
Texts & Monographs in Symbolic Computation

Bernhard Thalheim
Klaus-Dieter Schewe
Andreas Prinz
Bruno Buchberger Editors

Correct
Software in Web
Applications and
Web Services

www.allitebooks.com

http://www.allitebooks.org

Texts and Monographs in Symbolic
Computation

A Series of the Research Institute
for Symbolic Computation,
Johannes Kepler University, Linz, Austria

Series Editor: Peter Paule, RISC Linz, Austria

Founding Editor: B. Buchberger, RISC Linz, Austria

Editorial Board

Robert Corless, University of Western Ontario, Canada

Hoon Hong, North Carolina State University, USA

Tetsuo Ida, University of Tsukuba, Japan

Martin Kreuzer, Universität Passau, Germany

Bruno Salvy, INRIA Rocquencourt, France

Dongming Wang, Université Pierre et Marie Curie – CNRS, France

www.allitebooks.com

http://www.allitebooks.org

More information about this series at
http://www.springer.com/series/3073

www.allitebooks.com

http://www.springer.com/series/3073
http://www.allitebooks.org

Bernhard Thalheim � Klaus-Dieter Schewe �
Andreas Prinz � Bruno Buchberger
Editors

Correct Software in Web
Applications and Web
Services

123

www.allitebooks.com

http://www.allitebooks.org

Editors
Bernhard Thalheim
Institut für Informatik
Christian-Albrechts-Universität
Kiel
Germany

Klaus-Dieter Schewe
Software Competence Center
Hagenberg
Austria

Andreas Prinz
ICT Department
University of Agder
Kristiansand
Norway

Bruno Buchberger
RISC
Johannes Kepler University
Hagenberg
Austria

ISSN 0943-853X ISSN 2197-8409 (electronic)
Texts and Monographs in Symbolic Computation
ISBN 978-3-319-17111-1 ISBN 978-3-319-17112-8 (eBook)
DOI 10.1007/978-3-319-17112-8

Library of Congress Control Number: 2015940569

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

www.allitebooks.com

www.springer.com
http://www.allitebooks.org

Preface

This volume constitutes selected and extended papers of a European Science
Foundation (ESF) strategic workshop.

The workshop “Correct Software in Web Applications” was held at the Research
Institute for Symbolic Computation (RISC), part of the Johannes Kepler University
Linz in Hagenberg, Austria, over 3 days. Originally, 30 participants from 12
countries have been invited in September 2011. Twenty-six researchers from
Austria, Germany, Great Britain, Hungary, Italy, France, Norway and Romania
participated in the workshop. Fourteen researchers were invited for submission of
an extended research paper. Finally, we selected nine from these papers for this
volume.

The workshop programme consisted of presentations and intensive discussion
rounds. The presentations covered abstract state machines (ASMs) and Event-B
as formal methods and experiences in applying them to selected fields of Web
applications, Theorema and Karlsruhe Interactive Verifier (KIV) as verification
methods and experiences made with these tools for Web applications and various
detailed descriptions of facets of the large field of Web applications such as Web
information systems with emphasis on storyboarding and media types, recom-
mender systems, common protocols such as Hypertext Transfer Protocol (HTTP),
browser technology, scripting technology, security aspects of Web services and Web
services orchestration. The three discussion sessions addressed the characterisation
of what constitutes a Web application, what does correctness mean in this context
and what is a common umbrella for a research agenda in this field.

Web applications have become one of the largest area for the application of
software engineering methods. At the beginning, Web applications were only
simple information services, which soon developed into large database-backed Web
information systems, i.e. data-intensive systems that are accessed and maintained
via the World Wide Web. More recently, the area of Web services has emerged,
referring to software components on some Web servers that can be accessed by
and integrated into other software systems. There is a tendency to extend Web
information systems and Web services towards large-scale interoperable systems.

v

www.allitebooks.com

http://www.allitebooks.org

vi Preface

This marks a shift towards computation in the public domain using the Internet as
the medium for interaction of software components.

Despite the immense importance of Web applications for software engineering,
there is a lack of well-founded development methods. Surprisingly, many Web
applications are created in an ad hoc manner without the use of sophisticated formal
methods. Quality assurance is to a large extent ignored. This constitutes a barrier
to productive software development; in other words, the envisioned and most likely
technically possible shift to computation in the public domain will only become
reality if the resulting systems are trustworthy with respect to consistency, reliability,
performance and security. Thus, there is a need for development methods that lead
to provably correct Web application systems.

The world and correspondingly information technology (IT) are continuously
changing. Systems become accessible through networks. The corresponding infras-
tructure exists, emerges and provides all what is necessary for cooperations.
Therefore, applications can run on systems that are rented by companies. Cloud
systems are based on new paradigms such as software-as-a-service, data-as-a-
service and infrastructure-as-a-service. Services systems are currently far more
advanced than the collaboration systems in the past. At the same time, the theory
and conception of a service are not yet properly developed. High-quality services are
needed. But despite the fact that services are already an essential part of nowadays
IT infrastructures, there remain significant lacunas in our understanding of what
services are and of how they work—services are correct and they deliver completely
and only what has been asked for—and of proper development of correct and
reliable service infrastructures.

Abstract state machines (ASMs) provide a general method to combine spec-
ifications on any desired level of abstraction, ground modelling (requirement
capture) techniques and stepwise refinement to executable code, providing the
basis for experimental validation and mathematical verification. ASMs have been
successfully applied to diverse areas such as specification and verification of the
implementation of programming languages (e.g. Prolog2WAM, Occam2Transputer,
Java2JVM, C#2CLR) and of chip design, train control systems, the Mondex
electronic purse and many more. These success stories involve verification by
mathematical proofs as well as proofs by theorem provers (e.g. KIV, Prototype
Verification System (PVS), Isabelle) or model checking with justifiable effort.

The key problem addressed by the proposed ESF explorative workshop is that
there is almost no connection between the research on these industrially successful
formal methods in software engineering and the important area of Web applications.
Researchers in symbolic computation, abstract state machines, automated reasoning
and verification need input from researchers in Web information systems, Web
services, interoperability and service-oriented architectures to tailor their research
to the needs of the applications, and researchers in Web applications engineering
need support to address the challenging correctness problems.

www.allitebooks.com

http://www.allitebooks.org

Preface vii

This volume aims to:

1. Obtain a common understanding of the challenging research questions in Web
applications comprising Web information systems, Web services and Web
interoperability

2. Obtain a common understanding of verification needs in Web applications
3. Achieve a common understanding of the available rigorous approaches to system

development and the cases in which they succeeded
4. Identify how rigorous software engineering methods can be exploited to develop

correct Web applications
5. Develop a European scale research agenda comprising theory, methods and tools

that would lead to correct Web applications with the potential to realise systems
for computation in the public domain

6. Develop a formal model of services and facilities for analysis, control and test of
such services

The main results are as follows:

• An identification of correctness problems in Web applications and sketches
and how these can be solved by formalised software engineering methods, in
particular Theorema and ASMs

• An identification of open problems regarding correctness of Web applications
and corresponding research questions that have to be addressed in the context of
Theorema and ASMs to solve these problems

• A common understanding regarding the need for assuring correctness and the
potential of formalised methods with this regard

• A vision for a research agenda, preferably grouped into project topics, to address
the open problems regarding correctness of Web applications

• A proposal for a research agenda and a commented list of open problems

Idir Ait-Sadoune and Yamine Ait-Ameur propose an extension of the Business
Process Execution Language (BPEL) on the basis of Event-B semantics for formal
modelling of Web services compositions that covers the scope, the fault and the
compensation handlers. A resulting methodology properly supports the design of
transactional BPEL processes. The proposed approach is illustrated by a case study.

Maria Bergholtz, Birger Andersson and Paul Johannesson develop a model
of services that allows to properly specify and to analyse the concept of a service
based on an understanding of services as a means for cocreation of value, as a means
for abstraction and as a means for distributing rights.

Marian Borek, Kuzman Katkalov, Nina Moebius, Wolfgang Reif, Gerhard
Schellhorn and Kurt Stenzel develop a development method for secure service
applications that integrates a model-driven approach with formal specification
techniques using abstract state machines, refinement to code and verification with
the interactive theorem prover KIV.

Károly Bósa, Roxana Holom and Mircea Boris Vleju propose a uniform
client-cloud interaction approach by which cloud service owners are able to fully
control the usages of their services in the case of each user subscription. The applied

www.allitebooks.com

http://www.allitebooks.org

viii Preface

method is able to incorporate the major advantages of the ASMs and of ambient
calculus.

Ajantha Dahanayake and Bernhard Thalheim develop a conceptual model
for service specification based on a general model framework W�H that extends
the rhetoric frame by Hermagoras of Temnos. The framework separates service
concerns such as service as a product, service as an offer, service request, service
delivery, service application, service record, service log or archive and service
exception.

Harald Lampesberger and Mariam Rady show how monitoring is comple-
menting testing and formal methods for Web and cloud systems. The approach
extends service-level agreement based on negotiations between clients and providers
and thus supports analysis of correctness of the interaction.

Raffaela Mirandola, Pasqualina Potena, Elvinia Riccobene and Patrizia
Scandurra present two approaches to predict and analyse reliability of a Web
service based on BPEL from one side and on SCA-ASM from the other side. It
is shown that the second approach is more effective in comparison with the first
one.

Klaus-Dieter Schewe and Qing Wang propose a theory of services (BDCM2)
that captures behaviour, description, contracting, monitoring and mediation based
on abstract state services, on service mediators and on service ontology models.

Bernhard Thalheim and Klaus-Dieter Schewe survey the codesign approach
for integrated development of structuring, functionality, distribution and interactiv-
ity for Web information systems. The specification framework has been applied
for design and realisation of large information-intensive e-business, edutainment
(e-learning), infotainment and community websites.

Reviewers. We thank our reviewers for their efforts, for their detailed reviews
and for the support for their second round of reviewing revised papers:

Yamine Ait Ameur
Birger Anderson
Maria Bergholtz
Marian Borek
Karoly Bosa
Ajantha Dahanayake
Antje Düsterhöft
Roxana Holom
Paul Johannesson
Kuzman Katkalov
Meike Klettke
Frank Kramer
Harald Lampesberger
Hui Ma
Raffaela Mirandola

Nina Möbius
Pascalina Potena
Andreas Prinz
Miriam Rady
Wolfgang Reif
Elvinia Riccobene
Patrizia Scandurra
Gerhard Schellhorn
Klaus-Dieter Schewe
Ove Sörensen
Kurt Stenzel
Bernhard Thalheim
Marina Tropmann
Boris Vleju
Qing Wang

www.allitebooks.com

http://www.allitebooks.org

Preface ix

Finally, we thank the Springer team for their help, their support and their
patience, especially to Silvia Schilgerius.

Kiel, Germany Bernhard Thalheim
Hagenberg, Austria Klaus-Dieter Schewe
Kristiansand, Norway Andreas Prinz
Hagenberg, Austria Bruno Buchberger

www.allitebooks.com

http://www.allitebooks.org

Contents

Formal Modelling and Verification of Transactional Web
Service Composition: A Refinement and Proof Approach
with Event-B . 1
Idir Ait-Sadoune and Yamine Ait-Ameur

Towards a Model of Services Based on Cocreation, Abstraction
and Rights Distribution. 29
Maria Bergholtz, Birger Andersson, and Paul Johannesson

Integrating a Model-Driven Approach and Formal Verification
for the Development of Secure Service Applications . 45
Marian Borek, Kuzman Katkalov, Nina Moebius, Wolfgang Reif,
Gerhard Schellhorn, and Kurt Stenzel

A Formal Model of Client-Cloud Interaction . 83
Károly Bósa, Roxana-Maria Holom, and Mircea Boris Vleju

W�H: The Conceptual Model for Services . 145
Ajantha Dahanayake and Bernhard Thalheim

Monitoring of Client-Cloud Interaction . 177
Harald Lampesberger and Mariam Rady

Formal Reliability Models for Web Services . 229
Raffaela Mirandola, Pasqualina Potena, Elvinia Riccobene,
and Patrizia Scandurra

What Constitutes a Service on the Web? . 257
Klaus-Dieter Schewe and Qing Wang

Codesign of Web Information Systems . 293
Bernhard Thalheim and Klaus-Dieter Schewe

xi

Contributors

Yamine Ait-Ameur IRIT - ENSEEIHT, Toulouse, France

Idir Ait-Sadoune LRI - CentraleSupelec, Gif-Sur-Yvette, France

Birger Andersson Department of Computer and Systems Sciences, Stockholm
University, Kista, Sweden

Maria Bergholtz Department of Computer and Systems Sciences, Stockholm
University, Kista, Sweden

Marian Borek Institute for Software and Systems Engineering, Augsburg Univer-
sity, Augsburg, Germany

Károly Bósa Christian Doppler Laboratory for Client-Centric Cloud Computing,
Johannes Kepler University Linz, Hagenberg, Austria

Roxana Chelemen Christian Doppler Laboratory for Client-Centric Cloud Com-
puting, Johannes Kepler University Linz, Hagenberg, Austria

Ajantha Dahanayake Department of Computer Information Science, Prince Sul-
tan University, Riyadh, Kingdom of Saudi Arabia

Paul Johannesson Department of Computer and Systems Sciences, Stockholm
University, Kista, Sweden

Kuzman Katkalov Institute for Software and Systems Engineering, Augsburg
University, Augsburg, Germany

Harald Lampesberger Christian Doppler Laboratory for Client-Centric Cloud
Computing, Johannes Kepler University Linz, Hagenberg, Austria

Raffaela Mirandola Politecnico di Milano, Milano, Italy

Nina Moebius Institute for Software and Systems Engineering, Augsburg Univer-
sity, Augsburg, Germany

Pasqualina Potena Università degli Studi di Bergamo, Dalmine (BG), Italy

xiii

xiv Contributors

Mariam Rady Christian Doppler Laboratory for Client-Centric Cloud Computing,
Johannes Kepler University Linz, Hagenberg, Austria

Wolfgang Reif Institute for Software and Systems Engineering, Augsburg Univer-
sity, Augsburg, Germany

Elvinia Riccobene Università degli Studi di Milano, Crema, Italy

Patrizia Scandurra Università degli Studi di Bergamo, Dalmine (BG), Italy

Gerhard Schellhorn Institute for Software and Systems Engineering, Augsburg
University, Augsburg, Germany

Klaus-Dieter Schewe Software Competence Center Hagenberg, Hagenberg,
Austria
and
Christian Doppler Laboratory for Client-Centric Cloud Computing, Johannes
Kepler University Linz, Hagenberg, Austria

Kurt Stenzel Institute for Software and Systems Engineering, Augsburg Univer-
sity, Augsburg, Germany

Bernhard Thalheim Department of Computer Science, Christian Albrechts Uni-
versity Kiel, Kiel, Germany

Mircea Boris Vleju Christian Doppler Laboratory for Client-Centric Cloud Com-
puting, Johannes Kepler University Linz, Hagenberg, Austria

Qing Wang Research School of Computer Science, The Australian National
University, Canberra, ACT, Australia

Formal Modelling and Verification
of Transactional Web Service Composition:
A Refinement and Proof Approach with Event-B

Idir Ait-Sadoune and Yamine Ait-Ameur

Abstract Several languages for describing Web service compositions, like BPEL
(Business Process Execution Language), make use of fault and compensation
constructs to handle internal and/or external runtime errors of the composed
service. This situation particularly occurs for transactional services. However, the
absence of a rigorous definition of these BPEL constructors makes it difficult to
correctly define the transactional behaviour of a BPEL process. The definitions of
such constructs are usually given by their informal descriptions available in the
standards. Our contribution proposes an approach to formally define the semantics
of these operators. Thus, this paper presents a new Event-B semantics for formal
modelling of Web service compositions that covers the scope, the fault and the
compensation handlers introduced by the BPEL language specification. It also
proposes a methodology showing how we can use Event-B method to design
transactional BPEL processes. The proposed approach is illustrated by a case study.

1 Introduction

Service-oriented architectures (SOA) are increasingly used in various applica-
tion domains. Indeed, a wide range of services operate on the Web and access
different distributed and shared resources like databases, data warehouses and
scientific calculation repositories. Moreover, the compositions of such services
define complex systems not only in the area of computing but also in various
businesses like manufacturing or scheduling. Some of these services performing
transactional activities are called transactional Web services. This kind of services
must satisfy the relevant properties related to transactional systems (atomicity,
consistency, isolation and durability (ACID) properties) traditionally required by

I. Ait-Sadoune (�)
LRI - CentraleSupelec, 3, rue Joliot-Curie, 91190 Gif-Sur-Yvette, France
e-mail: idir.aitsadoune@supelec.fr

Y. Ait-Ameur
IRIT - ENSEEIHT, Toulouse, France
e-mail: yamine@n7.fr

© Springer International Publishing Switzerland 2015
B. Thalheim et al. (eds.), Correct Software in Web Applications and Web Services,
Texts & Monographs in Symbolic Computation,
DOI 10.1007/978-3-319-17112-8_1

1

mailto:idir.aitsadoune@supelec.fr
mailto:yamine@n7.fr

2 I. Ait-Sadoune and Y. Ait-Ameur

database management systems. Although the notion of transactions is well mastered
by traditional shared and distributed databases, SOA suffers from a lack of formal
semantics of transactional Web services. Indeed, in the current SOA tools, overall
business transactions may fail or be cancelled when many ACID transactions are
committed.

BPEL (Business Process Execution Language [22]) is considered as a standard
of Web service composition specification. It offers a compensation mechanism
by providing resources for flexible control of reversal and/or resume activities.
To reach this goal, BPEL offers the possibility to define fault handling and
compensation in an application-specific manner. BPEL has an XML-based textual
representation, and its dynamic semantic description is still informally defined in the
standards. Due to the lack of formal semantics of BPEL, ambiguous interpretations
remain possible, especially the use of different mechanisms (fault handlers and
compensation handlers) to handle transactional behaviour. Such languages do not
offer the capability to formally handle the transactional Web service aspects and to
ensure their correct behaviour.

Several approaches have proposed formal semantics to the BPEL language using
different formal descriptions. Petri nets, transition systems, pi-calculus and process
algebra have been set up to model BPEL processes; they are summarised in Sect. 8.
In our previous work ([5, 6]), we have defined an Event-B-based [2] semantics for
the various elements of data and service descriptions and for simple and structured
BPEL activities. In this paper, we propose to extend this work to cover the scope, the
fault and the compensation handlers introduced by the BPEL language specification.
We also propose a methodology to design a transactional BPEL process by assisting
a designer for detecting and verifying a transactional behaviour in a BPEL process.

This paper is structured as follows. The next section presents the Event-B
method, and Sect. 3 gives an overview of the BPEL language and the case study
used in this paper to illustrate the proposed approach. Sections 4, 5 and 6 present,
respectively, the proposed approach for analysing transactional Web services and
how Event-B method is used to encode these scope, fault and compensation
constructs. Section 7 presents an application of the proposed approach to a case
study. Section 8 discusses our approach compared to the state of the art in formal
verification of BPEL processes and transactional Web services. Finally, a conclusion
and some perspectives are outlined.

2 The Event-B Method

The Event-B method [2] is a recent evolution of the B method [1]. This method
is based on the notions of preconditions and post-conditions [16], the weakest
precondition [9] and the calculus of substitution [1]. It is a formal method based
on first-order logic and set theory.

Modelling and Verification of Transactional Processes with Event-B 3

2.1 Event-B Model

An Event-B model is defined by a set of variables, defined in the VARIABLES
clause that evolves thanks to events defined in the EVENTS clause. It encodes a state
transition system where the variables represent the state and the events represent the
transitions from one state to another.

An Event-B model is made of several components of two kinds: Machines and
Contexts. The Machines contain the dynamic parts (states and transitions) of a
model, whereas the Contexts contain the static parts (axiomatisation and theories) of
a model. A Machine can be refined by another one, and a Context can be extended
by another one. Moreover, a Machine can see one or several Contexts (Fig. 1).

The refinement operation [3] offered by Event-B encodes model decomposition.
A transition system is decomposed into another transition system with more and
more design decisions while moving from an abstract level to a less abstract one.
A refined Machine is defined by adding new events, new state variables and a gluing
invariant. Each event of the abstract model is refined in the concrete model by adding
new information expressing how the new set of variables and the new events evolve.

A Context is defined by a set of clauses (Fig. 2) as follows:

• CONTEXT represents the name of the component that should be unique in a
model.

• EXTENDS declares the Context extended by the described Context.

Fig. 1 MACHINE and CONTEXT relationships

Fig. 2 The structure of an Event-B development

4 I. Ait-Sadoune and Y. Ait-Ameur

• SETS describes a set of abstract and enumerated types.
• CONSTANTS represents the constants used by a model.
• AXIOMS describes, in first-order logic expressions, the properties of the

attributes defined in the CONSTANTS clause. Types and constraints are
described in this clause as well.

• THEOREMS are logical expressions that can be deduced from the axioms.

Similarly to Contexts, a Machine is defined by a set of clauses (Fig. 2). Briefly,
the clauses mean:

• MACHINE represents the name of the component that should be unique in a
model.

• REFINES declares the Machine refined by the described Machine.
• SEES declares the list of Contexts imported by the described Machine.
• VARIABLES represents the state variables of the model of the specification.

Refinement may introduce new variables in order to enrich the described system.
• INVARIANTS describes, by first-order logic expressions, the properties of the

variables defined in the VARIABLES clause. Typing information, functional
and safety properties are usually described in this clause. These properties shall
remain true in the whole model. Invariants need to be preserved by events. It
also expresses the gluing invariant required by each refinement for property
preservation.

• THEOREMS defines a set of logical expressions that can be deduced from the
invariants. They do not need to be proved for each event like for the invariant.

• VARIANT introduces a decreasing natural number which states that the “conver-
gent” events terminate.

• EVENTS defines all the events (transitions) that occur in a given model. Each
event is characterised by its guard and by the actions performed when the guard is
true. Each Machine must contain an “Initialisation” event. The events occurring
in an Event-B model affect the state described in VARIABLES clause.

An event consists of the following clauses (Fig. 3):

– status can be “ordinary”, “convergent” (the event has to decrease the variant)
or “anticipated” (the event must not increase the variant).

– refines declares the list of events refined by the described event.
– any lists the parameters of the event.

Fig. 3 Event structure

Modelling and Verification of Transactional Processes with Event-B 5

< variable identi f ier > := < expression> (1)
< variable identi f ier list > : | < be f ore a f ter predicate> (2)
< variable identi f ier > :∈ < set expression> (3)

Fig. 4 The kinds of actions of an event

– where expresses the guard of the event. An event is fired when its guard
evaluates to true. If several guards evaluate to true, only one is fired with a
non-deterministic choice.

– then contains the actions of the event that are used to modify the state
variables.

Event-B offers three kinds of actions that can be deterministic or not (Fig. 4). For
the first case, the deterministic action is represented by the “assignment” operator
that modifies the value of a variable. This operator is illustrated by the action (1). For
the case of the non-deterministic actions, the action (2) represents the “before-after”
operator acting on a set of variables whose effect is represented by a predicate,
expressing the relationship between the contents of variables before and after the
triggering of the action. Finally, the action (3) represents the non-deterministic
choice operator, acting on a variable, by modifying its content with an undetermined
value in a set of values.

2.2 Proof Obligation Rules

Proof obligations (POs) are associated to any Event-B model. They are automati-
cally generated. The proof obligation generator plug-in in the Rodin platform [24]
is in charge of generating them. These POs need to be proved in order to ensure
the correctness of developments and refinements. The obtained PO can be proved
automatically or interactively by the prover plug-in in the Rodin platform.

The rules for generating proof obligations follow the substitution calculus [1]
close to the weakest precondition calculus [9]. In order to define some proof
obligation rules, we use the notations defined in Figs. 2 and 3 where s denotes
the seen sets, c the seen constants and v the variables of the Machine. Seen axioms
are denoted by A.s; c/ and theorems by T .s; c/, whereas invariants are denoted by
I.s; c; v/ and local theorems by T .s; c; v/. For an event evt, the guard is denoted by
G.s; c; v; x/, and the action is denoted by the before-after predicate BA.s; c; v; x; v0/
(the action (2) of Fig. 4).

• The theorem proof obligation rule: this rule ensures that a proposed context or
machine theorem is indeed provable:

A.s; c/) T .s; c/

A.s; c/ ^ I.s; c; v/) T .s; c; v/

www.allitebooks.com

http://www.allitebooks.org

6 I. Ait-Sadoune and Y. Ait-Ameur

• Invariant preservation proof obligation rule: this rule ensures that each invariant
in a machine is preserved by each event:

A.s; c/ ^ I.s; c; v/ ^G.s; c; v; x/ ^ BA.s; c; v; x; v0/) I.s; c; v0/

• Feasibility proof obligation rule: the purpose of this proof obligation is to ensure
that a non-deterministic action is feasible:

A.s; c/ ^ I.s; c; v/ ^G.s; c; v; x/) 9v0:BA.s; c; v; x; v0/

• The numeric variant proof obligation rule: this rule ensures that under the guards
of each convergent or anticipated event, a proposed numeric variant is indeed a
natural number:

A.s; c/ ^ I.s; c; v/ ^G.s; c; v; x/) V.s; c; v/ 2 N

• The variant proof obligation rule: this rule ensures that each convergent event
decreases the proposed numeric variant. It also ensures that each anticipated
event does not increase the proposed numeric variant. The rule in the case of
a convergent event is

A.s; c/ ^ I.s; c; v/ ^G.s; c; v; x/ ^ BA.s; c; v; x; v0/) V.s; c; v0/ < V.s; c; v/

The rule in the case of an anticipated event is

A.s; c/ ^ I.s; c; v/ ^G.s; c; v; x/ ^ BA.s; c; v; x; v0/) V.s; c; v0/ � V.s; c; v/

There are other rules for generating proof obligations to prove the correctness of
refinement. These rules are given in [2].

2.3 Semantics of Event-B Models

The new aspect of the Event-B method [2], in comparison with classical B [1], is
related to the semantics. Indeed, the events of a model are atomic events of state
transition systems. The semantics of an Event-B model is trace-based semantics
with interleaving. A system is characterised by the set of licit traces corresponding
to the fired events of the model which respects the described properties. The traces
define a sequence of states that may be observed by properties. All the properties
will be expressed on these traces.

This approach proved the capability to represent event-based systems like railway
systems, embedded systems or Web services. Moreover, decomposition (thanks
to refinement) supports building of complex systems gradually in an incremental
manner by preserving the initial properties, thanks to the preservation of a gluing
invariant.

Modelling and Verification of Transactional Processes with Event-B 7

3 Service Composition Description Languages

The Web service composition description languages are XML-based languages. The
most popular languages are BPEL [22], CDL [30], OWL-S [29], BPMN [23] and
XPDL [31]. If these languages are different from the description point of view, they
share several concepts, in particular the service composition. Among the shared
concepts, we find the notions of activity for producing and consuming messages;
attributes, for instance, correlation; message decomposition; service location; com-
pensation in case of failure; events; and event handling. These elements are essential
to describe service compositions and their behaviour.

However, due to their XML-based definition, these languages suffer from a
lack of semantics. It is usually informally expressed in the standards that describe
these languages using natural language or semiformal notations. Hence, the need
of a formal semantics expressing this semantics emerged. Formal description
techniques and the corresponding verification procedures are very good candidates
for expressing the semantics and for verifying the relevant properties.

The formal approach we develop in this paper uses BPEL as a service com-
position description language and Event-B as a formal description technique. The
proposed approach can be extended to be used with other service composition
description language.

3.1 Overview of BPEL

BPEL (Business Process Execution Language [22]) is a standardised language
for specifying the behaviour of a business process based on interactions between
a process and its service partners (partnerLink). It defines how multiple service
interactions, between these partners, are coordinated to achieve a given goal. Each
service offered by a partner is described in a WSDL document through a set of
operations and of handled messages.

WSDL (Web Service Description Language [28]) is a standardised language
for describing the published interface (input and output parameter types) of the
Web service. It provides with the address of the described service, its identity,
the operations that can be invoked and the operation parameters and their types.
Thus, WSDL describes the function provided by Web service operations. It defines
the exchanged messages that envelop the exchanged data and parameters. The
composition of such Web services is described in languages, like BPEL, supporting
such composition operators.

A BPEL process uses a set of variables to represent the messages exchanged
between partners. They also represent the state of the business process. The content
of these messages is amended by a set of activities which represent the process
flow. This flow specifies the operations to be performed, their ordering, activation
conditions, reactive rules, etc. Figures 5 and 6 show the XML structure of a WSDL
description and a BPEL process.

8 I. Ait-Sadoune and Y. Ait-Ameur

<message name=”InfosMessage”>
<part name=”DebitInfosPart” type=”DebitInfos”/>
<part name=”CreditInfosPart” type=”CreditInfos”/>

</message>
<message name=”ResponseMessage”>

<part name=”ResponsePart” type=”int”/>
</message>
<message name=”DebitMessage”>

<part name=”DebitInfosPart” type=”DebitInfos”/>
</message>
<message name=”CreditMessage”>

<part name=”CreditInfosPart” type=”CreditInfos”/>
</message>
<portType name=”BankTransferPortType”>

<operation name=”BankTransferOperation”>
<input message=”InfosMessage”/>
<output message=”InfosOut”/>

</operation>
<operation name=”DebitOperation”>

<input message=”DebitMessage”/>
</operation>
<operation name=”CreditOperation”>

<input message=”CreditMessage”/>
</operation>

</portType>

Fig. 5 The XML WSDL (Web Service Description Language) description of BankTransfer
services

<process name=”BankTransfer” ...>
<variables>

<variable name=”TransactionIn” messageType=”InfosMessage”/>
<variable name=”TransactionOut” messageType=”InfosOut”/>
<variable name=”DebitInfo” messageType=”DebitInfosMessage”/>
<variable name=”CreditInfo” messageType=”CreditInfosMessage”/>

</variables>
<sequence name=”BankTransferProcess”>

<receive name=”ReceiveTransferInfos” variable=”TransactionIn” . . . operation=”BankTransferOperation”/>
<assign name=”AssignTransferInfos”>...</assign>
<invoke name=”InvokeDebit” ... operation=”DebitOperation” inputVariable=”DebitInfo”/>
<invoke name=”InvokeCredit” ... operation=”CreditOperation” inputVariable=”CreditInfo”/>
<assign name=”AssignResponse”>...</assign>
<reply name=”Reply” variable=”TransactionOut” . . . operation=”BankTransferOperation” />

</sequence>
<process/>

Fig. 6 The XML BPEL description of BankTransfer process

BPEL offers two categories of activities: (1) atomic activities representing the
primitive operations performed by the process (they are defined by the invoke,
receive, reply, assign, terminate, wait and empty activities and correspond to
basic Web services) and(2) structured activities obtained by composing primitive
activities and/or other structured activities using the sequence, if, while and repeat
Until composition operators that model traditional sequential control constructs.
Three other composition operators are defined by the pick operator defining a

Modelling and Verification of Transactional Processes with Event-B 9

non-deterministic choice, the flow operator defining the concurrent execution and
the scope operator defining subprocess execution. BPEL also introduces systematic
mechanisms for fault handling by defining a set of activities to be executed for
handling possible errors anticipated by the Web service composition designer.
A compensation handler can be associated to the fault handler; it starts from the
erroneous process itself to undo some steps that have already been completed and
return the control back at the identified checkpoints.

3.2 A Case Study

We have chosen to illustrate our approach on the pedagogical case study of the
BankTransfer commonly used to describe transactional Web services (Figs. 5, 6
and 7). This example describes a service processing a bank transfer between two

Fig. 7 The graphical BPEL description of BankTransfer process

10 I. Ait-Sadoune and Y. Ait-Ameur

bank accounts from two different banks. On receiving the transfer order from a
customer, the process makes, in sequence, a debit from the source bank account
and a credit to the target bank account. The BPEL description of Fig. 6 shows
how the BankTransfer process is decomposed into a sequence of ReceiveTransfer-
Infos, AssignTransferInfos, InvokeDebit, InvokeCredit, AssignResponse and Reply
activities. The transaction order information, sent by the customer, is stored in
the TransactionIn message, and the transaction receipt is sent to the customer in
the TransactionOut message. The DebitInfo and CreditInfo messages contain the
information sent to the two bank accounts to make the transfer.

4 Event-B for Analysing Transactional Web Services

Our idea is to provide assistance to BPEL developers using the Event-B method [2].
The choice of this formal method is guided by the fact that proof-based methods
do not suffer from the state number explosion problem and proofs are eased by
the refinement thanks to the decomposition it provides. Our motivation for the use
of this formal method is detailed in the previous work [5, 6]. More precisely, our
objective is to provide a methodology for detecting the BPEL process parts that
handle critical resources. Traditionally, the developer builds its BPEL process and
describes the process behaviour without using fault and compensation handlers to
guarantee transactional constraints. He/she adds these constraints by observing the
behaviour of the obtained process.

In the approach we promote, the designed BPEL process is translated into an
Event-B model according to the rules defined in [5] and [6]. Then, the transactional
properties and the properties related to the consistencies of resources used by the
BPEL process are expressed in the form of consistency invariants (consistency
property). These invariants are defined by the designer because there is no BPEL
resource supporting their expression nor a technique for their checking. Once this
enrichment is performed, proof obligations (POs) are generated. Some of these POs
related to invariants involving the transactional properties are unprovable because
triggering some events separately violates the consistency invariants. Then, BPEL
activities related to the event source of these unprovable POs are detected and
isolated in a BPEL scope element. This element allows the designer to define a
particular BPEL part on which specific mechanisms only apply to this isolated part
in an atomic manner. In our case, for transactional BPEL parts, we recommend to
apply the mechanisms for fault and compensation handling to the scope element
(compensational atomicity property: guarantees that a transaction consisting of
a Web service request will run in such a way that either all of its requests are
completed successfully or all requests that occurred during the processing of this
transaction will be compensated) and the “isolated” attribute of the corresponding
scope is set to “true”. As a consequence, the execution of this part is isolated by
the orchestration tools (isolation property), and at the same time, consistency of
the resources used by these activities is guaranteed. Transactional properties may

Modelling and Verification of Transactional Processes with Event-B 11

require a redesign of the defined BPEL process. From a methodological point of
view, our approach relies on the following steps.

Step 1 Translate the BPEL model into an Event-B model.
Step 2 Introduce, in the Event-B model, the relevant invariants related to the suited

transactional behaviour.
Step 3 Isolate the events of the Event-B model whose POs, associated to the

introduced invariant of step 2, are not provable.
Step 4 Redesign the BPEL model of step 1 by introducing a BPEL scope embed-

ding the events identified at step 3 and compensation/fault handlers.

This step-based approach is applied until the associated Event-B model is free of
unproven POs.

In the following sections, we present the Event-B models for scope, fault handler
and compensation handler BPEL concepts. These models extend the proposed ones
of the general approach of [5] and [6] to support transactional BPEL processes
modelling or checking the behaviour of composed Web services in the case of an
internal or external runtime error of a BPEL process.

5 Modelling Scope, Fault and Compensation Handlers

Before addressing the formal modelling of the transactional behaviour, we reviewed
the proposed Event-B formal semantics of BPEL ([5, 6]).

5.1 Formal Modelling of BPEL ([5, 6])

Our approach for formal modelling of BPEL with Event-B is based on the
observation that a BPEL definition is interpreted as a transition system interpreting
the process coordination. A state is represented in both languages by a variables
element in BPEL and by the VARIABLES clause in Event-B. The various activities
of BPEL represent the transitions. They are encoded by events of the Event-B
EVENTS clause. For a better understanding of this paper, the transformation rules
from BPEL to Event-B models are briefly recalled below. This translation process
consists of two parts: static and dynamic.

5.1.1 Static Part

The first part translates the WSDL definitions that describe the various Web services
and their data types, messages and port types (the profile of supported operations)
into the different data types and functions offered by Event-B. This part is encoded
in the Context part of an Event-B model.

12 I. Ait-Sadoune and Y. Ait-Ameur

CONTEXT BankTransferContext
SETS

Void InfosMessage ResponseMessage DebitMessage CreditMessage DebitInfosType CreditInfosType

CONSTANTS
DebitInfosPart CreditInfosPart DebitPart CreditPart ResponsePart BankTransferOperation
DebitOperation CreditOperation

AXIOMS
a12 : DebitInfosPart ∈ InfosMessage→DebitInfosType
a13 : CreditInfosPart ∈ InfosMessage→CreditInfosType
a14 : (DebitInfosPart⊗CreditInfosPart) ∈ InfosMessage (DebitInfosType×CreditInfosType)
a15 : ResponsePart ∈ ResponseMessage {0 1}
a16 : DebitPart ∈ DebitMessage DebitInfosType
a17 : CreditPart ∈ CreditMessage CreditInfosType
a18 : BankTransferOperation ∈ InfosMessage→ResponseMessage
a19 : DebitOperation ∈ DebitMessage→Void
a20 : CreditOperation ∈ CreditMessage→Void

END

Fig. 8 The Event-B CONTEXT of BankTransfer process

A BPEL process references data types, messages and operations of the port
types declared in the WSDL document. In the following, the rules translating these
elements into an Event-B Context are inductively defined:

1 The WSDL message element is formalised by an abstract set. Each part attribute
of a message is represented by a functional relation corresponding to the
template part 2 message ! type_part from the message type to the part type.
On the case study in Fig. 5, a set named InfosMessage is defined in the SETS
clause, and the application of this rule corresponds to the axiom a12 and a13
declarations in the BankTransferContext in Fig. 8.

2 Each operation of a WSDL portType is represented by a functional relation
corresponding to the template operation 2 input ! output mapping the
input message type on the output message type. On the case study in Fig. 5,
the BankTransferOperation operation is encoded by the functional relation
described by axiom a18 in Fig. 8.

5.1.2 Dynamic Part

The second part concerns the description of the orchestration process of the
activities appearing in a BPEL description. These processes are formalised as Event-
B events; each simple activity becomes an event of the Event-B model, and each
structured or composed activity is translated to a specific event construction. This
part is encoded in a Machine of an Event-B model.

A BPEL process is composed of a set of variables and a set of activities. Each
BPEL variable corresponds to a state variable in the VARIABLES clause, and the

Modelling and Verification of Transactional Processes with Event-B 13

MACHINE BankTransferMachine
SEES BankTransferContext
VARIABLES

TransactionIn DebitInfo CreditInfo Response varSeq 1

INVARIANTS
i1 : TransactionIn ⊆ InfosMessage∧ card(TransactionIn) ≤ 1
i2 : DebitInfo ⊆ DebitMessage∧ card(DebitInfo) ≤ 1
i3 : CreditInfo ⊆ CreditMessage∧ card(CreditInfo) ≤ 1
i4 : Response ⊆ ResponseMessage∧ card(Response) ≤ 1
i5 : varSeq 1 ∈ {0 1 2 3 4 5 6}

Fig. 9 The Event-B MACHINE of BankTransfer process (part 1)

activities are encoded by events. This transformation process is inductively defined
on the structure of a BPEL process according to the following rules:

3 The BPEL variable element is represented by a variable in the VARIABLES
clause in an Event-B Machine. This variable is typed in the INVARIANTS
clause using messageType BPEL attribute. The variables and invariants corre-
sponding to the case study are given in Fig. 9. For example, the BPEL variable
DebitInfo is declared and typed.

4 Each BPEL simple activity is represented by a single event in the EVENTS clause
of the Event-B Machine. For example, in Fig. 10, the ReceiveTransferInfos
BPEL atomic activity is encoded by the ReceiveTransferInfos Event-B event.

5 Each BPEL structured activity is modelled by an Event-B description which
encodes the carried composition operator. Modelling composition operations
in Event-B follow the modelling rules formally defined in [4]. Again, on the
same example (Fig. 6), the structured activity BankTransferProcess is encoded
by a sequence of six events controlled by the varSeq_1 variable initialised to
value 6 (Fig. 10).

When the Event-B models formalising a BPEL description are obtained, they
may be enriched by the relevant properties that formalise the user requirements and
the soundness of the BPEL-defined process like BPEL type control, orchestration
and service composition, deadlock freeness, no live-lock, precondition for calling a
service operation and data transformation ([5, 6]).

5.2 An Event-B Model for Scope

The BPEL language provides a particular mechanism for subprocess description
thanks to the scope construct. Scope encapsulates subprocess behaviours and
includes a context used by the execution of the activities that describe its behaviour.
This context contains a state composed by a set of variables. Each scope has a
required primary activity that describes its behaviour (Fig. 11).

14 I. Ait-Sadoune and Y. Ait-Ameur

Initialisation
begin

init1 : varSeq 1 := 6
init2 : TransactionIn :=∅
init3 : DebitInfo :=∅
init4 : CreditInfo :=∅
init5 : Response :=∅

end
Event BankTransferProcess =̂

when
grd1 : varSeq 1= 0

then
skip

end
Event ReceiveTransferInfos =̂

any
receive

where
grd1 : receive ∈ InfosMessage
grd2 : TransactionIn=∅
grd3 : varSeq 1= 6

then
act1 : TransactionIn := {receive}
act2 : varSeq 1 := varSeq 1−1

end
Event AssignTransferInfos =̂

any
from to 1 to 2

where
grd1 : to 1 ∈ DebitMessage
grd2 : to 2 ∈ CreditMessage
grd3 : from ∈ TransactionIn
grd4 : TransactionIn �=∅
grd5 : DebitInfo=∅
grd6 : CreditInfo=∅
grd7 : DebitInfosPart(from) = DebitPart(to 1)
grd8 : CreditInfosPart(from)=CreditPart(to 2)
grd9 : varSeq 1= 5

then
act1 : DebitInfo := {to 1}
act2 : CreditInfo := {to 2}
act3 : varSeq 1 := varSeq 1−1

end

Event InvokeDebit =̂
any

msg
where

grd1 : msg ∈ DebitInfo
grd2 : DebitInfo �=∅
grd3 : msg ∈ dom(DebitOperation)
grd4 : varSeq 1= 4

then
act1 : varSeq 1 := varSeq 1−1

end
Event InvokeCredit =̂

any
msg

where
grd1 : msg ∈ CreditInfo
grd2 : CreditInfo �=∅
grd3 : msg ∈ dom(CreditOperation)
grd4 : varSeq 1= 3

then
act1 : varSeq 1 := varSeq 1−1

end
Event AssignResponse =̂

any
to

where
grd1 : to ∈ ResponseMessage
grd2 : Response=∅
grd3 : ResponsePart(to) = 1
grd4 : varSeq 1= 2

then
act1 : Response := {to}
act2 : varSeq 1 := varSeq 1−1

end
Event Reply =̂

any
reply

where
grd1 : reply ∈ Response
grd2 : Response �=∅
grd3 : varSeq 1= 1

then
act1 : Response :=∅
act2 : varSeq 1 := varSeq 1−1

end

Fig. 10 The Event-B MACHINE of BankTransfer process (part 2)

<scope name=”scopeName” isolated=”yes—no”? ... >
<variables>?...</variables>
<faultHandlers>?

<catch faultName=”fault 1”?... >*
<activity name=”catchFault 1”>...</activity>

</catch>
<catchAll>?

<activity name=”catchAllFaults”>...</activity>
</catchAll>

</faultHandlers>
<compensationHandler>

<activity ... >...</activity>
</compensationHandler>
<activity name=”mainActivity”...>...</activity>

</scope>

Fig. 11 A BPEL scope element containing fault and compensation handlers

Modelling and Verification of Transactional Processes with Event-B 15

MACHINE scopeModel
VARIABLES

varScope

INVARIANTS
i : varScope ∈ {0 1}

EVENTS
Initialisation

begin
init1 : varScope := 1

end

Event mainActivity =̂
when

grd1 : varScope= 1
grd2 : Gsa

then
act1 : varScope := 0
act2 : Ssa

end

Event scopeName =̂
when

grd1 : varScope= 0
grd2 : G′

then
act1 : S′

end

Fig. 12 An Event-B model for a BPEL scope element

The scopeModel MACHINE in Fig. 12 formalises the scope behaviour. This
MACHINE introduces a mainActivity event that models the main activity of a scope
and a scopeName event that models the end of a scope execution. The variable
varScope is initialised to 1. This variable triggers the scopeName event at the end
of the mainActivity event. If the scope’s main activity is of structured type, the
transformation rules defined for structured activities in [5] are applied. Similarly,
the scope variables are modelled according to the variable transformation rules
defined in [5].
Gsa, G0, Ssa and S 0 represent the guards and the actions of the mainActivity and

scopeName events. They result from variable and activity modelling and are related
to the data manipulation and to the process behaviour. The same reasoning applies
for fault and compensation handler models presented below.

5.3 An Event-B Model for Fault Handler

A BPEL fault handler is a process that is triggered when an error rose from a partner
Web service or an internal BPEL process. It provides a mechanism to define a set
of customised “fault-handling” activities. A catch element is defined to intercept (to
catch) a specific kind of fault, defined by a “faultName” attribute. If no predefined
name is associated to the intercepted fault, this fault will be processed by a catchAll
element (see Fig. 11).

The faultHandlerModel MACHINE in Fig. 13 formalises a fault Handler as
described in Fig. 11. The mainActivity event models the normal behaviour of the
scope. Different types of errors are taken into account by the defined fault handler.
Error types are defined by an enumerated set called faultType in the SETS clause.
It contains all fault types identified by the designer and used in the BPEL process
description. The model in Fig. 13 formalises the case of errors called fault_1 among
other faults. A varFault variable is introduced to determine whether the current
behaviour of the process is catching errors (varFault=1) or describes a normal
execution (varFault=0).

www.allitebooks.com

http://www.allitebooks.org

16 I. Ait-Sadoune and Y. Ait-Ameur

CONTEXT faultHandlerContext
SETS

faultType

CONSTANTS
fault 1 otherFault

AXIOMS
a1 : partition(faultType {fault 1} {otherFault})

END
MACHINE faultHandlerModel
SEES faultHandlerContext
VARIABLES

currentFault varFault

INVARIANTS
i1 : currentFault ∈ faultType
i2 : varFault ∈ {0 1}

EVENTS
Initialisation

begin
init1 : varFault := 0
init2 : currentFault :∈

faultType
end

Event mainActivity =̂
when

grd1 : varFault = 0
grd2 : G

then
act1 : S

end
Event faultOccurs =̂

any
ff

where
grd1 : varFault = 0
grd2 : ff ∈ faultType

then
act1 : varFault := 1
act2 : currentFault := ff

end

Event catchFault 1 =̂
when

grd1 : varFault = 1
grd2 : currentFault =

fault 1
grd3 : G1

then
act1 : S1

end

Event catchAllFaults =̂
where

grd1 : varFault 1
grd2 :

currentFault =
otherFault

grd3 : Gn
then

act1 : Sn
end

Fig. 13 An Event-B model for a BPEL fault handler

The occurrence of an error is formalised by the faultOccurs event that is
arbitrarily triggered (non-deterministic occurrence of the event). When this event
is triggered, it ceases the normal behaviour described by the mainActivity event
thanks to the action varFault:=1. The fault processing, corresponding to the error
defined by the currentFault variable content, starts. If this variable contains the
fault_1 value, the catchFault_1 event, formalising the processing of the fault_1
error, is triggered. Otherwise (currentFault=otherFault), the catchAllFaults event,
formalising the catchAll element processing, is triggered.

Similarly, this model can be used to formalise a fault handler associated to a
BPEL process.

5.4 An Event-B Model for Compensation Handler

A compensation handler is a wrapper for a process that performs compensation.
A compensation handler for an activity is available for invocation only when the
activity completes successfully. Generally, the invocation of a compensation handler

Modelling and Verification of Transactional Processes with Event-B 17

<process ... >
...
<faultHandlers>

<catch faultName=”scopeFault”... >
<compensate name=”catchScope”/>

</catch>
</faultHandlers>
<sequence name=”mainActivity”>
...
<scope name=”scopeName” ...>

<compensationHandler>
<activity name=”compensationActivity”>...</activity>

<compensationHandler>
...
</scope>
</sequence>

</process>

Fig. 14 BPEL fault and compensation handlers

is achieved by a fault handler to undo the effects of already completed activities in
the case of a runtime error.

The BPEL process described in Fig. 14 contains two behaviours: the normal
behaviour described by the mainActivity sequence element and the error catching
behaviour described by the fault handler. The normal behaviour consists of a
sequence of activities, and one of these activities is required to be a scope. This
scope contains a compensation handler to cancel its effect in the case of a runtime
error. Then, the fault handling process consists of triggering the compensate activity.

The compensationModel MACHINE described in Fig. 15 formalises a BPEL
process conforming to Fig. 14. The normal behaviour described by a sequence
activity is modelled by a mainActivity event according to the defined rules in [5].
Being the j th activity of this sequence, the scope is modelled by the scopeName
event which represents part of the scope model obtained using the rules defined in
Sect. 5.2. The scopeName event is triggered when varSeq=j.

The fault handler part is modelled by the catchScope event. It formalises a
compensate activity named catchScope. This part describes the scopeFault handling
process. The catchScope event triggers the compensation handler contained in the
scopeName scope, in the case that currentFault is “scopeFault”. This action is done
by assigning value 1 to the varComp variable.

The compensation process is described by the compensationActivity event. It can
be triggered if the scopeName scope has completed its execution (varSeq<j) and
the catchScope event is triggered (varCompD1). The compensationActivity specifies
the process of compensation. It can be described by one or a set of activities. In this
case, the transformation rules of BPEL activities defined in [5] are applied to detail
this description.

18 I. Ait-Sadoune and Y. Ait-Ameur

CONTEXT compensationContext
SETS

faultType

CONSTANTS
scopeFault otherFault

AXIOMS
a1 : partition(faultType {scopeFault} {otherFault})

END
MACHINE compensationModel
SEES compensationContext
VARIABLES

varSeq varComp currentFault varFault

INVARIANTS
i1 : currentFault ∈ faultType
i2 : varFault ∈ {0 1}
i3 : varComp ∈ {0 1}
i4 : varSeq

EVENTS
Initialisation

begin
init1 : varFault := 0
init2 : varComp := 0
init3 : varSeq := n
init4 : currentFault :∈

faultType
end

Event mainActivity =̂
when

grd1 : varFault = 0
grd2 : varSeq= 0
grd3 : G

then
act1 : S

end

Event scopeName =̂
when

grd1 : varFault = 0
grd2 : varSeq= j
grd3 : Gs

then
act1 : Ss
act2 : varSeq := varSeq−1

end
Event faultOccurs =̂

any
ff

where
grd1 : varFault = 0
grd2 : ff ∈ faultType

then
act1 : varFault := 1
act2 : currentFault := ff

end

Event catchScope =̂
when

grd1 : varFault = 1
grd2 :

currentFault =
scopeFault

then
act1 : varComp := 1

end

Event compensationActivity =̂
where

grd1 : varComp= 1
grd2 : varSeq< j
grd3 : Gc

then
act1 : Sc

end

Fig. 15 An Event-B model for BPEL fault and compensation handlers

6 Use of the Tools

The proposed approach is implemented by integrating various plug-ins in the Rodin
platform which is based on the Eclipse core. We have used existing plug-ins of
Eclipse platform (BPEL editor1) and of Rodin platform (Event-B editor, prover [24]
and ProB model checker [18]) and developed plug-ins (BPEL2B plug-in [5]). These
plug-ins are used at different steps of our approach:

• Designing BPEL process with the BPEL editor and translating the obtained
model into an Event-B model using the BPEL2B plug-in (step 1).

• Introducing the relevant invariants related to the suited transactional behaviour
with the Event-B editor (step 2). Isolating the events of the model whose POs,
associated to the introduced invariant of step 2, cannot be proved within the Rodin
prover.

1BPEL Designer Project: http://eclipse.org/bpel/

http://eclipse.org/bpel/

Modelling and Verification of Transactional Processes with Event-B 19

• The ProB model checker assisting the developer to confirm the diagnostic and to
get a counterexample associated to the isolated events (step 3).

• Redesigning the BPEL model of step 1 by introducing a BPEL scope embedding
the events identified at step 3 and a compensation/fault handler (step 4). The
graphical view of the BPEL editor can be used at this step to facilitate the
insertion of the new elements.

7 Application to the Case Study

The application of the approach outlined in Sect. 4 on the example in Fig. 6 is given
in the following steps. The reader can find all Event-B CONTEXTs and MACHINEs
source codes on this website.2

Step 1 This step on the BankTransfer BPEL process in Fig. 6 leads to the Event-B
model in Figs. 8, 9 and 10 described in Sect. 5.1.

Step 2 The transactional properties are expressed in the form of invariant in
the Event-B model of step 1. Starting from the model in Figs. 8 and 10,
we obtain the model in Fig. 16 by defining a default fault handler with
the defaultFaultHandler event. BankAccount1 and BankAccount2 variables
formalise the contents of two bank accounts and the amount variable contains
the value to be transferred. The InvokeDebit and InvokeCredit events invoke
Web services that make the transaction. The consistency property is expressed
by invariant i12. The sum of BankAccount1 and BankAccount2 variables shall
be constant to ensure consistency of the contents of two bank accounts before
triggering InvokeDebit event and after triggering InvokeCredit event. Invariant
i13 expresses the state after triggering InvokeDebit event and before triggering
the InvokeCredit event.

Step 3 The POs are generated by the Rodin platform, and those associated to the
invariant i12 and to the action varSeq_1WD0 of defaultFaultHandler event,
which aborts the BPEL process, cannot be proved (Fig. 17). An inconsistency
state results from this abortion.
The invariant violation is usually caused by defaultFaultHandler event trig-
gering when the faultOccurs event is triggered after InvokeDebit event. This
diagnostic is confirmed by the ProB model checker [18] that gets a coun-
terexample corresponding to this scenario (Fig. 18). The inconsistency state is
varSeq=0 (defaultFaultHandler event) and BankAccount1 C BankAccount2 D
ConsistencyState � amount.

Step 4 If an error occurs during the transaction, a fault handler should restore a
consistent state of the process before aborting it. The InvokeDebit and Invoke-
Credit activities are isolated in the BPEL scope, a fault handler is associated

2http://idir.aitsadoune.free.fr

http://idir.aitsadoune.free.fr

20 I. Ait-Sadoune and Y. Ait-Ameur

Fig. 16 The consistency property expression of BankTransfer process

to this scope, and the mechanism for compensation handling is applied to the
InvokeDebit and InvokeCredit activities (compensational atomicity property).
The “isolated” attribute of this scope is also set to “true” (isolation property).
The BPEL process obtained by this step is given in Figs. 19 and 20.

When applying again step 1 on the obtained BPEL process, the Event-B model
in Fig. 21 with BankTransferContext and BankTransferMachine components is
obtained. Only elements that differ from the Event-B model in Figs. 8 and 10
are shown in Fig. 21. The BankTransferProcess is encoded by a sequence of five
events. One of them is BankTransferScope which formalises the BankTransferScope

Modelling and Verification of Transactional Processes with Event-B 21

Fig. 17 The Rodin diagnostic

Fig. 18 The ProB diagnostic

scope. The main activity of this scope is a BankTransfer activity which is decom-
posed to a sequence of InvokeDebit and InvokeCredit activities controlled by the
varSeq_2 variable initialised to value 2. The scopeFaultOccurs event formalises
the triggering of a runtime error inside the scope. This event triggers the scope
fault handler by assigning the currentFault variable to “scopeFault”. The fault
handler process is described by the compensate, rethrow and scopeFaultHandler

22 I. Ait-Sadoune and Y. Ait-Ameur

<process name=”BankTransfer” ...>
...
<sequence name=”BankTransferProcess”>

<receive name=”ReceiveTransferInfos” ... />
<assign name=”AssignTransferInfos”> ... </assign>
<scope name=”BankTransferscope” isolated=”true”>

<faultHandlers>
<catchAll>

<sequence>
<compensate/>
<rethrow/>

</sequence>
</catchAll>

</faultHandlers>
<sequence name=”BankTransfer”>

<invoke name=”InvokeDebit” ...>
<compensationHandler>

<invoke name=”InvokeCancelDebit” .../>
</compensationHandler>

</invoke>
<invoke name=”InvokeCredit” ...>

<compensationHandler>
<invoke name=”InvokeCancelCredit” .../>

</compensationHandler>
</invoke>

</sequence>
</scope>
<assign name=”AssignResponse”>...</assign>
<reply name=”Reply” .../>

</sequence>
<process/>

Fig. 19 The BPEL description of a redesigned BankTransfer process

events. The compensate event triggers different compensation handlers that consist
of invoking InvokeCancelDebit and InvokeCancelCredit events to cancel the effect
of the InvokeDebit and InvokeCredit events.

In this case, the invariant i12 is changed and adapted to the modifications made
by introducing a scope. All POs are proved, and unlike the case in Fig. 16, the
invariant i12 is not violated by the fault handler process if scopeFaultOccurs event
is triggered after InvokeDebit event (Fig. 22). The scopeFaultHandler event triggers
the compensation process (compensate event) before aborting the BPEL process.

8 Related Work

Various approaches have been proposed to model and to analyse BPEL processes.
Most of the work in the literature shows that the proposed approaches use transition
systems for representing the business processes, activities and workflows and model
checking as the underlying formal verification technique for property validation.
Hinz et al. [15] and van der Aalst et al. [27] have used Petri nets to encode

Modelling and Verification of Transactional Processes with Event-B 23

Fig. 20 The graphical BPEL description of a redesigned BankTransfer process

BPEL processes. Nakajima [21] has mapped a BPEL activity part to a finite
automaton encoded in Promela. FSP (finite state process) and the associated tool
(LTSA) are used by Foster et al. [12] to check if a BPEL Web service composition
behaves like an MSC Web service composition specification captured by message
sequence charts (MSCs). Marconi et al. [20] present the approach that translates
a BPEL process to a set of state transition systems. These systems are composed
of parallel and the resulting parallel composition is annotated with specific Web
service requirements. Salaun et al. [25] show how BPEL processes are mapped to
processes expressed by LOTOS and CCS process algebra operations. Abstract state
machines (ASM) have been developed by Farahbod et al. [11] and Fahland [10]
to model BPEL composition process descriptions. Borger et al. [7] have used ASM
for modelling workflow, specifically BPMN process. The B method and StaAC were
used by Butler et al. [8] to model business transactions and their compensation with
an application to a BPEL process. Other approaches proposed formal models for
Web service compositions. An overview of these approaches can be found in [26].

24 I. Ait-Sadoune and Y. Ait-Ameur

Fig. 21 The Event-B model of the redesigned BankTransfer process

Modelling and Verification of Transactional Processes with Event-B 25

Fig. 22 The Rodin statistic view about i12 invariant

In all these proposals, a BPEL description is transformed to a formal model to
be checked. However, some of this work did not take into account the fault and
compensation mechanisms that enable transactional behaviours of BPEL processes.
No formal generic approach handling the full transactional Web service design
process is available. Some approaches have given formal semantics for the fault
and compensation handlers and encoded them in other formal techniques like Petri
nets [14, 19], pi-calculus [13], ASM [11], StaAC and B [8] or SAL [17]. In these
approaches, the designer describes by himself/herself the parts that are handled
by the fault and compensation handlers, and they check properties related to the
behaviour like deadlock freeness. There is no systematic formal modelling approach
for handling transactions. Moreover, there is no way to detect the transactional
part to be isolated in order to guarantee a correct behaviour of the transactional
Web service. Furthermore, existing approaches do not provide the possibility to
check if the consistency of the execution context is guaranteed. This is due to
the abstraction of data in the model checking techniques applied to Web service
validation for reducing the state space exploration. As a consequence, these works
don’t describe nor check properties related to the consistency of data produced by
the BPEL processes.

Our work is proof oriented; it translates the BPEL language and its constructs
into an Event-B model. We encode manipulated data and transactional behaviour,
check traditional properties like deadlock freeness and transactional properties
[5, 6] and offer to the developer assistance to improve his/her BPEL design by
isolating transactional parts to ensure a correct process behaviour. Moreover, it is
tool supported.

Notice that this work applies for all transactional-based process compositions.

9 Conclusion

In this paper, we propose an extension of the BPEL Event-B semantics proposed
in [5] and [6] by covering the scope, the fault and the compensation handlers.
We have also sketched a methodology showing how the obtained Event-B model
can be used to handle a transactional behaviour in Web services. Transactional
services that access and manage critical resources are isolated in a scope elements
with compensation and fault handlers. When modelling fault and compensation

www.allitebooks.com

http://www.allitebooks.org

26 I. Ait-Sadoune and Y. Ait-Ameur

handlers by a set of events, it becomes possible to model and check the properties
related to transactional Web services. Moreover, the obtained results are not specific
to Web service compositions. These results can be reused for the definition of
transactional service compositions that occur for areas like telecommunication and
network, manufacturing or scheduling. Indeed, the fact that services are Web based
is not specific to the proposed approach. BPEL is used as a language for service
composition description whatever is the nature or the application domain of the
manipulated services.

This work opens several perspectives. One of them is related to the explicit
semantics carried by the services. For example, composing in sequence a service
that produces distances expressed in centimetres with another one consuming
distances expressed in inches should not be a valid composition. Up to now, our
approach handles implicit semantics only; it does not handle such a composition.
Formal knowledge models carried out by ontologies expressed besides the Event-B
models should be investigated.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
New York (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, Cambridge (2010)

3. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of discrete models:
application to Event-B. Fundam. Inform. 77, 1–28 (2007)

4. Ait-Ameur, Y., Baron, M., Kamel, N., Mota, J.M.: Encoding a process algebra using the Event
B method. Int. J. Softw. Tools Technol. Transfer 11(3), 239–253 (2009)

5. Ait-Sadoune, I., Ait-Ameur, Y.: A proof based approach for modelling and verifying web
services compositions. In: 14th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS), pp. 1–10. IEEE Computer Society, Potsdam (2009)

6. Ait-Sadoune, I., Ait-Ameur, Y.: Stepwise design of BPEL web services compositions, an Event
B refinement based approach. In: 8th ACIS International Conference on Software Engineering
Research, Management and Applications (SERA), pp. 51–68, Montreal (2010)

7. Borger, E., Thalheim, B.: Modeling workflows, interaction patterns, web services and business
processes: the ASM-based approach. In: Abstract State Machines, B and Z (ABZ 2008).
Lecture Notes in Computer Science, vol. 5238. Springer, Heidelberg (2008)

8. Butler, M., Ferreira, C., Ng, M.Y.: Precise modelling of compensating business transactions
and its application to BPEL. J. Univers. Comput. Sci. 11(5), 712–743 (2005)

9. Dijkstra, E.W.: A Discipline of Programming, 1st edn. Prentice Hall PTR, Upper Saddle River
(1977)

10. Fahland, D., Reisig, W.: ASM-based semantics for BPEL: the negative Control Flow. In: 12th
International Workshop on Abstract State Machines, pp. 131–151 (2005)

11. Farahbod, R., Glasser, U., Vajihollahi, M.: An abstract machine architecture for web service
based business process management. In: Business Process Management Workshops. Lecture
Notes in Computer Science, vol. 3812, pp. 144–157. Springer, Heidelberg (2005)

12. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based verification of web service
compositions. In: 18th IEEE International Conference on Automated Software Engineering
(ASE’03), pp. 152–163 (2003)

Modelling and Verification of Transactional Processes with Event-B 27

13. Guidi, C., Lucchi, R., Mazzara, M.: A formal framework for web services coordination.
Electron. Notes Theor. Comput. Sci. 180, 55–70 (2007)

14. He, Y., Zhao, L., Wu, Z., Li, F.: Formal modeling of transaction behavior in WS-BPEL. In:
International Conference on Computer Science and Software Engineering (CSSE 2008) (2008)

15. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to petri nets. In: Springer-Verlag (ed.)
3rd International Conference on Business Process Management. Lecture Notes in Computer
Science, vol. 2649. Springer, Heidelberg (2005)

16. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12, 576–580
(1969)

17. Kovacs, M., Varro, D., Gonczy, L.: Formal analysis of BPEL workflows with compensation by
model checking. Int. J. Ccomput. Syst. Sci. Eng. 23(5), 35–49 (2008)

18. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Formal Methods, International
Symposium of Formal Methods Europe (FME’03). Lecture Notes in Computer Science, vol.
2805, pp. 855–874. Springer, Heidelberg (2003)

19. Lohmann, N.: A feature-complete petri net semantics for WS-BPEL 2.0. In: Web Services and
Formal Methods International Workshop WSFM 2007 (2007)

20. Marconi, A., Pistore, M.: Synthesis and composition of web services. In: Formal Methods
for Web Services - 9th International School on Formal Methods for the Design of Computer,
Communication and Software Systems: Web Services. Lecture Notes in Computer Science,
vol. 5569. Springer, Heidelberg (2009)

21. Nakajima, S.: Model-checking behavioral specification of BPEL applications. Electron. Notes
Theor. Comput. Sci. 151, 89–105 (2006)

22. OASIS: Web Services Business Process Execution Language Version 2.0. http://bpel.xml.org/
(April 2007)

23. OMG: Business Process Model and Notation (BPMN) Version 2.0. http://www.omg.org/spec/
BPMN/2.0 (June 2010)

24. Rodin: User Manual of the RODIN Platform. http://deploy-eprints.ecs.soton.ac.uk/11/1/
manual-2.3.pdf (October 2007)

25. Salaun, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services using process
algebra. In: IEEE International Conference on Web Services (ICWS’04), pp. 43–51 (2004)

26. ter Beek, M.H., Bucchiarone, A., Gnesi1, S.: Formal methods for service composition. Ann.
Math. Comput. Teleinformatics 1(5), 1–14 (2007)

27. van der Aalst, W.M., Mooil, A.J., Stahl, C., Wolf, K.: Service interaction: patterns, formaliza-
tion, and analysis. In: Formal Methods for Web Services - 9th International School on Formal
Methods for the Design of Computer, Communication and Software Systems: Web Services.
Lecture Notes in Computer Science, vol. 5569. Springer, Heidelberg (2009)

28. W3C: Web Service Definition Language (WSDL 1.1). http://www.w3.org/TR/wsdl (February
2004)

29. W3C: OWL-S: Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S/
(November 2004)

30. W3C: Web Services Choreography Description Language Version 1.0. http://www.w3.org/TR/
ws-cdl-10/ (November 2005)

31. WMC-WS: Process Definition Interface - XML Process Definition Language. http://www.
wfmc.org/xpdl.html (October 2008)

http://bpel.xml.org/
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://deploy-eprints.ecs.soton.ac.uk/11/1/manual-2.3.pdf
http://deploy-eprints.ecs.soton.ac.uk/11/1/manual-2.3.pdf
http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/
http://www.wfmc.org/xpdl.html
http://www.wfmc.org/xpdl.html

Towards a Model of Services Based on
Cocreation, Abstraction and Rights Distribution

Maria Bergholtz, Birger Andersson, and Paul Johannesson

Abstract The term service is today defined and used in a multitude of ways, which
are often ambiguous and contradictory. The absence of a commonly agreed-upon
definition of the term makes it difficult to distinguish, describe and classify services.
In order to address these issues, this chapter proposes a model of services that helps
in analysing the concept. The model encompasses three perspectives: service as
a means for cocreation of value, service as a means for abstraction and service
as a means for distributing rights. The model does not suggest a definition of the
term service but shows how the service concept can be analysed using a number
of related concepts, like service resource, service process and service offering. The
model has its theoretical foundation in the Resource-Event-Agent (REA) ontology
and Hohfeld’s classification of rights.

1 Introduction

The increasing interest in services has created a multitude of alternative views and
definitions, often conflicting, of the service concept. What constitutes a service is
still a matter of debate, in industry as well as in various research communities. The
lack of a common view of the service concept makes it difficult to reason about,
describe and classify services in a uniform way. One approach to structuring services
is to divide them into business services and software services. OASIS [16] and
Preist [18] focus on a business service perspective, while [20] has a software service
perspective. New methods have also been proposed to structure systems by means of
service architectures [3, 7, 17, 23]. For example, in the view of Papazoglou and Van
den Heuvel [17] (software), service design and development is about identifying the
right services, organising them in a manageable hierarchy of composite services
and choreographing them together for supporting a business process. However,

M. Bergholtz (�) • B. Andersson • P. Johannesson
Department of Computer and Systems Sciences, Stockholm University, Isafjordsgatan 32, 164 40
Kista, Sweden
e-mail: maria@dsv.su.se; ba@dsv.su.se; pajo@dsv.su.se

© Springer International Publishing Switzerland 2015
B. Thalheim et al. (eds.), Correct Software in Web Applications and Web Services,
Texts & Monographs in Symbolic Computation,
DOI 10.1007/978-3-319-17112-8_2

29

mailto:maria@dsv.su.se
mailto:ba@dsv.su.se
mailto:pajo@dsv.su.se

30 M. Bergholtz et al.

identifying the right services, or classifying them, is a difficult task due to the
aforementioned lack of a common view of the service concept.

One attempt to defining services has focused on identifying properties (such as
intangibility, inseparability, heterogeneity and perishability [22]) that distinguish
them from other kinds of resources. However, Edvardsson et al. [6], Goldkuhl
and Röstlinger [11], Sampson and Froehle [19], Ferrario et al. [8] and others
have argued that this approach is problematic in that the suggested properties are
neither necessary nor sufficient in terms of defining a service. For example, not only
services are intangible but also other kinds of resources, such as information and
IPRs. Heterogeneity can be observed also in the production of certain goods and
information, such as handicraft objects and newspaper articles.

Instead of attempting to identify services by internal properties that uniquely
distinguish them from other kinds of resources, we suggest to identify services
through the roles they play for the use and offering of resources [6]. Thus, the
focus is shifted from the internal characteristics of resources to their context of
use and exchange. This view is shared by the Unified Services Theory [19], which
also bases its definition of services on the use and exchange of resources; here,
service processes are processes where customers always provide significant input
resources, as opposed to non-service processes where customers only select what
output resources to buy and pay for.

Services may also be understood as a means for abstraction. A common view
found in [14, 16, 18, 20] is services as an abstraction of activities that once started
will achieve some user goal, usually defined as a change of state in (user) resources.
Ferrario et al. [8], however, argue that a service cannot be defined only in terms
of resource-changing activities. An example is a snow removal service, which only
guarantees to keep some streets from snow. If it does not snow, no service will be
delivered, yet the streets are indeed free from snow. The paradox is that sometimes
the terms of a service can be honoured even if no service is actually delivered, i.e.
no activity has been executed. It can be observed that many categories of services
are analogous to this example, for instance, health care and fire brigade services.

An often mentioned advantage of services is that the management (infrastructure,
maintenance, technology, etc.) of resources is moved from customer to provider [4,
5, 22]. This is a consequence of the principle that service provision does not entail
ownership transfer [22]. The concept of service can in fact be used as a means
for providing restricted resource access without ownership transfer [4, 5]. Resource
access is closely related to the various rights an agent is given with respect to
a resource. Services may not only provide access to resources but also distribute
different types of rights to the resource.

The diversity of service views and definitions and the fact that these views are
often conflicting suggest that a multi-perspective approach is required. We will
follow this line of reasoning and introduce a number of service perspectives rather
than propose a single service definition. We identify three main service perspectives
from the literature introduced above: service as a means for cocreation of value [14,
19], service as a means for abstraction [14, 16, 18, 20] and service as a means for
distributing rights [4, 5, 22]. The purpose of the chapter is to propose a conceptual

Towards a Model of Services Based on Cocreation, Abstraction and Rights Distribution 31

model of services based on these three perspectives. The model has its theoretical
foundation in the REA ontology [15] and Hohfeld’s classification of rights [12].
REA is used because it is a well-established ontology of business collaboration
with the basic view that resources are exchanged between agents according to
agreements. Hohfeld’s classification of rights is used as means for analysing what
kinds of rights are transferred in exchanges of services and other kinds of resources.
The work reported here builds on the work of [4] and [5], both of which are based on
a multi-perspective view of analysing services. The main differences with respect
to [4, 5] are (1) a new foundation for the model based on distinguishing between
service deliveries and deliveries of goods and other types of resources, (2) a new
analysis of the fulfilment of service deliveries versus deliveries of goods and (3) the
alignment of the added model concepts with the core REA model.

The remainder of this chapter is structured as follows: In Sect. 2, we briefly
outline the main points of the REA ontology and Hohfeld’s classification of rights.
In Sect. 3, we introduce the three perspectives of services and elaborate them
together with their corresponding conceptual models in Sects. 4, 5 and 6. In Sect. 7,
we discuss related work and conclude the chapter.

2 The REA Ontology and Hohfeld’s Classification of Rights

The REA (Resource-Event-Agent) ontology was originally formulated in [15] and
developed further in a series of papers, e.g. [10, 13]. The REA ontology is based on
the core concepts of resources, events and agents, which are described in Sects. 2.1
through 2.5. Figure 1 shows the ontology (including adaptions and extensions
discussed) as a UML (Unified Modelling Language) class schema.

2..*
2..*

Conversion
Event

Usage
Event

Production
Event

Take Event Give EventConsumption
Event

Exchange
Event

Exchange
Process

Conversion
Process

Offering Commitment1 0..*1 0..*isBasedOn

Contract

1..*
1

1..*
1

clause

Bundled_Offering 1 0..*1 0..*isBasedOn

clause

Resource Type

0..*
1

0..*
1for 1

0..*

1

0..*
reservation

Process

Agent0..*0..* party
0..*0..*

Resource

1

0..*

1

0..*
typicfication

Event partOf

1..*

0..*

1..*

0..*

participation

1

0..*

1

0..*stockflow

Fig. 1 REA ontology (adopted and extended from http://reatechnology.com/what-is-rea.html)

http://reatechnology.com/what-is-rea.html

32 M. Bergholtz et al.

2.1 Resources

A resource is something that is of value for at least one agent, e.g. a car,
cloud storage or a stream of music. For the purpose of analysing services, three
categorisations of resources are introduced. One first distinction is the one between
economic resources and noneconomic ones, where the former are entities that can be
controlled by an agent and traded between agents. Resources can also be categorised
into assets and consumables depending on the role they play when used in an
activity [9]. A consumable is consumed when used in an activity, e.g. in surgery,
blood plasma is consumed. In contrast, an asset can be reused, e.g. a nurse can
participate in many surgeries. Finally, based on the degree to which a resource is
tied to an agent, resources can be classified into independent resources, internal
resources and shared resources. These three categories are relevant for analysing
services, as services are often used as instruments for distributing rights to resources
that are tightly tied to one actor.

An independent resource is a resource that can exist independently of any agent.
In other words, an independent resource can exist even if it is unrelated to any
agent. Typical examples of independent resources are physical objects, land and
information.

An internal resource is a resource whose existence depends on one single agent.
If the agent ceases to exist, so does the internal resource. Examples of internal
resources are capabilities, skills, knowledge, memories and experiences. These
kinds of resources are dependent on individuals, but in a transferred sense, they can
also be dependent on organisations. Furthermore, for organisations, even processes,
practices and procedures can be seen as internal resources. A characteristic of an
internal resource is that it is not an economic resource, i.e. it is not tradable.

A shared resource is a resource whose existence depends on at least two agents.
The most common shared resources are relationships and rights. Some relationships
are narrow in scope and primarily govern and regulate activities for some particular
resource(s), e.g. ownership of goods or a sales order. Other relationships have a
wider scope, e.g. a marriage or an employment relationship that includes a large
number of rights. Rights will be further discussed in Sect. 2.4.

2.2 Conversion Processes

Resources can be transformed, i.e. they can be produced, modified, used or
consumed. Resources are transformed in so-called conversion processes consisting
of conversion events. A conversion event is a transformation of a single resource. If
the conversion event creates a new resource or increases the value of an existing
resource, the conversion event is a production event. If the conversion event
consumes a resource or decreases the value of a resource without consuming it,
the conversion event is a consumption event or a usage event, respectively. Usage

Towards a Model of Services Based on Cocreation, Abstraction and Rights Distribution 33

events are using resources that may be reused in several conversion events (similar
to the concept of assets [9]), while consumption events use up resources (similar to
the concept of consumables [9]). Examples of conversion events are the production
of a car, the repair of a car and the consumption of a litre of gasoline.

A conversion process is a set of conversion events including at least one
production event and at least one consumption or usage event. The latter requirement
expresses a duality relationship between production and consumption/usage events,
stating that in order to produce or improve some resource, other resources have to be
used or consumed in the process. For example, in order to produce a car, a number
of other resources have to be used, such as steel, knowledge and labour.

2.3 Exchange Processes

Resources can also be exchanged between agents, which occurs in exchange
processes consisting of exchange events. An exchange event is the transfer of rights
on some resource to or from an agent. If the exchange event means that the agent
receives rights on a resource, the event is a take event. If the exchange event means
that the agent gives up rights on a resource, the event is a give event.

An exchange process is a set of exchange events including at least one give event
and one take event. Similarly to conversion processes, this requirement expresses a
duality relationship between take and give events—in order to receive a resource,
an agent has to give up some other resources. For example, in a goods purchase
(an exchange process), a buying agent has to provide money to receive some goods.
Two exchange events take place in this process: one where the amount of money is
decreased (a give event) and another where the amount of goods is increased (a take
event). The same resource can participate in different types of events. For example,
a machine is first acquired (take event), then employed in production (usage event)
and finally sold (give event).

2.4 Hohfeld’s Classification of Rights

In the sections above, the notion of rights has been used in an informal way. As
a more precise understanding of rights will be required for characterising different
kinds of resources and exchanges, a rights classification based on the work of W.N.
Hohfeld [12] is introduced—Hohfeld identified four broad categories of rights:
claims, privileges, powers and immunities.

• One agent has a claim on another agent if the second agent is required to act in
a certain way for the benefit of the first agent, typically by carrying out some
action. Conversely, the second agent is said to have a duty, or an obligation, to

34 M. Bergholtz et al.

the first agent. An example is a person who has a claim on another person to pay
an amount of money, implying that the other person has a duty to pay the amount.

• An agent has a privilege on an action if he/she is free to carry out that action
without any interference from the environment in which the action is to be carried
out. Environments here meant social structures such as states, organisations or
even families. Some examples of privileges are free speech and the permission
for a person owning some property to use it in various ways.

• A power is the ability of an agent to create or modify a relationship. An example
is that a person owning a piece of land has the power to sell it to someone else,
thereby creating a new ownership relationship for the land.

• An immunity refers to the restriction of power of one agent in terms of creating
formal relationships on behalf of another agent. For example, native people
may hold immunity towards state legislation concerning their property rights,
meaning that the state does not have the power to enforce laws that modify
existing property rights. (Immunities will not be used in this chapter.)

Most relationships are governed by a combination of several of these kinds of
rights. For example, owning a car means to have privileges on using it and also the
power to lend or sell it, i.e. creating new ownerships involving other agents.

2.5 Offerings, Commitments and Contracts

Exchange processes can be governed by agreements that specify when and how
resources are to be exchanged. The two most important types of agreements are
offerings and contracts consisting of commitments. A commitment on a resource
type is a duty for an agent to carry out a conversion or exchange event for an instance
of that resource type. For example, an agent may have a duty towards another agent
to transfer the ownership (a give event) of a car (instance of a car type) to that agent.
A contract is a collection of commitments and possibly additional rules governing
their interrelationships.

An offering for a resource type is a conditional obligation for one agent to
some community of agents to enter into a commitment for that resource type. For
example, an agent may provide an offering for a certain car model, meaning that
he/she is prepared to sell cars of that model, i.e. enter into commitments for the car
model. An offering is similar to a commitment but differs by not being binding until
another agent has accepted it. Thus, when an offering is accepted, it will result in a
commitment. A set of offerings can be collected into a bundled offering, analogously
to a contract.

Figure 1 summarises the notions introduced so far in the form of a UML
class diagram. In the following sections, these notions will be further analysed
and specialised in order to clarify the different perspectives on services. Almost
all of the concepts in the conceptual model presented here may exist on both a
knowledge level and an operational level. According to [9], the operational level

Towards a Model of Services Based on Cocreation, Abstraction and Rights Distribution 35

models concrete, tangible individuals in a domain. In contrast, the knowledge level
models information structures that characterise categories of individuals on the
operational level. The diagrams of Figs. 1, 2, 3, 4, 5, and 6 hence distinguish between
concepts such as resource types (categories of resources such as car model, agent
type, real estate) and resource (specific and often tangible concepts like a specific car
or a concrete piece of land), event types and events and so forth for every concept
in the model. In order to make the diagrams less cluttered, both knowledge and
operational level concepts are included only when they are required to illustrate a
key issue in the model.

Agent

Process

OutputInput

Provider

Service-
Process

OutputInput

Customer

a b

Fig. 2 Single agent process versus service process

Process

Resource

Conversion
Process

Event

10..* 10..*
stockflow

Agent1..*0..* 1..*0..* participationService
Process

10..* 10..* provider

10..* 10..*
customer

Fig. 3 REA ontology from Fig. 1 expanded with service process to highlight cocreation of value
between provider and customer

Independent
Resource

Good InformationRight Relationship

Shared
Resource

Service
Process

Service
Resource

0..*10..*1
usedBy

Conversion
Process

Resource Set

0..1
1
0..1
1

Internal
Resource

 Capability

Resource
1..*1..*

Restriction1 0..*1 0..*on

Abstract
Resource

1..*1 1..*1 basedOn

1 0..*for
1 0..*

Fig. 4 Service as an abstraction mechanism (noneconomic resources in grey)

36 M. Bergholtz et al.

Claim

Service Offering

1..*
0..*

1..*
0..*

Ownership Offering

Privilege
1..*

0..*
1..*

0..*

Power
1

0..*
1

0..*

Lending Offering

1..*
0..*
1..*
0..*

0..1
0..*

0..1
0..*

OfferingResource Type 0..*1 0..*1 for

Right

1

0..*

1

0..*

on

Fig. 5 Service as a means for distributing rights to resources

Exchange Event Consumption
Event

Service
Commitment

 Capability Service Delivery

1

0..*

1

0..*

fulfillment

1 0..*10..*
use

Service
Resource

0..*
1

0..*
1 consume

Contract

Ownership/Loan
Commitment

Commitment

1
1..*

1
1..*

clause

Fulfillment Rule

1..*
0..*

1..*
0..*

Give Event

1

1..*

1

1..*

fulfillment

Offering

0..*
1
0..*
1

1..*0..* 1..*0..*

Resource

1

0..*

1

0..*

give

Resource Type 0..*1 0..*1 for

0..*

1

0..*

1

typicfication

Fig. 6 Fulfilling service commitments (agent relationships removed for simplicity)

3 Service Perspectives

In the following sections, a conceptual model for services will be introduced.
The model does not propose a single service definition but instead suggests a
number of service perspectives based on the ways resources can be used and
exchanged. This approach is reflected in the model, which does not include the
term “service” but instead a family of related terms, including “service resource”,
“service process”, “service offering” and “capability”. Three main perspectives on
services are identified: service as a means for cocreation of value [14, 19], service
as means for abstraction [14, 16, 18, 20] and service as a means for distribution of
rights [4, 5, 22].

• Service as a means for cocreation of value. For most kinds of goods and
information, customers are not involved in their production. Instead, goods and
information are produced internally at a supplier who later on sells them to a

www.allitebooks.com

http://www.allitebooks.org

Towards a Model of Services Based on Cocreation, Abstraction and Rights Distribution 37

customer who uses them without the involvement of the supplier. In contrast,
services are created and used in an interaction between supplier and customer.

• Service as a means for abstraction. Services can provide an abstraction mech-
anism where resources are specified through their function and not their con-
struction. In other words, a resource is defined in terms of the effects it has in a
process, not in terms of its properties or constituents. For example, a hairdressing
service can be defined in terms of the effects it has on someone’s hair, not in terms
of the resources being used in its execution.

• Service as a means for rights distribution. An agent can transfer access and
rights to some of his/her resources to another agent by transferring the ownership
of them. However, such an ownership transfer may in some situations be
undesirable or even legally impossible. Thus, there is a need for a way of
offering rights on resources without transferring ownership. Services provide
a mechanism for this purpose: instead of transferring ownership, a customer
is given only limited rights on the resources. For example, instead of selling
people, labour services are sold, and instead of selling cars, car rental services
are provided.

The model, based on these three perspectives, will be presented in a series of
diagrams, all of which have the REA ontology as their point of departure. Figures 2
and 3 show services as cocreation of value, while Figs. 4 and 5 show services as
abstraction mechanisms and instruments for rights distribution. The last one, Fig. 6,
shows how distribution of rights to resources can be fulfilled.

4 Service as a Means for Cocreation

For a typical goods-producing company, its interactions with customers can be
quite limited. Without any involvement from the customers, the company procures
raw materials and assets from suppliers, uses these resources to produce goods to
be sold and distributes the goods to retailers and other outlets. The only role of
the customer is to select which goods to purchase and to pay for them. Thus, the
company carries out a conversion process in isolation transforming input resources
to output resources; see Fig. 2a.

In contrast to a goods-producing company, a service provider always has to
work closely with its customers. A service can never be carried out by a provider
in isolation, as it always requires a customer to take part in the process, at least
in the sense of providing input resources. In such a service process, the provider
and the customer together cocreate value, as both of them provide resources to
be used or consumed in the process. For example, in a photo-sharing service, the
service provider will supply hardware and software, while the customer will provide
photos and labour. Together, they engage in a process that results in value for
the customer, shareable photo albums. This process can be compared to that of a
hardware supplier, who produces computers in isolation from the customer, who
will later on buy the finished product and use it without any interaction with the

38 M. Bergholtz et al.

supplier. Pictorially, a service process can be viewed as in Fig. 2b, which shows
how both a service provider and a customer jointly contribute to the service process
that produces an output for the benefit of the customer.

In order to make the concept of service as cocreation more precise, it is useful
to distinguish between service as a process and service as a resource. The word
“service” is sometimes used to denote a process, e.g. in the sentence “Today, our
company carried out 25 car repair services”. In other cases, “service” is used to
denote a resource, e.g. “Our company offers car repair services for the fixed price of
200 euros”.

A service process (see Fig. 3) is a conversion process that uses or consumes
resources from two agents, called provider and customer, and produces resources
that are under the control of the customer, i.e. the customer has rights on these
resources. The provider in the service process has to actively participate in the
process, while the customer may be passive (apart from providing input resources).
For example, a customer driving a borrowed car does not constitute a service
process, while a customer being driven by the provider does so. Thus, a service
process differs from other processes in three respects. First, some of the input
resources are under the control of one agent, the provider, while the output resources
are under the control of another agent, the customer. This means that the provider
uses or consumes his/her resources in the service process for the benefit of another
agent. Secondly, not only the provider but also the customer provides resources as
input to the service process. Thirdly, the provider actively takes part in the service
process.

5 Service as a Means for Abstraction

When offering resources, it may seem preferable to provide as much information
as possible about them. However, being able to specify resources in an abstract
way often provides key advantages. It becomes easier for a provider to describe the
benefits of an offering when he/she can focus on the effects of using the resource
offered and abstract away from its accidental features. The provider can address
the needs and wants of the customer and clarify how these are fulfilled by his/her
offering without going into detail about its constituents. Furthermore, the provider
does not have to commit to any specific way of delivering his/her offering; instead,
he/she can choose to allocate the resources needed in a flexible and dynamic way.
In order to manage these kinds of offerings, the notion of abstract resource is useful.
An abstract resource is a resource that is defined solely in terms of its effects in a
conversion process. For example, a laundry service is defined in terms of the effects
it has on clothes—making them clean. When an abstract resource is used, there
must exist a number of underlying resources that realise it. A set of such resources
is modelled by the class resource set in Fig. 4. For instance, a laundry service may
be based on different resource sets: washing machines, synthetic detergent or water
tank, soap and labour.

Towards a Model of Services Based on Cocreation, Abstraction and Rights Distribution 39

A service resource is an abstract resource that is defined only through its use and
effects in a service process, i.e. what changes it can bring to other resources when
consumed in such a process. For example, a haircut service is defined through the
effects it has on the hairstyle of a person. It is not defined by means of the concrete
resources used when cutting the hair, such as labour, scissors and shampoo. Rather,
the concrete resources to be used are left unspecified and can change over time.
On one day the hairdresser may use scissors and shampoo and on another day an
electric machine and soap, but in both cases, he/she provides a haircut service. Thus,
the same service resource can be based on different resource sets, but when it is
consumed, exactly one of these resource sets will be used.

Although the possibility to specify resources in an abstract manner is a key
advantage of using the notion of service resources, there are cases where it is
preferable to be more concrete. In particular, it may be desirable to put constraints
on the resource sets on which a service resource can be based. For example, a
hairdresser may offer a “hair dyeing” service and declare that it is based exclusively
on colouring products with environmentally friendly ingredients. In this case, the
service resource would be defined not only through its effects but also through
constraints on the resource sets on which it is based. In Fig. 4, the class restriction
is used to represent such constraints.

While the notion of service resources primarily is useful for providing interfaces
between agents in the context of resource exchanges, the related notion of capability
can help to structure an organisation internally. A capability is an internal resource
that is defined through the conversion processes in which it can be used. Similarly
to a service resource, a capability is abstract in the sense that it is not defined in
terms of its properties and components, but by the effects it can produce. In contrast
to a service resource, a capability can be used in any process, not only in service
processes. Thus, a capability of an agent can be used to produce something that
is under the control of that agent. Furthermore, a capability is not an economic
resource, i.e. it cannot be traded. Instead, a capability is internal to an agent, meaning
that it is dependent on some agent possessing the capability and can be used only
when that agent is present. Some examples of capabilities are the ability to provide
Internet access, to offer high school teaching and to support marketing campaigns.
As in these examples, capabilities are often broadly and vaguely delimited, thereby
specifying in general terms what an agent is able to accomplish. Service resources,
on the other hand, are typically more precisely delimited as they are to be traded.
Therefore, service resources are often used to externalise capabilities by exposing
some parts of them.

6 Service as a Means for Distributing Rights

When satisfying a need, an agent can often choose between using a service or some
other kinds of resource, like goods or information. Using a service instead of another
kind of resource provides several benefits, as the service consumer does not own the

40 M. Bergholtz et al.

service and therefore does not have to take on typical ownership responsibilities,
like infrastructure management, integration and maintenance. Instead, he/she can
focus on how to make use of the service for satisfying his/her needs. For example,
a person can satisfy his/her transportation needs either by buying and driving a car
or by using a taxi service. In the former case, he/she will own the car required for
the transportation, meaning that he/she will be responsible for cleaning it, repairing
it, getting the right insurances and many other infrastructure and maintenance tasks.
When using a taxi service, on the other hand, he/she does not have to care about any
of these responsibilities but can focus solely on how to use the taxi to best satisfy
his/her transportation needs. Thus, services provide a convenient way of offering
and accessing resources by allowing agents to use them without owning them.
In other words, the rights on the resources underlying the service are distributed
between the provider and customer in such a way that the customer will have
convenient access to them without the hurdle of maintaining them.

Figure 5 depicts three different ways for an agent to make its resources available
to other agents through offerings, each of them distributing rights in different
ways:

• An agent may offer to sell a resource to another agent, i.e. to transfer the
ownership of the resource to the other agent, as modelled by ownership offering.
A transfer of ownership means that all the rights on the resource are transferred
from seller to buyer, in Fig. 5, modelled by the class right. The rights transferred
include powers and privileges according to Hohfeld’s classification of rights in
Sect. 2.4. As an example, an agent offering to sell a book to a customer means
that the agent is offering the customer privileges to use the book as well as the
power to transfer the ownership of the book to other agents.

• An agent may offer to lend a resource or provide access to it in a lending offering.
This means to offer an agent to get certain privileges on the resource for a period
of time but without getting any ownership, i.e. the borrower is not granted the
power to transfer the ownership of the resource. Optionally, the borrower may
get some other powers, such as lending the resource to a third agent.

• An agent may make a service offering to a potential customer, which is the way in
which the least amount of rights is transferred from the provider to the customer.
A service offering means that the provider offers to use some of his/her service
resources in a service process that will benefit the customer. In this case, the
provider can be seen as standing between the customer and the concrete resources
to be used in the service process. Effectively, the provider restricts access to
these resources. In particular, the customer is not offered any powers or privileges
on any concrete resources. Instead, he/she is offered a claim on the provider to
contribute to a certain service process.

In the next section, we will analyse under which types of conditions the rights of
an offering are actually transferred to fulfil what the providing agent is offering the
customer.

Towards a Model of Services Based on Cocreation, Abstraction and Rights Distribution 41

6.1 Fulfilling Commitments

When offerings are accepted, they will result in commitments and contracts; see
Fig. 6. Service offerings will result in service commitments, while ownership or loan
offerings result in ownership/loan commitments. When commitments have been
established, the providing agent is obliged to fulfil them by carrying out conversion
and/or exchange events that consume and/or transfer the (committed) resources to
the receiving agent.

Commitments can be fulfilled in different ways depending on the kind of offering
they are based on:

• An ownership/loan commitment is fulfilled by an agent carrying out a give
event, where the agent gives rights (privileges and/or powers) on the committed
resource to another agent.

• A service commitment is fulfilled by an agent carrying out a consumption event,
where the committed service resource is consumed in a service process. Such
a consumption event is called a service delivery. Thus, a service commitment
becomes fulfilled through an agent using his/her own resources in order to benefit
another agent, i.e. the resources on which the service resource is based.

Summarising, a service commitment is fulfilled by an agent consuming and using
his/her own resources, while an ownership/loan commitment is fulfilled by an agent
giving away rights.

Every commitment is associated to a fulfilment rule that specifies one or several
time points before which the commitment has to be fulfilled; see class fulfilment
rule in Fig. 6. In many cases, this rule is simply an absolute time point, e.g. “15 Feb
2015”. We refer to this type of rule as an absolute fulfilment rule, which specifies an
absolute time point before which a commitment has to be fulfilled. In more complex
cases, a fulfilment rule can include various environmental factors, e.g. “within four
hours after more than 5 cm of snow has fallen at any time during 2013” or “when
the customer has received a certain diagnosis”. A characteristic of this latter type
of rule is that it is conditional. A conditional fulfilment rule describes under which
conditions the provider has to fulfil a commitment. For example, in offerings of
insurances of burglary or health care, the customer does not always get access to
the rights offered. To actually receive ownership of money as compensation for lost
goods in case of a burglary or to receive a treatment service in case of health care, a
burglary has to occur or the customer has to become ill.

A commitment is said to be violated at a certain time point if (one of) the time
point(s) given by its fulfilment rule has passed and the commitment is not fulfilled.
As a contract contains a number of commitments, a contract is said to be violated at
a certain time point if any of its commitments has been violated at that time point.

We are now in a position to resolve the apparent paradox of the snow ploughing
case presented in Sect. 1. The key to the solution is to distinguish between service
deliveries and service contracts. A service contract can be respected, i.e. not
violated, even though none of its commitments is ever fulfilled. This is exactly

42 M. Bergholtz et al.

what would happen in the case where no snow falls during winter. As there is
no snow, no commitment will ever need to be fulfilled, i.e. no service resource
will be consumed. Still, the service contract is respected, as no commitment is
ever violated. An equivalent example is the service resource health care, where the
service contract is respected if either the customer does not fall ill and no service
delivery is required or if the customer does fall ill and a service delivery actually
occurs. In summary, service contracts containing conditional fulfilment rules may
be respected even though no service deliveries ever occur.

7 Concluding Remarks

In this chapter, we have proposed a conceptual model of the notion of service.
A main characteristic of the model is that it describes services from three
perspectives—service as a means for cocreation of value, for abstraction and
for rights distribution. The work was in part motivated by a problem posed in [8].
The issue there was how to view a service where the terms of the service could be
honoured even if no service is actually delivered. The apparent paradox was resolved
by distinguishing between service contracts and service deliveries. The work is
moreover motivated by the assumption that cocreation of value is fundamental for
services as argued in [19]; in other words, taking into account only one agent’s
perspective at a time is not sufficient when modelling services.

Our three perspectives can be compared to those introduced in [1]. There the
chosen perspectives are called “service value”, “service offering” and “service
process”. The service value perspective is analogous to our abstraction perspective,
where a service is described by the effects it produces, but it also contains elements
from our co-production perspective. The service offering perspective is related to
our view of services as a means for restricted access to resources. The service
process perspective describes how a service offering is put into operation, but in
contrast to our proposal, the authors do not investigate realisation issues in detail.

In the context of SOA, OASIS acknowledges that services are not only a technical
but also a social concept [16]. It is stated that many, if not most, effects that are
desired in the use of SOA-based systems are actually social effects rather than
physical ones. When a customer “tells” an airline service that it “confirms” the
purchase of the ticket, it is simultaneously a communication and a service action—
“two ways of understanding the same event, both actions, one layered on top of
the other, but with independent semantics” [16] (p. 32). Compared to our three
perspective views, OASIS focuses on abstraction and access restriction (of mainly
software services). Lusch [14], on the other hand, emphasises the cocreation of
value perspective and argues that it is paramount for a so-called service-dominant
logic, which can be contrasted with a goods-dominant logic. Alter [2], in discussing
SOA (Service Oriented Architecture) and SOE (Service-Oriented Enterprise), also
stresses the cocreation element (as well as provisioning of resources) in a general
definition of services: “Services are acts performed for other entities including the
provision of resources that other entities will use” [2].

Towards a Model of Services Based on Cocreation, Abstraction and Rights Distribution 43

An additional motivation for the work presented here was inspired by a language
problem identified by Wittgenstein [21]. He/She contends that a word is defined
by its use, that it can be used in different ways and that there is no usage
characteristic that is common for all these ways. He/She likens the different uses
with a family of meanings of the word. In the context of services, this is particularly
problematic since no common agreed-upon definition of the term exists and the
natural language terms used are often misleading. Analysing services along the
dimensions cocreation, abstraction and restriction mechanisms makes it possible
to distinguish between similarly labelled but different concepts. For instance, a
“health-care insurance service” is different from a “burglar insurance service”
(the latter refers to the dimension of customer participation and hence is not a
service process). The analysis also shows that it is not meaningful to classify entire
industrial sectors such as entertainment, restaurants, insurance, rental services,
etc., as belonging to the service sector. Any industrial sector rather offers service
resources as well as other kinds of resources. Our analysis can be used as an
instrument to classify what resources and processes in the sectors are service
resources and service processes, respectively.

In addition to their theoretical contributions, we believe that the results of the
chapter will find applications in structuring service descriptions and developing
service classifications. Further research will investigate these issues as well as
consolidate the proposed model.

References

1. Akkermans, H., Baida, Z., Gordijn, J., Peiia, N., Altuna, A., Laresgoiti, I.: Value Webs: using
ontologies to bundle real-world services. IEEE Intell. Syst. 19(4), 57–66 (2004)

2. Alter, S.: Genuinely service-oriented enterprises: using work system theory to see beyond
the promise of efficient software. In: Proceedings of AMCIS 2012, the Eighteenth Americas
Conference on Information Systems, Seattle, Washington (2012)

3. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: SOMA: a method
for developing service-oriented solutions. IBM Syst. J. 47(3), 377–396 (2008)

4. Bergholtz, M., Andersson, B., Johannesson, P.: Abstraction, restriction, and co-creation: three
perspectives on services. In: Trujillo, J., Dobbie, G., Kangassalo, H., Hartmann, S., Kirchberg,
M., Rossi, M., Reinhartz-Berger, I., Zimányi, E., Frasincar, F. (eds.) Advances in Conceptual
Modeling – Applications and Challenges. Lecture Notes in Computer Science, vol. 6413,
pp. 107–116. Springer, Heidelberg (2010)

5. Bergholtz, M., Andersson, B., Johannesson, P.: Towards a model of services based on
co-creation, abstraction and restriction. In: Proceedings of the 30th International Conference
on Conceptual Modeling, ER’11, pp. 107–116. Springer, Heidelberg (2011)

6. Edvardsson, B., Gustafsson, A., Roos, I.: Service portraits in service research: a critical review.
Int. J. Serv. Ind. Manag. 16(1), 107–121 (2005)

7. Erl, T.: Soa: Principles of Service Design. Prentice Hall Press, Upper Saddle River (2007)
8. Ferrario, R., Guarino, N., Fernández-Barrera, M.: Towards an ontological foundation for

services science: the legal perspective. In: Sartor, G., Casanovas, P., Biasiotti, M., Fernández-
Barrera, M. (eds.) Approaches to Legal Ontologies. Law, Governance and Technology Series,
vol. 1, pp. 235–258. Springer, Netherlands (2011)

9. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading (1997)

44 M. Bergholtz et al.

10. Geerts, G.L., McCarthy, W.E.: An ontological analysis of the economic primitives of the
extended-REA enterprise information architecture. Int. J. Account. Inf. Syst. 3(1), 1–16 (2002)

11. Goldkuhl, G., Röstlinger, A.: Beyond goods and services - an elaborate product classification
on pragmatic grounds. In: Proceedings of Quality in Services (QUIS 7), Karlstad University
(2010)

12. Hohfeld, W.N.: Fundamental legal conceptions as applied in legal reasoning. Reprint from 23
Yale Law Journal (1913) (1978)

13. Hruby, P.: Model-Driven Design of Software Applications with Business Patterns. Springer,
Heidelberg (2006)

14. Lusch, R.F., Vargo, S.L., Wessels, G.: Toward a conceptual foundation for service science:
contributions from service-dominant logic. IBM Syst. J. 47(1), 5–14 (2008)

15. McCarthy, W.E.: The REA accounting model: a generalized framework for accounting systems
in a shared data environment. Account. Rev. 57(3), 554–578 (1982)

16. OASIS: Reference Model for Service Oriented Architecture 1.0. http://www.oasis-open.org/
committees/download.php/19679/soa-rm-cs.pdf (2006)

17. Papazoglou, M.P., Van Den Heuvel, W.J.: Service-oriented design and development method-
ology. Int. J. Web Eng. Technol. 2(4), 412–442 (2006)

18. Preist, C.: A conceptual architecture for semantic web services. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) The Semantic Web – ISWC 2004. Lecture Notes
in Computer Science, vol. 3298, pp. 395–409. Springer, Heidelberg (2004)

19. Sampson, S.E., Froehle, C.M.: Foundations and implications of a proposed unified services
theory. Prod. Oper. Manag. 15(2), 329–343 (2006)

20. W3C: Web Services Architecture W3C Working Group. http://www.w3.org/TR/2004/NOTE-
ws-arch-20040211/ (2004)

21. Wittgenstein, L.: The Blue and Brown Book 1933–1934. Harper & Row, New York (1980).
Available online at http://www.geocities.jp/mickindex/wittgenstein/witt_blue_en.html (1933)

22. Zeithaml, V.A., Parasuraman, A., Berry, L.L.: Problems and strategies in services marketing.
J. Mark. 49(2), 33–46 (1985)

23. Zimmermann, O., Krogdahl, P., Gee, C.: Elements of Service-Oriented Analysis and Design.
http://www.ibm.com/developerworks/webservices/library/ws-soad1/ (2004)

http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.geocities.jp/mickindex/wittgenstein/witt_blue_en.html
http://www.ibm.com/developerworks/webservices/ library/ws-soad1/

Integrating a Model-Driven Approach
and Formal Verification for the Development
of Secure Service Applications

Marian Borek, Kuzman Katkalov, Nina Moebius, Wolfgang Reif,
Gerhard Schellhorn, and Kurt Stenzel

Abstract We present SecureMDD, a development method for secure service appli-
cations that integrates a model-driven approach with formal specification techniques
using abstract state machines (ASMs), refinement to code and verification with the
interactive theorem prover KIV. A larger case study is used to highlight various
aspects of the method with a focus on services and their formal verification.

1 Introduction

Distributed security-critical applications with different communicating components
like (Web) services, computers, terminals, or smart cards rely on cryptographic
protocols. However, the development of such protocols is notoriously difficult
and error prone [2, 52]. This is true even for short protocols with only few
communication steps [37]. The reason is the presence of a human attacker who
actively tries to break security by eavesdropping and modifying the communication
between two components. Often, flaws in an application or in the underlying
protocols are detected only after years of usage, e.g., in the Europay–MasterCard–
Visa (EMV) protocol [48] used in millions of debit and credit cards or in the
Transport Layer Security (TLS) protocol [55].

To be able to develop secure applications based on cryptographic protocols, it
is essential to integrate formal verification into the development process. Moreover,
the security aspects of the application under development have to be considered in
all phases of the development process. SecureMDD is a model-driven development
method that realizes both aspects and is tailored to develop security-critical smart
card and service applications. Moreover, executable code that is correct and secure
with respect to the formal model is generated automatically. This eliminates the
problem that buggy implementations of secure protocols often render the application
insecure.

M. Borek • K. Katkalov • N. Moebius • W. Reif • G. Schellhorn • K. Stenzel (�)
Institute for Software and Systems Engineering, Augsburg University, 86135 Augsburg, Germany
e-mail: stenzel@informatik.uni-augsburg.de

© Springer International Publishing Switzerland 2015
B. Thalheim et al. (eds.), Correct Software in Web Applications and Web Services,
Texts & Monographs in Symbolic Computation,
DOI 10.1007/978-3-319-17112-8_3

45

mailto:stenzel@informatik.uni-augsburg.de

46 M. Borek et al.

This chapter focuses on (Web) services in SecureMDD. Service-oriented archi-
tectures (SOA) are a common way to develop business or e-government applica-
tions. Functionalities are deployed as exchangeable services that can be reused and
orchestrated to complex systems. Many languages, standards (e.g., Web Services
Business Process Execution Language (WS-BPEL), Service-oriented architecture
Modeling Language (SoaML), Web Services Description Language (WSDL),
Business Process Model and Notation (BPMN)), and approaches [4, 24, 38] exist to
develop such systems. Standard security aspects are covered by existing standards
such as WS-Security [49] and WS-SecurityPolicy [50] and the use of standard
security protocols like TLS [20]. However, using such application-independent
standards and protocols is not sufficient to guarantee the security of an application.

Our approach to develop security-critical service applications allows to com-
pletely model the whole system with Unified Modeling Language (UML). Thus, in
contrast to other approaches (e.g., Business Process Execution Language (BPEL)),
an implementation of the modeled application can be generated automatically. The
manual implementation of method bodies is not necessary. Moreover, from the UML
model of the application, we generate a formal specification based on abstract state
machines (ASMs, [15]) for interactive verification of application-specific security
properties.

SecureMDD started with smart card applications. Services differ a lot from smart
cards because of the different communication abilities, the different behaviors, and
the different operational areas. In order to integrate services into SecureMDD, it has
to be clarified how services, their communication, and their security are modeled,
how a code is generated, how their behavior is specified formally, and how their
security is verified. Some of these aspects have already been described in [11]. The
contribution of this chapter is a detailed explanation of how to formally specify
services and a new case study, the first fully verified SecureMDD application using
services.

The rest of the chapter is structured as follows: Section 2 gives an overview of
the SecureMDD approach and Sect. 3 introduces the case study. Section 4 describes
the formal specification and verification of the example. Section 5 explains the code
generation as well as its deployment. Section 6 discusses related work, and Sect. 7
concludes this chapter. The full model of the case study, the formal verification, and
the generated code can be found on our Web page.1

2 The SecureMDD Approach

SecureMDD is a model-driven development method to create secure applications
based on cryptographic (or more broadly speaking, security) protocols. Figure 1
contains an overview.

1http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/.

www.allitebooks.com

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/
http://www.allitebooks.org

SecureMDD 47

UML Applica�on Model Formal ASM Specifica�on
interac�ve proofs

Terminal PSM

Smartcard Code
JavaCard

Smart Card PSM Service PSM

Terminal Code
Java

Service Code
Java

M2M M2M M2M

M2T M2T M2T

M2Tpla�orm-
independent
Model:

pla�orm-
specific
Models:

Implemen-
ta�ons:

M2M: Model-to-Model-Transforma�on
M2T: Model-to-Text-Transforma�on

Test Code
Java

M2T

tests

Tests Proper�es

Protocol Analyzer
automa�c bug search

M2T

Fig. 1 Overview of the SecureMDD approach

The development of an application starts with the creation of a platform-
independent UML model [42, 44]. This is an abstract view of a system, omitting
implementation details. To be able to model security-critical applications, UML was
tailored to this domain by defining a UML profile. The static part of the application
(i.e., components and their attributes, data, etc.) is modeled with a class diagram,
and a deployment diagram models the communication structure. To support the
modeling of the dynamic part (the communication protocols and behavior of the
components) of an application, we defined a domain-specific language called Model
Extension Language (MEL) which is used in UML activity diagrams. With this
language, it is possible to make assignments to the attributes of component classes,
to create objects, or to call predefined cryptographic operations. The platform-
independent UML model of an application consists of all information that is needed
to generate executable code as well as a formal model of the whole application
automatically. An example is presented in the next section.

Additionally, the model contains tests (functional tests as well as attempts to
break the security, i.e., attacks) that are modeled with sequence diagrams [34]
and application-specific security properties expressed in OCL [13]. Examples for
application-specific properties are the following: An electronic prescription that
is stored on an electronic health card cannot be filled twice in a pharmacy,
an electronic ticket cannot be forged, and no money is lost in an electronic
payment system. In our opinion, application-specific security properties give better
guarantees to the security of an application than standard properties like secrecy,
integrity, or authenticity. However, standard properties are often prerequisites for
proving application-specific properties and, thus, have to be verified as well. Our
approach generates a formal specification based on algebraic specifications and

48 M. Borek et al.

ASMs for the modeled application. The generated formal model is suitable for the
theorem prover KIV [5] and is used for interactive verification of the application-
specific security properties [45].

Interactive verification often requires substantial effort, and if an error in the
protocol is found, the verification has to start again with the corrected model. In
order to detect flaws early and efficiently, the application model can be translated
into the input language of the automatic protocol analyzer AVANTSSAR [3].
AVANTSSAR systematically generates all possible traces of the system for a fixed
number of components and a fixed number of protocol runs and checks for a
violation of security properties. From our experience [12], this can find simple
bugs fast, but fails for more intricate errors. One problem is that the search space
becomes too big, so that AVANTSSAR does not terminate or runs out of memory.
Another problem is that some application-specific properties cannot be expressed
in AVANTSSAR, so that only a simplified approximation can be checked. Only the
interactive verification fully proves the security of the application.

Runnable code for the application can also be generated from the abstract model.
The platform-independentmodel is transformed by model-to-model transformations
into three platform-specific models (PSMs), one for the modeled smart card compo-
nents, one for the terminals and computers, and one for the modeled services. The
PSMs contain the relevant information for one component type and add technical
details about the implementation. Using the PSMs as input, executable code of
the application is generated automatically using model-to-text transformations. For
the smart card components, Java Card [28] code is generated. For the terminals
and PCs, we generate Java code. Services are implemented as Java Web Services.
Additionally, Java test code is generated from the modeled tests and it is used to test
the other codes.

Smart cards are small, secure, tamper-proof devices. They are the basis for many
security-relevant applications like debit and credit cards, SIM cards, electronic
passports, electronic identity cards, access control, etc. The challenges to generate
code for these cards in SecureMDD are explained in [43]. This chapter focuses on
services.

The security properties that are proved to hold on the formal model should also
hold on the code level. To guarantee this, the generated code has to be a refinement
of the generated formal model for every modeled application. This requires the proof
that the transformations ensure this refinement relation. However, this is research in
progress. The first result is the definition of a calculus for QVT [53] (the language
used to implement the model-to-model transformations) in KIV. This calculus can
be used to prove the correctness of QVT transformations and of generated Java code
[59].

The application model can be created with any UML tool that is compatible
with Eclipse. All transformations are realized with the Eclipse modeling framework.
QVT [53] is used for the model-to-model transformations and XPand [61] for the
model-to-text transformations. All artifacts can be generated by a single click in
Eclipse.

SecureMDD 49

3 Case Study: Banking

We present a banking case study that uses smart cards, computers, automated teller
machines (ATMs), and different services. As the example is concerned with money,
it is security critical. This section shows how such a system is modeled in the
SecureMDD approach. The next section describes the formal verification of the
example, and then the code generation for services is explained.

The banking case study has two use cases:

• A customer can withdraw money at an ATM. The ATM may belong to the
customer’s bank or to another bank. The ATM communicates with its own
bank, and in the second case, the bank owning the ATM communicates with
the customer’s bank to authorize the withdrawal.

• A customer can transfer money online to another account that can be located at
another bank. The customer uses a PC that communicates with an online banking
service which in turn communicates with the customer’s bank. In case of an inter-
bank transfer, the customer’s bank then communicates with the other bank.

The main application-specific security property that the banking systems ensures is
the following:

The amount of money in the banking system is constant (if money paid out at ATMs is also
counted).

This will be explained in more detail in Sect. 4.6 where the formal specification
and verification of this property is described. Next we describe the communication
structure of the banking system, then the static view, and finally the protocols.

3.1 Communication Structure

The communication structure and components are defined in a UML deployment
diagram (Fig. 2). It consists of nodes, communication paths, and different stereo-
types. They are described in turn.

3.1.1 Components

The customer (called AccountOwner in Fig. 2) represents a real human being.
He/she interacts either with an ATM or a PC that in turn communicates with
an OnlinebankingService. Both the PC and the ATM need the customer’s
Debitcard (the protocols will be explained later in this section). In this sce-
nario, we have two types of banks: AffiliatedBanks that operate ATMs and
DirectBanks that only provide online services. For simplicity, we consider only
one affiliated and one direct bank in this example, but multiple instances of services

50 M. Borek et al.

Fig. 2 Deployment diagram for the banking example

are supported in SecureMDD. The online banking service can communicate with
both banks, and the two banks can communicate with each other.

The type of each component is indicated by the stereotype in the node.
Hence the stereotype «Service» shows that OnlinebankingService,
DirectBank, and AffiliatedBank are services. A service can be stateful
or stateless. OnlinebankingService is stateful. This means it can maintain
a session and keeps information like a protocol state and a session key for
every invoker. This allows to secure messages between Debitcard and
OnlinebankingService with an application-specific cryptographic protocol
that uses PC only as an intermediate. The other services (AffiliatedBank and
DirectBank) do not need to store session-dependent information, and thus, it is
sufficient that they are stateless.

3.1.2 Communication Paths

The communication between components can be unidirectional (indicated by an
arrow head) or bidirectional (no arrows). The connection between AccountOwner
and ATM is unidirectional. This means that every action is triggered by the user;

SecureMDD 51

only after an ATM has received an instruction from the user will it become
active. The same is true between ATM and Debitcard: The ATM will send a
message to Debitcard, and afterward the card can answer, but it cannot send
messages of its own accord. In contrast, the connection between DirectBank
and AffiliatedBank is bidirectional. This means that any of them can start
a communication with the other if it has received a message from an ATM or the
OnlinebankingService.

3.1.3 Threats

The communication paths also contain «Threat» stereotypes. They describe
attacker capabilities for the connection. He/she can be a full Dolev and Yao [21]
attacker who is able to read, send, and suppress messages on the fly, but he/she can
also have only a subset of these abilities.

The attacker’s abilities and connection security influence each other. If a
connection has no applied «Threat» stereotype like the connection between
AccountOwner and ATM or ATM and Debitcard, then the connection is
assumed to be secure (which must be achieved by physical means). A threat
between AccountOwner and ATM would mean that the attacker can observe
the personal identification number (PIN) the user types (by shoulder surfing or
a hidden camera); a threat between Debitcard and PC could be the result of
malware on the PC. Both are not considered in the example. The PC communicates
with the OnlinebankingService over the Internet. Here, the full Dolev–Yao
attacker is assumed (e.g., a malicious employee of the Internet service provider).
The connection does not use TLS (see below) because the protocol will realize
an end-to-end encryption between Debitcard and OnlinebankingService
which makes TLS unnecessary.

3.1.4 Transport Layer Security

If a connection has an applied «Threat» stereotype with any ability, the con-
nection can be secured with TLS (the standard Transport Layer Security protocol
[20], indicated by the «TLS» stereotype) with mutual authentication as the default.
This means that both communication partners know each other in advance and
authenticate each other when the communication starts. An alternative is server-
side authentication where only the server authenticates itself. TLS is used for the
communication between OnlinebankingService and the banks. The connec-
tion has a «Threat» stereotype with the properties read, send, and suppress. That
means that the attacker can read, send, and suppress messages on this connection.
However, in combination with «TLS», it means that the attacker can only read
encrypted messages and that the properties send and suppress imply that the attacker
can only disconnect the connection (see Sect. 4 for more details). The assumption for
the connection between DirectBank and AffiliatedBank is that the attacker

52 M. Borek et al.

can only read messages. Thus, the attacker is not able to affect the connection or the
transmitted messages.

3.2 Static View of the Banking System

A UML class diagram specifies all components with their attributes, data types, and
messages. Figure 3 shows the relevant part of the class diagram; only the messages
are omitted.

3.2.1 Classes

The component classes are annotated with the stereotypes «Service»,
«Terminal», «Smartcard» as in the deployment diagram (Fig. 2). The two
components AffiliatedBank and DirectBank are specializations of the
abstract Bank. The other classes are data types that are either stored in attributes
or transmitted in messages or both. Messages and their content are also modeled
as classes.2 Since components send and receive messages, they have a UML

<<Initialize>>-privateKeyCard : PrivateKey
<<Initialize>>-publicKeyCard : PublicKey
<<Initialize>>-publicKeyOBS : PublicKey
-nonceCard : Nonce
-sessionKey : SymmKey

<<Smartcard>>
Debitcard

<<Initialize>>-certVerifyKey : PublicKey
<<Initialize>>-privateKeyOBS : PrivateKey
<<Initialize>>-affiliatedBankCode : String
<<Initialize>>-directBankCode : String
-nonceOBS : Nonce
-sessionKey : SymmKey

<<Service>>
OnlinebankingService

{stateful}

<<Initialize>>-moneyPaidOut : Number

<<Terminal>>
ATM

<<Initialize>>-bankCode : String

<<Service>>
Bank

{stateless}

WAIT_FOR_SERVER_HELLO
AUTHENTICATED

IDLE

<<enumeration>>
StateCard

<<key>>-accountNumber : String
-name : String
-pin : Secret
-balance : Number
-dispo : Number

<<data>>
Account

WAIT_FOR_SESSION_KEY
AUTHENTICATED

IDLE

<<enumeration>>
StateService

-pin : Secret
-money : Number

<<data>>
UserOnlineTransactionInfo

-name : String
-accountNumber : String
-bankCode : String

<<data>>
AccountInfo

-pin : Secret
-money : Number

<<data>>
UserTransactionInfo

-publicKey : PublicKey

<<SignData>>
<<data>>

Certificate

<<Terminal>>
PC

AffiliatedBank

<<Message>>
Message

DirectBank

<<use>>

<<use>>

-receiverAccountInfo

<<use>>

<<use>>

<<Initialize>>
<<status>>

-serviceState

<<Initialize>>
<<signed>>
-certCard

<<use>>

<<Initialize>>
-accountInfo

<<status>>
<<Initialize>>
-cardState

<<Initialize>>
-accounts *

-certCardData

-userTransInfo

Fig. 3 Class diagram of the banking example

2All 21 messages can be found on our web page http://www.informatik.uni-augsburg.de/
lehrstuehle/swt/se/projects/secureMDD/. Some of them are used in the activity diagrams in Figs. 4
and 6.

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/

SecureMDD 53

dependency to the abstract message class Message from which all messages are
derived.

3.2.2 Cryptographic Data Types

The OnlinebankingService and the Debitcard employ cryptographic
keys (PublicKey, PrivateKey, SymmKey), nonces (i.e., random numbers,
Nonce), and a certificate to establish a secure communication between each
other. These data types are predefined in SecureMDD. The Certificate class
is annotated with the stereotype «SignData» and the association certCard
with «signed». This means that the data is not used as clear text but digitally
signed, and the signature is used. Other cryptographic data types are Secret
for information that the attacker should never know and types and operations for
encryption and hashing.

3.2.3 Attributes

The «Initialize» stereotype indicates that this attribute or association has to
be set during the initial deployment of the system. For example, a Bank has a code
(attribute BankCode) and a list of accounts (association accounts) that are fixed
since we do not consider opening or closing accounts in this example.

The Debitcard contains account information of an account owner who should
be the owner of the card. They have no keys, states, or nonces because their
communication will be secured with TLS. The PC has no attributes because it only
forwards the messages between OnlinebankingService and Debitcard.
An ATM temporarily stores the PIN and the money that an account owner tries to
withdraw in a UserTransactionInfo class. Additionally, it also keeps track
of how much money it has ever paid out in an attribute moneyPaidOut. This
information is important to express the main security property mentioned at the
beginning (the amount of money in the banking system is constant) even though it is
not really necessary for the functionality of the system.

3.3 Dynamic View: Protocols and Behavior

The dynamic part of the system is described with activity diagrams. They describe
the communication protocols between components and what happens inside a
component. The full functionality of the system is defined. All in all, eight activity
diagrams are modeled: three communication protocols and five activity diagrams
for internal behavior.

54 M. Borek et al.

3.3.1 Protocol for Withdrawing Money

The activity diagram for withdrawing money from an ATM is shown in Fig. 4.
Five components are involved in this scenario: an AccountOwner, an ATM,
a Debitcard, an AffiliatedBank, and optionally a DirectBank.
They are modeled as swim lanes. First an AccountOwner inserts his/her
card into an ATM slot, chooses “withdraw money”, and enters his/her PIN
as well as the sum of money to withdraw on the user interface of the ATM
(1). The interaction of a real human with the ATM is modeled as a message
UDebit with argument userTransactionInfo (an instance of the class
UserTransactionInfo) that is sent to the ATM. Message passing is indicated
by UML SendEvent and AcceptEvent nodes. The ATM stores this information in
its attribute userTransInfo, asks the Debitcard for the account information
(2), and sends all data to its owner, the AffiliatedBank (3). The bank first
checks if the account belongs to itself or another bank by comparing the received
bank code with its own. This is modeled with a UML decision node and guards.
If the account belongs to the bank itself, it calls the debitFunction (4) and
then, depending on the return value, the money is issued or not. The fork symbol
in the node indicates a reference to another activity diagram where the behavior of
debitFunction is modeled, and the flow final node indicates abortion of the
protocol. debitFunction debits an account if everything is ok (PIN correct and
credit line not exceeded). If the account belongs to another bank, the message is
forwarded to the DirectBank (5) and the amount will be debited there. After
that, if the debit action was successful, a message TerminalPayOut is sent back
(6) and the ATM pays out the money (7).

3.3.2 Details About Protocols in SecureMDD

The actions and guards contain statements of our MEL language. x := y is
an assignment and b : Boolean := ... a local variable declaration. Static
analysis will ensure that all identifiers exist in the current scope of the class of the
swim lane and that everything is type correct w.r.t. the class diagram.

The protocol uses no cryptography because all communications are assumed
to be secure against an attacker as specified in the deployment diagram (Fig. 2).
The ATM counts how much money it issues with moneyPaidOut :=
moneyPaidOut + money. This is not necessary for the protocol, but needed
in order to express the security property.

Smart cards, services, and terminals are very different in reality, but there is
almost no difference in their treatment in the activity diagram. This is the idea of
model-driven development—the model abstracts from technical details. Only the
class and deployment diagrams distinguish the components by applying different
stereotypes. However, this is not the complete truth. The modeler must be aware
that a smart card has very limited resources and cannot be used to store data in the
same manner as a service or terminal.

SecureMDD 55

U
D

eb
it(

us
er

Tr
an

sa
ct

io
nI

nf
o)

U
Ta

ke
M

on
ey

(m
on

ey
)

 (1
)

(7
)

R
es

G
et

A
cc

ou
nt

In
fo

(a
cc

ou
nt

In
fo

)

U
D

eb
it(

us
er

Tr
an

sa
ct

io
nI

nf
o)

m
on

ey
Pa

id
O

ut
 :=

m

on
ey

Pa
id

O
ut

 +
 m

on
ey

;

Te
rm

in
al

Pa
yO

ut
(m

on
ey

)

U
Ta

ke
M

on
ey

(m
on

ey
)

us
er

Tr
an

sI
nf

o
:=

us

er
Tr

an
sa

ct
io

nI
nf

o;

D
eb

it(
ac

co
un

tIn
fo

,
us

er
Tr

an
sI

nf
o)

G
et

A
cc

ou
nt

In
fo

()

de
bi

tS
uc

ce
ss

fu
l :

 B
oo

le
an

 :=

de
bi

tF
un

ct
io

n(
ac

co
un

tIn
fo

, u
se

rT
ra

ns
In

fo
) :

 d
eb

itF
un

ct
io

n

m
on

ey
 :

N
um

be
r :

=
us

er
Tr

an
sI

nf
o.

m
on

ey
;

D
eb

it(
ac

co
un

tIn
fo

,u
se

rT
ra

ns
In

fo
)

D
eb

it(
ac

co
un

tIn
fo

,
us

er
Tr

an
sI

nf
o)

Te
rm

in
al

Pa
yO

ut
(m

on
ey

)

Te
rm

in
al

Pa
yO

ut
(m

on
ey

)

(4
)

(5
)

R
es

G
et

A
cc

ou
nt

In
fo

(a
cc

ou
nt

In
fo

)

G
et

A
cc

ou
nt

In
fo

()

(2
)

(3
)

(6
)

Te
rm

in
al

Pa
yO

ut
(u

se
rT

ra
ns

In
fo

.m
on

ey
)

D
eb

it(
ac

co
un

tIn
fo

,u
se

rT
ra

ns
In

fo
)

de
bi

tS
uc

ce
ss

fu
l :

 B
oo

le
an

 :=

de
bi

tF
un

ct
io

n(
ac

co
un

tIn
fo

,
us

er
Tr

an
sI

nf
o)

 :
de

bi
tF

un
ct

io
n

dB
an

k
: D

ire
ct

B
an

k
 a

B
an

k
: A

ffi
lia

te
dB

an
k

ca
rd

 :
D

eb
itc

ar
d

at
m

 :
A

TM
u

: A
cc

ou
nt

O
w

ne
r

 [a
cc

ou
nt

In
fo

.b
an

kC
od

e
==

 b
an

kC
od

e]

 [e
ls

e]

 [d
eb

itS
uc

ce
ss

fu
l]

 [e
ls

e]

 [d
eb

itS
uc

ce
ss

fu
l]

 [e
ls

e]

F
ig

.4
Pr

ot
oc

ol
to

w
it

hd
ra

w
m

on
ey

fr
om

an
A

T
M

56 M. Borek et al.

3.3.3 Overview over the Handshake Protocol

The other use case in the example is the online transaction. It is much more
complicated than using an ATM because first a secure channel must be set up
between the smart card and the online banking service by cryptographic means
and second because the money transfer to another bank may fail in which case the
transaction must be reverted.

In Fig. 5, the handshake protocol is shown as a sequence diagram. A sequence
diagram in SecureMDD serves only documentation purposes and shows only
the involved components and message types that are exchanged. This makes it
impossible to generate code, whereas an activity diagram contains everything
needed.

The handshake protocol establishes a secure session between Debitcard
and OnlinebankingService using security data types and cryptographic
operations defined in SecureMDD. There are four participants involved in this sce-
nario: the AccountOwner, a PC, the Debitcard, and the Onlinebanking-
Service. The user starts the protocol by sending the message UHandshake to
the PC (i.e., by interacting with GUI of a program on the PC). The PC begins
by sending Handshake to the Debitcard. Afterward, the PC only forwards
messages between the card and the online banking service. The card sends a
ClientHello containing a nonce encrypted with the public key of the online
banking service and the card’s certificate. The server answers with ServerHello
containing the card’s nonce and a server nonce encrypted with the card’s public
key. As the last major step, the card generates a session key and sends it together
with the server nonce encrypted with the server’s public key to the online banking

obs : OnlinebankingServiceu : AccountOwner c : Debitcardpc : PC

ServerHello5:

HandshakeSuccessful9:

UHandshake1:

ClientHello3:

SessionKey7:

Handshake2:

ClientHello4:

ServerHello6:

SessionKey8:

UHandshake
Successful

10:

Fig. 5 Messages of the handshake protocol

www.allitebooks.com

http://www.allitebooks.org

SecureMDD 57

service. This is a standard challenge-response protocol that is used in a similar form
in TLS and many other protocols. Since the protocol has nothing that is specific to
services and since cryptographic protocols in SecureMDD have been described in
detail elsewhere (e.g., [42, 45, 46]), the activity diagram is omitted here.

3.3.4 Protocol for Money Transfer

Figure 6 shows the protocol to transfer money from one account to another
one. It will only run after a successful handshake. This is indicated by a state
AUTHENTICATED that is checked by the card (2). If the check succeeds, the online
transaction can be processed. The account owner has to type in the transaction data,
namely, the PIN, the amount of money that should be transferred, and the receiver’s
account information. This data (uoti) is sent from the PC to the card (1). The
card checks the state, wraps uoti and the account information (accountInfo)
that is initially stored on the card in the message TransactionData, and
encrypts it with the previously exchanged session key (3). encrypt is a predefined
operation in MEL. Then the state is set to IDLE, and the encrypted data is sent
to the online banking service via the PC. After receiving the message, the service
checks that its state is also AUTHENTICATED and decrypts the received data with
the previously exchanged session key. The state is set back to IDLE to avoid replay
attacks, and on the basis of the card holder’s bank code, it is checked which bank
the card holder account belongs to. Depending on this, the message is either sent
over the port affiliated to the affiliated bank (4) or over the port direct to
the direct bank (5). The ports are modeled in the deployment diagram (see Fig. 2).
If bank b1 receives a transaction message with PIN, the amount of money that
should be transferred, the sender’s account information, and the receiver’s account
information, it checks if the card holder account belongs to it. If so, it checks if
the receiver’s account also belongs to it and processes the transaction internally
(6). Otherwise, the bank deducts the sum from the card holder’s account and sends
a request to the bank of the receiver’s account to increase the sum in its account
(7). If this fails because of a nonexistent account number, b1 is notified, and the
deduction from the card holder account is revoked (8). The failure (denoted by
the flow final) will be propagated back to the user. Otherwise, the transaction was
successful, and a message is sent back over the online banking service and the
PC to the user. But before the notification is sent to the user, the PC closes the
session with the online banking service using the stereotype «closeSession»
(9). The online banking service must store the state and the session key across
several protocol steps. Therefore, the service is stateful and provides a new instance
for every invoker. Because the same instance could also be used in another protocol,
it is necessary to model the first call of a stateful service. Therefore, the stereotypes
«openSession» and «closeSession» are supported. «openSession»
was used in the handshake protocol which was not shown.

58 M. Borek et al.

U
Tr

an
sa

ct
io

n
Su

cc
es

sf
ul

()

U
O

nl
in

e
Tr

an
sa

ct
io

n
(u

ot
i)

Tr
an

sa
ct

io
nS

uc
ce

ss
fu

l()

Tr
an

sa
ct

io
nS

uc
ce

ss
fu

l()

tr
an

sD
at

a
: T

ra
ns

ac
tio

nM
SG

:=

 d
ec

ry
pt

(s
es

si
on

K
ey

, e
nc

);

se
rv

ic
eS

ta
te

 :=

St
at

eS
er

vi
ce

.ID
LE

;

Tr
an

sa
ct

io
n(

tr
an

sD
at

a)

vi
a

af
fil

ia
te

d

Tr
an

sa
ct

io
n(

tr
an

sD
at

a)
 v

ia
 d

ire
ct

Tr
an

sa
ct

io
nD

at
a(

en
c)

se
rv

ic
eS

ta
te

 :=

St
at

eS
er

vi
ce

.ID
LE

;

 (
4)

 (
5)

<<
cl

os
eS

es
si

on
>>

Tr
an

sa
ct

io
n

Su
cc

es
sf

ul
()

U
Tr

an
sa

ct
io

n
Su

cc
es

sf
ul

()

Tr
an

sa
ct

io
n

D
at

a(
en

c)

Tr
an

sa
ct

io
n

D
at

a(
en

c)

O
nl

in
e

Tr
an

sa
ct

io
n

(u
ot

i)U
O

nl
in

e
Tr

an
sa

ct
io

n
(u

ot
i)

 (
1)

(9
)

m
sg

 :
Tr

an
sa

ct
io

nM
SG

 :=

cr
ea

te
 T

ra
ns

ac
tio

nM
SG

(

 a
cc

ou
nt

In
fo

, u
ot

i);

en
c

: E
nc

D
at

aS
ym

m
 :=

en

cr
yp

t(s
es

si
on

K
ey

, m
sg

);

ca
rd

St
at

e
:=

 S
ta

te
C

ar
d.

ID
LE

;

O
nl

in
eT

ra
ns

ac
tio

n(
uo

ti)

Tr
an

sa
ct

io
nD

at
a(

en
c)

ca
rd

St
at

e
:=

St

at
eC

ar
d.

ID
LE

;
(2

)

 (
3)

de
cr

ea
se

d
: B

oo
le

an
 :=

de

cr
ea

se
C

ar
dH

ol
de

rA
cc

ou
nt

B
al

an
ce

(td
) :

de

cr
ea

se
C

ar
dH

ol
de

rA
cc

ou
nt

B
al

an
ce

Su
bt

ra
ns

ac
tio

n(
td

.u
se

rT
ra

ns
In

fo

 .
re

ce
iv

er
A

cc
ou

nt
In

fo
,

 td

.u
se

rT
ra

ns
In

fo
.m

on
ey

,
 td

.a
cc

ou
nt

In
fo

.a
cc

ou
nt

N
um

be
r)

ha
nd

le
Fa

ile
dT

ra
ns

ac
tio

n(
m

on
ey

,
ac

co
un

tN
um

be
r)

 :
ha

nd
le

Fa
ile

dT
ra

ns
ac

tio
n

m
on

ey
Tr

an
sf

er
re

d
: B

oo
le

an
 :=

in

tr
aB

an
kT

ra
ns

ac
tio

n(
td

)
:

in
tr

aB
an

kT
ra

ns
ac

tio
n

Su
bt

ra
ns

ac
tio

nS
uc

ce
ss

fu
l

(in
cr

ea
se

d,
 m

on
ey

,
ac

co
un

tN
um

be
r)

Tr
an

sa
ct

io
nS

uc
ce

ss
fu

l()

Tr
an

sa
ct

io
n(

td
)

(6
)

(8
)

in
cr

ea
se

d
: B

oo
le

an
 :=

in

cr
ea

se
R

ec
ei

ve
rA

cc
ou

nt
B

al
an

ce
(

rA
cc

ou
nt

In
fo

,
m

on
ey

,
sA

cc
ou

nt
N

um
be

r)
 :

in

cr
ea

se
R

ec
ei

ve
rA

cc
ou

nt
B

al
an

ce

Su
bt

ra
ns

ac
tio

nS
uc

ce
ss

fu
l(

 in
cr

ea
se

d,
 m

on
ey

,

 s

A
cc

ou
nt

N
um

be
r)

Su
bt

ra
ns

ac
tio

n(

 rA
cc

ou
nt

In
fo

,

 m
on

ey
,

sA
cc

ou
nt

N
um

be
r)

(7
)

b1
 :

B
an

k
b2

 :
B

an
k

ob
s

: O
nl

in
eb

an
ki

ng
Se

rv
ic

e
ca

rd
 :

D
eb

itc
ar

d
pc

 :
PC

u
: A

cc
ou

nt
O

w
ne

r

 [t
ra

ns
D

at
a.

ac
co

un
tIn

fo
.b

an
kC

od
e

 =
=

af
fil

ia
te

dB
an

kC
od

e]

 [t
ra

ns
D

at
a.

ac
co

un
tIn

fo
.b

an
kC

od
e

 =
=

di
re

ct
B

an
kC

od
e]

 [s
er

vi
ce

S
ta

te
 =

=
S

ta
te

S
er

vi
ce

.A
U

TH
E

N
TI

C
A

TE
D

]

 [e
ls

e]

 [e
ls

e]

 [e
ls

e]

 [c
ar

dS
ta

te
 =

=

S
ta

te
C

ar
d.

A
U

TH
E

N
TI

C
A

TE
D

]

 [e
ls

e]

 [t
d.

ac
co

un
tIn

fo
.b

an
kC

od
e

==
 b

an
kC

od
e]

 [t
d.

us
er

Tr
an

sI
nf

o.
re

ce
iv

er
A

cc
ou

nt
In

fo
.b

an
kC

od
e

 =
=

ba
nk

C
od

e]

 [m
on

ey
Tr

an
sf

er
re

d]

 [i
nc

re
as

ed
]

 [e
ls

e]

 [e
ls

e]

 [e
ls

e]

 [e
ls

e]

 [e
ls

e]

 [d
ec

re
as

ed
]

F
ig

.6
Pr

ot
oc

ol
to

tr
an

sf
er

m
on

ey
fr

om
on

e
ac

co
un

tt
o

an
ot

he
r

SecureMDD 59

3.3.5 Structuring Protocols

In Fig. 6, we have seen the use of the superclass Bank in an activity diagram. This
is very useful to avoid the modeling of redundant behavior and makes the diagrams
clearer. The deployment diagram (see Fig. 2) ensures that if b1 is a DirectBank,
then b2 is an AffiliatedBank and vice versa.

Some functionality is encapsulated in methods that are predefined or defined
in the model. Methods designed in the model like intraBankTransaction,
decreaseCardHolderAccountBalance,increaseReceiverAccount
Balance, and handleFailedTransaction allow big and complex protocols
to be divided into smaller diagrams, so that all of them remain clear.

The activity diagram increaseReceiverAccountBalance (Fig. 7) mod-
els an internal behavior. Therefore, it has only one swim lane for a Bank. Activity

Fig. 7 Sub-activity increaseReceiverAccountBalance

60 M. Borek et al.

parameters are used to pass arguments. The operation checks if the bank code is
correct and if the account number exists. If this is the case, the account is credited
and the operation returns true. Otherwise, nothing happens and false is returned.
The graphical visualization of the operation is the choice of the modeler. It is also
possible to write the whole code as one big blob.

This concludes the description of the example. All diagrams can be found on
our Web page.3 It shows how complex applications involving different types of
components (services, terminals, PCs, smart cards, and users) can be modeled in
SecureMDD. An important aspect is that the full behavior of the application can be
modeled, the communication protocol and the internal behavior of the components.
SecureMDD provides a UML profile, predefined cryptographic operations and
data types, and modeling guidelines to easily model distributed security-critical
applications.

The next section describes the formal specification and verification of such
applications.

4 Formal Specification and Verification

In this section, the formal model which is automatically generated from the
platform-independent UML model is introduced. In Sect. 4.1, an overview of the
transformation process is given. Section 4.2 introduces the static part of the formal
model, i.e., the data types, components of the application, and message types. In
Sect. 4.3, the specification of the dynamic aspects of the system are described with
ASMs. Sections 4.4 and 4.5 explain specific details for services, and Sect. 4.6 reports
on the formal verification of the example.

4.1 Overview of the Transformation Process

The formal model that is generated from the UML diagrams is an abstract view
of the whole UML model (which is a representation of the complete system under
development). It contains an arbitrary but finite number of components (smart cards,
terminals, and services) and has an arbitrary number of interleaved protocol runs.

The static aspects of an application, i.e., the components, data types, commu-
nication infrastructure, and the attacker, are defined using algebraic specifications.
The dynamic part of an application, i.e., the cryptographic protocols, is given as
an ASM. The ASM consists of two sets of rules: rules defining the behavior of the
attacker and rules defining the dynamic behavior of the components (agents in the
formal model). Executing rules induces a trace of states. Since applicable rules are

3http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/.

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/

SecureMDD 61

Fig. 8 Dependencies between the UML model and the formal model

chosen nondeterministically, a set of traces is obtained, “everything that can happen
in this world”. Figure 8 shows the components of the formal model and from which
part of the UML model they are generated. Technically, a UML model is loaded
into Eclipse with the Eclipse modeling framework, and specification text suitable
for our interactive theorem prover KIV [5] is generated with XPand [61], also part
of the Eclipse modeling framework. Other provers could be supported by writing
new XPand transformations.

The generated formal model is then used to prove the security of the modeled
application with KIV. One relevant security property for the banking example is
that the sum of (electronic) money in the system is constant, i.e., no money is lost,
and it is not possible to “generate” money. Money dispensed at an ATM is also
counted. This can be formulated as an OCL constraint for the class diagram and is
translated into a proof obligation in the formal model.

4.2 The Static Part: Data Types and Algebraic Specifications

4.2.1 Data Types

The data of the application, i.e., the messages, predefined security data types, and
data types defined in the class diagrams, are translated into algebraic specifications.
To reduce the gap between the UML models and the formal model used for
interactive verification, we use the same data types as in the class diagrams and
do not add a generic data format like some other approaches, e.g., [26, 54]. This

62 M. Borek et al.

simplifies the verification considerably. For example, an account is specified as a
freely generated data type

Account D mkAccount(. .accountNumber : string;
. .name : string;
. .pin : Secret;
. .balance : int;
. .dispo : int);

and the data type message consists of all 21 messages:

message D mkTransactionData(. .msg : EncData) with isTransactionData
j mkTransactionSuccessful with isTransactionSuccessful
:
:
:

The specification is not intended to faithfully represent instances of arbitrary
class diagrams. Without a heap or references (or something similar), it is not
possible to model arbitrary pointer structures like cycles or shared objects. However,
this is not necessary since messages and data used in a cryptographic protocol do
not (and should not) use such features.

4.2.2 Dynamic Functions

Every instance of a component class (service, terminal, smart card, or user) becomes
an agent in the formal specification because it has a behavior as defined by the
protocol steps. The attributes of the component classes are modeled as dynamic
functions that are modified (updated) by the ASM rules. For each attribute, one
dynamic function that maps an agent to the attribute’s value is defined. For example,

ATM-moneyPaidOut : agent ! int;

is the dynamic function for the moneyPaidOut attribute of class ATM, and ATM-
moneyPaidOut(ag) returns the value of the attribute for a given ATM agent ag. The
banking system contains 20 dynamic functions. Experience has shown that slicing a
class into its attributes simplifies verification as compared to one dynamic function
that returns the full state of an agent. The reason is that an update of one attribute
and a lookup of another attribute are syntactically disjoint:

update(ATM-userTransInfo(ag), uti) and ATM-moneyPaidOut(ag)
as compared to something like
update(ATM(ag), update(ATM(ag).userTransInfo, uti))(ag).moneyPaidOut

The specification guarantees that the number of agents is finite so that it is safe
to iterate over all agents and summarize ATM-moneyPaidOut(ag), i.e., the sum of
all money dispensed at all ATMs.

SecureMDD 63

4.2.3 Cryptography and the Attacker

The predefined security data types do not depend on the concrete application, and
the transformation is generic for all applications. For example, encrypted data is
specified as a freely generated data type EncData:

EncData D mkEncData(. .key : SymmKey; . .plain : PlainData);

This means the encrypted data contains the key used for encryption. This
approach is similar to [54]. This allows to easily specify whether a decryption will
succeed or not: The key must be the same as the one used for encryption (private
and public key pair for asymmetric encryption). In the specification of the attacker,
he/she cannot access the key directly so that the behavior of the cryptographic data
types and operations is the same as in reality.

The attacker is only implicitly present in the UML model by «Threat»
stereotypes. In the formal specification, the attacker is modeled explicitly as a
separate agent that can interact with other components by sending and receiving
messages. He/she is associated with a set of data that represents his/her knowledge.
If the attacker eavesdrops on a communication path and data is sent over that path,
it is analyzed and added to the attacker’s knowledge. For example, if the attacker
obtains an encrypted message and knows the key, he/she decrypts the message and
analyzes its contents to find, e.g., secret PINs. Or, if he/she obtains a key, he/she can
decrypt some previously obtained encrypted messages that may contain other keys.
Again, this is similar to [54]. Conversely, the attacker can only send messages he/she
can construct from his/her knowledge. He/she can encrypt and send a message with
a key he/she knows (and he/she must know the data to encrypt) or he/she can simply
send a previously obtained message (a replay attack) even if he/she cannot decrypt it.
The attacker is not able to decrypt messages without knowing the key, or to generate
arbitrary keys, or to guess arbitrary nonces or secrets. This models the fact that it is
virtually impossible to find a key or nonce by chance or brute force in the lifetime
of the application. This is sometimes called the “perfect cryptography assumption”
or “symbolic cryptography” as compared to “computational cryptography”. Non-
cryptographic data such as numbers or strings are never a secret and can always
be used by the attacker in messages. Therefore, a PIN must be modeled as a secret
(1234 in itself is known as a number to everybody, but as a PIN, it should be kept
secret).

Only the specifications for predefined security data types and cryptographic
operations that are actually used will be generated. The banking system uses
symmetric and asymmetric encryption, digital signatures, nonces, and secrets
(PINs).

64 M. Borek et al.

4.3 The Dynamic Part: Abstract State Machine and Traces

The dynamic part of the application, i.e., the security protocols, is defined with
activity diagrams in UML. In the formal model, they are translated into an ASM.
The ASM consists of a number of rules, basically the individual protocol steps. An
applicable rule is chosen nondeterministically in a given state and evaluated yielding
another state (one STEP). Rules are applied arbitrarily often (STEP*). In effect, all
possible (finite and infinite) traces of the specified “world” are generated:

ASM D STEP*

STEP nondeterministically chooses an action to perform. Possible steps are
an attacker step or a step for a component type. For example, if the chosen
step is the OnlinebankingService-agent step, an arbitrary component ag of the
OnlinebankingService class is chosen and the ASM rule ONLINEBANK-
INGSERVICESTEP is executed for this component.

STEP D
choose asm-step do

if asm-step D attacker-step then ATTACKER
else if asm-step D OnlinebankingService-agent-step then

choose ag with exOnlinebankingService(ag) do
ONLINEBANKINGSERVICESTEP

else . . .

The ONLINEBANKINGSERVICESTEP contains all protocol steps the online
banking service can perform. Message passing is modeled with input queues
(inboxes for short). A protocol step can be executed if the inbox of a component
contains a message of the appropriate type; otherwise, nothing happens.

ONLINEBANKINGSERVICESTEP D
choose port with is-valid-port(ag, port) and inputs(ag)(port) ¤ [] do
let inmsg D inputs(ag)(port).first in

inputs WD rem(ag, port, inputs) seq
if (isSessionKey(inmsg)) then SESSIONKEY else
if (isClientHello(inmsg)) then CLIENTHELLO else
if (isTransactionData(inmsg)) then TRANSACTIONDATA else
if (isTransactionSuccessful(inmsg)) then TRANSACTIONSUCCESSFUL else
. . .

The message is removed from the inbox, and the correct ASM rule runs. The rule
processes the message, performs checks, and updates the state of the component as
defined in the corresponding protocol step in the activity diagram. The sending of
a new message is modeled by placing it in the inbox of the receiving component.
If the attacker can eavesdrop on the communication path (read capability in the
deployment diagram), the message is also added to the attackers knowledge.

TRANSACTIONDATA D
let enc D inmsg .msg in

if (serviceState(ag) D AUTHENTICATED) then

SecureMDD 65

if (not (can_decrypt(sessionKey(ag), enc) and
isTransactionMSG(decrypt(sessionKey(ag), enc)))) then
STOPSTEP

else
let transData D decrypt(sessionKey(ag), enc).transactionMSG in . . .

TRANSACTIONDATA encapsulates the actual ASM rule. All the intermediate
steps are just a convenient grouping of related rules. Aside from some syntactical
differences, the abstract program is very similar to the activity diagram. It has
the same control structure, checks, and assignments. But there are differences.
For example, in MEL, the if statement with the test if (not (can_decrypt
... does not occur. It is added during the transformation. MEL only contains the
statement

transData : TransactionMSG := decrypt(sessionKey, enc);

decrypt is a predefined MEL operation that behaves in the generated code
(and hence in the real world) as follows: It performs the actual decryption (by
applying an algorithm like DES or AES) and then checks that the result is actually
an object of the expected type (TransactionMSG above). If this is not the
case, an exception is thrown. The abstract code has the same behavior. If the
key is not correct (in this case can_decrypt is false), the result of decryption is a
meaningless sequence of bytes (for good algorithms like AES). If the key is correct,
the result is something meaningful, but could be of a different type. This is tested
in the second part (isTransactionMSG(decrypt(...))). Since the abstract
programming language has no exceptions, the same behavior is obtained with the
if-then-else.

One ASM rule is evaluated atomically. We assume that an attacker cannot influ-
ence or modify what happens inside a component and cannot read a component’s
local state. Components are considered as secure in the model. An attacker can only
interact with messages and inboxes according to the deployment diagram (Fig. 2,
described in Sect. 3.1). Another consequence of this atomicity is that the access to
a Web service must be serialized as explained in Sect. 5.2. This can be an efficiency
problem but is currently necessary to achieve the same behavior for the model and
the generated code.

In case the attacker was chosen instead of a component, the ASM rule for the
attacker is called. Then, it is nondeterministically chosen if the attacker suppresses
or sends a message. If the attacker suppresses a message, a nonempty inbox is
chosen that belongs to a channel where messages can be suppressed by the attacker.
Then, a message is deleted from that inbox. In the send case, the attackers generate
an arbitrary message from his/her current knowledge. The message is then sent to a
randomly chosen inbox accessible by the attacker (i.e., the channel has the attacker-
send property).

66 M. Borek et al.

4.4 Transport Layer Security and the Attacker

In Sect. 3, it was mentioned that security stereotypes for connections like «TLS»
influence the stereotype «Threat». If an attacker has the abilities to read, send,
and suppress messages (i.e., a Dolev–Yao attacker [21] for this connection) and the
connection is secured with TLS, the attacker loses some of those abilities. Because
TLS is a secure protocol, we use some of its security properties [20]. TLS begins
with a handshake that authenticates one or both communication partners. Then
messages are encrypted with a session key, their integrity is ensured by a message
authentication code (MAC), and a sequence number is used to detect missing or
replayed messages. If an error is detected, the connection is closed.

We assume that an attacker is not able to obtain a valid TLS certificate that is
accepted by other components. This means he/she cannot initiate a TLS-secured
communication if mutual authentication is used. His/her abilities regarding a com-
munication between two components are also limited: The attacker can only read
encrypted messages. The used key is a session key exchanged during authentication
that will never be used in another session. Therefore, reading the messages is useless
for the attacker because he/she cannot decrypt them and they cannot be used for
replays because of the sequence number. As mentioned previously, we are only
concerned with logical security properties, not traffic analysis where the message
length or timing may be important.

Furthermore, in the formal model, the attacker loses his/her ability to send
messages, because if the message is not encrypted with the correct session key
(which the attacker does not possess), the MAC verification will fail and the message
will not be accepted. A replayed message is encrypted with the correct session key,
but will not be accepted because of the sequence number. The ability to suppress
messages is lost as well because the next message will have an incorrect sequence
number. However, the attacker has the ability to terminate the session by replaying
a message, because any error in a TLS session leads to termination.

To summarize, it is appropriate to formalize a TLS-secured connection as one
where an attacker can either do nothing or can only abort the connection (depending
on the annotations in the deployment diagram Fig. 2).

4.5 Stateful and Stateless Services as Agents

A service component can be stateless or stateful. Both must be treated slightly
different in the formal model. A stateless service is similar to other agents like
terminals and smart cards. The formal model may have an arbitrary number of
services or it may be restricted to exactly one.

A stateful service however creates an instance of itself for each invoker. The
actual code of the invoker calls a manager which is also implemented as a stateless
service. It creates an instance of the actual service, deploys it, and returns the address

SecureMDD 67

of this service instance. All this is done by the framework used in the generated
code as described in Sect. 5.1. This behavior is not modeled in the UML model
of the application, and it is not reflected in the formal specification because it is
an implementation issue only. We assume that an attacker has the same abilities
for the communication between the two services as between the client and the
service. Therefore, no additional security weaknesses are created in the code. Only
the address of the service is transmitted which is not a security-critical information
leak because either the attacker cannot read this information (if no threat is present
in the deployment diagram) or he/she can act as man in the middle anyway (if a
threat is present and TLS is not used) or a man-in-the-middle attack is not possible
because TLS is used with mutual authentication as described in Sect. 4.4.

For one stateful service, the formal model has an arbitrary number of agents that
represent the different new instances of the same service. They all have the same
initial attributes that are reset with every connection establishment. Thus, a stateful
service is modeled as a set of agents that can be handled as the other agent types.

4.6 Verification of Security Properties

Besides the automatic code generation, the verification of security properties for the
generated applications is a major benefit for the development of secure systems.
With this approach, we do not have to guess whether the application is secure, since
we were able to formally verify it.

Usually only generic properties like secrecy or authentication are proven for
security protocols (see [36] for an overview). In contrast, the SecureMDD approach
focuses on application-specific security properties [45]. They give better confidence
in the properties of the application as a whole. In the banking system (Sect. 3), it is
interesting to know that PINs and session keys remain secret, but the real properties
are about money. The system has the property that the amount of money is constant
in the following sense:

The sum of all account balances plus the amount of all the money that has been withdrawn
from cash machines is constant.

This property can be formalized as an OCL constraint that is added to a class in
the UML model:

Bank.allInstances().accounts.balance->sum() +
ATM.allInstances().moneyPaidOut->sum() = C

where C is an unspecified constant. This OCL constraint is translated into a property
of the abstract state machine, i.e., the sum is constant in all states of all runs of the
ASM. We define

BanksMoney(accounts) = Bank.allInstances().accounts.balance->sum()
ATMMoney(moneyPaidOut) = ATM.allInstances().moneyPaidOut->sum()
sum = BanksMoney(accounts) + ATMMoney(moneyPaidOut)

68 M. Borek et al.

BanksMoney(accounts) and ATMMoney(moneyPaidOut) are the algebraic terms
that are the result of the translation of the OCL constraints. BanksMoney iter-
ates over the accounts of the banks and summarizes their balance attributes,
and ATMMoney iterates over all components of type ATM and sums up their
moneyPaidOut attributes (see the class diagram Fig. 3).

Then the property can be written formally as

init(. . .) ^ sum D C ! [STEP*] sum D C

[�] is the box operator of dynamic logic. The meaning of [˛]' is that if program
˛ terminates the condition, ' holds afterward. We start with an initial state (i.e., no
protocol steps have been executed, all components are in their initial state, the initial
knowledge of the attacker is fixed, and so on). Then, the protocol steps are chosen
nondeterministically and executed. Thus, we consider all finite sequences of steps.
As described in Sect. 4.3, the ASM consists of a while loop that executes STEP or
stops. Therefore, the proof works by proving an invariant for every step of the ASM.
Of course, the invariant must already hold in the initial state:

(INV(. . .) ^ sum D C) ! [STEP] (INV(. . .) ^ sum D C)

It turns out the property stated above is not quite correct because not yet finished
protocol runs must be taken into account. For example, during an online transaction
(Fig. 6), there is a situation where one account has been debited, but the receiver
not yet credited. In a sense, the money is contained in the message between the two
banks—it is in transit—and must be included in the money count. So the actual sum
must be computed as follows:

sum D BanksMoney(accounts) C ATMMoney(atms) C MoneyInTransit(inboxes)

The definition of MoneyInTransit uses the inboxes of the ASM that are
used to model message passing. The correct OCL constraint therefore must include
inboxes. For example, if all inboxes are empty, then MoneyInTransit is zero,
and we can write

AllInboxes().isEmpty implies4

Bank.allInstances().accounts.balance->sum() +
ATM.allInstances().moneyPaidOut->sum() = C

It is possible to define MoneyInTransit in OCL or to specify it directly in
the KIV system. As it turns out, the correct definition is quite complicated and was
found only after several corrections. The reason for the complexity is twofold: the
behavior of the protocol itself and the attacker abilities.

The protocol for withdrawing money from an ATM is quite straightforward:
The user’s account is debited, and the amount to dispense is sent in a
TerminalPayOut message (see Fig. 4) either directly to the ATM or via the
AffiliatedBank. Therefore, we have to count the money in the TerminalPayOut
messages. The online transfer (Fig. 6) debits the sender’s account and sends a

4implies is an OCL keyword since an arrow -> is used for operations on collections.

SecureMDD 69

Subtransaction message to the other bank whose money must be counted.
The receiving bank answers with a SubtransactionSuccessful message.
However, crediting the receiver may fail because of an incorrect account number.
In this case, the message contains a false flag, true otherwise. This means the
money of a SubtransactionSuccessful message must be counted if and
only if the flag is false.

However, the attacker must be taken into account. He/she has very limited
capabilities in the example as was explained in Sects. 3.1 and 4.4. He/she has
full control over only one communication path, the connection between a PC
and the OnlinebankingService (see Fig. 2). This means he/she can inject
arbitrary messages, for example, TerminalPayOut, Subtransaction, or
SubtransactionSuccessful messages even if this is completely useless
(both PC and OnlinebankingService ignore them). Therefore, we must count
the money contained in these messages only if they occur between the banks and/or
the ATM. There the attacker cannot inject messages, so they must be genuine.

To prove the main security property, a more generalized invariant must be
established that consists of several subproperties. This is necessary for almost all
applications. In the banking system, the following properties must be established:

• Generic properties about connections between components. Only those commu-
nication paths as specified in the deployment diagram are possible (Fig. 2).

• Properties that some messages occur only between dedicated components. This
is related to the exact specification of MoneyInTransit and the exact behavior of
service answers (because a service always answers its caller).

• Properties about the sending account. The banks are modeled as stateless
services. This means that all needed information must be contained in
the messages. If a transaction fails, the receiving bank must know the
account number of the sending account to initiate a refund (with message
SubtransactionSuccessful and flag false). This account number is
sent in the Subtransaction message.

Therefore, it must be proved (and the property is actually needed for the main
proof) that the sending account number in those two messages really exists.

These properties are far from obvious and were found during failed proof
attempts. If it turns out that the invariant is not strong enough (or even incorrect, i.e.,
not really invariant), it must be modified, and the proofs must be done again. This
often happens even if the protocol is secure. The effort can be reduced significantly
if it is ensured that the invariant proofs are done automatically by the proof tool. In
KIV, this can be ensured with suitable rewrite rules.

The final proof uses 244 lemmas that require 953 user interactions and 17,125
proof steps for their proofs. A little less than half of the effort is needed for the
invariant, the rest for properties of the various counting functions. A first version
of the case study required 484 theorems, 4,229 user interactions, and 27,038 proof
steps. This shows how our verification technique for SecureMDD applications and
cryptographic protocols has improved over time. Other case studies show similar

70 M. Borek et al.

improvements. All specifications, lemmas, and proofs can be found on our Web
page5 together with several other case studies.

5 Automatic Code Generation

SecureMDD not only supports the modeling and formal verification of security-
critical applications but also the automatic generation of runnable code for the
application from the class and activity diagrams. As described in Sect. 2, three
platforms are supported: smart cards, terminals, and services.

• Smart cards: The full smart card code of the application is generated as Java Card
code. It can be deployed without any modifications or extensions. Java Card [28]
is a version of Java tailored to resource-constrained devices. Java Card has the
usual Java statements and expressions, but no strings, no integers, no floats, no
threads, no reflection, and no garbage collection. Communication with a smart
card is done with sequences of bytes, i.e., byte arrays.

These limitations make programming in Java Card very difficult and error
prone. The code generation handles serialization of objects for communication,
reuse of objects on the card (this is necessary because of the missing garbage
collection), details of short arithmetics, and cryptographic operations. More
details can be found in [43].

• Terminals: For terminals, the full protocol logic is generated in Java, as well as
code for the communication with other components, including object serializa-
tion. Only GUI code for interaction with a user must be added. This can be done
without modifying or interfering with the protocol logic [23].

The code is similar to hand-programmed Java with one subtle exception. The
MEL semantics knows no pointers, but only values because object identities
play no role in security protocols. Therefore, the generated code uses value
comparison (with equals methods) instead of pointer comparison and ensures
that assignments behave as if the object was deep cloned. Copying is used only if
aliasing and field updates cause incorrect side effects. This can be analyzed given
the activity diagrams.

• Services: The protocol logic and code for communication and serialization are
generated. The code can be deployed without additions or modifications in a
Java service framework.

The rest of this section describes the service code generation and deployment
in more detail.

Technically, the UML model is loaded into Eclipse with the Eclipse modeling
framework. Then model-to-model transformations written in QVT [53] create
intermediate platform-specific UML models for each platform. From these models,

5http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/.

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/

SecureMDD 71

source code is generated by model-to-text transformations with XPand [61]. Both
QVT and XPand are part of the Eclipse modeling framework.

As mentioned in Sect. 2, the transformations are designed so that the generated
code is correct and secure with respect to the formal specification. A formal proof
that the transformations indeed guarantee this property is an ongoing research.

5.1 Services and Service Communication

The service components are implemented as Java Web services that use SOAP [41]
as underlying technology. To implement Web services, Metro6 that integrates JAX-
WS [47] (Java API for XML—Web Services) is used. JAX-WS is a standard and
supports server and clients and can be used by annotated plain old Java objects
(POJOs) that are generated by the transformations.

A service is implemented as a Java class that is annotated with @WebService, and
the public interface of a service is defined by service operations that are annotated
with @WebMethod. The return value of a service operation is sent to the invoker.
For asynchronous message passing, the return value is void and the operation is
annotated with @OneWay.

A SecureMDD service always contains only one service operation process
(see Listing 1.) that handles all incoming messages. It invokes the internal method
processMessage with the message that is wrapped in a MessageWrapper
object. The wrapping is necessary because JAXB (Java Architecture for XML
Binding, part of JAX-WS) needs a container to transmit an object of a class
hierarchy with information about the object’s run time type. msg.getMsg()
selects the actual message from the wrapper. This is an object of class Message,
the common superclass for all messages in the class diagram (Fig. 3). The method
processMethodmakes a case distinction over the actual type of the message and
dispatches to one method for each message class. This approach (only one public
method to handle all incoming messages) is also used in the terminal and smart card
code and behaves exactly as the formal ASM (Sect. 4.3).

@WebMethod
p u b l i c s ynchronized MessageWrapper p r o c e s s (MessageWrapper msg)

throws S e r v i c e E x c e p t i o n {
MessageWrapper m = n u l l ;
t r y {

m = new MessageWrapper (p roc e s s M e s s a ge (msg . getMsg ())) ;
} ca tch (j a v a . l a n g . E x c e p t i o n e) { s t o p () ; }
re turn m;

}

p r i v a t e Message proc e s s M e s s a ge (Message inmsg) throws j a v a . l a n g . E x c e p t i o n {
s wi tc h (inmsg . getCode ()) {

case Code . DEBIT :
re turn p r o c e s s D e b i t ((D e b i t) inmsg) ;

6http://metro.java.net/.

http://metro.java.net/

72 M. Borek et al.

case Code .TERMINALPAYOUT :
re turn p r o c e s s T e r m i n a l P a y O u t ((T e rmina lPayOut) inmsg) ;

. . .
d e f a u l t :

s t o p () ;
re turn n u l l ;

}
}

Listing 1. The single service operation of a SecureMDD service and the dispatcher

The OnlineBankingService handles an online transfer by delegating it to the
customer’s bank. This happens when the service receives a TransactionData
message (see Fig. 6). For each message, one Java method is generated. The method
processTransactionData is shown in Listing 2.

p r i v a t e Message p r o c e s s T r a n s a c t i o n D a t a (T r a n s a c t i o n D a t a inmsg)
throws j a v a . l a n g . E x c e p t i o n {

s ynchronized (manager) {
EncDataSymm enc = inmsg . getMsg () ;
i f (s e r v i c e S t a t e == S t a t e S e r v i c e . getAUTHENTICATED ()) {

Transact ionMSG t r a n s D a t a = (Transact ionMSG)
(EncDataSymm . d e c r y p t (s e s s ionKey , enc)) ;

s e t S e r v i c e S t a t e (S t a t e S e r v i c e . getIDLE ()) ;
i f (t r a n s D a t a . g e t A c c o u n t I n f o () . ge tBankCode ()

. e q u a l s (a f f i l i a t e d B a n k C o d e)) {
re turn sendMsg (new T r a n s a c t i o n (t r a n s D a t a) , P o r t s . a f f i l i a t e d) ;

} e l s e {
i f (t r a n s D a t a . g e t A c c o u n t I n f o () . ge tBankCode ()

. e q u a l s (d i rec tBankCode)) {
re turn sendMsg (new T r a n s a c t i o n (t r a n s D a t a) , P o r t s . d i r e c t) ;

} e l s e {
s t o p () ;
re turn n u l l ;

}
}

} e l s e {
s e t S e r v i c e S t a t e (S t a t e S e r v i c e . getIDLE ()) ;
s t o p () ;
re turn n u l l ;

} } }

Listing 2. Main method for an online transfer

The body of the method is generated from the activity diagram. The method
is called with a TransactionData object, checks the current state of the (stateful)
service, and decrypts the message with the session key exchanged before. The
decrypt method is part of the SecureMDD implementation of cryptographic
operations and raises an exception if the internal decryption does not yield a valid
serialized object or if the object is not of the expected type. Both can happen because
of an attack. An attacker may send garbage, or a message encrypted with another
key, or replay a different message encrypted with the correct key. The ASM rule (in
Sect. 4.3) shows the same behavior by corresponding checks in an if statement (if
(not (can_decrypt ...))). An exception always aborts a protocol step, and
the ASM rule simply finishes in this case. A generic method sendMsg finishes the
protocol step by sending the next message (a Transaction) to the next service.

SecureMDD 73

A stateful service is implemented by two service classes. One class is annotated
with @Stateless and the other with @Stateful. The first is the service manager and
the second the actual stateful service. An invoker calls the service manager and
obtains an address for a fresh instance of the stateful service that was created by
the service manager. After that, the invoker communicates with a service instance
created exclusively for it (see Sect. 4.5 for a discussion why this does not create a
security hole).

Services are invoked by stubs that are automatically generated by the library
wsimport that is a part of JAX-WS. Stubs manage the communication between client
and service by mapping Java objects to XML documents and vice versa as well as
the transport of the XML documents. Which stubs have to be generated for a service
invoker component is defined by the deployment diagram. The generated stubs also
contain the classes that are transferred, but without method implementations. Hence,
the classes generated by wsimport are replaced by the classes that are generated by
the model transformation.

The deployment diagram specifies how many service instances of the same
component can be invoked by one component instance. If a component instance
can invoke only one instance of a service component (denoted by multiplicity 1),
then the stubs are generated at deployment time and can be used without changes.
Otherwise (with multiplicity *), for each service to invoke, its address must be
known. The stubs that are generated for one instance can be used with an address
for any instance of the same type.

5.2 Parallel Service Invocation

Because services can access shared memory at the same time, it is important to
consider parallelism. Especially, protocol steps with read and write access have
to be executed atomically. This is the intended behavior, and the ASM behaves
like this. A possible solution is that the developer of an application has to manage
the synchronization explicitly in the UML model. A more comfortable way is that
the synchronization is managed automatically by the code generation. Our current
solution is to execute only one service operation at any given time, i.e., to force a
completely sequential behavior. For a stateless service, the bodies of the operations
are synchronized on the service instance, and for stateful services, the bodies have
to be synchronized on the manager instance. Possible future work is to look for a
strategy to synchronize only the critical parts of the code.

5.3 Transport Layer Security

TLS with server side authentication is provided by a Java library. If another TLS
implementation should be used, the generated TLS code can be disabled. TLS

74 M. Borek et al.

uses keys and certificates; thus, we need a key and trust store to provide them.
The key store contains asymmetric key pairs, while the trust store provides signed
certificates; if a certificate represents a certificate authority, all certificates issued by
this authority will also be accepted. To use TLS, keys and certificates have to be
transferred inside a secure environment before the system can be deployed.

5.4 Deployment

The deployment diagram contains all important information to deploy an application
(some additional information is defined in the class diagram). To deploy the banking
system, the following information is important. The application model contains a
user that represents a real human, a smart card component, and components that can
be deployed on PCs or servers. Except for the OnlinebankingService, each
of these components can be instantiated multiple times, i.e., an arbitrary number of
PC applications and Bank services can be deployed. The generated Java Card code
can be loaded onto an arbitrary number of smart cards, and the ATM code can be
loaded onto an arbitrary number of real ATMs.

The online banking service can be accessed by many account owner PCs at the
same time and can invoke operations of the bank services. The communication
between a user and a PC has to be secured against an attacker (i.e., against shoulder
surfing and malware). A PC can communicate with a service over any kind of
network, and services can also communicate over any kind of network.

For the PC, a Java package containing all necessary code is generated. The class
PC can be instantiated on any device that supports Java and is secured against an
attacker (i.e., free of malware). For the bank service, a Java package is generated as
well. This package can be deployed inside a container on any Java Web server.

The class diagram defines attributes that have to be initialized at the start of a ser-
vice (they are annotated with «Initialize» in the class diagram). For the banks,
these are the initial accounts and bank codes; for the OnlinebankingService,
public and private keys and bank codes; etc. These attributes must be passed as
parameters to the constructor before the service is started.

SecureMDD provides predefined key-value lists that are used for the accounts.
The generated code provides a prototypical implementation that resides in memory.
It can be replaced by any other implementations or databases that implement the
same interface.

Because requirements usually change during software development, it is useful
that code for the modeled applications can be automatically generated and tested.
For testing, a test case that initializes all instances, deploys all services, and calls the
user messages to execute the protocols has to be written. If such a test case exists,
the whole process from code generation over service deployment up to running the
test code can be invoked with one click inside Eclipse. In our test framework, all
services are deployed on one lightweight server that is integrated in Java, but of
course it is possible to deploy the services on other servers.

SecureMDD 75

The full generated and runnable code can be found on our website.7

6 Related Work

Related work relevant for this chapter can be divided into three categories: veri-
fication of cryptographic protocols, model-driven development of security-critical
systems, and model-driven development of service applications. They are treated in
turn.

6.1 Verification of Cryptographic Protocols

A lot of verification techniques and tools to prove the security of cryptographic
protocols exist; an overview is given in [36]. These techniques can be divided
into three categories: belief logics (e.g., [17]), state exploration (e.g., [6, 37]), and
theorem proving (e.g., [10, 39, 54]). Most of them are based on automatic tools
and focus on generic security protocols (which are not specific to an application,
e.g., authentication protocols) and prove standard security properties. In contrast,
the protocols of the banking system as well as the security property highly depend
on the considered application. It is not clear if automatic tools can cope with that
kind of security property.

Some approaches dealing with application-specific security properties exist. One
method that is related to ours is the inductive approach of Paulson [54] that uses
the theorem prover Isabelle for verification and was successfully applied to several
case studies. Bella extends the inductive approach to deal with smart cards [8]
but concentrates on generic security protocols as well. In [9], Bella et al. give an
overview of their work on SET (Secure Electronic Transaction), a set of e-commerce
protocols devised by Visa and MasterCard. The case study is formally modeled and
verified using the inductive approach. Considered and proven (application-specific)
security properties are that the payment information of the customer are only known
to the bank, not to the merchant, and that the order information is not known to the
bank.

Another interesting case study with application-specific security properties was
the Mondex electronic purse. Mondex has received a lot of attention because its
formal verification has been set up as a challenge for verification tools [60] that
several groups worked on. The results of the participating groups are summarized in
[30]. Mondex is about transferring money (from one card to another), and the main
property is that no money is lost.

7http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/.

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/

76 M. Borek et al.

6.2 Model-Driven Development of Security-Critical Systems

Surveys can be found in [33] and [29]. The most closely related approach is
UMLSec by Jan Jürjens ([32] and newer work). He developed a method to model
systems based on cryptographic protocols with UML. Inputs for model checking
and automatic theorem proving are automatically generated from the models and
standard security properties are proven. Besides several other case studies, Jürjens
worked on the security of the Common Electronic Purse Specification (CEPS) for
cash-free point-of-sale transactions. One considered security property was that the
sum of balances of all smart cards (which are used for payments) and all cards
of the merchants (where the earned money is stored) is the same at any time. The
appropriate proof was not done by tools but is paper based [31]. UMLSec does not
aim at generating runnable code since the focus is on modeling only the security-
related parts.

Smith et al. [58] model security protocols with UML class diagrams and state
machines. Partial code can be generated from the state machine and tested against
attacks. The attacker model and the number of components is fixed. Formal
verification is not supported. Bushager et al. [18] use UML use case and sequence
diagrams to model smart card protocols. Partial code can be generated, but since
the internal behavior of the components is not modeled, that code must be added by
hand. Verification is also not supported. There is quite a lot of work on modeling
access control. We mention only SecureUML by Basin et al. [7]. UML class
diagrams are used to model security-critical applications with role-based access
control (RBAC). Specific authorization constraints can be defined with OCL. Code
generation is not supported.

6.3 Model-Driven Development of Service Applications

The approach developed by Deubler et al. [19] considers the development of
security-critical service-oriented systems. For modeling and verification, it uses
the tool AUTOFOCUS [27] that provides its own modeling language similar to
UML. The considered security mechanisms are authentication and authorization
that are proved with a model checker. Application-specific properties as well as code
generation are not considered. AUTOFOCUS was used by Grünbauer et al. [25] to
model a banking application where a customer can submit a transfer order online.
Essentially this is the handshake protocol and the first part of the transfer protocol
of our banking system (the actual transfer is not considered). The confidentiality
and authenticity of the order is proved with a model checker. However, the attacker
capabilities had to be simplified because the original model was too complex for
automatic verification.

SECTISSIMO by Memon et al. [40] is a framework to model security-critical
services with a business process language, enrich the model with security policies,

SecureMDD 77

and generate code to enforce the policy. The security policy can be composed of a
set of given cryptographic primitives and protocols. Formal verification of security
properties is not supported.

MDD4SOA developed by Mayer et al. [38] is a model-driven approach for
service orchestration that transforms a platform-independent model into several
PSMs and those to partial code for the languages BPEL, WSDL, and Java and the
formal language Jolie. It uses its own UML profile [22] to allow the modeling of
SOA and verify properties with the formal language Jolie. Compliance of service
orchestration with their interaction protocols can be checked automatically [56].
Security aspects are not considered, and the full behavior of the components is not
modeled.

There is some work on model-driven development of Web services in general.
Baina et al. [4] use UML state machines to describe service communication and
generate BPEL-based service skeletons that implement conversation management
logic. Gronmo et al. [24] import Web service descriptions into UML, composite
them, and generate a new Web service description. Both approaches focus on service
composition and neither model the complete service behavior nor consider security.
Sheng et al. [57] focus on context-aware Web services. UWE4JSF by Kroiss et al.
[35] defines a UML profile and can generate executable code.

The following papers consider security in a model-driven approach for Web ser-
vice architectures. Nakamura et al. [51] describe security with UML by primitives
that will be transformed into security configurations such as WS-SecurityPolicy.
They do not verify the security of an application and only parts of an application
are modeled. Alam et al. [1] use OCL and role-based access control (RBAC) and
generate eXtensible Access Control Markup Language (XACML) policy files to
define a security infrastructure. This approach focuses on access control only.

Formal approaches to services can also be used to formally verify security
properties. SecureMDD uses ASMs to define the behavior of components like
services, and if services communicate with other services, this is a simple form of
service orchestration. More elaborate approaches to specify services with ASMs by
Börger and Thalheim [16] and Börger and Sörensen [14] contain interesting ideas
for future extensions of SecureMDD.

We are not aware of an approach like ours that allows model-driven develop-
ment of security-critical Web service applications, generates executable code, and
guarantees application-specific security properties for the modeled system by using
interactive verification.

7 Conclusion

We presented in detail how services are supported in our SecureMDD approach.
Security in service applications is an important issue. Since it is difficult to express
business security requirements with standard security properties, our approach
supports the consideration of application-specific security properties in all stages

78 M. Borek et al.

of the development process. Secure applications using smart cards, terminals,
and services are modeled with extended UML and the domain-specific language
MEL. The banking system used as a case study demonstrates the need to verify
application-specific security properties even if standard security protocols like TLS
are used. From a platform-independent UML model, runnable code as well as a
formal specification is generated automatically. The code describes an application
in full detail and can be deployed and used without any changes. The formal
specification is used to verify the application-specific security properties. The code
is correct and secure with respect to the formal specification.

Future work for services includes handling parallelism in a more efficient way,
integrating a real database and WS-Security standards, and extending the commu-
nication structure to allow more complex service orchestrations. SecureMDD will
also support Android and Apps as an additional platform in the future.

References

1. Alam, M.M., Breu, R., Breu, M.: Model driven security for web services (MDS4WS). In: 8th
International Multitopic Conference, 2004. Proceedings of INMIC 2004, pp. 498–505. IEEE,
Piscataway (2004)

2. Anderson, R.J., Needham, R.M.: Programming satan’s computer. In: Computer Science Today,
vol. 1000, pp. 426–440. Springer, Heidelberg (1995)

3. Armando, A., Arsac, W., Avanesov, T., Barletta, M., Calvi, A., Cappai, A., Carbone, R.,
Chevalier, Y., Compagna, L., Cúellar, J., et al.: The AVANTSSAR platform for the automated
validation of trust and security of service-oriented architectures. In: Proceedings of TACAS
2012 – Tools and Algorithms for the Construction and Analysis of Systems. LNCS, vol. 7214.
Springer, Heidelberg (2012)

4. Baina, K., Benatallah, B., Casati, F., Toumani, F.: Model-driven web service development. In:
Advanced Information Systems Engineering, pp. 527–543. Springer, Heidelberg (2004)

5. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system development
with KIV. In: Fundamental Approaches to Software Engineering. Lecture Notes in Computer
Science, vol. 1783. Springer, Heidelberg (2000)

6. Basin, D.A., Mödersheim, S., Viganò, L.: OFMC: a symbolic model checker for security
protocols. Int. J. Inf. Secur. 4(3), 181–208 (2005)

7. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: from UML models to access
control infrastructures. ACM Trans. Softw. Eng. Methodol. 15, 39–91 (2006)

8. Bella, G.: Mechanising a protocol for smart cards. In: Proceedings of e-Smart 2001,
International Conference on Research in Smart Cards. Lecture Notes in Computer Science,
vol. 2140. Springer, Heidelberg (2001)

9. Bella, G., Massacci, F., Paulson, L.C.: Verifying the SET purchase protocols. J. Automat.
Reas. 36(1–2), 5–37 (2006)

10. Blanchet, B.: Automatic verification of correspondences for security protocols. J. Comput.
Secur. 17(4), 363–434 (2009)

11. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Model-driven development of secure service
applications. In: 2012 35th Annual IEEE Software Engineering Workshop (SEW), pp. 62–71.
IEEE, Piscataway (2012)

12. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Model checking of security-critical applications
in a model driven approach. In: Software Engineering and Formal Methods. Springer,
Heidelberg (2013)

SecureMDD 79

13. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Security requirements formalized with ocl in
a model-driven approach. In: 2013 IEEE Model-Driven Requirements Engineering Workshop
(MoDRE). IEEE, Piscataway (2013)

14. Börger, E., Sörensen, O.: BPMN core modeling concepts: inheritance-based execution seman-
tics. In: Handbook of Conceptual Modeling. Theory, Practice, and Research Challenges,
pp. 287–332. Springer, Heidelberg (2011)

15. Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-Level System Design
and Analysis. Springer, Heidelberg (2003)

16. Börger, E., Thalheim, B.: Modeling workflows, interaction patterns, web services and business
processes: the ASM-based approach. In: Proceedings of ABZ 2008. Lecture Notes in Computer
Science, vol. 5238. Springer, Heidelberg (2008)

17. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans. Comput. Syst.
8(1), 18–36 (1990)

18. Bushager, A., Zwolinski, M.: Modelling smart card security protocols in systemC TLM. In:
IEEE/IFIP 8th International Conference on Embedded and Ubiquitous Computing, pp. 637–
643. IEEE Computer Society, Piscataway (2010)

19. Deubler, M., Grünbauer, J., Jürjens, J., Wimmel, G.: Sound development of secure service-
based systems. In: Proceedings of the 2nd International Conference on Service Oriented
Computing, pp. 115–124. ACM, New York (2004)

20. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2. IETF Network
Working Group. http://www.ietf.org/rfc/rfc5246.txt (2008)

21. Dolev, D., Yao, A.C.: On the security of public key protocols. In: Proceedings of 22th IEEE
Symposium on Foundations of Computer Science. IEEE, Piscataway (1981)

22. Foster, H., Gönczy, L., Koch, N., Mayer, P., Montangero, C., Varró, D.: UML extensions for
service-oriented systems. In: Rigorous Software Engineering for Service-Oriented Systems,
pp. 35–60. Springer, Heidelberg (2011)

23. Grandy, H., Stenzel, K., Reif, W.: Object-oriented verification kernels for secure Java
applications. In: Aichering, B., Beckert, B. (eds.) SEFM 2005 – 3rd IEEE International
Conference on Software Engineering and Formal Methods. IEEE, Piscataway (2005)

24. Gronmo, R., Skogan, D., Solheim, I., Oldevik, J.: Model-driven web services development.
In: 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004.
EEE’04, pp. 42–45. IEEE, Piscataway (2004)

25. Grünbauer, J., Hollmann, H., Jürjens, J., Wimmel, G.: Modelling and verification of layered
security protocols: a bank application. In: Proceedings of SAFECOMP 2003. Lecture Notes in
Computer Science, vol. 2788. Springer, Heidelberg (2003)

26. Haneberg, D., Grandy, H., Reif, W., Schellhorn, G.: Verifying smart card applications: an ASM
approach. In: International Conference on integrated Formal Methods (iFM) 2007. Lecture
Notes in Computer Science, vol. 4591. Springer, Heidelberg (2007)

27. Huber, F., Molterer, S., Rausch, A., Schatz, B., Sihling, M., Slotosch, O.: Tool supported
specification and simulation of distributed systems. In: Proceedings, International Symposium
on Software Engineering for Parallel and Distributed Systems, 1998, pp. 155–164. IEEE,
Piscataway (1998)

28. Java Card 2.2.2 Application Programming Interfaces: http://www.oracle.com/technetwork/
java/\javacard/specs-138637.html (2006)

29. Jensen, J., Jaatun, M.G.: Security in model driven development: a survey. In: Sixth
International Conference on Availability, Reliability and Security, ARES 2011. Lecture Notes
in Computer Science, pp. 704–709. Springer, Heidelberg (2011)

30. Jones, C., Woodcock, J. (eds.): Form. Asp. Comput. 20(1) (2008)
31. Jürjens, J.: Developing high-assurance secure systems with UML: a smartcard-based purchase

protocol. In: IEEE International Symposium on High Assurance Systems Engineering. IEEE,
Piscataway (2004)

32. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2005)
33. Kasal, K., Heurix, J., Neubauer, T.: Model-driven development meets security: an evaluation

of current approaches. In: 44th Hawaii International Conference on System Sciences (HICSS),
pp. 1–9. IEEE Computer Society, Piscataway (2011)

http://www.ietf.org/rfc/rfc5246.txt
http://www.oracle.com/technetwork/java/javacard/specs-138637.html
http://www.oracle.com/technetwork/java/javacard/specs-138637.html

80 M. Borek et al.

34. Katkalov, K., Moebius, N., Stenzel, K., Borek, M., Reif, W.: Model-driven testing of security
protocols with secureMDD. In: Fifth IFIP International Conference on New Technologies,
Mobility and Security (NTMS 2012). IEEE, Piscataway (2012)

35. Kroiss, C., Koch, N., Knapp, A.: UWE4JSF: a model-driven generation approach for web
applications. In: 3rd Workshop on The Web and Requirements Engineering at ICWE 2012.
Lecture Notes in Computer Science, vol. 5648, pp. 493–496. Springer, Heidelberg (2009)

36. Lopez Pimental, J.C., Monroy, R.: Formal support to security protocol development: a survey.
Computacion y Sistemas 12(1), 89–108 (2008)

37. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In:
Second International Workshop on Tools and Algorithms for Construction and Analysis of
Systems (TACAS). Lecture Notes in Computer Science, vol. 1055, pp. 147–166. Springer,
Heidelberg (1996)

38. Mayer, P., Schroeder, A., Koch, N.: MDD4SOA: model-driven service orchestration. In:
Proceedings of 12th IEEE International EDOC Conference (EDOC 2008). IEEE, Piscataway
(2008)

39. Meadows, C.: The NRL protocol analyzer: an overview. J. Logic Program. 26(2), 113–131
(1996)

40. Memon, M., Hafner, M., Breu, R.: SECTISSIMO: a platform-independent framework for
security services. In: Proceedings of the First International Modeling Security Workshop.
CEUR Workshop Proceedings, vol. 413. http://ceur-ws.org/Vol-413/ (2008)

41. Mitra, N., Lafon, Y.: SOAP Version 1.2. W3C (2007)
42. Moebius, N., Stenzel, K., Reif, W.: Modeling security-critical applications with UML in the

SecureMDD approach. Int. J. Adv. Softw. 1(1), 59–79 (2008)
43. Moebius, N., Stenzel, K., Grandy, H., Reif, W.: Model-driven code generation for secure smart

card applications. In: 20th Australian Software Engineering Conference. IEEE, Piscataway
(2009)

44. Moebius, N., Stenzel, K., Grandy, H., Reif, W.: SecureMDD: a model-driven development
method for secure smart card applications. In: Workshop on Secure Software Engineering,
SecSE, at ARES 2009. IEEE, Piscataway (2009)

45. Moebius, N., Stenzel, K., Reif, W.: Formal verification of application-specific security
properties in a model-driven approach. In: Proceedings of ESSoS 2010 - International
Symposium on Engineering Secure Software and Systems. Lecture Notes in Computer
Science, vol. 5965. Springer, Heidelberg (2010)

46. Moebius, N., Stenzel, K., Borek, M., Reif, W.: Incremental development of large, secure
smart card applications. In: Proceedings of the Workshop on Model-Driven Security. ACM,
New York (2012)

47. Mordani, R., Chinnici, R., Hadley, M.: The Java API for XML-Based Web Services (JAX-WS)
2.0. JCP (2006)

48. Murdoch, S.J., Drimer, S., Anderson, R., Bond, M.: Chip and PIN is broken. In: Proceedings
of the 2010 IEEE Symposium on Security and Privacy, pp. 433–446. IEEE, Piscataway (2010)

49. Nadalin, A., Kaler, C., Hallam-Baker, P., Monzillo, R.: Web Services Security: SOAP Message
Security 1.0. OASIS (2004)

50. Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., Granqvist, H.: WS-SecurityPolicy 1.2.
OASIS (2006)

51. Nakamura, Y., Tatsubori, M., Imamura, T., Ono, K.: Model-driven security based on a web
services security architecture. In: IEEE International Conference on Services Computing,
pp. 7–15. IEEE, Piscataway (2005)

52. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large networks of
computers. Commun. ACM 21(12), 993–999 (1978)

53. Object Management Group (OMG): Meta Object Facility (MOF) 2.0 Query/View/Transforma-
tion Specification, Version 1.1. http://www.omg.org/spec/QVT/1.1/ (2011)

54. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J. Comput. Secur.
6, 85–128 (1998)

55. Ray, M., Dispensa, S.: Renegotiating TLS. Technical Report, PhoneFactor Inc. (2009)

http://ceur-ws.org/Vol-413/
http://www.omg.org/spec/QVT/1.1/

SecureMDD 81

56. Schroeder, A., Mayer, P.: Verifying interaction protocol compliance of service orchestrations.
In: Proceedings of the 6th International Conference on Service-Oriented Computing. Lecture
Notes in Computer Science, vol. 5364. Springer, Heidelberg (2008)

57. Sheng, Q.Z., Benatallah, B.: Contextuml: a uml-based modeling language for model-driven
development of context-aware web services. In: International Conference on Mobile Business,
2005. ICMB 2005, pp. 206–212. IEEE, Piscataway (2005)

58. Smith, S., Beaulieu, A., Greg Phillips, W.: Modeling and verifying security protocols using
UML 2. In: International Systems Conference (SysCon), pp. 72–79. IEEE Computer Society,
Piscataway (2011)

59. Stenzel, K., Moebius, N., Reif, W.: Formal verification of QVT transformations for code
generation. In: 14th International Conference on Model Driven Engineering Languages and
Systems, MODELS 2011. Lecture Notes in Computer Science, vol. 6981. Springer, Heidelberg
(2011)

60. Woodcock, J.: First steps in the verified software grand challenge. IEEE Comput. 39(10),
57–64 (2006)

61. Xpand: http://projects.eclipse.org/projects/modeling.m2t.xpand (2009)

http://projects.eclipse.org/projects/modeling.m2t.xpand

A Formal Model of Client-Cloud Interaction

Károly Bósa, Roxana-Maria Holom, and Mircea Boris Vleju

Abstract In our former work, we have showed that cloud computing still requires
lots of fundamental research. Among many other existing problems in cloud com-
puting, we identified the lack of client orientation and lack of formal foundations as
serious deficiencies. In this chapter, we give a summary on our research and discuss
the architectures as well as the formal models of some software solutions with which
we are going to address (a part of) these two problems in cloud computing.

The solution we propose is a novel and uniform client-cloud interaction approach
by which cloud service owners, who may be different from the cloud providers, are
able to fully control the usage of their services in the case of each user subscription.
In this context, any cloud service can be invoked by distinct devices; therefore, the
content must be adapted to various channels and end devices, in particular with
respect to needs arising from mobile clients. For a quick and seamless integration
between the cloud provider’s identity management system and the system used
by the client, we introduce the concept of a client-centric tool. An extension of
the client-cloud interaction model enables client-to-client interaction (CTCI) in an
almost direct way, so that the involvement of cloud services is transparent to the
users.

In this chapter, we propose a formalization of this solution that incorporates
the major advantages of abstract state machines (ASMs) and ambient calculus by
specifying the algorithms of executable components (agents) in terms of ASMs and
by describing their communication topology, locality, and mobility in the terms of
ambient calculus.

1 Introduction

Nowadays “cloud computing” is one of the most often used buzzword in computing,
and many providers (Amazon, Google, Microsoft, IBM, etc.) of cloud services

K. Bósa (�) • R.-M. Holom • M.B. Vleju
Christian Doppler Laboratory for Client-Centric Cloud Computing, Johannes Kepler University
Linz, Softwarepark 21, 4232 Hagenberg, Austria
e-mail: k.bosa@cdcc.faw.jku.at; r.holom@cdcc.faw.jku.at; b.vleju@cdcc.faw.jku.at

© Springer International Publishing Switzerland 2015
B. Thalheim et al. (eds.), Correct Software in Web Applications and Web Services,
Texts & Monographs in Symbolic Computation,
DOI 10.1007/978-3-319-17112-8_4

83

mailto:k.bosa@cdcc.faw.jku.at
mailto:r.holom@cdcc.faw.jku.at
mailto:b.vleju@cdcc.faw.jku.at

84 K. Bósa et al.

(infrastructure as a Service (IaaS), software as a service (SaaS), platform as a service
(PaaS), data as a service (DaaS), etc.) emphasize the many benefits of outsourcing
applications into a (private or public) cloud. In other words, it is suggested that
cloud computing represents a mature technology that is ready to be massively used.
But it is our conviction that cloud computing still requires lots of fundamental
research [99].

In particular, most of the offerings in cloud computing are provider centric. For
instance, a client (or tenant) may rent a certain piece of infrastructure, load and
execute a piece of software on it, pay for the use, and leave the cloud without leaving
permanent traces. Certainly, there are many computing-intensive applications, for
example, Web crawling, image processing, machine learning, etc., that fit well
into such a scenario. However, if we think of a multiuser database application, its
usefulness decreases significantly.

Among many other problems in cloud computing, we identified the lack of
client orientation as a serious problem that needs to be addressed in research.1

This subsumes the problems of identity of tenants, access rights, adaptivity to the
needs of clients, and more. For instance, in many cases (e.g., multiuser database
applications), it would be indispensable to keep knowledge of users and their rights
in the authority of the client instead of in the cloud. The immediate consequence of
such an approach is that cloud applications should become hybrid and distributed,
as parts of data and software will reside on premise, while others reside off-site in
the cloud.

There is another serious lack of formal foundations in cloud computing starting
from the simple fact that key notions such as service are not defined. Therefore, in
our research, we deal with the challenges in cloud computing that require solutions
with more stronger client-side orientation, and we also address the fundamental
research question on how a uniform formal model for clouds must look like without
any bias to particular languages and technology.

In this chapter, we present the high-level formal models of our cloud-related
algorithms and software solutions which have strong client-side aspects and which
are integrated into a single cloud service architecture. We split the specification into
three parts.

The first part lays out a cloud service infrastructure that provides a transparent
and uniform way to interact with its clients (service owners and end users). This
includes the following:

• The end users are able to access and combine the available functions of cloud
services.

• The owners of the cloud services, who may be different from the cloud providers
and who may possess exclusive access to certain cloud resources (service
functionalities or data) which is shared among their end users, are able to define

1We define the term client as being a small and medium enterprise (SME) that contracts and uses
any cloud service. Similarly, we refer to a user as an identity within the SME using a cloud-based
service.

A Formal Model of Client-Cloud Interaction 85

some special kind of action schemas called service plots, which may be specific
for end-user subscriptions, respectively. By these action schemas, clients are
able to restrict not only which are the permitted actions belonging to certain
cloud resources (e.g., services) for certain end users, but they are also able to
specify and tune precisely which are the permitted combinations of these actions
to perform certain tasks.

• It is also described how we extended the formal model of the proposed
cloud system with a client-to-client interaction (CTCI) mechanism via a cloud
architecture. The discussed solution for transparent use of services is a kind of
switching service, where registered cloud users communicate with each other,
and the only role the cloud plays is to switch resources from one client to another.

With respect to identity management in a cloud-based approach, a problem arises
in maintaining identity data across the providers. The second component of our
system provides a client-focused identity meta-system based on the concept of
ASMs, which allows a client to maintain a private identity directory while offering
individual users automatic authentication to cloud-based services. In this part, we
introduce the concept of an identity management machine (IdMM), an ASM-based,
client-centric, single sign-on tool, which deals with the client-side aspects of identity
and access management in cloud computing.

The last but not least, the third part of our specification uses ASM ground models
for presenting in a rigorous way the proposed Web application (WA), which tries to
solve the problem of adaptivity by including aspects regarding content adaptation
and displaying. We chose to use ASMs since they permit to design and analyze
asynchronous multiple-agent distributed systems, as the cloud architecture we deal
with; moreover, thanks to refinement mechanism, we show how ground models can
be refined to pseudo-code-like descriptions. A future refinement can possibly bring
to the implementation. ASM method also provides a high-level notation that permits
to concisely describe complex systems and that can be easily understood by all the
stakeholders [25].

As it is shown in Sect. 3, these novel interaction solutions are dynamically
reconfigurable, and they can either take place on a cloud or can be easily shifted
to the client side and wrapped into a middleware software which may be located
in the authority of one or more clients. The latter case can also provide enhanced
privacy protection, since the cloud provider does not necessarily know the (real)
identities of the end users.

In order to achieve this required flexibility of the model, the component
formalization was done in terms of ambient abstract state machines [26, 31],
which inherently makes possible to create such dynamically variable architectures.
This method incorporates the major advantages of the abstract state machines
(ASMs) [26, 64] and of ambient calculus [38, 61]. Namely, one can describe
formal models of complex dynamically reconfigurable distributed (or cloud) sys-
tems including mobile components in two abstraction layers such that while the
algorithms of executable components (agents) are specified in terms of ASMs, their
communication topology, locality, and mobility are described with the terms of

86 K. Bósa et al.

ambient calculus in our method. The abstracted formal architecture presented in
this chapter is also going to be served as a framework which can be enriched with
other novel client-centric mechanisms in the future.

The rest of the chapter is organized as follows: Section 2 gives on overview on
the basic notions of cloud computing and on access control techniques for cloud.
Section 3 informally summarizes the components of our integrated cloud architec-
ture. Section 4 introduces the applied formal approaches and gives a short overview
on ambient calculus and ambient ASM as well as defines some nonbasic ambient
capability actions which are applied in the latter sections. Section 5 describes our
high-level ambient ASM model of our cloud service architecture which is equipped
with service plots and client-to-client interaction via cloud. Section 6 discusses the
specification of client-centric identity and access management for cloud services.
Section 7 deals with the ASM ground models of the software components for
cloud service adaptivity. Section 8 highlights some aspects of verification of the
formal model of our integrated cloud system, which we are going to perform in the
near future. Finally, Sect. 9 discusses the related work, and Sect. 10 concludes this
chapter.

2 Cloud Computing and Access Control Techniques for
Cloud

In this chapter, we give a short overview on the basic notions of cloud computing
and on various cloud-related access control techniques in order to make this chapter
more self-containing as well as to facilitate its understanding for a wider audience.

2.1 Cloud Computing

Cloud computing appeared years ago as a buzzword in computing technology, being
related to other existing technologies, like grid computing and seen as a scalable
external data center [114]. Even though people are referring to cloud computing
since some time and many providers (Amazon, Rackspace, Google, Microsoft, IBM,
etc.) are suggesting that it’s a mature technology, we recognize cloud computing as
still an evolving paradigm [80].

The National Institute of Standards and Technology (NIST) is mentioning impor-
tant aspects of cloud computing in their definition: “Cloud computing is a model
for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction. This cloud model is composed of five essential
characteristics, three service models, and four deployment models” [80].

A Formal Model of Client-Cloud Interaction 87

Further on, they mention the cloud computing characteristics: on-demand self-
service, a consumer can automatically provision computing capabilities without the
need for human interaction; broad network access, services are available over the
network and accessed through a variety of mechanisms (e.g., mobile phones, tablets,
laptops, and workstations); resource pooling, a provider’s capability to use a multi-
tenant model for pooling computing resources in order to handle multiple clients;
rapid elasticity, the possibility to rapidly scale (in and out) resources; and measured
service, providers are using resources monitoring in order to optimize their services
and support the pay-per-use business model. Specific measurements are used, fitting
the type of service (e.g., storage, processing, bandwidth, and active user accounts).

Cloud providers offer their services (as a utility) conforming to the following
models: software as a service (SaaS), platform as a service (PaaS), and infrastruc-
ture as a service (IaaS). SaaS is a service model where a client uses applications
offered by the provider that run on a cloud infrastructure. Examples of this service
comprise Google Apps for Business [57] and Microsoft Office 365 [81]. PaaS offers
the client the possibility to deploy on a cloud infrastructure his or her applications
created using predefined languages, libraries, services, and tools that are supported
by the cloud provider. Microsoft Azure [15] and Google App Engine [60] are
two examples of such services. IaaS is a service model, which provides the client
fundamental computing resources, like processing, storage, and networks. In this
case, the client can also deploy operating systems, which in the case of PaaS is not
possible. An example of such a service model is the Amazon Elastic Compute Cloud
(Amazon EC2) [10].

There are also different deployment models of a cloud: private cloud (internal
data centers designed for a single organization), community cloud (used by several
organizations with shared interests), public cloud (made available for the general
public), and hybrid cloud (a combination of the all previous models: some parts of
the infrastructure are usable for the general public, while others are ready to use
only for some organizations).

Some of the disadvantages that come together with the adoption of cloud services
are the following [46, 52]: loss of governance, provider lock-in, isolation failure, and
security and privacy issues (insecure interfaces and APIs, malicious insiders, shared
technology issues, data loss or leakage, account or service hijacking, unknown risk
profile).

2.2 Access Management in Cloud Computing

A detailed description of identity and access management in cloud computing
can be found in [109]. The author describes four distinct identity and access
management scenarios within the domain of cloud computing. The first scenario
entails a traditional model where the client maintains a local identity and access
management system which is mirrored on the cloud provider. Such a model is useful
only in IaaS where the client has the ability to install custom software on his or her

88 K. Bósa et al.

virtual machine. The second scenario entails a trusted model where the identity
information is shared to a cloud provider via the use of previously agreed-upon
identity federation protocols. In an identity provider scenario, the client either acts
or uses an external identity provider which makes use of common identity federation
protocols (such as OpenID, OAuth, SAML) to offer the identity-related information
to cloud services. Finally, the author of [109] describes a fourth model where the
client makes use of a cloud provider’s identity and access management system.
This system of all in the cloud means that the client has no control over the data
and must subscribe to a provider’s identity and access management system. Using
multiple services across multiple providers further increases the task of maintaining
the correct identity information data.

The authors of [63] provide a review of identity and access management in cloud
computing. They provide a description of identity and access management as well
as a description of existing tools for identity and access management. They then
provide a review of the existing identity and access management tools in cloud
computing. This review is extended by [83] where the authors better described the
technologies and protocols used in identity and access management emphasizing the
protocols for identity federation. For small and medium enterprises, [79] describes
the challenges when adopting cloud computing services. The authors provide a
detailed description of identity and access management in general, also emphasizing
the existing identity federation and open standards.

While the authors of [63, 79, 83] emphasize the use of identity federation and
existing open standards, it must be noted that most cloud providers tend to use the
“all in the cloud” approach when it comes to their identity and access management
systems. As such, most providers will offer their own identity system, often not
providing the option of using identity federation protocols such as OpenID or
OAuth. When such protocols are offered, the providers often act just as identity
providers and not relaying parties [50].

3 Overview of the Client-Cloud Interaction Software System

Roughly the formal model of cloud systems employed by us can be regarded as a
pool of resources equipped with some infrastructure services. Depending whether
these abstract resources represent only physical hardware and virtual resources or
the entire computing platforms, the model can be an abstraction of IaaS or PaaS,
respectively. The basic hardware (and software) infrastructure is owned by the cloud
provider, whereas the software running on the resources may be either rented or
owned by some tenants of the cloud (service owners). We assume that these software
products may in turn be offered as services (denoted by S1 : : : Si in Fig. 1) and thus
used by some groups of cloud users.

Accordingly, we apply a loose definition of the term service cloud here, where an
entity who is different from the cloud provider and who has disposal of the access
rights to some hardware or software resources running on the cloud may become

A Formal Model of Client-Cloud Interaction 89

Users

PC

Laptop

Mobile

Service Owners
(Tenants)

Client-Cloud
Interaction Middleware

Service Plot
Management

Identity and
Access

Management

Adaptivity

Client-to-client
Interaction

Cloud A
S1...Si

Cloud B
S1...Sj

Cloud C
S1...Sk

Fig. 1 Architecture

a cloud service provider. Thus, from this aspect, the model can be regarded as an
abstraction of a mixture of SaaS and of IaaS (or a mixture of SaaS and PaaS).

We make a distinction between cloud service owners (or tenants) and cloud users
(or end users); see Fig. 1. Users are registered in the cloud, and they subscribe to
and use some (software) services available in the cloud. Service owners are usually
small and medium enterprises (SMEs) that contract with cloud providers, rent some
cloud resources, and/or bring and deploy their own resources (e.g., software service
instances, data, etc.) on the cloud which they share among their end users. Of course,
service owners can also act as normal users, which means they can use services
provided by other tenants.

A developed prototype of this cloud service system has been deployed for testing
purposes on Windows virtual machines under OpenStack cloud infrastructure
software on an IBM CloudBurst server machine.

Due to the applied ambient concept, the relocation of the system component is
trivial, and we can apply our model according to different scenarios (see Fig. 2a,
b). In our developed prototype and in our case studies (see Sect. 3.4), all our novel
software solutions discussed in this chapter are integrated into a compound software
component on the client side called the client-cloud interaction middleware, which
takes place among the end users, the service owners, and the cloud(s) in order
to manage the interactions between them; see Fig. 1. In this middleware-based
architecture, the various components (e.g., service plot management, client-to-client
interaction feature, identity and access management, and content adaptivity) are
only loosely coupled with each other; any of them can be eliminated and the others
still remain functional.

One of the advantages of the employed middleware-based configuration is that
the same instance of the infrastructure services is able to extend the functionalities

90 K. Bósa et al.

Legend:

...

...

I
n
t
e
r
f
a
c
e

Om m+1

2 3 O4 O5O1 O O

2 3 O4 O5O1 O O

End−Devicel

Cloud (nowadays)

S1

S1

Sj

Outer Firewall

Client−Cloud Interaction Middleware

. . .

. . .

Infrastructure Services
Rn

Ri

R1

Cloud SideClient Side

b)

a)

I

n

t

e

r

f

c

e

a

2 3 O4 O5O1 O O2 3 O4 O5O1 O O Om m+1

Outer Firewall

Cloud

. . .

S1 S1 Sj

Infrastructure Services

. . .

. . .

R1 Ri Rn

End−Devicel

Cloud SideClient Side

Ri : Cloud Resource Sj : Service Protected Area Area
 : Firewall Protected : Credential

.

..

O

Contact Device

Contact Device
of Client(SME) V

of Client(SME) W

O. . .

.

..

of Client(SME) V
Contact Device

Contact Device
of Client(SME) W

abstract...

abstract...

abstract...

abstract...

Protected Area
of UserX

Specific Functions
for UserY

Specific Functions
for Client(SME) W

Specific Functions
for Client(SME) V

Specific Functions
for UserX

Specific Functions
for UserY

Specific FunctionsSpecific Functions
for Client(SME) V

Specific Functions
for UserX

for Client(SME) W

Protected Area
of UserX

Fig. 2 Application of our model according to different scenarios. (a) Scenario I. (b) Scenario II

of and to provide a transparent and uniform access to more than one cloud. It should
be noticed that the end users cannot bypass and omit the middleware and access
to the cloud services, since they do not have direct access to the cloud(s) (they
have credentials only to the middleware, and the middleware assigns permanently
or temporarily their credentials to cloud service accounts).

In the following, we give an overview of various components of our integrated
cloud service architecture, whose formal specifications are discussed in this chapter.

A Formal Model of Client-Cloud Interaction 91

3.1 A Cloud Architecture Equipped with Service Plots and a
Client-to-Client Interaction Feature

There are two major problems which we address with the discussed cloud architec-
ture model [30]: on the one hand, how to provide a transparent and uniform way
to interact with the end users, such that it allows the users to access and combine
the available functions of cloud services which may belong to various cloud service
owners (or tenants), and on the other hand, how to give full control into the hands
of the tenants over the usage of the cloud resources which they own or rent on the
cloud.

In our model, we assume that service instances are always equipped with
service operations denoted by unique identifiers o1,. . . , on; see Fig. 2a. These
service operations actually compose the interface of a service instance, and they
are exported from a service to be used by other systems or directly by users.

Furthermore, it is assumed in our approach that each service owner has a
dedicated contact point that resides out of the cloud. It is a special kind of client-
side device that can also act as a server for the cloud itself in some cases. Namely,
if a registered cloud user intends to subscribe to a particular service, he or she sends
a subscription request to the cloud, which may forward it to such a special kind
of client belonging to the corresponding service owner. This client responds with
a special kind of action scheme called service plot, which algebraically defines
and may constrain how the service can be used by the user (e.g., it determines
the permitted combination of service operations). This special kind of client of the
service owners is abstract in the current model.

The received service plots, which may be composed individually for each sub-
scribing user by service owners, are collected with other cloud functions available
for this particular user in a kind of personal user area by the cloud; see Fig. 2a.
Later, when the subscribed user sends a service request, it is checked whether the
requested service operations are allowed by any service plot. If a requested operation
is permitted, then it is triggered to perform; otherwise, it is blocked as long as a plot
may allow to trigger it in the future. Each triggered operation request is authorized
to enter into the user area of the corresponding service owner to whom the requested
service operation belongs. Here, a scheduler mechanism assigns to the request a one-
off access to a cloud resource on which an instance of the corresponding service
runs. Then the service operation request is forwarded to this resource, where the
request is processed by an instance of the service whose operation was requested.
Finally, the outcome of the performed operation returns to the area of the initiator
user, where the outcome is either stored or sent further to a given end-user device.

In this way, the service owners have direct influence on the service usage of
particular users via the provided service plots. If a user subscribes to more than
one service, he or she may have access to more than one plot. These plots are
independent from each other and they can be applied concurrently. If a service owner
makes available more than one service for a user, the owner has the choice either
to provide independent plots for the user or to combine some functions of various

92 K. Bósa et al.

services into a common service plot. This conceptual solution shows a transparent
and uniform way how to provide an advanced access control mechanism for cloud
services without giving up the flexibility of heterogeneous cloud access to these
services.

Regarding our proposed cloud service model, one of the major questions can
be whether it is adaptable to nowadays leading cloud architectures and solutions
(e.g., Amazon S3, Microsoft Azure, IBM SmartCloud, etc.), since these systems
rule the market at present and they will have impact on the cloud business in the near
future as well. Since due to the applied ambient concept the relocation of the system
component is trivial, we can apply our model according to different scenarios. For
instance, all our novel methods including our client-cloud interaction solution can be
shifted to the client side and wrapped into a middleware software which takes place
between the end users and cloud in order to control their interactions; see Fig. 2b
(this scenario was implemented in the mentioned software prototype). Note that
the specified communication topology among the distributed system components
remains the same in both proposed scenarios.

Thinking further this second scenario, we can envisage a new (cloud) service
whose customers are enterprises that take over the role of the service owners in this
service, such that they can fully control how their employees can access and use
third-party clouds. Namely, assuming that these enterprises own or pay for various
cloud services, they can provide customized service plots for their employees via
such a client-cloud interaction controller service to restrict end-user accesses to the
available functions of these cloud services.

3.1.1 Client-to-Client Interaction

We also extended the model of our cloud service architecture with a client-to-client
interaction (CTCI) mechanism via a cloud architecture [29]. Our envisioned cloud
feature can be regarded as a special kind of services we call channels, via which
registered cloud users can interact with each other in an almost direct way and,
what is more, they are able to share available cloud resources among each other as
well.

Some use cases, which may claim the need of such CTCI functions, can be, for
instance, disseminating large or frequently updated data whose direct transmitting
meets some limitations or connecting devices of the same user (in the latter case, an
additional challenge can be during a particular interpretation of the modeled CTCI
functions, how to wrap and transport local area protocols, like upnp via the cloud).
See an overview of the formal model of CTCI in Sect. 5.3.

A Formal Model of Client-Cloud Interaction 93

3.2 Client-Centric Identity and Access Management in Cloud
Computing

The adoption of cloud-based services offers many advantages for small and medium
enterprises. However, a cloud-based approach also entails certain disadvantages.
The papers [7, 34, 46, 99] outline some of these disadvantages: loss of control,
contracting issues, provider lock-in, and other security and privacy issues. Such
issues imply an extra level of trust between a client and a cloud provider. With
respect to identity management, a loss of control implies that the client must
trust the cloud provider with sometimes critical or important identity information
such as credit card information. A potential client would prefer such data to be
stored on premise and only be offered to a service on demand. The vendor lock-
in issue might be mitigated by the adoption of services across multiple providers.
In this scenario, a problem arises in maintaining identity data across the providers.
Changing the surname, for example, entails changing this property for each service
in particular (especially if the service provider does not adopt open standards).
Our research is focused on providing a client-centric identity meta-system which
allows a client to maintain a private identity directory while offering individual
users automatic authentication to cloud-based services via a single sign-on, privacy-
enhanced service.

In the paper [115], we have introduced the concept of an identity management
machine (IdMM), an ASM-based, client-centric, single sign-on tool for small
and medium enterprises that want to adopt or migrate to cloud-based services.
This concept has been further refined in the paper [116] where we described the
architecture of the IdMM. As mentioned in the paper [116], the IdMM is composed
of six agents: the core agent (comprising the rules described in the paper [115]),
the client agent (managing the interaction with the client’s directory), the cloud
agent (used for the interaction with a cloud service), the user agent (handling the
interaction with an individual user), the protocol agent (used for protocol-based
authentication), and the provisioning agent (managing user provisioning, password
resets, and user de-provisioning). Apart from the core agent, each agent is defined
by further refinement of the abstract functions presented in the paper [115]. This
process is still an ongoing task, with the provisioning and protocol agents still left
at an abstract level. In the paper [117], we have described the IdMMClient agent by
further refinement of the client-side abstract functions. We also gave an example of
the IdMMClient’s interaction with an ApacheDS LDAP directory [11].

The IdMM makes an abstraction of the protocols used by both the client and
cloud provider for their identity management systems via the use of the abstract
functions presented in the paper [115]. Such functions leave the organizational
and implementation aspects of the identity management systems directly into the
hands of the end parties. To describe these functions, we must first consider
the interaction between a client and a cloud provider with respect to identity
management, authentication, and authorization. We consider three distinct cases of

94 K. Bósa et al.

client-to-cloud interaction: the direct case, the obfuscated case, and the protocol-
based case.

3.2.1 Direct Client-to-Cloud Interaction

As showed by the authors of the papers [7, 34, 50], one of the greatest issues
surrounding identity management for cloud providers is the need of the cloud
provider to control the customer experience. Many providers make use of their own
custom-designed identity systems to which a client must subscribe. This means that
the client has no choice but to use the cloud provider identity system. While this
may be an inconvenience from a privacy point of view, the real problem lies in
managing the client’s information across multiple providers. A simple change, such
as changing a user’s address, entails changing the value on every single provider the
client uses. Any change made on the client side must also be made on the cloud via
the synchronization of attributes. Concurrently, any changes made by the provider
(such as the addition, replacement, or removal of an attribute) must be reflected in
the client’s directory system.

3.2.2 Obfuscated Client-to-Cloud Interaction

While the direct client-to-cloud interaction allows for an efficient use of cloud
services, it does suffer from a lack of privacy. Since all information about a client
is stored on the provider’s infrastructure, there is an increased risk that through data
leakage or unauthorized access, that information could fall into the wrong hands.
We mitigate this threat by introducing the concept of obfuscated identities.2

We consider an identity to be real if information contained corresponds to the
identity’s owner and is visible to any external entity. An obfuscated identity has its
information obfuscated. Depending on the method of obfuscation, the information
is either undecipherable or can only be deciphered by the owner of the identity.
We also consider a third kind of identity, a partially obfuscated identity. Such an
identity contains a mixture of real and obfuscated data. An example for the use of
real identities can be found in the usage of online stores where the information must
be accurate in order to process the payment and shipping. By contrast, one could use
obfuscated identities for a free online storage service. If, for example, the storage
service requires an age restriction, then one could use a partially obfuscated identity
where only the date of birth is real.

The usage of obfuscated and partially obfuscated identities is dependent on the
cloud service. As mentioned, some services do require real identities. Even if the
service can be used with obfuscated identities, we leave the matter in the hands of
the client. The client can choose whether or not to use obfuscation in such cases.

2For the purpose of this paper, we consider the definition of an identity as explained in paper [112].

A Formal Model of Client-Cloud Interaction 95

For partially obfuscated identities, we also allow the client to choose what real data
attributes are sent to a service.

3.2.3 Protocol-Based Client-to-Cloud Interaction

In recent years, there has been a drive to improve interoperability between cloud
providers mostly to prevent vendor lock-in. From an identity management perspec-
tive, the result has been the adoption of some open-based protocols to facilitate
both cloud interoperability as well as identity access management. Protocols such
as OAuth or OpenID represent an important tool for a client-centric identity
management system. They allow the provider to focus on the requirements of the
service while allowing access via the standard implementation of these protocols.
From the client’s perspective, such protocols allow for an easier integration across
multiple cloud providers. It must be noted however that such protocols do suffer
from a variety of security and privacy issues, as described in [50, 88].

3.3 Cloud Content Adaptivity

This subsection is giving an overview of the problem of adaptivity to different
services, devices, preferences, and environments. By adaptivity we understand that
all the services provided by the cloud to the client should be adapted on the fly to
the different contexts mentioned above.

The previously specified problem (initially presented in the paper [43]) is
described in Fig. 3. As an example, we use a database manager application, which
is deployed on the cloud. The user should be able to use the application (we can

Fig. 3 Problem description

96 K. Bósa et al.

think of an application as of a list of services available in the cloud for that user)
from any device he or she logs in without having to install any other application.
How can we make the cloud services available on all devices? We need a general
application that will adapt to different end devices on the fly. The implementation of
a Web application (WA) comes as a solution to the client-cloud interaction, because
it transfers data among different software components, which execute on different
devices, using only the browser [85]. However, WAs do not have a precise definition
or a precise model to follow, because they are related to various standards and
implementation frameworks. To tackle this problem, we propose the conception of
a formal model prior to code development that would include a rigorous analysis.
Using formal modeling and verification, we want to guarantee reliability properties
in order to ensure that, e.g., the client will receive the same (or as similar as possible)
output independently of the device he or she is using. We show how requirements
can be captured with ASM ground models and how the refinement method can
be applied in order to link the ground models to pseudo-code. Together with the
refinement method, the ASM ground models are generating a documentation which
can be used for inspection, reuse, and maintenance.

We decided to use ASMs, instead of other modeling methods (e.g., Unified
Modeling Language (UML), finite-state machine (FSM)), for realizing the design
of the client-cloud interaction system, because with them, we can prove that the
system’s development is correct and reliable (we can check if the WA under
development behaves as expected). ASM method [25]:

• offers the possibility to design and analyze both procedural single-agent and
asynchronous multiple-agent distributed systems (as the cloud framework we
deal with). In ASMs, an action can be replaced in a refinement step by multiple
parallel actions [22], which means that by going from the current state to the
next state, the set of rules are executed simultaneously [23]. Because of these
attributes, the ASM method was chosen over the FSM.

• creates a high-level modeling at the level of abstraction (allowing to describe
complex systems, which can be easily understood by all the stakeholders)
and links the descriptions in a chain of coherent system models (that can
possibly bring to the implementation) using stepwise refinement. The former
characteristic improves upon the loose character of UML description, and the
second one also fills in a breach in UML [25].

• supports rigorous model validation and verification.

3.4 Cloudification Case Studies

In order to show and prove the feasibility and viability of our approach for control-
ling client-cloud interaction and managing access control, we have accomplished
two cloudification case studies.

A Formal Model of Client-Cloud Interaction 97

In the first case study, we took a stand-alone application called visual SQL [45,
66, 111], whose source code was available for us. Visual SQL is a software tool
which provides a graphical database description language to facilitate intelligent
conceptual diagramming of database queries. We adapted this software to an
existing cloud architecture and made it interoperable with the prototype of our
client-cloud interaction middleware software such that it provides access control
for this cloudified application. This work shows how software applications which
were originally designed for single usage on a local desktop use can be adapted to
a cloud infrastructure and equipped with a sophisticated access control mechanism
for multiple users.

The second case study was related to Office 365 which is a subscription-based
cloud service provided by Microsoft and which integrates other Microsoft online
services together such as Exchange Online, SharePoint Online, Lync Online, Web
Apps, and Office Professional Plus. We combined Office 365 with our client-
cloud interaction middleware such that its functionality was extended with an
access control mechanism, which is more sophisticated than its own. Namely,
Office 365 provides only a limited authority for customers/admin to control their
users.

This advanced access control which is achieved by the application of the client-
cloud interaction middleware cannot be bypassed by the end users, since they have
direct access only to the middleware, but not to the purchased Office 365 service
package of any customer (company) of client-cloud interaction middleware. For
instance, customers of client-cloud interaction middleware can restrict which end
user can make a copy from e-mails received in his or her Office 365 mailbox, who
can attach document stored in Office 365 to e-mails, or who can send e-mails to
external e-mail addresses using Office 365 mail service. We should emphasize that
this work was carried out in the way that we discovered and used only the publicly
available programming interfaces and tools for Office 365 and we did not get any
extra support from Microsoft.

An implemented prototype in the cases of both case studies, respectively, was
deployed for testing purposes on Windows virtual machines under OpenStack cloud
infrastructure software on an IBM CloudBurst server machine as well. It is beyond
the scope of this chapter to describe these case studies and their formal specification,
but we refer to [103], which discusses the first case study and its formal model in
details.

4 Preliminaries

In this section, we give a short summary on the applied formal approach as well as
ambient calculus and ambient ASM in order to facilitate the understanding of the
latter sections.

98 K. Bósa et al.

4.1 The Applied Formal Approach

For our research, we searched for a software engineering method by which both
the algorithms of the concurrent system components and the dynamic topology of
complex distributed and cloud systems can be formally described. As a first step,
we investigated the following two formal approaches:

• One of the most outstanding methods for formal modeling of distributed
components of (mobile) network applications is a calculus of mobile agents
called ambient calculus [38, 61]. This concept is simple, succinct, and sufficient
enough to efficiently describe locality as well as phenomena related to mobility.

Additionally, besides mobility, ambient calculus inherently supports the
reasoning of high-level abstraction of many security considerations which can
be defined by formulating the ability or inability of various entities to cross
certain physical or virtual barriers [37] (e.g., certain combinations of some
ambient expressions can be interpreted as firewalls that filter traffic according
to some security policies, others can be regarded as abstractions of certain access
controls or of ciphertext decodings, etc.). But one of its main drawbacks is that
the ambient calculus is not capable to treat the algorithmic specification of the
executable agents which appear in its ambient constructs.

• For this latter purpose, an obvious candidate would be the mathematically well-
funded and efficient software engineering method called abstract state machines
(ASMs) [25, 64]. ASMs have already demonstrated their usefulness and their
viability in many fields, for example, in the formal definition of sequential [65]
and parallel algorithms [19, 20], giving comprehensive high-level definition and
analysis (verification and validation) of Java programming language and of the
Java virtual machine [108], and modeling Web services [9]. However, there is a
limitation in ASMs to describe dynamically changing hierarchical structures of
components in distributed systems and to express some system properties which
depends on their distribution in space (e.g., local deadlock).

In [26], the ambient concept (notion of “nestable” environments where computa-
tion can happen) is introduced into the ASM method. In that article, it is also shown
how to encode the mobile ambients of ambient calculus in terms of ambient ASM
rules. Since one of the main goals of [26] is to reveal the inherent opportunities
of the new ambient concept introduced into ASMs, the presented definitions for
moving ambients are unfortunately incomplete.

In [31], we extended and completed the ASM rules mentioned above, such that
they fully capture the ambient calculus. By this, a new method is created in terms of
ASM rules, in which one is able to describe formal models of distributed systems
including mobile components in two different abstraction layers (see Fig. 4). This
means that while the algorithms and local interactions of executable agents are given
in terms of ASMs, the long-term interactions and movements of system components
via various administrative domains are specified with the terms of ambient calculus

A Formal Model of Client-Cloud Interaction 99

Fig. 4 Abstraction layers in
the chosen formal approach

Spatial Hierarchy, Mobility,

Ambient
Calculus

Comm. Topology

Ambient ASM

ASM

Agents
Executable

in our approach. This novel method makes possible in a given model that:

• the agents may not only be arbitrarily placed and linked initially, but the
composed structure is rearranged from time to time by the programs of agents
residing in it;

• the behavior of agents is influenced by their current spatial locations and
communication topology;

• one can express visibility and access conditions on ASM agents (or on some
administrative boundaries) explicitly.

Since the definition of ambient ASM is based upon the semantics of ASM without
any changes, each specification given this way can be translated into a traditional
ASM specification.

4.2 Ambient Calculus

The ambient calculus [38] was inspired by the �-calculus [82], but it focuses
primarily on the concept of locality and process mobility across well-defined
boundaries instead of channel mobility as �-calculus. The concept of ambient stands
in the center of the calculus; see a summary of the definition of ambient calculus in
Table 1.

The ambient calculus includes only the mobility and communication primitives
depicted in Table 1(A).3 The main syntactic categories are processes (including both
ambients and agents) and actions (including both capabilities and communication
primitives). A reduction relation P ��! Q describes the evolution of a term P

into a new term Q (and P ��!�
Q denotes a reflexive and transitive reduction

relation from P to Q).

3Name restriction creates a new (unique) name n within a scope P . One must be careful with the
term !(� n)P , because it provides a fresh value for each replica, so .� n/ŠP ¤ Š.� n/P .

100 K. Bósa et al.

Table 1 Definition of ambient calculus

(A) The mobility and communication primitives

P;Q;R::= Processes

P j Q Parallel composition

nŒ P � Ambient

.� n/P Restriction of name n within P 3

0 Inactivity (skip process)

ŠP Replication of P

M:P (Capability) action M then P

.x/:P Input action (the input value is

Bound to x in P)

hai Async output action

M1: : : : :Mk A path formation on actions

M ::= Capabilities

IN n Entry capability (to enter n)

OUT n Exit capability (to exit n)

OPEN n Open capability

(To dissolve n’s boundary)

(B) Reduction (operational semantics)

P � P 0 ;Q � Q0; P �! Q H) P 0 �! Q0

P �! Q H) P j R �! Q j R

P �! Q H) nŒ P � �! nŒ Q �

P �! Q H) .� n/P �! .� n/Q

nŒIN m:P jQ� jmŒR� �! mŒnŒP jQ�jR�

mŒ nŒ OUT m:p jQ�jR� �! nŒP jQ�jmŒR�

OPEN n:P j nŒ Q � �! P j Q

.x/:P j hai �! P.x=a/

(C) Structural congruence (operational semantics)
P � P P � Q H) Q � P

P � Q;Q � R H) P � R P � Q H) P j R � Q j R
P � Q H) nŒ P � � nŒ Q � P � Q H)ŠP �ŠQ
P � Q H) .� n/P � .� n/Q P � Q H) M:P � M:Q

P � Q H) .x/:P � .x/:Q P j Q � Q j P
.P j Q/ j R � P j .Q j R/ ŠP � P j ŠP
.� n/.� m/P � .� m/.� n/P .� n/.P j Q/ � P j .� n/Q if n … f n.P /

.� n/.mŒ P �/ � mŒ .� n/P � if n ¤ m P j 0 � P

Š0 � 0 .� n/0 � 0

An ambient is defined as a bounded place where computation happens. An
ambient is written as n[P], where n is its name, which can be used to control access
(entry, exit, communication, etc.), and a processP is running inside its body (P may
be running even if n is moving). Ambient names may not be unique. Ambients can
be embedded into each other such that they can form a hierarchical tree structure.
An ambient body is interpreted as the parallel composition of its elements (its local
ambients and its local agents) and can be written as follows:

nŒ P1 j : : : j Pk j m1Œ: : :� j : : : j mlŒ: : :� � where Pi ¤ mi Œ: : :�

An ambient can be moved. When an ambient moves, everything inside it moves
with it (the boundary around an ambient determines what should move together
with it). An action defined in the calculus can precede a process P . P cannot

A Formal Model of Client-Cloud Interaction 101

start to execute until the preceding actions are performed. Those actions that are
able to control the movements of ambients in the hierarchy or to dissolve ambient
boundaries are restricted by capabilities. By using capabilities, an ambient can allow
some processes to perform certain operations without publishing its true name to
them (see the entry, exit, and open in Table 1). In case of the modeling of a real-life
system, communication of (ambient) names should be rather rare, since knowing
the name of an ambient gives a lot of control over it. Instead, it should be common
to exchange restricted capabilities to control interactions between ambients (from a
capability, the ambient name cannot be retrieved).

4.3 Ambient ASM

The core idea of ambient ASM [26] is to introduce an implicit parameter curamb
to each location expressing a context for evaluation of terms and execution of
machines. Analogously to conventional implicit object-oriented parametrization
(e.g., this:f .x/ D f .x/), the dot term s:t is introduced, where s is a term standing
for an ambient expression, t is a term of the form f .t1; : : : ; tn/ and f is a location
symbol.

To each location, an additional argument is added for the ambient curamb in
which the location is evaluated. Moreover, the basic ASM classification of functions
and locations is extended with ambient-independent functions and locations (i.e.,
static or dynamic functions and location) whose values for a given argument do not
depend on any ambient expression.

An ASM is an ambient ASM if it can be obtained from a basic ASM [25] by
allowing for every given machine P also a machine of the following form:

amb exp in P

where execution of P is performed in the ambient exp (exp is bound to curamb).
Additionally, the notation nŒ P � introduced by Cardelli and Gordon [38] is also
defined in ambient ASMs as follows:

nŒ P � D amb n in P

The semantics of ambient ASMs is defined by transformation into basic ASMs
in [26].

4.3.1 Moving Ambients

In [26], an ASM machine called MOBILEAGENTSMANAGER is described as well,
which gives a natural formulation for the reduction of the three basic capabilities
(ENTRY, EXIT, and OPEN) of ambient calculus in terms of ambient ASM rules. For

102 K. Bósa et al.

this machine, an ambient tree hierarchy is always specified initially in a dynamic-
derived function called curAmbProc. The machine MOBILEAGENTSMANAGER

transforms the current value of curAmbProc according to the capability actions
given in curAmbProc.

In [31], we presented an extended version of the ASM machine MOBILEAGENTS-
MANAGER, which fully captures the calculus of mobile agents4 and which is also
able to interpret (in the corresponding ambient contexts) the agents’ algorithms
given in terms of ASM syntax in curAmbProc. This updated ASM machine is
called EXTENDEDMOBILEAMBIENTMANAGER.

One of consequences of this is that one is able to describe formal models of
distributed systems including mobile components in the mentioned two abstraction
layers and apply some experimental validation on these models. This means that:

• a particular system model can be defined as part of the value of curAmbProc in
terms of ambient calculus terms (like what we did in Sect. 5.2) and in terms of
ASMs;

• either models of some external instruments or some (user) actions (see in
Sect. 5.1) can additionally be added to curAmbProc in parallel composition with
the given model (they will act the role of the environment of the system in a
particular case).

The value of curAmbProc will serve as input for the ASM machine EXTENDEDMO-
BILEAMBIENTMANAGER, which will transform the given value of curAmbProc (by
performing the possible reduction steps and by parsing the specified ASMs) in order
to check how the defined model interacts with its environment and how it behaves
in a particular situation.

4.4 Definitions

As Cardelli and Gordon showed in [38], the ambient calculus with the three basic
capabilities (ENTRY, EXIT, and OPEN) is powerful enough to be Turing complete.
But for facilitating the specification of such a compound formal model as a model
of a cloud infrastructure, we defined some new nonbasic capability actions encoded
in terms of the three basic capabilities.

All the new ambient calculus capabilities defined in this section either directly
appear in the presented cloud model in Sect. 5.2 or serve as a basis and were utilized
for the definitions of one or more subsequent capabilities presented in this section
as well. Table 2 summarizes the definitions of these nonbasic capabilities.

4Besides the three basic capabilities, the reductions of name restriction, input action, and
asynchronous output action as well as the structural congruence for replication are also defined
in terms of ambient ASM rules.

A Formal Model of Client-Cloud Interaction 103

T
ab

le
2

A
su

m
m

ar
y

of
th

e
de

fin
iti

on
s

of
so

m
e

no
nb

as
ic

ca
pa

bi
li

ti
es

N
am

es
N

ew
re

du
ct

io
n

re
la

ti
on

s
(b

as
ed

on
th

e
de

fin
it

io
ns

)
D

efi
ni

ti
on

s
of

th
e

ne
w

ca
pa

bi
li

ti
es

1.
R

en
am

in
g

n
[
n

B
E
m

.P
jQ

]
��!

�

m
[
P

jQ
]

n
B

E
m

.P
�

(�
s)

(s
[

O
U

T
n

jm
[

O
P

E
N
n

.O
U

T
s.
P

]
]

jIN
s.

IN
m

)

2.
Se

ei
ng

n
[

]
jS

E
E
n

.P
��!

�

n
[

]
jP

S
E

E
n

.P
�

(�
r
,s

)(
r
[

IN
n

.O
U

T
n

.r
B

E
s.
P

]
jO

P
E

N
s

)

3.
W

ra
pp

in
g

n
[
m

W
R

A
P
n

.P
]

��!
�

m
[
n

[
P

]
]

m
W

R
A

P
n

.P
�

(�
s,
r
)(
s[

O
U

T
n

.S
E

E
n

.s
B

E
m

.r
[

IN
n

]
]

jIN
s.

O
P

E
N

r
.P

)

4.
A

ll
ow

in
g

co
de

A
L

L
O

W
K

ey
.P

jK
ey

[
Q

]
��!

�

P
jQ

A
L

L
O

W
K

ey
.P

�
O

P
E

N
K

ey
.P

5.
D

ra
w

in
g

in
(a

n
A

m
bi

en
t)

m
[
Q

jA
L

L
O

W
K

ey
]

jn
[
n

D
R

A
W

IN
ke

y
m

.P
]

n
D

R
A

W
IN

ke
y
m

.P
�

K
ey

[
O

U
T
n

.I
N
m

.I
N
n

]
jA

L
L

O
W

m
.P

��!
�

n
[
Q

jP
]

6.
D

ra
w

in
g

in
T

he
n

R
el

ea
se

a
L

oc
k

m
[
Q

jA
L

L
O

W
K

ey
]

jn
[

D
R

A
W

IN
ke

y
m

T
H

E
N

-
R

E
L

E
A

S
E

lo
ck

.P
]��

!
�

lo
ck

[
n

[
Q

jP
]

]
n

D
R

A
W

IN
ke

y
m

T
H

E
N

R
E

L
E

A
S

E
lo

ck
.P

�
K

ey
[

O
U

T
n

.I
N

m
.I

N
n

]
jS

E
E
m

.lo
ck

W
R

A
P
n

.A
L

L
O

W
m

.P

7.
C

on
cu

rr
en

t
Se

rv
er

Pr
oc

es
s

m
Œ
Q

jA
L

L
O

W
K

ey
�

jS
E

R
V

E
R
n ke

y
m

.P
��!

�

S
E

R
V

E
R
n ke

y
m

.P
jn

un
iq

k
[
Q

jP
]

S
E

R
V

E
R
n ke

y
m

.P
�

(�
ne

xt
)(

ne
xt

[
]

j!(
�
n

)(
O

P
E

N
ne

xt
.n

[n
D

R
A

W
IN

ke
y
m

T
H

E
N

R
E

L
E

A
S

E
ne

xt
.P

])
)

104 K. Bósa et al.

4.4.1 Applied Notations

In the rest of this chapter, the term P ��!�
Q denotes multiple reductions. In

addition,P
asm��!�

Q denotes one or more steps of some ASM agents. We also apply
the following abbreviations:

M1: : : : Mn � M1: : : : :Mn:0 where 0 = inactivity

nŒ � � nŒ0� where 0 = inactivity

.� n1; : : : ; nm/P � .� n1/ : : : .� nm/P

4.4.2 Nonbasic Capabilities

Below we give an informal description of each nonbasic capability in Table 2. It is
beyond the scope of the chapter to present detailed explanations and reductions of
their ambient calculus-based definitions, but we refer to our former works [30] and
[28] for more details.

1. Renaming This capability is applied to rename an ambient comprising this
capability. Such a capability was already given in [38], but our definition differs
from Cardelli’s definition. In the original definition, the ambient m was not
enclosed into another, name-restricted ambient (it is called s in our definition),
so after it has left ambient n, n may enter into another ambient calledm (if more
than one m exist as sibling of n).

2. Seeing This operation was defined in [38], and it is used to detect the presence
of a given ambient.

3. Wrapping Its aim is to pack an ambient comprising this capability into another
ambient.

4. Allowing Code This capability is just a basic OPEN capability action. It is
applied if an ambient allows/accepts an ambient construct (which may be a bunch
of foreign codes) contained by the body of one of its sub-ambients (which may
be sent from a foreign location). The name of the sub-ambient can be applied
for identifying its content, since its name may be known only by some trusted
parties.

5. Draw in (an Ambient) The aim of this capability is to draw in a particular
ambient (identified by its name) into another ambient (which contains this
capability) and then to dissolve this captured ambient in order to access its
content. For achieving this, a mechanism (contained by the ambient key) is
applied which can be regarded as an abstraction of a kind of protocol identified
by key. The ambient key enters into one of the available target ambients which
should accept its content in order to be led into the initiator ambient.

6. Draw in then Release a Lock This capability is very similar to the previous one,
but after m has been captured by n (and before m is dissolved), n is wrapped by

A Formal Model of Client-Cloud Interaction 105

another ambient. The new outer ambient is usually employed as release for a
lock.5

7. Concurrent Server Process This ambient construct can be regarded as an
abstraction of a multi-threaded server process. It is able to capture and process
several ambients having the same name in parallel. In the definition, n is a
replicated ambient whose each replica is going to capture another ambient called
m. Since there is a name restriction quantifier in the scope of the replication
sign, which bounds the name n, a new, fresh, and unique name (denoted by
n

uniq
k) is generated for each replica of n. One of the consequences of this is that

nobody knows from outside the true name of a replica of the ambient n, so each
replica of n is inaccessible from outside for anybody (even for another replica of
n too).

5 The Specification of the Cloud Service Architecture Based
on Ambient ASM

As was explained at the end of Sect. 4.3.1, the model of our cloud architecture
is given as part of the value of the dynamic-derived function called curAmbProc,
which serves as input for the ASM machine EXTENDEDMOBILEAMBIENTMAN-
AGER [31].

curAmbProc := root[Cloud j Client1 j. . . j Clientn]6

In this section, we focus on the system configuration scenario, where the model of
our new software solutions is integrated with a cloud model (see Fig. 2a); however,
due to the applied ambient concept, the relocation of the new infrastructure services
into a middleware component within the model (see Fig. 2b) cannot be a problem.

In the formal model discussed in this section, we assume that there are some
standardized public ambient names, which are known by all contributors. We
distinguish the following kinds of public names: addresses (e.g., cloud, client1, . . . ,
clientn), message types (e.g., reg.istration/, request, subs.cription/, returnValue,
etc.), and parts of some common protocols (e.g., lock, msg, intf , access, out, o1,
. . . , os , op). All other ambient names are nonpublic in the model which follows.

In this section, we leave the end devices on the client-side abstract, but we define
some user actions with which the cloud service architecture is able to interact.

5In ambient calculus, the capability OPEN n.P is usually used to encode locks [38]. Such a lock
can be released with an ambient like n[Q] whose name corresponds with the target ambient of
the OPEN capability.
6The ambient called root is a special ambient which is required for the ASM definition of ambient
calculus; see [26] and [31].

106 K. Bósa et al.

5.1 User Actions

In the model, user actions are encoded as messages. A user can send the following
kinds of messages to the cloud:

MsgFrame � msg[IN cloud.ALLOW intf .content]
where content can be

RegMsg � reg[ALLOW CID.hUIDxi]

SubsMsg � subs[ALLOW CID.hUIDx; SIDi ; pymti]

RequestMsg � request[IN UIDx j
oi [ALLOW op.hclientk; argsi i] j
:
:
:

oj [ALLOW op.hclientk; argsj i]]

AddClMsg � addCl[IN UIDx j ALLOW CID.hclientk; pathl ;UID.on clientl /i]

AddChMsg � addCh[ALLOW CID.hUIDx; cnamei]

SubsToChMsg � subsToCh[ALLOW CID.hUIDx; cname; uname; clientk; pymti]

ShareInfoMsg � share[IN CHIDi j ALLOW CID.hsndr; rcvr; infoi]

ShareSvcMsg � share[IN CHIDi j ALLOW CID.hsndr; rcvr; info; oi ; argsP; argsFi]

In the definitions above, the ambient msg is the frame of a message; the term
IN cloud denotes the address to where the message is sent; the term ALLOW intf
allows a (server) mechanism on the target side which uses the public protocol intf
to capture the message; and the content can be various kinds of message types. The
term ALLOW CID denotes that the messages are sent to a service of a particular
cloud which identifies itself with the nonpublic protocol/credential CID (stands for
cloud identifier).

The first three kinds of messages were introduced in the original model. In a
RegistrationMsg, the user x provides his or her identifier UIDx that he or she is
going to use in the cloud. By a SubscriptionMsg, a user subscribes to a cloud service
identified by SIDi ; the information represented by pymt proves that the given user
has paid for the service properly.

Again, cloud services provide their functionalities for their environment (users or
other services) via actions called service operations in our model. In a RequestMsg,
a user who has subscribed to some services before can request the cloud to perform
some service operations belonging to some of these services. oi and oj are the
unique names of these service operations and denote service operation requests;
clientk is the identifier of a target location (usually a client device) to where the
output of a given operation should be sent by the cloud; and argsi and argsj are the
arguments of the corresponding requested service operations. Furthermore, the term
IN UIDx represents the address of the target user area within the cloud, and ALLOW

op denotes that the request will be processed by a service plot, which expects service
operation requests (and which interacts with the request via the public protocol op).

A Formal Model of Client-Cloud Interaction 107

The rest of the message types is used by the CTCI functions; see Sect. 5.3. With
AddClMsg, a user can register a new possible target (client) device or location for
the outcomes of the requests initiated by him or her. Such a message should contain
the chosen identifier clientk of the new device, the address pathl of the device, and
the user identifier UID.on clientl / used on the given target device.

By AddChMsg, users can open new channels; by SubsToChMsg, users can
subscribe to channels; and by ShareInfoMsg and ShareSvcMsg, users can share
information as well as service operations with some other users registered in the
same channel. For the detailed description of the argument lists of these last four
messages, see Sects. 5.3.1–5.3.3.

5.2 The Formal Model of the Cloud Architecture

The basic structure of the defined cloud model, which is based on the simplified
infrastructure as a service (IaaS) specification given in [31], is the following:

cloud � (� fw, q, rescr1,. . . rescrm)cloud[
interface j
fw [rescr1[service1] j. . . j rescrl [service1] j rescrlC1[service2] j. . . j rescrm[servicen] j
q[!OPEN msg j BasicCloudfunctions j CTCI functions j

UIDx[userIntf] j. . . j UIDy[userIntf] j
UIDowner

v [ownerIntf] j. . . j UIDowner
w [ownerIntf]

]]]
where

interface � SERVERnintf msg.IN fw.IN q.n BE msg

In the cloud definition above, the names of the ambients fw, q, and
rescr1,. . . rescrm are bound by name restriction. The consequence of this is that
the names of these ambients are known only within the cloud service system, and
therefore the contents of their body are completely hidden and not accessible at all
from outside of the cloud. So each of them can be regarded as an abstraction of a
firewall protection.

The ambient expression represented by interface “pulls in” into the area protected
by the ambients fw and q any ambient construct which is encompassed by the
message frame msg. The purpose of the restricted ambients fw and q is to prevent
any malicious content which may cut loose in the body of q after a message frame
(msg) has been broken (by OPEN msg) to leave the cloud together with some
sensitive information. For more details, we refer to [30].

The restricted ambients resrc1,. . . , resrcm represent computational resources of
the cloud. Within each cloud resource, some service instances can be deployed. A
service may have several deployed instances in a cloud (see instances of service1 in
resrc1,. . . , resrcl above).

Every user area is represented by an ambient whose name corresponds to the cor-
responding user identifier UIDi . Furthermore, the user areas extended with service

108 K. Bósa et al.

owner role are denoted by UIDowner
i . The terms denoted by BasicCloudfunctions are

responsible for cloud user registration and service subscription. Finally, the terms
denoted by CTCIfunctions encode the client-to-client interaction.

It is beyond the scope of this chapter to describe all parts of this model in detail
(e.g., the structure of service instances servicei , the functions of a service owner
area ownerIntf , and the ASM agents in BasicCloudfunctions). For the specification
of these components, we refer to [30].

5.2.1 User Access Layers

A user access layer (or user area) may contain the following mechanisms: accepting
user requests (!ALLOW request), accepting new plots (!ALLOW newPlot), and
accepting outputs of service operations (!ALLOW returnValue) and some service
plots.

userIntf �
!ALLOW request j !ALLOW newPlot j clientRegServer j !ALLOW returnValue j
PLOTSIDi j. . . j PLOTSIDj j
sortingOutput j client1[postingclient1] j. . . j clientk[postingclientk]

where
sortingOutput � !(o, client, a).output[IN client.ALLOW CID j ho; client; ai]]

clientRegServer � SERVERnCID addCl.(client, path, UID).(n BE client j postingclient)

postingclienti � SERVERnCID output.(o, client, a).
OUT clienti .forwardToclienti .returnValue[IN UID.on clienti / j ho; client; ai]]

forwardToclienti � n BE outgoingMsg.OUT UIDx .leavingCloud.pathi
leavingCloud � OUT q.OUT fw.OUT cloud.outgoingMsg BE msg

clientRegServer is applied to process every AddClMsg sent by the corresponding
user. It creates new communication endpoint for target (client) devices. Each
endpoint is encoded by an ambient whose name clienti corresponds with the given
identifier provided in a message AddClMsg. By these endpoints, outputs of service
operations can immediately be directed to registered (client) devices after they
are available. Of course, if no target device or a non-registered one is given in a
RequestMsg, the outcome will be stored in the area of the user.

Every service operation output, which is always delivered within the body of
an ambient called returnValue, consists of three parts: the name of the performed
service operation, the identifier of a target location to where the output should be
sent back, and the outcome of the performed service operation itself.

sortingOutput distributes every service operation output among the communi-
cation endpoints in an ambient called output. The mechanism postingclienti , which
resides in each communication endpoint, is responsible to wrap each output of
service operations which reaches the corresponding endpoint again into an ambient
returnValue and to forward it to the specified user UID.on clienti / on the corresponding
device clienti . It is beyond the scope of this chapter to present a reduction on how a
simple request is processed in our model, but we refer to [30] for more details.

A Formal Model of Client-Cloud Interaction 109

5.2.2 Service Plots

According to [96], a plot is a high-level specification of an action scheme, i.e.,
it captures possible combination of actions (e.g., service operations) in order to
perform a certain task. As it has been mentioned in Sect. 3.1, in our model, service
plots are provided by the service owners who have disposal of access rights of the
services and they are placed into the user areas during the service subscriptions.
The purpose of their usage is to determine the permitted combination of service
operations which can be used by the user with his/her valid subscriptions.

For an algebraic formalization of plots, Kleene algebras with tests (KATs) [70]
have been applied in [94, 95]. Then a plot is an algebraic expression that is composed
out of elements of a carrier-set K containing two elementary operations 0, 1 and
elementary processes (or propositional atoms), of binary operators � and +, and of
unary operators � and N, the last one being only applicable to propositions.

For our purposes, we employ a simplified definition of service plots where we
leave the propositional ground of KATs. This means that in a service plot, the
elementary processes (e.g., oi ; oj 2 K) correspond to slots for operation requests
such that each slot can accept and permit a request only for a particular service
operation, � denotes a sequence (e.g., oi � oj or oioj), + denotes a choice (e.g.,
oi C oj), and � denotes iteration (e.g., o�

i). In addition, we can simulate parallelism
by equating oi j oj with oioj C oj oi ; so in fact, we are interested in interleaved,
concurrent service operations when we talk of parallel composition of plots.

It is beyond the scope of the chapter to discuss service plots in detail; for more
information, see [30].

5.3 Client-to-Client Interaction Feature

Again, the client-to-client interaction in our model is based on the constructs called
channels. These are represented by ambients with unique names denoted by CHIDi

which contain some mechanisms whose purpose is to share some information and
service operations among some subscribed users; see below:

CTCI functions �
CHID1[channelIntf] j. . . j CHIDl [channelIntf] j
SERVERnCID addCh.(UID, cname).CHMGR(n, UIDx , cname) j
SERVERnCID subsToCh.(UID,cname,uname,client,pymt).

CHSUBSMGR(n, UID, cname, uname, client, pymt)
where
channelIntf � SERVERnCID share.

((sndr, rcvr, info).hsndr;rcvr;info; undef; undef; undefi j
(sndr, rcvr, info, o, argsP, argsF).SHARINGMGR(n, sndr, rcvr, info, o, argsP, argsF))

110 K. Bósa et al.

The specification above contains three ASM agents called CHMGR, CHMGR,
and SHARINGMGR, whose complete ASM definitions are given in [29], but it is
beyond the scope of this chapter to describe them here.

Every cloud user can create and own some channels by sending the message
AddChMsg7 to the cloud, where an instance of the ASM agent CHMGR, which
is equipped with a server mechanism, processes such a request and creates a new
ambient with unique names for the requested channel; see Sect. 5.3.1.

If a user would like to subscribe to a channel, he or she should send the message
SubsToChMsg to the cloud. The server construct belonging to the ASM agent
CHSUBSMGR is responsible for processing these messages; see Sect. 5.3.2. In the
subscription process, the owner of the channel can decide about the rights which
can be assigned to a subscribed user. According to the presented high-level model,
the employed access rights are encoded by the following static nullary functions:
listening is a default basic right, because everybody who joins a channel can receive
shared contents; sending authorizes a user to send something to only one user at a
time; and broadcasting permits a user to distribute contents to all members of the
channel at once.

Both ShareInfoMsg and ShareSvcMsg are processed by the same server which
belongs to the ASM agent SHARINGMGR and which is located in the body of
each ambient CHIDi ; see Sect. 5.3.3. In the case of ShareInfoMsg, the server first
supplements the argument list of the message with three additional undef values,
such that it will have the same number of arguments as ShareSvcMsg has. Then an
instance of the ASM agent SHARINGMGR can process the ShareInfoMsg similarly
to ShareSvcMsg (the first three arguments are the same for both messages).

5.3.1 Establishing a New Channel

CHMGR is a parameterized ASM agent, which expects UID of the cloud user who
is going to create a new channel and cname which is the name of this channel as
arguments. The additional argument n is the unique name of an ambient which was
provided by the surrounding server construct and in which the current AddChMsg is
processed by an instance of this agent (such an argument is also applied in the case
of the other ASM agents below).

First, the agent checks whether the given UID has already been registered on the
cloud and whether the given name cname has not been used as a name of an existing
channel yet. If it is the case, the agent generates a new and unique identifier denoted
by CHID for the new channel; and it inserts into an abstract database a new entry
with all the details of the new channel which are the channel identifier, the channel
name, and the identifier of the owner.

Then it creates an ambient called CHID with the terms denoted by channelIntf
in its body which encode the functions of the new channel. By the abstract tree

7User actions AddChMsg, SubsToChMsg, ShareInfoMsg, and ShareSvcMsg are defined in Sect. 5.

A Formal Model of Client-Cloud Interaction 111

manipulation operation called NEWAMBIENTCONSTRUCT8 introduced in [31], this
generated ambient construct is placed into the ambient tree hierarchy as sibling of
the agent.

Although a channel is always created as a sibling of the current instance of
CHMGR, it contains the capability action OUT n; so as a first step, it leaves the
ambient n which was provided by the surrounding server construct and in which the
message was processed. After that, it is prepared to serve as a channel for client-to-
client interaction (it is supposed that the name cname of every channel is somehow
announced among the potential users).

5.3.2 Subscribing to a Channel

CHSUBSMGR is a parameterized ASM agent, which expects the following as
arguments: UID of the user who is going to subscribe to the channel, cname which
is the name of the channel, uname which is the name that the user is going to use
within the channel, client which is the identifier of a registered client device to where
the shared content will be forwarded, and pymt which is some payment details if it
is required. A user can register to a channel with different names and various client
devices in order to connect these devices via the cloud.

First, the agent checks whether the given UID and cname have already been
registered on the cloud and whether the given uname has not been used as a name
of a member of the channel yet. If it is the case, the agent informs the owner of the
channel about the new subscription, who responses with a set of access rights to the
channel that he or she composed based on the information given in the subscription.

If the subscription has been accepted by the owner and besides listening, some
other rights are granted to the new user, an ambient construct is created and
sent as a message returnValue to the user by NEWAMBIENTCONSTRUCT. This
message contains the capability IN CHID by which the new user can send messages
called ShareInfoMsg and ShareSvcMsg into the ambient CHID which represents the
corresponding channel (the owner of a channel also has to subscribe in order to
receive this information and to be able to distribute content via the channel).

5.3.3 Sharing Information via a Channel

Every server construct in which the agent SHARINGMGR is embedded is always
located in an ambient which represents a particular channel and whose name
corresponds to the identifier of the channel. In order to be able to perform its task,
it is required that each instance of SHARINGMGR knows by some static nullary
function called myChId the name of the ambient in which it is executed.

8This is the only way how an ASM agent can make changes in the ambient tree hierarchy contained
by dynamic-derived function curAmbProc [31].

112 K. Bósa et al.

SHARINGMGR is a parameterized ASM agent, which expects the following
arguments: sndr is the registered name of the sender, rcvr is either the registered
name of a receiver or an asterisk “*,” and info is either the content of ShareInfoMsg
or the description of a shared service operation in ShareSvcMsg. The last three
arguments are not used in the case of the message ShareInfoMsg, and the value
undef is assigned to each of them by the surrounding server construct. In the
message ShareSvcMsg, o denotes the unique identifier of the service operation that
sndr is going to share, argsP denotes the arguments of o that rcvr can freely modify
if he or she calls the operation, and argsF denotes that part of the argument list of
o, whose value is fixed by sndr.

The agent first generates a new and unique operation identifier for the service
operation o (if o is not equal to undef). This new identifier which is stored in
the nullary location function shOp will be announced to the channel member(s)
specified in rcvr. In the next step, the agent checks whether the sndr is a registered
member of the channel. Then if the given value of rcvr is equal to “*,” the agent
broadcasts the corresponding message(s) to all members of the channel. Otherwise,
if the value of rcvr corresponds to the name of a particular member of the channel,
the agent sends the corresponding message(s) only to him or her.

In the case of the processing of ShareInfoMsg, the agent sends to the member(s)
specified in rcvr the message sharedMcontent1 (for its definition, see Table 3), which
contains the sender sndr and the shared information info.

In the case of the processing of ShareSvcMsg, two ambient constructs are created
by NEWAMBIENTCONSTRUCT. The first one is the message sharedMcontent2 (for its
definition, see Table 3) and it is sent to the member(s) specified in rcvr. It contains
the sender sndr, the new operation identifier shOp, the list of public arguments
argsP, and the informal description of the shared operation denoted by info.

The second ambient construct is the plot PLOTshOp (for its definition, see Table 3)
enclosed by the ambient newPlot and equipped with some additional ambient
actions (see the underlined capabilities in the definition of sharedPlot in Table 3)
which move the entire construct into the user area of the channel member(s)
specified in rcvr, where the plot will be accepted by the term !ALLOW newPlot.

Table 3 Definitions of ambient constructs used by the ASM agent SHARINGMGR

sharedMcontenti � returnValue[OUT n.OUT myChId.IN UID.hcname; client; contenti i]

content1 � {“sender:” sndr, “content:” info}

content2 � {“sender:” sndr, “operation:” shOp, “arguments:” argsP, “description:” info}

sharedPlot � newPlot[OUT n.OUT myChId.IN UID j PLOTshOp]

PLOTshOp � SERVERsop shOp.triggero
triggero � (� tmp)

(client, argsP).(OUT UID.IN UIDsndr.s BE request j
o[ALLOW op.htmp; .argsP n argsF/C argsFi] j
tmp[ALLOW output j CID[(o, c, a).OUT UIDsndr .

IN UID.tmp BE returnValue.hshOp; client; ai]])

A Formal Model of Client-Cloud Interaction 113

The execution of the shared service operation shOp can be requested in a usual
RequestMsg as normal service operations. The PLOTshOp is a plot, which can accept
service operation requests for shOp several times. It is a special plot, because instead
of triggering the execution of shOp as in the case of a normal operation, a normal
plot does (see [30]); it converts the original request to another request for operation o
by applying the term triggero. This means that it substitutes the operation identifier
o for shOp, it completes its argument list with argsF, and it forwards the request for
o to the user area of the user sndr who actually has right to trigger the execution of
the operation o.

To the new request, the name-restricted ambient tmp is attached (see its definition
within the definition of triggero in Table 3), whose purpose is similar to the
communication endpoints of registered clients. Namely, it is placed into the user
area of sndr temporarily and it is responsible to forward the outcome of this
particular request from the user area of sndr to the user area of the user who initiated
the request. It is beyond the scope of this chapter to present a reduction on how a
particular request for a shared operation is processed in our model, but we refer
to [29] for more details.

6 The Specification of the Identity Management Machine

The identity management machine (IdMM), first presented in the paper [115], is
a privacy-enhanced client-centric identity meta-system based on the concept of
abstract state machines. The IdMM provides a “proxy” between a client and cloud-
based identity management solutions “translating” the protocols used by the client
to manage identities to a set of protocols used by cloud providers. The IdMM can
then authenticate a user to a given cloud service as well as manage any private
identity-related data stored on the cloud.

As mentioned in Sect. 3.2, the IdMM is composed of six agents. Figure 5
details the overall architecture of the system. The six agents, first introduced
in the paper [116], define the various interactions needed for the authentication,
de-authentication, and attribute synchronization for cloud services, based on the
abstract functions described in Fig. 6. In this section, we will give an overview for
of the agents: the core, client, cloud, and user agents. We will then detail a proof-of-
concept implementation previously presented in [119]. Since the specification of the
agents is still an ongoing task, we will end this section with a description of future
work on the IdMM.

114 K. Bósa et al.

Fig. 5 IdMM architecture

Fig. 6 Abstract functions

6.1 The IdMM Core Agent

The core agent for our client-centric solution is described in the paper [115]. The
agent has nine states (Fig. 7). The initial state of the IdMM is UserLogin. While in
this state, the user is prompted to input his or her credentials and is subsequently
authenticated to the machine. If a user cannot be authenticated, the machine halts
with the appropriate error. When a user wants to log out, the event triggered will
set the state to UserLogout. This will log the user out of the machine, set the state
to UserLogoutService which logs the user out of every single service he or she was
connected to, and halt the execution of the machine. The termination of the machine
occurs in the halt state. If an error exists, the appropriate message will be displayed
to the user.

When the user wants to use a specific service, he or she will specify the service’s
uniform resource identifier (URI). The event triggered by this action will set the
state to ServiceLogin. In the ServiceLogin state, the machine attempts to find the
matching service given the URI. If no services can be found, an error message is
triggered. If a service is found, the state will be set to AuthorizeLogin. In case the

A Formal Model of Client-Cloud Interaction 115

Fig. 7 IdMM flow

user is already connected to the service, he or she will be redirected to the given
URI. The authorization is done by the AuthorizeLogin state. If the user has the
appropriate access rights, the state is set to PerformLogin where the machine checks
the type of identity required and sets the state to PerformObfuscatedLogin. If the
service supports protocol-based authentication, then PerformObfuscatedLogin will
switch to PerformProtocolLogin, which will perform the authentication based on a
given protocol. In case the service does not support protocol-based authentication,
the machine will perform the authentication with the given identity. The machine
switches to the ServiceLogout state when a log-out event is triggered. In this state,
the IdMM searches for the matching service and performs the log-out.

To describe the rules for each state, we make use of abstract functions (Fig. 6).
The client-side functions, cloud-based functions, and user-based functions will
be further refined by describing the IdMMClient, IdMMCloud, IdMMProtocol, and
IdMMUser agents. To ease this process, we keep the underlying communication
layers abstract.9 The system functions include two important functions: random and
setUserAttr. In order to handle an obfuscated identity, we use the function users to
select a list of the obfuscated identities contained in the client’s directory. We would
then choose a random identity from this list and use it to authenticate the required
cloud service. At present, we propose that the function random be restricted to only
this requirement. More research can be conducted in this topic to further enhance

9In the paper [119], for example, we have included the IdMMClient agent as part of a Tomcat server.
The communication with the core agent is done via the Google Web Toolkit RPC framework.

116 K. Bósa et al.

privacy. For instance, we might choose not to include identities that have been
previously used with the given service. If the service requires a partially obfuscated
identity, we use the function setUserAttr to replace some of the obfuscated values
in the identity with real values that correspond to the current user.

6.2 The IdMM Client Agent

The IdMMClient agent is responsible with the interaction with the client’s directory
service. It retrieves any relevant information from the directory service and converts
it to the IdMM’s data structures. To achieve this, we have further refined the
client-side functions presented in Fig. 6. Apart for the getAuthAttrs function, the
refinement involves introducing a new submachine for each client-side function.10

The refinement of the client-side functions is described in the paper [117]. To
allow a seamless adoption of the IdMM, we make an abstraction with respect to the
client’s directory. The refinement of the client-side functions yielded an interface
(client interaction interface) of 20 directory-dependent functions (Fig. 8). In
addition to the interface, the refinement of the client-side functions also yielded a list
of parameters for each of the submachines. These parameters include information
about the client’s directory (location, authentication mechanism, credentials) as well
as information about the structure of the client’s directory. In the paper [117], we
illustrated how to implement a client interaction interface for an ApacheDS server.11

Fig. 8 Client-side function refinement

10For the purpose of this paper, we will not detail each submachine. The refinement and description
of the client side functions are described in the paper [117].
11ApacheDS [11] is a Java-based embeddable directory server certified by the Open Group as
LDAPv3 (Lightweight Directory Access Protocol) [101] compatible.

A Formal Model of Client-Cloud Interaction 117

We used the Novell LDAP Classes for Java API [84] to facilitate the interaction with
the ApacheDS server.

6.3 The IdMM Cloud Agent

The IdMMCloud agent is responsible for the interaction with any cloud service.
Its purpose is to authenticate or de-authenticate a user to/from a given cloud
service and, when needed, to perform attribute synchronization (see Sect. 3.2.1).
To achieve this goal, the cloud-based abstract functions presented in Fig. 6 must
be further refined. At present, we have the specifications for only the direct and
obfuscated client-to-cloud interaction scenarios presented in Sect. 3.2. Our current
work entails the understating and specification of the protocol interaction as detailed
in Sect. 10. As such, the refinement of the functions performLogin, performLogout,
and syncServiceAttr is achieved by introducing the IdMMCloud submachine as
presented in the paper [120].

Since the direct interaction scenario takes into consideration the fact that different
cloud providers will have different authentication systems, we have introduced the
concept of a cloud plug-in (Fig. 9). This interface represents a set of functions
that will be used for authentication, de-authentication, and attribute synchronization
on various cloud services. For each cloud service used, an implementation of this
interface must be provided. We consider two distinct ways for authentication, de-
authentication, and attribute synchronization. In case the service provider already
offers an API for this purpose, we simply use the functions makeAPIAuthentication,
makeAPIDeAuthentication, and makeAPISync. If the service provider does not have
such an implementation, we use a custom-created one marked by the generic
functions. For example, we use the functions requestAuthParameters and parseAu-
thParameters to obtain all parameters used for the authentication process. We then
use the functions requestGenericAuthentication and parseGenericAuthentication to
make the actual authentication process.

Fig. 9 Cloud plug-in

118 K. Bósa et al.

Fig. 10 IdMMCloud flow

The rules for the IdMMCloud submachine are presented in the paper [120]. The
initial state of the machine depends on the function being called. For the function
performLogin, the initial state will be PerformLogin (Fig. 10). Similarly, the initial
states will be PerformLogout and SyncServiceAttrs for the functions performLogout
and syncServiceAttrs. While in these states, the appropriate values of the machine’s
dynamic frame are set and the state is set to FindPlugin. In this state, the machine
attempts to find a plug-in that matches the provided service. If no plug-in is
found, the machine halts. When a plug-in is found, the state of the machine is
set to DetermineType. The rules for this state determine which of the MakeAPI-
Auth, MakeAPIDeAuth, MakeAPISync, MakeGenericSync, MakeGenericAuth, or
MakeGenericDeAuth states will be chosen based on the type of the request and
whether the service offers an API. While in the aforementioned states, the actual
authentication, de-authentication, or attribute synchronization processes take place
via the use of the CloudPlugin functions presented in Fig. 9.

A Formal Model of Client-Cloud Interaction 119

6.4 The IdMM User Agent

The IdMMUser agent is responsible for the interaction with the user. It handles inputs
from the user and displays the appropriate messages. This goal is achieved by imple-
menting the user-based functions presented in Fig. 6. Since the implementation of
these functions is software dependent, we opted to keep the functions abstract.

The function prompt is used to prompt the user into typing his or her credentials
and returns a list of attributes representing the credentials. The function error is used
to notify the user of an error that occurred during the authentication process. The
function redirect is used to redirect the user to a specific URI, specified as a parame-
ter. The event triggered by the user entering a URI will call the function triggerAuth
which changes the state of the IdMM core agent to ServiceLogin. When the user
wants to de-authenticate from a service, the underlying event will call the function
triggerDeAuth, causing the state of the core agent to change to ServiceLogout. The
de-authentication from the IdMM is done via the triggerLogoff function, which sets
the state to UserLogout. During the implementation phase described in the paper
[119], we became aware that some Web-based applications do require the user to
enter dynamically generated data for the sole purpose of disallowing automated
requests. Most often, this is achieved via captcha messages. As such, we were forced
to introduce a new user-based function, String captcha.Object message/, to allow
the user to input captcha messages.

6.5 A Proof-of-Concept Implementation

In the paper [119], we described a proof-of-concept implementation for the IdMM
focusing primarily on software-as-a-service (SaaS) platforms. The implementation
follows the architecture described in Fig. 5. We used an ApacheDS [11] directory
service running in a cloud-based environment on a private virtual machine. The
implementation for the IdMMClient agent is running as part of an Apache Tomcat
[12] server. The communication between the IdMMClient agent and the ApacheDS
service is done via the use of the Novell LDAP Classes for Java [84]. The client
interaction parameters described in Sect. 6.2 are stored in a .properties file (as
opposed to an XML file as described in the paper [117]). The Tomcat server hosting
the IdMMClient agent is running on a public virtual machine in the same cloud-based
environment as the ApacheDS server.

The IdMMCore, IdMMCloud, and IdMMUser agents are running as part of a Google
Chrome browser extension. Since the specification of Google Chrome extensions
[58] entails the use of JavaScript, as opposed to the usage of Java for the IdMMClient,
we opted to use the Google Web Toolkit framework [59]. By using this framework,
we can restrict the programming language of the implementation to only Java,
leaving the compilation of the code to JavaScript down to the GWT framework.
The communication between the IdMMCore agent and the IdMMClient agent (for

120 K. Bósa et al.

the execution of the client-side function presented in Fig. 6) is achieved by using
GWT’s own RPC framework. The credentials returned by the user-based function
prompt() as well as the address of the IdMMClient are stored in encrypted format
in the browsed local storage environment. The user may modify the values via
the use of the extension’s option page. All communication between the client’s
directory and the IdMMClient agent, IdMMCore, and IdMMCloud agents is encrypted.
Any privacy-related data stored in the dynamic frame is encrypted as well.

A demo of the implementation can be found in [118].

7 Cloud Content Adaptivity Specification

The adaptivity solution, first presented in [43], uses a WA wrapped inside a
middleware system to adjust cloud services to client’s device. This research includes
the creation of ASM ground models in a way to reflect the requirements and to
serve as a basis for implementation. The next subsection introduces the system
architecture of the proposed solution.

7.1 The System Architecture

The system architecture illustrated in Fig. 11 shows how the cloud, the middleware,
and the client (here represented by his or her devices) are interacting. The client’s
point of connection is a WA which should adapt itself, on the fly, to different devices
(smartphones, tablets, laptops, and desktop computers) and different browsers.
The interaction between the client and the cloud is done through a middleware
software. The WA represents the front-end and the middleware the back end.
After a successful log-in, the application will display a list of cloud services
corresponding to the user’s credentials. By selecting a service, a request is sent to
the middleware, which will forward it to the cloud and wait for the corresponding
answer. Meanwhile, a device profile will be created, using the third-party tools and
frameworks.

For detecting the device properties, the Modernizr framework is used by creating
JavaScript tests. These tests will be executed on the client side and the corresponding
cookie variable will be updated, sending the information to the server side, where
the session and the local database will also be updated. When the features cannot be
detected using Modernizr, then a device detection database tool can be used (e.g.,
Wireless Universal Resource FiLe (WURFL)). If the user uses the cloud services
from the same device several times, then the device information can be read from the
local database, without accessing the device detection database or writing again the
JavaScript tests. Even when the information is locally available, the session is still
used, because of optimization purposes. Another reason for saving the information
locally is also the client-client interaction. One client could choose to send the output

A Formal Model of Client-Cloud Interaction 121

Fig. 11 System architecture

of a service from cloud to another client, which is logged in from another device,
which means that sending the answer from the cloud not only to the device for which
we have the profile in the session but also to another device for which we can read
the information from the database.

The answer that arrives from the cloud is parsed and processed using the device
information. When images or videos are involved, their format is checked, and if it
is not accepted by the device, then third-party tools are used to transform the media
to the corresponding format. When the adaptation is finished, the message is sent
back to the device. In case some JavaScript tests exist, they will be executed on the
client side for getting the new information; afterward, the cookie is updated. When
the loading finishes, the message is displayed on the device.

The middleware acts like the virtual provider described in [9]. In our case,
we leave out for now the sending and receiving part and concentrate only on the
adaptation.

122 K. Bósa et al.

7.2 ASM Ground Models

In order to reflect the WA intended behavior, the ASM method was used for
building the ground models. The main components of the system were modeled
such that the refinement of their abstract models would be a description of the future
implementation.

Further on, the models including only aspects with respect to content adaptation
and displaying are presented. Most of the work is done on the server side using the
information discovered on the client side.

7.2.1 Display Output Agent

Figure 12 illustrates the ASM ground model that describes the client’s device
activity. There are three states through which the agent goes, Waiting for message
(the initial state), Execute client tests, and Displaying the message (the final state).

The agent waits in the initial state until a message comes from the server. The
messages sent by the middleware to the client are saved in a queue. When a message
becomes available in the queue, the agent executes the macro Decrypt message.
After the decryption of the message, the flow goes further with the condition Client
tests available. If JavaScript tests (which verify the device properties) are available,
then the agent goes to the state Execute client tests. This is a durative action (there
is an interval of time between starting and ending the execution) which is executed
internally by the browser. When the JavaScript execution finishes, the agent retrieves
the new device information and updates the cookie, in this way communicating to
the server the new values of the device properties. The flow takes the same route,
as when no client tests would exist. The guard Extra resources verifies if extra

Waiting for message

Message arrived Decrypt message

Client tests available

Execute client tests

Yes

Update cookie profile
with feature info

Extra resources

Download extra resources

Yes

No

Displaying the message

No

Fig. 12 Display output ASM

A Formal Model of Client-Cloud Interaction 123

images and/or videos are necessary. In a positive case, the system downloads them
(the abstract macro Download extra resources does this action). The agent’s state
changes, reaching the final one, Displaying the message.

7.2.2 Receive Request Agent

Figure 13 displays the ASM ground model for receiving the client’s request. The
algorithmic idea consists in having only the initial and the final states: Waiting for
requests and Waiting for answers from Cloud. Again, a queue is used to store the
requests sent by the client. When a client’s request arrives, it is then forwarded to
the cloud (this is fulfilled by the Send requests to Cloud macro), and in parallel, the
agent verifies if the session or the cookie contains information regarding the device
which sent the request.

If the condition Device info available in the session/cookie is not met, then we
are dealing with the first request sent during that session. Using the guard Device
profile available on the server, the agent verifies if this is the first time that the user
logs in from the corresponding device. If this is the case, then the agent retrieves the
device details from the local database by executing the Retrieve the local device
profile macro. After retrieving the device details, another macro is executed to
Update session/cookie with device info. The information is saved on the session
and on the cookie to ease the communication between client and server agents and
to optimize the process regarding the verification of device properties. Whenever
a new JavaScript test is executed, the cookie and the session variables are updated
using the test’s result. The state is changed and the agent waits for answers from the
cloud.

Waiting for requests

Requests available

Send requests to Cloud

Yes

Device info available in
the session/cookie

Device profile
up-to-date

on the server

Device profile available
on the server

No

Yes

Save device profile
on the server

No

Write client tests
for determining
device features

No

Retrieve the local
device profile

Yes

Device profile
retrieved

Update session/cookie
with device info

Waiting for answers
from cloud

Yes

Fig. 13 Receive request ASM

124 K. Bósa et al.

If the guard Device profile available on the server is not satisfied, then the client’s
tests for retrieving the values of all device properties that are necessary for code
adaptation are written. The macro Write client tests for determining device features
is responsible for the previous action. In the same time, the state is changed to
Waiting for answers from Cloud.

By writing JavaScript code together with Modernizr, the client’s tests are created
in order to determine the device and browser capabilities. The tests will be written
on server side and executed in background on the client side. After the execution
finishes, the answer is sent back to the server. Information regarding JavaScript
interpretation using ASMs is provided by Börger et al. [27]. Using the information
provided in that article, the macro Update session/cookie profile with feature info,
which can be seen by the reader in Fig. 12, deals with the description of the client’s
tests. Starting from the basic client’s tests, new tests could be inserted if, while
parsing the answer sent by the cloud, new device properties are involved.

Another way to follow is when the information is already available in the session,
which means that the request in case is not the first one coming from the client.
Using the guard Device profile up-to-date on the server, the agent verifies if the local
database already contains the device information. If no modification is necessary, the
final state is reached. In the contrary case, when device properties have to be created
or updated, the macro Save device profile on the server is executed. At this point,
the agent also reaches the final state.

7.2.3 Receive and Process Answer Agent

The algorithm presented in the ground model from Fig. 14 describes what the agent
does with the answer sent by the cloud in order to adapt it to the device. The agent
finds itself in four different control states: Waiting for answers from Cloud, Filter
and adapt content, Message format transformed, and Send answer to client. The
starting control state is Waiting for answers from Cloud and the final state is Send
answer to client.

The agent waits for the messages having the state set to Waiting for answers
from Cloud. The messages sent by the cloud are saved in a queue which is checked
by the guard Message available. Whenever a message is available, a verification is
done to see if its format is supported by the browser installed on the device (this
check is contained by the guard Message format supported). If the message is not
written in Hypertext Markup Language (HTML) or Extensible Hypertext Markup
Language (XHTML), then the macro Transform the message format (html/xhtml)
is executed and the agent’s state is changed to Message format transformed. If the
message’s format can be displayed in the browser, we go further on with checking if
the device details are available, using the guard Device information available. What
is this guard actually doing? It checks to see if the device profile is available in the
session. If the device information is not already available, then the flow goes on with
the next condition without adapting the HTML code. In this case, the page will be

A Formal Model of Client-Cloud Interaction 125

Waiting for answers
from Cloud

Message available

Message format supported

Transform the
message format
(html/xhtml)No

Message format
transformed

Device information available

Yes

Retrieve device information

Yes

Filter and adapt
content

Client tests
per request necessaryNo

Write client tests
for the properties

changeable at every request

Yes

Client tests
per request finished

Encrypt message

No

Send answer
to client

Fig. 14 Receive and process answer ASM

Parsing the
content

Elements available
Device profile

contains
the element

Yes

Ask 3rd-party tools
for device information

No

Waiting for device
information

Update device profile
on the server

Update device profile
variable on session/cookie

Extra resources
needed

Yes

Generate resources
(images/videos)Yes

Resources readyAdapt element

No

Element adapted

Content adapted

No

Fig. 15 Filter and adapt content ASM

displayed on the device in its original state, containing only the adjustments done
automatically by the browser.

If the device information is available in the session, then using the macro Retrieve
device information, the corresponding information is retrieved and the agent’s state
is set to Filter and adapt content. This action is extended in the model displayed by
Fig. 15. When the adaptation finishes, the agent reaches the same condition as the
one reached when the device information is not available.

126 K. Bósa et al.

The guard Client tests per request necessary checks if an extra JavaScript code
has to be inserted in order to test the device capabilities which can change by every
request. An example is the Global Positioning System (GPS) location property. GPS
information is something that could change each time the user makes a new request,
because he or she might change his or her position (we can imagine that the user
is moving, being in a train or in a car, when accessing the cloud). If there are no
tests per request required, the agent has one more step to do before going to the
final state, which is Encrypt message. When this macro is executed, the control state
Send answer to client is reached. The macro Write client tests for the properties
changeable at every request is executed if the corresponding tests are necessary,
and the guard Client tests per requests finished verifies if this execution finished and
if the agent is ready for encryption. The same flow as for the “No” branch follows;
the macro Encrypt message is executed and the final state is reached.

7.2.4 Filter and Adapt Content Agent

For adapting the content coming from the cloud, a general HTML/XHTML parser
has to be designed. As a basis for this, the paper [56] can be used. In [56], a multi-
agent ASM formal model is described, which shows the browser behavior and how
its components interact.

Figure 15 displays the algorithm of the Filter and adapt content model, which
was mentioned as a control state in the previous ground model (Fig. 14). In this ASM
ground model, the agent can reach five control states: Parsing the content, which
is also the initial state, Waiting for device information, Resources ready, Element
adapted, and the final state Content adapted.

The adaptation algorithm starts with the parsing of the HTML content of the
answer which came from the cloud. Each HTML element is identified, while parsing
the content and the guard Elements available verifies if the algorithm still has to
check and adapt other HTML elements. If this is the case, then the agent goes to
the next condition Device profile contains the element. If the device profile saved in
the session does not contain information with respect to the chosen element, then a
device detection database third-party tool is used. A query containing the specific
element is sent to the device detection database. When the agent reaches the macro
Ask 3rd-party tools for device information, the state changes to Waiting for device
information. The agent waits until this durative action is executed by the device
detection database. When the information is returned to the agent, two macros are
executed in parallel: Update device profile on the server and Update session/cookie
with device information. By updating the information in the session and in the local
database, we will not have to query again the third-party tool regarding the same
HTML element for the possible future requests. Nearby these two actions, the guard
Extra resources needed is also fired.

One of the existing device detection databases can be used, without creating an
own database, because this would cost a lot of time, mainly because of the database
maintenance.

A Formal Model of Client-Cloud Interaction 127

The agent executes the Extra resources needed guard for verifying if the
element’s (e.g., an image or a video) format is supported by the browser running
on the current device. In case the format is not applicable, the macro Generate
resources (images/videos) is executed and the control state is updated to Resources
ready. The next step is the same as the one when no extra resources are needed.

The Adapt element macro does the job of changing the HTML element cor-
responding to the device profile. If, for example, a very complex list should be
displayed on a smaller device, on which the user should scroll too much for
seeing the information, then the list should be changed by eliminating the not-
so-important information and make it expandable, such that the user could easier
read the information and reach faster the information which is interesting for him
or her. By detecting the device properties, the developer discovers which types of
elements are suitable for the device and can also change the format correspondingly.
Reaching the execution of this last macro, the state corresponding to each element
is set to Element adapted. Changing the state of each element is like a flag which
is set on each element. The agent goes to the final state, Content adapted, when all
elements reached the state Element adapted.

7.3 The Use of ASM Ground Models

In the previous section, the WA’s constraints/assumptions were expressed by the
creation of ASM ground models. The fact that the requirements change based on
the device that is querying the cloud services requires the development of a flexible
and extendable piece of software by using successive refinement steps that adapt the
abstract models to the changing requirements.

For reaching the compilable code, the next phase after the creation of the ground
models is the definition of the macros by using pseudo-code-like descriptions.
Typically, there are necessary more steps to reach the code, because the design
phase starts with a not-so-precise model and gradually more details are introduced
with each step, taking into account the requirements of the system [23]. Below is an
exemplification of how the Display Output Agent ground model from Fig. 12 can be
refined by describing the agent’s signature and the ASM macros.

Below follows the agent’s signature. The ctl_state={Waiting for message, Exe-
cute client tests, Displaying the message} variable represents the agent’s con-
trol states and has as initial value the state Waiting for message. The queue
messages.self / contains the messages sent by the middleware; its initial value is
the empty set. The cookie.deviceProfile/ 2 COOKIE variable stores the device
profile, where the set COOKIE contains key�value elements (initial value = undef).
headPageW messages.self / ! html is a function that returns the first HTML text sent
by the middleware. Its initial value is undef . Modernizr is a set that contains the
features (and their corresponding values) tested by using the Modernizr framework.
Using the agent’s signature, the macros can be defined as follows.

128 K. Bósa et al.

CLIENTDISPLAYOUTPUTMACROS D
if MESSAGEARRIVED then

DECRYPTMESSAGE

if CLIENTTESTSAVAILABLE.headPage.
messages.self /// then

ctl_state WD executeClientTests
UPDATECOOKIE

end if
if EXTRARESOURCES then

DOWNLOADEXTRARESOURCES

end if
ctl_state WD displayingTheMessage

end if
Where

MESSAGEARRIVED D .messages.self / ¤ empty/

DECRYPTMESSAGE - abstract

CLIENTTESTSAVAILABLE.page/ D
.9t 2 htmlTags tagName.t/ D “SCRIPT” and

CONTAINSMODERNIZRTESTS.t//

CONTAINSMODERNIZRTESTS.scriptTag/ D
if hasAttribute.scriptTag; src/ then

let url D valueOfAttribute.scriptTag; src/ in
9c 2 contentOfFile.url/ c D “Modernizr.addTest”

else
9c 2 contentOfTag.scriptTag/

c D “Modernizr.addTest”
end if

EXTRARESOURCES D .extraResources ¤ empty/

DOWNLOADEXTRARESOURCES - abstract

UPDATECOOKIE D
if ctl_state D executeClientTests then

for all f 2 self :Modernizr do
insert f into self :cookie.deviceProfile/

end for
end if
CLIENTTESTSAVAILABLE macro verifies if there are Modernizr tests defined

in the JavaScript part of the page. There are two possibilities to declare the client’s
tests, directly in the SCRIPT section of the page and through another JavaScript file.
The “Modernizr.addTest” method (made available by the Modernizr framework)
can be used either in the content part of the SCRIPT tag or inside the JavaScript file.

UPDATECOOKIE macro parses all the features (key�value pairs) tested using the
Modernizr framework and creates the agent’s cookie.

A Formal Model of Client-Cloud Interaction 129

Following the example given above, each of the ground models defined in
Sect. 7.2 could be refined to pseudo-code and afterward translated to CoreASM.

8 The Problem of Verification

Although our work is focused only on the specification of some novel solutions
concerning client-cloud interaction at present, the validation and the verification of
our (ground) models have been planned as our future work. Hence, we devote the
following section to this subject.

In the context of software systems, formal verification can be regarded as
a decision problem [105]. Namely, if it is given a programming language L
and a formal language F suitable to express properties of programs in L (e.g.,
completeness, soundness, compactness, liveness, and safety and halting problems),
the problem of verifying L programs against F properties can be considered as
follows [105]:

• Given a program ˘ 2 L and a property ' 2 F , decide whether for every input
I appropriate for ˘ , ˘ on input I satisfies '.

The decidability of this problem depends on the expressiveness of bothL and F .
Although there exists some artificial subset of formal languages which are extended
with some (first-order) logics and for which the above problem is always decidable
(e.g., sequential nullary ASMs conjugated with a first-order branching temporal
logic [105]), their computational power and expressiveness are limited.

Verification in process calculi (e.g., ambient calculus) and in state transition
systems is often done by checking bisimulation equivalence [104], where it is
investigated whether the associating systems behave in the same way in the sense
that one system simulates the other and vice versa. A more complex process
representing an implementation is shown to be bisimilar to a simpler process
representing a specification. The simpler process should be so clear that it can
be regarded as satisfying correctness requirements in an intuitive sense, not with
rigorous mathematical proof.

This procedure may be not reliable or not applicable at all for many cases in
general (intuitive checking of correctness of formal ground model is often nontrivial
and a very error-prone method). Hence, for verifying correctness properties for
algorithms specified by these formal languages, some (temporal) logics are required,
such that some model checking verification can be applied. There are model check-
ing algorithms for process calculi with calculus style specification logic [17, 49],
but such a logic often is very complicated to describe or understand, and sometimes
results are not obtained in reasonable amount of time even for the proofs of very
simple correctness requirements.

In some other cases, the aim of the coupling of a formal language and such a
special logic is to address only the verification of specific aspects or features in
the specified systems. For instance, Cloud Calculus [67] applies ambient calculus

130 K. Bósa et al.

to specify topology of cloud systems and firewall security rules such that it is able
to verify whether the global security policy after the virtual machine migration is
consistently preserved with respect to the initial one.

In the case of the formal model of our integrated system discussed in this chapter,
which is given in terms of our two-abstraction-layer approach mentioned above,
verification can be reduced to pure ASM verification, since the definitions which
are given in terms of ambient calculus can be replaced with ambient ASM rules
which in turn can be translated to normal ASMs.

Although ASMs can be seen merely as a specification formalism, strictly speak-
ing, ASMs constitute a computation model on structures. The program of an ASM
is like the program of a Turing machine, a description of how to modify the current
configuration of a machine in order to obtain a possible successor configuration.
Since ASMs are computationally complete—they can calculate all computable
functions—the problem given above is, in its full generality, undecidable.

The advantage of ASMs is that they are close to logic, which makes the overall
design easily amenable to well-understood mathematical techniques. Essentially,
the mathematical foundation of ASMs supports the formal verification of dynamic
systems designed by means of ASMs.

For the verification of the properties of ASMs, mechanical theorem proving
(e.g., Isabelle [24, 89], KIV [93], PVS [51, 54], etc.) as well as model checking
systems [106, 121] can be applied. For these, some logics were also developed [107],
which are tailored for ASMs in terms of an atomic predicate for function updates.

After the correctness of an ASM (ground) model is proved, we can apply
stepwise refinement method [22] to extend the model and to prove in each step
that the new model preserves the same properties, which the predecessor model
possessed. The design of complex systems is typically organized as a series of
refinement steps, where the final goal is to minimize the gap in reasoning between
the refined formal model and a particular implementation.

In Sects. 8.1 and 8.2 below, it is presented shortly which correctness properties
for Web application are assumed and how could ASM ground models help, respec-
tively, and which solutions are available for the client- and server-side adaptation.

8.1 Correctness of Web Application

WAs do not have a precise definition or a precise model to follow. This happens
because they are related to different standards (which can be incomplete or bad
documented) and implementation frameworks [27]. They are using a huge number
of diverse technologies and there is not much knowledge about how to measure or
ensure the quality properties [85]. Because of this, it is hard to prove the correctness
of WAs.

Correctness is an important aspect in providing good-quality WAs. The quality
properties are separated in two sections: external and internal qualities. Correctness
is one of the external qualities and is part of “Web Content” properties’ category.

A Formal Model of Client-Cloud Interaction 131

If we are referring to the functionality part, we can state that a WA is correct if
it behaves according to its specification [69] (based on the requirements, we can
decide if the information available in a Web page is valid or not [3]). The first
step in creating a correct WA is to make a rigorous analysis to precisely state and
analyze the similarities and differences among the various devices and browsers.
The development of a WA is an entire process, which after the analysis phase
continues with stating a list of precisely formulated properties and then creating the
WA (ground) models to hold the properties. The implementation can be described
as refinements of those initial abstract models. From this, we could build a way
to certify the properties of a WA, by checking the obtained model against the
given properties. We can classify the correctness properties into two interesting
groups[27]:

• Correctness properties for session and state management. The session state
should not be affected when, for example, the user navigates away from the page
and afterward he or she returns. Replicated parts of the state should be consistent,
equivalent between client side and server side, and the state should persist when
the client changes (e.g., from desktop to mobile).

• Application correctness properties. These properties deal with the dependence
of the WA intended behavior on the programming and execution infrastructure
(e.g., browser, connection, plug-ins). In order to achieve a precise analysis, a
rigorous high-level description is mandatory.

From the fact that no strict way of proving correctness and completeness of
the requirements/design exists results a problem regarding the transition from
informal to mathematical representations. In [122], the use of ASM ground models
(defined as an analysis of dynamic properties of a system using pseudo-code-
like descriptions over abstract data structures) is recommended. A characteristic of
ground models is the direct correspondence between the interpretation of the system
requirements to be modeled and their abstract state machine representation, which
simplifies the transition’s problem (mentioned previously).

By building an abstract model from the requirements, which satisfies the
CoCoCo-properties—consistency, correctness, and completeness [23]—we can
check whether the WA satisfies the requirements [21]. To fulfill these properties,
it means to directly solve the following problems: communication, verification,
and validation. Using ASMs for ground models, we can satisfy the properties
mentioned before. The simplicity and generality of the ASM language solves
the communication problem. The verification problem can be solved by applying
standard (pseudo-code) inspection and reasoning. The validation of ASM models
can be realized by simulating the ASM runs using the existent tools [25] (e.g., ASM
Workbench [40], .NET-executable AsmL engine [16]). CoreASM12 and ASMETA

12http://sourceforge.net/projects/coreasm/.

http://sourceforge.net/projects/coreasm/

132 K. Bósa et al.

(ASM mETAmodeling)13 are two examples of the tools allowing different forms of
model analysis for the ASM macros mentioned in the ground models.

In order to reason about correctness of programs and increase their quality, for-
mal verification techniques can be used. By applying model checking to ASMs, one
could assure the correctness and quality of software specifications. Farahbod et al.
[53] specifies how ASM specifications written in CoreASM can be automatically
transformed into Promela specifications, which, afterward, can be verified using
the SPIN model checker. AsmetaSMV[13] is a tool that automatically translates
ASM specifications written in AsmetaL[55] (the textual notation for ASM models
in ASMETA) into models of the NuSMV model checker, and so it allows the
verification of computation tree logic (CTL) and linear temporal logic (LTL)
formulae.

8.2 Correctness with Respect to Adaptivity

Adaptivity to different devices and user preferences is essential for developing a
correct WA. A clear condition for a correct WA says that the application should
behave corresponding to the specification. If a WA is not adaptive, then it might not
function or display correctly on some devices, which means that it would not reflect
the specification. The vast number of types of devices and their browsers are big
issues for the content and presentation adaptation. The formal model has to describe
the particularities of each device and how to change the content and the presentation
correspondingly. This could be done by using the client- and server-side adaptation
techniques, which require to query the device for its features.

For each of the two main content adaptation techniques which were mentioned
before, server-side and content-side adaptation, there already exist frameworks or
third-party tools that could be used during the development of an application. The
server-side adaptation is realized with the help of the device detection databases,
which are available both in the open-source format (e.g., OpenDDR [86]) and
in the commercial format (e.g., WURFL [100], DeviceAtlas [1]). A significant
difference between the open source and the commercial solutions is how often
the databases are being updated. Commercial databases are more reliable, because
most of them are daily updated. This is an important issue to check when a device
detection database is considered, because an out-of-date database could result in the
delivery of erroneous data to the devices. For the client-side adaptation, the “Mod-
ernizr” JavaScript framework [14] could be used. The problem of missing browser
functionalities could be solved by using replacement code done in JavaScript, the
so-called polyfills. Small visual layouts could be also solved on the client side. A
big advantage of the server-side adaptation is the loading time, everything that loads
on the server will load faster [48]. When significant changes have to be done, the

13http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/

A Formal Model of Client-Cloud Interaction 133

server offers a high level of control in fine-tuning. Both of the abovementioned
techniques are presenting limitations in discovering all the properties of a device. On
client side, the physical nature of the device cannot be determined (e.g., OS version,
model, maximum HTML size), but on server side, it is not possible to determine the
real-time information (e.g., GPS coordinates, device orientation). On server side,
the user could cause problems in detecting the device by changing the user agent
(UA). The UA is a string available in the HTML header of a Web page and it is
used to query the device detection databases. A similar problem could happen on
client side, even without the intervention of the user—many browsers return false
positives for certain query tests.

9 Related Work

It is beyond the scope of this chapter to discuss the vast literature of formal modeling
mobile systems and service-oriented architectures (SOAs), but we refer to some
surveys on these fields [32, 37, 96].

However, if we would like to put our work in context, we should mention first
of all [110], in which one of the first examples is presented for representing various
kinds of published services as a pool of resources, like it is in our model.

The application of the concept of mobile ambients in the development of
distributed SOAs is not a novel idea. One of the first research works that investigated
and analyzed location-based services whose availability is related to the surrounding
physical environment of the user is [73]. This work has not considered mobility yet,
but it introduces the notion of service domains. These domains refer to geographical
boundaries which are associated with a set of services that is available for the
user within the boundary. In other words, Loke et al. [73] describes a new kind
of location-based service discovery architecture.

In the software development community, a UML-based modeling approach
called service-oriented architecture modeling language (SoaML) [102] has started
to become increasingly popular for modeling service-oriented architectures. More-
over, SoaML has an extension called Ambient-SoaML [4, 6] which combines
SoaML with the concept of mobile ambients for modeling service-oriented mobile
applications.

Another modeling technique is cloud modeling language (CloudML) [33, 42],
which aims at facilitating the specification of provisioning, deployment, monitoring,
and adaptation concerns of multi-cloud systems at design time. Furthermore,
CloudML also contains the models@run-time environment for enacting the pro-
visioning, deployment, and adaptation of these systems, as well as for monitoring
their status at run time.

Ambient-PRISMA [5] is an aspect-oriented software architectural approach
for modeling and developing distributed and mobile applications, which is also
extended with the ambient concept. Ambients appear in the (UML-like) meta-
model of PRISMA as some special kind of connectors that model the notion of

134 K. Bósa et al.

location and offer mobility services to the components. Mobility of architectural
elements is supported by reconfiguring the software architecture. Although SoaML,
Ambient-SoaML, CloudML, and Ambient-PRISMA are advanced model-driven
engineering techniques, which have more or less been integrated with the software
development practice, they are definitely not formal methods and they have
no relation to any mathematically rigorous formal specification and verification
techniques unlike our approach.

Another research similar to ours is Cloud Calculus [67], which is built upon
ambient calculus for capturing the dynamic topology of cloud computing systems.
Cloud Calculus is effective to verify whether global security policies are preserved
after virtual machine migrations, but it is a very specific tool which is not applicable
for giving the formal specification of functionalities of cloud/distributed systems.

There exists also some research works which apply ambient logic [35, 39] tai-
lored for ambient calculus to formally verify various security protocols (e.g., authen-
tication and key agreement protocol (AKA) [125]). Furthermore, [41] presents a
general algorithm on how the processes expressed by ambient calculus can be model
checked against formulas of the ambient logic.

In [26], the ambient concept (notion of “nestable” environments where com-
putation can happen) is introduced into the ASM method, such that the definition
of ambient ASM is based upon the semantics of ASM without any changes. But
ambient ASM, on which our model is based, is not the only research which aims
to build in a concept of mobile ambients to the ASM method. In [113], some
advantages of a simple ambient concept introduced into ASM are demonstrated.
Although this work was also inspired by ambient calculus, it is by far not as refined
and versatile as ambient ASM.

Our approach according to which service instances must be always equipped
with unique operations such that they compose the interface of a service instance
was originally applied among others in the definition of Abstract State Services
(AS2s). AS2s were introduced first in [75] and were extended and described in detail
in [76, 77]. The theory of AS2s integrates a customized ASM thesis for database
transformations [98] as well. In an AS2, there are views on some hidden database
layer that are equipped with service operations denoted by unique identifiers. The
definition of AS2s also includes the pure data services (service operations are just
database queries) and the pure functional services (operation without underlying
database layer) as extreme cases.

For an algebraic formalization of plots, Kleene algebras with tests (KATs) [70]
have been applied in [78]. Prior to this work, the formalization of algebraic plots was
founded in [94, 95]. In [18], the idea of ASM-based plot expressions was outlined.
Then in [97], it was described in detail how KAT expressions in plots can be replaced
with assignment free ASMs, which have more expressive power.

In [78], a formal high-level specification of service cloud is given. This work is
similar to ours in some aspects. Namely, it applies the language-independent AS2s
with algebraic plots for representing services. But it principally focuses on service
specification, service discovery, service composition, and orchestration of service-

A Formal Model of Client-Cloud Interaction 135

based processes; and it does not apply any formal approach to define either static or
dynamically changing structures of distributed system components.

Workflow-based solutions have often been applied in case of Web service
orchestration for controlling execution of some combination of activities. The
Business Process Execution Language (BPEL) [68, 74] is a typical representative of
this approach, where a workflow can be specified such that the given Web services
can be run sequentially, in parallel or even iterated. But in contrast to algebraic plot-
based solutions equipped with the concept of service operations, services appear as
indivisible components without being interleaved in a BPEL orchestration.

With respect to identity management, there have been several attempts to define
a client-centric approach [115]. The author of the paper [2] describes a privacy-
enhanced user-centric identity management system allowing users to select their
credentials when responding to authentication requests. It introduces “a category-
based privacy preference management for user-centric identity management” using
a CardSpace compatible selector for Java and extended privacy utility functions
for P3PLite and PREP languages. The advantage of such a system is that it allows
users to select the specific attributes that will eventually be sent to a relying party.
Such a system works well for enhancing privacy; however, it fails to address the
extra overhead inflicted on the user. As the paper [92] shows, a typical user would
tend to ignore obvious security and privacy indicators. For composite services, the
authors of the paper [124] describe a universal identity management model focused
on anonymous credentials. The model “provides the delegation of anonymous
credentials and combines identity meta-system to support easy-to-use, consistent
experience and transparent security.”

From a client-centric perspective, Microsoft introduced an identity management
framework (CardSpace) aimed at reducing the reliance on passwords for Internet
user authentication while improving the privacy of information. The identity
meta-system, introduced with Windows Vista and Internet Explorer 7, makes use
of an “open” XML-based framework allowing portability to other browsers via
customized plug-ins. However, CardSpace does suffer from some known privacy
and security issues, mentioned in the papers [8, 87]. The concept of a client-
centric identity meta-system is thoroughly defined in the paper [36]. The framework
proposed here is used for the protection of privacy and the avoidance of unnecessary
propagation of identity information while at the same time facilitating exchange of
specific information needed by Internet systems to personalize and control access to
services. By defining abstract services, the framework facilitates the interoperation
of the different meta-system components.

Passwords managers can, in our opinion, reside within the topic of automatic
authentication for individual users. Projects such as KeePass[90] and LastPass [72]
do offer similar functionalities to the IdMM. However, both fall short in two key
criteria. Neither of them is truly automatic, since some input is required by the user
upon authentication to a service, and while both work well with individual users,
they cannot be adapted for SMEs.

The content adaptation topic presented major interest for the mobile device
direction. Different solutions for cross-platform mobile development are available,

136 K. Bósa et al.

like cross-platform compilers/applications and building HTML5 or HTML5 hybrid
applications [44]. Native mobile applications are not applicable to our problem,
because we do not want to create a corresponding application for every mobile
operating system; our scope is developing a general application which respects an
ASM specification. Cremin [47] explains shortly the different mobile Web content
adaptation techniques. Each technique has its own advantages and disadvantages;
one should choose the technique that better suits the project, after analyzing the
requirements. In our case, the hybrid approach suits the best, so we want to achieve
something similar to what [91] presents. Still, our solution would like to use the
device detection database as few times as possible, only when the information
regarding the properties cannot be retrieved on the client side. The content of a
Web page is adapted on the server side corresponding to the properties detected
on the client side. Another technique is responsive design, which is combining
the Cascading Style Sheets (CSS) media queries with the flexible images and is
using the flexible grid technique to scale the page [47]. An example of how to use
responsive design for creating a mobile application is presented in [62]. Regardless
of the adaptation technique used, the previous works do not apply a formal method
in order to prove the correctness of their system.

10 Conclusions

In this chapter among others, we described a high-level formal model of a cloud
service architecture in terms of a novel formal approach. The applied method is able
to incorporate the major advantages of the ASMs and of ambient calculus. Namely,
by this, one is capable to specify in the same formal model of a distributed system
both the long-range mobility via several boundaries in a dynamically changing
spatial hierarchy and the algorithms of executable components. Since this cloud
model is the first nontrivial model which is based on this method, our work also
revealed how viable is in practice our two abstraction layers formal approach.

Our cloud model applies a new client-cloud interaction solution based on
algebraic plots by which service owners are able to fully control the usages of their
services in the case of each subscription, respectively.

The ASM formal models we presented can allow model analysis at early stages of
system design, by applying different validation techniques on them, like simulation
or scenario construction, through the use of one of the existing ASM tools (e.g.,
CoreASM, ASMETA). This, together with the verification (model checking of
properties) of our models, is part of our future work.

Client-To-Client Interaction Besides the cloud service architecture model, we
also discussed a high-level formal definitions of some novel client-to-client inter-
action features, by which not only information but cloud service functions can be
also shared among the cloud users. Our approach is general enough to manage a

A Formal Model of Client-Cloud Interaction 137

situation in which a shared version of a cloud service is shared again several times
by several users.

Furthermore, if we shift the client-to-client functionality to client side and wrap
into a middleware as it is proposed in Sect. 3 and depicted on Fig. 2b, then no traces
of the user activities belonging to the shared services will be left on the cloud. The
reason for this is because all the service operations which are shared via a channel
are used on behalf of its initial distributor. This consideration can lead one step into
the direction of anonym usage of cloud services. The consequence of this is that if
a cloud user who has contracts with some service providers completely or partially
shares some services via a channel, then he or she should be aware of the fact that
all generated costs caused by the usage of these shared services will be allocated to
him or her.

Identity Management Machine The current specification of the IdMM, presented
in Sect. 6, is thus far limited to the IdMMCore, IdMMClient, IdMMUser, and IdMMCloud

agents, allowing for an automatic authentication tool for cloud-based services
in the direct and obfuscated interaction scenarios. Since the specification of the
IdMMProtocol and IdMMProvisioning is currently an ongoing task, we intend to study
the various open protocols used in identity management (such as LDAP) or in
authentication and authorization (such as OpenID and OpenAuth). With this study
complete, we will then refine the cloud-based functions regarding the authentication
via the formally mentioned protocols. Our plan is to first allow IdMM to use
external identity providers to authenticate to services while IdMM only takes care
of automating the process. With this complete, we can then specify the IdMMProtocol

agent which will act as a stand-alone identity provider communicating with the
client’s directory via the IdMMClient agent.

With the specification of the IdMMProtocol agent complete, we can then detail the
IdMMProvisioning agent which will allow for an easier management of the identities
and access rights stored both on the client and the cloud provider’s systems. The
agent will be responsible for the creation, modification, and deletion of identities
on the client’s directory as well as account creation, synchronization, and deletion
on the necessary cloud services. The system will also be responsible for periodical
passwords resets on cloud services.

The final step in our research is to apply an access management component to
the IdMM. The specification of the IdMM core agent allows for the enforcement
of access rights via the rules for the AuthorizeLogin state. Further research in the
realm of access rights management is required before a full specification of the
access management component is achieved.

Cloud Content Adaptivity In Sects. 7.2 and 7.3, the readers can discover how a
content adaptation system, created for the interaction between the client’s devices
and the cloud, can be represented using ASM ground models and how these models
are refined to reach implementation phases. We identified four different agents,
which are executing the algorithms defined by the corresponding ground models.
These models are designed using the ASM formal modeling method, which gives
us the possibility of validating and verifying the system.

138 K. Bósa et al.

Further work includes the refinement of all ASM ground models presented in
Sect. 7.2, as we did in Sect. 7.3, which means that we will go on with writing the
ASM macros, refine them, and finally reach the development phase. The refinement
of the ASM macros will lead to the system prototype’s implementation. Future
research could include the specification of the adaptation rules for each HTML
element corresponding to different categories. It is not mandatory to have a different
rule for every device; we could also define a rule per group/category. Kumar and
Kumar [71] and Yang et al. [123] are also dealing with HTML adaptation, by
using the DOM content extraction and rule repositories, respectively, by adopting
description logics for the creation of a hierarchical ontology. In our case, the rules
will be specified in terms of ASMs.

Acknowledgements This research has been supported by the Christian Doppler Society.

References

1. Afilias Technologies Ltd: Mobile device detection solution—deviceatlas. https://deviceatlas.
com/ (2013)

2. Ahn, G.J., Ko, M., Shehab, M.: Privacy-enhanced user-centric identity management. In: IEEE
International Conference on Communications, 2009. ICC ’09, pp. 1–5 (2009). doi:10.1109/
ICC.2009.5199363

3. Alalfi, M.H., Cordy, J.R., Dean, T.R.: Modeling methods for web application verification and
testing: state of the art. Softw. Test. Verif. Reliab. 19(4), 265–296 (2009). doi:10.1002/stvr.
v19:4. http://dx.doi.org/10.1002/stvr.v19:4

4. Ali, N., Babar, M.: Modeling service oriented architectures of mobile applications by
extending soaml with ambients. In: 35th Euromicro Conference on Software Engineering and
Advanced Applications, 2009. SEAA ’09, pp. 442–449 (2009). doi:10.1109/SEAA.2009.25

5. Ali, N., Ramos, I., Solis, C.: Ambient-prisma: ambients in mobile aspect-oriented soft-
ware architecture. J. Syst. Softw. 83(6), 937–958 (2010). doi:http://dx.doi.org/10.1016/j.jss.
2009.12.009. http://www.sciencedirect.com/science/article/pii/S0164121209003161 [Soft-
ware Architecture and Mobility]

6. Ali, N., Chen, F., Solis, C.: Modeling support for mobile ambients in service oriented
architecture. In: IEEE First International Conference on Mobile Services (MS), 2012, pp.
1–8 (2012). doi:10.1109/MobServ.2012.18

7. Alpár, G., Hoepman, J.H., Siljee, J.: The identity crisis, security, privacy and usability issues
in identity management. CoRR abs/1101.0427 (2011)

8. Alrodhan, W., Mitchell, C.: Addressing privacy issues in cardspace. In: Third International
Symposium on Information Assurance and Security, 2007. IAS 2007, pp. 285–291 (2007).
doi:10.1109/IAS.2007.12

9. Altenhofen, M., Börger, E., Lemcke, J.: An abstract model for process mediation. In: Pro-
ceedings of the 7th International Conference on Formal Methods and Software Engineering,
ICFEM’05, pp. 81–95. Springer, Berlin/Heidelberg (2005). doi:10.1007/11576280_7. http://
dx.doi.org/10.1007/11576280_7

10. Amazon Web Services: Amazon elastic compute cloud (amazon ec2). http://aws.amazon.
com/ec2/ (2014)

11. Apache Software Foundation: Apache directory. http://directory.apache.org/apacheds/ (2013)
12. Apache Software Foundation: Apache tomcat. http://tomcat.apache.org/ (2013)

https://deviceatlas.com/
https://deviceatlas.com/
10.1109/ICC.2009.5199363
10.1109/ICC.2009.5199363
10.1002/stvr.v19:4
10.1002/stvr.v19:4
http://dx.doi.org/10.1002/stvr.v19:4
10.1109/SEAA.2009.25
http://dx.doi.org/10.1016/j.jss.2009.12.009
http://dx.doi.org/10.1016/j.jss.2009.12.009
http://www.sciencedirect.com/science/article/pii/S0164121209003161
10.1109/MobServ.2012.18
10.1109/IAS.2007.12
10.1007/11576280_7
http://dx.doi.org/10.1007/11576280_7
http://dx.doi.org/10.1007/11576280_7
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://directory.apache.org/apacheds/
http://tomcat.apache.org/

A Formal Model of Client-Cloud Interaction 139

13. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: a way to link high-level ASM models
to low-level NuSMV specifications. In: Proceedings of the 2nd International Conference on
Abstract State Machines, Alloy, B and Z (ABZ 2010). Lecture Notes in Computer Science,
vol. 5977, pp. 61–74. Springer, Heidelberg (2010)

14. Ates., F., Irish, P., Sexton, A., Seddon, R., Farkas, A.: Modernizr: the feature detection library
for html5/css3. http://modernizr.com/ (2013)

15. Azure, M.: Azure: Microsoft’s cloud platform. https://azure.microsoft.com/ (2014)
16. Barnett, M., Schulte, W., Tillmann, N.: Using asml for runtime verification. In: Börger,

E., Gargantini, A., Riccobene, E. (eds.) Abstract State Machines 2003. Lecture Notes in
Computer Science, vol. 2589, pp. 407–407. Springer, Berlin/Heidelberg (2003). doi:10.1007/
3-540-36498-6_24. http://dx.doi.org/10.1007/3-540-36498-6_24

17. Beste, F.: The model prover: a sequent-calculus based modal �-calculus model checker
tool for finite control �-calculus agents. Master’s thesis, Department of Computer Science,
Uppsala University (1998). ftp://ftp.docs.uu.se/pub/mwb/x4.ps.gz

18. Binemann-Zdanowicz, A., Thalheim, B.: Modeling information services on the basis of ASM
semantics. In: Proceedings of the Abstract State Machines 10th International Conference on
Advances in Theory and Practice, ASM’03, pp. 408–410. Springer, Berlin/Heidelberg (2003).
http://dl.acm.org/citation.cfm?id=1754749.1754777

19. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM Trans.
Comput. Logic 4, 578–651 (2003). doi:http://doi.acm.org/10.1145/937555.937561. http://
doi.acm.org/10.1145/937555.937561

20. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms: correction and
extension. ACM Trans. Comput. Logic 9, 19:1–19:32 (2008). doi:http://doi.acm.org/10.1145/
1352582.1352587. http://doi.acm.org/10.1145/1352582.1352587

21. Bolis, F., Gargantini, A., Guarnieri, M., Magri, E., Musto, L.: Model-driven testing for web
applications using abstract state machines. In: Grossniklaus, M., Wimmer, M. (eds.) Current
Trends in Web Engineering. Lecture Notes in Computer Science, vol. 7703, pp. 71–78.
Springer, Berlin/Heidelberg (2012). doi:10.1007/978-3-642-35623-0_7. http://dx.doi.org/10.
1007/978-3-642-35623-0_7

22. Börger, E.: The asm refinement method. Form. Asp. Comput. 15(2–3), 237–257 (2003).
doi:10.1007/s00165-003-0012-7. http://dx.doi.org/10.1007/s00165-003-0012-7

23. Börger, E.: Construction and analysis of ground models and their refinements as a foundation
for validating computer based systems. Form. Asp. Comput. 19(2), 225–241 (2007). doi:10.
1007/s00165-006-0019-y. http://dx.doi.org/10.1007/s00165-006-0019-y

24. Börger, E., Rosenzweig, D.: The wam—definition and compiler correctness. In: Beierle, C.,
Plümer, L. (eds.) Logic Programming: Formal Methods and Practical Applications. Studies in
Computer Science and Artificial Intelligence, vol. 11, pp. 20–90. North-Holland, Amsterdam
(1995)

25. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer, New York (2003)

26. Börger, E., Cisternino, A., Gervasi, V.: Ambient abstract state machines with applications. J.
Comput. Syst. Sci. (Special Issue in honor of Amir Pnueli) 78(3), 939–959 (2012). doi:10.
1016/j.jcss.2011.08.004. http://dx.doi.org/10.1016/j.jcss.2011.08.004

27. Börger, E., Cisternino, A., Gervasi, V.: Contribution to a rigorous analysis of web application
frameworks. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) Integrated Formal
Methods. Lecture Notes in Computer Science, vol. 7321, pp. 1–20. Springer, Berlin/
Heidelberg (2012). doi:10.1007/978-3-642-30729-4_1. http://dx.doi.org/10.1007/978-3-
642-30729-4_1

28. Bósa, K.: A formal model of a cloud service architecture in terms of ambient asm. Technical
report, Christian Doppler Laboratory for Client-Centric Cloud Computing (CDCC), Johannes
Kepler University Linz, Hagenberg (2012)

http://modernizr.com/
https://azure.microsoft.com/
10.1007/3-540-36498-6_24
10.1007/3-540-36498-6_24
http://dx.doi.org/10.1007/3-540-36498-6_24
ftp://ftp.docs.uu.se/pub/mwb/x4.ps.gz
http://dl.acm.org/citation.cfm?id=1754749.1754777
http://doi.acm.org/10.1145/937555.937561
http://doi.acm.org/10.1145/937555.937561
http://doi.acm.org/10.1145/937555.937561
http://doi.acm.org/10.1145/1352582.1352587
http://doi.acm.org/10.1145/1352582.1352587
http://doi.acm.org/10.1145/1352582.1352587
10.1007/978-3-642-35623-0_7
http://dx.doi.org/10.1007/978-3-642-35623-0_7
http://dx.doi.org/10.1007/978-3-642-35623-0_7
10.1007/s00165-003-0012-7
http://dx.doi.org/10.1007/s00165-003-0012-7
10.1007/s00165-006-0019-y
10.1007/s00165-006-0019-y
http://dx.doi.org/10.1007/s00165-006-0019-y
10.1016/j.jcss.2011.08.004
10.1016/j.jcss.2011.08.004
http://dx.doi.org/10.1016/j.jcss.2011.08.004
10.1007/978-3-642-30729-4_1
http://dx.doi.org/10.1007/978-3-642-30729-4_1
http://dx.doi.org/10.1007/978-3-642-30729-4_1

140 K. Bósa et al.

29. Bósa, K.: An ambient asm model for client-to-client interaction via cloud computing. In: Pro-
ceedings of the 8th International Conference on Software and Data Technologies (ICSOFT),
Reykjavik, Iceland, pp. 459–470. SciTePress (2013). doi:10.5220/0004490904590470. http://
www.icsoft.org/. (Best Paper Award)

30. Bósa, K.: An Ambient ASM Model for Cloud Architectures. Acta Cybernetica (2014).
Submitted

31. Bósa, K.: Formal modeling of mobile computing systems based on ambient abstract state
machines. Semant. Data Knowl. Bases 7693, 18–49 (2013). doi:10.1007/978-3-642-36008-
4_2. http://dx.doi.org/10.1007/978-3-642-36008-4_2

32. Boudol, G., Castellani, I., Hennessy, M., Kiehn, A.: A theory of processes with localities.
Form. Asp. Comput. 6, 165–200 (1994). doi:10.1007/BF01221098. http://dx.doi.org/10.1007/
BF01221098

33. Brandtzaeg, E., Parastoo, M., Mosser, S.: Towards a domain-specific language to deploy
applications in the clouds. In: Cloud Computing 2012: 3rd International Conference on Cloud
Computing, Grids, and Virtualization, pp. 213–218. IARIA (2012)

34. Brunette, G., Mogull, R.: Security guidance for critical areas of focus in cloud computing V2.
1. http://goo.gl/PxAeP (2009)

35. Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Inf. Comput. 186(2), 194–235
(2003)

36. Cameron, K., Posch, R., Rannenberg, K.: Proposal for a common identity framework: a user-
centric identity metasystem. http://goo.gl/3q2sF (2008)

37. Cardelli, L.: Mobility and security. In: Bauer, F.L., Steinbrüggen, R. (eds.) Foundations of
Secure Computation Proceedings of the NATO Advanced Study Institute. Lecture Notes for
Marktoberdorf Summer School 1999 (A summary of several Ambient Calculus papers), pp.
3–37. IOS Press, Amsterdam (1999)

38. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)
39. Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients. In: In

POPL ’00: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 365–377. ACM (2000)

40. Castillo, G.: The asm workbench: a tool environment for computer-aided analysis and
validation of abstract state machine models. In: Margaria, T., Yi, W. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer
Science, vol. 2031, pp. 578–581. Springer, Berlin/Heidelberg (2001). doi:10.1007/3-540-
45319-9_40. http://dx.doi.org/10.1007/3-540-45319-9_40

41. Charatonik, W., Gordon, A., Talbot, J.M.: Finite-control mobile ambients. In: Métayer, D.L.
(ed.) Programming Languages and Systems. Lecture Notes in Computer Science, vol. 2305,
pp. 295–313. Springer, Berlin/Heidelberg (2002). doi:10.1007/3-540-45927-8_21. http://dx.
doi.org/10.1007/3-540-45927-8_21

42. Chauvel, F., Ferry, N., Morin, B., Rossini, A., Solberg, A.: Models@Runtime to support
the iterative and continuous design of autonomous reasoners. In: Bencomo, N., France, R.,
Götz, S., Rumpe, B. (eds.) MRT 2013: 8th International Workshop on Models@run.time at
MODELS 2013: ACM/IEEE 14th International Conference on Model Driven Engineering
Languages and Systems. CEUR Workshop Proceedings (2013)

43. Chelemen, R.M.: Modeling a web application for cloud content adaptation with asms. In:
International Conference on Cloud Computing and Big Data (CloudCom-Asia), 2013, pp.
44–51 (2013). doi:10.1109/CLOUDCOM-ASIA.2013.76

44. Chipperfield, R.: An introduction to cross-platform mobile development technologies.
http://www.codeproject.com/Articles/388811/An-introduction-to-cross-platform-mobile-
developme (2012)

45. Christian-Albrechts-Universität zu Kiel: Visual programming of databases - visual sql. http://
www.informatik.uni-kiel.de/en/is/miscellaneous/visualsql (2008)

46. Cloud Security Alliance: Top threats to cloud computing. http://goo.gl/wLd7m (2010)
47. Cremin, R.: Mobile web content adaptation techniques. http://mobiforge.com/starting/story/

mobile-web-content-adaptation-techniques (2011)

10.5220/0004490904590470
http://www.icsoft.org/
http://www.icsoft.org/
10.1007/978-3-642-36008-4_2
10.1007/978-3-642-36008-4_2
http://dx.doi.org/10.1007/978-3-642-36008-4_2
http://dx.doi.org/10.1007/BF01221098
http://dx.doi.org/10.1007/BF01221098
http://goo.gl/PxAeP
http://goo.gl/3q2sF
10.1007/3-540-45319-9_40
10.1007/3-540-45319-9_40
http://dx.doi.org/10.1007/3-540-45319-9_40
10.1007/3-540-45927-8_21
http://dx.doi.org/10.1007/3-540-45927-8_21
http://dx.doi.org/10.1007/3-540-45927-8_21
10.1109/CLOUDCOM-ASIA.2013.76
http://www.codeproject.com/Articles/388811/An-introduction-to-cross-platform-mobile-developme
http://www.codeproject.com/Articles/388811/An-introduction-to-cross-platform-mobile-developme
http://www.informatik.uni-kiel.de/en/is/miscellaneous/visualsql
http://www.informatik.uni-kiel.de/en/is/miscellaneous/visualsql
http://goo.gl/wLd7m
http://mobiforge.com/starting/story/mobile-web-content-adaptation-techniques
http://mobiforge.com/starting/story/mobile-web-content-adaptation-techniques

A Formal Model of Client-Cloud Interaction 141

48. Cremin, R., Passani, L.: Server-side device detection: history, benefits and how-to. http://
mobile.smashingmagazine.com/2012/09/24/server-side-device-detection-history-benefits-
how-to/ (2012)

49. Dam, M.: Model checking mobile processes. In: Best, E. (ed.) CONCUR’93, 4th International
Conference on Concurrency Theory. Lecture Notes in Computer Science, vol. 715, pp. 22–36.
Swedish Institute of Computer Science/Springer, Kista/Berlin/Heidelberg (1993). Full
version in Research Report R94:01

50. Dhamija, R., Dusseault, L.: The seven flaws of identity management: usability and security
challenges. IEEE Secur. Priv. 6(2), 24 –29 (2008). doi:10.1109/MSP.2008.49

51. Dold, A.: A formal representation of abstract state machines using pvs. Technical report,
University Ulm (1998)

52. ENISA: Cloud computing. benefits, risks and recommendations for information security.
Technical report, The European Network and Information Security Agency. http://www.enisa.
europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment
(2009)

53. Farahbod, R., Glässer, U., Ma, G.: Model checking coreasm specifications. In: Proceedings
of the 14th International Abstract State Machines Workshop (ASM’07) (2007)

54. Gargantini, A., Riccobene, E.: Encoding abstract state machines in pvs. In: Gurevich, Y.,
Kutter, P., Odersky, M., Thiele, L. (eds.) Abstract State Machines: Theory and Applications.
Lecture Notes in Computer Science, vol. 1912, pp. 303–322. Springer, Heidelberg (2000)

55. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a simulation
engine for abstract state machines. J. Univers. Comput. Sci. 14(12), 1949–1983 (2008)

56. Gervasi, V.: An asm model of concurrency in a web browser. In: Derrick, J., Fitzgerald,
J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) Abstract State
Machines, Alloy, B, VDM, and Z. Lecture Notes in Computer Science, vol. 7316, pp. 79–93.
Springer, Berlin/Heidelberg (2012). doi:10.1007/978-3-642-30885-7_6. http://dx.doi.org/10.
1007/978-3-642-30885-7_6

57. Google: Google apps for business. http://www.google.com/enterprise/apps/business/ (2014)
58. Google Chrome: What are extensions?. http://developer.chrome.com/extensions/index.html

(2013)
59. Google Developers: Google web toolkit. https://developers.google.com/web-toolkit/ (2013)
60. Google Developers: Google app engine: platform as a service . https://developers.google.com/

appengine/ (2014)
61. Gordon, A.D., Cardelli, L.: Equational properties of mobile ambients. Math. Struct. Comp.

Sci. 13, 371–408 (2003). doi:10.1017/S0960129502003742. http://dl.acm.org/citation.cfm?
id=966815.966816

62. Grigsby, J.: Responsive design for apps. http://blog.cloudfour.com/responsive-design-for-
apps-part-1/ (2013)

63. Gunjan, K., Sahoo, G., Tiwari, R.K.: Identity management in cloud computing - a review. Int.
J. Bus. Forecast. Market. Intell. 1(4) (2012). http://www.ijert.org

64. Gurevich, Y.: Evolving algebra 1993: Lipari guide. In: International Conference on Functional
Programming, pp. 9–36. Oxford University Press, New York (1994)

65. Gurevich, Y.: Sequential abstract state machines capture sequential algorithms. ACM Trans.
Comput. Logic 1, 77–111 (2000). doi:http://doi.acm.org/10.1145/343369.343384. http://doi.
acm.org/10.1145/343369.343384

66. Jaakkola, H., Thalheim, B.: Visual SQL – high-quality ER-based query treatment. In:
Jeusfeld, M.A., Pastor, O. (eds.) Conceptual modeling for novel application domains. In:
Proceedings of ER 2003 Workshops ECOMO, IWCMQ, AOIS, and XSDM, Chicago, IL,
13 October 2003. Lecture Notes in Computer Science, vol. 2814, pp. 129–139. Springer,
Heidelberg (2003)

67. Jarraya, Y., Eghtesadi, A., Debbabi, M., Zhang, Y., Pourzandi, M.: Cloud calculus: security
verification in elastic cloud computing platform. In: Smari, W.W., Fox, G.C. (eds.)
CTS, pp. 447–454. IEEE, Denver (2012). http://dblp.uni-trier.de/db/conf/cts/cts2012.html#
JarrayaEDZP12

http://mobile.smashingmagazine.com/2012/09/24/server-side-device-detection-history-benefits-how-to/
http://mobile.smashingmagazine.com/2012/09/24/server-side-device-detection-history-benefits-how-to/
http://mobile.smashingmagazine.com/2012/09/24/server-side-device-detection-history-benefits-how-to/
10.1109/MSP.2008.49
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment
10.1007/978-3-642-30885-7_6
http://dx.doi.org/10.1007/978-3-642-30885-7_6
http://dx.doi.org/10.1007/978-3-642-30885-7_6
http://www.google.com/enterprise/apps/business/
http://developer.chrome.com/extensions/index.html
https://developers.google.com/web-toolkit/
https://developers.google.com/appengine/
https://developers.google.com/appengine/
10.1017/S0960129502003742
http://dl.acm.org/citation.cfm?id=966815.966816
http://dl.acm.org/citation.cfm?id=966815.966816
http://blog.cloudfour.com/responsive-design-for-apps-part-1/
http://blog.cloudfour.com/responsive-design-for-apps-part-1/
http://www.ijert.org
http://doi.acm.org/10.1145/343369.343384
http://doi.acm.org/10.1145/343369.343384
http://doi.acm.org/10.1145/343369.343384
http://dblp.uni-trier.de/db/conf/cts/cts2012.html#JarrayaEDZP12
http://dblp.uni-trier.de/db/conf/cts/cts2012.html#JarrayaEDZP12

142 K. Bósa et al.

68. Juric, M.B.: Business Process Execution Language for Web Services BPEL and BPEL4WS,
2nd edn. Packt Publishing, Birmingham (2006)

69. Kappel, G.: Chapter I: Web applications. University Lecture. http://is.uni-paderborn.de/
fileadmin/Informatik/AG-Engels/Lehre/WS1213/WE/slides/WE-2012-01.pdf (2012)

70. Kozen, D.: Kleene algebra with tests. Trans. Program. Lang. Syst. 19(3), 427–443 (1997)
71. Kumar, V., Kumar, A.: Client device based content adaptation using rule base. J. Comput. Sci.

7(12), 1908–1913 (2011)
72. LastPass: Lastpass—the last password you have to remember. https://lastpass.com/ (2013)
73. Loke, S.W., Krishnaswamy, S., Naing, T.T.: Service domains for ambient services: concept

and experimentation. Mob. Netw. Appl. 10(4), 395–404 (2005). http://dl.acm.org/citation.
cfm?id=1160162.1160165

74. Louridas, P.: Orchestrating web services with BPEL. IEEE Softw. 25(2), 85–87 (2008). http://
doi.ieeecomputersociety.org/10.1109/MS.2008.42

75. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: Abstract state services. In: Object-Oriented
and Entity-Relationship Modelling/International Conference on Conceptual Modeling/The
Entity Relationship Approach, pp. 406–415 (2008). doi:10.1007/978-3-540-87991-6_48

76. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: Composing personalised services on top of
abstract state services. In: Delcambre, L., Kaschek, R.H., Mayr, H.C. (eds.) The Evolution
of Conceptual Modeling, no. 08181 in Dagstuhl Seminar Proceedings. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Dagstuhl (2008). http://drops.dagstuhl.de/opus/volltexte/
2008/1597

77. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A theory of data-intensive software services.
Serv. Orient. Comput. Appl. 3(4), 263–283 (2009)

78. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A formal model for the interoperabil-
ity of service clouds. Service Oriented Computing and Applications 6(3), 189–205
(2012). doi:10.1007/s11761-012-0101-7. http://cdcc.faw.jku.at/publications/kdschewe/
schewe2012FMCloud.pdf

79. Mather, T., Kumaraswamy, S., Latif, S.: Cloud Security and Privacy: An Enterprise Perspec-
tive on Risks and Compliance. O’Reilly Media, Inc., Sebastopol (2009)

80. Mell, P., Grance, T.: The nist definition of cloud computing. http://csrc.nist.gov/publications/
nistpubs/800-145/SP800-145.pdf (2011)

81. Microsoft: Office 365. http://office.microsoft.com/en-us/ (2014)
82. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II. Inform. Com-

put. 100(1), 1–77 (1992). doi:10.1016/0890-5401(92)90008-4. http://dx.doi.org/10.1016/
0890-5401(92)90008-4

83. Nida, P., Dhiman, H., Hussain, S.: A survey on identity and access management in cloud
computing. Int. J. Eng. Res. Technol. 3(4) (2014). http://www.ijert.org/

84. Novell: Ldap classes for java. http://www.novell.com/developer/ndk/ldap_classes_for_java.
html (2013)

85. Offutt, J.: Web software applications quality attributes. In: Quality Engineering in Software
Technology (CONQUEST 2002), pp. 187–198 (2002). http://www.cs.gmu.edu/~offutt/rsrch/
papers/conquest02.pdf

86. OpenDDR LLC: Openddr - the best open and completely free device description repository
with access apis available worldwide. http://www.openddr.org/ (2013)

87. Oppliger, R., Gajek, S., Hauser, R.: Security of microsoft’s identity metasystem and
cardspace. In: ITG-GI Conference Communication in Distributed Systems (KiVS), pp. 1–12
(2007)

88. Prodromou, E.: Openid privacy concerns. http://goo.gl/WIDYx (2007)
89. Pusch, C.: Verification of compiler correctness for the wam. In: von Wright, J., Grundy, J.,

Harrison, J. (eds.) Theorem Proving in Higher Order Logics (TPHOLs’96). Lecture Notes in
Computer Science, vol. 1125, pp. 347–362. Springer, Berlin (1996)

90. Reichl, D.: Keepass password safe. http://www.keepass.info/contact.html (2013)

http://is.uni-paderborn.de/fileadmin/Informatik/AG-Engels/Lehre/WS1213/WE/slides/WE-2012-01.pdf
http://is.uni-paderborn.de/fileadmin/Informatik/AG-Engels/Lehre/WS1213/WE/slides/WE-2012-01.pdf
https://lastpass.com/
http://dl.acm.org/citation.cfm?id=1160162.1160165
http://dl.acm.org/citation.cfm?id=1160162.1160165
http://doi.ieeecomputersociety.org/10.1109/MS.2008.42
http://doi.ieeecomputersociety.org/10.1109/MS.2008.42
10.1007/978-3-540-87991-6_48
http://drops.dagstuhl.de/opus/volltexte/2008/1597
http://drops.dagstuhl.de/opus/volltexte/2008/1597
10.1007/s11761-012-0101-7
http://cdcc.faw.jku.at/publications/kdschewe/schewe2012FMCloud.pdf
http://cdcc.faw.jku.at/publications/kdschewe/schewe2012FMCloud.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://office.microsoft.com/en-us/
10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://www.ijert.org/
http://www.novell.com/developer/ndk/ldap_classes_for_java.html
http://www.novell.com/developer/ndk/ldap_classes_for_java.html
http://www.cs.gmu.edu/~offutt/rsrch/papers/conquest02.pdf
http://www.cs.gmu.edu/~offutt/rsrch/papers/conquest02.pdf
http://www.openddr.org/
http://goo.gl/WIDYx
http://www.keepass.info/contact.html

A Formal Model of Client-Cloud Interaction 143

91. Reiger, B., Rieger, S.: Adaptation: why responsive design actually begins on the
server. http://www.slideshare.net/yiibu/adaptation-why-responsive-design-actually-begins-
on-the-server (2012)

92. Schechter, S., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new security indicators.
In: IEEE Symposium on Security and Privacy, 2007. SP ’07, pp. 51–65 (2007). doi:10.1109/
SP.2007.35

93. Schellhorn, G.: Verifikation Abstrakter Zustandsmaschinen. Ph.D. thesis, University Ulm
(1999)

94. Schewe, K.D., Thalheim, B.: Reasoning about web information systems using story algebras.
In: Advances in Databases and Information Systems, ADBIS, pp. 54–66 (2004)

95. Schewe, K.D., Thalheim, B.: Conceptual modelling of web information systems. Data Knowl.
Eng. 54(2), 147–188 (2005)

96. Schewe, K.D., Thalheim, B.: Personalisation of web information systems: a term rewriting
approach. Data Knowl. Eng. 62(1), 101–117 (2007). doi:DOI:10.1016/j.datak.2006.07.007.
http://www.sciencedirect.com/science/article/pii/S0169023X06001406

97. Schewe, K.D., Thalheim, B.: Term rewriting for web information systems: termination
and Church-Rosser property. In: Proceedings of the 8th International Conference on
Web Information Systems Engineering, WISE’07, pp. 261–272. Springer, Berlin/Heidelberg
(2007). http://dl.acm.org/citation.cfm?id=1781374.1781404

98. Schewe, K.D., Wang, Q.: A customised ASM thesis for database transformations. Acta
Cybern. 19(4), 765–805 (2010). http://dl.acm.org/citation.cfm?id=1945572.1945579

99. Schewe, K.D., Bosa, K., Lampesberger, H., Ma, J., Rady, M., Vleju, B.: Challenges in cloud
computing. Scal. Comput. Pract. Exp. 12(4), 385–390 (2011)

100. ScientiaMobile, Inc: Wurfl - mobile device database by scientiamobile. http://wurfl.
sourceforge.net/ (2013)

101. Sermersheim, J.: Lightweight directory access protocol (ldap): the protocol. RFC. http://tools.
ietf.org/html/rfc4511 (2006)

102. Service Oriented Architecture Modeling Language (SoaML): Specification for the UML
Profile and Metamodel for Services (UPMS) Revised Submission. OMG document: ptc/2009-
04-01 (2009)

103. Shaarawy, M.: Cloudification of visual sql. Master’s thesis, Johannes Kepler University Linz
(2013)

104. Song, H., Compton, K.J.: Verifying �-calculus processes by promela translation. Technical
report, Department of Electrical Engineering and Computer Science University of Michigan,
Ann Arbor (2003)

105. Spielmann, M.: Abstract state machines: verification problems and complexity. Ph.D. thesis,
RWTH Aachen (2000)

106. Spielmann, M.: Model checking abstract state machines and beyond. In: Proceedings of the
International Workshop on Abstract State Machines, Theory and Applications, ASM ’00, pp.
323–340. Springer, London (2000). http://dl.acm.org/citation.cfm?id=647752.734545

107. Stärk, R.F., Nanchen, S.: A logic for abstract state machines. J. Univers. Comput. Sci. 7(11),
980–1005 (2001)

108. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition, Verification,
Validation. Springer, Heidelberg (2001)

109. Sturrus, E.: Identity and access management in a cloud computing environment. Master’s
thesis, Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam
(2011). http://thesis.eur.nl/pub/10422/MA-5%20IENE%20Sturrus_294763.pdf

110. Tanaka, Y.: Meme Media and Meme Market Architectures: Knowledge Media for Editing,
Distributing, and Managing Intellectual Resources. Wiley, New York (2003). http://books.
google.at/books?id=tezm83Wiqv8C

111. Thalheim, B.: Visual SQL: towards ER-based object-relational database querying. In:
Proceedings of the 27th International Conference on Conceptual Modeling, ER ’08, pp. 520–
521. Springer, Berlin/Heidelberg (2008). doi:10.1007/978-3-540-87877-3_41. http://dx.doi.
org/10.1007/978-3-540-87877-3_41

http://www.slideshare.net/yiibu/adaptation-why-responsive-design-actually-begins-on-the-server
http://www.slideshare.net/yiibu/adaptation-why-responsive-design-actually-begins-on-the-server
10.1109/SP.2007.35
10.1109/SP.2007.35
DOI: 10.1016/j.datak.2006.07.007
http://www.sciencedirect.com/science/article/pii/S0169023X06001406
http://dl.acm.org/citation.cfm?id=1781374.1781404
http://dl.acm.org/citation.cfm?id=1945572.1945579
http://wurfl.sourceforge.net/
http://wurfl.sourceforge.net/
http://tools.ietf.org/html/rfc4511
http://tools.ietf.org/html/rfc4511
http://dl.acm.org/citation.cfm?id=647752.734545
http://thesis.eur.nl/pub/10422/MA-5%20IENE%20Sturrus_294763.pdf
http://books.google.at/books?id=tezm83Wiqv8C
http://books.google.at/books?id=tezm83Wiqv8C
10.1007/978-3-540-87877-3_41
http://dx.doi.org/10.1007/978-3-540-87877-3_41
http://dx.doi.org/10.1007/978-3-540-87877-3_41

144 K. Bósa et al.

112. The Open Group Identity Management Work Area: Identity management. http://goo.gl/ssPTu
(2004)

113. Valente, M., Bigonha, R., Loureiro, A., Maia, M.: Abstractions for mobile computation in
ASM. In: Graham, P., Maheswaran, M. (eds.) Proceedings of the International Conference on
Internet Computing, IC 2000, 26–29 June, pp. 165–172. CSREA Press, Las Vegas (2000)

114. Venters, W., Whitley, E.A.: A critical review of cloud computing: researching desires and
realities. J. Inf. Tech. 27(3), 179–197 (2012)

115. Vleju, M.B.: A client-centric asm-based approach to identity management in cloud comput-
ing. In: Advances in Conceptual Modeling. Lecture Notes in Computer Science, vol. 7518,
pp. 34–43. Springer, Berlin/Heidelberg (2012). doi:10.1007/978-3-642-33999-8_5. http://dx.
doi.org/10.1007/978-3-642-33999-8_5

116. Vleju, M.B.: A client-centric identity management tool for small and medium enterprises
using cloud services. In: 4th Workshop on Software Services, pp. 15–19. Bled, Slovenia
(2012). http://www.cloudconference.eu/

117. Vleju, M.B.: Interaction of the idmm with a client-side identity management component.
Technical report, Christian Doppler Laboratory for Client-Centric Cloud Computing (CDCC),
Johannes Kepler University Linz, Hagenberg (2012)

118. Vleju, M.B.: IdMM demo. http://youtu.be/DoM36D0ydkA (2013)
119. Vleju, M.B.: A practical implementation of a client-centric identity management tool for

cloud computing. In: EUROCAST-Computer Aided Systems Theory, Gran Canaria (2013)
120. Vleju, M.B.: Automatic authentication to cloud-based services. J. Univers. Comput. Sci.

20(3), 385–405 (2014). http://www.jucs.org/jucs_20_3/automatic_authentication_to_cloud
121. Winter, K.: Model checking for abstract state machines. Ph.D. thesis, Technical University of

Berlin (2001)
122. Yaghoubi Shahir, H., Farahbod, R., Glässer, U.: Refactoring abstract state machine models.

In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E.
(eds.) Abstract State Machines, Alloy, B, VDM, and Z. Lecture Notes in Computer Science,
vol. 7316, pp. 345–348. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30885-7_28.
http://dx.doi.org/10.1007/978-3-642-30885-7_28

123. Yang, S.H., Zhang, J., Huang, A., Tsai, J.P., Yu, P.: A context-driven content adaptation
planner for improving mobile internet accessibility. In: IEEE International Conference
on Web Services, 2008. ICWS ’08, pp. 88–95 (2008). doi:10.1109/ICWS.2008.31. http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4670163

124. Zhang, Y., Chen, J.L.: Universal identity management model based on anonymous credentials.
In: IEEE International Conference on Services Computing (SCC), pp. 305–312 (2010).
doi:10.1109/SCC.2010.46

125. Zhang, X., Li, X., Luo, W.: Aka protocol and its formal analysis and verification using
ambient calculus and logics. In: International Conference on Networking and Digital Society,
vol. 1, pp. 194–197 (2009). doi:http://doi.ieeecomputersociety.org/10.1109/ICNDS.2009.54

http://goo.gl/ssPTu
10.1007/978-3-642-33999-8_5
http://dx.doi.org/10.1007/978-3-642-33999-8_5
http://dx.doi.org/10.1007/978-3-642-33999-8_5
http://www.cloudconference.eu/
http://youtu.be/DoM36D0ydkA
http://www.jucs.org/jucs_20_3/automatic_authentication_to_cloud
10.1007/978-3-642-30885-7_28
http://dx.doi.org/10.1007/978-3-642-30885-7_28
10.1109/ICWS.2008.31
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4670163
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4670163
10.1109/SCC.2010.46
http://doi.ieeecomputersociety.org/10.1109/ICNDS.2009.54

W�H: The Conceptual Model for Services

Ajantha Dahanayake and Bernhard Thalheim

Abstract Services as an emerging paradigm in modern information technology
(IT) infrastructures underwent the first hype for service-oriented computing caused
by Web services and the second hype by IT market pressures on large corporations
(e.g. SAP), leading to standardisations incorporating logical-level specifications
leaving much of the low-level details unaccounted for.

The conception of a service needs a conceptual reflection. However, the service
notation lacks a conceptual model. This gap is caused by the variety of aspects that
must be reflected, such as the handling of the services as a collection of offerings, a
proper annotation facility beyond ontologies, a tool to describe the service concept
and the specification of the added value of a business user. Those requirements must
be handled at the same time. Therefore, this chapter contributes to the development
of a conceptual model of a service through a specification framework W�H and
through an embedding framework to the concept-content-annotation triptych and
Hermagoras of Temnos inquiry frames.

1 Introduction

The promise of a service as a design artifact for innovation, design and evolution
in the information systems domain has not yet lived up to expectations. It is still a
concept debated for gauging its value in terms of usefulness, usage and usability as
an IT artifact. Research has looked into the service mainly from two perspectives,
(a) from the low-level technological point of view and (b) from the higher abstract
business point of view. Unfortunately, both perspectives add up to the confusion
leaving unanswered: what is really a service description model, where does it belong

A. Dahanayake (�)
Department of Computer Information Science, Prince Sultan University, Riyadh, Kingdom
of Saudi Arabia
e-mail: adahanayake@pscw.psu.edu.sa

B. Thalheim
Department of Computer Science, Christian Albrechts University Kiel, 24098 Kiel, Germany
e-mail: thalheim@is.informatik.uni-kiel.de

© Springer International Publishing Switzerland 2015
B. Thalheim et al. (eds.), Correct Software in Web Applications and Web Services,
Texts & Monographs in Symbolic Computation,
DOI 10.1007/978-3-319-17112-8_5

145

mailto:adahanayake@pscw.psu.edu.sa
mailto:thalheim@is.informatik.uni-kiel.de

146 A. Dahanayake and B. Thalheim

to and what is the main purpose or added value of following a service-centred design
approach?

In order to close this gap between main service design initiatives and their
abstraction level interpretations, we propose an inquiry-based conceptual model
for service systems designing. The W�H model closes the gap created so far by
technology- and business-level service models. It streamlines the communication
through an inquiry-based service systems modelling approach. The W�H model
bases its foundation on an inquiry structure that provides the designer with a
model to formulate right questions for completeness, simplicity and correctness into
service systems innovation, design and development. We introduce the W�H model
as the conceptual model for service systems conception, designing and innovation.

1.1 The Service Concept

The field of information systems (IS) has shifted towards advanced and cross-
disciplinary IT systems design and development referred to as service systems
engineering [26]. For example, medical, environmental, disaster recovery, life
science, etc., are such domains that largely invest on advanced cross-disciplinary
systems embracing the notion of service to enhance situation-specific needs through
IT (service) systems.

Following this trend, more and more organisations define, develop and deploy
cross-disciplinary service systems, making those resulting applications available
for end users to combine those into end-user situational services in ways that the
developers may have not originally planned or intended [12]. The implication of
this shift is that those service systems are then subject to evaluations of systems
functioning based on its trustworthiness, flexibility to change and efficient man-
ageability and maintainability. Therefore, today’s systems development endeavours
demand their developers to understand the systems functioning within its domain
of usage and its service [6]. The service has gained ground and recognition as the
more realistic concept for dealing with complexities of cross-disciplinary systems
engineering extending beyond the classical information systems development realm.

The first hype for service-oriented computing has been caused by Web services.
This led to standardisation efforts that targeted the logical level of specification. It
has been realised that the huge manifold in preferred approaches led to a mixture of
inconsistent, incomprehensible and not integrate-able approaches [12]. The second
hype for service-oriented computing came with the pressure from the IT market,
especially for large corporations such as SAP. Again, specification is done at the
logical level with many low-level details that cannot be incorporated [12].

Service science is an initiative of IBM [14] that launched the emerging academic
field for studying service systems to discover underlying principles that can
guide the innovation, design and development of service systems. As a distinct
interdisciplinary field, it searches for an ideology and a unifying paradigm [27].

W�H: The Conceptual Model for Services 147

1.2 Levels of Abstractions

The service is being defined using different abstraction models with varying
applications representing a multitude of definitions of the service concept [10]. The
increasing interests in services have introduced service concept’s abstraction into
levels such as business services, Web services, software as a service (SaaS), platform
as a service (Paas) and infrastructure as a service (Iaas) [4].

Service architectures are proposed as means to methodically structure systems
[3, 7, 28]. The service delivery discussions in research have mainly concentrated
on the relationship between an economic activity of increasing the business value
and technology as a means, in this case, Web services to deliver effective and
efficient services. As a consequence, the economic activity that supports a business
process is defined as a business service and the Web service design, development
and orchestration as the identification of the right services and organisation of a
manageable hierarchy of composite services for choreographing in supporting a
business process [20].

However, the service delivery has paid no attention to the innovation, design
and development of a service as an IT artifact [10]. The researches that have used
the concept of service in IT artifact innovation, design and development named
it an information service [28] and have moved on to the innovation, design and
development of a conceptual model of an IT artifact taking a standard design and
development point of view and not a service-centred conceptual model.

Although services are developed, used, applied and intensively discussed in
practice, the service concept does not have a conceptual model or a description
that guides the innovation, design and development of a service. Furthermore,
the relevance of a service to the organisational environment must be explicitly
specified [6].

1.3 IT Service Systems

There is a substantial subset of service systems that can be described as “information
intensive”, and it is desirable to take a more abstract view of service contexts
that highlight what person-to-person, self-service and automated or computational
services have in common rather than emphasising their differences [28]. Service
systems combine and integrate the value created in different design contexts
like person-to-person encounters, technology-enabled self-service, computational
services and multichannel, multi-device and location-based and context-aware
services [27].

The IT service system view reveals the intrinsic design challenges that derive
from the nature of the information required to perform a service and emphasises
the design choices that allocate the responsibility to provide this information
between the service provider and service consumer. Taken together, the information

148 A. Dahanayake and B. Thalheim

requirements and the division of labour for satisfying them determine the nature and
intensity of the interactions in the service system. This more abstract approach that
applies to all contexts overcomes many of the limitations of design approaches that
focus more narrowly on the distinctive concerns of each context [9].

1.4 Survey on the Chapter

This chapter aims at a general notion for a conceptual model for services: A general
definition of a service seems to be rather difficult. We use however a framework
that separates concerns such as service as a product, service as an offer, service
request, service delivery, service application, service record, service log or archive
and service exception. This separation of concern allows supporting a general
characterisation of services by their ends, their stakeholders, their application
domain, their purpose and their context.

The chapter is organised as follows: Sect. 2 revisits the related works highlighting
the uniqueness of our contribution. Section 3 introduces our model approach
to services. Section 4 discusses the reflections and grounding of the conceptual
model and conceptualisation using the concept-content-annotation triptych and
embedding the added value into the service description. In Sect. 5, we summarise
the classical rhetoric frame introduced by Hermagoras of Temnos that generalises
some of the concepts found in the resource-event-agent (REA) framework. In this
manner, we are able to separate conceptual models for service specification
from conceptual models for service systems and both from the IT system
realisation. Typically, these aspects are mixed. Section 6 provides an evaluation
and discussion on W�H model, and Sect. 7 summarises the conclusions and future
research issues. Finally, in the Appendix, we illustrate the W�H specification for a
medical service system.

2 Service Models and Modelling Approaches

2.1 The REA (Resource-Event-Agent) Ontology

REA ontology’s conceptual origin lies in the traditional accounting applications
which use the double-entry bookkeeping technique for managing financial systems
where business transactions are recorded as a credit and a debit, thus a double entry.
REA ontology formulated as in the original article [18] was further articulated and
extended by others, e.g. [13]. The core concepts in the REA ontology are resources,
economic event and agent. The fundamental behind the ontology is that there are two
ways agents can increase or decrease the value of their resources: through exchange
and conversion process [13].

W�H: The Conceptual Model for Services 149

An economic resource is a valuable good, right or service that at a given point is
under the identifiable control of an economic agent. An economic resource is under
the control of an economic agent if that person owns the resources or otherwise is
able to derive economic benefit from it. If two economic agents desire to obtain
control over one or more economic resources controlled by the other agent, then
both agents may wish to engage as trading partners in an economic exchange, which
is a business transaction that transfers the control of resources between agents. A
transfer of control of a resource(s) from one agent to another agent is modelled
as an economic event in which the concerned resources are identified as stockflow
relation and agents anticipate in provider and receiver roles. Economic reciprocity
in exchanges is modelled through the duality relation between economic events and
requesting events such as payments, in which the provider and receiver roles of the
involved agents are switched.

2.2 The RSS Model

The Resource-Service-Systems (RSS) model for service systems [21] is an adap-
tation of the REA model, stressing that REA is a conceptual model of economic
exchange. It is not a model of service exchange, because of the influence of service-
dominant logic (SDL) [34] in the RSS. SDL has been proposed as the philosophical
foundation of service science for providing the right perspective, vocabulary and
assumptions to build a theory of service science, their configurations and models
of interaction [34]. SDL sees all economic activities as service exchanges between
service systems [35]. In SDL, service is a competence that exchanges for the benefit
of other service systems. In contrast to the traditional goods-dominant logic (GDL)
model, SDL sees a service as a collaborative process in which each party brings in
or makes accessible its unique resources. The RSS model serves as a generalised
model for positioning service within the resources and systems, but it does not help
in conceptualising a service at the event of innovation, design and development of a
service as an IT artifact.

2.3 The Model of the Three Perspectives of Services

The three perspectives of services—abstraction, restriction and cocreation—were
introduced as a conceptual model of service concept that views services as
perspectives on the use and offering of resources [4]. The perspectives addressed
by this conceptual model are service as a means for abstraction, service as means
for providing restricted access to resources and service as a means for cocreation
of value. It relies on the argument that in the classical manufacture economic
model, service has been defined and characterised by identifying properties such as
intangibility, inseparability, heterogeneity and perishability in the goods-dominant

150 A. Dahanayake and B. Thalheim

logic (GDL) model [35] but that there are other kinds of resources that cannot
be distinguished from those that have been identified in GDL and are seen as
problematic for services. It has been suggested to stop searching for properties of
services that uniquely define them and instead to view and investigate services as
perspectives on the use and offering of resources. This model too has its origin of
adaptation and extension in the REA model and can be categorised as a generalised
model for the service concept that comes short of identifying the distinctive nature of
service as an IT artifact for the service systems innovation, design and development.

2.4 Web Service Description Languages

Much of scientific research in service systems are being dominated by Web service
modelling and conceptualisation of structural and behaviour dependencies of Web
services [8]. These Web service modelling initiatives, e.g. [8], are seeking full-
fledged modelling languages for providing the appropriate conceptual model for
developing and describing Web services and their composition [19, 22, 36]. The Web
service domain concentrates on service-oriented architectures (SOAs), software
systems decomposed into independent units and named services that interact with
one another through message exchanges. The main goal is to promote reuse and
evolve ability, as they start at early phases as possible, describing these interactions
in the development life cycle. From standards such as Business Process Execution
Language (BPEL) [19] and Web Service Choreography Description Language
(WS-CDL) [36] to languages with purposes derived from their requirements [23]
overshadow the service systems and service concept in contrary to our motivation
of a conceptual model for a service.

In the reflections of SOA, Organization for the Advancement of Structured
Information Standards (OASIS), it is evident that services are a combination of a
technical and a social concept [17] and that most of the desired expectations in
the use of SOA-based systems are rooted in social rather than of physical ones.
The creation of value in the context of service-dominant logic in contrast to goods-
dominant logic is also paramount.

2.5 The Seven Contexts of Service Design

A description of the contexts that combine person-to-person encounters, techno-
logy-enhanced encounters, self-service, computational services and multichannel,
multi-device and location-based and context-aware services description is presented
in [17, 27]. The characteristic concerns and methods of those seven different
design contexts are represented as a unifying view spanning over the information-
intensive service systems design and modelling paradigm [9]. The focus is on the
information required to perform the service, how the responsibility to provide this

W�H: The Conceptual Model for Services 151

information is divided between the service provider and service consumer and the
patterns that govern information exchange yielding a more abstract description of
service encounters and outcomes. Thereby, it makes it easier to see the systematic
relationships among the contexts that can be exploited as design parameters or
patterns, such as the substitutability of stored or contextual information for person-
to-person interactions.

This view of the seven contexts for service design [9] reveals the intrinsic design
challenges that are inherent within the nature of the information required to perform
a service and emphasises the need of design choices that allocate the responsibility
to provide this information between the service provider and service consumer. The
information requirements and the division of labour for satisfying them determine
the nature and intensity of the interactions in the service system.

A service concept for the service design research has been identified in [10, 14,
27] as the key concept for service innovation, design and development. It describes
a service concept as a how and what a service design. It is used as a mediate between
customer needs and organisation strategic intents. While the service concept is
widely used, very little has been said in terms of service innovation, design and
development. In order to overcome many of the limitations of design approaches
that focus more narrowly on the distinctive concerns of each context, a service
description language with a more abstract approach that applies to all contexts is
required.

A service needs to integrate the social, physical and technological aspects in
order to provide a service that creates value with social effects. Therefore, in the
following sections, a general notion for a conceptual model for the service is
outlined and defined as a framework that separates concerns such as service as a
product, service as an offer, service request, service delivery, service application,
service record, service log or archive and also service exception, which allows
supporting a general characterisation of services by their ends, their stakeholders,
their application domain, their purpose and their context.

3 Models and Services

3.1 The Notion of the Model

We use the notion of the model in [32]. Any artifact can be considered to be a
model. IT services are, however, specific artifacts. These specifics must be reflected
in the notion of a service model. We introduce a general notion of a model and then
specialise this notion to IT services.

An artifact A� is implicitly based on its background consisting of a basis
(e.g. paradigms, postulates, restrictions, culture, conventions, common sense), a
grounding (e.g. concepts, foundations), some context and a community of practice.

152 A. Dahanayake and B. Thalheim

An artifact is called well formed if it satisfies a well-formedness criterion. It has
a profile. The profile is based on the goal or purpose or function of the artifact. An
artifact can be analogous to another artifact A based on some analogy criterion. It
can be simpler or more focused than A based on some complexity or focus criterion.
We call an artifact A� adequate for A if it is well formed, purposeful for the profile,
simpler than A and analogous to A.

An artifact is justified by a justification, i.e. [11] by empirical corroboration
(according to purpose, background, etc.) for the representation of an artifact A, by
rational coherence and conformity, by falsifiability and by stability and plasticity.
The artifact is sufficient by its quality characterisation for internal quality, external
quality and quality in use. The artifact A� is called dependable if it is justified and
sufficient.

An artifact A� is called model of A if it is adequate and dependable. A model
A� has its background and is going to be used within it.

The model and the artifact are functioning if there are methods for the utilisation
of the artifact in dependence on the profile of the artifact. Functioning artifacts have
their capability and capacity. Artifacts are used for application cases. These cases
are embedded into stories of model application such as description-prescription,
explanation, optimisation-variation, verification-validation-testing, reflection-
optimisation, exploration, hypothesis development, documentation-visualisation
or also substitution. We call an artifact and a model effective if it can be deployed
according to its portfolio.

3.2 The Purpose of a Service Model

IT services are artifacts. The typical purposes of a service model can be:

(a) Communication about services: The model allows to communicate among
stakeholders about existing and missing properties of the artifact, about inte-
gration of the artifact into other artifacts, about the quality that the artifact has
in certain application scenarios, about functional and effective properties, etc.
The model describes the artifacts that are under consideration.

(b) Construction of a service: Services may also be developed. In this case, the
model serves as a blueprint and documentation for their development. The
model prescribes the service. It is an archetype for the construction.

(c) Realisation of a service: The model can also be used as a kind of a contract
during realisation. The artifact that is going to be developed conforms to the
model. The model is an antetype for the realisation. This conformance is
verifiable.

W�H: The Conceptual Model for Services 153

The third purpose is often considered to be the main purpose for IT systems. The
second and especially the first purpose are often neglected. In this chapter, we
concentrate on the second and especially on the first purposes. Purposes such as
control of an artifact, substitution of another artifact within a third one, upgrade or
maintenance are not in the centre of consideration in this chapter. We may however
extend this paper into such directions.

Let us consider the communication purpose of a service model. A model is
used by one stakeholder for communicating his/her understanding of the world
to another stakeholder. The success of this communication depends on these
stakeholders, especially their abilities to deliver and to understand the model. Each
of them has their background, their cultures, their knowledge, their experience and
their contexts. Therefore, the model pragmatics (especially “phonetics”) and the
model pragmatism (especially “rhetoric”) influence the added value. Pragmatics is
dependent on the presentation, appearance and form (“gestalt”) of the model.

Communication is segmented into communication acts. The success of com-
munication depends on the quality of the model, the relationship among the
stakeholders, their background and context, their abilities and experience and the
“layout” of the model. This relationship in a model communication story is depicted
in Fig. 1. The goals, purposes and functions of A and B may be different. A
model function for stakeholder A is determined by its function in the description
scenario of the artifact by an adequate and dependable model. A model function of
stakeholder B is its function in the validation scenario of the model by comparing
the model to the artifact represented by the model.

The construction model for a virtual service can be considered similar to software
construction. The model serves as a blueprint or prototype for the construction
of a service. Construction of services is the art, science and craft of changing a
vision into reality through a model to operate something that fulfils a human need.
Construction of services typically uses several models. These models are bound to
each other and represent different aspects of the service.

model with its
syntax, semantics,

pragmatics,
pragmatism

stakeholder A stakeholder B

background
context
profile

background
context
profile

model as an artifact
understood and integrated

stakeholder relationship

goal,
purpose,

function for
stakeholder B

goal,
purpose,

function for
stakeholder A

explicit
knowledge

explicit
knowledge

experienceexperience modelling skills/
abilities

Fig. 1 Dimensions of communicating by models

154 A. Dahanayake and B. Thalheim

3.3 The Background, the Community of Practice
and the Context of a Service Model

Services are dependent on culture, habit, behaviour, personality and common
behaviour. The background of any artifact is the complex of physical, cultural and
psychological factors that serves as the environment of a service. It is the set of
conditions against which an occurrence is perceived. It consists of the basis from one
side, i.e. paradigms, postulates, restrictions, theories, culture, conventions, common
sense and grounding, to the other side, i.e. concepts, foundations, language as carrier
and cargo.

The background of an artifact is typically implicit. It is, however, an essential
element of the meta-description of the artifact. It allows to understand how an
artifact can be used, how it can be integrated into other artifacts and how it
should not be used. A manufactured artifact is typically made on the basis of
techniques, commonly accepted approaches and a general understanding of the
application domain. Paradigms contain the basic assumptions, ways of thinking and
methodology that are commonly accepted by the stakeholders in the application
domain. Postulates or fundamental principles are something that are taken as self-
evident or assumed without proof as a basis for understanding. Conceptions can be
combined into a theory.

The foundation is the groundwork of the artifact. Concepts are used for classifi-
cation. Classification depends on the context and deployment. Concepts are all the
knowledge that the person has and associates with the concept’s name. Narrative
artifacts use a language for their expression and presentation. The cargo defines
what is transferred or represented via a model. It is anything put in or on something
for conveyance depending on the purpose.

The context surrounds the artifact and helps to determine its deployment. Context
reflects general characterisations, categorisation, utilisation and general descriptions
such as quality. Elements of a context of a service are the application domain or the
discipline, the school of thought, time, space, granularity and scope. For services we
may distinguish between the infrastructure context (e.g. IT systems, communication
and exchange support), provider context, developer context, usage context (based
on the simple rhetoric frame who-where-what-when-why), context of the service
user, temporal context with different notions of time (e.g. introduction, applicability,
validity, availability and stakeholder-determined time) and the organisational and
social context.

The background of a service model provides the basis for faith into the service.
The context of a service evaluates the utility of the service. A service is accepted by
a community of practice depending on their roles, e.g. developers, users, supporters
and competitors. Criteria for acceptance are learnability, ergonomics, consistency,
observance of standards, feedback and robustness and ethnography of user envi-
ronments. Services must be coherent with user expectations and intuition, must
accommodate a wide range of stakeholder skills and should arrange judgements

W�H: The Conceptual Model for Services 155

consistent with its importance. The service must be perceptible and uses in an
appropriate way the space and resources (parsimonious).

We may now summarise the discussed properties of a service model by PEST:
paradigmatic for the basis, environment aware, reflecting the society (and scientific)
culture and technologically founded.

3.4 Adequacy for Service Models

Adequacy of models is given if the model is well formed, simple, analogue and
purposeful. Adequacy of service models refines these properties. Well-formed
models of services must be trackable, i.e. provide deadlines, limits and benchmarks
and states when, how long, when to terminate and to interrupt and what to do
first. Simplicity is based on an explicit consideration of the purpose and an explicit
specification how this purpose can be achieved by whom, what, when, where, which
and why. Vagueness is not permitted. Analogy of service models can be specified by
meaningfulness and by acceptability. Meaningfulness measures the progress of the
service against the vision based on an evaluation how much, how many and when it
is accomplished. Purposefulness of service models is given if the service is realistic,
is doable and provides a substantial progress; whether the service is worthwhile,
can be provided at the right time and matches efforts and needs of the community
of practice; and whether it is acceptable for correction and evolution.

This refinement of adequacy for IT services is similar to criteria applied in
engineering. A service model must thus be SMART (simple, meaningful, acceptable,
realistic and trackable).

3.5 Dependability for Service Models

Dependability of models is defined through justification and quality evaluation.
This characterisation can now also be refined for services. We need a notion of
corroboration, coherence and conformity, falsifiability and stability and plasticity.
Corroboration of a service is straightforward: a service must have an added value.
Therefore, the service is described by its potential benefits and values. It is positively
stated. The service value must be understood by their users. This understanding
is essential before an agreement for deployment of a service can be reached.
Understandability supports coherence, conformity and falsifiability. At the same
time, a service must be rewarding. We put the purpose of a service into a wider
context of driving. The rewarding property defines the plasticity and stability of the
service.

156 A. Dahanayake and B. Thalheim

Evaluation of services can be based on quality measures developed in software
engineering. We distinguish between internal quality, external quality and quality of
use. These corresponding characteristics of these measures may thus also be applied
for the evaluation of services.

We observe, therefore, that a service must be PURE (positively stated,
understandable, rewarding and evaluated).

3.6 Functioning and Effective Service Models

Models are used in dependence on the existence of corresponding methods for their
utilisation. They are functioning if they provide the necessary capability and are
effective in their deployment. The capability level can be described similar to the
SPICE [16] as follows:

1. Performing and executing: The purposes of the model are satisfied.
2. Managing and defining: The model can be successfully applied depending on the

purpose.
3. Establishing and controlling: The model is adequate and dependable, is well

documented and allows to understand its added value and potential.
4. Understanding, predicting and performing with sense: The background and

context of the model are well understood by the community of practice. The
model can be applied due to the power of the methods.

5. Optimising: The application of the model is well supported and improves the
situation in an application compared with the situation without the existence of
the model.

The usefulness and usability characterisation of functioning and effectiveness of
the service model can be characterised depending on the capability level. A model
should function. Functioning of a service model can be characterised by CLEAR
(challenging, legal, environmentally sound, appropriate and recorded): The service
model has to keep the motivation high without being unrealistic. Methods should be
legal. Their consequence should be known. The appropriateness of a service model
is supported by the fitness to experience and skills and by unlocking the potential in
an application. Finally, the deployment of the model should be recordable with an
explicit log of the impact.

Models are used in usage or deployment scenarios. This deployment defines
the goals and purposes of models. Such models are then used as instruments in
processes such as defining, constructing, exploring, communicating, understanding,
replacing, documenting, negotiating, reporting and accounting. Users of models
deploy them within their environment for their goals.

The usage of models can be characterised by SCOPE (situation, core competen-
cies, obstacles, prospects and expectations). The service models are characterised in
the same way. The situation determines the impact, actions and external and internal
factors. The model capability is based on the strengths, abilities and facilities,

W�H: The Conceptual Model for Services 157

foundation and the added value. These characteristics define the core competencies
of a model. The obstacles of a model are given by the potential issues and threats. At
the same time, the prospects of a model are given by possibilities and experiences,
chances and opportunities both internally and externally. Finally, a model must
meet the expectations, i.e. the future-view anticipated developments in external and
internal conditions that could influence their impact.

4 The Descriptive Framework for Service Models

The PEST-SMART-PURE-CLEAR-SCOPE framework for models of IT services
combines many different facets of a model. We thus have to develop an aspect-
oriented descriptive framework. This descriptive framework may be based on
dimensions of services.

While the service-oriented computing hypes repeated the logical-level specifica-
tion with inadequate support for many low-level details, it also repeatedly confirmed
the need of an aid for semantics and pragmatics with respect to service specification
descriptions and a conceptual model.

4.1 Dimensions of Services

The conception of a service needs the reflections on conceptualisation. In essence,
there is a need to consider a conceptual model and a description of a service
specification framework with syntactics, semantics and pragmatics, which constitute
the semiotics [31]. It is necessary to concentrate on the conceptualisation of content
for a given context considering annotations with respect to organisation intentions,
motivations, profiles and tasks; thus, we need at the same time sophisticated
annotation facilities far beyond ontologies. We also need a tool for description of
the concept of a service. The description of scenarios inside a certain organisational
environment and preliminary considerations of general service offering guarantee
reliable quality-based content coordinated to consumer groups [29].

Finally, we must specify the added value of a service for a business user.
These requirements must be handled at the same time leading to the development
of a conceptual model of a service through a specification framework. Then the
organisation’s business services are composed of the content space, the concept
space, the annotation space [29] and the added value space. For this reason, we
consider a service to be consisting of content, concepts, annotation and added value.
These dimensions are interdependent from each other (Fig. 2).

158 A. Dahanayake and B. Thalheim

Fig. 2 Conceptualisation of
service as orthogonal
dimensions of concept,
content, annotation and added
value

4.2 The Content Dimension: Services as a Collection
of Offerings

The service defines the what, how and who on what basis of service innovation,
design and development and helps mediate between customer or consumer needs
and an organisation’s strategic intent [14]; when extended above the generalised
business and technological abstraction levels, the content of the service concept
composes the need to serve the following purposes [12]:

– Fundamental elements for developing applications
– Organising the discrete functions contained in (business) applications comprised

of underlying business process or workflows into interoperable (standards-based)
services

– Services abstracted from implementations representing natural fundamental
building blocks that can synchronise the functional requirements and IT imple-
mentation perspective

– Services to be combined, evolved and/or reused quickly to meet business needs.
Represent an abstraction level independent of underlying technology

The abstraction of the notion of a service system within an organisation’s strategic
intent emphasised by those purposes given above allows us to define the content
description of services by a collection of offers that are given by companies, by
vendors, by people and by automatic software tools[5]. Thus, the content of a service
system is a collection of service offerings. Figure 3 specifies the content dimension.

The service offering reflects the supporting means in terms of with what means
the service’s content represented in the application domain. It corresponds to the
identification and specification of the problem within an application area. The
problem is a specific application case that resides with an organisational unit.
Those problems are subject to events that produce triggers needing attention. Those
triggering events have an enormous importance for service descriptions. They
couple to the solution at hand that is associated with how and what IT solutions
are required.

W�H: The Conceptual Model for Services 159

Fig. 3 The content dimension of services

4.3 The Annotation Dimension

According to [24], annotation with respect to arbitrary ontologies implies general
purpose reasoning supported by the system. Their reasoning approaches suffer from
high computational complexities. As a solution for dealing with high worst-case
complexities, the solution recommends a small-size input data. Unfortunately, it
is contracting the impressibility of ontologies and defining content as complex-
structured macro data. It is therefore necessary to concentrate on the conceptu-
alisation of content for a given context considering annotations with respect to
organisation intentions, motivations, profiles and tasks; thus, we need at the same
time sophisticated annotation facilities far beyond ontologies. Annotation thus must
link the stakeholders or parties involved to the activities and the sources to the
content and concept.

4.4 The Parties in Annotation

Parties in services are suppliers, consumers and producers and have their own target,
goal, intentions and aims. They are bound by their capabilities, support requirements
and information demand. This description constitutes the kernel of the profile. Other
components of the profile of a stakeholder in a service process include educational,
employment and psychological descriptions. Parties are interested in solving a
certain number of tasks. Tasks are ordered and prioritised. A task is an assigned
piece of work, which often has to be finished within a certain time by a party or

160 A. Dahanayake and B. Thalheim

Fig. 4 The annotation dimension of a service

parties whose duty is its completion. It implies work imposed by a user in authority
and obligation or responsibility to perform. A task may consist of subtasks, so we
assume that tasks can be constructed on the basis of elementary tasks. Figure 4
illustrates the annotation dimension and the parties involved.

The portfolio consists of an ordered and prioritised collection of tasks including
compensation and is determined by the responsibilities one has and is based on a
number of targets. The party portfolio within an application is thus based on a set
of tasks an actor has or intents to complete and for which solution the actor has the
authority and control, a description of involvement within the task solution and a
collaboration that is necessary for solving the task. Tasks are supported by services.
A party may activate a service in order to complete a task.

The involvement of parties within service activation is based on the specification
of the role a party plays during execution of the service, the part the party plays
within its portfolio and the rights and obligations a party has within the given role.
The role specifies the behaviour expected from a party. A role is a comprehensive
pattern of behaviour and serves as a strategy for coping with recurrent situations
and dealing with the roles of others. A role remains relatively stable, even though
different parties occupy the position. A party may have a unique style of role
execution, but this is exhibited within the boundaries of the expected behaviour of
the party. Role expectations include both actions and qualities. There are two types
of roles: declarative and contextual ones. Declarative roles declare that a party is

W�H: The Conceptual Model for Services 161

playing a particular role, e.g. a party being identified as an employee. Contextual
roles show how a party acts within the context of an application story and show
how a party is involved within the context of another application story. Declarative
roles may be modelled by associating the actor to a role type. Contextual roles
are modelled by associating an actor with the work effort the actor is assigned to
and a role type describing the involvement of the actor. The role type provides
a description of the role and can be hierarchically structured. Roles may also be
hierarchically structured. At the same time, roles may be played in collaboration.

4.5 The Service Activities in Annotation

Services are input-output activities typically based on a (set of) workflow(s) that
must be followed by the party. These services are often virtual goods. A service is
offered together with policies applicable to the service export. A service provider
can advertise, modify and withdraw a service. Service providers are often supported
by traders that store services available from service providers and act as brokers
for available services and actual requests. Traders are able to search for the most
appropriate service for a given request on the basis of matching criteria and search
constraints. They store new advertisements of service providers and categorise
them. If the trader has a large variety of services available from providers, then the
service offer properties are standardised to service offer property types. A trader has
further a trading offer domain and is restricted by trading contexts. The information
schema of the traded services enables maintenance of meta-structures for services,
categorisation and partitioning. Traders themselves may be organised in trading
syndicates or trading communities with trading administrations, internal arbitraries,
makers for trading rules and policies, export policy control and trader owners. Trader
communities can be federated with external arbitrators.

Services are typically layered depending on the stage a service is used by a
party. We distinguish the following stages: First, a service is developed. This stage
is similar to a production. Next, a service is quoted. A part may now use the
service and request it. The supporting party responds and provides details on the
service use. Next, the service is requested. The service is then ordered. Later, the
service is delivered. Finally, the service must be billed and paid. Parties involved
into this service utilisation process play different roles and parts and have different
responsibilities. This service utilisation process is typically layered. It can also be
chained or executed partially in parallel or in different chains.

4.6 The Concept of a Service

Conceptual modelling aims at creating an abstract representation of the situation
under investigation or, more precisely, the way users think about it. Conceptual mod-
els enhance models with concepts that are commonly shared within a community

162 A. Dahanayake and B. Thalheim

Fig. 5 The concept dimension of a service

or at least between the stakeholders involved in the modelling process. A general
definition of concepts is given in [30, 31].

Concepts specify our knowledge on what things are there and what properties
things have. Concepts are used in everyday life as a communication vehicle and as a
reasoning chunk. Concept definition can be given in a narrative informal form, in a
formal way, by reference to some other definitions, etc. We may use a large variety
of semantics, e.g. lexical or ontological, logical or reflective.

Conceptualisation aims at collecting concepts that are assumed to exist in
some area of interest and the relationships that hold them together. It is thus an
abstract, simplified view or description of the world that we wish to represent.
Conceptualisation extends the model by a number of concepts that are the basis
for an understanding of the model and for the explanation of the model to the
user. The definition of the ends or purpose of the service is represented by the
concept dimension. It is the curial part that governs the service’s characterisation.
The purpose defines in which cases a service has a usefulness, usage and usability.
They define the potential and the capability of the service.

Figure 5 depicts the concept dimension of a service.

4.7 The Added Value Dimension

The added value of a service to a business user or stakeholder is in the definition of
surplus value during the service execution. It defines the context in which the service
systems exists, the story line associated within the context, which systems must
coexist under which context definitions prevailing to time. Surplus value defines
the worthiness of the service in terms of time and labour that provide the return of
investment (ROI).

W�H: The Conceptual Model for Services 163

Fig. 6 The added value dimension of a service

Figure 6 illustrates the value and especially the added value dimension of a
service.

5 W�H: The Conceptual Model of Services

5.1 Extending the Rhetorical and the Zachman Frameworks

The Zachman framework [37] uses the classical W6H description (who-when-
where-what-how-why). The key questions in systems development are:

– Who will be using the system?
– When will the system be used?
– Where is the information system used?
– What is represented in the system?
– How will the system be used?
– Why is the system used?

We observe that there are additional dimensions that are of importance:

– Competency
– Time (schedule, delay)
– Environment (context, technical and organisational)
– Quality (in which quality, with which guarantees)
– Runtime characteristics (adaptation, exceptions, delay)

164 A. Dahanayake and B. Thalheim

– Collaboration (with whom, which exchange, on which basis, which portfolio
and profile)

– Additional motivation (on which reason)

Additionally, we should take into consideration the policy, intention, goal and aim
of the provider. One might ask now whether this list is exhaustive and substantial.
Also, we need a prioritisation of these questions. Therefore, we need an approach
that allows to consider the main characteristics in a systematic and surveyable way.

We discover that the specification framework may be headed by the questions
who, what, when, where, why, in what way and by what means. This framework has
not been developed in the computer age.1 The success of Zachman’s framework as
an inquiry system for information systems engineering and Hermagoras of Temnos
frames in legal inquiry frameworks inspires the definition stage of our inquiry
system for the conceptualisation process.

5.2 The General Characteristics of Services

Services are to be characterised by their specific properties, the supplier or manu-
facturer, the pricing that is applicable and the costs depending on the user, provider
and deliverer. Further, services can be kept in an inventory of their providers,
their suppliers or their deliverers. Service may be composed of other services.
Some information on products is independent of the supplier or provider. Other
information, e.g. pricing and availability, depends on the supplier.

This approach is used by the Service Modelling Language (SML) by W3C. It
becomes very sophisticated with many characteristics that must be given. There is
no hierarchy in the specification. An idea we might use for such characterisation is
the separation of concern by aspects and layering of specifications depending on the
maturity stage. The first approach is the basis for our specification frame that allows
us to describe a service. The second approach is used for the specification of an IT
service system.

The service is primarily declared by specifying:

– The ends or purpose (wherefore) of the service and thus the benefit a potential
user may obtain when using the service. The purpose description governs the
service. It allows to characterise the service. This characterisation is based on
the answers for the following questions: why, whereto, for when and for which
reason. We call these properties primary since they define in which cases a

1 It is far older. It dates back to Cicero and even to Hermagoras of Temnos who was one of the
inventors of rhetoric frames in the second century BC. The latter has been using a frame consisting
of the seven questions: quis, quid, quando, ubi, cur, quem ad modum and quibus adminiculis (W7:
who, what, when, where, why, in what way, by what means). The work of Hermagoras of Temnos
is almost lost. He had a great influence on orality due to his proposals. For instance, Cicero has
intensively discussed his proposals and made them thus available.

W�H: The Conceptual Model for Services 165

Fig. 7 The W�H inquiry-based conceptual model for services

service has a usefulness, usage and usability. They define the potential and the
capability of the service.

– The sources (whereof) of the services with a general description of the
environment for the service.

– The supporting means (wherewith) which must be known to potential users in
the case of utilising the service.

– The surplus value (worthiness) a service utilisation might give to the user.

Figure 7 combines the service dimensions to a general W�H framework.
A full description of IT services is based on the five-dimensional specification:

(A) The primary service description describes the service.
(B) The annotation dimension captures the party and activity dimensions:

(a) The party dimension describes the stakeholders involved into a service.
Parties may play different roles, may have different parts in the story of

166 A. Dahanayake and B. Thalheim

service application, may have obligations and permissions and may also
be restricted in their capabilities and competencies. Typical descriptions
for the party dimensions are given while answering the by whom, to whom
and whichever questions.

(b) The activity dimension describes the processes played during service
application. These processes may use resources, may be supported by
functions provided by the service system and, given at the side of the
business user of a service, may result in a number of changes to data, to
control and to rights. We answer question such as what in and what out.

(C) The content dimension captures the supporting means by the application
domain dimension: describes the problems to be solved by the service, the
application area in which a service is usable, the typical approaches within this
application area and the typical solutions that are sought for the problems under
consideration. We thus answer questions like wherein, where, for what, where
from, whence, what and how.

(D) The concept dimension captures the ends wherefore the purpose of the
service answer questions such as why, whereto, for when and for which reason.

(E) The added-value dimension captures the surplus value that defines the
usefulness, usage and usability of the services’ worthiness for systems context,
coexistence context, story context and time context. Therefore, we might also
declare the context characteristics for a service. Context has at least four sides:
provider or developer or supplier context for a service, the user context for a
service, the system environment context that must exist for service utilisation
and the coexistence context for a service within a set of services. Therefore,
these context dimensions are declared by answering the following questions:
whereat, whereabout, whither, and when.

To summarise, our service description language is thus based on the following
questions:

– Primarily: wherefore, whereof, wherewith and worthiness (D W4) and
additionally why, whereto, for when and for which reason (D W4)

– Secondarily: by whom, to whom, whichever, wherein, where, for what,
wherefrom, whence, what and how (D W10H)

– Additionally: whereat, whereabout, whither and when (D W4)

We may call our framework the W�H specification framework where W�H D
(W4 C W4 C W10H C W4) and H stands for how. The kernel of this framework is
the (W4 C W10H) questionnaire.

W�H: The Conceptual Model for Services 167

6 W�H : Evaluation and Discussion

Many of the most complex service systems being built and imagined today combine
person-to-person encounters, technology-enhanced encounters, self-service, com-
putational services and multichannel, multi-device and location-based and context
services. The research reported in this paper has examined characteristic concerns of
those different design contexts from a service-centred conceptualisation to propose
a unifying view, especially when the service system is an “information-intensive”
service system. W�H is a full description of services based on the four-dimensional
specification based on primary, secondary and additional questions derived fol-
lowing the work of Hermagoras of Temnos. A focus on the W�H specification
framework to perform the service, based on primary, secondary and additional
questions, yields a more detailed description of service encounters and outcomes
of how the responsibility to provide this information is divided between the service
provider and service consumer and the patterns that govern information exchange.

W�H is evaluated by application to a real-life situation—to establish a disease
diagnosis decision support network (DDDSN) for ophthalmologists for age-related
macular degeneration (ARMD) treatments, a true cross-disciplinary real-life service
engineering application (Appendix). This advanced cross-disciplinary DDDSN
system has three services for practicing ophthalmologists:

(1) Decision support image base
(2) Continuous knowledge enhancement of the image base
(3) On-demand learning module for specialists and residents to update their

diagnosis and knowledge (see Table 1 in the Appendix)

DDDSN initiative exposes the systems designing to the challenges of the
evolution of the application domain. This is a crucial challenge for modern cross-
disciplinary IT service systems, as per definition, they are Web information systems
and are notorious for their low “half-life” period and the high potential of evolution,
migration and integration. Therefore, it is necessary to incorporate service mod-
elling into such systems building approaches. To this service engineering challenge,
we introduced W�H (Fig. 8), our novel conceptual model for service modelling.

The W�H model in Fig. 8 fulfils the conceptual definition of the service concept
composing the need to serve the following purposes:

– The composition of the W�H model consisting of content space, concept space,
annotation space and add value space as orthogonal dimensions that capture the
fundamental elements for developing applications.

– It reflects number of aspects neglected in other service models, such as the
handling of the service as a collection of offering, a proper annotation facility,
a model to describe the service concept and the specification of added value. It
handles those requirements at the same time.

– It helps capturing and organising the discrete functions contained in (business)
applications comprised of underlying business process or workflows into inter-
operable (standards-based) services.

168 A. Dahanayake and B. Thalheim

Service Service Name

Concept Ends

Content Supporting
means

Annotation Source

Added
Value

Surplus
Value

Wherefore?

Wherewith?

Where of?

Purpose

Application
Domain

Party

Activity

Worthiness?

Context

Why?

Where to?

For When?

For Which reason?

Application are
Application case

Problem

Organizational unit

Triggering Event

IT

Supplier

Consumer

Producer

In-Put

Out-Put

Systems Context

Story Context

Coexistence Context

Time Context

Wherein?
Wherefrom?

For What?

Where
Whence

What

How

By whom?

To whom?

Whichever?

What out?

What in?

Where at?
Where about?

Wither?

When?

Fig. 8 The W�H service description model

– The model accommodates the services to be abstracted from implementations
representing natural fundamental building blocks that can synchronise the func-
tional requirements and IT implementation perspective.

– It considers by definition that the services are to be combined, evolved and/or
reused in order to quickly meet business needs.

– Finally, it represents an abstraction level independent of underlying technology.

The W�H model in Fig. 8 fulfils the usefulness, usage and usability requirements for
service systems designing composing the needs to serve the following purposes:

– The inquiry through simple and structured questions according to the primary
dimension on wherefore, whereof, wherewith and worthiness further leads to
secondary and additional questions along the concept, annotation, content,
add value or surplus value space that covers usefulness, usage and usability
requirements in totality.

W�H: The Conceptual Model for Services 169

– The powerful inquiring questions are a product of the conceptual underpinning
of W�H grounded within the conceptual modelling tradition in the concept-
content-annotation triptych extended with the added value dimension and further
integration and extension with the inquiry system of Hermagoras of Temnos
frames.

– The W�H model is comprise of 23 questions in total that cover the complete
spectrum of questions addressing the service description: (W4 + W4 + W10H
+W4) and H that stands for how.

– The model’s compactness helps to validate domain knowledge during solution
modelling discussions with the stakeholders with high-demanding work sched-
ules.

– The comprehensibility of the W�H model became the main contributor to the
understanding of the domain’s services and requirements.

– The model contributes as the primary input model leading to the IT service
systems projection on solution modelling.

– It contribute as the primary input model leading to the IT service systems
projection on the evaluation criteria of systems functioning on its trustworthiness,
flexibility to change and efficient manageability and maintainability.

7 Conclusion

We have made a contribution to one of the main questions that dominate the
service systems engineering by presenting W�H model as a consistent, complete
and comprehensive conceptual model for service systems engineering. The model
notion has been refined to the PEST-SMART-PURE-CLEAR-SCOPE framework
for IT services. This framework allows to evaluate whether an artifact is ade-
quate, dependable, functioning and effective within the given context and by its
background for a community of practice. The W�H model is extracted from this
framework by mapping the properties of the framework to corresponding questions.
The question word set is extensible.

The W�H model fills a gap in service models and modelling research arena.
It combines and streamlines the discussions between the business abstraction
level’s business services and technology abstraction level’s Web services into an
interpretation and terminology valid and understood in both worlds. The W�H
model also conceptualises the worthiness into service concept and thereby provides
the groundwork and context to evaluate the main purpose and the added value of
investing in the implementation of services.

The W�H model in Fig. 8 nevertheless can lead to developing some interesting
and ground-breaking future research directions such as:

– In order to follow a service systems development to be mainstream practice,
holistic approach for service development is a required future research direction.
Most service designers are familiar with some of these contexts, and each context

170 A. Dahanayake and B. Thalheim

has a research and practitioner literature that highlights their characteristic
design concerns and methods. But few service designers are familiar with all
of them, and because the design concerns and methods in one context can seem
incompatible with those in others, there is relatively little work that analyses
design concerns and methods that span over multiple contexts.

– Correlation and cocreation of business process re-engineering and service sys-
tems innovation and engineering is another research direction that has a great
potential.

– Another promising research direction is to pursue service engineering as the
standard approach for systems quality improvement in business environment
through exceptional event detection and event processing and monitoring for
business process improvement.

– Research into quantifying the return of investment through service-based engi-
neering which has a potential to explore ROI issues is another research direction
that can bring vast advantages to business informatics.

– Another rewarding research direction is in exploring Web information systems:
the design, innovation and evolution as part-whole relationship between the
existing system and Web information services.

In the Appendix, we demonstrate the application of W�H model for medical
services. The framework and the model also provide a basis for a SWOT (strengths,
weaknesses, opportunities and threats) analysis of the service.

Appendix: Application of W�H Specification Framework

An ophthalmologic research institute in the Netherlands initiated to establish a
disease diagnosis decision support network (DDDSN) for ophthalmologists [1].
The initiative is on the creation of an expert community of ophthalmologists
who contribute their knowledge to a repository for validating individual disease
diagnoses. The motivation behind this DDDSN proposal is to harvest tangible
benefit in the form of shared access to this unique image repository to achieve
interoperability and location-independent decision support. The system is for the
benefit of specialists all over the world to diagnose diseases at early stages and for
treating their patients with up-to-date disease diagnosis decision support.

Medical diagnosis decision support is hardly in existence [25]. An impressive
amount of medical images are daily generated in hospitals and medical centres.
Consequently, the physicians have an increasing number of images to analyse
manually [15]. In the practice, an ophthalmologist’s diagnoses are not contested
or validated by another specialist. Access to a system that generates a second
opinion has an added value in serving as an extra pair of eyes without violating
the autonomy, professionalism or credibility of the ophthalmology profession. Such
a system contributes vastly to the decision-making process in all medical fields
[15, 25], and it has greater odds of acceptance by specialists.

W�H: The Conceptual Model for Services 171

An example of an ophthalmologic disease is age-related macular degeneration
(ARMD). This disease results in a deterioration of the central retinal function and
is the leading cause of blindness in people over 65 years of age in Europe and the
USA. Because of the localisation of the macula in the centre of the retina, advanced
age-related macular degeneration often leads to irreversible loss of social skills, like
reading ability. Two forms of ARMD are distinguished: the atrophic form and the
neovascular, exudative or wet form. There are 3,000 such diseases in the field of
ophthalmology.

This advanced cross-disciplinary DDDSN system has three services for practic-
ing ophthalmologists:

(1) Decision support image base
(2) Continuous knowledge enhancement of the image base
(3) On-demand learning module for specialists and residents to update their

diagnosis and knowledge (see Table 1).

All fundus images that are acquired for clinical care at the institute are stored
centrally in Topcon IMAGEnet i-base [33]. It provides access to these stored images
from workstations around the hospital. The system contains a database of both
images and patient records. Table 1 is a summarised version of the application of
the W�H specification frame for service systems modelling.

Our approach to service modelling supports the evaluation of a service in
dependence on the answers to the W�H questions. The evaluation can be based
on SWOT analysis that evaluates the benefit of some artifact to the environment.
Figure 9 surveys the evaluation sheet for a health service based on the profile of the
service, the opportunities provided and the threats. The health care is based on a task
portfolio within the current situation. Therefore, we can select the most appropriate
tactics. This evaluation supports communication between the stakeholders.

The model is now used for understanding what would be the benefit of the
service, what kind of service can be expected, what changes must be made for
an integration of the service and what is the added value. The typical situation is
the nonexistence of a service model. Therefore, actors in health care act on partial
information. This partial knowledge results in bad integration of a service and in
waste of investment. Therefore, a service model will be an essential element of
service deployment.

172 A. Dahanayake and B. Thalheim

T
ab

le
1

A
pp

li
ca

ti
on

of
W

�
H

fo
r

A
R

M
D

[2
]

K
no

w
le

dg
e

en
ha

nc
em

en
t

Se
rv

ic
e

D
is

ea
se

-d
ia

gn
os

is
de

ci
si

on
su

pp
or

t
an

d
ev

ol
ut

io
n

O
n-

de
m

an
d

ex
pe

rt
le

ar
ni

ng

(1
)

E
nd

(w
he

re
fo

re
)

–
E

nh
an

ce
di

ag
no

si
s

de
ci

si
on

su
pp

or
t

fo
r

A
R

M
D

–
E

vo
lv

e
w

it
h

ne
w

ca
se

s
an

d
tr

ea
tm

en
ts

–
E

nh
an

ce
sp

ec
ia

li
st

s
an

d
re

si
de

nt
s

w
it

h
kn

ow
le

dg
e.

(2
)

So
ur

ce
s

(w
he

re
of

)
–

R
ep

os
it

or
y

of
im

ag
es

an
d

sp
ec

ifi
c

A
R

M
D

re
la

te
d

de
sc

ri
pt

io
ns

–
C

on
tr

ib
ut

io
ns

of
im

ag
es

fr
om

op
ht

ha
lm

ol
og

is
ts

–
R

ep
os

it
or

y
of

sp
ec

ifi
c

A
R

M
D

de
sc

ri
pt

io
ns

(3
)

Su
pp

or
ti

ng
m

ea
ns

(w
he

re
w

it
h)

–
C

om
pu

te
ri

ze
d

im
ag

e
co

m
pa

ri
so

n
–

C
om

pu
te

ri
ze

d
im

ag
e

su
bm

is
si

on
–

Pe
rs

on
al

iz
ed

le
ar

ni
ng

w
al

le
ts

(4
)

Su
rp

lu
s

va
lu

e
(w

or
th

in
es

s)
–

R
el

ea
se

sp
ec

ia
li

st
fr

om
te

di
ou

s
im

ag
e

by
im

ag
e

m
at

ch
in

g
–

R
el

ea
se

sp
ec

ia
li

st
fr

om
de

pe
nd

in
g

on
pr

iv
at

e
im

ag
e

co
ll

ec
ti

on
s

–
L

ea
rn

in
g

w
he

ne
ve

r
ne

ce
ss

ar
y

at
ow

n
ti

m
e

an
d

sp
ee

d

(5
)

Pu
rp

os
e

�
(w

hy
)

–
A

R
M

D
id

en
ti

fic
at

io
n

–
N

ew
kn

ow
le

dg
e

–
L

ea
rn

in
g

�
(w

he
re

to
)

–
D

ia
gn

os
is

–D
ia

gn
os

is
–

D
ia

gn
os

is
�

(w
he

n)
–

E
ar

ly
-s

ta
ge

-t
re

at
m

en
ts

–
E

ar
ly

-t
re

at
m

en
ts

–
E

ar
ly

-t
re

at
m

en
ts

�
(f

or
-w

hi
ch

-r
ea

so
n)

–
Se

co
nd

op
in

io
n

–
Se

co
nd

op
in

io
n

–
E

nh
an

ce
kn

ow
le

dg
e

(6
)

A
ct

iv
it

y
�

In
pu

t(
w

ha
t-

in
)

–
Im

ag
e

of
th

e
pa

ti
en

ts
ey

e
–

Im
ag

e
of

ne
w

ca
se

s
–

R
eq

ue
st

fo
r

a
L

w
al

le
t

�
O

ut
pu

t(
w

ha
t-

ou
t)

–
M

at
ch

in
g

im
ag

e
w

it
h

di
ag

no
si

s
an

d
tr

ea
tm

en
t

–
C

on
fir

m
at

io
n

of
im

ag
e

su
bm

is
si

on
–

Pe
rs

on
al

iz
ed

le
ar

ni
ng

m
od

ul
e

(7
)

Pa
rt

y
�

Su
pp

li
er

s
(b

y-
w

ho
m

)
–

O
ph

th
al

m
ol

og
is

t
–

O
ph

th
al

m
ol

og
is

t
–

Im
ag

e
re

po
si

to
ry

�
C

on
su

m
er

(t
o-

w
ho

m
)

–
O

ph
th

al
m

ol
og

is
t

–
Im

ag
e

re
po

si
to

ry
–

Sp
ec

ia
li

st
s/

in
te

rn
is

ts
�

Pr
od

uc
er

(w
hi

ch
ev

er
)

–
D

D
D

S
sy

st
em

s
–

Im
ag

e
re

po
si

to
ry

–
O

n-
de

m
an

d
L

-e
nv

ir
.-

t.

W�H: The Conceptual Model for Services 173

(8
)

A
pp

li
ca

ti
on

do
m

ai
n

�
A

pp
li

ca
ti

on
ar

ea
(w

he
re

in
)

–
A

R
M

D
–

M
ai

nt
en

an
ce

–
E

xp
er

tL
ea

rn
in

g
E

vt
.

�
A

pp
li

ca
ti

on
ca

se
(w

he
re

fr
om

)
–

D
ur

in
g

di
ag

no
si

s
–

N
ew

kn
ow

le
dg

e
–

O
n-

de
m

an
d

le
ar

ni
ng

�
Pr

ob
le

m
(f

or
-w

ha
t)

–
Tr

ea
tm

en
t

at
ea

rl
y

st
ag

es
–

D
is

ea
se

ev
ol

ut
io

n
–

Pe
rs

on
al

-w
al

le
ts

�
O

rg
an

iz
at

io
na

lu
ni

t(
w

he
re

)
–

O
ph

th
al

m
ol

og
ic

un
it

–
Im

ag
e

re
po

si
to

ry
–

IT
un

it
�

T
ri

gg
er

in
g

ev
en

ts
(w

he
nc

e)
–

Su
cc

es
sf

ul
m

at
ch

–
N

ew
su

bm
is

si
on

–
R

eq
ue

st
fo

r
le

ar
ni

ng
�

IT
{d

at
a,

co
nt

ro
lc

om
pu

ta
ti

on
}

�
(w

ha
t)

–
Im

ag
e

co
m

pa
ri

so
n

–
K

no
w

le
dg

e
en

ha
nc

em
.

–
L

ea
rn

in
g

m
od

ul
e

�
(h

ow
)

–
D

at
a

–
D

at
a

–
D

at
a

(9
)

C
on

te
xt

�
Sy

st
em

co
nt

ex
t(

w
he

re
at

)
–

L
oc

at
io

n
in

de
pe

nd
en

t
O

ph
ta

lm
.’s

w
or

ks
pa

ce
–

L
oc

at
io

n
in

de
pe

nd
en

t
w

or
ks

pa
ce

–
L

oc
at

io
n

in
de

pe
nd

en
t

L
-e

nv
ir

on
m

en
t

�
St

or
y

co
nt

ex
t(

w
he

re
-a

bo
ut

)
–

Im
pa

ir
ed

vi
si

on
of

pa
ti

en
t

–
N

ew
kn

ow
le

dg
e

–
K

no
w

le
dg

e
en

ha
nc

em
.

�
C

oe
xi

st
en

ce
co

nt
ex

t(
w

hi
th

er
)

–
In

te
gr

at
ea

bl
e

i-
ba

se
sy

s.
–

In
te

gr
at

ed
D

D
D

SN
–

In
te

gr
at

ed
to

D
D

D
SN

�
T

im
e

co
nt

ex
t(

w
he

n)
–

O
n-

de
m

an
d

–
O

n-
de

m
an

d
–

O
n-

de
m

an
d

174 A. Dahanayake and B. Thalheim

S
tr
at
eg

y

E
nv

iro
nm

en
t v

er
su

s
ne

w
 s

er
vi

ce
S

er
vi

ce
s

ve
rs

us
 e

nc
iro

nm
en

t

ba
se

d
on

 p
ro

fil
e/

po
rt

fo
lio

 a
na

ly
si

s
in

 h
ea

lth
 c

ar
e

in
 g

en
er

al

st
re

ng
th

ty
pi

ca
l a

pp
lic

at
io

n
ar

ea
s

ty
pi

ca
l s

ol
ut

io
ns

w
ea

kn
es

se
s

po
te

nt
ia

l e
nh

an
ce

m
en

ts
 fo

r
ne

w
 s

er
vi

ce

co
nt

rib
ut

io
n

of
 th

e
ne

w
se

rv
ic

e

to he
al

th
ca

re

as
 p

re
pr

oc
es

s
to

 a
no

th
er

he
al

th
 c

ar
e

se
rv

ic
e

as
 p

os
t-

pr
oc

es
s

af
te

r
an

ot
he

r
he

al
th

 c
ar

e
pr

oc
es

s

pr
of

ile
 /

po
te

nt
ia

l
co

nd
iti

on
s

in
te

gr
at

io
n

ap
pl

ic
at

io
n

gl
ob

al
su

pp
or

te
d

by
 o

th
er

s

da
ta

 (
qu

al
ity

)
co

nd
iti

on
s

w
or

kf
lo

w
po

te
nt

ia
l c

om
bi

na
tio

n

w
in

-w
in

 s
itu

at
io

n
fo

r
he

al
th

 c
ar

e

en
ha

nc
em

en
t

so
ph

is
tic

at
io

n

re
qu

ire
m

en
ts

 b
y

in
di

vi
du

al
 p

ro
ce

ss
ne

ce
ss

ar
y

su
pp

or
ta

bl
e

re
qu

ire
m

en
ts

 fo
r

bi
g

da
ta

/ n
ew

 k
no

w
le

dg
e

/ n
ew

 tr
ea

tm
en

/ .
..

ne
w

 c
on

di
tio

ns

lo
ca

l

S
W

O
T

-A
na

ly
si

s
fo

r
ne

w
se

rv
ic

e
co

nt
rib

ut
io

n
w

ith
in

 a
 h

ea
lth

 c
ar

e
en

vi
ro

nm
en

t

pr
ep

ar
at

io
n

fo
r

in
te

gr
at

io
n,

pr
ec

on
di

tio
ns

,
po

st
-c

on
di

tio
ns

C
on

tr
ib

ut
io

n
to

 h
ea

lth
 c

ar
e

O
pp

or
tu

ni
ty

fo
r

ne
w

se
rv

ic
e

pr
op

os
al

s
fo

r
fu

ll
fle

dg
ed

 p
ro

ce
ss

w
ith

 e
m

be
dd

in
g

of
 th

e
ne

w
se

rv
ic

e
ad

di
tio

na
l a

pp
lic

at
io

n
do

m
ai

n

P
ro

fil
e

of
th

e
ne

w
se

rv
ic

e

O
pp

or
tu

ni
ty

fo
r

he
al

th
ca

re

T
hr

ea
t t

o
he

al
th

 c
ar

e

T
ac

tic
s

of
 in

te
gr

at
io

n
of

 n
ew

 s
er

vi
ce

 in
to

 h
ea

lth
 c

as
e

T
hr

ea
d

to
 n

ew
 s

er
vi

ce

re
st

ric
tio

ns
 fo

r
in

di
vi

du
al

 p
ro

ce
ss

re
st

ric
tin

g
ap

pl
ic

at
io

n/
in

te
gr

at
io

n
co

nd
iti

on
s

fo
rm

s
of

 p
ro

ce
ss

 fo
r

in
te

gr
at

io
n

da
ta

 p
re

pa
ra

tio
n

m
ic

ro
-p

ro
ce

ss
es

 /
w

or
kf

lo
w

 o
f n

ew
 s

er
vi

ce

ad
ap

te
rs

lo
ca

l

w
ith

in
 h

ea
lth

 c
ar

e

tr
an

sf
or

m
er

s

da
ta

re
su

lts
 o

f p
re

vi
ou

s
he

al
th

 c
ar

e
se

rv
ic

es

fo
r

pr
ob

le
m

 fa
rm

ul
at

io
n

P
or

tfo
lio

 o
f

he
al

th
 c

ar
e

C
on

te
xt

e.
g.

 fo
r

de
liv

er
y

of
 s

er
vi

ce

no
t s

uf
fic

ie
nt

 p
ot

en
tia

l
de

fic
ie

nc
ie

s
w

ea
kn

es
se

s

po
rt

fo
lio

 d
ef

in
ed

 th
ro

ug
h

ta
sk

s
po

te
nt

ia
l s

ol
ut

io
n

sp
ac

es

pr
ob

le
m

 fi
el

d
ap

pl
ic

at
io

n
w

he
re

ap
pl

ic
at

io
n

w
he

n

ch
al

le
ng

es
 to

cu
rr

en
t h

ea
lth

ca
re

ta
sk

s
co

m
pl

et
el

y
m

as
te

re
d

by
 th

e
sy

st
em

to
 b

e
m

as
te

re
d

bu
t n

ot
ye

t m
as

te
re

d
by

cu
rr

en
t h

ea
lth

 c
ar

e

bi
g

da
ta

ne
w

 k
no

w
le

dg
e

ne
w

 tr
ea

tm
en

t ...

po
te

nt
ia

l
st

re
ng

th
s

of
 c

ur
re

nt
he

al
th

 c
ar

e
sy

st
em

F
ig

.9
SW

O
T

an
al

ys
is

fo
r

a
he

al
th

se
rv

ic
e

W�H: The Conceptual Model for Services 175

References

1. Amarakoon, S., Dahanayake, A., Thalheim, B.: A framework for modelling medical diagnosis
and decision support services. Int. J. Digit. Inf. Wirel. Commun. 2(4), 7–26 (2012)

2. Amarakoon, S., Dahanayake, A., Thalheim, B.: Domain requirements modeling framework for
cross-disciplinary healthcare service systems development. Int. J. Healthcare Syst. Palgrave
Macmillan (The OR society). 2012, accepted for publication: ICCNDT, 152–166, Gulf
University, Bahrain.

3. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: SOMA: a method
for developing service-oriented solutions. IBM Syst. J. 47(3), 377–396 (2008)

4. Bergholtz, M., Andersson, B., Johannesson, P.: Abstraction, restriction, and co-creation: three
perspectives on services. In: ER 2010 Workshops of Conceptual Modeling of Services. Lecture
Notes in Computer Science, vol. 6413, pp. 107–116. Springer, Berlin (2010)

5. Dahanayake, A.: CAME: an environment for flexible information modeling. Ph.D. dissertation,
Delft University of Technology (1997)

6. Dahanayake, A., Thalheim, B.: Conceptual model for IT service systems. J. Univers. Comput.
Sci. 18(17), 2452–2473 (2012)

7. Erl, T.: SOA: Principles of Service Design. Prentice-Hall, Englewood Cliffs (2007)
8. Fensel, D., Bussler, C.: The web service modeling framework WSMF. Electron. Commer. Res.

Appl. 1(2), 113–137 (2002)
9. Glushko, R.J.: Seven contexts for service system design. In: Maglio, P.P., et al. (eds.) Handbook

of Service Science, Service Science: Research and Innovations in the Service Economy.
Springer, New York (2010). doi:10.1007/978-1-4419-1628-0_11

10. Goldstein, S.M., Johnston, R., Duffy, J.-A., Rao, J.: The service concept: the missing link in
service design research? J. Oper. Manag. 20, 212–134 (2002)

11. Halloun, I.A.: Modeling Theory in Science Education. Springer, Berlin (2006)
12. Hirschheim, R., Welke, R.J., Schwarz, A.: Service oriented architecture: myths, realities, and

a maturity model. MIS Q. Exec. 9(1), 204–214 (2010)
13. Hurby, P.: Model-Driven Design of Software Applications with Business Patterns. Springer,

Heidelberg (2006)
14. IBM Research: Service Science: A New Academic Discipline? IBM Press, New York (2004)
15. Ion, A.L., Udristoiu, S.: Automation of the medical diagnosis process using semantic image

interpretation. In: Proceedings of ADBIS 2010. Lecture Notes in Computer Science, vol. 6295,
pp. 234–246. Springer, Heidelberg (2010)

16. ISO/IEC: Information technology - process assessment - part 2: Performing an assessment.
Publicly available, IS 15504-2:2003 (2003)

17. Maglio, P., Srinivasan, S., Kreulen, J., Spohrer, J.: Service systems, service scientists, SSME,
and innovation. Commun. ACM 49(7), 81–85 (2006)

18. McCarthy, W.E.: The REA accounting model: a generalized framework for accounting systems
in a shared data environment. Account. Rev. 57, 554–578 (1982)

19. OASIS: Reference Model for Service Oriented Architecture 1.0. http://www.oasis-open.org/
committees/download.php/19679/ (2006)

20. Papazoglou, M.P., van den Heuvel, W.-J.: Service-oriented design and development methodol-
ogy. Int. J. Web Eng. Technol. 2(4), 412–442 (2006)

21. Poels, G.: The resource-service-system model for service science. In: ER2010 Workshops.
Lecture Notes in Computer Science, vol. 6413, pp. 117–126. Springer, Heidelberg (2010)

22. Preist, C.: A conceptual architecture for semantic web services. In: Mcllraith, S.A., Plex-
ousakis, D., van Harmelen, F. (eds.) ISWS 2004. Lecture Notes in Computer Science, vol.
3298, pp. 395–409. Springer, Heidelberg (2004)

23. Schewe, K.-D., Thalheim, B.: Development of collaboration frameworks for distributed web
information systems. In: Proceedings of IJCAI’07-EMC, pp. 27–32 (2007)

http://www.oasis-open.org/committees/download.php/19679/
http://www.oasis-open.org/committees/download.php/19679/

176 A. Dahanayake and B. Thalheim

24. Schewe, K.-D., Thalheim, B.: About semantics. In: 4th International Workshop, Semantics
in Data and Knowledge bases 2010, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 6834, pp. 1–22. Springer, Heidelberg (2011)

25. Shortliffe, T.: Medical Thinking Meeting, London. Retrieved from http://www.openclinical.
org/dss.html (June 2006)

26. Sol, H.G.: Shifting boundaries in systems engineering. In: Proceedings of the Second Pacific
Asia Conference on Information Systems (PACIS), Singapore, 29 June–2 July, 1995, p. 26

27. Spohrer, J., Maglio, P.P., Bailey, J., Gruhl, D.: Steps towards a science of service systems. IEEE
Comput. 40, 71–77 (2007)

28. Stojanovic, Z., Dahanayake, A.: Service - Oriented Software Systems Engineering: Challenges
and Practices. Idea Group Publishing, Hershey

29. Thalheim, B.: Towards a theory of conceptual modelling. J. Univers. Comput. Sci. 16(20),
3102–3137 (2010)

30. Thalheim, B.: The theory of conceptual models, the theory of conceptual modelling and
foundations of conceptual modelling. In: The Handbook of Conceptual Modeling: Its Usage
and Its Challenges, Chap. 17, pp. 547–580. Springer, Berlin (2011)

31. Thalheim, B.: The science of conceptual modelling. In: DEXA (1). Lecture Notes in Computer
Science, vol. 6860, pp. 12–26. Springer, Berlin (2011)

32. Thalheim, B.: The conceptual model � an adequate and dependable artifact enhanced by
concepts. In: Information Modelling and Knowledge Bases, vol. 25, pp. 241–254. IOS Press,
Amsterdam (2014)

33. Topcon: IMAGEnet i-base. http://www.topcon-medical.eu/eu/producten/75-imagenet-i-base.
html. Accessed December 2014

34. Vargo, S.L., Lusch, R.F.: Evolving to a new dominant logic for marketing. J. Mark. 68, 1–17
(2004)

35. Vargo, S.L., Maglio, P.P., Akaka, M.A.: On value and value co-creation: a service systems and
service logic perspective. Eur. Manag. J. 26, 145–152 (2008)

36. W3C Working Group: Web Service Modeling Language, Version 1.1. http://www.w3.org/TR/
sml/, W3C Recommendation 12 May 2009

37. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J. 26(3), 276–
292 (1987)

http://www.openclinical.org/dss.html
http://www.openclinical.org/dss.html
http://www.topcon-medical.eu/eu/producten/75-imagenet-i-base.html
http://www.topcon-medical.eu/eu/producten/75-imagenet-i-base.html
http://www.w3.org/TR/sml/
http://www.w3.org/TR/sml/

Monitoring of Client-Cloud Interaction

Harald Lampesberger and Mariam Rady

Abstract When a client consumes a cloud service, computational liabilities are
transferred to the service provider in accordance to the cloud paradigm, and the
client loses some control over software components. One way to raise assurance
about correctness and dependability of a consumed service and its software compo-
nents is monitoring. In particular, a monitor is a system that observes the behavior
of another system, and observation points that expose the target system’s state
and state changes are required. Due to the cloud paradigm, popular techniques for
monitoring such as code instrumentation are often not available to the client because
of limited visibility, lack of control, and black-box software components. Based on a
literature review, we identify potential observation points in today’s cloud services.
Furthermore, we investigate two cloud-specific monitoring applications based on
our ongoing research. While service level agreement (SLA) monitoring ensures
that agreed-upon conditions between clients and providers are met, language-based
anomaly detection monitors the interaction between client and cloud for misuse
attempts.

1 Introduction

Cloud computing [14, 163] industrializes service provisioning and delivery by
offering infrastructure, platforms, and software components as rapidly deployable
services. Especially technologies from web information systems have contributed
to this success because of widespread availability on numerous platforms [104].
Clients can therefore consume cloud services or outsource applications to benefit
from the scalability, elasticity, and computational power of private, public, or hybrid
clouds. In this sense, a cloud service is considered to be a distributed, network-
accessible software component that offers functionality to its clients [75, 139].
However, by utilizing a cloud service in a private or business-critical process, a

H. Lampesberger (�) • M. Rady
Christian Doppler Laboratory for Client-Centric Cloud Computing, Johannes Kepler University
Linz, Softwarepark 21, 4232 Hagenberg, Austria
e-mail: h.lampesberger@cdcc.faw.jku.at; m.rady@cdcc.faw.jku.at

© Springer International Publishing Switzerland 2015
B. Thalheim et al. (eds.), Correct Software in Web Applications and Web Services,
Texts & Monographs in Symbolic Computation,
DOI 10.1007/978-3-319-17112-8_6

177

mailto:h.lampesberger@cdcc.faw.jku.at
mailto:m.rady@cdcc.faw.jku.at

178 H. Lampesberger and M. Rady

client enters a dependency relationship with the service provider; a client actually
needs assurance that a utilized cloud service is both dependable and correct.

Testing and formal verification are well-known methods to raise confidence in
the correctness and dependability of a software component. Nonetheless, when
consuming from cloud paradigms [14], such as infrastructure as a service (IaaS),
platform as a service (PaaS), or software as a service (SaaS), a client faces cloud-
specific challenges, in particular:

• The use of black-box software components in a cloud’s execution environment,
e.g., predefined libraries, procedures, and services, that have a specified input-
output behavior but cannot be verified by the client and therefore lead to
incomplete models [88];

• Partial or total loss of data governance [14];
• Operational nondeterminism [88] and randomness during runtime because a

cloud’s execution environment hides distributed computations from the client,
necessary for elasticity and scalability properties of services, but eventually
affects service execution;

• Cloud restrictions, e.g., technological and language restrictions, lead to insuf-
ficiencies [88] on the client- and service-side that require workarounds and
eventually introduce untreated exceptional states;

• Client-side limitations to observe service deviations from normality during
runtime, e.g., changes in the cloud’s execution environment, hidden cases and
assumptions, and cross-tenant information flow as a consequence of hidden
sharing of computational resources.

The need for correct and dependable cloud services may seem obvious; however
we highlight the economical dimension and why it is important. An incorrect
cloud service could partially or completely fail because of an avoidable fault
or an untreated exceptional state as listed above. The consequences are always
business losses; these are usually costs associated with system repairs, acquisition
and shipping of extra devices, external consulting, and additional working hours
for employees, but there is also loss of customers and reputation. In addition,
contract penalties for non-delivery of a service, legal fees, or costs for lawsuits could
bankrupt a business.

Therefore, software deemed to be dependable and correct in a local environment
eventually needs to be reevaluated when deployed as a cloud service or when parts
are outsourced into the cloud. One method to reassure clients that a certain system
behaves as specified is monitoring.

1.1 Monitoring

A specification captures the required functionality of some software, and cor-
rectness means that all input-output behaviors of an implementation satisfy the
specification. Correctness is therefore a relative notion; software is correct with

Monitoring of Client-Cloud Interaction 179

System

Observation Analysis Action
Event Trigger

Data

Enforce orReportObservation Point

Storage

Fig. 1 A monitoring system has four main components: observation, analysis, action, and storage.
An observation point represents technical means to recognize a system’s state and state changes.
The observation component acquires data and generates events. The analysis component processes
events and triggers the action component if necessary. The action component can then enforce
actions or report events

respect to its specification. Avižienis et al. [16] define dependability in a broader
sense as the ability to deliver a service that can justifiably be trusted. Dependability
is qualified and quantified based on attributes such as availability, reliability, safety,
confidentiality, integrity, and maintainability.

A monitor is then a system that observes the behavior of another system to reach
some verdict about correctness: monitoring supports detecting, diagnosing, and
recovering from failures and can furthermore expose additional state information
for testing and debugging [49]. Our motivation is to understand if monitoring can
also raise assurance of cloud service correctness and dependability.

A monitor performs four tasks that also characterize the major components as
shown in Fig. 1 [49, 72]. The observation component of a monitor acquires data
from an observation point and generates monitoring events for further analysis. Data
acquisition is also referred to as sensing [166]. The analysis component implements
a monitoring policy, i.e., the rules and conditions that need to be verified. If
a violation is detected, the monitor triggers actions that can range from simple
reporting to enforcement of certain behavior in the target system. Enforcement
examples are simple termination, graceful degradation, recovery measures, and
corrective interference. The storage component is accessed by other components
for various tasks, e.g., to backup raw data or audit trails, as a knowledge base for
analysis or for logging actions.

1.1.1 Monitoring Use Cases

Plattner and Nievergelt [143] argue that the fundamental motivation for monitoring
is that a developer’s intuition about certain aspects of a system’s state space is
more highly developed than the intuition about implemented code. Historically,
monitoring of software components goes back to execution monitoring [143, 166],

180 H. Lampesberger and M. Rady

and first applications have been debugging and performance enhancement but also
checking correctness [165] and runtime verification [111].

Today, monitoring has a vital role in safety-critical distributed systems [72]
and dependable systems [16], e.g., fault-tolerant systems [49, 159]. There are also
numerous use cases to enforce a security policy in information systems, e.g.,
reference monitors for access control [160]. Also, intrusion detection categorizes
monitoring applications that identify misuse attempts in program execution or
computer networks [48, 50, 108]. With the advance of the World Wide Web,
monitoring has also gained attention in web services (WS) [89], service level
agreements (SLAs) [41], and recently cloud computing [2]. Aside from the diversity
of monitoring applications, we identify the following use cases that are relevant for
clouds:

• Correct execution. A monitor traces a cloud service’s execution with respect to
a policy, e.g., correctness conditions, and yields a verdict. Internal and external
states are derived from observations and a monitor can therefore detect policy
violations and eventually react to an unexpected state.

• Dependability. Implementations and hardware can be faulty. Unexpected,
exceptional state transitions can also occur in cloud services, e.g., as a result
of nondeterministic behavior due to dynamic scaling, pragmatic assumptions, or
workarounds. Monitoring the service execution or interaction for violations and
anomalies allows analysis and consequently fault control to raise dependability.
Examples are failure prediction and root cause analysis [159] but also monitoring
of security aspects.

• Measurement. Another monitoring use case is to determine the quality of
service (QoS) by measuring (nonfunctional) requirements. Quantifying quality
is relevant for cloud services, e.g., for automatic resource scaling or billing.
Measurable SLAs are in fact necessary for automated contracting and controlling
whether a promised service level is actually provided.

1.1.2 Monitoring of Client-Cloud Interaction

A monitor requires technical means, so-called observation points, to recognize the
state and state change events of a system or service under observation. Observation
points need to be chosen, so the states of interest, with respect to relevant properties
in the specification, are unambiguously exposed. A monitor can therefore only
observe a projection of the total state in accordance to the observation points in
place. On the other hand, the available observation points restrict what properties
can be effectively monitored. Cloud clients are directly affected because observation
points in black-box software components on the provider-side are generally not
accessible.

Furthermore, consuming cloud services is inherently a distributed computation
task; a client needs to communicate with a service for interaction. Especially
the PaaS and SaaS paradigms rely on communication standards found in today’s

Monitoring of Client-Cloud Interaction 181

web applications, mashups, apps, mobile devices, and enterprise-grade services
[104]. Client-cloud interaction therefore involves languages to encode information
in a transportable format, standardized protocols to define message exchange
over networks, and architectures that specify protocols as transport mechanisms
and service interaction patterns, so clients can actually consume services. The
communication between a client and a service is observable by its participants and
can therefore offer observation points that are accessible to both client- and service-
side.

The three central research questions with respect to client-cloud interaction are
therefore as follows: “Why do we need to monitor?” “Where can we monitor?”
“What do we monitor?”

1.2 Contributions and Structure

In this chapter we investigate observation points for client-cloud interaction and
discuss two monitoring applications based on our ongoing research: SLA moni-
toring and language-based anomaly detection to monitor misuse attempts. More
specifically, the main contributions are twofold:

1. We identify potential observation points in client-cloud interaction based on a
literature review with respect to the state of the art of communication technology
in SaaS and PaaS clouds.

2. We present our two ongoing research efforts as exemplary monitoring applica-
tions and discuss related work:

• SLA monitoring is a measurement use case to check whether the quality of
a system is compliant to the promised service level. The proposed approach
defines an ontology for specifying SLAs for cloud services, based on which
a monitoring system is developed. The monitoring system uses the ontology
to identify the SLA conditions and detect if any violations of these conditions
take place.

• Language-based anomaly detection is an intrusion detection use case to
identify anomalies, which are eventually caused by misuse. We consider
message-based interaction between clients and clouds, where messages are
expressed in the well-known Extensible Markup Language (XML) format.

The chapter is structured as follows. Necessary background information and
definitions are recalled in Sect. 2 to outline the need for monitoring. We characterize
quality attributes for services, service failures, origins of faults, security, and fault
management, introduce necessary terms, and argue why monitoring can contribute
to correctness and dependable clouds. Section 3 focuses on locations, where
monitoring can take place, and potential observation points are identified. Our
ongoing research efforts on SLA monitoring and language-based anomaly detection

182 H. Lampesberger and M. Rady

are presented in Sect. 4 as two examples of what can be monitored in client-cloud
interaction. Section 5 concludes the contribution.

2 Background

In this section we define and discuss different notions that are relevant to monitoring.
The first notion we present is dependable computing and why it is important in the
context of cloud computing. We also discuss correctness of services and service
failures. We then introduce service quality and security.

2.1 Dependable Computing

In general, dependability is the ability to be trusted or relied on. In the context
of computing, dependability is the ability to deliver a correct service that can
be trusted and to avoid possible service failures. It includes different attributes
such as availability, reliability, safety, confidentiality, integrity, and maintainability
[16, 17]. Cloud computing introduces more challenges on dependable computing,
since the client loses control over the management of the cloud. This increases
the risk of uncontrolled outages that can affect the client’s applications. The
transparent sharing of cloud computing resources by different users can expose
cloud applications to various risks. In addition, between the application and the
cloud infrastructure, there can be different administrative domains, which reduces
the visibility of the system and contributes to error propagation. As a result,
problem detection can be very difficult. Hosting of private data off-premise may
furthermore raise a lot of questions about privacy and confidentiality of the client’s
data. Last but not least, for competitive reasons, providers might not want to
disclose information about their actual service level [91]. The notion of a correct
service is discussed thoroughly in Sect. 2.2. In cloud computing service failure
and unexpected exceptional states should be avoided; therefore we discuss service
failures in Sect. 2.3, focusing on a system-centric view of service failures.

2.2 Correctness

The correct delivery of a software service is a well-discussed problem in the
scientific community of dependable computing. We therefore follow the standard
definitions and terminology of Avižienis et al. [16], Salfner et al. [159], and Goodloe
and Pike [72]. Correctness of a software system is a relative notion with respect to
some specification—a complete, precise, and verifiable description of requirements,
behavior, and characteristics of a system [70]. A system delivers a service to a client

Monitoring of Client-Cloud Interaction 183

through its interface according to an agreed-upon protocol. The total state of a
system captures computation, communication, stored information, interconnection,
and physical condition [16]. The behavior of a system is then a sequence of states,
a so-called run, such that the service is eventually delivered. The expected behavior
is characterized by its functional specification. Every total state can be divided into
an external state, perceivable at the system’s interface, and an internal state; the
sequence of external states of a system therefore represents the service.

Correctness. A system delivers correct service when the service implements the
expected behavior, i.e., all possible sequences of external states conform to the
specified input-output behavior. A transition to an incorrect service is a service
failure and the duration of incorrect service delivery is a service outage [70].

2.3 Service Failures

The root cause of service failure is some fault. Figure 2 indicates how a fault in
a system escalates into an undetected error that eventually becomes detected and
possibly leads to service failure, where symptoms are side effects [15, 16, 49, 72,
159]:

Failure. A failure is the event when a service becomes incorrect such that the
unexpected change of external state is observable by a user of the system,
e.g., a client [16]. We also consider the transition into an untreated exceptional
state [88] as a special case of failure. Things may go wrong inside the system,
but as long as the external state conforms to the specification, there is no obvious
service failure.

Fault

Undetected Error

Detected
Error

Failure

Symptom

is activated

affects
external state

side effects

Fig. 2 According to the fault model of Salfner et al. [159], a fault stays dormant until it is activated
and the internal service state becomes erroneous. The error eventually becomes uncovered by error
detection routines. When the error affects the external state, it becomes a service failure. Errors
can also cause side effects, so-called symptoms

184 H. Lampesberger and M. Rady

Error. The cause of failure is when an external state becomes erroneous. An error
is therefore the deviating part of the total state that may propagate to parts of
the external state and lead to subsequent service failure [16]. Note that there are
errors that only affect the internal state and cause no failure at all. We distinguish
between detected errors and undetected errors [159]. An error is undetected as
long as error detection routines do not report the erroneous state, e.g., by logging
of assertions.

Fault. The cause of an error, i.e., root cause of a failure, is a fault [159]. Faults are
dormant until they become activated and corrupt the system’s state.

Symptom. Errors may not only lead to failure, they can also emit symptoms as
a side effect, e.g., anomalous system characteristics [159]. For some errors,
symptoms can already be observable before failure sets in.

Salfner et al. [159] also explicitly denote that there is anm-to-nmapping between
faults, errors, failures, and symptoms; a single fault can lead to multiple errors and
the same error could be caused by multiple faults.

2.3.1 Origins of Faults

Understanding faults is necessary to reach correctness and dependability in a
software system, i.e., a web application or cloud service. Nonetheless, the root
causes for software faults are manifold. Beside obvious mistakes in design, devel-
opment, operation, or organization of a software system, e.g., software bugs such as
missing deallocation of memory, infinite loops, or flawed interface usage, Jaakkola
and Thalheim [88] identify five origins of untreated exceptional behavior and
consequent service failure in implementations:

Incompleteness. Incomplete knowledge and coverage when specifying a system,
macrodata modeling, integration of external libraries, and the inability to
represent certain relations lead to a “modeling gap” [178] between specification
and implementation. For example, the specification of a cloud service could
deviate from an actual implementation because effectively used libraries in the
cloud’s execution environment are hidden.

Insufficiency. The insufficiency to represent current knowledge in the application
domain is a result of implementation and conceptual language restrictions,
restricted attention of developers, and locality of reasoning. Insufficiency leads
to workarounds to partially patch or fix a situation, but they eventually introduce
a stream of new exceptional situations.

Dynamic changes. Another root cause of service failure arises from negligence
of evolution over time, e.g., caused by environmental changes, too restrictive
models, unstable specifications, and temporary runtime errors.

Hidden cases. Neglected complexity and limited focus only on the “normal case”
lead to various forms of assumptions, self-restrictions, and overlooked cases
that eventually cause exceptional behavior.

Monitoring of Client-Cloud Interaction 185

Operational nondeterminism. An implementation is always executed in some
environment. A (partially) hidden environment, automatic optimization, and
changes in operational modes can lead to nondeterministic service behavior and
randomness in a system’s run. For example, automatic cloud scaling could affect
critical timing constraints in a cloud service.

Furthermore, cloud computing can exhibit characteristics of a distributed system
and therefore inherit theoretical problems of distributed computing as a fault
source. When synchronous or asynchronous interaction takes place, synchronization
and resource allocation become challenging [113]. We recall safety and liveness
properties that characterize temporal behavior of a distributed system [5, 107]:
A safety property informally states that “nothing bad will ever happen,” while a
liveness property states that “(eventually) something good will happen” in a run.

The faults in a distributed system are typically related to stopping and timing
problems, e.g., race conditions or deadlocks, where synchronization of a critical
section or resource fails. Byzantine faults are another temporal fault class, where a
failing system does not fail in silence but starts to behave randomly, i.e., disobeys
protocols, and communicates invalid messages to other systems [72].

2.3.2 Fault Management

Controls are necessary to achieve correct, dependable, and secure service delivery.
Dependable computing literature [15, 16, 159] distinguishes four strategies for
managing faults, and they are summarized in Fig. 3. Fault avoidance and fault
tolerance are constructive; they aim for a resilient design and implementation of
a system such that a specified service is delivered. Contrary, fault removal and fault
forecasting focus on reaching confidence whether a system is able to deliver its
specified service. Every strategy has a different goal:

Fault avoidance. Constructive methods, to prevent faults in the first place, are in the
class of fault avoidance. Examples are coding guidelines, static code checking,
design patterns, test-driven development, and constructive formal methods [15,
32].

Fault tolerance. Exception handling assumes that an exceptional situation can
happen during a run and proposes routines to handle known exceptions and
eventually recover [88]. Also, redundancy to free a system of single points of
failure can achieve fault tolerance, i.e., a system has the ability to provide its

Dependable Computing

Fault Forecasting

Fault Removal

Fault Tolerance

Fault Avoidance

Fig. 3 The four fault management strategies toward dependable computing [15, 16, 159]

186 H. Lampesberger and M. Rady

functionality even under the presence of faults [72]. Fault tolerance includes
replication and fault-containment regions to ensure that an error does not
propagate to other parts in a system.

Fault removal. The goal of fault removal is to minimize the number of faults in a
system, e.g., by formal verification, model checking, and software testing [16].

Fault forecasting. Predicting the presence, occurrence, and consequences of faults
is the goal of fault forecasting. Accurate forecasting of faults, errors, or failures
enables proactive fault management, e.g., by online failure prediction [159].

2.4 Security

Security controls such as access control [160] or audits to uncover undetected
errors ensure that a system respects its security requirements, but faults do not only
affect correctness and dependability, they can also introduce insecurity. Systems and
services have implicit or explicit security requirements that characterize allowed
states and information flows in runs expressed as a security policy, e.g., access
control rules. But faults can introduce undesired and unexpected transitions into
an insecure state and therefore violate the security policy. We define the following
security-relevant terms:

Threat. Any circumstance with the potential to affect systems, processes, or
interactions in a way, such that security requirements are violated, is a threat. If
the threat source is an agent, e.g., a person or group, we refer to it as attacker.

Exploit. A specially crafted input or interaction that leads a vulnerable system into
an insecure state is called exploit.

Vulnerability. A fault becomes a vulnerability if (1) it is exploitable, (2) the threat
has access to the vulnerable system, and (3) the threat has the capability of
exploitation. An exploit is in fact a constructive proof of vulnerability existence
in a system or service [162].

Attack. An attack, also called intrusion or penetration, is the actual process of
an attacker exploiting a vulnerability. An attack becomes an incident when the
attacker is successful and partially or fully reaches the attack goal. If an attack
is novel, i.e., it exploits a system vulnerability that is not yet publicly known at
the time of the incident, it is referred to as zero-day (0-day) attack [28].

Security of software is a deciding economical factor in future information
systems [118]. Correctness of a system reduces the number of faults in a system
and consequently mitigates the attack surface.

2.5 Service Quality

A complete specification of software covers both functional and nonfunctional
requirements. Some requirements can receive higher attention because they are
indispensable for correct function or quality of a service. Important quality

Monitoring of Client-Cloud Interaction 187

parameters are sometimes explicitly recorded in a contract called SLA. Today’s
SLAs are often written in natural language and are intended to specify the
interaction and expectations, regulate resources, and define costs between the
different parties involved in the agreement [145, 146]. Efforts are being made to
specify the SLAs in a formal way. Important aspects of these SLAs are the set
of quality parameters and the obligations of the different parties involved in the
contract [92, 158].

2.5.1 Quality Attributes

In this section we define the different nonfunctional aspects. Some of them can
actually be measured. We present here an informal compilation of a lot of different
quality attributes that can contribute to the dependability, correctness, and security
of a service:

Availability defines the readiness of the service to be used. A system is available if
it is accessible when required for use [16, 145]. Availability contributes to the
dependability of a system, if it is available whenever it is being accessed, and it
gives an indication about the quality of the system security, if no vulnerabilities
can be exploited to perform attacks on the system to cause unavailability.

Reliability is the continuous correctness of a system. It shows the ability of the
system to operate without failure [16, 145]. It ensures the dependability of
the system, if the system is being reliable. If reliability cannot be affected by
security attacks, the security of the system is ensured.

Safety is the quality of averting or not causing injury, danger, or loss to the user [16]
and contributes to the dependability of the system.

Confidentiality ensures the dependability of the system and is essential to the
security of the system. It allows only authorized subjects to have access to the
system [16, 145].

Integrity prevents improper alteration of system and system data [16, 145]. It
ensures the dependability and security of the system.

Auditability is the ability to audit the system and to perform logging to verify its
integrity, and it ensures both dependability and security of the system [195].

Privacy ensures that the user has control over sharing his/her personal informa-
tion [145]. Privacy is a sub-property of security.

Authenticity is trusting the indicated identity or the integrity of message con-
tent [16, 145]. It is a sub-property of security.

Accountability ensures the existence and the integrity of a user performing a
certain operation [15]. It is necessary for the security of the system.

Non-repudiability is to prove that users or systems cannot deny having sent or
received a certain message [204]. It contributes to the security of the system.

Maintainability is the ability to maintain and repair the system easily and effi-
ciently [16]. This ensures the agility of the system. An agile system can be
changed and moved quickly and easily. It also contributes to the dependability
of the system.

188 H. Lampesberger and M. Rady

Modifiability is the ability to make changes to the system efficiently and with low
cost [145]. This property contributes to the agility of the system.

Testability is the ability to test if the system is working correctly [145]. If the
system is easy to test, then it is easier to debug and repair faults. This makes
testability contribute to the agility of the system.

Usability is the ability to use the system easily and successfully [169].
Interoperability is the ability of different systems to work together. It is a cloud-

specific aspect because cloud computing is evolving, and with the presence
of different cloud providers, interoperability between clouds is of essence,
so that complex systems can be developed from different available cloud
services [138].

Portability is the ability to execute a program or run a system on different platforms
and hardware systems [126].

Adaptability is the ability of the system to adapt its behavior to changes in its
context.

Scalability refers to how the system can react and adapt to changes in system
workload and varying needs [22].

Response time is a measure of system performance and refers to the amount of
time the system requires to respond to a received request.

Throughput is also a measure of system performance and refers to the amount of
operations the system can perform in a certain amount of time.

3 Observation Points in Client-Cloud Interaction

Communication is a central aspect of client-cloud interaction, and in cloud com-
puting, the numerous standards for web and service technologies have started to
converge. In this section, based on the review of monitoring literature and a survey
of communication technologies [104], we enumerate potential observation points to
monitor for service failures, errors, or symptoms for assessing the security and, in
general, quality of a service in cloud delivery models.

When cloud services are consumed, a client transfers computational liabilities
to a provider and loses some control over software components in the process. We
distinguish two types of monitoring with respect to the client’s capabilities to access
or modify software components that need to be monitored: white-box and black-
box monitoring. While white-box monitoring assumes that observation points can
be accessed or added as necessary, e.g., by instrumenting code of a service, black-
box monitoring infers a verdict about a service’s dependability or correctness from
observation points that are available to the client, e.g., network communication.

The categorization of observation points in terms of conceptual layers, as shown
in Fig. 4, is motivated by the work of Spring [175, 176]. We specifically focus on
the technological means that have been successful in related fields of software and
are eventually available in today’s clouds.

Monitoring of Client-Cloud Interaction 189

Observation Point

User

Synthetic User Monitoring

Real User Monitoring

Logs & Audit Trails

Middleware

Integration-Driven Monitor

Suffix Proxy

Web Proxy

Message Broker

Message Queue Monitor

RPC Filter

Logs & Audit Trails

Service
Code Instrumentation

Logs & Audit Trails

Operating
System

Virtual Machine Introspection

API Hooking

Call Stack Inspection

System Calls

System Activity

Logs & Audit Trails

Network

Circuit-Level Gateway

Network Flows

Packet Payloads

Packet Headers

SNMP

Hardware
Provider-Side Sensors

Client-Side Sensors

Fig. 4 An enumeration of potential observation points in client-cloud interaction monitoring

3.1 Hardware Layer

Computing hardware and devices typically offer various on-chip sensors to expose
health information, e.g., system and processor temperatures, voltages, fan speeds,
memory failure counters, hard disk health, performance counters, and clock speeds.
But this information is typically not available in the cloud paradigm because
physical hardware is hidden from the client and only accessible by the provider:

190 H. Lampesberger and M. Rady

Provider-side sensors. There are cases where clients need hardware access in cloud
computing, e.g., utilizing the graphics processing unit (GPU) for high parallel
processing capabilities in Amazon Elastic Compute Cloud [8]. The service
provider could expose hardware sensors to the client in such a scenario.

Client-side sensors. Client-side mobile devices can expose sophisticated sensory
information through an agent for various monitoring applications, e.g., geo-
graphical location [73, 86] or device motion [11, 87].

3.2 Network Layer

Network communication offers various observation points when client- and service-
side components are inaccessible for monitoring tasks. Communication protocols
for information exchange in today’s computer networks are layered; in particular,
we consider the Transmission Control Protocol (TCP)/Internet Protocol (IP) stack
[177] as the state of the art for network communication between clients and cloud
services [104]. In packet-oriented Internet Protocol (IP) networks, only the header
of an IP packet is required for routing decisions and delivery. When a system along
the network communication path accesses the contents of a packet, beyond the IP
header, this kind of access is called Deep Packet Inspection (DPI) [23], and we refer
to these systems generally as middleboxes [34]:

SNMP. The Simple Network Management Protocol (SNMP) [79] is a client-server
protocol for analyzing and managing network devices and it communicates
over the User Datagram Protocol (UDP) for message transport. In an SNMP
architecture there are agents running on network devices and a manager that
retrieves or modifies variables in agents. Available variables are organized in a
management information base (MIB) that describes a hierarchical namespace
of object identifiers (OIDs). OIDs refer to device-specific variables, where
variable values indicate configuration settings, device parameters, or network
measurements [19, 182].

Packet headers. Besides the headers of IP packets, the Transmission Control
Protocol (TCP) headers, UDP headers, and Internet Control Message Protocol
(ICMP) messages in network traffic are observed. The packet payloads are left
untouched.

Packet payload. A network monitor is payload based if also transport layer contents
are inspected, i.e., payloads in TCP segments or UDP datagrams, using DPI
technology. End-to-end encryption, e.g., by encryption protocols like Secure
Sockets Layer (SSL) [64], Transport Layer Security (TLS) [51], or Datagram
TLS (DTLS) [148], prevents payload inspection of packets in general. Payload-
based observation can be further distinguished:

• Packet level. The monitor inspects the contents on a per packet basis.
The fact that an application layer message can span over several packets
is ignored [193, 194].

Monitoring of Client-Cloud Interaction 191

• Reassembly. The network monitor reconstructs complete or prefixes of
higher-layer transmissions from packet traces collected from the network
communication between a client and a service [105, 106]. Reassembly needs
to consider properties of higher-level protocols; in particular, TCP segments
can be out of order. Therefore, the monitor needs to keep track of all TCP
connection states and eventually has to buffer packets [200].

Network flows. Network flows are summaries; they provide unidirectional or
bidirectional meta information about network packets that share the same
source and destination, IP address, ports, and IP protocol number [83, 199].
Any activity on the network layer creates flows, including UDP and ICMP. Col-
lecting network flows raises less privacy concerns since no payload is observed.
Furthermore, network flows can be collected from encrypted communication.
Flows are exported by network devices as Cisco NetFlow [40] or IPFIX [83]
records. An overview of flow data collection techniques in large-scale networks
is given by Čeleda and Krmíček [35].

Circuit-level gateway. A circuit-level gateway is a control for transport protocols,
e.g., TCP or UDP, and conceptually a middle man between communicating
hosts [180]. A client establishes a session with a circuit-level gateway, and the
gateway then forwards TCP segments or UDP datagrams from the client to
the designated service, independent from higher-level protocols. The de facto
standard for circuit-level gateways is Sockets Secure (SOCKS) [110].

3.3 Operating System Layer

Operating systems (OSes) are an essential building block in cloud computing
architectures. The IaaS paradigm typically provides a virtualization environment for
clients to operate individual operating systems [14]. Observation points are therefore
of interest for both client- and provider-side monitoring:

Logs and audit trails. An operating system and its processes can produce various
kinds of logs for failures, debugging information, notifications, and events in
general. Log messages are then stored in files and databases or propagated over
the network, e.g., by Syslog [71].
An audit trail in an operating system is a chronologically ordered sequence
of security-relevant events. Audit trails are either exposed directly by the
monitoring target or explicitly provided by the host operating system. Examples
include access logs but also more sophisticated auditing tools, e.g., the Basic
Security Module (BSM) [183] and the Linux audit framework [136].

System activity. A modern operating system typically collects runtime perfor-
mance metrics such as system load, processor load, memory utilization, and
network interface utilization. This information is exposed, eventually on a per
process basis, and it is a valuable observation point for symptoms of failure.
Examples are the /sys and /proc files in Linux systems.

192 H. Lampesberger and M. Rady

System calls. A system call is a software interrupt triggered by a user-space
process to request functionality from the operating system, e.g., to access files
or start new processes. A modern operating system offers technical means to
expose system calls during runtime for auditing or debugging [54, 66]. System
calls can be acquired by modifications in the operating system kernel, strace
in Linux [109] or dtrace in Sun Solaris and other Unix systems [137]; both
tools additionally expose information about the target’s call stack and program
counter.

Call stack inspection. Every running process in a modern operating system has a
call stack in memory that is composed of activation frames to remember nested
function calls and to store local variables. Through modification of the operating
system kernel, a monitor can also inspect the call stacks of processes during
runtime [59].

API hooking. Related functions and procedures in software are often grouped
in an application programming interface (API), e.g., the Windows API for
operating system functions in Microsoft Windows systems [54]. A so-called
hook is a function that intercepts and forwards an API function call for
monitoring purposes. Therefore, API hooking enables analysis of function calls,
call arguments, and eventually enforcement of behavior [54].

Virtual machine introspection. A monitor in an operating system is still a software
component that could be vulnerable to attack or interfere with the monitoring
target. To increase resiliency of monitors, the target operating system is virtual-
ized and observed through a virtual machine monitor (VMM); this monitor can
introspect the virtual hardware and memory, but it needs to reconstruct the state
of the monitored operating system and its processes [52, 67, 130]. An example
is runtime analysis of malicious software execution.

3.4 Service Layer

The software components that actually implement a service are of particular interest
to be monitored. In case of cloud computing, these components are either provided
by the client or operated by the service provider:

Logs and audit trails. Similar to operating systems, services can maintain indi-
vidual logs for various purposes, e.g., service-specific events, performance
counters, transaction logs for database systems, and access logs for auditing
tasks to name a few. Logs are typically stored as a file or in a database.

Code instrumentation. To gather state information from a service, code instru-
mentation adds monitoring instructions to the service’s code, so internal
function calls, conditions, or data values become observable during runtime.
Instrumentation can be done manually, by adding assertions or explicit pre- and
post-conditions during implementation, or automatically.

Monitoring of Client-Cloud Interaction 193

Techniques for automated instrumentation are code rewriting [131], bytecode
instrumentation [12, 29, 132], and insertion of advice statements for aspect-
oriented programming [134, 135, 149]. Instrumentation techniques can be
furthermore distinguished into static and dynamic, and instrumentation typ-
ically affects the performance of the software. An example for dynamic
instrumentation of JavaScript code, popular in web-based applications, is given
by Magazinius et al. [114]; script code is dynamically rewritten before its
interpretation by the client. In addition to the two well-known applications of
instrumentation, profiling and debugging, there are also enforcement of control-
flow integrity [1] and information-flow security [157].

3.5 Middleware Layer

A middleware interconnects heterogeneous systems and services for integration
purposes, and various types of middleware do exist in cloud computing [104]. Com-
munication between clients and cloud services that passes through a middleware
is often message based, and a number of observation points for monitoring are
therefore available:

Logs and audit trails. Middleware solves various tasks, e.g., message routing and
brokerage, coordinated actions, and service orchestration to name a few. Exist-
ing logging capabilities in middleware components, typically for debugging
and auditing, are valuable observation points. Examples are performance and
message brokerage logs [197], audit frameworks [196], and message flows
[161].

RPC filter. Remote procedure call (RPC) architectures based on established web
technologies are popular in cloud computing. Call argument data is serialized
according to an agreed-upon data serialization method and typically has an
individual media type in web-oriented RPC frameworks used in today’s PaaS
or SaaS clouds [104]. Filtering of arguments and return values when remote
procedures are called is a potential observation point.

Message queue filter. Message queues enable asynchronous communication in
message-oriented middleware [45]. A monitor can be placed as a filter in a
message queue [4, 192] or as a message-processing component, so complete
messages can be observed.

Message broker. When a middleware relies on dynamic routing [21] for message
exchange, a monitor can participate as routing target or broker to receive and
eventually forward message copies, e.g., by using WS-Addressing [185] in
Simple Object Access Protocol (SOAP) [187] web services.

Web proxy. A web proxy is a networked software component that acts as a
middle man. It forwards web requests and responses between a client and
a service and eventually takes corrective actions by filtering or modifying
content [98, 115]. Proxy architectures are popular for the Hypertext Transfer

194 H. Lampesberger and M. Rady

Protocol (HTTP) used in today’s web applications and services. We distinguish
forward and reverse web proxy [179]: a client initiates communication through
a forward proxy instead of directly communicating to the service. Contrary,
a reverse proxy accepts messages on behalf of a specific service. A web
proxy cannot observe contents of encrypted requests and responses in case of
HTTP Secure (HTTPS) communication using SSL/TLS; encrypted interaction
is transparently forwarded or blocked in such a case.

Suffix proxy. For web-based applications, a suffix proxy [115] is similar to a
forward proxy: it acts as a middle man between client and service by forwarding
client requests and gathering service responses. Contrary to traditional web
proxies, a suffix proxy exploits the hierarchical naming scheme in the Domain
Name System (DNS) to transparently and dynamically re-host existing services
under a different DNS host name. For example, a suffix proxy for domain
suffix.org could offer the services of google.com transparently over
domain google.com.suffix.org.
A suffix proxy can observe and modify complete web requests and responses
for monitoring purposes, and a use case is JavaScript code instrumentation
for adding security controls [115]. Furthermore, a suffix proxy can access
encrypted HTTPS communication when SSL/TLS client authentication is not
performed. Nevertheless, all response messages passing through a suffix proxy
have to be modified, i.e., adaptation of hyperlinks, so further requests are
received.

Integration-driven monitor. Developers tend to reuse code, in particular, third-party
libraries and other services to extend their application with additional features.
When a middleware composes a particular service by integrating third-party
libraries or services, the middleware can add observation points to monitor the
consumed third-party libraries or services, i.e., an integration-driven monitor.
Today’s SaaS delivery models often rely on web technology, and web mashups
are a popular approach to achieve composition and JavaScript code reuse
[57, 174]. An example for an integration-driven monitoring in mashups is to
instrument untrusted third-party JavaScript code [115].

3.6 User Layer

In web-based cloud services, monitoring of end users can deliver valuable insights
for debugging or performance measurement. Besides existing logs and audit trails
that expose user-centric metrics, we distinguish two complementary approaches for
measuring end-user experience: synthetic and real user monitoring [44]:

Logs and audit trails. In PaaS and SaaS, the provided platform or software could
already provide user-centric logging for auditing or service adaptation, e.g., user
history, access, authentication, or geolocation logs.

Monitoring of Client-Cloud Interaction 195

Synthetic user monitoring. To monitor end-user experience, synthetic user moni-
toring actively simulates user requests using web browser emulation or record-
ings of web transactions. It emulates user behavior on a website and the different
navigation paths, in order to measure performance and availability. Synthetic
user monitoring distinguishes between internal tests that run locally within
the organization or data center and external tests, where synthetic users are
simulated over the Internet. While synthetic user monitoring can give a brief
understanding about availability and performance of a service, it can hardly
anticipate problems that could occur while the service is being used by many
real users.

Real user monitoring. Contrary to synthetic user monitoring, real user monitoring
is a passive approach to analyze every transaction of every user by observing
actual interactions with the service. This allows to monitor whether a user is
served in a timely manner and error-free and to detect the different problems
in the whole business process. Real user monitoring captures, analyzes, and
reports performance and availability of a service in real time as the visitors are
interacting with it. Methods include sniffing, JavaScript injection, and installing
an agent on the client-side [44].

4 Monitoring Applications

4.1 Service Level Agreement Monitoring

SLAs define assertions of a service provider that the offered service meets a certain
guaranteed IT-level and business-process-level service parameters. In addition, the
service provider should guarantee measures to be taken in the case of failed
assertions [112]. Current SLAs in the market are written in natural language. It
is the customer’s responsibility to send claims of the downtime incidents, and the
service provider checks if the claims are true. If the promised uptime percentage or
rate is not met, the customer usually gets compensation in form of service credit
[9]. Cloud computing imposes a challenge in this field, since the management of
the SLAs is usually done by the service provider, who sometimes does not reveal
the actual service levels of the service offering for competitive reasons. This is
why the user should not only rely on the SLA received from the service provider,
since it is not a reliable guarantee the actual service level is as promised. In order
for the customer to be able to rely on the quality of the service, quality attributes
need to be well described in SLAs. Their descriptions should be machine readable
and allow efficient, accurate, and precise monitoring of the SLA in a client-centric
manner, meaning that the client would also have control over how to manage and
monitor these SLAs. This section discusses how to monitor SLAs from a client-
centric perspective. Research done so far in this area has been unified on the
need to formalize the specification of SLAs. Various attempts for the formalization

196 H. Lampesberger and M. Rady

have already been introduced in literature, e.g., web SLA (WSLA), SLA language
(SLAng), and SLA@SOI. All of them aim at formally specifying SLAs and making
them machine readable to allow monitoring. Our approach is to try to define the
SLA in a way that allows the user to monitor his/her own cloud system for SLA
conformance or to outsource the SLA monitoring to a third party.

4.1.1 SLA Specification

In this section we investigate existing frameworks for SLA definitions. These
frameworks are trying to find a general way to express all the quality aspects. The
first model that we look at was developed by the SLA@SOI project. The SLA model
in this project is concerned with modeling the physical structure of the document
leaving out the intentional aspects of an agreement. The QoS term monitoring is in
a later stage. The SLAs are then translated into operational monitoring specification.
On this level are the intentional aspects of the contract tackled through special
engines for this purpose [198].

Another way to model SLAs is using the SLA language (SLAng) [102]. The
SLAng model defines two abstraction levels for compiling SLAs. It differentiates
between vertical and horizontal SLAs. Vertical SLAs are concerned with governing
the service level of the underlying infrastructure, while the horizontal SLAs are
between parties providing services on the same level. SLAng is an XML for captur-
ing SLAs. The SLA structure includes three main concepts: namely, an endpoint
description of the contractors, contractual statements and QoS descriptions, and
associated metrics.

WSLA is a framework for SLA establishment and monitoring of SLAs. The
contract has three sections; parties, service description, and obligations. The WSLA
language is XML based and SLA parameters are specified with their metrics [92].

The basic physical structure that the SLA should have includes the parties that
are involved in the contract, the different guarantees or commitments that the service
is offering, as well as some general information about the service itself.

Our efforts lie in trying to model the different quality aspects into depth,
taking into account their individual meanings as well as putting in mind that the
representation of the quality aspect should be monitored. Our approach to define
SLAs [146] is using ontologies and the Web Ontology Language (OWL). OWL is
based on description logic (DL). DL is a family of formal knowledge representation
language and it is of particular importance in providing a logical formalism for
ontologies and the Semantic Web. A DL models concepts, roles, individuals, and
their relationships. In OWL we refer to these as classes, properties, and individuals,
respectively. The different conditions of the SLA were modeled using DL axioms,
these conditions will then be used to generate the contract, and since it is machine
readable, it can be used by monitors to detect any violations. SLA monitoring is
then discussed in Sect. 4.1.2. When defining an ontology, every class is a subclass
of the class Thing.

Monitoring of Client-Cloud Interaction 197

SLA

Commitments

Information

Parties

Fig. 5 Structure of the SLA document

SLA

...

Commitments

...

BillingCommitment

RefundCommitment

AvailabilityCommitment

Fig. 6 SLA commitments

Figure 5 shows the structure of the SLA document. Parties define everyone
who is involved in the SLA. Information describes the functionalities of the
service; it lists all the possible operations to the service and the different failures as
well as other relevant information about the service, such as the name or the service
description. Commitments capture the nonfunctional aspects that are guaranteed
by the SLA:

Parties are the different contributors that offer or receive a service. Each
party has a name and a unified resource identifier (URI). Each SLA should
have at least two parties involved. Parties can be a Provider, a User, or a
ThirdParty.

Parties v9hasName:Datatype.string/
u9hasURI:Datatype.anyURI/ (1)

Commitments are the different conditions the service provider is offering to the
customer. The first concept that is defined is AvailabilityCommitment.
RefundCommitments andBillingCommitments are other defined con-
cepts of the SLA. The ontology can then be extended to cover other commit-
ments, by adding an attribute X as a concept XCommitments according to the
quality specifications needed for the service (Fig. 6).

AvailabilityCommitment is the set of all commitments related to the
quality attribute availability and is a subclass of Commitments.

AvailabilityCommitment v Commitments (2)

The subconcepts of AvailabilityCommitment are Commitment
Validity, MaintenanceTime, ProbabilityDistribution,
and MonitoringWindow.

198 H. Lampesberger and M. Rady

CommitmentValidity is one subconcept of Availability
Commitment, and it has the data type properties hasStart and
hasEnd of data type datetime and has the object properties
hasDuration and hasRepetition.

CommitmentValidity vAvailabilityCommitment
u..9hasStart:Datatype.datetime/ u
9hasEnd:Datatype.datetime//
t .9 hasStart:Datatype.datetime/ u
9hasDuration:Duration//
u.9hasRepetition:Repetition/

(3)

MaintenanceTime is another commitment that needs to be agreed on.
It decides when maintenance will take place because the service might be
unavailable for some time during maintenance. MaintenanceTime is a
subconcept of AvailabilityCommitment. MaintenanceTime
defines a start and end time for the maintenance. It has a property
hasStart and hasEnd of data type datetime. In addition it
has a relationship to the concept Repetition using the property
hasRepetition that defines how maintenance is scheduled. For relative
time, a start date and time and the duration of the maintenance are defined.

MaintenanceTime vAvailabilityCommitment
MaintenanceTime v.9hasStart:Datatype.datetime/u

9hasEnd:Datatype.datetime/
u9hasRepetition:Repetition/
t.9hasStart:Datatype.datetime/u
9hasDuration:Duration
u9hasRepetition:Repetition/

(4)

Repetition is defined as:

Repetitionv TemporalInformation

u9hasRepetition:Datatype.integer/
Repetition� fDailyg t fWeeklyg t fMonthlyg

tfYearlyg

(5)

Monitoring of Client-Cloud Interaction 199

And Duration is defined as:

Durationv TemporalInformation

u9hasDuration:Datatype.double/
Duration� fMinutesg t fHoursg t fDaysgt

fWeeksg t fMonthsg t fYearsg

(6)

TemporalInformation is a helper concept used to extend the data
type datetime with relative time.
ProbabilityDistribution is a subconcept of Availability
Commitment and defined as follows:

ProbabilityDistribution vAvailabilityCommitment
ProbabilityDistribution v9hasFormula:Datatype.string/
ProbabilityDistribution v9hasParameter:Datatype.string/

(7)

MonitoringWindow is the duration of time to which the availability
commitment applies. MonitoringWindow is defined as:

MonitoringWindow vAvailabilityCommitment
u9hasDuration:Duration (8)

RefundCommitment is the set of terms for getting a compensation in case
the SLA is not met. The RefundCondition is the condition for the
customer to receive a refund. If the service provides less service level than
promised, the customer is entitled to receive a RefundPercentage.
RefundCondition and RefundPercentage are defined to have a
value of data type double.

RefundCommitment vCommitments

RefundCondition vRefundCommitment

u9hasCondition:Datatype.string/
u D 1 hasRefundPercentage:RefundPercentage

RefundPercentage vRefundCommitment

u9hasRefund:Datatype.double/
(9)

200 H. Lampesberger and M. Rady

BillingCommitment represents the billing information. It has two sub-
concepts: Payment and Price. Payment is a concept that defines where
the payment is going to be made using a relation hasURI to the data type
anyURI. In addition, it has a start date and time as well as a Repetition
defining when the payment has to be made. The concept Price defines the
price that has to be paid for the service, and the concept Currency defines
the currency that is used to pay for the service.

BillingCommitment vCommitments
Payment vBillingCommitment
Payment v 9hasURI:Datatype.anyURI/

u9hasStart:Datatype.datetime/
u 9hasRepetition:Repetition

Price vBillingCommitment
u 9hasPrice:Datatype.double/
u9hasCurrency:Currency

Currency vBillingCommitment
Currency �fDollarg t fEurog t f: : :g

(10)

Information is representing general information about the service and is a
subtype of SLA. It includes different subconcepts (Fig. 7).

Description. This is a string defining what the service is used for.

Description vInformation
u9hasDescription:Datatype.string/ (11)

SLA

...

Information

...

Name

Failure

Request

Location

Description

Fig. 7 SLA service information

Monitoring of Client-Cloud Interaction 201

Location. Any offered service should have a location. Not only the physical
location to get information about jurisdiction but also the uniform resource
locator (URL) or IP address under which the service is available and
accessible.

Locationv 9hasAddress:Datatype.string/
u 9hasIP:Datatype.string/
u 9hasURI:Datatype.anyURI/

(12)

Request. It describes the different requests that the client can make to
different resources offered by the service. The availability of a resource
can be modeled by a probability distribution function representing whether
the resource was able to respond to the request made by the service user.

Request vInformation
u9hasRequest:Datatype.string/
u9hasFailure:Failure
u9hasDistribution:ProbabilityDistribution
u9hasMonitoringWindow:MonitoringWindow

(13)

Failure. This concept describes the different failures or errors the service
can show.

Failure vInformation
u9hasFailMsg:Datatype.string/ (14)

Name. This is a concept that has a string which is the name of the service.
It is assumed here that the service name is a unique identifier, but if the
name is not unique, another identifier can be used, such as the service
URL or a specific ID. The Name relates a service to the different con-
cepts in the ontology: MaintenanceTime, Request, Description,
Parties, Payment, Refund, Location, Description, Price,
MonitoringWindow, and
CommitmentValidity.

All these concepts and relations form the knowledge base for the SLA conditions.
After having the needed specification for the different conditions of the SLA, these
should be monitored. In the next section, we will investigate different applications
of SLA monitoring.

202 H. Lampesberger and M. Rady

4.1.2 SLA Monitoring

The monitoring system needs to be aware of the structure of the system and its
interaction model in order to monitor it. Each of the conditions stated in a SLA
can have a measurable service level objective (SLO). This objective is the target
that should be monitored. With cloud computing emerging, monitoring of SLA is
becoming very important. Service providers have to pay penalties when SLAs are
violated which can cause loss of money if the monitoring is not accurate. Currently
there has been work done in the field of SLAs in cloud computing. However, none
of these solutions have taken the lead on the market. This is why until now SLAs
are stated in natural language, e.g., Amazon EC2 SLA [10]. There are different
approaches to solve this problem: either to begin by defining SLAs and then set up
monitors that are observing the parameters stated in the SLAs or by beginning with
different resource metrics and trying to map them to SLA parameters. The proposed
solutions use either their own monitors or suggest a service discovery for existing
monitors.

A lot of the presented solutions for SLA monitoring are agent-based monitoring
techniques. Agents are placed in the cloud system to gather measurements about
the different quality of service aspects stated in the SLA [33, 39, 80, 125, 158]. The
agents can be placed on the client-side, on the service provider-side, in the middle
between the client and the service provider, or as probe nodes in the system [125].
Agents can also be placed in a combination of these locations.

Interest in SLA monitoring has been growing with the development of comput-
ing. First attempts introduce SLA monitoring for network and infrastructure. They
use an agent-based monitoring technique [80] to monitor QoS parameters of SLAs
from a customer’s perspective. A flexible management agent (FMA) is placed in the
network of the customer, and it observes network flows. They measure availability
of IP connectivity and response time of the system.

Another contribution to SLA monitoring, presented in Choon et al. [39], uses an
agent-based technique called aggregation and refinement based monitoring (ARM).
This technique relies on detecting network flows that are violating the SLAs,
especially in a large network. It is assumed that the network of an Internet service
provider (ISP) has a large number of network devices; each of these devices can
collect a large number of SLA flows and evaluate them through an agent that collects
and sends measurement data. Because of the huge amount of flows, monitoring all
of them is inefficient and might affect the system negatively. A data aggregation
solution is provided to make monitoring more efficient and to achieve scalable
monitoring. Data aggregation is the concept of using a controlled amount of data
as an approximation for the actual service level. After the agent has collected
QoS measures, it forwards an approximation of these measures to a Network
Management System (NMS). The NMS forms a picture of the QoS that each SLA
flow is showing. If the NMS needs more precise values, it will ask the agents to
refine the results. This system can monitor the average throughput, packet loss, and
packet delay of the network [39].

Monitoring of Client-Cloud Interaction 203

Ayad and Dippel [18] propose an agent-based monitoring system that checks for
the availability of virtual machines and recovers automatically in case of failure. It is
based on the idea of having multiple portable agents and a centralized monitor. The
agents are configured in the different VMs they are monitoring. After configuration,
the agent introduces itself to the centralized monitor. The task of the agent is to
maintain information about the VM it is on and perform recovery actions such
as restart, shutdown, or destroy. This is an architecture that can be applied for
monitoring availability promised in SLAs.

It is particularly difficult to automate SLA monitoring of web services because
they would need precise and unambiguous specifications and a monitor that makes
measurements and reacts to certain events [158]. The first step was to create flexible
and precise formalizations of what SLAs are. For the monitoring of SLA, attaching a
proxy to listen to outgoing and incoming messages of the web service is difficult, as
these are usually encrypted. As SOAP is one of the preferred standards for web
service interaction, Sahai et al. [158] chose to modify and overwrite the SOAP
toolkit to keep track of message exchange. There is a Web Service Monitoring
Network (WSMN) agent that is loaded with the formal specifications of SLAs.
The agent decides if the measurements should be done locally or externally. The
measurements can be done on the customer- and provider-side, and the exchange of
these measurements is done through the Measurement Exchange Protocol (MEP).
Both sides need to agree on what kind of measurements to perform, the level
of aggregation used, and how frequently the measurements should be exchanged.
There are five different types of messages that can be exchanged by the protocol
(init, request, agreement, start, report, close) [158]. If violations to the SLAs occur,
violation records are stored in log files.

A framework called LoM2HiS is mapping lower-level resource metrics to higher-
level SLAs. LoM2HiS maps states of the system, e.g., system up or system down,
to a higher-level SLA term, e.g., availability. It uses the stand-alone Gmond module
from the Ganglia open-source project as a monitoring agent on a host to retrieve the
raw metrics from different resources. There is a runtime monitor that observes the
service and compares the SLAs to the mapped metrics [55].

Another effort is the SLA@SOI framework [198], mentioned in Sect. 4.1.1. This
framework, however, does not consider mapping the metrics to the specification,
and the monitoring is done by special engines [198]. Rosenberg et al. [155] identify
different QoS aspects from resource metrics. They present mapping techniques
of the metrics to SLA parameters. However, they do not deal with monitoring of
resource metrics.

Another proposed system that manages SLA violations is Detecting SLA Viola-
tion infrastructure (DeSVi) that allocates computing resources based on the user’s
request. The resources are monitored using the LoM2HiS framework, mentioned
earlier [55, 56].

Romano et al. [154] propose a solution called Quality of Service MONitoring
as a Service (QoS-MONaaS). The platform allows the user to define in a formal
SLA the key performance indicators and sends alerts when these SLAs are violated.
Dastjerdi et al. [46] rely on service discovery to find suitable monitoring services to

204 H. Lampesberger and M. Rady

perform QoS monitoring. The monitoring service is described using Web Service
Modeling Ontology, so the system is able to discover the suitable service.

A framework developed by International Business Machines (IBM), called
WSLA, is used to specify and monitor SLAs for web services [92]. The WSLA
framework comprises a definition of SLAs based on XML Schema and a runtime
architecture providing different SLA monitoring services. This work presents a
formal approach to SLA specification and runtime architecture for accessing the
resource metrics and for monitoring and evaluation of SLAs. The SLA has a
five-stage life cycle: negotiation and establishment, deployment, measurement and
reporting, corrective action, and termination. The measurement and reporting stages
deal with the computation of the SLA parameters by getting the metrics of the
resources used for the application. There are two services responsible for this task:
the Measurement Service and the Condition Evaluation Service. The Measurement
Service measures the SLA parameters by either getting the resource metrics on
the provider-side or by intervening with the client-side. The Condition Evaluation
Service is responsible for comparing the retrieved metrics with the guarantees
specified in the SLA. If a violation is detected, Corrective Measurement Actions
have to be taken, and notifications are sent out to the client and the server. The
component doing the monitoring was called SLA compliance monitor [92]; it was
part of the IBM Web Service Toolkit. However, this toolkit is no longer available. It
collects metrics from two points: it collects, first, directly from the managed sources
inside the provider and, second, from outside the provider by issuing probing
requests [125].

The first step for the monitoring of SLAs is SLA definitions. A formal language
for defining SLAs should be used. SLAng is the SLA definition language used
in Molina-Jimenez et al. [125]. For collecting the metrics agreed upon in the
SLAs, a Metric Collector (MeCo) is installed where the interested party wants to
have it. Four possible approaches to metric collection are presented. This is the
decision on which layer the monitor will be placed. The first approach is the service
consumer instrumentation, where the monitor will be placed on the consumer-side.
The second approach is the provider instrumentation; the monitor is placed on the
provider-side. There is also the possibility of placing MeCo at probe nodes; this
approach is called periodic polling with probe clients. Finally, the monitor can be
placed on the network and is called network packet collection with request response
reconstruction. The last two approaches allow monitoring by third parties. The third
party should perform measurement, evaluation and violation detection [125].

A patent presenting the idea of time-based monitoring of SLAs is describing how
to monitor SLAs over defined time intervals [33]. The monitoring tests are defined
by some data received; these are enforced at fixed time intervals. Users can specify
when these tests can be run to check a particular level of service. The tests are
distributed on different agents that are configured to communicate with the devices
that are associated with the network. The SLA contains the type of network service,
acceptable levels of performance, and a list of devices to which the SLA applies.
They define the service level contract (SLC) to have a set of SLAs, and the SLAs are
then configured to be run at a certain time. There is a service level manager (SLM)

Monitoring of Client-Cloud Interaction 205

server that gathers all the SLCs of all the customers to process and manage them.
SLM serves as a central processing and reporting unit for SLC requests originating
from clients. It offers an open interface to allow users to monitor and verify the level
of service being provided. The standardized open interface can be provided through
a document type definition (DTD) for XML, or a set of standardized template
definitions can be used to define the different SLAs, what tests and when they will
be enforced. The client can specify a set of metric tests that define the range of
values that a certain service level can have. The SLM server is also responsible for
managing the SLM agents. When the SLM server receives an SLC request from a
client, it parses it and notifies the appropriate SLM agent to test the claims stated in
the SLC. The SLM server regularly sweeps the SLM agent to get results about the
tests and archives them. The SLM agent can use different functions for monitoring
such as collecting data, performing data aggregation, monitoring resources, tracking
non-responding devices, and maintaining data repositories.

Some of the solutions presented earlier rely on specifying the SLAs using XML
which does not convey the semantics of the conditions of the SLA. Other solutions
perform the monitoring on the provider-side only. Few efforts involve the client in
the process. One of the challenging tasks in this field is bridging the gap between
the SLA specifications and monitoring the SLOs and allowing the client to assess
the performance and availability of the cloud in use. A step toward bridging this gap
is shown in Rady [146]. In this work an abstract model was proposed to represent
the interaction between the user and the cloud service that would allow modeling
service availability in the SLA from a client-centric perspective, using the expressive
power of description logics. The idea is to model the cloud service as a set of
requests or operations sent to the cloud by the user, since this is how the user
perceives the service. And the user receives for each of these operations a certain
response. Each client can interact with a cloud service via a network. Each cloud
service can be composed of a set of services, and the functionalities of the various
services can be described as the set of all possible requests or operations that can
be sent to the service. The availability and performance of these services can be
monitored by observing the different requests and modeling their availability and
performance using probability distribution functions. The SLA therefore reflects the
architecture of the monitoring system, making sure that what the client or the third
party is measuring is conveyed in the SLA.

In order to instantiate the SLA from the ontology, synthetic user monitoring
is done to approximate the service level that is offered. On a client-controlled
middleware, an SLA management component is placed to get the measurements
from a monitor and save the service level information to the SLA knowledge base.
Since the different conditions are stated in OWL, it allows the monitoring system
to measure the service level and to add it to the contract efficiently. When the
SLA is instantiated and the service is ready to be used by real users, real user
monitoring is performed. It allows the monitoring system to automatically check
whether there has been any violation of the conditions in the SLA and notifies the
client immediately of the violation. The monitoring component is placed in a client-
controlled middleware between the client and the cloud.

206 H. Lampesberger and M. Rady

4.2 Language-Based Anomaly Detection

Another application of monitoring is to increase security of web and cloud services
by monitoring the effective interaction between clients and services for attacks, so
automated responses can be triggered. This section reviews intrusion detection and
we focus specifically on anomaly-based detection techniques, applicable in web and
cloud architectures, and discuss relevant problems in the domain.

Today’s web and cloud architectures are built upon many heterogeneous tech-
nologies: TCP/IP and HTTP as transport mechanism; Hypertext Markup Language
(HTML), JavaScript Object Notation (JSON), and XML to encode structured
information; numerous media types; and interactivity through JavaScript [104]. We
argue that XML-based attacks preferably exploit syntactic inconsistencies to cause
insecure interpretation, i.e., unexpected tree structure or element content that leads
to an insecure state. Therefore, we give an overview of our proposed language-based
anomaly detection approach for XML-based interaction [103]. Detecting anomalous
syntax can reduce the attack surface of XML processing systems on the client- and
service-side.

4.2.1 Intrusion Detection

An intrusion detection system (IDS) monitors the information exchange or state of
its target system to detect exploit activity caused by an attacker [162]. Intrusion
detection techniques are typically deployed as software components or appliances,
e.g., network firewalls, web security gateways, or web application firewalls. Notable
surveys for intrusion detection are given by Debar et al. [48] and Lazarevic et
al. [108]. When an IDS is capable of taking countermeasures, it is referred to as
Intrusion Detection and Prevention System (IDPS or IPS).

In general, intrusion detection systems are categorized by the location of
observation points into host and network based. We further characterize IDSs based
on their detection strategy into misuse- and anomaly-based detection techniques.

Misuse-based detection relies on knowledge about attacks. An IDS compares
observations with well-known behavioral patterns of exploit activity. A special case
is signature-based detection, where an IDS matches for exact patterns of exploits
in information exchange. Two notable signature-based IDSs for network packet
inspection are Bro [140] and Snort [153]; both match the payloads of network
packets against predefined rules and regular expressions.

Anomaly detection assumes that a deviation of normal behavior or input, a so-
called anomaly, indicates a security violation. The history of anomaly detection goes
back to the work of Denning [50], where an anomaly-based IDS has a reference
model of the target system’s usual behavior to distinguish observations into normal
and abnormal events. There are two approaches for defining such a reference
model: a formal specification of normal behavior, also referred to as specification-
based anomaly detection, and by learning a reference model from observations or

Monitoring of Client-Cloud Interaction 207

measurements [37, 108]. The specification-based approach could be considered as
an independent category, next to misuse and anomaly detection, if the specification
also characterizes violating behavior. Learning a reference model in the second
approach requires some form of training or learning period.

In theory, anomaly detection is more sensitive to false alarms than misuse
detection, but anomaly detection has the advantage of recognizing yet unknown
(zero-day) and targeted attacks that are specifically designed to evade signatures in
misuse-based detection methods.

4.2.2 Survey of Anomaly-Based Intrusion Detection

To detect attacks in interaction, especially when black-box software components are
in place, we look into monitoring techniques for observation points on the operating
system, network, and middleware layer. In particular, we focus on anomaly-based
intrusion detection intended for web applications and services, where higher-level
protocol messages are exchanged [118].

Host-Based Anomaly Detection

Specifying and learning normal behavior for operating system audit trails or system
calls are popular techniques in host-based anomaly detection. A specification-based
anomaly detection technique for hosts is given by Ko et al. [94]. The proposed
technique defines a program policy specification language to express an abstract
security specification for a program, and a Unix tool then checks audit trails for
conformance. This approach is further extended to distributed systems [95].

Wagner and Dean [190] present a specification-based anomaly detection tech-
nique that derives an IDS specification, represented as automata over system calls,
directly from program code. Unfortunately, the runtime simulation of a derived
nondeterministic pushdown automaton is intense, and efficiency is too low for many
programs [59].

Another specification-based approach that relies on system calls is the Janus
framework [66]. An OS kernel module intercepts system calls and checks them
against a user-specified policy, and violating system calls are denied. Garfinkel
[66] also highlights problems and pitfalls in monitoring system calls: incorrect
replication of operating system state, indirect paths to resources, race conditions,
and unforeseeable side effects when system calls are denied.

With respect to learning of a reference model for host-based anomaly detection,
Forrest, Hofmeyr, and Somayaji [63, 82] introduce an IDS that instruments n-grams
of system call sequences to learn a reference model of a monitored operating system
process. A refinement of this approach delays or blocks system calls as corrective
actions [170]. Both Sekar et al. [168] and Michael et al. [122] resort to automata
learning techniques to infer profiles from strace audit trails. The VtPath model
by Feng et al. [59] directly analyzes the call stack and return addresses of the

208 H. Lampesberger and M. Rady

target program during execution to generate abstract execution paths between two
program execution points. Another improvement in anomalous system call detection
is Mutz et al. [129]; their proposed technique analyzes system call arguments and
combines multiple detection models to increase IDS accuracy. The host-based IDS
by Maggi et al. [117] clusters similar system call arguments and represents system
call sequences by a stochastic model to evaluate runtime program behavior. Another
stochastic model approach for system calls and arguments is given by Frossi et
al. [65].

Anomaly Detection in Network Packet Headers and Payloads

For specification-based anomaly detection in networks, eBayes TCP [184] inspects
packet headers and relies on a given Bayes network approximation of expected TCP
network interaction. The model is then continuously refined during operation.

For network-based intrusion detection, where a reference model is learned, two
notable systems are PHAD [120] and ALAD [119]. They observe TCP/IP network
traffic and capture frequencies of certain properties in nonstationary probabilistic
models. While PHAD models packet headers, ALAD additionally inspects the
payload on a network packet-level and calculates normal frequencies of keywords.

Zanero and Savaresi [203] introduce an anomaly-based IDS that relies on
unsupervised machine learning and a two-stage architecture. The first stage clusters
similar network packets based on their contents, and the second stage detects
anomalies in a rolling temporal window over clusters of packets.

The payload-based anomaly detector (PAYL), by Wang and Stolfo [193], esti-
mates byte frequencies in network packet contents for a statistical reference model.
A refinement of this approach, called Anagram [194], uses n-grams instead of single
byte frequencies. POSEIDON [31] is a two-tier IDS, where packets are classified by
a self-organizing map first, and a modified variant of PAYL analyzes mapped packets
in a second stage for deviations. Perdisci et al. [141] further pursue this direction and
introduce McPAD, an ensemble of one-class classifiers, to increase accuracy.

Another multiple classifier system that relies on hidden Markov models to
capture sequences of content bytes in packets is HMMPayl [13]. To reduce the effort
of generating training data, Görnitz et al. [74] redefine anomaly detection as an
active learning task that queries an expert when detection confidence is insufficient.
The proposed learning setting is intended for techniques such as PAYL, Anagram, or
McPAD.

The denoted systems observe network packets and the applied techniques are
independent from higher-level network protocols. Nevertheless, their experimental
evaluations have included web interaction.

Monitoring of Client-Cloud Interaction 209

Anomaly Detection in Web Interaction

Kruegel and Vigna [97] introduce the first IDS for web applications that incorporates
protocol syntax for anomaly detection. This IDS assumes that exploit activity in
web applications manifests in HTTP header fields, especially in unified resource
identifier (URI) query parameters. The proposed system observes and learns from
HTTP request headers, and the detection technique uses a linear combination of
six different anomaly detection measures, like attribute character distributions,
structural information, or attribute lengths. The system of Kruegel and Vigna [97]
is a foundation for follow-up research: Robertson et al. [151] generalize anomalies
by inferring attack types using heuristics; Maggi et al. [116] address the impact of
the changing nature of web applications, a phenomenon called concept drift; and
Robertson et al. [152] deal with scarce training data by reconciling a knowledge
base, while the reference model continuously improves.

Ingham et al. [85] also instrument HTTP headers for anomaly detection. Their
algorithm learns a finite automaton representation from tokenized web request
headers. Düssel et al. [53] detect deviating web request headers using support vector
machines (SVM), where feature extraction and SVM kernel incorporate application
layer syntax. Spectrogram [173] reassembles bidirectional TCP network streams
between client and service, and multiple Markov chains evaluate URIs in HTTP
GET requests or message bodies in HTTP POST requests. Hidden Markov model
web (HMM-Web) [42] instruments multiple hidden Markov models to analyze URI
paths observed in HTTP GET requests. Lampesberger et al. [105, 106] propose an
anomaly detection system for URI paths in web requests based on a variable-order
Markov model that continuously learns without a separate training phase.

To detect widespread simultaneous zero-day attacks, Boggs et al. [30] propose a
distributed architecture of content anomaly detectors situated at different websites.
The individual detectors implement the Anagram technique [194] and exchange
abnormal content for mutual evaluation. This approach can reduce false-alarm rates
for rare and high entropy web requests.

The IDS proposed by Kirchner [93] operates as an HTTP reverse proxy and it
inspects both web requests and responses. A clustering algorithm adjusts the refer-
ence model to the actual usage patterns during operation. TokDoc [98] is another
HTTP reverse proxy approach for protecting web servers. An ensemble of anomaly
detection methods detects and automatically repairs malicious web requests.

In service-oriented paradigms like web services [4] and RESTful services [62],
HTTP degrades merely to a transport mechanism for messages and attacks manifest
in message content [118]. Criscione et al. [43] introduce Masibty, an IDS for web
applications that acts both as reverse proxy for HTTP and a monitor for Structured
Query Language (SQL) database calls. The proxy instruments several anomaly
detection modules that analyze not only HTTP headers but also the message content
sent in web requests and responses. If a web request causes a database query,
the Masibty system checks whether the SQL query and response are expected.
Therefore, the client-side is protected to a certain extent from malicious responses
sent by the server.

210 H. Lampesberger and M. Rady

Rieck [150] proposes a machine learning framework for detecting unknown
attacks on the application layer, i.e., communicated messages. The framework
covers a generic technique for embedding any kind of network stream in a vector
space, kernel functions for learning in high-dimensional vector spaces, and learning
methods for geometric anomaly detection. The framework by Krüger et al. [99] also
has applications in anomaly detection; the presented method automatically extracts
semantically relevant sections of network traffic using vector space methods. The
extracted sections are potential features for anomaly detection algorithms.

For defenses against distributed denial-of-service (DDoS) attacks on web appli-
cations, Xie and Yu [201, 202] propose anomaly detection in user browsing
behavior. User references and resource descriptions are extracted from HTTP head-
ers, and an extended hidden semi-Markov model captures the browsing behavior of
regular users as reference model.

4.2.3 Intrusion Detection Problems

Intrusion detection systems operate in adversarial environments, where attackers
try to evade detection or even attack monitoring components directly [171]. Ptacek
and Newsham [144] demonstrate how DPI-based network monitors can be evaded.
Besides extensive packet fragmentation, when the number of network routing hops
to the target is known, an attacker could insert bogus packets when interacting
with the targeted system. The bogus packets are dropped by Internet routers
before reaching their destination, but an unaware IDS observes a misleading
sequence of packets and eventually misses the attack. Handley et al. [78] present
a countermeasure, but this fundamental problem still prevails in many DPI-based
systems today [133].

Polymorphic exploits have a long-standing history in evading signature-based
detection techniques [172]. Signatures for network-based intrusion detection are
typically syntax based, and polymorphism expresses exploits syntactically different,
while attack semantics are preserved.

Wagner and Soto [191] coin the term mimicry attack for anomaly- and misuse-
based detection techniques. With respect to available observation points, a mon-
itoring system has a projected view on the actual system state or exchanged
messages. A knowledgeable attacker could adapt an exploit, so it perishes in
the projection. For example, suppose an anomaly detector maintains a stochastic
reference model of byte frequencies in normal network packet payloads. An attacker
can evade detection by padding an exploit with random bytes, so frequencies are
indistinguishable by the anomaly detector.

Anomaly detectors are also vulnerable to poisoning during training [156]. If an
attacker is able to influence the learning process or hide attacks in training data,
future attacks could be assumed as normal in the reference model. This raises the
problem of attack-free training data and requires robust anomaly detectors. Chan-
Tin et al. [36] formalize the frog-boiling attack as a special case of poisoning against
a monitor that continuously learns. A knowledgeable attacker sends messages that

Monitoring of Client-Cloud Interaction 211

are borderline normal, but they falsify the reference model over time. At some point
the reference model will assume actual attacks as normal.

Poisoning indicates that a learning algorithm can be a target of an attack. Barreno
et al. [20] discuss different types of attacks against machine learning algorithms and
propose countermeasures to limit the capabilities of an attacker. This problem has
given rise to resilient learning schemes and research in adversarial machine learning
[84], where an attacker is assumed to interfere with the learning process.

Formal Language-Theoretic Security Problems

In a recent study by Sassaman et al. [162], the authors discuss software vulner-
abilities using formal language theory. A protocol basically specifies the syntax
and semantics of a formal language for encoding information, e.g., invocation
arguments, file formats, or network messages. When two components R and
S interact, the sender S encodes information with respect to the protocol as
transportable message. The receiver R interprets (parses) the message according
to the protocol and updates its system state in the process. But a real-world protocol
and its implementation can suffer from faults, and faults can unexpectedly increase
the expressiveness of the protocol [162]; a sender S might be able to craft an exploit
such that R moves into an unexpected or insecure state upon parsing.

To resolve vulnerabilities, an unambiguous protocol specification and a fault-free
implementation are required, so the receiver can reject invalid messages. In terms of
formal languages, rejecting messages is a membership decision problem, and based
on the expressiveness of the protocol, it is eventually intractable or undecidable.

This fundamental problem also affects many IDSs because they are typically
engineered for a tractable detection method that implicitly assumes a formal lan-
guage class of the observed data [162]. For example, regular word languages (REG)
are popular in signature-based intrusion detection because deterministic matching
has constant space and linear time complexity. The goal of intrusion detection is
nevertheless to detect exploit activity that is eventually beyond the language class
of the method or across layers of interleaved protocols. If detection methods in
an IDS are not as expressive as the formal language class of observed data, the
consequences are false alarms and false-negative detections. For example, suppose
that the IDS operates in REG and the protocol language class is more powerful
than REG; there could be infinitely many exploits that are still considered normal
with respect to REG. Respecting the language-theoretic problems is therefore
indispensable for anomaly- and misuse-based detection methods [162].

Hadžiosmanović et al. [77] experience the problem of mismatched language
classes in their experimental evaluation, where several anomaly detectors based on
n-grams cannot deliver acceptable accuracy for real-life binary network protocols.
The class of n-grams is a strict subset of regular distributions [47] and expressive-
ness is limited; n-grams over bytes cannot correctly approximate the complex binary
protocols, where individual bits have symbolic character. An anomaly detector has

212 H. Lampesberger and M. Rady

to respect the symbolic and structural characteristics of a protocol language to
achieve acceptable results.

4.2.4 Language-Based Anomaly Detection in XML-Based Interaction

Today’s web and cloud services rely on message exchange for interaction over
various transport mechanisms, and XML has become a popular format to serialize
information in a transportable format, e.g., asynchronous JavaScript and XML
(AJAX) [69] in web applications or SOAP in web services [104]. We therefore
propose language-based anomaly detection to discover attacks in interaction and
identify the following characteristics:

Respecting the language class. Mismatching formal language classes in detection
algorithm and observation point lead to bad detection performance. Low false-
alarm rates and high detection rates at the same time can only be achieved
when language classes are respected. We focus specifically on XML, a semi-
structured language and essential for many protocols in today’s web and cloud
services [104]. Identifying anomalies in XML documents can reduce the attack
surface of systems that rely on XML processing.

Message-level monitoring. As argued in Sect. 4.2.3, inspection of network packets
or reassembly of application data from packet traces can be evaded by a skilled
attacker. Furthermore, network interactions are more and more encrypted by
default, which renders DPI-based observation unpractical [104]. This issue can
only be dealt with if an IDS observes the message level of interaction on the
middleware layer, e.g., as a web or suffix proxy, message broker, or message
queue filter. The anomaly detector for our proposed system specifically analyzes
XML documents.

Grammatical inference. Given the language-theoretic understanding of protocols,
we see learning of a reference model for anomaly detection as a special case of
grammatical inference [47]: to learn a formal language representation from its
presentation. A grammar or automaton is a typical representation, where a set
of examples, counterexamples, and an oracle are presentations. Grammatical
inference assumes that there is a hidden target representation to be discovered,
and language class and type of presentation influence successfulness of learning
[47, pp. 141–172]. A learning algorithm is said to converge if the hidden
representation is uncovered. Convergence in an anomaly detector implies that
false alarms and false-negative detections will be minimal in the long run.

Figure 8 outlines our problem definition: Given a set of example of XML
documents, a grammatical inference learner returns an automaton as reference
model. The automaton validates the syntactic structure and data types of future
documents, and an accepted document is considered normal with respect to the
training data.

The underlying logical model of XML is a tree and processing it as Document
Object Model (DOM) [186] requires a full representation in memory. This becomes

Monitoring of Client-Cloud Interaction 213

XML document
producing process
(hidden grammar)

example documents

learner

automaton syntax normal?

target

Fig. 8 From example documents the learner infers an automaton that validates future documents

hard with increasing size of documents and impossible for continuous XML
streams. We therefore require automaton and learner to process streams, where
memory and time are limited. Our streaming interface to documents is the Simple
API for XML (SAX) [181], and visibly pushdown automata (VPA) [6, 101] are an
appropriate language representation of XML capable of stream validation.

XML-Based Attacks

XML can express complex structures, but parsing is also complex and faults can
happen. DOM parsers read the whole document into a logical tree form—they are
vulnerable to denial-of-service (DoS) attacks that target time and memory, e.g., by
overlong element names or oversized payload. Also, nesting many tags can cause
DoS and this is referred to as coercive parsing attack [58].

The preamble of a document can define or point to a DTD. Several DoS attacks
against DTD-respecting parsers are based on recursive entity expansion. A parser
can also violate confidentiality of the system if external entity references allow local
file import [58].

When the attacker has control over parts of a document, a potential attack is XML
injection. The fictional document in Fig. 9a that describes a monetary transaction
is a running example; a value is predefined, and the user has control over the
credit card number section. Some DOM parsers are vulnerable when user-submitted
tags override existing elements, like in Fig. 9c, where the attacker manipulates the
transaction value [58]. Bad state handling in a SAX parser can also lead to XML
injection vulnerabilities. Another popular injection attack in the web is cross-site
scripting, where an attacker embeds an illicit JavaScript or Iframe in the document.
Also classic attacks like SQL (Fig. 9b), command, or XPATH injection can be
embedded in XML element content to target other components in a system.

Schemas and Validation

The discussed attacks change the expected document syntax—unexpected structure
or data types could exploit XML processing or other components in a vulnerable

214 H. Lampesberger and M. Rady

<transaction>
<total>1000.00<total>
<cc>

1234
</cc>

</transaction>

<transaction>
<total>1000.00<total>
<cc>

1234’ or ’1’=’1
</cc>

</transaction>

<transaction>
<total>1000.00<total>
<cc>

1234</cc><total>1.00</total><cc>1234
</cc>

</transaction>

a

c

b

Fig. 9 (a) Expected format of an example; an attacker controls credit card number [58]. (b)
SQL injection attack that violates the expected credit card data type. (c) XML injection attack
specifically for DOM parsers [58]

system. For specifying and verifying structural rules of documents, XML offers
schemas and validation. A schema is a grammar that characterizes the logical tree
structure of acceptable XML documents, and validation is to check if an XML
document conforms to a given schema.

There are several schema languages for expressing schemas, e.g., DTD [186]
and its generalization Extended DTD (EDTD) [121], the industrial standard XML
Schema (XSD) [188], and Relax NG [127], to name a few, and they have different
powers of expressiveness [24, 121, 128]. Stream validation is then to accept or
reject a document in a single pass, i.e., a membership decision in terms of formal
languages. Validation can reject documents with unexpected syntax and therefore
greatly reduce the number of vulnerabilities in XML processing [58, 90].

Unfortunately, validation is not common in the web. In a study by Grijzenhout
and Marx [76], only 8:9% of documents in the web refer to a schema and are valid.
Schemas are often too general or outdated, and paradigms like AJAX do not enforce
validation, so developers tend to ad hoc design. Learning a language representation
as reference model from effectively communicated XML is therefore a promising
approach.

Related Work

There is a large body of XML research in stream validation and schema inference.
Our presented system is to our knowledge the first that aims for both stream
processing and VPA inference including element content data types. With respect to
XML stream validation, the first discussion is given by Segoufin and Vianu [167].
To capture the entire class of regular tree languages in stream validation, Kumar

Monitoring of Client-Cloud Interaction 215

et al. [101] introduce VPA for XML (XVPA). Schewe et al. [164] extend VPA for
approximate XML validation, and Picalausa et al. [142] present an XML Schema
framework using VPA.

We direct the reader to the book of de la Higuera [47] for a survey of grammatical
inference. We apply the concept of function distinguishable languages [61] for our
inference algorithm [103]. Kumar et al. [100] argue that VPA can be learned in a
query learning setting that differs from our setting in the problem definition.

Inference of schemas goes back to Ahonen’s work on Standard Generalized
Markup Language (SGML) [3]. Inference of DTDs from XML is well researched
[26, 27, 60, 68], but the problem becomes harder for the more powerful language
class of XSD. Mlýnková [123] gives a survey of XSD inference: the general
approach is to first infer an extended context-free grammar from examples and then
merge nonterminals [124]. With respect to data types, Hegewald et al. [81] and
Chidlovskii [38] also consider approximations of XML content via data types. Bex
et al. [25] rely on tree automata for learning l-local Single Occurrence XSDs in
a probabilistic setting; our approach is similar but focuses on stream processing.
Kosala et al. [96] and Raeymaekers et al. [147] describe information retrieval
algorithms to learn wrappers for HTML as tree automata.

4.2.5 A Learning Algorithm for Language-Based Anomaly Detection

We now sketch the grammatical inference algorithm for language-based anomaly
detection. For detailed information we direct the reader to Lampesberger [103].
Inference of an automaton as a reference model for detecting anomalous syntax
in XML is done in three steps:

1. Document abstraction. We define rules that transform an XML document into
a stream of SAX events. XML content, in particular strings between tags, is
reduced to a finite set of data types.

2. Visibly pushdown prefix acceptor (VPPA). In the second step, a special kind
of pushdown automaton, called VPPA, is constructed from a set of example
documents, i.e., the training data.

3. State merging. To generalize knowledge from training data, states in the VPPA
are merged. The resulting automaton is finally converted into an XVPA for stream
validation of future XML documents.

Document Abstraction

The SAX processing model for XML emits events when an XML document is
parsed. We consider the SAX events startElement for open tags, endElement for
close tags, and the characters event for element content. Attributes are considered
as elements to preserve the logical tree structure, and namespaces are directly
embedded in element names. XML content requires special treatment because

216 H. Lampesberger and M. Rady

Fig. 10 An XML document is abstracted as a stream of SAX events, where the lexical data type
system reduces actual text contents to a finite number of data types

the language class of some string between two tags is unknown and learnability
properties are affected.

We therefore introduce a lexical data type system in Lampesberger [103] for
abstracting content by data types. XSD provides a rich set of data types [189], where
every data type has a semantic value space and a lexical space, i.e., allowed strings
over the Unicode character set. A learner only observes the lexical space; every
string between two tags in a document is therefore reduced to a single SAX event
(characters) that contains the set of matching data types. Based on this abstraction,
a document becomes a stream of events, and an example is shown in Fig. 10.

Visibly Pushdown Prefix Acceptor

XML is a visibly pushdown language because tags have to be well matched
[6, 7], and XVPA are an appropriate language representation [101]. XVPA are
special pushdown automata that have three disjoint alphabets for SAX events in
our definition: startElement events, endElement events, and data types for character
events, so they are compatible with our abstraction of documents. Furthermore, the
stack alphabet is the set of automaton states. Every schema has an equivalent XVPA,
and stream validation is then the acceptance of a document’s event stream by the
corresponding XVPA [101].

For grammatical inference, the intuition is that every prefix of every document
in the training set leads to a unique state in the VPPA. All training documents are
passed once to construct a VPPA, a pushdown automaton that accepts exactly the
documents in the training set, and an example is shown in Fig. 11. State merging
then generalizes the automaton.

State Merging

To generalize the observed language of training documents toward the hidden
schema of the XML document producing process, states in the VPPA are merged.
We define a so-called distinguishing function that indicates whether two states are
equivalent and can be merged. The resulting automaton has fewer states, generalizes
the language, and is converted into a valid XVPA as a reference model. This XVPA
is capable of stream validating future documents to detect anomalous structures
or data types with respect to the language exhibited by the training data. The

Monitoring of Client-Cloud Interaction 217

Fig. 11 Every prefix of an abstracted document defines an individual automaton state. The VPPA
is then the automaton constructed from all prefixes of example documents

Fig. 12 Similar states in a VPPA are merged and the resulting automaton is translated into an
XVPA for stream validation

algorithm converges for a large class of XML in practice when given enough
training examples. A detailed description of the algorithm is presented in [103],
and an example is shown in Fig. 12. The grammatical inference algorithm is still
open for improvements, like incremental learning or probabilistic scenarios, and an
experimental evaluation is planned.

Observation Points and Applications

Potential observation points for the presented grammatical inference approach to
language-based anomaly detection are in the middleware layer of client-cloud
interaction. An anomaly detector learns a specific reference model for an XML-
based language that is communicated between a client and a service.

There are two application scenarios in client-cloud interaction with respect to the
service interface [104]: If the service interface is statically typed, a learned reference
model could help to refine the interface schema, e.g., when it is too general or
outdated. In case of a dynamically typed service interface, where no schema for

218 H. Lampesberger and M. Rady

the interface is available, a learned reference model can detect deviating messages
that eventually indicate attack activity.

5 Conclusion

Monitoring of software has many applications, and it is particularly important to
show correctness and dependability of services when we accept that software is
not fault-free. Faults can lead to security vulnerabilities and service failures that
have a tremendous impact on web and cloud services. In this sense, monitoring
complements testing and formal methods.

Monitoring observes the behavior of a system to analyze and verify certain
properties, and proper observation points that expose the system’s state are required.
In the cloud computing paradigm, a client loses control over some software
components when cloud services are consumed. As the client’s capabilities to access
or modify software components on the provider-side depend on the particular cloud
service and its provider, we distinguish two types of monitoring: black-box and
white-box monitoring. In our research we propose a client-controlled middleware
approach, where monitoring components in the middleware are fully controlled
by the client to deal with black-box software components on the provider-side.
The middleware approach restores the client control over consumed cloud services,
offering a solution to manage security and quality aspects.

Even though there is a lot of research going on regarding SLAs, in practice,
web and cloud services have SLAs that are written in natural language which
makes it difficult to monitor the contractually agreed-upon quality of a service. To
tackle this problem, research has been done to formally express SLAs such that
monitoring of SLA conditions becomes more feasible. SLA monitoring has been
primarily provider-centric, i.e., the SLAs are set and monitored by the provider,
and it is the client’s responsibility to report any violations. A formal specification
of SLAs enables negotiation between client and service provider which makes
the contracting process more realistic. The formal specification of the SLA and
the monitor can be placed on the middleware. Therefore, it allows automated
monitoring of agreed-upon service levels on the client-side. The monitoring can also
be done on the provider-side and reported to a central component on the middleware
for better consistency of the monitoring. One of the challenges in this solution is
the synchronization between the different SLA management components on the
middleware.

Another monitoring application is to detect intrusions in client-cloud interaction
as a security control. We investigate anomaly-based intrusion detection approaches
because they are capable of detecting attacks that are not yet known, and we
propose language-based anomaly detection for XML-based interaction. Today’s
web and cloud services use various transport mechanisms to exchange messages
for interaction, where XML is a popular semi-structured language to encode
messages. An attacker could exploit the client or service by modifying a message,

Monitoring of Client-Cloud Interaction 219

so unexpected syntax or element content eventually leads to an insecure state when
the message is interpreted. We propose an anomaly detection approach, where
an algorithm learns a reference model for a specific client-cloud interaction, so
deviating messages are eventually detected and properly handled.

Acknowledgements We would like to thank the Christian Doppler Society for supporting this
research.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles, implemen-
tations, and applications. ACM Trans. Inf. Syst. Secur. 13(1), 1–40 (2009)

2. Aceto, G., Botta, A., de Donato, W., Pescapè, A.: Cloud monitoring: a survey. Comput. Netw.
57(9), 2093–2115 (2013)

3. Ahonen, H.: Generating grammars for structured documents using grammatical inference
methods. Tech. Rep. A-1996-4. Department of Computer Science, University of Helsinki
(1996)

4. Alonso, G., Casati, F., Kuno, H.A., Machiraj, V.: Web Services - Concepts, Architectures and
Applications. Springer, Heidelberg (2004)

5. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2(3), 117–126
(1987)

6. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, STOC’04, pp. 202–211. ACM, New York (2004)

7. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43 (2009)
8. Amazon Elastic Compute Cloud: GPU instances. http://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/using_cluster_computing.html (2014). Accessed 09 Sept 2014
9. Amazon Web Services: Amazon web services customer agreement. http://aws.amazon.com/

agreement/ (2008). Accessed 28 Aug 2013
10. Amazon Web Services: Amazon ec2 service level agreement. http://aws.amazon.com/de/ec2-

sla/ (2013). Accessed 20 Nov 2013
11. Android Developers: Sensors overview. http://developer.android.com/guide/topics/sensors/

sensors_overview.html (2014). Accessed 09 Sept 2014
12. Apache Commons: BCEL. http://commons.apache.org/proper/commons-bcel/ (2014).

Accessed 10 Sept 2014
13. Ariu, D., Tronci, R., Giacinto, G.: Hmmpayl: an intrusion detection system based on hidden

markov models. Comput. Secur. 30(4), 221–241 (2011)
14. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4),
50–58 (2010)

15. Avižienis, A., Laprie, J.C.: Dependable computing: from concepts to design diversity. Proc.
IEEE 74(5), 629–638 (1986)

16. Avižienis, A., Laprie, J.C., Randell, B.: Dependability and its threats: a taxonomy. In:
Building the Information Society. IFIP International Federation for Information Processing,
vol. 156, pp. 91–120. Springer, New York (2004)

17. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33
(2004)

18. Ayad, A., Dippel, U.: Agent-based monitoring of virtual machines. In: International
Symposium in Information Technology (ITSim), pp. 1–6. IEEE, Kuala Lumpur (2010)

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html
http://aws.amazon.com/agreement/
http://aws.amazon.com/agreement/
http://aws.amazon.com/de/ec2-sla/
http://aws.amazon.com/de/ec2-sla/
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://commons.apache.org/proper/commons-bcel/

220 H. Lampesberger and M. Rady

19. Barford, P., Kline, J., Plonka, D., Ron, A.: A signal analysis of network traffic anomalies.
In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurement, IMW’02,
pp. 71–82. ACM, New York (2002)

20. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.: Can machine learning be
secure? In: Proceedings of the 2006 ACM Symposium on Information, Computer and
Communications Security, ASIACCS’06, pp. 16–25. ACM, New York (2006)

21. Barros, A., Dumas, M., ter Hofstede, A.H.: Service interaction patterns: towards a reference
framework for service-based business process interconnection. Tech. Rep. FIT-TR-2005-02.
Faculty of IT, Queensland University of Technology (2005)

22. Bellevue Linux Users Group: The linux information project (linfo). http://www.linfo.org/
index.html (2007). Accessed 19 Oct 2013

23. Bendrath, R., Mueller, M.: The end of the net as we know it? Deep packet inspection and
internet governance. New Media Soc. 13(7), 1142–1160 (2011)

24. Bex, G.J., Neven, F., Van den Bussche, J.: Dtds versus xml schema: a practical study. In:
Proceedings of the 7th International Workshop on the Web and Databases, WebDB’04,
pp. 79–84. ACM, New York (2004)

25. Bex, G.J., Neven, F., Vansummeren, S.: Inferring xml schema definitions from xml data.
In: Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB’07,
pp. 998–1009. VLDB Endowment, Vienna (2007)

26. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular expres-
sions for the inference of schemas from xml data. ACM Trans. Web 4(4), 1–32 (2010)

27. Bex, G.J., Neven, F., Schwentick, T., Vansummeren, S.: Inference of concise regular
expressions and dtds. ACM Trans. Database Syst. 35(2), 1–47 (2010)

28. Bilge, L., Dumitras, T.: Before we knew it: an empirical study of zero-day attacks in the real
world. In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS’12, pp. 833–844. ACM, New York (2012)

29. Binder, W., Hulaas, J., Moret, P.: Advanced java bytecode instrumentation. In: Proceedings of
the 5th International Symposium on Principles and Practice of Programming in Java, pp. 135–
144. ACM, New York (2007)

30. Boggs, N., Hiremagalore, S., Stavrou, A., Stolfo, S.J.: Cross-domain collaborative anomaly
detection: so far yet so close. In: Recent Advances in Intrusion Detection – RAID’11. Lecture
Notes of Computer Science, vol. 6961, pp. 142–160. Springer, Heidelberg (2011)

31. Bolzoni, D., Etalle, S., Hartel, P., Zambon, E.: Poseidon: a 2-tier anomaly-based network
intrusion detection system. In: 4th IEEE International Workshop on Information Assurance,
IWIA’06, pp. 144–156. IEEE, London (2006)

32. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer, New York (2003)

33. Bradley, K.A., Lemler, C., Patel, A.C., Lau, R.M.: Time-based monitoring of service level
agreements. Cisco Technology, Inc., United States Patent, No. US007082463 B1 (2006)

34. Carpenter, B., Brim, S.: Middleboxes: taxonomy and issues. RFC 3234 (Informational).
http://www.ietf.org/rfc/rfc3234.txt (2002)

35. Čeleda, P., Krmíček, V.: Flow data collection in large scale networks. In: Advances in IT
Early Warning, pp. 30–40. Fraunhofer, Stuttgart (2013)

36. Chan-Tin, E., Heorhiadi, V., Hopper, N., Kim, Y.: The frog-boiling attack: limitations of
secure network coordinate systems. ACM Trans. Inf. Syst. Secur. 14(3), 1–23 (2011)

37. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv.
41(3), 1–58 (2009)

38. Chidlovskii, B.: Schema extraction from xml: a grammatical inference approach. In: Pro-
ceedings of the 8th International Workshop on Knowledge Representation Meets Databases,
KRDB’01 (2001)

39. Choon, M., Lin, C.Y.J., Wang, X.: A scalable monitoring approach for service level
agreements validation. In: International Conference on Network Protocols, ICNP’00, pp. 37–
48. IEEE, Osaka (2000)

40. Cisco: Netflow. www.cisco.com/go/netflow. Accessed 18 Oct 2013

http://www.linfo.org/index.html
http://www.linfo.org/index.html
http://www.ietf.org/rfc/rfc3234.txt
www.cisco.com/go/netflow

Monitoring of Client-Cloud Interaction 221

41. Comuzzi, M., Kotsokalis, C., Spanoudakis, G., Yahyapour, R.: Establishing and monitoring
slas in complex service based systems. In: IEEE International Conference on Web Services,
ICWS’09, pp. 783–790. IEEE (2009)

42. Corona, I., Ariu, D., Giacinto, G.: Hmm-web: a framework for the detection of attacks against
web applications. In: IEEE International Conference on Communications, ICC’09, pp. 1–6.
IEEE, Los Angeles (2009)

43. Criscione, C., Salvaneschi, G., Maggi, F., Zanero, S.: Integrated detection of attacks against
browsers, web applications and databases. In: European Conference on Computer Network
Defense, EC2ND’09, pp. 37–45. IEEE, Milan (2009)

44. Croll, A., Power, S.: Complete web monitoring: watching your visitors, performance,
communities, and competitors. O’Reilly Media, Sebastopol (2009)

45. Curry, E.: Message-oriented middleware. In: Mahmoud, Q.H. (ed.) Middleware for Commu-
nications. Wiley, Chichester (2005)

46. Dastjerdi, A.V., Tabatabaei, S.G.H., Buyya, R.: A dependency-aware ontology-based
approach for deploying service level agreement monitoring services in cloud. Softw. Pract.
Exp. 42(4), 501–518 (2012)

47. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge
University Press, Cambridge (2010)

48. Debar, H., Dacier, M., Wespi, A.: Towards a taxonomy of intrusion-detection systems.
Comput. Netw. 31(8), 805–822 (1999)

49. Delgado, N., Gates, A., Roach, S.: A taxonomy and catalog of runtime software-fault
monitoring tools. IEEE Trans. Softw. Eng. 30(12), 859–872 (2004)

50. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. SE-13(2), 222–232
(1987)

51. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246
(Proposed Standard). http://www.ietf.org/rfc/rfc5246.txt (2008). Updated by RFCs 5746,
5878, 6176

52. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee, W.: Virtuoso: narrowing the semantic
gap in virtual machine introspection. In: IEEE Symposium on Security and Privacy, S&P’11,
pp. 297–312. IEEE, Washington (2011)

53. Düssel, P., Gehl, C., Laskov, P., Rieck, K.: Incorporation of application layer protocol syntax
into anomaly detection. In: Information Systems Security – ICISS’08. Lecture Notes of
Computer Science, vol. 5352, pp. 188–202. Springer, Heidelberg (2008)

54. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic malware-
analysis techniques and tools. ACM Comput. Surv. 44(2), 1–42 (2012)

55. Emeakaroha, V.C., Brandic, I., Maurer, M., Dustdar, S.: Low level metrics to high level slas-
lom2his framework: bridging the gap between monitored metrics and sla parameters in cloud
environments. In: International Conference on High Performance Computing and Simulation,
HPCS’10, pp. 48–54. IEEE, Caen (2010)

56. Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N., Brandic, I., Buyya, R., De Rose, C.A.:
Towards autonomic detection of sla violations in cloud infrastructures. Futur. Gener. Comput.
Syst. 28(7), 1017–1029 (2012)

57. Endres-Niggemeyer, B.: The mashup ecosystem. In: Semantic Mashups, pp. 1–51. Springer,
Heidelberg (2013)

58. Falkenberg, A., Jensen, M., Schwenk, J.: Welcome to ws-attacks.org. http://www.ws-attacks.
org (2011). Accessed 05 Feb 2013

59. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly detection using call
stack information. In: IEEE Symposium on Security and Privacy, S&P’03, pp. 62–75. IEEE,
Washington (2003)

60. Fernau, H.: Learning xml grammars. In: Machine Learning and Data Mining in Pattern
Recognition – MLDM’01. Lecture Notes of Computer Science, vol. 2123, pp. 73–87.
Springer, Heidelberg (2001)

61. Fernau, H.: Identification of function distinguishable languages. Theor. Comput. Sci. 290(3),
1679–1711 (2003)

http://www.ietf.org/rfc/rfc5246.txt
http://www.ws-attacks.org
http://www.ws-attacks.org

222 H. Lampesberger and M. Rady

62. Fielding, R.T.: Rest: architectural styles and the design of network-based software architec-
tures. Ph.D. thesis, University of California (2000)

63. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A sense of self for unix processes. In:
IEEE Symposium on Security and Privacy, S&P’96, pp. 120–128. IEEE, Washington (1996)

64. Freier, A., Karlton, P., Kocher, P.: The Secure Sockets Layer (SSL) Protocol Version 3.0. RFC
6101 (Historic) (2011). http://www.ietf.org/rfc/rfc6101.txt

65. Frossi, A., Maggi, F., Rizzo, G., Zanero, S.: Selecting and improving system call models for
anomaly detection. In: Detection of Intrusions and Malware, and Vulnerability Assessment
– DIMVA’09. Lecture Notes in Computer Science, vol. 5587, pp. 206–223. Springer,
Heidelberg (2009)

66. Garfinkel, T.: Traps and pitfalls: practical problems in system call interposition based security
tools. In: Proceedings of the Network and Distributed Systems Security Symposium,
NDSS’03, pp. 163–176 (2003)

67. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture for intrusion
detection. In: Proceedings of the Network and Distributed System Security Symposium,
NDSS’03 (2003)

68. Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S., Shim, K.: Xtract: learning document
type descriptors from xml document collections. Data Min. Knowl. Discov. 7(1), 23–56
(2003)

69. Garrett, J.J.: Ajax. http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
(2005). Accessed 27 March 2013

70. Geraci, A., Katki, F., McMonegal, L., Meyer, B., Lane, J., Wilson, P., Radatz, J., Yee, M.,
Porteous, H., Springsteel, F.: IEEE Standard Computer Dictionary: Compilation of IEEE
Standard Computer Glossaries. IEEE, Piscataway (1991)

71. Gerhards, R.: The Syslog Protocol. RFC 5424 (Proposed Standard) (2009). http://www.ietf.
org/rfc/rfc5424.txt

72. Goodloe, A., Pike, L.: Monitoring distributed real-time systems: a survey and future
directions. Tech. Rep. NASA/CR-2010-216724. NASA Langley Research Center (2010)

73. Google Developers: Geolocation. https://developers.google.com/maps/articles/geolocation
(2014). Accessed 09 Sept 2014

74. Görnitz, N., Kloft, M., Rieck, K., Brefeld, U.: Active learning for network intrusion detection.
In: Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence, AISec’09,
pp. 47–54. ACM, New York (2009)

75. Gottschalk, K., Graham, S., Kreger, H., Snell, J.: Introduction to web services architecture.
IBM Syst. J. 41(2), 170–177 (2002)

76. Grijzenhout, S., Marx, M.: The quality of the xml web. In: Proceedings of the 20th ACM
International Conference on Information and Knowledge Management, CIKM’11, pp. 1719–
1724. ACM, New York (2011)

77. Hadžiosmanović, D., Simionato, L., Bolzoni, D., Zambon, E., Etalle, S.: N-gram against the
machine: on the feasibility of the n-gram network analysis for binary protocols. In: Research
in Attacks, Intrusions, and Defenses – RAID’12. Lecture Notes in Computer Science, vol.
7462, pp. 354–373. Springer, Heidelberg (2012)

78. Handley, M., Paxson, V., Kreibich, C.: Network intrusion detection: evasion, traffic nor-
malization, and end-to-end protocol semantics. In: Proceedings of the USENIX Security
Symposium, SECURITY’01. USENIX Association (2001)

79. Harrington, D., Presuhn, R., Wijnen, B.: An Architecture for Describing Simple Network
Management Protocol (SNMP) Management Frameworks. RFC 3411 (INTERNET STAN-
DARD). http://www.ietf.org/rfc/rfc3411.txt (2002). Updated by RFCs 5343, 5590

80. Hauck, R., Reiser, H.: Monitoring of service level agreements with exible and extensible
agents. In: Workshop of the OpenView University Association, OVUA’99. Citeseer (1999)

81. Hegewald, J., Naumann, F., Weis, M.: Xstruct: efficient schema extraction from multiple and
large xml documents. In: 22nd International Conference on Data Engineering Workshops,
ICDEW’06, pp. 81–81. IEEE, Atlanta (2006)

http://www.ietf.org/rfc/rfc6101.txt
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.ietf.org/rfc/rfc5424.txt
http://www.ietf.org/rfc/rfc5424.txt
https://developers.google.com/maps/articles/geolocation
http://www.ietf.org/rfc/rfc3411.txt

Monitoring of Client-Cloud Interaction 223

82. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls.
J. Comput. Secur. 6(3), 151–180 (1998)

83. Hofstede, R., Drago, I., Sperotto, A., Pras, A.: Flow monitoring experiences at the ethernet-
layer. In: Energy-Aware Communications – EUNICE’11. Lecture Notes in Computer Science,
vol. 6955, pp. 134–145. Springer, Heidelberg (2011)

84. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.D.: Adversarial machine
learning. In: Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence,
AISec’11, pp. 43–58. ACM, New York (2011)

85. Ingham, K.L., Somayaji, A., Burge, J., Forrest, S.: Learning dfa representations of http for
protecting web applications. Comput. Netw. 51(5), 1239–1255 (2007)

86. Internet Explorer Dev Center: Introduction to the Geolocation API. http://msdn.microsoft.
com/en-us/library/ie/gg589513.aspx (2014). Accessed 09 Sept 2014

87. iOS Developer Library: CMMotionManager Class Reference. https://developer.apple.
com/library/ios/documentation/coremotion/reference/cmmotionmanager_class/Reference/
Reference.html (2013). Accessed 09 Sept 2014

88. Jaakkola, H., Thalheim, B.: Exception-aware (information) systems. In: Information Mod-
elling and Knowledge Bases XXIV. Frontiers in Artificial Intelligence and Applications, vol.
251, pp. 300–313. IOS Press, Amsterdam (2013)

89. Jayashree, K., Anand, S.: Web service diagnoser model for managing faults in web services.
Comput. Stand. Interfaces 36(1), 154–164 (2013)

90. Jensen, M., Gruschka, N., Herkenhöner, R.: A survey of attacks on web services. Comput.
Sci. Res. Dev. 24(4), 185–197 (2009)

91. Joshi, K.R., Bunker, G., Jahanian, F., van Moorsel, A., Weinman, J.: Dependability in the
cloud: challenges and opportunities. In: IEEE/IFIP International Conference on Dependable
Systems & Networks, 2009, DSN’09, pp. 103–104. IEEE, Lisbon (2009)

92. Keller, A., Ludwig, H.: IBM research report the WSLA framework: specifying and mon-
itoring service level agreements for web services the WSLA framework: specifying and
monitoring. J. Netw. Syst. Manag. 11(1), 57–81 (2003)

93. Kirchner, M.: A framework for detecting anomalies in http traffic using instance-based
learning and k-nearest neighbor classification. In: 2nd International Workshop on Security
and Communication Networks, IWSCN’10, pp. 1–8. IEEE, Karlstad (2010)

94. Ko, C., Fink, G., Levitt, K.: Automated detection of vulnerabilities in privileged programs
by execution monitoring. In: 10th Annual Computer Security Applications Conference,
ACSAC’94, pp. 134–144. IEEE, Orlando (1994)

95. Ko, C., Ruschitzka, M., Levitt, K.: Execution monitoring of security-critical programs in
distributed systems: a specification-based approach. In: IEEE Symposium on Security and
Privacy, S&P’97, pp. 175–187. IEEE, Oakland (1997)

96. Kosala, R., Blockeel, H., Bruynooghe, M., Van den Bussche, J.: Information extraction from
structured documents using k-testable tree automaton inference. Data Knowl. Eng. 58(2),
129–158 (2006)

97. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: Proceedings of the 10th
ACM Conference on Computer and Communication Security, CCS’03, pp. 251–261. ACM,
New York (2003)

98. Krüger, T., Gehl, C., Rieck, K., Laskov, P.: Tokdoc: a self-healing web application firewall. In:
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC’10, pp. 1846–1853.
ACM, New York (2010)

99. Krüger, T., Krämer, N., Rieck, K.: Asap: automatic semantics-aware analysis of network
payloads. In: Privacy and Security Issues in Data Mining and Machine Learning –
PSDML’10. Lecture Notes of Computer Science, vol. 6549, pp. 50–63. Springer, Heidelberg
(2011)

100. Kumar, V., Madhusudan, P., Viswanathan, M.: Minimization, learning, and conformance
testing of boolean programs. In: CONCUR 2006 – Concurrency Theory. Lecture Notes of
Computer Science, vol. 4137, pp. 203–217. Springer, Heidelberg (2006)

http://msdn.microsoft.com/en-us/library/ie/gg589513.aspx
http://msdn.microsoft.com/en-us/library/ie/gg589513.aspx
https://developer.apple.com/library/ios/documentation/coremotion/reference/cmmotionmanager_class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/coremotion/reference/cmmotionmanager_class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/coremotion/reference/cmmotionmanager_class/Reference/Reference.html

224 H. Lampesberger and M. Rady

101. Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown automata for streaming
xml. In: Proceedings of the 16th International Conference on World Wide Web, WWW’07,
pp. 1053–1062. ACM, New York (2007)

102. Lamanna, D.D., Skene, J., Emmerich, W.: Slang: a language for service level agreements. In:
Proceedings of the 9th IEEE Workshop on Future Trends of Distributed Computing Systems,
FTDCS’03, pp. 100–106. IEEE, Washington (2003)

103. Lampesberger, H.: A grammatical inference approach to language-based anomaly detection in
xml. In: 2013 International Conference on Availability, Reliability and Security, ECTCM’13
Workshop, pp. 685–693. IEEE, Washington (2013)

104. Lampesberger, H.: Technologies for Web and cloud service interaction: a survey. Serv.
Oriented Comput. Appl. (2015) doi: 10.1007/s11761-015-0174-12015

105. Lampesberger, H., Winter, P., Zeilinger, M., Hermann, E.: An on-line learning statistical
model to detect malicious web requests. In: Security and Privacy in Communication
Networks. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol. 96, pp. 19–38. Springer, Heidelberg (2012)

106. Lampesberger, H., Zeilinger, M., Hermann, E.: Statistical modeling of web requests for
anomaly detection in web applications. In: Advances in IT Early Warning, pp. 91–101.
Fraunhofer AISEC, Garching (2013)

107. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng.
SE-3(2), 125–143 (1977)

108. Lazarevic, A., Kumar, V., Srivastava, J.: Intrusion detection: a survey. In: Managing Cyber
Threats. Massive Computing, vol. 5, pp. 19–78. Springer, New York (2005)

109. ldv_alt: Project page: strace. Online. http://freecode.com/projects/strace. Accessed 18 Oct
2013

110. Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., Jones, L.: SOCKS Protocol Version 5.
RFC 1928 (Proposed Standard) (1996). http://www.ietf.org/rfc/rfc1928.txt

111. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebraic
Program. 78(5), 293–303 (2009)

112. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agreement WSLA
Language Specification. IBM Corporation, pp. 815–824 (2003)

113. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
114. Magazinius, J., Russo, A., Sabelfeld, A.: On-the-fly inlining of dynamic security monitors.

Comput. Secur. 31(7), 827–843 (2012)
115. Magazinius, J., Hedlin, D., Sabelfeld, A.: Architectures for inlining security monitors in web

applications. In: International Symposium on Engineering Secure Software and Systems,
ESSoS’14. Springer, Heidelberg (2014)

116. Maggi, F., Robertson, W., Kruegel, C., Vigna, G.: Protecting a moving target: addressing web
application concept drift. In: Recent Advances in Intrusion Detection – RAID’09. Lecture
Notes of Computer Science, vol. 5758, pp. 21–40. Springer, Heidelberg (2009)

117. Maggi, F., Matteucci, M., Zanero, S.: Detecting intrusions through system call sequence and
argument analysis. IEEE Trans. Dependable Secure Comput. 7(4), 381–395 (2010)

118. Maggi, F., Zanero, S.: Is the future web more insecure? Distractions and solutions of new-old
security issues and measures. In: 2nd Worldwide Cybersecurity Summit, WCS’11, pp. 1–9.
IEEE, London (2011)

119. Mahoney, M.V.: Network traffic anomaly detection based on packet bytes. In: Proceedings of
the 2003 ACM Symposium on Applied computing, SAC’03, pp. 346–350. ACM, New York
(2003)

120. Mahoney, M.V., Chan, P.K.: Learning nonstationary models of normal network traffic for
detecting novel attacks. In: Proceedings of the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD’02, pp. 376–385. ACM, New York (2002)

121. Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity of XML
schema. ACM Trans. Database Syst. 31(3), 770–813 (2006)

122. Michael, C.C., Ghosh, A.: Simple, state-based approaches to program-based anomaly detec-
tion. ACM Trans. Inf. Syst. Secur. 5(3), 203–237 (2002)

10.1007/s11761-015-0174-1 2015
http://freecode.com/projects/strace
http://www.ietf.org/rfc/rfc1928.txt

Monitoring of Client-Cloud Interaction 225

123. Mlýnková, I.: An analysis of approaches to XML schema inference. In: IEEE International
Conference on Signal Image Technology and Internet Based Systems, SITIS’08, pp. 16–23.
IEEE, Bali (2008)

124. Mlýnková, I., Nečaský, M.: Towards inference of more realistic xsds. In: Proceedings of
the 2009 ACM Symposium on Applied Computing, SAC’09, pp. 639–646. ACM, New York
(2009)

125. Molina-Jimenez, C., Shrivastava, S., Crowcroft, J., Gevros, P.: On the monitoring of contrac-
tual service level agreements. In: 1st IEEE International Workshop on Electronic Contracting,
WEC’04, pp. 1–8. IEEE, San Diego (2004)

126. Mooney, J.D.: Bringing portability to the software process. Department of Statistics and
Computer Science, West Virginia University, Morgantown (1997)

127. Murata, M.: Relax ng. http://relaxng.org/ (2013). Accessed 01 Feb 2013
128. Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of xml schema languages using

formal language theory. ACM Trans. Internet Technol. 5(4), 660–704 (2005)
129. Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomalous system call detection. ACM Trans.

Inf. Syst. Secur. 9(1), 61–93 (2006)
130. Nance, K., Bishop, M., Hay, B.: Virtual machine introspection: observation or interference?

IEEE Secur. Privacy Mag. 6(5), 32–37 (2008)
131. Necula, G.C., McPeak, S., Rahul, S., Weimer, W.: Cil: Intermediate language and tools for

analysis and transformation of c programs. In: Compiler Construction. Lecture Notes in
Computer Science, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

132. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instru-
mentation. SIGPLAN Not. 42(6), 89–100 (2007)

133. Niemi, O.P., Levomäki, A., Manner, J.: Dismantling intrusion prevention systems. ACM
SIGCOMM Comput. Commun. Rev. 42(4), 285–286 (2012)

134. Nusayr, A., Cook, J.: Extending AOP to support broad runtime monitoring needs. In:
Conference on Software Engineering and Knowledge Engineering, pp. 438–441 (2009)

135. Nusayr, A., Cook, J.: Using aop for detailed runtime monitoring instrumentation. In:
Proceedings of the Seventh International Workshop on Dynamic Analysis, WODA’09, pp.
8–14. ACM, New York (2009)

136. OpenSuSe Documentation: Understanding linux audit. http://doc.opensuse.org/products/
draft/SLES/SLES-security_sd_draft/cha.audit.comp.html. Accessed 18 Oct 2013

137. Oracle: Solaris dynamic tracing guide. http://docs.oracle.com/cd/E19253-01/817-6223/.
Accessed 18 Oct 2013

138. Parameswaran, A., Chaddha, A.: Cloud interoperability and standardization. SETLabs Brief.
7(7), 19–26 (2009)

139. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. “big”’ web services:
making the right architectural decision. In: Proceedings of the 17th International Conference
on World Wide Web, WWW’08, pp. 805–814. ACM, New York (2008)

140. Paxson, V.: Bro: A system for detecting network intruders in real-time. Comput. Netw. 31(23–
24), 2435–2463 (1999)

141. Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., Lee, W.: Mcpad: a multiple classifier system for
accurate payload-based anomaly detection. Comput. Netw. 53(6), 864–881 (2009)

142. Picalausa, F., Servais, F., Zimányi, E.: Xevolve: an XML schema evolution framework. In:
Proceedings of the 2011 ACM Symposium on Applied Computing, SAC’11, pp. 1645–1650.
ACM, New York (2011)

143. Plattner, B., Nievergelt, J.: Monitoring program execution: a survey. Computer 14(11), 76–93
(1981)

144. Ptacek, T.H., Newsham, T.N.: Insertion, evasion, and denial of service: eluding network
intrusion detection. Tech. rep., Secure Networks, Inc. http://insecure.org/stf/secnet_ids/
secnet_ids.html (1998). Accessed 13 Oct 2013

145. Rady, M.: Parameters for service level agreements generation in cloud computing a client-
centric vision. In: Advances in Conceptual Modeling – CMS’12. Lecture Notes of Computer
Science, vol. 7518, pp. 13–22. Springer, Heidelberg (2012)

http://relaxng.org/
http://doc.opensuse.org/products/draft/SLES/SLES-security_sd_draft/cha.audit.comp.html
http://doc.opensuse.org/products/draft/SLES/SLES-security_sd_draft/cha.audit.comp.html
http://docs.oracle.com/cd/E19253-01/817-6223/
http://insecure.org/stf/secnet_ids/secnet_ids.html
http://insecure.org/stf/secnet_ids/secnet_ids.html

226 H. Lampesberger and M. Rady

146. Rady, M.: Generating an excerpt of a service level agreement from a formal definition of
non-functional aspects using owl. J. Univers. Comput. Sci. 20(3), 366–384 (2014)

147. Raeymaekers, S., Bruynooghe, M., den Bussche, J.: Learning (k, l)-contextual tree languages
for information extraction from web pages. Mach. Learn. 71(2), 155–183 (2008)

148. Rescorla, E., Modadugu, N.: Datagram Transport Layer Security Version 1.2. RFC 6347
(Proposed Standard). http://www.ietf.org/rfc/rfc6347.txt (2012)

149. Richters, M., Gogolla, M.: Aspect-oriented monitoring of uml and ocl constraints. In: AOSD
Modeling With UML Workshop, 6th International Conference on the Unified Modeling
Language (UML) (2003)

150. Rieck, K.: Machine learning for application-layer intrusion detection. Ph.D. thesis, Berlin
Institute of Technology, TU Berlin (2009)

151. Robertson, W., Vigna, G., Kruegel, C., Kemmerer, R.: Using generalization and character-
ization techniques in the anomaly-based detection of web attacks. In: Proceedings of the
Network and Distributed System Security Symposium, NDSS’06 (2006)

152. Robertson, W., Maggi, F., Kruegel, C., Vigna, G.: Effective anomaly detection with scarce
training data. In: Proceedings of the Network and Distributed System Security Symposium,
NDSS’10 (2010)

153. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceedings of the
13th USENIX Conference on System Administration, LISA’99, pp. 229–238. USENIX
Association, Seattle (1999)

154. Romano, L., De Mari, D., Jerzak, Z., Fetzer, C.: A novel approach to qos monitoring in
the cloud. In: 1st International Conference on Data Compression, Communications and
Processing, CCP’11, pp. 45–51. IEEE, Palinuro (2011)

155. Rosenberg, F., Platzer, C., Dustdar, S.: Bootstrapping performance and dependability
attributes of web services. In: International Conference on Web Services, ICWS’06, pp. 205–
212. IEEE, Chicago (2006)

156. Rubinstein, B.I., Nelson, B., Huang, L., Joseph, A.D., Lau, S.h., Rao, S., Taft, N., Tygar,
J.D.: Antidote: understanding and defending against poisoning of anomaly detectors. In:
Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, IMC’09,
pp. 1–14. ACM, New York (2009)

157. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE J. Select. Areas
Commun. 21(1), 5–19 (2003)

158. Sahai, A., Machiraju, V., Sayal, M., Moorsel, A., Casati, F.: Automated sla monitoring for
web services. In: Management Technologies for E-Commerce and E-Business Applications
– DSOM’02. Lecture Notes in Computer Science, vol. 2506, pp. 28–41. Springer, Heidelberg
(2002)

159. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods. ACM
Comput. Surv. 42(3), 1–42 (2010)

160. Sandhu, R., Samarati, P.: Access control: principle and practice. IEEE Commun. Mag. 32(9),
40–48 (1994)

161. SAP: Message Flow Monitoring. http://docs.oracle.com/cd/E21764_01/core.1111/e10043/
audintro.htm (2011). Accessed 11 Sept 2014

162. Sassaman, L., Patterson, M., Bratus, S., Locasto, M.: Security applications of formal language
theory. IEEE Syst. J. 7(3), 489–500 (2013)

163. Schewe, K.D., Bósa, K., Lampesberger, H., Ma, J., Rady, M., Vleju, M.B.: Challenges in
cloud computing. Scalable Comput. Pract. Exp. 12(4), 385–390 (2011)

164. Schewe, K.D., Thalheim, B., Wang, Q.: Updates, schema updates and validation of xml
documents - using abstract state machines with automata-defined states. J. Univers. Comput.
Sci. 15(10), 2028–2057 (2009)

165. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50
(2000)

166. Schroeder, B.: On-line monitoring: a tutorial. Computer 28(6), 72–78 (1995)
167. Segoufin, L., Vianu, V.: Validating streaming XML documents. In: Proceedings of the 21st

ACM Symposium on Principles of Database Systems, PODS’02, pp. 53–64. ACM, New York
(2002)

http://www.ietf.org/rfc/rfc6347.txt
http://docs.oracle.com/cd/E21764_01/core.1111/e10043/audintro.htm
http://docs.oracle.com/cd/E21764_01/core.1111/e10043/audintro.htm

Monitoring of Client-Cloud Interaction 227

168. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method for
detecting anomalous program behaviors. In: IEEE Symposium on Security and Privacy,
S&P’01, pp. 144–155. IEEE, Washington (2001)

169. Shackel, B.: Usability-context, framework, definition, design and evaluation. In: Human
Factors for Informatics Usability, pp. 21–37. Cambridge University Press, Cambridge (1991)

170. Somayaji, A., Forrest, S.: Automated response using system-call delays. In: Proceedings of
the 9th USENIX Security Symposium, SECURITY’00 (2000)

171. Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for network
intrusion detection. In: IEEE Symposium on Security and Privacy, pp. 305–316 (2010)

172. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo, S.J.: On the infeasibility of
modeling polymorphic shellcode. In: Proceedings of the 14th ACM Conference on Computer
and Communications Security, CCS’07, pp. 541–551. ACM, New York (2007)

173. Song, Y., Keromytis, A., Stolfo, S.J.: Spectrogram: a mixture-of-markov-chains model for
anomaly detection in web traffic. In: Proceedings of the Network and Distributed System
Security Symposium, NDSS’09 (2009)

174. Soylu, A., Mödritscher, F., Wild, F., Causmaecker, P.D., Desmet, P.: Mashups by orchestration
and widget-based personal environments: key challenges, solution strategies, and an applica-
tion. Program Electron. Libr. Inf. Syst. 46(4), 383–428 (2012)

175. Spring, J.: Monitoring cloud computing by layer, part 1. IEEE Secur. Privacy Mag. 9(2),
66–68 (2011)

176. Spring, J.: Monitoring cloud computing by layer, part 2. IEEE Secur. Privacy Mag. 9(3),
52–55 (2011)

177. Stevens, W.R.: TCP/IP Illustrated: The Protocols, vol. 1. Addison-Wesley, Boston (1993)
178. Thalheim, B.: Towards a theory of conceptual modelling. J. Univers. Comput. Sci. 16(20),

3102–3137 (2010)
179. The Apache Software Foundation: Apache module mod_proxy. http://httpd.apache.org/docs/

2.0/mod/mod_proxy.html (2013). Accessed 18 Nov 2013
180. The Network Encyclopedia: Circuit level gateway. http://www.thenetworkencyclopedia.com/

entry/circuit-level-gateway/ (2013). Accessed 15 Sept 2014
181. The SAX Project: Simple api for xml (sax). http://www.saxproject.org/ (2004). Accessed 24

Jan 2013
182. Thottan, M., Ji, C.: Anomaly detection in ip networks. IEEE Trans. Signal Process. 51(8),

2191–2204 (2003)
183. TrustedBSD Project: Openbsm: Open source basic security module (bsm) audit implementa-

tion. http://www.trustedbsd.org/openbsm.html. Accessed 18 Oct 2013
184. Valdes, A., Skinner, K.: Adaptive, model-based monitoring for cyber attack detection. In:

Recent Advances in Intrusion Detection – RAID’00. Lecture Notes in Computer Science,
vol. 1907, pp. 80–93. Springer, Heidelberg (2000)

185. W3C: Web Services Addressing (WS-Addressing). http://www.w3.org/Submission/ws-
addressing/ (2004). Accessed 03 March 2014

186. W3C: Document object model (dom). http://www.w3.org/DOM/ (2005). Accessed 24 Jan
2013

187. W3C: SOAP Version 1.2 Part 1: Messaging Framework, 2nd edn. http://www.w3.org/TR/
soap12-part1/ (2007). Accessed 20 Feb 2014

188. W3C: XML Schema. http://www.w3.org/XML/Schema.html (2010). Accessed 11 Feb 2013
189. W3C: XML Schema Part 2: Datatypes, 2nd edn. http://www.w3.org/TR/xmlschema11-2/

(2012). Accessed 22 March 2013
190. Wagner, D., Dean, R.: Intrusion detection via static analysis. In: IEEE Symposium on Security

and Privacy, S&P’01, pp. 156–168. IEEE, Washington (2001)
191. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems. In:

Proceedings of the 9th ACM Conference on Computer and Communications Security,
CCS’02, pp. 255–264. ACM, New York (2002)

192. Wang, J., Bigham, J.: Anomaly detection in the case of message oriented middleware. In:
Proceedings of the 2008 Workshop on Middleware Security, MidSec’08, pp. 40–42. ACM,
New York (2008)

http://httpd.apache.org/docs/2.0/mod/mod_proxy.html
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html
http://www.thenetworkencyclopedia.com/entry/circuit-level-gateway/
http://www.thenetworkencyclopedia.com/entry/circuit-level-gateway/
http://www.saxproject.org/
http://www.trustedbsd.org/openbsm.html
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/DOM/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/XML/Schema.html
http://www.w3.org/TR/xmlschema11-2/

228 H. Lampesberger and M. Rady

193. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In: Recent
Advances in Intrusion Detection – RAID’04. Lecture Notes of Computer Science, vol. 3224,
pp. 203–222. Springer, Heidelberg (2004)

194. Wang, K., Parekh, J., Stolfo, S.J.: Anagram: A content anomaly detector resistant to mimicry
attack. In: Recent Advances in Intrusion Detection – RAID’06. Lecture Notes of Computer
Science, vol. 4219, pp. 226–248. Springer, Heidelberg (2006)

195. Wang, C., Ren, K., Lou, W., Li, J.: Toward publicly auditable secure cloud data storage
services. IEEE Netw. 24(4), 19–24 (2010)

196. WebSphere Software: Introduction to Oracle Fusion Middleware Audit Framework. http://
docs.oracle.com/cd/E21764_01/core.1111/e10043/audintro.htm (2011). Accessed 11 Sept
2014

197. WebSphere Software: Using WebSphere Message Broker log and trace files. http://
publib.boulder.ibm.com/infocenter/wtxdoc/v8r2m0/index.jsp?topic=/com.ibm.websphere.
dtx.wtx4wmb.doc/references/r_wtx4wmb_using_wmb_log_and_trace_files.htm (2014).
Accessed 11 Sept 2014

198. Wieder, P., Butler, J.M., Theilmann, W., Yahyapour, R.: Service Level Agreements for Cloud
Computing. Springer, New York (2011)

199. Winter, P., Lampesberger, H., Zeilinger, M., Hermann, E.: On detecting abrupt changes in
network entropy time series. In: Communications and Multimedia Security – CMS’11.
Lecture Notes of Computer Science, vol. 7025, pp. 194–205. Springer, Heidelberg (2011)

200. Wojtczuk, R.: Libnids. http://libnids.sourceforge.net/ (2010). Accessed 01 Nov 2013
201. Xie, Y., Yu, S.Z.: A dynamic anomaly detection model for web user behavior based on hsmm.

In: 10th International Conference on Computer Supported Cooperative Work in Design,
CSCWD’06, pp. 1–6. IEEE, Nanjing (2006)

202. Xie, Y., Yu, S.Z.: A large-scale hidden semi-markov model for anomaly detection on user
browsing behaviors. IEEE/ACM Trans. Netw. 17(1), 54–65 (2009)

203. Zanero, S., Savaresi, S.M.: Unsupervised learning techniques for an intrusion detection
system. In: Proceedings of the 2004 ACM Symposium on Applied Computing, SAC’04,
pp. 412–419. ACM, New York (2004)

204. Zhou, J., Gollman, D.: A fair non-repudiation protocol. In: IEEE Symposium on Security and
Privacy, S&P’96, pp. 55–61. IEEE, Washington (1996)

http://docs.oracle.com/cd/E21764_01/core.1111/e10043/audintro.htm
http://docs.oracle.com/cd/E21764_01/core.1111/e10043/audintro.htm
http://publib.boulder.ibm.com/infocenter/wtxdoc/v8r2m0/index.jsp?topic=/com.ibm.websphere.dtx.wtx4wmb.doc/references/r_wtx4wmb_using_wmb_log_and_trace_files.htm
http://publib.boulder.ibm.com/infocenter/wtxdoc/v8r2m0/index.jsp?topic=/com.ibm.websphere.dtx.wtx4wmb.doc/references/r_wtx4wmb_using_wmb_log_and_trace_files.htm
http://publib.boulder.ibm.com/infocenter/wtxdoc/v8r2m0/index.jsp?topic=/com.ibm.websphere.dtx.wtx4wmb.doc/references/r_wtx4wmb_using_wmb_log_and_trace_files.htm
http://libnids.sourceforge.net/

Formal Reliability Models for Web Services

Raffaela Mirandola, Pasqualina Potena, Elvinia Riccobene,
and Patrizia Scandurra

Abstract In Web services (WS), software applications are dynamically built by
assembling over a network existing, loosely coupled, distributed, and heterogeneous
services. Reliability is one of the most important quality dimensions for Web
services, since predicting their reliability is fundamental to appropriately drive the
selection and the assembly of services. This chapter presents two approaches to
predict the reliability of a Web service architecture. The first one is based on the
Business Process Execution Language (BPEL), the de facto standard executable
language for specifying actions within business processes with Web services. The
second one is based on the SCA-ASM, a lightweight formal language for modeling
service-oriented applications, which is based on the OASIS (Organization for the
Advancement of Structured Information Standards) standard Service Component
Architecture for heterogeneous service assembly and on the formal method abstract
state machines (ASMs) for modeling service behavior, interactions, and orchestra-
tion in an abstract but executable way. Through a set of experimental results, we
show how the two models work on a smartphone mobile application example, and
we discuss the effectiveness of the SCA-ASM approach in comparison with the
BPEL-based approach.

R. Mirandola
Politecnico di Milano, Milano, Italy
e-mail: raffaela.mirandola@polimi.it

P. Potena • P. Scandurra (�)
Università degli Studi di Bergamo, Dalmine (BG), Italy
e-mail: pasqualina.potena@unibg.it; patrizia.scandurra@unibg.it

E. Riccobene
Università degli Studi di Milano, Crema, Italy
e-mail: elvinia.riccobene@unimi.it

© Springer International Publishing Switzerland 2015
B. Thalheim et al. (eds.), Correct Software in Web Applications and Web Services,
Texts & Monographs in Symbolic Computation,
DOI 10.1007/978-3-319-17112-8_7

229

mailto:raffaela.mirandola@polimi.it
mailto:pasqualina.potena@unibg.it
mailto:patrizia.scandurra@unibg.it
mailto:elvinia.riccobene@unimi.it

230 R. Mirandola et al.

1 Introduction

Web service (WS) systems are service-oriented systems where computing software
applications are dynamically built by assembling over a network existing, loosely
coupled, distributed, and heterogeneous services.

It has been widely recognized [11, 13, 40] that the prediction of nonfunctional
properties of these systems is a crucial design-time concern. Architectural decisions,
indeed, including selection of services and the structure of the workflow, may
significantly affect the qualities of the resulting system, such as their reliability,
performance, or cost. This chapter focuses on reliability. Early assessment of
reliability is one of the challenges of Web service architectures and a key factor
to developing dependable software.

In the literature, different procedures exist for system reliability prediction based
on different assumptions and applicable at different granularities of information
[13, 21, 24, 26, 28]. These techniques can be applied for several purposes such as to
evaluate design feasibility, to compare design alternatives, to assist in evaluating
the significance of reported failures, to trade off system design factors, to track
reliability improvement, to appropriately allocate validation/testing effort, and to
identify potential failure areas and maintain an acceptable reliability level under
environmental extremes.

Dealing with WS makes the software reliability evaluation more difficult. WS,
indeed, are owned (developed, deployed, maintained, and operated) by different
stakeholders or providers and the way the orchestration is carried out cannot be
foreseen at the time the composed WS is specified. It will depend on several
aspects, such as the availability of the involved services, the services’ responses,
the network status, and on unexpected error conditions. The early assessment of the
reliability and availability of a service composition is thus a key challenge of service
architectures and a key factor when implementing dependable software.

This work proposes two reliability prediction methods: one based on the Web
Services Business Process Execution Language (WS-BPEL or BPEL for short)
[3] and the other based on the service-oriented component model SCA-ASM
[31, 35–37]. In literature some papers tackled the problem of composing a service-
oriented system from publicly available Web services (e.g.,[45]), taking into account
different types of Web service failures. Several approaches use notations based on
BPEL, which is the de facto standard executable language for specifying actions
within business processes with Web services (see, e.g., [8, 43] and [12]).

On the other side, the SCA-ASM has been recently proposed as a lightweight
formal language for modeling both architecture and behavior aspects of a service
application. This component model is based on the OASIS open standard Service
Component Architecture (SCA) [33] for heterogeneous service assembly, and on
the formal method Abstract State Machines (ASMs) [6] for modeling notions of

Formal Reliability Models for Web Services 231

service behavior, interactions, orchestration, and fault and compensation handling
in an abstract but executable way. Since the SCA-ASM relies on the SCA design
framework, it is supported by the runtime environment Tuscany [4], thus simplifying
the prototyping, analysis, development, and deployment of service compositions.

The SCA-ASM reliability model [31, 37] exploits ideas taken from architecture-
based and path-based reliability models [24]. It is based on a reliability model of an
SCA-ASM component by considering failures specific to the nature of the ASMs
and allows computing, in an automatic and compositional way, the reliability of an
SCA assembly involving SCA-ASM components.

Besides to be compositional and applicable at design phase as well as at runtime,
there are some other potential advantages of the second approach. It relies on a
unique SCA-ASM component model which is both the “design-oriented model”
of the component assembly and the “formal analysis-oriented model” leading the
reliability analysis. With regard to other classical approaches that tie architectural
models (or flavors of Unified Modeling Language (UML) and other modeling
notations) to formal reliability models such as Markov or Bayesian models (see
related works in Sect. 8), the SCA-ASM reliability model combines the reliability
prediction of the service orchestrator with those of other service components; this
leads to a more accurate estimation of the reliability.

In this chapter, we present a direct comparison between a BPEL-based model
and the SCA-ASM reliability model. Through a case study, we show the behavior
of the two reliability models. Specifically, when considering the same modeling
abstraction level, the two reliability models are equivalent. However, since the
SCA-ASM reliability model allows a more detailed modeling and computation of
the reliability of a single Web component, the reliability estimation of the overall
Web service system with SCA-ASM provides more accurate results than the ones
obtained with the BPEL-based model. Indeed, in the BPEL-based approach, the
reliability of a single Web component can be given somehow by external evaluation.
The comparison suggests that further benefit can be obtained by combining the use
of the two models. Indeed, while the BPEL-based reliability model can be used for
the evaluation of the whole process, the SCA-ASM reliability model can be used to
evaluate the reliability of the single services, thus providing more accurate results
than the one obtained with the current BPEL-based reliability models.

The chapter is organized as follows. Section 2 recalls some basic concepts
concerning reliability prediction and makes precise some assumptions we make
on our reliability models. Section 3 presents a smartphone mobile application as
the running example of this chapter. Sections 4.1 and 4.2 give some background
on the BPEL and the SCA-ASM modeling languages. Their reliability models
are presented, respectively, in Sects. 5 and 6. Section 7 presents the results of the
comparison between the two reliability models. Section 8 describes some related
work. Finally, Sect. 9 concludes the chapter and sketches some future research
directions.

232 R. Mirandola et al.

2 Reliability Prediction Basics

Reliability is one of the major factors of software quality and is defined as the
“probability of failure-free software operation for a specified period of time in a
specified environment” [41]. Reliability prediction is a common form of reliability
analysis to predict the failure rate of components and the overall system reliability.
Reliability predictions are useful to evaluate design feasibility, compare design
alternatives, identify potential failure areas, trade off system design factors, and
track reliability improvement. A reliability prediction can also assist in evaluating
the significance of reported failures, and it can be used to maintain an acceptable
reliability level under environmental extremes. Reliability strongly depends on two
main concerns. First, the reliability of a software system depends on the reliability
of individual components, component interactions, and the execution environment.
Second, reliability depends on how the system will be used (usage profile or
operational profile). Since reliability (like availability) is an execution quality, the
impact of faults on reliability differs depending on how the system is used, i.e., how
often the faulty part of the system is executed. The analysis of different ways and
frequencies to execute the system is a challenge to reliability prediction, especially
when the usage profiles are unknown beforehand.

In the last few years, many reliability prediction methods for software that is
assembled from basic elements (e.g., objects, components, or services) have been
introduced [21, 24, 28]. Basically, the existing techniques can be classified in path-
based models and state-based models [24]. The former ones represent the system
architecture as a combination of the possible execution paths, whereas the latter
ones as a combination of the possible states of the system.

Possible failures occurring during the execution of a Web application can be
classified as crash failures that provoke the irreversibly crash of the whole system
and no-crash failures that do not provoke the immediate termination of the whole
system but that manifest themselves by returning an erroneous message. The
reliability models we present both consider only crash failures and assume that a
failure of a service in the Web service composition provokes the failure of the whole
application.1

There are some assumptions underlying our reliability models. Most of them are
common to many existing reliability approaches (see, e.g., the surveys [28, 30]) and
are necessary to be able to provide in an efficient way analytical results that, even if
approximate with respect to the more complex reality, can give meaningful insights
to system designers. (1) The components communicate by exchanging synchronous

1Such assumption is not too restrictive. It is a common practice in many reliability modeling
approaches (see, e.g., the survey [28]).

Formal Reliability Models for Web Services 233

messages. (2) The components’ failures are independent of one another. We assume
that a component’s failure provokes the crash of the whole system, namely, the
system straightforwardly stops its execution. The inclusion in our model of different
types of failures and of error propagation analysis is at present under study. (3)
The model parameters’ uncertainties [15] are not dealt since this kind of sensitivity
analysis is out of the scope of this work.

3 Running Example: A Multimedia Service Application

This section presents a smartphone application used throughout the chapter to
exemplify our approach. The example application is inspired by the Web service
composition example used in [34] and originally presented in [2]. Readers interested
in the application details that we do not provide here can refer to [34]. Figure 1
(taken from [2]) shows the multimedia delivery scenario. The application called
Multimedia Service App provides an end-user multimedia service to subscribed
users. The news includes text and topical videos available in MPEG 2 format. The
news provider requires additional services to serve the user’s request: a transcoding
service for the multimedia content to fit the target format, a compression service
to adapt the content to the wireless link, a text translation service for the news
ticker, and also a merging service to integrate the ticker with the video stream for
the limited smartphone display. Besides, we assume that the smartphone user can
require also a geographical map showing its location [2]. Precisely, in this work, we
will consider the following three functionalities: (a) require news in textual format,
(b) require news with both textual and video content, and (c) provide a geographical
map with user location.

4 Background Concepts

This section provides some basic concepts on BPEL and SCA-ASM useful to under-
stand and compare the reliability models for (Web) service-oriented applications
presented in Sects. 5 and 6, respectively.

Fig. 1 Multimedia service scenario

234 R. Mirandola et al.

Table 1 BPEL-structured
activities

Name Description

Sequence Sequential execution of activities

Switch Conditional execution of activities

While Repeated execution of activities in a loop

Flow Concurrent execution of activities

4.1 BPEL Composition of Interacting Web Services

From a service-oriented perspective, a business process is a means to have services
interact to specify specific requests. The service orchestration logic can be expressed
in BPEL [3]. We adopt a general definition of software service: it is a self-
contained deployable software module containing data and operations, which
provides/requires services to/from other elementary elements. A service instance
is a specific implementation of a service.

As in [12], we here refer to a significant subset of the whole BPEL definition.
Specifically, besides the primitive “invoke activity,” which specifies the synchronous
or asynchronous invocation of a Web service, we consider the kinds of structured
activities described in Table 1. A detailed description of BPEL is out of the scope
of this chapter.

Running Example As an example of BPEL composition, Fig. 2 sketches the BPEL
code2 of a flow activity for the orchestration of four elementary services of the
Multimedia Service App presented in Sect. 3. It corresponds to the functionality (1)
to provide the news ticker in textual format only. Besides the normal control flow
of service invocations for performing request-response interactions, a conditional
branch introduces a decision point in case of failure of the text translation. If the text
translation fails, a fake news ticker is returned directly from the service component
Compression to the service component Client. Note that the service component
Client processes information on the client’s behalf.

4.2 SCA-ASM Modeling Language

The SCA-ASM Modeling Language [35, 36] complements the SCA component
model with the ASM model of computation to provide ASM-based formal and
executable descriptions of the services internal behavior, orchestration, and inter-
actions. According to this implementation type, a service-oriented component is

2BPEL defines business processes using an XML-based language. There is no standard graphical
notation for BPEL. Some vendors have invented their own notations. Consider the standard
Business Process Model and Notation (BPMN) [10] as a graphical front end to capture BPEL
process descriptions.

Formal Reliability Models for Web Services 235

Fig. 2 BPEL code for the
service “Requiring news in
textual format”

an ASM endowed with (at least) one agent (a business partner or role) able to be
engaged in conversational interactions with other agents by providing and requiring
services to/from other service-oriented components’ agents. The service behaviors
encapsulated in an SCA-ASM component are captured by ASM transition rules. We
assume the reader to be familiar with the ASM formalism.

Figure 3 shows the shape of an SCA-ASM component A and the corresponding
ASM modules for the provided interface AService (on the left) and the skeleton
of the component itself (on the right) using the textual notation ASMETA/AsmetaL3

3Two grammatical conventions must be recalled: a variable identifier starts with $ and a rule
identifier begins with “r_.”

236 R. Mirandola et al.

Fig. 3 SCA-ASM component shape

[5, 42] and the @annotations to denote SCA concepts (i.e., references, proper-
ties, etc.).

ASM rule constructors and predefined ASM rules (i.e., named ASM rules made
available as model library) are used as basic SCA-ASM behavioral primitives.
They are recalled in Table 2 by separating them according to the separation
of concerns computation, communication, and coordination. In particular, com-
munication primitives provide both synchronous and asynchronous interaction
styles (corresponding, respectively, to the request-response and one-way interaction
patterns of the SCA standard). Communication relies on an abstract message-
passing mechanism by adopting the default SCA binding (binding.sca) for
message delivering. SCA-ASM rule constructors can be combined to model specific
interaction and orchestration patterns in well-structured and modularized entities.

Currently, the implementation scope of an SCA-ASM component is composite,
i.e., a single component instance (a single ASM) is created for all service calls of the
component. The other two SCA implementation scopes, stateless (to create a new
component instance for each service call) and conversation (to create a component
instance for each conversation), are not yet supported.

SCA-ASM modeling constructs for fault/compensation handling are also sup-
ported (see [35, 36]), but are not reported here since they are related to fault

Formal Reliability Models for Web Services 237

Table 2 SCA-ASM rule
constructors

Computation and coordination

Skip rule skip
do nothing

Update rule f .t1; : : : ; tn/ WD t

update the value of f at t1; : : : ; tn to t

Call rule RŒx1; : : : ; xn�

call rule R with parameters x1; : : : ; xn
Let rule let x D t in R

assign the value of t to x and then execute R

Conditional it � then R1 else R2 endif
rule if � is true, then execute rule R1,

otherwise R2
Iterate rule while � do R

execute rule R until � is true

Seq rule seq R1 : : : Rn endseq
rules R1 . . .Rn are executed in sequence

without exposing intermediate updates

Parallel rule par R1 : : : Rn endpar
rules R1 . . .Rn are executed in parallel

Forall rule forall x with � do R.x/
forall x satisfying � execute R

Choose rule choose x with � do R.x/
choose an x satisfying � and then execute R

Split rule forall n 2 N do R.n/
split N times the execution of R

Spawn rule spawn child with R
create a child agent with program R

Communication

Send rule wsend[lnk,R,snd]

send data snd to lnk in reference to rule R

(no blocking, no acknowledgment)

Receive rule wreceive[lnk,R,rcv]

receive data rcv from lnk in reference to

R (blocks until data are received, no ack)

SendReceive wsendreceive[lnk,R,snd,rcv]

rule send data snd to lnk in reference to R

waits for data rcv to be sent back (no ack)

Reply rule wreplay[lnk,R,snd]

returns data snd to lnk, as response of R

request received from lnk (no ack)

238 R. Mirandola et al.

tolerance concepts that we do not take into account in the reliability model presented
here.

An SCA-ASM design environment [9, 35] was developed by integrating the
Eclipse-based SCA Composite Designer, the SCA runtime platform Tuscany [4],
and the simulator ASMETA/AsmetaS [5, 22, 42].

Running Example Figure 4 shows the software architecture of the running example
using SCA. It is a thin client/server application: the server part is the real application
hosted, for example, on a cloud, while the client (not shown in the figure) is assumed
to be external and connected via a wireless network to the Multimedia Service

Fig. 4 SCA assembly of the Multimedia Service App

Formal Reliability Models for Web Services 239

Fig. 5 Behavior of the SCA-ASM component ClientInterfaceComponent for providing
news in textual format

App. The Multimedia Service App is a composite application. The component
ClientInterface processes information on the client’s behalf. It coordinates the
service MultimediaService and also with the service Compression to adapt the
news content to the wireless link. The service MultimediaService interacts with
the services: Transcoding to adapt the video content for the smartphone format,
Translation to adapt the text for the smartphone format and draw the geographical
map, the service Merging to integrate the text with the video stream for the
limited smartphone display, and Locations Database to collect information about
the localization of cells and thus provide a map showing the user location.

As an example, Fig. 5 shows a simplified fragment of the service operation
“Requiring news in textual format” of the core component ClientInterface (as
provided by the exposed service interface Client) using SCA-ASM. It corresponds
to the functionality (1) to provide the news ticker in textual format only. Note that,
with respect to the BPEL-based description that contains the orchestration of the
overall components interactions, from the point of view of the Client component’s
behavior, only the delegation to the Multimedia component (by the invocation
of the service operation “requestNews” of the Multimedia service through a
sendReceive interaction) and the replay of the result to the client are visible.

5 Reliability Model for BPEL

This section presents a state-of-the-art [12, 44] reliability model for Web service
composition expressed in BPEL. This reliability model contains an optimization
model for the service selection based on the response time, cost, and availability
of a service. Through the composition of elementary software services (or abstract
services), a BPEL composition, modeling a Web service-based system, offers K
services (or external services) to users. Each external service, or BPEL process, can
be graphically represented as a tree structure, according to the following definition:

240 R. Mirandola et al.

Definition 1 A BPEL process k that represents the external service k can be seen as
a direct acyclic graph DAGk D .Vk; Ek/, where the nodes Vk are the BPEL activities
and the edges Ek represent the relationships among the BPEL activities.

Specifically, an internal node i 2 Vk represents a structured activity. These nodes
have labels l in the set fseq:; switch;while; flowg, where the symbol seq. denotes (for
brevity) the sequential execution. Similarly, a leaf node i 2 Vk is associated with
the invocation (i.e., with a primitive invoke activity) of an elementary service si .

Figure 6 shows an example of BPEL tree for an external service provided by the
interaction of four elementary software services. In particular, the figure represents
the BPEL tree of the one of the functionalities provided by the smartphone
application. The corresponding BPEL representation is listed in Fig. 2. Notice that
the pa labels denote the probability of executing activity a in a structured activity
(e.g., in Fig. 6, pc1 and pc2 are the probabilities to execute the activities in the switch
statement).

For each elementary service si , invoked in a BPEL process k, several concrete
services may exist that match its description. We assume that the instances available
for the service si are functionally compliant with it, i.e., each instance provides at
least all the services provided by si and requires at most all the services required by
si . Instances of the same service may differ for cost and reliability characteristics.
We call Ji the set of instances for si , while sij represents the j th instance of Ji .

A service broker acts as an intermediary for the matching between the abstract
elementary services and the concrete services—between service requestors and
providers. Shortly, the broker defines the business process for the composite service
and discovers and selects the best concrete services in order to minimize the costs
and guarantee a given level of system reliability. As described in [12], the broker’s
architecture consists of different modules, which interact with each other. Examples
are the Composition Manager that is responsible for the service composition and

Fig. 6 BPEL tree of the external service “Requiring news in textual format”

Formal Reliability Models for Web Services 241

Fig. 7 BPEL-based reliability model

the concrete services’ discovery and the BPEL Engine module that provides the
software platform to execute the business process described in BPEL. The broker
performs a centralized orchestration, i.e., it represents the single coordinator node
for the execution of the Web service specification. Readers interested in the broker’s
details can refer to [12].

Figure 7 shows the reliability model for the Web service selection optimization
problem. In particular, the figure shows how to predict the reliability of an external
service k, starting from its BPEL activity tree.

Let pexeck be the probability that the kth system external service will be invoked.
This information can be synthesized from the usage profile [32].4 The reliability of
the kth external service5 can be computed by combining (1) the expected number
of times invki that the service si is invoked in the BPEL tree k and (2) the reliability
qij of the concrete service sij selected in Ji for si .

6 Reliability Model for SCA-ASM

This section presents a reliability model for an SCA assembly involving SCA-
ASM components. In particular, we assume that for each service exposed by the
SCA assembly (composite component), there is an SCA-ASM component, a “core”

4The usage profile may be not (fully) available. In such cases, the domain knowledge and the
information provided by the SOA could be used for estimating it, as suggested, for example, in
[38].
5For the sake of model linearity, as in [44], when writing expressions, we consider the logarithm
of the reliability rather than the reliability itself.

242 R. Mirandola et al.

Fig. 8 Reliability model for SCA-ASM

component, that provides that service on behalf of the composite by interacting
with and coordinating the other SCA subcomponents (possibly implemented with
different programming languages). Moreover, we assume that such SCA-ASM com-
ponents are single-agent ASMs; hence, we do not consider dynamic instantiation of
subagents (by the use of the spawn rule).

As done in BPEL reliability model, the reliability model we present considers
only crash failures and assumes that service invocation is synchronous.

Figure 8 reports, in a concise way, the SCA-ASM reliability model originally
presented in [37]. The reliability formulas rely on the representation of the SCA-
ASM core component’s program6 as tree structure and on the concept of SCA-ASM
usage profile.

We premise, therefore, the following definition of rule dependency tree (RDT)
and of usage profile.

Let k be a service provided by the SCA-ASM core component of an SCA
assembly, and let Mk be the SCA-ASM model of this component.

Definition 2 We call RDT of Mk the structure RDTk D .Vk; Ek/ where the nodes
Vk are the rule invocations in the program Mk and the edges Ek reflect the nesting
relationship among these rule invocations according to the rule constructors for
computation/coordination.

6We recall from [36] that an SCA-ASM component has a distinguished rule name of arity zero,
taking by convention the same name as the component (e.g., rule r_A in Fig. 3 for component A).
This rule is assigned as a program to the component’s agent created during the initialization, and
it is used as entry point for the component execution.

Formal Reliability Models for Web Services 243

Note that basic computation rules and communication rules are associated with
leaf nodes, while computation/coordination rule constructors are associated with
internal nodes. Hence, for each non-root node i 2 Vk , its parent node f .i/ is the
rule constructor within which rule i occurs. Note that an RDT can be defined for
any named rule of Mk, but we treat such trees as subtree of the “main RDT” by
collapsing the nodes corresponding to their invocations (i.e., rule call nodes).

Definition 3 The SCA-ASM usage profile of the service k is the tuple

.pexeck; .P.rule1/; P.rule2/; : : : ; P.rulem///

where:

pexeck is the probability of execution for service k and can be given in input
from the designer or can be derived from the observation of the SCA-ASM
component behavior or from observations derived from systems offering the
same type of services.

P.rulej / is the probability of executing rulej , 1 � j � m, supposing m is
the number of occurrences of rule constructors in the SCA-ASM model for
service k.7 These probabilities are derived from historical data deriving from
the observation of the SCA-ASM component behavior.

On the tree structure RDTk , we introduce a labeling function l; Ek ! Œ0; 1�

defined as follows: each edge .f .i/; i/ 2 Ek is labeled with l.f .i/; i/ D pi where
pi is the probability that the rule i is executed (e.g., the probabiliies 0.7 and 0.3 in
Fig. 9).

Such probability values can be derived by the usage profile of the service k.

Fig. 9 RDT of the SCA-ASM component ClientInterface for providing news in textual format

7More precisely, m yields the number of rule constructors occurring in the rules, services, and
program of the SCA-ASM component providing the service k.

244 R. Mirandola et al.

Figure 6 shows the RDT corresponding to the fragment of the core SCA-ASM
component ClientInterface reported in Fig. 5. Unlabeled edges have a probability
value 1.

6.1 Reliability Model Formulation

Let S be the SCA assembly of jC j components and K be the number of services
exposed and provided by S . For each exposed service k of S , one of the jC j
components provides the service k.

Let pexeck be the probability that the kth service will be invoked. It must hold
pexeck � 0 for all k D 1 : : :K and

PK
kD1 pexeck D 1. This information can be

synthesized from the operational profile [32].
The reliability of the overall assembly SCA yields

Rel D PjKj
kD1 pexeck � RelMk

; (1)

where RelMk
is the reliability of the provided service k.

Under failure independence assumption, it can be modeled as follows:

RelMk
D Qn�1

iD0 ReliMk
; (2)

where n is the length of the execution runk of the machine Mk and ReliMk
is the

reliability of the move movi (a single computation step from state si�1 to state si)
of the machineMk.

Considering the (logarithm of the) reliability is additive [14], the reliability of the
move movi ofMk can be computed as

ReliMk
D e

.
PjCk j

cD1 n
i
c �ric /CNriMk (3)

where (1) Ck 	 C is the set of components orchestrated by the core SCA-ASM
component for providing the service k; (2) nic is the expected number of times that
the component c 2 Ck is invoked; (3) ric is the logarithm8 of the reliability of the
SCA component c, namely, the probability that the components complete its task
when invoked; and (4) NriMk

is the logarithm of the reliability of the core SCA-ASM
component, which reflects the nature of failures in an ASM.

The parameter nic can be easily estimated by parsing the paths of the RDTk of
the core component, from the root to the leaves containing primitives wsend-

8For the sake of model linearity, as in [44], we consider the logarithm of the reliability rather than
the reliability itself.

Formal Reliability Models for Web Services 245

receive/receive to/from c, and multiplying the pi labels of the edges along
the paths.

To compute the reliability of an SCA-ASM component, and thus the probability
NriMk

, in [37] we show a precise way by considering failures specific to the nature of
ASMs: occurrence of inconsistent updates9 and violation of invariants.10 According
to these crash failures, the reliability of an SCA-ASM component c is given by

Relic D ReliIIU
� ReliIM � ReliIe ; (4)

where RelIIU is the SCA-ASM reliability for inconsistent update failures, whereas
RelIM and RelIe are the SCA-ASM machine and the environment reliabilities,
respectively, for invariant failures.

In case the component c is not an SCA-ASM component, its reliability rc must
be given. Suggestions to estimate rc can be found in [18]. A rough upper bound
1=Nnf can be estimated upon observing that the component has been invoked for
Nnf number of times with no failures.

7 Comparing BPEL-Based and SCA-ASM Reliability
Models

In order to compare the reliability models of BPEL and SCA-ASM, we first need
to map concepts of one notation into concepts of the other, and we then make an
evaluation of the two reliability models by performing some experiments on the
selected case study.

7.1 Mapping Concepts

In Table 3, we compare the features of an SCA assembly and a composite Web
service.

In Table 4, we compare the features of the RDT of the kth service provided by the
SCA assembly and BPEL activity tree of the kth service provided by the composite
Web service, while Table 5 shows the features of the reliability model of the kth
service provided by the SCA assembly and the reliability model of the kth service
provided by the BPEL model.

9Let us recall (see Definition 2.4.5 in [6]) that consistency of updates guarantees that an ASM
location is never simultaneously updated to different values.
10Recall that an invariant expresses a constraint one wants to assume for some functions of the
ASM signature. Such constraints are stated as first-order formulas that have to hold in every state
of the ASM.

246 R. Mirandola et al.

Table 3 Comparing SCA assembly and BPEL composition features

SCA Assembly BPEL

C Set of SCA components S Set of web services

K Number of services provided K Number of services provided

by the assembly by the service composite

pexeck Probability that the service k pexeck Probability that the service k

will be invoked will be invoked

Table 4 Comparing SCA-ASM rule tree and BPEL activity tree features

SCA-ASM rule tree RDTk D .Vk; Ek/ BPEL activity tree DAGk D .Vk; Ek/

Vk rules in the SCA-ASM model Vk activities in the BPEL code

internal node rule constructor internal node structured activity

leaf node basic rule for computation or
communication (correspond
to a SCA comp. invocation)

leaf node invoke activity (correspond to
an elementary service
invocation)

wi prob. of executing rule i in a
rule constructor

pa prob. of executing activity a
in a structured activity

Table 5 Comparing SCA assembly reliability model and BPEL-based reliability model features

SCA assembly rel. model BPEL-based rel. model

nci prob. that the component c is
invoked

invki number of time that the
service i is invoked

internal node rule constructor internal node structured activity

leaf node basic rule for computation or
communication (correspond
to a SCA comp. invocation)

leaf node invoke activity (correspond to
an elementary service
invocation)

We recall that an SCA assembly represents a service-oriented architecture.
Therefore, the usage profile of the external service k—the one related to the runk
(see Sect. 6)—provided by the SCA-ASM assembly, represents the usage profile of
the service k provided by the composite Web service.

7.2 Experimental Evaluation

In this section, we show the numerical results obtained by comparing the SCA-ASM
reliability model and the BPEL-based model referring to the example presented
in Sect. 3. We first describe the generation of the model parameters and then we
describe different experimental results.

Formal Reliability Models for Web Services 247

7.2.1 Model Parameters

Following a standard approach for parametric evaluation, we first define a set of
so-called nominal parameters, which constitute the starting point of the experimen-
tation, and then we generate random instances by perturbing the nominal values.
The average, maximum, and minimum values of the different obtained results are
then considered.

As shown in the software architecture of the running example in Fig. 4, we have
associated the IDs with the services as follows: s1 to Client, s2 to Multimedia
Service, s3 to Locations Database, s4 to Transcoding, s5 to Translation, s6 to
Merging, and s7 to Compression.

Table 6 shows the starting parameter values of the available instances for the
abstract services. Three different external services using them are considered. The
third column of Table 6 lists the set of alternatives for each existing service. For
each alternative, the reliability rij is given in the third column; the expected number
of times inv1i that the service i is invoked within the first external service is given in
the fourth column; the expected number of times inv2i that the service i is invoked
within the second external service is given in the fifth column; the number of times
inv3i that the service i is invoked within the third external service is given in the
fifth column.

Table 6 Parameters of the available instances for the existing services

Num. of inv. Num. of inv. Num. of inv.
Service Service Reliability first scen. second scen. third scen.
ID altern. rij inv1i inv2i inv3i
s1 s11 0.9993 3 2 2

s12 0.9994

s13 0.99999

s2 s21 0.996 3 2.084 3

s22 0.9995

s3 s31 0.99985 1.2

s4 s41 0.999 1

s42 0.99985

s43 0.99999

s5 s51 0.9993 1 1 1

s52 0.9998

s53 0.99998

s6 s61 0.94 1.084

s62 0.9997

s63 0.9999

s7 s71 0.99 1 1.084 1

s72 0.992

s73 0.999999

248 R. Mirandola et al.

Starting from the services’ nominal values, we have generated 186 different
system configurations (here also called perturbed configurations) by randomly
changing the parameters. Two of these configurations differ for concrete services’
reliabilities, which we have slightly decreased/increased (e.g., within 10 % of the
nominal values).

In order to generate the perturbed configurations, we have generated five concrete
service bases. For each abstract service, the number of concrete services spans from
13 to 65. Two service bases differ for the number—spanning from 13 to 65—and
the parameters of the perturbed configurations (i.e., one perturbed configuration
corresponds to seven concrete services generated for the seven abstract services).
For the sake of result robustness, the service bases’ parameters have been varied.

7.2.2 Numerical Results

Case 1 In Fig. 10, we report the results obtained applying the SCA assembly
model without orchestrators and the BPEL-based reliability model to the perturbed
configurations. We have fixed the probabilities (i.e., pexeck) that the first, second,
and third external services will be invoked with probabilities 0.3, 0.3, and 0.4,
respectively. Each bar—corresponding to one service base—contains the higher,
lower, and the average values obtained for the system reliability. The results are the
same for both models.

Case 2 In Fig. 11 we illustrate the results obtained considering the SCA assembly,
taking into account also the service orchestrator’s reliability.

For each perturbed configuration, we have applied our SCA assembly reliability
model for a set of reliability values for the three external services’ orchestrators.
Each orchestrator’s reliability spans from 0.95 to 0.999 by steps of 0.005. Each
group of 17 bars—corresponding to one service base—refers to the execution model
results over the base’s perturbed configurations. In particular, each bar corresponds

0,985

0,995

0,975

0,965

0,99

0,98

0,97

0,96
13 24 36 48 65

Average

Min

Max

Services Bases

S
ys

te
m

 R
el

ia
b

ili
ty

Fig. 10 System reliability obtained with the BPEL reliability model and with the SCA assembly
without considering the orchestrator’s reliabilities

Formal Reliability Models for Web Services 249

1

0,995

0,99

0,985

0,98

0,975

0,97

0,96

0,95

0,955

0,965

[13, Av. Rel. =0.984739] [24, Av. Rel. =0.980833] [36, Av. Rel. =0.981715] [48, Av. Rel. =0.981757] [65, Av. Rel. =0.982593]

Max

Min

Average

S
ys

te
m

 R
el

ia
b

ili
ty

Services Bases vs Orchestrators Reliabilities

Fig. 11 System reliability obtained for the SCA assembly considering the orchestrator’s reliabili-
ties

0,025

0,015

0,02

0,01

0,005

0
0,98 0,985 0,99 0,995 0,996 0,998 0,9990,9970,9965 0,9975 0,9985

Orchestators Reliabilities Setting

R
el

at
iv

e
P

ro
fi

t
o

f
S

ys
te

m
 R

el
ia

b
ili

ty

Max

Min

Average

Fig. 12 Comparing the relative profit of different orchestrator’s reliabilities setting

to one fixed reliability value for the reliability of the three service orchestrators and
contains the higher, lower, and the average system reliability. The lower (higher or
average) system reliability increases while increasing the orchestrator’s reliabilities.
For example, with a service base of 13 perturbed configurations, if the reliability
of the three orchestrators is equal to 0.95, the average system reliability decreases
from 0.984739 (average value estimated without considering the orchestrator’s
reliabilities in case 1) to 0.963045, whereas if the reliability of all orchestrators
increases to 0.995, then the system reliability is about 0.982597.

These results show the relevance of the orchestrator’s reliability in a reliability
model. These assertions can be better evaluated by considering Fig. 12, where it
is shown the percentage gain in system reliability obtained with the orchestrator’s
reliabilities setting from 0.98 to 0.999 by steps 0.005. We have compared the system
reliability obtained with these reliability values and the orchestrator’s reliabilities
setting from 0.95 to 0.975 by steps 0.005. Specifically, for a perturbed configuration
s, we have estimated the profit as follows: .RelSysv.s/ � RelSysv0.s//=RelSysv.s/,
where RelSysv.s/ and RelSysv0.s/ represent the system reliability returned by the

250 R. Mirandola et al.

0

–0,005

–0,015

–0,025

–0,01

–0,02

All Orchestrators Without the First Orchestrator Without the Third Orchestrator

R
el

at
iv

e
P

ro
fi

t
o

f
S

ys
te

m
 R

el
ia

b
ili

ty

0,95 0,955 0,96 0,965 0,97 0,975 0,98 0,985 0,99 0,995 0,996 0,9965 0,997 0,9980.9975 0,9985 0,999

Orchestrator Reliability

Fig. 13 Comparing the relative profit of the system reliability

SCA assembly reliability model by considering the orchestrator’s reliabilities fixed
to v and v0, respectively. The figure shows the results for the service base with 65
perturbed configurations.

As expected, the lower (higher or average) gain in system reliability increases
while increasing the orchestrator’s reliability value. For example, with the reliability
of the orchestrators fixed to 0.98, the average profit is about 0.0078, whereas if the
reliability of the orchestrators increases to 0.997, then the average profit increases,
and it is about 0.01518.

Case 3 In order to compare the efficacy of considering the orchestrator’s reliabili-
ties, we have analyzed in Fig. 13 the gain in reliability—in terms of a more precise
(and less optimistic) estimation—obtained in three different experiments.

The first experiment—corresponding to the curve with diamonds—refers to
the execution of SCA assembly by considering the reliability of all orchestrators
(i.e., the results obtained in case 2). The second experiment—corresponding to
the curve with rectangles—refers to the execution of SCA assembly reliability
model by considering the reliability of the first service’s orchestrator equal to 1.
Finally, the third experiment—corresponding to the curve with triangles—refers to
the execution of SCA assembly reliability model where the reliability of the third
service’s orchestrator is equal to 1. The figure shows the results for the service
base with 48 perturbed configurations. The x-axis represents the variation of the
orchestrator’s reliability. Specifically, each point—corresponding to one reliability
orchestrator’s value—contains the average relative profit obtained for the system
reliability.

A relevant observation is that for the corresponding values of curves in the three
experiments, the average profit is higher in the first experiment than in the second
and third ones. This is because in the first experiment, we consider the reliabilities
of all service orchestrators, whereas in the second and third experiment, we fix
to 1 the reliability of one of the service orchestrators. For example, for the first
experiment, with the reliabilities of the orchestrators equal to 0.97, the (modulus)

Formal Reliability Models for Web Services 251

Fig. 14 System reliability obtained by embedding the reliability of an SCA-ASM component.
(a) Considering the service s3 as an SCA-ASM component. (b) Considering the service s7 as an
SCA-ASM component

average profit is about 0.01332, whereas for the second and third experiments, the
(modulus) average profit is about 0.00928 and 0.00795, respectively.

On the other hand, for corresponding values of curves in the second and third
experiments, the average profit is higher in the second experiment than in the third
one. For example, for the second experiment, with the orchestrator’s reliabilities
equal to 0.98, the (modulus) average profit is about 0.0061, whereas for the third
experiment, the (modulus) average profit is about 0.0052. This is due to the fact that
in the second experiment, we consider the reliability of the orchestrator of the first
external service equal to 1 (with the probability to be invoked fixed to 0.3), whereas
in the third experiment, we consider the reliability of the orchestrator of the third
external service equal to 1 (with the probability to be invoked fixed to 0.4).

Case 4 Figure 14 shows the results we obtain when in the SCA assembly
we explicitly model the reliability of an SCA-ASM component, considering the
service base of 65 perturbed configurations. Specifically, Fig. 14a, b illustrates the
results obtained by explicitly using our SCA-ASM reliability model for s3 and s7,
respectively. In both cases, we have observed the system reliability while varying
the reliability of s3 and s7 (assuming that it is due to inconsistent update failures)
and considering two different set of parameters.

252 R. Mirandola et al.

Each bar—corresponding to a single reliability value—contains the higher,
lower, and the average value obtained for the system reliability. The observed
different behavior of the reliability model in the two cases is mainly due to the
fact that services s3 and s7 have a different probability to be invoked in the system.
In fact, service s3 is only used in the third external service, whereas service s7 is
used in all external services (see Table 6).

These results highlight how the reliability model that exploits the specific
features of an SCA-ASM component leads to a more precise (and less optimistic)
reliability estimation.

8 Related Work

A wide range of approaches have been proposed for the reliability and availability
analysis of Web services in both analytical models (e.g., [23, 29, 39]) and empirical
studies (e.g., [25]). The analytical models exploited different kinds of Markov
processes to define availability/reliability models for a composite Web service. The
empirical analyses considered both workloads and the reliability of Web servers,
proposing to distinguish between intersession and intra-session Web characteristics.
More recently, some papers tackled the problem of composing a service-oriented
system from publicly available Web services (e.g.,[45]), taking into account differ-
ent types of Web service failures. Several approaches use notations based on BPEL
(e.g., [8, 43], and [12] discussed in Sect. 5).

Concerning quality estimation of Web services based on the standard SCA, the
work in [20] presents a reliability computation for the SCA component model. It
proposes a dynamic behavior model for specifying the component interface behavior
by a notion of port and port activities. It defines failure behaviors of ports through
the nonhomogeneous Poisson process (NHPP). Thus, the overall system reliability
is computed on the reliability of port expressions.

Using a general component model, the work in [7] proposes a reliability
prediction method based on the Palladio Component Model (PCM), which offers
a UML-like modeling notation. In particular, a tool is defined to automatically
transform PCM models into Markov chains.

Formal methods, such as Petri net, automata, and process algebra, are also
used by existing approaches for quality evaluation (see, e.g., the work in [19] for
performance modeling notations). Ad hoc models (such as UML), used to describe
the static and dynamic aspects of a software system, are typically transformed in
formal quality models (such as queueing networks). Thus, a major problem of these
approaches may reside in the distance between notations for modeling the system
and notations for modeling qualities.

Formal Reliability Models for Web Services 253

As far as the reliability is concerned, a quite extensive list of approaches can be
found in literature (e.g., see survey [28]). Most of these approaches (e.g., [7, 17], and
[16]) use notations based on UML sequence and deployment diagrams annotated
with reliability properties, such as failure probabilities. Tools can transform such
high-level models into analysis models (such as Markov models for state-based
approaches), which then can be evaluated. As an example, the KLAPER suite
[16] is a modeling framework (language, methodology, tools) for the predictive
modeling and analysis of performance and reliability of component-based systems.
It uses model transformations to automatically generate analysis models (queueing
networks) out of an annotated UML design model.

As remarked in [27], the formal models typically focus only on the formal
modeling of the service functionality and behavior. In [27], the formal specification
of services with context-dependent contracts and their compositions is provided.
Nonfunctional aspects are also taken into account, and the model checking tech-
nique is exploited to verify service properties w.r.t. the composition specification.
The verification of functional and nonfunctional aspects based on a formal method is
also performed in [1], where process algebraic techniques are used for architecture-
level functional and performance analysis.

9 Conclusions and Future Work

In this chapter, we have presented two reliability prediction methods for service-
oriented applications: one based on the BPEL language [3] and the other based on
the service-oriented component model SCA-ASM [31, 35–37].

We have performed a comparison between these two different approaches by
conducting a wide experimental analysis. The obtained results show that when
considering the same modeling abstraction level, the two reliability models are
equivalent. However, since the SCA-ASM reliability model allows a more detailed
modeling and computation of the reliability of a single Web component, the
reliability estimation of the overall Web service system with SCA-ASM provides
more accurate results than the ones obtained with the BPEL-based model. The
comparison suggested that further benefit can be obtained by combining the use
of the two models. Indeed, while the BPEL-based reliability model can be used for
the evaluation of the whole process, the SCA-ASM reliability model can be used to
evaluate the reliability of the single services, thus providing more accurate results
than the one obtained with the current BPEL-based reliability models.

To further study the scalability and the representativeness of these models, we
plan to apply these approaches to other examples and to compare their predicted
reliability values with existing data of real-life experiments.

254 R. Mirandola et al.

References

1. Aldini, A., Bernardo, M., Corradini, F.: A Process Algebraic Approach to Software
Architecture Design. Springer, London (2010)

2. Alrifai, M., Risse, T.: Combining global optimization with local selection for efficient QoS-
aware service composition. In: WWW, pp. 881–890 (2009)

3. Alves, A., Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., König, D.,
Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web Services Business Process
Execution Language Version 2.0, OASIS Standard Specification, 11 April 2007. http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

4. Apache Tuscany: http://tuscany.apache.org/ (2011)
5. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process for

engineering a toolset for a formal method. J. Softw. Pract. Exp. 41(2), 155–166 (2011)
6. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and

Analysis. Springer, New York (2003)
7. Brosch, F., Koziolek, H., Buhnova, B., Reussner, R.: Architecture-based reliability prediction

with the palladio component model. IEEE Trans. Softw. Eng. 38(6), 1319–1339 (2012)
8. Bruneo, D., Distefano, S., Longo, F., Scarpa, M.: QoS assessment of WS-BPEL processes

through non-Markovian stochastic Petri nets. In: 2010 IEEE International Symposium on
Parallel Distributed Processing (IPDPS), pp. 1–12 (2010)

9. Brugali, D., Gherardi, L., Riccobene, E., Scandurra, P.: Coordinated execution of heteroge-
neous service-oriented components by abstract state machines. In: Arbab, F., Ölveczky, P.C.
(eds.) FACS. Lecture Notes in Computer Science, vol. 7253, pp. 331–349. Springer, Berlin
(2011)

10. Business Process Model and Notation: http://www.bpmn.org/ (2012)
11. Calinescu, R., Ghezzi, C., Kwiatkowska, M.Z., Mirandola, R.: Self-adaptive software needs

quantitative verification at runtime. Commun. ACM 55(9), 69–77 (2012)
12. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.: Flow-based service selection for web

service composition supporting multiple QoS classes. In: ICWS, pp. 743–750. IEEE Computer
Society, Salt Lake City (2007)

13. Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Lo Presti, F., Mirandola, R.: MOSES: a
framework for QoS driven runtime adaptation of service-oriented systems. IEEE Trans. Softw.
Eng. 38(5), 1138–1159 (2012)

14. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service for workflows
and web service processes. J. Web Semant. 1(3), 281–308 (2004)

15. Chandran, S.K., Dimov, A., Punnekkat, S.: Modeling uncertainties in the estimation of
software reliability. In: 2010 Fourth International Conference on Secure Software Integration
and Reliability Improvement (SSIRI), pp. 227–236. IEEE Computer Society, Singapore (2010)

16. Ciancone, A., Filieri, A., Luigi Drago, M., Mirandola, R., Grassi, V.: KlaperSuite: an
integrated model-driven environment for reliability and performance analysis of component-
based systems. In: TOOLS (49). Lecture Notes in Computer Science, vol. 6705, pp. 99–114.
Springer, Berlin (2011)

17. Cortellessa, V., Potena, P.: Path-based error propagation analysis in composition of software
services. In: Software Composition. Lecture Notes in Computer Science, vol. 4829, pp. 97–
112. Springer, Berlin (2007)

18. Cortellessa, V., Marinelli, F., Potena, P.: Automated selection of software components based on
cost/reliability tradeoff. In: EWSA. Lecture Notes in Computer Science, vol. 4344, pp. 66–81.
Springer, Berlin (2006)

19. Cortellessa, V., Di Marco, A., Inverardi, P.: Model-Based Software Performance Analysis.
Springer, Berlin (2011)

20. Ding, Z., Jiang, M.: Port based reliability computing for service composition. In: Proceedings
of the 2009 IEEE International Conference on Services Computing, SCC ’09, pp. 403–410
(2009)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://tuscany.apache.org/
http://www.bpmn.org/

Formal Reliability Models for Web Services 255

21. Filieri, A., Ghezzi, C., Grassi, V., Mirandola, R.: Reliability analysis of component-based
systems with multiple failure modes. In: CBSE. Lecture Notes in Computer Science, vol.
6092, pp. 1–20. Springer, Berlin (2010)

22. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a simulation
engine for abstract state machines. J. Universal Comput. Sci. 14(12), 1949–1983 (2008)

23. Gokhale, S.S., Lu, J.: Performance and availability analysis of an E-commerce site. In: 30th
Annual International Computer Software and Applications Conference, 2006. COMPSAC ’06,
vol. 1, pp. 495–502 (2006)

24. Goseva-Popstojanova, K., Trivedi, K.S.: Architecture-based approach to reliability assessment
of software systems. Perform. Eval. 45(2–3), 179–204 (2001)

25. Goseva-Popstojanova, K., Deep Singh, A., Mazimdar, S., Li, F.: Empirical characterization
of session-based workload and reliability for web servers. Empir. Softw. Eng. 11(1), 71–117
(2006)

26. Grassi, V.: Architecture-based reliability prediction for service-oriented computing. In: WADS.
Lecture Notes in Computer Science, vol. 3549, pp. 279–299. Springer, Berlin (2004)

27. Ibrahim, N., Mohammad, M., Alagar, V.S.: An architecture for managing and delivering
trustworthy context-dependent services. In: IEEE SCC, pp. 737–738 (2011)

28. Immonen, A., Niemelä, E.: Survey of reliability and availability prediction methods from the
viewpoint of software architecture. Softw. Syst. Model. 7(1), 49–65 (2008)

29. Janevski, N., Goseva-Popstojanova, K.: Session reliability of web systems under heavy-tailed
workloads: an approach based on design and analysis of experiments. IEEE Trans. Softw. Eng.
99(PrePrints), 1 (2013)

30. Krka, I., Edwards, G., Cheung, L., Golubchik, L., Medvidovic, N.: A comprehensive explo-
ration of challenges in architecture-based reliability estimation. In: Architecting Dependable
Systems VI. Lecture Notes in Computer Science, vol. 5835, pp. 202–227 (2009)

31. Mirandola, R., Potena, P., Riccobene, E., Scandurra, P.: A reliability model for service
component architectures. J. Syst. Softw. 89, 109–127 (2014)

32. Musa, J.D.: Operational profiles in software-reliability engineering. IEEE Softw. 10(2), 14–32
(1993)

33. OASIS/OSOA: Service component architecture (SCA). www.oasis-opencsa.org/sca (2011)
34. Potena, P.: Optimization of adaptation plans for a service-oriented architecture with cost,

reliability, availability and performance tradeoff. J. Syst. Softw. 86(3), 624–648 (2013)
35. Riccobene, E., Scandurra, P.: A formal framework for service modeling and prototyping. Form.

Asp. Comput. 26(6), 1077–1113 (2014)
36. Riccobene, E., Scandurra, P., Albani, F.: A modeling and executable language for designing

and prototyping service-oriented applications. In: EUROMICRO-SEAA, pp. 4–11. IEEE, Oulu
(2011)

37. Riccobene, E., Potena, P., Scandurra, P.: Reliability prediction for service component
architectures with the SCA-ASM component model. In: Cortellessa, V., Muccini, H., Demirörs,
O. (eds.) EUROMICRO-SEAA, pp. 125–132. IEEE Computer Society, İzmir (2012)

38. Roshandel, R., Medvidovic, N., Golubchik, L.: A Bayesian model for predicting reliability of
software systems at the architectural level. In: QoSA. Lecture Notes in Computer Science, vol.
4880, pp. 108–126. Springer, Berlin (2007)

39. Sato, N., Trivedi, K.S.: Accurate and efficient stochastic reliability analysis of composite
services using their compact markov reward model representations. In: IEEE International
Conference on Services Computing, 2007. SCC 2007, pp. 114–121 (2007)

40. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating Respon-
sive, Scalable Software. Addison-Wesley, Redwood City (2002)

41. Standard Glossary of Software Engineering Terminology: STD-729-1991 ANSI/IEEE (1991)
42. The ASMETA Toolset Website: http://asmeta.sf.net/ (2011)
43. Xia, Y., Liu, Y., Liu, J., Zhu, Q.: Modeling and performance evaluation of BPEL processes:

a stochastic-petri-net-based approach. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 42(2),
503–510 (2012)

www.oasis-opencsa.org/sca
http://asmeta.sf.net/

256 R. Mirandola et al.

44. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware
middleware for web services composition. IEEE Trans. Softw. Eng. 30, 311–327 (2004)

45. Zheng, Z., Lyu, M.R.: Collaborative reliability prediction of service-oriented systems. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 1, ICSE ’10, pp. 35–44. ACM, New York (2010)

What Constitutes a Service on the Web?

Towards a Theory of Services

Klaus-Dieter Schewe and Qing Wang

Abstract There are many approaches to modelling and development of service-
oriented systems, but there is still no convincing answer to what a (software) service
is. In this chapter, we discuss the various attempts to develop a theory of services,
identify aspects that have already been addressed and extract gaps. This leads us
to propose the BDCM2 framework capturing behaviour, description, contracting,
monitoring and mediation. For the behavioural model, we refer to the two-layer
model of Abstract State Services (AS2s) capturing functional aspects of data-
intensive Web services. The model of service mediators permits building complex
applications, in which parts are realised by services. Furthermore, we highlight the
decisive role of service ontologies for supporting the location of services as well
as the capture of contractual aspects by means of service-level agreements (SLAs).
Finally, we conclude that a contract is only as good as the means to monitor the
agreements. While part of the research has already reached a promising level of
maturity, some aspects are still in an infant state.

1 Introduction

It is now commonly accepted that the main role of the World Wide Web is to
provide a pool of services rather than documents. Such a service can in fact be
anything: a simple function, a data warehouse or a fully functional information
system. However, this brings with it the fundamental question what actually is a
service in general or in a more restrictive sense, what is a software service on

K.-D. Schewe
Software Competence Center Hagenberg, Softwarepark 21, 4232 Hagenberg, Austria

Christian Doppler Laboratory for Client-Centric Cloud Computing, Johannes Kepler University
Linz, Softwarepark 21, 4232 Hagenberg, Austria
e-mail: kd.schewe@scch.at; kd.schewe@cdcc.faw.jku.at

Q. Wang (�)
Research School of Computer Science, The Australian National University, Canberra ACT 0200,
Australia
e-mail: qing.wang@anu.edu.au

© Springer International Publishing Switzerland 2015
B. Thalheim et al. (eds.), Correct Software in Web Applications and Web Services,
Texts & Monographs in Symbolic Computation,
DOI 10.1007/978-3-319-17112-8_8

257

mailto:kd.schewe@scch.at
mailto:kd.schewe@cdcc.faw.jku.at
mailto:qing.wang@anu.edu.au

258 K.-D. Schewe and Q. Wang

the Web? There are many approaches trying to address this fundamental question
[1, 3, 7–9, 16, 17, 22, 24–27, 30, 33, 36, 42, 45]. According to Bergholtz et al. [9],
these approaches can be roughly classified into those taking a business-centric view,
i.e. the focus is on business services, and those taking a software-centric view,
i.e. the focus is on software services. Examples of the former class are among
others the service science framework by Ferrario et al. [16], the so-called unified
theory of services (UTS) by Sampson et al. [36], the approach to semantic Web
services by Preist [33] and the Advancing Open Standards for the Information
Society (OASIS) framework by Alves et al. [3]. Examples of the latter class are
among others the various attempts to address service-oriented architectures (SOAs)
[4, 13, 31], service-oriented computing (SOC) [32], Web services [2, 6, 41, 43] and
the behavioural model of Abstract State Services [25, 26]. Both lists can be extended
by many other examples (see, for instance, the literature review in [26] or in [9]).
Some of the approaches have indeed a hybrid character, i.e. they approach at the
same time the business and the software-technical aspects.

In this article, we want to continue our research towards the fundamental question
“what constitutes a service”; summarise the rationale underlying our work so far,
which led to the model of Abstract State Services (AS2s) [26], the model of service
mediators based on AS2s [28, 39, 40] and the service ontology model [27]; and
discuss which further properties characterise a (software) service (on the Web).
Originally (as postulated in our first article on the AS2 model [25]) our objective
was to lay foundations of a theory of service-oriented systems. In particular, we
claimed that the following fundamental questions should be answered:

• How must a general model for services look like capturing the basic idea and all
facets of possible instantiations, and how can we specify such services?

• How can we search for services that are available on the Web?
• How do we extract from such services the components that are useful for the

intended application, and how do we recombine them?
• How can we optimise service selection using functional and non-functional (aka

“quality of service”) criteria?

1.1 Functional Behaviour

Regarding the first question, we deviated significantly from approaches taken by
the research on SOA, SOC or Web services. We adopted the viewpoint that a
“behavioural theory” for services—more precisely software services that are made
available (publicly or for a restricted audience) via the Web—should be approached.
This notion on “behavioural theory” has been coined only recently by Blass and
Gurevich to cover the research on the abstract state machine (ASM) thesis [10, 19]
and follow-on work [38].

According to the SOC research roadmap service foundations, service compo-
sition, service management and monitoring and service-oriented engineering have

What Constitutes a Service? 259

to be addressed [32]. For research on SOC and Web services, many researchers
have adopted the Web services description language (WSDL) proposed by W3C
[12] or the OASIS Web services standard [3] as the starting point. That is, what is
considered to be a service is already linguistically fixed, and on these grounds, the
listed problems are addressed. The most investigated research directions concern
Web service integration [6] and service personalisation [18]. Similarly, for SOA,
a common view is that Web services [2] shall be identified, managed by means
of a hierarchical representation and composed and orchestrated to create complex
application systems [31]. Again, the WSDL [12] takes the role of describing the
parameters that are needed to use a Web service; service publishing is addressed
by a Universal Description, Discovery and Integration (UDDI) registry [43],
which addresses universal description, discovery and integration; service location is
supported by service ontologies such as Web Service Modelling Ontology (WSMO)
[15] based on the Web Services Modelling Framework (WSMF) [14] or any other
ontology dedicated to Web services; and service orchestration exploits languages
such as the Business Process Execution Language (BPEL).

A “behavioural theory” does not start from a language that somehow represents
a reasonable class of the objects that are to be characterised, i.e. in our case
the services. Instead, a language-independent clarification of the desired notion
is given by means of a set of intuitive postulates. For sequential algorithms, this
was done by Gurevich leading to the sequential ASM thesis [19]; for unbounded
parallel algorithms, this was done analogously by Blass and Gurevich leading
to the (still debated) parallel ASM thesis [10]. For non-deterministic database
transformations, we contributed a language-independent characterisation exploiting
meta-finite structures [38]. In the second step, an abstract machine model—notably
(sequential, parallel, database) abstract state machines (ASMs)—is defined, for
which it is then proven in the third step that the machine model captures exactly
the objects stipulated by the postulates.

This led to the notion of Abstract State Service (AS2) [26]. That is, we defined
postulates for the (functional) behaviour of a (software) service and proved that
a particular machine model, in this case a federation of variants of ASMs (i.e. a
distributed ASM), captures exactly the postulates. Then of course, any equivalent
language (by means of expressiveness) could be used to implement the theory of
AS2s. We will briefly discuss this behavioural theory of services in Sect. 2.

However, the AS2 model only covers functional aspects of services. Roughly
speaking, an AS2 provides a process that can be used by someone else knowing
only what the process of implementing the service is supposed to do. The user
does neither own the service nor is he/she able to manipulate it. While this covers
some aspects of services—to be precise, it covers behaviour—it is far from being a
complete model of services. In the sense of the discussion of fundamental work on
services by Bergholtz et al., AS2s might be considered as some form of abstraction
of what constitutes a service [8, 9], though it provides a much more fundamental
theoretical model than OASIS, semantic Web services or the approaches to service
science developed so far [3, 24, 33].

260 K.-D. Schewe and Q. Wang

1.2 Service Ontologies

The second question above concerns the location of services, for which a description
of the available services is needed. The key idea is that given a coarse description
of the service needed, it should be possible to search for such a service. This is
exactly what ontologies are meant to capture, a description of the (semantics of)
services. Therefore, we adopt the common idea of a service ontology, which is
already omnipresent in the area of the semantic Web, also in our own work in
[27, 28]. This is usually grounded in some more or less expressive description logic
[5], e.g. the Web Ontology Language (OWL) [44]. In general, description logics are
not the most expressive logical languages, as only unary and binary predicates are
used and junctors as well as quantifiers are restricted—this is discussed in detail in
the description logics handbook and the many references listed in it [5]. However,
the reason for preferring description logics over more expressive logical languages
is that in such a logic, the implication between unary concepts is decidable, which
permits automatic classification, i.e. each new class of services or each individual
service will be placed correctly into a hierarchy.

While it is not possible to precisely describe a service (e.g. using the AS2 model)
in a way that it can be automatically matched to a service request—as services
represent complex software systems in general, this is a well-known undecidable
property—it is commonly accepted that a service ontology should capture three
aspects (e.g. see [14–16, 27, 30] and the references in there):

• Functional description: This should cover the specification of input and output
types as well as pre- and postconditions telling in technical terms what the service
will do.

• Categorical description: This should capture interrelated keywords telling what
the service operation does by using common terminology of the application area.

• Quality of service (QoS) description: This should capture non-functional proper-
ties such as availability, response time, cost, etc.

A functional description alone would be insufficient. For instance, a flight
booking service may functionally be almost identical to a train booking system.
Therefore, an additional categorical description is indispensable. The terminology
of the application domain defines an ontology in the widest sense, i.e. we have
to provide definitions of “concepts” and relationships between them, such that
each offered service becomes an instantiation of one or several concepts in the
terminology. As remarked in our previous work, setting up a categorical ontology
for services in a particular application domain is already a tedious and time-
consuming endeavour. Furthermore, such an ontology only makes sense if a larger
community agrees on it. However, in many technical application areas, there is
quite reluctance to make details of application knowledge publicly (or at least
semipublicly) available. On the other hand, in areas such as biology or chemistry,
commonly accepted ontologies exist already for a long time.

What Constitutes a Service? 261

According to our previous work, the QoS description is not needed for service
discovery and merely useful to select among alternatives, but neither functional
nor categorical description can be dispensed with [27]. While the first part of this
statement is still true, we would argue now that the role of non-functional properties
should be seen in a wider context. The non-functional properties cover also the
description of how a service is meant to be used; what are the obligations and rights
of the participating agents, at least of the service provider and the service user; how
conflicts are to be handled; etc. The fact that these non-functional aspects should be
considered as being intrinsically part of a service leads to additional aspects of our
fundamental question concerning what services are.

Thus, service ontologies capture a second aspect of a general service model,
the availability of a detailed description of the service. We will address the
functional and categorical aspects of a service ontology in Sect. 3. In this context,
we will also discuss quality of service as part of a wider discussion of contractual
aspects, obligations and rights. For the latter, we will look also into the discussion
of properties that are distinctive for service in comparison to related research
[9, 16, 36, 45].

1.3 Service Mediation

For the third question above, we first observed that in the AS2 model, the
specification of how a service is to be used was left implicit [28]. Therefore, in order
to make the workflow within a service explicit, we formalised the notion of plot of a
service, which actually captures the possible sequencing of service operations. For
this we first exploited Kleene algebras with tests (KATs) [28], which are known to be
the most expressive formalism to capture propositional process specifications. Then
we permitted more details of the AS2 to be revealed in a generalised plot by using
ASMs with abstract submachines [40]. So adding plots to the AS2 model is a little
extension of the behavioural model, which in addition impacts on the functional
description in the service ontology. The notion of plot is a term adopted from the
movie business that has already been used for a long time in the context of Web
information systems (WISs) [37].

Service mediation addresses collaboration of services, which to our point of view
is another necessary aspect of services. While the functional behaviour of a service
is entirely in the hands of a service provider and the service description addresses
how a service is offered by the provider to the potential users, service mediation
covers how users can make use of a service. For instance, it is commonly known that
online sales services are often used as information repositories without the slightest
intention to buy something. In other words, while the functionality of a service is
defined by the provider and conditions of use are subject of the QoS part of the
service ontology, it is exclusively up to the user to exploit the service for his/her
own purposes.

262 K.-D. Schewe and Q. Wang

Therefore, we consider service mediation as an important aspect of a theory of
services. For this we introduced service mediators, which exploit plots with open
slots for services to specify intended service-based applications on a high level
of abstraction [28, 39]. The idea is to specify service-oriented applications that
involve yet unknown component services. On these grounds, matching criteria for
services are formally defined that are to fill the slots. A problem in finding such
matching criteria is the fact that it should be possible to skip component operations
of services and change their order. This enhances the work on service composition,
which is already a well-explored area in service computing with respect to services
that are understood functionally. In the AS2 model, this corresponds to the service
operations rather than the services as a whole. More precisely, what actually needs
to be composed are “runs” of services that are determined by the plot including
conditions, under which particular service operations can be removed or their
order can be changed. This led to rather complicated matching conditions between
services and slots in mediators [28, 39, 40].

We will discuss the aspect of service mediation in Sect. 4. We will only refer
to the mediator model as such and abstract from any details how an instantiated
mediator could be realised across multiple service repositories. For this, the
research on client-cloud interaction on grounds of ambient ASMs provides deeper
insights [11].

1.4 Service Contracts

The aspects of behaviour, description and mediation alone do not yet capture
everything that would characterise services. It is not surprising that a lot of
researches concerning the characterisation of “service science” or “conceptual
models of services” do not stress the functional and usage aspects at all. Different
from other approaches, the AS2 model including the service plots provides a
behavioural theory capturing functional aspects of services, but as many engineering
approaches to service specification, composition, orchestration, etc., would qualify
as implementations of AS2s, the formal clarity achieved will not invalidate these
approaches. Similarly, the necessity to have functional and categorical parts in
service ontologies is commonly accepted, so the clarification, in which formal basis
is needed—this is also an open problem in the context of the AS2 model—will
smoothen the edges of the theory, but it will not make extreme distinctions.

This is different regarding the non-functional aspects of services. Zeithaml et al.
emphasise general properties such as intangibility, inseparability, heterogeneity and
perishability of services [45], which in the community have been controversially
debated [8, 16, 36] and rejected as being neither necessary nor sufficient. Indeed,
intangibility refers to the fact that a service is owned by its provider, while a service
user can exploit the service for his/her own purpose, but there is never a transfer of
ownership nor does the user even know how the service is realised. For instance,
in the often-used example of a snow removal service, it is up to the provider to

What Constitutes a Service? 263

decide whether shovels, brooms or snow ploughs are used, which the service client
is not interested in at all, as long as the agreed result is guaranteed. Intangibility
is de facto captured by the behavioural model; in particular, in the AS2 model, a
hidden internal layer is separated from the visible layer exposed to the user, which
includes the associated plot. Similarly, perishability is no property of services at
all. Every software system is prone to perishability, if the hardware and system
software it is grounded in disappear. In the contrary, it should be part of the usage
agreement between a service provider and a user that services do not perish within
the agreed period of service usage. That is, availability agreements are part of the
service as well as the consequences, if the agreement is violated. Inseparability has
to be treated also with care. Of course, from the point of view of the provider, the
service is offered as a whole, and there is an agreement about this with each service
user. However, as already discussed in connection with mediation, it is up to the user
to exploit the services in his/her own way and for his/her own purposes, regardless
of what the provider intended. In this sense, a user may well cut out of a service
the parts that are really needed, even though for the provider it still appears that the
service was used as a whole. Finally, heterogeneity is not a characteristic at all, as it
could only refer to the collection of all services, in which case it is a triviality. If it
were to refer to a single service, there is no reason for the claim that heterogeneity
of the components involved should always be the case.

Sampson et al. in the UTS and also Bergholtz et al. emphasise the usage and
exchange of resources within a context and the shift of the management of resources
to the provider as important characteristics of services [8, 9, 36], while Ferrario et
al. stress legal aspects associated with provision and usage of services [16]. We
consider this a limited perspective, which stresses a rather indecisive and in general
debatable view that the management of resources and the rules governing it are of
central importance.

Therefore, let us first take a closer look into the service model promoted by
Bergholtz et al. [8, 9], before developing our key idea regarding contracting as a
decisive feature of a theory of services. As Bergholtz et al. do not claim universal
validity for their conceptual service model, we cannot conclude that their approach
is misleading, but we would like to look at the properties of the model from a
different angle, which will (hopefully) lead us to a sharpened view regarding the
desired theory of service. The model is grounded in an ontology capturing resources,
events and agents, which is coupled with a classification of rights. The original
resource-event-agent (REA) ontology was developed by McCarthy [29] and then
further extended by Geerts and McCarthy [17] and Hruby [21]. The classification of
rights goes back to the early work by Hohfeld [20] but is also tangent to the work
by Ferrario et al. concerning legal aspects of services [16].

As the name already indicates, the used REA ontology stresses resources, events
and agents as the main building blocks. Resources are roughly classified as being
internal, shared, consumable, etc. Similarly, events are classified into conversion,
production, consumption, exchange, etc. The agents refer to the individuals, groups,
machines, etc., that perform the events on the resources. Regarding the resources,
it is at least debatable whether resources are involved each time in a service. For

264 K.-D. Schewe and Q. Wang

instance, when seeking legal advice, the asked lawyer may qualify as an agent
involved in the picture, but hardly as a resource, and the access to a book reference
may not be needed at all. What is much more characteristic than the use of resources
is the fact that a workflow is issued when a service is used. That is, instead of
talking about events, it would be much more convincing to talk about the workflow
resulting from a process—though this may be considered a matter of terminology—
and the agents involved in this workflow. The workflow as such is nothing more
than what we called the (functional) behaviour, and the agents involved refer to the
implementation of this behaviour, which is not decisive. What is decisive is that
there is a service provider offering the service and a user of the service. If any
third party is involved and this is important for the agreements between the provider
and the user, then this becomes part of the regulations governing the service use.
That is, in our opinion, the specific REA ontology mainly addresses functional and
categorical aspects of the service ontology. Classifying types of services regarding
production, consumption, conversion, exchange, etc., may be helpful, but it does not
remove the burden that even for a limited application area the set-up of an ontology
and the achievement of a common agreement about it remain a hard task. Any
general concepts for such an ontology may be helpful, but the decisive characteristic
is that a description of functional and categorical aspects of services is part of the
service model.

The second aspect concerns the classification of rights following Hohfeld. The
most interesting feature here is the fact that rights governing the use of services are
considered part of the service model, whereas the classification of the rights remains
on the surface. In general, rights could be expressed by deontic action rules similar
to the specification of rights and obligations as part of the conceptual model of WISs
[37]. That is, a deontic action logic would be required, in which such rights (and also
obligations) could be expressed in connection with the involved actors. In doing so,
the QoS description in the service ontology will have to capture these deontic rules
governing the provision and usage of services.

However, we feel that this would still draw an incomplete picture regarding
non-functional aspects, as there are more rules than those capturing rights and
obligations. In general, there should be a whole list of SLAs, which altogether
define a contract between the provider of a service and a service user. Rady has
defined fragments of an ontology capturing SLAs [34] and implemented a tool
extracting contracts from such an SLA ontology [35]. For the time being, the
SLA ontology, which in our opinion should be part of the service ontology, only
addresses availability and performance aspects, though more than 20 additional
types of SLAs have already been discussed in the literature (see also [35] for a brief
overview). SLAs concerning availability, performance, etc., but also security and
privacy regulations have nothing to do with rights. For instance, availability on one
hand concerns conditions of usage, e.g. if the service is only available on workdays
within a specified time period, and on the other hand a commitment and obligation
by the provider. Security and privacy may be also handled as commitments, but
it should preferably also include the means with which security is supposed to
be achieved, in which case the SLA includes a statement about the functional

What Constitutes a Service? 265

behaviour of the service or its environment. In summary, for each service, there
must exist a service contract capturing all SLAs, and the SLAs may be expressed by
obligations and rights in a deontic action logic, refer to functional aspects or simply
cover factual data. The decisive feature, however, is that a model of services must
comprise the contracting aspect. We will discuss contracting in Sect. 3, though our
own research in this direction has not yet progressed very far.

1.5 SLA Monitoring

Finally, we would like to emphasise that a contract that cannot be validated is
rather useless, both technically and legally. Therefore, for every service it should
be possible to check not only its behaviour but also whether the SLAs are fulfilled.
That is, there must exist a monitoring software for this purpose—this could again be
a service, but not necessarily. Monitoring as such is an established field, in particular
with respect to performance. However, a systematic connection of monitoring with
SLAs is still missing. The work by Lampesberger and Rady regarding monitoring of
SLAs (in the context of cloud computing) [23] is a promising step in this direction.
For our discussion here, we only conclude that monitoring is a decisive aspect in
a theory of services, which has been almost completely neglected so far. As this
part is still very immature, we dispense with a discussion of SLA monitoring in this
chapter.

1.6 Summary

In our analysis of relevant related research addressing the fundamental question of
what constitutes a service, we highlighted five decisive aspects:

• Behaviour: There must exist a general behavioural theory of services.
• Description: There must exist a description of a service that allows it to be

discovered and used.
• Contracting: There must exist a contract between the service provider and user

covering all relevant SLAs for the service.
• Mediation: A user must use a service in the contracted way but can build service

mediations to realise service-centric applications satisfying his/her purposes.
• Monitoring: It must be possible to monitor the execution of a service in order to

validate its behaviour and contracted SLAs.

Therefore, we refer to our approach to a general theory of (software) services (on
the Web) as the BDCM2 framework. In the following sections, we will discuss the
framework in more detail. Then we conclude with a brief summary and outlook in
Sect. 5.

266 K.-D. Schewe and Q. Wang

2 Abstract State Services: A Behavioural Theory of Services

The AS2 model provides a behavioural theory, so it comes first with a set of
postulates.

2.1 AS2 Postulates

Each (software) service will provide some form of workflow that will access data
resources. Therefore, the AS2 model refers to an underlying database, using this
term in a very general sense. Traditional database architecture distinguishes at least
three layers: a conceptual layer describing the database schema in an abstract way,
a physical layer implementing the schema and an external layer made out of views.
The external layer exports the data that can then be used by users or programs. For
our purposes here, we can neglect the physical layer, but in order to capture services,
we complete this architecture by adding operations on both the conceptual and the
external layer; the former is handled as database transactions, whereas the latter
provides the means with which users can interact with a database.

In order to abstract from this architecture to obtain a model of abstract services,
we first formulate postulates for the database layer. Following the general approach
of ASMs [19], we may consider each database computation as a sequence of
abstract states, each of which represents the database (instance) at a certain point
in time plus maybe additional data that is necessary for the computation, e.g.
transaction tables, log files, etc. In order to capture the semantics of transactions,
we distinguish between a wide-step transition relation and small-step transition
relations. A transition in the former one marks the atomic execution of a transaction,
so the wide-step transition relation defines infinite sequences of transactions.
Without loss of generality, we can assume a serial execution, while of course
interleaving is used for the implementation, as long as this is equivalent to the serial
execution, i.e. serialisability is guaranteed. Then each transaction itself is a database
transformation and as such corresponds to a finite sequence of states resulting from
a small-step transition relation, which should then be subject to the postulates for
database transformations [38]. We will explain these postulates later in this section.

Definition 1 (Database Postulate) A database system (DBS) consists of the fol-
lowing:

• A set S of states, together with a subset I
 S of initial states
• A wide-step transition relation �
 S � S
• A set T of transactions, each of which is associated with a small-step transition

relation �t
 S � S (t 2 T) satisfying the postulates of a database
transformation over S

What Constitutes a Service? 267

With this definition, we do not yet specify what states are. We do, however,
already require that states of a database system are states of database transforma-
tions. Later, when we discuss the postulates for database transformations, we will
further elaborate the notion of state and database transformation.

For now, note that differently from the sequential time postulate in Gurevich’s
work, we permit non-determinism both in the wide-step transition relation and
in the small-step transition relations. For the first one, this is due to the fact
that transactions may be started anytime, and the database system will schedule
them in a serialisable way, thereby defining a (serial) run. The non-determinism
in the small-step transition relations is far more limited, as it is mainly meant to
capture the creation of values such as identifiers as a highly expressive means in
query and update languages. This form of non-determinism is common in database
transformations.

Definition 2 A run of a database system (DBS) is an infinite sequence S0; S1; : : :
of states Si 2 S starting with an initial state S0 2 I such that for all i 2 N

.Si ; SiC1/ 2 � holds, and there is a transaction ti 2 T with a finite run Si D
S0i ; : : : ; S

k
i D SiC1 such that .Sji ; S

jC1
i / 2 �ti holds for all j D 0; : : : ; k � 1.

Example 1 Let us consider a flight booking system. At its core, it may use a
database storing data about flights and bookings. For simplicity, assume that we use
a relational database, so we may have a relation FLIGHT with attributes flight_no,
departure_date, departure_time, origin and destination for the available flights; a
relation SEAT with attributes flight_no, departure_date, class and number for the
available seats per class in a flight; and BOOKING with attributes booking_ref,
flight_no, departure_date, class and customer_id for the already-made bookings.
Let us ignore everything else such as customer data, status of bookings, etc.

Then a state of the DBS would contain an instance of the relational database
schema, and a booking transaction would change the state by adding further tuples
to the booking relation, provided the number of seats booked for each class of each
flight does not exceed the number of available seats. The booking transaction itself
proceeds stepwise, and each step also changes the database, i.e. the state.

Furthermore, a booking may be issued by a customer after receiving an answer
to a query, e.g. asking for flight itineraries from a specified origin airport to a
destination airport within a specified timeframe. The answer to such a query would
be a set of itineraries, and each itinerary would be specified by a set of flight tuples
stored in the database. Thus, the state, in which the booking transaction is started,
should also contain the set of itineraries, which is a view on top of the relational
database.

The preceding example is of course very simplified, but it illustrates the definition
of a database system. Note that if views are considered as part of states of a DBS,
then transactions also affect them.

Views in general are expressed by queries, i.e. read-only database transforma-
tions. Therefore, we can assume that a view on a database state Si 2 S is given
by a finite run Sv0 ; : : : ; S

v
` of some database transformation v with Sv0 D Si and

268 K.-D. Schewe and Q. Wang

Si
 Sv` . Traditionally, we would consider Sv` � Si as the view. Here we assume
that we can write a state of a database system as a set. For instance, if we deal with a
relational database system, then each relation is a set of tuples, which can be written
as first-order atoms, and the whole database is the union of these sets of atoms. We
will later explain that it is also possible in general to view a state as a set.

We can use this to extend a database system by views. For this, let each state
S 2 S to be composed as a union Sd [V1 [� � � [Vk such that each Sd [Vj is
a view on Sd . As a consequence, each wide-step state transition becomes a parallel
composition of a transaction and an operation that switches views on and off. This
leads to the definition of an Abstract State Service (AS2).

Definition 3 (Extended View Postulate) An Abstract State Service (AS2) consists
of a database system (DBS), in which each state S 2 S is a finite composition
Sd [V1 [� � � [Vk and a finite set V of (extended) views. Each view v 2 V is
associated with a database transformation such that for each state S 2 S , there are
views v1; : : : ; vk 2 V with finite runs Sj0 ; : : : ; S

j
nj of vj (j D 1; : : : ; k), starting

with Sj0 D Sd and terminating with Sjnj D Sd [Vj . Each view v 2 V is further
associated with a finite set Ov of (service) operations o1; : : : ; on such that for each
i 2 f1; : : : ; ng and each S 2 S , there is a unique state S 0 2 S with .S; S 0/ 2 � .
Furthermore, if S D Sd [V1 [� � � [Vk with Vi defined by vi and o is an operation
associated with vk , then S 0 D S 0

d [V 0
1 [� � � [V 0

m with m � k � 1, and V 0
i for

1 � i � k � 1 is still defined by vi .

In a nutshell, in an AS2, we have view-extended database states, and each service
operation associated with a view induces a transaction on the database and may
change or delete the view it is associated with and even activate other views. We
therefore talk of views that are open and those that are closed.

Example 2 The booking operation in Example 1 is a service operation that is
associated with a view that produces a list of itineraries for given search criteria such
as origin and destination, preferred class, departure timeframe, etc. The induced
transaction on the DBS updates the BOOKING relation. Initial states for this database
transformation can be any consistent database plus any set of open views. The
successor state (for the wide-step transition relation �) would contain the updated
database and the same set of views except the one containing the list of itineraries,
which would be replaced by a view that simply contains a confirmation message for
the selected and booked itinerary.

2.2 Postulates for Database Transformations

The definition of database systems and by that also the definition of AS2 refer
to postulates for database transformations that have been elaborated in [38]. We
will briefly describe these postulates here, though a full motivation will not
be possible due to space limitations. In total, there will be five postulates: the

What Constitutes a Service? 269

sequential time postulate, the abstract state postulate, the background postulate,
the bounded exploration postulate and the bounded non-determinism postulate. An
object satisfying these postulates will be a data transformation. Together with the
database postulate in Definition 1 and the extended view postulate in Definition 3,
we obtain the complete definition of AS2s by means of postulates.

Definition 4 (Sequential Time Postulate) A database transformation t is associ-
ated with a non-empty set of states St together with non-empty subsets It and Ft

of the initial and final states, respectively, and a one-step transition relation �t over
St , i.e. �t
 St � St .

Analogously to Definition 2, a run of a database transformation t is a finite
sequence S0; : : : ; Sf of states with S0 2 It , Sf 2 Ft , Si … Ft for 0 < i < f and
.Si ; SiC1/ 2 �t for all i D 0; : : : ; f � 1.

The abstract state postulate is an adaptation of the corresponding postulate for
ASMs [19], according to which states are first-order structures, i.e. sets of functions.
These functions are interpretations of function symbols given by some signature.

Definition 5 A signature ˙ is a set of function symbols, each associated with a
fixed arity. A structure S over ˙ consists of a set B , called the base set of the
structure together with interpretations of all function symbols in˙ , i.e. if f 2 ˙ has
arity k, then it will be interpreted by a function fS W Bk ! B . An isomorphism �

from structure S to structure S 0 is defined by a bijection � W BS ! BS 0 between the
base sets that extends to functions by �.fS.b1; : : : ; bk// D fS 0.�.b1/; : : : ; �.bk//.

Taking structures as states reflects common practice in mathematics, where
almost all theories are based on first-order structures. Variables are special cases
of function symbols of arity 0, and constants are the same, but unchangeable. We
will later in the background postulate formulate the minimum requirements for the
base set such as containing truth values, a value representing undefinedness and
more.

Definition 6 (Abstract State Postulate) All states S 2 St of a database trans-
formation t are structures over the same signature ˙t , and whenever .S; S 0/ 2 �t
holds, the states S and S 0 have the same base set. The sets St , It and Ft are closed
under isomorphisms, and for .S1; S 0

1/ 2 �t , each isomorphism � from S1 to S2 is
also an isomorphism from S 0

1 to S 0
2 D �.S 0

1/ with .S2; S 0
2/ 2 �t .

Furthermore, the signature ˙t is composed as a disjoint union out of a database
signature˙db, an algorithmic signature ˙a and a finite set of unary bridge function
symbols, i.e.˙t D ˙db [˙a[ff1; : : : ; f`g. The base set of a state is B D Bdb [Ba
with interpretation of function symbols in˙db and˙a overBdb andBa, respectively.
The interpretation of bridge function symbols defines a function from Bdb to Ba.
With respect to such states, the restriction to ˙db is a finite structure.

Example 3 In the booking Example 1, we have to deal with finite relations FLIGHT,
SEAT and BOOKING, so for the database part, a finite structure would be sufficient.
However, in the service operations including the view-defining queries, we may
need to permit arithmetic operations such as counting, adding prices, determining

270 K.-D. Schewe and Q. Wang

the time difference between arrival and departure, etc., for which we would require
the whole set of natural or real numbers. Thus, these infinite sets of numbers have
to become part of the set Ba, and in each view that exploits values from these sets,
we use surrogate identifiers instead, which can be drawn from the finite set Bdb, and
a bridge function assigning the actual values to the surrogate identifiers.

Another example arises, if we use finite Extensible Markup Language (XML)
trees. In this case, each node in the tree would be represented by an identifier, and the
tree structure would be expressed by order relations for SUCCESSOR and SIBLING.
Thus,Bdb would have to contain the set of hereditarily finite trees over a finite set O
of node identifiers. For the actual values associated with the tree nodes, we would
provide a bridge function.

The major purpose for the explicit constructors in database transformations is the
need to capture the constructs of data models. For instance, in complex-value and
object-oriented databases, we may require the presence of constructors for records,
finite sets, lists, multisets, disjoint unions, arrays, maps, etc. Starting from a set of
base domains such as Integer, Date, Bool, etc., we can apply these constructors and
nest them arbitrarily to define complex-value domains. In tree-based databases such
as XML databases, we may even require a colimit constructor leading to hereditarily
finite trees, i.e. the domain of all finite trees with nodes in a given base domain such
that all subtrees are also trees in the same domain.

Definition 7 Let D be a set of base domains and VK a background signature; then
a background class K with VK over D is constituted by:

• The universe U D S
D2DD of elements, where D is the smallest set with D

D satisfying the following properties for each constructor symbol xy 2 VK :

– If xy 2 VK has unfixed arity, then xDy 2 D for all D 2 D, and
xa1; : : : ; amy 2 xDy for everym 2 N and a1; : : : ; am 2 D.

– If xy 2 VK has unfixed arity, then Axy 2 D with Axy D S

xDy2D
xDy.

– If xy 2 VK has bounded arity n, then xD1; : : : ;Dmy 2 D for all m � n and
Di 2 D (1 � i � m), and xa1; : : : ; amy 2 xD1; : : : ;Dmy for every m 2 N

and a1; : : : ; am 2 D.
– If xy 2 VK has fixed arity n, then xD1; : : : ;Dny 2 D for all Di 2 D (1 �
i � n), and xa1; : : : ; any 2 xD1; : : : ;Dny for all a1; : : : ; an 2 D.

• An interpretation of function symbols in VK over U

Example 4 The view in Example 1 is to present a set of itineraries, in which each
element is a list of flights. In order to model the necessary domain elements, we
used constructors Œ�� and f�g for finite lists and finite sets, respectively, both with
unfixed arity. Furthermore, we may use a constructor (flight_no, date, departure,
origin, destination, class) of fixed arity six.

What Constitutes a Service? 271

If Flight_number, Date, Time, Airport and Character denote base domains,
then (flight_no:Flight_number, date:Date, departure:Time, origin:Airport, destina-
tion:Airport, class:Character) defines a complex domain for flights. Let this be
called Flight. Then {[Flight]} defines the domain for the set of itineraries.

That is, given the base set of a structure S , we can add the required Booleans
and ?, partition it into base domains D , apply the construction in Definition 7 to
obtain a much larger base set and interpret function symbols with respect to this
enlarged base set.

Definition 8 (Background Postulate) Each state of a database transformation t
must contain:

• An infinite set of reserve values
• Truth values and their connectives, the equality predicate and the undefinedness

value ?
• A background class K defined by a background signature VK that contains at

least a binary tuple constructor .�/, a multiset constructor h�i and function symbols
for operations on pairs such as pairing and projection and on multisets such as
empty multiset hi, singleton hxi and multiset union].

For database transformations, computations are intrinsically parallel, even
though implementations may be sequential, but the parallelism is restricted in
the sense that all branches execute de facto the same computation. We will capture
this by means of location operators, which generalise aggregation functions and
cumulative updates.

Definition 9 Let M .D/ be the set of all non-empty multisets over a domain D,
then a location operator � over M .D/ consist of a unary function ˛ W D ! D,
a commutative and associative binary operation ˇ over D and a unary function
ˇ W D ! D, which define �.m/ D ˇ.˛.b1/ˇ � � � ˇ ˛.bn// for m D hb1; : : : ; bni 2
M .D/.

Example 5 A typical location operator is count counting the number of elements in
a multiset. In this case, ˛ assigns 1 to each element ofD, ˇ is addition, and ˇ is the
identity on D.

If ˛ assigns to b the set fbg and if b satisfies a formula ' and ¿ otherwise, ˇ is
set union and ˇ is again the identity, then the location operator defined by ˛, ˇ and
ˇ assigns to a multisetm 2 M .D/ the set of elements in m satisfying '.

The definitions of updates, update sets and update multisets are the same as for
ASMs.

Definition 10 Let t be a database transformation and S be a state of t . A pair
.f; .a1; : : : ; an// consisting of an n-ary function symbol f and arguments
a1; : : : ; an in the base set of S for its interpretation fS in a state is called a location,
usually written as f .a1; : : : ; an/. An update of t is a pair .`; v/, where ` is a location
f .a1; : : : ; an/ and v is another element in the base set of S . An update set is a set
of updates; an update multiset is a multiset of updates.

272 K.-D. Schewe and Q. Wang

Using a location function that assigns a location operator or ? to each location,
an update multiset can be reduced to an update set. It is further possible to construct
for each .S; S 0/ 2 �t a minimal update set	.t; S; S 0/ such that applying this update
set to the state S will produce the state S 0. Then 	.t; S/ denotes the set of all such
update sets for t in state S , i.e.	.t; S/ D f	.t; S; S 0/ j .S; S 0/ 2 �tg. The problem
of partial updates is then subsumed by the problem of providing consistent update
sets, in which there cannot be pairs .l; v1/ and .l; v2/ with v1 ¤ v2—details are
discussed in [38].

The bounded exploration postulate in the sequential ASM thesis in [19] uses a
finite set of ground terms as bounded exploration witness in the sense that whenever
states S1 and S2 coincide over this set of ground terms, the update set produced
by the sequential algorithm is the same in these states. The intuition behind the
postulate is that only the part of a state that is given by means of the witness will
actually be explored by the algorithm.

The fact that only finitely many locations can be explored remains the same
for database transformations. However, permitting parallel accessibility within the
database part of a state forces us to slightly change our view on the bounded
exploration witness. For this, we need access terms, which in a sense cover
associative access to databases.

Definition 11 An access term is either a ground term ˛ or a pair .ˇ; ˛/ of terms, the
variables x1; : : : ; xn in which must be database variables, referring to the arguments
of some dynamic function symbol f 2 ˙db [ff1; : : : ; f`g. The interpretation of
.ˇ; ˛/ in a state S is the set of locations:

ff .a1; : : : ; an/ j valS;
.ˇ/ D valS;
.˛/ with
 D fx1 7! a1; : : : ; xn 7! angg:

Structures S1 and S2 coincide over a set T of access terms if the interpretation of
each ˛ 2 T and each .ˇ; ˛/ 2 T over S1 and S2 is equal.

Instead of writing .ˇ; ˛/ for an access term, we should in fact write .f; ˇ; ˛/, but
for simplicity, we drop the function symbol f and assume it is implicitly given.

Due to our request that the database part of a state is always finite, there will be a
maximum number m of elements that are accessible in parallel. Furthermore, there
is always a number n such that n variables are sufficient to describe the updates of
a database transformation, and n can be taken to be minimal. Then for each state S ,
the upper boundary of exploration is O.mn/, where m depends on S . Taking these
together, we obtain our fourth postulate.

Definition 12 (Bounded Exploration Postulate) For a database transformation t ,
there exists a fixed, finite set T of access terms of t such that 	.t; S1/ D 	.t; S2/

holds whenever the states S1 and S2 coincide over T .

The last postulate addresses the question of how non-determinism is permitted in
a database transformation. To handle this, we need to further clarify the relationship
between access terms and states. As defined in the abstract state postulate, every
state of a database transformation is a meta-finite structure consisting of two parts:

What Constitutes a Service? 273

the database part and algorithmic part, which are linked via a fixed, finite number
of bridge functions. To restrict non-determinism in a database transformation t , we
consider that ground access terms of t can access only the algorithmic part of a state,
while non-ground access terms of t can access both the database and algorithmic
parts of a state. Furthermore, variables in non-ground access terms are limited to
range merely over the database part.

Given a meta-finite structure with the signature ˙ D ˙db [˙a [ff1; : : : ; f`g
and the base set B , i.e. B D Bdb [Ba, we now formally define access terms.

Definition 13 A ground access term is defined by the following rules:

• ˛ 2 Ba is a ground access term.
• f .˛1; : : : ; ˛n/ for n-ary function symbol f 2 ˙a and ground access terms
˛1; : : : ; ˛n is a ground access term.

A non-ground access term is a pair .ˇ; ˛/ of terms in which at least one of them
is a non-ground term inductively defined by applying function symbols from˙ over
variables in accordance with the definition of a meta-finite structure.

We define equivalent substructures in the following sense.

Definition 14 Given two structures S 0 and S of the same signature ˙ , a structure
S 0 is a substructure of the structure S (notation: S 0 � S) if the following holds:

• The base set B 0 of S 0 is a subset of the base set B of S , i.e. B 0
 B .
• For each function symbol f of arity n in the signature ˙ , the restriction of

valS.f .x1; : : : ; xn// to B 0 results in valS 0.f .x1; : : : ; xn//.

Substructures S1; S2 � S are equivalent (notation: S1 � S2) if there exists
an automorphism � 2 Aut.S/ with �.S1/ D S2. The equivalence class of a
substructure S 0 in the structure S is the subset of all substructures of S which are
equivalent to S 0.

Now we formalise the bounded non-determinism postulate to capture these ideas
by properly defining the presence of non-ground access terms. In doing so, we put
a severe restriction on the non-determinism in the transition relation �t .

Definition 15 (Bounded Non-determinism Postulate) For a database transforma-
tion t , if there are states S1; S2 and S3 2 St with .S1; S2/ 2 �t , .S1; S3/ 2 �t and
S2 ¤ S3, then there exists a non-ground access term of the form .ˇ; ˛/ in the
bounded exploration witness of t .

274 K.-D. Schewe and Q. Wang

2.3 A Language for Abstract State Services

Let us now sketch an abstract language for the specification of AS2s—details were
presented in [26]. We can specify the database layer by:

• A background class specifying additional base types, each associated with a
base domain, constructor symbols and function symbols associated with these
constructors

• A signature comprising function symbols for the database and algorithmic parts
of states and for the bridge functions

• A set of initial states for the database system
• A set of transactions, each of which will be defined by a DB-ASM rule
• A set of auxiliary DB-ASM rules

On top of such specification of a database system, we define the view layer by a
set of extended views. Each view is defined by:

• A signature defined similarly to the signature for the underlying database system
• A defining query that is defined by another DB-ASM rule possibly using

auxiliary rules
• A set of operations that are specified similar to transactions but in addition

include details on how to handle views

We dispense here with a presentation of DB-ASM rules and languages for views
to give a detailed picture how AS2s can be specified on grounds of DB-ASMs;
details were described in [26].

In [38], it has been shown that DB-ASMs capture exactly all database transfor-
mations on the same background. Thus, the sketched language will capture all AS2s.

2.4 Plots: High-Level Action Schemes for AS2s

In order to use a service (expressed as an AS2), a sequence of service operations
has to be executed. However, the sequencing of several service operations in order
to execute a particular task is only left implicit in the AS2 model. We now make it
explicit by algebraic expressions called plots.

According to [37], a plot is a high-level specification of an action scheme, i.e.
it specifies possible sequences of service operations in order to perform a certain
task. For an algebraic formalisation of plots in WISs, it was possible to exploit
KATs. Then a plot is an algebraic expression that is composed out of elementary
operations including 0, 1 and propositional atoms, binary operators � and C and
unary operators � andN, the latter one being only applicable to propositions. With the
axioms for KATs, we obtain an equational theory that can be used to reason about
plots.

What Constitutes a Service? 275

Propositions and operations testing them are considered the same. Therefore,
propositions can be considered as operations, and overloading of operators for
operations and propositions is consistent. In particular, 0 represents fail or false; 1
represents skip or true; p � q represents a sequence of operations or a conjunction,
if both p and q are propositions; p C q represents the choice between p and q
or a disjunction, if both p and q are propositions; p� represents iteration; and Np
represents negation.

For our purposes here, the definition of plots for AS2s requires that we leave
the purely propositional ground. The service operations give rise to elementary
processes of the form

'.x/ opŒz�.y/ .x; y; z/;

in which op is the name of a service operation, z denotes input for op selected
from the view v with op 2 Opv , y denotes additional input from the user and
' and are first-order formulae denoting pre- and postconditions, respectively.
The pre- and postconditions can be void, i.e. true, in which case they can be
simply omitted. Furthermore, also simple formulae �.x/—again interpreted as tests
checking their validity—constitute elementary processes. With this we obtain the
following definition.

Definition 16 The set of process expressions of an AS2 is the smallest set P
containing all elementary processes that are closed under sequential composition
�, parallel composition k, choice C and iteration �. That is, whenever p; q 2 P
hold, then also pq, pkq, p C q and p� are process expressions in P .

The plot of an AS2 is a process expression in P .

Example 6 Let us look at some very simplistic examples. For a flight booking
service, we may have the following (purely sequential) plot:

get_itinerariesŒ�.d/ select_itineraryŒi �./
personal_dataŒ�.t / confirm_flightŒ�.y/

pay_flightŒ�.c/

Here the parameters d; i; t; c and y represent dates, selected itinerary, traveller
data, card details and a Boolean flag for confirmation.

Similarly, the following expression represents another plot for accommodation
booking:

get_hotelsŒ�.d/ select_hotelŒh�./
select_roomŒr�./ personal_dataŒ�.t /

confirm_hotelŒ�.y/ pay_accommodationŒ�.c/

Here the parameters h and r represent the selected hotel and room.
Finally, the expression personal_dataŒ�.t/ (papersŒ�.p/ k discountŒ�.d 0/

paymentŒ�.c/ represents the plot of a conference registration service.

276 K.-D. Schewe and Q. Wang

3 Service Ontologies: Describing Functional and Categorical
Aspects of Services

As discussed in the introduction, the first purpose of a service ontology is to enable
the location of services. For this, it is crucial that the service operations including
the view defining queries and the plot of an AS2 are provided with an adequate
description, which will allow a search engine to discover (with some certainty) the
required services. Such a description should comprise at least two parts:

• A functional description of input and output types as well as pre- and postcondi-
tions telling in technical terms what the service operation will do

• A categorical description by interrelated keywords telling what the service
operation does by using common terminology of the application area.

According to [28], we normally require a third part addressing a quality of service
(QoS) description of non-functional properties such as availability, response time,
cost, etc., but the QoS description is not needed for service discovery, but for
selection among alternatives. As discussed in the introduction, we consider QoS
is part of a larger SLA description, which is related to the contracting aspect. We
will discuss SLAs and QoS at the end of this section.

A functional description alone would be insufficient. For instance, a flight
booking service operation requires an itinerary to be selected, so the input type could
be specified as f.flight_no W STRING; day W DATE; departure W TIME; class W
CHAR; price W DECIMAL/g, i.e. the input is a finite set of tuples, each of which
defines a flight number, departure day and time, the booking class and the price.
The output type could be similar with a status (confirmed, waitlisted, unavailable)
added for each flight segment, i.e. we have the type f.flight_no W STRING; day W
DATE; departure W TIME; class W CHAR; price W DECIMAL; status W STRING/g.
A precondition could simply be that the selected itinerary is meaningful, i.e. flight
numbers exist for the corresponding date and time and are compatible. However, no
meaningful postcondition can be specified, as the output depends on the status of
the (hidden) flight database. Moreover, a booking service for railway tickets would
require the same types, so the functional description does not indicate exactly what
kind of service is offered.

As for the categorical description, the terminology has to be specified. This
defines an ontology in the widest sense, i.e. we have to provide definitions of
“concepts” and relationships between them, such that each offered service becomes
an instantiation of one or several concepts in the terminology. In this way we adopt
the fundamental idea of the “semantic Web”. In the following, we will outline how
description logics [5] can be exploited for service description.

As outlined above, the key to service discovery is a description of available
services. Here we follow the already well-accepted approach to exploit description
logics for this task. The reason for the use of description logics (since its very
beginnings over 30 years ago) is that they enable the definition of concepts by nec-
essary and sufficient conditions, and the logics are kept so simple that classification,

What Constitutes a Service? 277

i.e. determining subsumption relationships, is decidable. Thus, a search requires a
definition of the service sought by means of a complex concept. The well-known
classification algorithms for description logics then can be used to determine all
instances (in the ABox) matching the complex concept. As this is the standard, we
do not repeat any of this in the paper.

3.1 Terminologies

As outlined, the functional, categorical and QoS description of services in a
cloud requires the definition of an ontology. That is, we need a terminological
knowledge layer (aka TBox in description logics) describing concepts and roles
(or relationships) among them. This usually includes a subsumption hierarchy
among concepts (and maybe also roles) and cardinality constraints. In addition,
there is an assertional knowledge layer (aka ABox in description logics) describing
individuals. Thus, services in a cloud constitute the ABox of an ontology, while the
cloud itself is defined by the TBox.

In principle, instead of TBox and ABox, we could use the more classical notions
of schema and instance and exploit any kind of data model. A query language
associated with the used data model could then be used to find the required
services. In fact, description logics only provide rather limited logics with respect
to expressiveness. There are two major reasons for giving preference to description
logics:

1. Description logics use two important relationships, which due to the restrictions
become decidable: subsumption and instantiation. Subsumption is a binary
relationship between concepts (denoted as C1 v C2) guaranteeing that all
instances of the subsumed concept C1 are also instances of the subsuming
concept C2. Instantiation defines a binary relationship between instances in the
ABox and concepts in the TBox asserting that an element A of the ABox is an
instance of a concept C in the TBox.

Subsumption and instantiation together allow us to discover services that are
more expressive than needed but can be projected to a service just as required.

2. Concept and role names in the TBox can be subject to similarity search by a
search engine. That is, the search engine could produce services that are similar
(with a certainty factor) to the ones required with respect to the categorical
description and match the functional description.

For simplicity, let us now look more closely into one particular description logic
in the DL-Lite family (see [5]). For this, assume thatC0 andR0 represent not further
specified sets of basic concepts and roles, respectively. Then concepts C and roles

278 K.-D. Schewe and Q. Wang

R are defined by the following grammar:

R D R0 j R�
0

A D C0 j > j � m:R .with m > 0/

C D A j :C j C1 u C2 j C1 t C2 j 9R:C j 8R:C

Definition 17 A terminology (or TBox) is a finite set T of assertions of the form
C1 v C2 with concepts C1 and C2 as defined by the grammar above.

Each assertion C1 v C2 in a terminologyT is called a subsumption axiom. Note
that Definition 17 only permits subsumption between concepts, not between roles,
though it is possible to define more complex terminologies that also permit role
subsumption.

As usual, we use the shortcut C1 � C2 instead of C1 v C2 v C1. For concepts,
? is a shortcut for :>, and � m:R is a shortcut for : � mC 1:R.

Definition 18 A structure S for a terminology T consists of a non-empty set O
together with subsets S .C0/
 O and S .R0/
 O � O for all basic concepts R0
and basic roles R0, respectively. O is called the base set of the structure.

We first extend the interpretation of basic concepts and roles and to all concepts
and roles as defined by the grammar above, i.e. for each concept C , we define a
subset S .C /
 O , and for each role R, we define a subset S .R/
 O � O as
follows:

S .R�
0 / D f.y; x/ j .x; y/ 2 S .R0/g

S .>/ D O

S .� m:R/ D fx 2 O j #fy j .x; y/ 2 S .R/g � mg
S .:C/ D O � S .C /

S .C1 u C2/ D S .C1/ \ S .C2/

S .C1 t C2/ D S .C1/ [S .C2/

S .9R:C / D fx 2 O j .x; y/ 2 S .R/ for some y 2 S .C /g
S .8R:C / D fx 2 O j .x; y/ 2 S .R/) y 2 S .C / for all yg

Definition 19 A model for a terminology T is a structure S , such that S .C1/

S .C2/ holds for all assertions C1 v C2 in T . A finite model, i.e. a model with a
finite base set, is also called instance or ABox associated with T .

What Constitutes a Service? 279

Example 7 The general part of a service ontology could be defined by a terminol-
ogy as follows:

Service v 9name:Identifier u � 1:name u 9address:URL u
9offered_by:Provider u � 1:address u � 1:offered_by

u 9defining:Query u � 1:defining u 9offers:Operation

Operation v 9associated_with:Query u � 1:associated_with

Data_Service � Query u � 1:defining�

Functional_Service � Operation u � 1:offers�

Service_Operation � Data_Service t Functional_Service

Service_Operation v 9input:Type u � 1:input

9output:Type u � 1:output

Type v 9name:Identifier u � 1:name u 9format:Format

Here we used capital first letters to indicate concept names and lower-case letters
for role names.

3.2 Functional and Categorical Description

As outlined above, we expect the terminology T of a cloud to provide the
functional, categorical and QoS description of its offered services.

The functional description of a service operation consists of input and output
types as already indicated in Example 7 and pre- and postconditions. For the types,
we need a type system with base types and constructors. For instance, the following
grammar

t D b j 1l j .a1 W t1; : : : ; an W tn/ j ftg j Œt � j
.a1 W t1/˚ � � � ˚ .an W tn/

describes (the abstract syntax of) a type system with a trivial type 1l, a non-further
specified collection of base types b and four-type constructors .�/ for record types,
f�g for finite set types, Œt � for list types and ˚ for union types. Record and union
types use field labels ai .

The semantics of such types is basically described by their domain, i.e. sets
of values dom.t/. Usually, for a base type b such as Cardinal, Decimal, Float,
etc., the domain is some commonly known at most countable set with a common
presentation. The domain of the trivial type contains a single special value, say

280 K.-D. Schewe and Q. Wang

dom.1l/ D f?g. For constructed types, we obtain the domain in the usual way:

dom..a1 W t1; : : : ; an W tn// D
f.a1 W v1; : : : ; an W vn/ j ai 2 dom.ti / for i D 1; : : : ; ng

dom.ftg/ D fA j A
 dom.t/ finiteg
dom.Œt �/ D fŒv1; : : : ; vk� j vi 2 dom.t/ for i D 1; : : : ; kg
dom..a1 W t1/˚ � � � ˚ .an W tn// D

[n

iD1f.ai W vi / j vi 2 dom.ti /g

In particular, a union type .a1 W 1l/ ˚ � � � ˚ .an W 1l/ has the domain f.a1 W
?/; : : : ; .an W ?/g, which can be identified with the set fa1; : : : ; ang, i.e. such types
are in fact enumeration types.

It is no problem to add the specification of types to the general service
terminology as outlined in Example 7, thereby defining part of the functional
description.

Example 8 We can extend the terminology in Example 7 by the following axioms
for types:

Type � Base_type t Trivial_type t Composed_type

Composed_type � Record t Set t List t Union

Record v 8component:Field

Field v 9field_name:Identifier u � 1:field_name

u 9type:Type u � 1:type

Union v 8component:Field

Record u Union v ?
Set v 9component:Type u � 1:component

List v 9component:Type u � 1:component

Set u List v ?

Of course, the specification of composed types impacts directly on the format,
which is defined by field names and the format for the component type(s).
Nevertheless, this constraint can be handled by the specification of ABox assertions.

In addition to the types, the functional description of a service operation includes
pre- and postconditions, which are defined by (first-order) predicate formulae. These
formulae may contain further functions and predicates, which are subject to further
(categorical) description.

What Constitutes a Service? 281

Example 9 The terminology in Examples 7 and 8 can be further extended by the
following axioms:

Service_Operation v 8pre:Condition u � 1:pre

u 9post:Condition u � 1:post

Condition v Formula u 8uses:.Predicate u Function/

Predicate v 9in:Type u � 1:in u : � 1:out

Function v 9in:Type u � 1:in u 9out:Type u � 1:out

This would complete the functional part of the terminology.

As shown at the beginning of this section, the functional description is insuffi-
cient for enabling service discovery, and the QoS description is only needed as a
means to support the selection among several alternatives. The core of the service
description by means of the terminology of a cloud is the categorical description,
which refers to the standard terminology of the application area and relates the used
notions to each other.

There are no general requirements for the categorical description, as it depends
completely on the application domain. However, it will always lead to subconcepts
of the concept Service_Operation plus additional concepts and roles. It will also add
more details to the predicates and functions used in the pre- and postconditions.

Example 10 Let us look at booking services as required by a conference trip
application with particular emphasis on flight booking. The categorical description
may consist of the following axioms:

Booking v Service_Operation u 9initiator:Customer u
9initiated_by:Request u 9receives:Acknowledgement

u 9requires:Customer_data u 9requires:Payment u
9receives:.Confirmation t Declination t Amendment/

Request v 9object:Booking_object u 9date:DATE

Flight_booking v Booking u 8initiated_by:Flight_request

Flight_request v Request u 8object:Flight

Flight v Booking_object u 9number:Flight_number u
9carrier:Airline u 9departure:Date u duration:Duration

u 9origin:Airport u 9destination:Airport

282 K.-D. Schewe and Q. Wang

This specification is of course incomplete, but it shows how to proceed. That
is, a booking is defined by a service operation that is initiated by a request
from a customer; it further requires customer data and payment and leads to an
acknowledgement plus a confirmation, declination or (suggested) amendment. The
request for a booking contains at least a booking object—it could contain more than
one—and a date. A flight booking is a booking that is initiated by a flight request,
which is a request, in which all booking objects are flights. Flights themselves must
have at least a flight number, an airline, a departure date, a duration and origin and
destination airports.

3.3 Service-Level Agreements

SLAs have been widely discussed in the literature. By now, around 20 different
types of SLAs have been identified [34], and depending on the viewpoint, these
SLAs have been differently classified. Following our discussion in the introduction,
we consider that the main purpose of SLAs is to determine as precisely as possible
the rights and obligations that govern the relationship between service providers,
service users and if applicable third parties. Technically, our approach consists of
three parts:

• An extension of the service ontology describing the content of the SLAs
• A contracting framework that permits a contract skeleton to be extracted from

the ontology
• A monitoring system that can be used to check when a violation to an SLA has

occurred

As the service ontology is realised by some description logic, the contracting
framework can be realised by queries against the ontology. This has been discussed
by Rady using SPARQL to extract fragments of contracts from an SLA ontology
[35]. We dispense with discussing this aspect any further in this chapter. Also, as
stated in the introduction, SLA monitoring is still in an infant state, so we will not
discuss it here, but we emphasise again that SLAs that cannot be monitored are de
facto useless, i.e. monitorability of SLAs is a necessary property of services.

Different from the classification by Rady [34], we use the following classification
schema, which puts a stronger emphasis on rights and obligations:

• Terms of usage: Some SLAs simply define general facts about the usage of
services. Among these are the pricing schema, conditions for termination and
suspension and the applicable jurisdiction. In particular, these facts do not require
to be monitored. They will appear as part of the contract extracted from the
ontology and can be used to check bills or determine legal actions in case of
inaccuracies.

What Constitutes a Service? 283

• Technical aspects: Some SLAs refer to technical properties of the services that
are determined by the service model, i.e. they are not SLAs in the proper sense.
These technical aspects cover two different areas:

– Implementation aspects: For instance, portability refers to the property of a
service to be moved from one environment to another one, which is a property
of the implementation. The same applies to interoperability, i.e. the property
that the service can be combined with others; scalability, i.e. that the service
can be applied to various input sizes; and modifiability, i.e. the property that
the user may tune the service.

Furthermore, properties such as testability, maintainability and verifiability
refer to software-technical characteristics. Actually, for a service user, it is
much more important that a service has been adequately tested and verified,
the results of these quality assurance measures are available and reproducible
and preferably the service has already been certified according to some
common quality standard rather than obtaining knowledge that verification,
validation and testing can be done.

– Usage aspects: This is usually associated with a usability SLA. Terms such
as understandability or learnability used in this context are only vaguely
defined and thus cannot be used for monitoring purposes. Usability studies
can nonetheless give recommendations to service users.

However, some of the technical aspects, in particular the implementation
aspects, may also be regarded as defining obligations and commitments of the
provider to guarantee particular features of the service, in which case the scope
of the commitments made has to become part of the SLA.

• Obligations and rights of the provider: The most relevant class of SLAs
covers obligations of the service provider, which also capture what the provider
is committed to provide. The most commonly discussed SLAs in this class
comprise the following:

– Availability: The SLA should cover when and for how long the service is
guaranteed to be available to the user. Normally, this is formulated by some
form of acceptable downtime. We will discuss availability SLAs further down.

– Performance: The SLA defines the expected (maximum/average) response
time and throughput. Same as for availability, probability distributions could
be used, but this is not state of the art.

– Security and privacy: SLAs concerning security and privacy could define the
used methods for authentication, identity management, firewall rules, secrets
to be preserved, confidentiality regulations, auditing procedures, etc. In our
point of view, it appears advisable not only to register the obligations of the
provider but also the means to be taken to ensure security and privacy.

– Reliability: This refers to the measures taken by the provider to ensure that
message content and the service results as a whole are reliable.

– Penalty and compensation: These SLA captures mainly factual data about the
amount to be repaid in case an SLA cannot be satisfied.

284 K.-D. Schewe and Q. Wang

In addition, they may be SLAs capturing rights of the provider, e.g. to close
down the service for maintenance or in case of imminent security threats—
this could be coupled with alerting obligations—to update the service to a new
version or release, to cancel a contract in parts or as a whole, to increase prices,
etc.

• Obligations and rights of the user: Analogously, SLAs may refer to obligations
of the users in particular with respect to usage and security/privacy regulations.
These may also be subject to penalty and compensation regulations.

Example 11 Let us briefly look at SLAs for availability. In many current service
offerings, these are rather vaguely formulated summing up small time intervals
during which no external access is possible. Then 96.7 % availability could mean
a downtime of 2 s per minute or of 1 day per month, which depending on the user’s
needs makes a very big difference. Therefore, it may be better not to use only such
coarse aggregates, but to rely on distributions. Part of an SLA ontology regarding
availability could look as follows:

Commitment v SLA AvailabilityCommitment v Commitment

CommitmentValidity v 9hasStart:#datetime u 9hasEnd:#datetime

u hasDurationEntity:DurationEntity u � 1:hasDurationEntity

MaintenanceTime v 9hasStart:#datetime u 9hasEnd:#datetime

u hasDurationEntity:DurationEntity u � 1:hasDurationEntity

u hasRepetition:Repetition u � 1:hasRepetition

CommitmentValidity v AvailabilityCommitment

MaintenanceTime v AvailabilityCommitment

This part covers the timing aspect, i.e. when the service will be available and
when not. The second part covers how the availability is to be measured:

ProbabilityDistribution v AvailabilityCommitment

ProbabilityDistribution v 9hasFormula:#string u 9hasParameter:#string

MonitoringWindow v AvailabilityCommitment

u hasDurationEntity:DurationEntity u � 1:hasDurationEntity

A third part covers the recording of failures:

ServiceRequest v 9hasFailure:ServiceFailure u 9hasRequest:#string

u 9hasMonitoringWindow:MonitoringWindow

What Constitutes a Service? 285

u 9hasDistribution:ProbabilityDistribution

ServiceFailure v 9hasFailStr#string u � 1hasFailStr

We dispense with extending the ontology with respect to refund commitments.

4 Service Mediation: Building Service-Centric Applications

In the introduction, we emphasised mediation as another important feature of a
general theory of services on the Web. So let us now address the specification and
instantiation of large-scale distributed systems exploiting services. This problem
goes beyond service composition, even more beyond the composition of service
operations. We will follow our previous work in [28].

One way to create such an application would be to start from a set of known
services that are composed and extended by local components. This can be assumed
to be well explored. The other way is to start from a specification of the composed
specification, which can be taken as the plot of an AS2. However, in this plot, we
assume that most service operations are yet unknown; we only know a categorical
description for them. For instance, some of the service operations may belong to a
flight booking service, so we have to locate corresponding services using the service
ontology of a service cloud and match them with the plot of the composed service.
That is, besides search for services, we also need a notion of matching services.

The matching problem becomes particularly interesting, when we consider that
services sought may be overlapping. For instance, when combining several booking
services, each of them may contain a service operation for payment as well as one
for gathering personal data. It would be not a very interesting composed application
if such overlaps were not integrated. For the booking example, this would mean to
have only one payment operation and gather personal data only once.

4.1 Service Mediators

With the concept of service mediators, we want to capture the plot of a composed
AS2. In other words, we want to define a plot of an application that is yet to be
constructed. The key issue is that such mediators specify service operations to be
searched for, which can then be used to realise the problem at hand in a service-
oriented way.

In order to capture the idea to specify service requests, we relax the definition
of a plot in such a way that service operations do not have to come from the same
AS2. Thus, in elementary processes, we use prefixes to indicate the corresponding
AS2, so we obtain '.x/ X W opŒz�.y/ .x; y; z/, in which X denotes a service slot,
i.e. a placeholder for an actual service. Apart from this, we leave the construction

286 K.-D. Schewe and Q. Wang

of the set of process expression as in Definition 16 with the only difference that
also `-ophpi is a process expression, whenever p is one. Here, h�i denotes a finite
multiset constructor, i.e. we consider an arbitrary number of processes running in
parallel, and `-op denotes a multiset operation, which aggregates the query results
of the different processes in the multiset.

Definition 20 A service mediator is a process expression with service slots.
Furthermore, each service operation is associated with input and output types, pre-
and postconditions and a concept in a service terminology.

Example 12 Let us specify a service mediator for a conference trip application,
which should combine conference registration, flight booking and accommodation
booking. Furthermore, replicative entry of customer data should be avoided, and
confirmation of selection as well as payment should be unified in single local
operations. This leads to the following specification:

personal_dataŒ�.t/
(X : papersŒ�.p/ k X : discountŒ�.d 0/

(unionhYj : get_itinerariesŒ�.d /i
Yj : select_itineraryŒi �./ k

unionhZk : get_hotelsŒ�.d /i
Zk : select_hotelŒh�./ Zk : select_roomŒr�./)

confirmŒ�.y/
(Yj : confirm_flightŒ�.y/ k Zk : confirm_hotelŒ�.y/)

payŒ�.c/
(Yj : pay_flightŒ�.c/ k Zk : pay_hotelŒ�.c/ k X : paymentŒ�.c/)

Here the slotsX; Yj andZk refer to services for conference registration, flight book-
ing and accommodation booking, respectively, while the operations without prefix
are considered to be local. For confirmation and payment, the input parameters y
and c are simply pushed through to the two booking services.

4.2 Service Matching

A service mediator specifies which services are needed and how they are composed
into a new plot of a composed AS2. So we now need exact criteria to decide when a
service matches a service slot in a service mediator.

It seems rather obvious that in such a matching criteria for all service operations
in a mediator associated with a slot X , we must find matching service operations
in the same AS2, and the matching of service operations has to be based on their
functional and categorical description. The guideline is that the placeholder in the
mediator must be replaceable by matching service operations. Functionally, this
means that the input for the service operation as defined by the mediator must
be accepted by the matching service operation, while the output of the matching
service operation must be suitable to continue with other operations as defined by

What Constitutes a Service? 287

the mediator. This implies that we need supertypes and subtypes of the specified
input and output types, respectively, in the mediator, as well as a weakening of the
precondition and a strengthening of the postcondition. Categorically, the matching
service operation must satisfy all the properties of the concept in the terminology
that is associated with the placeholder operation, i.e. the concept associated with the
matching service operation must be subsumed by that concept.

However, the matching of service operations is not yet sufficient. We also have to
ensure that the projection of the mediator to a particular slot X results in a subplot
of the plot of the matching AS2.

Definition 21 A subplot of a plot p is a process expression q such that there exists
another process expression r such that p D q C r holds in the equational theory of
process expressions.

The projection of a mediator m is a process expression pX such that pX D
�X.m/ holds in the equational theory of process expressions, where �X.m/ results
from m by replacing all placeholders Y W o with Y ¤ X and all conditions that are
irrelevant for X by 1.

Based on this definition, it is tempting to require that the projection of a mediator
should result in a subplot of a matching service. This would, however, be too simple,
as order may differ and certain service operations may be redundant. We call such
redundant service operations phantoms.

Definition 22 If for a condition '.x/ appearing in a process expression p the
equation '.x/ D '.x/opŒy�.z/ holds, then opŒy�.z/ is called a phantom of p.

That is, if the condition '.x/ holds, we may execute the operation opŒy�.z/ (or
not) without changing the effect. Whenever p D q holds in the equational theory of
process expressions and opŒy�.z/ is a phantom of p with respect to condition '.x/,
we may replace '.x/with '.x/opŒy�.z/ in q. Each process expression resulting from
such replacements is called an enrichment of p by phantoms.

Thus, we must consider projections of enrichments by phantoms, which leads us
to the following definition.

Definition 23 An AS2 A matches a service slot X in a service mediator m iff the
following two conditions hold:

1. For each service operation X W o in m, there exists a service operation op
provided by A such that:

• The input type Iop of op is a supertype of the input type Io of o.
• The output type Oop of op is a subtype of the output type Oo of o.
• preo) preop holds for the preconditions preo and preop of o and op,

respectively.
• postop) posto holds for the postconditions posto and postop of o and op,

respectively.
• The concept Co associated with o in the service terminology subsumes the

concept Cop associated with op.

288 K.-D. Schewe and Q. Wang

2. There exists an enrichment mX of m by phantoms such that building the
projection of m and replacing all service operations X W o by matching service
operations op from A result in a subplot of the plot of A .

Example 13 Let us look again at the simple service mediator in Example 12.
We can assume that the local operation personal_dataŒ�.t/ has the postcondition
person.t/, and this is invariant under the service operations for itinerary and hotel
selection. We can further assume that in both booking services, the service operation
personal_dataŒ�.t/ is a phantom for person.t/. Thus, the mediator can be enriched
by phantoms, which results in

personal_dataŒ�.t /
(X : papersŒ�.p/ k X : discountŒ�.d 0/

(unionhYj : get_itinerariesŒ�.d/i
Yj : select_itineraryŒi �./ Yj : personal_dataŒ�.t / k

unionhZk : get_hotelsŒ�.d/i
Zk : select_hotelŒh�./ Zk : select_roomŒr�./)

Zk : personal_dataŒ�.t /
confirmŒ�.y/

(Yj : confirm_flightŒ�.y/ k Zk : confirm_hotelŒ�.y/)
payŒ�.c/

(Yj : pay_flightŒ�.c/ k Zk : pay_hotelŒ�.c/ k X : paymentŒ�.c/)

The added phantom operations are highlighted. The projection of this process
expression to the services X , Yj and Zk , respectively, results exactly in the three
plots in Example 6.

4.3 Instantiation and Execution

Once matching services for all slots in a mediator have been found, we can built
an instantiation of the mediator with real services, which serves as a high-level
specification of a process that exploits several services.

Example 14 Consider again the mediator from Example 13. Suppose the slot X
matches a conference registration service CONF_REG. Furthermore, let FL_BOOK

and FLIGHT be two services matching the slot Yj , while HOTEL_BOO is a matching
hotel booking service for Zk . Then the instantiated mediator becomes

personal_dataŒ�.t /
(CONF_REG : papersŒ�.p/ k CONF_REG : discountŒ�.d 0/

(unionhFL_BOOK : get_itinerariesŒ�.d/, FLIGHT : get_itinerariesŒ�.d/i
FL_BOOK : select_itineraryŒi �./ FL_BOOK : personal_dataŒ�.t / k +
FLIGHT : select_itineraryŒi �./ FLIGHT : personal_dataŒ�.t / k

HOTEL_BOO : get_hotelsŒ�.d/
HOTEL_BOO : select_hotelŒh�./ HOTEL_BOO : select_roomŒr�./)

HOTEL_BOO : personal_dataŒ�.t /
confirmŒ�.y/

((FL_BOOK : confirm_flightŒ�.y/ + FLIGHT : confirm_flightŒ�.y/) k
HOTEL_BOO : confirm_hotelŒ�.y/)

What Constitutes a Service? 289

payŒ�.c/
((FL_BOOK : pay_flightŒ�.c/ + FLIGHT : pay_flightŒ�.c/) k

HOTEL_BOO : pay_hotelŒ�.c/ k CONF_REG : paymentŒ�.c/)

Informally, this plot reads as follows. Start with gathering personal data t from
a user of the composed service. This is a new operation performed locally. Then
enter the service CONF_REG for conference registration. The first required service
operation would be the entering of personal data, which can be done by passing
on the already-collected data, so the interaction actually continues with two service
operations papersŒ�.p/ and discountŒ�.d 0/ for entering papers p and any potential
discount d 0 for the conference fee. These two service operations can be accessed in
parallel. With this, the interaction with service CONF_REG is already finished.

We then enter (in parallel) the services FL_BOOK, FLIGHT and HOTEL_BOO

for flight and hotel booking, respectively. For the first two, we first get itineraries
using the service operation get_itinerariesŒ�.d /, which are combined by the union
operator. We then select an itinerary i , which was provided either by FL_BOOK or
FLIGHT. Depending on which service provided the selected itinerary, personal data
are passed on to the service without involving the user, while the other service is no
longer considered. Analogously, a hotel and a room in that hotel are selected using
service operations select_hotelŒh�./ and select_roomŒr�./), respectively, and again
personal data are passed on.

The local operation confirmŒ�.y/ would actually have to present the selections
made and request confirmation y, which is then passed on to the corresponding
service operations confirm_flightŒ�.y/ and confirm_hotelŒ�.y/ of FL_BOOK (or
FLIGHT) and HOTEL_BOO, respectively.

Finally, the local operation payŒ�.c/ collects payment information and passes
these on to the involved services, which then terminate.

It is clear from the definition of mediators by means of KAT expressions that
an instantiated mediator is only a very high-level specification of a large-scale
distributed application that runs several services at the same time. This becomes
further evident by Example 14. Refining and implementing such a specification
would require several add-ons. First, the involved services have to be started and
terminated, which usually involves a login and authentication process. Then data
has to be passed from the mediation process to the individual services, which bypass
the user interaction, i.e. a control component associated with the process is needed.
Furthermore, output from several services is combined, and a selection made by a
user is passed back to the originating services, while non-selection leads to service
termination. This must also be handled by the control component. That is, from the
high-level specification of a composed application to an executable software, there
is still some work to be done. However, the specification shows what is needed in
the implementation.

Here, we used KATs to specify mediators, and thus, also instantiations of
mediators result in KAT expressions. In [40], we discussed how to use ASMs instead
or any other formalisms that allow us to specify processes. In particular, we could
then exploit refinement in the same framework.

290 K.-D. Schewe and Q. Wang

5 Conclusions

In this chapter, we reported on our continued research towards the fundamental
question “what constitutes a (software) service (on the Web)”. We presented the
BDCM2 framework addressing the following important features of services:

• Behaviour: There must exist a general behavioural theory of services. For this we
outlined our research on the model of Abstract State Services (AS2s) [26], which
follows the line of research of the ASM thesis.

• Description: There must exist a description of a service that allows it to be
discovered and used. For this we stressed service ontologies, e.g. the model in
[27] addressing functional, categorical and quality aspects of services.

• Contracting: There must exist a contract between the service provider and user
covering all relevant SLAs for the service. Here we outlined that the quality
aspects of services should be extended to capture also all other aspects that could
give rise to SLAs. The collection of SLAs has to be treated as a binding contract
between the service provider and user.

• Mediation: A user must use a service in the contracted way but can build service
mediations to realise service-centric applications satisfying his/her purposes. For
this we presented our model of service mediators based on AS2s [28, 40].

• Monitoring: It must be possible to monitor the execution of a service in order
to validate its behaviour and contracted SLAs. Here we outlined that research is
still in an infant state, but a lot of research has been done already with respect to
monitoring, though usually not in connection with SLAs.

The presented overview of our considerations concerning a general theory of
services gives a snapshot of the status we have reached so far. In particular,
behaviour can be captured by the behavioural theory underlying the AS2 model,
which also forms the basis for mediation. Description and contracting give rise to
service ontologies capturing functional, categorical and contracting aspects. The
first of these refers again to AS2s and the last one to SLAs. The first two aspects
enable the location of services, which is also needed for matching mediator slots to
available services. Finally, we claim that a service must always be coupled with a
monitor that permits the SLAs to be verified at run time.

We believe that the BDCM2 framework may serve as an umbrella for continuing
the research, which is still not completed, in particular not for the aspects of
contracting, mediation and monitoring. However, the framework has already taken
up insights gained by others and rephrased them in a more general context. We
welcome any critical comment concerning aspects that have been forgotten and
contributions how to further sharpen the approach.

What Constitutes a Service? 291

References

1. Akkiraju, R., et al.: Web service semantics: WSDL-S. http://www.w3c.org/Submission/
WSDL-S (2005)

2. Alonso, G., et al. (eds.): Web Services: Concepts, Architectures and Applications. Springer,
Berlin (2003)

3. Alves, A., et al.: Web services business process execution language, version 2.0. OASIS
Standard Committee. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html (2007)

4. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: SOMA: a method
for developing service-oriented solutions. IBM Syst. J. 47(3), 377–396 (2008)

5. Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, Cambridge (2003)

6. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing web service
protocols. Data Knowl. Eng. 58(3), 327–357 (2006)

7. Bergholtz, M., Andersson, B., Johannesson, P.: Abstraction, restriction, and cocreation: three
perspectives on services. In: Trujillo, J., et al. (eds.) Advances in Conceptual Modeling –
Applications and Challenges. Lecture Notes in Computer Science, vol. 6413, pp. 107–116.
Springer, Berlin/Heidelberg (2010)

8. Bergholtz, M., Andersson, B., Johannesson, P.: Towards a model of services based on co-
creation, abstraction and restriction. In: Jeusfeld, M.A., Delcambre, L.M.L., Ling, T.W. (eds.)
Conceptual Modeling – Proceedings of the 30th International Conference (ER 2011). Lecture
Notes in Computer Science, vol. 6998, pp. 476–485. Springer, Berlin/Heidelberg (2011)

9. Bergholtz, M., Andersson, B., Johannesson, P.: Towards a model of services based on co-
creation, abstraction and rights distribution. In: Thalheim, B., et al. (eds.) Correct Software in
Web Applications. Springer, Vienna (2015, in this volume)

10. Blass, A., Gurevich, J.: Abstract state machines capture parallel algorithms. ACM Trans.
Comput. Log. 4(4), 578–651 (2003)

11. Bosa, K., Chelemen, R., Vleju, M.B.: A formal model of client-cloud interaction. In: Thalheim,
B., et al. (eds.) Correct Software in Web Applications. Springer, Vienna (2015, in this volume)

12. Christensen, E., et al.: Web services description language (WSDL) 1.1. http://www.w3c.org/
TR/wsdl (2001)

13. Erl, T.: SOA: Principles of Service Design. Prentice Hall Press, Upper Saddle River (2007)
14. Fensel, D., Bussler, C.: The web service modeling framework WSMF. Electron. Commer. Res.

Appl. 1(2), 113–137 (2002)
15. Fensel, D., et al.: Enabling Semantic Web Services. Springer, Berlin (2007)
16. Ferrario, R., Guarino, N., Fernández-Barrera, M.: Towards an ontological foundation for

services science: the legal perspective. In: Sartor, G., Casanovas, P., Biasiotti, M., Fernández-
Barrera, M. (eds.) Approaches to Legal Ontologies. Law, Governance and Technology, vol. 1,
pp. 235–258. Springer, Netherlands (2011)

17. Geerts, G.L., McCarthy, W.E.: An ontological analysis of the economic primitives of the
extended-REA enterprise information architecture. Int. J. Account. Inf. Syst. 3(1), 1–16 (2002)

18. Gómez, J., Cachero, C., Pastor, O.: Modelling dynamic personalization in web applications. In:
Third International Conference on Web Engineering – ICWE 2003. Lecture Notes in Computer
Science, vol. 2722, pp. 472–475. Springer, Berlin/Heidelberg (2003)

19. Gurevich, J.: Sequential abstract state machines capture sequential algorithms. ACM Trans.
Comput. Log. 1(1), 77–111 (2000)

20. Hohfeld, W.N.: Fundamental legal conceptions as applied in legal reasoning. Yale Law J. 23,
710–770 (1913)

21. Hruby, P.: Model-Driven Design of Software Applications with Business Patterns. Springer,
New York (2006)

22. Keller, U., Lausen, H., Stollberg, M.: On the semantics of functional descriptions of web
services. In: Proceedings of the 3rd European Semantic Web Conference – ESWC 2006 (2006)

http://www.w3c.org/Submission/WSDL-S
http://www.w3c.org/Submission/WSDL-S
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.w3c.org/TR/wsdl
http://www.w3c.org/TR/wsdl

292 K.-D. Schewe and Q. Wang

23. Lampesberger, H., Rady, M.: Monitoring of client-cloud interaction. In: Thalheim, B., et al.
(eds.) Correct Software in Web Applications. Springer, Vienna (2015, in this volume)

24. Lusch, R.F., Vargo, S.L., Wessels, G.: Toward a conceptual foundation for service science:
contributions from service-dominant logic. IBM Syst. J. 47(1), 5–14 (2008)

25. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: Abstract state services. In: Song, I.Y., et al.
(eds.) Advances in Conceptual Modeling – Challenges and Opportunities, ER 2008 Workshops.
Lecture Notes in Computer Science, vol. 5232, pp. 406–415. Springer, Berlin/Heidelberg
(2008)

26. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A theory of data-intensive software services.
SOCA 3(4), 263–283 (2009)

27. Ma, H., Schewe, K.D., Wang, Q.: An abstract model for service provision, search and
composition. In: Kirchberg, M., et al. (eds.) Services Computing Conference - APSCC 2009,
pp. 95–102. IEEE Asia Pacific (2009)

28. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A formal model for the interoperability of
service clouds. SOCA 6(3), 189–205 (2012)

29. McCarthy, W.E.: The REA accounting model: a generalized framework for accounting systems
in a shared data environment. Account. Rev. 57(3), 554–578 (1982)

30. O’Sullivan, J., Edmond, D., Ter Hofstede, A.: What is a service? Towards accurate description
of non-functional properties. Distrib. Parallel Databases 12(2–3), 117–133 (2002)

31. Papazoglou, M.P., van den Heuvel, W.J.: Service-oriented design and development methodol-
ogy. Int. J. Web Eng. Tech. 2(4), 412–442 (2006)

32. Papazoglou, M.P., van den Heuvel, W.J.: Service oriented architectures: approaches, technolo-
gies and research issues. VLDB J. 16(3), 389–415 (2007)

33. Preist, C.: A conceptual architecture for semantic web services. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen F. (eds.) The Semantic Web – ISWC 2004. Lecture Notes
in Computer Science, vol. 3298, pp. 395–409. Springer, Berlin/Heidelberg (2004)

34. Rady, M.: Parameters for service level agreements generation in cloud computing: a client-
centric vision. In: Castano, S., et al. (eds.) Advances in Conceptual Modeling – ER 2012
Workshops. Lecture Notes in Computer Science, vol. 7518, pp. 13–22. Springer, Berlin/Hei-
delberg (2012)

35. Rady, M.: Generating an excerpt of a service level agreement from a formal definition of non-
functional aspects using owl. J. Univers. Comput. Sci. 20(3), 366–384 (2014)

36. Sampson, S.E., Froehle, C.M.: Foundations and implications of a proposed unified services
theory. Prod. Oper. Manag. 15(2), 329–343 (2006)

37. Schewe, K.D., Thalheim, B.: Conceptual modelling of web information systems. Data Knowl.
Eng. 54(2), 147–188 (2005)

38. Schewe, K.D., Wang, Q.: A customised ASM thesis for database transformations. Acta
Cybernetica 19(4), 765–805 (2010)

39. Schewe, K.D., Wang, Q.: A formal model for service mediators. In: Trujillo, J., et al. (eds.)
Advances in Conceptual Modeling - Applications and Challenges (ER 2010 Workshops).
Lecture Notes in Computer Science, vol. 6413, pp. 76–85. Springer, Berlin/Heidelberg (2010)

40. Schewe, K.D., Wang, Q.: Preferential refinements of abstract state machines for service
mediators. In: Muccini, H., Tang, A. (eds.) Proceedings of QSIC 2012, pp. 158–166. IEEE
CPS, Xi’an (2012)

41. Simple Object Access Protocol (SOAP): http://www.w3c.org/TR/soap
42. Stollberg, M., Cimpian, E., Mocan, A., Fensel, D.: A semantic web mediation architecture. In:

Proceedings CSWWS 2006 (2006)
43. Universal Description, Discovery and Integration (UDDI): http://www.uddi.org
44. Web Ontology Language (OWL): http://www.w3c.org//OWL/
45. Zeithaml, V.A., Parasuraman, A., Berry, L.L.: Problems and strategies in services marketing.

J. Mark. 49(2), 33–46 (1985)

http://www.w3c.org/TR/soap
http://www.uddi.org
http://www.w3c.org//OWL/

Codesign of Web Information Systems

Bernhard Thalheim and Klaus-Dieter Schewe

Abstract Web information systems are nowadays widely used. E-business, edu-
tainment, infotainment, community and identity Web systems are data and informa-
tion intensive. They integrate a variety of database, workflow and other processing,
communication and presentation systems. Their design and development is thus
based on an integrated development of structuring, functionality, distribution and
interactivity of users. The codesign framework allows the integration of these
different aspects. This chapter surveys the codesign approach and its deployment
for the development of large Web information systems.

1 Introduction

1.1 The Path from Database Systems to Web Information
Systems

Database design is based on one or more database models. Often, design is
restricted to structural aspects. Static semantics, which is based on static integrity
constraints, is sparsely used. Processes are then specified after implementing
structures. Behaviour of processes can be specified by dynamic integrity constraints.
Views for interaction are defined on top of the structuring and functionality. This
approach is the classical local-as-view schema design approach.

Information systems aim at delivering information to the user. Users have
their own specific information demands. It depends on the tasks the user has
to perform and on the skills and abilities of users, i.e. user portfolio and user
profile. The user thus demands data in the right form, the right format and the

B. Thalheim
Department of Computer Science, Christian Albrechts University Kiel, 24098 Kiel, Germany
e-mail: thalheim@is.informatik.uni-kiel.de
http://www.is.informatik.uni-kiel.de/~thalheim

K.-D. Schewe (�)
Software Competence Centre Hagenberg, 4232 Hagenberg, Austria
e-mail: kd.schewe@scch.at
http://www.scch.at/de/schewe-klaus-dieter

© Springer International Publishing Switzerland 2015
B. Thalheim et al. (eds.), Correct Software in Web Applications and Web Services,
Texts & Monographs in Symbolic Computation,
DOI 10.1007/978-3-319-17112-8_9

293

mailto:thalheim@is.informatik.uni-kiel.de
http://www.is.informatik.uni-kiel.de/~thalheim
mailto:kd.schewe@scch.at
http://www.scch.at/de/schewe-klaus-dieter

294 B. Thalheim and K.-D. Schewe

right size and structuring and at the right moment and under consideration of the
user’s information demand, similar to online analytical processing (OLAP) or data
warehouse processing.

Web information systems (WIS) add, however, two more aspects: distribution
and presentation. Web systems are typically highly distributed and use a variety of
systems, e.g. an ensemble of database systems. There is no need for integration of
these systems into a singleton system. Distribution can be specified on the basis of
services and collaboration features, such as exchange frames. Therefore, we have
to develop a global-as-view approach for Web information systems. Presentation
systems and information systems are bundled together based on some architecture,
e.g. client-server architectures. Information is delivered to the presentation system
in such form that the system can appropriately lay out the data and support the user
by functionality.

1.2 Abstraction Layers in Web Information System
Development

System engineering on the basis of the triptych consisting of the application domain
description at the strategic level, the requirement prescriptions at the business user
level and finally the systems specifications for the information system and the
presentation system are considered in [4] and [12]. The specification is oriented
towards systems that are easy and intuitive to use. The methodology for the
development of Web information systems is based on an abstraction layer model,
which is illustrated in Fig. 1a. Web information systems have two different faces:

Function specification

Data
specification

View
specification Dialogue

specification

Implementation Layer

Presentation Layer

Conceptual Layer

Business Layer

Strategic Layer

Implementation

Style Definition

Conceptual Modelling

Story Boarding

Implementation
Transformation

Information
system

Presentation
system

Web information system

Implemen-
tation
layer

Information system
specification

Presentation system
specification

WIS specification

Conceptual
layer

Design
Refinement

Application
area

description

Requirements
prescriptionsWIS description

and prescription

Description/
prescription

layer

a b

Fig. 1 Abstraction layers in Web information systems. (a) The abstraction layer model. (b) The
dichotomy in WIS development

Codesign of Web Information Systems 295

the systems perspective and the user perspective. These perspectives are tightly
related to each other. We consider the presentation system to be an integral part
of WIS. It satisfies all user requirements. It is based on real-life cases [28]. The
dichotomy is displayed in Fig. 1b where the right side represents the system
perspective and the left side of the ladder represents the user perspective.

1.3 The Six Concerns of Web Information Systems
Specification

We consider six different concerns for Web information systems: intention, usage,
content, functionality, context and presentation.

Intention: The intention aspect is a very general one centred around a mission
statement for the system. The primary question is what is the purpose of the
system?

Usage: Once some clarity with respect to the intentions of the Web-based system
has been obtained, the question arises by whom and how the system will be
used. As Web-based systems are open systems, it is important to anticipate
the behaviour of the users. We model usage through storyboards that allow the
specification of the stories users might use with the Web information system.

Content: The content aspect concerns the question: which information should be
provided? It is coupled with the problem of designing an adequate database.
However, the organisation of data that is presented to the user via a website is
significantly different from the organisation of data in a database.

Functionality: The functionality aspect is coupled with the question of whether the
site should be passive or active. A passive site only allows a user to navigate
through the pages without any activity. In an active site, information is also
required from the user. Specific functions allow the processing of user input and
the provision of features such as searching, printing, marking and extraction.

Context: The context aspect deals with the context of the Web information system
with respect to society, time, expected users, the history of utilisation and the
paths of these users through the system.

Presentation: The presentation aspect concerns the final realisation by Web pages.
This depends on the support of technical end devices such as computer screens,
televisions, cell phones, etc., and set layout preferences.

The six concerns can be mapped to conceptual structures that are used for Web
information system specification:

1. We start with the characteristics used for the strategic layer. The main specifi-
cation elements used are intention and mission. They are mapped to metaphors,
general goals, rhetorical figures and patterns and grids of Web pages discussed
later.

296 B. Thalheim and K.-D. Schewe

2. The scenarios reflect the utilisation by actors, for which we envision a number
of stories that correspond to real use. These scenarios may be captured through
observation of reality. Story spaces and plots are recorded in various levels of
detail through the methods discussed in [25]. The stories are reflected in the
storyboard.

3. Content specification is the basis for the media types, i.e. data types and their
functions, which will be introduced in part III. It combines data specification
with user requirements and is reflected in the content portfolio.

4. Functionality is provided by the media types as required by the storyboard. The
typical standard functions are navigation, retrieval (search), support functions
and feedback facilities.

5. Context is based on tasks, history and environment. We use the specification
of context for restructuring and functionality enhancement, which will form the
basis of EXtensible Stylesheet Language (XSL) transformations, and the onion
approach that is discussed in the last part of the paper.

6. Presentation depends on the intention, the provider, the technical environment
available and the users that the WIS is targeting. Presentation results in the layout
and the playout of the WIS. Layout requires the development of multimedia
presentations for each page. Playout additionally requires the development of
functionality that supports visits of users depending on the story they are
currently following to achieve their goals. Layout and playout integrate the
chosen metaphors; they depend on chosen page patterns and grids as well as
on quality requirements.

Conceptual structures and their association are depicted in Fig. 2. We may separate
the syntactics and pragmatics layers. Arrows represent associations of the kind
‘uses’, ‘part-of’ or ‘relates’. For instance, the story is based on the user and the
functions. Information metaphors relate content to information.

Technical environment
of the user

User

Data
representation

Data Functions

Function
representation

Information Story

Content Functionality

Layout Playout

Information
metaphors

Story and
functionality
metaphors

Web utilisation space

P
R

A
G

M
A

T
IC

S
S

Y
N

TA
C

T
IC

S

Fig. 2 The Web utilisation space based on the WIS concerns

Codesign of Web Information Systems 297

1.4 Web Information Systems Design and Development

The problem of Web information system design can be thus stated as follows:
Design the logical and physical structure of a Web information system for
given database management systems (or for a database paradigm) and
given presentation systems, so that it contains all the information required
by the user and required for the efficient behaviour of the whole information
system for all users. Furthermore, specify the application processes and the
user interaction.

The implicit goals of Web information system design are the following:

– To meet all the information (contextual) requirements of the entire spectrum of
users in a given application area

– To provide a “natural” and easy-to-understand structuring of the information
content

– To preserve the designers’ entire semantic information for a later redesign
– To achieve all the processing requirements and also a high degree of efficiency

in processing
– To achieve logical independence of query and transaction formulation on this

level
– To provide a simple user interface family that is easy to comprehend

Database design has been extensively discussed in the past.1 Almost all outstanding
questions have been extensively discussed. Modelling, design and development of
Web information systems include, however, further aspects:

Structuring of a Web information system application is concerned with represent-
ing the database structure and the corresponding static integrity constraints.

Functionality of a Web information system application is specified on the basis of
processes and dynamic integrity constraints.

Distribution of Web information system components is specified through explicit
specification of services and exchange frames.

Interactivity is provided by the system on the basis of foreseen stories for a number
of envisioned actors and is based on media objects which are used to deliver the
content of the database to users or to receive new content.

This understanding has led to the codesign approach to modelling by specification
structuring, functionality, distribution and interactivity. These four aspects of
modelling, design and development have both syntactic and semantic elements.
Additionally, they have pragmatic elements, since a broad variety of users has to
be considered.

1See, for instance, the large bibliography in [32].

298 B. Thalheim and K.-D. Schewe

1.5 Survey on Codesign for Web Information Systems Design

Web information systems specification, development and design can be based on
extended entity-relationship models, on models that specify distribution and on
models for behaviour and interactivity description on the user’s side. Structuring
uses extended entity-relationship models. It is based on hierarchical predicate logic.
Functionality is defined based on a higher-order entity-relationship model (HERM)
algebra, on query forms and transactions and on VisualSQL. Interactivity is declared
in an integrated form based on SiteLang that allows description of dialogue scenes,
stories, story space with actors and scenario. Distribution can be defined through
a service specification and exchange frames. These models can be handled in a
coherent way. There are method compilations of the design into other models.

Constructs of the codesign languages are:

– Structuring is given by the pair (Structure, StaticConstraints).
– Functionality is specified by the pair

[(StateChange[Retrieval)Operations, DynamicConstraints]. Operations are
specified on the basis of HERM algebra (for modification and retrieval) which
provides a language for generalised views and which can be enhanced to media
types.

– Distributivity is declared by service (informational process, service manager,
competence) and exchange frame (architecture collaboration style, collaboration
pattern). Services can be declared on the basis of generalised views (media
types).

– Interactivity is specified by the story spaces, actors, media objects and the
presentation. The story space is a graph of scenes and activities.

2 Codesign of Schema-Centric Database Systems:
The Local-as-View Approach

Database systems are based on the local-as-view approach. Functionality is defined
in an algebra that uses the structure of the database system. Create, retrieval
(queries), update and delete (CRUD) functions are algebraic expressions. Views
are defined by queries. They support users and satisfy their data demand and their
activities with the database system.

The entity-relationship (ER) model was introduced by P.P. Chen in 1976
[5]. The model conceptualises and graphically represents the structure of the
relational model. It is currently used as the main conceptual model for database
and information system development. Due to its extensive usage, a large number
of extensions to this model were proposed in the 1980s and 1990s. Cardinality
constraints [5, 10, 11, 19, 32] are the most important generalisation of relational
database constraints [31]. These proposals have been evaluated, integrated or

Codesign of Web Information Systems 299

explicitly discarded in the intensive research discussion surrounding this area. The
semantic foundations proposed in [9, 14, 32] and the various generalisations and
extensions of the entity-relationship model have led to the introduction of the higher-
order or hierarchical entity-relationship model [32], which integrates most of the
extensions and also supports conceptualisation of functionality, distribution [33] and
interactivity [25] for information systems. Class diagrams of the unified modelling
language (UML) standard are a special variant of extended entity-relationship
models.

The higher-order entity-relationship model (HERM)2 is a language for defining
the structure (and functionality) of database or information systems. Its structure
is developed inductively. Basic attributes are assigned to base data types. Complex
attributes can be constructed by applying constructors such as tuple, list or set con-
structors to attributes that have already been constructed. Entity types conceptualise
structuring of things of reality through attributes. Cluster types generalise types
or combine types into singleton types. Relationship types are associate types that
have already been constructed into an association type. The types may be restricted
by integrity constraints and by specification of identification of objects defined for
a type. Typical integrity constraints of the extended entity-relationship model are
participation, look-across and general cardinality constraints. Entity, cluster and
relationship classes contain a finite set of objects defined on these types. The types
of a HERM schema are typically depicted by a HERM diagram.

The main application area for extended ER models is the conceptualisation of
database applications. Database schemata can be translated to relational, XML
or other schemata based on transformation profiles that incorporate properties of
the target systems. The ER model has had a deep impact on the development of
diagramming techniques in the past and still influences extensions of the unified
modelling language (UML). UML started with binary relationship types with look-
across constraints and without relationship-type attributes. Class diagrams currently
allow n-ary relationship types with attributes. Relationship types may be layered.
Cluster types and unary relationship types allow for distinguishing generalisation
from specialisation.

2.1 Languages for Structure Specification

Structuring of databases is based on three interleaved and dependent parts:

Syntactics: Inductive specification of structures uses a set of base types, a collection
of constructors and a theory of construction limiting the application of construc-
tors by rules or by formulas in deontic logics. In most cases, the theory may be
dismissed. Structural recursion is the main specification vehicle.

2To be more precise, the higher-order entity-relationship modelling language.

300 B. Thalheim and K.-D. Schewe

Semantics: Specification of admissible databases on the basis of static integrity
constraints describes those database states which are considered to be legal.
If structural recursion is used, then a variant of hierarchical first-order predicate
logics may be used for description of integrity constraints.

Pragmatics: Description of context and intension is based either on explicit refer-
ence to the enterprise model, to enterprise tasks, to enterprise policy and to
environments or on intensional logics used for relating the interpretation and
meaning to users depending on time, location and common sense.

The classical four-layered approach is used for inductive specification of database
structures. The first layer is the data environment, called the basic data type scheme,
which is defined by the system or is the assumed set of available basic data types.
The second layer is the schema of a database. The third layer is the database
itself, representing a state of the application’s data often called micro-data. The
fourth layer consists of the macro-data that are generated from the micro-data by
application of view queries to the micro-data.

2.1.1 An Example of a HERM Diagram

The HERM schema uses a formal language for schema definition and diagrams
for graphical representation of the schema.Let us consider an infotainment Web
information system. An element of this system is the event database. Events are

Event
promoted

from to

organised

status since

marketed

from to

branch

Organ-
iza-
tion

name, kind,
contact, info,
address(..),

url, branch,...

currently
in use

from to

Price
schema

kind

currency

description

contact
person

from to

Person

SSN name(..)

address contact(..)

authorized
person

roles(..) rights(..)

inserted/
modified
log action

kind

special
admission

form

Restriction
schema

description
kind

priority
regulation

basis

of
priority

ontology
reference

Category

category

description
obligation

applied
since

Time
schema

ID schema

Time
slot

slot exception

at
access

Location

location url address(..)

applied
actual

since

Location
Restriction

Schema

description comment

openingSchema(..)
kind

applicable

basis regulation
exception

City map

file coding otherSource(..)

found
at

presentation(..)
anchor(..)

scheduled

status
approval

Transport
kind(..)

provider
reference(..)

reachable

addInfo(..)

open
air

pictures(..)

eventID,
title, description, highlight,

comment, URL, impressum,
additional, foreigncomm, highlight,

visitor#, liability, WIScontact,
blog, response, pictureSet(..), ...

Fig. 3 Event database schema in an infotainment application

Codesign of Web Information Systems 301

characterised by their title, description, comments, etc. Their identification must be
enhanced by a surrogate key eventID if we are not using very complex identification.
Events can be separated into different kinds and have some special additional infor-
mation. Events are categorised depending on their kind. Organisations promote,
organise or market these events. People are involved in the marketing and in the
maintenance of the database. Events are organised at certain locations at a certain
time. The event database also includes legal restrictions, transportation information
and other data that are injected from other databases.

Attributes are identified by the type that uses the attribute. Therefore, we
may neglect the unique name assumption. Attributes are typically structured. For
instance, the name of a person is given by a sequence of first names, a family name,
a set of academic titles and potentially a family title, e.g.
name(firstNames<firstName>, famName, [acadTitlesfaTitleg], [familyTitle]).

Entity types are represented graphically by rectangles. Attributes primarily iden-
tifying a type are underlined. We may use attribute types outside the corresponding
rectangle or diamond. Another association is to include attributes inside the type.
Relationship types are represented graphically by diamonds and associated by
directed arcs to their components. A cluster type is represented by a diamond, is
labelled by the disjoint union sign and has directed arcs from the diamond to its
component types. Alternatively, the disjoint union representation ˚ is attached to
the relationship type that uses the cluster type. In this case, directed arcs associate
the ˚ sign with component types. An arc may be annotated with a label.

2.1.2 The Definition Scheme for Structures in HERM

The extended entity-relationship model uses a data type system for its attribute
types. It allows the construction of entity types E $.attr.E/;˙E/ where E is
the entity type defined as a pair—the set attr.E/ of attribute types and the set ˙E

of integrity constraints that apply to E . The definition def of a type T is denoted by
T $ def.

The HERM schema lets users inductively build relationship types R $
.T1; : : : ; Tn; attr.R/;˙R/ of order i (i � 1) through a set of (labelled) types of
order less than i , a set of attribute types and a set of integrity constraints that apply
to R. The types T1; : : : ; Tn are the components of the relationship type. Entity types
are of order 0. Relationship types are of order 1 if they only have entity types as
component types. Relationship types are of order i if all component types are of
order less than i and if one of the component types is of order i � 1.

Additionally, cluster types C $ T1
.[: : :

.[Tn of order i can be defined through
a disjoint union

.[of relationship types of order less than i or of entity types.
Entity/relationship/cluster classes T C contain a set of objects of the entity/rela-

tionship/cluster type T . The HERM schema mainly uses set semantics, but (multi-)
list or multi-set semantics can also be used. Integrity constraints apply to their type
and restrict the classes. Only those classes are considered for which the constraints

302 B. Thalheim and K.-D. Schewe

of their types are valid. The notions of a class and of a type are distinguishable.
Types describe the structure and constraints. Classes contain objects.

The data type system is typically inductively constructed on a base type B
by application of constructors such as the tuple or products constructor .::/, set
constructor f::g and the list constructor < :: >. Types may be optional component
types and are denoted by Œ::�.

The types T can be labelled l W T . The label is used as an alias for the type.
Labels denote roles of the type. Labels must be used if the same type is used several
times as a component type in the definition of a relationship or cluster type. In this
case, they must be unique.

An entity-relationship schema consists of a set of data, attribute, entity, relation-
ship and cluster types where they are types that are inductively built on the basis of
the base types.

Given a base-type system B , the types of the ER schema are defined through the
type equation:

T D B j .l1 W T; : : : ; ln W T / j fT g j <T > j ŒT � j T :[T j l W T j N $ T

2.2 Static Integrity Constraints

Integrity constraints are used to separate “good” states or sequences of states of a
database system from those which are not intended. Constraints are given by users
at various levels of abstraction, with a variety of vagueness and intensions behind
them and on the basis of different languages.

Each structure is also based on a set of implicit model-inherent integrity
constraints:

Component-construction constraints are based on existence, cardinality and inclu-
sion of components. These constraints must be considered in the translation and
implication process.

Identification constraints are implicitly used for the set constructor. Each object
either does not belong to a set or belongs only once to the set. Sets are based
on simple generic functions. The identification property may be, however, only
representable through automorphism groups [2]. We shall see later that value
representability or weak-value representability leads to controllable structuring.

Acyclicity and finiteness of structuring support axiomatisation and definition of the
algebra. It must, however, be explicitly specified. Constraints such as cardinality
constraints may be based on potential infinite cycles.

Superficial structuring leads to representation of constraints through structures.
In this case, implication of constraints is difficult to characterise.

Implicit model-inherent constraints belong to performance and maintenance traps.
Often, names or labels are associated with a minimal semantics that can be
derived from the meaning of the words used for names or labels. This minimal

Codesign of Web Information Systems 303

semantics allows us to derive synonym, homonym, antonym, troponym, hypernym
and holynym associations among the constructs used.

Integrity constraints can be specified based on the Beeri-Vardi (BV) frame, i.e.
by an implication with a formula for premises and a formula for the implication.
BV constraints do not lead to rigid limitation of expressibility. If structuring is
hierarchical, then BV constraints can be specified within first-order predicate logic.
We may introduce a variety of different classes of integrity constraints, defined as
such:

Equality-generating constraints allow to generate equalities among objects or com-
ponents of objects for a set of objects from one class or from several classes.

Object-generating constraints require the existence of another object set for a set of
objects satisfying the premises.

A class C of integrity constraints is called Hilbert-implication-closed if it can be
axiomatised by a finite set of bounded derivation rules and a finite set of axioms. It
is well known that the set of joint dependencies is not Hilbert-implication-closed for
relational structuring. However, an axiomatisation exists with an unbounded rule,
i.e. a rule with potentially infinite premises.

The most important class of integrity constraints of the HERM schema is the
class of cardinality constraints. Other classes of importance for the HERM schema
are multivalued dependencies, inclusion and exclusion constraints and existence
dependencies[31]. Functional dependencies, keys and referential constraints (or
key-based inclusion dependencies) can be expressed through cardinality constraints.
Multivalued dependencies can directly be represented by ER structures since
they separate concerns [34]. Classical cardinality constraints are participation
constraints, look-across constraints and general cardinality constraints.

The diagram in Fig. 3 can be enhanced by an explicit representation of cardinality
and other constraints. If participation constraints card.R;R0/ D .m; n/ are used for
a component consisting of one type R0, then the arc from R to R0 is labelled by
.m; n/ (see Fig. 5). If look-across constraints look.R;R0/ D m::n are used for
binary relationship types, then the arc from R to R0 is labelled by m::n.

2.3 Representation Alternatives

The classical approach to database objects is to store an object based on strong
typing. Each real-life thing is thus represented by a number of objects which
are either coupled by the object identifier or supported by specific maintenance

304 B. Thalheim and K.-D. Schewe

procedures. In general, however, we might consider two different approaches to
representation of objects:

Class-wise, identification-based representation: things of reality may be repre-
sented by several objects. The object identifier (OID) supports identification
without representing the complex real-life identification. Objects can be
elements of several classes. In the early days of object orientation, it has
been assumed that objects belong to one and only one class. This assumption
has led to a number of migration problems which have no satisfactory solutions.
Structuring based on extended ER models [32] or object-oriented database sys-
tems uses this option. Technology of relational and object-relational database
systems is based on this representation alternative.

Object-wise representation: graph-based models which have been developed in
order to simplify the object-oriented approaches [2] display objects by their
subgraphs, i.e. by the set of nodes associated to a certain object and the
corresponding edges. This representation corresponds to the representation used
in standardisation.
XML is based on object-wise representation. It allows the use of null values
without notification. If a value for an object does not exist, is not known, is
not applicable or cannot be obtained, the XML schema does not use the tag
corresponding to the attribute or the component. Classes are hidden.

Object-wise representation has a high redundancy which must be maintained by
the system, thus decreasing performance to a significant extent. Besides the perfor-
mance problems, such systems also suffer from low scalability and an insufficient
utilisation of resources. The operating of such systems leads to lock avalanches. Any
modification of data requires a recursive lock of related objects.

For these reasons, object-wise representation is applicable only under a number
of restrictions:

– The application is stable, and the data structures and the supporting basic
functions necessary for the application are not changed during the lifespan of
the system.

– The data set is almost free of updates. Updates, insertions and deletions of data
are only allowed in well-defined restricted “zones” of the database.

Typical application areas for object-wise storage are archiving systems, information
presentation systems and content management systems. They use an update system
underneath. We call such systems playout systems. The data are stored in the same
way in which they are transferred to the user. The data modification system has a
playout generator that materialises all views necessary for the playout system.
Other applications are main-memory databases without updates. The SAP database
system uses a huge set of related views.

We may use the first representation for our storage engine and the second repre-
sentation for the input engine or the output engine in data warehouse approaches.

Codesign of Web Information Systems 305

2.4 HERM Schemata

The schema is based on a set DD of base (data) types which are used as
value types for attribute types. A set fE1; : : : En; C1; : : : ; Cl ; R1; : : : ; Rmg of
entity, cluster and (higher-order) relationship types on base data types DD is
called schema S if the relationship and cluster types use only the types from
fE1; : : : ; En; C1; : : : :; Cl ; R1; : : : ; Rmg as components and cluster and relationship
types are properly layered.

A HERM schema is defined by the pair D D .S; ˙/ where S is a schema and
˙ is a set of constraints defined on S. A database DC on D consists of classes for
each type in D such that the constraints˙ are valid.

The classes of the extended ER model have been defined through sets of objects
on the types. In addition to sets, lists, multi-sets or other collections of objects may
be used. In this case, the definitions used above can easily be extended [32].

A number of domain-specific extensions have been introduced to the ER model.
One of the most important is the extension of the base types by spatial data types
such as point, line, oriented line, surface, complex surface, oriented surface, line
bunch and surface bunch. These types are supported by a large variety of functions
such as meets, intersects, overlaps, contains, adjacent, planar operations and a
variety of equality predicates.

The translation of the schema to (object-)relational or XML schemata can be
based on a profile [32]. Profiles define which translation choice is preferred over
other choices, how hierarchies are treated, which redundancy and null-value support
must be provided, which kind of constraint enforcement is preferred, which naming
conventions are chosen, which alternative for representation of complex attributes
is preferred for which types and whether weak types can be used. The treatment of
optional components is also specified through the translation profile of the types of
the schema. A profile may require the introduction of identifier types and base the
identification on the identifier. Attribute types may be translated into data formats
that are supported by the target system.

2.5 Operations for Information Systems

The higher-order entity-relationship model uses an inductive structuring. This
inductive structuring can also be used for the introduction of functionality. Func-
tionality specification is based on HERM algebra and can easily be extended to
HERM/QBE, VisualSQL, query forms and transactions. HERM algebra uses type-
preserving functions and type-creating functions.

General operations on type systems can be defined by structural recursion. Given
types T , T 0 and a collection type CT on T (e.g. set of values of type T , bags, lists)
and operations such as generalised union [CT , generalised intersection \CT and

306 B. Thalheim and K.-D. Schewe

generalised empty elements ¿CT on CT . Given further an element h0 on T 0 and
two functions defined on the types h1 W T ! T 0 and h2 W T 0 � T 0 ! T 0:
Then we define the structural recursion by insert presentation for RC on T as
follows: srech0;h1;h2.¿CT / D h0 srech0;h1;h2 .jfjsjgj/ D h1.s/ for singleton
collections jfjsjgj srech0;h1;h2.jfjsjgj [CT R

C / D h2.h1.s/; srech0;h1;h2 .R
C //

iff jfjsjgj \CT R
C D ¿CT .

All operations of the object-relational database model, of the extended entity-
relationship model and of other declarative database models can be defined by
structural recursion, e.g.

– Selection is defined by srec¿;�˛ ;[for the function

�˛.fog/ D
� fog if fog ˆ ˛

¿ otherwise
:

– (Natural) join is defined by ‰D srec¿;‰T ;[for the type T D T1 � T2, the
function

‰T .f.o1; o2/g/ D fo 2 Dom.T1 [T2/ j ojT1 D o1 ^ ojT2 D o2g
and the type T 0 D CT1[T2 .

– Aggregation functions can be defined based on the two functions for null values

h0f .s/ D
�
0 if s D NULL
f .s/ if s ¤ NULL

hundef
f .s/ D

�
undef if s D NULL
f .s/ if s ¤ NULL

through structural recursion, e.g.
sumnull

0 = srec0;h0Id ;C or

sumnull
undef = srec0;hundef

Id ;C ;

countnull
1 = srec0;h01;C or

countnull
undef = srec0;hundef

1 ;C
or the doubtful SQL definition of the average function

sumnull
0

countnull
1

:

Similarly we may define intersection, union, difference, projection, joint, nesting
and un-nesting, renaming, insertion, deletion and update. Operations may be either
used for retrieval of values from the database or for state changes within the
database. A HERM query is simply an expression of HERM algebra.

Codesign of Web Information Systems 307

2.6 Dynamic Integrity Constraints

Database dynamics is defined on the basis of transition systems. A transition system
on the schema S is a pair

T S D .S; f a�!j a 2 Lg/

where S is a non-empty set of state variables, L is a non-empty set (of labels) and
a�!
 S � .S [f1g/ for each a 2 L.

For the transition system T S , we introduce a temporal dynamic database logic
using the quantifiers 8f (always in the future), 8p (always in the past), 9f
(sometimes in the future) and 9p (sometimes in the past).

The most important class of dynamic integrity constraints are state-transition
constraints ˛ O ˇ which use a precondition ˛ and a post-condition ˇ for each
operationO . The state-transition constraint ˛Oˇ can be expressed by the temporal

formula ˛
O�! ˇ . Each finite set of static integrity constraints can be equivalently

expressed by a set of state-transition constraints f ^˛2˙˛
O�! ^˛2˙˛/ j O 2

Alg.M/ g.
Integrity constraints may be enforced

• Either at the procedural level by application of

– Trigger constructs [18] in the active event-condition-action setting
– Greatest consistent specialisations of operations [23]
– Stored procedures, i.e. fully fledged programs considering all possible viola-

tions of integrity constraints

• Or at the transaction level by restricting sequences of state changes to those which
do not violate integrity constraints

• Or by the DBMS on the basis of declarative specifications depending on the
facilities of the DBMS

• Or at the interface level on the basis of consistent state changing operations

2.7 Specification of Workflows

A large variety of approaches to workflow specification has been proposed in the
literature. We prefer formal descriptions with graphical representations that thus
avoid pitfalls of methods that are entirely based on graphical specification such as
the “and/or” traps. A basic computation step algebra, introduced in [35], may be
used.

Instead we can also use the business process modelling and notation (BPMN)
language [36]. This language separates users and their roles, e.g. the editor pool
with the separation into swimlanes such as the release session and the request to

308 B. Thalheim and K.-D. Schewe

Fig. 4 A BPMN diagram for the editing process of an infotainment website

edit in Fig. 4. BPMN rigorously describes the syntactical and graphical elements as
they are used by business analysts and operators to define and control the business
activities (operations on data) and their (event or process-driven and possibly
resource-dependent) execution order. In BPMN, a business process is represented
by a diagram or graph where nodes are executed and where arcs are used to
contain and pass the control or execution order information. The activities are
performed in a certain order, depending on resources being available, data or control
conditions to be true and events to happen. The main elements of diagrams are
events (depicted by circles), activities (rounded rectangles) and gates (diamonds)
for exclusive, conjunctive, disjunctive or event-controlled split or join. Business
processes representing roles may exchange messages (dotted arrow) with other
roles.

BPMN is a language that supports business process developers in a positive
way, yet hinders them at the same time; the “principle of linguistic relativity” [37]
postulates that actors skilled in a language may not have a (deep) understanding of
some concepts of other languages.

Processes are built by separation of the specification into workflow process
and workflow process instances. A singleton isolatable process instance is bound
to its control token. Inter-process collaboration is supported exclusively through
messages and events. Resource dependence is hidden. Swimlanes correspond to
different roles of users. Pools are used for views on process sets. Nodes in a diagram
are separated into activity, event and control flow (called gates) nodes. Events are

Codesign of Web Information Systems 309

either boundary (start, end) or intermediate events. Tasks comprehend only some
of possible executions (f Service, User, Receive, Send, Script, Manual, Reference,
None g). The rigid localisation in diagrams imposes context sensitivity of functions,
avalanches of side constraints, none-incremental semantics (e.g. goto jumps) and
resulting orchestration problems.

2.8 Views in the Local-As-View Approach

The HERM schema can be used to define views, e.g. the view schema in Fig. 5.
A singleton view is defined by a query that maps the HERM schema to new types.
Combined views also may be considered which consist of singleton views which
together form another HERM schema.

A view schema3 is specified over a HERM schema D by a schema V D
fS1; : : : ; Smg, an auxiliary schema A and a (complex) query q W D � A ! V
defined on D and A. Given a database DC and the auxiliary database AC , the view
is defined by q.DC � AC /.

Event

eventID, kind, title,
category, location,

[organiser], [contact]
age restrictions,

[highlight]

{ eventID }
{ kind, title, category,
location, organiser}

at

(1,1) (0,n)

Location

eventID, kind,
location, map,

address(...),
reachable(),

presentation()

{ name, kind }

during

(1,n) (0,n)

OpeningHours

OpID, kind, weekday,
from, till

{ OpID, kind, weekday, from }

sch at
(1,1)

(0,n)

Schedule

SID, date,
from, till

status

{ SID, date, from }

of
(1,1)

(0,n)

Category

category,
kind, priority

{ category, kind }
on

(0,1)

(1,1)
Event (ext)

eventID, comment,
description, admission,

openAir, visitor#,
transport, booking,

url, additional

{ eventId }

by

(0,1)

(0,n)

Organizer

orgName, kind, address(),
contact(), info, url, ticketCode

{ orgName, kind }

for
(0,n) (1,1)

Pricing

sellID, class,
price, euro

{sellID, class}
info

(0,1)
(0,n)

InformationPoint

infoPName, kind,
[contactTime()],

address(), [email],
person(), info, [url,]

[ticketInfo], [addInfo]

{ infoPName, kind }

Fig. 5 View schema defined on the schema in Fig. 3

3Views are typically defined as a schema. This extension of the relational approach where views
are single-table views is necessary for the maintenance of coherence within a view.

310 B. Thalheim and K.-D. Schewe

Views can be inductively defined on the schemata generated so far. Thus, view
towers may be defined. View towers support the reuse of views within other view
definitions. Typical views in a view tower are:

1. Security views for database protection
2. Viewpoint views
3. Data manipulation views and data retrieval views

A view tower is a suite of views that are inductively defined. A first-layer view
is defined on the database schema. An (i+1)-layer view is defined on views of
lower layers and on the database schema. The view definition is enhanced by a
maintenance policy. Views can be materialised and enhanced by functions.

Views can have redundant elements, e.g. the attribute eventID. In Fig. 5, we also
use two different keys for the type Event. A view suite consists of a set of views,
an integration or association schema and obligations requiring maintenance of the
association. The integration is defined over the view schemata. Obligations are based
on the master-slave paradigm, i.e. the state of the view suite classes is changed
whenever an appropriate part of the database is changed. Views are used to deliver
content to the user.

Additionally, views should support services. Services request information and
features from the service provider. The classical approach links information to
content and features to functions. We generalise the view schema by the frame for
content and functions:
generate MAPPING : VARS ! OUTPUT STRUCTURE

from DATABASE TYPES
where SELECTION CONDITION

represent using GENERAL PRESENTATION STYLE

& ABSTRACTION (GRANULARITY, MEASURE, PRECISION)
& ORDERS WITHIN THE PRESENTATION & POINTS OF VIEW

& HIERARCHICAL REPRESENTATIONS & SEPARATION
browsing definition CONDITION & NAVIGATION

functions SEARCH FUNCTIONS & EXPORT FUNCTIONS & INPUT FUNCTIONS

& SESSION FUNCTIONS & MARKING FUNCTIONS

These generalised view schemata are the basis for service specification [1] (see
Fig. 6). They can be decomposed to relational views and are thus supported by
(object-)relational technology. We may develop retrieval views and data mainte-
nance views as well as security views. Additionally, auxiliary views are used for
support of insert, delete and update functions for those views that are not directly
updateable.

Con-text User

Life Case Task

Service Information

Feature

Service interface
Content Data-

base

ProcedureFunction

Fig. 6 Service architectures for Web information systems

Codesign of Web Information Systems 311

3 Codesign of Socio-Technical Systems: Database Services
in the Task-Centred Approach

The design of information systems is often system-centric. Such systems tend to
be unserviceable, non-parsimonious, overly complex and require learning efforts
from the user. Instead, a user seeks information. The notion of information is often
given in a syntactic (e.g. entropy based), semantic (e.g. non-derivable data) or
business-oriented (e.g. useful data) form. However, we prefer the anthropomorphic
(or pragmatic) notion of the concept of information: Information as processed by
humans, is

• data perceived or noticed, selected and organised by its receiver,
• because of his/her subjective human interests,
• originating from his/her instincts, feelings, experience, intuition, common sense,

values, beliefs, personal knowledge, or wisdom
• simultaneously processed by his/her cognitive and mental processes, and
• seamlessly integrated in his recallable knowledge.

An information system is thus based on a database system that provides the data to
the user. These data are views on the databases.

This notion makes it possible to specify the information demand of a user. The
information demand of a user depends on the tasks the user has to perform and on
the skills and abilities of users, i.e. user portfolio and user profile. The user thus
demands data in the right form, the right format and the right size and structuring,
at the right moment and in dependence on user’s tasks and circumstances. The
activity demand of a user also depends on the portfolio of a user, i.e. on a space
of tasks the user has to perform or may perform, on the corresponding obligations
and permissions and on the roles the user is playing in his/her world.

Figure 6 displays the “Janus” head of socio-technical systems. The user world is
driven by life cases, tasks and context. The information system world is composed
of a database system, on views defined on top of the database, on procedures which
are supported by the database management system and on functions which support
the user work. The service interface is the mediating connector that allows the user
to satisfy his/her information and activity demand. This demand depends on the
support needed, e.g. for workplace and workspace requested, for data consumed
or produced by the user and for the environment and context of the user. The user
is characterised by a profile, e.g. the work profile, the education profile and the
personality profile.

The mediating service can be supported by media objects which are specified
through media types [24]. They provide the content and functions in such a form
that information and features of a service directly be associated with the content
and the functions.

312 B. Thalheim and K.-D. Schewe

3.1 Application- and User-Driven Design of Systems

Users need information systems to provide a solution for their tasks in dependence
on their life cases. Therefore, we characterise the user viewpoint by a profile of
the user, by a task portfolio and by their life cases in Fig. 6. For task completion,
users need the right kind of data, at the right time, in the right granularity and format,
unabridged and within the frame agreed upon in advance. Moreover, users are bound
by their ability to verbalise and digest data and their habits, practices and cultural
environment. To avoid intellectual overburdening of users, we must first observe
real applications before the system development leading to life cases [29]. Life cases
specify the concrete life situation of the user and thus characterise a bundle of tasks
that the user should solve. Syntax and semantics of life cases have already been well
explored in [26].

User modelling is based on the specification of user profiles that address the
characterisation of the users and the specification of user portfolios that describe
the users’ tasks and their involvement and collaboration on the basis of the mission
of the Web information system [26].

To characterise the users of a Web information system, we distinguish between
education, work and personality profiles. The education profile contains properties
that the users can obtain by education or training. Capabilities and application
information which have come about as a result of educational activities are also
suitable for this profile. Properties will be assigned to the work profile if they can
be associated with task solving information and skills in the application area, i.e.
task expertise and experience as well as system experience. Another part of a work
profile is the interaction profile of a user, which is determined by the frequency,
intensity and style of utilisation of his/her Web information system. The personality
profile characterises the general properties and preferences of a user. General
properties are the status in the enterprise, community, etc., and the psychological and
sensory properties like hearing, motor control, information processing and anxiety.

A portfolio is determined by responsibilities and is based on a number of targets.
Therefore, the actor portfolio (referring to actors as groups of users with similar
behaviour) within an application is based on a set of tasks assigned to or intended
by an actor and for which she/he has the authority and control and a description of
involvement within the task solution [27]. A task as a piece of work is characterised
by a problem statement, initial and target states, collaboration and presupposed
profiles, auxiliary conditions and means for task completion. Tasks may consist of
subtasks. Moreover, the task execution model defines what, when, how, by whom
and with which data a task can be accomplished. The result of executing a task
should present the final state as well as the satisfaction of target conditions.

Codesign of Web Information Systems 313

3.2 Services that Satisfy the User Demand

Although services are developed, used, applied and intensively discussed in modern
practice, the concept of an information service has not yet been introduced. Services
are artefacts that can be utilised by many users in different contexts at different
points of time in different locations and serve a certain purpose. This notion
generalises the REA (resource-event-agent) framework. A service system can be
specified [6] through the classical rhetorical frame introduced by Hermagoras
of Temnos [quis, quid, quando, ubi, cur, quem ad modum, quibus adminiculis
(W7: who, what, when, where, why, in what way, by what means)]. Services
are primarily characterised by W4: wherefore (end), whereof (source), wherewith
(supporting means) and worthiness [(surplus) value]. Additionally, the purpose can
be characterised by answering the why, whereto, when and for which reason W4
questions. The secondary characterisation W14H is given by characterising the user
or stakeholder (by whom, to whom, whichever), the application domain (wherein,
where, for what, wherefrom, whence, what), the solution they are providing
(how, why, whereto, when, for which reason) and the additional context (whereat,
whereabout, whither, when).

An information service provides information and features. Features allow the
user to use the data in the specific form and activity. Typical features are navigation,
structuring, query/answer interfaces, export/import support, sessions and marking.
The service interface is thus the mediator between the user and the system worlds.

3.3 Task-Centred Development for Database Systems
as a Service

Information systems support a large variety of users that have different educational,
work and personality profiles. These users perform tasks in dependence on their life
cases. These tasks can be specified as goal- or purpose-oriented actions. Tasks can
be structured into subtasks that are restricted by conditions, data and context, e.g.
organisations, policies, environment and channel. Tasks form the portfolio of a user.

Task specification is usage centred. Description of tasks includes identifying
essential user and business purposes, understanding targeted users by roles in
relation to site, understanding tasks in terms of user intentions and needs, prioritising
user roles and user tasks in terms of expected frequency and business importance
and engineering the design of a technical system to fit user and business priorities.
Therefore, participatory design relates tasks to services.

Modern information system engineering uses the triptych consisting of the
application domain description, the requirements prescriptions and finally the
systems specifications [4, 13]. The main methods for application domain description
are life case specification, intention description, profile and portfolio description and
sufficient understanding of context. It describes the application domain as it is or

314 B. Thalheim and K.-D. Schewe

as it should be without any reference to systems. The database system serves as a
service in the task-centred approach.

3.4 Database and Knowledge Base Systems that Support
Services

A database system that supports services supports the user by views on the data
in the database and by functions. These views deliver information to the user
and accept the data of the user. Functions support the features requested by the
user. Functions can be complex and are in this case small database programs,
i.e. procedures defined in the database management system languages. Views are
typically based on queries defined on the database system.

The views and the functions are combined into the media object. In a nutshell, a
media object is defined by an extended view on some underlying database, which
can then serve for provision of information and features of an elementary scene.
Media objects are defined over media types and can be combined into containers
that deliver or stream them to the user within a Web playout system.

The database system may consist of several database systems. This combination
is necessary whenever a monolithic system cannot be developed. The infotainment
system in Fig. 7 delivers information to visitors, inhabitants and interested users.

Educational
institutes

events

Restaurant

Minor art events

Community
& leisuregroups

Sporting events Traffic about 25 other
collaboration

DBS

City administration
events

Big events

Forum &
discussioncorner

Inject
Book

Response
Information logistics

Web Information Systems
Infrastructure Management

Fig. 7 The architecture of a database system providing views and functions for infotainment sites

Codesign of Web Information Systems 315

Infotainment systems are one kind of Web information systems. They are more
information intensive and mainly support information services. Identity websites
are another type of a Web information system that is typically less information
intensive. Community, edutainment and e-business Web information systems satisfy
the activity demand of a user as well.

4 Codesign of Distributed Database Systems:
The Global-As-View Approach to Collaboration

Specification of distribution has been neglected for a long period of time. Instead
of explicit specification of distribution, multi-database systems and federated
database systems have been extensively discussed in the literature. On the other
hand, database research has succeeded in developing approaches that incorporate
conceptual specification and allow to reason on systems at a far higher abstraction
level. With the advent of Web information systems, systems became naturally
distributed.

The information society changed with the advent of the Web. Nowadays,
applications have become highly distributed. In the past, systems were developed on
the whole on the basis of paradigms of programming in the large. This approach still
considers systems to be holistic. Monolithic programming is going to be changed to
programming in the Web:

– Flexible, scalable and adaptable communication with a variety of protocols and
exchange frames

– Runtime coordination of cooperating partners based on contracts, obligations,
permissions and tolerated deviations

– Exclusive or shared database components
– Separation agreement for input capsules, output capsules and untouchables
– Exchange architectures for collaboration depending on policy, profile, pattern

and style

4.1 Collaboration of Distributed Systems

Distributed systems use services of local database. These services are defined by
views on the local database systems. They provide their own data and functionality.
These systems collaborate. Collaboration can be specified in the 3C approach by
their three aspects (3C framework):

Communication is defined via exchange of messages and information or classically
defined via services and protocols [17]. It depends on the choice of media,
transmission modes, meta-information, conversation structure and paths and on
the restriction policy.

316 B. Thalheim and K.-D. Schewe

Coordination is specified via management of individuals and their activities and
resources. It is the dominating perspective of collaboration. The specification is
based on the pre-/post-articulation of tasks and on the description management
of tasks, objects and time. Coordination may be based on loosely or tightly
integrated activities and may be enabled, forced or blocked.

Cooperation is the production taking place on a shared space. It can be considered
as the workflow or life case perspective. We may use a specification based on
storyboard-based interaction [30] that is mapped to (generic and structured)
workflows. The information exchange is based on media types for production,
manipulation and organisation of contributions.

The collaboration style is based on four components describing:

Supporting programs of the information system including session management,
user management and payment or billing systems

Data access pattern for data release through the net, e.g. broadcast or P2P, for
sharing of resources either based on transaction, consensus and recovery models
or based on replication with fault management, and for remote access including
scheduling of access

The style of collaboration on the basis of peer-to-peer models or component mod-
els or push-event models which restrict possible communication

The coordination workflows describing the interplay among parties, discourse
types, name space mappings and rules for collaboration

Collaboration pattern supports access and configuration (wrapper facade, com-
ponent configuration, interceptor, extension interface), event processing (reac-
tor, proactor, asynchronous completion token, accept connector), synchronisation
(scoped locking, strategic locking, thread-safe interface, double-checked locking
optimisation) and parallel execution (active object, monitor object, half-sync/half-
async, leader/followers, thread-specific storage):

Proxy collaboration, which uses partial system copies (remote proxy, protection
proxy, cache proxy, synchronisation proxy, etc.).

Broker collaboration, which supports coordination of communication either
directly, through message passing, based on trading paradigms, by adapter-
broker systems or callback-broker systems.

Master/slave collaboration, which uses tight replication in various application sce-
narios (fault tolerance, parallel execution, precision improvement, as processes,
threads, with(out) coordination).

Client/dispatcher collaboration, based on name spaces and mappings.
Publisher/subscriber collaboration, also known as the observer-dependent

paradigm. It may use active subscribers or passive ones. Subscribers have
their subscription profile.

Model/view/controller collaboration, similar to the three-layer architecture of
database systems. Views (see Sect. 2.8) and controllers define the interfaces.

Codesign of Web Information Systems 317

4.2 Architectures for Distribution

A number of architectures have already been proposed in the past for massively
distributed and collaborating systems. In the sequel, we use the 3C (or 3K) model
for specification of distribution and collaboration. Collaboration will be supported
on the basis of exchange frames and information service [20]. The first specify
dissemination, e.g. announcement, volume, time and protocols. The latter are used
for specification of the information service with extraction, transformation, load
and representation. Such distributed services are based on classical communication
facilities such as routing, e.g. P2P (as in the case with query based network
propagation), such as large nets, and partially closed subnets and propagation.

4.3 Coordination Specification and Contracts

Communication and cooperation is nicely supported in the classical setting by com-
munication systems and workflow systems. Coordination specification is, however,
still a research problem. Coordination supports the consistency of work products
and of work progress and is supported by an explicitly specified coordinator. If
work history is of interest, a version manager is integrated into the exchange
support system. The coordination is supported by an infrastructure component. The
coordination component observes modification of data that are of common interest
to collaborating parties and resolves potential conflicts. The conflict resolution
strategy is based on a cooperation contract. The contract is global to all parties and
may contain extensions for peer-to-peer collaboration of some of the parties.

The coordinator is based on description of contracts. They describe who collab-
orates with whom, who supports it, in which scenario or story on which topic and
on which (juridical) basis. Coordination is based on a coordination contract. The
contract consists of:

– The coordination party characterisation and their roles, rights and relations;
– The organisation frames of coordination specifying the time and schema, the

synchronisation frame, the coordination workflow frame and the task distribution
frame;

– The context of coordination;
– The quality requirements (ubiquity, security, interpretability, consistency, view

consistency, scalability, durability, robustness, performance) for coordination.

We can distinguish four levels of coordination specification. The syntactical
level uses an interface description language (IDL) description and may use coor-
dination constructs of programming languages. We use constructs of the JDL (job
description language) for this description of resources, obligations, permissions and
restrictions. The behaviour level specifies failure-atomicity, execution-atomicity,
pre, rely, guarantee and post conditions and preconditions. The synchronisation level

318 B. Thalheim and K.-D. Schewe

specifies service object synchronisation and paths and maintains a synchronisation
counter or monitor. The fourth level specifies a quality of services level. The
coordination profile is specified by a coordination contract, coordination workspace,
synchronisation profile, coordination workflow and task distribution.

We distinguish between the frame for coordination and the actual coordination.
Any actual coordination is an instance of the frame. Additionally, it uses an
infrastructure. The contract specifies the general properties of coordination. Several
variants of coordination may be proposed. The formation of a coordination may be
based on a specific infrastructure. For instance, the washer may provide a workspace
and additional functionality to the collaborating parties.

4.4 Exchange Frames for Distribution

Exchange frames might by specified through the triple
(architecture, collaboration style, collaboration pattern).

The exchange architecture usually provides a system architecture integrating the
information systems through communication and exchange systems. The collab-
oration style specifies the supporting programs, the style of cooperation and the
coordination facilities. The collaboration pattern specifies the roles of the parties
and their responsibilities and rights and the protocols that they may rely on.
Distributed database systems are based on local database systems and follow a
certain integration strategy. Integration is based on total integration of the local
conceptual schemata into a global distribution schema.

Figure 7 illustrates an architecture of a distributed database system. It uses
local databases with export facilities as masters in a publish-subscribe collaboration
pattern, a master database as the central kernel for information delivery to different
users, for customer management and for integrated information display to different
users in an infotainment website.

Besides the classical distributed system, we support also other architectures
such as database farms in Fig. 8, incremental information system societies and
cooperating information systems. Incremental information system societies are the
basis for facility management systems. Simple incremental information systems are
data warehouses and content management systems. The exchange architecture may
include the workplace of the client describing the parties, groups or organisations,
roles and rights of parties within a group, the task portfolio and the organisation of
the collaboration, communication and cooperation.

With the advent of Web information systems, we face the heterogeneity trap:
presentation systems of users follow a completely different paradigm and system
culture. We thus have to extend architectures and exchange frames and services for
such systems.

Codesign of Web Information Systems 319

Local
DBS

Farm
container
system

Filter and
transfor-
mation
system

System A

Local
applications

User
interface

Local users of A

Global
communication

and farming
system

User
interface

Global users

Local
DBS

Farm
container
system

System B

Filter and
transfor-
mation
system

Local
applications

User
interface

Local user of B

Fig. 8 An architecture of database systems farm

5 Storyboarding for Presentation Systems:
The Usage-Driven Approach

Web information systems must support life cases for a variety of users. These life
cases are typically combined into application stories that describe how a system
is supposed to be used. Naturally, a conceptual model for application stories must
be centred around the users: what do they do and what for. The conceptual model
of storyboarding (e.g. see [25]) takes this up by providing an integrated model
comprising the story space capturing the stories and the plot, actors and tasks.
Inspired by approaches in theatre and film, the story space comprises scenes and
actions on these scenes, and the plot describes the details of the action scheme.
Furthermore, the model describes actors in these scenes, i.e. groups of users, which
leads to roles, profiles, goals, preferences, obligations and rights. The actors are
linked to the story space by the means of tasks.

5.1 The Story Space in the Codesign Approach

The story space consists of a well-integrated set of stories and can be modelled by
many-dimensional (multilayered) graphs. A story is a run through the story space by
a collaboration of users. Typically, each user wants something different; the playout
environments can be extremely different; the cultures are distinct; users require a
flexible and dynamic adaptation of the system; and they require information and
features in a varying granularity. Users may be grouped by the tasks they perform,
their profile and their life cases. Such groups are called actors.

A story is composed of scenes. Each scene belongs to a general activity. Scenes
combine actions of actors into a plot. A scene supports enabled actors. Its usage in a

320 B. Thalheim and K.-D. Schewe

story is controlled by preconditions for entering the scene, by accepting conditions
for leaving the scene and by events that opens the scene. Basic dialogue scenes
may be combined into a complex dialogue scene based on algebraic operations �
(choice), k (parallel execution), I (sequential execution) and .:/� (iteration). We may
derive extended operations such as simple iteration .:/C and optional execution
�skip. We represent basic dialogue scenes with ellipses. The transitions among
dialogue scenes are represented by curves. The story space thus consists of dialogue
scenes, their control, actors either involved in the story space or enabled for specific
scenes, contexts, tasks and transitions among scenes.

Figure 9 depicts the general structure of story spaces. Codesign of information
systems relates the story space and the scenes to the data and the functions provided
by the database system. Additionally, a user produces data that are transferred to
the database system. These data and functions are given on the basis of media
objects [24]. The service interface is typically following specific representation
styles. These styles allow to derive the presentation layout and playout (see Fig. 2)
in the screenography approach [22]. The layout is based on principles of visual
communication, cognition and design.

The story space combines many different stories. The concrete deployment of
a Web information system by users is a view on this story space, i.e. a scenario
or path in this space for the given user by abstracting from those scenes for which
the user is enabled. Story spaces might be complex for e-business, infotainment
(also called information site), edutainment (also called e-learning site), identity and
collaboration (also called community) Web information systems.

dialogue
scene

next
dialogue

scene

provided data

supplied
function

produced
data

enabled actor

control(event,preCondition,acceptCondition)

to story space
transition according to

story space graph in the co-design approach

involved
actors

story scene
sequence

media
object

representation
style

context,
task

Fig. 9 Codesign of stories (through dialogue scene, their control, involved actors, context, tasks
and transitions among scenes), services (information and features), media objects (provided and
produced data and functions) and guideline for the presentation system

Codesign of Web Information Systems 321

Fig. 10 Cutout of the story space for infotainment sites

For instance, the story space in infotainment contains the editing story. Figure 10
combines the stories of the editor, the author of some data, the administrator of the
website and others. Depending on the role that a user plays, the scenario includes
scenes such as content management, release of contributions or mailbox requests.
The workflow in Fig. 4 is the realisation of such user activities, e.g. in the role of an
editor who handles the release of contributions.

5.2 Media Types and Object for Information-Intensive Systems

The classical service-oriented approach in Fig. 6 is based on a mediator between
the user and the technical side. Services satisfy the information and activity demand
of users by linking information and features to content and functions. However, if
we consider information-intensive services, then we extend the technical system
with media types. In this case, the technical system does not require a mediating
system. Instead, a user calls media objects. The architecture displayed in Fig. 11
neatly supports e-business, edutainment, infotainment, community and identity Web
information systems based on classical Web technologies.

322 B. Thalheim and K.-D. Schewe

Context User

Life Case Task

Society Knowledge

Content Database

ProcedureFunction

Media Object

Algebra
Analysis

Fig. 11 Media objects for information-intensive systems

5.3 The Onion Approach to Website Realisation

The onion approach [35] to website layout and playout allows the generation of
website functions and views for a Web information system. On the outer layer,
the presentation facilities may be introduced. Typical functions are style and
context functions. Containers that contain the media objects are mapped to the
information and the features that users request. Views may be materialised. If they
are materialised, then the view handler provides an automatic refreshment support.
Thus, we can use the onion system architecture displayed in Fig. 12. This layering
is nicely supported by XML infrastructures. The database system view data and
functions are represented by an XML document suite. The media object onion is
generated by eXtensible Stylesheet Language (XSLT) rules. Such rules can easily
be developed for the containers and finally for the scenes in a scenario. Current
database management systems such as DB2 neatly support this approach. XML
objects are specified by Document Type Definition (DTD) and Dynamic Access
Control (DAC) in DB2. We thus implemented the onion approach based on XML
transformations in a form depicted in Fig. 13.

This transformation approach has already been used in the DaMiT project [3]
and implements an XML suite on top of the relational DBMS DB2. The extended
ER model [32] provides a better approach to XML suite generation than relational
models or the classical ER model for a number of reasons:

– Structures can be defined already in complex nested formats.
– Types of higher order are supported.
– The model uses cardinality constraints with participation semantics.

We observe further that well-structured XML may be considered to be a restricted
form of HERM:

– XML schema and XForms are suited for defining hierarchical extracts of HERM.
– HERM specialisation is based on type specialisation.
– Unary cardinality constraints are supported. If more complex constraints are

required, we may use vertical decomposition approaches.
– Variants of Web objects may be referenced by an annotated XTML Document

Navigation Language (XDNL) approach.

Codesign of Web Information Systems 323

presentation engine XML scene onion

actor profiles, profile adaptation, equipment adaptation,
channel adaptation, decomposer, style extension

container engine container onion

services packages, wrapping functions,
dialogue scene and scenario functions

media object engine media object onion

survey, landmark, indexing, I/O,
navigation, integration etc. functions

view handler XML suite

virtual ∨ materialised views
data modification ∨ retrieval views

DBS

...

DBMS

Fig. 12 The onion approach to stepwise generation of XML-based sites

conceptual
representation

abstract XML
representation

XML implementation
on top of DB2

dynamic scene
object

XML scene
onion

reflective
adaptations

container

media
object

meta
functions

views

functions =⇒

=⇒

=⇒

→

→

→

→

→

database
schema (HERM)

functors
for XSLT

functors
for XSLT

container
onion

media object
onion

XML
suite

DTD

functors
for XSLT

functors
for XSLT

enriched
XML suite

enriched
XML suite

enriched
XML suite

XML
documents

DAC
for DB2 access

Fig. 13 The general procedure for translation from SiteLang to XML

324 B. Thalheim and K.-D. Schewe

Therefore, suites of restricted XML documents may be understood as object-
oriented hierarchical database. If documents are reused by other documents, we
associate them via XDNL variants.

Translation of HERM schemata to DTD can be based on a number of approaches
which are similar to the translation approaches used for transformation of schemata
to hierarchical database schemata:

Full type separation: each entity, relationship and cluster type is represented by
their own <!ELEMENT ..> representation. All entity types have an ID which
is used through IDREF by other types.

Small star schema representation: the central type of a star schema is represented
by its own <!ELEMENT ..> representation which uses components for asso-
ciation to other central types. Star associations to other types are represented
through attribute lists and the IDREF #REQUIRED data type.

We observe that the translation is not semantics preserving. All referential con-
straints must be maintained through application programs.

5.4 Transformation of Web Information Systems

The codesign approach is based on the higher-order entity-relationship model.
However, most Web information systems use XML infrastructures for the layout
and playout. Therefore, the transformation of database schemata is enhanced
with additional elements of the storyboard and by the distribution specification.
XML transformation [15, 32] generalises the transformation of ER schemata to
hierarchical database schemata. Additionally, the transformation is based on a
selection of XML tactics [16], e.g. salami slice or Russian doll schema kinds.
Furthermore, the IDRef attribute value allows the introduction of the concept of the
shadow type similar to the Conference on Data Systems Languages (CODASYL)
approach. There is no need to delve into detail here as they are already well known.
There are, however, some specific elements of the transformation process which
need a more detailed description.

Our approach to transformation generalises compiler techniques. A typical
configuration of a compiler uses directives. These directives can directly be mapped
to the supporting hardware and software. In the case of Web information systems,
such directives are pattern for content organisation pattern, for content presentation,
for navigation, for exploration and for search and retrieval.

5.4.1 Deriving the Content Organisation Schema

Content must be provided in a form that each user is able to browse or to zap
through, depending on the information and activity demand. The user profile also
contains rules concerning the preferred order of the given user, what content

Codesign of Web Information Systems 325

presentation is the most appropriate for what personality and what data have already
been given during the scenario that the user has already completed. Therefore, we
add to the content schema ordering decisions depending on ordering criteria, on
classification schemata that are available and on ordering imposed by the story
space.

5.4.2 Deriving the Content Presentation Structure

Content presentation is often organised in a linear and sequential form following
the reading style of the user community that is under consideration. Users have
their personality profile. It allows derivation of the preferences for reading data,
e.g. texts. The Web supports other presentation structures, such as hierarchical or
hypermedia structures. Hierarchical structures are easy to develop and difficult to
use whenever data sets become larger. Hypermedia structures are highly flexible.
There is, however, a risk of lost orientation. Therefore, they require a more
sophisticated browsing, zapping and navigating support.

Content presentation must take into consideration parsimony and other quality
of use characteristics. It is a challenging task for a user to scroll through a Web
page and to remember all of those date which are out of the screen due to scrolling.
Therefore, we need to apply techniques that allow the user to see data together with
their associated data. The best metaphor for infotainment content presentation seems
to be the concertina-type cover.

5.4.3 Deriving the Navigation Structure

A website must support users in the space of the website. The simplest technique
for orientation in a website is navigation. We distinguish hierarchical navigation
based on the tree paradigm, global navigation within a Web space based on vertical
or horizontal walks in this space, local navigation that extends global navigation
in a subspace of the Web space and ad hoc navigation via meaningful anchors
and hyperlinks. Navigation aids are explicit maps throughout the Web space,
indexing and cataloguing schemata, headers and teasers, adaptable guided tours and
meaningful anchors and icons.

5.4.4 Extending Navigation by Exploration Techniques

Users may be supported for navigation by corresponding exploration techniques
of the Web space. Typical exploration techniques are fish-eye viewing techniques
(3D-fish-eye, adorned fish-eye, filtered fish-eye), transformation techniques [radial
(locally or globally), orthogonal (locally or globally), three-dimensional (implicitly
or explicitly)], zoom techniques, nonlinear techniques (e.g. with the focus point or
with multipoint hyperbolic planes) and adoption techniques based on the relevance
or importance of the content.

326 B. Thalheim and K.-D. Schewe

5.4.5 Extending by Retrieval and Search Features

Information-intensive WIS must be supported by sophisticated retrieval and search
feature for all the seven kinds of search (querying by queries; seeking for data
by browsing, understanding and refining; property-based questioning; ferreting
out data necessary by discovering; searching by associations and drilling down;
casting about and digging into the data; zapping through data sets based on search
techniques, e.g. uninformed search). If the size of the data is rather small, then
classical querying approaches do not fit. In this case, retrieval is better provided by
exploration techniques. If the data in the databases are not frequently changed and
the Web information system is traffic intensive, then all potential retrieval features
may be supplied by preprepared materialised or well-indexed data marts.

Additionally, the user language may not match with the interpretation of the WIS,
e.g. for quantifiers, connectives and open-world questions. Therefore, the semantic
space of the user should be mapped to the formal semantic space of the WIS.
Furthermore, users need feedback and metadata on the quality of the delivered data.
Finally, the presentation of search results can be based on text reading approaches
(e.g. Google) or on mind map techniques (e.g. KartOO).

5.5 Mapping of the Website Specification to Business Layer
Models

Business use cases [21] are constructed for business processes as bird’s-eye views
of desired business and system behaviour. They correspond to system features.
Business use cases are turned into use cases during requirements analysis. Actors are
external, i.e. passive with regard to use cases. However, use cases reflect concerns
of system construction, e.g. inheritance of functionality and data (“extends”) or
composition (“uses”) (Fig. 14).

Actor ContextLife cases

Stories Business
use cases Portfolio

Storyboard Non-functional
requirements

Functional
requirements

Requirements prescription

Persona Platform

Fig. 14 The use of application domain information for requirements elicitation and analysis

Codesign of Web Information Systems 327

We embed our specification approach into classical software engineering
approaches that use application domain description, requirements prescription
and software specification as three different concerns in the system development
triptych [4]. The starting point in our codesign framework is the users or a group
of users with a similar profile and task portfolio (called actors), their life cases and
their context, e.g. the platform to be used. Life cases are the basis for a number
of stories, a set of business use cases and a portfolio that supports all tasks of
users.

Classical requirements prescription is distinguished between functional and
nonfunctional requirements. These requirements do not capture the flow of actions
that a user performs. Later, business rules and business workflows are added. In most
cases, they are unrelated to the user stories. They are developed on their own. In our
approach, however, we use stories that are already developed and and combine
these stories into a storyboard. This storyboard can be associated with workflows.
A scenario can be supported by several workflows and a workflow can support
several scenes of a scenario.

5.6 Web Page Extraction

Our approach also allows direct extraction of the Web page which supports the basic
scenes. Let us consider the login scene in Fig. 10. Users may play the role of the
actors, editor, author, main editor or administrator.

A Web page carries four aspects: the actors, the topic of the page, the media
objects and the restrictions, especially the time restrictions. These four aspects
are interrelated. Actors are supported in their work by the media objects both for
private use (e.g. workspace, unfinished contributions and their personal workspace)
and collaboration use (e.g. shared contributions). One specific media object is
the personal working room media object. It generalises the concept of a session.
The work of an actor is governed by the intention and the tasks which must
be completed. We combine intention and tasks into the topic of the page. The
topic is related to the constraints and restrictions, e.g. time restrictions for the
completion of a contribution depending on deadlines and phases within the editing
activities. The login Web page is supported by media objects, e.g. editing media
objects. Figure 15 shows a diamond representation of the four aspects with their
associations.

328 B. Thalheim and K.-D. Schewe

Infotainment site
editing team member

Editing media objects

Page

restrictions

Prepare to contribute

Intention
Support infotainment site update

Tasks
Submit contribution

Functions

Download contribution of team member

Select next
Change contribution

Browse contributions

Content
Contribution

Room
media object Data at work

Membership

Submit solution
Role, responsibility Time restrictions, schedule

Deadline

Phase

Support Existence, lifespan

Shared
Shared contributions

PrivateWorkspace
Personal storage

Proposals so far

Fig. 15 Aspects to be supported by a Web page during editing in infotainment

5.7 Configuration of the Web Page to User Context
by Containers

Users, e.g. visitors of a website, may use a large variety of media ranging from small
display media such as WAP displays to middle display media such as smartphone
interfaces to full screens. We thus need a way to deliver the content and the functions
to the user in such a form that the layout is adapted to the current interface.

Most websites that adapt to the user develop different pages for each kind
of screen that they support. Since this kind of duplication is laborious, time
consuming and error sensitive, websites have lately been limited to specific browsers
and interfaces. However, the theory of media types allows the use of a different
approach. Each scene is supported by a number of media objects. These media
objects are innerly structured. Therefore, they can be decomposed into several views
on top of these objects in dependence on the interface context.

Containers [7] are media objects that support content shipping, parametrisation
of presentation and context adaptation. They are used for transfer of information to
users according to their current demand and the corresponding dialogue scene. Size
and presentation of containers depend on the restrictions of the user’s environment.
Containers are obtained by adding functions for adaptation and unloading. Scene
media objects are specialisations of containers by adaption of the container to the
user (profile), the environment and the history. The adaptation of the media object to
the current context is based on measure rules which support translation of different

Codesign of Web Information Systems 329

scales, ordering rules for ordering of components in the container, adhesion rules
that maintain coherence of components in a media object and hierarchy meta-rules
similar to OLAP functions.

Let us consider the visit of a user interested in sporting events. This activity is
supported by the media type in Fig. 5. The adhesion of clubs to events is higher
than the one of locations and time to event. Several hierarchies exist such as
the time hierarchy (year, month, week, day, daytime) and the location hierarchy
(region, town, village, quarter, street), the latter one being fanned. Therefore, the
media object has the natural internal land map shown in Fig. 16. Containers may
be extended by dockets which allow tracking of the current usage of the content.
They contain data on the content; on the delivery instruction; on the parameters

The relationship
of containers

supporting users
interested

in sport events

organiser
info

agents,
selling

general
info

add.
info

time
details,
location

meetings

sports
club

...

commercial
provider

...

kinds of
sport

... ...

time
schedule

... ...

sports
organisations

...

sport
events

...

sports
enthusiast

...

interest
in sport

......

...

Cottbus information

...

escort
information
(for“small”
and“middle”
containers)

complete escort
information
(for“small”
and“middle”
containers)

‘‘small’’
container

‘‘middle’’
container

‘‘large’’
container

Fig. 16 The orientation and information containers satisfying interest in sport events

330 B. Thalheim and K.-D. Schewe

of functions for opening the document; on associations to other media objects; on
metadata such as resources, restriction, copyright, roles, distribution policy, etc.; on
the content providers, content reviewers and review evaluators with quality control
policies; on applicable workflows and the current status of completion; and on the
receipt of the document which enable in tracing the media object life cycle. The
overlay structuring of dockets for containers is supported by the onion approach
indicated in Fig. 12.

Media types support a variety of functions such as generalisation, specialisation,
reordering, browsing, sequentialisation, linking, survey, searching and join func-
tions. These functions are also provided by the container.

In Fig. 16, three different kinds of containers are used: small containers for the
most essential and not decomposable components, middle containers with more
elaborated data and full containers for the complete information. We can also
distinguish an orientation container from the information container. The information
container reuses data from the orientation container as escort information.

In the event example, the order is either specified by the scenario in the story
space or by the order of information presentation, e.g. it is assumed that information
on actual sporting events is shown before information on previous sporting events
is given.

6 Conclusion

6.1 From Database Development to Codesign
of Web Information Systems

Database development has mainly been considered as development of database
structuring. Functionality and interactivity specification has been neglected in the
past. The derivability of functionality has been a reason for this restriction of
the database design approach. At the same time, applications and the required
functionality have become more complex. Functionality specification may be based
on workflow engines. Interaction support is often not specified but hidden within
the interfaces. It may, however, be specified through the story space and the
supporting media-type suite. Distributed applications are based on an explicit
specification of import/export views, on services provided and on exchange frames.
The codesign approach aims in bridging all these different aspects of applications
and, additionally, provides a sound methodology for development of all these
aspects.

Codesign of Web Information Systems 331

6.2 Applications and Assessment of the Codesign Methodology

The codesign methodology has been practically applied in a large number of
information system projects and has nevertheless a sound theoretical basis. We do
not want to compete with UML, but we do support system development on a sound
basis without ambiguity, ellipses and conceptual mismatches.

Methodologies must conform both with the SPICE v. 2.0 and SW-CMM v. 2.0
requirements for consistent system development. The codesign framework is based
on a stepwise refinement along the abstraction layers. Since the four aspects
of information systems—structuring, functionality, distribution and interactivity—
are interrelated, they cannot be developed separately. The presented codesign
framework is underpinned by a methodology for stepwise development. It has been
assessed and is testified [8] to be on level 3 in the SPICE framework.

References

1. Amarakoon, S., Dahanayake, A., Thalheim, B.: A framework for modelling medical diagnosis
and decision support services. Int. J. Digit. Inf. Wirel. Commun. 2(4), 7–26 (2012)

2. Beeri, C., Thalheim, B.: Identification as a primitive of database models. In: Proceedings of
FoMLaDO’98, pp. 19–36. Kluwer, London (1999)

3. Binemann-Zdanowicz, A., Kaschek, R., Kuss, T., Schewe, K.-D., Thalheim, B., Tschiedel, B.:
A conceptual view of electronic learning systems. Educ. Inf. Technol. 10, 83–110 (2005)

4. Bjørner, D.: Software Engineering 3: Domains, Requirements, and Software Design. Springer,
Berlin (2006)

5. Chen, P.P.: The entity-relationship model: toward a unified view of data. ACM Trans. Database
Syst. 1(1), 9–36 (1976)

6. Dahanayake, A., Thalheim, B.: A conceptual model for IT service systems. J. Univers.
Comput. Sci. 18(17), 2452–2473 (2012)

7. Feyer, T., Schewe, K.-D., Thalheim, B.:. Conceptual design and development of information
services. In: ER’98, pp. 7–20 (1998)

8. Fiedler, G., Jaakkola, H., Mäkinen, T., Thalheim, B., Varkoi, T.: Application domain
engineering for web information systems supported by SPICE. In: Proceedings of SPICE’07.
IOS Press, Bangkok (2007)

9. Gogolla, M.: An Extended Entity-Relationship Model - Fundamentals and Pragmatics. Lecture
Notes in Computer Science, vol. 767. Springer, Berlin (1994)

10. Hartmann, S.: Reasoning about participation constraints and Chen’s constraints. In: ADC.
CRPIT, vol. 17, pp. 105–113. Australian Computer Society, Sydney (2003)

11. Hartmann, S., Hoffmann, A., Link, S., Schewe, K.-D.: Axiomatizing functional dependencies
in the higher-order entity-relationship model. Inf. Process. Lett. 87(3), 133–137 (2003)

12. Heinrich, L.J.: Informationsmanagement: Planung, Überwachung und Steuerung der Informa-
tionsinfrastruktur. Oldenbourg Verlag, München (1996)

13. Heinrich, L.J., Heinzl, A., Riedl, R.: Wirtschaftsinformatik: Einführung und Grundlegung, 4th
edn. Springer, Berlin (2011)

14. Hohenstein, U.: Formale Semantik eines erweiterten Entity-Relationship-Modells. Teubner,
Stuttgart (1993)

15. Kleiner, C., Lipeck, U.W.: Automatic generation of XML DTDs from conceptual database
schemas. In: GI Jahrestagung (1), pp. 396–405 (2001)

332 B. Thalheim and K.-D. Schewe

16. Klettke, M.: Modellierung, Bewertung und Evolution von XML-Dokumentkollektionen.
Advanced Ph.D. (Habilitation Thesis), Rostock University (2007)

17. König, H.: Protocol Engineering: Prinzip, Beschreibung und Entwicklung von Kommunika-
tionsprotokollen. Teubner, Stuttgart (2003)

18. Levene, M., Loizou, G.: A Guided Tour of Relational Databases and Beyond. Springer, Berlin
(1999)

19. Liddle, S.W., Embley, D.W., Woodfield, S.N.: Cardinality constraints in semantic data models.
Data Knowl. Eng. 11, 235–270 (1993)

20. Lockemann, P.C.: Information system architectures: from art to science. In: Proceedings of
BTW’2003, pp. 1–27. Springer, Berlin (2003)

21. Maciaszek, L.: Requirements Analysis and Design. Addison-Wesley, Harlow (2001)
22. Moritz, T., Noack, R., Schewe, K.-D., Thalheim, B.: Intention-driven screenography. In: ISTA

2007. Lecture Notes in Informatics, vol. 107, pp. 128–139 (2007)
23. Schewe, K.-D.: The specification of data-intensive application systems. Advanced Ph.D.

(Habilitation Thesis), Brandenburg University of Technology at Cottbus (1994)
24. Schewe, K.-D., Thalheim, B.: Structural media types in the development of data-intensive web

information systems. In: Web Information Systems, pp. 34–70. IDEA Group, Hershey (2004)
25. Schewe, K.-D., Thalheim, B.: Conceptual modelling of web information systems. Data Knowl.

Eng. 54, 147–188 (2005)
26. Schewe, K.-D., Thalheim, B.: Usage-based storyboarding for web information systems.

Technical Report 2006-13, Christian Albrechts University Kiel, Institute of Computer Science
and Applied Mathematics, Kiel (2006)

27. Schewe, K.-D., Thalheim, B.: Development of collaboration frameworks for web information
systems. In: 20th International Joint Conference on Artificial Intelligence, Section EMC07
(Evolutionary models of collaboration), Hyderabad, pp. 27–32 (2007)

28. Schewe, K.-D., Thalheim, B.: Life cases: an approach to address pragmatics in the design
of web information systems. In: Filipe, J., Cordeiro, J., Encarnacao, B., Pedrosa, V. (eds.)
Proceedings of WebIST, vol. II (WIA), pp. 5–12 (2007)

29. Schewe, K.-D., Thalheim, B.: Life cases: a kernel element for web information systems
engineering. In: Web Information Systems and Technologies. Lecture Notes in Business
Information Processing, vol. 8, pp. 139–156, Springer, Heidelberg (2008)

30. Srinivasa, S.: An algebra of fixpoints for characterizing interactive behavior of information
systems. Ph.D. thesis, BTU Cottbus (2000)

31. Thalheim, B.: Dependencies in Relational Databases. Teubner, Leipzig (1991)
32. Thalheim, B.: Entity-Relationship Modeling Foundations of Database Technology. Springer,

Berlin (2000)
33. Thalheim, B.: Codesign of structuring, functionality, distribution and interactivity. Aust.

Comput. Sci. Commun. 31(6), 3–12 (2004). Proc. APCCM’2004
34. Thalheim, B.: The enhanced entity-relationship model. In: The Handbook of Conceptual

Modeling: Its Usage and Its Challenges, chapter 12, pp. 165–208. Springer, Berlin (2011)
35. Thalheim, B., Düsterhöft, A.: Sitelang: conceptual modeling of internet sites. In: Kunii, H.S.,

Jajodia, S., Sølvberg, A. (eds.) ER. Lecture Notes in Computer Science, vol. 2224, pp. 179–
192. Springer, Berlin (2001)

36. Weske, M.: Business Process Management: Concept, Language, Architecture. Springer,
Heidelberg (2007)

37. Whorf, B.L.: Lost Generation Theories of Mind, Language, and Religion. Popular Culture
Association. University Microfilms International, Ann Arbor (1980)

	Preface
	Contents
	Contributors
	Formal Modelling and Verification of Transactional Web Service Composition: A Refinement and Proof Approachwith Event-B
	1 Introduction
	2 The Event-B Method
	2.1 Event-B Model
	2.2 Proof Obligation Rules
	2.3 Semantics of Event-B Models

	3 Service Composition Description Languages
	3.1 Overview of BPEL
	3.2 A Case Study

	4 Event-B for Analysing Transactional Web Services
	5 Modelling Scope, Fault and Compensation Handlers
	5.1 Formal Modelling of BPEL (iceccs-2009,sera-2010)
	5.1.1 Static Part
	5.1.2 Dynamic Part

	5.2 An Event-B Model for Scope
	5.3 An Event-B Model for Fault Handler
	5.4 An Event-B Model for Compensation Handler

	6 Use of the Tools
	7 Application to the Case Study
	8 Related Work
	9 Conclusion
	References

	Towards a Model of Services Based on Cocreation, Abstraction and Rights Distribution
	1 Introduction
	2 The REA Ontology and Hohfeld's Classification of Rights
	2.1 Resources
	2.2 Conversion Processes
	2.3 Exchange Processes
	2.4 Hohfeld's Classification of Rights
	2.5 Offerings, Commitments and Contracts

	3 Service Perspectives
	4 Service as a Means for Cocreation
	5 Service as a Means for Abstraction
	6 Service as a Means for Distributing Rights
	6.1 Fulfilling Commitments

	7 Concluding Remarks
	References

	Integrating a Model-Driven Approach and Formal Verification for the Development of Secure Service Applications
	1 Introduction
	2 The SecureMDD Approach
	3 Case Study: Banking
	3.1 Communication Structure
	3.1.1 Components
	3.1.2 Communication Paths
	3.1.3 Threats
	3.1.4 Transport Layer Security

	3.2 Static View of the Banking System
	3.2.1 Classes
	3.2.2 Cryptographic Data Types
	3.2.3 Attributes

	3.3 Dynamic View: Protocols and Behavior
	3.3.1 Protocol for Withdrawing Money
	3.3.2 Details About Protocols in SecureMDD
	3.3.3 Overview over the Handshake Protocol
	3.3.4 Protocol for Money Transfer
	3.3.5 Structuring Protocols

	4 Formal Specification and Verification
	4.1 Overview of the Transformation Process
	4.2 The Static Part: Data Types and Algebraic Specifications
	4.2.1 Data Types
	4.2.2 Dynamic Functions
	4.2.3 Cryptography and the Attacker

	4.3 The Dynamic Part: Abstract State Machine and Traces
	4.4 Transport Layer Security and the Attacker
	4.5 Stateful and Stateless Services as Agents
	4.6 Verification of Security Properties

	5 Automatic Code Generation
	5.1 Services and Service Communication
	5.2 Parallel Service Invocation
	5.3 Transport Layer Security
	5.4 Deployment

	6 Related Work
	6.1 Verification of Cryptographic Protocols
	6.2 Model-Driven Development of Security-Critical Systems
	6.3 Model-Driven Development of Service Applications

	7 Conclusion
	References

	A Formal Model of Client-Cloud Interaction
	1 Introduction
	2 Cloud Computing and Access Control Techniques for Cloud
	2.1 Cloud Computing
	2.2 Access Management in Cloud Computing

	3 Overview of the Client-Cloud Interaction Software System
	3.1 A Cloud Architecture Equipped with Service Plots and a Client-to-Client Interaction Feature
	3.1.1 Client-to-Client Interaction

	3.2 Client-Centric Identity and Access Management in Cloud Computing
	3.2.1 Direct Client-to-Cloud Interaction
	3.2.2 Obfuscated Client-to-Cloud Interaction
	3.2.3 Protocol-Based Client-to-Cloud Interaction

	3.3 Cloud Content Adaptivity
	3.4 Cloudification Case Studies

	4 Preliminaries
	4.1 The Applied Formal Approach
	4.2 Ambient Calculus
	4.3 Ambient ASM
	4.3.1 Moving Ambients

	4.4 Definitions
	4.4.1 Applied Notations
	4.4.2 Nonbasic Capabilities

	5 The Specification of the Cloud Service Architecture Based on Ambient ASM
	5.1 User Actions
	5.2 The Formal Model of the Cloud Architecture
	5.2.1 User Access Layers
	5.2.2 Service Plots

	5.3 Client-to-Client Interaction Feature
	5.3.1 Establishing a New Channel
	5.3.2 Subscribing to a Channel
	5.3.3 Sharing Information via a Channel

	6 The Specification of the Identity Management Machine
	6.1 The IdMM Core Agent
	6.2 The IdMM Client Agent
	6.3 The IdMM Cloud Agent
	6.4 The IdMM User Agent
	6.5 A Proof-of-Concept Implementation

	7 Cloud Content Adaptivity Specification
	7.1 The System Architecture
	7.2 ASM Ground Models
	7.2.1 Display Output Agent
	7.2.2 Receive Request Agent
	7.2.3 Receive and Process Answer Agent
	7.2.4 Filter and Adapt Content Agent

	7.3 The Use of ASM Ground Models

	8 The Problem of Verification
	8.1 Correctness of Web Application
	8.2 Correctness with Respect to Adaptivity

	9 Related Work
	10 Conclusions
	References

	W*H: The Conceptual Model for Services
	1 Introduction
	1.1 The Service Concept
	1.2 Levels of Abstractions
	1.3 IT Service Systems
	1.4 Survey on the Chapter

	2 Service Models and Modelling Approaches
	2.1 The REA (Resource-Event-Agent) Ontology
	2.2 The RSS Model
	2.3 The Model of the Three Perspectives of Services
	2.4 Web Service Description Languages
	2.5 The Seven Contexts of Service Design

	3 Models and Services
	3.1 The Notion of the Model
	3.2 The Purpose of a Service Model
	3.3 The Background, the Community of Practice and the Context of a Service Model
	3.4 Adequacy for Service Models
	3.5 Dependability for Service Models
	3.6 Functioning and Effective Service Models

	4 The Descriptive Framework for Service Models
	4.1 Dimensions of Services
	4.2 The Content Dimension: Services as a Collection of Offerings
	4.3 The Annotation Dimension
	4.4 The Parties in Annotation
	4.5 The Service Activities in Annotation
	4.6 The Concept of a Service
	4.7 The Added Value Dimension

	5 W*H: The Conceptual Model of Services
	5.1 Extending the Rhetorical and the Zachman Frameworks
	5.2 The General Characteristics of Services

	6 W*H : Evaluation and Discussion
	7 Conclusion
	Appendix: Application of W*H Specification Framework
	References

	Monitoring of Client-Cloud Interaction
	1 Introduction
	1.1 Monitoring
	1.1.1 Monitoring Use Cases
	1.1.2 Monitoring of Client-Cloud Interaction

	1.2 Contributions and Structure

	2 Background
	2.1 Dependable Computing
	2.2 Correctness
	2.3 Service Failures
	2.3.1 Origins of Faults
	2.3.2 Fault Management

	2.4 Security
	2.5 Service Quality
	2.5.1 Quality Attributes

	3 Observation Points in Client-Cloud Interaction
	3.1 Hardware Layer
	3.2 Network Layer
	3.3 Operating System Layer
	3.4 Service Layer
	3.5 Middleware Layer
	3.6 User Layer

	4 Monitoring Applications
	4.1 Service Level Agreement Monitoring
	4.1.1 SLA Specification
	4.1.2 SLA Monitoring

	4.2 Language-Based Anomaly Detection
	4.2.1 Intrusion Detection
	4.2.2 Survey of Anomaly-Based Intrusion Detection
	4.2.3 Intrusion Detection Problems
	4.2.4 Language-Based Anomaly Detection in XML-Based Interaction
	4.2.5 A Learning Algorithm for Language-Based Anomaly Detection

	5 Conclusion
	References

	Formal Reliability Models for Web Services
	1 Introduction
	2 Reliability Prediction Basics
	3 Running Example: A Multimedia Service Application
	4 Background Concepts
	4.1 BPEL Composition of Interacting Web Services
	4.2 SCA-ASM Modeling Language

	5 Reliability Model for BPEL
	6 Reliability Model for SCA-ASM
	6.1 Reliability Model Formulation

	7 Comparing BPEL-Based and SCA-ASM Reliability Models
	7.1 Mapping Concepts
	7.2 Experimental Evaluation
	7.2.1 Model Parameters
	7.2.2 Numerical Results

	8 Related Work
	9 Conclusions and Future Work
	References

	What Constitutes a Service on the Web?
	1 Introduction
	1.1 Functional Behaviour
	1.2 Service Ontologies
	1.3 Service Mediation
	1.4 Service Contracts
	1.5 SLA Monitoring
	1.6 Summary

	2 Abstract State Services: A Behavioural Theory of Services
	2.1 AS2 Postulates
	2.2 Postulates for Database Transformations
	2.3 A Language for Abstract State Services
	2.4 Plots: High-Level Action Schemes for AS2s

	3 Service Ontologies: Describing Functional and Categorical Aspects of Services
	3.1 Terminologies
	3.2 Functional and Categorical Description
	3.3 Service-Level Agreements

	4 Service Mediation: Building Service-Centric Applications
	4.1 Service Mediators
	4.2 Service Matching
	4.3 Instantiation and Execution

	5 Conclusions
	References

	Codesign of Web Information Systems
	1 Introduction
	1.1 The Path from Database Systems to Web Information Systems
	1.2 Abstraction Layers in Web Information System Development
	1.3 The Six Concerns of Web Information Systems Specification
	1.4 Web Information Systems Design and Development
	1.5 Survey on Codesign for Web Information Systems Design

	2 Codesign of Schema-Centric Database Systems: The Local-as-View Approach
	2.1 Languages for Structure Specification
	2.1.1 An Example of a HERM Diagram
	2.1.2 The Definition Scheme for Structures in HERM

	2.2 Static Integrity Constraints
	2.3 Representation Alternatives
	2.4 HERM Schemata
	2.5 Operations for Information Systems
	2.6 Dynamic Integrity Constraints
	2.7 Specification of Workflows
	2.8 Views in the Local-As-View Approach

	3 Codesign of Socio-Technical Systems: Database Services in the Task-Centred Approach
	3.1 Application- and User-Driven Design of Systems
	3.2 Services that Satisfy the User Demand
	3.3 Task-Centred Development for Database Systems as a Service
	3.4 Database and Knowledge Base Systems that Support Services

	4 Codesign of Distributed Database Systems: The Global-As-View Approach to Collaboration
	4.1 Collaboration of Distributed Systems
	4.2 Architectures for Distribution
	4.3 Coordination Specification and Contracts
	4.4 Exchange Frames for Distribution

	5 Storyboarding for Presentation Systems: The Usage-Driven Approach
	5.1 The Story Space in the Codesign Approach
	5.2 Media Types and Object for Information-Intensive Systems
	5.3 The Onion Approach to Website Realisation
	5.4 Transformation of Web Information Systems
	5.4.1 Deriving the Content Organisation Schema
	5.4.2 Deriving the Content Presentation Structure
	5.4.3 Deriving the Navigation Structure
	5.4.4 Extending Navigation by Exploration Techniques
	5.4.5 Extending by Retrieval and Search Features

	5.5 Mapping of the Website Specification to Business Layer Models
	5.6 Web Page Extraction
	5.7 Configuration of the Web Page to User Context by Containers

	6 Conclusion
	6.1 From Database Development to Codesign of Web Information Systems
	6.2 Applications and Assessment of the Codesign Methodology

	References

