
vol. 25, no. 8, 2009.

[STE 95] STERLING T., SAVARESE D., BECKER D. J., DORBAND

J. E., RANAWAKE U. A. and PACKER C. V., “BEOWULF: a
parallel workstation for scientific computation”, Proceedings of the 24th
International Conference on Parallel Processing, Oconomowoc, WI,
pp. 11–14, 1995.

[STE 05] STEPHAN E., IP performance metrics (IPPM) metrics registry, RFC
4148 (Best Current Practice), August 2005.

[STO 01] STOCKINGER H., “Distributed database management systems and
the data grid”, 18th IEEE Symposium on Mass Storage Systems and 9th
NASA Goddard Conference on Mass Storage Systems and Technologies,
San Diego, USA, April 17-20 2001.

[SWA 05] SWALLOW G., DRAKE J., ISHIMATSU H. and REKHTER

Y., Generalized multiprotocol label switching (GMPLS) user-network
interface (UNI): Resource ReserVation Protocol-Traffic Engineering
(RSVP-TE) Support for the Overlay Model, RFC 4208 (Proposed
Standard), October 2005.

[TAN 06] TAN K., SONG J., ZHANG Q. and SRIDHARAN M., “A compound
TCP approach for high-speed and long distance networks”, IEEE
INFOCOM, Apr. 2006.

[TEZ 98] TEZUKA H., O’CARROLL F., HORI A. and ISHIKAWA Y.,
“Pin-down cache: a virtual memory management technique for
zero-copy communication”, Proceedings of the 12th International
Parallel Processing Symposium, pp. 308–315, April 1998.

[VAR 97] VARVARIGOS E. A. and SHARMA V., “The ready-to-go virtual
circuit protocol: a loss-free protocol for multigigabit networks using FIFO
buffers”, IEEE/ACM Trans. Netw., vol. 5, no. 5, pp. 705–718, IEEE Press,
1997.

[VAS 09] VASSEUR J. and ROUX J. L., Path computation element (PCE)
communication protocol (PCEP), RFC 5440 (Proposed Standard), March
2009.



248 Computing Networks

[VAZ 01] VAZDKUDAI S., TUECKE S. and FOSTER I., “Replica selection
in the globus data grid”, PRESS I. C. S. (Ed.), Proceedings of the First
IEEE/ACM International Conference on Cluster Computing and the Grid
(CCGRID 2001), pp. 106–113, May 2001.

[VER 07] VERDI F., MAGALHÃES M., CARDOZO E., MADEIRA E.
and WELIN A., “A service oriented architecture-based approach for
interdomain optical network services”, Journal of Network and Systems
Management, vol. 15, no. 2, pp. 141–170, ACM, 2007.

[VIC 02] VICAT-BLANC PRIMET P., ROMIER G. and SOBERMAN M.,
“Le projet e-toile: développement et mise en oeuvre d’une grille haute
performance”, Proceedings of “Journees Nationales du RNTL 2002”,
2002.

[VIC 05a] VICAT-BLANC PRIMET P., ECHANTILLAC F. and GOUTELLE

M., “Experiments of the equivalent differentiated service model in grids”,
International Journal Future Generation Computer Systems, vol. 21, no. 4,
pp. 512–524, 2005.

[VIC 05b] VICAT-BLANC PRIMET P., HE E., WELZL M., et al., Survey of
protocols other than TCP - GFD 55, Report, Global Grid Forum, April
2005, GFD 55.

[VIC 07] VICAT-BLANC PRIMET P., PASIN M., AUDOUIN O., CHIOSI A.,
HOUSSIN J.-M., BERDE B., VERCHÈRE D., SOUDAN S., BARTH D.,
CADÉRÉ C., ECHABBI L., TOMASIK J., REINARD V., VÈQUE V. and
ZITOUNE L., Scénarios et besoins réseau pour les applications distribuées,
Report, INRIA, July 2007.

[VIC 09a] VICAT-BLANC PRIMET P., GELAS J.-P., MORNARD O.,
KOSLOVSKI G., ROCA V., GIRAUD L., MONTAGNAT J. and HUU T. T.,
“A scalable security model for enabling dynamic virtual private execution
infrastructures on the Internet”, IEEE International Conference on Cluster
Computing and the Grid CCGrid2009, Shanghai, May 2009.

[VIC 09b] VICAT-BLANC PRIMET P., SOUDAN S. and VERCHERE D.,
“Virtualizing and scheduling optical network infrastructure for emerging
IT services”, Journal of Optical Communications and Networking (JOCN),
vol. 1, no. 2, pp. A121–A132, 2009.

[WAH 00] WAHEED A., SMITH W., GEORGE J. and YAN J., “An
infrastructure for monitoring and management in computational grids”,
Languages, Compilers, and Run-Time Systems for Scalable Computers,
vol. 1915/2000 of Lecture Notes in Computer Science, pp. 619–628, 2000.



Bibliography 249

[WEB 08] LAMBDA PROJECT WEBSITE G., http://www.G-LAMBDA.net,
October 2008.

[WEI 06] WEI D. X., JIN C., LOW S. H. and HEGDE S., “FAST
TCP: motivation, architecture, algorithms, performance”, IEEE/ACM
Transactions on Networking, December 2006.

[WEL 97] WELSH M., BASU A. and VON EICKEN T., “Incorporating
memory management into user-level network interfaces”, Proceedings of
Hot Interconnects V, Stanford, August 1997.

[WID 95] WIDJAJA I., “Performance analysis of burst admission-control
protocols”, Communications, IEE Proceedings, vol. 142, no. 1, pp. 7–14,
1995.

[WOL 98] WOLSKI R., “Dynamically forecasting network performance
using the Network Weather Service”, Cluster Computing, vol. 1, no. 1,
pp. 119–132, 1998.

[WOL 99] WOLSKI R., SPRING N. and HAYES J., “The network
weather service: A distributed resource performance forecasting service
for metacomputing”, Future Generation Computing Systems, vol. 15,
pp. 757–768, 1999.

[WU 02] WU J., SAVOIE J. M. and ARNAUD B. S., “Functional requirements
of peer-to-peer optical networking”, 28th European Conference on Optical
Communication, pp. 1–2, 2002.

[XIA 08] XIAO X., Technical, Commercial and Regulatory Challenges of
QoS: An Internet Service Model Perspective, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2008.

[XIO 00] XIONG Y., VANDENHOUTE M. and CANKAYA H., “Control
architecture in optical burst-switched WDM Networks”, IEEE Journal on
Selected Areas in Communications, vol. 18, no. 10, pp. 1838–1851, 2000.

[XU 04] XU L., HARFOUSH K. and RHEE I., “Binary increase congestion
control (BIC) for fast long-distance networks”, INFOCOM 2004: 23rd
Annual Joint Conference of the IEEE Computer and Communications
Societies, vol. 4, pp. 2514–2524, 2004.

[YAO 00] YAO S., MUKHERJEE B. and DIXIT S., “Advances in photonic
packet switching: an overview”, IEEE Communications Magazine, vol. 38,
no. 2, pp. 84–94, 2000.

[ZAL 09] ZALESKY A., “To burst or circuit switch?”, IEEE/ACM Trans.
Netw., vol. 17, no. 1, pp. 305–318, IEEE Press, 2009.



Acronyms and Definitions

Throughout this book, we introduce and use acronyms, the main
definitions of which we group here:

– Accounting: measurement of resources consumed.

– API: application programming interface.

– ASDL: Asymmetric Digital Subscriber Line.

– ASTN: automatic switched transport networks.

– ATM: asynchronous transfer mode. A cell-switching level 2
network protocol, the objective of which is to multiplex different data
streams on the same link using a time multiplexing technique.

– Batch processing: execution of a set of jobs in a non-interactive
way (for an example, see PBS).

– BDP: bandwidth delay product. Measurement frequently used for
the adjustment of transport control protocol parameters.

– BSS: business support systems. Elements of the architecture that
manage products, clients, revenues and commands.

– Certificate policy: named set of rules indicating the possibility of
applying for a certificate for a particular community and/or a class of
applications with common security needs.

– Certification authority (CA): the authority trusted by one or more
users to create and issue certificates. The certification authority can
create user keys.

251



252 Computing Networks

– Computing element: abstraction representing a computer cluster in
a grid. It is identified by a list of computing nodes (IP address and port).
In the Globus system, a local resource manager and a GateKeeper for
access control (GRAM) correspond to each computing element.

– Cluster: set (group) of machines (nodes) interconnected to share
heavy processing; often one server node (master) is designated to be in
charge of distributing work on the client nodes.

– Cloud: cloud computing or dematerialized computing is a concept
that makes reference to providing computing services across the
Internet. This concept has three levels:

- infrastructure as a service (IaaS), which enables use of
computing memory, capacities of computers and servers distributed
across the world;

- platform as a service (PaaS) for the use of remote software
production tools; and

- software as a service (SaaS) for applications.

– Computing grid: group of resources, especially computing,
geographically and organizationally disseminated ones giving users the
possibility to execute applications on a subset of theses resources, in a
transparent way.

– Data confidentiality: this service can be used to protect data against
non-authorized divulging of information. The data confidentiality
service is supported by the authentification framework. It can be used to
protect data against interception.

– Delegation: transfer of a privilege from an entity that has the
privilege to another entity.

– DLL: dynamically linked library. This is a library that is
dynamically linked to the code that makes use of it: the set of routines
(modules or sub-programs) extracted from a main program, to be shared
by several programs or to optimize memory occupation (DLLs that can
be charged and discharged at will).

– DMZ: demilitarized zone, neutral zone.

– DNS: Domain Name Service. This is a hierarchical service that
converts symbolic names into machine addresses on a network (IP



Acronyms and Definitions 253

address); for example the name www.foo.fr is transformed into IP
address 192.54.193.134.

– DSM: distributed shared memory enables distributed processes to
exchange information by giving the illusion of having memory that is
common to all.

– EGEE: Enabling Grids for E-sciencE.

– Encryption system: a set of transformations to obtain an encrypted
text and, reciprocally, the choice of the particular transformation(s)
to use. Transformations are generally defined by a mathematical
algorithm.

– Environment variables: these are the characteristics of a policy
necessary for an authorization decision. Such variables are not
contained in static structures but are locally accessible by a privileged
entity (for example, the day and time or the current account).

– FCAPS: Fault, Configuration, Accounting, Performance, Security.
This is a management model for telecommunications networks.

– GIIS: Grid Index Information Service. This is the information
service in Globus.

– Globus: the open source de facto standard grid middleware,
proposed by Argonne laboratories (United States).

– Globus Toolkit: this contains all of the grid tools proposed by
Globus.

– Grid infrastructure: grid platform(s), associated with engineering
and implementation ensuring its (their) functioning at the expected
quality.

– GridFTP: FTP services for a computing grid implementing several
parallel transport control protocol flows.

– GMPLS: generalized multi protocol label switching. Transport
networks unified control plan.

– Grid node: a set of persistent processes and memory spaces.
Generally, a PC or a server is considered as a node in a server cluster
for high-performance grids. It often corresponds to a geographical
localization.



254 Computing Networks

– Grid platform: aggregation of network nodes and links managed
by a specialized middleware with corresponding monitoring,
administration, security, etc., utilities.

– Grid service: processing offered by a grid to its users and to user
applications of a high level (resource management, job monitoring)
as well as of the lowest level (message exchange, file transfer, etc.).
Web services defined by the W3 consortium ensure Open Grid Services
Architecture (OGSA) standards and Open Grid Services Infrastructure
or OGSI (callable protocols and services) are met. These services can
also be called Service Oriented Architecture (in the sense of web
services) directly by application programming interfaces).

– GSI: Grid Security Infrastructure. Sub-system of Globus
middleware.

– Heartbeat monitor: module for auditing distributed processes that
have been declared by a service.

– Holder: an entity that has received delegation of a privilege, either
directly from the source of authority or indirectly through another
attribute authority.

– HTML: HyperText Markup Language. The webpage description
language.

– HTTP: the HyperText Transfer Protocol is a hypertext
data-transmission protocol used in the framework of the web to
transmit pages and their contents (images, sounds, etc.).

– IETF: the Internet Engineering Task Force is the committee
helping to define and develop the Internet and applications that use it.

– ISP: Internet service provider.

– Job: application or independent coherent subset of applications,
accompanied by the description of services requested of the grid and
their sequencing.

– Load balancing: distribution of resource needs over all available
means.



Acronyms and Definitions 255

– Middleware: set of software layers forming an administration,
monitoring, operating, management system of a set of components that
can be managed via interfaces by human operators or applications.

– IP: the Internet Protocol is a packet-oriented data-transport
protocol used on the Internet to mask the heterogeneity of
interconnected networks.

– IPPM: IP performance metrics. Designates metrics to the
Internet Engineering Task Force that standardizes concepts linked to
performance measurement of an IP network.

– ISO: the International Standardization Organization, which, for
example, established a layer model for data exchange in networks.

– ITU: The International Telecommunication Union is an
organization that contributes to standards, for example on
telecommunication networks and distributed systems.

– Job: a managed elementary execution entity. It is a set of related
processes, run as a whole. A job can often be seen as a shell script. In
POSIX terminology, a job is a group of sessions. A session is a group
of interdependent processes.

– LDAP: the Lightweight Directory Access Protocol is a network
protocol of the X500 type. It is designed for operating in TCP/IP stacks
to extract information from a hierarchical directory such as X500. It
offers the user a unique tool for finding information in a set of data,
such as a user name, an e-mail address, a security certificate, etc.

– LSP: label switched paths.

– MDS: the Monitoring and Discovery Service is a Globus service
that was formerly called the Metacomputing Directory Service; its role
was redefined and re-centered as an Information Service Protocol.

– Message-passing: a process of communication between processes
through which information is exchanged via message-sending, whether
asynchronous or not, in contrast, for example, with communication by
shared memory; see MPI.

– Metadata: piece of information relating to data, for example by
giving a description or properties.



256 Computing Networks

– Middleware: this layer is in charge of exchanging information
between distributed processes, masking the heterogeneity of machines
and underlying networks by as much as possible.

– MPI: The Message-Passing Interface is commonly used in parallel
message-passing systems. It is faster than PVM (Parallel Virtual
Machine) but less portable.

– MTBF: mean time before failure.

– MTTR: mean time to repair is the unavailability time that
corresponds to the period elapsed between the occurrence of a failure
and re-opening of the system.

– MTU: maximum transfer unit.

– Multicast: broadcast of packets to groups of receivers.

– NAT: network address translation, the principal function is to share
a given public IP among several users using private IPs.

– OADM: optical add-drop multiplexers. Device composed of two
different types of optical add ports, and two of the same types of optical
drop ports, the function of which is to add or drop wavelengths.

– OBS: optical burst switching.

– OCS: optical circuit switching.

– OGSA: Open Grid Services Architecture.

– OGSI: Open Grid Services Infrastructure.

– OPS: optical packet switching.

– OS: operating system. Low-layer software that allows to expose
and share the resources of a computing system so that they can be used
by programs.

– OSI: the Open Systems Interconnection model is a communication
standard for the interconnection of open systems, defined by the
International Standardization Organization.

– OSS: operational support systems. Elements of the architecture
that take care of aspects of management for a telecommunications
service provider.



Acronyms and Definitions 257

– OXC: optical cross-connect. Optical equipment that enables
network operators to interconnect fibers and control the communication
of wavelengths in the network.

– PBS: Portable Batch System. Very popular system of
job-management in batches.

– PCE: path computation element (RFC 4655). The
path-computation service in a network.

– P2P: peer-to-peer. Distributed programming principle in which all
entities have equivalent roles.

– Ping: the name of a command enabling an Internet Control
Message Protocol echo request to be sent from one machine to another.
If the end machine does not respond, it cannot be communicated with.

– PKI: the public key infrastructure is an organizational and
technical framework that makes use of certificates based on public key
cryptography. It enables management of the said certificates by offering
security services aimed at a set of users and applications in a public
or private network. PKI provides authentification, encryption, integrity
and non-repudiation services.

– POP: point of presence: end-point of an Internet backbone.

– Private key: the key in a user’s pair of keys that is known solely to
the user.

– Process: local unit of execution on a computer in the UNIX sense.
A job launches the creation and execution of a process.

– Public key: the key in a user’s pair of keys that is publicly known
in an encryption system.

– Public key certificate: the public key of a user, associated
with some other information that has been made non-falsifiable by
encryption using the private key of the sending certification authority.

– Public Key Infrastructure: see PKI.

– QoS: quality of service. Defines guarantees of the level of service
in terms of delay, response time, throughput and reliability.

– RDF: Resource Description Framework.



258 Computing Networks

– Resource: typical elements made available by the grid.
We distinguish between application resources provided between
applications (executables, files, etc.) and system resources belonging
to the grid (processors, elements of memory, network elements, etc.).
We also distinguish software resources from hardware resources. All
resources are described in a repertoire made up of a catalog of metadata
and the dynamic status of all grid resources.

– Resource manager or resource broker: component of a computing
grid that is in charge of resource allocation to applications requesting
them, thus carrying out load-balancing on the grid. This component can
be centralized.

– RMI: remote method invocation. This is a mechanism that enables
Java object methods located on another virtual machine (distributed
objects) to be called, whether they are on the same computer or on
another machine accessible by the network.

– RPC: the Remote Procedure Call is synchronous remote invocation
method suggested by Sun.

– RTT: round trip time. This is the round trip delay of a packet
between two points of a network.

– Service broker: component of middleware in charge of the
management of all system resources, relying on a repertoire of such
resources described in the form of metadata (designation, description
and properties of the resource) and on their status.

– SACK: selective acknowledgment. This is selective acquittal used
by Transport Control Protocol.

– SOA: Service Oriented Architecture (in the sense of web services).

– SOAP: Simple Object Access Protocol. This is a protocol
managing the rules related to data representation (numbers, tables, etc.)
and processing to enable the possibility of enriching the types and
formats of recognized data.

– SSL: the Secure Socket Layer is a standard transparent
data-encryption process. It is a protocol that enables mutual
authentification between a client and a server and establishes an
authentificated and encrypted connection.



Acronyms and Definitions 259

– Task: local subunit of the execution of a process.

– TCP: Transport Control Protocol. This is a data-transport protocol
relying on IP but ensuring the correction of data flow sent (recovery
of lost packets, ensuring of packet-integrity, desequencing correction,
etc.).

– Traceroute: this is a utility program that enables us to follow the
path a data packet (IP packet) will take to go from the local machine to
another machine connected to the network.

– UDDI: Universal Description, Discovery and Integration. This is
a joined norm based on Web Services Description Language (WSDL)
and proposed by 55 companies (including Microsoft, IBM, Ariba and
HP). It aims to create directories of B2B web services by profession.
Each company can subscribe to it, register the web services it proposes
and describe how its partners can be electronically integrated to carry
out B2B transactions. These directories include:

- the green pages: implementation details necessary for
integration of service;

- white pages: general information on the company proposing the
service; and

- yellow pages: information on the company’s profession.

– UDP: the User Datagram Protocol is light protocol on top of IP
ensuring a simple and fast transport service.

– UML: Unified Modeling Language. Object modeling and notation
graphic language object defined by the Object Management Group
to visualize, specify, construct and document events intervening in a
distributed system of objects.

– URI: the Uniform Resource Identifier is a global resource
identification system consisting of a chain of characters in arborescence
that enable a service and associated resources to be called. The shape of
the arborescence is defined in a diagram, such as that presented by the
W3C.

– URL: the Uniform Resource Locator is an object addressing
system accessible from the web (access address and protocol).



260 Computing Networks

– User account: representation of laws and a point where information
related to the use of grid resources by a user or a group of users is
attached (independently or not of a Virtual Organization).

– UUID: the universally unique identifier is generally on eight
bytes, is randomly generated and considered to be unique. For
example, 2b9e2e24-60e8-4801- a384-d4ce1919ea1a is a UUID created
by uuidgen.

– Virtual Organization: definition of an organization of resources and
grid users, with subsets of resources on the grid system at the disposal
of users linked to this virtual organization. Also called VO.

– VLAN: Virtual Local Area Network. For more information, see
IEEE standard 802.1Q.

– VO: see Virtual Organization.

– W3C: the WorldWide Web Consortium is a web standardization
committee (for example: HTML, XML, SOAP, etc.)

– WDM: wavelength-division multiplexing includes methods used
to transport several different optical signals on a single fiber.

– Web service: a set of norms enabling access to applications via
a declaration of services offered by these and a standardized set of
protocols:

- SOAP (Single Access Object Protocol),
- UDDI (Universal Description, Discovery and Integration),
- WSDL (Web Services Description Language),
- XML (eXtended Markup Language).

– Web Services: processing units put at the disposal of third parties
in a web context.

– WSDL: the Web Services Description Language is a format based
on XML that enables the functionalities of a service to be exposed to
the world outside. It gives information about accepted parameters and
the nature of the service rendered.

– XML: eXtensible Markup Language is the descriptive language
of beacon bases. It is a metalanguage (a set of generic rules) used to
describe a markup language.



Acronyms and Definitions 261

– XSL: eXtensible Stylesheet Language is an XML (an XSL style
sheet is an XML document) application (a derived language). In
practice, XSL is a language used to manipulate XML documents. It
is the equivalent of CSS-style sheets for HTML. XSL enables us to
define how the support (webpage, mobile screen, printed page, etc.)
must publish and restore the associated XML document. This enables
separation between data structures (XML) and restoration (XSL).



Index

A,B
AIMD, 117, 120, 133, 135
all-to-all, 54–55, 68
authentification, 212, 252, 257–258
authorization, 57, 183, 205–207,

210–212
bandwidth on demand, 86, 172, 189
bandwidth-delay product (BDP), 18,

75–76, 124–125, 129, 133–137,
217–218, 222–224, 251

C
Cloud, 13, 21, 32–37, 39, 48, 51,

59–60, 63–64, 67–68, 77, 85, 142,
161, 171, 179, 196, 231–233, 252

cluster, 13, 16, 18, 23–31, 36, 39–42,
50–54, 57–61, 63–65, 72–73, 76,
86, 87–111, 115, 171–173,
252–253

collaborative, 48, 51, 63, 79–82
communication security, 212–213, 216
confidentiality, 84, 186, 203–205, 216,

252
configuration

software, 124, 136, 217–218, 224
hardware, 122-123, 137, 217–218

Congestion Avoidance, 15, 117, 132,
134

control
access, 57, 58, 204–209, 212–216
congestion, 15, 53, 73–76, 114–115,

119, 120, 126–127, 132–134, 191,
225

control plane, 172, 180–185, 188, 190,
198, 202

coupling, 22, 41, 49, 78–81

D,E
DAG, 44
data center, 14, 59
data protection, 204–205
direct memory access, 73, 88, 101, 219
distribution, 23, 25, 29, 35, 41–44, 64,

68, 80, 120, 139, 151, 158, 182,
193, 203, 230, 254

Ethernet, 15, 26, 65–66, 73, 87–88,
102–111, 148, 180–181, 185, 221

G
Globus, 57, 60, 128, 156, 207, 213
GMPLS, 181, 184–187, 190, 198, 202,

253
Grid Security Infrastructure, 207, 254
Grid5000, 31, 32, 66–67, 221, 226
GridFTP, 128, 166, 169, 253

H,I,J,L
hierarchy of metrics, 150

263



264 Computing Networks

high-performance network, 26, 36, 51,
66, 87–93, 99, 105–108

Infiniband, 99, 105–110
Internet Protocol, 15, 67, 70, 89, 110,

116, 145, 176, 191, 255
job, 31, 33, 40, 42, 55–58, 92, 140,

206, 230, 251
latency- and throughput-sensitivity, 81
LHC, 45
load balancing, 24, 254, 258
location of a resource, 79

M
MapReduce, 35, 42–43
measurement

active, 152, 154, 160–161, 164–166
passive, 152–153

measurement coordination, 161, 165,
170

measurement tools, 154–155
memory registration, 94–95
message-passing, 17, 26, 44, 52, 56,

69, 88, 96–98, 100–103, 107, 129,
255, 256

MPI, 17, 44, 52, 54–57, 69, 88, 90,
96–106, 109–110

multiplexing, 15, 127, 173–174, 178,
180, 185, 188, 251, 260

Myrinet, 100–104, 107–108, 110

N,O
network virtualization, 212–214
OGF, 60, 114, 128, 145–146, 150, 155
Optical Cross-Connect, 175, 257
optical switching, 18, 173–176
OS-bypass, 90–91, 95

P
parallel, 17–18, 24–25, 39–44, 50–57,

63, 65, 69, 76, 81–82, 87–90, 96,
100–101, 104, 106, 109–110,
127–128, 137, 142–143, 169, 171,
217, 220–221, 225–227

parallelization, 41, 43, 128
Path Computation Element, 186, 257
PATHNIF, 124, 137, 217, 225

PCI Express, 90, 105–106, 219
peer to peer, 29–30, 59, 128, 226, 257
performance forecast, 153, 164, 166,

168
pipeline, 48, 50–51, 79
Public Key Infrastructure, 207, 212,

257

Q,R,S
quality of service, 15, 51, 77, 88, 149,

171, 190, 226, 231, 257
rate of aggregation, 66
RDMA, 97–100, 106–110
remote access, 48, 52, 83, 97, 142
Service Oriented Architecture, 195,

254
Slow Start, 75, 116–118, 129–130, 226
socket, 52, 54, 57, 67, 72–74, 124–126,

215, 224, 226, 258
stage-in, 42, 48–49, 189

T
task, 26, 40–52, 58, 77, 80–82, 85, 92,

139, 141, 144, 161, 165, 180, 202,
215, 220, 231, 254, 259

TCP Offload Engine, 109
TCP variant, 114, 118, 130–131,

133–136, 225
TFRC, 131
topological criteria, 78
transfer time, 75, 83, 91–92, 129,

141–143, 150–151, 167, 169
tuning of TCP parameters, 154, 221
txqueuelen, 126, 224

V,W,Z
virtual machine, 14, 68, 256, 258
virtual organization, 29, 158, 207, 260
VLAN, 185, 214, 260
VPN, 214–215
WDM, 174–175, 180, 260
web service, 29, 60, 74, 158–160, 168,

196, 254, 258–260
workflow, 31, 44, 58, 81, 85
zero copy, 88, 90–91, 95, 101, 104,

108, 111


