
www.allitebooks.com

http://www.allitebooks.org

In	the	real	world,	the	foundation	of	everything	we	think	about	and	do	is	data.	Our	brains
organize	data	by	patterns,	which	is	another	way	of	saying	sets.	In	the	virtual	world	of
programming,	it’s	still	all	about	data.	But	now	we	have	to	build	and	manage	the	sets	of
data	ourselves.	We	can	and	should	use	the	SQL	language	as	our	means	of	communication,
but	even	before	that,	we’ve	got	to	make	sure	the	data	is	organized	so	that	it	accurately
captures	entities	and	expresses	the	relationships	between	them.	Skip	or	do	a	poor	job	at
database	design,	and	everything	else	in	your	application	development	process	will	suffer.
Do	it	right,	and	everything	that	follows	is	more	intuitive,	easier	to	build,	and	much	easier
to	maintain.

With	long	and	deep	experience,	Heli	has	written	an	ideal	guide	to	both	database	design
and	Oracle	SQL	Developer	Data	Modeler.

—Steven	Feuerstein

Architect,	Oracle	Corporation

Working	as	a	database	administrator	and	developer,	one	of	the	hardest	problems	you
encounter	is	coming	late	to	a	project	that	is	suffering	from	performance	problems.	In	many
cases	the	problems	are	caused	by	fundamental	flaws	in	the	database	design.	Identify	these
too	late	in	the	development	process	and	the	job	of	redesigning	the	database	and
refactoring	the	associated	code	can	be	a	huge	problem.

Over	the	last	30+	years	programming	paradigms	have	come	and	gone,	but	data	has
remained	king.	Regardless	of	your	chosen	development	methodology,	if	you	are	planning
to	use	a	relational	database,	you	have	little	choice	but	to	spend	time	on	the	design	phase.
Trying	to	cut	corners	will	always	results	in	problems	later.

—Tim	Hall

Oracle	ACE	Director

Database	Administrator,	Developer,	and	Author

http://oracle-base.com

Data	modeling	is	critical	to	success.	Data	modeling	and	data	design	are	now	more
important	than	ever.	With	the	onslaught	of	big	data,	our	job	is	even	more	critical;	turning
data	into	information	is	a	necessary	task	and	cannot	be	accomplished	without
understanding	what	the	structure	of	the	data	really	is.	If	we	do	not	turn	our	focus	to
understanding	the	structures	of	the	data,	then	we	cannot	properly	identify	it	or	make	sense
of	it,	much	less	turn	it	into	information	that	the	business	can	utilize.

—Dan	Linstedt

Founder	and	CEO

http://LearnDataVault.com

Enterprise	applications	are	used	to	enable	business.	A	great	application	not	only	supports
a	process	but	allows	the	organization	to	understand	what	is	happening	and	allows	it	to
respond.	Key	to	all	this	is	the	data,	and	a	well-designed	database	allows	that	access	and
flexibility.

My	reality	is	that	whenever	I	have	struggled	to	get	the	information	I	need	from	an

www.allitebooks.com

http://oracle-base.com
http://LearnDataVault.com
http://www.allitebooks.org

application,	it	has	been	because	of	poor	database	design.	This	book	will	help	reinforce	the
need	for	good-quality	database	design.

—Debra	Lilley

ACE	Director

The	idea	of	producing	a	formal	database	design	is	regarded	by	many	as	being	old-
fashioned	these	days.	However,	from	my	25+	years’	experience	of	working	in	the	field	of
database	performance,	I	do	see	a	clear	correlation	between	the	time	spent	designing	a
database	up	front	to	meet	the	functional	requirements	and	the	chance	of	success	of	the
project.	The	correlation	in	the	other	direction	is	even	clearer;	if	time	is	not	invested	in
understanding	the	requirements	of	the	application	system	and	in	understanding	the
database	that	stores	its	data,	then	the	chances	of	building	a	system	that	meets	user
requirements	is	small,	and	the	probability	of	heading	off	on	a	tangent	from	the	core
requirements	is	greatly	increased.	Performance	cannot	be	retrofitted	to	a	system;	it	has	to
be	designed	in.

Using	tools	to	help	automate	the	design	process,	as	recommended	in	this	book,	reduces
the	time	needed	for	the	design	stage	and	makes	it	less	likely	that	there	will	be	a	temptation
to	short	the	design	stage.	And	that	has	to	be	better	for	everyone.

—Graham	Wood

Architect

Oracle	Corporation

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Copyright	©	2015	by	McGraw-Hill	Education	(Publisher).	All	rights	reserved.	Except	as
permitted	under	the	United	States	Copyright	Act	of	1976,	no	part	of	this	publication	may
be	reproduced	or	distributed	in	any	form	or	by	any	means,	or	stored	in	a	database	or
retrieval	system,	without	the	prior	written	permission	of	the	publisher.

ISBN:	978-0-07-185010-0

MHID:	0-07-185010-4

The	material	in	this	eBook	also	appears	in	the	print	version	of	this	title:	ISBN:	978-0-07-
185009-4,
MHID:	0-07-185009-0.

eBook	conversion	by	codeMantra
Version	1.0

All	trademarks	are	trademarks	of	their	respective	owners.	Rather	than	put	a	trademark
symbol	after	every	occurrence	of	a	trademarked	name,	we	use	names	in	an	editorial
fashion	only,	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement
of	the	trademark.	Where	such	designations	appear	in	this	book,	they	have	been	printed
with	initial	caps.

McGraw-Hill	Education	eBooks	are	available	at	special	quantity	discounts	to	use	as
premiums	and	sales	promotions	or	for	use	in	corporate	training	programs.	To	contact	a
representative,	please	visit	the	Contact	Us	page	at	www.mhprofessional.com.

Oracle	and	Java	are	registered	trademarks	of	Oracle	Corporation	and/or	its	affiliates.	All
other	trademarks	are	the	property	of	their	respective	owners,	and	McGraw-Hill	Education
makes	no	claim	of	ownership	by	the	mention	of	products	that	contain	these	marks.

Screen	displays	of	copyrighted	Oracle	software	programs	have	been	reproduced	herein
with	the	permission	of	Oracle	Corporation	and/or	its	affiliates.

Oracle	Corporation	does	not	make	any	representations	or	warranties	as	to	the	accuracy,
adequacy,	or	completeness	of	any	information	contained	in	this	Work,	and	is	not
responsible	for	any	errors	or	omissions.

TERMS	OF	USE

This	is	a	copyrighted	work	and	McGraw-Hill	Education	and	its	licensors	reserve	all	rights
in	and	to	the	work.	Use	of	this	work	is	subject	to	these	terms.	Except	as	permitted	under
the	Copyright	Act	of	1976	and	the	right	to	store	and	retrieve	one	copy	of	the	work,	you
may	not	decompile,	disassemble,	reverse	engineer,	reproduce,	modify,	create	derivative
works	based	upon,	transmit,	distribute,	disseminate,	sell,	publish	or	sublicense	the	work	or
any	part	of	it	without	McGraw-Hill	Education’s	prior	consent.	You	may	use	the	work	for
your	own	noncommercial	and	personal	use;	any	other	use	of	the	work	is	strictly
prohibited.	Your	right	to	use	the	work	may	be	terminated	if	you	fail	to	comply	with	these
terms.

THE	WORK	IS	PROVIDED	“AS	IS.”	McGRAW-HILL	EDUCATION	AND	ITS
LICENSORS	MAKE	NO	GUARANTEES	OR	WARRANTIES	AS	TO	THE
ACCURACY,	ADEQUACY	OR	COMPLETENESS	OF	OR	RESULTS	TO	BE
OBTAINED	FROM	USING	THE	WORK,	INCLUDING	ANY	INFORMATION	THAT

www.allitebooks.com

http://www.mhprofessional.com
http://www.allitebooks.org

CAN	BE	ACCESSED	THROUGH	THE	WORK	VIA	HYPERLINK	OR	OTHERWISE,
AND	EXPRESSLY	DISCLAIM	ANY	WARRANTY,	EXPRESS	OR	IMPLIED,
INCLUDING	BUT	NOT	LIMITED	TO	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	OR	FITNESS	FOR	A	PARTICULAR	PURPOSE.	McGraw-Hill
Education	and	its	licensors	do	not	warrant	or	guarantee	that	the	functions	contained	in	the
work	will	meet	your	requirements	or	that	its	operation	will	be	uninterrupted	or	error	free.
Neither	McGraw-Hill	Education	nor	its	licensors	shall	be	liable	to	you	or	anyone	else	for
any	inaccuracy,	error	or	omission,	regardless	of	cause,	in	the	work	or	for	any	damages
resulting	therefrom.	McGraw-Hill	Education	has	no	responsibility	for	the	content	of	any
information	accessed	through	the	work.	Under	no	circumstances	shall	McGraw-Hill
Education	and/or	its	licensors	be	liable	for	any	indirect,	incidental,	special,	punitive,
consequential	or	similar	damages	that	result	from	the	use	of	or	inability	to	use	the	work,
even	if	any	of	them	has	been	advised	of	the	possibility	of	such	damages.	This	limitation	of
liability	shall	apply	to	any	claim	or	cause	whatsoever	whether	such	claim	or	cause	arises
in	contract,	tort	or	otherwise.

www.allitebooks.com

http://www.allitebooks.org

To	my	loving	family:	Marko,	Patrik,	and	Matias.
And	to	my	grandparents,	Laura	and	Matti	Luukkainen,

Marja	Lehto	and	Harri	Holmikari.	I	will	miss	you	always!

www.allitebooks.com

http://www.allitebooks.org

About	the	Author
Heli	Helskyaho	has	a	master’s	degree	in	computer	science	from	Helsinki	University	and
specializes	in	databases.	Heli	is	an	Oracle	ACE	Director	and	has	been	a	frequent	speaker
at	many	conferences.	She	has	worked	in	IT	since	1990	and	with	Oracle	products	since
1993.	She	has	been	in	several	positions,	but	each	role	has	always	included	database
design.	Heli	has	been	an	Oracle	Designer	user	since	1996	and	an	Oracle	SQL	Developer
Data	Modeler	user	since	2010.	Heli	is	an	active	member	in	the	Oracle	user	groups
community,	including	Oracle	User	Group	Finland	as	well	as	EMEA	Oracle	user	groups
community	(EOUC)	where	she	has	served	as	their	spokesperson/ambassador	since	2007.
Heli	is	also	the	CEO	for	Miracle	Finland	Oy.	Heli	believes	that	creating	good	database
design	and	documentation	reduces	performance	problems	and	makes	solving	them	easier.
You	can	follow	her	on	Twitter	@helifromfinland	or	read	her	blog	on
helifromfinland.wordpress.com.

About	the	Technical	Editors
Kent	Graziano	is	the	owner	of	Data	Warrior	LLC	and	a	lifetime	member	of	Rocky
Mountain	Oracle	Users	Group	(RMOUG)	and	ODTUG.	He	is	an	award-winning	author
and	speaker,	Oracle	ACE	director,	certified	Data	Vault	Master	(DVDM)	and	Data	Vault
2.0	Architect,	and	expert	data	modeler	and	data	warehouse	architect	with	more	than	30
years	of	experience,	including	more	than	25	years	using	Oracle	(since	version	5)	and
Oracle	tools	and	two	decades	doing	data	warehousing.	He	is	a	recognized	expert	in
Oracle*CASE,	Oracle	Designer,	and	Oracle	SQL	Developer	Data	Modeler.	Kent	has
written	numerous	articles,	authored	one	Kindle	book	(available	on	Amazon.com),
coauthored	four	books,	and	done	many	presentations,	nationally	and	internationally.	Most
recently,	he	was	voted	the	second-best	presenter	at	OUGF14	in	Helsinki,	Finland.	You	can
follow	Kent	on	Twitter	@KentGraziano	or	on	his	blog	Oracle	Data	Warrior
(http://kentgraziano.com).

Jeff	Smith	is	the	product	manager	for	Oracle	SQL	Developer	Data	Modeler	and	is	thrilled
to	have	true	design	experts,	such	as	Heli	and	Kent,	help	Oracle	Database	customers	build
their	applications	right,	the	first	time.	Jeff	has	a	bachelor’s	of	science	in	computer	science
from	West	Virginia	University	and	for	the	past	14	years	has	focused	on	database
development	and	administration	tools.	You	can	follow	Jeff	at	@thatjeffsmith	on	Twitter	or
read	his	productivity	tips	and	tricks	for	Oracle	SQL	Developer	Data	Modeler	at
www.thatjeffsmith.com.

www.allitebooks.com

http://kentgraziano.com
http://www.thatjeffsmith.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents	at	a	Glance

1	Introducing	Database	Design	and	Oracle	SQL	Developer	Data	Modeler

2	Getting	Started	with	Oracle	SQL	Developer	Data	Modeler

3	Introducing	Requirements	Analysis

4	Introducing	Conceptual	Database	Design	(Logical	Model)

5	Introducing	Logical	Database	Design	(Relational	Model)

6	Introducing	Physical	Database	Design

7	Generating	DDL	Scripts	for	Creating	Database	Objects

8	Designing	a	Data	Warehouse	Database

9	Using	Version	Control	and	Working	in	a	Multiuser	Environment	(Subversion)

10	Documenting	an	Existing	Database

11	Generating	Reports	and	Using	Search

12	Comparing	Designs	and	the	Database

Index

www.allitebooks.com

http://www.allitebooks.org

Contents

Forewords

Acknowledgments

Introduction

1	Introducing	Database	Design	and	Oracle	SQL	Developer	Data	Modeler

What	Is	Oracle	SQL	Developer	Data	Modeler?

Designing	Databases	with	Oracle	SQL	Developer	Data	Modeler

Summary

2	Getting	Started	with	Oracle	SQL	Developer	Data	Modeler

Downloading	and	Exploring	the	Tool

What	Is	a	Design?

Exploring	the	Interface

Customizing	the	Interface

Tuning	Oracle	SQL	Developer	Data	Modeler

Setting	Preferences

Introducing	Design	Properties

Introducing	Glossaries

Introducing	Domains

Introducing	Design	Rules

Performance	Tuning

Summary

3	Introducing	Requirements	Analysis

Gathering	Requirements	for	the	Logical	Model

Gathering	Requirements	for	the	Process	Model

Introducing	Data	Flow	Diagrams

Introducing	Transformation	Packages

Adding	Business	Information

Summary

4	Introducing	Conceptual	Database	Design	(Logical	Model)

Setting	Preferences	and	Properties

Introducing	the	Logical	Model

An	Entity	and	Its	Attributes

A	Relationship

Constraints

Entity	Views

Inheritance

Subviews

Displays

Summary

5	Introducing	Logical	Database	Design	(Relational	Model)

Setting	Preferences	and	Properties

Transforming	from	a	Logical	Model	to	a	Relational	Model

Setting	Transformation	Rules

Engineer	to	Relational	Model

Introducing	the	Relational	Model

Tables

Views

Name	Abbreviations	and	Prefix	Management

Name	Abbreviation

Prefix	Management

Tuning	and	Refactoring	Your	Model

Summary

6	Introducing	Physical	Database	Design

Setting	Preferences	and	Properties

Creating	a	Physical	Model

Administering	RDBMS	Sites

A	New	Physical	Model

Defining	Physical	Model	Properties

Defining	Users	and	Roles

Storage	Templates	and	LOB	Storages

Tablespaces

Synonyms

Tables

Sequences

Views

Materialized	Views

Stored	Procedures,	Functions,	and	Packages

Triggers

User-Defined	Data	Types

Other	Elements

Propagating	Properties

Indexing

Partitioning

Summary

7	Generating	DDL	Scripts	for	Creating	Database	Objects

Setting	Preferences	and	Properties

Exporting	a	DDL	File

Exploring	DDL	Generation	Options

Summary

8	Designing	a	Data	Warehouse	Database

Introducing	Dimensional	Modeling	Techniques

Exploring	Dimensional	Design

Star	Schema	or	Snowflake

Data	Vault

Physical	Database	Design	and	DDLs

Introducing	Multidimensional	Design

Creating	a	Multidimensional	Model

Creating	the	Physical	Model	and	Exports

Reporting

Using	Dynamic	Properties	and	User-Defined	Properties

Summary

9	Using	Version	Control	and	Working	in	a	Multiuser	Environment	(Subversion)

Setting	Preferences	and	Properties

Introducing	Subversion

Connecting	to	Subversion

Using	Subversion	in	Oracle	SQL	Developer	Data	Modeler

Exploring	the	Oracle	SQL	Developer	Data	Modeler	Tools	for	Subversion

Adding	a	Design	to	Subversion

Making	Changes	to	a	Design	You	Have	Worked	with	Before

Checking	Out	a	Design	from	Subversion

Solving	Conflicts

Making	Changes	Based	on	an	Older	Revision

Understanding	Branches,	Changes,	and	Synchronizing

Sharing	Files

Working	in	a	Multiuser	Environment	with	Microsoft	Excel

Summary

10	Documenting	an	Existing	Database

Setting	Preferences	and	Properties

Reverse	Engineering	an	Existing	Database

Reverse	Engineering	from	a	Data	Dictionary

Importing	a	DDL	File

Discovering	Foreign	Keys

Engineering	to	the	Logical	Model

Importing	Documentation	from	a	Third-Party	Modeling	Tool

Importing	from	Oracle	Designer

Summary

11	Generating	Reports	and	Using	Search

Setting	Preferences	and	Properties

Generating	Reports	Based	on	Open	Designs

Introducing	the	Reporting	Repository

Creating	a	Reporting	Repository

Exporting	a	Design	to	the	Reporting	Repository

Running	Reports	from	the	Reporting	Repository

Using	Search

Reporting	with	Search

Simple	Mode

Advanced	Mode

Setting	Common	Properties

Summary

12	Comparing	Designs	and	the	Database

Setting	Preferences	and	Properties

Comparing	Two	Designs

Importing	a	Data	Modeler	Design

Comparing/Merging	Models

Comparing	a	Design	to	the	Database

Summary

Index

Forewords

What	Is	Database	Design,	Anyway?
Databases	lie	at	the	heart	of	so	much	of	what	we	do	in	the	IT	world	that	it’s	surely	obvious
that	they	need	to	be	properly	designed.	Yet	neither	design	theory,	nor	design	best	practice,
appear	to	be	very	well	understood	in	the	industry	at	large.	(You	only	have	to	look	at	the
Wikipedia	article	on	database	design	to	see	the	truth	of	these	claims.)	With	this	state	of
affairs	in	mind,	therefore,	I	offer	the	following	definitions:

Database	design	Either	logical	database	design	or	physical	database	design,	as
the	context	demands—though	the	unqualified	term	database	design,	or	sometimes
even	just	design,	is	usually	taken	to	mean	logical	database	design	specifically
(unless	the	context	demands	otherwise).

Logical	database	design	(or	just	logical	design)	The	process,	or	the	result	of	the
process,	of	deciding	what	tables	some	database	should	contain,	what	columns	those
tables	should	have,	and	what	integrity	constraints	those	tables	and	columns	should
be	subject	to.	The	goal	is	to	produce	a	design	that’s	independent	of	all
considerations	having	to	do	with	either	physical	implementation	or	specific
applications	(this	latter	objective	being	desirable	for	the	very	good	reason	that	it’s
generally	not	the	case	that	all	uses	to	which	the	database	will	be	put	are	known	at
design	time).	Overall,	the	logical	design	process	can	be	summed	up	as	one	of	(a)
pinning	down	the	table	predicates	and	other	business	rules	as	carefully	as	possible,
albeit	necessarily	somewhat	informally,	and	then	(b)	mapping	those	informal
predicates	and	rules	to	specific	tables,	columns,	and	integrity	constraints—
preferably	in	such	a	way	as	to	ensure	that	the	result	of	the	process	involves	no
uncontrolled	redundancy.	(I’ll	explain	in	a	few	moments	what	I	mean	by	the	terms
table	predicate,	business	rule,	and	uncontrolled	redundancy.)

Physical	database	design	(or	just	physical	design)	The	process,	or	the	result	of
the	process,	of	deciding,	given	some	logical	design,	how	that	design	should	map	to
whatever	physical	constructs	the	target	DBMS	happens	to	support.	Observe,
therefore,	that	the	physical	design	should	be	derived	from	the	logical	design	and	not
the	other	way	around;	ideally,	in	fact,	it	should	be	derived	automatically.

For	the	remainder	of	this	brief	discussion,	I’ll	concentrate	on	logical	design
specifically.	The	first	thing	I	want	to	say	is	that	there	does	exist	some	science	that	can	help
with	the	logical	design	process;	I	refer,	of	course,	to	such	matters	as	the	principles	of
further	normalization	and	the	principle	of	orthogonal	design.	Thus,	if	you’re	a	designer,
you	owe	it	to	yourself—as	well	as	to	your	clients,	which	is	to	say	the	people	who	are
going	to	have	to	live	with	the	databases	you	design—to	be	thoroughly	familiar	with	those
principles	and	to	know	how	and	when	to	apply	them.	(As	an	aside,	I	note	that	there’s	quite
a	bit	more	to	the	science	than	many	people	seem	to	realize.	It’s	certainly	not	just	a	matter
of	making	sure	the	tables	are	all	in	third	normal	form.	However,	this	isn’t	the	place	to	go
into	details.)

The	second	thing	I	want	to	say	is	that	although	the	science	is	important,	there	are,
sadly,	numerous	aspects	of	design	that	the	science	doesn’t	address	at	all.	And	that’s	where
practical	experience	comes	in.	If	you	do	have	a	lot	of	personal	experience	in	the	design
field,	well,	good	for	you—you’ll	have	learned	(possibly	the	hard	way!)	what	works	and
what	doesn’t.	But	if	you	don’t	have	much	experience	of	your	own	to	fall	back	on	(and
maybe	even	if	you	do),	then	you’ll	need	sound	advice	you	can	follow,	advice	from
someone	who	does	have	such	experience.	A	good	book	on	design,	by	a	suitably	qualified
professional,	can	help	meet	that	need.	A	word	of	caution,	though:	Books	on	database
technology	(as	opposed	to	books	on	design	specifically)	might	not	be	what	you	need	here.
Such	books	do	often	describe	design	concepts	but	fail	to	give	much	guidance	on	how	to
apply	those	concepts	to	the	practical	task	of	design.	Caveat	lector.

Let	me	now	elaborate	as	I	promised	on	those	terms	table	predicate,	business	rule,	and
uncontrolled	redundancy.	First,	the	table	predicate	for	a	given	table	is	simply	a	reasonably
precise,	but	informal,	statement	in	natural	language	of	what	the	table	in	question	means—
in	other	words,	how	that	table	is	meant	to	be	understood	by	users.	For	example,	suppose
we	have	a	table	called	EMP	(“employees”),	with	columns	called	ENO,	ENAME,	DNO,
and	SALARY.	Then	the	predicate	for	that	table	might	look	something	like	this:

The	person	with	employee	number	ENO	is	an	employee	of	the	company,	is	named
ENAME,	works	in	the	department	with	department	number	DNO,	and	is	paid	salary
SALARY.

ENO,	ENAME,	DNO,	and	SALARY	are	the	parameters	to	this	predicate,	and	of	course
they	correspond	to	the	columns	of	the	table.

Second,	a	business	rule	is	also	a	reasonably	precise	but	informal	natural	language
statement,	one	that	captures	some	aspect	of	how	the	data	in	the	database	is	supposed	to	be
constrained.	(Actually,	some	writers	regard	table	predicates	as	a	special	case	of	business
rules;	however,	there’s	more	to	business	rules	in	general	than	just	the	table	predicates	as
such.)	To	start	with,	there’ll	certainly	be	rules	that	specify	what	type	of	information	is
denoted	by	the	parameters	to	those	table	predicates;	in	the	case	of	employees,	for	example,
there’ll	be	a	rule	to	the	effect	that	the	SALARY	parameter	(“salaries”)	denotes	money
values,	expressed	in,	let’s	say,	euros	or	U.S.	dollars.	Then	there’ll	be	rules	that	constrain
the	values	those	parameters	can	take	for	a	given	employee	considered	in	isolation	(for
example,	a	rule	that	says	salaries	mustn’t	be	negative	and	must	be	less	than	some	specified
upper	limit).	There’ll	also	be	rules	that	constrain	the	set	of	employees	taken	as	a	whole,
independent	of	other	“entities,”	such	as	departments,	that	might	be	represented	in	the	same
database	(for	example,	a	rule	to	the	effect	that	employee	numbers	must	be	unique).
Finally,	there’ll	be	rules	that	constrain	employees	considered	in	combination	with	such
other	entities	(for	example,	a	rule	to	the	effect	that	every	employee	must	be	assigned	to
some	known	department,	or	a	rule	to	the	effect	that	no	employee	can	earn	more	than	the
manager	of	the	department	the	employee	in	question	is	assigned	to).

I’d	like	to	say	a	bit	more	about	this	issue	of	business	rules,	because	it’s	important—also
because	in	practice	it	does	tend	to	get	somewhat	overlooked.	As	the	foregoing	discussion
should	be	sufficient	to	suggest,	business	rules	can	be	quite	complex	(as	complex	as	you
like,	in	fact).	As	I’ve	already	said,	however,	they’re	necessarily	somewhat	informal.	Their
formal	counterpart—i.e.,	the	thing	they	map	to	in	the	logical	design—is	integrity

constraints	(constraints	for	short),	which	thus	need	to	be	stated	in	some	formal	language
and	enforced	by	the	DBMS.	In	other	words,	I	depart	here	from	certain	other	writers	in
stating	categorically	that	database	design	isn’t	just	about	choosing	data	structures—
integrity	constraints	are	crucial	as	well.	(Of	course,	it’s	true	that	other	writers	do	talk	about
key	and	foreign	key	constraints—sometimes	cardinality	constraints	too—but	those
particular	constraints	are	really	nothing	but	important	special	cases	of	a	much	more
general	phenomenon.)	In	this	connection,	I’d	like	to	draw	your	attention	to	some	remarks
(somewhat	paraphrased	here)	from	The	Business	Rule	Book	by	Ron	Ross	(2nd	edition,
Business	Rule	Solutions	Inc.,	1997):

Even	though	business	rules	(like	the	data	itself)	are	“shared”	and	universal,
traditionally	they	haven’t	been	captured	in	database	design.	Instead,	they’ve	usually
been	stated	vaguely	(if	at	all)	in	largely	uncoordinated	analytical	and	design
documents,	and	then	buried	deep	in	the	logic	of	application	programs.	Since
application	programs	are	notoriously	unreliable	in	the	consistent	and	correct
application	of	such	rules,	this	has	been	the	source	of	considerable	frustration	and
error.

I	couldn’t	agree	more.	Moreover,	note	the	implicit	but	strong	criticism	of	DBMS	products
that	fail	to	provide	adequate	support	for	integrity	constraints!	(Interestingly,	the	support
provided	in	this	area	by	the	SQL	standard	is	actually	not	too	bad;	but	SQL	products	have
been	rather	slow,	to	say	the	least,	in	implementing	this	aspect	of	the	standard.)

Finally,	what	about	that	matter	of	uncontrolled	redundancy?	Well,	we	can	say,	loosely,
that	the	database	displays	redundancy	if	and	only	if	it	“says	the	same	thing	twice.”	And	we
often	say,	again	loosely,	that	we	don’t	want	the	database	to	display	redundancy	in	this
sense.	But	it	would	be	more	accurate	to	say	we	don’t	want	it	to	display	any	uncontrolled
redundancy.	Uncontrolled	redundancy	can	be	a	problem,	but	controlled	redundancy
shouldn’t	be.	Let	me	explain.	First	some	more	definitions:

			Controlled	redundancy	Redundancy	in	the	database	is	controlled	if	the	user
is	aware	of	it,	but	it’s	guaranteed	never	to	lead	to	any	inconsistencies.

			Uncontrolled	redundancy	Redundancy	in	the	database	is	uncontrolled	if	it
has	the	potential	to	lead	to	inconsistencies.

			Inconsistency	The	database	is	inconsistent	(at	least	from	a	formal	point	of
view)	if	and	only	if	there’s	some	integrity	constraint	it’s	supposed	to	satisfy	but
doesn’t.

So	if	controlled	redundancy	means	no	inconsistencies,	it	must	also	mean	no	constraints
are	violated.	Of	course,	not	all	constraints	have	to	do	with	redundancy	as	such;	for
example,	a	constraint	to	the	effect	that	salaries	mustn’t	be	negative	doesn’t.	Thus,	if	the
database	were	to	show	some	employee	as	having	a	negative	salary,	it	would	certainly	be
inconsistent,	but	that	particular	inconsistency	wouldn’t	be	one	that	arises	from
redundancy.	(It	would,	however,	mean	the	database	was	incorrect,	in	the	sense	that	it
didn’t	faithfully	reflect	the	state	of	affairs	in	the	real	world.	Inconsistent	implies	incorrect,
though	the	converse	is	false—the	database	can	be	incorrect	without	being	inconsistent.	For
example,	if	it	showed	some	employee	as	earning	a	salary	different	from	that	employee’s
true	salary,	it	would	be	incorrect	but	not	inconsistent.)

www.allitebooks.com

http://www.allitebooks.org

To	say	it	again,	then,	constraints	don’t	always	have	to	do	with	redundancy.	But
redundancy	does	always	have	to	do	with	constraints.	For	example,	suppose—very
unrealistically!—that	there’s	a	constraint	to	the	effect	that	all	employees	in	the	same
department	must	earn	the	same	salary.	Suppose	further	that	the	database	shows	Heli	and
Chris	as	being	in	the	same	department.	Then	if	it	were	also	to	show	Heli	and	Chris	as
earning	the	same	salary,	it	would	be	redundant;	by	contrast,	if	it	were	to	show	Heli	and
Chris	as	earning	different	salaries,	it	would	be	inconsistent	(and	incorrect).

So	to	say	that	the	database	involves	some	redundancy	is	to	say	some	constraint	is
supposed	to	apply.	The	constraint	in	the	case	of	the	“same	salary”	example	might	be
formulated	in	SQL	as	follows:1

Stating	this	constraint	explicitly	serves	to	inform	the	user	that	the	redundancy	exists;
enforcing	it	serves	to	ensure	that	it	won’t	lead	to	any	inconsistencies,	thereby	guaranteeing
that	the	redundancy	in	question	is	controlled.	Note,	therefore,	that	we	see	once	again,	not
incidentally,	how	important	it	is	to	be	able	to	state	integrity	constraints	formally	and	how
important	it	is	that	the	DBMS	should	be	able	to	enforce	them.

There’s	one	more	thing	I	want	to	say	here.	Some	readers,	I’m	sure,	will	have	found	the
foregoing	remarks	on	consistency	and	redundancy	a	little	puzzling,	especially	in	view	of
the	recent	interest	in	what	has	come	to	be	known	as	“eventual	consistency.”	So	let	me
amplify	and	try	to	clarify	those	remarks,	if	I	can:

			First	of	all,	to	repeat:	To	say	that	a	database	is	consistent	merely	means,
formally	speaking,	that	the	database	conforms	to	all	stated	constraints.	Now,	it’s
crucially	important	that	databases	always	be	consistent	in	this	formal	sense;	indeed,
a	database	that’s	not	consistent	in	this	sense,	at	some	particular	time,	is	like	a	logical
system	that	contains	a	contradiction.	Well,	actually,	that’s	exactly	what	it	is—a
logical	system	with	a	contradiction.	And	in	a	logical	system	with	a	contradiction,
you	can	prove	anything	(for	example,	you	can	prove	that	1	=	0).	What	this	means	in
database	terms	is	that	if	there’s	ever	a	time	at	which	the	database	is	inconsistent	in
the	foregoing	formal	sense,	you	can	never	trust	the	answers	you	get	to	queries—they
may	be	false,	they	may	be	true,	and	you	have	no	way	in	general	of	knowing	which
they	are.	In	other	words,	all	bets	are	off.	That’s	why	consistency	in	the	formal	sense
is	so	crucial.	(It’s	also	why,	contrary	to	popular	opinion,	integrity	checking	must
always	be	immediate	and	why	“deferred	checking”	is	a	logical	error.)

			But	consistency	in	the	formal	sense	isn’t	necessarily	the	same	thing	as
consistency	as	conventionally	understood	(meaning	consistency	as	understood
outside	the	world	of	databases	in	particular).	Suppose	there	are	two	items	A	and	B	in
the	database	that,	in	the	real	world,	we	believe	should	have	the	same	value.	They

M

might,	for	example,	both	be	the	selling	price	for	some	given	commodity,	stored
twice	because	replication	is	being	used	to	improve	availability.	If	A	and	B	in	fact
have	different	values	at	some	given	time,	we	might	certainly	say,	informally,	that
there’s	an	inconsistency	in	the	data	as	stored	at	that	time.	But	that	“inconsistency”	is
an	inconsistency	as	far	as	the	system	is	concerned	only	if	the	system	has	been	told
that	A	and	B	are	supposed	to	be	equal—i.e.,	only	if	“A	=	B”	has	been	stated	as	a
formal	constraint.	If	it	hasn’t,	then	(a)	the	fact	that	A	≠	B	at	some	time	doesn’t	in
itself	constitute	a	consistency	violation	as	far	as	the	system	is	concerned,	and	(b)
importantly,	the	system	will	never	rely	on	an	assumption	that	A	and	B	are	equal.

			Thus,	if	all	we	want	is	for	A	and	B	to	be	equal	“eventually”—i.e.,	if	we’re
content	for	that	requirement	to	be	handled	in	the	application	layer—all	we	have	to
do	as	far	as	the	database	system	is	concerned	is	omit	any	declaration	of	“A	=	B”	as	a
formal	constraint.	No	problem,	and	in	particular	no	violation	of	the	relational	model.

With	that,	I’ll	conclude	these	brief	remarks	on	database	design.	I’d	like	to	thank	Heli
for	giving	me	the	chance	to	air	my	opinions	on	this	topic,	and	Hugh	Darwen	for	taking	the
time	to	comment	on	what	I	had	to	say	(his	comments	led	to	several	improvements	and
clarifications).	And,	of	course,	I’d	like	to	wish	Heli	and	her	book	every	success	in	her	own
chosen	field.

—C.	J.	Date

Healdsburg,	California

February	2015

y	name	is	Tom	Kyte.	I’m	the	Tom	behind	the	http://asktom.oracle.com/	web
site	and	column	in	Oracle	Magazine.	I’ve	been	doing	database	work	for
many	decades	going	back	to	1987.	One	of	the	first	things	I	was	taught	was

the	importance	of	a	strong	design—both	a	software	design	as	well	as	a	strong	database
design.	In	any	data-based	application	(and	what	useful	application	is	in	fact	not	based	on
data?),	the	foundation	of	it	all	is	the	database	schema.

It	has	been	my	experience	over	the	past	30	years	to	see	databases	and	their	schemas
outlive	their	applications.	When	I	first	joined	Oracle	Corporation	in	1993,	my	user
interface	to	the	expense	reports	database	was	a	tablet	of	paper	(and	expense	report	form)
and	a	pen.	I	would	fill	that	in	and	mail	it,	and	someone	would	transcribe	that	information
into	the	database	using	a	character	mode	VT100	terminal.	Later,	my	user	interface
changed—an	Oracle	form	was	developed	and	deployed	to	some	10,000	people	in	the	sales
teams.	Client-server	turned	out	to	be	a	miserable	mistake	long	term	for	many	reasons,	but
right	then	and	there	we	were	using	the	character	mode	screens	and	a	newly	developed	GUI
against	the	same	database.	The	schema	designed	was	robust	enough	to	support	both.

Then	along	came	three-tier	applications.	A	PL/SQL	interface	was	developed	using	an
early	version	of	the	PL/SQL	web	toolkit.	One	database	schema…three	very	different
applications.	And	then	came	requests	for	business	intelligence	(BI)	reporting	on	this
database	(BI	was	just	starting	to	become	a	buzzword).	Same	database…new	applications
using	it	in	a	new	way.	Then	Java	came	along,	and	new	applications	written	in	Java	sprung
up.	Mobile	devices	became	all	the	rage,	which	created	yet	another	new	set	of	applications.

http://asktom.oracle.com/

This	happened	all	on	the	same	database—the	same	database	that	has	been	supporting
expense	reporting	for	longer	than	I’ve	been	doing	databases.	Without	a	good	design,	a
solid	foundation	from	the	very	first	days,	this	would	not	have	been	possible.	I’ve	seen
many	applications	and	their	databases	“scrapped,”	thrown	away	to	be	rewritten	because
insufficient	thought	was	given	to	their	design.	It	was	easier	to	start	over	than	to	try	to	fix
them.

I’ve	seen	data	models	where	it	is	really	easy	to	get	data	in	but	excessively	difficult	to
impossible	to	get	it	back	out.	The	developers	optimized	everything	for	getting	data	into	the
database	but	never	gave	a	thought	to	the	questions	people	might	want	to	ask	of	that	data
later.

A	solid	data	model	will	give	you	a	database	that	will	outlive	your	application	and	will
outlive	the	newest,	coolest	technologies	and	frameworks	you	are	using	today.	The	tools
used	to	build	that	original	expensive	report	database	mentioned	earlier	are	museum	items
now,	but	the	database	itself	is	still	going	strong	and	still	being	expanded.

It	is	worth	the	time	to	give	your	data	some	serious	thought.	I	know	the	author	of	this
book,	Heli	Helskyaho,	not	only	agrees	with	that	sentiment	but	espouses	it	herself,	and	she
is	considered	an	expert	in	the	area.	I’m	sure	you’ll	enjoy	her	discussions	on	the	topic.

—Tom	Kyte

http://asktom.oracle.com/
1As	you	can	see,	the	constraint	in	question	is	defined	by	means	of	a	CREATE	ASSERTION	statement	in	SQL.	For	some
reason,	SQL	sometimes	(but	not	always!)	calls	constraints	assertions.

http://asktom.oracle.com/

I
Acknowledgments

want	to	thank	my	wonderful	family	for	all	the	support,	specifically,	my	husband,
Marko,	and	my	two	amazing	sons,	Patrik	and	Matias.	Without	your	support	I	could
have	not	written	this	book.

And	thank	you	to	my	parents,	Marja-Leena	and	Kalevi	Luukkainen,	who	have	taught
me	that	nothing	is	impossible	and	I	can	do	whatever	I	want.	Not	even	the	sky	is	the	limit.

A	very	special	thank-you	to	Philip	Stoyanov	and	C.	J.	Date	for	all	your	valuable	advice
and	support!	And	of	course	thank	you	to	the	two	best	technical	editors	in	the	world:	Jeff
Smith	and	Kent	Graziano.	I	want	to	thank	professor	emeritus	Seppo	Sippu	from
University	of	Helsinki	for	teaching	me	so	much	about	database	design	and	relational
theory,	and	for	giving	me	the	spark	for	databases.	Thank	you	to	my	friends	who	were	kind
enough	to	write	their	opinions	on	database	design	at	the	beginning	of	this	book:	C.	J.	Date,
Thomas	Kyte,	Steven	Feuerstein,	Tim	Hall,	Dan	Linstedt,	Debra	Lilley,	and	Graham
Wood.	And	to	all	my	friends	who	have	been	supporting	me	and	telling	me	I	can	do	it:
Thank	you!

Thank	you	also	to	Paul	Carlstroem,	Amanda	Russell,	Bettina	Faltermeier,	and	the
production	team	at	McGraw-Hill	Education	who	made	this	book	possible,	gave	me	the
idea	to	write	it,	and	supported	me	all	the	way.	Thank	you	to	Kritika	Kaushik	and	the	team
at	Cenveo	Publisher	Services	for	all	the	help	and	advice.

D
Introduction

esigning	databases	is	vital	for	any	company	that	is	serious	about	its	data,	our
most	valuable	asset.	To	support	efficient	database	design	work,	a	designer	must
have	a	tool	to	be	able	to	document	the	data	and	data	usage	in	a	formal	way.

This	book	helps	people	design	their	databases	better	and	shows	how	to	use	a	tool	called
Oracle	SQL	Developer	Data	Modeler	in	that	job.

Database	design	consists	of	analyzing	requirements	and	creating	the	conceptual,
logical,	and	physical	designs.	This	process	is	iterative	and	incremental,	and	all	these
phases	will	be	done	over	and	over	again	to	get	the	correct	and	optimal	design	for	the
purpose.	Database	design	is	a	process	of	producing	detailed	entity-relationship	(ER)
diagrams	and	data	flow	diagrams	(DFDs),	and	it	ends	up	producing	the	scripts	(DDLs)	for
creating	all	the	objects	needed	for	the	database.	In	this	book,	I	go	through	the	entire
process	of	database	design	using	Oracle	SQL	Developer	Data	Modeler.

Chapter	1:	Introducing	Database	Design	and	Oracle	SQL	Developer	Data	Modeler

In	this	chapter,	you’ll	learn	the	basics	of	database	design	and	Data	Modeler,	and	you	will
get	some	ideas	on	designing	databases	in	an	agile	system	development	process.

Chapter	2:	Getting	Started	with	Oracle	SQL	Developer	Data	Modeler

In	this	chapter,	you’ll	explore	how	to	get	started	with	Data	Modeler	and	how	to	set	it	up	to
meet	your	needs.

Chapter	3:	Introducing	Requirements	Analysis

Requirements	analysis	is	the	process	of	finding	and	analyzing	the	requirements	of	the
future	users	of	the	application	and	the	database.	The	results	of	this	process	are	the
specifications	of	user	requirements.	In	this	chapter,	you	will	see	how	to	do	these	tasks	with
Data	Modeler.

Chapter	4:	Introducing	Conceptual	Database	Design	(Logical	Model)

Conceptual	database	design	consists	of	translating	the	requirements	into	a	formal
conceptual	data	model	and	process	models.	The	result	of	conceptual	database	design	is	a
conceptual	schema	and	process	models.	In	this	chapter,	you	will	see	how	to	create	a
logical	model	with	Data	Modeler.

Chapter	5:	Introducing	Logical	Database	Design	(Relational	Model)

The	logical	database	design	process	consists	mainly	of	transforming	the	conceptual	model
(logical	model)	into	a	relational	model.	The	result	of	this	phase	of	database	design	is	a
relational	database	schema,	a	set	of	relational	schemas,	and	their	constraints.	In	this
chapter,	you	will	see	how	to	create	a	relational	model	with	Data	Modeler.

Chapter	6:	Introducing	Physical	Database	Design

The	physical	database	design	is	the	phase	in	which	you	decide	the	technology	and	version
of	your	database.	Data	Modeler	supports	different	versions	of	Oracle,	Microsoft	SQL
Server,	and	IBM	DB2	databases.	In	physical	database	design	you	design	physical	database

elements	related	to	the	selected	technology	and	add	physical	properties	to	elements	from
the	relational	model.	In	this	chapter,	you	will	learn	how	to	create	the	physical	design	with
Data	Modeler.

Chapter	7:	Generating	DDL	Scripts	for	Creating	Database	Objects

A	data	definition	language	(DDL)	is	for	creating	database	objects.	Generating	DDL	scripts
with	Data	Modeler	is	quite	simple,	and	it	can	be	done	over	and	over	again	to	find	the	right
settings	to	get	the	right	kinds	of	scripts.	The	DDLs	are	based	on	the	relational	model	and
one	of	its	physical	models.	In	this	chapter,	you	will	learn	how	to	generate	DDLs	with	Data
Modeler.

Chapter	8:	Designing	a	Data	Warehouse	Database

In	this	chapter,	you	will	briefly	see	the	most	common	methods	of	data	warehouse	design:
star	schema,	snowflake,	and	Data	Vault.	You	will	also	learn	how	to	design	a	data
warehouse	database	using	Data	Modeler.

Chapter	9:	Using	Version	Control	and	Working	in	a	Multiuser	Environment
(Subversion)

Subversion	can	be	used	for	both	version	control	and	to	enable	a	multiuser	environment
when	working	with	Data	Modeler.	In	this	chapter,	you	will	learn	how	version	control
(Subversion)	works	with	Data	Modeler,	including	how	to	add	designs	to	version	control
and	how	to	work	with	them.	You	will	also	explore	how	to	solve	possible	conflicts.	In	this
chapter,	you	will	also	learn	how	Microsoft	Excel	can	be	used	to	enable	a	multiuser
environment.

Chapter	10:	Documenting	an	Existing	Database

It	is	important	to	have	documentation	for	your	databases.	If	you	do	not	understand	your
data,	you	cannot	keep	it	up	to	date,	secure,	of	good	quality,	and	so	on.	In	addition,
changing	the	data	structures	based	on	the	current	requirements	is	impossible	if	you	do	not
understand	what	you	are	changing.	Documentation	is	also	vital	when	solving	problems
related	to	data	such	as	performance.	With	Data	Modeler	you	can	document	an	existing
database	by	reverse	engineering	the	database	from	the	data	dictionary	or	from	existing
DDLs,	you	can	use	the	documentation	you	might	have	from	a	third-party	modeling	tool
and	import	that	to	Data	Modeler,	or	you	can	combine	these	methods.	In	this	chapter,	you
will	learn	about	all	these	options.

Chapter	11:	Generating	Reports	and	Using	Search

Reporting	functionality	is	a	must	when	selecting	a	tool	for	database	design.	If	you	are	not
able	to	produce	reports	from	the	tool,	the	tool	is	not	worth	using.	There	are	so	many
different	needs	for	reporting:	auditing,	quality	reviews,	documenting,	talking	with	end
users,	informing	internally,	and	so	on.	Data	Modeler	has	strong	reporting	functionalities,
and	in	this	chapter	you	will	learn	more	about	them.

Chapter	12:	Comparing	Designs	and	the	Database

There	are	many	situations	when	you	need	to	compare	either	two	designs	with	each	other
or	the	design	with	the	database.	In	this	chapter,	you	will	learn	how	to	do	comparisons	with
Data	Modeler	and	how	to	change	either	a	design	or	a	database	based	on	the	result.

CHAPTER
1

Introducing	Database	Design	and	Oracle
SQL	Developer	Data	Modeler

www.allitebooks.com

http://www.allitebooks.org

Database	design	is	the	process	of	producing	detailed	entity-relationship	(ER)
diagrams	and	data	flow	diagrams	(DFDs)	in	order	to	produce	the	data
definition	language	(DDL)	scripts	that	will	create	the	objects	needed	for	the

database.	Database	design	consists	of	requirements	analysis,	conceptual	design,	logical
design,	physical	design,	and,	depending	on	who	you	ask,	transaction	design.	(This	book
will	not	discuss	transaction	design.)	The	process	is	incremental	and	iterative,	meaning	all
these	phases	will	be	done	repeatedly.	The	backbones	of	database	design	are	logic	theory
and	relational	theory.

Database	design	is	all	about	the	data,	namely,	how	to	save	the	data	and	how	to	retrieve
it.	Data	integrity	and	data	quality	should	always	be	high	priorities	when	designing	a
database,	and	you	must	consider	future	needs	as	well.	Even	though	an	application	user
interface	might	change	every	five	to	ten	years,	the	database	behind	it	must	continue	to
perform	well	for	years	to	come.

The	process	of	database	design	is	changing	as	application	development	processes	are
getting	more	agile	and	iterative.	Management	demands	fast	results,	so	IT	projects	must	be
completed	faster	than	ever	before.	Database	designers	often	do	not	have	time	to	analyze
everything	well	before	starting	to	design,	and	sometimes	systems	are	launched	into
production	to	be	completed	later	in	increments,	without	having	the	analysis	completed.	In
fact,	sometimes	databases	are	created	with	no	time	spent	on	design	and	with	no	thought	to
the	principles	of	relational	theory.	Even	with	the	world	seemingly	getting	faster	every	day,
when	designing	a	database,	you	need	to	know	the	full	picture	of	what	the	database	is	for.
That	is	what	makes	database	design	difficult.	The	only	way	to	survive	is	to	use	a	tool	that
meets	all	of	today’s	needs,	helping	you	create	databases	quickly	but	with	the	“big	picture”
in	mind.	Without	a	tool,	you	cannot	be	as	agile	as	needed.

Though	I’ve	mentioned	application	development	processes,	I	want	to	be	clear	that
database	design	is	not	the	same	as	application	design.	The	database	should	not	be	designed
as	a	side	product	of	an	application	design.	When	trying	to	save	time	and	money,	people
think	they	will	design	only	either	the	ER	model	or	the	Unified	Modeling	Language	(UML)
model	and	then	generate	the	other.	Although	it	is	good	they	realize	they	need	two	models
(one	for	the	database	and	the	other	for	the	application),	it	is	not	just	a	question	of	which
notation	to	choose;	the	perspectives	are	very	different	and	so	are	the	goals.	For	example,
let’s	look	at	code	tables	versus	code	files.	For	the	application	designer,	it	might	be	easier
to	have	all	the	lookup	information	in	files,	but	the	database	designer	definitely	will	want
them	in	tables.	Why?	The	database	person	is	also	in	charge	of	the	data	integrity,	which
cannot	be	controlled	if	some	of	the	important	data	is	in	files	somewhere	out	of	the	reach	of
the	database.

I	often	hear	people	arguing	about	which	is	better,	ER	or	UML.	To	me	this	question	is
irrelevant.	ER	diagrams	are	for	designing	databases,	and	UML	is	for	designing	user
interfaces.	If	you	try	to	design	a	database	with	UML,	you	can	get	easily	distracted	and
want	to	start	designing	the	user	interface.	My	recommendation	is	that	while	the	database
designer	designs	the	database,	the	application	designer	designs	the	application	in
cooperation	with	the	database	designer.	And	before	the	database	designer	moves	to	the
logical	design,	the	database	designer	and	the	application	designer	should	sit	down	and

compare	their	models	to	be	sure	that	they	really	have	all	the	requirements	implemented	in
both	the	designs.	There	might	be	information	in	the	UML	model	that	the	ER	model	does
not	have	or	should	not	have.	For	instance,	in	the	UML	model,	there	might	be	an	attribute
named	AGE,	but	in	the	data	model	(ER),	there	might	be	an	attribute	called	DATE	OF
BIRTH.	There	can	also	be	some	technical	attributes	in	the	data	model	that	do	not	need	to
be	in	the	UML	model.	For	instance,	every	table	might	have	the	columns	Creator,
Created_Date,	Modifier,	and	Modified_Date.	The	two	models	(UML	and	ER)	do	not	have
to	be	the	same	and	actually	rarely	are,	but	creating	and	maintaining	both	models	will
guarantee	a	better	result.	But	this	is	true	only	if	you	have	a	tool	for	both	purposes;	if	this
work	is	done	without	a	tool,	the	dual	processes	take	too	much	time	and	money.	You	want
to	use	a	tool	to	create	designs	in	cooperation	and	take	advantage	of	everybody’s	special
skills	and	knowledge.

NOTE
The	UML	model	and	the	ER	model	do	not	need	to	be	the	same	and	rarely	are.

The	importance	of	database	design	increases	on	agile	projects.	In	that	case,	the	process
involves	not	just	designing	but	also	finding	the	right	questions	to	ask	and	having	pictures
(ER	models	and	DFDs)	to	use	when	talking	to	end	users.	You	need	as	much	information
as	possible	from	end	users	and	business	owners.	You	need	to	understand	the	big	picture,
lest	you	get	a	database	totally	different	than	you	wanted.	It’s	as	simple	as	thinking	before
doing.

It’s	important	that	you	understand	the	main	concepts	(entities)	of	the	database	and	their
relationships	correctly	because	it	is	easy	to	add	entities	and	attributes	later,	but	it	is	not
easy	to	divide	them	later	or	correct	the	relationships	modeled	wrongly.	Always	design	the
database	for	the	right	purpose	and	model	only	what	is	needed,	starting	with	the	most
difficult	task.

In	Figure	1-1,	you	can	see	my	version	of	agile	database	design.	It	starts	with
requirements	analysis	and	finding	the	main	concepts	and	their	relationships.	Next	you	try
to	model	the	whole	conceptual	model	as	well	as	you	can.	Then	you	design	the	conceptual
model	for	iteration	n,	making	it	as	detailed	as	possible;	continue	to	the	logical	design	of
iteration	n;	and	finally	move	to	physical	design	and	creating	the	database	objects	with	the
DDL	scripts.	Then	you	perform	the	whole	round	again	for	iteration	n+1,	and	so	on.	The
process	is	the	same	as	it	is	in	other	projects;	the	only	difference	in	an	agile	project	is	that
you	move	from	phase	to	phase	faster,	and	you	design	in	pieces,	rather	than	as	a	whole.

FIGURE	1-1.	Agile	database	design	process

If	a	database	will	hold	valuable	data,	the	database	must	be	designed	by	someone	who
understands	how	the	database	works	and	knows	how	the	data	should	be	modeled.	When
designing	the	database,	you	may	need	all	different	types	of	subject-matter	experts	to	give
you	the	information	you	need	to	make	decisions	about	the	design.	Additionally,	if	your
deadline	is	tight,	you	need	even	more	information	to	be	sure	you	are	making	the	right
decisions;	you	don’t	want	to	have	to	change	everything	later.	Prioritization	is	important	for
everybody	(even	the	end	users).	Nothing	is	more	stressful	than	too	much	work	with	too
little	time	to	do	it.	Database	design	means	teamwork,	and	that’s	why	you	need	a	tool	to	do
database	design	right	in	today’s	environment.

When	selecting	the	tool	for	database	design,	you’ll	want	one	that	supports	these
features:	ER	notation,	an	automatic	transformation	process	from	the	conceptual	design	to
the	logical	design,	the	ability	to	work	in	a	multiuser	environment,	version	control,
reporting	capabilities,	scripts	for	generating	the	database	objects	automatically	(preferably
adjustable),	and	strong	documentation	tools.	It	would	be	a	bonus	if	the	tool	also	has
support	for	the	standardization	of	naming,	processes,	and	design	rules;	the	ability	to	alter
scripts	for	changing	the	database	to	be	like	the	design;	and	the	ability	to	compare	designs
to	each	other	and	to	compare	a	design	to	a	database.

What	Is	Oracle	SQL	Developer	Data	Modeler?
Oracle	SQL	Developer	Data	Modeler	(referred	to	as	Data	Modeler	in	this	book)	is	a	free
tool	for	designing	and	documenting	databases	and	data	architecture.	It	supports	not	only
Oracle	databases	but	also	DB2	and	Microsoft	SQL	Server	databases	and,	at	a	certain	level,
any	standards-based	database	that	has	a	Java	Database	Connectivity	(JDBC)	connector.
Data	Modeler	supports	all	the	steps	in	database	design	and	includes	easy	forward	and
backward	engineering.	After	you	have	designed	your	database	and	have	a	physical	model
for	it,	you	can	export	the	scripts	to	create	the	database	objects.	Data	Modeler	also	supports
different	kinds	of	compares	and	multidimensional	models.	Data	Modeler	helps	you	keep
your	databases	documented	and	enables	you	to	be	agile.	The	tool	is	available	as	a	stand-
alone	product,	but	it	is	also	integrated	into	Oracle	SQL	Developer,	so	you	can	decide
which	way	is	the	best	for	you	to	use	the	tool.	Installing	the	tool	is	simple,	and	support	is
provided	by	Oracle	if	you	have	a	database	support	contract.

Data	Modeler	offers	the	following	features	for	database	designers:

			Database	design	tools	A	collection	of	metadata	about	a	database	is	called	a
design	in	Data	Modeler.	A	design	consists	of	the	logical	models,	multidimensional
models,	relational	models,	domains,	data	type	models,	process	models,	business
information,	and	change	requests,	as	well	as	all	the	objects	those	models	need.
Every	object	(entity,	table,	diagram,	and	so	on)	is	a	single	Extensible	Markup
Language	(XML)	file	in	a	hierarchy	that	the	tool	creates	automatically.	The	design
itself	is	saved	with	the	extension	.dmd,	and	the	.dmd	file	contains	pointers	to
individual	XML	files.

			Customization	You	can	tweak	Data	Modeler	to	your	liking.	In	Preferences,

you	can,	for	instance,	define	where	to	keep	your	working	copy	of	designs.

			Version	control	Data	Modeler	is	integrated	into	a	version	control	tool	called
Subversion.	This	integration	allows	you	to	have	multiple	users	changing	the	model
at	the	same	time.	It	also	gives	you	version	control	functionalities.	When	working
with	version	control,	the	latest	official	version	of	your	design	is	always	on	version
control,	and	the	one	you	are	working	with	is	in	your	local	saved	working	copy
directory.

			Documenting	existing	databases	You	can	import	designs	to	Data	Modeler
from	existing	databases,	from	other	designing	tools	(for	example,	Oracle	Designer
or	ERwin),	or	from	DDL	scripts.

			Reporting	capabilities	Data	Modeler	has	built-in	reporting	functionalities,
but	you	can	also	create	your	own	reports	and	templates	and	use	the	Search
functionality	as	a	base	for	a	report.	It	is	also	possible	to	use	a	reporting	repository	if
you	want	to	have	reports	across	all	your	designs	and	use	SQL	to	query	that
information.	You	can	also	print	the	design	layouts.

			Documentation	tools,	improving	quality	and	efficency	Data	Modeler	helps
you	standardize	the	design	and	data	documentation	in	your	company.	You	can	use
naming	standards,	domains,	glossaries,	and	design	rules	to	achieve	better	quality	in
your	database	design.	You	can	also	compare	models	and	designs	to	each	other,	and
you	can	compare	a	design	to	a	database.	Different	compares,	transformations,	and
notations	will	give	you	a	more	cost-efficient	working	environment	with	better
quality.

Designing	Databases	with	Oracle	SQL	Developer
Data	Modeler
The	database	design	process	when	using	Data	Modeler	starts	with	designing	a	logical
model.	In	the	logical	model,	you	define	entities,	attributes,	and	relationships.	The	next	step
is	to	create	a	relational	model	based	on	the	logical	model.	You	do	this	simply	by	clicking
the	Engineer	To	Relational	Model	icon.	When	you	are	done	with	the	relational	model,	it	is
time	to	create	the	physical	model.	You	do	this	simply	by	right-clicking	Physical	Model	in
the	Browser	pane	and	selecting	New.	When	creating	a	physical	model,	you	must	know
what	product	you	will	use	for	your	database	(Oracle,	SQL	Server,	or	DB2)	as	well	as	its
version.	All	the	properties	for	the	physical	model	depend	on	the	chosen	technology.	After
you	have	created	a	physical	model,	you	should	define	the	properties	for	the	physical
objects.	After	you’ve	done	that,	you	are	ready	to	generate	the	DDLs	(which	are	the	SQL
scripts	for	creating	your	database	objects).	You	can	create	DDLs	by	selecting	File	|	Export
|	DDL	File.	Then	just	run	these	DDLs	on	your	database	to	create	the	objects.	And	all	this
can	be	done	in	a	multiuser	environment	and	while	using	version	control.

You	can	also	use	Data	Modeler	to	document	existing	databases	(Oracle,	SQL	Server,
DB2).	You	can	reverse	engineer	the	documentation	from	a	data	dictionary	or	existing
DDLs,	or	you	can	import	it	from	another	design	tool	(Oracle	Designer,	ERwin,	or	a	VAR
file).	Or,	you	can	combine	all	these	techniques,	for	example,	by	bringing	some	of	the

descriptions	from	another	design	tool	and	adding	it	to	the	physical	information	from	the
data	dictionary.	You	can	find	these	features	by	selecting	File	|	Import.

Since	an	important	part	of	database	design	is	reporting,	you	might	want	to	use	Data
Modeler	to	create	your	own	templates	and	create	reports	based	on	those	templates.	You
can	also	create	a	reporting	repository;	in	addition	to	the	templates,	you	can	use	SQL	to
query	the	information	from	there.	You	can	also	print	the	diagrams	or	use	the	powerful
search	functionality	to	search	the	information	in	the	report.

It	is	also	important	to	be	able	to	document	all	the	information	related	to	the	database	in
just	one	place.	In	Data	Modeler	you	can	document	all	the	information	needed	for	the
database	design	as	well	as	change	requests,	business	information,	and	much	more.

Summary
Going	through	the	database	design	process	is	vital	if	you	are	storing	important	data	in	your
database.	Database	design	is	the	process	of	producing	detailed	entity-relationship
diagrams	and	data	flow	diagrams	to	produce	the	DDL	scripts	for	creating	the	objects	for
the	database.	Database	design	consists	of	requirements	analysis,	conceptual	design,	logical
design,	physical	design,	and,	depending	on	who	you	ask,	transaction	design.	To	be	able	to
design	a	database,	especially	in	an	agile	system,	you	need	Oracle	SQL	Developer	Data
Modeler.	It	is	a	free	tool	that	supports	all	the	needs	of	database	designers	plus	some	extra.

CHAPTER
2

Getting	Started	with	Oracle	SQL
Developer	Data	Modeler

This	chapter	will	cover	what	you	need	to	know	about	Oracle	SQL	Developer
Data	Modeler	before	you	start	using	it.	Agreeing	on	and	implementing	certain
guidelines	with	your	team	before	you	start	working	with	the	tool	will	help	you

streamline	your	work.	Specifically,	before	starting	to	use	Data	Modeler	in	production	or	in
a	multiuser	environment,	it	is	valuable	to	decide	on	some	standardization	issues,	tweak
some	settings	in	the	tool,	and	tune	the	tool	particularly	for	your	needs.	In	many	cases,	it	is
good	to	start	with	a	small	project	when	first	implementing	Data	Modeler	into	your
workflow,	not	because	it	is	a	difficult	tool	to	use	but	because	there	are	so	many	decisions
to	make	in	order	to	use	it	to	its	full	potential.

A	simple	way	to	standardize	your	team’s	workflow	and	to	improve	the	quality	of	your
database	design	is	to	use	domains,	glossaries,	and	design	rules.	A	domain	defines	the
possible	values	for	an	attribute.	Creating	domains	is	easy,	but	deciding	what	they	might
encompass	is	more	difficult.	A	glossary	is	a	pre-accepted	set	of	terms,	in	other	words,	a
vocabulary	that	can	be	used	in	a	design.	Creating	a	glossary	will	probably	be	even	more
challenging	than	creating	a	domain	because	agreeing	on	what	to	call	certain	concepts	is
usually	difficult.	Design	rules	are	a	predefined	set	of	rules	for	the	quality	of	design.
Creating	domains	and	glossaries	for	all	the	designers	to	share	is	worth	it,	and
implementing	domains	and	glossaries	will	increase	your	team’s	productivity	and	improve
the	quality	of	all	your	designs.	In	addition,	using	the	design	rules	before	moving	to	the
next	phase	in	the	design	process	will	improve	the	quality	of	the	final	database.

Here	are	some	other	questions	to	consider:	Which	reports	do	you	want	to	use?	Where
will	you	save	them?	What	kind	of	data	definition	language	(DDL)	files	will	you	have,	and
where	will	you	save	them?	How	will	you	use	version	control,	if	at	all?	What	kind	of
relational	database	management	system	(RDBMS)	will	you	use?	I	will	touch	on	these
topics	throughout	this	book.

Downloading	and	Exploring	the	Tool
You	can	download	Data	Modeler	from	the	Oracle	Technical	Network	(OTN)	at
www.oracle.com/technetwork/developer-tools/datamodeler/overview/index.html.	After
downloading	the	.zip	file,	unzip	it	to	start	using	Data	Modeler.

There	are	different	versions	of	Data	Modeler	depending	on	your	operating	system	and
whether	you	want	the	version	with	or	without	the	Java	Runtime	Environment	(JRE).	You
can	download	the	free,	stand-alone	product	of	Data	Modeler	or	Oracle	SQL	Developer,
which	has	Data	Modeler	integrated	into	it.	You	should	agree	on	which	version	of	the
product	will	be	used	in	your	organization	to	avoid	conflicts	with	different	versions,
especially	if	you	are	using	version	control	in	a	multiuser	environment.

What	Is	a	Design?
In	Data	Modeler	the	collection	of	objects	you	create	is	called	a	design.	A	design	consists
of	one	Extensible	Markup	Language	(XML)	file	with	the	extension	.dmd	(for	example,
Customer.dmd),	a	directory	(for	example,	Customer),	and	subdirectories	and	XML	files.

www.allitebooks.com

http://www.oracle.com/technetwork/developer-tools/datamodeler/overview/index.html
http://www.allitebooks.org

Each	element	(for	instance,	a	diagram,	a	table,	or	an	entity)	in	a	design	has	its	own	XML
file	and	its	own	unique	identifier	(object	ID).	The	.dmd	file	contains	pointers	to
information	in	all	these	subdirectories	and	files.	Data	Modeler	creates	all	the	needed
directories	and	subdirectories	automatically	when	you	create	a	design.	You	should	not	edit
these	XML	files	outside	the	tool	unless	you	really	know	what	you	are	doing	because	you
risk	breaking	the	files.	Common	reasons	for	an	XML	file	to	break	is	using	an	editor	that
does	not	support	XML	or	using	the	wrong	character	set.	If	you	break	one	of	these	files,
Data	Modeler	will	not	be	able	to	read	it.

TIP
If	you	want	to	give	the	design	to	another	Data	Modeler	user,	just	compress	the	.dmd	file
and	the	directories	in	one	.zip	file	and	pass	that	to	the	other	person.

A	design	consists	of	one	logical	model,	optionally	one	or	more	relational	models	that
are	based	on	that	logical	model,	and	optionally	one	or	more	physical	models	that	are	based
on	one	relational	model.	There	can	also	be	multidimensional	models,	data	type	models,
process	models,	domains,	business	information,	and	so	on.

You	need	to	decide	at	least	two	things	before	starting	to	use	Data	Modeler	in
production:	what	a	design	will	consist	of	in	your	organization	and	how	will	you	name	it.	A
design	can	consist	of	all	the	databases	in	your	organization,	one	database	instance,	one
schema,	or	something	totally	different.	You’ll	want	to	define	what	a	design	is	so	you	know
how	you	want	to	deal	with	objects	that	might	be	shared	between	applications,	schemas,	or
databases.	If	you	want	to	share	objects,	they	should	be	in	the	same	design	since	Data
Modeler	does	not	fully	support	sharing	objects	between	different	designs.	Also,	it	is
valuable	to	decide	who	will	use	Data	Modeler	and	what	they	will	do	with	it.	This	decision
might	help	you	to	understand	what	a	design	means	in	your	organization	and	to	give	the
right	privileges	to	the	right	people	in	your	organization.	In	addition,	you	should	create	a
naming	standard	for	your	designs.	For	example,	you	could	call	a	design	Customer	or
CUSTOMER	or	CustomerDB	or	CustomerData.	Which	one	will	you	use?	It	is	much	more
efficient	if	designs	are	named	consistently	and	you	know	where	to	find	them.

Exploring	the	Interface
In	Data	Modeler,	the	Browser	pane	shows	all	the	elements	in	a	design	(see	Figure	2-1).
There	are	also	menus	for	different	kinds	of	operations:	File,	Edit,	View,	Team,	Tools,	and
Help.	Data	Modeler	does	not	save	automatically,	so	remember	to	save	frequently	by
choosing	File	|	Save	or	by	choosing	File	|	Save	As.	Use	Save	As	if	you	want	to	save	the
design	in	a	different	location	or	with	a	different	name.	In	the	File	menu	you’ll	see	the
option	Recent	Designs.	This	is	the	list	of	designs	you	have	been	working	with;	the	one	on
the	top	is	the	one	you	opened	last.	If	you	want	to	save	time	when	opening	a	design	and
you	know	it	is	the	same	design	you	were	last	working	with,	instead	of	using	File	|	Open	to
browse	to	the	file	to	open	the	design,	choose	File	|	Recent	Designs.	You	can	choose	File	|
Close	to	close	one	design	and	choose	File	|	Close	All	to	close	all	the	designs	that	are	open.
When	using	either	of	these,	Data	Modeler	remains	open.	If	you	choose	File	|	Exit,	all	the

designs	as	well	as	Data	Modeler	will	close.

FIGURE	2-1.	Browser	pane	in	Data	Modeler

TIP
Choose	File	|	Exit	to	quit	Data	Modeler	and	close	all	the	designs	that	are	open.	Data
Modeler	will	ask	you	to	save	them	all.	If	you	click	the	Close	(X)	button	in	the	upper-right
corner	of	the	window,	you’ll	be	asked	if	only	one	of	the	designs	should	be	saved.

In	the	Browser	pane	you	can	select	an	entity	or	a	table,	right-click,	and	select	Go	To
Diagram.	You	will	see	all	the	diagrams,	subviews,	and	displays	where	this	object	is
located	and	can	select	the	one	you	want.	The	diagram/subview/display	will	open,	and	the
object	will	be	selected	in	the	canvas.

If	you	right-click	the	canvas,	you	will	see	a	few	options.	You	can	add	to	or	remove
objects	from	this	diagram/subview/display	by	choosing	Add/Remove	Objects	and
selecting	or	deselecting	the	Include	property.	With	View	Details,	you	can	adjust	what
object	details	will	be	shown	in	the	diagram	and	what	will	not	be	shown.	And	with	Show,
you	can	add	a	grid,	a	page	grid,	labels,	and	legends	to	the	diagram.	Grids	will	help	you
align	the	objects	and	can	make	the	diagram	easier	to	read.	The	page	grid	shows	where	a
page	ends	and	another	page	starts.	Labels	are,	for	instance,	foreign	key	names	or	source
and	target	names	in	relationships.	The	legend	shows	audit	information,	including	the	name
of	the	diagram,	author,	created	time,	modifier,	modified	time,	design	name,	and	type	of
model	(logical	or	relational,	for	example).

If	the	Browser	pane	(or	any	other	pane)	disappears,	you	can	restore	it	from	the	View
menu.	If	you	need	to	view	the	logs	in	order	to	troubleshoot	something	or	to	know	what	the
tool	is	doing,	choose	View	|	Log	or	choose	View	|	External	Log	depending	on	which	one
you	need.

The	best	way	to	learn	how	to	use	the	tool	is	to	view	the	start	page	(shown	earlier	in
Figure	2-1).	On	the	start	page,	you	will	find	links	to	documentation,	forums,	tutorials,	and
online	demonstrations.	If	the	start	page	for	some	reason	disappears,	you	can	get	it	back	by
choosing	Help	|	Start	Page.	In	fact,	you	can	get	help	in	any	screen	by	pressing	F1,	and	you
can	use	the	search	and	table	of	contents	to	find	more	information	about	the	tool.	From
Help	|	About,	you	can	check	which	version	and	build	of	Data	Modeler	you	are	using.	You
can	also	see	what	components,	properties,	and	extensions	are	included.

You	can	use	the	Navigator	pane	(on	the	right	of	Figure	2-1)	to	go	to	an	exact	point	of
the	diagram	or	to	see	the	whole	picture	of	it.	The	Navigator	pane	is	useful	especially	if
you	have	a	big	diagram	or	you	cannot	find	the	object	wanted	by	just	looking	at	the	canvas.
In	Navigator,	you	can	drag	a	red	rectangle	around	the	picture.	Then	when	you	move	your
cursor,	the	diagram	in	the	logical	or	relational	model	moves	accordingly.	There	are	also
diagrams	with	toolbars	and	icons	for	designing.	By	right-clicking	an	object,	you	can	see
the	operations	allowed	on	that	object.	Every	object	has	properties,	and	they	can	be
accessed	either	by	right-clicking	the	object	and	selecting	Properties	or	by	double-clicking
the	object.

There	is	also	a	Messages	–	Log	pane	(on	the	bottom	of	Figure	2-1)	that	shows
messages	about	what	is	happening	in	Data	Modeler.	Messages	in	red	might	need	your
attention;	anything	else	is	just	for	your	information.

For	version	control,	there	is	a	Versions	pane	that	serves	as	a	Subversion	directory	and	a
Pending	Changes	pane	so	you	can	follow	the	incoming	and	outgoing	changes.

Customizing	the	Interface
You	can	customize	the	Data	Modeler	user	interface	depending	on	how	you	like	to	work.
You	can	decide	which	tools	will	be	shown	in	the	screen,	you	can	resize	them,	and	you	can
move	the	different	panes	to	different	places	to	serve	you	better.	Just	drag	any	panel	to
move	it	to	the	place	you	want	it.	You	will	see	a	red	rectangle	following	the	pane.	When	the
position	and	shape	is	what	you	want,	release	the	mouse	button	to	drop	it.	The	possibilities
are	endless,	so	find	a	combination	that	works	the	best	for	you.	In	Figure	2-2,	you	can	see
the	way	I	prefer	Data	Modeler	to	be	set	up	to	be	able	to	work	efficiently.

FIGURE	2-2.	My	preferred	layout	for	Data	Modeler

Tuning	Oracle	SQL	Developer	Data	Modeler
Before	starting	to	use	Data	Modeler	in	production	or	in	a	multiuser	environment,	it	is
important	to	set	up	the	tool	in	the	best	way	to	serve	your	organization’s	needs.	You	could
leave	all	the	preferences	at	their	defaults,	but	in	time	you’ll	find	that	you	work	in	a	certain
way	and	the	settings	should	reflect	that.	In	the	beginning,	you	should	define	at	least	some
preferences	and	design-level	properties	and	maybe	create	some	glossaries	and	domains.
You	should	also	decide	where	those	settings	will	be	kept	(preferably	in	version	control)
and	how	they	will	be	shared	with	other	users.

The	tool	also	has	design	rules	to	help	you	maintain	the	quality	of	your	designs.	There
are	predefined	design	rules,	but	you	can	create	as	many	of	your	own	as	needed.	Having	all
this	done	will	increase	your	productivity	and	the	quality	of	your	work.

Setting	Preferences
Preferences	are	settings	that	affect	Data	Modeler	behavior	on	an	installation	level,	and	you
can	share	these	preferences	with	other	Data	Modeler	installations.	Some	preferences	take
effect	immediately,	but	other	preferences	require	you	to	close	the	design	and	reopen	it	for
them	to	take	effect.	This	is	because	either	the	preference	setting	is	in	cache	memory	or	it
has	been	copied	to	another	property	somewhere	else	in	a	design	by	Data	Modeler.	Since
the	new	preference	will	affect	only	the	elements	created	after	the	change,	it	is	important	to
set	your	preferences	before	starting	to	use	Data	Modeler.	To	be	sure	that	a	change	is	really
taking	effect	in	the	design	that	is	open,	you	can	close	and	reopen	the	design	after	changing
a	preference.	Sometimes	it	is	better	to	even	close	Data	Modeler	and	reopen	it.

In	every	new	version	of	Data	Modeler	there	are	new	preferences	for	the	users	to	tune
the	tool	to	fit	their	needs	better.	See	Help	on	Data	Modeler	for	more	specific	descriptions
of	a	certain	preference.	This	chapter	will	cover	the	most	important	preferences	for	a	user
when	starting	to	use	the	tool.	Other	chapters	will	cover	the	preferences	that	affect	that
particular	phase	of	database	design.

You	can	find	the	preferences	by	choosing	Tools	|	Preferences,	as	shown	in	Figure	2-3.
These	preferences	have	an	effect	on	only	your	installation	of	Data	Modeler	unless	you
share	them	with	other	users,	as	explained	later	in	this	chapter.

FIGURE	2-3.	Tools	|	Preferences

Preferences	for	Starting	to	Use	Oracle	SQL	Developer	Data	Modeler
This	section	will	cover	the	preferences	that	will	make	the	tool	behave	the	way	you	want,
and	it	will	explain	how	to	share	those	preferences	with	other	users	after	implementing
them.	You	can	change	all	the	preferences	while	working	on	a	project,	but	it	is	always	more
difficult	to	change	settings	later	because	it	will	affect	all	the	users	and	possibly	also	the
way	the	tool	behaves.

Figure	2-4	shows	the	Preferences	dialog,	which	opens	after	you	choose	Tools	|
Preferences,	with	Data	Modeler	selected	on	the	left.	Defining	the	default	directories	for
Data	Modeler	to	use	is	valuable.	It	is	easier	for	you	to	find	your	files	if	you	know	exactly
where	they	are	located.	You	should	define	the	directories	on	the	Data	Modeler	tab	as	the
same	for	all	your	users	because	it	will	make	your	life	much	easier,	especially	with	version
control	and	problem	solving.

www.allitebooks.com

http://www.allitebooks.org

FIGURE	2-4.	Data	Modeler	Preferences	dialog

			Default	Designs	Directory	is	the	directory	where	you	will	find	your	designs	by
default,	and	if	you	export	or	import	a	Data	Modeler	design,	it	will	be	saved	here	by
default.

			Default	Import	Directory	is	the	default	directory	for	preferences	and	design-
level	property	imports,	among	others.

			Default	Save	Directory	is	the	directory	where	you	will	save	files	by	default.
For	example,	Data	Modeler	will	try	to	find	exported	files	here	by	default.

			Default	System	Types	Directory	is	the	directory	where	all	the	Data	Modeler
system	files	are	stored	by	default.	Typically	these	files	are	type	definition	files,
default	domain	files,	glossary	files,	RDBMS	sites,	customized	scripts,	and	saved
search	criteria.	These	files	affect	your	installation	of	Data	Modeler	only.	Note	that
for	domains,	Data	Modeler	will	not	use	changes	in	any	other	file	except
defaultdomains.xml	in	the	directory	set	in	the	Default	System	Types	Directory
preference.	If	changes	are	made	in	another	file,	they	must	be	added	to	this	default
file	in	order	to	be	used.

			Default	Reports	Directory	is	the	directory	where	the	reports	generated	by	Data
Modeler	will	be	stored	and	it	can	be	defined	in	Preferences	under	Data	Modeler	|
Reports.

If	you	expand	Data	Modeler	in	the	left	pane	of	the	Preferences	dialog,	you	will	see
more	preferences,	grouped	by	category.

NOTE
You	can	define	the	default	directory	for	the	DDL	scripts	that	create	database	objects	under
Data	Modeler	|	DDL	by	setting	the	Default	DDL	Files	Export	Directory	preference.

In	Diagram	preferences,	you’ll	find	preferences	for	the	logical	model.	Data	Modeler
supports	several	notation	types.	You	can	set	the	preferred	notation	type	in	the	Notation
Type	list	to	either	Barker	or	Bachman.	(Information	Engineering	Notation	cannot	be	set	as
the	default	notation.)	You	can	also	decide	to	have	the	presentation	for	inheritance	as	box-
in-box	by	selecting	the	Box-in-Box	Presentation	For	Entity	Inheritance	preference.	You
can	change	the	selected	preference	at	any	time,	and	the	current	notation	or	box-in-box
setting	can	even	be	changed	for	a	diagram	by	right-clicking	the	diagram	and	selecting
Notation.

There	are	also	Model	preferences,	as	shown	in	Figure	2-5.	An	RDBMS	type	is	a	list	of
supported	RDBMS	types	in	Data	Modeler,	and	an	RDBMS	site	is	an	alias	for	an	RDBMS
type.	You	can	add	as	many	new	RDBMS	sites	as	needed.	For	instance,	Oracle	12c	or	SQL
Server	2008	is	an	RDBMS	type,	and	you	could	create	an	alias	called	TEST12c	to	define
the	RDBMS	site	that	would	be	Oracle	12c	in	your	test	environment.	The	Default	RDBMS
Type	preference	is	used	for	selecting	the	default	RDBMS,	and	the	Default	RDBMS	Site
preference	is	selected	by	default	as	the	RDBMS	site	when	creating	a	physical	model.

(Chapter	6	will	go	into	more	detail	about	RDBMS	types	and	sites.)	The	Datatype	options
are	for	defining	the	default	for	the	tool	to	suggest	as	a	data	type	for	attributes	(and
columns).	For	instance,	if	you	select	Domain,	domains	will	be	suggested	by	default	as	the
data	type	when	creating	a	new	attribute.	Preferred	Logical	Types	is	a	useful	functionality.
There	are	so	many	different	logical	types	on	the	tool,	and	you	probably	need	fewer	than
ten	of	them.	If	you	define	your	own	set	of	preferred	logical	types,	it	will	be	a	shorter	list
for	you	to	select	from	when	creating	a	new	attribute.	You	can	add	new	logical	types	to	the
list	at	any	time.	You	add	logical	types	to	your	list	by	selecting	the	preferred	logical	type
and	clicking	the	arrow	pointing	to	the	right.	You	will	see	the	list	of	selected	logical	types
on	the	right	side	of	the	dialog	(Preferred	Logical	Types).

FIGURE	2-5.	Model	preferences

You	can	also	define	shortcut	keys	to	make	using	the	tool	more	fluent.	Figure	2-6	shows
Shortcut	Keys	preferences.	You	can	use	the	ones	listed	or	define	your	own	shortcut	keys.

FIGURE	2-6.	Shortcut	Keys	preferences

Sharing	Preferences	with	Other	Users
You	can	share	your	Data	Modeler	preferences	with	other	users	using	the	Export/Import
buttons	at	the	bottom	of	the	Preferences	dialog	when	Data	Modeler	is	selected.	To	export
the	preferences,	click	the	Export	button.	You	will	be	asked	for	the	name	and	the	location
to	save	the	XML	file,	and	it	will	be	saved	accordingly.	This	XML	file	can	be	imported	to
another	computer	with	the	Import	button.	You	need	to	define	the	settings	only	once,	and
then	you	can	import	them	to	other	computers	in	your	organization.	Make	sure	to
export/import	the	new	preferences	to	all	users	every	time	you	change	the	official
preferences	in	your	working	environment.

TIP
If	you	realize	you	have	failed	with	the	import	(such	as	importing	the	wrong	file),	do	not
click	OK;	click	Cancel.	The	import	is	complete	only	when	OK	has	been	clicked.

Shortcut	key	definitions	are	not	included	in	Data	Modeler’s	exported	preferences	file.
If	you	want	to	share	the	shortcut	keys	with	other	users,	use	the	export/import
functionalities	from	the	icons,	as	shown	in	Figure	2-6.

TIP
You	should	save	the	exported	file	to	version	control	like	any	other	important	file.	You	will
learn	more	about	version	control	in	Chapter	9.

Introducing	Design	Properties
In	addition	to	preferences	that	help	you	set	up	your	Data	Modeler	working	environment,
there	are	also	properties	that	affect	only	the	particular	design	you	set	them	for.	This	is	a
new	behavior	starting	with	Data	Modeler	version	4.0.	Since	version	4.0.3,	either	double-
click	the	design	name	in	the	Browser	pane	or	right-click	and	select	Properties	to	open	the
Design	Properties	dialog.	You	can	select	the	Use	Global	Design	Level	Settings	option
under	Settings.	If	Use	Global	Design	Level	Settings	is	selected,	the	design	properties	are
modified	automatically	based	on	global	design-level	settings	from	the	file
datamodeler\datamodeler\types\dl_settings.xml.	Also,	when	some	of	the	properties	are
changed	in	a	design	that	has	Use	Global	Design	Level	Settings	selected,	the	changes	are
saved	both	to	the	local	file	and	to	the	global	file.	For	instance,	changes	to	classification
types,	default	fonts	and	colors,	default	line	widths	and	colors,	naming	standard	rules,	and
compare	mappings	are	implemented	automatically	in	the	Design	Properties	dialog.

Looking	at	Properties	to	Start	With
As	mentioned,	you	can	find	the	design-level	properties	either	by	double-clicking	the

design	name	in	the	Browser	pane	or	by	right-clicking	and	selecting	Properties.	You	can
specify	new	classification	types	and	decide	the	colors	to	be	used	for	classification	and
object	types,	as	shown	in	Figure	2-7	and	Figure	2-8.	Setting	up	standards	for	colors	in	the
diagrams	makes	it	easier	for	people	to	read	them.	In	the	Settings	|	Diagram	|	Logical
Model	pane,	you	can	select	either	Domain	Name	or	Used	Logical	Type	to	have	those
shown	for	domains	in	a	diagram	(Domains	Presentation).

FIGURE	2-7.	Classification	types

FIGURE	2-8.	Defining	formats	for	object	types

Naming	standards	make	designing	work	easier	and	improve	the	quality	of	your	designs.
For	instance,	you	can	decide	how	names	in	logical	models	and	relational	models	will	be
separated.	In	a	logical	model,	separator	can	be	space,	title	case	(camelCase)	or	a	specified
character.	For	example,	if	you	select	a	space	as	a	separator,	the	customer	name	would	be
“Customer	name.”	If	you	select	title	case,	the	customer	name	would	be	CustomerName.	If
you	select	a	specific	character,	let’s	say	an	underscore	(_),	the	customer	name	would	be
Customer_name.	In	a	relational	model,	you	can	select	only	a	character	as	a	separator,	such
as	an	underscore.	In	this	example,	the	customer	name	would	be	Customer_name.	For	a
relational	model,	you	can	also	select	Abbreviated	Only,	which	means	that	only
abbreviated	words	can	be	used	in	the	relational	model	(see	Figure	2-9).	You	can	also
define	a	separator	character	for	domains	and	add	one	or	more	glossaries	for	a	naming
standard.	The	naming	standards	can	be	verified	against	the	selected	glossary	or	glossaries.
You	can	find	more	information	about	glossaries	in	the	“Introducing	Glossaries”	section.
You	can	add,	modify,	and	remove	naming	standards	for	attributes,	columns,	domains,
entities,	and	tables,	and	these	standards	will	be	checked	when	you	apply	design	rules.	Any
violations	will	be	reported	as	errors	or	warnings.	You	can	find	more	information	about
design	rules	in	the	“Introducing	Design	Rules”	section.

www.allitebooks.com

http://www.allitebooks.org

FIGURE	2-9.	Naming	Standard	settings

In	my	opinion,	the	most	valuable	tab	under	Naming	Standard	in	the	Design	Properties
dialog	is	Templates,	as	shown	in	Figure	2-10.	On	the	Templates	tab	you	can	define	how
different	elements	such	as	primary	keys,	foreign	keys,	constraints,	and	indexes	will	be
named.	You	can	specify	the	format	string	for	naming,	and	it	can	include	variable	and	fixed
parts	of	the	name.	Templates	are	used	when	generating	elements	automatically.

FIGURE	2-10.	Implementing	naming	standards	by	using	templates

Sharing	the	Design-Level	Properties
Design-level	properties	are	valid	only	for	the	design	for	which	they	have	been	defined.	If
you	want	to	have	the	same	properties	in	other	designs	or	used	by	other	users,	you	can
share	them	with	the	export/import	functionality.	From	Design	Properties,	select	Settings,
as	shown	in	Figure	2-11.	By	clicking	Save,	you	can	save	the	current	settings.	By	clicking
Export,	you	will	create	an	XML	file	with	your	design-level	properties	that	you	can	share
with	other	users.	By	clicking	Import,	you	can	import	the	properties	you	or	somebody	else
has	exported	for	other	users.	The	XML	file,	including	the	defined	properties,	should	be
kept	in	version	control	and	should	be	imported	to	every	design	whenever	any	of	the
properties	has	changed.

FIGURE	2-11.	Export/import	functionality	for	design	properties

The	default	directory	for	property	exports	is	defined	in	Preferences	under	Data	Modeler
with	the	Default	Save	Directory	setting,	and	the	default	directory	for	property	imports	is
defined	with	the	Default	Import	Directory	setting.

Since	version	4.0.3,	you	can	also	use	global	design-level	settings.	You	can	select	the
Use	Global	Design	Level	Settings	option	for	the	current	design	in	the	Design	Properties
dialog	under	Settings.	If	Use	Global	Design	Level	Settings	is	selected,	the	design
properties	are	modified	automatically	based	on	global	design-level	settings	from	the	file
datamodeler\datamodeler\types\dl_settings.xml	when	a	design	is	opened.	For	instance,
changes	to	classification	types,	default	fonts	and	colors,	default	line	widths	and	colors,
naming	standard	rules,	and	compare	mappings	are	implemented	automatically	in	the
design	properties.	The	designs	still	use	the	dl_settings.xml	file	located	in	a	design’s	own
directory,	but	selecting	the	Use	Global	Design	Level	Settings	box	will	copy	the	settings
from	the	global	file	to	the	local	file	when	opening	a	design.

So,	if	you	want	to	use	global	settings	for	the	designs,	keep	the	file
datamodeler\datamodeler\types\dl_settings.xml	updated	based	on	changes	you	make	to
design	properties,	select	Use	Global	Design	Level	Settings,	and	remember	to	share	the
global	file	with	other	users.	The	procedure	in	general	is	as	follows:

1.			Create	the	wanted	design	properties	in	one	of	the	designs.

2.			Save	the	settings	in	the	Design	Properties	dialog	under	Settings	by	clicking
Save.	If	you	do	not	save,	the	changes	will	not	be	saved	to	the	local	or	global	file.
When	you	click	Save	and	the	Use	Global	Design	Level	Settings	box	is	selected,
you	get	the	following	message:	“By	checking	the	checkbox	‘Use	Global	Design
Level	Settings’	you	are	going	to	overwrite	both	files	–	global	design	level	settings
and	current	design	level	settings	file.	Are	you	sure	you	want	to	proceed?”	Click
OK.

3.			Share	the	file	with	other	users	using	Subversion	and	make	sure	you	have	a
procedure	for	updating	the	file.	You	can	copy	the	file	from	version	control	to
datamodeler\datamodeler\types\	to	let	Data	Modeler	automatically	copy	the
changes	to	local	design	files.

NOTE
When	you	select	the	Use	Global	Design	Level	Settings	option	for	one	design,	the	default
setting	for	all	new	designs	is	enabled	as	“Use	Global	Level	Settings.”	Old	designs	are	not
changed	automatically.

Introducing	Glossaries
As	mentioned,	a	glossary	is	a	vocabulary	of	words	to	use	in	a	design	work.	You	can	use
them	to	guarantee	defined	design	rules	or	to	engineer	between	logical	and	relational
models.	You	can	create	a	new	glossary	from	scratch,	create	one	based	on	an	existing

logical	model,	or	use	an	existing	glossary.	A	glossary	is	an	XML	file	with	the	extension
.glossary.

Creating	or	Editing	a	Glossary
You	can	create	and	edit	a	glossary	in	the	Glossary	Editor	(choose	Tools	|	Glossary	Editor),
as	shown	in	Figure	2-12.	The	default	directory	for	saving	glossaries	is	set	in	the	Default
Import	Directory	preference.

FIGURE	2-12.	Glossary	Editor

If	you	want	to	edit	an	existing	glossary,	open	the	Glossary	Editor,	select	the	glossary
file,	make	your	changes,	and	click	Save.	This	file	can	be	a	.glossary	file	made	with	Data
Modeler	or	a	.csv	or	.txt	file	made	with	ERwin.

If	you	want	to	create	a	new	glossary,	start	the	Glossary	Editor	and	define	a	filename
that	does	not	exist	yet.	Data	Modeler	will	automatically	create	that	file	as	a	new	glossary.
Every	glossary	should	have	a	name	and	a	description.	By	selecting	Incomplete	Modifiers,
you	will	allow	modifiers	and	qualifiers	to	be	named	outside	the	glossary	definitions,	so
those	names	do	not	need	to	be	in	the	glossary.	If	you	select	Case	Sensitive,	all	the
validation	is	based	on	the	fact	that	the	name	under	validation	must	be	written	the	same
way	as	the	word	in	the	glossary.	By	selecting	Unique	Abbreviations,	you	will	have	control
over	the	whole	glossary	in	that	all	the	abbreviations	in	the	glossary	will	be	unique.	The
same	abbreviation	cannot	be	used	in	several	words,	and	there	cannot	be	a	word	without	an
abbreviation.	The	name	validation	process	will	report	these	cases.	With	Separator	and	Sep.
Char.,	you	define	the	separator	for	terms	that	have	multiple	words.	The	separator	settings
are	checked	every	time	a	glossary	is	loaded	into	the	Glossary	Editor,	and	a	warning	is
given	if	you	have	any	violations.	Words	in	the	list	can	be	filtered	with	Filter,	which
restricts	the	display	to	entities	by	their	classification:	Prime	Word,	Class	Word,	Modifier,
Qualifier,	and	Unclassified.	Unclassified	shows	items	that	have	no	classification.

You	can	add	new	words	to	a	glossary	with	the	green	plus	button	and	remove	them	with
the	red	X	button.	A	name	is	the	only	mandatory	element	for	a	glossary	word.	A	word	can
have	a	plural	and	an	abbreviation.	It	can	also	have	an	alternative	abbreviation	(Alt.	Abbr.).
Classify	the	glossary	entity	as	well	as	possible	by	choosing	all	classification	types	that
apply	to	this	word.	Available	classification	types	are	as	follows:

			A	prime	is	the	prime	word	for	the	object	being	defined;	prime	words	are
usually	listed	as	keywords.	Typically	the	word	Customer	in	Customer	Name	is	a
prime	word.

			Class	words	are	usually	words	that	identify	the	use	or	purpose	of	the	word.
Name	in	Customer	Name	would	be	an	example	of	a	class	word.

			A	modifier	gives	additional	information	about	either	the	class	word	or	the
prime	word.	Official	in	Official	Customer	Name	would	be	a	modifier	word.	A
modifier	can	be	an	adjective	or	a	noun.

			A	qualifier	is	a	special	case	of	a	modifier	that	gives	information	about	the
qualification	within	domain	values.	Weeks	in	Delivery	Time	in	Weeks	is	an	example
of	a	qualifier.

It	is	also	good	practice	to	write	a	description	for	a	word,	which	can	be	done	in	Short
Description.	If	you	want	to	edit	an	existing	glossary	entry,	just	select	it	and	then	modify	it.

You	can	create	a	new	glossary	based	on	a	logical	model	by	right-clicking	the	logical
model	in	the	Browser	pane	and	selecting	Create	Glossary	From	Logical	Model.	But	you
should	not	do	that	before	the	logical	model	is	ready	because	if	you	have	edited	the
glossary	and	then	generate	the	glossary	again	based	on	the	logical	model,	all	your
manually	edited	changes	will	be	lost.	Either	you	always	generate	the	glossary	based	on	a
logical	model	and	define	all	the	information	needed	there	or	you	generate	it	only	once	and
then	update	it	manually.

Sharing	a	Glossary	with	Other	Users
Once	you’ve	defined	a	glossary,	you	can	share	it	with	other	users	by	saving	the	file	and
sharing	it.	You	can	also	export	it	by	clicking	the	Export	button	in	Preferences,	and	you	can
import	one	by	clicking	the	Import	button.	The	default	directory	for	glossary	exports	is	the
Default	Save	Directory	preference	covered	earlier.	The	exported	file	is	a	.csv	file.

Introducing	Domains
As	mentioned,	domains	are	predefined	data	type	definitions	that	include	all	the
information	needed	for	a	certain	kind	of	data	such	as	address,	money,	or	Social	Security
number.	Domains	and	their	definitions	are	saved	in	XML	files.

TIP
Domains	are	useful	for	standardizing	attribute	and	column	properties	and	improving	the
design	quality.

Creating	a	Domain
The	domain	definitions	are	Data	Modeler	installation-level	settings.	The	location	of	a
domain	file	is	set	in	the	Default	System	Types	Directory	preference,	and	Data	Modeler
names	the	file	defaultdomains.xml.	You	can	see	the	set	of	domains	your	installation	of
Data	Modeler	is	using	in	the	Browser	pane	under	Domains.

You	can	administer	domains	by	choosing	Tools	|	Domains	Administration;	the	Domains
Administration	dialog	opens.	You	can	select	an	existing	file	of	domains	by	clicking	the
Select	button	and	finding	the	file	you	wanted	or	you	can	create	a	new	one	by	typing	a
filename	that	does	not	exist.	If	you	do	not	select	anything,	the	default	file
(defaultdomains.xml)	will	be	used.

NOTE
Data	Modeler	will	not	use	changes	in	any	other	file	except	defaultdomains.xml	in	the
directory	set	in	the	Default	System	Types	Directory	preference.

To	create	a	new	domain,	click	Add	in	the	Domains	Administration	dialog.	Fill	in	the
domain	definitions	(as	shown	in	Figure	2-13)	and	click	Apply.	Then	click	Save.	The
changes	will	be	saved	in	the	file	shown	in	the	Domains	File	field	in	the	Domains
Administration	dialog.

www.allitebooks.com

http://www.allitebooks.org

FIGURE	2-13.	Domains	Administration	dialog

In	Data	Modeler	you	can	also	define	other	things	for	domains	than	just	data	types	and
lengths.	You	can	define	check	constraints,	ranges,	lists	of	values,	and	rules	for	sensitive
data.	Figure	2-13	shows	a	domain	called	Boolean.	You	will	want	to	use	this	domain
whenever	you	have	an	attribute	that	has	the	values	True/False.	You	can	define	those	values
by	clicking	Value	List.	If	you	want	to	make	these	changes	to	an	existing	domain
definition,	click	Modify	and	then	click	Value	List.	To	add	new	allowable	values	on	the	list,
click	Add.	The	List	Of	Values	dialog	opens,	as	shown	in	Figure	2-14.	Fill	in	the	value	and
the	description.	After	you	have	added	all	the	values	needed,	click	OK.

FIGURE	2-14.	Defining	a	list	of	values

Next	you	want	to	define	a	domain	called	Category	so	you	can	define	a	range	for	that
domain.	Select	the	domain	called	Category	in	the	Domains	Administration	dialog	and
click	Modify.	Then	click	Ranges.	In	the	Category	List	Of	Ranges	dialog,	as	shown	in
Figure	2-15,	fill	in	the	ranges	needed	and	click	Add.	Then	click	OK.	If	you	have	many
ranges	in	the	list,	you	can	sort	them	either	ascending	or	descending	using	the	radio	buttons
on	the	right.

FIGURE	2-15.	Defining	a	list	of	ranges

Sharing	Domains	with	Other	Users
The	only	domain	file	Data	Modeler	uses	is	defaultdomains.xml	located	in	the	directory
you	set	in	the	Default	System	Types	Directory	preference.	There	are	two	possibilities	for
sharing	new	domains	to	other	users:	You	can	make	changes	to	the	default	file	and	share
that	with	other	users,	or	you	can	make	changes	to	a	separate	file	and	share	that	with	all
users	to	be	imported	into	their	local	default	file.	It	is	useful	to	have	a	separate	file	for	your

organization’s	standard	set	of	domains	to	be	sure	everyone	is	using	the	latest	version	of	the
same	file.	That	solution	also	allows	users	to	define	their	own	domains	that	will	not	be
shared	with	other	users.

If	you	decide	to	use	the	default	domain	file	and	share	that,	you	can	copy	the	file	to	all
computers	to	the	directory	specified	in	Default	System	Types	Directory,	and	all	the	users
will	have	the	domains	available	to	be	used	in	their	designs.

If	you	decide	to	have	a	separate	file	for	company-specific	domains,	you	can	share	that
file	with	users,	but	they	must	first	import	the	settings	to	the	local	default	file	before	the
new	domains	can	be	used.	Importing	can	be	done	with	the	Import	functionality	found	in
the	File	menu:	Choose	File	|	Import	|	Domains.	Select	Open	Domain	File,	and	select	the
file	wanted.	Select	the	box	Import	In	Default	Domains	and	click	Import.	If	you	do	not
check	the	box	Import	In	Default	Domains,	you	will	have	these	domains	for	this	one
design,	which	is	probably	not	what	you	want.	See	Figure	2-16	for	more	information	on	the
domain	import	functionality.

FIGURE	2-16.	Domain	import

TIP
You	should	save	the	shared	domain	file	to	version	control.	You	will	learn	more	about
version	control	in	Chapter	9.

Introducing	Design	Rules
As	mentioned,	design	rules	are	an	easy	way	of	having	standardized	testing	for	the	rules	of
database	design.	The	testing	is	automatic,	but	you	must	start	it	manually	whenever	you
think	it	is	needed.	There	are	preset	design	rules	in	the	tool,	and	you	can	also	create	your
own	rules	and	sets	of	rules.	Choose	Tools	|	Design	Rules	and	Transformations	|	Design
Rules	to	open	the	Design	Rules	dialog.

Creating	and	Using	Design	Rules
There	are	many	predefined	design	rules	in	Data	Modeler,	as	you	can	see	in	Figure	2-17.
These	rules	are	categorized	based	on	the	model	type	(general,	logical,	relational,	process
model,	physical)	and	model	components	(tables,	views,	attributes,	and	so	on).	You	can
always	check	your	models	against	these	rules,	or	you	can	create	sets	of	rules	that	will	be
checked.	You	can	check	that	your	models	follow	one	or	some	of	the	rules	by	selecting	the
rule/rules	and	clicking	Apply	Selected.	Or	you	can	check	all	the	rules	by	clicking	Apply
All.	Results	are	reported	as	either	errors	(red)	or	warnings	(blue).	By	double-clicking	the
error/warning	message,	you	will	be	taken	to	the	location	where	the	error	or	warning
occurs,	and	you	can	fix	any	errors	or	warnings	immediately	and	one	by	one.

FIGURE	2-17.	Design	Rules	dialog

When	you	start	using	Data	Modeler,	you	may	be	happy	with	the	design	rules	that	come
with	the	tool,	but	you	might	come	up	with	new	ideas	of	rules	while	working	with	Data
Modeler,	so	it	is	good	to	know	that	you	are	able	to	add	them	when	needed	as	custom
design	rules.	You	can	create	custom	design	rules	that	are	based	on	custom	libraries.	First
you	create	a	custom	library	as	needed	in	the	Custom	Libraries	dialog,	as	shown	in	Figure
2-18.	Tools	|	Design	Rules	and	Transformations	|	Libraries	Then	you	create	a	custom
design	rule	based	on	that	custom	library	in	the	Custom	Design	Rules	dialog,	as	shown	in
Figure	2-19,	Tools	|	Design	Rules	and	Transformations	|	Custom	Rules.	The	custom
design	rules	will	be	added	automatically	to	your	design	rules,	and	they	will	be	available
for	you	to	select	on	a	rule	set.

www.allitebooks.com

http://www.allitebooks.org

FIGURE	2-18.	Creating	a	library

FIGURE	2-19.	Creating	a	custom	design	rule

A	library	is	a	set	of	functions	or	methods	programmed	in	Java,	and	it	can	be	reused	in
custom	design	rules	or	transformation	scripts.	For	each	library,	you	define	the	name,
execution	engine,	and	one	or	more	functions	or	methods	to	perform	the	functionality
needed.	You	can	add	new	functions	and	methods	with	the	green	plus	sign	in	the	Custom
Libraries	dialog	and	then	program	the	functionality	in	the	Script	pane	on	the	right.	You
can	remove	a	function	or	method	from	a	library	with	the	red	X	button.

TIP
You	can	find	some	information	about	creating	scripts	in	the	Data	Modeler	directory
/datamodeler/xmlmetadata/doc.	And	you	can	always	ask	for	help	at	the	OTN	forum.

For	each	custom	design	rule,	you	specify	the	object	type	it	concerns,	the	execution
engine,	the	severity	by	type	(error	or	warning)	if	a	violation	of	a	rule	is	detected,	and	the
variable	associated	with	the	rule.	You	also	define	the	library	used	and	the	method.	Only
methods	included	in	a	library	can	be	added	here.	If	you	need	to	modify	a	library	or	a
method,	you	can	do	that	in	the	Custom	Libraries	dialog.

NOTE
If	you	don’t	have	the	JRuby	engine	installed	on	your	computer,	download	the	appropriate
kit	from	http://jruby.org	and	install	it.	Find	jruby.jar	where	you	installed	JRuby	and	copy	it
to	the	ext	directory	under	the	JDK	directory	that	Data	Modeler	is	using.	For	example,
datamodeler\jdk\jre\lib\ext.

You	can	create	your	own	rule	sets	in	the	Design	Rules	dialog	on	the	tab	Rule	Sets.	A
rule	set	is	useful	when	you	frequently	want	to	check	just	some	rules,	not	all	the	rules
defined.	You	can	create	a	new	rule	set	with	the	green	plus	button,	and	you	can	remove	an
existing	one	with	the	red	X	button.	You	can	add	rules	to	your	set	by	clicking	the	Rule	Set
Properties	icon	(the	icon	with	the	pencil)	on	the	Rule	Sets	tab	of	the	Design	Rules	dialog
and	selecting	your	rules	from	the	list,	as	shown	in	Figure	2-20.

http://jruby.org

FIGURE	2-20.	Selecting	a	rule	for	a	rule	set

Sharing	Design	Rules
The	design	rules	that	come	with	Data	Modeler	are	the	same	for	all	users.	But	if	you	decide
to	create	your	own	libraries	and	design	rules,	you	must	share	them	with	other	users	to	let
them	use	them	too.	The	sharing	can	be	done	with	export/import	functionality.	The	default
folder	for	exporting	is	set	in	Default	Save	Directory	in	Preferences,	and	for	importing	it	is
set	in	Default	Import	Directory	in	Preferences.	You	can	share	libraries	by	clicking	Export
in	the	Custom	Libraries	dialog	and	saving	the	XML	file.	After	that,	select	Import	on	the
other	user’s	computer	and	select	the	exported	file	to	be	imported.	Likewise,	custom	design
rules	can	be	exported	and	imported	the	same	way	in	the	Custom	Design	Rules	dialog.

Performance	Tuning
Data	Modeler	is	a	Java	Swing	application	that	requires	the	Java	Development	Kit	(JDK).
Data	Modeler	consists	of	several	directories	and	XML	files	that	must	be	held	in	memory.
If	a	design	is	large,	the	memory	might	run	out,	and	working	with	Data	Modeler	gets	too
slow.	You	can	even	get	a	warning	message	(Low	Memory	Warning)	saying	you	do	not
have	enough	memory.	If	you	want	to	see	how	the	memory	is	used	and	what	would	be	a
good	memory	setting,	you	can	do	it	with	a	tool	called	Java	VisualVM.	If	you	have	Oracle
SQL	Developer	installed,	you	will	find	it	named	jvisualvm.exe	in	the	JDK/bin	directory.
In	Figure	2-21,	you	can	see	the	memory	allocated	in	Java	VisualVM	and	how	much	of	it
has	been	used.	If	you	want	to	change	the	setting	in	versions	before	4.0,	the	file	to	change
is	/datamodeler/datamodeler/datamodeler.conf	or
/datamodeler/datamodeler/datamodeler64.conf,	but	since	4.0,	it	is	a	configuration	setting
for	each	user,	and	the	file	to	edit	is	C:\Users\username\AppData\Roaming\Oracle	SQL
Developer	Data	Modeler\buildno\product.conf.	The	buildno	part	is	the	build	number	of
your	version	of	Data	Modeler.	You	can	still	use	the	datamodeler.conf	file,	but	you	must
remove	the	setting	from	product.conf	before	this	setting	takes	effect.	Remember,	when
editing	this	kind	of	file,	Data	Modeler	must	be	closed.	To	change	the	memory	setting,	look
for	AddVMOption	–Xmx.	It	usually	has	a	value	of	800M;	you	might	want	to	change	that,
for	instance,	to	1250M	or	maybe	even	to	3GB	or	4GB.	But	be	careful	because	if	you
change	the	setting	to	be	too	large,	it	is	possible	that	Data	Modeler	will	not	start.	In	that
case,	make	the	value	smaller.

FIGURE	2-21.	Java	VisualVM	report	for	memory	usage

TIP
Using	subviews	might	help	you.	Opening	a	diagram	with	5,000	objects	is	definitely	slower
than	opening	a	subview	with	50	objects.	Besides,	if	the	diagram	is	too	large,	it	is	difficult
to	read	it.

In	Data	Modeler	version	4.1	there	is	a	new	design	property	that	allows	you	to	save	the
design	in	one	or	several	files.	It	is	also	possible	to	use	a	mixed	mode,	saving	some	of	the
objects	in	one	file	and	some	in	separate	files.	If	you	are	using	version	control,	you	still
need	to	save	each	object	to	a	separate	file.	This	functionality	has	been	added	for	better
performance.

TIP
Do	not	open	physical	models	if	not	needed,	especially	if	the	physical	model	is	large
because	opening	it	can	affect	performance	dramatically.

Summary
Before	starting	to	use	Data	Modeler	in	production	with	several	users	in	your	organization,
it	is	wise	to	set	some	standards	and	customize	Data	Modeler	for	your	needs.	It	is	important
to	agree	on	which	version	of	the	tool	to	use,	who	will	use	the	tool,	and	for	what	purpose.
You	will	also	want	to	decide	what	a	design	is	in	your	organization	and	how	you	will	name
your	designs.

Tuning	the	tool	for	your	needs	is	also	vital.	You	can	set	preferences	and	design
properties	and	share	them	with	all	users,	and	you	can	create	and	share	glossaries	and
domains	to	support	standards.	It	is	also	important	to	understand	that	you	can	use	design
rules	and	set	your	own	rules	in	order	to	check	and	enforce	those	standards.	All	this	will
improve	the	productivity	and	quality	of	the	resulting	designs.	Data	Modeler	makes	it	easy
to	enforce	standards	across	your	organization	and	designers.	In	addition,	using	version
control	with	Data	Modeler	for	all	shared	and	common	files	will	raise	the	quality	and
productivity	to	the	next	level.

Data	Modeler	does	not	save	designs	automatically,	so	make	sure	to	save	frequently	by
choosing	File	|	Save.	You	can	move	the	different	navigators,	browsers,	and	canvases	by
just	dragging	and	dropping	them	where	you	want	them.	Take	some	time	to	find	what
works	for	you;	it	is	definitely	worth	it.

Data	Modeler	is	a	Java	Swing	application	that	requires	the	JDK.	Sometimes	you’ll	need
to	change	the	JVM	settings	to	get	better	performance.

CHAPTER
3

Introducing	Requirements	Analysis

www.allitebooks.com

http://www.allitebooks.org

Requirements	analysis	is	the	process	of	finding	and	analyzing	the	requirements
that	the	future	users	of	the	application	and	database	have.	The	results	of	this
process	are	specifications	of	user	requirements.	There	are	at	least	three	kinds	of

requirements:	data,	functional,	and	nonfunctional	requirements.	Functional	requirements
describe	what	the	application	must	do,	data	requirements	describe	the	data	needed	for	the
requirements	and	the	nonfunctional	requirements	(for	instance	security	and	performance
requirements)	describe	the	constraints	how	the	functional	requirement	must	be	performed.
An	example	of	a	functional	requirement	is	that	the	application	must	return	the	names	of
the	customers.	To	data	requirements	that	might	mean	a	need	for	a	Customer	entity	with	an
attribute	Name	and	examples	of	nonfunctional	requirement	are	that	it	can	only	return	that
information	to	people	having	permission	to	the	information	and	it	must	be	returned	in	5
seconds.

The	process	of	requirements	analysis	is	used	for	specifying	project	goals	and	for
planning	development	cycles	and	increments.	Requirements	analysis	also	serves	as	a
source	for	planning	test	cases.	Many	times	the	requirements	analysis	also	provides	input	to
the	risk	analysis.	It	is	important	to	find	the	requirements	for	the	database.	It	is	also
important	to	know	which	requirements	are	mandatory,	which	are	optional,	and	which	will
be	prioritized	higher	than	others	(ranking).

The	work	during	requirements	analysis	is	collecting	all	possible	data	available	and
formalizing	it	into	a	consistent	form.	The	work	consists	of	conducting	interviews,	having
meetings,	reading	existing	documentation,	and	doing	anything	else	possible	to	find	the
unwritten	information.	When	collecting	information,	it	is	also	important	to	verify	the
result	with	end	users	and	business	owners.

Depending	on	the	processes	your	organization	has	and	the	tools	you	are	using,	the
documentation	of	the	requirements	analysis	may	vary.	This	book	will	not	go	into	detail	on
documentation;	it	concentrates	on	the	work	the	database	designer	does	during	this	phase	of
the	database	design	process,	if	lucky	enough	to	be	involved	the	project	at	this	early	stage.
Many	times	the	database	designer	does	not	even	know	there	is	a	new	project	starting
because	everybody	thinks	that	the	database	designer	has	nothing	to	do	yet,	calling	on	the
database	designer	only	when	the	conceptual	design	starts.	During	requirements	analysis,
the	database	designer	tries	to	ask	all	the	questions	needed	to	find	out	what	data	this	new
system	has	(data	requirements)	and	how	it	is	used	(functional	requirements).	The	database
designer	also	tries	to	gather	all	the	possible	nonfunctional	requirements	for	the	database
(related	to	security,	performance,	and	so	on).	So,	leaving	the	database	designer	out	of	this
process	is	not	very	wise.

Mostly	the	requirements	analysis	consists	of	writing	notes,	but	Data	Modeler	does
provide	logical	entity-relationship	(ER)	models,	data	flow	diagrams	(DFDs),	and
transformation	packages	to	help	formalize	the	documentation.	You	can	find	more
information	about	the	ER	model	in	Chapter	4.	Data	Modeler	also	lets	you	document
business	information	such	as	responsible	parties,	contacts,	phone	numbers,	e-mails,	and	so
on.	All	the	models	created	during	the	requirements	analysis	phase	in	Data	Modeler	can	be
used	as	the	basis	for	the	design	work	when	moving	to	the	conceptual	design.

In	the	requirements	analysis	phase,	the	database	designer	is	not	trying	to	model	the

whole	world	but	just	the	main	concepts	and	their	relationships	and	behavior.	Still,	it	is
good	to	write	down	anything	that	might	be	interesting	when	designing	the	database
because	it	is	possible	that	someone	might	forget	to	detail	those	things	later.

All	the	documentation	added	to	Data	Modeler	can	be	used	as	requirements
documentation	since	it	can	easily	be	extracted	from	Data	Modeler	with	the	built-in	or
custom	reports.	This	is	one	good	reason	to	have	all	your	documentation	in	Data	Modeler.
Another	good	reason	is	that	when	you	have	all	your	documentation	in	one	place,	you	do
not	need	to	remember	which	disc	or	which	directory	you	used	to	save	your	documents.
You	can	read	more	about	reports	in	Chapter	11.

Gathering	Requirements	for	the	Logical	Model
In	Data	Modeler	the	entity-relationship	model	is	called	the	logical	model	and	can	be	found
in	the	Browser	pane.	If	the	logical	model	is	not	open	in	the	canvas,	you	can	open	it	by
right-clicking	Logical	Model	in	the	Browser	pane	and	choosing	“Show.”	All	the	logical
design	with	ER	notation	is	done	on	this	logical	canvas.

Use	icons	on	the	toolbar	to	create	new	entities	and	relationships.	When	you	hover	your
mouse	over	an	icon,	the	bubble	help	will	tell	you	the	name	of	that	icon.	Figure	3-1	shows
the	bubble	help	for	New	Entity.	You	can	create	many	objects	of	the	selected	type	by
clicking	on	the	canvas,	and	when	you	want	to	stop,	click	the	Select	arrow	icon	on	the	left
side	of	the	New	Entity	icon.

FIGURE	3-1.	The	toolbar	and	the	bubble	help	for	New	Entity

Every	object	in	Data	Modeler	has	properties.	You	can	find	the	properties	either	by
double-clicking	the	object	or	by	right-clicking	the	object	in	the	Browser	pane	and
selecting	Properties.

An	entity	has	several	properties;	Figure	3-2	shows	the	General	properties.	An	entity
always	has	a	name,	a	synonym,	and	a	long	name.	The	name	is	used	as	the	default	for	the
synonym	and	the	long	name.	The	long	name	is	used	on	screens	where	the	entity	name	is
combined	with	the	attribute	name	(entity-name.attribute-name),	and	it	cannot	be	changed;
it	is	always	identical	to	the	name.	You	can	also	define	a	short	name	for	the	entity,	which
can	be	used,	for	instance,	in	foreign	key	names.	For	example,	an	entity	name	could	be
Customer,	with	a	short	name	of	Cust,	a	synonym	of	Customer,	and	a	long	name	of
Customer.	If	you	select	Create	Surrogate	Key,	the	surrogate	key	will	be	generated
automatically	for	the	table	created	based	on	this	entity.	If	you	define	the	Synonym	To
Display	setting	for	an	entity,	that	is	the	name	used	in	diagrams	for	the	entity,	not	the	Name
setting.	If	this	entity	is	a	subentity,	you	can	select	the	supertype	from	the	list	Super	Type.
You	can	learn	more	about	subtypes	and	supertypes	in	Chapter	4.

FIGURE	3-2.	General	properties	for	an	entity

If	you	already	know	some	attributes,	you	can	add	them	to	your	design	on	the	Attributes
tab	in	the	Entity	Properties	dialog,	as	shown	in	Figure	3-3.	You	can	add	an	attribute	at	the
end	of	the	list	by	clicking	the	green	plus	sign.	If	you	want	to	add	an	attribute	before	the
selected	attribute,	hold	the	SHIFT	key	and	click	the	green	plus	sign.	If	you	want	to	add	an
attribute	after	the	selected	attribute,	hold	the	CTRL	key	and	click	the	green	plus	sign.	If
your	attributes	are	in	the	wrong	order,	select	the	one	you	want	to	move	and	click	the	blue
arrow	pointing	up	or	down	depending	on	which	direction	you	want	to	move	the	attribute.
If	you	want	to	modify	the	attribute	properties,	select	the	attribute	in	the	list	and	click	the
Properties	icon	(the	pencil	icon)	shown	in	Figure	3-3.	For	an	attribute,	you	must	define	the
name,	and	you	can	define	the	data	type:	Domain,	Logical,	or	Structured.	If	you	have
defined	your	own	user	defined	data	types	of	collection	or	distinct,	those	can	be	selected
for	a	data	type	as	well.	There	are	always	predefined	data	types	for	structured	data	types	in
Data	Modeler;	therefore,	that	data	type	is	available	even	though	you	have	not	defined	any.
Depending	which	one	you	select,	the	Type	list	will	show	you	the	available	types	for	that
category.	If	you	want	to	see	only	the	preferred	list	(defined	in	Preferences,	as	covered	in
Chapter	2),	select	Preferred.	You	can	decide	whether	this	attribute	is	the	primary	key	by
selecting	Primary	UID,	and	you	can	also	define	the	attribute	as	mandatory	by	selecting
Mandatory.

FIGURE	3-3.	Properties	for	an	attribute

You	can	write	three	kinds	of	descriptions	about	an	attribute:	comments,	comments	in
the	relational	database	management	system	(RDBMS),	and	notes.	Comments	in	the
RDBMS	are	documentation	that	can	be	taken	all	the	way	to	the	database	to	describe	an
attribute	that	will	be	engineered	as	a	column	in	a	database.	In	the	Comments	In	RDBMS
field,	you	should	enter	a	description	that	will	help	people	use	your	database	correctly.	This
text	appears	in	the	database	and	is	the	only	description	people	not	using	Data	Modeler	or
its	reports	can	see.

TIP
Use	Comments	In	RDBMS	to	describe	how	to	use	the	database	for	users	who	do	not	have
access	to	Data	Modeler	or	its	reports.	Use	Comments	for	formal	documentation,	and	use
Notes	for	informal	documentation.

The	Comments	field	is	a	description	of	this	attribute,	and	people	using	Data	Modeler
can	read	it.	This	could	be	the	official	description	that	other	users	will	see.	Notes	are
usually	informal	notes	and	typically	written	during	a	planning	session.	Probably	during	the
requirements	analysis,	the	Notes	field	would	be	the	best	place	to	make	notes.	Afterward,
you	can	use	the	descriptions	in	Notes	and	edit	them	to	be	more	formal	to	be	inserted	into
the	Comments	or	Comments	In	RDBMS	field.

TIP
You	can	document	everything	you	hear	in	modeling	sessions	and	meetings	and	put	them	in
Notes	and	afterward	edit	and	copy/move	the	descriptions	you	like	from	Notes	to	Comments
In	RDBMS	or	to	Comments.

If	you	have	any	information	about	the	volumes	or	growth	rates	of	an	entity,	you	can
add	that	information	on	the	Volume	Properties	tab.	This	information	is	only	for
documenting	purposes;	it	will	not	be	used	for	estimating	space	needed	for	the	database
(except	DB2).	Even	though	this	information	might	not	be	used	automatically,	it	is
important	information	for	the	database	design.

Every	object	in	Data	Modeler	also	has	a	summary.	The	Summary	tab	tells	not	only	the
object	ID	used	in	XML	files	but	also	the	creator	and	creation	time	of	this	object	and	who
changed	it	the	last	time	and	when	that	was.	Figure	3-4	shows	the	Summary	tab	for	an
entity.

FIGURE	3-4.	Summary	properties

Relationships	also	have	properties,	which	can	be	changed	when	more	knowledge	about
the	relationship	becomes	available.	You	can	see	and	edit	the	properties	either	by	selecting
the	relationship	in	the	Browser	pane,	by	right-clicking	and	selecting	Properties,	or	by
double-clicking	the	relationship	on	the	logical	model	canvas.	Figure	3-5	shows	the	general
relationship	properties.	You	can	define	a	name	for	a	relationship;	otherwise,	the	default
name	is	used.	Using	the	default	name	is	not	best	when	you	have	many	relationships
similar	to	each	other	and	you	need	to	know	which	is	which	or	when	you	have	a	many-to-
many	relationship	that	will	be	engineered	to	a	new	table	with	the	name	of	the	relationship.
If	you	want	to	add	a	description	for	the	role	in	a	relationship,	fill	in	the	Name	On	Source
or	Name	On	Target	field.	This	text	will	be	shown	in	the	diagram	if	you	right-click	the
canvas	and	select	Show	|	Labels.	From	the	same	menu	you	can	also	define	the	grid,	the
page	grid,	the	relationship	attributes,	or	a	legend	to	be	shown,	as	can	be	seen	in	Figure	3-6.

FIGURE	3-5.	General	properties	for	a	relationship

FIGURE	3-6.	Show	properties	for	a	view

There	is	one	more	concept	I	would	like	to	point	out	at	this	stage:	SubViews.	If	you	have
many	entities,	it	can	be	quite	difficult	to	read	a	model.	You	might	want	to	have	subsets	of
the	whole	picture	called	subviews.	You	can	create	a	subview	in	any	of	these	ways:

			Go	to	the	Browser	pane,	select	SubView,	right-click,	and	select	New	SubView.

			Right-click	the	logical	model	canvas	and	select	Diagram	|	Create	SubView.
Then	select	the	objects	you	want	from	the	list	shown	in	Figure	3-7.

			Select	the	objects	wanted	in	the	diagram	while	holding	the	CTRL	key,	right-
click,	and	select	Create	SubView	From	Selected.

			The	easiest	way	is	probably	to	select	the	central	entity	in	a	diagram,	right-
click,	select	Select	Neighbors,	define	the	depth	(zone)	of	neighbors,	and	then	right-
click	again	and	select	Create	SubView	From	Selected.

FIGURE	3-7.	Selecting	objects	to	a	subview

You	can	add	objects	to	your	subview	by	right-clicking	the	canvas	and	selecting	Objects
|	Add/Remove	Object.	You	can	read	more	about	subviews	in	Chapter	4.

Gathering	Requirements	for	the	Process	Model
During	the	requirements	analysis,	the	database	designer	might	want	to	document	the	data
processes.	You	can	do	that	by	right-clicking	Data	Flow	Diagrams	under	Process	Model	in
the	Data	Modeler	Browser	pane	and	selecting	New	Data	Flow	Diagram.	The	processes	are
the	functional	side	of	the	data	documentation,	which	more	or	less	documents	the	data
behavior.	The	process	model	consists	of	data	flow	diagrams	to	design	how	the	data	flows
through	the	system,	and	transformation	packages,	which	can	be	used	for	data	warehouse
purposes	to	design	extract,	transform,	and	load	(ETL).	Data	Modeler	supports	all	the
elements	needed	for	process	modeling:	primitive	processes;	composite	processes	with
unlimited	levels	of	decomposition;	transformation	tasks;	triggering	events;	information
stores;	external	agents;	external	data	elements;	source-target	mapping	for	data	elements;
and	create,	read,	update,	delete	(CRUD)	dependencies	between	primitive	process	and	data
elements	by	using	roles.

Introducing	Data	Flow	Diagrams
A	data	flow	diagram	is	a	formal,	structured	notation	that	models	a	functional	process.	A
data	flow	diagram	consists	of	processes,	information	stores,	external	agents,	and	data
flows.	A	process	is	an	activity	or	a	function	that	is	performed.	In	an	ideal	case,	each
process	should	include	only	one	activity.	The	difference	between	a	primitive	and	a
composite	process	is	that	a	primitive	process	is	a	single	process,	while	a	composite
process	consists	of	several	processes.	An	information	store	is	a	collection	of	data	that	is
permanently	stored.	An	external	agent	is	an	external	effector:	a	role,	organization,	or
system	that	is	external	to	the	system	but	interacts	with	it.	External	agents	send	information
to	processes	and	also	receive	information	from	processes.	A	data	flow	shows	how
information	flows	in	the	process.	An	event	triggers	the	execution	of	a	process.	A	note	can
be	used	in	the	diagram	to	show	important	information	in	textual	format.	Figure	3-8	shows
an	example	of	a	data	flow	diagram.

FIGURE	3-8.	Data	flow	diagram

To	create	a	new	data	flow	diagram,	in	the	Browser	pane,	under	Process	Model	|	Data
Flow	Diagrams,	right-click	and	choose	New	Data	Flow	Diagram.	Use	the	toolbar	to	create
elements	on	the	diagram.	Click	the	icon	of	the	element	you	want	to	add	to	the	diagram	and
then	click	the	canvas.	When	you	want	to	stop	creating	elements,	click	the	Select	arrow	on
the	toolbar.	Every	element	in	a	data	flow	diagram	also	has	properties.

Figure	3-9	shows	the	Process	Properties	dialog.	Every	process	must	have	a	name	and	a
type	(Primitive,	Composite,	or	Use	Transformation	Task).	A	process	can	also	have	a	short
definition.	It	has	a	mode	(Batch,	Interactive,	Manual,	or	Unknown),	and	depending	on	the
mode,	you	can	define	other	things	such	as	response	time.	You	can	also	define	peak
periods,	frequency,	and	priority	settings	for	a	process.

FIGURE	3-9.	Process	Properties	dialog

Figure	3-10	shows	the	External	Agent	Properties	dialog.	An	external	agent	must	have	a
name	and	a	type	(Organization	Unit,	System,	Role,	or	Other).	It	can	have	data	file
specifications	or	data	elements,	among	other	settings.

FIGURE	3-10.	External	Agent	Properties	dialog

Figure	3-11	shows	the	Information	Store	Properties	dialog.	An	information	store	must
have	a	name	and	a	type	(RDBMS,	File,	Object,	or	Temporary)	and,	depending	on	the	type,
some	other	definitions.

FIGURE	3-11.	Information	Store	Properties	dialog

Figure	3-12	shows	the	Flow	Properties	dialog.	A	flow	has	a	name,	a	synonym,	a	source,
and	a	destination.	It	can	have	a	parent	flow,	it	can	be	a	logging	flow,	and	it	can	have	an
event	to	trigger	a	process.

FIGURE	3-12.	Flow	Properties	dialog

Introducing	Transformation	Packages
Transformations	are	used	in	data	warehouse	environments	to	change	the	data	into	the	form
needed.	There	might	be	different	needs	for	different	targets,	for	example	for	OLAP	versus
data	mining,	so	there	is	definitely	a	need	to	design	the	ETL	processes.	A	transformation
package	is	a	package	as	defined	in	the	Object	Management	Group	(OMG)	Common
Warehouse	Metamodel	(CWM)	Specification,	V1.1	(www.omg.org/spec/CWM/1.1/).

A	transformation	package	converts	different	sources	to	different	targets	and	allows
grouping	of	different	transformations.	A	transformation	package	can	be	created	only	if	you
already	have	defined	packages	that	represent	data	sources	or	targets:	ObjectModel	(object-
oriented),	Relational,	Record,	Multidimensional,	XML,	OLAP,	or	Data	Mining.	Usually
you	will	not	be	able	to	create	transformation	packages	during	the	requirements	analysis
phase	because	you	need	much	more	information	to	do	so	than	you	usually	have	at	this
stage.	But	it	is	good	to	be	aware	of	this	functionality	of	Data	Modeler	so	you	know	to
document	anything	interesting	related	to	transformations.

To	create	a	new	transformation	package,	select	Process	Model	|	Transformation
Packages	in	the	Browser	pane,	right-click,	and	select	New	Package.	Then	right-click	the
transformation	package	name	and	select	New	Transformation	Task.	Data	Modeler	will
automatically	create	a	canvas	that	is	named	the	same	as	your	transformation	task	and
provide	an	Input	Parameters	box.	You	can	think	of	the	transformation	task	as	a	function
that	will	have	an	input	parameter	to	define	what	the	function	will	do	and	an	output
parameter	to	indicate	how	the	function	will	end.	The	function	itself	(transformation	task)
might	have	several	operations	to	do.

In	the	toolbar	you	can	find	the	tools	for	designing	a	transformation	task:	New
Transformation,	New	Information	Store,	New	Flow,	and	New	Note.	You	can	also	use
existing	information	stores	by	dragging	and	dropping	them	from	the	Browser	pane	to	the
canvas.

Adding	Business	Information
You	can	add	business	information	to	Data	Modeler.	Go	to	Logical	Model	in	the	Browser
pane,	double-click	or	right-click,	and	select	Properties.	In	Logical	Model	Properties,	you
can	add,	edit,	and	remove	documents	and	responsible	parties.	Responsible	parties	can
include,	for	example,	contacts,	e-mail	addresses,	telephone	numbers,	uniform	resource
locators	(URLs),	and	locations.	All	these	can	be	first	added	to	the	responsible	parties	and
then	edited	either	by	double-clicking	the	name	or	by	selecting	the	properties	symbol	(the
pencil	icon).	You	can	add	responsible	parties	to	elements	in	the	design.

In	addition	to	that,	you	can	add	change	requests	to	objects,	and	you	can	define,	for
instance,	the	status,	completeness,	request	date,	completion	date,	and	reason.	For	example,
say	you	want	to	add	a	change	request	of	“Add	new	attribute,	Status”	for	the	entity
Customer.	You	can	use	the	search	functionality	(see	Chapter	11	for	more	information
about	search)	to	find	all	change	requests	that	are	not	completed.	You	select	Logical	Model

http://www.omg.org/spec/CWM/1.1/

and	then	Advanced	Mode.	Select	Change	Request	Logical	from	the	Object	Type	list	and
click	Add	Property.	Select	Complete	and	define	False	as	the	value.	On	the	Results	tab,	you
can	see	all	the	change	requests	from	the	logical	model	that	are	not	finished.	After	the
search,	you	can	run	a	report	to	.xls	or	.xlsx	format	and	send	it	to	the	project	manager	for
updates.	The	project	manager	might	update	the	status,	completion	date,	and	notes	(“I	have
closed	this	change	request/Tim”)	and	send	the	Microsoft	Excel	sheet	to	you	to	be	uploaded
to	Data	Modeler.

You	can	also	create	change	requests	for	attributes.	A	change	request	could	be,	for
instance,	“Datatype	must	be	changed	from	NUMBER	to	VARCHAR	because	the	use	case
says	that	the	information	can	include	also	characters.”	Why	would	you	like	to	have	the
change	request	in	Data	Modeler?	Well,	you	get	all	the	documentation	about	the	database
in	just	one	location.	For	instance,	on	the	entity	property	Change	Requests,	you	can	always
check	what	has	been	changed	and	when,	and	you	can	make	impact	analysis	based	on	the
Impact	Analysis	property.	You	could	not	do	either	of	these	tasks	if	you	did	not	have
change	requests	in	Data	Modeler.

Summary
It	is	important	that	the	database	designer	is	involved	with	the	project	at	the	stage	of
requirements	analysis	because	the	requirements	for	the	database	must	be	collected	and
documented.	The	database	designer	will	need	to	ask	a	lot	of	questions	to	find	and
document	all	the	possible	information	needed.	The	formal	ways	to	document	the
requirements	are	usually	entity-relationship	diagrams	and	data	flow	diagrams.	The	more
the	documentation	can	be	inserted	into	a	tool	in	a	formal	way,	the	better	it	will	be	used	in
the	next	phases	of	database	design.	It	is	valuable	to	document	everything	that	you	hear	and
see	during	the	requirements	analysis.	But	do	not	worry	if	you	cannot	because	luckily	the
same	tools	are	available	in	the	conceptual	design	phase.

CHAPTER
4

Introducing	Conceptual	Database	Design
(Logical	Model)

Conceptual	database	design	is	the	process	of	translating	the	requirements	into	a
formal	conceptual	data	model	and	process	models.	The	result	of	conceptual
database	design	is	a	conceptual	schema	and	process	models.	Conceptual

database	design	is	similar	to	requirements	analysis,	but	the	difference	is	that	the	database
designer	must	get	all	the	information	needed	to	be	able	to	design	the	database.	The	main
concern	is	the	data	and	how	it	should	be	saved	and	retrieved.

This	chapter	will	focus	on	entity-relationship	(ER)	modeling.	Data	flow	diagrams	are
also	important,	and	if	they	were	not	made	during	the	requirements	analysis,	you’ll	need	to
spend	some	time	working	on	them	now.	They	are	valuable	for	showing	how	the	database
will	be	used;	you	can	learn	more	about	data	flow	diagrams	in	Chapter	3.

A	problem	that	arises	during	the	conceptual	database	design	phase	is	the	poor	quality	of
requirements	analysis.	There	is	usually	not	enough	material	and	information	to	understand
the	whole	picture,	which	is	important	when	designing	a	database.	The	database	designer
must	ask	a	lot	of	questions	and	demand	complete	answers.	Modeling	is	a	demanding	job,
but	the	fact	that	spoken	language	is	not	exact	makes	it	even	more	difficult.	In	addition,	end
users	do	not	always	realize	they	should	tell	the	database	designer	everything	they	know,
even	all	the	basic	information	because	the	designer	is	not	a	business	expert.	A	designer
should	have	at	least	an	elementary	awareness	of	basic	logic	to	be	able	to	formalize	the
spoken	language	and	should	have	the	courage	to	ask	a	lot	of	questions	to	be	sure	to
understand	what	the	end	user	means.

To	be	able	to	generate	valuable	reports,	it	is	important	to	insert	all	the	information	you
have	into	Oracle	SQL	Developer	Data	Modeler.	See	Chapter	11	for	more	information	on
reporting.	Data	Modeler	has	useful	search	features	for	setting	common	properties	for
several	objects	of	the	same	type.	See	Chapter	11	for	more	information	on	those
functionalities.

Setting	Preferences	and	Properties
It	is	important	to	set	some	standards	for	the	design	work.	Now	is	the	time	to	agree	on
naming	standards	and	rules,	as	covered	in	Chapter	2,	if	you	haven’t	already	done	so.	For
example,	will	you	allow	Scandinavian	letters?	Will	names	always	be	uppercase,	or	can
they	be	mixed	case?	There	are	many	ways	to	get	Data	Modeler	to	work	the	way	you	want
and	to	have	it	support	your	standards.

Select	your	design	in	the	Browser	pane,	right-click	it,	and	select	Properties.	The	Design
Properties	dialog	box	that	opens	shows	the	design-level	properties	discussed	in	Chapter	2.
You	can	specify	what	your	diagrams	will	look	like	or	set	up	some	general	naming
standards	and	templates.	You	can	also	define	a	naming	standard	for	attributes,	columns,
domains,	entities,	and	tables	by	setting	a	pattern	for	the	name.	A	pattern	is	defined	with
word	types	and	their	compulsions	in	the	pattern.	The	word	types	supported	by	Data
Modeler	are	Prime,	Class,	Modifier,	and	Qualifier,	as	defined	in	Chapter	2.	A	defined
structure	for	an	attribute	could	be,	for	instance,	one	optional	modifier,	one	mandatory
prime	word,	one	optional	modifier,	and	one	mandatory	class	word.	Examples	of	this

structure	are	“Temporary	Company	Delivery	Address”	or	“Company	Address.”	You	can
create	a	structure	for	an	object	name	by	clicking	the	green	plus	sign	on	the	Design
Properties	Settings	|	Naming	Standard	tab	for	that	object	type	and	selecting	the	word	type
from	the	list.	Then	you	either	select	Mandatory	to	define	this	pattern	part	as	required	or
leave	it	disabled	to	define	it	as	optional.	You	can	add	as	many	word	types	as	you	need	for
the	pattern.	You	can	remove	word	types	from	the	pattern	by	clicking	the	red	X	button.

These	naming	standards	will	be	checked	against	defined	glossaries	when	you	apply
design	rules,	and	any	violations	will	be	reported	as	warnings.	You	can	use	this
functionality	to	make	sure	that	all	words	used	in	your	design	are	defined	in	your	glossary,
and	you	can	define	one	or	more	glossaries	as	validation	glossaries	on	the	Settings	tab	of
the	Design	Properties	dialog,	as	explained	in	Chapter	2.	If	you	define	more	than	one
glossary,	a	name	is	considered	to	be	valid	if	it	can	be	validated	using	any	of	the	defined
glossaries.	You	can	use	different	glossaries,	for	instance,	to	represent	separate	areas	of
interest.	One	glossary	could	be	for	the	marketing	department,	another	for	sales,	and	the
third	one	for	financials.	Finally,	you	can	share	the	design-level	properties	with	other	users,
as	described	in	Chapter	2.

NOTE
Using	several	glossaries	for	validation	may	cause	problems	if	you	have	the	same	word	in
two	glossaries.

There	are	also	properties	that	apply	to	the	logical	model	level.	Select	Logical	Model	in
the	Browser	pane,	right-click,	and	choose	Properties	|	Naming	Options.	You	can	specify
the	maximum	length	of	a	name	and	the	character	case	(upper,	lower,	mixed).	You	can	also
either	select	a	list	from	the	Valid	Characters	list	or	specify	your	own	list	of	valid
characters,	or	you	can	select	All	Valid	for	all	the	characters	to	be	valid.	You	can	specify
these	settings	for	entities,	attributes,	and	views.	See	Figure	4-1	for	more	details.	If	you	try
to	create	something	that	violates	your	naming	options,	you	will	get	an	error	message
immediately.	For	instance,	if	the	Naming	Options	properties	define	that	an	entity	name
must	be	all	uppercase	but	the	designer	tries	to	create	an	entity	name	with	lowercase,	an
error	message	is	given.	If	an	element	has	been	created	before	changing	the	naming
options,	the	element	will	be	checked	when	the	design	rules	are	applied,	and	any	violations
per	the	Naming	Options	properties	will	be	reported	as	errors.	In	Data	Modeler	version
4.0.2,	the	Naming	Options	settings	cannot	be	shared	with	other	users,	but	there	are	plans
for	future	releases	to	provide	this	functionality.

FIGURE	4-1.	Naming	options	for	a	logical	model

In	addition	to	properties,	you	can	set	some	preferences	that	affect	the	logical	model.
Choose	the	Tools	|	Preferences	menu	to	open	the	Preferences	dialog.	You	can	make	your
design	work	easier	and	more	comfortable	by	setting	the	preferences	for	the	logical	model
the	way	you	want	Data	Modeler	to	work.	In	Chapter	2	you	already	saw	how	to	define	the
notation	used	and	how	to	define	the	preferred	types,	among	others.	In	the	Preferences
dialog,	select	Data	Modeler	|	Model	|	Logical	to	see	the	settings	for	the	logical	model,	as
shown	in	Figure	4-2.	By	setting	these	preferences,	you	can	define	what	the	defaults	will	be
when	a	new	entity	or	a	relationship	is	created	or	when	you	forward	engineer	to	a	relational
model.	You	can	change	these	defaults	at	any	time	to	take	effect	on	new	elements	created,
and	they	can	be	changed	in	your	logical	model	individually	if	wanted.	You	can	define	the
source	and	target	to	be	optional	or	mandatory	(Source	Optional,	Target	Optional).	The
source	is	where	the	relationship	starts,	and	the	target	is	where	it	ends.	For	instance,	a

Customer	could	be	the	source,	and	an	Order	would	be	the	target.	A	Customer	might	have
Orders	(Source	Optional,	which	means	that	the	relationship	line	on	the	source	side	is
optional;	a	Customer	can	exist	without	an	Order),	but	an	Order	must	be	made	by	a
Customer	(Target	Mandatory,	which	means	the	relationship	line	on	the	target	side	must	be
mandatory;	an	Order	cannot	exist	without	a	Customer).	In	other	words,	if	there	is	a
Customer,	there	is	no	need	to	have	an	Order,	but	if	there	is	an	Order,	there	must	be	a
Customer.	You	can	tell	Data	Modeler	to	define	the	first	unique	identifier	as	the	primary
key	by	selecting	Use	And	Set	First	Unique	Key	As	Primary	Key.	There	might	be	several
unique	keys	in	one	entity,	which	helps	the	tool	and	the	designer	set	one	of	them	as	the
primary	key.	I	don’t	recommend	using	this	functionality	since	I	want	to	define	my	own
primary	keys	and	be	sure	the	right	unique	key	will	be	selected,	not	the	first	one.	Another
problem	is	that	a	unique	key	can	have	nulls,	but	a	primary	key	cannot.	So,	if	the	first
unique	key	is	set	as	the	primary	key,	all	its	attributes	must	have	nulls	not	allowed.	It	is	not
common	to	have	several	unique	keys	in	one	entity	anyway.	To	see	the	preferences	for	a
logical	model	for	forward	engineering	and	the	preferences	for	the	relational	model,	see
Chapter	5.

FIGURE	4-2.	Preferences	for	a	logical	model

NOTE
Changing	some	preferences	will	affect	only	the	elements	created	after	the	change.

Introducing	the	Logical	Model
When	designing	the	database,	it	is	valuable	to	start	the	design	work	as	soon	as	possible	in
the	project	because	when	turning	the	requirements	into	a	formal	form,	the	designer	may
realize	there	are	many	questions	that	have	not	been	asked	yet.	In	fact,	there	are	many	ways
of	modeling	things.	You	can’t	always	say	one	way	is	better	than	another,	but	sometimes
you	can.	The	theory	of	logic	will	give	you	guidance	in	finding	and	choosing	one	definition
over	another.	The	relational	theory	helps	when	implementing	the	requirement	in	an	ER
model	in	the	right	way.	For	instance,	an	end	user	might	simply	say,	“A	customer	must
place	an	order.”	With	that,	the	user	might	think	that	this	statement	defines	a	customer	(that
is,	to	be	a	customer	at	all,	you	must	place	an	order).	In	other	words,	the	end	user	might
think	they	have	defined	the	concept	of	a	customer.	But	a	person	trained	in	logic	realizes
that	that	is	not	the	case;	there	are	many	possible	formal	interpretations.	The	important	task
is	to	find	out	which	of	them	is	the	one	intended	before	modeling	any	solution.	To	clarify,
the	definition	of	a	customer	in	the	example	could	be	any	of	the	following:

			Every	customer	places	at	least	one	order.

			At	least	one	customer	places	at	least	one	order.

			There’s	at	least	one	order	that	every	customer	places.

			Each	customer	places	exactly	one	order.

			There’s	exactly	one	order	that	every	customer	places.

Or	it	could	mean	something	else.

In	this	case,	it	would	be	quite	easy	to	find	the	right	definition	because	a	customer	is	a
familiar	concept	to	most	people,	but	you	will	face	the	same	kind	of	assertions	about
concepts	you	are	not	familiar	with,	and	you	still	must	be	prepared	to	ask	the	right
questions	to	be	able	to	make	the	right	decisions	when	modeling.	You	can	find	more
information	about	logic	and	relational	theory	from	several	books	on	the	topic,	for	instance
those	written	by	C.J.	Date.

It	is	important	to	be	consistent	on	how	you	model,	at	least	in	one	model.	It	is	much
easier	to	read	and	understand	the	model	if	the	solution	for	the	same	problem	is	always	the
same.	C.J.	Date	says,	“You	can	be	consistent	or	you	can	be	inconsistent,	but	you	shouldn’t
keep	switching	all	the	time	between	the	two.”	It	is	also	important	to	understand	that	the
goal	is	to	model	the	target,	not	the	whole	world.	One	reason	to	have	a	clear	and	simple
model	is	that	this	model	will	be	your	best	tool	when	talking	with	end	users.	You	might	be
surprised	how	well	they	can	read	and	understand	it.

TIP
Try	not	to	be	too	smart	and	make	too	complex	a	solution;	remember	that	usually	a	simple
solution	is	the	best.

During	the	conceptual	database	design,	you	do	not	need	to	actively	worry	about
normalizations,	and	so	on,	but	remember	the	relational	theory	because	it	will	help	you.
The	important	thing	is	to	model	the	target	as	well	as	possible	and	yet	simply	enough	so
that	other	people	can	understand	it	too.	It	is	important	to	find	and	model	the	concepts	and
how	they	are	related	to	each	other.	Try	to	document	everything	you	hear	and	learn.	Be
systematic	in	modeling.	Decide	where	and	how	to	document	and	figure	out	what	the	right
level	of	documentation	is.	Make	sure	you	have	clear	and	easily	understood	ways	for
commenting	and	reviewing.

You	should	start	the	modeling	with	the	logical	model	you	made	during	requirements
analysis	(see	Chapter	3).	If	you	do	not	have	anything	from	the	requirements	analysis,	you
must	start	from	scratch	and	begin	with	the	conceptual	database	design	described	in	this
chapter.	At	best,	that	means	more	work;	it	might	even	mean	you	don’t	have	enough
information	to	make	the	right	modeling	decisions.

A	logical	model	consists	of	entities,	relationships,	views,	inheritances,	subviews,	and
displays.	All	logical	model	objects	are	displayed	in	the	Browser	pane	under	Logical
Model.	One	logical	model	consists	of	one	logical	diagram	and	possibly	one	or	more
subviews	and/or	displays.

If	you	right-click	Logical	Model	in	the	Browser	pane,	you	will	see	the	operations	for	a
logical	model.

			With	Hide	and	Show,	you	can	control	whether	the	logical	model	diagram	is
open.

			You	can	create	subviews	and	displays	based	on	the	logical	model	(more	about
those	later	in	this	chapter).

			You	can	set	classification	types	(more	about	those	in	Chapter	8).

			You	can	apply	naming	standards	and	custom	transformation	scripts	or	create	a
glossary	from	the	logical	model	(more	about	those	in	Chapter	3).

			You	can	search	and	create	a	report	based	on	search	results	and	update	the	data
in	Data	Modeler	with	an	Excel	worksheet	(more	about	that	in	Chapter	11).

			You	can	choose	Engineer	To	Relational	Model	(more	about	that	in	Chapter	5)
and	of	course	view	and	edit	the	properties.

			In	every	object	in	the	Browser	pane	you	also	have	the	ability	to	select
Versioning.	You	can	find	more	about	versioning	and	version	control	in	Chapter	9.

And	if	you	right-click	the	logical	model	diagram	(or	a	subview	diagram),	you	can	do
the	following:

			You	can	undo	operations.

			You	can	define	the	layout.

			You	can	define	what	details	will	be	shown	(View	Details):	All	Details,	Names
Only,	or	Attributes.	You	can	also	specify	that	classification	types	(the	name	of	the
classification	type	on	an	element)	or	comments	will	be	shown.

			You	can	select	the	notation.

			You	can	display	a	page	grid	or	a	grid	or	make	labels	(source	and	target	names)
and	relationship	attributes	visible	in	the	diagram.	Or	you	can	specify	that	a	legend
should	be	shown.	A	legend	shows	the	Summary	properties	in	a	diagram.	All	these
can	be	selected	under	Show.

An	Entity	and	Its	Attributes
An	entity	is	anything	that	happens	to	be	of	interest	to	the	target	of	modeling,	for	example,
a	person,	say	Heli.	Every	entity	is	of	some	entity	type.	An	entity	type	is	a	set	of	entities
(Person)	having	certain	properties	in	common	(Heli,	Marko,	Patrik,	and	Matias—like	all
entities	of	type	Person—have	a	name).	An	entity	type	is	always	a	noun	(Company,
Employee,	Customer).	An	entity	set	is	a	subset	of	an	entity	type,	and	it	includes	only	those
entities	that	belong	to	the	target	of	modeling.	In	spoken	language,	entity	types	and	entity
sets	are	often	called	entities.	In	this	book,	we	will	call	both	an	entity	type	and	an	entity	set
an	entity	because	in	the	context	of	Data	Modeler	they	are	called	entities.	When	referring	to
a	single	entity	(Heli)	of	an	entity	set	(Person),	we	will	use	a	term	entity	instance.	You	can
create	an	entity	in	Data	Modeler	on	the	logical	model	canvas	by	clicking	the	entity	icon
and	then	inserting	the	properties	for	the	entity,	as	shown	in	Chapter	3.

An	entity	can	be	either	strong	or	weak.	A	strong	entity	(for	example,	Customer)
identifies	itself	without	other	entities	or	relationships;	strong	entities	have	independent
existence.	A	weak	entity	(for	example,	Orderline)	depends	on	other	entities	to	identify	it
(Order,	Customer)	and	has	a	mandatory,	identifying	relationship	with	them.	The	weakness
of	an	entity	is	shown	with	a	horizontal	line	at	the	end	of	the	relationship	line.	You	can
define	it	in	the	Relation	Properties	dialog	by	selecting	Identifying	on	the	source	side	of	the
properties.

An	entity	has	properties	(for	example,	Person	has	a	name)	as	mentioned	earlier.	Those
properties	are	called	attributes.	An	attribute	can	be	atomic,	which	means	it	contains	only	a
single	value	from	a	certain	domain	and	it	cannot	be	divided	into	smaller	components.	For
example,	Zip	Code	is	an	atomic	attribute.	An	attribute	can	also	be	a	composite	attribute,
which	means	it	is	a	combination	of	two	or	more	attributes	that	can	be	either	atomic	or
composite.	An	example	of	a	composite	attribute	would	be	Name	=	Firstname	+	Lastname.
An	attribute	can	be	multivalued	or	set-valued,	which	means	that	the	attribute	will	have
multiple	values,	but	the	number	of	different	values	can	be	limited.	For	example,	a
Customer	can	have	only	three	phone	numbers:	home,	work,	and	mobile.	Or	an	attribute
can	be	a	derived	attribute.	For	example,	Age	can	be	derived	from	Date	of	Birth.	For
attributes	you	can	specify	properties	in	the	Attribute	Properties	dialog,	shown	in	Figure	4-
3.	You	can	find	it	by	clicking	the	Properties	icon	on	the	Attribute	tab	of	the	Entity
Properties	dialog,	by	double-clicking	the	attribute	name,	or	selecting	the	attribute	in	the
Browser	pane,	right-clicking	it,	and	selecting	Properties.	In	the	Attribute	Properties	dialog,

you	can	also	define	the	name	for	the	attribute	source	in	the	Source	Name	field	and	then
select	the	preferred	source	type	from	the	list.	The	allowable	values	for	the	Source	Type	list
are	empty	(no	source	type),	Manual,	System,	Derived,	and	Aggregate.	If	you	want	to
define	the	formula	for	the	derived	or	aggregated	attribute,	enter	a	description	of	the
formula	in	Formula	Description,	as	shown	in	Figure	4-3.

FIGURE	4-3.	Attribute	Properties	dialog,	General	tab

An	attribute	can	be	mandatory	or	optional.	If	an	attribute	has	been	defined	as
mandatory	by	selecting	Mandatory	when	creating	it,	it	will	be	shown	on	the	canvas	with
an	asterisk	(*)	in	front	of	the	attribute	name.	If	an	attribute	is	optional,	there	will	be	a
small	circle	(o)	in	front	of	the	attribute	name	in	Barker	notation	and	nothing	in	Bachman
or	Information	Engineering	notation.

If	you	right-click	an	entity	on	the	canvas,	you	can	see	operations	allowed	on	an	entity.
You	can,	for	instance,	do	the	following:

			Delete	the	entity	totally	(Delete	Object)	or	only	from	the	diagram	(Delete
View).

			Copy	the	entity.

			Show	or	hide	elements.

			Select	Neighbors	and	then	create	a	subview	on	the	entity	and	its	neighbors
with	Create	SubView	From	Selected.

			Sort	the	attributes	of	the	entity.

			Create	synonyms.	Create	Synonym	actually	means	Create	Visual	Synonym;	in
other	words,	another	presentation	of	an	entity	on	the	same	diagram.	It	is	not	the
synonym	you	might	have	in	your	database.	It	is	meant	to	be	used	only	to	make
diagrams	easier	to	read.	A	synonym	can	have	different	visibility	elements	and	a
different	format	than	the	original	entity.

In	Data	Modeler	you	can	set	object	names	to	be	unchangeable	so	that	the	name	will	be
grayed	out	in	the	properties.	This	is	useful	if	you	want	to	be	sure	nobody	accidentally
changes	the	name.	For	example,	if	you	want	to	have	tables	in	your	design	that	belong	to
another	schema	(another	design,	another	system,	and	so	on),	you	want	them	to	be	there	to
show	that	there	is	a	logical	relationship,	but	you	want	to	prevent	anybody	from	changing
their	names.	Or	a	more	common	reason	is	that	you	already	have	this	object	in	the
database,	and	the	name	cannot	be	changed	for	any	reason.	You	will	find	this	functionality
by	choosing	Tools	|	Objects	Names	Administration	(Figure	4-4).	In	the	Objects	Names
Administration	dialog,	select	Fixed	for	all	elements	you	want	to	have	a	fixed	name.	You
can	do	this	for	the	names	of	entities,	attributes,	relationships,	identifiers,	and	views.

FIGURE	4-4.	Objects	Names	Administration	dialog

Another	sometimes	useful	feature	is	to	mark	an	object	as	deprecated	to	let	other	users
know	that	this	element	should	not	be	used.	In	many	of	the	properties	dialog	boxes	you	can
find	this	functionality	(for	instance,	on	the	General	and	Attributes	tabs	of	Entity
Properties).	In	Figure	4-5,	you	can	see	the	entity	ProductGroup	has	been	struck	through,
meaning	that	it	has	been	marked	as	deprecated,	as	has	its	attribute,	GroupNo.

FIGURE	4-5.	An	entity	and	an	attribute	marked	as	deprecated

User-Defined	Data	Types
There	are	four	kinds	of	user-defined	data	types	in	Data	Modeler:	distinct	types,	structured
types,	collection	types,	and	logical	types.

Logical	types	are	not	actual	data	types;	they	are	names	that	can	be	associated	with
native	types	of	the	selected	relational	database	management	system	(RDBMS)	type	and
then	defined	as	a	data	type	for	attributes	or	domains.	To	create	a	new	logical	type	or	to	edit
an	existing	one,	choose	Tools	|	Types	Administration	(Figure	4-6).	To	create	a	new	one,
define	a	user-defined	native	type	for	a	selected	RDBMS	type	(Oracle	12c,	SQL	Server
2008,	and	so	on)	on	the	User	Defined	Native	Types	tab.	Click	Save.	Then	go	to	the
Logical	Types	To	Native	Types	tab	and	click	Add.	Enter	a	name	for	the	new	logical	type
and	select	the	native	type	you	just	created	for	the	RDBMS	type.	Click	Save.	Now	you	can
see	this	new	logical	type	with	the	native	type	settings	in	the	list	on	the	Logical	Types	To
Native	Types	tab.	And	it	can	be	selected	as	a	data	type	for	an	attribute	or	a	domain.	I	have
used	this,	for	example,	with	a	new	Microsoft	SQL	Server	version	that	had	new	data	types
that	Data	Modeler	did	not	support	yet.	I	defined	those	data	types	as	logical	types	and	was
able	to	use	them	when	designing.

FIGURE	4-6.	Types	Administration	dialog

You	can	use	the	Types	To	Domains	Wizard	(choose	Tools	|	Types	To	Domains	Wizard)
to	create	domains	from	data	types	that	have	been	used	in	your	design.	But	be	careful	since
the	domains	must	be	carefully	decided	and	agreed	on.	I	would	rather	define	them
manually.	Domains	can	be	maintained	by	choosing	Tools	|	Domains	Administration.	You
can	read	more	about	domains	in	Chapter	2.

Distinct,	structured,	and	collection	types	can	be	defined	and	managed	under	Data	Types
Model	in	the	Browser	pane.	Both	logical	and	relational	models	can	use	definitions	from
the	data	types	model	to	specify	the	data	type	for	attributes	and	columns.	Certain	structured
types	can	also	be	used	to	define	that	an	entity	or	a	table	is	of	a	certain	structured	type.	A
data	types	model	can	be	built	manually,	or	you	can	import	one	from	an	Oracle	Designer
repository.	You	can	find	import	functionality	on	the	File	menu,	and	you	can	read	more
about	importing	from	Oracle	Designer	in	Chapter	10.

To	create	a	distinct	or	a	collection	type,	go	to	the	Browser	pane,	select	the	data	type,
and	right-click.	Fill	in	the	information	needed.	For	a	new	distinct	type,	you	need	to	define
the	name	and	select	the	logical	data	type	from	the	list	of	values.	You	can	also	define	the
size.	Do	not	forget	to	comment	and	document	your	distinct	type.	After	you	have	created
the	distinct	type,	it	will	be	available	in	the	data	type	list	for	an	attribute	or	column.
Remember	to	select	the	data	type	Distinct.	To	create	a	new	collection	type,	you	must
define	the	name	and	set	the	collection	to	be	either	array	or	collection.	For	an	array,	you
must	define	the	maximum	number	of	elements	in	the	array;	for	a	collection,	you	do	not
need	to	have	this	element	defined.	You	should	define	the	data	type	for	your	array	or
collection.	The	data	type	can	be	domain,	logical,	distinct,	collection,	or	structured.	You
should	also	define	the	Max	Size	As	String	parameter,	and	do	not	forget	to	comment	and
document	your	collection	type.	After	you	have	created	the	collection	type,	it	will	be
available	as	a	data	type	for	an	attribute	or	column.	Remember	to	select	the	data	type
Collection	when	assigning	a	data	type	to	an	attribute.

A	structured	type	is	a	user-defined	data	type	that	has	attributes	and	methods.	Attributes
can	be	of	type	logical,	distinct,	structured,	or	collection.	A	structured	type	can	also	be
defined	as	a	supertype	to	another	structured	type.	An	entity	can	be	defined	based	on	a
structured	type.	To	create	a	new	structured	type,	go	to	Data	Types	Model	in	the	Browser
pane,	right-click,	and	select	Show;	alternatively,	under	SubViews,	right-click,	and	select
New	SubView.	Then	design	the	structured	type	using	icons	on	the	toolbar.	Only	structured
type	objects	are	represented	graphically	on	data	type	diagrams.	A	data	type	diagram
consists	of	structured	types,	reference	links,	embedded	structure	links,	collections	of
reference	links,	collections	of	embedded	structure	links,	and	notes.

From	the	properties	of	a	data	type,	you	can	see	whether	and	where	this	data	type	is	used
on	the	Used	In	tab.

Sensitive	Data
In	Oracle	Database	Enterprise	Edition	there	is	an	optional	feature	(included	with
Advanced	Security)	that	allows	different	treatment	for	data	that	has	been	defined	as
sensitive.	Please	read	more	about	that	in	the	Oracle	documentation.	Data	Modeler	supports

designing	sensitive	data.	In	Data	Modeler,	you	can	define	sensitive	types	and	associate
them	with	Transparent	Sensitive	Data	Protection	(TSDP)	policies.	You	can	create	a	new
sensitive	type	in	the	Browser	pane	by	right-clicking	Sensitive	Types	and	selecting	New
Sensitive	Type.	A	sensitive	type	should	always	have	a	name.	If	you	select	Generate	In
DDL	in	the	sensitive	type	properties,	it	means	that	the	sensitive	type	will	be	created	when
the	DDL	statements	are	generated,	and	if	you	select	Enable,	you	let	the	sensitive	type	be
selected	for	association	with	an	attribute	or	column.	A	sensitive	type	also	has	a
description,	comments,	and	notes,	and	on	the	Used	tab	in	the	properties	you	can	see	where
this	particular	sensitive	type	has	been	used.

You	can	create	a	new	TSDP	policy	by	right-clicking	TSDP	Policies	in	the	Browser
pane	and	selecting	New	TSDP	Policy.	You	must	define	a	name	for	a	TSDP	policy	and
decide	whether	it	will	be	included	when	generating	the	DDL.	A	policy	can	also	have
subpolicies	that	can	have	properties	for	redaction	policies	(in	the	user	interface
erroneously	referred	to	as	masking	properties;	this	will	be	fixed	in	later	releases	of	Data
Modeler),	as	shown	in	Figure	4-7.	You	can	manage	redaction	policies/masking	templates
by	choosing	Tools	|	Mask	Templates	Administration.	A	sensitive	type	will	be	associated	to
a	TSDP	policy	with	the	Sensitive	Type	property.	After	that,	the	sensitive	type	can	be
associated	to	an	attribute	in	the	Attribute	Properties	dialog	(Figure	4-8).

FIGURE	4-7.	TSDP	Policy	Properties	dialog,	Sub	Policies	tab

FIGURE	4-8.	Associating	a	sensitive	type	to	an	attribute

A	Relationship
A	relationship	is	a	logical	association	between	two	or	more	entities.	The	degree	of	a
relationship	is	the	number	of	entities	involved	in	the	relationship.	If	there	are	more	than
two	entities	in	a	relationship,	it	is	called	a	complex	relationship.	“Heli	buys	an	iPad”	is	a
degree	2	(Heli,	iPad)	relationship	(buys).	A	relationship	type	is	a	set	of	similar
relationships,	for	example	BUY	(CUSTOMER,	BUY,	PRODUCT).	A	relationship	type	is
a	verb.	A	relationship	set	is	a	subset	of	a	relationship	type,	and	it	includes	only	those
relationships	that	belong	to	the	target	of	modeling.	In	spoken	language,	relationship	types
and	relationship	sets	are	often	called	relationships.	In	this	book,	we	call	a	relationship	type
and	a	relationship	set	a	relationship	because	in	the	context	of	Data	Modeler	that’s	what
they	are	called.	You	can	create	a	relationship	in	Data	Modeler	on	the	logical	model	canvas
by	using	one	of	the	relationship	icons	in	the	toolbar	(the	green	relationship	arrows).

A	complex	relationship	usually	demands	more	investigation.	An	ER	model	is	only	two-
dimensional,	and	having	a	complex	relationship	does	not	fit	into	that	without	raising
questions.	Figure	4-9	shows	an	example	of	a	complex	relationship.	A	Customer	is	ordering
a	Product	that	has	been	supplied	by	a	Supplier.	Can	any	of	the	Suppliers	supply	any	of	the
Products?	Can	a	Customer	order	from	any	of	the	Suppliers?	Can	a	Customer	order	any
Products	from	a	product	list,	or	are	there	limitations	(the	age	of	a	Customer,	for	instance)?
The	ER	model	does	not	answer	these	questions	unless	the	solution	has	been	decided	upon
based	on	more	questions.

FIGURE	4-9.	Example	of	a	complex	relationship

A	relationship	has	participation	constraints:	It	can	be	mandatory	(total)	or	optional
(partial).	In	Data	Modeler,	you	will	define	the	participation	constraints	in	the	Preferences
dialog	on	the	Logical	tab.	If	you	want	the	source	side	of	the	relationship	to	be	optional,
select	the	Source	Optional	property;	otherwise,	disable	it.	The	Target	Optional	property
defines	the	same	thing	for	the	target	side	of	the	relationship.

A	relationship	has	cardinality	constraints	(mapping	cardinality,	cardinality	ratio)	to
describe	the	number	of	entity	instances	this	entity	has	in	a	relationship.	For	instance,	an
employee	can	have	exactly	one	supervisor,	no	more	than	one	supervisor,	or	several
supervisors.	In	Data	Modeler,	there	are	four	different	kind	of	possible	mapping
cardinalities:	one-to-one	(1:1),	one-to-many	(1:m),	one-to-many	identifying,	and	many-to-
many	(m:n).	You	can	also	define	these	settings	in	the	Relation	Properties	dialog	by	using
the	properties	Source	To	Target	Cardinality	and	Target	To	Source	Cardinality.

The	same	entity	can	participate	in	a	relationship	several	times	in	different	roles.	For

instance,	an	Employee	can	be	both	Employee	and	Supervisor,	which	both	are	Employees.
Figure	4-10	shows	an	example	of	an	entity	having	a	relationship	to	the	same	entity	in	two
roles.	In	Data	Modeler,	you	can	create	this	by	selecting	the	one-to-many	relationship
symbol	and	clicking	the	entity	twice.	If	the	relationship	is	to	the	entity	itself,	it	is	called	a
recursion.	To	avoid	confusion,	make	sure	to	name	different	roles	clearly.	You	can	name
the	relationship	roles	in	the	Relation	Properties	dialog.	Enter	the	name	of	the	relationship
in	Name	and	the	names	for	the	roles	in	the	Name	On	Source	and	Name	On	Target	fields.
To	make	the	names	visible	in	a	diagram	in	Data	Modeler,	right-click	the	canvas	and
choose	Show	|	Labels.

Figure	4-10.	A	relationship	to	the	same	entity,	recursion

The	Relation	Properties	dialog	also	has	a	Delete	Rule	list,	where	you	can	delete	the	rule
for	a	child	table	when	a	row	from	a	parent	table	will	be	deleted	and	rows	with	that	value
exist	in	the	child	table.	The	possible	choices	are	No	Action,	Cascade,	Set	Null,	and
Restrict.

			The	default	value	No	Action	performs	no	action	on	these	rows,	which	means
the	rows	must	be	deleted	manually	from	the	child	table	before	they	can	be	deleted
from	the	parent	table.

			The	option	Cascade	deletes	these	rows	from	the	child	table	automatically	as
Data	Modeler	deletes	the	rows	from	the	parent	table.

			The	value	Set	Null	sets	null	for	all	columns	in	those	rows	in	the	child	table
that	can	be	set	to	null.	If	there	are	columns	that	cannot	be	set	to	null,	they	must	be
handled	manually.

			The	value	Restrict	prevents	any	updates	or	deletes	on	the	parent	table	on
columns	referred	to	from	the	child	table.

Deleting	a	rule	has	no	meaning	in	the	logical	model,	but	this	is	the	right	place	to	find
the	information	needed	to	be	able	to	document	it.	It	is	good	that	it	can	be	documented	in
Data	Modeler	already	in	the	logical	model,	and	it	will	be	forward	engineered	to	the
relational	model.

A	relationship	can	have	attributes	of	its	own.	For	example,	a	relationship	between
Customer	and	Order	might	have	an	attribute	of	Date	of	Purchase.	Attributes	for
relationships	can	be	defined	in	Relation	Properties	on	the	Attributes	tab,	as	shown	in
Figure	4-11.	In	the	diagram,	the	relationship	attribute	is	shown	in	Figure	4-12.	The
relationship	attributes	are	not	shown	in	a	diagram	by	default.	If	you	cannot	see	them,
right-click	the	canvas	and	choose	Show	|	Relationship	Attributes.

FIGURE	4-11.	Properties	for	a	relationship	attribute

FIGURE	4-12.	An	attribute	for	a	relationship	in	a	diagram

NOTE
A	common	mistake	is	to	model	a	foreign	key	as	an	attribute.	Do	not	do	that.	If	you	do,	you
will	end	up	with	duplicate	columns	in	your	relational	model	after	forward	engineering.

If	the	relationship	line	does	not	look	the	way	you	want,	you	can	either	select	and	move
it	or	use	the	Data	Modeler	functions	to	move	it.	You	can	delete	or	hide	the	relationship.
You	can	select	Straighten	Lines,	Add	Elbow,	or	Change	The	Format.	If	you	want	to
change	the	way	the	relationship	line	looks,	select	Change	Format	and	change	it.	You	can
see	all	operations	allowed	for	a	relationship	and	a	relationship	line	by	right-clicking	it	in	a
diagram.

TIP
If	you	want	to	see	the	foreign	key	attributes	implied	by	the	logical	relationships	in	your
logical	diagram,	select	Bachman	notation.	This	is	a	simple	way	to	check	your	model	to	see
whether	the	forward	engineering	will	produce	the	relational	model	you	are	expecting.

Constraints
An	attribute	or	set	of	attributes	can	be	identifying,	which	means	that	these	attributes
identify	the	entity	and	are	a	constraint	to	the	entity.	A	unique	identifier	for	the	entity	can
be	composed	of	one	or	more	attributes.	You	can	specify	one	primary	unique	identifier	that
uniquely	identifies	each	entity	instance	and	acts	as	the	primary	key.	All	attributes	in	the
primary	key	are	mandatory;	they	cannot	be	nulls.	A	primary	key	can	be	a	natural	key,
meaning	that	it	consists	of	one	or	more	attributes	for	that	entity	that	truly	identify	that
entity,	or	it	can	be	a	surrogate	key	when	it	consists	of	one	attribute	(usually	numeric
attribute)	that	has	no	meaning	to	the	entity	itself	but	just	separates	each	entity	from	others.

You	can	also	define	one	or	more	additional	unique	identifiers	as	unique	constraints	or
unique	keys.	A	unique	key	makes	sure	that	there	are	not	two	entity	instances	in	the	entity
that	have	the	same	values	in	all	attributes	defined	for	the	unique	key	(unique	constraint).
The	difference	between	a	primary	key	and	a	unique	key	is	that	unique	key	attributes	can
have	nulls	allowed	and	there	can	be	several	unique	keys	for	an	entity,	whereas	there	can	be
only	one	primary	key	with	only	mandatory	attributes.

In	Data	Modeler	you	can	define	an	attribute	as	a	primary	key	by	selecting	the	Primary
UID	box	on	the	Attributes	tab	in	the	Entity	Properties	dialog.	And	you	can	create	other
unique	identifiers	in	the	Entity	Properties	dialog	on	the	Unique	Identifiers	tab.	Add	a	new
unique	identifier	by	clicking	the	green	plus	sign.	Then	double-click	the	name	of	the	new
unique	identifier	name	or	click	the	Properties	icon	(a	pencil	icon).	This	opens	the	Key
Properties	dialog,	as	shown	in	Figure	4-13.	Add	the	name	for	the	key	and	any	other
general	definitions	wanted.	Then	go	to	the	Attributes	and	Relations	tab	to	select	the
attributes	and	relationships	to	be	used	as	a	unique	identifier.	If	you	have	named	your
relationships	well,	this	is	one	point	where	you	see	it	was	worth	it	because	it	is	easier	to
find	the	right	relationship	out	of	all	relationships	if	the	name	is	clear.	You	can	select	one
by	highlighting	a	name	and	clicking	the	arrow	pointing	to	the	right	and	deselect	one	by
using	the	arrow	pointing	to	the	left,	as	shown	in	Figure	4-14.	Always	remember	to	click

Apply	and	Save.	You	can	also	use	this	same	method	for	creating	primary	keys,	but	then
you	select	Primary	Key	for	the	State	setting.	You	can	find	the	primary	key	in	the	Browser
pane	under	Primary	Keys,	and	you	can	find	other	unique	keys	under	Alternate	Keys.	Also
note	that	the	primary	key	in	Barker	notation	is	indicated	by	the	hash	(#)	in	front	of	the
attribute	name,	and	the	attribute	in	the	alternate	unique	key	is	indicated	by	the	uppercase
U.	In	Bachman	notation	and	in	Information	Engineering	notation,	the	primary	key	is
marked	with	an	uppercase	P,	the	foreign	key	is	marked	with	F,	and	an	identifying	foreign
key	is	marked	with	PF.

FIGURE	4-13.	Key	properties

FIGURE	4-14.	Selecting	entities	and	relationships	for	the	unique	key

The	attributes	for	the	primary	key	should	be	identifying,	stable,	and	not	under	any
changes	in	values.	For	example,	in	many	systems,	a	Social	Security	number	(SSN)	is
defined	as	a	primary	key	for	a	person.	Is	it	a	good	primary	key?	No.	The	reasons	why	are
as	follows:

			An	SSN	is	not	unique,	at	least	not	worldwide.

			An	SSN	does	not	identify	a	person;	in	rare	cases,	one	person	can	even	have
several	SSNs.

			An	SSN	can	be	changed.	When	you	move	to	another	country,	you	are	given	a
temporary	SSN.	When	you	get	citizenship,	you	get	a	permanent	one.	There	are
plenty	of	cases	when	an	SSN	has	changed.

			An	SSN	is	not	something	you	can	define	yourself;	it	comes	from	another
system	and	is	controlled	by	other	organizations	and	their	rules.	What	if	they	change
the	rules?	Do	not	use	primary	keys	from	another	system’s	data	(history	data,	and	so
on).

			An	SSN	is	defined	many	times	as	sensitive	data,	redaction,	or	masking	in
several	tables	(because	of	foreign	keys),	which	is	not	very	efficient.

When	selecting	the	primary	key,	you	have	two	choices:	natural	key	or	surrogate	key.
Which	one	is	better?	The	only	correct	answer	to	any	question	about	modeling	issues	is:	it
depends.	But	deciding	on	the	primary	key	is	one	of	the	most	important	decisions	in
conceptual	database	design.	A	natural	key	is	usually	more	efficient;	sometimes	you	can
eliminate	a	join,	sometimes	the	query	optimizer	works	more	efficiently,	and	so	on.	But
there	is	no	point	trying	to	find	a	natural	primary	key	if	there	is	no	serious	candidate,
though	in	many	of	these	cases	it	indicates	that	there	is	something	wrong	with	the	model.
Many	times	designers	are	too	cautious	to	set	attributes	to	not	null	and	therefore	are	able	to
define	only	unique	keys.	Or	the	concepts	are	not	understood	well	enough	to	really	identify
the	entity.	One	of	the	main	concerns	in	designing	the	database	is	the	data	quality.	To	be
able	to	get	good-quality	data,	you	must	understand	what	you	are	modeling,	and	you	must
be	able	to	set	as	many	attributes	to	not	null	as	possible	and	to	find	all	possible	constraints.
A	surrogate	primary	key	does	not	stop	users	from	inserting	logical	duplicates	in	the
database,	but	a	natural	key	does,	and	the	index	for	a	surrogate	primary	key	is	not	often
used	(queries	are	not	made	based	on	the	surrogate).	On	the	other	hand,	many	times	the
best	solution	for	data	that	comes	from	another	system	and	is	not	controlled	by	your
organization	is	a	surrogate	key	because	you	can	never	be	sure	if	the	other	system	has
changed	the	data	you	have	considered	to	be	unique	not	to	be	unique	anymore.	So,	there	is
no	single	answer	to	the	question.	If	you	want	to	have	a	surrogate	key,	select	the	Use
Surrogate	Keys	box	in	the	Entity	Properties	or	Relationship	Properties	box.

A	foreign	key	constraint	is	an	attribute	or	set	of	attributes	that	refers	to	the	primary	key
of	an	entity,	which	can	be	another	entity	or	the	same	one,	as	discussed	earlier.

You	can	also	define	constraints	for	attributes.	Domain	constraints	can	define,	for
instance,	the	data	type,	length,	allowable	values,	and	default	values.	You	can	either
predefine	them	in	Domains	to	be	used	(see	Chapter	2)	or	define	them	for	every	attribute

separately	in	the	Attribute	Properties	dialog	(Figure	4-15).	Define	the	name	for	the
constraint	and	define	the	default	value	for	it.	If	you	want	to	use	the	properties	defined	in
Domains	Administration	for	the	associated	domain,	select	Use	Domain	Constraints.	If	this
option	is	not	selected,	you	can	continue	defining	the	settings.	You	can	specify	a	constraint
for	one	or	more	types	of	databases	from	the	Constraint	list.	You	can	specify	one	or	more
value	ranges	for	the	attribute.	You	can	specify	a	list	of	valid	values	for	the	attribute.	If	you
select	Use	Domain	Constraints,	all	the	changes	will	automatically	be	done	on	this
attribute.	For	instance,	if	a	new	allowable	value	is	added	to	a	domain	constraint,	it	will
automatically	be	available	for	this	attribute	as	a	candidate	for	a	default	value	and	on	the
list	of	allowable	values.	I	recommend	using	the	domains	and	their	settings.	That	will	make
maintenance	easier.

FIGURE	4-15.	Domain	constraint

One	more	commonly	used	constraint	is	a	check	constraint.	An	example	of	a	check
constraint	could	be	Check	(Name=upper(Name)).	A	constraint	can	be	immediate	or
deferred,	meaning	that	it	will	be	checked	either	straightaway	or	a	bit	later.

Entity	Views
An	entity	view	is	an	element	in	the	logical	model	that	allows	a	designer	to	create	a	new
level	for	the	conceptual	model.	This	level	is	to	make	the	design	more	concrete	for	business
owners	to	understand.	The	entity	views	can	be	combinations	or	subcategories	of	the
entities	in	the	model.	An	entity	view	can	be	forward	engineered	as	a	view	in	the	relational
model	and	as	a	view	in	the	database	if	needed.

You	can	create	a	new	entity	view	by	clicking	the	New	View	icon	beside	the	New	Entity
icon	in	the	toolbar.	An	entity	view	appears	in	the	Data	Modeler	canvas	as	an	entity	but
with	an	orange	background	color.	There	is	the	name	of	the	entity	view,	and	then	the
attributes	are	selected	in	that	entity	view.	On	the	bottom	of	the	entity	view	figure	there	are
the	entities	that	are	used	in	the	entity	view.	In	the	View	Properties	dialog	(Figure	4-16),
you	can	name	the	entity	view	and	build	the	view	with	Query	Builder.	You	will	learn	more
about	Query	Builder	in	Chapter	5.	If	you	select	Auto	Join	On	Relationships,	the
relationships	will	be	created	for	your	view	automatically	in	Query	Builder	based	on
relationships	in	the	entities	selected	for	the	view.	If	you	disable	Auto	Join	On
Relationships,	you	must	create	relationships	manually.	You	can	select	whether	all	objects
from	the	logical	model	are	available	for	creating	the	view	or	just	the	ones	in	a	particular
subview	by	selecting	the	desired	one	from	the	Use	Objects	Only	From	list.	The	view	type
can	be	either	an	entity	view	or	a	named	query.

FIGURE	4-16.	Properties	for	an	entity	view

Inheritance
Sometimes	you	need	to	model	a	case	on	an	entity	with	two	or	more	exclusive	child
entities.	For	example,	you	might	want	to	model	a	case	where	the	main	entity	is	Customer,
but	a	Customer	will	be	either	a	Person	or	a	Company.	You	can	solve	it	either	by	using	an
arc	or	by	using	the	concepts	of	supertype	and	subtype.

An	arc	is	an	exclusive	relationship	group	where	only	one	of	the	relationships	can	exist
for	a	given	instance	of	an	entity.	To	draw	an	arc,	you	must	first	create	all	the	entities	and
relationships	that	you	want	to	include	in	the	arc.	Select	the	entity	and	select	all	the
relationship	lines	to	be	included	(hold	SHIFT	or	CTRL	and	click	each	line).	Now	you	can	see
that	the	Arc	icon	in	the	toolbar	is	enabled.	Click	the	New	Arc	icon.	Figure	4-17	shows	an
arc	solution	where	at	one	time	there	is	either	a	relationship	between	Customer	and	Person
or	a	relationship	between	Customer	and	Company.	In	other	words,	a	Customer	is	either	a
Person	or	a	Company	but	never	both	or	neither.

FIGURE	4-17.	An	arc	solution

All	relationships	included	in	an	arc	should	belong	to	the	same	entity,	and	they	should
have	the	same	cardinality.	In	forward	engineering,	an	arc	solution	will	produce	one	table
for	each	entity.	To	be	able	to	forward	engineer	this	setting	to	the	relational	model,	you
must	set	all	foreign	key	attributes	belonging	to	the	relationship	to	allow	nulls	because	only
one	of	them	can	have	a	value	for	each	row	in	the	table.	There	will	be	additional,	optional
columns	in	the	table	based	on	the	supertype	(Customer)	for	each	foreign	key	referring	to
that	table	from	a	subtype,	and	an	additional	check	constraint	is	needed	for	implementing
the	arc.	You	will	learn	more	about	forward	engineering	in	Chapter	5.	The	arc	solution	can
be	a	good	choice	when	the	subtypes	do	not	have	a	lot	in	common	and	can	be	used
independently.

In	many	cases,	it	is	easier	to	model	and	understand	the	modeling	target	when	using
subtypes	and	supertypes	to	express	the	same	need.	The	modeling	tactic	with	supertypes
and	subtypes	is	usually	easier	for	end	users	to	read	and	understand,	and	it	gives	the
designer	the	freedom	to	decide	later	how	to	implement	this	when	engineering	to	the
relational	model.	A	hierarchy	of	entities	based	on	supertypes	and	subtypes	is	called
inheritance.	All	attributes	and	relationships	of	the	supertype	must	belong	to	all	of	its
subtypes.	Subtypes	are	usually	defined	if	many	of	the	entity	instances	have	attributes	in
addition	to	those	of	the	supertype.	A	supertype	is	defined	for	an	entity	in	the	Entity
General	Properties	dialog	by	selecting	the	appropriate	entity	from	the	list	for	Super	Type
(in	the	example	in	Figure	4-18,	Customer	is	the	supertype	and	Person	is	the	subtype).	The
inheritance	looks	like	the	model	in	Figure	4-18	if	box-in-box	notation	has	been	selected.

FIGURE	4-18.	Box-in-box	presentation

If	the	box-in-box	notation	has	not	been	selected,	the	same	inheritance	will	look	like	the
one	in	Figure	4-19.	In	that	case,	the	inheritance	relationship	properties	can	be	modified	in
the	Inheritance	Relationship	properties.	You	can	define	Name,	Long	Name,	Super	Type,
and	Sub	Type	fields.	You	can	also	define	Engineer	To	and	Comments,	Comments	In
RDBMS,	and	Notes.

FIGURE	4-19.	Inheritance,	no	box-in-box	presentation

The	Engineer	To	property	page	in	the	Entity	Properties	dialog	is	for	defining	which
entity	from	the	hierarchy	will	be	transformed	to	a	table	and,	if	there	are	several	relational

models,	to	which	relational	model.	This	definition	should	be	done	for	each	entity.

There	is	a	new	page	called	Subtype	in	the	Entity	Properties	dialog	box	since	Data
Modeler	version	4.	This	page	is	for	implementing	subtypes	in	engineering	and	for	setting
up	a	discriminator	column,	as	shown	in	Figure	4-20.	For	entity	and	subtypes	generation,
there	are	two	decisions:	Subtree	Generation	and	Apply	To	Model.	For	the	Subtree
Generation	field	there	are	four	choices:	Do	Not	Preset,	Single	Table,	Table	Per	Child,	and
Table	For	Each	Entity.	If	you	want	to	make	the	decision	manually	by	setting	the	Engineer
To	property	to	each	entity	yourself,	select	Do	Not	Preset.	I	will	discuss	more	about	these
choices	later	in	this	section.	The	Apply	To	Model	selection	on	the	same	page	defines
whether	the	possible	changes	for	the	Engineer	To	properties	will	be	applied	to	all
relational	models	or	to	a	specific	model.	For	Subtypes	Implementation	(Figure	4-20)	there
are	two	settings:	References	and	Attributes	Inheritance.	For	References	you	have	three
choices:	None,	Identifying,	and	Arc	Implementation.	If	you	select	None	for	the	reference,
no	foreign	keys	are	created	between	tables.	If	you	select	Arc	Implementation,	optional
foreign	keys	from	supertype	to	subtypes	are	created.	Arc	is	mandatory	if	the	subtypes
hierarchy	is	complete.	If	you	select	Identifying,	identifying	foreign	keys	are	created	from
subtype	tables	to	supertype	tables.	You	can	also	specify	the	attributes	inheritance,	and	for
that	you	have	two	choices:	Primary	Attributes	Only	and	All	Attributes.	This	property
defines	that	either	primary	attributes	or	all	attributes	of	a	supertype	be	inherited	to
subtypes	when	implemented	as	tables.

FIGURE	4-20.	Defining	the	inheritance

For	Subtypes	Implementation	(Figure	4-20),	you	can	also	specify	a	discriminator
column,	which	is	often	used	when	generalization,	a	single-table	implementation,	has	been
selected.	I	will	discuss	more	about	that	later	in	this	section.

There	are	three	ways	to	implement	the	inheritance	in	a	relational	model:	specialization
(table	for	each	entity),	generalization	(single	table),	or	neither	of	those	(table	per	child).
There	is	no	one	right	way	to	model	an	inheritance;	it	always	depends	on	what	the
requirements	are.

Specialization	of	an	entity	means	that	the	entity	will	be	divided	into	subentity	types.
For	instance,	an	entity	Customer	might	be	divided	into	Person	and	Customer.	All	common
attributes	will	be	in	the	Customer	entity.	Person	and	Customer	will	have	only	the	attributes
specific	for	those	entities.	This	is	similar	to	what	you	saw	in	the	arc	solution	in	Figure	4-
16.	In	Data	Modeler	this	is	called	Table	For	Each	Entity,	and	you	can	select	it	by	setting
the	Subtree	Generation	option	in	the	Entity	Properties	dialog	(see	Figure	4-20)	to	Table
For	Each	Entity.	When	Table	For	Each	Entity	is	selected,	all	entities	in	the	current	subtree
will	be	selected	for	engineering.

There	are	several	questions	you	should	ask	to	be	sure	that	this	solution	is	the	right	one.
Can	a	Person	change	to	a	Customer	or	vice	versa?	Do	you	always	know	whether	the
Customer	is	a	person	or	a	company?	Usually	this	is	not	a	good	solution	in	the	sense	of
performance	because	you	probably	need	to	join	these	tables	quite	often.

Generalization	of	an	entity	means	that	a	general	supertype	entity	will	be	created	for	a
set	of	entities.	It	is	possible	that	a	subentity	has	attributes	that	are	not	suitable	for	all
entities	generalized	under	this	supertype.	Let’s	say	you	have	entities	called	Customer,
Company,	and	Person.	You	can	generalize	all	of	these	under	a	supertype	called	Customer.
This	supertype	now	generalizes	the	subtypes.	The	subtype	inherits	the	attributes	from	the
supertype	and	probably	also	has	attributes	of	its	own.	In	Data	Modeler,	this	is	called
Single	Table,	and	you	can	select	it	by	setting	the	Subtree	Generation	option	in	the	Entity
Settings	dialog	to	Single	Table.	In	Data	Modeler,	the	Engineer	To	property	for	this	entity
will	be	set,	and	it	will	be	cleared	for	all	subtypes	in	the	current	entity	subtree.

In	reality,	you	will	probably	need	a	new	attribute	to	describe	which	type	of	Customer
each	customer	is,	such	as	a	CustomerType	attribute,	because	there	is	probably	a
requirement	for	that.	In	Data	Modeler,	you	use	a	discriminator	column	for	that	purpose.	If
you	select	Generate	Discriminator,	a	discriminator	column	will	be	generated	for	your	table
automatically.	In	Use	Attribute,	you	can	define	which	existing	attribute	will	be	used	as	a
discriminator;	in	this	case,	that	would	be	CustomerType.	If	you	want	to	define	a	name	for
the	column,	you	can	do	that	on	the	Column	Name	property.	This	property	defines	the
name	of	the	generated	discriminator	column.	If	you	do	not	specify	a	name,	the	template	is
used.	You	can	define	the	discriminator	value	for	each	subtype	entity	in	the	Discriminating
Value	property.	For	instance,	for	Person,	the	discriminator	value	could	be	P,	and	for
Company	it	could	be	C.	If	you	do	not	define	a	value,	the	entity	short	name	or	entity	name
is	used.	If	you	want	the	subtypes	to	be	complete,	select	Complete	Subtypes.	This	property
has	impact	on	generated	arcs	and	the	list	of	possible	values	for	the	discriminator	column.
If	the	list	of	subtypes	is	not	complete,	then	optional	arcs	are	generated,	and	the	value	for

the	supertype	entity	is	also	included	in	the	permitted	list	of	values	for	the	discriminator
column.	See	Figure	4-21	for	a	generalization	of	Customer	with	the	discriminator
CustomerType.	Because	you	have	a	tool	like	Data	Modeler,	you	can	use	supertypes	and
subtypes	and	model	the	real	case	and	by	using	the	Entity	Properties	dialog	decide	how	to
implement	it	when	forward	engineering	to	the	relational	model.

FIGURE	4-21.	Generalization	with	discriminator

The	problem	with	generalization	is	that	only	the	common	attributes	can	be	defined,	not
nulls.	So,	mandatory	attributes	in	subtype	entities	become	optional	columns,	and	an
existence	dependency	constraint	is	generated	in	addition	to	the	list	of	value	constraints	for
the	discriminator	column.	In	Chapter	5	you	will	see	how	forward	engineering	works.
Generalization	is	probably	the	most	popular	solution,	and	it	usually	works	if	most	of	the
attributes	are	common	and	the	business	rules	are	similar	to	all	the	subtype	entities.

It	is	also	possible	to	decide	not	to	specialize	and	not	to	generalize.	In	that	case,	you	will
no	longer	have	a	concept	of	a	Customer	but	only	Person	and	Company.	So,	you	will	not
have	any	information	in	your	model	that	both	Person	and	Company	are	Customers;	you
must	be	very	sure	not	to	have	this	requirement,	and	you	must	be	sure	that	a	Person	cannot
be	changed	to	a	Company	or	vice	versa	during	its	lifetime.	In	this	case,	you	must	define	all

common	attributes	in	both	entities	and	the	specific	attributes	to	the	entity	they	belong	to.
In	Data	Modeler	this	is	called	Table	Per	Child,	and	you	can	select	it	by	setting	the	Subtree
Generation	option	in	the	Entity	settings	to	Table	Per	Child.	Selecting	Table	Per	Child
leaves	entities	in	the	current	subtree	selected	for	engineering	and	clears	the	Engineer	To
property	for	the	supertype	entity.	In	forward	engineering	to	the	relational	model,	only	the
subtype	entities	will	be	generated	to	tables,	and	they	will	have	their	own	columns	added
with	columns	from	the	supertype	entity.	You	will	see	that	in	more	detail	in	Chapter	5.	This
solution	might	be	good	if	subtype	entities	have	little	in	common,	if	the	supertype	entity
does	not	have	many	attributes,	and	if	business	rules	are	quite	different	in	the	subtype
entities.

Data	Modeler	also	supports	type	substitution,	which	complements	inheritance.	Type
substitution	is	possible	only	if	the	inheritance	is	between	structured	types	of	entities.

Subviews
Subviews	are	diagrams	created	to	represent	different	subject	areas	and	to	make	a	big
diagram	more	readable.	Any	changes	made	to	elements	in	a	subview	will	be	automatically
made	to	the	logical	model	diagram	since	the	elements	are	the	same.	You	can	create	as
many	subviews	as	you	want	by	selecting	SubView	from	the	Browser	pane,	right-clicking,
and	choosing	New	SubView.	Or	just	right-click	the	canvas	and	choose	Diagram	|	Create
SubView.	After	right-clicking	and	selecting	Diagram,	you	can	also	delete	subviews
(Delete	SubView).	Subviews	also	have	properties,	and	it	is	wise	to	name	all	the	additional
subviews	to	make	finding	the	correct	one	easier.	A	subview	can	be	named	via	its
properties.

All	new	entities	are	automatically	added	to	the	logical	diagram.	Only	changes	that	are
made	to	an	object	that	already	exists	in	other	subviews	will	be	shown	there.	Relationships
between	entities	that	have	been	selected	on	a	subview	will	be	shown;	if	not	all	the	entities
needed	have	been	selected,	the	relationship	will	not	be	shown.	You	can	add	new	entities
and	relationships	and	make	any	changes	in	any	of	the	subviews,	and	all	the	changes	will
be	made	automatically	in	all	the	relevant	subviews.	All	the	objects	are	in	Data	Modeler
once,	and	subviews	are	just	an	interface	to	them.	But	there	is	one	exception:	you	can
delete	the	whole	object	either	from	your	design	or	just	from	one	subview.	Right-click	any
object	in	any	subview	to	see	two	choices:	Delete	Object	and	Delete	View.	Delete	Object
will	delete	the	object	specified	everywhere,	and	Delete	View	will	remove	this	object	only
from	this	one	subview.

If	you	want	to	create	a	subview	containing	specific	entities,	select	the	entities	you	want
in	the	canvas	(use	CTRL	to	select	several),	right-click,	and	select	Create	Subview	From
Selected.	The	easiest	way	to	select	the	entities	wanted	is	to	select	one	entity,	right-click	it,
and	select	Select	Neighbors.	You	can	specify	whether	only	the	nearest	neighbors	will	be
selected	by	defining	the	zone,	or	you	can	select	all	the	neighbors.	Then	just	right-click	the
entity	again	and	select	Create	Subview	From	Selected.	You	can	also	drag	and	drop	entities
from	the	Browser	pane	to	the	subview	canvas	to	get	them	included	in	this	subview.	You
can	also	right-click	in	the	subview	and	choose	Objects	|	Add/Remove	Elements	to	add
objects	to	the	subview	or	remove	objects	from	the	subview	or	choose	Show/Hide
Relationships	to	show	or	hide	selected	relationships.

From	the	toolbar	you	can	click	the	icons	to	zoom	in	or	out	and	click	Fit	Screen	to	fit	the
subview	better	in	the	screen.	By	right-clicking	the	subview	canvas,	you	tune	the	layout
(Layout),	decide	what	details	will	be	shown	(View	Details),	change	notation	(Notation),
and	decide	what	elements	will	be	shown	in	the	canvas	(Show).

Displays
A	display	is	an	independent	visual	version	of	a	subview	or	a	logical	model.	It	has	all	the
same	elements	as	the	original	canvas,	but	you	can	change	the	visual	as	much	as	you	want,
and	it	will	be	saved	as	it	is.	You	can	change,	for	instance,	the	notation	to	be	able	to	discuss
with	somebody	who	prefers	a	different	notation	than	you	usually	use.	Or	you	can	change
the	layout	or	which	details	to	show.	You	can,	for	instance,	select	that	only	names	are
shown	from	each	entity.	If	a	display	is	for	a	logical	model,	it	can	be	found	in	the	Browser
pane	under	Logical	Model	|	Displays.	If	it	has	been	created	for	a	subview,	it	can	be	found
in	the	Browser	pane	under	that	particular	subview.	If	there	are	displays	for	the	model	open
in	the	canvas,	they	can	be	seen	and	selected	below	the	canvas,	as	shown	in	Figure	4-22.

FIGURE	4-22.	Displays

If	you	right-click	the	canvas,	you	can	create	displays	by	choosing	Diagram	|	Create
Display.	Or	you	can	create	one	in	the	Browser	pane	by	right-clicking	a	subview	and
choosing	Create	Display	or	by	right-clicking	Displays	in	the	Browser	pane	and	choosing
New	Display.

Displays	can	and	should	be	named	to	be	able	to	find	the	right	one	when	needed.	You
can	name	a	display	in	the	Properties	dialog.

TIP
To	find	a	certain	element	in	a	diagram,	right-click	the	element	name	in	the	Browser	pane,
select	Go	To	Diagram,	and	select	the	diagram	you	want	to	go	to.	A	diagram	is	a
logical/relational	model,	a	subview,	or	a	display.

Summary
This	chapter	discussed	developing	a	conceptual	database	design	and	entity-relationship
modeling	and	how	Data	Modeler	supports	that.

You	can	define	the	behavior	of	Data	Modeler	the	way	it	suits	you	best	and	supports
enterprise	standards	by	setting	the	preferences	and	properties.	The	main	tools	in
conceptual	database	design	are	the	logical	ER	model	and	data	flow	diagrams.	The	main
thing	in	conceptual	database	design	is	to	model	the	target	as	well	as	possible	and	yet
simply	enough	so	that	other	people	can	understand	it	too.	Data	Modeler	gives	you	many
options	to	choose	from	to	best	model	your	solution.	It	is	important	to	find	and	model	the
concepts	and	how	they	are	related	to	each	other	via	entities	and	relationships.	You	should
model	all	the	attributes	you	can	find	and	their	data	types,	lengths,	domains,	participation
constraints,	and	so	on.	Try	also	to	find	the	unique	identifiers.	Be	careful	when	selecting
the	primary	key,	and	be	careful	with	redundancy;	every	detail	must	be	saved	just	once.	Do
not	be	shy	in	defining	attributes	that	don’t	allow	nulls.	Be	consistent	and	logical	in
modeling.	Subviews	and	displays	are	used	in	Data	Modeler	for	producing	more	readable
diagrams.

CHAPTER
5

Introducing	Logical	Database	Design
(Relational	Model)

The	process	of	creating	the	logical	database	design	mainly	consists	of
transforming	the	conceptual	model	(logical	model)	into	a	relational	model.
Usually	that	is	called	the	logical	data	model,	but	in	Oracle	SQL	Developer	Data

Modeler	it’s	called	a	relational	model.	The	result	of	this	phase	of	database	design	is	the
relational	database	schema,	which	is	a	set	of	relational	schemas	and	their	constraints.	If
the	conceptual	design	was	done	with	Data	Modeler,	engineering	to	the	relational	model	is
easy.	If	it	was	done	with	another	tool	or	without	a	tool,	the	first	step	is	to	insert	all	the	data
into	Data	Modeler	to	be	able	to	use	the	functionalities	Data	Modeler	provides	for	the
transformation.

The	logical	database	design	process	starts	with	the	entity-relational	(ER)	model	that
was	created	in	previous	phases	of	database	design.	Depending	on	how	well	it	was	done,
either	you	continue	working	on	it	or	you	move	straight	to	transformation.	Usually	the
model	is	not	complete	yet;	you	might	need	to	add	more	attributes,	define	the	data	types,
and	so	on.	It’s	now	you	start	thinking	about	whether	the	entities	and	relationships	are
modeled	according	to	relational	theory,	and	you	make	decisions	on	more	difficult	issues
about	modeling.	This	is	the	point	where	you	must	know	how	this	database	will	be	used	(its
functional	models).

If	it	was	not	done	earlier,	it	is	good	to	start	thinking	about	what	to	do	with	the	data
history,	whether	you	need	a	security	solution,	what	kind	of	roles	there	are	for	the	users,
and	so	on.	It	will	be	easier	to	implement	these	functionalities	when	there	is	a	clear	vision
and	understanding	of	the	database.

Setting	Preferences	and	Properties
There	are	some	preferences	you	have	not	investigated	yet	that	affect	the	relational	model.
You	can	find	the	preferences	by	choose	Tools	|	Preferences.	In	the	Preferences	dialog,	on
the	Data	Modeler	tab,	you’ll	see	a	preference	called	Show	Select	Relational	Models
Dialog.	If	you	select	it,	you	can	specify	which	relational	models	(and	physical	models)
will	be	opened	automatically	when	opening	a	design.	If	it	is	not	selected,	all	relational
models	will	be	opened,	but	you	will	not	be	able	to	specify	whether	the	physical	designs
will	be	opened,	and	they	will	not	be	opened	automatically.	My	recommendation	is	to
select	Show	Select	Relational	Models	Dialog	so	you	can	control	what	will	be	opened	and
what	will	not	be	opened.

To	define	the	preferences	for	the	relational	model	diagram,	select	Preferences	and	go	to
Data	Modeler	|	Diagram	|	Relational.	There	is	only	one	preference	here	to	define:	Foreign
Key	Arrow	Direction.	This	preference	controls	whether	the	arrow	points	toward	the
primary	key	or	toward	the	foreign	key	in	a	foreign	key	relationship	arrow.

To	define	the	preferences	for	the	logical	model,	select	Preferences	and	go	to	Data
Modeler	|	Model	|	Logical.	(These	preferences	were	shown	in	Chapter	4;	see	Figure	4-2.)
On	the	Model	|	Logical	tab,	you	can	define	the	following:

			By	selecting	Name	–	Keep	As	The	Name	Of	The	Originating	Attribute,	you
tell	Data	Modeler	to	keep	the	name	specified	for	the	attribute	the	same	for	the

foreign	key	column	in	the	relational	model.	If	you	want	to	define	another	name,	do
not	select	this.

			By	selecting	Comments,	Notes	–	Automatically	Propagate	From	PK	Attribute,
you	will	get	the	foreign	key	columns	in	the	relational	model	with	the	same
comments	and	notes	as	the	attribute	in	the	parent	entity.

			Selecting	Entity	Create	Surrogate	Key	tells	Data	Modeler	to	create	a	surrogate
key	for	a	table	when	the	corresponding	entity	does	not	have	a	primary	key,	and
selecting	Relationship	Use	Surrogate	Key	tells	Data	Modeler	to	create	a	surrogate
key	as	a	primary	key	for	the	parent	table	in	the	relational	model	if	there	is	no
primary	key;	Data	Modeler	uses	that	column	as	a	foreign	key	to	the	child	table.	In
both	cases,	the	table	in	the	relational	model	will	have	a	surrogate	key	as	a	primary
key.	If	the	parent	entity	has	no	primary	key	and	a	relationship	is	referring	to	that
entity,	a	surrogate	key	is	created	automatically	and	cannot	be	stopped	with
preferences	or	properties.

These	preferences	affect	only	the	tables	and	foreign	keys	created	after	setting	the
preference	since	it	will	be	copied	to	the	properties	of	the	entity	and	the	relationship,	as
described	in	Chapter	4.

To	define	the	preferences	for	the	relational	model,	select	Preferences	and	go	to	Data
Modeler	|	Model	|	Relational,	as	shown	in	Figure	5-1.	On	the	Model:	Relational	tab,	you
can	define	the	following:

			Delete	FK	Columns	Strategy	defines	the	rule	for	Data	Modeler	when	you	want
to	delete	a	table	that	has	one	or	more	generated	foreign	key	columns	pointing	at	it.
You	can	set	it	to	delete	the	foreign	key	columns,	do	not	delete	the	foreign	key
columns,	or	ask	for	confirmation	for	the	foreign	key	column	deletions.

			Default	Foreign	Key	Delete	Rule	specifies	what	happens	if	a	user	tries	to
delete	a	row	containing	data	that	is	involved	in	a	foreign	key	relationship.	The
possible	values	are	No	Action,	Cascade,	Set	Null,	and	Restrict.	You	might	have	set
the	value	already	for	the	relationship	in	the	logical	model.	In	that	case,	that	value
will	be	used	for	the	table	created	based	on	that	entity.	If	you	create	a	completely	new
foreign	key	(which	I	do	not	recommend)	on	the	relational	model,	this	default	value
is	used.	You	can	find	more	information	about	the	values	in	Chapter	4.

			Allow	Columns	Reorder	During	Engineering	(Table’s	Default	Value)	allows
Data	Modeler	to	reorder	the	columns	to	the	same	order	the	attributes	have	when
engineering	to	the	relational	model	and	to	reorder	the	attributes	to	a	different	order
of	the	columns	when	the	table	is	engineered	to	the	logical	model.	This	preference
will	once	again	affect	only	tables	created	after	the	preference	is	set	since	the	value	is
copied	to	the	table	properties	(Allow	Columns	Reorder	During	Engineering),	and
the	property	can	be	changed	for	an	individual	table.	If	you	reorder	the	columns
manually,	the	property	will	be	automatically	cleared.

			Synchronize	Remote	Objects	When	Model	Is	Loaded	defines	whether	the
model	where	the	shared	object	is	will	be	automatically	updated	if	the	original	object
has	been	changed	in	its	original	location.	You	can	synchronize	your	model	with	the
database	and	vice	versa.	The	Database	Synchronization	preferences	define	whether

the	source	connection	(Use	Source	Connection),	source	schema	(Use	Source
Schema),	or	source	objects	(Use	Source	Object)	are	used	in	this	synchronization.
You	can	read	more	about	synchronizing	in	Chapter	12.	The	default	data	type	for	the
surrogate	key	is	logical	data	type	Numeric	without	precision.	The	surrogate	key
setting	can	be	changed	in	Surrogate	Column	Data	Type.	You	cannot	change	the
logical	data	type	(surrogate	keys	are	always	numeric),	but	you	can	define	the
precision	for	your	surrogate	keys,	or	you	can	select	a	domain	to	be	used	as	the
column	data	type	for	a	surrogate	key.

FIGURE	5-1.	Preferences	for	the	relational	model

Chapter	2	discusses	design-level	properties.	Make	sure	you	have	set	them	the	way	you
want.

A	relational	model	also	has	properties.	In	the	Model	Properties	dialog,	you	can	rename
the	model,	make	it	visible	or	invisible,	and	define	the	default	relational	database
management	system	(RDMS)	type	and	site	for	the	model.	You	can	define	the	naming
options	for	a	logical	model	on	the	Naming	Options	tab.	You	can	also	define	the	naming
options	for	the	relational	model	by	right-clicking	the	name	of	the	relational	model	and
selecting	Properties.	You	can	define	naming	options	for	a	table,	column,	view,	index,	and
constraint	the	same	way	as	you	did	for	the	elements	in	the	logical	model.	I	suggest	you	use
the	same	Valid	Characters	setting	for	the	relational	model	as	the	logical	model	to	make
engineering	work	more	fluent.	Engineering	To	Relational	Model	can	do	a	transformation
between	uppercase	and	lowercase,	but	it	cannot	convert,	for	example,	Scandinavian
letters.	If	you	have	characters	allowed	in	the	logical	model	that	are	not	allowed	in	the
relational	model,	Data	Modeler	will	not	check	these	during	the	engineering	to	the
relational	model	but	only	when	you	try	to	open	the	properties	that	has	a	conflict,	for
instance,	the	table	properties.

Transforming	from	a	Logical	Model	to	a	Relational
Model
When	the	logical	model	is	complete	(for	now),	it	is	time	to	transform	it	to	a	relational
model.	Before	the	transformation,	it	would	be	good	to	check	the	logical	model	one	more
time.	Is	your	model	solving	all	the	needs	and	requirements	for	business	data?	Have	the
modeling	and	naming	standards	been	followed?	Are	the	primary	keys	correct	and	defined?
Are	there	entities	without	a	primary	key?	Do	you	want	Data	Modeler	to	define	a	surrogate
key	for	them,	or	do	you	want	to	do	something	yourself?	Are	all	the	known	attributes
defined?	Are	their	data	types	and	compulsories	defined	correctly?	This	is	a	good	time	to
run	the	design	rules	for	the	logical	model.	See	Chapter	2	for	more	information	about
design	rules.

If	you	have	one-to-one	relationships	in	your	logical	model,	check	one	more	time	that
they	are	correct.	Sometimes	there	is	a	good	reason	for	having	a	one-to-one	relationship,
for	instance	if	the	life	cycle	of	the	metadata	and	the	rest	of	the	data	is	different.	An
example	could	be	an	entity	named	Letter.	There	might	be	a	business	rule	that	the
information	about	who	the	letter	is	for	and	when	the	letter	was	sent	must	be	saved	for	10
years	but	the	content	of	the	letter	must	be	saved	for	only	one	month.	From	a	maintenance
perspective,	two	separate	entities	and	a	one-to-one	relationship	would	be	a	good	solution.
If	you	make	solutions	that	are	purposeful	but	not	obvious,	remember	to	document	them.

TIP
Document	solutions	that	are	justified	but	not	so	obvious.	You	can	use	the	Notes	property

for	that.

Now	make	sure	you	have	normalized	the	logical	model	as	far	as	needed.	Data	Modeler
supports	normalized	design,	and	it	also	allows	you	to	document	the	level	of	normalization
in	each	entity	(and	table)	on	the	Volume	Properties	tab	in	the	Normal	Form	property	and	to
define	whether	it	is	normalized	enough	with	the	Adequate	Normalized	property.	There	are
plenty	of	good	books	on	relational	theory	that	will	explain	normalization,	among	other
things.	In	short,	it	means	that	the	information	has	been	saved	and	modeled	just	once.	It	is
vital	to	make	sure	the	data	quality	in	your	database	is	good;	what	is	the	point	of	having	a
database	full	of	information	you	cannot	trust?	If	the	data	is	saved	only	once,	it	stays
correct	and	good	quality	much	easier	than	if	it	has	been	duplicated	in	the	database	in	many
places.	When	you	are	ready	with	your	logical	model,	it	is	time	to	move	on	to	transforming
the	relational	model.

Setting	Transformation	Rules
The	transformation	from	a	logical	model	to	a	relational	model	is	straightforward.	An
entity	will	become	a	table,	an	attribute	will	become	a	column,	and	a	relationship	will
become	a	foreign	key.	For	a	one-to-many	relationship,	a	new	column	for	the	foreign	key
will	be	added	to	the	child	table,	and	in	a	one-to-one	relationship,	it	will	be	added	to	the
table	on	the	mandatory	side	of	the	relationship.	In	both	cases,	if	the	relationship	is
identifying,	the	new	foreign	key	column	will	be	also	added	to	the	primary	key	of	the	child
table.	If	the	Create	Surrogate	Key	property	is	selected	for	the	entity,	a	surrogate	primary
key	is	automatically	generated	for	a	table.

NOTE
If	an	entity	does	not	have	its	own	primary	key	and	you	want	the	primary	key	to	be
generated	for	the	table	based	on	the	relationships	and	surrogate	primary	keys	of	the
parent	tables,	make	sure	you	create	the	primary	key	for	the	entity	and	select	all	the
relationships	for	its	columns	before	clicking	Engineer	To	Relational.	Otherwise,	the	child
table	will	not	have	a	primary	key.	See	Chapter	8	for	an	example	of	generating	data
warehouse	fact	tables	(Figures	8-1,	8-2,	and	8-3).

If	the	relationship	is	on	the	cardinality	of	many-to-many	(m:n),	a	new	table	will	be
created	to	resolve	the	m:n	cardinality,	and	a	new	column	based	on	the	primary	key
attribute	in	each	table	in	the	relationship	will	be	created.	A	primary	key	for	the	new	table
is	created	based	on	those	columns.	Also,	new	one-to-many	relationships	are	created	for
both	tables	involved.

If	a	relationship	has	its	own	attributes,	some	tools	will	create	a	new	table	with	all
original	relationships	and	attributes	from	the	relationship.	But	Data	Modeler	does	not	do
that	unless	the	relationship	is	m:n.	In	one-to-many	cases,	Data	Modeler	adds	the	attribute
as	a	column	to	the	child	table	and	creates	a	dependent	column	constraint	for	that	(more
about	that	in	the	next	section).	So,	if	you	do	not	want	the	column	to	be	added	to	the	child
table,	do	not	create	an	attribute	for	the	relationship	but	to	the	entity	you	want	it	to	belong
to.	It	might	mean	that	you	need	to	create	a	new	entity.

If	an	attribute	is	multivalued	such	as	a	phone	number	(home	number,	office	number,
cell	phone),	there	are	a	couple	of	choices.	You	can	create	a	user-defined	data	type
(collection)	and	use	that	for	the	data	type	for	the	attribute	(see	Chapter	4	for	more
information),	or	you	can	split	the	attribute	into	several	attributes	for	the	entity	or	create	a
new	entity	for	the	multivalued	attribute.	Usually	a	new	entity	is	recommended	because	it
is	more	flexible,	but	sometimes	you	need	to	limit	the	values	to	a	certain	number	(maybe	a
Person	is	allowed	to	have	no	more	than	three	phone	numbers),	and	then	it	is	better	to	use
that	number	of	attributes	in	the	original	entity.	The	solution	really	depends	on	the
requirements	and	how	far	the	model	needs	to	be	normalized.

If	an	attribute	is	composite	(structured)	such	as	an	address	(StreetName,	Number,	City,
ZIP,	Country),	there	are	again	a	couple	of	choices.	You	can	create	a	user-defined	data	type
(structured)	and	use	that	for	the	data	type	for	the	attribute	(see	Chapter	4	for	more
information),	or	you	can	split	the	attribute	for	several	attributes	into	the	entity	or	create	a
new	entity	(or	entities)	for	the	composite	attribute.	Usually	a	new	entity	is	recommended
because	it	is	more	flexible,	and	you	might	find	other	attributes	for	that	entity
(AddressType,	AddressValidUntil,	and	so	on),	but	sometimes	you	need	to	denormalize	to
avoid	joins	and	end	up	adding	the	attributes	to	the	original	entity	(in	this	case,	make	sure
your	solution	meets	all	the	requirements).	The	solution	really	depends	on	the	requirements
and	how	far	the	model	needs	to	be	normalized.

NOTE
If	you	want	to	see	the	structured	column	expanded	in	a	diagram,	just	right-click	the
relational	diagram	and	choose	View	Details	|	Expand	Complex	Types.

The	transformation	rules	just	explained	are	shown	in	Table	5-1	in	a	more	complex
form.

TABLE	5-1.	Transformation	Rules	for	Engineering	to	a	Relational	Model

Sometimes,	for	example,	a	circular	structure	in	an	ER	diagram	can	cause	a	situation
where	one	or	more	of	the	candidate	keys	are	overlapping.	That	means	they	have	one	or
more	attributes	in	common.	Figure	5-2	shows	a	Faculty	that	has	Students	and	Courses.
When	a	Student	passes	a	Course,	it	will	be	marked	in	StudentRecord.	In	Figure	5-2	you

can	see	that	both	foreign	key	candidates	in	StudentRecord	(the	one	from	Student	and	the
one	from	Course)	have	the	attribute	FacultyID	in	it.	This	situation	is	fine	if	a	Student	can
also	take	Courses	from	other	Faculties	than	the	one	signed	up	for;	this	means	that	those
two	FacultyIDs	can	be	different.	But	if	a	Student	can	take	Courses	only	from	their	own
Faculty,	it	might	be	confusing	to	bring	the	FacultyID	from	two	different	routes.	You	can
see	the	same	thing	also	in	the	Entity	Properties	dialog	on	the	Overlapping	Attributes	tab,
shown	in	Figure	5-3.

FIGURE	5-2.	Overlapping	keys	(Bachman	notation)

FIGURE	5-3.	An	overlapping	attribute

On	this	tab	you	can	also	specify	that	the	attribute	will	be	folded	(not	engineered	as	a
column)	by	selecting	the	box	without	a	heading	(highlighted	in	Figure	5-3).	The	attribute
with	the	actual	attribute	name	(FacultyID)	will	be	engineered,	but	the	attribute	with	a
name	that	contains	a	version	number	(FacultyID1)	will	be	folded.	You	can	define	this	with
the	creation	order	of	relationships.	Later	in	this	chapter	you	will	see	how	folding	affects
the	process	of	engineering	to	the	relational	model.

Chapter	4	discussed	the	concept	of	inheritance.	Before	starting	the	transformation,
check	that	your	settings	are	correct	for	the	transformation	you	want	for	the	inheritance.	In
the	next	section,	you	will	see,	for	instance,	how	the	inheritance	will	be	transformed	in
Data	Modeler.

Engineer	to	Relational	Model
In	Data	Modeler	the	transformation	functionality	is	called	Engineer	To	Relational	Model.
You	start	the	transformation	either	by	right-clicking	the	logical	model	in	the	Browser	pane
and	selecting	Engineer	To	Relational	Model	or	by	clicking	the	double	arrow	pointing	right
(Figure	5-2).	Figure	5-4	shows	the	Engineer	To	Relational	Model	screen.	This	is	the	tree
view	for	selecting	what	will	be	transformed.	It	is	also	possible	to	use	the	tabular	view,
shown	in	Figure	5-5.	This	screen	is	for	seeing	and	selecting	what	elements	to	transform.
The	green	check	in	front	of	the	element	name	indicates	that	this	element	will	be
engineered.	If	you	want	to	leave	an	element	out	of	the	engineering	process,	just	deselect	it.

FIGURE	5-4.	Engineer	To	Relational	Model	screen,	the	tree	view

FIGURE	5-5.	Engineer	To	Relational	Model	screen,	the	tabular	view

In	the	tree	view,	you	can	select	the	scope	of	the	objects:	the	logical	model	or	one	of	the
subviews	in	that	logical	model.	You	can	also	narrow	down	the	number	of	objects	with	a
filter	(Figure	5-4)	to	show	only	new,	deleted,	or	modified	objects	or	a	combination	of
those.	If	you	have	several	relational	models,	you	should	select	which	one	is	the	one	to
transform	to	the	logical	model;	you	do	that	with	the	list	in	the	top-right	corner.	If	you	have
selected	a	logical	subview	(not	the	whole	model),	you	can	also	select	As	SubView,	which
will	create	a	relational	subview	and	engineer	your	elements	also	there	(Chapter	4	covered
subviews).

A	green	plus	sign	on	the	screen	means	that	this	element	is	new	and	will	be	added	to	the
relational	model	(see	Figure	5-6,	which	shows	a	new	attribute	called	HelisNewAttribute),
and	a	red	X	button	indicates	that	this	element	has	been	deleted.	A	yellow	triangle	with	the
exclamation	mark	in	front	of	the	element	name	indicates	that	there	are	some	changes	in
that	element	in	the	logical	model	compared	to	the	relational	model.	Drill	down	to	the	level
where	the	change	is	(in	Figure	5-6	it	is	the	attribute	Name),	and	on	the	Details	tab	you	can
see	what	the	difference	actually	is	(in	Figure	5-6	it	is	the	comment).	The	difference	is
highlighted.

FIGURE	5-6.	Engineer	To	Relational	Model	screen,	Details	tab

Options	on	the	Engineer	To	Relational	Model	Screen
There	are	plenty	of	options	for	generating	the	relational	model.	If	you	click	Engineer,	the
changes	will	be	committed	to	the	relational	model,	and	the	engineering	is	completed.	If
you	click	Cancel,	no	engineering	will	be	done.	If	you	click	Apply	Selection,	your
selections	will	be	saved,	and	the	Engineer	To	Relational	Model	screen	will	close.

At	the	bottom	of	the	Engineer	To	Relational	Model	screen,	you	will	find	a	tab	called
General	Options	(Figure	5-7).	On	the	General	Options	tab	you	can	specify	general	rules
for	the	transformation.	Engineer	Coordinates	defines	whether	the	objects	will	be
positioned	at	the	same	way	as	their	source	objects.	Engineer	Only	Objects	Created	In
“Logical”	Model	limits	the	object	to	be	engineered	only	to	those	objects	explicitly	created
in	the	logical	model.

FIGURE	5-7.	Engineer	To	Relational	Model	screen,	General	Options	tab

If	you	attached	a	glossary	to	a	design	on	the	Naming	Standards	tab	of	the	Design
Properties	dialog	(see	Chapter	2),	you	can	use	the	glossary	words	to	replace	the	names
used	for	entities	and	attributes	with	other	names	defined	in	a	glossary	when	engineering	to
tables	and	columns.	You	can	do	that	by	selecting	Apply	Name	Translation.	If	you	have
defined	a	plural	in	the	glossary	for	a	table,	that	will	be	used	for	name	translation;
otherwise,	the	Abbreviation	setting	is	used.	If	you	do	not	have	a	plural	or	an	abbreviation
defined	for	a	table,	then	the	Alternative	Abbreviation	setting	will	be	used.	For	a	column,
the	order	is	Abbreviation,	Plural,	and	Alternative	Abbreviation,	depending	on	which	of
them	has	been	defined	for	a	column.	If	the	glossary	has	no	definition	for	the	word,	the
entity/attribute	name	is	used.

During	the	name	translation,	also	the	model-level	properties	set	on	the	Naming	Options
tab	are	followed.	First	the	name	is	translated	using	the	glossary.	If	the	new	name	doesn’t
obey	the	Max	Name	Length	restriction,	then	the	Alternative	Abbreviations	settings	are
used	for	translating	the	name.	If	the	Character	Case	option	is	set	to	Mixed,	no	case
transformation	is	performed.	If	it	is	set	to	Upper	Case	or	Lower	Case,	the	possible
transformation	for	cases	is	done.	So,	if	you	select	Apply	Name	Translation,	the	tables	and
columns	might	not	be	called	the	same	as	the	related	entity	and	its	attributes,	but	the	names
will	be	translated	according	to	the	glossary.	The	same	applies	also	for	reverse	engineering
(Engineer	From	Relational	To	Logical).	If	you	have	the	Apply	Name	Translation	option
selected	when	engineering,	you	should	also	have	it	enabled	when	reverse	engineering
because	if	you	do	not,	the	names	will	be	changed	for	entities	and	attributes	like	they	are
for	tables	and	columns.

NOTE
If	you	select	Apply	Name	Translation,	it	is	wise	to	keep	it	selected	all	the	time	for
engineering	and	for	reverse	engineering	to	guarantee	correct	naming	for	all	your	objects.

It	is	also	possible	to	translate	the	names	of	the	entities	and	attributes	to	the	ones	defined
in	the	Preferred	Abbreviation	setting	for	the	tables	and	columns	by	selecting	both	Apply
Name	Translation	and	Use	Preferred	Abbreviations.	In	this	case,	all	your	tables	and
columns	will	be	called	whatever	was	defined	as	the	Preferred	Abbreviation	property	for
the	entity	and	the	attribute.	If	you	have	Preferred	Abbreviation	selected	when	engineering,
you	should	also	have	it	selected	when	reverse	engineering	because	if	you	do	not,	the
names	will	be	changed	for	entities	and	attributes	like	they	are	for	tables	and	columns.	If
you	select	the	Preferred	Abbreviation	option,	it	is	wise	to	keep	it	selected	all	the	time	for
engineering	and	for	reverse	engineering	to	guarantee	correct	naming	for	all	your	objects.

TIP
For	the	Preferred	Abbreviation	property,	you	do	not	actually	need	to	define	an
abbreviation.	You	can	also	use	it,	for	instance,	if	you	want	to	have	singular	words	in	entity

names	and	plurals	in	table	names.	For	example,	you	can	type	STUDENT	for	the	entity
Name	and	type	STUDENTS	for	the	Preferred	Abbreviation	property	for	the	entity.	Then
select	both	Apply	Name	Translation	and	Use	Preferred	Abbreviations	when	engineering.
Now	your	tables	will	have	plural	names,	while	your	entities	still	have	singular	names.
Make	sure	to	leave	the	Preferred	Abbreviation	property	empty	for	those	entities	and
attributes	you	do	not	want	to	use	abbreviations	for	naming	as	relational	objects.

TIP
You	can	also	use	the	Name	Abbreviations	utility	on	the	Tools	menu	to	convert
abbreviations	to	names,	and	vice	versa.	You	will	learn	more	about	that	in	Chapter	8.

If	you	select	Prefix	For	Columns	From	Entity	Hierarchies,	the	column	names	for	tables
in	hierarchies	will	have	the	table	name	as	a	prefix	for	a	foreign	key	or	a	primary	key
column	even	though	you	might	have	defined	Apply	Name	Translation	and	Use	Preferred
Abbreviations	for	all	other	column	names.	If	Prefix	For	Columns	From	Entity	Hierarchies
is	not	selected,	the	same	rules	as	defined	for	other	tables	will	be	followed.

Sometimes	there	are	some	technical	columns	you	would	like	to	add	to	your	tables,	but
there	is	no	need	to	have	those	on	your	entities.	These	columns	could	be,	for	instance,
CreatedDate,	Creator,	ModifiedDate,	and	Modifier.	There	is	a	simple	way	of	adding	those
columns	to	every	table	or	a	set	of	tables	with	Data	Modeler	during	the	Engineer	To
Relational	Model	transformation.	All	you	need	is	a	table	called	table_template	that	will
include	only	the	columns	you	want	to	add	to	other	tables.	In	this	example,	that	table	would
be	table_template	(CreatedDate,	Creator,	ModifiedDate,	Modifier).	On	the	Engineer	To
Relational	Model	screen,	first	select	all	the	tables	where	you	want	to	add	those	columns
and	then	select	Use	Template	Table.	Then	select	the	table	table_template	from	the	Use
Template	Table	list	and	click	Engineer.	You	do	not	need	to	worry	if	you	have	already
created	the	columns	before	because	the	functionality	will	add	the	columns	only	if	they
have	not	been	added	before.

TIP
If	you	want	to	add	technical	columns	to	your	tables	without	adding	them	to	entities,	use
the	Use	Template	Table	functionality	when	engineering	to	the	relational	model.

On	the	Compare/Copy	Options	tab	(Figure	5-8),	you	can	select	a	pair	of	objects
(entity/table,	attribute/column,	unique	identifier/index,	relation/foreign	key,	relation/table,
entity	view/view)	and	define	which	properties	will	be	compared	when	checking	what	has
changed	and	which	changes	to	engineer	to	the	relational	model.	So,	you	can	decide	which
changes	are	worth	mentioning	and	engineering	and	which	are	not.	You	can	narrow	down
the	properties	shown	on	the	Details	tab	by	selecting	the	Show	Selected	Properties	Only
property	to	show	only	the	properties	that	have	been	selected.	In	other	words,	if	you
uncheck	a	property	from	the	list	on	the	Compare/Copy	Options	tab,	it	will	not	be	shown	to
you	on	the	Details	tab,	it	will	not	be	shown	as	a	change	to	you	in	the	Engineer	To
Relational	Model	screen,	and	it	will	not	be	engineered	to	the	relational	model.	If	you

select	Don’t	Apply	For	New	Objects,	all	changes	(and	changes	to	those	unchecked
properties)	will	be	engineered	to	the	relational	model	for	all	new	objects	but	not	those
created	before	setting	this	property.

FIGURE	5-8.	Engineer	To	Relational	Model	screen,	Compare/Copy	Options	tabs

For	instance,	if	you	disable	the	property	Comment	From	Entity/Table	and	select	Show
Selected	Properties	Only	and	Don’t	Apply	for	New	Objects,	the	property	Comment	of	an
entity/table	will	not	be	shown	on	the	Details	tab,	and	any	changes	to	it	will	not	be	shown
with	a	triangle	on	the	Engineer	screen.	Changes	in	comment	will	not	be	engineered	to	the
relational	model	either	except	for	new	entities	if	you	have	checked	Don’t	Apply	For	New
Objects.

If	you	select	the	Exclude	Unchecked	Objects	From	Tree	option,	the	unchecked	objects
on	the	Engineer	To	Relational	Model	screen	will	not	be	shown	at	all	(and	because	they	are
unchecked,	they	will	not	be	engineered	either).	When	you	make	changes	to	Exclude
Unchecked	Objects	From	Tree,	remember	to	always	click	the	Update	Tree	button	to	get
your	changes	updated	to	the	Engineer	To	Relational	Model	screen.

If	you	uncheck,	let’s	say,	the	entity	Customer	on	the	Engineer	To	Relational	Model
screen	and	select	Exclude	Unchecked	Objects	From	Tree,	you	will	not	see	the	entity
Customer	on	the	Engineer	To	Relational	Model	screen	at	all,	and	it	will	not	be	engineered
to	the	relational	model.

In	Figure	5-9	you	can	see	that	there	is	an	attribute	(HelisNewAttribute)	deleted	from
the	logical	model,	but	it	still	exists	in	the	relational	model	where	it	was	engineered	to
earlier.	If	you	want	to	delete	that	column	from	the	relational	model,	you	must	select	Select
on	the	Synchronization	Of	Deleted	Objects	tab.	If	you	do	not	select	this,	no	deletion	will
be	done	during	the	engineering.

FIGURE	5-9.	Engineer	To	Relational	Model	screen,	synchronization	of	deleted	objects

On	the	Overlapping	And	Folding	Keys	tab	(Figure	5-10)	you	can	see	whether	there	are
keys	that	are	overlapping	(see	“Setting	Transformation	Rules”	earlier	in	this	chapter	for
more	information	about	overlapping	candidate	keys),	and	you	can	decide	what	to	do	with
them.

FIGURE	5-10.	Engineer	To	Relational	Model	screen,	Overlapping	And	Folding	Keys	tab

If	you	do	not	select	Fold	(Figure	5-10),	the	engineering	is	done	as	usual.	If	you	select
Fold,	the	engineering	will	not	generate	the	FacultyID	column	for	the	Student	foreign	key.
It	will	not	generate	the	column	and	does	not	have	that	in	the	foreign	or	primary	key	in
StudentRecord.	In	Figure	5-11	you	can	see	on	the	left	the	engineering	without	folding	and
on	the	right	the	engineering	with	folding	enabled.

FIGURE	5-11.	Overlapping	key,	no	fold	or	fold

In	the	tabular	view	(Figure	5-12),	you	can	select/deselect	all	with	the	buttons	in	the
upper-left	corner.	You	can	filter	the	element	in	the	list	with	the	Filter	field	by	typing	a
name	or	part	of	the	name.	You	can	also	filter	the	list	of	elements	with	the	Status	list,
depending	on	the	status	of	the	element,	with	these	values:	All,	Unchanged,	Modified,
New,	and	Deleted.	Or	you	can	filter	with	the	Type	list	with	these	values:	ALL,	Attribute,
Entity,	Key,	Relationship,	Subview.	On	the	Tabular	View	tab,	there	is	a	button	in	the	upper
right	for	generating	a	report	(Figure	5-12)	of	what	the	engineering	will	be	doing.	Figure	5-
13	shows	the	report	properties.	You	can	set	Output	Format	to	HTML,	PDF,	or	RTF.	You
can	give	a	title	and	a	name	for	the	report.	If	you	select	Separate	Objects	By	Status,	your
report	will	show	separately	categorized	modified,	new,	and	deleted	objects.	Click
Generate	Report	to	generate	the	report.

FIGURE	5-12.	Engineer	To	Relational	Model	screen,	tabular	view	and	Generate	Report
button

FIGURE	5-13.	Engineer	To	Relational	Model	screen,	Reports	dialog

Examples	for	Engineering	to	the	Relational	Model
There	are	general	rules	for	transforming	to	the	relational	model,	as	discussed	earlier	in	this
chapter.	During	the	transformation,	also	the	names	of	elements	in	the	relational	model	are
defined.	Here	are	some	guidelines	about	that:

			If	you	do	not	interfere	with	the	naming	while	transforming,	an	entity	will
become	a	table	with	the	same	Name	setting	as	the	entity,	with	a	long	name	of	the
entity,	and	with	an	abbreviation	of	an	entity’s	short	name.	A	column	will	be	named
after	the	attribute	Name,	and	the	Abbreviation	field	for	a	column	will	be	empty	by
default.

			If	you	select	Apply	Name	Translation	and	Use	Preferred	Abbreviations	during
the	engineering,	the	table	name	and	the	long	name	will	be	the	Preferred
Abbreviation	setting	of	an	entity,	the	name	for	a	column	will	be	the	Preferred
Abbreviation	setting	of	the	attribute,	and	the	abbreviation	for	the	column	will	be
empty.

			If	you	select	Apply	Translation	and	have	a	glossary	assigned	to	the	design,	the
glossary	will	be	followed	in	the	translation	as	described	earlier	in	this	chapter.

You	can	also	define	the	Abbreviation	property	for	a	table	and	a	column.	These
abbreviations	can	be	used	in	templates	on	the	Naming	Standards	tab	for	a	relational
model,	as	explained	in	Chapter	2.	You	can	also	exclude	transforming	properties	from	the
engineering	process	using	the	Compare/Copy	Options	tab	in	the	Engineer	To	Relational
Model	screen,	as	explained	earlier	in	this	chapter.

Chapter	4	discussed	different	ways	of	transforming	an	inheritance.	Figure	5-14	shows
an	example	of	an	arc	solution	(described	in	Chapter	4)	and	shows	how	it	is	transformed	to
a	relational	model.	There	are	three	tables	(on	the	right).	A	foreign	key	column	has	been
created	for	both	child	tables	(marked	with	PF),	and	because	the	child	entities	are	weak
entities,	the	primary	key	of	the	parent	entity	is	taken	along	to	the	primary	key	of	both	child
tables.	A	foreign	key	has	been	created	for	both	child	tables.	The	arc	in	the	relational	model
shows	that	a	Customer	can	be	either	Person	or	Company,	not	both.

FIGURE	5-14.	Engineering	of	an	arc	solution

Figure	5-15	shows	an	example	of	a	single-table	solution	(described	in	Chapter	4)	and
shows	how	it	is	transformed	to	a	relational	model.	There	is	only	one	table	(on	the	right)
including	a	column	for	each	attribute	in	the	entities	on	the	left.	Any	mandatory	attributes
in	the	child	entities	are	transformed	to	the	obligatory	columns	in	the	table.	No	foreign	keys
are	needed,	and	the	primary	key	is	the	one	for	the	parent	entity.

FIGURE	5-15.	Engineering	of	a	single-table	solution

There	is	also	a	new	column	(Customer_TYPE),	which	is	the	discriminator	column	(see
Chapter	4)	for	the	table	to	divide	the	rows	of	the	table	to	be	either	Companies	or	Persons.
Data	Modeler	creates	that	automatically	as	well	as	the	Existence	Dependency	Constraint
shown	in	Figure	5-16.	This	constraint	is	a	check	constraint	that	verifies	that	if
Customer_TYPE	is	C,	the	Company_ID	cannot	be	NULL;	however,	SSN	and	PersonInfo
must	be	null,	and	if	Customer_TYPE	is	P,	then	CompanyID	and	CompanyInfo	must	be
NULL,	and	both	SSN	and	PersonInfo	cannot	be	NULL.	So,	Data	Modeler	automatically
creates	the	logic	for	the	existence	of	either	a	Person	or	a	Company.	In	Figure	5-17,	you
can	see	the	check	constraint	with	a	list	of	allowable	values	created	by	Data	Modeler	to
check	for	the	discriminator	column.

FIGURE	5-16.	Existence	dependency	for	a	single-table	solution

FIGURE	5-17.	A	check	constraint	for	a	single-table	solution

Figure	5-18	shows	an	example	of	a	table-per-child	solution	(described	in	Chapter	4)
and	shows	how	it	is	transformed	to	a	relational	model.	There	are	two	tables	(on	the	right).
There	are	no	foreign	keys	on	these	tables,	and	the	attributes	from	the	parent	entity	have
been	transformed	into	columns	in	both	table.	The	attributes	in	child	entities	are
transformed	into	columns	on	the	corresponding	table.	The	primary	key	for	both	the	tables
is	created	based	on	the	primary	key	of	the	parent	table.

FIGURE	5-18.	Engineering	of	a	table	per	child

Figure	5-19	shows	an	example	of	a	table-for-each-entity	solution	described	in	Chapter
4	and	shows	how	it	is	transformed	to	a	relational	model.	There	are	three	tables	(on	the
right).	A	foreign	key	column	has	been	created	for	both	child	tables	(marked	with	PF),	and
because	the	child	entities	are	weak	entities,	the	primary	key	of	the	parent	entity	is	taken
along	to	the	primary	key	of	both	child	tables.	A	foreign	key	has	been	created	for	both	child
tables.	The	arc	in	a	relational	model	shows	that	a	Customer	can	be	either	a	Person	or	a
Company,	not	both.	You	can	also	ask	Data	Modeler	to	create	the	discriminator	column.	It
also	creates	the	list	of	allowable	values	and	triggers	to	watch	that	the	Company_TYPE	is
correct	compared	to	the	row	inserted	or	updated	to	a	child	table.	So,	if	a	row	is	inserted	or

updated	in	the	Company	table,	the	trigger	checks	that	the	value	in	Company_TYPE	is	C.
If	it	is	not,	it	raises	an	error.

FIGURE	5-19.	Engineering	of	table-for-each-entity	solution

Chapter	4	also	discussed	a	case	of	a	one-to-many	relationship	with	its	own	attributes.	In
Figure	5-20	you	can	see	how	that	is	transformed.	The	relationship	attribute	(OrderDate)
has	been	created	as	a	column	for	the	child	table,	and	since	it	was	not	originally	mandatory,
it	is	not	mandatory	as	a	column	either.	A	dependent	column	constraint	is	created,	a	foreign
key	and	its	column	(OrderNo)	have	been	created	for	the	child	table,	and	since	the	child
entity	did	not	have	a	primary	key,	a	surrogate	primary	key	has	been	created	for	the	child
table.

FIGURE	5-20.	Example	of	an	engineering	of	a	one-to-many	relationship	with	an	attribute

In	Figure	5-21	you	will	find	an	example	of	a	many-to-many	relationship	with	its	own
attribute.	On	the	right	you	can	see	that	a	new	table	was	created	(Relation_1)	with	a
mandatory	column	(OrderDate)	like	the	attribute	was.	The	Product	entity	did	not	have	a
primary	key,	so	that	has	been	created	as	a	surrogate	primary	key,	and	the	foreign	key	and
its	columns	have	been	added	to	the	child	table	(Relation_1).	The	primary	key	for	the	child
table	is	created	based	on	the	primary	keys	in	the	parent	tables.

FIGURE	5-21.	Example	of	an	engineering	of	a	many-to-many	relationship	with	an
attribute

TIP
When	engineering	to	a	relational	model,	if	the	keys	or	constraints	are	not	named	as	you
want,	go	to	the	Browser	pane,	right-click	the	name	of	the	relational	model,	and	select
Apply	Naming	Standards	To	Keys	And	Constraints.

Introducing	the	Relational	Model
The	first	relational	model	(Relational_1)	is	created	automatically	when	the	design	is	saved
the	first	time.	You	can	add	relational	models	by	right-clicking	the	relational	model	in	the
Browser	pane	and	selecting	New	Relational	Model.	A	relational	model	(including
Relational_1)	can	be	renamed	in	the	Properties	dialog.	A	relational	model	diagram	can	be
closed	by	right-clicking	in	the	Browser	pane	and	selecting	Hide	or	opened	again	by
selecting	Show.	A	relational	model	can	be	opened	or	closed,	which	means	that	the	objects
of	a	model	either	will	be	shown	in	the	Browser	pane	or	not.	In	a	relational	model,	you	can
create	subviews	and	displays	the	same	way	as	described	in	Chapter	4.

In	Figure	5-22	you	can	see	an	example	of	a	relational	model	diagram.	In	a	relational
model,	the	primary	key	column	is	marked	with	P,	a	unique	key	column	with	U,	a	foreign
key	column	with	F,	and	a	primary	key	column	that	has	been	created	based	on	an
identifying	relationship	with	PF.	A	mandatory	column	is	marked	with	an	asterisk	(*).	A
deprecated	element	is	shown	with	strikethrough.	If	the	table	name	has	“:1”	in	the	end	of
the	name,	it	means	you	have	created	graphical	synonyms	for	that	table.	If	you	right-click	a
relational	model	or	a	subview	canvas,	you	can	decide	what	details	will	be	shown	on	the
diagram	by	selecting	View	Details,	as	shown	in	Figure	5-23.

FIGURE	5-22.	Example	of	a	relational	model	diagram

FIGURE	5-23.	Right-click	menu	for	relational	model	canvas,	with	details	options

The	main	concepts	in	the	relational	model	are	tables,	columns,	and	foreign	keys.	In	a
relational	model	you	can	share	tables	officially	with	other	relational	models	in	a	same
design	but	in	practice	also	with	other	designs.	If	you	drag	a	table	to	another	design,	the
tool	shows	it	is	not	possible,	but	it	still	creates	a	shared	table	between	the	two	designs.
Sharing	between	designs	has	some	limitations:	You	cannot	have	design-level	domains	and
definitions	from	the	data	types	model	because	they	cannot	be	used	in	table	definitions.
Sharing	a	table	means	that	you	will	have	a	pointer	to	a	table	in	another	diagram,	not	a
copy	of	it.	If	you	want	to	create	a	shared	table	with	another	design/relational	model,	you
must	first	open	both	the	designs/relational	models.	Then	you	go	to	the	Browser	pane	and
simply	drag	the	shareable	table	to	the	relational	model	canvas	of	the	other	design	or	the
other	relational	model.	In	the	upper-left	corner	of	the	table,	you	can	see	a	symbol	that
shows	the	table	has	been	shared	(Figure	5-24).

FIGURE	5-24.	Table	(Person)	shared	from	another	design

All	the	properties	of	this	table	will	be	grayed	out	on	the	shared	end,	and	the	table	can
be	edited	only	at	the	original	location.	If	the	table	has	been	changed	in	the	original
location,	it	is	useful	to	transfer	the	updates	to	the	shared	to	design.	There	are	two	ways	of
doing	this:	automatic	or	manual.	For	the	automatic	synchronization,	set	the	property

Synchronize	Remote	Objects	When	Model	Is	Loaded	as	explained	earlier	in	this	chapter,
and	in	that	case	the	table	will	be	updated	(when	changed)	whenever	the	relational	model
of	the	design	where	the	table	has	been	shared	to	is	opened	or	activated.	In	practice,	this
means	the	table	will	always	be	up	to	date.	If	you	have	not	set	the	property,	you	can
synchronize	manually	by	right-clicking	the	relational	model	in	the	Browser	pane	and
selecting	Synchronize	Remote	Objects	or	by	right-clicking	the	relational	diagram	and
selecting	Synchronization	and	then	Synchronize	Remote	Objects.

From	the	table’s	Properties	Summary	tab,	you	can	see	where	the	table	has	been	shared
from	in	the	properties	Remote	Design	and	Remote	Model.	If	you	decide	to	share	a	table
with	another	design,	bear	in	mind	that	there	are	some	limitations,	as	mentioned	earlier:	no
design-level	domains	and	no	definitions	from	the	data	types	model.	I	also	suggest
selecting	the	automatic	synchronization	in	this	case.

NOTE
Remember	to	save	the	original	design	before	sharing	tables	to	any	other	design.

Tables
Tables	have	many	properties.	The	ones	that	also	exist	for	an	entity	will	be	transformed
from	the	entity	during	the	engineering	process,	and	those	that	are	table	specific	can	be
edited	in	the	Table	Properties	dialog,	as	shown	in	Figure	5-25.	The	first	thing	to	do	after
the	engineering	would	probably	be	to	run	the	naming	rules	for	a	relational	model.	This	can
be	easily	done	by	clicking	the	Naming	Rules	button	on	the	General	pane	of	the	Table
Properties	dialog.

FIGURE	5-25.	Table	Properties,	General	tab

The	General	tab	has	properties	for	controlling	engineering,	reverse	engineering,	and
DDL	generation.	Engineer	defines	whether	the	table	and	its	properties	will	be	included
when	engineering	to	the	logical	model	(reverse	engineering),	and	Allow	Columns	Reorder
During	Engineering	lets	Data	Modeler	reorder	the	attributes	of	the	associated	entity	in	the
same	order	as	their	associated	columns	in	the	table	definition.	This	property	is	copied	from
the	preferences	(Allow	Columns	Reorder	During	Engineering)	introduced	earlier	in	this
chapter	but	can	be	changed	if	needed	for	an	individual	table.	Generate	In	DDL	defines
whether	the	table	is	included	when	the	DDLs	are	generated.

Engineer	As	Relationship	defines	whether	relationship	attributes	are	created	during
backward	engineering.	In	other	words,	if	the	table	is	an	intersection	table,	selecting	this
option	will	let	the	table	be	backward	engineered	as	a	many-to-many	(m:n)	relationship	in
which	columns	that	are	not	in	the	foreign	key	become	attributes	of	the	relationship.	This	is
the	opposite	behavior	for	the	transformation	as	when	the	logical	model	has	a	many-to-
many	relationship	with	possible	attributes.	If	you	want	to	associate	a	schema	name	with	a
table,	you	can	do	that	in	the	table	properties	by	selecting	the	schema	from	the	drop-down
list.	If	you	have	not	added	the	schema	yet,	you	can	do	it	in	the	Browser	pane	under
Relational	Model	by	right-clicking	the	schema,	selecting	New	Schema,	and	giving	a	name
to	the	schema.	You	can	add	tables,	views,	and	indexes	to	a	schema	either	on
table/view/index	properties	or	by	selecting	them	in	the	schema	properties.	If	you	associate
a	schema	to	your	relational	model	object,	the	schema	name	will	appear	in	diagrams,	and
the	schema	name	is	also	used	during	DDL	generation.	You	can	read	more	about	DDL
generation	in	Chapter	7.	Usually	schemas	are	added	in	the	physical	design,	as	shown	in
Chapter	6.

TIP
If	you	have	created	schemas	and	associated	them	with	objects,	you	can	create	relational
models	based	on	that.	In	the	Browser	pane,	go	to	the	relational	model,	right-click,	and
select	Create	New	Models	Based	On	Schema	Names.	Data	Modeler	will	create	a	new
relational	model	for	each	schema	you	have	specified	and	name	it	with	the	same	name	as
the	schema.

There	are	also	other	properties	for	a	table.	You	can	tell	the	tool	that	a	table	is	a	spatial
table	by	selecting	Register	As	Spatial	Table.	For	a	structured	type,	you	can	allow	type
substitution	for	DDL	generation	by	selecting	Allow	Type	Substitution.	You	can	define	that
the	table	will	have	an	object	identifier	primary	key	(OID)	by	selecting	Object	Identifier	Is
PK,	and	in	DDL	generation	for	Oracle	the	OBJECT	IDENTIFIER	IS	PRIMARY	KEY
clause	is	generated.

TIP
To	see	the	DDL	for	a	table	or	a	view,	right-click	the	object	on	the	canvas	and	select	DDL

Preview.	When	the	previewer	is	open,	you	can	select	another	object	in	the	relational
model,	and	the	previewer	is	updated	accordingly.

In	the	table	properties	there	are	also	a	list	of	columns	and	their	properties.	There	are
three	tabs:	Details,	Overview,	and	Security.	By	double-clicking	(or	clicking	the	Property
icon),	you	can	see	more	column	properties.	On	the	Security	tab,	you	can	find	a	list	of
columns	and	their	security	properties	(you	can	find	the	same	properties	also	from	the
attribute	Properties	under	Security).	It	is	possible	to	define	a	sensitive	type	for	an	attribute,
as	explained	in	Chapter	4,	but	there	are	many	other	options	for	a	column	to	be	defined.	For
a	column,	you	can	define	whether	it	contains	personally	identifiable	information	(PII)	or
sensitive	information,	and	you	can	define	the	masking	type	(FULL,	NO,	PARTIAL,
RANDOM,	REGEXP).	If	you	select	either	PARTIAL	or	REGEXP,	you	can	also	select
Mask	Template	(see	Chapter	4	for	creating	a	mask	template).	A	mask	template	must	be	of
same	data	type	as	the	column	it	will	be	attached	to.	If	you	mark	a	column	as	Sensitive
Info,	the	name	of	the	column	will	be	shown	in	red	on	any	diagram.	If	you	know	you	will
create	an	Oracle	database	(Oracle	Enterprise	Edition	11.2.0.4	or	newer	version,	licensed
with	the	Advanced	Security	option),	you	might	also	want	to	define	a	redaction	policy	for
your	table.	The	redaction	policy	can	be	defined	in	the	table	properties	under	Redaction
Policy.	You	can	define	the	name	for	the	policy,	define	that	the	policy	is	Enabled	and	taken
into	account	when	generating	DDLs	(Generate	In	DDL),	and	define	whether	the	real	data
will	be	presented	to	end	users	or	not	by	setting	the	expression.	If	you	leave	Expression
empty,	it	defaults	to	true	and	shows	all	data	not	defined	to	be	masked	to	the	users.	Each
redaction	policy	is	for	only	one	table	providing	a	masking	definition	and	condition	when
it’s	applied	for	one	or	more	columns	belonging	to	that	table.	So,	after	defining	the
redaction	policy,	you	go	to	the	column	properties	and	define	the	Contains	PII,	Sensitive
Info,	Masking	Type,	and	Mask	Template	properties	for	the	columns	you	want	to	be
marked	sensitive	and	maybe	even	masked.	These	security	features	were	introduced	in
Data	Modeler	version	4.0.

If	a	column	is	based	on	a	structured	type,	for	instance	PersonName	(FirstName,
LastName),	you	can	see	that	on	the	Nested	Columns	tab.	Each	name	(Name	.FirstName,
Name.LastName),	data	type,	and	information	about	whether	that	column	is	a	primary	key
(PK),	foreign	key	(FK),	or	mandatory	field	(M)	is	shown,	and	you	can	go	and	see	other
properties	either	by	clicking	the	Properties	button	(pencil	icon)	or	by	double-clicking	the
column	name.

If	you	decided	to	split	your	structured	type	into	regular	attributes	and	columns,	you
might	want	to	use	the	Column	Groups	properties	to	keep	those	columns	together	when
generating	a	user	interface	or	showing	those	columns	on	a	screen	(probably	this	will	not
be	automatic	but	just	documentation	for	the	programmers).	For	example,	a	column	group
named	PersonName	might	include	columns	FirstName	and	LastName.	On	the	Column
Groups	tab,	you	can	create,	edit,	and	remove	column	groups	and	document	them	with	the
Note	property.

On	the	Primary	Key	or	Unique	Constraints	tab,	you	can	see,	add,	modify,	and	delete
primary	key/unique	constraints.	You	can	also	define	them	as	Generate	to	get	the	element
for	the	DDL	generation,	Engineer	to	let	Data	Modeler	take	the	element	in	the	reverse
engineering	process,	and	Deprecated	to	let	people	know	this	is	an	unsupported	object.	And

you	can	see	and	modify	the	fields	Notes,	Comments,	and	Comments	In	RDBMS.	By
clicking	the	Properties	icon	(pencil	icon)	or	double-clicking	the	constraint	name,	you	can
also	edit	other	properties	for	that	constraint.	On	the	Foreign	Keys	tab,	you	can	see	a	list	of
foreign	keys	defined	for	the	table	and	all	the	details	of	each	foreign	key.	You	can	add	and
remove	foreign	keys	and	edit	their	properties.	For	instance,	if	you	did	not	decide	the	delete
rules	for	your	relationships	in	the	conceptual	design,	you	can	now	set	them	for	foreign
keys	or	go	to	the	relationship	and	change	it	there	and	engineer	to	the	relational	model
again.	You	might	also	want	to	check	that	the	Transferable	property	is	set	correctly.	It
controls	whether	the	foreign	key	relationship	is	updatable.	For	example,	if	a	Student	is	a
member	of	a	Faculty	and	later	wants	to	change	to	another	Faculty,	the	foreign	key	value
for	FacultyID	in	the	Student	table	should	be	able	to	be	changed,	and	it	can	be	changed	if
the	relationship	is	transferable.	In	a	nontransferable	relationship,	a	foreign	key	value
cannot	be	changed.	For	example,	if	an	OrderLine	has	a	nontransferable	relationship	to	an
Order,	an	OrderLine	cannot	be	reassigned	later	to	another	Order.	If	the	foreign	key
relationship	is	nontransferable,	a	white	diamond	appears	on	the	line	in	the	diagram.	You
might	also	want	to	check	that	the	Generate	In	DDL	property	is	the	way	you	want	it	to	be.

TIP
If	you	want	to	see	the	foreign	key	names	in	a	diagram,	right-click	the	diagram	and	choose
Show	|	Labels.

TIP
If	you	want	to	be	sure	you	have	specified	all	the	foreign	keys	(or	did	not	accidentally
define	foreign	key	attributes	for	the	child	entity),	you	might	want	to	run	Discovered
Foreign	Keys,	which	can	be	found	in	the	Browser	pane	by	right-clicking	the	relational
model	name.	You	can	use	a	template	for	foreign	key	columns	defined	on	the	Naming
Standards	tab	(design-level	properties)	to	verify.	You	can	read	more	about	this	utility	in
Chapter	10.

In	the	logical	database	design,	you	can	start	thinking	about	indexes,	but	you	may
continue	that	part	in	the	physical	design	when	you	know	what	relational	database
management	system	(RDBMS)	you’re	using	and	what	index	types	it	supports.	You	can
create	a	new	index	or	edit	an	existing	one	in	the	Table	Properties	dialog	on	the	Indexes
tab.	Just	click	the	green	plus	sign	and	insert	the	index	data.	For	an	index	you	define	the
name,	whether	it	is	unique,	whether	it	will	be	generated	on	DDL,	and	whether	it	will	be
engineered	when	reverse	engineering.	You	can	also	specify	an	index	to	be	a	spatial	index.
You	can	either	select	the	columns	for	the	index	or	mark	it	as	an	expression	(Index
Expression)	and	write	the	expression	clause	for	the	index	to	get	a	function-based	index.	In
Index	Properties	(either	double-click	the	index	name	or	click	the	Properties	icon),	you	can
define	many	other	properties	for	the	index.	You	can	define	whether	it	is	a	plain	index,	a
unique	plain	index,	a	primary	constraint,	or	a	unique	constraint.	Or	you	can	attach	an
index	to	a	schema	or	define	spatial	properties	for	a	spatial	index.	You	can	also	see	and
modify	the	Notes,	Comments,	and	Comments	In	RDBMS	fields.

On	the	Table	Level	Constraints	tab,	you	can	specify	table-level	constraints	and	define
them	with	a	validation	rule	and	whether	they	will	be	set	with	Generated	In	DDL.	On	the
Existence	Dependencies	tab,	you	can	create	existence	dependency	constraints.	You	will
find	more	information	about	the	option	Existence	Dependency	Constraints	later	in	this
chapter.

You	can	also	define	Valid	Time	Dimensions	with	a	name	and	Start	Time	Column	and
End	Time	Column,	and	you	can	define	Spatial	Properties	with	a	name	and	Spatial
Column/Function	Expression.	You	can	double-click	Spatial	Property	Name	or	click	the
Properties	button	(pencil	icon)	to	display	and	edit	the	Spatial	Definition	properties.

If	you	defined	the	volume	properties	for	an	entity,	you	will	see	them	in	the	table
properties	under	Volume	Properties.	You	can	see,	for	instance,	whether	the	model	is	(in
your	opinion)	adequately	normalized	and	which	normal	form	it	is	in.	Unfortunately,	these
properties	are	not	used	in	estimating	the	space	needed	for	your	objects	in	an	Oracle
database.	This	information	is	used	only	for	DB2	databases.

Classification	types	are	useful	for	multidimensional	models,	but	they	can	be	used	for
operational	databases	as	well,	such	as	if	you	want	to	highlight	all	lookup	tables	(code
tables)	with	a	certain	color	to	see	them	easily	in	a	big	diagram.	You	can	set	classification
types	for	an	individual	entity	or	table	in	their	properties,	or	you	can	use	a	Set
Classification	Type	operation	on	the	logical	or	relational	model	in	the	Browser	pane.	Or
you	can	set	it	to	a	set	of	entities/tables	by	selecting	Set	Classification	Type	in	the	Browser
pane	by	right-clicking	the	logical/relational	model.	You	can	find	more	information	about
this	in	Chapter	8.

TIP
You	might	want	to	create	a	new	classification	type	of	Lookup	for	your	lookup	tables	(code
tables)	and	assign	that	to	all	entities	that	are	of	that	type.	Reading	the	diagram	is	easier
when	the	colors	tell	important	things.

On	the	Scripts	tab,	you	can	define	SQL	statements	to	be	run	automatically	at	specified
times:	before	a	drop/rename	of	this	table,	before	a	create	operation	on	this	table,	after	a
create	operation	on	this	table,	or	at	the	end	of	the	script	specified	for	this	table.	You	can
include	these	scripts	in	the	DDLs	by	selecting	Include	Into	DDL	Script.	You	can	also
create	your	own	dynamic	properties	for	a	table	(and	many	other	objects).	Chapter	8	talks
about	dynamic	properties.

NOTE
Scripts	associated	with	a	table	or	a	view	will	not	be	shown	in	the	DDL	preview.

Views
On	the	logical	model	(see	Chapter	4),	you	might	have	created	some	entity	views.	If	you

did,	those	entity	views	will	be	transformed	to	views	on	the	relational	model	during	the
engineering	process.	On	the	logical	model	the	entity	views	were	shown	in	orange,	but	the
views	on	the	relational	model	are	shown	in	green.	In	a	relational	model	diagram,	a	view
might	have	an	icon	next	to	its	name	indicating	its	status.	A	yellow	triangle	with	an
exclamation	mark	means	it	is	an	older-style	view	created	with	an	earlier	Data	Modeler
version	or	imported	but	not	yet	parsed.	To	parse	a	view,	right-click	the	view	in	the	diagram
and	select	Parse	Older	Style	Views.	A	red	triangle	with	an	exclamation	mark	means	that
this	view	is	an	invalid	view.	This	might	mean	that	something	has	changed	after	parsing	or
the	view	contains	incorrect	syntax.	To	validate	the	view,	right-click	the	view	in	the
diagram	and	select	Validate	Selected	Views.	You	can	validate	or	parse	all	views	at	the
same	time	by	right-clicking	the	relational	model	canvas,	choosing	Views,	and	choosing
either	Validate	All	Views	or	Parse	Older	Style	Views.

You	can	also	create	views	on	the	relational	model.	In	the	relational	diagram,	click	the
New	View	icon	and	click	the	canvas.	A	view	has	properties,	as	shown	in	Figure	5-26.	First
you	should	give	the	view	a	name,	and	second	you	should	build	the	view.	A	view	is
basically	a	saved	query	that	can	have	information	from	several	tables.	A	query	is	built	in
Query	Builder,	which	can	be	found	by	clicking	the	Query	Builder	field	named	Query
(Figure	5-26).	If	you	select	the	Auto	Join	On	FKs	property,	the	joins	for	tables	in	Query
Builder	will	be	created	automatically	based	on	foreign	keys.	And	if	you	select	a	certain
relational	model	or	subview	for	the	Use	Object	Only	From	property,	only	objects	in	that
diagram	will	be	shown	in	Query	Builder.	You	can	also	define	whether	the	DDL	for	the
view	will	be	generated	by	selecting	Generate	In	DDL,	and	you	can	mark	the	view
deprecated	by	selecting	Deprecated.	You	can	base	the	query	on	a	structured	type,	define
OID	columns	for	it,	and	allow	type	substitution.	You	can	also	specify	a	schema	for	the
query	(the	schema	name	will	be	shown	on	relational	model	diagrams)	or	select	Include
Schema	Name	In	Query	to	let	Query	Builder	show	the	possible	schema	names	of	the
elements	in	the	query.

FIGURE	5-26.	General	properties	for	a	view

Query	Builder,	shown	in	Figure	5-27,	helps	you	create	a	query	for	a	view	easily.	The
Query	Builder	consists	of	an	element	filter	on	the	right	and	three	screens	for	fine-tuning
the	query	on	the	left:	the	main	canvas,	output	criteria,	and	SQL	preview.	If	you	do	not
select	Show	Criteria	List	on	the	top	of	the	screen,	you	will	not	see	this	output	criteria
screen	in	the	middle.	From	the	filter	on	the	right,	you	can	drag	tables	to	the	query	canvas
(Main)	to	be	included	in	the	query.	You	can	limit	the	table	list	to	tables	in	a	certain
relational	model	or	a	subview	(Filter	Metadata	Objects	By	Diagram).	On	the	canvas	you
can	select	the	columns	you	want	to	be	included	and	deselect	the	ones	you	do	not	want.	In
the	window	below	Main,	the	output	criteria	screen,	you	can	select	which	columns	will	be
shown	in	the	result	of	the	query	and	also	specify	aggregates,	aliases,	sort	types,	sort	order,
grouping,	and	criteria	for	columns	to	be	evaluated	on.	You	can	also	specify	the	column
order	in	the	query.	All	these	settings	will	affect	the	SQL	query.	On	the	bottom	of	the
screen	you	can	see	the	actual	query	in	SQL.	You	can	also	edit	the	SQL	clause	if	needed,
run	a	test	query	(the	Test	Query	icon),	and	change	the	join	syntax	either	to	ANSI	joins	or
to	Oracle	joins.	If	you	edit	the	query	manually,	remember	to	click	the	Update	Diagram
icon	to	synchronize	the	diagram	with	the	SQL	query.	You	can	also	see	the	query	in	a
structured	tree	format	by	selecting	Show	Structure	Tree	in	the	upper-left	corner.	It	is
possible	to	select	the	syntax	from	many	different	providers	(in	the	Syntax	Provider	list)
including	Oracle,	DB2,	Informix,	MSSQL,	MySQL,	PostgreSQL,	SQLite,	Sybase,	and
Firebird.	You	can	also	test	your	query	by	clicking	Test	Query	in	the	View	Properties
dialog	(shown	earlier	in	Figure	5-26).	In	the	upper-right	corner	of	the	Main	window	of
Query	Builder,	you	can	see	an	icon	with	a	capital	Q.	That	is	the	Update	Query	button,	and
if	you	click	it,	the	query	in	Main	will	be	updated.	Clicking	Apply	updates	changes	made	in
one	of	the	Query	Builder	elements	to	all	the	other	elements.	Clicking	OK	saves	the	query
and	closes	Query	Builder,	and	clicking	Cancel	cancels	the	changes	and	closes	Query
Builder.

FIGURE	5-27.	Query	Builder	for	creating	views

In	the	View	Properties	dialog	you	can	add	column	comments	to	columns	in	queries	or
in	comments,	comments	in	RDBMS,	and	notes	for	the	view.	You	can	also	specify	scripts

to	be	run	before/after	creation,	before	a	drop/rename,	or	at	the	end	of	script	just	like	you
saw	earlier	in	this	chapter	for	tables.	You	can	set	these	scripts	to	be	created	with	the	DDLs
by	selecting	Include	Into	DDL	Script.

Name	Abbreviations	and	Prefix	Management
You	can	use	both	name	abbreviations	and	prefix	management	to	quickly	change	the
naming	of	objects	to	meet	your	needs.

Name	Abbreviation
You	can	use	the	Name	Abbreviations	utility	for	bulk	changing	names	or	abbreviations.
You	can	use	it	for	changing	all	the	similar	words	to	the	same	one;	for	instance,	you	could
change	both	CUS	and	CUST	to	CUSTOMER.	Or	you	can	use	it	to	add	abbreviations	to
tables	and	columns.	The	change	is	done	based	on	a	comma-separated	value	(CSV)	file.	In
the	file	there	are	pairs	of	words,	and	those	words	are	separated	by	a	comma	or	another
separator	defined	when	performing	the	change.	The	first	word	is	the	name,	and	the	second
word	is	the	abbreviation.	Figure	5-28	shows	the	Name	Abbreviations	dialog.	If	you	select
Name	To	Abbreviation	for	Direction,	the	first	word	will	be	replaced	with	the	second	word.
But	if	you	select	Abbreviation	To	Name,	the	second	word	in	the	list	will	be	replaced	with
the	first	one.	In	other	words,	the	Direction	setting	tells	how	the	list	will	be	read.

FIGURE	5-28.	Name	Abbreviations	dialog

You	can	perform	a	name	abbreviation	either	for	names	or	for	abbreviations	by	selecting
All	Objects	or	Abbreviations	for	the	Scope	setting.	A	name	abbreviation	for	names	can	be
done	to	names	of	tables,	views,	foreign	key	constraints,	primary	and	unique	key
constraints,	columns,	and	indexes.	A	name	abbreviation	for	abbreviations	can	be	done	to
table	and	column	abbreviations.	The	comparison	is	case	sensitive,	and	only	whole	words
or	words	with	the	underscore	(_)	separator	are	replaced.	For	example,	these	rows	in	the
CSV	file	would	have	a	different	result:

Customer,	CUST

CUSTOMER,	CUST

The	first	one	would	replace,	for	instance,	Customer_ID	with	CUST_ID,	but	the	latter	one
would	not	find	the	word	Customer	at	all	because	of	the	case	sensitivity.	And	neither	of
them	would	replace	CUSTOMERID	with	CUSTID	because	CUSTOMER	in	that	word	is
not	a	single	word	or	part	of	a	word	separated	with	an	underscore.	CUSTOMER_ID	would
be	replaced	with	CUST_ID	by	the	latter	row	in	the	CSV	file.

You	start	a	name	abbreviation	by	selecting	the	CSV	file;	click	the	Browse	button	in	the
Name	Abbreviations	dialog	and	find	the	correct	file.	For	the	separator,	you	can	define	a
comma	or	almost	any	other	separator	if	wanted.	If	you	select	a	separator	that	does	not
exist	in	the	file,	you	will	get	an	error	message.	After	you	select	the	file,	you	should	select
the	scope	and	the	direction	for	the	transformation.	If	you	want	to	keep	the	original	letter
case	when	changing	part	of	the	name,	select	Keep	Letter	Case.	If	you	want	to	use	the	letter
case	defined	in	the	CSV	file,	disable	this	property.	For	instance,	say	you	have	a	file
containing	a	row:	customer,	CUST.	If	you	have	a	column	named	customer_name	and	you
disable	the	Keep	Letter	Case	property,	the	name	will	be	changed	to	CUST_name.	If	the
property	is	selected,	the	column	name	will	be	changed	to	cust_name.	When	you	have
selected	the	right	setting,	click	OK.	If	you	have	several	designs	open,	select	the	design	you
want	to	perform	the	name	abbreviations	on	from	the	list.	If	you	have	several	relational
models,	select	the	correct	one	from	the	list.	Then	click	OK.	The	changes	are	made,	and	the
log	will	show	all	the	changes,	as	shown	in	Figure	5-29.	You	can	save	the	log	if	you	want.

FIGURE	5-29.	The	log	for	the	name	abbreviations

NOTE
If	you	perform	name	abbreviations	in	both	directions	with	the	same	file	and	settings,
names	and	abbreviations	should	be	the	same	as	they	were	when	you	started.	In	this	case,
the	name/abbreviations	combinations	must	be	unique.

In	datamodeler/datamodeler/templates,	you	can	find	two	example	files	for	name
abbreviations:	ABBREVS_SAMPLE.csv	and	plurals.csv.	The	plurals.csv	file	is	an
example	of	a	use	case	of	this	utility.	If	you	decide	in	the	middle	of	the	project	that	the
table	names	should	actually	be	plurals/singulars	instead	of	singulars/plurals,	you	can	use
this	utility	to	change	the	naming	quite	easily.	But	remember	that	name	abbreviations	do
not	work	for	entities	and	attributes,	so	if	you	use	the	utility,	remember	to	click	Engineer	To
Logical	Model	to	make	the	changes	in	the	logical	model	as	well.

Prefix	Management
Prefix	management	is	also	quite	useful	when	designing	a	database.	Prefixes	can	be	used	to
separate	and	categorize	different	kinds	of	objects	for	management	purposes	when	you	do
not	want	to	use	different	schemas.	You	might	want	to	use	prefix	management	for	objects
that	have	different	life	cycles,	for	instance	history	tables	(HIST_)	or	summary	tables
(MONTH_,	WEEK_,	DAY_).	You	might	want	to	use	prefix	management	to	categorize
them	based	on	the	application	or	part	of	the	application,	for	instance	CUST_	for	all
customer	information,	tables,	packages,	and	so	on.	The	Oracle	data	dictionary	views	are
an	example	of	this:	USER_,	ALL_,	and	DBA_.	Or	you	might	want	to	use	prefixes	to
describe	the	usage	of	the	object,	such	as	using	TEMP_	for	temporary	objects	or	IDX_	for
tablespaces	that	have	only	indexes	in	them.	The	prefix	can	be	permanent	or	temporary	for
DDL	generation.

You	can	add	the	prefix	to	the	object	name	manually	when	creating	the	object	or
changing	its	properties.	For	example,	instead	of	naming	it	ADDRESS,	you	can	name	it
CUST_ADDRESS.	But	you	can	also	do	it	automatically	using	the	utility	Data	Modeler
offers.	You	can	do	it	for	tables,	views,	foreign	key	constraints,	primary	and	unique	key
constraints,	columns,	and	indexes	that	are	in	a	relational	model	or	in	a	specific	subview.	In
the	Browser	pane,	go	to	the	relational	model	wanted,	right-click,	and	choose	Change
Object	Names	Prefix.	You	might	have	your	objects	divided	into	subviews	exactly	based	on
the	criteria	you	are	using	for	the	prefix	naming.	In	that	case,	select	the	subview	from	the
Browser	pane,	right-click,	and	choose	Change	Subview	Object	Names	Prefix.	Or	you
might	have	the	classification	type	attached	to	the	object,	which	allows	you	to	change	the
prefix	for	all	the	objects	of	that	classification	type,	as	described	in	Chapter	8.	Depending
on	your	needs,	any	of	these	can	be	used,	and	they	all	lead	to	the	same	Change	Object
Names	Prefix	dialog,	as	shown	in	Figure	5-30.

FIGURE	5-30.	Change	Object	Names	Prefix	dialog

In	the	Change	Object	Names	Prefix	dialog,	you	can	select	either	Prefix	Replacement	or
Add	Classification	Prefix.	Add	Classification	Prefix	is	explained	in	Chapter	8.	Now	you
will	see	what	you	can	do	with	Prefix	Replacement.	If	you	select	Prefix	Replacement,	you
can	either	replace	an	existing	prefix	or	add	a	new	one.	If	you	want	to	replace	an	existing
prefix,	just	set	the	current	prefix	to	Current	Prefix	and	the	new	prefix	to	New	Prefix.	You
can	spell	the	prefix	either	with	the	_	sign	or	without	it;	it	makes	no	difference	if	you
already	have	a	prefix	with	an	underscore	(_).	For	example,	CUST	and	CUST_	are	the
same.	It	makes	no	difference	either	if	the	current	prefix	has	been	added	manually	or	by
using	the	Data	Modeler	Change	Object	Names	Prefix	utility.	Then	select	whether	you
want	to	have	the	search	for	current	prefixes	case	sensitive	by	selecting	Case	Sensitive.	If
this	is	selected	and	you	have	typed	CUST	for	Current	Prefix,	those	objects	with	a	prefix	of
“cust”	are	not	selected.	Select	the	object	types	you	want	to	select	for	the	search	in	the

Apply	To	section	of	the	dialog.	The	Change	Object	Names	Prefix	operation	will	affect	the
object	set	that	is	in	the	relational	model/subview	selected	and	the	object	types	specified
here.	Then	click	Apply.

If	you	want	to	add	a	new	prefix	for	the	objects,	select	Add	New	Prefix	and	type	the
prefix	wanted	in	the	New	Prefix	field;	remember	to	also	type	the	_	at	the	end	of	it.	If	you
already	had	a	prefix	in	the	object	name,	this	will	be	added	in	front	of	it,	so	make	sure	to
use	the	replace	functionality	if	you	want	to	replace	the	existing	prefix	and	use	only	the
Add	New	Prefix	functionality	if	you	want	to	add	a	new	one.

You	can	also	change	the	prefix	temporarily	when	generating	the	DDLs.	Choose	File	|
Export	|	DDL	File	as	explained	in	Chapter	7.	If	you	have	several	designs	open,	select	the
one	you	want	to	generate	the	DDLs	for	and	select	the	relational	model	you	want	to	use	for
the	DDL	generation.	Select	the	RDBMS	site	wanted,	and	if	you	want	a	subview	from	the
selected	relational	model,	select	that.	Click	Generate.	Select	the	Name	Substitution	tab	in
the	DDL	Generation	Options	dialog.	Type	the	prefix	you	want	to	replace	in	the	Old	field
and	the	prefix	you	want	to	use	in	the	New	field.	For	example,	type	CUST_	in	Old	and
TEST_	in	New.	Then	select	Selected	to	have	this	name	substitution	rule	be	included	in	the
DDL	generation	process.	Select	the	Object	Types	tab	and	enable	the	object	types	you	want
to	be	included	in	the	change.	For	example,	select	Table	to	perform	the	change	only	on
table	prefixes.	Then	select	Apply	Name	Substitution	on	the	bottom	of	the	screen.	If	you	do
not	select	this,	no	name	substitution	is	performed.	Here	is	an	example	of	a	DDL	script
generated	for	the	table	CUST_CUSTOMER	using	the	name	substitution:

NOTE
Using	name	substitution	affects	only	the	DDL	generated;	no	changes	are	performed	on	the
objects	in	Data	Modeler.

Tuning	and	Refactoring	Your	Model
Sooner	or	later	you	need	to	make	changes	to	your	model.	Especially	when	the	system
development	methodology	is	agile,	there	will	be	many	changes	in	the	logical	model	after
the	first	version;	the	design	work	is	very	iterative.	The	more	you	check	the	models	in

every	phase,	the	better	the	outcome	will	be.

Problems	with	refactoring	are	not	usually	with	the	database	and	its	objects	but
everything	on	top	of	that:	test	cases,	programs,	data	classes,	migrations,	and	so	on.	It	is
good	to	find	the	main	concepts	and	their	relationships	as	early	as	possible	and	to
understand	them	correctly.	Splitting	an	entity	or	fixing	a	problem	in	later	phases	of	the
process	usually	causes	a	lot	of	work.	In	the	sense	of	database	objects,	refactoring	is	easy,
especially	if	you	have	a	tool	like	Data	Modeler.	You	just	make	your	changes	to	the	logical
model	and	engineer	them	to	the	relational	model.	Your	changes	will	go	to	your	physical
model,	and	you	will	produce	the	new	DDL	scripts	easily.	My	opinion	is	that	you	should
always	follow	the	procedures	no	matter	how	busy	you	are:	make	a	change	in	the	logical
model	and	then	forward	engineer	to	the	relational	model.	Never	make	the	changes	first	in
the	relational	model	or	database.	With	a	tool	you	can	of	course	do	that,	but	it	is	not	wise.
Why?	First,	processes	are	made	to	get	work	done	systematically,	and	if	you	break	them,
you	take	a	risk	that	some	of	the	work	is	not	actually	done	(for	instance,	documentation	for
an	entity	or	an	attribute).	Second,	even	though	the	tool	provides	all	possible	comparisons
between	different	models	and	databases,	I	do	not	see	it	as	a	full-time	job	for	anybody
trying	to	find	differences.	And	if	there	are	differences,	how	do	you	know	how	things
actually	should	be	if	the	processes	are	not	followed?	It	is	the	same	thing	as	with	the	same
data	in	many	databases:	One	of	the	sources	must	be	the	master,	and	all	the	rest	are	copies
of	the	master.	If	they	are	not	the	same,	the	master	is	correct.	The	entity	is	the	master	in
database	design.

During	the	logical	database	design	process,	you	can	make	decisions	about
denormalization	to	get	better	performance,	but	make	sure	each	decision	is	made	wisely
and	documented.	A	typical	optimization	strategy	in	logical	database	design	is	splitting	or
merging	tables.	Splitting	a	table	means	that	a	table	is	vertically	divided	into	two	(or	more)
tables.	Merging	means	that	two	(or	more)	tables	are	merged	as	one	to	avoid	joins	and	that
way	get	better	performance.	These	operations	are	usually	done	for	the	relational	model,
and	they	have	no	effect	on	the	logical	model.	Data	Modeler	supports	both	operations.

To	split	a	table,	select	the	table	in	the	relational	model	diagram	and	click	the	Split	Table
icon	in	the	relational	model	toolbar	to	start	the	Split	Table	Wizard.	Enter	the	name	for	the
new	table	(in	Table	Name),	type	any	comments	needed	for	the	Add	Comments	For	The
New	Table	property,	and	click	Next.	Then	select	the	foreign	keys	to	be	added	to	the	new
table	from	a	list	and	click	Next.	Select	other	columns	to	be	added	to	the	new	table	from	a
list	and	click	Finish.	To	merge	tables,	click	the	Merge	Tables	icon	in	the	toolbar	and	then
select	tables	you	want	to	merge	from	the	diagram.	To	the	question	“Are	you	sure	you	want
to	merge	the	selected	tables?”	click	Yes.	Then	reply	to	the	next	questions,	and	your	tables
will	be	merged	into	one.

Summary
Logical	database	design	starts	with	the	logical	model	from	the	conceptual	design.	With
Data	Modeler,	the	logical	model	will	be	transformed	into	a	relational	model	using	the
Engineer	To	Relational	Model	functionality.	The	results	of	this	phase	of	database	design	is
the	relational	database	schema:	a	set	of	relational	objects	and	their	constraints.	The

Engineer	To	Relational	Model	functionality	is	an	easy	and	quick	process,	and	it	should	be
done	whenever	you	have	change	requests	to	the	conceptual	model.

Designing	a	database	is	an	iterative	process.	To	have	an	efficient	and	reliable	process,	it
is	valuable	to	always	follow	the	same	procedures	and	in	the	same	order:	Change	the
logical	model	and	forward	engineer	the	changes	to	relational	model	using	the	Engineer	To
Relational	Model	functionality.	It	is	also	possible	to	reverse	engineer	a	database.	You	can
read	more	about	that	in	Chapter	10.	You	can	use	both	name	abbreviations	and	prefix
management	to	quickly	change	the	naming	of	objects	to	meet	your	needs.

CHAPTER
6

Introducing	Physical	Database	Design

The	physical	database	design	continues	from	the	relational	model	created	in	the
logical	design.	One	relational	model	can	have	no	physical	models	or	as	many	as
needed,	and	the	physical	model	will	be	defined	by	its	relational	database	model

system	(RDBMS)	site.	An	RDBMS	site	is	an	alias	associated	with	an	RDBMS	type
(Oracle	12c,	Oracle	11g,	SQL	Server	2008,	and	so	on)	supported	by	Oracle	SQL
Developer	Data	Modeler.	To	be	able	to	design	the	physical	model,	you	need	a	good
understanding	of	the	RDBMS	site	selected	to	be	able	to	make	the	right	decisions.

In	physical	database	design,	you	design	the	physical	database	elements	related	to	the
selected	technology	(tablespaces,	data	files,	and	so	on)	and	add	physical	properties	to
elements	from	the	relational	model.	You	estimate	the	space	needed	for	the	database,	plan
disks	and	disk	groups,	and	figure	out	which	database	objects	to	put	in	which	disk.	You
must	plan	the	backup	and	recovery	strategies	and	decide	how	to	document	the	database
changes,	including	changes	in	objects	and	changes	in	the	RDBMS	(which	patch	was	run
when,	and	so	on).	You	also	need	to	agree	on	who	will	create	the	documentation,	what	they
will	document,	and	where	they	will	do	it.	You	also	design	the	database	schemas,	which	are
logical	subsets	of	the	database	based	on	namespaces	defined	by	schema	names.	You	define
users,	roles,	and	privileges.	You	define	indexes	needed,	other	than	just	indexes	for	primary
keys	and	foreign	keys.	You	design	the	physical	database	so	that	you	will	be	able	to	create
the	database	as	designed.	The	data	definition	language	(DDL)	script	generation	will	be
mainly	based	on	a	physical	model.	Physical	models	do	not	have	graphical	presentations	or
diagrams,	only	a	browser	to	create,	edit,	and	remove	elements.	The	outcomes	from	the
physical	database	design	process	are	the	DDLs	needed	to	create	the	database	designed.	In
Chapter	7,	you	will	learn	how	to	get	the	database	generation	files	after	all	the	objects	and
their	properties	have	been	defined	in	the	physical	model.

TIP
Agree	on	naming	standards	for	creating	physical	objects	such	as	tablespaces	and	data
files.	These	cannot	be	documented	as	part	of	the	naming	standards	in	Data	Modeler,	but
for	the	consistency	it	is	valuable	to	have	a	standard	naming	convention.

This	chapter	will	not	go	through	all	the	tasks	in	the	physical	design	process.	You	will
read	about	only	those	tasks	that	can	be	done	with	Data	Modeler	to	design	a	physical	model
for	Oracle	12c.	All	technologies	have	their	own	physical	objects	that	need	to	be	designed.
There	is	a	lot	of	designing	work	in	physical	database	design,	and	some	of	the	decisions
must	be	made	with	the	end	users	(such	as	user	and	role	definitions)	and	even	with	the
company	board	(such	as	backup	strategy	and	definitions	for	sensitive	data).

Setting	Preferences	and	Properties
Data	Modeler	has	some	preferences	that	will	affect	the	physical	model.	In	the	Preferences
dialog,	on	the	Model	tab,	you	can	define	the	default	RDBMS	type	and	site.	You	can	also
define	some	default	values	for	physical	models	in	DB2,	Oracle,	SQL	Server,	and	universal

database	(UDB).	The	predefined	default	values	depend	on	the	RDBMS	you	are	using.	For
Oracle	and	DB2,	the	list	is	bigger,	but	for	SQL	Server	you	can	define	the	Default	Database
setting	and	for	UDB	the	Default	Owner	setting.

In	Figure	6-1,	you	can	see	the	defaults	that	can	be	defined	for	an	Oracle	physical
model.	You	can	define	the	default	user	and	default	tablespace.	The	default	user	and
tablespace	take	effect	only	after	you	have	created	this	user	and	tablespace	in	your	physical
model	and	closed	and	reopened	the	design.	If	you	have	changed	a	user	or	a	tablespace
property	for	any	element	before	that,	it	is	not	overwritten.	You	can	predefine	a	template
for	the	physical	properties	of	a	table	(see	Figure	6-2)	and	of	an	index	(see	Figure	6-3).	To
be	able	to	define	a	template,	you	must	first	select	Use	Table	Template	or	Use	Index
Template.	These	templates	will	be	used	when	a	physical	model	is	created	and	when	a	new
table	or	index	is	created	on	the	relational	model.	When	you	create	a	physical	model	using
templates,	save	and	close	the	design	before	doing	anything	so	Data	Modeler	can	save	all
the	modified	data.	If	you	view	the	physical	model	right	after	creation,	you	will	not	be	able
to	see	what	the	templates	actually	have	done.

FIGURE	6-1.	Defaults	for	an	Oracle	physical	model

FIGURE	6-2.	Table	template	specification	for	Oracle

FIGURE	6-3.	Index	template	specification	for	Oracle

You	can	also	define	Auto	Increment	Column	Templates	settings.	For	a	trigger	or
sequence,	you	can	use	the	variables	(as	you	did	in	Chapter	2	for	many	elements)	to	define
a	template	for	naming	new,	automatically	created	objects.	This	means	that	if	Auto
Increment	in	the	Properties	column	for	a	column	has	been	selected,	a	sequence	and	a
trigger	for	that	will	be	created	automatically	following	the	rules	defined	in	Auto	Increment
Column	Templates,	unless	you	have	defined	them	explicitly	in	the	column	properties	on
the	Auto	Increment	tab.	You	can	define	a	name	for	a	sequence	and	a	trigger	in	the	column
properties.	The	sequence	and	the	related	trigger	are	not	created	as	objects	in	the	physical
model,	but	if	these	objects	have	been	defined	to	be	generated,	they	will	be	included	in	the
DDL	script	when	generating.

You	can	define	a	default	value	for	an	auto-increment	DDL	(Default	Auto	Increment
DDL):	None,	Trigger,	or	DEFAULT	Clause.	You	can	also	define	a	default	for	an	identity
DDL	(Default	Identity	DDL):	None,	Trigger,	DEFAULT	Clause,	or	IDENTITY	Clause.

There	are	also	preferences	for	synchronizing	the	physical	model.	You	can	find	these
settings	under	Data	Modeler	|	Model	|	Synchronization	Physical,	and	they	are	related	to
the	RDBMS	type.	For	each	listed	type	of	object,	you	can	specify	whether	to	synchronize	it
with	changes	in	the	relational	model	or	not.	Synchronization	means	that	if	an	object	type
is	changed	in	the	relational	model,	the	change	on	the	object	will	automatically	be	applied
to	the	objects	in	the	associated	physical	models.	For	Oracle,	those	object	types	are,	for
example,	a	user,	cluster,	tablespace,	or	synonym.	For	example,	if	you	change	the	schema
owner	of	the	table	in	the	relational	model	and	a	user	has	been	selected	to	be	synchronized,
the	owner	of	that	table	will	be	automatically	updated	in	the	physical	model.	If	there	is	no
such	user	defined	in	the	physical	model,	the	user	will	be	emptied	for	the	table.

There	are	no	design-level	properties	for	a	physical	model,	and	a	physical	model	does
not	have	any	properties	of	its	own.

Creating	a	Physical	Model
When	you	create	a	new	physical	model,	you	must	know	what	the	RDBMS	technology
used	will	be	because	the	only	decision	for	creating	a	physical	model	is	the	RDBMS	site.
To	be	able	to	design	an	optimal	physical	model,	you	must	know	the	selected	technology
quite	well.

Administering	RDBMS	Sites
An	RDBMS	site	is	a	name	associated	to	an	RDBMS	type	supported	by	Data	Modeler,
such	as	Oracle	12c,	Oracle	11g,	SQL	Server	2008,	or	DB2/390	8.	Several	RDBMS	sites
are	already	predefined	in	Data	Modeler,	but	you	can	also	create	new	sites	(aliases)	for
supported	types.	A	physical	model	is	always	based	on	one	RDBMS	site.	You	can	use	an
RDBMS	site	only	once	in	one	relational	model,	so	if	your	relational	model	has	several
physical	models,	you	cannot	have	two	with	the	same	RDBMS	site.	If	you	want	to	have,
let’s	say,	three	different	Oracle	12c	physical	models	for	a	relational	model	(for	test,

education,	and	production	environments),	you	must	define	your	own	RDBMS	sites.	Your
test	environment	might	be	very	simple,	your	education	environment	might	be	different
from	the	other	environments,	and	production	might	be	using	features	such	as
encryption/compression/redaction.	Or	maybe	you	are	selling	your	own	software	and	want
to	have	support	for	both	SQL	Server	and	Oracle	and	therefore	need	a	physical	model	for
both	SQL	Server	and	Oracle	along	with	different	versions	of	those	products	and	different
setups	(small	environment	versus	large	environment).	All	this	can	be	done	by	defining
your	own	RDBMS	sites.

The	RDBMS	sites	are	administered	with	the	RDBMS	Site	Editor	(see	Figure	6-4),
which	you	open	by	choosing	Tools	|	RDBMS	Site	Administration.	You	can	add	RDBMS
sites	to	the	current	design	or	to	an	external	file.	If	you	add	them	to	an	external	file,	you	can
share	the	sites	with	other	users	and	other	designs.	A	file	called	defaultRDBMSSites.xml	is
the	default	file	for	RDBMS	sites,	and	it	is	kept	in	the	directory	defined	as	the	default
system	types	directory.	Each	design	has	its	own	file	for	RDBMS	sites	in	its	own	directory,
but	when	you	open	the	design,	the	new	sites	are	copied	from	the	default	file	to	the	file	of
this	design.	So,	when	opening	a	design,	you	will	have	available	all	the	sites	defined	for
that	design	and	those	defined	in	the	default	file.

FIGURE	6-4.	RDBMS	Site	Editor

TIP
If	you	want	to	have	the	same	RDBMS	sites	for	all	users,	it	would	be	wise	to	save	the	file
defaultRDBMSSites.xml	in	version	control.	Always	copy	it	to	your	default	system	types
directory	when	you	have	added	a	new	site.

You	can	add	a	new	RDBMS	site	to	a	current	design	by	clicking	the	Add	Site	button,
entering	the	name	for	the	site,	and	selecting	the	RDBMS	type	from	the	supported	RDBMS
types	list.	Then	just	click	Apply.

NOTE
Changes	to	the	default	file	are	not	applied	to	open	designs.	You	need	to	close	the	designs
or	restart	Data	Modeler	to	copy	the	new	sites	to	the	site	file	of	the	design.

A	new	RDBMS	site	can	be	added	to	a	file	on	the	Edit	External	File	With	Sites	tab.
Click	Select,	navigate	to	your	default	system	types	directory,	and	select
defaultRDBMSSites.xml.	Click	Add	Site.	Enter	the	name	for	the	site	and	select	the
RDBMS	type	from	the	supported	RDBMS	types	list.	Then	just	click	Apply.	Now	you	will
have	all	these	sites	(plus	other	sites	that	might	have	been	defined	for	a	design)	available
the	next	time	you	open	a	design.

A	New	Physical	Model
Creating	a	physical	model	is	easy.	You	just	go	to	the	physical	model	in	the	Browser	pane,
right-click,	and	select	New.	Then	you	will	see	a	list	of	available	RDBMS	sites.	If	you
forgot	to	create	the	site	you	would	like	to	use,	just	click	Cancel	and	follow	the	instructions
in	the	previous	section	for	creating	an	RDBMS	site.	If	you	see	the	one	you	want	on	the
list,	just	click	it	and	then	click	OK.	A	physical	model	with	the	same	name	of	the	RDBMS
site	just	selected	will	be	created.	When	you	add	new	elements	to	your	relational	model,
they	will	be	stored	in	the	physical	model	automatically.	If	you	wanted	to	have	some
properties	for	the	elements	set	by	default,	you	can	do	that	by	setting	a	preference	for	a
physical	model.	If	you	have	not	set	templates	in	the	preferences,	you	must	complete	some
properties	manually,	as	described	in	the	next	section.	Some	of	the	properties	cannot	be
filled	in	automatically	and	need	to	be	completed	manually.

In	the	Browser	pane,	select	the	physical	model	name	and	right-click.	You	can	save	a
physical	model	if	you	select	Save,	and	you	can	delete	it	by	selecting	Delete.

You	can	open	or	close	a	physical	model	by	selecting	Open	or	Close.

When	you	open	a	design,	the	physical	models	are	not	opened	automatically.	The	reason
for	this	is	performance	because	you	might	have	several	physical	models	in	your	design
with	plenty	of	objects.	So,	when	you	want	to	see	or	edit	the	physical	model,	go	to	the

name	of	the	model	in	the	Browser	pane,	right-click,	and	select	Open.

TIP
When	you	start	Data	Modeler,	in	the	Select	Relational	Models	pane	you	can	tell	Data
Modeler	to	open	selected	relational	models	when	opening	Data	Modeler.	You	can	also
select	the	first	physical	model	for	a	relational	model	to	be	opened	automatically	when
starting	Data	Modeler.	So,	not	all	physical	models	are	opened	(and	suggested	to	be
opened)	except	the	first	one	in	the	Browser	pane.

In	Data	Modeler	it	is	possible	to	clone	physical	models.	This	means	all	the	elements
that	are	not	in	the	physical	model	where	you	are	cloning	to	will	be	added.	And	all	the
properties	for	objects	that	already	were	in	that	physical	model	but	have	been	changed	in
the	model	you	are	cloning	from	will	be	updated.	All	objects	that	exist	only	in	the	model
you	are	cloning	to	remained	as	they	are.	You	start	cloning	by	selecting	the	physical	model
name	where	you	want	to	clone	to	and	right-click.	Choose	Clone	From,	and	from	the
Database	Sites	list	select	the	physical	model	you	want	to	clone	from;	then	click	OK.

You	can	clone	a	physical	model	only	on	the	database	site	of	the	same	release	or	earlier.
For	Oracle	12c,	you	can	clone	from	Oracle	12c	or	earlier,	and	for	Oracle	11g,	you	can
clone	from	Oracle	11g	or	earlier,	not	from	Oracle	12c.

TIP
When	cloning	the	physical	details	from	one	physical	model	to	another,	make	sure	you	have
saved	the	physical	model	you	want	to	clone	from.

Defining	Physical	Model	Properties
In	the	physical	model,	there	are	elements	linked	to	the	relational	model,	but	these	elements
do	not	have	all	the	properties	set	yet	for	the	DDL	creation	because	these	properties	depend
on	the	selected	RDBMS	type.	One	step	in	the	physical	database	design	is	to	set	those
properties.	There	are	also	new	elements	that	did	not	exist	in	the	relational	model	at	all,	and
those	elements	are	totally	dependent	on	the	selected	RDBMS	type.	Another	step	in	the
physical	database	design	is	to	define	those	elements	and	while	doing	that	design	the
physical	database.	The	elements	and	properties	in	the	physical	model	depend	on	the
RDBMS	type	selected;	these	are	the	elements	and	properties	for	getting	a	database	created
on	the	selected	RDBMS.	In	this	chapter,	you	will	see	the	elements	and	properties	for
Oracle	12c	since	you	probably	have	at	least	one	Oracle	database	and	the	number	of
elements	and	properties	is	the	largest	for	Oracle.	I	will	not	go	deep	into	the	details	of	these
properties	but	discuss	them	at	a	general	level.

Some	of	the	objects	were	already	created	in	previous	phases	of	the	design,	and	in	the
physical	database	design	phase,	you	cannot	create	new	ones;	you	only	need	to	add	some
physical	properties	for	the	existing	ones.	If	you	need	to	create	new	ones,	you	do	it	in	either

the	logical	or	relational	model.

Some	properties	you	cannot	complete	without	creating	a	new	physical	model	object.
For	instance,	to	be	able	to	complete	the	table	properties,	you	must	define	at	least	users	and
roles	to	be	able	to	grant	privileges.	You	also	must	define	tablespaces,	storage	templates,
rollback	segments,	temporary	tablespaces,	undo	tablespaces,	and	so	on,	to	be	able	to
define	storage	settings.	Then	there	are	elements	such	as	the	actual	database	and	maybe
directories,	disk	groups,	external	tables,	materialized	views,	clusters,	contexts,	and	so	on.

TIP
You	might	want	to	close	a	physical	model	if	you	are	not	using	it	to	free	memory	for	other
purposes.

Defining	Users	and	Roles
To	be	able	to	define	and	grant	privileges,	you	need	to	define	users	and	roles.	And	to	be
able	to	define	users	and	roles,	you	need	to	know	what	kind	of	users	you	will	have	for	the
system	so	you	can	design	the	roles	and	name	them	accordingly.	And	of	course	then	create
the	users	and	name	them	accordingly.	An	important	question	when	designing	the	roles	and
users	is	what	kind	of	privileges	they	will	need	for	the	database.	The	same	needs	can	be
grouped	together	for	a	role,	and	a	user	can	be	granted	all	the	roles	needed.	It	is	also
important	to	create	a	naming	standard	for	the	users	and	roles.	Naming	standards	for	users
and	roles	cannot	be	documented	in	Data	Modeler,	but	they	still	must	exist.	If	the	naming
standard	is	clear,	creating	and	maintaining	roles,	users,	and	database	object	privileges	is
much	easier.

TIP
Agree	on	naming	standards	for	users	and	roles.

There	are	two	kind	of	users:	object	owners	(schema	owner)	and	individual	users	who
will	be	granted	privileges.	You	might	want	to	have	a	different	naming	standard	for	these
two	kinds	of	users	to	know	which	one	is	which.	Every	Oracle	physical	model	has	the	users
MDSYS	and	PUBLIC	by	default.	You	can	create	additional	users	in	the	Browser	pane	by
right-clicking	Users	and	selecting	New.	You	will	see	several	tabs	in	the	User	Properties
dialog	that	opens:	General,	Roles,	System	Privileges,	Clusters,	Tables,	Indexes,
Materialized	Views,	Triggers,	Views,	Dimensions,	Sequences,	Synonyms,	Procedures,
Functions,	Packages,	and	Comments.	In	the	General	properties,	you	define	the	name	for
the	user,	the	authentication	method	(by	password,	externally,	or	globally),	and	the
password	(identifier).	You	can	also	define	the	default	tablespace,	temporary	tablespace,
profile,	and	other	properties	used	when	generating	the	DDL	for	a	CREATE	USER	clause
for	Oracle	12c.	On	the	Roles	tab,	you	can	grant	roles	to	this	user,	and	on	the	System
Privileges	tab	you	can	grant	system	privileges	to	this	user.	On	the	Comments	tab	you	can
type	comments	on	this	user.	If	a	user	is	a	schema	user	and	has	objects	on	its	schema,	those

objects	are	listed	on	the	other	tabs	in	the	User	Properties	dialog.

NOTE
If	you	defined	schemas	in	the	logical	model,	they	are	completely	different	than	these	users
and	are	not	copied	to	the	physical	model.

If	you	want	to	grant	privileges	to	the	user,	click	the	button	Permissions	in	the	User
Properties	dialog.	In	the	Permissions	dialog	that	opens,	you	can	grant	privileges	to	this
user	for	all	objects	in	the	physical	model	(see	Figure	6-5).	In	the	upper-left	corner	you	can
select	the	object	type	(Available	Objects)	and	can	select	the	object	type	for	which	you
want	to	grant	privileges.	If	you	select	Tables,	you	can	grant	privileges	either	to	the	whole
table	or	to	some	of	the	columns	in	that	table.	To	grant	privileges,	select	the	object	in	the
Available	Objects	box	and	click	the	arrow	pointing	to	the	right.	Now	the	object	name
appears	in	the	box	in	the	upper-right	corner	(Objects).	Select	the	object,	and	in	the	lower-
right	corner	(Available	Privileges)	you	can	see	the	list	of	possible	privileges	on	that	object.
Select	the	privilege	you	want	to	grant	and	click	the	arrow	pointing	right;	you	can	see	it	on
the	box	on	the	right	(Granted	Privileges).	Select	the	privilege	by	clicking	Grant.

FIGURE	6-5.	Permissions	dialog

NOTE
All	passwords	set	in	the	physical	model	are	encrypted	when	saving	a	design	in	the	file
system.

If	you	want	to	revoke	privileges,	select	the	privilege	or	object	you	want	to	revoke	from
the	list	on	the	right	and	click	the	arrow	pointing	left.	If	you	have	many	privileges	in	the
Objects	box,	you	can	filter	them	by	object	type	by	selecting	the	type	from	the	Filter	By
Type	list.

NOTE
You	can	see	the	privileges	granted	to	an	object	only	if	you	select	the	object	name	in	the
Objects	box.

If	needed,	you	can	define	quotas	for	users.	A	quota	means	that	a	user	can	use	only	a
certain	amount	of	the	space	of	a	defined	tablespace.	This	is	a	way	to	ensure	that	a	single
user	will	not	use	all	the	space	in	a	tablespace.	This	might	be	useful,	for	instance,	in	a	test
environment	to	make	sure	every	user	has	equal	resources.	To	define	a	quota,	go	to	Quotas
under	the	username	in	the	Browser	pane,	right-click,	and	choose	New.	In	the	QuotaItem
Properties	dialog,	you	define	the	tablespace	(select	from	the	list	of	tablespaces)	and	the
amount	of	space	(Size).	This	space	is	not	allocated	from	the	database,	but	it	is	watched	by
the	RDBMS,	and	if	the	user	tries	to	use	more	space	than	this,	the	user	will	get	an	error.
You	can	also	document	the	quota	on	the	Comments	tab.

A	role	is	a	set	of	privileges	that	can	be	granted	to	a	user	or	to	another	role,	and	when
you	grant	it,	you	actually	grant	all	the	privileges	the	role	has.	You	can	use	roles	to	more
easily	administer	database	privileges.	You	could,	for	instance,	have	a	role	called
SystemAReportUser	that	has	only	Select	privileges	on	selected	tables,	a
SystemAMainUser	role	that	has	Select	privileges	and	some	Insert	and	Update	privileges,
and	a	SystemASuperUser	role	that	has	Delete	privileges.	You	could	also	have	similar	roles
for	SystemB:	SystemBReportUser,	SystemBMainUser,	and	SystemBSuperUser.	Maybe
you	have	a	user	named	Mark	who	need	to	see	all	the	reports	in	both	systems	(these
systems	are	in	the	same	database,	probably	two	different	schemas);	you	can	grant	him	two
roles:	SystemAReportUser	and	SystemBReportUser.	If	there	is	a	new	table	in	SystemA,
you	do	not	need	to	worry	about	Mark’s	privileges	since	the	new	privilege	will	be	granted
to	role	SystemAReportUser	and	Mark	gets	it	automatically.	And	maybe	you	have	two
superusers,	Lisa	and	Tom,	who	can	do	almost	anything	in	the	system	(even	delete	rows)
but	only	in	SystemA	and	not	in	SystemB,	where	they	are	not	even	allowed	to	see	any	data.
You	can	grant	Lisa	and	Tom	the	role	SystemASuperUser.

You	can	create	roles	in	the	Browser	pane	by	right-clicking	Role	and	choosing	New.	In
the	dialog	that	opens	there	are	four	tabs:	General,	Roles,	System	Privileges,	and
Comments.	In	the	General	properties,	you	define	the	name	for	the	role,	whether	the	role

will	be	identified	(NO/YES),	the	identification	type	(by	password,	externally,	globally,	or
using	package),	and	the	password.	If	you	choose	identification	by	using	a	package,	you
can	define	the	schema	of	the	package	(Schema)	and	the	package	name	(Package).	On	the
Roles	tab,	you	can	grant/revoke	other	roles	(and	their	privileges)	to	this	role,	and	on	the
System	Privileges	tab	you	can	grant	system	privileges	to	this	role.	On	the	Comments	tab
you	can	type	comments	on	this	role.	In	General	properties	you	can	click	the	Permissions
button	and	grant	and	revoke	the	same	privileges	as	described	earlier	(Figure	6-5).

TIP
Use	roles	to	make	maintaining	the	database	object	privileges	easier.

Storage	Templates	and	LOB	Storages
A	storage	template	is	a	template	for	properties	of	physical_attributes_clause	in	DDLs	for
tables,	indexes,	materialized	views,	or	clusters.	The	clause	physical_attributes_clause	lets
you	specify	how	Oracle	Database	should	store	a	permanent	database	object,	and	the
storage	parameters	are	important	not	only	because	they	affect	the	amount	of	space	needed
in	the	database	but	also	because	of	the	time	it	takes	to	access	data	stored	in	the	database.	It
is	good	practice	to	define	storage	templates	both	to	make	physical	designing	easier	and	to
make	the	database	definitions	more	standardized.	Before	you	can	define	storage	templates,
you	must	design	them	and	how	you	will	use	them.

To	create	a	new	storage	template,	select	Storage	Templates	in	the	Browser	pane,	right-
click	it,	and	choose	New.	On	the	General	tab	of	the	properties,	you	can	define	the	values
for	the	parameters	in	the	clause	physical_attributes_clause:	PCTFREE	(PCT	Free),
PCTUSED	(PCT	Used),	INITRANS	(Initrans),	INITIAL	(SC	Initial	Extent),	NEXT	(SC
Next	Extent),	MINEXTENTS	(SC	Min.	Extents),	MAXEXTENTS	(SC	Max.	Extents),
maxsize_clause,	PCTINCREASE	(SC	PCT	Increase),	FREELIST	(SC	Free	Lists),
FREELIST	GROUPS	(SC	Free	List	Groups),	and	BUFFER_POOL	(SC	Buffer	Pool).	The
physical_attributes_clause	parameters	OPTIMAL,	FLASH_CACHE,	and	ENCRYPT
cannot	be	specified	for	the	storage	template.	In	the	storage	template	General	tab,	the
Currently	Used	property	is	automatically	selected	when	this	storage	template	is	used.

On	the	Clusters,	Tables,	Indexes,	and	Materialized	Views	tabs,	you	can	set	objects	to	be
using	the	specified	storage	template.	Click	the	green	plus	sign,	select	from	the	list	all	the
objects	that	you	want	to	use	the	storage	template,	and	click	OK.	You	can	also	specify	in,
for	instance,	table	properties	that	a	table	will	be	using	this	storage	template.

You	can	also	specify	LOB	storage	for	columns	in	a	table	or	a	materialized	view.	Go	to
the	Browser	pane	and	select	Lob	Storages	under	the	table	or	materialized	view	where	you
want	to	create	it,	right-click	it,	and	select	New.	In	the	Lob	Storage	Properties	dialog	on	the
General	tab,	you	define	all	the	parameters	needed	for	a	LOB	clause,	and	in	Storage
Properties	you	define	the	storage	clause	parameters	for	it.	After	that,	you	assign	it	to	the
column	that	these	parameters	are	attached	to	during	the	DDL	generation	by	typing	the
name	of	the	column	in	the	Lob	Column	property.	You	must	design	the	LOB	storage	before
implementing	them	in	Data	Modeler.

Tablespaces
Before	entering	tablespaces	in	Data	Modeler,	you	must	design	them	and	plan	how	you	will
use	them.	A	database	object	is	saved	on	a	tablespace,	which	is	a	logical	set	of	data	files	in
a	database.	These	tablespaces	are	categorized	as	permanent	tablespaces	because	they	save
the	data	permanently.	There	are	also	two	other	kinds	of	tablespaces:	temporary	and	undo.
A	temporary	tablespace	is	used,	for	instance,	to	manage	space	for	database	sort	operations
and	to	store	global	temporary	tables.	A	temporary	tablespace	contains	schema	objects	only
for	the	duration	of	a	session.	Objects	in	temporary	tablespaces	are	stored	in	tempfiles.	An
undo	tablespace	is	for	managing	undo	data.	Undo	records	are	used	to	roll	back
transactions	when	a	ROLLBACK	statement	is	issued,	to	recover	the	database,	to	provide
read	consistency,	and	by	using	Oracle	Flashback	Query	features	to	analyze	data	as	of	an
earlier	point	in	time	or	to	recover	logical	corruptions.	Oracle	Database	versions	before
Oracle	9i	used	rollback	segments	for	most	of	that.	Data	Modeler	supports	also	rollback
segments	even	though	Oracle	strongly	recommends	using	undo	tablespace	rather	than
rollback	segments.

One	object	must	be	saved	in	one	tablespace,	but	several	objects	can	be	saved	on	the
same	tablespace.	Usually	the	objects	saved	on	the	same	tablespace	are	similar	in	the	way
of	stability	and	size.	Usually	just	one	kind	of	object	is	saved	in	one	tablespace	(this	is	not	a
rule,	but	it	usually	makes	life	easier):	tables	to	one,	indexes	to	another,	and	so	on.
Whatever	your	preference	is	when	designing	the	tablespace	use,	remember	to	design	them
and	know	why	you	did	it	the	way	you	did.

A	tablespace	is	created	in	the	Browser	pane	by	selecting	the	tablespace,	right-clicking,
and	selecting	New.	The	tablespace	properties	have	eight	tabs:	General,	Default	Storage,
Storage,	Tables,	Clusters,	Indexes,	Materialized	View,	and	Comments.	On	the	General	tab,
you	define	the	name	and	other	properties	for	the	DDL	clause	of	a	tablespace.	On	the
Default	Storage	tab,	you	can	specify	the	default	storage	values	for	the	tablespace.	If	the
object	that	will	be	created	on	this	tablespace	has	no	storage	settings,	the	default	storage
settings	for	the	tablespace	are	used.	On	the	Storage,	Tables,	Clusters,	Indexes,	and
Materialized	View	tabs,	you	can	see	whether	a	tablespace	is	used	on	that	type	of	an	object,
and	on	the	Comments	tab	you	can	document	the	tablespace.

When	you	have	created	the	tablespace	in	the	physical	model,	you	can	see	in	the
Browser	pane	that	under	the	tablespace	name	there	is	a	new	branch	called	Data	Files.	If
you	right-click	that	and	select	New,	you	can	define	the	data	files	for	the	tablespace.	For	a
data	file	you	can	define	the	properties	needed	for	generating	the	DDL	and	comments.

You	create	a	temporary	tablespace	in	the	Browser	pane	by	selecting	Temp	Tablespaces,
right-clicking,	and	choosing	New.	Temporary	tablespace	properties	have	only	two	tabs:
General	and	Comments.	On	the	General	tab,	you	define	the	name	and	other	properties	for
the	DDL	clause	of	a	temporary	tablespace.	On	the	Comments	tab,	you	can	document	the
temporary	tablespace.	Just	like	for	the	tablespace	when	you	created	the	temporary
tablespace	in	the	physical	model,	you	can	see	in	the	Browser	pane	that	under	the
temporary	tablespace	name	there	is	a	new	branch	called	Data	Files.	If	you	right-click	that
and	choose	New,	you	can	define	the	data	files	the	same	way	as	for	a	tablespace.

An	undo	tablespace	is	created	in	the	Browser	pane	by	selecting	Undo	Tablespaces,

right-clicking,	and	choosing	New.	Undo	properties	consist	only	of	two	tabs:	General	and
Comments.	On	the	General	tab,	you	define	the	name	and	other	properties	for	the	DDL
clause	of	an	undo	tablespace.	On	the	Comments	tab,	you	can	document	the	undo
tablespace.	Just	like	for	the	tablespace	when	you	created	the	undo	tablespace	in	the
physical	model,	you	can	see	in	the	Browser	pane	that	under	the	undo	tablespace	name
there	is	a	new	branch	called	Data	Files.	If	you	right-click	that	and	choose	New,	you	can
define	the	data	files	the	same	way	as	for	a	tablespace.

Synonyms
You	might	have	defined	synonyms	in	previous	phases	of	your	designing	process.	Those
synonyms	are	completely	different	synonyms	than	the	ones	Oracle	Database	has	as
objects.	The	first	time	and	place	to	define	the	Oracle	synonyms	is	in	the	physical	database
design	and	physical	model.	A	synonym	is	an	object	in	the	database	that	provides	an
alternative	name	for	another	database	object	(table,	view,	sequence,	procedure,	stored
function,	package,	user-defined	object	type,	and	so	on).	Synonyms	provide	both	data
independence	and	location	transparency,	meaning	that	you	do	not	need	to	know	which
user	is	the	owner	of	the	object	or	in	which	database	the	object	is	located;	all	this
information	is	hidden	in	the	synonym	details.	A	synonym	does	not	replace	privileges.	If
you	do	not	have	privileges	to	the	object	behind	the	synonym,	you	cannot	access	the	object.

To	create	a	new	synonym,	go	to	the	Browser	pane,	select	Synonyms,	right-click,	and
choose	New.	For	a	synonym,	you	must	create	a	name,	the	owner	of	this	synonym	(User),
and	whether	the	synonym	is	public	(YES/NO).	If	a	synonym	is	public,	it	is	available	to	all
database	users.	If	it	is	private,	then	only	the	database	user	who	owns	the	synonym	can
actually	use	it.	Next	you	define	the	Object	Owner	and	Object	Name	settings	for	the	object
this	synonym	is	created	for.	The	owner	can	be	selected	from	the	list,	but	unfortunately	the
name	must	be	written	manually.	I	hope	in	future	releases	of	Data	Modeler	there	will	be	a
list	of	values	here	since	there	is	a	big	risk	you	might	misspell	the	object	name.	You	can
also	specify	the	database	link	(DB	Link)	for	the	synonym	to	tell	Oracle	where	the	object	is
located.	Of	course,	you	can	document	the	synonym	using	the	Comments	and	Notes	fields.

Tables
In	previous	phases	you	have	defined	tables,	but	you	might	not	have	defined	external
tables.	This	is	probably	better	because	an	external	table	is	really	dependent	on	the
RDBMS	type	and	therefore	is	an	element	that	should	be	defined	in	the	physical	database
design.	The	idea	of	an	external	table	is	that	you	can	access	data	outside	the	database	as	if	it
were	in	a	table	in	a	database.	The	presentation	and	processing	for	external	tables	have
changed	in	Data	Modeler	version	4.0.2.	The	External	Tables	branch	in	the	physical	model
is	not	used	anymore,	and	older-style	external	tables	are	transformed	to	new	definitions
when	the	physical	model	is	open.	In	the	logical/relational	model,	you	could	have	defined
an	entity	or	a	table	and	set	its	classification	type	as	External.	External	tables	defined	like
this	are	shown	under	Tables	in	the	physical	model,	but	they	are	not	actually	external
tables.	You	can	define	the	real	external	tables	in	the	physical	model	by	setting	the
Organization	property	for	the	table	to	External.	The	table	will	automatically	show	up	in

the	relational	model	defined	as	an	external	table.

TIP
You	can	also	design	and	create	hive	tables	with	Data	Modeler.	In	the	physical	model,
define	the	table	as	external	by	setting	the	Organization	property	for	a	table	to	External
and	setting	the	Access	Driver	property	in	External	Table	Properties	to	ORACLE_HIVE.
You	can	also	set	dynamic	properties	named	hiveName	and	hiveSchema	for	the	table	in	the
relational	model,	and	these	will	be	taken	into	account	during	the	DDL	generation.	Note
that	you	can	find	the	table	on	the	External	Tables	tab	in	DDL	Generation	Options.

The	tables	you	created	in	previous	phases	are	automatically	brought	to	the	physical
model	under	Tables	in	the	Browser	pane.	And	all	the	properties	and	elements	defined
under	them	in	the	relational	model’s	Browser	pane	will	be	brought	to	the	physical	model
under	Tables.	In	the	physical	model,	you	add	the	properties	needed	for	the	DDL
generation	for	the	selected	RDBMS	type	for	a	table	and	for	all	the	elements	under	it.	In
this	example,	you	define	the	parameters	needed	in	the	create_table	clause	to	create	a	table
for	Oracle	12c	on	the	General	tab:	Schema	Owner	(User);	Name;	Temporary	(NO/Yes
(Preserve	Rows)/Yes(Delete	Rows));	Organization	(HEAP/INDEX/EXTERNAL);	Cluster
(select	the	cluster	name	from	the	list);	Logging;	Storage	(select	the	storage	template	from
the	list);	Cache	(NO/YES);	Parallel	(NO/YES);	if	YES,	then	Degree;	Row	Dependency
(NO/YES);	Partitioned	(NO/YES);	Row	Movement	(DISABLE/ENABLE);	Data
Compression	(NO/YES);	if	YES,	Compression	Type	(select	the	compression	type	from
the	list);	Structures	Type	(if	it	is	based	on	one),	and	Implement	As	Materialized	View
(select	a	view	name	from	the	list).	If	you	have	defined	a	cluster	for	the	table	(selected	a
cluster	name	for	the	cluster),	you	can	select	the	columns	involved	in	that	cluster	on	the
Cluster	Columns	tab.	If	you	have	set	Partitioned	to	YES,	you	can	define	on	the
Partitioning	tab	the	parameters	for	the	partitioning	clause.	If	you	have	set	Organization	to
INDEX,	on	the	IOT	Properties	tab	you	can	define	the	parameters	for	the	index-organized
table	clause.	If	you	have	set	Organization	to	EXTERNAL,	on	the	External	Table
Properties	tab	you	can	define	the	parameters	for	the	external	table	clause.	On	the
Supplemental	Log	tab,	you	can	define	the	parameters	for	enabling	the	supplemental
logging	at	the	table	level.	Supplemental	logging	is	used	for	having	additional	columns
logged	into	redo	log	files.

If	the	table	is	not	a	relational	table,	it	can	be	either	an	object	table	or	an	XML-type
table.	If	the	table	is	an	object	table,	you	can	define	the	parameters	needed	for	the
object_table	clause	on	the	OID	Properties	tab,	and	if	it	is	an	XML-type	table,	you	can
define	the	parameters	needed	for	the	XMLType_table	clause	on	the	XMLType	Properties
tab.	Of	course,	an	important	thing	is	to	define	privileges	for	the	table,	which	can	be	done,
for	instance,	in	the	Permissions	dialog	that	opens	when	you	click	the	Permissions	button.

In	previous	phases	of	the	design	process,	you	also	defined	columns	for	the	tables.
Those	columns	can	be	found	under	Tables	in	the	physical	model’s	Browser	pane.	All	the
logical	properties	for	the	column	have	been	defined	in	the	relational	model	and	can	be
changed	only	there	(if	you	change	any,	the	changed	values	will	be	immediately	shown	in
the	physical	model),	but	in	the	physical	model	you	define	the	physical	properties	for	a

column.	On	the	General	tab,	you	can	define	a	default	value	for	it	and	the	Max	Size	As
String	setting.	If	you	set	Encrypt	to	YES,	you	can	define	the	encryption	parameters	on	the
Encryption	tab.

NOTE
If	you	change	a	logical	property	of	a	column	in	the	relational	model	(data	type,	length,
and	so	on),	you	can	see	the	change	in	the	physical	model	immediately.

On	the	Column	Not	Null	Constraints	tab,	you	can	change	the	parameters	for	a	possible
Not	Null	constraint	for	this	column	or	create	a	new	one	if	there	is	no	constraint.	First	you
define	the	name	for	the	constraint:	Initially	(Immediate,	Deferred),	Deferrable	(yes/no),
Enable	(yes/no),	Validate	(yes/no).	Then	you	select	a	table	name	from	a	list	as	an
exceptions	table.	On	the	Column	Check	Options	tab,	you	can	change	the	parameters	for	a
possible	check	constraint	for	this	column:	Initially	(Immediate,	Deferred),	Deferrable
(yes/no),	Enable	(yes/no),	or	Validate	(yes/no);	then	select	a	table	name	from	the	list	as	an
exceptions	table.	If	the	column	is	an	auto-increment	column,	you	can	define	the
parameters	on	the	Auto	Increment	tab.	Data	Modeler	also	supports	the	native	identity
column	in	Oracle	12c.

You	can	also	specify	special	parameters	for	XML	types,	nested	table	collections,	and
Varray	collections	on	these	tabs:	XMLType	Options,	XMLType	Storage,	Varray,	and
Nested	Table.	You	can	see	and	edit	the	Comments	and	Comments	In	RDBMS	fields	on	the
Comments	tab,	but	remember	that	if	you	change	them	in	the	physical	model,	then	changes
in	the	logical	model	(for	these	comments)	will	not	be	shown	in	the	physical	model
anymore.

NOTE
If	you	change	the	Comment	or	Comment	In	RDBMS	setting	for	a	column	in	the	physical
model,	you	will	not	get	changes	made	to	those	properties	in	the	relational	model	brought
to	the	physical	model	anymore.	Changing	them	in	the	physical	model	cuts	the	link	to	the
relational	model.	This	flexibility	is	for	dealing	with	different	physical	model
implementations	that	might	require	separate	comments	per	install.

Under	a	table	name	in	the	Browser	pane,	you	can	find	a	primary	keys	branch	and	a
unique	keys	branch.	Primary	keys/unique	keys	and	their	properties	defined	in	the
relational	model	can	be	found	here.	You	are	not	able	to	create	new	primary	keys/unique
keys	in	the	physical	model,	but	you	are	able	to	add	physical	properties	for	existing	ones.	If
a	primary	key/unique	key	is	missing	or	needs	to	be	changed,	go	to	the	logical	model	and
change	it	(remember	to	engineer	the	change	to	the	relational	model).	On	the	General	tab
for	a	primary	key/unique	key	property,	you	can	define	the	following	properties:	Initially
(immediate/deferred),	Deferrable	(NO/YES),	Enable	(YES/NO),	Validate	(YES/NO),
Using	Index	(NO/YES),	and	Exceptions	Table	(select	the	table	name	from	the	list).	If	you
selected	No	for	Validate,	you	can	also	define	Rely	(NO/YES).	You	can	check	the	meaning
of	each	parameter	from	the	Oracle	manuals.	For	instance,	Using	Index	means	the	index	is

created	automatically	when	the	primary	key/unique	key	is	generated	and	definitions	for	a
separate	index	are	not	needed.	The	default	value	is	No,	which	is	probably	good	because
every	index	in	the	database	must	be	thought	about	carefully	and	named	wisely.	On	the
Columns	tab,	you	can	see	columns	associated	with	this	primary	key/unique	key,	and	on
the	Comments	tab	you	can	see	the	Comments	and	Comments	In	RDBMS	fields	edited	for
the	primary	key/unique	in	the	relational	model.	On	the	Global	Partitioning	and	Global
Hash	Partitions	By	Quantity	tabs,	you	can	define	partitioning	parameters.

NOTE
If	you	change	the	Comment	or	Comment	In	RDBMS	field	for	a	primary	key/unique	key	in
the	physical	model,	you	will	not	get	changes	made	to	those	properties	in	the	relational
model	brought	to	the	physical	model.	Changing	them	in	the	physical	model	cuts	the	link	to
the	relational	model.	This	applies	to	other	elements	too.

Under	a	table	name	in	the	Browser	pane	you	can	find	a	foreign	keys	branch.	Foreign
keys	and	their	properties	defined	in	the	relational	model	can	be	found	here.	You	are	not
able	to	create	new	foreign	keys	in	the	physical	model,	but	you	are	able	to	add	physical
properties	for	existing	ones.	If	a	foreign	key	is	missing	or	needs	to	be	changed,	go	to	the
logical	model	and	change	it	(remember	to	engineer	the	change	to	the	relational	model).	On
the	General	tab	for	a	foreign	key	property,	you	can	define	the	following	properties:
Initially	(immediate/deferred),	Deferrable	(NO/YES),	Enable	(YES/NO),	Validate
(YES/NO),	and	Exceptions	Table	(select	table	name	from	the	list).	If	you	selected	No	for
Validate,	you	can	also	define	Rely	(NO/YES).	You	can	check	the	meaning	of	each
parameter	in	the	Oracle	manuals.	On	the	Columns	And	Referenced	Columns	tab,	you	can
see	columns	associated	with	this	foreign	key,	and	on	the	Comments	tab,	you	can	see	the
comments	edited	for	the	primary	key/unique	key	in	the	relational	model.

In	the	relational	model	you	might	have	created	some	table-level	constraints	in	the	Table
Properties	dialog	under	Table	Level	Constraints.	You	can	find	those	constraints	from	the
physical	model	under	that	particular	table	in	Table	Check	Constraints	where	you	can
define	the	physical	properties	for	the	constraint	and	see	the	comments	from	the	relational
model.	The	physical	properties	for	a	table	check	constraint	are	as	follows:	Initially
(Immediate,	Deferred),	Deferrable	(NO/YES),	Enable	(YES/NO),	Validate	(YES/NO),	and
Exceptions	Table	(select	from	the	list	of	tables).

TIP
If	you	want	to	create	general	scripts	for	generating	database	objects	(DDLs)	without
physical	parameters,	do	not	open	a	physical	model.

Sequences
A	sequence	is	a	database	object	for	generating	unique	integers	that	multiple	users	can	use.
You	can,	for	instance,	use	a	sequence	to	automatically	generate	primary	key	values,	and

usually	that	is	combined	with	a	trigger	in	the	table	to	get	the	next	value	from	a	sequence
and	add	it	to	the	primary	key	column.	A	sequence	is	not	guaranteed	to	be	gapless	since	the
sequence	is	always	incremented	after	a	sequence	number	is	generated,	no	matter	whether
the	transaction	was	committed	or	rolled	back.	You	can	also	use	the	CACHE	option	with
sequences.	The	sequence	numbers	will	be	reserved—those	numbers	are	defined	in	that
cache—and	none	of	them	will	be	returned.	If	CACHE	is	set	to	20	and	the	next	value	of
sequence	A	is	1,	this	next	value	operation	takes	values	1	to	20	from	the	sequence,	and
when	you	ask	for	the	next	value	again,	you	will	get	21.	The	CACHE	option	is	usually	used
with	bulk	loading.	A	sequence	number	is	unique	in	that	two	users	cannot	get	the	same
sequence	number	(unless	the	sequence	is	altered	or	re-created),	but	a	user	can	use	the
sequence	number	generated	as	many	times	as	needed	(Oracle	does	not	stop	that).	One
sequence	can	be	used	for	multiple	tables,	but	that	is	not	usually	recommended.	Usually	it
is	recommended	to	create	one	sequence	per	table.

In	the	physical	model	you	define	a	sequence	by	right-clicking	Sequence	in	the	Browser
pane	and	choosing	New.	For	a	sequence	you	define	the	name,	the	owner	(User),	the	first
number	for	the	sequence	(Start	With),	how	much	the	sequence	is	incremented	each	time
(Incremented	By),	the	smallest	and	largest	values	for	the	sequence	(Min	Value,	Max
Value),	whether	the	sequence	can	start	from	the	first	value	again	when	the	last	value	has
been	reached	(Cycle,	NO/YES),	whether	the	cache	will	be	disabled	(Disable	Cache,
NO/YES),	the	cache	size	(Cache),	whether	the	order	of	sequences	generated	in	a	Real
Application	Cluster	(RAC)	environment	is	guaranteed	to	be	the	order	of	requests	(Order,
NO/YES),	and	whether	the	sequence	is	only	session	wide	(Session	Only,	NO/YES).	You
can	also	enter	comment	and	notes	and	add	privileges	by	clicking	the	Permissions	button.

In	Oracle	12c	you	can	also	use	an	identity	column.	In	a	CREATE	TABLE	clause,	you
simply	tell	that	the	column	is	an	identity	column,	and	the	value	is	automatically
incremented	as	you	have	defined	it;	no	trigger	is	needed.	Data	Modeler	supports	this,	and
it	is	defined	for	a	column	in	the	relational	model	in	Column	Properties	by	selecting
Identity	Column.

Views
If	you	created	views	in	the	relational	model,	you	will	see	them	in	the	physical	model
automatically.	You	cannot	create	new	views	in	the	physical	model,	but	you	can	add	the
schema	and	other	physical	properties	related	to	the	selected	RDBMS	site	and	grant
privileges.

Materialized	Views
A	materialized	view	is	a	database	object	that	contains	the	result	of	a	query	at	a	certain
moment,	and	you	can	define	how	and	when	the	result	is	updated.	A	materialized	view	can
be	based	on	tables,	views,	or	other	materialized	views.	In	replication	terms,	the	term	for
these	objects	that	the	materialized	view	is	based	on	is	master	tables;	in	data	warehouse
terms,	they	are	called	detail	tables.	In	previous	versions	of	Oracle,	some	of	the
functionalities	of	materialized	views	were	called	snapshots.

You	can	create	a	materialized	view	in	the	physical	model	by	selecting	Materialized

Views	in	the	Browser	pane,	right-clicking,	and	choosing	New.	For	a	materialized	view’s
properties	there	are	seven	tabs:	General,	Body,	Cluster	Columns,	Partitioning,	Refresh
Clause,	Comments,	and	Notes.	On	the	General	tab	you	can	define	the	name	and	the	owner
schema	(User)	from	the	materialized	view.	Then	you	can	define	whether	it	will	be
partitioned,	part	of	a	cluster,	the	tablespace	where	it	will	be	saved,	storage	settings,	and
other	physical	properties	for	the	DDL	clause.	You	can	also	define	whether	it	will	be
updated	(Build)	immediately	or	deferred,	whether	it	will	be	updatable	(For	Update),	and	if
it	is	query	rewrite	enabled.	On	the	Body	tab,	you	can	edit	the	logic	for	the	materialized
view.	On	the	Refresh	Clause	tab,	you	can	specify	the	refresh	part	of	the	DDL.	In
Comments	and	Notes,	you	can	document	the	materialized	view.	And	with	the	Permission
button,	you	can	grant	privileges	for	the	materialized	view.

Stored	Procedures,	Functions,	and	Packages
In	Oracle	Database	there	are	objects	that	are	actually	PL/SQL	programs	such	as	stored
procedures,	functions,	and	packages;	you	can	also	create	these	with	Data	Modeler.	In	the
Browser	pane,	go	to	the	object	type	you	want	to	create	(Stored	Procedures,	Functions,	or
Packages),	right-click,	and	choose	New.	Then	define	the	name	and	the	owner	for	this
object	(User).	You	can	also	add	comments	and	notes	and	grant	privileges	(Permissions).
When	you	save	the	object	(OK),	you	will	be	taken	to	an	editor	to	edit	the	code.	You	can
also	copy	and	paste	the	code	if	you	would	rather	edit	it	somewhere	else.	After	you	have
finished	editing,	you	can	save	it	by	clicking	the	Save	icon.	You	can	edit	these	objects	if
you	select	the	object	name	in	the	Browser	pane,	right-click,	and	choose	Edit,	and	you	can
delete	an	object	by	choosing	Delete.

Although	you	can	create	these	types	of	objects	with	Data	Modeler,	the	editor	is	not	that
great,	so	probably	it	would	be	wiser	to	create	them	with	Oracle	SQL	Developer.	You	can
either	just	document	the	names	and	privileges	to	Data	Modeler	or	copy	and	paste	the	code
from	Oracle	SQL	Developer	to	Data	Modeler.

Triggers
In	Data	Modeler	you	can	create	triggers	for	tables	and	views.	In	Oracle	you	can	also
assign	them	to	a	schema	or	a	database,	but	those	features	are	not	supported	in	the	current
version	of	Data	Modeler,	and	probably	there	is	no	need	for	that	functionality	either.	A
trigger	is	much	like	a	stored	procedure	except	you	cannot	explicitly	invoke	it;	the	database
does	it	automatically	based	on	a	triggering	event.	If	a	trigger	is	disabled,	it	will	not	be
invoked	at	all.	Maybe	this	is	the	reason	not	everybody	likes	triggers.	There	can	be	a	lot	of
traffic	in	the	database	without	anybody	actually	calling	a	program,	and	a	trigger	can	be
disabled	without	anyone	realizing	it.	So,	having	triggers	in	a	database	means	you	need	to
have	processes	to	control,	maintain,	and	watch	them	in	order	to	know	what	is	happening
and	to	be	able	to	be	prepared.

To	create	a	new	trigger,	go	to	the	physical	model’s	Browser	pane	and	select	the	table	or
view	name	you	want	to	add	the	trigger	for,	go	to	Triggers,	right-click,	and	choose	New.
For	a	trigger	you	define	properties	on	four	tabs:	General,	Trigger	Body,	Update	Columns,
and	Comments.	On	the	General	tab,	you	define	the	name	for	the	trigger	and	the	schema

owner	(User)	and	the	action	that	will	invoke	it	(Insert	and/or	Update	and/or	Delete).	You
also	specify	the	triggering	time	(Before/After),	the	scope	(for	each	row,	for	each
statement),	and	the	state	(enable/disable).	You	can	also	define	the	names	for	old
parameters	(Ref	OLD	as),	new	parameters	(Ref	NEW	as),	and	parent	parameters	(Ref
PARENT	as)	and	the	condition.	On	the	Trigger	Body	tab,	you	can	write	the	actual	PL/SQL
code	for	the	trigger	action,	and	on	the	Update	Columns	tab,	you	can	select	or	remove
columns	to	be	updated	if	the	action	for	the	trigger	is	Update.	On	the	Comments	tab,	you
can	document	the	trigger.

User-Defined	Data	Types
You	are	not	able	to	create	data	types	in	the	physical	model,	but	the	collection	types	and
structured	types	you	might	have	defined	earlier	in	the	data	types	model	will	be
automatically	brought	to	the	physical	model.

You	are	able	to	change	the	name	of	a	collection	type	and	define	the	settings	Owner,
Force	Replace	(NO/YES),	OID	(Object	Identifier),	and	Comments	for	it.	You	can	also
define	privileges	by	clicking	the	Permissions	button.

You	can	also	rename	a	structured	type	and	define	the	settings	Owner,	Force	replace
(NO/YES),	Global	OID,	Invoker	Rights	(empty,	Current_user,	Definer),	Map	Order
Functions,	Map	To	Java	Class	(NO/YES),	and	Comments	for	it.	You	can	also	define
privileges	by	clicking	the	Permissions	button.

Other	Elements
If	you	want	to	have	the	whole	database	designed	and	documented	in	Data	Modeler,	you
can	do	that.	You	can	add	a	database	with	its	properties	to	the	physical	model	to	get	the
DDLs	for	it.	In	Database	Properties,	you	can	define	properties	on	the	General,	Logging,
and	Tablespaces	tabs,	and	you	can	write	comments.	After	defining	the	database	for	the
physical	model,	you	can	see	in	the	Browser	pane	new	branches	for	adding	data	files,	redo
log	groups,	and	SYSAUX	files	to	that	database.

You	can	define	directories	and	disk	groups,	and	you	can	define	contexts,	which	are	sets
of	application-defined	attributes	that	validate	and	secure	an	application.	You	can	also
create	clusters.	A	cluster	is	a	schema	object	that	contains	data	from	one	or	more	tables.
The	idea	of	a	cluster	is	that	the	data	that	are	often	retrieved	together	are	saved	close	to
each	other	to	enable	fast	performance.	All	the	tables	in	a	cluster	must	have	at	least	one
column	in	common.	An	index	cluster	stores	together	all	the	rows	from	all	the	tables	that
share	the	same	cluster	key,	and	a	hash	cluster	stores	rows	that	have	the	same	hash	key
value	together.	In	the	physical	model,	you	can	create	a	cluster	and	attach	tables	or
materialized	views	in	it	on	the	Table/Materialized	View	Properties	tabs	of	the	Cluster
Properties	dialog.

Propagating	Properties
In	most	of	the	properties	dialogs	you	will	see	a	Propagate	Properties	button.	This	is	useful

functionality	when	you	have	defined	the	properties	for	one	kind	of	object	and	want	to	have
the	same	property	copied	to	other	objects	of	the	same	type.	For	instance,	you	might	have
defined	the	properties	for	a	table	such	as	User,	Tablespace,	Logging,	Storage,	Row
Dependency,	Row	Movement,	and	Permissions,	and	you	want	to	have	the	same	settings
for	another	25	tables.	Instead	of	manually	entering	all	this	information	for	your	25	tables,
you	can	use	the	Propagate	Properties	utility.	After	setting	the	properties	wanted	on	one
table,	just	click	Propagate	Properties.	The	Properties	Propagation	dialog	opens	where	you
can	first	select	which	properties	to	propagate	and	then	to	which	objects	these	properties
will	be	propagated.	This	tool	will	probably	be	your	or	your	DBA’s	favorite	tool	in	the
physical	database	design	process.

TIP
You	can	use	the	Propagate	Properties	button	for	copying	privileges.	You	can	define
privileges	to	one	table	and	click	Propagate	Properties	to	copy	the	same	set	of	privileges	to
other	tables.

Indexing
Defining	the	indexes	so	that	the	database	can	perform	as	well	as	possible	is	one	of	the
most	important	tasks	in	physical	database	design.	To	be	able	to	do	that,	you	must	know
what	users	are	going	to	do	with	the	database,	and	you	must	understand	what	kind	of	index
types	your	RDBMS	site	supports.	There	are	plenty	of	books	on	indexing	theory	as	well	as
indexing	on	a	particular	RDBMS.	Please	study	those	for	more	information	on	indexing,
especially	indexing	for	your	RDBMS.	In	this	book,	I	will	talk	about	the	topic	briefly.

An	index	is	a	database	object	that	provides	a	quick	lookup	of	the	data	in	a	database.
There	are	different	types	of	indexes	for	different	kinds	of	searches.	Usually	an	index	need
is	justified	by	its	usage:	the	amount	of	data,	how	the	data	is	mainly	used
(select/update/insert/delete),	and	the	frequency	of	selects.	If	the	amount	of	data	is	small,
there	is	probably	no	need	for	an	index.	If	the	data	is	mostly	inserted,	updated,	and	deleted,
it	might	not	be	a	good	idea	to	add	an	index	because	indexes	make	only	selects	faster	while
making	other	operations	slower.	If	you	have	a	query	that	is	run	only	once	a	year,	it	might
not	be	a	good	idea	to	have	an	index	supporting	it	in	the	database	for	12	months	a	year.	An
index	is	defined	for	a	column	or	columns	in	a	table,	and	it	supports	select	queries	only
with	those	columns	in	the	WHERE	clause	of	the	query.	An	index	does	not	support	all	the
queries,	and	it	is	not	a	silver	bullet	for	performance.

There	are	different	kinds	of	indexes.	The	most	common	is	a	B-tree	index	(B-tree,	B+-
tree,	B*-tree);	for	spatial	data	there	is	the	R-tree	index	(R-tree,	R+-tree,	R*-tree),	and	there
are	the	following	types:	bitmap	index,	context	index,	multilevel	index,	hash	index,
function-based	index,	bitmap	join,	reverse	key	index,	and	so	on.	A	primary	key	has	a
special	index	called	a	primary	index,	and	a	table	can	have	only	one	of	those.	Many	times
indexes	for	foreign	keys	are	created	to	support	the	joins	and	to	avoid	locking	problems.
But	to	be	able	to	decide	about	other	possible	indexes,	you	should	research	the	most
common	queries	and	their	frequency.	If	the	query	retrieves	only	a	small	part	of	the	data	in

a	table,	an	index	might	be	useful;	if	it	retrieves	a	major	part	of	the	data,	an	index	is	not
useful	because	a	full	table	scan	will	be	more	efficient.

When	defining	the	index,	it	is	vital	to	set	the	index	columns	in	the	right	order,	with	the
most	selective	ones	in	front.	Also,	having	the	columns	used	in	“equals	to”	evaluations
would	be	better	to	set	in	front	of	the	index	and	the	ones	used	in	range	evaluation	at	the
end.	When	using	an	index	in	performing	a	query,	usually	the	biggest	cost	comes	if	you
need	to	go	to	the	table	to	get	something.	For	this	reason,	sometimes	columns	in	the
WHERE,	JOIN,	ORDER	BY,	or	SELECT	part	of	a	query	are	added	to	the	index	to	avoid
the	need	to	access	the	table.	Make	sure	you	do	not	have	too	many	indexes	in	a	table	and
that	they	are	not	too	similar.	Remember	that	updating	a	column	that	is	in	an	index	costs
two	to	three	times	more	than	a	column	not	in	an	index.	Be	careful	when	selecting	the
columns	for	the	index,	make	sure	they	are	in	right	order,	and	remember	you	can	also	use
temporary	indexes	in	some	cases.

TIP
Using	the	wrong	data	type	in	a	query	can	prevent	using	index	because	a	data	type
conversion	must	be	done.	Make	sure	you	know	what	data	type	the	column	is	in	order	to
query	correctly.	For	instance,	WHERE	ProductID	=	123	would	not	perform	well	since
ProductID	is	numeric	and	it	is	compared	to	a	character	set.

An	index	is	created	in	the	relational	model,	and	it	will	be	immediately	visible	in	the
physical	model’s	Browser	pane	under	the	table	it	is	attached	to.	In	the	physical	model,	you
can	add	all	the	physical	properties	for	the	index	in	nine	tabs:	General,	Columns,	Column
Sort	Order,	Indextype	Parameters,	Global	Partitioning,	Hash/Composite	By	Hash
Tablespaces,	Global	Hash	Partitions	By	Quantity,	Spatial	Index,	and	Comments.	On	the
General	tab,	you	define	Bitmap	Index	(NO/YES);	Indextype	(you	can	type	whatever	you
want,	and	that	will	be	in	the	DDL	for	the	index	type);	Tablespace;	Logging	(YES/NO);
Storage	(select	a	storage	template	from	a	list);	Compress;	Parallel	(NO/YES);	if	you	set
Parallel	to	YES,	then	you	can	also	define	Degree	for	parallelism;	Sorted	Rows	(Sorted,
Reverse,	No);	Compute	Stats	(NO/YES);	Online	(NO/YES);	Invisible	(NO/YES);	and
Partitioned	(Non-partitioned,	Local,	Global	by	Range,	Global	Hash	Partitioned	By
Quantity,	Global	Hash	Partitioned	By	List).	If	the	index	is	partitioned,	you	can	define	the
global	partitioning	columns	on	the	Global	Partitioning	tab.	If	Partitioned	is	set	to	Global
Hash	Partitioned	By	Quantity,	you	can	define	the	parameters	needed	on	the	Global	Hash
Partitioned	By	Quantity	tab.	On	the	Column	Sort	Order	tab,	you	can	define	the	sort	order
for	the	columns.	If	it	is	a	spatial	index,	select	Spatial	Index	on	the	General	tab.

Bitmap	join	indexes	are	created	in	the	physical	model.	They	are	an	index	type
supporting	joins	of	two	or	more	tables.	In	the	physical	model,	you	can	create	bitmap	join
indexes	by	selecting	the	table	you	want	to	assign	it	and	going	to	Bitmap	Join	Indexes,
right-clicking,	and	choosing	New.	You	can	insert	all	parameters	needed	for	generating	a
bitmap	join	index.

NOTE
You	can	also	define	an	index	for	a	cluster.

Partitioning
If	a	table,	index,	or	materialized	view	is	big,	it	is	possible	to	partition	it.	Partitioning	in
Oracle	requires	the	partitioning	option	that	is	available	for	Enterprise	Edition	databases.
Partitioning	makes	maintaining	easier	and	sometimes	improves	the	performance.	In	my
opinion,	the	main	advantage	of	partitioning	is	the	maintenance,	and	secondary	is	the
improvement	on	performance.	For	instance,	partitioning	makes	deleting	data	fast;	you	can
just	drop	a	partition.	If	you	decide	to	use	partitioning,	study	carefully	the	possibilities	your
RDBMS	has	for	it	and	design	partitioning	carefully.

Partitioning	operation	affects	only	the	physical	schema.	That	means	that	usually	the
logical	model	(and	relational	model)	stay	untouched,	and	no	programs	need	to	be	changed.
Sometimes	partitioning	may	need	some	extra	columns	for	tables	to	get	a	working	partition
key,	and	then	the	logical	model	and	programs	must	be	changed.

You	can	create	a	new	partition	in	the	physical	model	in	the	Browser	pane;	under	the
table	you	want	to	create	it,	right-click,	and	choose	New.	There	are	five	tabs:	General,
Subpartition	Order,	Subpartition	Tablespaces,	Local	Index,	and	Comments.	On	the
General	tab	you	can	specify	the	following	settings:	Name,	Value	List	(free	text	edit),
Tablespace	(select	from	the	list	of	tablespaces),	Logging	(null,	YES,	NO),	Storage	(select
from	the	list	of	storage	templates),	and	Data	Compression	(null,	YES,	NO).	For	a	table	in
Table	Properties,	you	set	the	Partitioned	property	to	YES,	and	on	the	Partitioning	tab	you
specify	the	partition	type	and	if	needed	the	subpartition	type.	After	selecting	the
subpartition	type	for	the	table,	you	can	create	a	new	subpartition	of	the	selected	type
(Hash,	List,	Range)	under	the	partition	name	in	the	Browser	pane	(under	the	table)	and
specify	the	parameters	needed	for	the	DDL.	You	can	also	define	a	storage	template	and
LOB	storage	for	a	subpartition.

Summary
In	physical	database	design,	you	design	and	define	physical	elements	related	to	the
selected	RDBMS	site	and	add	the	physical	properties	to	elements	created	in	the	logical
design.	The	outcomes	from	the	physical	database	design	process	are	the	DDL	scripts	for
creating	the	database.	To	be	able	to	design	the	physical	model,	you	need	a	good
understanding	of	the	RDBMS	site	selected	to	be	able	to	make	the	right	decisions.	During
the	physical	database	design	you	must	also	design	other	things,	such	as	backup	and
recovery	strategies.

CHAPTER
7

Generating	DDL	Scripts	for	Creating
Database	Objects

Adata	definition	language	(DDL)	is	for	creating	database	objects.	Generating
DDL	scripts	with	Oracle	SQL	Developer	Data	Modeler	is	quite	simple,	and	it
can	be	done	over	and	over	again	to	find	the	right	settings	to	get	the	right	kinds

of	scripts.	The	difficult	task	is	to	decide	what	kind	of	DDL	files	you	want.	Do	you	want	a
version	of	a	whole	database	at	a	certain	time	in	just	one	file,	or	do	you	want	a	file	per
object	or	something	else?	Where	do	you	plan	to	keep	the	files,	and	who	will	have	access
to	them?	What	are	you	going	to	do	with	these	files?	Do	you	need	a	file	for	creating	a
whole	test	database	of	a	particular	version?	Maybe	you	also	need	a	file	for	creating	the
latest	version	of	the	Customer	table	for	production?	Before	creating	the	DDL	files,	you
must	decide	what	they	are	for	so	you	know	what	you	need.	Do	you	need	different	versions
of	DDLs	for	production	and	test?	How	are	they	different?	Where	do	you	keep	the	DDLs?
Chapter	12	talks	about	comparing	models	to	a	database	and	generating	DDL	scripts	for
altering	the	database	objects.	Before	the	DDLs	are	run	in	the	database,	they	must	be
reviewed,	and	there	should	be	a	documented	process	for	that.	There	should	also	be	clear
understanding	of	who	runs	the	DDLs	on	the	database	and	when	and	how	this	person
documents	what	has	been	run.

The	DDLs	are	based	on	the	relational	model	and	one	of	its	physical	models.	If	you	do
not	have	any	physical	models	open,	only	the	relational	model	is	used,	and	the	DDLs	will
be	basic	without	physical	parameters.	You	might	want	to	use	this,	for	instance,	when
creating	objects	for	your	test	database	where	you	have	defined	the	defaults	for	tablespaces
and	users	and	creating	an	object	does	not	need	physical	parameters	of	its	own.

Setting	Preferences	and	Properties
Certain	preferences	affect	how	the	generation	of	DDLs	will	be	performed	and	how	the
generated	DDLs	will	look.	In	every	new	version	of	Data	Modeler	there	are	new
preferences	to	make	the	generation	more	tunable.	The	DDL	preferences	should	be	studied
carefully	since	setting	them	correctly	will	help	you	get	the	kind	of	DDLs	you	want	from
the	tool	without	any	manual	work.

Figure	7-1	shows	the	Preferences	dialog	open	to	the	Data	Modeler	|	DDL	tab.	With
Statement	Termination	Character	For	DB2	And	UDB,	you	can	define	the	termination
character	for	DDL	clauses	for	IBM	DB2	and	UDB	databases.	You	type	the	character
wanted	as	a	terminator	into	the	box.

FIGURE	7-1.	DDL	options

On	this	tab	there	are	several	parameters	for	defining	the	trigger	generation.

			The	Create	Type	Substitution	Triggers	For	Oracle	And	UDB	setting	defines
whether	type	substitution	triggers	are	generated	in	Oracle	and	IBM	UDB.

			Create	Arc	Constraints	defines	whether	the	triggers	for	foreign	key	arc
constraints	are	generated	in	the	DDL	scripts.

			Create	Triggers	For	Non	Transferable	FKs	defines	whether	triggers	for
nontransferable	foreign	key	relationships	are	generated	in	the	DDL	scripts.

Then	there	are	some	preferences	for	the	generation.

			The	Show	CHAR/BYTE	Unit	For	Oracle	VARCHAR2	And	CHAR	Types
preference	defines	whether	the	unit	(CHAR	or	BYTE)	associated	with	the	attribute
length	for	Oracle	types	CHAR	and	VARCHAR2	are	included	in	the	generated
CREATE	TABLE	statements.

			The	Generate	Short	Form	Of	NOT	NULL	Constraint	preference	defines
whether	the	NOT	NULL	constraint	name	is	used	in	the	CREATE	TABLE	statement
for	column	definitions.

			By	selecting	Use	Quoted	Identifiers,	you	define	that	object	names	will	be
enclosed	in	double	quotes	in	the	generated	DDL	statements	(for	example,
“CUSTOMER”	instead	of	CUSTOMER).

			If	you	select	Generate	Comments	In	RDBMS,	the	text	in	the	field	Comment	In
RDBMS	will	be	included	in	the	generated	DDL	statements.	Remember	that	if	you
have	changed	the	Comment	In	RDBMS	field	in	the	physical	model,	the	link
between	the	comments	has	been	cut,	and	the	text	written	in	the	relational	model	will
be	used	if	the	physical	model	is	not	open.	If	it	is	open,	the	Comment	In	RDBMS	text
in	the	physical	model	is	used.	The	same	logic	applies	to	other	properties	that	can	be
changed	in	both	the	relational	and	physical	models.

			If	you	select	Generate	Inline	Column	Check	Constraints,	the	Column	Check
Constraint	clause	will	be	included	in	the	CREATE	TABLE	statement.	If	this	is	not
selected,	a	separate	ALTER	TABLE	statement	for	the	constraint	definition	will	be
created.

			If	the	Generate	Valid	Value	Constraints	setting	is	selected,	the	List	Of	Values
and	Range	Of	Values	constraints	are	included	in	the	generated	DDL;	if	it	is	not
selected,	the	generated	DDL	will	be	without	the	List	Of	Values	and	Range	Of	Values
constraints.	This	is	useful	if	you	want	to	only	define	the	constraints	in	your	model
but	do	not	actually	want	to	implement	them	in	the	database.

			The	Include	Default	Settings	In	DDL	preference	will	add	all	possible	DDL
keywords	for	the	object	created	in	the	generated	DDL	statements.	This	option	is
useful	if	you	want	to	see	the	syntax	for	an	object	DDL.

			Include	Logging	In	DDL,	Include	Schema	In	DDL,	Include	Storage	In	DDL,
Include	Tablespace	In	DDL,	Include	Redaction	In	DDL,	and	Include	Sensitive	Data

Protection	In	DDL	define	whether	the	mentioned	parameter	is	included	in	the
generated	DDL.	If	a	schema	is	not	included	in	the	DDL,	the	object	will	be	created
for	the	schema	of	the	username	that	has	been	used	to	log	in	to	the	database	for
running	the	DDL.	If	the	tablespace	is	not	included	in	the	DDL,	in	Oracle	the	default
tablespace	of	the	username	who	has	logged	in	will	be	used.	If	the	storage	is	not
included,	in	Oracle	the	storage	setting	of	the	tablespace	where	the	object	is	saved	is
used.

			The	Include	PROMPT	Command	(For	Oracle	Only)	preference	is	valid	only
when	generating	DDL	statements	for	Oracle;	it	defines	whether	the	PROMPT
command	is	added	before	each	DDL	statement	in	the	generated	DDL	statements.
The	PROMPT	command	is	used	for	viewing	the	progress	of	a	script	execution.

			If	the	Use	SQL	Developer	Formatter	preference	is	selected	under	SQL
Formatting,	the	SQL	formatting	uses	the	SQL	Developer	defaults;	if	it	is	not
selected,	the	formatting	follows	the	traditional	Data	Modeler	defaults.

			In	Default	DDL	Files	Export	Directory,	you	can	specify	the	directory	where
the	DDL	files	will	be	saved	by	default.

			The	preference	Extended	Size	For	Characters	For	Oracle	was	introduced	in
version	4.0.3.	It	defines	whether	the	MAX_STRING_SIZE	=	EXTENDED
initialization	parameter	is	available	when	generating	the	DDL.

			A	new	preference	called	Include	Design	And	Model	Name	In	DDL	Files	Path
was	introduced	in	version	4.0.3.	By	selecting	this	preference,	you	will	have	the
design	and	model	names	for	the	DDL	file	paths,	which	makes	finding	the	right
DDLs	easier.	I	recommend	selecting	this	preference.

Here	is	an	example	of	a	DDL	script	for	a	table	called	Order	with	all	the	preferences
introduced	earlier	selected:

If	the	Use	SQL	Developer	Formatter	preference	under	SQL	Formatting	is	not	selected,
the	same	DDL	would	look	like	this:

You	can	also	use	the	preferences	to	set	formatting.	In	the	Preferences	dialog,	under
Data	Modeler	|	SQL	Formatter	there	is	a	parameter	called	Autoformat	Visible	SQL	And
PL/SQL.	If	you	select	it,	the	SQL	Formatter	options	are	applied	automatically	in	the
generated	PL/SQL	code	for	procedures,	packages,	views,	and	triggers.	If	you	do	not	select
it,	the	SQL	Formatter	options	are	applied	only	when	you	so	request.	There	are	also
product-specific	formatting	options	and	the	Export/Import	functionality	to	share	the
formatting	with	other	users.

TIP
Define	the	Default	DDL	Files	Export	Directory	setting	and	you	will	always	know	where
your	DDL	files	are	saved.

NOTE
Chapter	10	will	cover	the	DDL	preferences	that	affect	importing	(Replace	System	Names
During	Import,	Create	Domains	During	Import).

Figure	7-2	shows	the	Preferences	dialog	open	to	the	Data	Modeler	|	DDL	|
DDL/Storage	tab.	The	options	under	DDL	Storage	Options	For	Import	And	Export	allow
you	to	define	whether	the	storage	options	will	be	included	in	the	DDLs	for	import	and
export	operations.	You	can	either	include	or	exclude	these	parameters	from	the	storage
clause	in	DDL:	PCTFREE,	PCTUSED,	INITRANS	and	MAXTRANS,	INITIAL,	NEXT,
MINEXTENTS,	MAXEXTENTS,	PCTINCREASE,	BUFFER_POOL,	FREELIST,
FREELIST	GROUPS,	OPTIMAL,	and	Encryption.	The	default	behavior	is	that	all	these
keywords	are	selected,	and	the	values	defined	in	the	physical	model	are	included	for	them
in	the	generated	DDL.

FIGURE	7-2.	DDL	storage	options	for	import	and	export

There	are	also	two	design	properties	that	will	affect	the	DDL	generation.	In	the	DDL
Properties	dialog	(which	you	open	by	choosing	Design	Properties	|	Settings	|	DDL),	you
can	decide	whether	you	want	automatic	index	generation	for	primary,	unique,	and	foreign
key	constraints.	If	you	enable	the	automatic	index	generation,	the	index	will	be	generated
automatically,	and	you	do	not	need	to	define	it	in	the	physical	model.	I	suggest	you	disable
these	design	properties	(the	functionality	is	also	a	default	value	in	the	tool)	and	specify

each	index	in	your	database.	Sometimes	there	are	two	similar	index	candidates,	and	maybe
it	is	the	foreign	key	index	you	decide	not	to	create	because	the	other	candidate	has	all	the
foreign	key	columns	and	some	extra	columns	at	the	end	of	the	index.	It	is	important	to
manually	see	all	the	indexes	and	decide	whether	the	index	will	be	created.	The	other
property	is	Preserve	DDL	Generation	Options,	which	controls	whether	to	restore	the
original	DDL	generation	options	after	a	current	DDL	generation	operation.

TIP
Remember	that	in	the	design-level	properties	you	can	also	define	a	template	for	the
naming	standard	for	automatically	generated	indexes.

In	DDL	Migration	Properties	(Design	Properties	|	Settings	|	DDL	|	Migration)	on	the
Name	Substitution	tab,	you	can	define	old	strings	to	be	replaced	with	new	strings	in	object
names	when	the	DDL	statements	are	generated.	This	will	take	effect	only	if	you	also	select
Apply	Name	Substitution	in	the	DDL	Generation	Options	dialog.	This	is	useful	in	many
cases.	For	instance,	if	your	test	database	has	a	schema	named	TEST	and	your	production
database	has	a	schema	named	XYZ,	you	do	not	need	to	have	two	separate	physical
models;	you	can	use	name	substitution	to	replace	the	name	XYZ	when	generating	the
DDLs	for	the	test	database.	If	you	specify	the	Name	Substitution	rules	in	Design
Properties,	you	can	see	them	on	the	Name	Substitution	tab	in	the	DDL	generation,	and
they	can	be	used	for	name	substitution.

TIP
The	quickest	way	to	test	how	these	preferences	and	properties	affect	things	is	to	use	DDL
Preview.	Select	a	table	in	the	relational	diagram,	right-click,	and	choose	DDL	Preview.
Now	that	the	previewer	is	open,	you	can	select	another	object	in	the	diagram,	and	the
DDL	script	will	be	updated	accordingly.	You	can	also	change	preferences	or	design
properties	and	see	how	the	change	will	affect	the	DDL	generation.

Exporting	a	DDL	File
You	can	start	the	DDL	generation	either	by	choosing	File	|	Export	|	DDL	File	or	by
clicking	the	Generate	DDL	icon	on	the	toolbar	in	the	relational	model.	First	you	select	the
RDBMS	site	and	the	relational	model	you	want	to	use	for	the	DDL	generation,	and	then
you	click	Generate	(Figure	7-3).	If	you	have	several	physical	models	for	a	relational
model,	Data	Modeler	will	suggest	the	RDBMS	site	that	has	been	changed	most	recently
by	default;	you	can	of	course	select	another	one	if	you	want.	This	same	screen	is	also
shown	after	the	DDL	has	been	generated,	which	is	the	reason	for	the	buttons	Clear,	Save,
and	Find.	Clear	clears	the	screen,	and	Save	saves	the	content	to	a	file.	You	can	use	Find	to
search	for	some	particular	text	in	the	SQL	generated.	The	example	in	Figure	7-3	is	after
generation.	You	can	also	see	the	generated	DDL	on	the	screen.

FIGURE	7-3.	DDL	File	Editor

NOTE
If	you	select	an	RDBMS	site	that	does	not	exist	for	this	relational	model	or	is	not	opened,
the	DDL	generated	will	include	information	only	from	the	relational	model	and	will	show
syntax	from	the	selected	RDBMS	site.

Exploring	DDL	Generation	Options
Figure	7-4	shows	the	tree	view	for	the	DDL	generation	options.	These	options	control	the
content	to	be	included	in	the	generated	DDL	script.	In	the	tree	you	can	see	all	the	elements
in	the	selected	physical	model,	and	the	name	of	the	selected	physical	model	appears	at	the
top	of	the	list.	You	can	select	and	unselect	elements	from	the	list	to	get	only	the	DDLs
generated	you	want.

FIGURE	7-4.	DDL	Generation	Options	dialog

On	the	bottom	of	the	tree	you	can	see	these	tabs:	Tables,	PK	And	UK	Constraints,
Indexes,	Foreign	Keys,	Views,	Clusters,	Dimensions,	Materialized	Views,	Synonyms,
Sequences,	Bitmap	Join	Indexes,	External	Tables,	Collection	Types,	Triggers,	Packages,
Package	Bodies,	Stored	Procedures,	Functions,	and	Structured	Types.	On	these	tabs	you
can	select	and	deselect	objects	by	the	object	type.	For	instance,	on	the	Tables	tab	you	can
select	some	tables	and	deselect	others,	and	only	the	ones	you	have	selected	will	be
included	in	the	DDL	generation.

Below	those	tabs	there	is	a	Design	Rules	button.	This	button	enables	you	to	run	a	check
for	the	predefined	design	rules	on	the	current	design	for	any	violations.	It	would	probably
be	wise	to	run	this	and	fix	any	violations	before	generating	the	DDLs.	If	the	Include
Comments	option	is	selected,	the	DDLs	will	include	the	comments	defined	in	the
relational	model.	There	is	also	a	list	of	supported	DDL	types:	Regular	DDL,	Advanced
Interactive	DDL,	and	Advanced	CL	DDL.	Regular	DDL	generates	regular	DDL,	while
Advanced	Interactive	DDL	and	Advanced	CL	DDL	support	interactive	DDLs.	At	the
beginning	of	the	generated	DDL	script	(in	the	comments),	you	can	see	what	kind	of
interactive	support	this	script	type	has	and	what	privileges	are	needed	for	that
functionality.	The	regular	DDLs	look	like	the	example	you	saw	earlier	in	this	chapter
when	creating	a	table	called	Order.

A	piece	of	a	DDL	script	defined	as	Advanced	Interactive	DDL	for	creating	a	table
Order	would	look	something	like	this:

And	here’s	the	code	for	the	same	example	when	selecting	Advanced	CL	DDL:

If	you	want	to	have	a	separate	DDL	file	for	each	object,	select	Generate	DDL	In
Separate	Files.	Otherwise,	all	the	DDLs	will	be	generated	in	a	single	file.	This	option	has
been	available	since	version	4.0.2.	It	was	added	to	the	tool	because	many	users	wanted	to
have	one	DDL	file	per	object,	and	before	that,	it	was	possible	only	by	generating	one	at
the	time.	Now	you	can	generate	them	at	once	by	selecting	Generate	DDL	In	Separate
Files.	The	files	will	be	generated	either	to	the	directory	you	specify	during	the	generation

or	to	the	one	you	have	defined	in	Preferences.	Data	Modeler	will	create	a	directory	with
the	design	name	and	under	that	a	subdirectory	for	the	relational	model	and	under	that	a
subdirectory	for	the	physical	model.	Under	the	physical	model	directory,	you	can	find
DDLs	for	creating	redaction	policies	if	you	have	defined	them	and	a	directory	called
DataObjects.	Under	DataObjects	you	can	find	directories	for	all	object	types,	and	under
them	you	will	find	all	the	DDLs	for	each	object	type.	In	my	opinion,	this	is	the	best	way	of
handling	DDLs	for	production	since	in	production	you	usually	create	objects	one	by	one
and	carefully	plan	and	test	them.	For	a	test	environment,	you	might	want	to	create	the
whole	database	of	a	certain	version,	in	which	case	you	would	want	to	have	all	DDLs	in
one	file.	If	you	have	selected	any	other	DDL	type	besides	the	Regular	DDL	option,	the
option	to	have	DDLs	in	separate	files	is	not	available.

On	the	top	of	the	same	tree	view,	you	can	see	tabs	for	different	kinds	of	DDL
operations.	On	the	‘Create’	Selection	tab	(shown	earlier	in	Figure	7-4),	either	you	can
select	the	elements	you	want	to	include	in	the	DDL	generation	or	you	can	use	the	tabs	on
the	bottom	to	select	and	deselect	them	by	object	type.	On	the	‘Drop’	Selection	tab	(Figure
7-5),	you	can	specify	which	object	types	will	have	DDLs	with	the	DROP	clause	included
before	the	CREATE	clause.	You	can	also	decide	whether	the	DROP	clause	is	generated	for
all	the	objects	selected	or	only	for	the	ones	generated	(Drop	Generated	Objects	Only)	and
whether	the	CASCADE	option	will	be	added	to	all	the	DROP	clauses.	CASCADE	means
that	the	child	tables	will	be	included	in	the	DROP	operation.

FIGURE	7-5.	‘Drop’	Selection	tab

On	the	Name	Substitution	tab	(Figure	7-6),	you	can	define	old	strings	to	be	replaced
with	new	strings	in	object	names	when	the	DDL	statements	are	generated.	This	will	take
effect	only	if	you	also	select	Apply	Name	Substitution	at	the	bottom	of	the	screen.	You
can	also	define	name	substitutions	in	the	design	properties	as	explained	earlier	in	this
chapter.	Name	substitutions	defined	in	the	design	properties	will	appear	on	this	screen
automatically.	On	the	Object	Types	tab,	you	can	specify	the	object	types	for	the	name
substitution:	Index,	Role,	Table,	Tablespace,	and	User.

FIGURE	7-6.	Name	Substitution	tab

If	you	have	table	scripts	(see	Chapter	5)	defined	for	your	tables,	you	can	see	them	on
the	Include	Table	Scripts	tab	(Figure	7-7).	On	this	tab	you	can	define	whether	these	scripts
will	be	included	in	the	generated	DDLs.	This	does	not	affect	the	scripts	defined	for	views;
they	can	be	controlled	only	by	Include	Into	DDL	Script	on	the	Scripts	tab	for	View
Properties	in	the	relational	model.	If	you	disable	the	script	generation	for	a	table	in	DDL
Generation	Options,	the	property	Include	Into	DDL	Script	for	the	table	on	the	Scripts	tab
for	table	properties	in	the	relational	model	will	automatically	be	disabled.

FIGURE	7-7.	Include	Table	Scripts	tab

NOTE
You	cannot	see	the	table	scripts	in	DDL	Preview.

If	you	have	selected	either	Advanced	DDL	or	Advanced	CL	DDL	instead	of	Regular
DDL	on	the	Oracle	Errors	To	Mask	tab,	you	can	specify	any	Oracle	errors	to	be	ignored
during	script	execution.	Specify	only	the	error	number	with	a	hyphen	and	significant	digits
in	the	Type	field.	For	example,	for	ORA-00942,	specify	-942.	You	can	also	specify	the
error	description,	but	that	is	informational	only	and	does	not	affect	the	script	execution.

You	can	save	the	configuration	with	the	Save	Configuration	button	on	the	bottom	of	the
DDL	Generation	Options	dialog,	and	the	current	configurations	will	be	saved	in	an	XML
file.	You	can	later	get	those	settings	by	clicking	the	Load	Configuration	button.	This
functionality	is	useful;	for	instance,	when	you	have	found	the	right	combination	of	settings
for	your	test	databases,	just	save	the	configuration	and	use	it	the	next	time	you	need	to
create	a	test	database.	Remember	to	name	the	configuration	files	so	you	know	which	is
which.

If	you	want	to	generate	the	DDLs,	just	click	OK.	If	you	want	to	cancel,	click	Cancel.

When	you	have	clicked	OK,	you	will	be	taken	back	to	the	DDL	File	Editor	screen,	but
this	time	it	is	not	empty.	You	will	see	all	the	DDL	clauses	for	objects	you	selected	with	the
parameters	you	defined.	The	design	rules	are	also	checked	automatically,	so	you	might
also	see	a	message	telling	you	that	there	are	errors,	and	you	should	check	the	design	rules
for	more	details.	In	the	DDL	File	Editor,	you	can	scroll	up	and	down	in	the	code,	you	can
save	the	DDL	file	(remember	that	the	preference	Default	DDL	Files	Export	Directory
defines	the	default	value	for	this	directory),	you	can	click	Find	to	search	a	string	from	the
file,	or	you	can	click	Clear	to	clear	the	screen	of	the	code.

TIP
When	saving	the	DDL	file,	remember	to	add	the	extension	for	the	filename,	for	example
Customer.sql.

Starting	from	version	4.1,	you	can	customize	the	DDL	generation	using	transformation
scripts.	With	transformation	scripts	you	can	dynamically	generate	DDL	to	prefix/append
your	objects	or	to	replace	them	entirely.	For	example,	you	can	have	journaling	tables
created	immediately	after	the	tables	are	generated	in	the	DDLs.

Summary
Generating	DDLs	with	Data	Modeler	is	simple,	and	you	can	do	the	DDL	generation	over
and	over	again.	Remember	to	decide	what	kind	of	DDLs	you	need	and	how	they	will	be
used	to	be	able	to	define	the	preferences,	design	properties,	and	generation	options	to

support	your	needs.	DLL	Preview	is	a	useful	tool	for	testing	different	combinations	of
preferences	and	design	properties.

CHAPTER
8

Designing	a	Data	Warehouse	Database

Designing	a	data	warehouse	(DW)	database	is	usually	different	from	designing
an	operational	database,	which	is	a	database	for	online	transaction	processing
(OLTP).	A	DW	database	can	be	designed	like	any	other	database	using	the

principles	of	entity-relationship	(ER)	modeling,	such	as	third	normal	form	(3NF)	and	so
on,	but	usually	that	is	not	an	optimal	solution	because	of	the	need	for	complex
relationships,	drill-downs,	and	so	on.	Therefore,	you	can	use	a	logical	design	technique
called	dimensional	modeling	to	design	a	data	warehouse	database.	The	biggest	difference
may	be	that	designing	a	dimensional	model	is	about	business	rules,	while	designing	a
traditional	ER	model	is	about	data	and	data	rules.

An	operational	database	usually	faces	a	lot	of	short	and	fast	inserts,	updates,	and
deletes	and	reasonably	simple	select	queries	for	fundamental	operational	tasks,	while	a
DW	database	is	usually	for	bulk	loading	and	complicated	select	queries	on	a	large	amount
of	data	for	planning,	analyzing,	and	decision	support	purposes,	called	online	analytical
processing	(OLAP).	The	data	for	a	DW	database	usually	comes	from	several	other
databases,	and	the	data	can	be	transformed	or	consolidated	on	loading	to	the	database.
There	are	several	techniques	for	modeling	a	DW	database:	ER	modeling	(3NF),
dimensional	modeling	(the	most	popular	ones	are	star	schema	and	snowflake),	and	Data
Vault	(a	hybrid	of	ER	and	dimensional	modeling).	These	techniques	also	include	pattern
solutions	for	known	issues	when	designing	a	DW	database.	Quite	often	a	DW	database	is
constructed	with	data	marts	(or	information	marts	as	they	are	called	in	Data	Vault	2.0)	that
include	one	or	more	dimensional	models.	The	dimensional	modeling	is	done	with	ER
notation.	If	the	database	also	supports	OLAP	features,	multidimensional	notation	can	be
used	on	top	of	the	dimensional	modeling.	Multidimensional	modeling	includes	the
concept	of	cubes.

When	designing	a	DW	database,	your	tool	should	support	ER	notation,	classification
types,	dimensional	modeling,	reverse	engineering	of	the	sources,	forward	engineering	for
the	DDLs,	source	to	target	mapping,	a	data	dictionary/repository	for	the	elements	in
design,	reporting	capabilities,	and	multidimensional	modeling.	Data	Modeler	supports	all
this.

This	chapter	does	not	go	into	all	the	details	of	designing	a	DW	database,	which	would
be	a	topic	of	a	whole	new	book,	but	you	will	learn	how	Data	Modeler	can	help	you	when
designing	a	DW	database.

Introducing	Dimensional	Modeling	Techniques
In	an	OLAP	environment,	the	queries	to	the	database	can	be	much	more	complex	than	the
ones	in	OLTP.	Here’s	an	example	of	a	typical	two-dimensional	query	in	OLTP:	“How
much	of	that	product	has	been	sold	this	month?”	In	an	OLAP	environment,	the	query	is
probably	not	two-dimensional	but	multidimensional;	it	is	probably	something	like	this:
“How	much	of	each	of	our	products	was	sold	on	a	particular	day,	by	a	particular
salesperson,	in	a	particular	city?”	In	a	multidimensional	model,	each	separate	part	of	that
query	is	called	a	dimension.	In	a	database	in	an	OLAP	environment,	many	of	the	answers
to	the	subqueries	are	not	calculated	but	determined	from	the	database.

Several	techniques	are	available	for	modeling	a	DW	database	with	a	dimensional
model.	You	will	learn	about	three	of	them:	star	schema,	snowflake,	and	Data	Vault	model.
These	techniques	include	the	modeling	techniques	and	predefined	solutions	for	known
issues	in	DW	databases.

A	star	schema/star	model	is	based	on	one	central	table	(fact)	and	several	tables	that
radiate	from	it	(dimensions).	Those	tables	are	connected	by	primary	and	foreign	keys.	The
snowflake	schema	is	also	based	on	a	central	table	(fact)	and	a	set	of	constituent	dimension
tables	that	are	further	normalized	into	subdimension	tables.	The	Data	Vault	model	consists
of	three	basic	parts:	the	architecture	(systems	architecture,	three-tier	architecture),	the
methodology	(rules	on	how	and	why),	and	the	model	(standardized	data	model	with
strictly	defined	entities).	The	Data	Vault	model	is	a	combination	of	the	star	schema	and
3NF.	The	model	is	based	on	three	key	components:	hubs,	links,	and	satellites.	A	hub	is	a
unique	list	of	business	keys	for	tracking	and	identifying	key	information,	a	link	is	an
association	to	hook	together	multiple	sets	of	information,	and	a	satellite	is	a	descriptor	that
provides	context	for	hubs	and	links.

When	building	data	warehouses	using	the	agile	methodology,	the	Data	Vault	method	is
the	most	flexible	and	probably	the	best	for	the	purpose.	But	what	is	the	difference	between
star	schema	and	snowflake,	and	which	one	should	you	choose?	Snowflake	has	less
redundancy	than	star	schema	since	the	dimension	tables	are	in	normalized	form.	That
means	a	snowflake	model	is	easier	to	maintain,	but	queries	on	it	might	get	quite
complicated	and	therefore	can	sometimes	perform	badly.	The	snowflake	model	is	good
with	dimension	analysis,	whereas	star	schema	is	better	with	metric	analysis.	Snowflake
works	better	as	the	data	warehouse	core	and	when	there	are	complex	many-to-many
relationships,	and	star	schema	is	better	for	data	marts	and	simple	relationships	(one-to-one
and	one-to-many).	Snowflake	modeling	is	a	bottom-up	approach,	and	star	schema	is	a	top-
down	approach	to	modeling.

Exploring	Dimensional	Design
The	process	of	dimensional	design	is	of	course	similar	to	designing	any	database,	but	there
are	some	tricks	and	tools	that	will	help	when	designing	a	DW	database.

The	requirements	analysis	is	mainly	about	collecting	requirements	and	documenting
them	as	described	in	Chapter	3.	The	difference	in	a	DW	database	is	that	you	also	must
collect	the	source-driven	requirements.	They	can	be	collected	by	investigating	the	ER
models	of	the	source	databases	and	the	business	process	documentation.	If	the	source
databases	do	not	have	documentation	and	ER	models,	you	can	easily	generate	the	model
as	described	in	Chapter	10	if	the	source	database	system	is	supported	in	Data	Modeler.
Otherwise,	dimensional	requirements	analysis	is	the	same	process	as	described	in	Chapter
3.

In	conceptual	and	logical	database	design,	the	tools	are	ER	models	and	data	flow
diagrams.	The	process	is	similar	to	the	one	described	in	Chapters	4	and	5.	What	is	special
in	DW	database	design	is	that	you	should	take	advantage	of	the	classification	types	and
sometimes	also	transformations.	There	are	already	preset	classification	types	in	the	Data
Modeler	tool,	but	you	can	create	as	many	new	ones	as	you	want.	Right-click	the	design

and	select	Properties.	In	the	Design	Properties	dialog,	go	to	the	Settings	|	Diagram	|
Classification	Types	tab.	In	Design	Properties,	you	can	see	all	classification	types	defined
for	this	design.	You	can	add	new	ones	by	clicking	the	green	plus	sign,	or	you	can	change
the	existing	ones	by	selecting	the	one	you	want	to	change	and	changing	the	properties	how
you	want.	You	can	define	the	name	for	the	classification	type,	define	a	prefix	for	it,	and
define	the	color	used	for	that	type	of	object	in	diagrams.	Using	classification	types	not
only	makes	the	diagrams	easier	to	read	but	also	gives	you	as	a	designer	more	tools	when
operating	with	different	kinds	of	objects	in	your	DW	database.	Classification	types	have
been	used	in	all	the	figures	in	this	chapter.

What	is	also	different	from	what	you	learned	in	Chapters	4	and	5	is	that	the	relationship
between	an	ER	model	for	an	operational	database	and	a	dimensional	model	(made	with
ER	notation)	is	that	a	single	ER	diagram	might	be	broken	into	multiple	dimensional
models	based	on	the	business	processes.	For	instance,	ordering	might	be	one	business
process	and	invoicing	another	business	process,	but	they	both	would	be	modeled	in	the
same	ER	diagram.	That	is	why	the	business	processes	must	be	understood	and
documented	well	to	be	able	to	understand	them.

The	process	of	loading	data	into	the	data	warehouse	database	can	be	designed	with	data
flow	diagrams,	and	the	transformations	can	be	designed	with	transformation	packages
(introduced	in	Chapter	3).	In	data	flow	diagrams,	you	design	the	process	of	loading	the
data,	and	in	transformation	packages,	you	design	all	the	transformations	needed	for	the
data	before	loading	it	into	the	data	warehouse	database.

Star	Schema	or	Snowflake
There	are	already	predefined	classification	types	called	Fact	and	Dimension	for	designing
a	star	schema	model	or	a	snowflake	model.	You	can	edit	those	specifications	if	you	want
to	define	the	prefixes	for	the	classification	types	(on	the	Settings	|	Diagram	|	Classification
Types	tab	of	the	Design	Properties	dialog).	You	could,	for	instance,	define	FACT_	for	fact
tables	and	DIM_	for	dimensions.	First	you	design	the	dimensional	model	using	ER
notation	from	the	logical	model	as	you	would	for	a	star	schema/snowflake:	You	select	the
business	process,	declare	the	grain,	identify	the	dimensions,	and	identify	the	facts.	The
grain	of	the	model	describes	the	central	process	of	this	dimensional	model	in	a	single
sentence	and	helps	you	to	define	the	dimensions	and	facts.	Then	you	define	the
classification	type	for	every	entity	in	the	diagram.	You	can	do	it	in	the	Entity	Properties
dialog	under	Classification	Types,	or	in	the	Browser	pane	you	can	right-click	the	logical
model	and	select	Set	Classification	Types.	In	the	dialog	that	opens	you	can	specify	which
entities	are,	for	instance,	of	type	Fact.	You	can	define	additional	classification	types	for	an
entity	by	selecting	Set	Additional	Classification	Types	in	the	Browser	pane.	On	the
diagram	a	capital	D	in	the	top-left	corner	of	the	entity	shows	that	this	entity	is	a	type	of
dimension,	and	a	capital	F	shows	it	is	a	fact	table.	If	you	want	to	see	the	classification	type
name	or	you	have	defined	several	classification	types	for	an	entity,	right-click	the	diagram
and	choose	View	Details	|	Classification	Types.	Figure	8-1	shows	a	design	for	a	star
schema	(left)	and	snowflake	(right)	in	ER	notation	using	Data	Modeler	with	the
classification	types	displayed.

FIGURE	8-1.	Logical	dimensional	model	for	star	schema	and	snowflake

When	you	are	ready	with	the	ER	model,	you	can	move	to	the	relational	model	as
described	in	Chapter	5	by	running	the	Engineer	To	Relational	Model	command.	This
transformation	is	done	automatically	based	on	the	logical	model,	preferences,	and

properties.	If	you	want	to	have	surrogate	keys	generated	automatically	(IDs)	for	your
tables,	as	usually	recommended	for	DW	databases,	remember	to	define	the	Create
Surrogate	Key	property	for	your	entities	(usually	dimensions).	And	if	you	want	the	fact
table	to	have	a	primary	key	constructed	only	on	foreign	keys	from	parent	tables,	first
define	the	relationships	as	identifying	(see	Chapter	4	for	more	information	on	the
identifying	relationship)	for	all	the	relationships	you	want	for	the	primary	key.	Then	go	to
the	properties	of	the	Fact	entity	and	define	a	unique	identifier	for	it	on	the	Unique	Key	tab.
Then	go	to	the	properties	of	this	unique	key	(double-click	or	click	the	Properties	icon)	and
set	the	unique	identifier	State	to	Primary	Key.	Then	select	the	Attributes	And	Relations	tab
and	select	all	the	relationships	for	the	primary	key,	as	shown	in	Figure	8-2.	Now	the	fact
table	will	have	a	primary	key.

FIGURE	8-2.	Defining	a	primary	key	for	a	fact	entity

If	you	are	using	the	automatically	generated	IDs	and	want	to	use	this	dimensional
model	as	a	base	for	a	multidimensional	model,	select	Relational	Model	as	the	Bound
Model	setting	when	creating	the	multidimensional	model	(more	about	this	later	in	this
chapter).	If	you	select	Logical	Model,	you	will	not	see	the	IDs	(because	they	are	created
only	for	the	relational	model)	to	be	able	to	link	the	dimensional	model	entities	and
multidimensional	model	objects.	If	you	want	to	base	the	multidimensional	model	on	the
logical	model,	define	the	IDs	for	the	logical	model	manually.	Any	other	IDs	except	the
primary	key	surrogate	key	you	must	add	manually	(such	as	possible	IDs	for	elements
inside	the	entity	you	might	want	to	use	when	mapping	to	the	multidimensional	model).
And	remember	that	in	the	Design	Properties	dialog	on	the	Setting	|	Naming	Standards	|
Templates	tab	you	can	define	the	name	for	the	automatically	generated	surrogate	key
(Surrogate	Key)	and	its	column	(Surrogate	Key	Column).	After	engineering,	there	are	two
things	to	do:	You	must	set	the	constraint	names	correctly	if	they	are	not	automatically	set
and	associate	the	prefixes	to	the	tables	according	to	their	classification	type.	If	you	do	not
want	to	have	table	prefixes	on	the	constraint	names,	go	to	your	relational	model	in	the
Browser	pane,	right-click,	and	choose	Apply	Naming	Standards	For	Keys	And
Constraints;	then	right-click	the	relational	model	again	and	choose	Change	Object	Names
Prefix.	In	the	Change	Object	Names	Prefix	dialog,	select	Add	Classification	Prefix.	Figure
8-3	shows	the	snowflake	example	on	the	right;	you	can	see	that	the	classification	prefixes
are	not	in	key	and	constraint	names.	If	you	want	to	have	the	prefixes	in	constraint	names,
then	run	Change	Object	Names	Prefix	and	only	after	that	run	Apply	Naming	Standards
For	Keys	And	Constraints.	Figure	8-3	shows	the	star	schema	example	on	the	left	so	you
can	see	that	classification	prefixes	are	also	in	key	and	constraint	names.

FIGURE	8-3.	A	relational	dimensional	model	for	star	schema	and	snowflake

Because	the	dimensional	model	is	a	standard	framework,	it	includes	templates	or
patterns	for	common	modeling	situations	for	business	needs,	such	as	slowly	changing
dimensions	(SCDs),	fact	table	structure,	heterogeneous	products,	pay-in-advance

databases,	event-handling	databases	(factless	fact	tables),	periodic	snapshot	fact	tables,
accumulating	snapshot	fact	tables,	dimension	table	structure,	dimension	surrogate	keys,
degenerate	dimensions,	denormalized	flattened	dimensions,	multiple	hierarchies	in
dimensions,	flags	and	indicators	as	textual	dimension	attributes,	calendar	date	dimensions,
role-playing	dimensions,	junk	dimensions,	snowflaked	dimensions,	outrigger	dimensions,
and	many	more.	In	this	book	I	do	not	go	through	these,	but	I	encourage	you	to	find	more
information	about	them	and	use	the	ones	you	find	useful.

You	can	find	a	lot	of	literature	about	these	solutions	and	best	practices	for	designing
data	warehouses.	For	instance,	www.kimballgroup.com	is	a	good	place	to	start.

Data	Vault
Data	Vault	is	an	emerging	method	for	modeling	a	data	warehouse.	It	was	created	by	Dan
Linstedt.	Data	Vault	is	a	hybrid	of	third	normal	form	and	star	schema.	There	are	excellent
books	on	Data	Vault	by	Dan	Linstedt	and	Kent	Graziano	available.	You	can	also	find	more
about	Data	Vault	from	LearnDataVault.com	or	http://danlinstedt.com/about/data-vault-
basics/.

When	starting	to	model	your	data	warehouse	as	a	Data	Vault	model,	you	must	first
define	the	classification	types	for	hubs,	links,	and	satellites.	As	mentioned	earlier,	you	can
do	this	in	the	Design	Properties	dialog.	You	can	also	define	the	prefixes	for	them,	such	as
HUB_	for	Hubs	and	SAT_	for	Satellites.	To	define	a	Data	Vault	model,	you	must	first
define	the	hubs	and	associated	satellites	and	define	the	classification	types	for	them.	Then
create	the	many-to-many	relationships	between	the	hubs.	Name	the	relationship	as	you
would	like	the	resulting	link	table	to	be	named.	If	you	want	to	use	prefixes	for	Link	tables
too,	name	the	relationships	with	the	prefix,	for	example	LNK_SalesProduct.	Also
remember	on	the	hubs	to	select	Create	Surrogate	Key	in	the	Entity	Properties	dialog	on	the
General	tab	because	all	tables	in	Data	Vault	should	have	a	hash	key	as	a	surrogate	key,	for
example	an	MD5	hash.

TIP
In	Preferences	(on	the	Data	Modeler	|	Model	|	Relational	tab),	you	can	define	the	length
of	the	surrogate	key	or	select	a	domain	for	it.

When	the	logical	model	is	completed,	select	Engineer	To	Relational	Model.	Figure	8-4
shows	an	example	of	a	logical	Data	Vault	model.

http://www.kimballgroup.com
http://danlinstedt.com/about/data-vault-basics/

FIGURE	8-4.	A	logical	model	for	Data	Vault

After	running	the	Engineering	To	Relational	Model	command,	you	should	define	the
classification	type	to	the	link	tables	just	created.	In	the	Browser	pane,	select	your
relational	model,	right-click,	and	choose	Set	Classification	Types.	From	the	Classification
Types	list,	select	Link,	and	in	Find	type	LNK.	Select	the	tables	and	click	the	arrow
pointing	to	the	right.	Click	Apply	or	OK.	Then	it’s	time	to	do	the	same	two	things	you	saw
earlier	for	star	and	snowflake;	in	other	words,	set	the	constraint	names	correct	if	they	are
not	automatically	set	and	associate	the	prefixes	to	the	tables	according	to	their
classification	type.	If	you	do	not	want	to	have	table	prefixes	on	the	constraint	names,	go	to
your	relational	model	in	the	Browser	pane,	right-click,	and	choose	Apply	Naming
Standards	For	Keys	And	Constraints;	then	right-click	the	relational	model	again	and
choose	Change	Object	Names	Prefix.	In	the	Change	Object	Names	Prefix	dialog,	select
Add	Classification	Prefix.	If	you	want	to	have	the	prefixes	also	in	the	constraint	names,
then	run	Change	Object	Names	Prefix	and	Apply	Naming	Standards	For	Keys	And
Constraints	only	after	that.

In	a	Data	Vault	model,	each	table	must	have	some	predefined	columns.	You	can,	of
course,	define	them	on	the	entity	and	engineer	to	the	table	if	you	want,	but	you	can	also
use	a	transformation	script	to	add	the	columns	to	the	engineered	tables	or	apply	a	table
template	during	forward	engineering.	A	hub	should	have	the	business	keys	needed	(a
business	key	is	a	key	for	which	the	business	has	some	kind	of	meaning),	a	surrogate	key
(SQN	or	hash	key),	last	seen	date	(LSDT),	load	date	(LDTS),	and	record	source	(RSRC).
A	link	should	have	a	surrogate	key	(SQN	or	hash	key),	last	seen	date	(LSDT),	load	date
(LDTS),	record	source	(RSRC),	and	the	hub	keys.	A	satellite	should	have	a	surrogate	key
(SQN	or	hash	key	inherited	from	the	parent	hub	or	link	table),	load	date	(LDTS),	last	seen
date	(LSDT),	load	end	DTS	(LEDTS),	record	source	(RSRC),	and	possibly	load	sequence
ID	(LSQNID)	and	hash	diff	(HDIFF).

I	defined	three	template	tables:	table_template_Hub,	table_template_Lnk,	and
table_template_Sat.	In	table_template_Hub	I	defined	the	columns	needed	for	hub	tables,
in	the	table	table_template_Lnk	I	defined	the	columns	needed	for	link	tables,	and	in
table_template_Sat	I	defined	the	columns	needed	for	satellite	tables.	Then	I	asked	my	son
Patrik	to	modify	the	transformation	script	“Table	template	–	uses	column	name”
(predefined	in	Data	Modeler)	to	find	the	tables	whose	names	start	with	hub	and	to	add	the
columns	defined	in	template	table	table_template_Hub	to	them	(if	not	added	before).
Here’s	the	code:

Then	I	asked	him	to	create	another	script	for	tables	whose	names	start	with	lnk	and
whose	columns	are	specified	in	template	table	table_template_Lnk.	That	code	is	here:

Then	I	asked	him	to	create	one	more	script	for	tables	whose	names	start	with	sat	and
whose	columns	are	specified	in	template	table	table_template_Sat.	That	code	is	here:

You	can	add	these	transformation	scripts	by	choosing	Tools	|	Design	Rules	and
Transformations	|	Transformations.	Click	the	green	plus	sign,	define	a	name	for	a	script,
and	define	the	following:	Set	Object	to	Relational,	Engine	to	Mozilla	Rhino,	and	Variable
to	Model.	Then	write	the	code	in	the	script	editor.	Save,	and	you	are	ready	to	run	the	script
by	clicking	Apply.	When	writing	transformation	scripts,	you	can	use	dynamic	properties
to	give	you	a	lot	of	possibilities	for	adjusting	Data	Modeler	to	your	demands.	I	will	talk
more	about	dynamic	properties	later	in	this	chapter.

The	diagram	in	the	Data	Vault	model	is	usually	quite	big,	and	you	might	want	to	keep
the	template	tables	separate	from	the	actual	Data	Vault	tables.	Select	the	template	tables
and	select	Create	Subview	From	Selected.	Then	select	the	main	table	of	your	Data	Vault
model	(in	this	example	Sales),	and	after	you	right-click,	choose	Select	Neighbors	and	then
Create	Subview	From	Selected.	Now	you	can	define	the	layout	as	wanted.	Figure	8-5
shows	an	example	of	a	relational	model	for	Data	Vault	based	on	the	logical	model	shown
in	Figure	8-4	and	after	the	operations	described	earlier.	Also	note	the	grid	on	the	canvas.
You	can	turn	it	on	by	right-clicking	the	canvas	and	choosing	Show	|	Grid.	The	grid	makes
it	easier	to	adjust	the	objects	on	canvas	and	actually	to	some	people	makes	it	easier	to	read

the	diagram.

FIGURE	8-5.	A	relational	model	for	Data	Vault

TIP

If	you	want	to	straighten	the	foreign	key	lines	in	a	relational	model,	do	not	try	to	move	the
line;	move	the	table.	When	moving	the	table,	if	the	line	looks	straight	enough,	release	the
mouse.

Use	the	relational	model	as	the	base	for	the	multidimensional	model	since	all	the
settings	are	not	on	the	logical	model.	If	you	want	to	use	the	logical	model	as	a	base	for	a
multidimensional	model,	you	should	define	all	the	attributes,	full	names	(with	the	prefix),
and	surrogates	in	the	logical	model	manually.

Physical	Database	Design	and	DDLs
The	physical	database	design	for	a	dimensional	or	Data	Vault	model	is	much	the	same	as
the	physical	design	described	in	Chapter	6	since	the	database	objects	are	alike.	The
generation	for	DDLs	is	also	the	same	as	described	in	Chapter	7.	See	Chapters	6	and	7	for
more	information.

Introducing	Multidimensional	Design
Data	Modeler	also	supports	multidimensional	models,	which	include	these	elements:
cubes,	dimensions,	levels,	links,	and	ragged	hierarchy	links.	Multidimensional	models	can
be	used	if	the	database	supports	multidimensional	database	objects.	The	two	choices	are
ROLAP	or	MOLAP.	A	relational	OLAP	(ROLAP)	is	a	relational	database	extended	with
OLAP	support,	and	a	multidimensional	OLAP	(MOLAP)	is	a	multidimensional	database
that	stores	data	in	multidimensional	arrays.

In	multidimensional	design,	you	use	a	dimensional	model	(created	in	ER	notation	as
shown	earlier	in	this	chapter)	and	map	that	to	multidimensional	notation.	Typical
operations	in	multidimensional	modeling	are	slicing,	dicing,	drilling	down/up,	rolling	up,
and	pivoting/rotating.	In	a	slice	operation,	you	select	a	single	value	of	one	of	the
dimensions	and	create	a	new	cube	with	one	less	dimension	than	the	original	one.	For
instance,	you	could	have	sales	figures	for	only	year	2013,	with	all	other	dimensions	as
they	were	in	the	original	cube.	In	a	dice	operation,	you	or	the	end	user	can	select	specific
values	of	each	dimension	on	the	original	cube	and	create	a	subcube	based	on	those.	In	a
drill	down/up	operation,	the	user	is	able	to	navigate	among	levels	from	the	most
summarized	(up)	to	the	most	detailed	(down).	A	roll-up	operation	summarizes	the	data
along	a	dimension.	The	summarization	rule	might	be	computing	totals	through	a	hierarchy
or	applying	a	set	of	formulas.	A	pivot	operation	allows	the	end	user	to	rotate	the	cube	to
see	different	sides	of	the	cube.

Creating	a	Multidimensional	Model
Multidimensional	models	are	an	essential	part	of	designing	a	data	warehouse.	A
multidimensional	model	is	designed	to	help	business	users	retrieve	data	in	a	meaningful
way,	and	it	maps	easily	to	real	business	queries.	Oracle	OLAP	not	only	can	access	data
stored	in	relational	tables	but	also	includes	a	special	storage	structure	called	an	analytic
workspace	(AW)	that	manages	multidimensional	objects	with	Analytic	Workspace

Manager	(AWM).

In	Data	Modeler	you	can	create	a	new	multidimensional	model	by	right-clicking	the
multidimensional	model	in	the	Browser	pane	and	choosing	New	Multidimensional	Model.
On	the	toolbar	you	will	see	icons	for	the	types	of	elements	used	when	designing	a
multidimensional	model.	When	creating	a	multidimensional	model,	you	can	also	define	its
properties.	You	can	define	the	name	for	the	model,	whether	it	is	visible	(Visible),	what
model	it	will	be	based	on	(logical	or	relational	and	which	one,	such	as	Bound	Model),
comments,	and	notes.

NOTE
You	cannot	change	the	bound	model	for	the	multidimensional	model	after	you	have	started
to	create	it.	Make	sure	you	set	it	correctly	before	starting	to	design.	The	decision	depends
on	how	you	decided	to	create	the	dimensional	model	and	whether	you	have	all	the
information	needed	in	the	logical	model	or	in	the	relational	model.

Start	your	multidimensional	design	by	creating	a	cube.	A	cube	is	a	database	object	that
stores	data	in	a	dimensional	array.	In	the	General	properties,	you	can	define	the	name
(Name)	for	the	cube	and	some	other	properties.	If	you	select	Virtual,	the	cube	will	be
defined	as	a	virtual	cube.	A	virtual	cube	is	a	logical	combination	of	several	cubes.
Partitioning	is	a	method	for	storing	measures	in	a	cube	and	can	be	used	to	improve	the
performance	of	large	measures.	You	turn	partitioning	on	by	selecting	Partitioned.	If	you
have	defined	the	cube	to	be	partitioned,	you	should	also	define	the	other	partitioning
properties,	but	of	course	you	can	do	them	only	after	you	have	defined	the	whole	model
with	dimensions,	hierarchies,	and	levels.	In	the	Part.	Dimension	field,	you	specify	the
dimension	for	partitioning	the	cube.	The	dimension	must	have	at	least	one	hierarchy	based
on	a	level	to	be	defined	as	a	partitioning	hierarchy	in	the	Part.	Hierarchy	field	and	as	a
partitioning	level	in	the	Part.	Level	field.	If	the	dimension	has	multiple	hierarchies,	choose
the	one	that	has	the	most	members	and	define	that	as	the	default	hierarchy.

A	composite	is	an	analytic	workspace	object	that	maintains	a	list	of	all	the	nonempty,
sparse	dimension-value	combinations.	When	data	is	added	to	a	measure	dimensioned	by	a
composite,	the	Oracle	analytic	workspace	automatically	maintains	the	composite	with	new
values.	A	global	composite	is	a	single	composite	for	all	data	in	a	cube.	Depending	on	the
compression	and	partitioning	decisions	you	make,	the	behavior	of	Oracle	Analytic
Workspace	Manager	will	change.	If	you	select	Global	Composites,	the	cube	will	use	one
global	composite;	otherwise,	it	will	use	several	composites.	This	choice	is	valid	only	for
uncompressed,	partitioned	cubes,	and	since	compression	is	usually	more	valuable	for	any
cube,	this	option	is	not	used	often.	If	a	cube	is	not	partitioned,	it	always	has	one	composite
for	the	cube,	and	if	it	is	partitioned,	it	always	has	a	composite	for	each	partition.	If	you
select	the	Compressed	Composites	property,	it	means	that	the	cube	will	be	compressed.
That	is	useful	if	the	cube	is	very	sparse.	Use	the	Compression	option	(since	Oracle	OLAP
10g),	which	is	excellent	for	aggregating	sparse	multidimensional	data.	It	improves
aggregation	performance.	Query	performance	might	be	improved	and	disk	storage	reduced
with	compression.	This	feature	is	for	large	volumes	of	sparse	data	but	is	not	suitable	for
dense	cubes.

In	Full	Cube	Materialization,	the	entire	data	cube	is	physically	materialized	in	Oracle;
this	affects	the	materialized	view	with	all	the	materialized	view	capabilities	including
prescheduled	refreshment.	You	get	the	cube	materialized	by	selecting	Full	Cube
Materialization.

On	the	Entities	tab,	you	can	see	the	Available	entities	on	the	left	and	Selected	entities
on	the	right.	On	this	tab	you	select	entities	that	the	cube	will	be	based	on.	If	you	want	the
list	of	available	entities	only	to	show	the	fact	entities,	select	List	Fact	Entities	Only.

On	the	Joins	tab,	you	can	see	the	list	of	joins	for	the	cube	and	add	or	remove	joins	for
it.	If	you	want	to	add	a	new	join,	click	the	green	plus	sign.	Now	you	will	be	taken	to	the
Join	Properties	screen.	Define	the	name	(Name)	for	the	join	object.	Then	define	the	left
entity	(Left	Entity)	and	the	right	entity	(Right	Entity)	in	the	join	operation.	For	the
Existing	Relation	property,	select	the	relationship	from	the	list	that	those	entities	have
defined.	The	Cardinality	property	is	not	editable;	it	shows	the	cardinality	of	the	selected
relationship.	If	the	entity	is	dominant,	select	Dominant	Role.

On	the	Attribute	Pairs	tab,	you	define	the	attribute	pairs	that	join	the	left	and	right
entities.	You	can	also	define	comments	and	notes.

The	Dimensions	tab	is	for	viewing,	adding,	and	removing	dimensions	for	the	cube;
defining	the	order	of	the	dimensions;	and	setting	Set	Oracle	AW	Presummarized	Levels
for	a	dimension.	You	can	also	edit	the	properties	for	a	dimension.	You	will	learn	more
about	that	later	in	this	section.

On	the	Measures	tab,	you	can	add	and	remove	measures	for	the	cube.	You	can	also	edit
the	Measure	properties	(click	the	Properties	icon	or	double-click	the	measure	name).	A
measure	in	a	dimensional	model	is	typically	a	column	in	a	fact	table.	On	the	General	tab
of	the	Measure	Properties	dialog,	you	can	edit	the	name	of	the	measure.	If	you	select	the	Is
Formula	property,	the	formula	in	the	Formula	field	is	used	for	the	measure,	and	the
formula	type	(No,	Base	Formula,	OLAP	Formula,	MS	Computed)	can	also	be	specified.
You	can	also	define	whether	it	is	a	custom	formula.	If	you	do	not	select	the	Is	Formula
property,	the	Aggregation	Function	property	is	used	instead.	You	can	also	define	a	fact
that	it	will	be	based	on	(Based	On	Fact).	In	both	cases	you	can	define	the	additivity	(Fully-
Additive,	Semi-Additive,	Non-Additive)	and	the	WHERE	clause	limiting	the	aggregation
(Where	Clause).	On	the	Aggregation	Functions	tab,	you	can	view,	add,	and	remove
aggregation	functions	and	measure	aliases.	If	you	want	to	set	summary	levels	for	a
measure	alias,	select	the	item	from	the	Functions	list	and	click	the	Set	Oracle	AW
Presummarized	Levels	icon.	If	you	have	selected	the	formula	to	be	an	OLAP	formula	on
the	General	tab	in	Formula	Type,	then	on	the	Oracle	OLAP	Measure	tab	you	can	specify
the	OLAP	properties.	On	the	Oracle	Names	tab,	you	can	specify	different	names	for	the
measure:	Short	Name,	Long	Name,	and	Plural	Name.	You	can	also	specify	comments,
notes,	and	a	description	for	the	measure.

On	the	Precalculated	Slices	tab,	you	can	edit,	add,	and	remove	slices	that	are
precalculated	and	stored	in	the	cube.	On	the	Oracle	Names	tab,	you	can	specify	different
names	for	the	measure:	Short	Name,	Long	Name,	and	Plural	Name.	On	the	SQL	Access
To	Oracle	AW	tab,	you	can	edit,	add,	and	remove	SQL	Access	to	Oracle	Analytic
Workspaces	objects.	You	can	define	a	name	for	the	object	(Name)	and	the	analytic

workspace	where	the	data	is	stored	(AW	Name).	If	you	select	Include	GIDs,	a	grouping	ID
is	included.	If	you	select	Use	Object	Types,	you	can	specify	the	name	of	the	object	type
(Object	Type	Name)	and	the	name	of	the	table	type	(Table	Type	Name).	If	you	select	the
Use	Model	Clause	property,	the	Use	Model	Clause	default	statement	will	be	included	in
the	SQL	statement,	and	if	you	select	Include	RowToCell,	the	Include	RowToCell	default
statement	will	be	included	in	the	SQL	statement.	After	clicking	the	SQL	Statements
button,	you	will	be	able	to	view	and	change	the	order	of	attributes	(Attributes	Order)	and
to	view	and	edit	the	SQL	statement	that	reflects	the	current	settings	(SQL	Statements).	By
selecting	Show	Formatted	Limit	Map,	you	define	that	the	dimension	information	can	be
divided	over	several	lines.	On	the	Dimensions	And	Attributes	tab,	you	can	view,	edit,	add,
and	remove	dimensions	associated	with	the	object.	For	each	dimension,	you	can	specify
predefined	attributes	and	hierarchies.	On	the	Measures	tab	you	can	view,	edit,	add,	and
remove	measures.	You	can	also	specify	comments,	notes,	and	a	description	for	a	slice.
Measures	are,	for	example,	the	number	of	sales	(SalesAmount)	or	the	quantity	of	sales
(SalesQty).

For	a	cube,	you	can	also	specify	a	description,	comments,	notes,	and	a	description	for
the	partitioning	(Partitioning	Description).

Then	you	create	levels.	Usually	data	is	summarized	by	a	level.	For	instance,	you	might
have	a	base	level	called	Day,	and	the	sales	data	is	summarized	per	day.	You	might	also
want	it	to	be	summarized	by	weekly,	monthly,	and	yearly	bases	(levels).	On	the	General
tab	for	Level	Properties,	you	define	the	level	name	(Name)	and	the	entity	associated	with
this	level	(Level	Entity).	If	you	enable	Value	Based	Hierarchy,	that	means	you	have
defined	the	hierarchy	as	value	based;	otherwise,	it	will	be	level	based.	Level	based	is	more
common	and	therefore	the	default	in	Data	Modeler.	The	difference	is	that	in	a	value-based
hierarchy,	the	parent-child	relationships	do	not	have	named	levels	like	they	do	when	using
a	level-based	hierarchy.	If	you	have	selected	the	value-based	hierarchy,	you	should	also
define	the	Root	Identification	(ParentIsBlankSelfOrMissing,	ParentIsSelf,
ParentIsMissing,	ParentIsBlank,	ParentHasValue)	and	Identification	Value	settings.	In
both	cases,	you	can	also	select	a	default	attribute	from	a	list	if	needed.

On	the	Selection	Criteria	tab,	you	can	specify	the	selection	criteria	for	this	level.	On	the
Selection	Criteria	Description	tab,	you	can	write	a	description	for	it.	On	the	Level	Key	tab,
you	can	view	all	the	attributes	that	are	keys	for	the	level.	You	can	add	and	remove
attributes	to/from	the	key	list,	and	you	can	edit	some	of	the	attribute	properties.	On	the
Descriptive	Attributes	tab,	you	can	see,	add,	and	remove	descriptive	attributes.	For	a	new
descriptive	attribute,	you	define	the	name	(Name)	and	select	the	attribute	from	the	list
(Attribute).	You	also	define	whether	it	will	be	indexed	(Indexed)	and	whether	it	is	a	slowly
changing	attribute	(Slow	Changing,	NONE,	1,	2,	3).	If	the	level	has	been	defined	as	a
value-based	hierarchy,	you	can	see	the	list	of	attributes	of	the	parent	entity	on	the	Parent
Key	tab	to	be	selected	as	a	parent	key	attribute.	On	the	Calculated	Attributes	tab,	you	can
define	calculated	attributes	and	their	expressions.	On	the	Oracle	AW	Attributes	tab,	you
can	define	the	properties	needed	for	Oracle	analytic	workspaces,	and	on	the	MS	Olap	tab,
you	set	the	ones	needed	for	Microsoft	OLAP.	On	the	Oracle	Names	tab,	you	can	define
different	names	for	the	level	(Short	Name,	Long	Name,	Plural	Name).	You	can	also	write
comments	and	notes,	and	on	the	Description	tab	you	can	write	a	description	for	a	level.

Next	you	create	dimensions	for	the	cube.	A	cube	dimension	is	a	database	object	that
can	be	seen	as	an	edge	of	a	cube	or	an	index	to	the	data	stored	in	a	cube.	First	you	define
the	name	for	the	dimension	(Name)	on	the	General	tab.	If	you	select	Use	Natural	Keys,
the	source	keys	from	the	relational	sources	are	used	without	modification;	if	you	disable	it,
a	level	prefix	is	added	to	dimension	members	when	loading	them	into	the	analytic
workspace	to	ensure	the	uniqueness.	If	you	select	Time	Dimension,	this	dimension	is
defined	as	a	time	dimension;	otherwise,	it	will	be	defined	as	a	user	dimension.	A	time
dimension	must	have	at	least	one	level	that	supports	time-based	analysis.

On	the	Hierarchies	tab,	you	can	view	and	edit	the	hierarchies	associated	with	this
dimension.	To	view	or	edit	a	hierarchy	property,	double-click	the	hierarchy	name	or	select
the	Properties	icon	(pencil	icon).	In	Hierarchy	Properties,	you	can	define	a	name	for	the
hierarchy.	If	you	select	Value	Based	Hierarchy,	the	hierarchy	will	be	defined	as	value
based;	otherwise,	it	will	be	defined	as	a	level-based	hierarchy.	If	you	select	Time	Based
Hierarchy,	the	hierarchy	will	be	defined	as	time	based.	If	you	select	Ragged	Hierarchy,	the
hierarchy	will	be	a	ragged	hierarchy,	where	leaf	nodes	can	be	located	at	different	levels.
You	can	find	a	ragged	hierarchy	later	in	Figure	8-6	indicated	with	the	dotted	line.	By
selecting	Default	Hierarchy,	you	define	this	hierarchy	as	the	default	hierarchy	for	the
dimension.	On	the	Levels	tab,	you	can	view	or	edit	level	definitions	associated	with	this
hierarchy,	whereas	on	the	Rollup	Links	tab	you	can	view	or	edit	rollup	link	definitions.	On
the	Oracle	Names	tab,	you	can	specify	different	names	for	the	hierarchy:	Short	Name,
Long	Name,	and	Plural	Name.	And	in	Description,	you	can	define	the	description	for	the
hierarchy.	You	can	also	define	comments	and	notes	for	a	hierarchy.

FIGURE	8-6.	A	multidimensional	model	based	on	a	logical	dimensional	model

On	the	Levels	tab,	you	can	view	or	edit	a	level	definition	associated	with	this
dimension.	On	the	Slow	Changing	Attributes	tab,	you	can	view	and	edit	the	slowly

changing	attributes	associated	with	a	slowly	changing	dimension	(SCD).	On	the
Calculated	Members	tab,	you	can	view,	add,	and	remove	calculated	members	associated
with	this	dimension.	On	the	Oracle	Names	tab,	you	can	specify	different	names	for	the
dimension:	Short	Name,	Long	Name,	and	Plural	Name.	On	the	Description	tab,	you	can
define	the	description	for	the	dimension.	You	can	also	define	comments	and	notes	for	a
dimension.

Finally,	you	should	create	links	between	the	cube	and	dimensions	and	between
dimensions	and	levels.	Figure	8-6	shows	an	example	of	a	simple	logical	dimensional
model	on	the	left	and	a	multidimensional	model	based	on	that	logical	model	on	the	right.

If	you	want	to	see	the	model	more	simplified,	just	go	to	the	Browser	pane,	right-click,
and	choose	Show	Compact	Model.	Figure	8-7	shows	a	compact	diagram.	To	see	all	the
details	again,	choose	Hide	Compact	Model.

FIGURE	8-7.	A	compact	diagram

Creating	the	Physical	Model	and	Exports
In	the	physical	model	for	an	Oracle	database,	you	can	define	some	properties	for
dimensions.	Otherwise,	the	physical	model	is	defined	as	described	in	Chapter	6.	To	get
your	dimensions	to	the	physical	model,	you	go	to	the	multidimensional	model	in	the
Browser	pane,	right-click,	and	choose	Engineer	To	Oracle	Model.	If	you	choose	Engineer
From	Oracle	Model,	the	multidimensional	model	will	be	created	based	on	the	physical
model	and	parameters	given	during	the	reverse	engineering.

The	DDLs	for	creating	relational	objects	can	be	exported	as	described	in	Chapter	7.
The	multidimensional	model	can	be	exported	to	cube	views	metadata,	to	Microsoft
XMLA,	or	to	Oracle	Analytic	Workspace	(Oracle	AW).	You	can	find	all	of	these	options
in	the	File	menu	under	Export.	The	DDLs	for	both	cube	views	metadata	and	Microsoft
XMLA	can	be	generated	without	a	connection	to	a	database,	but	Oracle	AWs	can	be
generated	only	with	a	connection	to	a	database.

NOTE
Multidimensional	models	can	also	be	imported	to	Data	Modeler.

If	you	want	to	export	as	a	cube	views	metadata,	choose	File	|	Export	|	Cube	Views
Metadata.	Insert	the	default	schema,	select	Dimensional	Model	And	Relational	Model
And	Physical	(DB2	UDB)	Model,	and	click	OK.	Then	you	can	define	the	filename	for	the
XML	file	and	the	location	it	will	be	saved.	Now	you	can	deploy	it	in	a	UDB	v8.1	physical
environment.

If	you	want	to	export	as	a	Microsoft	XMLA	(XML	for	Analysis)	file,	select	Microsoft
XMLA.	Type	the	database	name,	select	the	dimensional	model,	and	click	OK.	Then	you
can	define	the	filename	for	the	XMLA	file	and	the	location	where	it	will	be	saved.

If	you	want	to	export	it	as	Oracle	AW,	select	Oracle	AW.	Define	the	default	schema,
select	the	dimensional	model,	the	relational	model,	and	the	physical	model	(Oracle
Model).	Define	the	Oracle	AW	name	and	select	the	export	mode	(Recreate	AW	or	Export
Metadata	To	File	Only).	If	you	want	the	cubes	to	be	populated,	select	Populate	Created
Cubes.	Define	the	Output	XML	File,	which	is	the	XML	file	for	the	exported	definition.
You	can	specify	the	output	directory	by	clicking	the	box	with	three	dots	(…).	You	can
select	a	JDBC	connection	or	create	a	new	one	with	the	Create	button	next	to	New	JDBC
Connection.	To	test	the	connection,	click	the	Test	button	next	to	Test	Selected	Connection.
On	the	Cubes	And	Slices	tab,	you	can	select	cubes	and	slices	to	be	included	or	excluded.
By	exporting	to	an	Oracle	analytic	workspace,	you	can	create	the	analytic	workspace
based	on	a	multidimensional	model.

NOTE

The	fields	Oracle	AW	Attributes	Short	Description	and	Long	Description	must	be	defined
before	exporting.

NOTE
When	Exporting	to	Oracle	AW,	some	validation	rules	are	checked,	and	if	you	break	the
rules,	an	error	message	will	be	shown	in	the	validation	log.	For	example,	if	you	do	not
have	reference	attributes	defined	for	a	dimension,	you	do	not	have	a	fact	attribute	defined
for	a	measure	or	you	have	not	defined	a	short	description.

There	are	also	import	functionalities	for	cube	views	metadata,	Microsoft	XMLA,	and
Oracle	AW.	You	can	use	these	functionalities	for	reverse	engineering	and	for	documenting
an	existing	multidimensional	database.

Reporting
Chapter	11	will	talk	more	about	reporting,	but	in	this	chapter	you	will	see	the	possibilities
of	getting	reports	of	multidimensional	model	definitions.	There	are	no	standard	reports	in
the	main	reporting	functionality	(File	|	Reports)	for	multidimensional	models.	But
probably	there	is	no	need	for	that	since	you	can	easily	define	a	custom	report	template	in
the	search	functionality	(Chapter	11	will	discuss	more	about	search	functionality).

Activate	your	multidimensional	model	(click	the	canvas)	and	select	the	Search	button
(binoculars	icon)	from	the	toolbar.	Type,	for	instance,	Time	in	the	search.	Select
Dimension	Multidimensional_1	(where	Multidimensional_1	is	the	name	of	your
multidimensional	model)	in	the	Filter	field.	Select	from	the	results	the	line	with	“Property
=	All	levels”	and	click	Report.	Click	Manage	in	Custom	Templates	and	create	your	own
template	that	can	be	used	every	time	you	want	to	run	a	report.	Save	the	template,	and	you
can	find	it	in	the	Custom	Templates	list	when	generating	a	report.	You	can	read	more
about	creating	a	report	template	in	Chapter	11.

NOTE
The	Report	button	is	available	only	if	you	have	selected	an	object	type	in	Filter.

Using	Dynamic	Properties	and	User-Defined
Properties
You	can	use	dynamic	properties	to	add	your	own	functionality	to	Data	Modeler.	Dynamic
properties	are	name-value	pairs	that	can	be	created	and	used	during	scripting.	One
example	is	the	Discover	Foreign	Keys	utility	described	in	Chapter	10	where	Data	Modeler
creates	a	dynamic	property	named	createdByFKDiscoverer	and	attaches	that	to	all	foreign
keys	created	automatically	during	the	Discover	Foreign	Keys	process.	You	can	create	new
dynamic	properties	on	the	property	screen	of	most	of	the	elements	in	Data	Modeler	on	the

Dynamic	Properties	tab.	On	that	tab	you	define	a	property	and	a	value	for	the	property	you
want	to	create.	On	the	same	screen	you	can	also	remove	dynamic	properties.	You	can	also
create	dynamic	properties	using	transformation	scripts	and	attach	them	to	objects.	Figure
8-8	shows	a	transformation	script	that	adds	a	dynamic	property	called	Heli	to	all	the	tables
and	sets	it	to	the	value	of	True.	The	last	row	in	the	script,	table.setDirty(true);	is	necessary
because	when	saving	in	Data	Modeler,	only	objects	with	a	dirty	status	equal	to	True	are
saved.	If	the	dirty	status	is	not	set	to	True,	the	change	will	not	be	persistent.

FIGURE	8-8.	Custom	transformation	script	for	adding	a	dynamic	property	for	a	table

TIP
You	can	read	more	about	scripting	from	…/datamodeler/xmlmetadata/doc.

TIP
You	can	use	transformation	scripts	for	many	things.	For	instance,	you	can	use	them	for
creating	an	Oracle	Data	Integrator	(ODI)	model	based	on	a	Data	Modeler	relational
model,	as	David	Allan	explains	in	his	blog	post	at
https://blogs.oracle.com/dataintegration/entry/odi_12c_building_models_in.

You	can	use	the	following	methods	that	are	related	to	dynamic	properties	during
scripting:

			void	setProperty(String	key,	String	value);

			String	getProperty(String	key);

			boolean	hasProperty(String	key);

			boolean	hasProperty(String	key,	String	value);

			void	removeProperty(String	key);

			void	clearProperties();

			Iterator	getPropertyNames();

Since	version	4.0.1,	you	can	include	dynamic	properties	in	custom	report	templates	and
in	generated	reports.	And	since	4.0.2	there	has	been	an	option	to	show	dynamic	properties
in	relational	and	logical	diagrams.	You	can	set	that	in	Design	Properties	(right-click	the
design	name	in	the	Browser	pane	and	choose	Properties	or	double-click	the	design	name)
on	the	Settings	|	Dynamic	Properties	tab	by	selecting	the	Visible	property.	You	can	define
a	different	name	to	be	shown	in	a	diagram	by	typing	that	into	the	Presentation	Name	field.
See	Figure	8-9	for	more	information.	Then	go	to	the	diagram	canvas,	right-click,	and
choose	View	Details	|	Dynamic	Properties.

https://blogs.oracle.com/dataintegration/entry/odi_12c_building_models_in

FIGURE	8-9.	Design	Properties	dialog,	Dynamic	Properties	tab

In	Data	Modeler	4.1	you	can	upgrade	the	existing	dynamic	properties	to	user-defined
properties.	User-defined	properties	are	dynamic	properties	but	with	an	additional	metadata
layer.	User-defined	properties	can	have	a	type	(number,	text,	date,	list	of	values)	with
related	controls.	They	can	have	checks	in	the	user	interface,	they	can	be	visualized	in	a
diagram,	and	in	addition	to	dynamic	properties,	they	can	have	a	color	set.

Summary
Designing	a	database	for	a	data	warehouse	is	a	bit	different	than	designing	an	operational
database.	The	main	difference	is	that	you	do	not	concentrate	on	the	data	but	on	the
business	processes,	business	rules,	and	requirements	for	reporting	and	analytics.	A	data
warehouse	database	usually	consists	of	the	business	processes	described	in	a	dimensional

model.

The	main	tools	in	Data	Modeler	to	assist	in	data	warehouse	design	are	data	flow
diagrams,	transformation	packages,	dimensional	modeling	(the	logical	model	and	the
relational	model),	and	the	multidimensional	model.	The	process	for	data	warehouse
modeling	is	similar	to	the	one	described	in	Chapters	3	to	7	except	that	usually	a	data
warehouse–specific	modeling	technique	is	used	instead	of	3NF.	The	most	common
techniques	are	star	schema,	snowflake,	and	Data	Vault.	The	multidimensional	model	is
created	based	on	a	dimensional	model	(star	or	snowflake)	and	can	be	implemented	in	a
database	that	supports	multidimensional	arrays.	Multidimensional	objects	are	used	by
OLAP	tools	for	analyzing	the	data.

Data	Modeler	has	excellent	support	for	many	kinds	of	search	and	reporting	operations.
You	can	also	create	your	own	templates	for	reporting.	Dynamic	properties	and	user-
defined	properties	can	be	used	to	add	your	own	functionality	to	Data	Modeler.

CHAPTER
9

Using	Version	Control	and	Working	in	a
Multiuser	Environment	(Subversion)

Usually	software	development	projects	implement	a	version	control	tool	and
methods.	Therefore,	it	makes	sense	to	use	version	control	for	database	design
as	well	and	maybe	even	use	the	same	version-numbering	system	and	logic	as	in

application	development.	Often	the	development	team	asks	for	a	specific	version	of	a
database.	Without	a	version	control	tool	integrated	into	the	database	design,	this	would	be
impossible	to	produce.

For	database	designers	who	usually	are	not	familiar	with	version	control	tools	and	how
they	work,	using	version	control	might	sound	difficult.	In	fact,	when	I	heard	that	Oracle
SQL	Developer	Data	Modeler	would	be	based	on	files	and	version	control	instead	of	a	real
database,	I	disapproved	because	version	control	was	not	something	I	knew	about.	I
decided	to	take	a	look	at	the	version	control	capabilities	first	and	then	form	my	opinion.
Now	I	think	the	decision	Oracle	made	was	correct	because	Data	Modeler	provides	much
better	support	for	database	design	in	the	world	we	live	in	today	than	it	would	if	it	were
built	on	top	of	a	database.	Believe	me,	I	never	thought	I	would	say	that.

Data	Modeler	has	an	integrated	user	interface	to	a	version	control	tool	called
Subversion.	Subversion	is	a	free,	open	source	version	control	tool.	In	the	Preferences
dialog	(choose	Tools	|	Preferences	|	Versioning	|	Subversion)	on	the	Subversion	tab,	you
can	check	which	version	of	Subversion	is	supported	by	your	version	of	Data	Modeler.

All	the	content	in	Data	Modeler	consists	of	directories	and	files,	so	any	version	control
product	that	supports	versioning	files	could	be	used	manually,	but	that	would	not	be	wise
since	there	are	so	many	files	in	each	design	and	the	filenames	are	based	on	object	IDs	that
are	not	easy	for	humans	to	read	and	identify.	Managing	those	files	manually	would	not
end	well,	so	I	do	not	advise	you	to	use	any	other	version	control	tool.	Also,	the	integration
to	Subversion	in	Data	Modeler	has	been	implemented	so	that	instead	of	showing	the
filename,	Data	Modeler	shows	the	object	name,	such	as	in	Pending	Changes.

Before	starting	to	use	version	control,	you	must	make	many	decisions.	First,	you	need
to	decide	whether	you	will	have	only	one	Subversion	repository	or	several	repositories.
Then,	you	need	a	directory	for	designs.	If	you	already	decided	that	earlier,	as	advised	in
Chapter	2	(the	Default	Designs	Directory	field	in	the	Preferences	dialog),	you	do	not	need
to	think	about	it	any	further.	In	this	directory,	you	need	to	create	a	directory	for	each
design.	The	reason	for	this	is	that	each	design	is	considered	a	project	in	Subversion,	and
each	project	must	have	its	own	working	directory	to	be	linked	to	Subversion	as	the
working	directory.

You	should	also	decide	how	to	name	the	designs	in	Subversion.	If	you	have	decided	on
the	naming	for	designs	already,	you	don’t	need	to	worry	about	it	anymore.	These	are	other
questions	to	consider:	What	other	files	do	you	want	to	bring	to	Subversion?	Will	you	share
files	with	other	users	using	version	control?	Will	you	use	templates	for	commenting	the
changes?	What	kind	of	templates?	Will	you	use	version	numbers	in	comments?	Are	you
going	to	use	the	same	version	numbers	as	in	application	development	or	other	ones?	How
and	who	will	install	Subversion	if	it	has	not	been	installed?	Who	will	manage	it?	How	will
you	define	the	user	privileges	in	Subversion?	When	using	a	version	control	tool,	you	must
learn	to	communicate	well	with	team	members	because	communication	is	the	key	factor
for	successful	version	control	usage.	Subversion	can	be	used	for	both	version	control	and

to	select	a	multiuser	environment.

Setting	Preferences	and	Properties
Data	Modeler	doesn’t	have	any	properties	that	will	affect	version	control,	but	there	are
some	preferences	that	affect	how	Data	Modeler	behaves.	In	the	Preferences	dialog	(choose
Tools	|	Preferences),	go	to	Versioning	|	Subversion.

In	Comment	Templates,	you	can	define	templates	for	comments	when	committing
changes	to	Subversion.	It	would	be	wise	to	spend	a	little	time	thinking	about	what	kind	of
templates	would	serve	your	users	the	best.	You	can	always	add	new	templates	or	edit
existing	templates.	You	can	set	one	of	the	templates	as	a	default	template.	You	can	also
remove	templates	if	needed.	You	can	export	the	templates	by	clicking	the	Export	button
and	then	import	them	to	another	computer	by	clicking	the	Import	button	on	that	computer.
A	template	could	be	something	like	this:

Version	no.:

Specification	description	and	ID:

Fix	description:

On	the	General	tab,	you	can	define	environmental	settings	and	operation	timeout,	and
you	can	edit	the	Subversion	configuration	file.	These	preferences	are	as	follows:

			The	state	overlay	properties	(the	icons	and	labels)	indicate	the	state	of	version-
controlled	files	in	the	folder	versus	in	Subversion	(for	example,	Up	To	Date,
Unmodified);	they	exist	only	on	folders	under	version	control	and	can	be	seen	only
in	the	Files	browser.	State	overlay	icons	are	small	symbols	shown	on	top	of	the	icon
identifying	the	file	type	of	a	file	in	the	Files	browser.	If	you	select	Use	Navigator
State	Overlay	Icons,	the	state	overlay	icons	appear.	State	overlay	labels	are	labels
associated	with	object	names	in	the	Files	browser.	If	you	select	Use	Navigator	State
Overlay	Labels,	state	overlay	labels	are	shown.

			The	normal	behavior	with	Subversion	is	that	a	commit	commits	only	changes;
if	you	have	a	new	file	to	add	to	version	control,	you	must	use	Add	to	get	the	file	in
version	control.	Data	Modeler	is	smart	and	actually	adds	the	Data	Modeler	element
files	automatically,	so	you	only	need	to	commit	them	to	Subversion.	The
Automatically	Add	New	Files	On	Committing	Working	Copy	preference	is	not
needed	because	of	the	default	behavior	of	Data	Modeler.

			If	you	select	Automatically	Lock	Files	With	Svn:needs-lock	Property	After
Check	Out,	files	you	check	out	from	the	repository	are	automatically	locked.	This
behavior	is	not	recommended	by	Subversion,	and	I	suggest	you	disable	this
preference.	Locking	makes	using	the	tool	more	complicated,	and	the	tool	works
perfectly	well	without	locks.	As	a	database	person,	I	wanted	to	use	locking,	but	after
selecting	it	for	a	while	and	locking	the	files	from	myself,	I	decided	not	to	use
locking	and	found	it	more	flexible	but	still	a	safe	way	of	working.	But	if	you	decide
to	use	the	locking	model	of	working,	remember	that	when	a	strange	locking	occurs,
there	is	a	way	to	solve	it:	Choose	Team	|	Cleanup	Working	Copy.

			When	performing	a	merge	operation,	there	are	two	choices:	a	dialog	box	or	a
wizard.	If	you	select	the	Use	Merge	Wizard	For	Subversion	Merging	preference,	the
wizard	is	used.	Otherwise,	the	Merge	dialog	box	is	opened	for	merge	requests.

			If	you	select	Show	Log	Messages	In	Subversion	Console,	the	SVN	Console	–
Log	pane	opens	automatically	when	there	are	log	messages	to	be	shown.	These
messages	are	about	operations	between	Data	Modeler	and	Subversion	when	you
commit	changes.	Here’s	an	example:

Having	this	preference	on	all	the	time	might	get	annoying	since	you	will	get	a	lot
of	information.	You	might	want	to	disable	it	and	select	it	only	if	you	for	some
reason	need	to	debug	problems	with	Data	Modeler	and	Subversion	or	if	you	are
importing	a	design	to	version	control.	If	you	change	this	preference,	you	need	to
restart	Data	Modeler	to	put	the	new	setting	into	action.

			In	Operation	Timeout,	you	specify	the	maximum	number	of	seconds,	minutes,
or	hours	allowed	for	a	Subversion	operation	to	complete.

			If	you	want	to	edit	the	Subversion	configuration	file,	you	can	do	so	by
clicking	the	Edit	“Server”	button	in	Edit	Subversion	Configuration	File.	Lines
beginning	with	#	are	comments.	If	you	click	Reset,	your	unsaved	changes	are
removed	from	the	file,	and	the	editor	stays	open.	If	you	click	OK,	the	changes	are
saved,	and	the	editor	is	closed.	Cancel	cancels	all	the	changes	and	closes	the	editor.
If	your	company	has	strict	security	settings,	you	might	need	to	also	edit	the
configuration	file	and	add	a	proxy	exception	to	be	able	to	use	version	control.	You
just	add	the	following	line	in	the	[global]	section:	http-proxy-exceptions
=*.mycompany.com.	Or	you	might	want	to	edit	the	Web	Browser	And	Proxy
preferences.

On	the	Version	Tools	tab,	you	can	define	how	the	Pending	Changes	dialog	and	Merge
Editor	works.	In	the	Pending	Changes	dialog,	you	can	see	the	options	Outgoing	Changes
(changes	you	have	made	and	saved)	and	Incoming	Changes	(changes	somebody	else	has
made	and	committed	to	Subversion).	For	the	Pending	Changes	Window	option,	you	can
specify	whether	the	Outgoing	Changes	dialog	will	always	be	shown,	shown	when
comments	are	hidden,	or	never	shown	(Use	Outgoing	Changes	Commit	Dialog).	The
Incoming	Changes	Timer	Interval	preference	specifies	the	time	interval	for	Data	Modeler
to	check	the	status	of	files	in	Subversion	for	incoming	changes.	You	can	manually	check
the	status	at	any	time	with	the	Refresh	Incoming	Changes	preference	on	the	Incoming
Changes	tab	in	Pending	Changes.	You	can	also	define	whether	the	merge	will	be	done

locally	or	at	the	server	by	setting	the	Merge	Editor	preference.	My	personal	preference	is
locally	so	I	always	know	that	my	local	version	is	the	one	I	want	to	commit	to	Subversion.

Introducing	Subversion
Before	you	can	start	working	with	Subversion,	you	must	install	it.	Check	in	the
Preferences	dialog	to	see	which	version	of	Subversion	is	supported	by	your	version	of
Data	Modeler.	Download	that	version	of	Subversion,	follow	the	instructions,	and	install	it.

If	you	need	Subversion	only	for	version	control	purposes,	not	for	a	multiuser
environment,	the	easiest	way	is	probably	to	use	Oracle	SQL	Developer	to	create	a	local
repository.	Then	you	do	not	need	to	download	anything.	In	Oracle	SQL	Developer,	choose
Team	|	Subversion	|	Create	Local	Repository.	Follow	the	instructions,	and	you	will	have	a
local	repository	that	you	can	use	for	version	control.	If	you	also	need	the	multiuser
environment	features,	you	need	to	create	a	real	Subversion	repository	on	a	server.

When	you	are	working	with	Subversion,	you	always	have	a	working	copy	of	your
design	on	your	own	computer.	When	you	save,	you	save	the	changes	to	that	copy	of	the
design.	When	you	commit,	you	bring	your	changes	from	the	local	working	copy	to	the
copy	in	Subversion.	Checking	out	from	a	Subversion	repository	creates	a	working	copy	of
that	directory	on	your	computer	and	the	.svn	directory	in	it.	Unless	otherwise	defined
during	the	checkout,	this	copy	contains	the	most	recent	versions	of	the	directory	and	its
tree	found	in	the	Subversion	repository.

In	the	working	copy	directory,	there	is	always	a	directory	called	.svn	that	includes	files
Subversion	is	using	to	manage	your	working	copy	and	to	control	that	everything	works	as
it	should.	If	you	accidentally	remove	the	.svn	subdirectory	or	anything	else	happens	to	it,
the	easiest	way	to	fix	the	problem	is	to	remove	all	the	files	and	directories	from	the	design
directory	and	check	out	the	design	from	version	control	again	to	the	same	directory.	The
Subversion	server	does	not	know	whether	there	are	working	copies	on	your	computer,	so
deleting	the	working	copy	does	not	affect	Subversion.	But	make	sure	you	have	committed
all	the	changes	before	deleting	the	working	copy.	There	is	no	need	based	on	performance
or	any	other	reason	to	delete	the	working	copies	unless	you	know	you	will	not	be	working
with	this	design	anymore.

The	working	model	with	Subversion	is	a	copy-modify-merge	solution.	Copy	(from	the
version	control	to	your	working	directory),	modify	your	copy	in	the	working	directory,
and	merge	your	changes	to	the	copy	in	Subversion.	Each	time	you	commit,	you	create	a
new	revision	of	your	design	to	the	Subversion	repository.	There	is	always	a	number
identifying	the	revision.	Each	revision	number	has	a	whole	file	system	tree	attached	to	it,
which	is	a	snapshot	from	the	moment	it	was	saved.	The	revision	number	applies	to	the
whole	tree,	not	individual	files.

In	Subversion,	a	project	is	a	solid	unit	of	something	like	a	design	is	in	Data	Modeler.	It
is	a	directory	under	which	all	the	files	are	saved.	In	Subversion	you	can	define	user
permissions	per	directory	for	user	groups	and	add	user	accounts	to	the	right	groups	to
grant	them	permissions.	But	think	first	if	you	really	need	to	do	that	because	in	that	case
somebody	must	create	the	projects/design	directories	in	Subversion	and	grant	privileges

before	anybody	can	insert	the	files.	And	somebody	must	maintain	the	hierarchies.	The
other	possibility	is	to	grant	privileges	to	the	Subversion	repository	or	to	the	main	directory
for	Data	Modeler	designs.

Subversion	does	not	give	the	structure	for	your	project	layout,	and	it	does	not	define	for
you	whether	you	need	one	repository	or	several	repositories.	You	can	have	one	project	per
Subversion	repository,	all	your	projects	in	one	repository,	or	something	in	the	middle.	If
you	decide	to	have	just	one	repository,	it	means	typically	less	administration,	but	revision
numbers	are	global	and	cannot	be	used	as	meaningful	version	numbers.	Large	projects	can
cause	problems	to	other	projects	in	the	same	repository,	for	instance,	by	taking	a	lot	of
resources	from	the	repository.	Multiple	repositories	usually	work	best	if	the	projects	have
nothing	to	do	with	each	other	and	they	need	to	be	administered	separately.	In	that	case,	the
repository	structure	can	be	tailored	to	each	project	separately	and	user	permissions	can	be
defined	easily,	but	there	is	a	big	limitation:	Subversion	does	not	support	merging	between
different	repositories.	In	general,	usually	the	easiest	solution	is	to	have	one	repository	for
all	the	Data	Modeler	designs.

Subversion	does	not	define	the	structure	of	a	repository	or	the	project	layout.	You
might	want	to	have	three	subdirectories	in	your	Subversion	repository	either	in	the	root	or
per	design	directory:	trunk,	branch,	and	tags.	The	trunk	is	the	main	line	or	root	of	the
design,	and	the	main	development	line	should	be	saved	in	the	trunk	folder.	You	might
want	to	create	specific	branches,	and	they	should	be	saved	in	the	branch	directory.	Tags
are	named,	stable	snapshots	of	a	particular	line	of	development	and	saved	in	the	tags
directory.	For	example,	version	1.0	of	the	design	could	be	saved	as	a	tag	to	have	a	solid
and	easy	way	to	find	a	version	of	it.	In	Subversion	each	repository	revision	is	actually	the
same	as	a	tag	in	general:	a	snapshot	of	the	file	system	after	each	commit.	In	the	sense	of
Subversion,	there	is	no	need	for	tags;	you	can	find	a	specific	revision	of	the	design	from
version	control	anytime.	But	if	people	are	used	to	creating	tags,	it	is	better	to	create	a
directory	for	them.	So,	creating	a	branch	or	a	tag	is	a	copy	operation	to	Subversion,	and
only	the	selected	location	tells	the	user	which	kind	of	copy	was	actually	done:	a	branch	or
a	tag.	Using	Subversion	makes	no	difference	because	a	directory	is	a	directory	and	a	file	is
a	file,	and	that’s	it.	The	structure	is	mainly	for	users	to	know	where	to	find	what,	and	often
it	is	easier	to	follow	the	common	standard	of	having	the	directories	trunk,	branch,	and	tag.
You	also	need	to	decide	whether	you	want	these	directories	to	be	repositorywide	or
whether	you	want	to	create	them	for	each	project	or	design.

Connecting	to	Subversion
Before	you	can	use	Subversion	and	see	it	in	the	Versions	browser,	in	Data	Modeler	you
must	create	a	connection	to	the	Subversion	repository.	To	create	a	connection,	choose
Team	|	Create	Connection	or	go	to	the	Versions	browser,	right-click,	and	choose	Create
Connection.	Then	select	whether	you	want	to	create	it	manually	(Manually	Create	A
Subversion	Connection)	or	automatically	by	importing	a	connection	somebody	else	has
created	(Import	Subversion	Connections)	either	with	Data	Modeler	or	with	Oracle	SQL
Developer.	Now	you	will	create	it	manually	and	a	bit	later	you	will	see	how	to	export	and
import	connections.	Select	Manually	Create	A	Subversion	Connection.	In	Repository
URL,	enter	the	full	and	valid	URL	for	a	Subversion	repository.	The	following	are	the

possible	choices,	which	depend	on	where	the	repository	is	located	and	which	protocol	you
need	to	use:

			file:/// Direct	repository	access	to	a	repository	on	a	local	disk

			http:// Access	via	the	WebDAV	protocol	to	an	Apache	server

			https:// Same	as	http://	but	with	Secure	Sockets	Layer	(SSL)	encryption

			svn:// Access	via	custom	protocol	to	an	svnserve	server

			svn+ssh:// Same	as	svn://	but	through	an	SSH	tunnel

For	instance,	I	have	a	repository	on	my	local	computer,	and	I	define	the	URL
file:///C:/Users/Heli/DataModeler/SubversionRepository.	Remember	to	replace	the
backward	slash	(\)	with	a	forward	slash	(/)	in	the	path.

Then	define	the	connection	name.	If	you	leave	it	blank,	the	name	of	the	connection	will
be	the	whole	URL	of	the	repository	location.	If	you	have	created	users	and	granted
privileges	to	the	repository,	enter	your	username	(User	Name)	and	your	password
(Password).	If	your	repository	does	not	demand	these,	leave	them	blank.	If	your	repository
is	a	production	repository,	it	should	have	user	privileges	defined.	Remember	that
usernames	and	passwords	are	case	sensitive.	You	can	test	the	connection	by	clicking	the
Test	Read	Access	button.	If	it	works,	you	are	ready	to	start	working	with	Subversion.	If
you	get	an	error	message,	fix	what	is	needed	and	try	again.

To	make	a	copy	of	your	connections,	you	can	use	the	export/import	functionality.	To
export	your	connections,	go	to	the	Versions	browser,	right-click,	and	choose	Export
Connections.	Select	the	directory	to	export	the	file	with	the	Browse	button	and	enter	the
name	of	the	connection	file.	Select	the	connections	you	want	to	export	from	the	list	and
click	OK.	To	import	connections	to	your	new	Data	Modeler	installation,	go	to	the	Versions
browser,	right-click,	and	choose	Import	Connections.	Select	the	file	that	has	the
connections	with	the	Browse	button	and	click	OK.	The	file	created	during	export	includes
also	usernames	and	passwords,	so	this	file	should	not	be	shared	with	other	users.	The
password	is	encrypted	in	the	file.

Using	Subversion	in	Oracle	SQL	Developer	Data
Modeler
The	main	concept	while	using	Subversion	is	the	working	copy	on	your	local	computer.
Your	working	copy	of	the	design	will	exist	there,	and	all	the	changes	you	make	will	be
saved	to	your	local	working	copy	when	you	save	the	design.	You	commit	your	changes	to
version	control	always	through	the	working	copy	(outgoing	changes)	and	update	changes
other	users	have	made	from	version	control	(incoming	changes)	to	your	working	copy.
Only	one	design	can	be	located	in	one	working	directory,	so	you	must	have	one	working
directory	for	each	design.

NOTE
Remember	to	save!	Your	changes	will	be	visible	in	Pending	Changes	only	after	a	save
operation.

You	use	Check	Out	when	you	get	the	files	from	Subversion	for	the	first	time	and	define
the	working	directory	for	the	design.	Check	Out	brings	the	design	files	from	Subversion	to
your	working	directory	and	creates	the	.svn	directory	for	Subversion.	Check	Out	has
nothing	to	do	with	locks	(unless	you	defined	that	in	Preferences),	and	there	is	no	concept
of	“checking	in”	like	in	many	other	version	control	tools.	Subversion	can	be	used	with
locks,	but	it	is	not	recommended	by	Subversion	or	Data	Modeler.	Locking	is	complicated
and	makes	working	with	Data	Modeler	more	difficult.	My	recommendation	is	not	to	use
locking,	and	all	my	advice	and	working	models	on	this	chapter	are	based	on	that.	If	you
want	to	use	locking,	make	sure	you	have	studied	Subversion	and	how	it	works	well
enough	before	using	it.

When	you	are	ready	with	your	changes,	you	commit	them	to	the	Subversion	repository.
Remember	to	always	commit	as	soon	as	you	are	ready	to	prevent	conflicts.	When	you
continue	working	with	a	design	you	have	worked	before,	always	refresh	the	incoming
changes	first	to	see	whether	there	are	any	changes	in	Subversion	and	then	click	Update
Working	Copy	to	get	those	changes	to	your	local	working	copy.	Update	Working	Copy
also	updates	your	.svn	directory	to	the	same	status	at	the	Subversion	repository.	If	you	get
any	errors	about	mixed	versions	or	something	that	indicates	that	your	local	working	copy
is	not	on	the	same	level	with	Subversion,	try	clicking	Update	Working	Copy	first.

TIP
If	you	make	changes	outside	the	tool,	for	instance	removing	the	.svn	directory,	restart	Data
Modeler	since	many	things	are	in	cache.

Exploring	the	Oracle	SQL	Developer	Data	Modeler	Tools	for
Subversion
The	main	tools	when	working	with	Subversion	are	the	Versions	browser,	Pending
Changes,	and	the	Team	menu.	Also,	by	right-clicking	an	element	in	the	Browser	pane,	you
can	choose	Versioning	and	some	operations	related	to	versioning.

In	the	Versions	browser,	you	can	see	all	the	definitions	for	existing	Subversion
connections.	By	double-clicking	the	connection	name	or	right-clicking	and	selecting
Properties,	you	can	edit	the	connection	definitions.	If	you	right-click	a	design	directory
name	in	the	Versions	browser,	you	get	the	following	operations	allowed	for	a	directory:

			New	Remote	Directory	creates	a	new	directory	in	Subversion.

			The	URL	will	define	where	the	directory	will	be	created.	It	will	be
automatically	defined	as	the	location	in	the	navigation	tree	where	you	have
selected	New	Remote	Directory.	You	only	need	to	fill	in	the	Directory	Name	and
Comments	fields.	Comments	can	be	based	on	a	template.

			The	Delete	button	deletes	the	directory	or	the	file.

			Copy	URL	copies	the	URL	for	the	location	you	are	at,	and	you	can	paste	it
where	needed.

			Refresh	refreshes	the	Versions	browser.

			Show	Log	starts	the	Log	Browser	that	shows	the	revisions	of	the	selected	file
or	directory.

			You	can	see	the	revision	number	(Revision),	action,	date	and	time	of	the
change,	and	author	of	the	change	for	the	revisions	on	a	list.	You	can	limit	the	list
with	these	parameters:	Stop	On	Copy,	Show	All	Revisions,	and	Next	20
Revisions.	In	Comment,	you	can	see	the	comments	written	for	a	revision.	If	you
select	a	revision	from	the	revision	list,	you	can	see	all	the	changes	for	it,	as	shown
in	Figure	9-1.

			Check	Out	gets	a	design	from	Subversion	and	puts	it	in	the	location	you	define
in	Destination	and	defines	that	as	your	working	directory	for	this	design.	You	can
get	the	latest	version	(HEAD	Revision,	which	is	the	default),	or	you	can	select	one
of	its	revisions.	You	can	get	the	whole	design	(Infinity:	Fully	Recursive)	or	parts	of
it.

			Export	gets	a	design	from	Subversion	and	puts	it	in	the	location	you	define	in
Destination	Path.	You	can	get	the	latest	version	(HEAD	Revision,	which	is	the
default),	or	you	can	select	a	revision.	No	link	to	Subversion	and	the	selected
destination	is	created.

			Branch/Tag	creates	a	new	branch	or	tag	of	the	latest	version	(HEAD	Revision,
which	is	the	default)	or	a	selected	revision	in	Subversion.	The	source	(From)	will	be
the	directory	where	this	operation	was	activated	in	the	Versions	browser.	You	select
the	revision	wanted	and	the	destination	(To)	in	Subversion	where	the	new	branch	or
tag	will	be	created.	It	is	recommended	to	write	a	comment	to	describe	this	branch	or
tag.

			In	Properties	you	can	see	the	Repository	URL	option,	last	changes
information	(revision,	date	and	time,	and	the	user),	lock	information	(owner,
created,	and	comment),	and	user-defined	Subversion	properties.

FIGURE	9-1.	Log	Browser	showing	all	revisions

In	Pending	Changes	(Figure	9-2),	you	can	see	the	options	Incoming	Changes,	Outgoing
Changes,	and	Unversioned	Files.	Incoming	changes	can	be	seen	only	after	you	have
clicked	Refresh	Incoming	Changes,	and	Outgoing	Changes	can	be	seen	after	you	have
saved	the	design	as	well	as	the	unversioned	files.	There	is	also	a	Refresh	button	for	the
Outgoing	Changes	and	Unversioned	Files	tabs.

FIGURE	9-2.	Pending	Changes	list

			Incoming	Changes	lists	the	changes	made	for	the	same	design	by	someone
else.	This	person	committed	them	to	Subversion,	but	you	have	not	yet	updated	them

to	your	working	copy.

			You	can	refresh	the	Incoming	Changes	list	by	clicking	the	Refresh	button	or
the	list	sign	beside	it	and	selecting	either	Refresh	Incoming	Changes	or	Refresh
All.

			You	can	update	your	working	copy	by	clicking	the	Update	Working	Copy
icon.

			Outgoing	Changes	lists	the	changes	you	have	made	and	saved	locally	but	not
yet	committed	to	Subversion.

			You	can	refresh	the	Outgoing	Changes	list	by	clicking	the	Refresh	button	or
the	list	sign	beside	it	and	selecting	either	Refresh	Outgoing	Changes	or	Refresh
All.

			You	can	commit	your	changes	to	Subversion	by	clicking	the	Commit	icon,
or	you	can	cancel	them	by	clicking	the	Revert	Working	Copy	icon.	If	you	decide
to	reverse	the	changes,	Data	Modeler	asks	you,	“Do	you	really	want	to	discard
your	changes	in	the	working	copy?”	If	you	click	Yes,	the	revert	is	completed.
When	you	commit	the	changes	to	Subversion,	you	can	add	a	comment	to	each
revision.	Comments	can	be	used	when	finding	the	right	revision,	so	it	is	important
to	create	a	thorough	comment	for	every	revision.	You	can	also	use	templates
when	creating	comments,	as	explained	earlier	in	this	chapter.	Defining	a	template
(or	templates)	is	good	for	standardizing	the	comments.

			On	the	Unversioned	Files	tab,	you	can	see	files	that	have	not	yet	been	added	to
Subversion.

			You	can	refresh	the	Unversioned	Files	list	by	clicking	the	Refresh	button	or
the	list	sign	beside	it	and	selecting	either	Refresh	Unversioned	Files	or	Refresh
All.

			You	can	add	a	file	by	clicking	the	green	plus	sign	or	remove	it	by	clicking
the	red	X	icon.

In	Pending	Changes	you	can	also	right-click	a	change	in	any	of	the	panes	and	get
operations	allowed	at	that	point.	Interesting	operations	might	be,	for	instance,	the
following:	Compare	With,	Version	History,	View	Subversion	Properties,	Add	Subversion
Property,	and	Properties.	Properties	might	be	things	such	as	Name,	ID,	Text	Status,
Property	Status,	Revision,	and	Path	(which	shows	the	location	of	the	file	and	its	name	in
the	working	directory).	If	there	are	any	problems	with	Subversion,	the	SVN	Console	–
Log	pane	will	appear	(unless	you	have	prevented	it	with	Preferences),	and	you	can	see
what	the	problem	is	and	fix	it.

There	is	also	the	Team	menu	that	includes	operations	for	Subversion.	Most	of	these
operations	are	explained	elsewhere	in	this	chapter.	Versions	opens	the	Versions	browser,
and	Pending	Changes	opens	the	Pending	Changes	pane.	The	operations	Check	Out,
Commit,	Commit	Design	Update,	Revert,	and	Update	Design	are	also	available	in	the
Team	menu.	If	you	are	using	locking,	you	can	find	Lock	and	Unlock	operations	in	the
Team	menu.	Cleanup	Working	Copy	removes	locks	in	the	working	copy	and	resumes
unfinished	operations.	You	can	see	version	histories	of	different	viewpoints	with	Version

History,	Version	Tree,	System	Files	Version	History,	and	Design	Version	History.

TIP
If	the	operations	in	the	Team	menu	are	dimmed,	click	the	Pending	Changes	pane	to	try
again.

If	you	right-click	an	item	in	the	Browser	pane	and	select	Versioning,	you	can	lock	and
unlock	that	item,	see	the	version	history	or	the	version	tree	for	it,	and	view	or	add
Subversion	properties.

NOTE
Starting	from	version	4.1	the	Versioning	status	indicators	will	be	visible	also	in	the	design
tree.

Adding	a	Design	to	Subversion
On	your	local	computer	you	should	have	specified	a	directory	to	serve	as	the	parent	for
design-specific	working	directories	when	you	specified	the	Default	Designs	Directory
preference	(see	Chapter	2	for	more	information).	Under	that	directory	you	should	create
directories	for	all	your	designs	as	their	working	copies.	For	instance,	say	you	want	to
create	a	design	called	Customer	and	need	to	create	a	directory	called	Customer	under	the
default	design	directory	to	serve	as	a	working	copy	directory	for	the	design	Customer.	If
you	have	not	created	the	connection	to	the	Subversion	repository	yet,	you	must	do	it
before	you	can	use	Subversion.

Now	is	the	time	to	add	the	design	to	Subversion.	There	are	two	ways	of	doing	it:	You
can	save	the	design	to	a	directory	that	has	been	defined	as	the	working	copy	directory,	or
you	can	import	the	design	to	version	control.	Oracle	recommends	only	the	save-as	method
because	the	import	method	also	adds	.local	files	to	Subversion,	which	is	not
recommended.

To	save	a	design	to	a	working	directory	and	add	it	to	version	control	(the	save-as
method),	follow	these	steps:

1.			Create	your	design	and	save	it	to	some	other	location	than	the	working	copy
directory.	Close	the	design.

2.			Go	to	the	Versions	browser	and	create	a	new	remote	directory	for	the	design.

3.			Check	out	the	design	to	your	working	copy	directory	(Data	Modeler	will
create	a	directory	for	you	if	needed).	The	.svn	directory	is	created	in	it	for
Subversion	to	keep	control	of	everything	in	that	directory.

4.			Open	your	design.

5.			Use	File	|	Save	As	to	save	your	design	to	the	location	you	just	specified	as

the	working	copy	directory.

6.			Data	Modeler	will	ask	you,	“Add	design	to	version	control	system?”	Click
Yes.

If	you	want	to	use	the	import	method,	this	is	how	to	do	it,	but	remember	that	this	is	not
recommended.	I	will	describe	this	method	since	it	can	be	found	in	the	Team	menu	and
most	likely	will	be	supported	in	future.	If	your	design	is	open,	close	it	before	doing
anything	else.	If	the	design	is	open	while	importing	to	Subversion,	locks	created	by	Data
Modeler	will	prevent	a	successful	import.	Here	are	the	steps	for	importing	the	design	to
Subversion	(the	import	method):

1.			Select	the	connection	from	the	Versions	browser.	If	you	do	not	see	the
Versions	browser,	go	to	the	Team	menu	and	select	Versions.

2.			Create	a	new	remote	directory	by	right-clicking	the	directory	name	and
choosing	New	Remote	Directory.	You	might	want	to	name	it	the	same	as	your
working	directory.

3.			Choose	Team	|	Import	Files	to	open	the	Import	To	Subversion	Wizard.

4.			Select	the	right	connection	from	the	Repository	Connection	list.	Then	select
the	Destination	as	your	newly	created	directory	and	click	Next.

5.			Select	the	working	directory	as	a	source	directory.	You	can	also	type	a
comment	or	use	a	predefined	comment	template	for	that.	It	is	always	good	to	write
a	clear	comment	because	that	will	help	you	later	if	you	want	to	find	a	particular
revision.	Then	click	Next.

6.			In	the	Filters	dialog,	you	can	define	file	types	by	their	extension	not	to	be
imported	to	Subversion.	You	can	also	create	new	filters	by	clicking	the	New	button.
If	you	do	not	have	any	you	want	to	leave	out,	just	click	Next.

7.			In	the	Options	dialog,	there	are	two	parameters:	Do	Not	Recurse	and	Perform
Checkout.	If	you	select	Do	Not	Recurse,	only	the	directory	you	selected	as	a	source
and	its	content	will	be	imported	to	Subversion,	not	any	of	its	subdirectories	and
their	contents.	If	you	select	Perform	Checkout,	the	imported	files	will	be	checked
out	after	import.	Click	Next.	On	the	Summary	screen,	you	can	see	what	has	been
selected	for	the	import.

8.			If	you	want	to	change	something,	click	Back;	if	you	want	to	complete	the
import,	click	Finish.	If	you	want	to	cancel	it,	click	Cancel.

Whichever	way	you	choose,	your	design	has	now	been	added	to	Subversion
successfully,	and	a	new	directory	(.svn)	has	been	created	for	your	working	copy	directory
for	Subversion	to	keep	track	of	changes.	If	you	want	to	continue	working	with	the	design,
open	the	local	copy	as	usual	(File	|	Open)	and	start	working.

Note	that	adding	a	new	design	to	version	control	always	takes	time,	and	the	bigger	the
design,	the	more	time	it	takes.	The	reason	for	this	is	that	it	needs	to	add	all	the	files	for	a
design,	and	each	design	has	several	files,	as	mentioned	earlier.	If	the	preference	Show	Log
Messages	In	Subversion	Console	is	selected	in	SVN	Console	–	Log,	you	can	see	the
progress	of	the	process	and	the	text	“Committed	revision	xyz”	when	everything	is	done.	If

the	preference	is	disabled,	you	cannot	see	the	SVN	Console	–	Log	pane	at	all.	If	you	used
the	save-as	method	instead	of	importing	the	files,	you	can	see	in	the	Message	–	Log	pane
something	like	this:

2014-09-14	10:44:44	-	Start	adding	files

2014-09-14	10:44:57	-	End	adding	files

2014-09-14	10:44:58	-	save	properties	-	start

2014-09-14	10:45:03	-	save	properties	-	end

If	you	used	the	importing	files	method,	not	even	the	Message	–	Log	will	tell	you	about
the	progress.	So,	if	you	prefer	to	use	the	import	files	method,	always	remember	to	select
the	Show	Log	Messages	In	Subversion	Console	preference	and	then	exit	and	restart	Data
Modeler	before	starting	the	import	to	be	able	to	see	the	progress	in	the	log	panes.

Making	Changes	to	a	Design	You	Have	Worked	with	Before
To	start	working	with	a	design,	open	it	from	its	working	copy	directory	as	usual	(choose
File	|	Open).	How	do	you	know	if	there	are	any	changes	that	other	users	may	have	made	to
the	design?	Go	to	the	Incoming	Changes	tab	in	Pending	Changes	(shown	earlier	in	Figure
9-2)	and	select	Refresh	Incoming	Changes.	You	can	see	exactly	what	has	been	changed
compared	to	your	local	copy	by	right-clicking	the	element	in	Pending	Changes	and
selecting	either	Compare	(Figure	9-3)	or	Compare	As	Text	(Figure	9-4).	Then	select
Update	Working	Copy	by	clicking	the	icon	on	the	right	of	the	Refresh	icon.	Now	you	will
have	the	latest	version	of	the	design	in	your	local	working	directory.

FIGURE	9-3.	Comparing	two	revisions,	XML	Metadata	Comparator

FIGURE	9-4.	Comparing	two	revisions	as	text

If	you	made	changes	before	and	forgot	to	commit	them	in	Subversion,	you	will	see
them	on	the	Outgoing	Changes	tab	in	Pending	Changes.	Commit	them.	If	there	is	a
conflict	in	design	versions,	you	must	solve	it.	To	avoid	conflicts,	always	commit	to
Subversion	before	leaving	the	tool.

Now	you	are	ready	to	work	with	your	design.	Make	changes	as	usual	and	save	them.
When	you	are	ready	to	commit	your	changes	to	Subversion,	choose	Pending	Changes	|
Outgoing	Changes	and	commit.	Remember	that	Pending	Changes	will	show	your	changes
only	after	you	have	saved	your	design.	If	you	see	files	on	the	Unversioned	Files	tab	in
Pending	Changes,	that	means	you	have	added	a	file	to	your	working	directory	that	should
be	added	to	Subversion.	You	can	add	it	on	the	Unversioned	Files	tab	in	Pending	Changes.
Select	the	file	and	click	the	green	plus	sign	to	add	it.	If	you	do	not	want	to	add	it,	select	it
and	click	the	red	X	button.	If	you	want	to	see	the	changes	in	Subversion,	you	can	check
them	from	Versions.	Refresh	Versions,	go	to	the	subdirectory	where	the	file	should	be
located,	and	check	the	changes.

TIP
Always	save	your	design	to	see	changes	you	have	made	in	Pending	Changes	and	Outgoing
Changes,	and	always	commit	your	changes	to	Subversion	when	you	are	done.	Do	not
leave	the	commit	until	after	lunch	or	tomorrow,	for	instance.	Committing	right	after	the
change	is	easier	than	solving	conflicts	later.	Remember,	you	have	a	version	control	tool,	so
if	you	committed	something	you	want	to	roll	back,	you	can	do	this	easily.

Checking	Out	a	Design	from	Subversion
If	you	have	not	worked	with	this	design	before,	you	must	check	it	out	from	Subversion	the
first	time	you	start	working	with	it.	If	you	have	already	checked	it	out,	you	just	open	the
design	and	start	working	as	explained	earlier.

First,	create	the	subdirectory	in	your	default	designs	directory	for	the	design	or	let	Data
Modeler	create	it	for	you	when	checking	out.	Then	choose	Team	|	Check	Out,	or	go	to	the
Versions	browser,	select	the	directory	for	the	design,	right-click,	and	choose	Check	Out.	If
you	are	using	the	Team	menu,	select	the	correct	Subversion	repository	(Repository
Connection)	and	the	correct	directory	(Path).	Then	select	the	working	directory	in
Destination.	If	you	have	not	created	a	directory	yet,	do	not	worry;	just	specify	the	desired
directory	and	finish	the	specification	with	a	backward	slash	(\),	and	Data	Modeler	will
create	the	directory	automatically.	If	you	do	not	want	to	get	the	latest	version	of	the
design,	you	can	specify	the	revision.	Select	Revision	and	select	the	desired	revision	by
clicking	the	Select	Revision	button.	In	the	Depth	list,	you	can	define	how	deep	in	the
directory	structure	you	want	to	go	with	your	checkout.	When	checking	out	a	design,	I
suggest	you	do	not	touch	the	Depth	selection	but	go	with	Infinity:	Fully	Recursive,	which
is	the	default.	Click	OK.	Then	open	the	design	from	its	working	directory	by	choosing	File
|	Open.

If	you	tried	to	check	out	to	a	directory	that	already	has	files	in	it,	you	will	get	an	error
message:	“Checking	out	into	a	directory	which	is	not	empty	may	cause	undesirable
results.	Are	you	sure	you	want	to	checkout	to	C:\…\…?”	I	do	not	recommend	you	do	this
since	working	with	an	integrated	version	control	is	challenging	enough	by	itself	and
should	not	be	interfered	with.	Reply	No	to	this.	If	you	wanted	to	continue	working	on	a
design	you	have	already	checked	out,	please	follow	the	instructions	on	how	to	work	with	a
design	you	have	worked	with	before.	And	if	you	really	want	to	check	it	out	again,	please
select	a	new	directory	as	a	working	copy	directory	or	remove	all	the	files	from	this
working	copy	directory	before	checking	it	out.	Data	Modeler	will	create	a	new	directory
for	you	automatically	and	suggest	a	name	for	it	(MyDesign_0,	MyDesign_1,	and	so	on).

Solving	Conflicts
A	conflict	(Figure	9-5)	means	you	have	made	changes	to	a	version	that	has	been	changed
by	someone	else	after	you	updated	your	working	copy.	In	other	words,	you	have	changed
a	version	that	is	not	the	latest	version,	and	you	have	changed	something	that	conflicts	with
other	changes.	Usually	that	happens	if	one	of	the	users	does	not	commit	immediately	after
making	changes	but	then	does	it	later.	So,	you	do	not	see	the	other	person’s	changes	in
your	Incoming	Changes	list	(because	they	have	not	been	committed	to	Subversion)	and
therefore	cannot	update	them	to	your	local	copy,	and	you	continue	working	without
knowing	about	the	changes.	When	you	both	finally	commit	to	Subversion,	that	situation	is
called	a	conflict,	and	it	must	be	solved	by	the	person	who	committed	last.	Conflicts	are
shown	in	red	in	Pending	Changes.	Solving	a	conflict	must	always	be	done	manually;	it
cannot	be	done	automatically.	As	in	real	life,	you	cannot	have	a	pattern	solution	for	every
conflict.

FIGURE	9-5.	A	conflict

When	a	conflict	arises,	you	can	see	both	incoming	changes	and	outgoing	changes	at	the
same	time.	If	you	accept	the	changes	made	to	version	control,	you	simply	commit	the
incoming	changes	and	get	those	updated	to	your	working	copy.	You	can	select	the	change
from	the	list,	right-click	it,	and	choose	either	Update	or	Update	All.	Or	you	can	click	the
Update	Working	Copy	icon	or	the	arrow	beside	it	and	select	Update	All.	Then	you	decide
what	to	do	with	the	outgoing	changes:	commit	or	revert.	Remember,	everything	in	red	is
still	in	conflict	and	must	be	solved	before	you	can	continue.

If	you	do	not	want	to	accept	the	changes	somebody	has	committed	to	version	control,
you	see	them	one	by	one	(double-click	the	change	in	Incoming	Changes)	and	merge	them
as	you	want	by	clicking	Merge	when	comparing	(XML	Metadata	Comparator).	Clicking
Merge	brings	the	change	selected	to	your	local	working	copy.	This	way,	you	build	the
version	wanted	piece	by	piece	in	your	local	working	copy	and	finally	commit	it	to
Subversion	as	it	is.

NOTE
To	avoid	conflicts,	remember	to	save	and	commit	your	changes	after	you	have	finish
working	with	them.	Never	leave	Data	Modeler	without	either	committing	or	reverting	your
changes.

Here	is	an	example	of	a	conflict:	User2	creates	a	new	table	named	user2	and	adds	a
new	column	to	the	table	CUSTOMERS	called	User2Column	but	does	not	remember	to
commit	it	to	version	control.	Meanwhile,	User1	comes	and	adds	a	new	table	named	user1
and	adds	a	new	column	to	the	table	CUSTOMERS	called	User1Column	in	the	same
design	and	commits	the	changes	to	version	control.	Now	User2	comes	back	to	work,
opens	Data	Modeler,	and	sees	their	outgoing	changes.	Because	User2	knows	the	process,
the	next	thing	User2	does	is	click	Refresh	Incoming	Changes	and	notices	that	there	are
also	incoming	changes.	User2	can	now	see	that	the	changes	are	shown	in	red,	both
incoming	and	outgoing,	and	knows	that	there	is	a	conflict.	If	User2	does	not	realize	it	and
tries	to	commit,	User2	will	get	the	error	message	shown	earlier	in	Figure	9-5.	What	User2
must	do	next	is	build	the	wanted	version	of	the	design.	Because	the	Merge	preference	is
set	to	Locally,	the	version	will	be	built	in	the	local	working	directory.	User2	will	start	with
the	incoming	changes.	As	shown	earlier	in	Figure	9-3,	User2	can	see	that	there	is	a	new
column	to	be	added	to	the	local	version	of	the	design	(User1Column)	and	that	the	local
copy	has	a	column	(User2Column)	that	does	not	exist	in	the	version	in	Subversion.	User2
now	must	decide	the	following:

			Is	the	column	User1Column	correct,	and	should	it	be	added	to	the	local
version?

			Is	the	column	User2Column	correct,	or	should	it	be	removed?

If	User2	wants	to	keep	the	column	User1	(User1Column),	User2	lets	it	be	selected	on
the	XML	Metadata	Comparator	screen.	If	User2	does	not	want	to	keep	it,	User2	will
disable	it.	If	User2	still	wants	to	add	the	column	User2Column,	it	should	be	disabled	on

the	XML	Metadata	Comparator	screen.	But	if	User2	does	not	want	to	add	it	anymore,	it
should	be	selected.	After	User2	has	made	up	their	mind	on	what	to	do	with	the	columns,
User2	clicks	Merge	and	then	saves	the	design.	Now	the	local	working	copy	has	been	built
the	way	User2	wants.

User2	still	sees	red	text	in	Incoming	Changes	because	there	is	still	the	issue	about	the
new	table.	Like	with	the	columns,	User2	must	now	decide	what	to	do	with	the	table	that
User1	added	and	what	to	do	with	the	table	User2	added.	After	making	the	decision,	User2
clicks	Merge	and	saves	the	design.	If	there	are	still	some	changes	on	the	Incoming
Changes	tab	but	not	in	red,	User2	updates	them	to	the	working	copy	and	saves	the	design.
Now	the	complete	version	is	in	User2’s	working	directory.	User2	will	commit	all	the
changes	to	Subversion	on	the	Outgoing	Changes	tab,	and	User1	will	see	them	the	next
time	User1	opens	the	design	and	checks	Incoming	Changes.	There	might	be	a	real-life
conflict	after	that	when	User1	realizes	that	User2	removed	the	table	User1	added	earlier.
User1	can	see	the	changes	on	the	Incoming	Changes	tab	and	can	add	the	table	again	based
on	their	local	working	copy	or	later	restore	the	table	from	previous	revisions.

TIP
Remember	that	if	you	have	not	committed	to	version	control	yet,	you	can	always	cancel
the	changes	either	by	right-clicking	the	outgoing	change	in	the	Pending	Changes	pane
and	selecting	Revert	or	Revert	All	or	by	choosing	Team	|	Revert.	You	can	also	use	these
options	when	trying	to	solve	a	conflict	that	is	too	complicated.

Making	Changes	Based	on	an	Older	Revision
You	can	also	change	your	design	based	on	an	older	revision.	The	change	can	be	just	a
single	change	or	several	changes,	or	you	can	go	back	to	the	design	from	a	certain	point	in
time.	If	you	want	to	change	just	an	element	or	one	thing,	go	to	that	element	in	the	Browser
pane,	right-click,	and	choose	Versioning	|	Version	History.	In	Version	History,	select	the
two	revisions	you	want	to	compare,	right-click,	and	choose	Compare	or	Compare	As	Text.
Now	you	can	see	the	differences	between	the	two	revisions	and	can	decide	whether
something	should	be	merged	to	the	current	revision	from	the	older	one.	If	you	want	to
revert	to	an	old	revision,	either	permanently	or	temporarily,	you	can	select	either	Check
Out	or	Export	in	Versions,	as	explained	earlier.	You	might	want	to	get	the	DDLs	or	see	the
logical	model	of	a	certain	version	of	the	design.	If	you	want	to	unlink	the	working
directory	with	version	control,	remove	the	.svn	directory.

TIP
If	you	want	to	recover	a	deleted	element	from	previous	revisions	of	a	design,	you	can
choose	Team	|	Design	Version	History.

Understanding	Branches,	Changes,	and	Synchronizing

Some	development	teams	like	to	keep	a	certain	version	of	the	design	untouched	and	easily
available	so	they	save	it	in	the	tags	directory	(remember	to	document	that	in	Comment),
and	some	teams	want	to	have	two	separate	development	tracks	(trunk	and	branch)	that	can
be	merged	afterward.	A	separate	track	from	the	main	track	will	be	saved	in	the	branch
directory.	As	explained	earlier	in	this	chapter,	you	can	create	a	new	branch	or	tag	by	right-
clicking	the	source	location	in	the	Versions	browser	and	selecting	Branch/Tag,	and
depending	whether	you	save	it	to	the	tag	or	branch	directory,	this	gives	the	meaning	of	a
version	being	a	tag	or	a	branch.	The	other	possibility	is	to	select	the	source	location	in	the
Versions	browser	and	then	choose	Team	|	Branch/Tag.

If	you	want	to	merge	a	branch	to	the	main	line	design	totally	or	partially,	there	are
many	ways	to	do	it.	You	can	use	the	Merge	Design	functionality	found	in	the	Teams	menu
to	compare	and	merge	the	changes	from	the	version	in	Subversion	to	your	local	working
copy,	or	you	can	use	the	compare/merge	functionalities	to	merge	two	local	working
versions	of	the	designs	and	then	commit	the	changes	to	version	control.

If	you	want	to	use	Merge	Design	first,	open	the	main	version	(trunk)	of	the	design	in
Data	Modeler.	Then	follow	these	steps:

1.			Get	all	the	incoming	changes,	and	even	if	there	might	not	be	any	available,
still	select	Update	Working	Copy	in	Pending	Changes.	That	is	because	even	though
you	might	not	have	changed	the	trunk	version	of	the	design,	you	have	changed	the
branch	version	of	it,	and	therefore	Subversion	and	your	local	working	copy	of	the
design	are	not	synchronized.

2.			Make	sure	you	have	committed	all	outgoing	changes	and	saved	the	design.

3.			Choose	Team	|	Merge	Design.

4.			Select	the	URL	for	the	design	in	the	branch	directory	(the	branch	version	of
your	design)	and	click	OK.

5.			In	the	Merge	Design	pane,	you	can	now	see	all	the	revisions	for	the	version
of	your	design	in	that	branch.	Select	the	revision	wanted	(if	you	have	written	good
comments	in	Comment	when	saving	the	revision,	selecting	should	be	easy).

6.			In	the	Action	pane,	you	can	see	each	change	in	that	revision.	Right-click	the
change	and	choose	Compare	And	Merge.	If	you	know	you	want	to	merge
everything,	you	can	also	select	the	revision	from	the	revision	list,	right-click,	and
choose	Merge.

7.			In	the	XML	Metadata	Comparator,	you	can	see	what	the	differences	are,	and
you	can	select	which	of	the	changes	to	bring	to	the	local	working	copy	of	the	latest
version	of	the	trunk	version	of	the	design.	Select	the	changes	and	click	Merge.

8.			Save	your	design.	Commit	all	the	outgoing	changes,	and	you	will	have	a
merged	version	of	the	design	in	version	control	as	your	latest	revision.

TIP
After	merging	or	updating,	always	close	and	reopen	the	design.	Sometimes	things	stay	in

cache,	and	not	all	changes	are	shown	without	closing	and	opening.

The	Merge	Reintegrate	functionality	is	for	the	final	merge	of	a	branch	into	the	trunk.
After	using	this	functionality,	you	should	delete	the	branch	and	not	use	it	anymore.

TIP
If	you	get	an	error	message	saying	that	something	cannot	be	done	because	the	local
version	is	not	up	to	date	or	it	is	a	mixed	version,	then	go	to	the	Incoming	Changes	tab	of
Pending	Changes	and	select	Update	Working	Copy.

The	way	Data	Modeler	works	can	sometimes	cause	conflicts	when	merging	two
designs.	As	mentioned	earlier,	Data	Modeler	has	directories	for	each	element	type	(table,
entity,	subview,	and	so	on),	but	the	directory	is	created	only	when	the	first	of	that	kind	of
element	is	created,	and	therefore	a	conflict	may	arise.	For	example,	let’s	assume	there	is
the	trunk	and	the	branch,	and	in	both	revisions	a	new	element	type	has	been	created	for	the
first	time;	let’s	say	it’s	a	view.	So,	somebody	creates	a	view	for	the	branch,	and	somebody
else	creates	another	view	for	the	trunk.	Now	the	directory	for	views	has	been	created	in
both	versions	for	the	first	time.	You	try	to	merge	the	designs	and	get	an	error	saying	there
is	a	conflict.	That	is	correct;	there	is	a	conflict:	A	directory	for	views	has	been	created	in
both	versions,	and	you	must	decide	which	one	is	the	correct	one.	What	you	need	to	do
now	is	to	remove	the	directory	from	the	local	target	design	by	right-clicking	the	row	in
Action	screen	below	the	Revision	screen	in	Merge	Design	and	choosing	Delete	Local
Folder.	If	there	are	outgoing	changes,	commit	them	and	then	update	the	working	copy.
Now	there	should	be	no	more	conflict,	and	the	merge	can	be	completed.	Everything	is	OK
except	you	must	get	back	what	was	in	the	local	directory	you	deleted.	You	can	do	this	by
choosing	Team	|	Design	Version	History.	Select	that	and	then	restore	the	view	file	that	was
in	the	removed	directory.	After	that	you	should	have	a	complete	merge	done	to	the	trunk.

Every	element-type	directory	includes	a	subdirectory	called	seg_0,	and	if	there	are
more	than	70	elements	of	the	same	type,	a	new	subdirectory	of	the	same	level	is	created
(seg_1).	In	other	words,	a	directory	can	have	only	70	files.	This	is	for	performance
reasons.	Data	Modeler	creates	the	new	subdirectory	when	needed	and	removes	it	when	a
Save	As	is	performed	if	there	is	no	need	for	that	subdirectory	anymore.	This	is	a	little
complicated	when	merging	the	designs.	There	can	be	two	subdirectories	in	one	design	and
one	subdirectory	in	the	other.	In	addition,	merging	might	cause	the	number	of	elements	to
exceed	70,	or	other	situations	like	this	can	sometimes	cause	a	conflict	when	merging
designs.

Sometimes	instead	of	using	Subversion	revisions,	it	is	easier	to	use	the	comparisons
and	get	the	changes	wanted	from	there.	If	you	want	to	compare	two	designs	and	make	the
changes	based	on	that	process,	there	are	two	ways	of	doing	it:	Tools	|	Compare/Merge
Models	or	File	|	Import.	We	will	talk	more	about	comparisons	in	Chapter	12.	If	you	decide
to	use	Tools	|	Compare/Merge	Models,	this	is	how	to	do	it:

1.			Make	sure	you	have	the	latest	version	of	both	designs	in	your	working
directories	since	the	comparison	will	be	done	based	on	the	designs	in	your	working
directories,	not	the	ones	in	Subversion.

2.			Open	the	original	design	(target).

3.			Choose	Tools	|	Compare/Merge	Models.	Select	the	branch	design	(source)	on
the	Import	Design	screen.

4.			Select	the	relational	model	to	be	compared	for	both	the	source	and	the	target.
Click	OK.

5.			In	the	tree	view,	you	can	see	the	changes,	as	shown	in	Figure	9-6.

6.			In	the	tabular	view	(Figure	9-7),	you	can	generate	a	report	to	see	exactly
what	has	been	changed,	as	shown	in	Figure	9-8.

7.			If	you	want	to	delete	a	table	while	merging,	select	the	table;	otherwise,	it	will
not	be	deleted.	The	default	for	deletion	is	No.	If	you	want	to	add	it,	select	the	table.
The	default	for	insert	is	Yes.

8.			To	merge,	click	Merge.

9.			Choose	File	|	Save	to	save	the	changes	in	the	local	copy.

10.			Commit	the	outgoing	changes	to	Subversion	in	Pending	Changes.

FIGURE	9-6.	Compare	Models	dialog	in	tree	view

FIGURE	9-7.	Compare	Models	dialog	in	tabular	view

FIGURE	9-8.	Report	based	on	comparing	two	models

NOTE
If	you	use	the	tabular	view,	remember	that	it	does	not	behave	like	the	tree	view.	For
instance,	if	you	want	to	change	only	one	column,	remember	to	select	not	only	the	column
but	also	the	table	it	is	related	to.	If	you	select	only	the	column,	no	changes	are	performed
on	your	target	design.

Now	you	have	merged	the	changes	in	a	branch	to	the	main	line	of	the	design.	You	can
use	this	same	method	any	time	you	want	to	merge	two	designs.	The	only	limitation	of	this
method	is	that	you	can	compare	only	relational	or	physical	models,	but	the	good	thing	is
that	you	can	also	get	the	scripts	(Alter	DDLs)	for	the	target	database	to	be	changed	as
desired	(DDL	Preview).	If	you	also	want	to	compare	the	logical	model	to	another	logical
model	and	merge	changes	from	there,	you	should	use	the	File	|	Import	method,	as
explained	here:

1.			Make	sure	you	have	the	latest	version	of	both	designs	in	your	working
directories	since	the	comparison	will	be	done	based	on	the	designs	in	your	working
directories,	not	in	Subversion.

2.			Open	the	original	design	(the	target).

3.			Choose	File	|	Import	|	Data	Modeler	Design.	Select	the	branch	design
(source)	in	the	Import	Design	dialog.

4.			Select	the	logical	model	(Selected)	if	you	want	to	compare	that	and	the
relational	model	if	you	want	to	compare	that	too.	For	the	relational	model,	you	can
select	it	to	be	imported	to	a	new	relational	model	(New	Relational),	or	you	can
select	from	a	list	one	of	the	relational	models	in	the	target	design.	Click	Next.	Click
Finish.	The	Compare	Oracle	SQL	Developer	Data	Modeler	Designs	dialog	will
open.

5.			In	the	tree	view,	you	can	see	the	changes,	as	shown	earlier	in	Figure	9-6.

6.			In	the	tabular	view,	you	can	generate	a	report	to	see	the	differences	between
the	two	models.

7.			If	you	want	to	delete	an	element	from	the	target	design,	select	it;	otherwise,	it
will	not	be	deleted.	The	default	for	deletion	is	No.	If	you	want	to	add	an	element,
select	the	element.	The	default	for	the	insert	is	Yes.

8.			To	merge,	click	Apply.

9.			Choose	File	|	Save	to	save	the	changes	in	the	local	copy.

10.			Commit	the	outgoing	changes	to	Subversion	in	Pending	Changes.

If	you	are	not	familiar	with	Subversion	and	how	it	works,	I	advise	you	to	use	either	of
the	two	latter	ways	of	comparing	the	local	working	copies	and	committing	the	locally	built
version	to	Subversion.	During	the	merge	design	process,	there	might	be	conflicts,	and	you
must	understand	the	reasons	for	the	conflicts	and	know	how	to	solve	them	to	be	able	to
have	the	merge	take	place	correctly.	For	instance,	if	you	merged	some	of	the	changes
earlier	and	try	to	merge	everything	again,	the	changes	committed	before	will	cause	a
conflict	that	must	be	solved.

Sharing	Files
Chapter	2	discussed	files	that	might	be	good	to	save	in	version	control	and	share	with
other	users	from	there.	Now	you	will	see	one	option	of	how	to	do	that.

Create	a	directory	in	Subversion	for	the	files	you	have	decided	to	share	with	all	users
(preferences,	domains,	RDBMS	sites,	design	properties,	glossaries,	report	templates,	and
so	on)	by	right-clicking	the	location	wanted	and	selecting	New	Remote	Directory.	Name
the	directory	and	click	OK.	Then	create	a	directory	on	your	computer	and	collect	all	the
files	there.	Go	back	to	Data	Modeler	and	choose	Team	|	Import	Files.	Use	the	Import
Wizard	to	import	the	files	to	Subversion.	You	can,	of	course,	do	this	with	the	Subversion
client	as	well.

Decide	the	name	for	the	directory,	such	as	SharedFiles,	on	every	computer	where	the
shared	files	will	be	exported	and	create	it.	Go	to	the	Versions	browser	in	Data	Modeler	and
navigate	to	the	SharedFiles	directory.	Right-click	the	directory	and	select	Export.	Select
your	local	SharedFiles	directory	as	the	destination	path	and	click	OK.	Now	the	files	will
be	on	your	local	computer.	Then	import	and	copy	files	where	needed	as	explained	in
Chapter	2	to	be	able	to	use	them	in	Data	Modeler.	For	example,	import	the	preferences

and	copy	the	RDBMS	sites	file	(defaultRDBMSSites.xml)	to	the	directory	defined	as	your
default	system	types	directory	in	Preferences.

When	there	are	changes	to	these	files,	first	export	or	copy	the	changed	files	to	the
working	directory.	Then	you	can	use	either	the	Subversion	client	or	SQL	Developer	to
insert	the	changed	files	to	Subversion.	You	can	use	SQL	Developer	for	this	because	in
SQL	Developer	you	can	work	with	individual	files.	This	is	one	way	to	do	it	with	SQL
Developer:

1.			If	you	use	SQL	Developer,	open	the	file	from	the	working	directory.

2.			Choose	Team	|	Subversion	|	Commit	and	remember	to	write	a	description.

3.			Advise	your	users	to	export	the	files	again	with	Data	Modeler	and	proceed
with	the	files	that	have	been	changed.

If	you	use	the	Subversion	client,	then	insert	the	files	into	Subversion	and	perform	step
3.

Working	in	a	Multiuser	Environment	with
Microsoft	Excel
As	will	be	explained	in	Chapter	11,	you	can	generate	reports	with	the	search	functionality
and	save	them	in	Microsoft	Excel	format.	These	reports	can	be	edited	in	Microsoft	Excel
and	then	imported	back	into	Data	Modeler,	and	the	related	information	in	Data	Modeler
will	be	updated.	This	is	useful	if	you	want	the	end	users	to	edit	the	descriptions,	for
instance,	but	you	do	not	want	them	to	have	to	learn	how	to	use	Data	Modeler.	This	can	be
used	with	the	logical	and	relational	models.

First	generate	the	report	you	want	as	explained	in	Chapter	11.	Figure	9-9	shows	an
example	of	a	report	of	entities.	If	you	want,	you	can	modify	the	report	using	the	tools
Microsoft	Excel	offers	to	allow	only	certain	cells	to	be	edited.	Then	give	the	report	to	the
end	user	for	editing.	In	Figure	9-10	you	can	see	an	example	of	an	edited	report.	When	the
user	is	done	with	the	changes,	open	the	design	in	Data	Modeler.	Then	right-click	either	the
logical	or	relational	model	in	the	Browser	pane,	depending	on	which	level	of	report	you
are	uploading,	and	select	Update	Model	With	Previously	Exported	XLS	(XLSX)	File,	as
shown	in	Figure	9-11.	Select	the	report	from	the	list	and	click	Open.	The	view	log	will
show	you	what	has	been	updated.	You	can	save	the	log	if	you	want	by	clicking	Save	and
close	it	by	clicking	Close.	Now	all	changes	have	been	saved	to	the	design.	See	Figure	9-12
for	an	example	of	changes	on	the	entity	Customer	and	its	comments.

FIGURE	9-9.	An	entity	report	for	Microsoft	Excel

FIGURE	9-10.	An	edited	report

FIGURE	9-11.	Updated	model	with	previously	exported	XLS	(XLSX)	file

FIGURE	9-12.	The	entity	Customer	and	its	comments	property	updated	in	Microsoft
Excel

Summary
You	need	to	make	a	few	decisions	before	starting	to	use	Subversion,	specifically,	about

privileges,	the	number	of	Subversion	repositories,	and	the	structure	for	Subversion
directories.	Also,	it	is	valuable	to	create	templates	for	comments	that	will	be	used	when
committing	changes	to	Subversion	to	make	finding	the	right	revision	easier.

Data	Modeler	offers	integration	with	Subversion,	which	means	that	you	can	use
Subversion	in	Data	Modeler	fluently.	Subversion	can	be	used	for	both	version	control	and
to	enable	a	multiuser	environment.	In	fact,	Subversion	can	be	used	to	version	the	database
designs	the	same	way	the	application	design	is	versioned.	Every	design	must	have	a
working	copy	directory	where	changes	are	saved	and	then	committed	to	Subversion.
Every	committed	change	in	Subversion	creates	a	new	revision.	In	Pending	Changes,	you
can	see	both	incoming	and	outgoing	changes	as	well	as	new	files	that	should	be	added	to
Subversion.

If	there	are	conflicts,	someone	must	resolve	them;	they	cannot	be	resolved
automatically.	Conflicts	are	resolved	by	merging,	committing,	or	reverting,	depending	on
the	desired	outcome.	Conflicts	often	can	be	avoided	by	saving	and	committing	right	after
you	have	finished	making	a	change.

You	can	let	end	users	edit	the	designs	in	Microsoft	Excel	and	then	upload	those
changes	to	Data	Modeler	easily.

CHAPTER
10

Documenting	an	Existing	Database

It	is	important	to	have	documentation	for	your	databases.	If	you	do	not	understand
your	data,	you	cannot	keep	it	up	to	date,	secure,	of	good	quality,	and	so	on.	In
addition,	changing	the	data	structures	based	on	current	requirements	is	impossible	if

you	do	not	understand	what	you	are	changing.	Documentation	is	also	vital	when
addressing	problems	related	to	data,	such	as	poor	performance.

Surprisingly,	often	databases	don’t	have	any	documentation.	This	could	be	because	the
database	came	with	an	application	product	and	the	vendor	did	not	deliver	any
documentation	for	the	database.	In	these	cases,	it	might	be	possible	not	to	have
documentation	for	the	database	because	all	the	changes,	problem	solving,	and	so	on,	are
done	by	the	vendor;	still,	it	is	good	to	know	what	you	have	bought.	In	some	cases,	you
might	have	some	documentation	for	a	database	that	was	created	during	the	software
development	process,	but	it	was	not	maintained,	and	now	it	would	be	too	much	work	to
bring	it	up	to	date.	In	other	cases,	the	documentation	was	handwritten	and	cannot	be	used,
for	instance,	to	generate	data	definition	language	(DDL)	scripts.	There	are	usually	many
reasons	why	there	is	no	documentation	or	why	it	is	too	expensive	to	create	documentation.

You	could,	of	course,	document	an	existing	database	manually	from	scratch,	which	can
be	expensive	and	a	lot	of	work,	but	Data	Modeler	offers	several	other	possibilities	that	are
far	more	efficient	and	cost	effective.	It	allows	you	to	document	an	existing	database	by
reverse	engineering	the	database	from	the	data	dictionary	or	from	existing	DDLs.	Or	you
can	use	the	documentation	you	might	have	on	a	third-party	modeling	tool	and	import	that
into	Data	Modeler.	You	can	also	combine	these	methods.

Setting	Preferences	and	Properties
Data	Modeler	has	some	preferences	that	will	change	the	result	of	reverse	engineering	or
importing	from	a	third-party	modeling	tool.	Choose	Tools	|	Preferences	to	open	the
Preferences	dialog.

On	the	Data	Modeler	|	DDL	tab,	you	can	define	two	preferences	for	the	import	process:
Replace	System	Names	During	Import	and	Create	Domains	During	Import.	If	Replace
System	Names	During	Import	is	not	selected,	the	constraint	names	are	imported	from	the
dictionary	as	they	have	been	defined	(SYS_).	If	it	is	selected,	the	name	is	changed	during
the	import	according	to	the	naming	standards	defined	in	the	design	properties.	If	Create
Domains	During	Import	is	selected,	domains	are	created	from	data	types	during	the	import
operations.	If	it	is	not	selected,	no	domains	are	created.

On	the	Data	Modeler	|	DDL	|	DDL/Storage	tab,	you	will	see	the	DDL	Storage	Options
for	Import	And	Export	options.	Here	you	can	define	which	storage	parameters	are
imported	and	which	are	not.	And	on	the	main	Data	tab,	you	can	define	the	default
directory	for	imported	files	(Default	Import	Directory).	If	you	select	Show	Log	After
Import,	you	will	always	see	the	log	after	every	import	operation.

On	the	Data	Modeler	|	Model	|	Relational	tab,	the	Default	Foreign	Key	Delete	Rule
preference	defines	the	delete	rule	when	a	new	foreign	key	is	created.	If	you	create	a	design
by	importing	a	DDL	script	or	scripts,	then	ensure	the	option	is	set	as	required	before	the

import.

You	can	also	define	in	the	Preferences	dialog	whether	the	OCI8	(thick)	driver	is	used,
instead	of	the	JDBC	(thin)	driver,	by	default	for	Oracle	Database	connections	if	it	is
available.	You	set	this	on	the	Data	Modeler	tab	with	the	preference	Use	OCI/Thick	Driver.

Reverse	Engineering	an	Existing	Database
If	you	have	a	database	that	has	no	documentation	in	another	modeling	tool,	there	are	two
ways	of	documenting	your	database:	You	can	reverse	engineer	from	the	data	dictionary,	or
you	can	import	the	DDLs	that	were	used	for	creating	the	database.	If	you	want	to	start
designing	the	changes	to	the	database	with	Data	Modeler,	after	importing	the	physical	and
relational	models,	you	can	use	the	Engineer	To	Logical	Model	functionality	to	generate	a
logical	model.	Then	you	are	ready	to	maintain	the	logical	model,	forward	engineer	them	to
the	relational	model,	and	export	the	DDLs	or	get	the	ALTER	DDLs	by	synchronizing	with
the	model	as	explained	in	Chapter	12.

Reverse	Engineering	from	a	Data	Dictionary
You	can	reverse	engineer	from	Oracle,	but	you	can	also	import	from	other	supported
relational	database	management	systems	(RDBMSs).	At	the	moment,	the	supported
databases	are	Microsoft	SQL	Server	2000	to	2012,	IBM	DB2/LUW	v7–v10,	IBM	DB2	for
OS/390,	DB2	Mainframe/zOS	up	to	DB2	11,	and	ODBC/JDBC-compliant	data
dictionaries.	The	non-Oracle	drivers	are	not	included	in	the	Data	Modeler	installation.	To
be	able	to	import	from	non-Oracle	databases,	you	need	to	download	the	drivers	required
and	add	them	in	the	Preferences	dialog.	Specifically,	after	downloading	the	drivers,	you
must	open	the	Preferences	dialog,	select	Data	Modeler	|	Third	Party	JDBC	Drivers,	and
add	the	drivers	by	clicking	the	green	plus	sign.	You	will	see	the	non-Oracle	database	as	a
new	tab	in	the	New	/	Select	Database	Connection	dialog,	and	you	can	create	a	new
connection.

For	instance,	if	you	added	Microsoft	SQL	Server,	you	will	see	a	new	tab	called
SQLServer	beside	Oracle	and	JDBC	in	the	New	/	Select	Database	Connection	dialog,	as
shown	in	Figure	10-1.	Depending	on	the	RDBMS	selected	and	the	version	of	Data
Modeler,	there	might	be	some	other	thing	you	must	do	to	get	the	connection	working,	such
as	with	Java	settings,	but	in	general	the	process	is	downloading	the	drivers,	extracting
them,	and	setting	the	Data	Modeler	preferences	for	third-party	drivers.

FIGURE	10-1.	Connection	to	Microsoft	SQL	Server

Reverse	Engineering	from	an	Oracle	Database
To	reverse	engineer	from	an	Oracle	database,	choose	File	|	Import	|	Data	Dictionary.	Then

select	the	connection	wanted	from	the	connection	list	in	the	Data	Dictionary	Import
Wizard,	as	shown	in	Figure	10-2.	Or	click	Add	to	create	a	new	connection	using	the	New	/
Select	Database	Connection	dialog	shown	in	Figure	10-3.

FIGURE	10-2.	Data	Dictionary	Import	Wizard

FIGURE	10-3.	New/Select	Database	Connection	dialog

You	can	create	an	Oracle	connection	or	a	connection	based	on	JDBC	drivers.	Since

Data	Modeler	4.0.3,	you	can	make	the	connection	using	Secure	Shell	(SSH)	tunnels,	and
the	proxy	connection	was	moved	to	the	same	place	within	the	settings.	To	create	an	SSH
tunnel,	click	the	Advanced	button	in	the	New	/	Select	Database	Connection	dialog	to	be
taken	to	the	Advanced	Properties	dialog.	Select	the	SSH	tab	and	then	fill	in	the
information	needed	for	an	SSH	connection:

			Select	Use	SSH	to	define	an	SSH	tunnel	to	be	used.

			Type	the	SSH	server	for	Host.

			Type	the	SSH	port	for	Port.	The	default	port	is	22.

			Type	the	username	that	will	be	used	to	authorize	the	SSH	session	for
Username.

			If	you	select	Use	Key	File,	a	key	file	will	be	used	to	provide	authentication.
The	key	file	contains	a	private	key	that	corresponds	to	the	public	key	registered	in
the	server	and	will	be	used	to	guarantee	that	the	user	is	who	they	claim	to	be.

			Type	the	path	to	the	key	file	for	Key	File	or	use	the	Browse	button	to	find	it.

You	can	also	use	OS	Authentication	or	Kerberos	Authentication	by	selecting	the	proper
radio	button	in	the	New	/	Select	Database	Connection	dialog.	Since	version	4.0.3,	the
proxy	connection	is	no	longer	a	radio	button	but	a	tab	in	the	Advanced	Properties	dialog.
To	define	the	proxy	connection,	select	the	Proxy	tab.

			Select	Proxy	Connection	to	define	an	SSH	tunnel	to	be	used.

			Select	either	User	Name	or	Distinguished	Name	as	a	proxy	type.

			If	you	selected	User	Name,	fill	in	the	Proxy	Client	and	Proxy	Password
fields.

			If	you	selected	Distinguished	Name,	fill	in	the	Proxy	Client	and
Distinguished	Name	fields.

After	you	have	selected	the	connection,	select	the	schema	or	schemas	wanted	for	the
reverse	engineering	(see	Figure	10-4).	You	can	set	the	options	under	Import	To	if	the
objects	will	be	imported	to	an	existing	relational	model	(Relational_1)	or	if	a	new
relational	model	will	be	created	for	them	(New	Relational	Model);	in	the	next	list,	you	can
select	from	existing	RDBMS	sites	one	of	the	sites	that	matches	the	database	version	of	the
database.	For	instance,	if	you	have	defined	several	RDBMS	sites	for	Oracle	11g,	this	list
will	show	them	all.	If	you	click	Options,	you	can	leave	some	objects	out	from	importing
(see	Figure	10-5).	For	example,	if	you	have	a	large	set	of	partitions,	you	do	not	need	to
import	them	if	you	don’t	want	to.	In	Compare	Mappings,	you	can	see	the	existing	compare
mappings,	covered	in	Chapter	12.	When	you	click	Next,	you	can	select	the	object	to	be
imported	to	Data	Modeler	(see	Figure	10-6).	You	can	select	the	objects	by	object	type,	and
you	can	use	Filter	to	narrow	down	the	list	of	objects.	For	example,	by	typing	CUST,	you
see	only	objects	whose	names	include	CUST.	After	selecting	the	objects,	click	Next.	In	the
summary	(shown	in	Figure	10-7),	you	can	see	the	summary	of	the	import.	If	it	is	not	what
you	wanted,	click	Cancel,	and	no	import	is	performed.	If	you	are	happy	with	it,	click
Finish.	If	you	click	Finish,	you	will	also	see	the	final	log	(shown	in	Figure	10-8).	You	will
now	have	a	relational	model	and	a	physical	model	in	Data	Modeler.

FIGURE	10-4.	Selecting	schemas

FIGURE	10-5.	Optional	Import	and	Processing	options

FIGURE	10-6.	Select	Objects	to	Import	screen

FIGURE	10-7.	Data	Dictionary	Import	Wizard	summary

FIGURE	10-8.	Data	Dictionary	Import	Wizard	log

NOTE
If	you	bring	several	schemas	from	the	data	dictionary,	Data	Modeler	will	automatically
create	a	subview	for	each.

NOTE
Storage	templates	(see	Chapter	6)	are	defined	automatically	when	importing	from	a	data
dictionary	or	a	DDL	file	that	defines	one	or	more	tablespaces	with	common	storage

properties.

Since	version	4.0.2,	Data	Modeler	(and	since	version	4.0.3,	SQL	Developer)	supports
Oracle	Big	Data	SQL	and	Hive.	This	support	allows	you	to	connect	to	Hive	and	reverse
engineer	Hive	tables,	use	SQL	Developer	to	query	the	Hive	tables	with	any	other	Oracle
tables,	design/create/alter	Hive	tables,	and	generate	the	DDLs	for	Big	Data	SQL-enabled
Oracle	external	tables.

To	be	able	to	create	a	connection	to	Hive,	you	must	first	download	the	JDBC	drivers
and	connectors.	Data	Modeler	integration	was	first	developed	on	Hortonworks	Sandbox
2.0,	and	it	supports	those	JDBC	drivers	as	well.	Hive	integration	in	SQL	Developer	works
only	with	the	JDBC	drivers	from	Cloudera.	You	can	download	the	Cloudera	JDBC	drivers
from	www.cloudera.com/content/cloudera/en/downloads.html.	The	Cloudera	JDBC
drivers	for	Hive	are	delivered	in	two	.zip	files:	Cloudera_HiveJDBC3_<version>.zip	and
Cloudera_HiveJDBC4_<version>.zip.	These	files	compile	with	the	JDBC	3.0	and	4.0
standards.	Extract	the	files	in	Cloudera_HiveJDBC4_<version>.zip.	SQL	Developer	and
Data	Modeler	are	using	the	JDBC	4.0	standard	because	the	Java	Runtime	Environment
(JRE)	version	is	6.0	or	newer.	Start	Data	Modeler	or	SQL	Developer.	Choose	Tools	|
Preferences	and	select	Data	Modeler	|	Third	Party	JDBC	Drivers	and	add	the	drivers	on
the	list.	Click	the	green	plus	and	find	the	files	extracted	from
Cloudera_HiveJDBC4_<version>.zip,	as	shown	in	Figure	10-9.

http://www.cloudera.com/content/cloudera/en/downloads.html

FIGURE	10-9.	Preferences	for	a	Hive	connector

Close	Data	Modeler	or	SQL	Developer	and	restart	it.	Choose	File	|	Import	|	Data
Dictionary	and	click	Add	in	the	Data	Dictionary	Import	Wizard	to	create	a	new
connection.

For	Data	Modeler,	the	Hive	connection	is	a	JDBC	connection,	so	just	select	the	JDBC
tab	and	define	the	JDBC	URL	and	Driver	Class	settings	for	the	JDBC	connection.	When

you	download	the	drivers,	you	will	also	get	a	PDF	file	that	explains	what	to	insert	here.
For	SQL	Developer,	in	the	New	/	Select	Database	Connection	dialog,	as	you	can	see	in
Figure	10-10,	there	is	a	new	tab	named	Hive	for	creating	connections	to	Hive.	Insert	the
connection	details	and	click	Test	to	make	sure	the	connection	works.	Then	click	Save	to
save	the	connection	settings.	Now	you	can	import	(reverse	engineer)	from	Hive	to	Oracle
using	this	connection.

FIGURE	10-10.	Hive	connection	in	SQL	Developer

Importing	a	DDL	File
One	way	to	document	a	database	is	to	find	the	DDL	files	for	generating	the	database	and

import	them	to	Data	Modeler.	To	do	this,	choose	File	|	Import	|	DDL	File.	Click	the	green
plus	sign	to	select	the	correct	DDL	files	or	click	the	red	X	button	to	remove	them	from	the
list.	If	you	have	CREATE	and	ALTER	DDLs,	make	sure	to	run	them	in	the	right	order.
You	can,	for	instance,	run	the	CREATE	TABLE	DDLs	first	and	then	restart	the	importing
DDLs	for	the	ALTER	clauses.	In	the	Options	section,	you	can	select	whether	you	want	to
import	to	(Import	To)	an	existing	relational	model	or	to	create	a	new	relational	model
(New	Relational	Model).	If	you	select	a	new	model,	the	Skip	Merge	Dialog	option	is	no
longer	dimmed.	If	you	select	Skip	Merge	Dialog,	the	Relational	Model	dialog	will	not	be
displayed	during	the	import	operation.	If	you	select	an	existing	model,	the	Swap	Target
Model	dialog	is	no	longer	dimmed.	If	Swap	Target	Model	is	not	selected,	the	content	of
the	script	is	merged	to	the	relational	model,	and	on	the	Compare	Models	screen	the
content	of	the	script	is	shown	on	the	left	and	the	relational	model	is	shown	on	the	right.	If
Swap	Target	Model	is	selected,	the	content	of	the	relational	model	is	merged	to	the	content
of	the	script,	and	on	the	Compare	Models	screen,	the	relational	model	is	shown	on	the	left
and	the	content	of	the	script	is	shown	on	the	right.	You	can	read	more	about	compare
models	in	Chapter	12.	View	Compare	Mappings	will	show	the	existing	compare
mappings,	as	covered	in	Chapter	12.

After	setting	the	parameters	the	way	you	want,	click	OK.	Next	you	must	select	the
databases	in	the	Database	Sites	dialog	(covered	in	Chapter	6).	Make	sure	to	select	the
correct	RDBMS	site.	If	you	select	a	wrong	one,	the	result	might	be	wrong,	depending	how
close	to	the	standard	SQL	the	DDL	and	the	selected	RDBMS	site	are.

Then	you	will	see	the	View	Log	screen.	If	you	did	not	select	Skip	Merge	Dialog,	the
Compare	Models	screen	is	shown.	If	you	did	select	it,	the	content	of	the	DDL	file/files	is
imported	to	a	new	relational	model	and	to	a	physical	model	of	the	type	selected	as	the
database	site.

Discovering	Foreign	Keys
If	you	did	not	have	foreign	keys	in	the	database,	you	will	not	have	them	in	your	model
either.	What	is	the	value	of	a	data	model	without	relationships?	You	will	have	plenty	of
tables,	and	you	will	have	plenty	of	entities,	but	they	do	not	have	anything	to	do	with	each
other.	There	might	be	a	database	without	foreign	keys,	but	there	is	not	much	point	in
having	a	relational	or	logical	model	without	relationships.

In	Data	Modeler	you	can	ask	the	tool	to	try	to	find	the	foreign	keys	for	you.	The
discovering	is	based	on	the	name	and	data	type	matching	between	columns.	You	specify
foreign	key	column	name	policies	to	be	used	in	the	discovery	process.	Go	to	the	Browser
pane	and	select	the	relational	model.	Right-click	and	select	Discover	Foreign	Keys;	the
Create	Discovered	Foreign	Keys	screen	opens.	In	the	dialog	you	will	see	a	list	of	primary
keys	that	could	be	used	in	foreign	keys.	You	can	select	and	unselect	them.	In	the	list	you
can	see	the	referred	table,	the	referred	key,	the	table,	and	the	column.	With	Column	To
Filter,	you	can	select	the	element	to	be	used	in	filtering	(table,	column,	referred	table,	or
referred	key),	and	in	Filter,	you	can	type	a	string	to	restrict	the	list.	You	can,	for	example,
restrict	the	list	to	only	table	names	starting	with	LNK.	If	Single	Use	Of	FK	Column	is
selected,	a	foreign	key	column	can	be	bound	to	only	one	foreign	key.	You	can	define	the
naming	policy	for	selecting	the	foreign	key	candidates	by	setting	the	FK	column	name

policy.	The	possible	values	are	Referred	Column,	FK	Column	Template,	Referred	And
Template,	or	Template	And	Referred.

			If	you	select	Referred	Column,	Data	Modeler	will	look	for	a	foreign	key
column	that	has	the	same	name	as	the	referred	column.

			If	you	select	FK	Column	Template,	Data	Modeler	is	looking	for	columns	with
the	name	generated	using	the	foreign	key	template.

			If	you	select	Referred	And	Template,	Data	Modeler	first	applies	the	Referred
Column	policy	and	then	the	FK	Column	Template	policy.

			If	you	select	Template	And	Referred,	Data	Modeler	applies	first	the	FK
Column	Template	policy	and	then	the	Referred	Column	policy.

For	example,	you	have	two	tables:	Customer	and	Order.	In	Customer,	you	have	defined
a	primary	key	called	CustNo.	In	Order,	you	have	two	potential	foreign	key	columns
CustNo	and	Customer_ID.	If	you	know	that	the	name	of	the	foreign	key	column	in	this
database	is	always	the	same	as	the	name	in	the	parent	table,	you	simply	select	Referred
Column	as	the	FK	column	name	policy,	as	shown	in	Figure	10-11.

FIGURE	10-11.	Create	Discovered	Foreign	Keys	dialog,	same	name

NOTE
If	you	have	some	foreign	keys	in	your	model	before	adding	the	discovered	foreign	keys,	it
is	possible	that	you	will	have	duplicates	of	foreign	keys	with	different	foreign	key	names.
Make	sure	to	remove	the	extra	ones	manually.

If	you	know	that	in	this	database	the	foreign	keys	are	always	called	ParentTable_ID,
you	simply	go	to	the	design-level	properties	and	change	the	template	setting	for	the
foreign	key	column,	as	shown	in	Figure	10-12,	and	in	Discover	Foreign	Keys,	you	select
FK	Column	Template	as	the	FK	Column	Name	Policy	option,	as	shown	in	Figure	10-13.

FIGURE	10-12.	Template	setting	for	a	foreign	key	column

FIGURE	10-13.	Discovering	foreign	keys	based	on	the	template

If	you	know	that	both	of	these	are	possible,	you	can	select	either	Referred	And
Template	or	Template	And	Referred	depending	on	which	one	is	preferred.	In	this	example,
if	you	select	Referred	And	Template,	Order.CustNo	will	be	defined	as	the	foreign	key,	and
if	you	select	Template	And	Referred,	Order.Customer_ID	will	be	defined	as	the	foreign
key	for	the	Order	table.

Clicking	the	Scan	Again	button	refreshes	the	screen	based	on	the	changed	parameters.
If	you	click	OK,	the	discovered	foreign	keys	are	created.	If	you	click	Cancel,	no	foreign
keys	are	created.	All	discovered	foreign	keys	have	a	dynamic	property	called
createdByFKDiscoverer	attached	to	them	and	can	be	easily	found	using	that.	If	you	want
to	remove	the	discovered	foreign	keys,	choose	Edit	|	Remove	Discovered	Foreign	Keys.
The	foreign	keys	are	removed	without	a	warning.

When	you	have	created	the	discovered	foreign	keys,	remember	to	click	Engineer	To
Logical	Model	to	get	the	relationships	to	the	entities	as	well.	Note	that	the	dynamic
property	createdByFKDiscoverer	is	not	engineered	to	the	relationship	in	the	logical
model.	If	you	decide	to	remove	the	discovered	foreign	keys	for	some	reason,	remember	to
click	Engineer	To	Logical	Model	again	so	that	the	relationships	will	also	be	removed.

TIP
You	can	use	Create	New	Models	Based	On	Schema	Names	to	get	a	relational	model	for
each	schema.	It	might	help	to	make	finding	the	right	foreign	keys	more	controlled.	Right-
click	the	relational	model	name	and	choose	Create	New	Models	Based	On	Schema	Names.

If	there	are	no	primary	keys	in	the	database,	it	might	be	worth	defining	them,	not	just
for	getting	the	Discover	Foreign	Keys	functionality	to	work	but	also	for	getting	the
database	to	work	better.	Primary	keys	will	keep	the	data	quality	high	and	will	usually	help
the	database	optimizer	to	improve	the	execution	plans	for	queries	and	make	them	more
efficient.	You	can	define	the	primary	keys	in	Data	Modeler	and	get	the	DDLs	for	creating
them	in	the	database.	Make	sure	you	really	know	these	are	the	correct	primary	keys
because	they	will	block	duplicate	data	from	being	inserted	in	the	database.	You	probably
need	to	see	the	data	in	tables,	read	the	application	code,	and	talk	to	people	who	know	this
application	to	be	sure	about	the	primary	keys.	When	creating	the	primary	key	for	the
database,	you	will	get	an	error	message	if	there	is	duplicate	data	in	the	database.

Sometimes	the	date	types	are	equal	in	the	parent	table’s	primary	key	column	and	in	the
child	table’s	foreign	key	candidate	column	but	the	other	definitions	do	not	match.	For
instance,	in	the	parent	table,	the	column	might	be	NUMBER(16,0),	and	in	the	child	table,
it	might	be	just	NUMBER.	In	that	case,	you	might	want	to	change	the	definition	for	the
child	tables	to	NUMBER(16,0).	You	can	do	that	using	the	search	functionality	and	using
the	setting	common	properties	operation	related	to	that.	You	can	read	more	about	it	in
Chapter	11.	After	changing	the	date	type	in	Data	Modeler,	you	can	compare	the	design	to
the	database	(read	more	in	Chapter	12)	and	get	the	ALTER	DDLs	for	altering	the	column
date	types.

NOTE
Discover	Foreign	Keys	works	only	if	primary	or	unique	keys	are	defined	for	the	parent
table	and	if	the	columns	in	the	parent	and	child	tables	are	of	same	date	type.	For	instance,
if	the	column	name	matches	the	primary	key	column	name	in	the	parent	table	but	the	date
type	is	different	for	it	in	the	child	table,	this	column	is	not	included	as	a	foreign	key
candidate.

Engineering	to	the	Logical	Model
When	you	have	imported	from	the	data	dictionary	or	DDLs,	remember	to	use	the	Engineer
To	Logical	Model	button	(see	Figure	10-14)	to	get	a	logical	model	if	you	want	to	start
designing	the	changes	in	data	structures	with	Data	Modeler.	From	now	on,	you	can	make
the	changes	to	your	logical	model,	forward	engineer	them	to	the	relational	model,	and
export	the	DDLs	as	explained	in	Chapters	3	through	7	or	get	the	ALTER	DDLs	by
synchronizing	with	the	model,	as	explained	in	Chapter	12.

FIGURE	10-14.	Engineer	To	Logical	Model

Of	course,	there	are	situations	in	which	you	do	not	need	the	logical	model,	and
therefore	there	is	no	point	in	creating	it,	such	as	if	the	database	structures	are	maintained
by	a	software	vendor	or	if	the	changes	are	very	small,	such	as	when	adding	a	single
column	to	a	table.	In	these	cases,	you	simply	add	columns	to	tables	and	get	the	ALTER

DDLs	for	adding	the	columns	to	the	database,	and	no	logical	model	is	needed.	If	you	are
making	larger	changes	or	changes	that	will	use	transformation	scripts	to	add	columns	to
new	tables	or	other	changes	like	that,	having	a	logical	model	is	definitely	worth	it.

If	you	do	decide	to	create	the	logical	model	and	start	maintaining	the	database	objects
with	Data	Modeler,	the	logical	diagram	might	not	look	exactly	the	way	you	want	it	to	after
the	reverse	engineering.	If	you	want	to	change	the	layout,	either	you	can	move	the
elements	in	the	diagram	to	the	places	you	want	or	you	can	use	the	functionalities	Data
Modeler	offers	for	automatically	making	the	layout	look	better.	Specifically,	right-click
the	canvas	and	choose	Layout.	You	might	also	want	to	create	subviews	or	layouts,	as
explained	in	Chapters	3	and	4.

The	relationship	names	are	after	engineering	the	foreign	key	names	in	the	database.
Depending	on	how	the	database	was	designed	and	created,	those	names	might	be
completely	technical,	making	no	sense	to	the	human	eye.	In	those	cases,	it	might	be	worth
renaming	the	relationships	manually	to	something	more	meaningful.

Importing	Documentation	from	a	Third-Party
Modeling	Tool
You	might	have	databases	that	already	have	documentation	and	you	would	like	to	get	that
documentation	into	Data	Modeler	so	you	don’t	have	to	start	from	scratch.	You	can,	of
course,	insert	the	design	into	Data	Modeler	manually,	but	there	are	other	possibilities	too.
You	might	have	the	documentation	in	a	VAR	file	that	has	been	created	from	Sterling
COOL	(DBA	v2.1	or	Sterling	Bsnteam	v7.2),	Cayenne	Bsnteam	v7.2,	Rational	Rose,
Together,	JDeveloper,	MEGA,	or	PowerDesigner	v.12.	Or	you	might	have	it	in	ERwin	4.1
or	7.3	or	in	Oracle	Designer.	Or	you	might	have	your	data	warehouse	documentation	in
Cube	Views	metadata	or	Microsoft	XMLA.	There	is	support	for	many	other	modeling
tools	in	Data	Modeler.	The	tools	include	Oracle	Designer	9i	and	newer,	CA	Erwin	Data
Modeler	4.x	and	7.x,	Sterling	COOL:	DBA	v2.1,	Sterling	Bsnteam	v7.2,	and	Cayenne
Bsnteam	v7.2.	For	multidimensional	models,	there	is	support	for	IBM	DB2	Cube	Views
and	XML	for	Analysis	(XMLA)	metadata.	XMLA	is	designed	for	universal	data	access	to
any	standard	multidimensional	data	source,	and	it	is	an	industry	standard	maintained	by
the	XMLA	Council.	XMLA	is	a	Simple	Object	Access	Protocol	(SOAP)–based	XML
protocol,	and	it	is	used,	for	instance,	by	Microsoft.

To	import	a	VAR	file	or	one	from	ERwin	4.1	or	7.3,	Cube	Views	metadata,	or
Microsoft	XMLA,	choose	File	|	Import	and	then	select	the	appropriate	importing	option.
In	all	these	cases	you	are	asked	for	a	filename	to	be	imported,	and	by	following	the
instructions,	you	will	get	the	documentation	imported	to	Data	Modeler.

In	some	cases,	it	is	possible	that	not	all	the	documentation	will	be	brought	into	Data
Modeler,	so	it	is	important	you	check	the	result	manually.	In	other	words,	compare	the
source	to	the	target.	And	if	there	is	any	information	missing,	add	that	manually.	One	of	the
things	standards	do	not	usually	handle	is	the	layout	of	diagrams.	So,	most	likely	you	will
need	to	change	the	layouts	of	the	diagrams	manually	or	using	the	functionalities	Data
Modeler	offers	to	make	the	diagrams	easier	to	read.	You	might	also	want	to	consider

creating	subviews	after	the	import	to	make	the	diagrams	easier	to	read	and	understand.	See
Chapters	3	and	4	for	more	information.

You	will	learn	a	bit	more	about	how	to	import	from	Oracle	Designer	in	the	next	section.

Importing	from	Oracle	Designer
Before	starting	to	work	with	Oracle	Designer,	make	sure	that	the	designs	in	Oracle
Designer	are	valid	and	there	is	nothing	you	do	not	want	to	import	to	Data	Modeler.	Also
check	that	you	really	want	to	import	them	all;	if	not,	document	which	ones	you	will	not
import	and	why.	It	is	better	to	avoid	importing	old	information	into	Data	Modeler.

NOTE
If	you	have	versioning	enabled	in	Oracle	Designer,	only	the	latest	version	of	objects	is
imported.

Open	Data	Modeler	and	save	the	empty	design.	Choose	File	|	Import	and	select	Oracle
Designer	Model.	First	you	need	to	create	a	connection	to	the	Oracle	Designer	repository
using	a	username	that	has	enough	privileges	to	see	all	the	objects	needed.	Click	Next.
Select	work	area	and	click	Next.	Select	the	application	you	want	to	import.	It	is	probably
logical	to	make	one	Data	Modeler	design	from	one	Oracle	Designer	application.	Select	all
the	objects	you	want	to	import	and	click	Next.	You	will	see	a	summary	of	database	objects
that	will	be	imported	into	Data	Modeler	in	the	Oracle	Designer	Import	Wizard.	If	you	are
happy	with	the	result,	click	Finish.	Otherwise,	click	Cancel.	The	View	Log	dialog	will
show	the	final	log	for	importing.	You	will	now	have	all	the	information	you	want	imported
into	Data	Modeler.	You	might	have	two	relational	models:	Relational_1	and	another
named	after	the	Oracle	Designer	connection.	All	the	elements	have	been	imported	to	the
one	with	the	connection	name.	In	that	case,	you	can	delete	the	empty	Relational_1	model
and	maybe	rename	the	other	relational	model.	Save	the	design.	In	my	opinion,	the	import
works	well	and	is	definitely	worth	doing.

NOTE
During	an	import	from	the	Oracle	Designer	repository,	the	short	name	for	an	entity	in
Oracle	Designer	is	used	for	both	the	entity	short	name	and	the	table	abbreviation	of	the
mapped	table	in	Data	Modeler.	The	Oracle	Designer	Plural	property	for	the	entity	is
mapped	to	the	Preferred	Abbreviation	property	of	the	entity	in	Data	Modeler.

At	the	moment,	Data	Modeler	does	not	import	tablespaces,	stored	procedures,
packages,	functions,	and	data	flow	diagrams	from	the	Oracle	Designer	repository.	Most	of
these	can	be	added	from	the	data	dictionary,	as	described	next.	Every	version	of	Data
Modeler	gets	better	at	importing	from	Oracle	Designer.

NOTE
The	import	functionality	does	not	import	the	original	layouts	of	the	diagrams	in	the	other
modeling	tool.	After	the	import,	you	need	to	change	the	layout	in	Data	Modeler	to	meet
your	needs	either	manually	or	using	the	functionalities	Data	Modeler	offers	for	automatic
layout	setting.

Now,	you	might	realize	that	not	all	the	information	needed	is	in	your	design.	There	are
several	reasons	for	that.	Possible	reasons	might	be	that	you	have	been	using	database
features	that	are	not	supported	by	Oracle	Designer,	maybe	you	did	not	add	all	the
information	to	Oracle	Designer	(for	instance,	data	files),	or	maybe	it	is	because	of	the
limitations	of	the	Data	Modeler	conversion.	There’s	no	need	to	panic.	You	probably	have
everything	implemented	in	your	database,	and	you	can	connect	to	your	data	dictionary	and
import	all	the	missing	information	from	there.	Choose	File	|	Import	|	Data	Dictionary.
Select	the	connection	to	the	database	or	create	a	new	one.	Make	sure	you	have	enough
privileges	to	be	able	to	see	all	that	you	need.	Click	Next.	Select	the	schema	that	contains
the	information	for	this	design.	Click	Next.	Select	all	the	objects	you	want	to	import.	Click
Next.	You	will	see	the	summary	of	the	import.	Click	Finish.	Now	you	will	see	the
Compare	Models	screen	(read	more	about	it	in	Chapter	12).	Select	the	changes	you	want
to	implement	in	your	design	and	click	Merge.	Remember	that	there	are	a	lot	of	parameters
in	the	Compare	Models	dialog	that	make	selecting	the	right	changes	easier.	For	instance,
maybe	you	do	not	want	to	replace	a	comment	for	a	table	with	an	empty	one	from	the	data
dictionary.	Now	you	should	have	the	complete	documentation	of	your	database.	You
might	want	to	check	your	model	with	design	rules	(see	Chapter	2)	or	maybe	even	add	new
rules	to	check	with.	Next	you	might	want	to	add	your	design	to	version	control.	See
Chapter	9	for	more	information.

NOTE
The	import	does	not	import	the	layouts	of	the	diagrams.	You	must	edit	them	manually	after
the	import.

Summary
You	can	document	an	existing	database	either	manually,	by	using	the	documentation	from
other	modeling	tool,	or	by	importing	the	information	from	a	data	dictionary	or	from	a
DDL	file.

Data	Modeler	has	support	for	importing	designs	from	many	tools,	including	Oracle
Designer	9i	and	newer,	CA	ERwin	Data	Modeler	4.x	and	7.x,	Sterling	COOL:	DBA	v2.1,
Sterling	Bsnteam	v7.2,	and	Cayenne	Bsnteam	v7.2	formats.	For	multidimensional	models,
there	is	support	for	Cube	Views	metadata	and	XMLA.	A	database	that	has	no
documentation	can	be	reverse	engineered	into	Data	Modeler	by	importing	either	from	a
data	dictionary	or	from	a	DDL	file.	At	the	moment,	the	supported	databases	are	Microsoft
SQL	Server	2000	or	2005,	IBM	DB2/LUW	v7	or	v8,	IBM	DB2	for	OS/390	and	z/OS,	and
ODBC/JDBC-compliant	data	dictionaries.	If	the	database	has	no	foreign	keys,	you	can	use
Discover	Foreign	Keys	to	try	to	guess	the	possible	foreign	keys.	After	importing	the

physical	and	relational	models,	you	can	use	the	Engineer	To	Logical	Model	functionality
to	generate	a	logical	model	if	needed.	Then	you	are	ready	to	maintain	the	logical	model,
forward	engineer	the	changes	to	the	relational	model,	and	export	the	DDLs	or	get	the
ALTER	DDLs	by	synchronizing	with	the	model	as	explained	in	Chapter	12.

CHAPTER
11

Generating	Reports	and	Using	Search

Reporting	functionality	is	a	must	when	selecting	a	tool	for	database	design.	If
you	can’t	create	reports	using	the	tool,	it	is	not	worth	using.	There	are	so	many
different	needs	for	reporting:	auditing,	quality	reviews,	documenting,	talking

with	end	users,	informing	internally,	and	so	on.	Data	Modeler	has	strong	reporting
functionalities.	In	Data	Modeler,	you	can	generate	reports	from	designs	that	are	open	or
from	the	optional	reporting	repository	on	all	designs	uploaded	to	the	repository.	You	can
generate	reports	with	the	reporting	functionality	or	by	using	the	search	feature	and
generating	the	search	results	as	a	report.	Reports	can	be	used,	for	instance,	to	create
documentation	for	tables,	entities,	domains,	glossaries,	structured	types,	distinct	types,
collection	types,	change	requests,	or	measurements.	You	can	also	print	a	diagram	by
choosing	File	|	Print	Diagram.	You	can	print	the	diagram	either	to	an	image	file	(To	Image
File)	or	to	a	PDF	file	(To	PDF	File).	A	user	can	create	templates	for	the	reports	easily,	and
SQL	can	be	used	to	query	the	reporting	repository.	You	can	find	useful	information	on
reporting	in	datamodeler\datamodeler\reports.

Data	Modeler	uses	a	standardized	transformation	to	produce	reports	from	the	source
Extensible	Markup	Language	(XML)	files.	Extensible	Stylesheet	Language
Transformation	(XSLT)	defines	the	syntax	and	semantics	for	transforming	XML
documents	to	other	document	formats	or	other	XML	documents.	Data	Modeler	uses	XSLT
1.0	by	default,	but	you	can	also	download	the	Saxon	XSLT	2.0	processor	and	use	that	in
report	generation.	Version	2.0	is	more	advanced	and	supports,	for	instance,	large	PDF
reports	and	multibyte	characters	in	Rich	Text	Format	(RTF)	reporting.	If	you	know	that
you	will	be	producing	large	PDF	reports	or	will	be	running	RTF	reports	from	designs
including	multibyte	characters,	using	the	Saxon	XSLT	2.0	processor	will	be	essential.

You	can	generate	PDF	reports	with	Apache	Formatting	Objects	Processor	(FOP)	v0.95.
The	Apache	FOP	configuration	file	is	called	fop.xconf.	The	file	contains	only	the	basic
fonts	and	default	settings	but	automatically	adds	fonts	from	the	default	system	fonts
directory.	If	the	PDF	report	does	not	support	the	fonts	you	need,	edit	the	fop.xconf	file	as
explained	in	datamodeler\datamodeler\reports\Reports_Info.txt.

When	Data	Modeler	generates	reports,	it	first	creates	a	file	called	report_data.xml	(or
report_data_rs.xml	if	the	reporting	repository	is	used).	In	the
directory\datamodeler\reports\xslt\,	there	are	two	subdirectories	for	templates:	10	and	20.
If	you	are	using	the	default	XSLT	1.0,	then	templates	are	in	directory	10,	and	if	you	have
XSLT	2.0	in	use,	the	templates	in	directory	20	are	used.	All	template	files	are	named	based
on	the	element	type	and	output	format,	such	as	AllTablesDetails_rtf.xslt	or
AllTablesDetails_pdf.xslt.

A	report	can	be	run	and	saved	in	different	formats	depending	on	the	settings.	PDF	and
HTML	formats	are	usually	always	supported.	PDF	is	a	good	format	when	you	want	to
send	reports	that	no	one	should	edit,	for	instance	during	a	review.	HTML	is	useful	as	a
custom	web	page	that	could	be,	for	instance,	used	as	an	online	data	dictionary	on	an
internal	web	site	or	for	technical	people	who	want	to	see	the	information	without	installing
Data	Modeler.	RTF	is	a	good	format	if	you	want	to	let	the	receiver	edit	the	report,	but	in
that	case,	probably	the	best	choice	is	Microsoft	Excel,	since	some	information	edited	in
the	Microsoft	Excel	report	can	be	imported	into	Data	Modeler	as	explained	later	in	this

chapter.	You	can	read	more	about	Data	Modeler	and	reporting	in
datamodeler\datamodeler\reports\Reports_Info.txt.

NOTE
Starting	from	version	4.1,	you	can	insert	your	corporation’s	logo	or	any	picture	into	your
diagrams	and	reports.

Setting	Preferences	and	Properties
There	are	no	properties	that	affect	the	reporting	functionality,	but	there	are	two	preferences
that	do.	In	Preferences	(choose	Tools	|	Preferences),	go	to	the	Data	Modeler	|	Reports	tab
to	define	the	Default	Report	Directory	setting	where	the	reports	will	be	saved	by	default.
If	you	have	downloaded	the	Saxon	XSLT	2.0	processor	and	want	Data	Modeler	to	use	it
for	generating	reports,	you	can	define	the	path	for	it	in	Path	To	Saxon	XSLT	2.0	JAR	File.
If	you	do	not	specify	the	path,	Data	Modeler	uses	XSLT	1.0	in	report	generation.	Since
version	4.1,	you	can	also	define	your	Company	Name	to	be	used	in	reports	and	decide
whether	a	page	break	will	be	added	after	each	object.

There	are	also	some	preferences	in	the	Preferences	dialog	that	will	affect	the	search
functionality	that	can	be	used	for	reporting.	You	can	find	them	by	going	to	the	Data
Modeler	|	Search	tab.	You	can	define	whether	the	search	will	start	after	ENTER	has	been
pressed	or	while	typing.	If	you	want	it	to	start	while	typing,	you	can	also	define	the
number	of	symbols	ignored	before	starting	the	search.	The	default	is	three	characters.	You
can	also	predefine	search	profiles	to	be	used	while	searching.	With	version	4.1,	you	can
also	define	search	profiles	to	be	used	while	searching.	A	Search	Profile	can	be	used	to
narrow	down	the	scope	for	a	search	operation.

Generating	Reports	Based	on	Open	Designs
You	can	run	a	report	by	choosing	File	|	Reports.	The	report	will	open	automatically	and	be
saved	to	the	directory	specified	in	Preferences	(Default	Reports	Directory).	The	Messages
–	Log	pane	will	tell	you	when	the	report	is	ready	and	where	it	is	saved.	There	are	three
sections	in	the	Reports	dialog	for	defining	the	scope	and	format	for	the	report:	Reports,
Templates,	and	Designs.	See	Figure	11-1.

FIGURE	11-1.	Reports	dialog

In	the	Reports	section,	you	can	specify	the	following:

			In	Available	Reports,	you	select	the	element	type	for	the	report:	Tables,
Entities,	Domains,	Glossaries,	Structured	Types,	Distinct	Types,	Collection	Types,
Change	Requests,	or	Measurements.

			For	Output	Format,	you	can	select	HTML,	PDF,	or	RTF	for	standard	templates
and	HTML,	PDF,	XLS,	or	XLSX	for	custom	templates.	For	an	HTML	report,
several	files	are	generated;	other	formats	have	only	one	file.	Both	XLS	and	XLSX
reports	can	be	imported	into	Data	Modeler	as	described	in	the	“Search”	section	later
in	this	chapter.

			In	JVM	Options,	you	can	specify	the	memory	allocation	for	PDF	reports	if
needed.	The	default	that	Data	Modeler	suggests	is	-Xmx768M.	PDF	reports,
especially	with	XSLT	1.0,	consume	a	lot	of	memory,	and	you	might	need	to	either
raise	the	value	for	memory	allocation	or	consider	using	XSLT	2.0	in	generating
reports	if	you	have	problems	getting	the	PDF	reports	to	run.

			In	Report	Title,	you	can	define	a	name	for	the	report.	The	name	will	be	shown
in	the	header	of	the	report.

			In	Report	File	Name,	you	can	define	the	name	for	the	report	file.	Data
Modeler	automatically	looks	after	the	uniqueness	of	the	filename	by	adding	a
sequence	number	at	the	end	of	the	filename.	If	you	manually	change	the	name	to	be
not	unique,	Data	Modeler	gives	a	warning:	“The	file	…	already	exists!	Are	you
sure	you	want	to	overwrite?”

In	the	Templates	section,	you	can	specify	whether	you	want	to	use	a	standard	template
or	a	custom	template.	Standard	templates	have	a	somewhat	fixed	and	limited	set	of	options
to	choose	from,	whereas	custom	templates	will	give	you	extensive	control	over	the
elements	that	are	in	the	final	report.	Depending	on	which	you	choose,	the	list	of	available
templates	is	different,	and	the	choices	for	creating	a	template	are	different.	Standard	report
templates	are	saved	in	a	file	called	report_templates.xml,	and	custom	report	templates	are
saved	in	a	file	called	custom_report_templates.xml.	Both	files	are	saved	in	the	directory
defined	in	the	Default	System	Types	Directory	setting	in	Preferences.	You	can	share	and
version	templates	as	explained	in	Chapter	9	using	Subversion.	If	you	want	to	use	an
existing	template,	you	select	it	from	the	list.	If	you	want	to	edit	or	delete	an	existing
template	or	create	a	new	template,	click	the	Manage	button.

To	create	a	new	standard	template,	click	Add.	You	must	give	the	template	a	name
(Template	Name),	but	the	elements	to	choose	for	the	report	template	depend	on	the
element	type	chosen	for	the	report.	For	instance,	if	you	have	selected	Tables	for	Available
Reports	and	create	a	new	standard	template	for	it,	the	choices	are	shown	in	the	Report
Templates	Management	dialog,	as	shown	in	Figure	11-2.	You	enable	the	elements	you
want	to	have	in	the	report	template	and	disable	the	ones	you	do	not.	When	you	are	done,
click	Save.	This	template	will	be	shown	in	the	list	of	standard	templates	and	can	be	used.
To	share	it	with	other	users,	simply	share	the	file	report_templates.xml	with	other	users.
They	should	save	it	to	their	default	system	types	directory.

FIGURE	11-2.	Report	Templates	Management	dialog	for	standard	templates

To	create	a	new	custom	template,	click	the	Add	icon	(green	plus	sign).	Then	give	the
template	a	name	(Name)	and	a	description	(Description).	The	elements	to	choose	for	the
report	template	depend	on	the	element	type	chosen	for	the	report.	For	instance,	if	you
select	Tables	for	Available	Reports	and	create	a	new	custom	template	for	it,	the	choices
are	shown	in	the	Custom	Reports	Template	dialog,	as	shown	in	Figure	11-3.	In	Available
Collections,	you	can	see	a	list	of	relevant	information	that	can	be	added	to	the	report
layout	for	this	type	of	element.	Use	the	arrow	icons	to	add	and	remove	the	information
from	the	Report	Layout	section.	In	Custom	Name,	you	can	define	a	name	for	that	element
in	the	report.	The	Report	Layout	section	shows	which	information	will	be	included	in	the
report	template.	In	Available	Properties,	there	is	a	list	of	available	properties	for	the
selected	Report	Layout	element.	Use	the	arrow	icons	to	add	and	remove	the	information
from	the	Report	Columns	section.	In	Report	Columns,	you	can	see	the	columns	for	the
report	template.	If	you	want,	you	can	change	the	column	names	for	the	report	in	Column
Name.	In	Column	Width,	you	can	set	the	width	for	the	column.	If	you	do	not	change	it,	the
best	width	will	be	defined	automatically.	In	Data	Sort	Order,	you	can	specify	sort	order
values	for	individual	columns.	You	set	1	to	the	one	that	will	be	first,	2	to	the	second,	and
so	on.	On	the	right	of	the	screen,	there	are	arrows	that	can	be	used	to	reorder	the	elements.
When	you	are	done,	click	the	Save	icon.	This	template	will	be	shown	in	the	list	of	custom
templates	and	can	be	used.	To	share	it	with	other	users,	simply	share	the	file
custom_report_templates.xml	with	other	users.	They	should	save	it	to	their	default	system
types	directory.	If	you	are	using	a	custom	template	for	your	report,	you	can	also	select
Replace	Boolean	Values	to	specify	values	for	True	(Y,	YES,	y,	yes)	and	False	(N,	NO,	n,
no)	in	a	report.

FIGURE	11-3.	Custom	Reports	Template	dialog	for	custom	templates

TIP
You	can	use	the	Custom	Name	and	Column	Name	fields	in	the	Custom	Reports	Templates
dialog	to	get	a	different	name	for	the	element	in	a	report	than	is	defined	in	the	model.	You
can	do	this,	for	instance,	if	you	want	to	have	your	report	template	in	Finnish.

NOTE
You	cannot	create	a	template	for	glossaries;	the	report	is	run	based	on	Available	Report
glossaries.

In	the	Designs	section	(Figure	11-1),	you	can	select	either	Loaded	Designs	or
Reporting	Schema.	You	will	now	see	the	choices	if	you	select	Loaded	Designs	and	learn
more	about	Reporting	Schema	in	the	next	section.	If	you	select	Loaded	Designs,	you	can
define	these	settings:

			In	Available	Designs,	you	can	see	a	list	of	designs	that	are	open	at	the
moment,	and	you	can	select	the	one	you	want	to	be	the	base	for	the	report.	Note	that
you	cannot	execute	a	report	on	a	design	that	is	not	already	open	using	this	method.

			In	Available	Models,	you	can	see	the	list	of	models	of	a	type	that	matches
your	selection	in	Available	Reports	and	are	in	the	design	selected.

			In	Report	Configurations,	you	can	limit	the	report	to	only	a	certain	object.
You	can	either	leave	it	blank,	select	a	configuration	from	the	list,	or	click	Manage
to	create,	edit,	or	delete	configurations	in	the	Standard	Reports	Configurations
dialog.	This	dialog	is	the	same	for	both	standard	and	custom	reports.	In	Standard
Reports	Configurations	(Figure	11-4),	you	can	add,	edit,	or	remove	standard	reports
configurations.

1.			To	create	a	new	one,	click	Add.

2.			In	the	Report	section,	give	a	name	(Name)	and	a	description
(Description)	for	the	configuration.

3.			Select	either	all	the	objects	(Include	All	Objects)	or	only	subview	objects
(Choose	Subview(s)	Objects).	If	you	select	Choose	Subview(s)	Objects,	you
can	select	the	subviews	wanted	in	the	Subviews	section	with	the	arrows.
Selected	subviews	appear	on	the	right,	and	possible	subviews	appear	on	the	left.
Using	subviews	is	an	efficient	way	of	getting	only	the	wanted	elements	to	the
report,	which	is	much	faster	than	selecting	one	by	one.

4.			In	the	Object	section,	you	can	select	and	deselect	objects	to	be	included
in	the	report.

			The	reports	will	use	the	diagrams	from	the	directory.	When	generating	reports,
the	diagrams	are	saved	and	can	be	reused	to	save	time	and	resources.	If	Clear

Diagrams	is	not	selected,	those	diagram	files	are	reused	and	not	generated	again.	If
it	is	selected,	the	existing	diagram	files	are	deleted,	and	new	ones	are	created.
Selecting	Clear	Diagrams	might	affect	the	performance	dramatically,	and	if	the
diagrams	have	not	been	changed,	there	is	no	need	to	create	the	files	again.

FIGURE	11-4.	Standard	Reports	Configurations	dialog

When	you	have	selected	all	these	and	are	ready	to	run	the	report,	click	Generate
Report.	Data	Modeler	will	notify	you	in	the	Messages	–	Log	pane	when	the	report	is	ready
and	where	to	find	it.	When	it	is	ready,	the	report	will	open	automatically.

Introducing	the	Reporting	Repository
The	Data	Modeler	reporting	repository	is	a	database	schema	with	database	objects	for
storing	metadata	and	data	about	Data	Modeler	designs.	You	can	decide	which	designs	to
export	to	the	repository,	and	when	needed,	you	can	remove	designs	from	the	repository.
The	reporting	repository	is	useful	as	a	database	for	all	the	information	you	want	to	share
with	users	who	do	not	have	access	to	Data	Modeler.	For	users	with	access	to	Data
Modeler,	the	value	is	having	all	the	information	in	one	place,	having	the	ability	to	generate
reports	for	all	designs,	and	using	SQL	for	querying	the	reporting	repository.	In
datamodeler\datamodeler\reports\Reporting	Schema	diagrams,	you	can	find	the
descriptions	of	the	reporting	repository	structures.	The	reporting	repository	is	a	read-only
repository.	Any	changes	to	the	content	must	be	done	with	Data	Modeler	and	exported	to
the	repository.	A	user	can	be	granted	a	read-only	access	to	the	reporting	repository	to	be
able	to	run	SQL	scripts	directly	on	the	reporting	repository.

Creating	a	Reporting	Repository
To	create	a	reporting	repository,	you	should	first	create	a	repository	owner	(schema)	in
your	database.	This	is	not	mandatory	(you	can	use	any	schema),	but	having	a	dedicated
repository	owner	makes	maintaining	the	repository	easier.

Here’s	an	example:

Then	find	the	file	Reporting_Schema_Permissions.sql	in
datamodeler\datamodeler\reports.	You	can	use	this	file	for	granting	privileges	to	the
repository	owner	and	for	defining	the	OSDDM_REPORTS_DIR	directory	for	the	report
generation	to	use	as	a	temporary	directory	at	runtime.	Edit	the	file	and	replace	every
<USER>	instance	with	your	username	(for	instance	DM_REPORT_REPOS)	and	replace
<OS	DIRECTORY>	with	a	directory	path	and	name	of	a	temporary	directory	in	the	server
where	the	repository	database	runs.	This	directory	will	include	files	for	the	runtime	of	a
report:	osddm_reports.log	and	report_data_rs.xml.	The	value	cannot	be	longer	than	30
characters,	for	example	/home/oracle/Reporting.	Then	go	to	that	computer	or	server	and
create	the	directory.	Now	run	the	edited	script	Reporting_Schema_Permissions.sql	in	your
database.	Your	script	might	look	something	like	this:

The	first	time	you	export	a	design	to	the	reporting	repository,	the	reporting	schema	is
created	automatically.	Make	sure	you	log	in	as	the	schema	owner.

TIP
You	can	create	additional	users	in	the	reporting	repository	with	only	read	access	using	the
script	CreateExtraUserForReporting.sql	in	the	/reports	directory.

Exporting	a	Design	to	the	Reporting	Repository
When	you	export	the	first	design	to	the	reporting	repository,	all	the	database	objects
needed	for	the	repository	will	be	created	automatically.	To	export	a	design	to	the	reporting
repository,	first	open	the	design	in	Data	Modeler	and	then	choose	File	|	Export	|	To
Reporting	Schema.	Then	you	will	either	choose	an	existing	connection	or	create	a	new	one
(Figure	11-5).	To	create	a	new	connection,	you	click	the	green	plus	sign;	the	New	/	Select
Database	Connection	dialog	will	open,	as	shown	in	Figure	11-6.	Fill	in	the	information
needed.	Remember	to	log	in	as	the	schema	owner.	Then	click	Test	to	see	that	the
connection	works.	The	status	should	show	Success.	Then	click	Save.	In	the	Export	To
Reporting	Schema	dialog,	in	the	Connections	section,	you	can	do	the	following:

FIGURE	11-5.	Export	To	Reporting	Schema	dialog

FIGURE	11-6.	Defining	a	database	connection

			Edit	a	connection	by	clicking	the	Connection	Properties	icon

			Add	a	new	connection	by	clicking	the	Add	Connection	icon

			Remove	a	connection	by	clicking	the	Remove	Connection	icon

			Import	a	connection	from	SQL	Developer	by	clicking	the	Import	SQL
Developer	Database	Connections	icon

			Test	the	connection	by	clicking	the	Test	Connection	icon

			Edit	the	connection	by	double-clicking	the	connection	name

			Write	a	description	(Comments)	for	each	connection

On	the	bottom	of	the	screen	there	are	three	tabs:	Options,	Maintenance,	and	Glossary.
In	Options,	you	can	specify	whether	the	diagrams	will	be	exported	to	the	repository	in
PDF	format	or	not	(Export	Diagrams	As	PDF)	and	whether	the	diagrams	will	be	cleared
from	the	directory	first	and	reproduced	before	the	import.	Remember	that	if	you	select
Clear	Diagrams,	exporting	will	take	longer.

On	the	Maintenance	tab,	you	can	drop	the	reporting	repository,	delete	designs,	and
enable	and	disable	indexes.	If	you	drop	the	repository,	all	the	database	objects	and	all	the
content	of	a	repository	will	be	deleted.	When	you	click	the	Drop	Repository	button,	Data
Modeler	will	ask,	“Are	you	sure	you	want	to	drop	the	reporting	repository?”	If	you	decide
to	drop	it,	after	the	deletion	is	done	Data	Modeler	says,	“Reporting	repository	has	been
dropped	successfully.”	If	you	click	the	Delete	Designs	button,	you	can	select	which
designs	to	delete	from	the	repository.	From	each	design	you	can	see	the	date	and	time	of
exporting,	the	name,	and	the	comments.	If	you	want	to	delete	a	design,	select	Selected	for
that	design	and	click	Delete	Selected.	Now	the	repository	is	not	deleted;	only	data	of
selected	designs	is	deleted.	If	you	click	Enable	Indexes,	the	indexes	for	the	repository
database	objects	will	be	rebuilt,	and	if	you	select	Disable	Indexes,	the	indexes	will	be	set
to	Unusable.	If	the	indexes	are	valid,	the	reports	will	be	generated	faster.

On	the	Glossary	tab,	you	can	export	a	glossary	to	the	reporting	repository	by	clicking
the	Export	Glossary	button,	and	you	can	delete	a	glossary	from	the	repository	by	clicking
the	Delete	Glossary	button.	To	export	a	glossary,	you	select	the	glossary	file	and	click
Open,	and	to	delete	a	glossary,	you	select	Selected	for	the	glossary	in	the	repository	and
click	Delete	Selected.	It	might	sound	strange	to	also	export	glossaries,	but	remember	that
there	might	be	users	without	access	to	Data	Modeler,	and	they	might	be	interested	in
glossaries	as	well.	Exporting	all	the	information	to	the	reporting	repository	gives	them	the
chance	to	see	all	the	information	related	to	Data	Modeler	designs.

To	export	the	design	that	is	open,	click	OK,	and	it	will	be	exported	to	the	repository
that	can	be	found	in	the	connection	selected.	Data	Modeler	will	inform	you	that	the	design
has	been	exported	successfully.

Running	Reports	from	the	Reporting	Repository
When	you	have	the	reporting	repository	created	and	designs	exported,	you	can	run	reports
from	the	repository,	or	you	can	use	SQL	to	query	it.	The	reports	will	be	saved	to	the
directory	defined	as	Default	Reports	Directory	in	the	Preferences	dialog.	To	run	a	report
from	the	reporting	repository,	choose	File	|	Reports.	Running	the	report	is	the	same	as

explained	earlier	in	this	chapter,	but	now	you	select	Reporting	Schema	instead	of	Loaded
Designs.	Specifically,	you	select	the	repository	connection	wanted	in	the	Reporting
Schema	section.	In	that	section	you	can	edit,	add,	remove,	and	test	a	connection.	Click
Reload	Design	And	Models	to	get	the	Available	Designs	and	Available	Models	lists
populated	with	the	information	from	the	reporting	repository.	Then	you	can	select	the
available	design,	available	model,	and	report	configuration	from	the	lists,	as	explained
earlier.	The	values	in	the	lists	depend	on	the	selected	Available	Report	setting	and	the
selected	Reporting	Schema	setting.	You	can	also	select	Clear	Diagrams	if	you	want	the
diagrams	to	be	created	again.	You	can	edit,	add,	and	delete	report	configurations	by
clicking	Manage	and	defining	them	in	the	Standard	Reports	Configurations	dialog,	as
explained	earlier	in	this	chapter.	When	you	are	done	with	the	report	configuration,	you
click	the	Generate	Report	button.

TIP
If	there	are	several	people	running	repository	reports	constantly,	the	temporary	directory
on	the	server	might	get	busy.	You	can	define	a	different	directory	when	starting	the	report
by	entering	the	directory	in	the	Directory	Path	field	in	the	Reports	dialog.	Remember	that
you	must	have	privileges	to	the	server	to	create	directories;	otherwise,	it	will	not	succeed.

TIP
In	SQL	Developer	there	are	several	reports	for	Data	Modeler’s	reporting	repository.	Go	to
SQL	Developer,	run	the	report,	get	the	SQL,	and	use	that	as	the	basis	for	your	own	SQL
query.

Using	Search
Data	Modeler	has	strong	search	features.	The	improved	search	features	were	introduced	in
version	3.3.	You	are	able	to	search	in	many	ways	and	on	many	search	levels.	At	the	end	of
the	search,	you	can	produce	a	report	from	the	search	result.	The	Search	operation	will	look
only	inside	the	scope	selected.	A	global	search	will	search	the	whole	design	and	a	model
search	will	only	search	the	model.	You	can	find	the	Search	operation	in	both	the	Edit
(Find)	and	View	(Model	Search)	menus,	as	well	as	in	the	right-click	menu	of	a	logical	or
relational	model	in	the	Browser	pane.	There	is	also	a	Search	icon	on	the	toolbar	for	the
logical	and	relational	models.	In	the	View	menu,	you	will	also	find	Global	Search,	which
will	search	throughout	the	whole	design.

You	can	use	search	for	searching,	but	you	can	also	use	it	for	reporting	and	setting
common	properties.	You	can	make	searches	in	two	different	modes:	simple	or	advanced
mode.

Reporting	with	Search

The	search	functionality	offers	fine-tuned	possibilities	for	first	finding	the	information
needed	and	for	then	turning	that	into	a	report.	You	can	search	in	a	selected	scope,	with	a
word	or	part	of	it,	and	with	negation,	or	you	can	search	for	an	empty	value.	You	could,	for
instance,	look	for	all	the	columns	that	are	of	type	XMLTYPE	and	create	a	report	from
them.	Or	you	could	find	all	the	tables	without	a	unique	key	and	get	a	report	of	those.	In	the
Results	pane	(see	Figure	11-7)	for	a	search	operation,	you’ll	see	a	Report	button.	The
Report	button	will	be	available	as	soon	as	you	have	selected	the	model	from	the	Model	list
or	when	starting	the	search	and	the	object	from	the	Object	list	if	there	are	any	objects	to
report.	Custom	reports	can	include	only	one	type	of	object	at	a	time,	which	is	the	reason
why	the	Report	button	is	dimmed	unless	an	object	type	has	been	selected.

FIGURE	11-7.	Search	result	and	starting	the	report

Click	Report	to	run	a	report;	the	Reports	dialog	box	(see	Figure	11-8)	for	generating
Data	Modeler	reports	opens.

FIGURE	11-8.	Configuring	the	report

In	the	Reports	section	of	the	Reports	dialog,	you	can	specify	the	following:

			For	Output	Format,	you	can	select	HTML,	PDF,	or	RTF	for	standard	templates
and	HTML,	PDF,	XLS,	and	XLSX	for	custom	templates.	For	an	HTML	report,
several	files	are	generated;	other	formats	generate	only	one	file.	Reports	in	XLS	and
XLSX	can	be	edited	and	imported	back	into	Data	Modeler.	You	can,	for	example,
edit	the	comments	and	comments	in	RDBMS.

			In	JVM	Options,	you	can	specify	the	memory	allocation	for	PDF	reports	if
needed.	The	default	that	Data	Modeler	suggests	is	-Xmx768M.

			In	Report	Title,	you	can	define	a	name	for	the	report	that	will	be	shown	in	the

header	of	the	report.

			In	Report	File	Name,	you	can	define	the	name	for	the	report	file.	Data
Modeler	automatically	looks	after	the	uniqueness	of	the	filename	by	adding	a
sequence	number	at	the	end	of	the	filename.	If	you	manually	change	the	name	to	be
not	unique,	Data	Modeler	gives	you	this	warning:	“The	file	…	already	exists!	Are
you	sure	you	want	to	overwrite?”

In	the	Templates	section,	you	can	specify	whether	you	want	to	use	a	custom	template	or
a	standard	template.	The	templates	can	be	used	and	defined	as	described	earlier	in	this
chapter.

Reports	in	XLS	or	XLSX	format	can	be	edited	in	Microsoft	Excel	excluding	the	read-
only	properties.	Some	properties	even	have	a	list	of	values	in	the	Microsoft	Excel	report
where	you	can	select	the	value	wanted.	Those	properties	are,	for	instance,	domains,	any
kind	of	true/false	property,	and	logical	data	types.	Changes	in	the	data	type	for	a	foreign
key	attribute/column	in	a	Microsoft	Excel	report	will	not	be	implemented	in	Data	Modeler
because	these	types	of	attributes/columns	inherit	their	data	types	from	the	referred
attribute/column.	The	updated	Microsoft	Excel	report	can	be	uploaded	back	into	Data
Modeler	with	the	Update	Model	With	Previously	Exported	XLS	(XLSX)	File
functionality	that	you	can	access	in	the	Browser	pane	by	right-clicking	the	logical	or
relational	model	name,	depending	on	which	kind	of	report	it	is.	See	Figure	9-9	in	Chapter
9	for	more	details.	A	log	will	be	generated	about	the	updates.

TIP
You	can	edit	reports	in	XLS	or	XLSX	format	and	import	them	back	into	Data	Modeler.	You
can,	for	example,	use	Microsoft	Excel	in	sessions	with	end	users	to	write	notes	in	Notes,	or
you	can	ask	an	end	user	to	write	a	description	in	Comments.

Simple	Mode
In	simple	mode,	you	can	search	using	strings,	or	you	can	use	regular	expressions	as	the
search	criteria.	You	can	also	run	a	report	based	on	the	search	result	or	change	common
properties	for	the	search	result	set.

To	start	a	search	in	simple	mode,	select	the	Simple	Mode	radio	button	and	enter	a	string
to	be	searched	for	in	the	box	with	the	binoculars	sign,	as	shown	earlier	in	Figure	11-7.
Depending	on	what	you	selected	in	Preferences,	the	display	is	updated	either	as	you	type
or	when	you	press	ENTER.

TIP
If	you	want	to	search	everything,	just	type	an	asterisk	(*)	in	the	search	field.

Select	either	All	or	one	of	the	object	types	in	Filter	to	limit	the	search.	If	you	select
Case	Sensitive,	the	search	will	also	check	the	case	sensitivity.	If	you	select	Stop	On	First,

only	the	first	occurrence	of	the	result	is	displayed	if	there	are	duplicates	under	Name.

In	Results,	you	can	see	the	objects	that	fulfilled	the	criteria.	If	you	double-click	an
element	in	the	list,	you	can	see	and	edit	the	properties	for	that	element.	You	can	change	the
column	order	in	Results	by	dragging	and	dropping	the	columns	headers,	and	you	can	sort
the	result	set	by	clicking	the	column	header.

In	Diagrams,	you	can	see	the	diagram	or	diagrams	where	the	object	can	be	found.	If
you	double-click	the	diagram	name,	the	diagram	will	open.

If	you	want	to	save	the	search,	go	to	Saved	Searches	in	the	<New	Search>	field,	enter	a
name	for	the	search,	click	More,	and	select	Save.	If	you	select	Clear	for	More,	the	search
result	will	be	cleared.	If	you	select	Delete,	the	saved	search	will	be	deleted.	Before
deleting	it,	Data	Modeler	asks,	“Are	you	sure	you	want	to	delete	saved	search?”	If	you
want	to	use	one	of	the	saved	searches,	click	the	list	button	next	to	<New	Search>	and
select	the	desired	search	from	the	list.	You	can	pin	the	search	by	clicking	the	pin	icon,	and
if	another	Find	operation	is	started,	it	will	be	on	its	own	tab.

If	you	select	Use	RegEx,	you	will	have	an	enormous	number	of	possibilities	for
searching	the	content	in	open	designs	with	regular	expressions.	You	can,	for	example,
search	for	anything	in	open	designs	that	have	some	indication	of	having	a	URL	(includes
any	of	these	strings:	http:,	https:,	ftp:,	or	ftps:)	by	searching	(f|ht)tps?:.	The	parentheses,
(…),	group	the	pattern	elements	into	a	single	element,	and	the	pipe	symbol	(|)	says	that
one	of	the	alternatives	should	match	(f	or	ht).	The	question	mark	(?)	says	that	the
preceding	pattern	(s)	is	optional.	Thus,	the	preceding	regular	expression	matches	the	http:,
https:,	ftp:,	and	ftps:	strings.	Figure	11-9	shows	an	example	of	a	search	with	a	regular
expression.	The	search	returns	the	Comment	property	of	an	attribute	EMPLOYEES.
Information	that	has	the	value	http:\.

FIGURE	11-9.	Global	search	with	regular	expression

The	characters	|	and	?	are	called	metacharacters,	and	using	them	makes	regular
expressions	powerful.	Another	example	of	a	metacharacter	is	{},	which	means	an	interval.
{1}	means	exactly	one,	{1,}	means	at	least	one,	and	{1,7}	means	between	1	and	7.	Using
this	you	can	find,	for	example,	anything	that	has	two	p’s	in	it	with	p{2}	or	at	least	two	p’s
with	p{2,}.	This	search	would	return,	for	instance,	humppa.

Curly	braces,	{},	are	called	a	quantifier.	Other	quantifiers	are	as	follows:	*	meaning	0

or	more,	+	meaning	1	or	more,	and	?	meaning	0	or	1.	As	mentioned	earlier,	(…)	is	a
group.	The	square	brackets,	[…],	indicate	a	range.	For	instance,	[abc]	means	“a	or	b	or	c,”
and	[^abc]	means	“not	a	or	b	or	c.”	[1-9]	means	“any	digit	between	1	and	9,”	and	[a-q]
means	“a	letter	between	a	and	q.”	Ranges	are	inclusive.	There	are	plenty	of	other
metacharacters	that	can	be	used	as	well.	You	can	use	all	the	basic	elements	to	create
complex	and	powerful	patterns.	For	instance,	((?=.*/d)?=.*[a-z])(?=.*[A-Z]).{8,15})	can
be	used	to	check	that	the	string	includes	at	least	one	digit,	one	lowercase	letter,	and	one
uppercase	letter,	and	is	8	to	15	characters	long.

TIP
You	can	read	more	about	regular	expressions	at	http://docs.Oracle.com.

Advanced	Mode
Advanced	mode	has	more	features	for	searching	than	simple	mode.	In	advanced	mode,
you	can	search	by	object	properties,	and	you	can	specify	ORs	and	ANDs	in	the	search
logic.	Select	the	Advanced	Mode	radio	button	to	enable	those	features.

The	upper	part	of	the	screen	in	advanced	mode	is	the	same	as	in	simple	mode;	the
difference	is	in	the	lower	part	of	the	screen.	In	advanced	mode	you	also	have	another	tab
beside	Results:	Options.	The	Options	tab	is	where	you	add	object	property	criteria	for	the
search.	First	you	select	the	object	type	that	will	be	used	in	the	search,	and	then	you	click
the	Add	Property	button	to	be	able	to	select	the	wanted	property	for	the	object	type.	From
the	Searchable	Properties	list,	select	the	property	you	want	to	search	again	and	insert	the
search	criteria	in	the	field	next	to	it.	If	you	want	the	search	to	be	a	negation,	select	Not.	If
you	want	this	compare	to	be	case	sensitive,	select	Case	Sensitive.	You	can	add	as	many
properties	as	desired	by	clicking	Properties	and	selecting	the	property	and	the	criteria.	On
the	right	you	can	decide	with	a	radio	button	whether	the	separate	properties	and	their
criteria	will	be	combined	with	OR	or	AND.	If	you	want	to	remove	a	property	from	the
search,	click	the	red	X	button	next	to	the	property	line.	When	you	want	to	perform	the
search,	click	the	Find	button	next	to	Add	Property.	You	can	see	the	result	of	the	search	on
the	Results	tab.

You	can	find,	for	example,	all	the	attributes	that	are	deprecated	(see	Figure	11-10)	or	all
the	entities	that	have	the	property	Create	Surrogate	Key	selected.	Or	you	can	find	all	the
domains	with	the	VARCHAR	data	type	or	all	the	relationships	with	attributes.	In	short,
you	can	search	based	on	any	property	you	have	entered	in	the	design.	This	tool	is
powerful,	and	it	gets	even	more	powerful	when	you	add	the	regular	expressions	to	the
search	criteria	explained	earlier.	The	sky	is	the	limit	regarding	what	you	can	search	for
with	this	tool.

http://docs.Oracle.com

FIGURE	11-10.	Advanced	mode	search	for	attributes	with	the	property	deprecated=true

Remember	that	every	search	result	can	be	saved	in	a	report.	The	report	can	be	in
different	formats,	with	different	templates,	and	new	templates	can	be	built	easily.	And	the
search	result	can	be	used	for	updating	the	common	properties	for	the	result	set.

Setting	Common	Properties
If	you	have	selected	an	object	type	in	Object,	both	the	Report	and	Properties	buttons
appear.	By	clicking	the	Properties	button,	you	can	see	the	common	properties	for	the	result

set	and	set	them,	as	shown	in	Figure	11-11.	In	the	Set	Common	Properties	dialog,	you	can
change	a	property	for	the	whole	set.	In	Old	Value,	you	can	see	the	current	value	of	that
property,	and	in	New	Value	you	can	enter	a	new	value	or	select	a	value	from	the	list
(marked	with	…)	as	the	new	value	for	all	the	items	in	the	result	list.	Double-click	the	New
Value	field	for	the	property	name	to	enter	the	new	value.	When	you	click	Apply,	this	new
value	is	changed	for	all	the	items.

FIGURE	11-11.	Setting	common	properties

For	example,	if	you	want	to	associate	the	same	schema	name	for	all	the	tables	in	the
relational	model,	start	the	Search	operation	for	the	relational	model	wanted,	type	*	in	the
search	field,	and	select	Table	Oracle	Database	12c	(or	whatever	the	RDBMS	site	is)	in
Filter.	Then	click	Properties,	go	to	Property	Name	User,	and	click	the	list	to	select	the
value	for	a	schema	name.	Click	Apply.

TIP
If	you	want	to	replace	an	existing	value	with	an	empty	value,	click	the	left-pointing	arrow
at	the	end	of	the	property	name	setting	and	select	Empty	String.

Summary
You	can	generate	reports	by	choosing	File	|	Reports	or	by	using	the	search	functionality.
You	can	also	print	a	diagram	by	choosing	File	|	Print	Diagram.	You	can	generate	reports
from	Data	Modeler	designs	that	are	open	at	the	time,	or	they	can	be	generated	from	the
Data	Modeler	reporting	repository.	A	user	can	create	standard	and	custom	templates	to	get
the	reports	to	look	like	they	need	to	and	to	include	the	information	wanted.	Customer
reports	can	be	generated	in	Microsoft	Excel	format,	and	the	changed	information	can	be
imported	back	into	Data	Modeler	to	either	a	logical	or	relational	model.	Reports	can	be
generated	in	different	formats	for	different	needs.

The	reporting	repository	is	a	database	that	can	be	accessed	with	SQL.	A	user	can	have
read-only	access	to	the	reporting	repository	to	be	able	to	query	it	with	SQL.	The	reporting
repository	is	a	read-only	repository,	and	all	changes	to	the	content	must	be	done	with	Data
Modeler.

Data	Modeler	has	strong	search	features	to	find	any	possible	detail	in	a	design.	A
search	can	be	performed	in	simple	or	advanced	mode.	Also,	regular	expressions	can	be
used	in	searches.	The	search	functionality	can	be	used	not	only	for	searching	but	also	for
reporting	and	setting	common	properties	in	the	result	set.

CHAPTER
12

Comparing	Designs	and	the	Database

There	are	many	situations	when	you	need	to	compare	either	two	designs	with
each	other	or	the	design	with	the	database.	You	can	compare	two	designs	either
by	choosing	File	|	Import	|	Data	Modeler	Design	or	by	choosing	Tools	|

Compare/Merge	Models.	The	main	difference	between	these	two	methods	is	that	in
Compare/Merge	Models	you	can	compare	only	the	relational	and	physical	models,
whereas	via	Import	|	Data	Model	Design	you	can	compare	everything	in	a	design.	On	the
other	hand,	via	Compare/Merge	Models	you	can	also	preview	and	influence	the	DDLs	that
will	be	generated.	A	design	and	a	database	can	be	compared	with	either	Synchronize
Model	With	Data	Dictionary	or	Synchronize	Data	Dictionary	With	Model,	and	the	actual
comparison	will	be	done	in	the	Compare	Models	dialog.	A	comparison	to	a	design	can
also	be	done	based	on	DDLs	or	data	dictionary.	This	comparison	also	takes	place	in	the
Compare	Models	dialog.

In	all	comparisons,	you	always	have	a	target	and	a	source,	and	the	possible	changes	are
always	performed	on	the	target.	The	source	is	shown	on	the	left,	and	the	target	is	shown
on	the	right	in	the	comparison	screens.	A	target	in	a	design	comparison	is	the	one	that	is
open	in	Data	Modeler	when	the	comparison	starts.	In	synchronization,	in	Synchronize
Model	With	Data	Dictionary	the	target	is	the	model,	and	in	Synchronize	Data	Dictionary
With	Model	it	is	the	database.	The	best	part	of	comparisons	and	synchronizations	is	that
you	can	select	any	differences	you	want	from	the	source	and	implement	them	in	the	target
telling	the	tool	you	want	it	to	be	implemented	in	the	target.

Setting	Preferences	and	Properties
There	are	some	preferences	that	will	affect	the	comparisons—not	what	objects	will	be
compared	but	what	features	will	be	compared.	You	can	find	them	in	the	Preferences	dialog
by	selecting	Data	Modeler	|	DDL	|	DDL/Comparison.	The	DDL	Comparison	Options
section	includes	the	preferences	for	adjusting	the	comparisons.

			A	Data	Type	Kind	comparison	is	always	done,	but	if	you	select	the	Use	‘Data
Type	Kind’	Property	In	Compare	Functionality	preference,	the	difference	will	be
enabled	for	merging	automatically.	Data	Type	Kind	means	that	if	a	column	on	one
side	of	the	comparison	is	VARCHAR	(10)	and	on	the	other	side	is	defined	as
VARCHAR	(10	CHAR),	these	definitions	differ.	Or	if	a	column	has	been	defined	as
Logical	Type	(VARCHAR)	and	on	the	other	side	as	Domain	(NameFirst),	even
though	they	both	are	of	the	same	data	type	and	length	(VARCHAR(30)),	they	differ
from	each	other	in	Data	Type	Kind.

			Use	‘Schema’	Property	In	Compare	Functionality	defines	whether	the
different	schema	definition	is	a	reason	to	show	a	difference	when	comparing	two
objects,	and	if	this	is	selected	and,	for	instance,	the	same	table	on	one	side	is	on
schema	TEST	and	on	the	other	side	is	on	schema	PROD,	Data	Modeler	suggests	you
create	a	new	table	because	it	sees	this	as	a	new	table.

			The	column	order	for	each	table	is	always	checked,	but	if	Use	‘Columns
Order’	Property	In	Compare	Functionality	is	selected,	then	the	difference	in	the

column	order	on	the	Details	tab	will	be	automatically	selected	for	merging.	If	it	is
not	selected,	the	difference	is	not	enabled	for	merging	but	can	be	selected	manually
if	desired.

			Case	Sensitive	Names	In	Compare	Functionality	defines	whether	the	names
are	case	sensitive	in	comparisons.	If	this	is	selected,	then,	for	instance,	the	tables
CUSTOMER	and	Customer	will	not	be	the	same.	The	tool	will	suggest	removing
one	or	adding	the	other.

			If	you	select	Include	System	Names	In	Compare	Functionality,	the	system-
generated	constraint	names	are	compared.	That	is	not	usually	wise	since	the
generated	name	is	random	and	most	likely	different	in	different	databases.

If	you	do	not	have	a	specific	reason	to	change	these	preferences,	you	should	leave	them
at	the	default	settings.

There	are	also	some	preferences	that	will	affect	the	result	only	when	importing	DDLs
or	synchronizing	with	the	database.	These	preferences	define	what	objects	will	be	taken
from	the	database	for	comparison.	All	objects	from	the	design	are	always	compared.	In
Preferences,	you	will	find	them	in	the	Preferences	dialog	on	the	Data	Modeler	|	Model	|
Relational	tab.	There	is	a	category	called	Database	Synchronization	that	includes	the
following	preferences:

			If	you	select	Use	Source	Connection,	the	username	and	connection	defined	for
the	database	connection	are	the	main	criteria	for	selecting	objects	for	comparison.
Only	those	objects	from	the	source	that	have	been	defined	in	the	physical	model	to
be	included	in	that	user	schema	are	included	in	the	comparison.	For	instance,	if	your
connection	is	via	username	Heli,	only	objects	that	have	been	defined	in	the	schema
of	the	user	Heli	in	the	physical	model	of	the	design	will	be	included	from	the
database	side	for	the	comparison.	All	the	objects	that	have	no	owner	in	the	physical
model	will	also	be	included	in	both	cases.	All	the	objects	from	the	design	are
included.	If	you	used	several	connections	to	import	objects,	the	same	or	a	different
database,	or	the	same	or	a	different	user,	you	can	use	this	option	to	filter	out	objects
that	are	imported	with	connections	not	selected	in	the	synchronizing	dialog.

			If	Use	Source	Schema	is	not	selected,	only	those	objects	from	the	source	that
have	the	same	owner	(schema)	as	in	the	design	will	be	included	in	the	comparison.
All	the	objects	from	the	design	are	included.	If	Use	Source	Schema	is	selected,	all
the	objects	from	the	source	schema	that	exist	also	in	the	design	will	be	included,	no
matter	if	they	have	the	same	owner.	Objects	in	the	database	that	do	not	exist	in	the
design	are	not	included.	All	the	objects	that	have	no	owner	in	the	physical	model
will	also	be	included	in	both	cases.

			If	Use	Source	Object	is	selected,	the	comparison	is	made	only	to	objects	that
exist	in	the	database	when	connecting	using	the	connection.	All	the	objects	that	have
no	owner	in	the	physical	model	will	also	be	included	in	both	cases.

			If	Synchronize	The	Whole	Schema	is	selected,	all	the	objects	that	exist	in	the
database	and	all	the	objects	that	exist	in	the	design	are	shown	in	the	list.

If	none	of	these	is	selected,	the	objects	that	have	the	same	owner	will	be	included	from

the	database	for	comparison.	If	all	of	them	are	selected,	you	will	see	all	the	objects	from
the	database	and	all	the	objects	from	the	design.

Comparing	Two	Designs
There	are	two	ways	to	compare	two	designs:	You	can	choose	File	|	Import	|	Data	Modeler
Design,	or	you	can	choose	Tools	|	Compare/Merge	Models.	The	Import	|	Data	Modeler
Design	method	is	for	comparing	two	designs	in	every	level:	logical	models,	relational
models,	physical	models,	and	so	on.	The	Compare/Merge	Models	method	is	only	for
comparing	the	relational	and	physical	models.	The	Compare	Models	dialog	where	the
comparison	is	done	in	the	latter	case	is	the	same	dialog	that	will	be	used	when	importing
DDLs,	importing	from	a	data	dictionary,	or	when	using	the	database	synchronization.

Importing	a	Data	Modeler	Design
If	you	want	to	compare	the	logical	models,	in	addition	to	the	relational	and	physical
models,	and	apply	changes	from	there,	you	should	use	the	File	|	Import	|	Data	Modeler
Design	method.	Open	the	target	design	(target)	in	Data	Modeler.	Then	choose	File	|	Import
|	Data	Modeler	Design.	Select	the	source	design	on	the	Import	Design	screen.	Select
Selected	for	the	Logical	Model	setting	if	you	want	to	compare	logical	models	and	the
relational	model	if	you	want	to	compare	that	too.	For	the	relational	model,	you	can	select
it	to	be	imported	to	a	new	relational	model	(New	Relational),	or	you	can	select	an	existing
relational	model	from	the	list	of	relational	models	in	the	target	design,	as	shown	in	Figure
12-1.	You	can	use	New	Relational	to	create	a	new	relational	model	under	the	logical
model	without	affecting	the	existing	relational	model.	But	if	you	want	to	compare	the
relational	model	to	an	existing	relational	model,	select	that	model.	Click	Next	and	then
Finish.	The	Compare	Oracle	SQL	Developer	Data	Modeler	Designs	screen,	shown	in
Figure	12-2,	will	open.

FIGURE	12-1.	Selecting	the	logical	and	relational	models	to	import

FIGURE	12-2.	The	compare	screen

As	mentioned	earlier,	the	source	design	is	always	on	the	left,	and	the	target	design	is
always	on	the	right;	any	changes	based	on	the	source	are	made	to	the	target,	and	the	source
will	remain	untouched.	There	are	once	again	two	ways	of	seeing	the	differences:	tree	view
and	tabular	view.	In	the	tabular	view,	you	can	run	a	report	(HTML,	PDF,	RTF)	of	the
differences,	and	by	selecting	Separate	Objects	By	Status,	you	can	have	them	listed	by	their
status	(modified,	new,	deleted).	In	both	of	those	views	you	can	see	the	differences	in	the
Details	pane	under	the	comparison.	The	details	are	shown	from	the	selected	element.	The
yellow	triangle	shows	that	there	is	something	different	in	those	two	designs.	If	you	select
that	element	and	view	the	details	in	the	screen,	you	can	see	what	has	been	changed.	A	red
X	shows	that	something	has	been	deleted,	and	a	green	plus	sign	shows	that	something	has
been	added.	When	applying	the	differences	to	the	target	model,	the	default	for	a	deletion	is
always	disabled,	and	for	an	addition	it’s	selected.	Remember	to	always	check	that	you
have	selected	and	disabled	the	differences	the	way	you	want	before	clicking	Apply.	If	you
Apply	and	then	realize	something	was	not	correct,	you	can	always	close	the	design
without	saving	it.	When	you	have	selected	which	changes	you	would	like	to	make	to	your
target	design,	you	can	run	a	report	of	the	changes	and	then	apply	the	changes	to	your
target	design.	When	you	have	clicked	either	Apply	or	Cancel,	the	Compare	Oracle	SQL
Developer	Data	Modeler	Designs	screen	will	close,	so	if	you	want	to	run	the	report,	run	it
before	applying	or	closing.

In	the	tabular	view,	you	can	select/deselect	everything	with	one	click,	and	you	can
select	only	the	model	whose	elements	you	want	to	see:	ALL,	Data	Types	Model,	Logical
Model,	or	Relational	Model.	In	both	views	you	can	select	by	the	status	(New,	Deleted,	or
Modified),	but	in	the	tabular	view	you	can	also	select	unchanged	elements.	In	the	tabular
view	you	can	select	the	type:	ALL,	Arc,	Attribute,	Column,	Entity,	Entity	View,	FK	Arc,
Foreign	Key,	Index,	Key,	Relationship,	Structured	Type,	Subview,	or	Table.	To	me,	the
tree	view	is	easier	to	read,	but	in	the	tabular	view	you	can	see,	for	instance,	columns	and
nothing	else,	which	can	be	useful.	I	recommend	you	learn	to	use	both	views	because	they
are	both	excellent,	and	depending	on	your	needs,	one	might	be	better	than	the	other	in	a
particular	case.	In	my	experience,	though,	when	finally	applying	the	changes	to	the	target
design,	it	is	safer	to	use	the	tree	view.	For	instance,	if	you	want	to	implement	a	change	to	a
column	NAME	and	select	it	in	the	tabular	view,	no	change	is	performed.	You	must	also
select	the	table	CUSTOMER	to	get	the	column	changed,	and	that	is	easier	done	and
noticed	in	the	tree	view.

Comparing/Merging	Models
This	method	is	for	comparing	the	relational	and	physical	models.	The	target	design	must
be	open	in	Data	Modeler.	Choose	Tools	|	Compare/Merge	Models.	Select	the	source	model
you	want	to	use	to	compare	from	the	Import	Design	dialog	that	will	open.	Note	that	you
must	also	have	the	source	design	in	your	working	copy	directory.	If	you	have	several
relational	models,	select	the	one	you	want	to	compare.	If	you	have	several	physical
models	in	your	target	model’s	relational	model,	select	the	one	you	want	to	compare.	If	you
do	not	select	any,	the	relational	database	management	site	(RDBMS)	that	has	been	defined
as	the	default	in	Design	Properties	for	the	source	design	is	used.	If	you	select	an	RDBMS

site	that	does	not	exist	in	your	physical	models	of	the	target	design,	one	will	be	created	for
you	during	the	comparison.	Click	OK.

In	the	Compare	Models	dialog,	you	can	see	exactly	how	the	two	models	differ.	The
source	design	in	always	on	the	left,	and	the	target	design	is	on	the	right.	There	are	once
again	two	ways	of	seeing	the	differences:	tree	view	and	tabular	view.	The	yellow	triangle
shows	that	there	is	a	difference.	If	you	select	that	element	and	view	the	details	in	the
screen,	you	can	see	exactly	what	has	been	changed.	A	red	X	shows	that	something	has
been	removed,	and	a	green	plus	sign	says	that	something	has	been	added.	The	default	for	a
deletion	is	always	disabled,	and	for	an	addition	it’s	selected.	Remember	to	always	check
that	you	have	selected	and	disabled	the	elements	the	way	you	want	before	clicking	Merge.
If	you	merge	and	then	realize	something	was	not	correct,	you	can	always	close	the	design
without	saving	it.	When	you	have	selected	which	changes	you	would	like	to	make	to	the
target	design,	you	can	see	the	DDLs	it	would	generate	by	clicking	DDL	Preview	and
check	that	is	what	you	wanted	and	merge	the	changes	to	the	target	design.	When	you	have
clicked	either	Merge	or	Close,	the	Compare	Models	screen	will	be	closed,	so	if	you	want
to	run	a	report	or	get	the	DDLs,	do	that	before	merging	or	closing.

In	both	of	those	views,	you	can	see	the	differences	on	these	tabs:	Details,	Storage
Details,	Options,	Tables	That	Will	Be	Recreated,	and	Data	Type	Conversion.	If	you	have
selected	either	of	the	Advanced	DDLs	settings	in	Options,	you	will	also	see	Oracle	Errors
To	Mask.

On	the	Details	tab,	you	can	see	all	the	details	related	to	the	element	type	selected	in
either	the	tree	or	tabular	view.	You	can	see	the	value	for	that	detail	(for	instance,	the
column	name)	in	the	source	and	in	the	target.	If	there	is	a	difference	in	the	values,	it	will
be	marked	in	red.	In	Selected,	you	define	whether	this	detailed	change	will	be	performed
on	the	target	element.	You	could	say	in	the	tree	view	that	the	change	will	be	performed	on
the	columns,	and	in	Details	you	can	select	that	only	some	of	the	changes	suggested	will	be
performed.	For	example,	you	can	specify	to	change	only	the	name,	but	not	the	data	type,
as	shown	in	Figure	12-3.

FIGURE	12-3.	Compare	Models	dialog,	Details	tab

On	the	Storage	Details	tab,	you	can	see	the	storage	values	for	the	source	and	the	target
for	elements	that	have	storage	values,	such	as	a	table.	If	there	are	differences,	they	are
marked	in	red.	Storage	details	are,	for	instance,	a	tablespace	or	any	of	the	parameters	in
the	storage	clause.

On	the	Options	tab,	you	can	define	DDL	Options,	DDL	Storage	Options,	Compare
Options,	Properties	Filter,	Storage	Properties	Filter,	and	Date/Time	Format.	Let’s	see	them
more	carefully:

			In	DDL	Options,	you	can	specify	the	following:

			You	can	specify	the	elements	that	will	be	included	in	DDL	clauses.	In
Preferences	(Data	Modeler	|	DDL),	you	have	specified	the	values	for	all	these
parameters	except	Include	Comments	(see	Chapter	7).	The	preference	can	be
overrun	for	the	comparison	by	setting	it	differently	in	Compare	Models	|	Options.
The	Preferences	setting	will	overrun	this	parameter	setting	the	next	time	you	start
Data	Modeler.

			The	parameter	Include	Comments	controls	whether	comments	are
included	in	the	comparison.

			The	parameter	Include	Default	Settings	controls	whether	default
settings	are	included	in	generated	DDLs.	It	will	add	all	DDL	keywords	for
the	object	created	in	the	generated	DDL	statements.	This	option	is	useful	if
you	want	to	see	the	syntax	for	an	object	DDL.

			The	parameter	Include	Logging	controls	whether	the	logging
information	is	included	in	the	generated	DDLs.

			The	parameter	Include	Schema	controls	whether	object	names	are
prefixed	with	the	schema	name	in	the	generated	DDL	statements,	such	as
PROD.CUSTOMER	instead	of	just	CUSTOMER.

			The	parameter	Include	Storage	controls	whether	storage	information
is	included	in	the	generated	DDLs.	If	the	storage	is	not	included,	in	Oracle
the	storage	setting	of	the	tablespace	where	the	object	is	saved	is	used.
Storage	settings	are,	for	instance,	PCTFREE,	PCTUSED,	INITRANS	and
MAXTRANS,	INITIAL,	NEXT,	MINEXTENTS,	and	MAXEXTENTS.

			The	parameter	Include	Tablespace	controls	whether	tablespace
information	is	included	in	the	generated	DDLs.

			You	can	select	the	type	of	the	DDL,	as	mentioned	in	Chapter	7.	The
possible	types	are	Regular	DDL,	Advanced	Interactive	DDL,	and	Advanced	CL
(command-line)	DDL.	Both	Advanced	Interactive	DDL	and	Advanced	CL	DDL
create	a	script.	Both	scripts	are	interactive,	and	the	advanced	CL	DDL	script	can
be	run	from	the	command	line.	Both	scripts	include	input	parameters	such	as	start
step,	stop	step,	log	file,	and	log	level	(1,	2,	or	3).	If	you	want	to	run	the	advanced
CL	DDL	script	in	SQL*Plus,	the	syntax	is	as	follows:	SQL>	sqlplus
user/password@name	@script_name	start_step	stop_step	log_file	log_level.

			If	the	parameter	Replace	Existing	Files	is	selected,	Data	Modeler	will
automatically	replace	any	existing	DDL	files.

			You	can	also	specify	Unload	Directory.	That	is	a	directory	on	the	server
side	that	is	used	if	anything	goes	wrong	when	performing	the	operations.	For
example,	if	the	database	runs	in	Linux,	this	directory	is	a	Linux	directory.	For
instance,	space	could	run	out	on	a	tablespace	where	a	table	was	supposed	to	be
re-created.	This	can	be	used	only	with	Advanced	Interactive	DDL	or	Advanced
CL	DDL,	and	the	backup	strategy	is	set	to	unload.	Regular	DDL	uses	only	a
rename	of	the	table	for	backup.

			In	DDL	Storage	Options,	you	can	change	the	values	you	have	set	in
Preferences	for	what	to	include	in	the	DDL	clause	(see	Chapter	7).	You	can	either
include	or	exclude	these	parameters	from	the	storage	clause	in	DDL:	PCTFREE,
PCTUSED,	INITRANS,	INITIAL,	NEXT,	MINEXTENTS,	MAXEXTENTS,
PCTINCREASE,	BUFFER_POOL,	FREELIST,	FREELIST	GROUPS,	and
OPTIMAL.

			In	Compare	Options,	you	can	specify	the	same	parameters	introduced
earlier	in	this	chapter	for	preferences:	Use	Data	Type	Kind	Property,	Use	Schema
Property,	Use	Column	Order	Property,	Case	Sensitive	Names,	and	Include
System	Names.	The	values	will	come	from	Preferences,	but	you	can	change	them
for	the	comparison.	After	changing	these	parameters,	click	Refresh	Tree	to	get	the
upper	part	of	the	screen	updated,	and	these	parameters	take	effect	for	the	current
comparison.

			In	Properties	Filter,	you	can	select	properties	to	be	included	or	excluded
while	comparing.	There	are	settings	for	elements	such	as	arcs,	columns,	foreign
keys,	primary	key	and	unique	key	constraints,	structured	types,	tables,	and	views.
Select	Included	for	all	the	properties	for	the	element	type	you	want	to	be
included.	For	instance,	you	can	exclude	comments	and	notes	for	a	table	when	you
are	comparing	a	model	that	has	the	comment	to	another	model	created	from	the
database	that	does	not	have	the	comment	and	can	be	sure	the	comment	will	not	be
overwritten.

			Storage	Properties	Filter	has	content	if	the	element	is	of	a	type	that	has
storage	properties.	You	can	exclude	some	of	the	storage	properties	from
comparison.	You	might	want	to	exclude	tablespaces	from	comparison	if	you
know	they	are	different	for	tables	in	the	source	versus	the	target	and	it	is	on
purpose.

			In	Date/Time	Format,	you	can	set	the	date	format,	timestamp	format,	and
timestamp	time	zone	format.

On	the	Tables	That	Will	Be	Recreated	tab,	you	can	define	the	backup	strategy
(rename/none),	data	restore	(restore/none),	script	execution	(continue),	and	unload
directory	for	each	table	that	will	be	re-created.	A	table	might	need	to	be	re-created,	for
example,	if	a	column	is	changing	a	data	type,	and	depending	on	whether	the	tables	have
data	or	do	not	have	it,	you	might	want	to	select	a	different	backup	strategy.

On	the	Data	Type	Conversion	tab,	you	will	see	what	column	will	be	converted	and	its

current	and	new	data	types.	You	can	define	whether	the	table	will	be	re-created.	If	the
table	is	empty,	it	can	be	just	dropped	and	created,	but	if	it	is	not	empty,	it	must	be	re-
created.	You	can	also	define	the	conversion	expression.

If	you	have	selected	either	Advanced	DDL	or	Advanced	CL	DDL,	you	can	specify	on
the	Oracle	Errors	To	Mask	tab	some	Oracle	errors	to	be	ignored	during	script	execution.
For	example,	you	can	specify	-942	for	ORA-00942.

TIP
You	can	change	the	column	order	on	the	Tables	That	Will	Be	Recreated	and	Data	Type
Conversion	tabs	by	clicking	a	header	and	moving	it	to	where	you	want.	The	change	might
make	the	screen	easier	for	you	to	read.

Quite	often	people	ask	me	which	one	is	better,	the	tree	view	or	the	tabular	view.	My
answer	is	that	they	complement	each	other,	and	it	depends	on	what	you	are	doing.	In	the
tabular	view,	you	can	select/deselect	everything	with	one	click,	and	you	can	select	only
the	model	whose	elements	you	want	to	see:	ALL,	Data	Types	Model,	and	Relational
Model.	In	both	views	you	can	select	by	the	status	(New,	Deleted,	or	Modified),	but	in	the
tabular	view	you	can	also	select	Unchanged.	In	the	tabular	view,	you	can	select	the	type:
ALL,	Column,	FK	Arc,	Foreign	Key,	Index,	Structured	Type,	or	Table.	To	me,	the	tree
view	is	easier	to	read,	but	in	the	tabular	view	you	can	see,	for	instance,	indexes	and
nothing	else,	which	can	be	useful.	I	recommend	you	learn	to	use	both	views	because	they
are	both	excellent,	and	depending	on	your	needs,	one	might	be	better	than	the	other	in	a
particular	case.	I	would	also	advise	you	to	use	the	tree	view	when	finally	merging	since
the	logic	in	the	tabular	view	for	merging	might	not	be	so	obvious.	In	either	view,	you	can
run	a	report	(HTML,	PDF,	RTF)	of	the	differences.	And	by	selecting	Separate	Objects	By
Status,	you	can	have	the	differences	listed	by	their	status	on	the	report.

Comparing	a	Design	to	the	Database
A	design	and	a	database	can	be	compared	with	either	Synchronize	Model	With	Data
Dictionary	or	Synchronize	Data	Dictionary	With	Model.	In	all	comparisons,	you	always
have	a	target	and	a	source,	and	the	possible	changes	are	always	performed	on	the	target.	In
Synchronize	Model	With	Data	Dictionary,	the	target	is	the	model,	and	in	Synchronize
Data	Dictionary	With	Model	it	is	the	database.	If	you	do	not	want	to	use	the	synchronizing
functionality	to	compare	the	database,	there	are	a	couple	other	options:	either	import
DDLs	or	import	from	a	data	dictionary.

The	difference	between	these	methods	is	at	the	beginning	of	the	process:	All	these
methods	end	up	at	the	same	Compare	Models	dialog	introduced	in	the	previous	section.
The	only	difference	is	in	Synchronize	Data	Dictionary	With	Model	because	the	Compare
Models	screen	for	that	also	includes	a	Sync	New	Objects	button.

If	you	are	using	the	synchronization	functionality	to	compare	the	design	to	the
database,	you	need	to	create	a	connection	to	the	database	if	you	have	not	done	so	before.
There	is	no	particular	place	to	really	create	a	connection,	but	it	can	be	done	with	Import.

Choose	File	|	Import	|	Data	Dictionary.	Then	click	Add	to	create	a	new	connection	and
insert	the	information	needed	for	the	connection.	Test	that	the	connection	works	by
clicking	Test,	and	when	you	are	done	with	it,	click	Save.	Now	the	connection	is	created,
and	you	do	not	need	to	continue	with	the	importing	anymore,	so	click	Cancel.

With	the	Synchronize	Model	With	Data	Dictionary	button,	you	can	view	what	has
changed	in	the	database	and	get	those	changes	to	your	model.	Click	the	arrow	pointing	to
the	left,	as	shown	in	Figure	12-4.	Select	your	connection	from	the	Redirect	Connection	list
and	click	OK.	Now	you	will	see	the	Compare	Models	dialog	again.	Data	Modeler	suggests
that	the	objects	that	exist	only	in	the	database	should	be	added	to	the	design,	and	the
objects	that	exist	only	in	the	design	and	not	in	the	database	should	be	removed	from	the
database.	You	can	use	this	comparison	to	get	changes	made	directly	to	the	database	to	the
design	as	well.	Select	the	changes	you	want	to	perform.	You	can	view	the	DDL	preview
before	clicking	the	Merge	button	to	make	sure	your	model	will	be	updated	the	way	you
want.	You	can	also	use	the	DDL	script	Data	Modeler	gives	you	to	alter	the	database.
Check	the	design	before	saving	it	to	be	sure	it	is	what	you	wanted.

FIGURE	12-4.	Synchronize	Model	With	Data	Dictionary	and	Synchronize	Data
Dictionary	With	Model	buttons

With	the	Synchronize	Data	Dictionary	With	Model	button,	you	can	see	what	has
changed	in	the	design	and	make	those	changes	to	the	database.	Click	the	arrow	pointing	to
the	right,	as	shown	in	Figure	12-4.	Select	your	connection	from	the	Redirect	Connection
list	and	click	OK.	You	will	see	the	Compare	Models	dialog	again.	Data	Modeler	suggests
that	the	objects	that	exist	only	in	the	database	should	be	deleted	from	the	database	and	the
objects	that	exist	only	in	the	design	should	be	added	to	the	database.	You	can	use	this
comparison	when	you	have	made	changes	to	the	design	but	have	not	implemented	them	in
the	database	yet.	Note	that	the	Merge	button	is	not	disabled	in	Figure	12-4	because	there
are	no	changes	that	can	be	performed	in	the	design.	Note	also	that	there	is	a	new	button

called	Sync	New	Objects	when	synchronizing	the	data	dictionary	with	the	model.	Select
the	changes	you	want	to	perform	and	open	the	DDL	preview.	Check	that	the	script	is
correct	and	save	it.	Run	the	script	in	the	database.	This	is	the	ALTER	script	to	change	your
database	to	match	the	model.	Depending	on	what	you	have	selected,	this	script	can	include
elements	for	creating	new	objects	in	the	database	and	for	deleting	or	altering	existing
objects.

You	can	also	use	the	DDLs	that	were	used	for	creating	the	database	to	make
comparisons	against	the	design.	Choose	File	|	Import	|	DDL	File	to	do	that.	You	can	either
compare	to	the	existing	relational	model	in	the	open	design	(target)	or	create	a	new
relational	model	based	on	the	DDLs.	If	you	want	to	have	the	DDL	design	as	the	target,
during	the	import	you	can	select	Swap	Target	Model	to	change	the	model	from	the	DDL
as	the	target.	Then	you	need	to	select	the	database	site	(RDBMS	site)	to	be	compared	to.
After	that,	you	can	view	the	log	in	the	View	Log	dialog	and	save	it	if	desired.	The	same
Compare	Models	screen	will	open	that	you	have	seen	before.	Another	option	is	that	you
import	from	the	data	dictionary.	Select	the	desired	connection	and	select	the	schemas	to
import,	the	relational	model	where	to	import	them,	and	the	RDBMS	site.	If	you	want,	you
can	select	Swap	Target	Model	as	explained	earlier.	Then	select	the	objects	you	want	to
import.	The	Compare	Models	screen	will	open.

For	example,	say	somebody	has	changed	the	name	and	data	type	of	a	column	in	the
database.	The	Compare	Models	dialog	does	not	know	that.	It	shows	that	there	is	a	column
in	the	design	that	does	not	exist	in	the	database,	and	vice	versa.	Select	the	column	on	the
source	side	and	right-click.	Select	Map	To	Existing	Column	and	select	the	column	that	it
should	be	mapped	to.	You	have	just	created	a	compare	mapping,	and	Data	Modeler	will
remember	it	the	next	time	you	do	a	comparison.	This	is	only	for	comparisons	between	the
design	and	a	database,	a	DDL	script,	or	a	data	dictionary.	If	you	compare	two	designs,
Data	Modeler	recognizes	it	is	the	same	column,	and	there	is	no	need	to	create	a	compare
mapping.	You	can	see	the	existing	compare	mapping	in	Design	Properties,	as	shown	in
Figure	12-5.	If	you	want	to	perform	the	operation	(change	the	name	and	data	type),	click
Merge.

FIGURE	12-5.	An	example	of	compare	mappings

Summary
There	are	several	ways	of	comparing	designs	to	each	other	and	comparing	a	design	to	a
database.	As	a	result	of	a	comparison,	you	can	also	change	the	design	or	the	database
accordingly.

Designs	can	be	compared	either	with	the	Import	functionality	or	with	Compare/Merge
Models.	Import	compares	all	the	elements	a	design	has,	whereas	Compare/Merge	Models
compares	only	the	relational	and	physical	models.

A	design	and	a	database	can	be	compared	either	with	synchronization	or	by	importing
the	DDLs	for	creating	the	database	or	importing	them	from	a	data	dictionary.	The
comparisons	on	the	design	and	database	are	done	with	the	Compare/Merge	Models	dialog.
During	the	comparison	you	can	either	change	the	model	or	get	the	DDLs	to	change	the
database.	You	can	also	get	ALTER	DDLs,	for	instance,	when	renaming	a	table	or
changing	a	data	type	of	a	column.	There	are	several	parameters	that	can	be	used	to	get	the
kind	of	DDLs	you	want.	Remember	to	always	check	the	DDLs	before	running	them	on
your	database.

Index

Please	note	that	index	links	point	to	page	beginnings	from	the	print	edition.	Locations	are
approximate	in	e-readers,	and	you	may	need	to	page	down	one	or	more	times	after
clicking	a	link	to	get	to	the	indexed	material.

Symbols
*(asterisk)

for	global	search,	273,	277

as	quantifier,	274

{}	(curly	braces),	as	quantifier,	274

A

Abbreviated	Only,	naming	standards,	22,	23

abbreviations,	name,	130–132

Add	New	Prefix	option,	134

Adequate	Normalized	property,	logical	model,	96

administering	RDBMS	sites,	142–144

advanced	mode,	search	operations,	274–276

agile	database	design,	3–4

Allow	Columns	Reorder	During	Engineering,	relational	model,	93–94

analytic	workspace	(AW),	Oracle,	194,	200–201

AND	button,	advanced	search	mode,	275

application	design,	database	design	vs.,	2–3

Apply	Name	Translation,	Engineer	to	Relational	Model	screen,	104–105,	111

arc,	definition	of,	81

arc	solution

engineering	of,	112,	114

in	inheritance,	81–82

asterisk	(*)

for	global	search,	273,	277

as	quantifier,	274

atomic	attributes,	65

Attribute	Properties	dialog

defining	domain	constraints,	80

General	tab	of,	65–66

sensitive	data	and,	71

attributes

as	constraints,	76–80

of	entity	properties,	45–46

marked	as	deprecated,	67

overlapping,	100

with	property	deprecated,	275

relationship,	74–75

setting	to	not	null,	79

types	of,	65–66

Auto	Increment	Column	Templates	settings,	140–141

Available	Collections,	Custom	Reports	Template	dialog,	262,	263

Available	Objects	box,	Permissions	dialog,	147

Available	Reports,	259–260

AW	(analytic	workspace),	Oracle,	194,	200–201

B

bitmap	join	indexes,	161

Boolean	domain,	list	of	values,	29,	30

Branch/Tag	option,	Subversion,	215

branches,	design,	225–228

Browser	pane,	Data	Modeler,	12–14

bubble	help,	New	Entity,	43–44

business	information,	adding	to	Data	Modeler,	55–56

C

case	sensitivity	options,	27,	281

Category	domain,	list	of	ranges,	29,	31

Change	Object	Names	Prefix	dialog,	133–134

check	constraints,	79,	113,	115–116

Check	Out,	in	Subversion,	212,	214

classification	types

for	Data	Vault	model,	188

for	design	properties,	22

in	DW	database	design,	184

for	glossary	words,	27–28

for	star/snowflake	models,	184–185

for	tables,	126

clusters,	in	physical	models,	158

collection	data	types

overview	of,	68–69

in	physical	models,	158

columns

changing	order	of,	289

comments	in	RDBMS,	154

defining	in	physical	models,	153–154

properties	of,	124–125

Comments	field,	describing	attributes	in,	45–46

compact	diagram,	multidimensional	models,	198–199

Compare	As	Text,	Pending	Changes,	219,	221

Compare/Copy	Options	tab,	Engineer	to	Relational	Model,	107–108

Compare	Mappings,	Design	Properties	dialog,	291–292

Compare	Models	dialog

relational/physical	model	comparison	in,	285–289

tabular	view,	228,	230–231

tree	view,	228–229,	231

Compare	Options,	Compare	Models	dialog,	288

Compare	Oracle	SQL	Developer	Data	Modeler	Designs,	282–285

comparisons

of	design	to	database,	289–292

overview	of,	280

report	based	on,	231

setting	preferences	for,	280–282

tabular/tree	views	of,	228–230

of	two	designs,	282–289

complex	relationships,	71,	72

composite	attributes,	65

composite,	for	data	in	cubes,	195

Compressed	Composites	property,	cubes,	195

conceptual	database	design.	See	also	logical	models

constraints	and,	76–80

data	types	in,	68–71

displays	for,	88–89

entities/attributes	in,	64–67

guidelines	for,	63

inheritance	and,	82–87

overview	of,	58

relationships	and,	71–76

subviews	for,	87–88

conflicts

definition	of,	222

solving,	223–225

connecting	to	Subversion,	211–212

constraints

check,	79,	113,	115–116

domain,	79,	80

primary/unique	keys	as,	76–78,	125

table-level,	126,	155

contexts,	physical	model,	158

Create	Discovered	Foreign	Keys	dialog,	248–251

Create	Domains	During	Import	preference,	238

‘Create’	Selection	tab,	DDL	Generation	Options	dialog,	172,	175

createdByFKDiscoverer,	foreign	keys,	250–251

cubes

creating,	196–197

creating	dimensions	for,	198

materialized	views	of,	195–196

in	multidimensional	design,	195

curly	braces	({}),	as	quantifier,	274

Custom	Design	Rules	dialog,	34–35,	37

Custom	Libraries	dialog,	34–36

Custom	Name/Column	Name	sections,	custom	reports	template,	263

Custom	Reports	Template	dialog,	261–262,	263

custom	transformation	scripts,	202–203

customization,	with	Data	Modeler,	5,	14

D

data	definition	language	scripts.	See	DDL	(data	definition	language)	scripts

Data	Dictionary	Import	Wizard

final	log,	242,	245

import	summary,	242,	245

reverse	engineering,	240–241

Select	Objects	to	Import	screen,	242,	244

selecting	schemas	in,	242–243

data	dictionary,	reverse	engineering	from,	239–240

data	documentation,	Data	Modeler,	6,	7

data	flow,	definition	of,	51

data	flow	diagrams

creating,	52–55

in	database	design,	2

in	DW	database	design,	184

features/example	of,	51

Data	Modeler	Design,	importing,	282–285

Data	Modeler	(Oracle	SQL	Developer	Data	Modeler)

adding	business	information	to,	55–56

Browser	pane	in,	12–14

documenting	data	with,	6,	7

downloading,	10

features	of,	5–6

importing	updated	Excel	reports	into,	232–234

interface.	See	UI	(user	interface),	Data	Modeler

performance	tuning,	37–38

preferred	layout	for,	14

preparing	to	use,	11

setting	preferences.	See	preferences

Data	Type	Conversion	tab,	Compare	Models	dialog,	289

Data	Type	Kind	comparison	preference,	280

data	types

creating	domains	from,	69

sensitive,	70–71

user-defined,	68–71

Data	Vault	modeling

classification	types	for,	188

of	DW	databases,	183

logical	model	for,	188–189

relational	model	for,	188–189,	193

transformation	scripts	for,	189–192

data	warehouse.	See	DW	(data	warehouse)	database	design

database	design

for	agile	projects,	3–4

comparing	with	database,	289–292

with	Data	Modeler,	5,	6–7

overview	of,	2–3

tool	selection	for,	4–5

Database	Synchronization	preferences,	relational	model,	94–95

databases.	See	documenting	existing	databases

Datatype	options,	Model	preferences,	18–19

Date/Time	Format,	Compare	Models	dialog,	288

DDL	(data	definition	language)	scripts

changing	prefixes	and,	134

customized	generation	of,	179

in	database	design,	2

default	directory	for,	18

example	of,	173–175

exporting	files,	170–171

generating	in,	tables	and,	122–123

generation	options,	171–172,	175–179

importing,	247–248

physical	database	designs	and,	194

sensitive	data	and,	70

setting	default	values	for,	141

setting	preferences	for,	164–168

setting	properties	for,	169–170

viewing	for	table,	124

without	physical	parameters,	155

DDL	File	Editor	features,	170–171,	178

DDL	Generation	Options	dialog

‘Drop’	Selection	tab	in,	175–176

features	of,	171–172

Name	Substitution	tab	in,	134,	169–170,	175–177

Table	Scripts	tab	in,	176,	178

DDL	Migration	Properties	dialog,	name	substitution,	169–170

DDL	Options,	Compare	Models	dialog,	287

DDL	Preview,	170

DDL	Storage	Options,	Compare	Models	dialog,	288

Default	DDL	Files	Export	Directory,	168

Default	Designs	Directory,	16–17,	217

Default	Foreign	Key	Delete	Rule,	relational	models,	93

Default	Import	Directory,	16–17

Default	RDBMS	Type	preference,	18,	19

Default	Reports	Directory,	18,	259

Default	Save	Directory,	17

Default	System	Types	Directory

domain	file	set	in,	29

features	of,	17–18

sharing	domains	and,	31

degree,	of	relationship,	71

Delete	FK	Columns	Strategy,	relational	models,	93

Delete	Rule	list,	Relation	Properties,	73–74

derived	attributes,	65

design	comparisons

Compare/Merge	Models	method	for,	285–289

Data	Modeler	Design	method	for,	282–285

Design	Properties	dialog,	21,	24–26

classification/object	types/naming	standards	in,	22–23

Compare	Mappings	in,	291–292

for	DDL	script	generation,	169–170

Dynamic	Properties	tab	in,	203–204

design	rules

creating/using,	33–36

definition	of,	10

overview	of,	32

sharing,	37

Design	Rules,	DDL	Generation	Options	dialog,	172

design(s)

adding	to	Subversion,	217–219

changing	based	on	older	revisions,	222–225

checking	out	from	Subversion,	222

comparing	to	database,	289–292

dimensional,	183–188

exporting	to	reporting	repository,	267–269

features	of,	5,	11

making	changes	to,	219–221

making	comparisons	of,	228–231

merging	branches	in,	225–228

solving	conflicts	in,	222–225

tool,	Data	Modeler	as,	6–7

Designs,	Reports	dialog,	260,	264

detail	tables,	156

Details	tab

Compare	Models	dialog,	285–286

Engineer	to	Relational	Model	screen,	103

Diagram	preferences,	logical	models,	18

dimensional	design

overview	of,	183–184

with	star	schema/snowflake	models,	184–188

dimensional	modeling	techniques,	182–183

Dimensions	tab,	cubes,	196

Direction	setting,	Name	Abbreviations	dialog,	130

Directory	path	field,	Reports	dialog,	270

Discovered	Foreign	Keys

adding	dynamic	properties,	202

relational	models,	125

discriminator	column,	generalization,	85–86

displays,	features	of,	88–89

distinct	data	types,	68–69

documenting	data,	Data	Modeler,	6–7

documenting	existing	databases.	See	also	reverse	engineering

discovering	foreign	keys	for,	248–253

Engineer	to	Logical	Model	function	for,	252–253

importing	DDL	files	for,	247–248

from	Oracle	Designer,	254–256

setting	preferences/properties,	238–239

from	third-party	modeling	tool,	253–254

domains

creating,	29–31

defining	constraints	for,	79–80

definition	of,	10,	29

sharing,	31–32

Domains	Administration	dialog,	29–31

Don’t	Apply	For	New	Objects	property,	engineering	to	relational	model,	107–108

downloading	Data	Modeler,	10

‘Drop’	Selection	tab,	DDL	Generation	Options	dialog,	175,	176

DW	(data	warehouse)	database	design

with	Data	Vault	modeling,	188–193

dimensional	design,	183–184

dimensional	modeling	techniques,	182–183

overview	of,	182

star	schema/snowflake	modeling	in,	184–188

dynamic	properties,	202–204

E

Engineer	to	Logical	Model	function,	250–253

Engineer	to	Relational	Model	screen

Compare/Copy	Options	tab,	107–108

Details	tabs,	103

General	Options	tab,	104–106

Overlapping	And	Folding	Keys	tab,	108,	110–111

Synchronization	Of	Deleted	Objects	tab,	108–109

tabular	view,	101–102

tabular	view/generating	reports,	109,	112–113

tree	view,	101–103

Entities	tab,	cubes,	196

entity	instance,	64

entity	properties

attributes,	45–46,	65–66

change	requests	for,	56

general,	43–45

subviews	of,	48–50

summary	for,	47

Entity	Properties	dialog

defining	inheritance	in,	84–85

defining	primary/unique	keys,	76–77

Overlapping	Attributes	tab	in,	100

entity-relationship	models.	See	ER	(entity-relationship)	models

entity	set,	64

entity	type,	64

entity(ies)

constraints	for,	76–80

definition	of,	64

inheritance	and,	82–87

logical	model	views,	80–81

marked	as	deprecated,	67

operations	allowed	on,	66

relationships	and,	71–76

reports	for	Microsoft	Excel,	232–234

ER	(entity-relationship)	models

complex	relationships	and,	72

in	conceptual	database	design.	See	conceptual	database	design

for	star	schema/snowflake,	184–185

UML	model	comparison,	2–3

events,	triggering	processes,	51

Exclude	Unchecked	Objects	From	Tree,	engineering	to	relational	model,	107–108

Existence	Dependencies	constraint,	single-tables,	113,	115

Export	To	Reporting	Schema	dialog,	267–269

exporting

of	design	properties,	24–26

of	design	rules,	37

design	to	reporting	repository,	267–269

of	multidimensional	models,	200–201

of	preferences,	20–21

Extensible	Markup	Language.	See	XML	(Extensible	Markup	Language)	files

external	agents,	50–53

external	tables,	physical	models,	152

F

File/Exit	option,	Data	Modeler,	12–13

Flow	Properties	dialog,	data	flow	diagrams,	53,	55

folding	keys,	engineering	to	relational	model,	108,	110–111

Foreign	Key	Arrow	Direction	preference,	92

foreign	key	lines,	relational	model,	193

foreign	key(s)

attributes,	74,	76,	79

discovering,	248–253

in	physical	model,	155

viewing	diagram	names	of,	125

Full	Cube	Materialization,	multidimensional	design,	195–196

functions,	creating	in	physical	models,	157

G

General	Options	tab,	Engineer	to	Relational	Model	screen,	104–106

general	properties

associating	sensitive	types	to	attributes,	70–71

for	entities,	43–45

for	relationships,	48

for	tables,	122–123

for	views,	127–128

generalization,	85–86

Generate	DDL	In	Separate	Files	option,	172,	175

Generate	Report,	Engineer	to	Relational	Model,	109,	112

global	composite,	data	in	cubes,	195

global	search,	with	regular	expression,	273,	274

glossary

creating/editing,	27–28

definition	of,	10,	26

in	engineering	to	relational	model,	105,	111

sharing,	28

for	validation,	58–59

Glossary	Editor,	27–28

Glossary	tab,	Export	To	Reporting	Schema	dialog,	267,	269

Graziano,	Kent,	188

H

hierarchies

defining	properties	for,	198

level-based	vs.	value-based,	197

Hive

preferences	for,	244,	246

in	SQL	Developer,	246–247

tables,	152

I

importing.	See	also	Data	Dictionary	Import	Wizard

of	Data	Modeler	Design,	282–285

of	DDL	files,	247–248

defining	preferences	for,	238–239

of	design	properties,	24–26

of	design	rules,	37

of	designs	to	Subversion,	218–219

of	domains,	31–32

of	multidimensional	models,	200

from	Oracle	Designer,	254–256

of	preferences,	20–21

from	third-party	modeling	tool,	253–254

Include	System	Names	In	Compare	Functionality,	281

Incoming	Changes	tab

for	latest	version	of	designs,	219–221

in	Pending	Changes	dialog,	215–216

solving	conflicts	and,	223–225

Incomplete	Modifiers,	Glossary	Editor,	27

indexes

creating/editing,	126,	160–161

definition/function	of,	159

template	specification	for,	141,	169

types	of,	160

Information	Store	Properties	dialog,	data	flow,	52,	54

information	stores,	definition	of,	51

inheritance

box-in-box	presentation	in,	83

definition	of,	82

generalization	in,	85–86

implementing	subtypes,	84–85

no	box-in-box	presentation	in,	83–84

specialization	in,	85

with	Table	Per	Child,	87

J

Java	Swing	application,	Data	Modeler	as,	37–38

JavaVisualVM	tool,	memory	settings,	37–38

Joins	tab,	cubes,	196

JVM	Options,	Reports	dialog,	260–261,	272

K

Key	Properties	dialog,	76–77

L

labels,	13

legends,	13

levels,	multidimensional	design,	197–198

libraries,	design	rules	in,	34–36

links,	in	multidimensional	design,	198

Linstedt,	Dan,	188

List	of	Ranges	dialog,	31

List	of	Values	dialog,	29–30

Loaded	Designs,	Reports	dialog,	260,	264

LOB	(Large	Object)	storages,	149–150

Log	browser,	Subversion,	213–214

logical	data	types,	68–69

logical	database	design.	See	relational	model

logical	dimensional	models

multidimensional	model	based	on,	198–199

for	star	schema/snowflake,	184–185

logical	models.	See	also	conceptual	database	design

in	adding/editing	business	information,	55–56

in	Data	Modeler	designs,	5,	11

for	Data	Vault,	188,	189

Diagram	preferences	for,	18

entity	views	in,	80–81

features	of,	62–64

gathering	requirements	for,	43–50

naming	standards	for,	22–23,	59–60

selecting	to	import,	282–283

setting	preferences,	60–61,	92–93

transforming	to	relational	model,	95–96

tuning/refactoring,	135–136

M

Maintenance	tab,	Export	To	Reporting	Schema	dialog,	267,	269

Manually	Create	A	Subversion	Connection,	211

many-to-many	relationship,	attributes,	118

master	tables,	156

materialized	views

creating	in	physical	model,	157

of	cubes,	195–196

definition	of,	156

Measures	tab,	cubes,	196,	197

memory	usage,	JavaVisualVM	report	on,	37–38

Merge	Design,	design	branches,	226–227

Merge	Editor	preference,	version	control,	209

Merge	Table	icon,	relational	model	toolbar,	135–136

Messages-Log	pane	function,	12,	14

metacharacters,	in	searches,	273–274

Microsoft	Excel

editing	reports	in,	272

working	with,	232–234

Microsoft	SQL	Server,	connection	to,	239–240

Model	preferences,	18–19

Model	Properties	dialog,	relational	model,	94–95

MOLAP	(multidimensional	online	analytical	processing),	194

multidimensional	model

based	on	logical	dimensional	model,	198–199

compact	diagram	of,	198–199

creating	cube	dimensions/links,	198

creating	cubes,	194–197

creating	levels,	197–198

as	physical	model/exporting,	200

reporting	and,	201

multivalued	attributes,	65

N

Name	Abbreviations	dialog,	106,	130–133

Name	Substitution	tab,	DDL	Generation	Options,	134,	169–170,	175–177

Naming	Options,	logical	model,	59–60

naming	standards

design	properties,	22–23

in	engineering	to	relational	model,	105,	110–111

for	physical	objects,	138

setting,	58–59

for	tables,	122

templates	for	implementing,	24

for	users/roles,	146–149

natural	keys,	selection	of,	78–79

Navigator	pane,	12–13

New	Entity,	bubble	help	for,	43–44

New	Remote	Directory,	Subversion,	213

New	/	Select	Database	Connection	dialog

for	exporting	to	reporting	repository,	267–268

reverse	engineering	and,	240–242

New	Value	field,	Set	Common	Properties	dialog,	276

non-Oracle	databases,	reverse	engineering	from,	239–240

normalization,	transformation	rules,	96–100

Notes	property,	documenting	solutions,	96

O

Object	Names	Administration	dialog,	66–67

object	types,	design	properties,	22,	23

objects

granting	privileges	for,	147

materialized	views	as,	156

synonyms	as,	151–152

OLAP	(online	analytical	processing)

definition	of,	182

environment,	multidimensional	queries	in,	182–183

relational/multidimensional,	194

Old	Value	field,	Set	Common	Properties	dialog,	276

one-to-many	relationships,	attributes,	117–118

Operation	Timeout,	version	control,	208

Optional	Import	and	Processing,	reverse	engineering,	242,	243

Options	tab

Compare	Models	dialog,	287–288

Export	To	Reporting	Schema	dialog,	267–268

search	operations,	274–276

OR	button,	advanced	search	mode,	275

Oracle	AW	(analytic	workspace),	194,	200–201

Oracle	databases,	reverse	engineering	from,	240–244

Oracle	Designer,	importing	from,	254–256

Oracle	SQL	Developer	Data	Modeler.	See	Data	Modeler	(Oracle	SQL	Developer	Data
Modeler)

Outgoing	Changes	tab

committing	design	changes	in,	219,	221

in	Pending	Changes	dialog,	215–216

Output	Format,	Reports	dialog,	260,	272

Overlapping	And	Folding	Keys	tab,	synchronizing	deleted	objects,	108,	110–111

overlapping	keys

fold	or	no	fold,	108,	110–111

in	transforming	to	relational	model,	99–100

P

packages,	in	physical	models,	157

page	grids	function,	13

participation	constraints,	relationships,	72

partitioning

of	cubes,	195

in	physical	models,	161

passwords,	in	physical	models,	148

Pending	Changes	dialog

Compare	As	Text	in,	219,	221

Compare	in,	219–220

options	list	in,	215–216

for	version	control,	209

performance	tuning,	Data	Modeler,	37–38

Permissions	dialog,	user	privileges,	147–148

physical	models

cloning,	144–145

collection/structured	data	types	in,	158

creating/opening/closing,	144

in	Data	Modeler	designs,	5,	11

defining	properties	for,	145

defining	users/roles	for,	146–149

dimensional	model	based	on,	200

indexing	in,	159–161

overview	of,	138

partitioning	in,	161

propagating	properties	in,	159

RDBMS	site	administration	and,	142–144

relational	model	comparison	to,	285–289

sequences	in,	155–156

setting	default	preferences/properties,	139–142

storage	templates/LOB	storages	in,	149–150

stored	procedures/functions/

packages	in,	157

synonyms	in,	151–152

tables	in,	152–155

tablespaces	in,	150–151

triggers	in,	157–158

views	in,	156

Precalculated	Slices	tab,	cubes,	196–197

preferences

for	comparisons,	280–282

for	DDL	scripts,	164–168

default,	15–18,	139–140

definition/location	of,	15–16

for	logical	models,	18,	60–61,	92–93

Model,	18–19

for	physical	models,	139–142

for	relational	models,	93–95

for	reports,	259

to	set	formatting,	168

sharing,	20–21

shortcut	keys	for,	19–20

for	version	control,	207–209

Preferences	dialog

DDL	options	in,	164–167

DDL	storage	options	for	import/export,	168–169

features	of,	16–20

index	template	specification	in,	141

setting	defaults	for	physical	models	in,	139–141

table	template	specification	in,	140

Preferred	Abbreviation,	engineering	to	relational	model,	104–106,	111

Preferred	Logical	Types,	Model	preferences,	18–19

Prefix	For	Columns	From	Entity	Hierarchies,	engineering	to	relational	model,	104,	106

prefix	management,	132–133

Prefix	Replacement	option,	133–134

primary	keys

attributes	of,	77–78

choosing	entities/relationships	for,	77–78

defining	for	fact	entity,	185–186

generating	for	new	table,	97

improving	database	functioning,	252

in	logical	model	preferences,	60–61

mandatory	attributes	of,	76

in	physical	model,	154–155

primary	index	for,	160

in	relational	model,	125

selection	of,	78–79

privileges,	granting	to	users,	147–148

process	model

features	of,	50–51

gathering	requirements	for,	51–54

Process	Properties	dialog,	data	flow	diagrams,	52

processes,	types	of,	51

Propagate	Properties	button,	159

Properties	Filter,	Compare	Models	dialog,	288

Q

quantifiers,	search	operations,	274

Query	Builder,	views,	127–129

QuotaItem	Properties	dialog,	148

quotas,	user,	148

R

RDBMS	(relational	database	management	system)

adding	new	sites,	143–144

creating	sites,	142

defining	default,	139

field,	Comments	in,	45–46

indexing	sites,	159

native	types	of,	68–69

preferences,	18–19

reverse	engineering	from,	239–240

RDBMS	Site	Editor	functions,	142–144

Recent	Designs	option,	12

recursion,	and	entity	roles	in	relationship,	73

redaction	policy,	tables,	124

refactoring	models,	135–136

Referred	And	Template,	Create	Discovered	Foreign	Key	screen,	248–250

Referred	Column,	Create	Discovered	Foreign	Keys	screen,	248–249

RegEx	option,	search	operations,	273–274

Relation	Properties	dialog,	73–75

relational	database	management	systems.	See	RDBMS	(relational	database	management
system)

relational	dimensional	model,	star	schema/snowflake,	186–188

relational	model

based	on	schemas,	123

in	Data	Modeler	designs,	5,	11

for	Data	Vault,	188–189,	193

diagram	of,	119–120

logical	model	transforming	to,	95–96.	See	also	transformation	to	relational
model

naming	standards	for,	22–23

physical	model	compared	to,	285–289

selecting	to	import,	282–283

setting	preferences/properties,	92–95

setting	transformation	rules	for,	96–100

sharing	tables	from	other	designs,	120–122

tuning/refactoring,	135–136

viewing	detail	options	for,	120

relational	online	analytical	processing	(ROLAP),	194

relationship	properties,	general,	48

relationship	set,	72

relationship	type,	71–72

relationships

arc	solution	in,	81–82

attributes	of,	74–75

cardinality	constraints	in,	72–73

definition/degree	of,	71–72

participation	constraints	in,	72

recursion	and,	73

Replace	Existing	Files,	Compare	Models	dialog,	288

Replace	System	Names	During	Import	preference,	238

Report	Columns,	Custom	Reports	Template	dialog,	262,	263

Report	Configurations,	260,	264

Report	File	Name,	260–261,	272

Report	Layout,	Custom	Reports	Template	dialog,	262,	263

Report	Templates	Management	dialog,	261–262

Report	Title,	260–261,	272

reporting	functionality(ies)

of	Data	Modeler,	6–7

with	multidimensional	models,	201

overview	of,	258–259

with	search	operation,	270–276

setting	preferences	for,	259

reporting	repository

creating,	266

creating	additional	users,	267

exporting	designs	to,	267–269

features	of,	265–266

running	reports	from,	269–270

reports

based	on	comparing	models,	231

generating	with	open	designs,	259–265

for	Microsoft	Excel,	232–233

running	from	repository,	269–270

updating	in	Microsoft	Excel,	234

Reports	dialog

configuring	reports	in,	271–272

Directory	path	field	in,	270

options	in,	259–261

repository	owner,	creating,	266

requirements	analysis

for	dimensional	design,	183–184

for	logical	model,	43–50

overview	of,	42–43

for	process	model,	50–54

responsible	parties,	adding/editing,	55

Results	pane,	search	operations,	270–271

reverse	engineering.	See	also	documenting	existing	databases

Apply	Name	Translation	with,	105

from	data	dictionary,	239–240

from	Hive	to	Oracle,	244–247

from	Oracle	database,	240–244

ROLAP	(relational	online	analytical	processing),	194

roles,	148–149

rule	sets,	36

rules

deleting,	74

design.	See	design	rules

transformation,	96–100

S

save-as	method,	adding	designs,	217–218

Save	Configuration,	DDL	Generation	Options	dialog,	172,	177

schemas

database.	See	reporting	repository

in	physical	model,	146

relational	models	based	on,	123

for	reverse	engineering,	242–243

selecting	for	queries,	127–128

Scripts	tab,	relational	model,	127

search	operations

advanced	mode	of,	274–276

overview	of,	270

reporting	with,	259,	270–272

setting	common	properties	for,	276–277

simple	mode	of,	273–274

Searchable	Properties,	advanced	search	mode,	275

Secure	Shell	(SSH)	tunnel,	reverse	engineering,	240–242

security	features,	for	columns,	124

Select	Objects	to	Import,	Data	Dictionary	Import	Wizard,	242,	244

Selection	Criteria	tab,	levels,	197

sensitive	data,	70–71

Separator	options

in	Glossary	Editor,	27–28

naming	standards,	22–23

sequences

defining	in	physical	model,	156

features	of,	155–156

Set	Common	Properties	dialog,	search	operations,	276–277

set-valued	attributes,	65

Shortcut	Keys	preferences,	19–21

Show	Log	Messages	In	Subversion	Console	preference,	208,	219

Show	Selected	Properties	Only	property,	engineering	to	relational	model,	107–108

simple	mode,	search	operations,	271,	273–274

single-table	solutions

check	constraints	for,	116

engineering	of,	112,	114

existence	dependency	for,	113,	115

snapshots,	156

snowflake	modeling

DW	databases	with,	183

logical	dimensional	design	for,	184–185

relational	dimensional	model	for,	186–188

relational	model	for,	185–186

Source	Optional,	logical	model	preferences,	60–61

sources,	in	comparisons,	280

specialization	of	entity,	inheritance,	85

Split	Table	icon,	relational	model	toolbar,	135

SQL	Developer

Hive	connection	in,	246–247

running	reports	from,	270

SQL	(Structured	Query	Language),	viewing	queries,	128–129

SSH	(Secure	Shell)	tunnel,	reverse	engineering,	240–242

Standard	Reports	Configurations	dialog,	264–265

star	schema/star	modeling

of	DW	databases,	183

logical	dimensional	design	for,	184–185

relational	dimensional	model	for,	186–188

relational	model	for,	185–186

Start	Page	features,	12–13

Storage	Details	tab,	Compare	Models	dialog,	286

Storage	Properties	Filter,	Compare	Models	dialog,	288

storage	templates

creating/specifying,	149

importing	from	data	dictionary,	244

stored	procedures,	in	physical	models,	157

structured	data	types,	68,	69,	158

Structured	Query	Language	(SQL),	viewing	queries	in,	128–129

Sub	Policies	tab,	in	TSDP	Policy	Properties	dialog,	70–71

subtypes

implementation	of,	84–85

in	inheritance,	82–83

Subversion

adding	designs	to,	217–219

changing	designs	in,	219–221

checking	out	designs	from,	222

committing	changes	to,	221

connecting	to,	211–212

considerations	in	using,	206–207

features	of,	209–211

Pending	Changes	for,	215–216

sharing	files	in,	231–232

Team	menu	for,	217

utilization	of,	212–213

for	version	control,	5

Versions	browser	for,	213–215

subviews

adding	objects	to,	50

creating,	48–49

definition	of,	87

features	of,	87–88

Summary	tab,	for	entity	properties,	47

supertypes

generalization	and,	85–86

in	inheritance,	82–83

surrogate	keys

selection	of,	78–79

for	tables	in	Data	Vault	model,	188

synchronization

comparisons	and,	280

preferences	for	physical	models,	141–142

Synchronization	Of	Deleted	Objects	tab,	engineering	to	relational	model,	108–109

Synchronize	Data	Dictionary	With	Model,	289–292

Synchronize	Model	With	Data	Dictionary,	289–292

Synchronize	Remote	Objects	When	Model	Is	Loaded

for	relational	model,	94–95

for	sharing	tables,	121

Synchronize	The	Whole	Schema	preference,	282

synonyms,	creating,	151–152

T

table-for-each-entity	solutions,	engineering	of,	115,	117

table-per-child	solutions

engineering	of,	114,	116

for	inheritance,	87

Table	Properties	dialog

creating/editing	indexes	in,	126

General	tab	of,	122–123

Table	Scripts	tab,	DDL	Generation	Options	dialog,	176,	178

tables

adding	dynamic	properties	to,	202–203

classification	types	for,	126

column	properties	and,	124–125

defining	in	physical	model,	152–153

external,	152

foreign	keys/constraints	in,	155

granting	privileges	to,	147

Primary	Key/Unique	Constraints	with,	125

primary	keys/unique	keys	in,	154

properties	of,	122–123

scripts	associated	with,	127,	176,	178

setting	column	properties	in,	153–154

sharing	with	other	relational	models,	120–122

splitting/merging,	135–136

template	specification	for,	139–140

Tables	That	Will	Be	Recreated	tab,	Compare	Models	dialog,	289

tablespaces,	150–151

tabular	view

Compare	Models	dialog	in,	228,	230–231,	285–286,	289

for	comparing	two	designs,	283–285

Engineer	to	Relational	Model	screen,	109,	112–113

Target	Optional,	logical	model	preferences,	60–61

targets,	in	comparisons,	280

Team	menu,	for	Subversion,	217

Template	And	Referred	selection,	Create	Discovered	Foreign	Keys	dialog,	248–250

templates

defining	for	tables/indexes,	139–141

discovering	foreign	keys	based	on,	250–251

Reports	dialog	options	for,	260–263,	272

storage,	149–150

for	version	control,	207

Templates	tab,	naming	standards,	24

temporary	tablespaces,	150–151

third-party	modeling	tool,	importing	documentation	from,	253–254

Tools/Preferences	selection

import	process,	238

locating	preferences,	15,	16

for	logical	model,	60

for	relational	model,	92

Reports	tab	in,	259

transformation	packages,	53–54

transformation	scripts

adding	dynamic	properties,	202–203

customizing	DDL	generation	with,	179

with	Data	Vault	model,	189–192

transformation	to	relational	model

of	arc	solutions,	112,	114

Compare/Copy	Options	tab	for,	107–108

Engineer	to	Relational	Model	screen	for,	101–103

general	options	in	engineering,	104–106

generating	reports,	109,	112–113

of	many-to-many	relationship	with	attribute,	118

naming	guidelines	for,	110–111

of	one-to-many	relationship	with	attributes,	117–118

overlapping	and	folding	keys	in,	108,	110–111

preparation	for,	95–96

rules	for,	96–100

of	single-table	solutions,	112,	114

synchronization	of	deleted	objects	in,	108–109

of	table-for-each-entity	solutions,	115,	117

of	table-per-child	solutions,	114,	116

transformations,	function	of,	53

tree	view

Compare	Models	dialog	in,	228,	229,	231,	285–286,	289

comparing	two	designs	in,	283–285

triggers

creating	in	physical	model,	157–158

parameters	in	DDL	options,	164–165

TSDP	(Transparent	Sensitive	Data	Protection)	Policy	Properties	dialog,	70–71

Types	Administration	dialog,	logical	types,	68–69

Types	To	Domains	Wizard,	creating	domains,	69

U

UI	(user	interface),	Data	Modeler,	12–14

UML	(Unified	Modeling	Language)	model,	2–3

undo	tablespaces,	150–151

Unique	Abbreviations	option,	Glossary	Editor,	27

unique	constraints,	relational	model,	125

unique	keys

features	of,	76

in	logical	model	preferences,	60–61

in	physical	model,	154–155

selecting	entities/relationships	for,	76–77,	78

Unload	Directory,	Compare	Models	dialog,	288

Unversioned	Files,	Pending	Changes	dialog,	216

Update	Model	With	Previously	Exported	XLS	(XLSX)	File,	233–234

Use	And	Set	First	Unique	Key	As	Primary	Key,	60–61

Use	‘Columns	Order’	Property	In	Compare	Functionality,	281

Use	Global	Design	Level	Setting,	design	properties,	21,	25–26

Use	‘Schema’	Property	In	Compare	Functionality,	280–281

Use	Source	Connection	preference,	281

Use	Source	Object	preference,	282

Use	Source	Schema	preference,	281–282

Use	Template	Table,	engineering	to	relational	model,	104,	106–107

user-defined	data	types

features	of,	68–70

in	physical	model,	158

transformation	rules	for,	97

user-defined	properties,	203–204

user	interface.	See	UI	(user	interface),	Data	Modeler

users

defining	quotas	for,	148

granting	privileges	to,	147–148

working	with,	146

V

Valid	Time	Dimensions,	126

version	control

changes	based	on	older	revisions	in,	225

with	Data	Modeler,	5–6

overview	of,	206–207

setting	preferences/properties,	207–209

sharing	files	in,	231–232

solving	conflicts	in,	222–225

Versions	browser

for	adding	designs	to	Subversion,	218–219

as	Subversion	directory,	14,	213–215

View	Log	screen

Data	Dictionary	Import	Wizard,	242,	245

importing	DDL	files,	248

View	menu,	13

View	Properties	dialog,	entity	views	in,	80–81

views

materialized,	156–157

in	physical	model,	156

properties	of,	127–128

Query	Builder	creating,	128–129

virtual	cubes,	definition	of,	195

Volume	Properties	tab,	entity	properties,	47

X

XML	(Extensible	Markup	Language)	files

Data	Modeler	designs,	5

in	Data	Modeler	designs,	11

Data	Modeler	designs,	20

glossaries	as,	26

XML	Metadata	Comparator

comparing	two	revisions	in,	219,	220

merging	design	branches	in,	226

	Title Page
	Copyright Page
	Dedication Page
	About the Author
	Contents at a Glance
	Contents
	Forewords
	Acknowledgments
	Introduction
	1 Introducing Database Design and Oracle SQL Developer Data Modeler
	What Is Oracle SQL Developer Data Modeler?
	Designing Databases with Oracle SQL Developer Data Modeler
	Summary

	2 Getting Started with Oracle SQL Developer Data Modeler
	Downloading and Exploring the Tool
	What Is a Design?
	Exploring the Interface
	Customizing the Interface

	Tuning Oracle SQL Developer Data Modeler
	Setting Preferences
	Introducing Design Properties
	Introducing Glossaries
	Introducing Domains
	Introducing Design Rules

	Performance Tuning
	Summary

	3 Introducing Requirements Analysis
	Gathering Requirements for the Logical Model
	Gathering Requirements for the Process Model
	Introducing Data Flow Diagrams
	Introducing Transformation Packages

	Adding Business Information
	Summary

	4 Introducing Conceptual Database Design (Logical Model)
	Setting Preferences and Properties
	Introducing the Logical Model
	An Entity and Its Attributes
	A Relationship
	Constraints
	Entity Views
	Inheritance
	Subviews
	Displays

	Summary

	5 Introducing Logical Database Design (Relational Model)
	Setting Preferences and Properties
	Transforming from a Logical Model to a Relational Model
	Setting Transformation Rules
	Engineer to Relational Model

	Introducing the Relational Model
	Tables
	Views

	Name Abbreviations and Prefix Management
	Name Abbreviation
	Prefix Management

	Tuning and Refactoring Your Model
	Summary

	6 Introducing Physical Database Design
	Setting Preferences and Properties
	Creating a Physical Model
	Administering RDBMS Sites
	A New Physical Model

	Defining Physical Model Properties
	Defining Users and Roles
	Storage Templates and LOB Storages
	Tablespaces
	Synonyms
	Tables
	Sequences
	Views
	Materialized Views
	Stored Procedures, Functions, and Packages
	Triggers
	User-Defined Data Types
	Other Elements

	Propagating Properties
	Indexing
	Partitioning
	Summary

	7 Generating DDL Scripts for Creating Database Objects
	Setting Preferences and Properties
	Exporting a DDL File
	Exploring DDL Generation Options

	Summary

	8 Designing a Data Warehouse Database
	Introducing Dimensional Modeling Techniques
	Exploring Dimensional Design
	Star Schema or Snowflake
	Data Vault
	Physical Database Design and DDLs

	Introducing Multidimensional Design
	Creating a Multidimensional Model
	Creating the Physical Model and Exports
	Reporting

	Using Dynamic Properties and User-Defined Properties
	Summary

	9 Using Version Control and Working in a Multiuser Environment (Subversion)
	Setting Preferences and Properties
	Introducing Subversion
	Connecting to Subversion
	Using Subversion in Oracle SQL Developer Data Modeler
	Exploring the Oracle SQL Developer Data Modeler Tools for Subversion
	Adding a Design to Subversion
	Making Changes to a Design You Have Worked with Before
	Checking Out a Design from Subversion
	Solving Conflicts
	Making Changes Based on an Older Revision
	Understanding Branches, Changes, and Synchronizing
	Sharing Files

	Working in a Multiuser Environment with Microsoft Excel
	Summary

	10 Documenting an Existing Database
	Setting Preferences and Properties
	Reverse Engineering an Existing Database
	Reverse Engineering from a Data Dictionary
	Importing a DDL File
	Discovering Foreign Keys
	Engineering to the Logical Model

	Importing Documentation from a Third-Party Modeling Tool
	Importing from Oracle Designer

	Summary

	11 Generating Reports and Using Search
	Setting Preferences and Properties
	Generating Reports Based on Open Designs
	Introducing the Reporting Repository
	Creating a Reporting Repository
	Exporting a Design to the Reporting Repository
	Running Reports from the Reporting Repository

	Using Search
	Reporting with Search
	Simple Mode
	Advanced Mode

	Setting Common Properties
	Summary

	12 Comparing Designs and the Database
	Setting Preferences and Properties
	Comparing Two Designs
	Importing a Data Modeler Design
	Comparing/Merging Models

	Comparing a Design to the Database
	Summary

	Index

