
www.allitebooks.com

http://www.allitebooks.org

Opa Application Development

A rapid and secure web development framework

to develop web applications quickly and easily in Opa

Li Wenbo

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Opa Application Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1040613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-374-9

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Li Wenbo

Reviewers

Joseph Goldman

Alok Menghrajani

Acquisition Editor

Mary Jasmine Nadar

Commissioning Editor

Neha Nagwekar

Technical Editors

Sharvari H. Baet

Priyanka Kalekar

Project Coordinator

Sherin Padayatty

Proofreader

Paul Hindle

Indexer

Hemangini Bari

Graphics

Abhinash Sahu

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Li Wenbo studied Computer Science and Technology at Wuhan University,
graduating with a master's degree. He has two years experience working as a
Software Engineer in a leading telecom company in China. He has been doing web
development for about 8 years, ever since he was a student at Wuhan University.
He is familiar with a lot of programming languages such as C/C++, Java, JavaScript,
PHP, and so on, and he has a passion for new things and technologies. Li tried the
Opa framework last year and found it very interesting. He then participated in an
Opa challenge and won the irst prize.

Li Wenbo is now a freelance developer and owns a small studio in Wuhan, China.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Joseph Goldman is an experienced freelance programmer who cut his teeth on
8086 Assembler before joining the Homo Sapiens race by learning to walk upright
and adopting more conversational and universal programming languages such as
C, Objective C, Smalltalk, Pascal, and more. Over his illustrious 30 year career, he
has programmed for VAX under VMS, Sun Microsystems work stations, MS DOS
8088 - Pentium CPUs, MS Windows, Mac OSX, and Linux. A tireless early adopter of
new programming paradigms and languages, he is very fond of the new generation
of functional and object-oriented programming languages, such as Google's Dart,
Opa, Scala, and more, as well as other innovative language designs, most notably
REBOL. Today, he specializes in writing web apps and mobile apps for iOS and
Android platforms, both smart phones as well as tablets. He is self-employed and
can be reached at TheAppsDude@gmail.com. In the late 1990s, Mr. Goldman
co-authored REBOL - The Oficial Guide that was published in the year 2000 by
Osborne McGraw-Hill.

Alok Menghrajani Computer Science at EPFL and CMU. He graduated in 2005.
He then started working in the ield of web security and is currently an engineer
at Facebook.

Alok got the opportunity to learn Opa when it was open sourced. He realized the
potential this framework offered to improve web development; Opa helps build
web applications faster and in a safer way.

He has made various contributions to Opa: reporting bugs, providing feedback
to the core team, and helping out with community events such as hackathons.

He is also the author of http://pixlpaste.com/, a web application to share
screenshots and images written in Opa.

He has also worked on Opa: Up and Running and JavaScript for PHP Developers.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: Getting Started with Opa 5

Installing Opa 5

Installing Node.js 5

Installing the required modules 6

Installing the Opa compiler 6

Testing the installation 7

Setting up editors 7

Sublime Text 7

Vim 8

Emacs 8

Your irst Opa application 9
Summary 9

Chapter 2: Basic Syntax 11
Basic datatypes 11

Integers 11

Floats 12

Strings 12

Sum 13

Functions 14

Last expression return 14

Modules 14

Data structures 15

Records 15
Tuples 16

Lists 16
Iterating through a list 17

Finding elements 17

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Transforming lists 18

Sorting a list 18

Maps 18

Pattern matching 19
Text parsers 21

Summary 22

Chapter 3: Developing Web Applications 23

Starting a web server 23

A simple example 23

The server module 24

Dispatching requests 26

The resource handler 26

The dispatch handler 27

The register handler 28

The customize handler 28

The handlers group 29

Preparing pages 29
XHTML 29

Creating a page 30

Adding styles 30

Handling events 31

Manipulating DOMs 32

DOM selection 32

Reading values 33

Updating content 33

Binding an event handler 34

Animations 34

Summary 34

Chapter 4: Using Bootstrap 35
Importing Bootstrap 35
Using classes 36

Using icons 37

Bootstrap icons 37

Font Awesome icons 38

Using widgets 39
Summary 40

Chapter 5: Communicating between Client and Server 41

Client and server slicing 41

A simple example 42

Slicing annotations 43

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Module slicing 44

Expression slicing 45

Client and server communication 45

Session 46

Cell 47

Network 47

Summary 49
Chapter 6: Binding with Other Languages 51

Binding JavaScript 51
The irst example 51
Using external types 53

Binding Node.js 54
Binding external functions using the classic syntax 55
Summary 56

Chapter 7: Working with Databases 57

A quick start to MongoDB 57
Database manipulation 58

Records 60

Lists 61

Sets and maps 61

Querying data 62

Summary 63

Chapter 8: Internationalization 65

Internal approach 65

External approach 67

Summary 69
Chapter 9: Building a Chat Application 71

Creating a project 72

Launching the web server 73

Designing user interface 73

Building application logic 74
Broadcasting and receiving messages 75
Summary 77

Chapter 10: Building a Game – Pacman 79
The project structure 80

The HTML5 Canvas 81

Drawing a shape 82

Using the ill and stroke properties 82
Drawing a curve 83

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Drawing an image 83

Drawing the text 84

Binding the external JavaScript library 85
Preloading the resources 85

Playing sounds 86

Summary 86

Chapter 11: Developing a Social Mobile Application – LiveRoom 87
Project structure 88

Authorizing a user 89
Signing in and signing out 89

Signing in with Facebook 90

The application 91
Listing topics 92

Creating a topic 93

Posting messages and comments 94

Designing for mobile devices 95

Summary 95
Index 97

Preface
Opa Application Development dives into all the concepts and components required to
build a web application with Opa. The irst half of this book shows the basic building
blocks that you will need to develop an Opa application, including the syntax of
Opa, web development aspects, client and server communication, as well as slicing,
plugins, databases, and so on.

Opa is a full-stack open source web development framework for JavaScript that lets
you write secure and scalable web applications. It generates the standard Node.
js and MongoDB applications, natively supports HTML5 and CSS, and automates
many aspects of modern web application programming. It handles all aspects of web
programming written in one consistent language and is compiled to web standards.

This book is a practical, hands-on guide that provides you with a number of step-by-
step exercises. It covers almost all the aspects of developing a web application with
Opa, which will help you take advantage of the real power of Opa to build secure
and powerful web applications rapidly.

What this book covers
Chapter 1, Getting Started with Opa, introduces how to install and set up an Opa
development environment.

Chapter 2, Basic Syntax, covers the basic syntax of Opa.

Chapter 3, Developing Web Applications, introduces the fundamental knowledge about
developing a web application with Opa.

Chapter 4, Using Bootstrap, introduces how to use Bootstrap in Opa when developing
a web application.

Preface

[2]

Chapter 5, Communicating Between Client and Server, covers client and server slicing
and communicating.

Chapter 6, Binding with Other Languages, explains how to bind JavaScript and Node.js
to Opa.

Chapter 7, Working with Databases, explains everything about storing, updating, and
querying data in a database with MongoDB as a backend.

Chapter 8, Internationalization, introduces the internationalization approach of Opa.

Chapter 9, Building a Chat Application, explains how to build a web chat application
with Opa.

Chapter 10, Building a Game – Pacman, explains how to handle image and audio using
a canvas when building a Pacman game.

Chapter 11, Building a Social Mobile Application – LiveRoom, explains how to build
a social mobile application with Opa.

What you need for this book
Required knowledge for this book is as follows:

• Basic knowledge about HTML and CSS

• Basic knowledge about JavaScript

• Some programming experience

Software required for this book is as follows:

• Node.js (http://www.nodejs.org/)

• The Opa framework (http://opalang.org/)

• MongoDB (http://www.mongodb.org/)

• A text editor tool, SublimeText (http://www.sublimetext.com/) is
recommended.

Who this book is for
This book is written for web developers who want to get started with the Opa
framework and who want to build web applications with it. Web development
experience is assumed and would be helpful for understanding this book.

Preface

[3]

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

type Student = {string name, int age, float score}

Student stu = { name:"li", age:28, score:80.0}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

type Student = {string name, int age, float score}

Student stu = { name:"li", age:28, score:80.0}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
on the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you ind a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you ind any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with Opa
This chapter shows how to install Opa and set its environment. A simple Opa
program will also be shown to give a irst glimpse of Opa programming.

Installing Opa
This section is about installation and coniguration of Opa. You can get a more
detailed installation guide that includes how to build Opa from source on Opa's
webpage (https://github.com/MLstate/opalang/wiki/Getting-started). This
section will give us brief instructions on how to install Opa compiler, Node.js, and
some required modules for Node.js.

Installing Node.js
Node.js (http://nodejs.org) is a platform for building fast and scalable network
applications. It is the backend of Opa (since Opa 1.0.0). We need to install Node.js
irst before installing Opa. The following are the steps to install Node.js on various
operating systems:

• Mac OS: Following are the steps to install Node.js:

1. Download the latest .pkg package from http://nodejs.org/dist/
latest/.

2. Double-click on the package to install Node.js.

• Ubuntu and Debian Linux: To install Node.js on Ubuntu and Debian Linux,
type the following commands:

$sudo apt-get install python-software-properties

$sudo add-apt-repository ppa:chris-lea/node.js

$sudo apt-get update

$sudo apt-get install nodejs npm

Getting Started with Opa

[6]

Downloading the example code files

You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

• Windows: The following are the steps to install Node.js:

1. Download the latest .msi package from http://nodejs.org/dist/
latest/.

2. Double-click on the package to install Node.js on Windows.

Type the following commands to conirm your installation. If everything goes right,
you will see the version information of Node.js and npm.

$ node -v

$ npm –v

Installing the required modules
There are several modules that are required by Opa to run an application. Type the
following command to install these modules:

$ npm install -g mongodb formidable nodemailer simplesmtp imap

Installing the Opa compiler
The easiest solution for installing Opa is to download an installer from the Opa
website (http://opalang.org/). You can also get the installer from Opa's GitHub
repository (https://github.com/MLstate/opalang/downloads). At the time this
book is being written, the latest version of Opa is 1.1.0.

Following are the steps to install Opa on various operating systems:

• Mac OS X: Download the latest .dmg package and double-click on it to
install. You will need the password of an administrative account.

• Ubuntu and Debian Linux: Download the latest .deb package and double-
click on it to install. You can also install it with the following command line:

$sudo dpkg –i opa-1.1.0.x86.deb

Chapter 1

[7]

• Windows: Download the latest .exe ile and double-click on it to install.
Note that only 64-bit packages are available for Windows at this time.

• Other Linux: To install Opa follow these steps:

1. Download the latest .run package for Linux.

2. Go to the download folder and add an execution privilege to the
downloaded file by running the following command:

$ chmod a+x opa-1.1.0.x64.run

3. Run the installing script:

$ sudo ./opa-1.1.0.x64.run

Testing the installation
To test if Opa is installed properly on your computer, run the following command:

$ opa --version

Opa is installed properly if the version information of the Opa compiler is printed.

Setting up editors
You can write Opa codes with any text editor you like, but a good editor can make
coding easier. This section is about setting up editors you may commonly use. For
now, Sublime Text is the most complete Integrated Development Environment
(IDE) for Opa.

Sublime Text
Sublime Text (http://www.sublimetext.com/) is a sophisticated text editor for
code, markup, and prose. You can download and try Sublime Text for free from
http://www.sublimetext.com/2.

There is an Opa plugin that offers syntax highlighting, code completion, and some
other features. To install the plugin, follow these steps:

1. Get the plugin from https://github.com/downloads/MLstate/
OpaSublimeText/Opa.sublime-package.

2. Move it to ~/.config/sublime-text2/Installed Packages/ (in Linux),
or %%APPDATA%%\Sublime Text 2\Installed Packages\ (in Windows), or
~/Library/Application Support/Sublime Text 2/Installed Packages
(in Mac).

Getting Started with Opa

[8]

3. Start Sublime and check if the menu entry (View | Syntax | Opa) is present.
If everything goes well, the ile with the .opa extension should automatically
have its syntax highlighted. If not, please make sure you are using the Opa
plugin (View | Syntax | Opa). We can navigate to Edit | Line | Reindent
to auto-indent the Opa code.

Vim
Vim (http://www.vim.org/) is a highly conigurable text editor, freely available for
many different platforms. The Opa installation package provides a mode for Vim at
/usr/share/opa/vim/ (for Linux) or /opt/mlstate/share/opa/vim/ (for Mac OS).
To enable Vim to detect Opa syntax, copy these iles to your .vim directory in your
home folder (create it if it does not exist already):

• On Linux, type the following command:

$cp –p /usr/share/opa/vim/* ~/.vim/

• On Mac OS, type the following command:

$cp –p /opt/mlstate/share/opa/vim/* ~/.vim

Emacs
On Mac OS X, you can either use Aquamacs and the package installation will take
care of it, or you should add the following line to your coniguration ile (which
might be ~/.emacs; create it if it does not exist already):

(autoload 'opa-classic-mode "/Library/Application Support/Emacs/
site-lisp/opa-mode/opa-mode.el" "Opa CLASSIC editing mode." t)

(autoload 'opa-js-mode "/Library/Application Support/Emacs/
site-lisp/opa-mode/opa-js-mode.el" "Opa JS editing mode." t)

(add-to-list 'auto-mode-alist '("\.opa$" . opa-js-mode))

(add-to-list 'auto-mode-alist '("\.js\.opa$" . opa-js-mode))

(add-to-list 'auto-mode-alist '("\.classic\.opa$" . opa-classic-
mode))

On Linux, add the following lines to your coniguration ile:

(autoload 'opa-js-mode "/usr/share/opa/emacs/opa-js-mode.el" "Opa
JS editing mode." t)

(autoload 'opa-classic-mode "/usr/share/opa/emacs/opa-mode.el"
"Opa CLASSIC editing mode." t)

(add-to-list 'auto-mode-alist '("\.opa$" . opa-js-mode))

(add-to-list 'auto-mode-alist '("\.js\.opa$" . opa-js-mode))

(add-to-list 'auto-mode-alist '("\.classic\.opa$" . opa-classic-
mode))

Chapter 1

[9]

For Eclipse, the experimental plugin is available at https://github.com/MLstate/
opa-eclipse-plugin.

Your irst Opa application
As a irst example, here is the most simple program in Opa:

jlog("hello Opa!")

Compile and run it:

$ opa hello.opa -o hello.js

$./hello.js

We can type opa hello.opa -- to compile and run
the code in a single line.

The code does nothing but prints hello Opa on your screen. If you can see this
message, it means Opa is working properly on your machine.

Summary
In this chapter, we learned how to install Opa, set up a proper editor, and write our
irst Opa program. In the next chapter, we will have a brief look at the basic grammar
of the Opa language.

www.allitebooks.com

http://www.allitebooks.org

Basic Syntax
In this chapter, we will introduce the basic syntax of Opa. This chapter will not
cover every little tiny thing about Opa, but it is something you should know. It's
also assumed that you have some basic knowledge about computer programming.

Basic datatypes
Datatypes are the shapes of data manipulated by an application. Opa uses datatypes
to perform sanity and security checks on your application. Opa also uses datatypes
to perform a number of optimizations. There are three basic datatypes in Opa:
integers, loats, and strings. Also, you can deine your type with the keyword type:

type Student = {string name, int age, float score}

Student stu = { name:"li", age:28, score:80.0}

Actually, thanks to a mechanism of type inference, Opa can work in most cases even
if you do not provide any type information. For example:

x = 10 // the same as: int x = 10

x = {a:1,b:2} // the type of x is: {a:int, b:int}

So in the rest of this chapter, we will not address type information before variable,
but you should know what type it is in your mind. In actual coding, a best practice
is to provide the datatypes of our main functions and to let the inference engine pick
up the datatypes of all the local variables and minor functions.

Integers
It is quite simple to write integer literals; there are a number of ways to do so:

x = 10 // 10 in base 10
x = 0xA // 10 in base 16, any case works (0Xa, 0XA, Oxa)
x = 0o12 // 10 in base 8
x = 0b1010 // 10 in base 2

Basic Syntax

[12]

The tailing semicolon is optional in Opa; you can add it if you want.

Opa provides the module Int (http://doc.opalang.org/module/stdlib.core/
Int) to operate on integers. The following are the most used functions:

i1 = Int.abs(-10) // i1 = 10
i2 = Int.max(10,8) // i2 = 10

There is no automatic type conversion between float, int, and String. So, use the
following functions to convert between int, float, and String.

i3 = Int.of_float(10.6) // i3 = 10

i4 = Int.of_string("0xA") // i4 = 10, 0xA is 10 in dec

f1 = Int.to_float(10) // f1 = 10.0, f1 is a float

s1 = Int.to_string(10) // s1 = "10", s1 is a string

Floats
It is also easy to deine loats. They can be written in the following ways:

x = 12.21 // the normal one

x = .12 // omitting the leading zero

x = 12. // to indicate this is a float, not an integer

x = 12.5e10 // scientific notation

Opa provides the module Float (http://doc.opalang.org/module/stdlib.core/
Float) to operate on loats. The following are the most used functions:

f1 = Float.abs(-10.0) //f1 = 10.0

f2 = Float.ceil(10.5) //f2 = 11.0

f3 = Float.floor(10.5) //f3 = 10.0

f4 = Float.round(10.5) //f4 = 11.0

f5 = Float.of_int(10) //f5 = 10.0

f6 = Float.of_string("10.5") //f6 = 10.5

i1 = Float.to_int(10.5) //i1 = 10, i1 is an integer

s1 = Float.to_string(10.5) //s1 = "10.5", s1 is a string

Strings
In Opa, text is represented by immutable utf8-encoded character strings. String
literals follow roughly the same syntax used in C language, Java, or JavaScript.
Note that you will have to escape special characters with backslashes.

x = "hello!"

x = "\"" // special characters can be escaped with backslashes

Chapter 2

[13]

Opa has a feature called string insertions, which can put arbitrary expressions into
a string. You can do that by embedding an expression between curly braces into a
string. For example:

x = "1 + 2 = {1+2}" //will produce "1 + 2 = 3"

lang = "Opa"

y = "I love {lang}!" //will produce "I love Opa!"

Opa provides the module String (http://doc.opalang.org/module/stdlib.
core/String) to operate on strings. The most commonly used are as follows:

s = "I love Opa! " //Note there is a space at the end.

len = String.length(s) //get length, len = 12

isEmpty = String.is_empty(s) //test if a string is empty, false

isBlank = String.is_blank(s) //test if a string is blank, false

cont = String.contains(s,"Opa") //check if a string contains a

 //substring,true

idx1 = String.index("love",s) //found, idx1 = {some:2}

idx2 = String.index("loving",s) //not found, idx2 = {none}

ch = String.get(0,s) //get nth char, ch = 'I'

s2 = String.trim(s) //do trim, s2 = "I love Opa!"

s3 = String.replace("I","We",s2)//s3 = "We love Opa!"

Sum
A value has a sum type t or u, meaning that the values of this type are either of the
two variants, a value of type t or a value of type u.

A good example of sum type are Boolean values, which are deined as follows:

type bool = {true} or {false}

Thus, a variable of type bool can be either {true} or {false}. Another commonly
used sum type is the option type, which is deined as:

type option('a) = {none} or {'a some}

The option(`a) value is either none or some (a value x of type `a). Type `a means
any type. This is a type-safe way to deal with possibly non-existing values. The
option type is widely used; let's take String.index for example:

idx1 = String.index("love","I love Opa!") //idx1 = {some:2}

idx2 = String.index("loving","I love Opa!") //idx2 = {none}

Basic Syntax

[14]

The return type of String.index is the option (int), which means it will return a
{some:int} record if a substring appears or a {none} record if it doesn't.

Note that the sum datatypes are not limited to two cases; they can have tens of cases.

Functions
Opa is a functional language. One of its features is that functions are regular values,
which means a function may be passed as a parameter or returned as a result. As
such, they follow the same naming rules as any other value.

function f(x,y){ // function f with the two parameters x and y

 x + y + 1

}

function int f(x,y){ // explicitly indicates the return type

 x + y + 1

}

Last expression return
You may notice that there is no return inside the body of a function. That's because
Opa uses last expression return, which means the last expression of a function is the
return value. For example:

function max(x,y){

 if(x >= y) x else y

}

If x is greater than or equal to y, then x is the last expression and x will be returned; if
y is greater than x, then y is the last expression and y will be returned.

Modules
Functionalities are usually regrouped into modules; for example:

module M {

 x = 1

 y = x

 function test(){ jlog("testing") }

}

We can access the content of a module by using the dot operator (.); for instance,
M.x, M.y, and M.test. Actually, the content of a module is not ield deinitions, but
bindings. In this example, we bind integer 1 to variable x, and bind the value of
variable x to variable y.

Chapter 2

[15]

Data structures
The only way to build data structures in Opa is to use records, which we will talk
about later on. All other data structures, such as tuples and lists, are based on
records. Opa provides different modules to help the user to manipulate lists and
maps. Let's irst have a look at records.

Records
Simply speaking, a record is a collection of data. Here is how to build a record:

x = {} // the empty record

x = {a:2,b:3} //a record with field "a" and "b"

The empty record,{}, has a synonym, void, which means the same thing. There are a
number of syntactic shortcuts available to write records concisely. First, if you give
a ield name without the ield value, it means the value of this ield is void:

x = {a} // means {a:void}

x = {a, b:2} // means {a:void b:2}

The second shorthand we always use is the sign ~. It means if the ield value is left
empty, assign it with a variable having the same name as the ield name:

x = {~a, b:2} // means {a:a, b:2}

x = ~{a, b} // means {a:a, b:b}

x = ~{a, b, c:4} // means {a:a, b:b, c:4}

x = ~{a:{b}, c} // means {a:{b:void}, c:c}, NOT {a:{b:b}, c:c}

//Consider this more meaningful example

name = "Li"; sex = "Male"; age = 28;

person = ~{name, sex, age} //means {name:"Li", sex:"Male", age: 28}

We can also build a record deriving from an existing record using the keyword with:

x = {a:1,b:2,c:3}

y = {x with a:"1",b:5} // y = {a:"1", b:5, c:3}

Note that you can redeine as many ields as you want. In the example we saw just
now, the ield a in y is a string, but the ield a in x is an integer. Here are some more
examples about deriving:

X = {a:1, b:{c:"2", d:3.0}}

// you can update fields deep in the record

y = {x with b.c:"200"} // y = {a:1, b:{c:"200", d:3.0}}

// you can use the same syntactic shortcuts as used before

y = {x with a} // means {x with a:void}

y = {x with ~a} // means {x with a:a}

y = ~{x with a, b:{e}} // means {x with a:a, b:{e}}

Basic Syntax

[16]

Tuples
An N-tuple is a sequence of n elements, where N is a positive integer. In Opa, an
N-tuple is just a record with ields f1 to fN:

x = (1,) // a tuple of size 1, the same as {f1:1}

x = (1,"2",{a:3}) // a size 3 tuple, the same as {f1:1, f2:"2",
f3:{a:3}}

y = {x with f1:2} // we can manipulate a tuple the same way as a

 //record

// y = {f1:2, f2:"2", f3:{a:3}}

Note the trailing comma in the irst case; it differentiates a 1-tuple from a
parenthesized expression. The trailing comma is allowed for any other tuple,
although, it makes no difference whether you write it or not in these cases.

Lists
In Opa, a list (linked list) is an immutable data structure, meant to contain inite or
ininite sets of elements of the same type. Actually, list is just a record with special
structures, which is deined as:

type list('a) = {nil} or {'a hd, list('a) tl}

Here is how to build lists:

x = [] // the empty list, equals to {nil}

x = [2,3,4] // a three element list, the same as a record:

 // {hd:2, tl:{hd:3, tl:{hd:4, tl:{nil}}}}

y = [0,1|x] // this will put 0,1 on top of x: [0,1,2,3,4]

Lists in Opa are much like arrays in C language and Java. But there are differences.
First, lists are immutable in Opa, which means elements of a list cannot be changed
by assignment. Second, the way we manipulate lists are different. We use the module
List (http://doc.opalang.org/module/stdlib.core/List) to manage lists in
Opa. The following are the most commonly used operations on lists (which will be
explained in the subsequent sections):

l = [1,2,3]

len = List.length(l) // return the length of a list

isEmpty = List.is_empty(l) // test if a list is empty

head = List.head(l) // get the first element, will fail if

 // the list is empty

element = List.get(0,l) // get nth element, return option('a)

l1 = List.add(4,l) // adding an element at the head of a

 //list

Chapter 2

[17]

l2 = 4 +> l // a shortcut for List.add

l3 = List.remove(3,l) // removing an element

l4 = List.drop(2,l) // drop the first n elements

Iterating through a list
In C language or Java, we use a for or a while loop to iterate through lists or arrays.
They look something like this:

int[] numbers = [1,2,3,4,5]

for(int i=0; i<numbers.length; i++){ //do something }

But in Opa, it is totally different. To loop through a list, we use List.fold or
List.foldi. List.fold is a powerful function that you can use to do almost
anything you want on a list. Here is a simple example of getting the length of a list:

len = List.fold(function(_,i){ i+1 }, ["a","b","c"], 0)

List.fold takes three parameters. The irst is a function, the second is the list, and
the third is an initial value. It loops through the list and applies the function on each
element. So, if we name the function f, it is executed something like this:

len = f("c", f("b", f("a",0)))

First, f("a",0) will be executed and will return 1, here 0 is the initial value and a
is the irst element. Then f("b",1) will return 2 and at last f("c",2) will return 3.
Here is a little more complicated example:

//find the max natural number in the list

max = List.fold(function(x,a){

 if(x > a) x else a

},[1,4,3,2,7,8,5],0)

Finding elements
We have many ways to ind an element in a list. List.index searches the irst
occurrence of an element and returns its index. List.index_p searches the irst
occurrence of any element matching a given function and returns its index. List.
find is the same as List.index_p, but returns the element itself but not its index.
For example:

l = ["a","b","c"]

r1 = List.index("b",l) // r1 = {some:1}

r2 = List.index("x",l) // r2 = {none}

r3 = List.index_p(function(x){ x == "b"},l) // r3 = {some:1}

r4 = List.find(function(x){ x == "b"},l) // r4 = {some:"b"}

Basic Syntax

[18]

Transforming lists
If you want to project elements to a new list, for example doubling the number in a
list or selecting the odd numbers, you can do this with List.map and List.filter.
Here are some examples:

l1 = [1,2,3,4,5]

l2 = List.map(function(x){ 2*x }, l1); //l2 = [2,4,6,8,10]

l3 = List.filter(function(x){mod(x,2) == 0},l1); // l3 = [2,4]

Sorting a list
Call the function List.sort to sort a list in the usual order. The usual order means
the default order, that is, numbers from small to big and strings in alphabetical order.
Consider the following code:

l1 = List.sort(["by","as","of","At"]) //l1 = ["At","as","by","of"]

l2 = List.sort([1,3,4,6,2]) //l2 = [1,2,3,4,6]

List.sort_by uses the usual order, but it projects elements, for example, converting
strings to lower-case before comparing them. List.sort_with allows us to use our
own comparing function.

To make that clear, suppose there are three points, P1 (1, 3), P2 (3, 2), and P3 (2, 1),
and we want to sort them in two different ways:

• By their Y coordinates

• By distance from the origin of the coordinates (0, 0)

Let's see how to do that in Opa:

p = [{x:1,y:3},{x:3,y:2},{x:2,y:1}]

l1 = List.sort_with(function(p1,p2){ // sort by Y corordination

 if(p1.y >= p2.y) {gt} else {lt}

},p)

l2 = List.sort_by(function(p){ //sort by distance

 p.x*p.x + p.y*p.y

},p)

Maps
Maps are an important data structure just like lists. The most common cases of maps
in Opa are stringmap and intmap. stringmap is a map from string to value of some
type, while intmap is a map from numbers to value of some type.

Chapter 2

[19]

The way we manipulate maps is almost the same as lists, it is unwise to repeat it
again. Here are some of the most used operations:

m1 = Map.empty // create an empty map

m2 = StringMap.empty // create an empty stringmap

m3 = IntMap.empty // create an empty intmap

m4 = Map.add("key1","val1",m1) // adding a key-val pair

v1 = Map.get("key1",m4) // getting a value

m5 = Map.remove("key1",m4) // removing a key

Pattern matching
Pattern matching is a generalization of C language or Java's switch statement. In
C language and Java, the switch statement only allows you to choose from many
statements based on an integer (including char) or an enum value. While in Opa,
pattern matching is more powerful than that. The more general syntax for pattern
matching is:

match(<expr>){

case <case_1>: <expression_1>

case <case_2>: <expression_2>

case <case_n>: < expression_n>

}

When a pattern is executed, <expr> is evaluated to a value, which is then matched
against each pattern in order until a case is found. You can think about it this way:

if (case_1 matched) expression_1 else {

 if (case_2 matched) expression_2 else {

 ...

 if (case_n matched) expression_n else no_matches

 ...

 }

}

The rules of pattern matching are simple and are as follows:

• Rule 1: Any value matches the pattern _

• Rule 2: Any value matches the variable pattern x, and the value is bound
to the identiier x

• Rule 3: An integer/loat/string matches an integer/loat/string pattern
when they are equal

www.allitebooks.com

http://www.allitebooks.org

Basic Syntax

[20]

• Rule 4: A record (including tuples and lists) matches a closed record pattern
when both records have the same ields and the value of the ields matches
the pattern component-wise

• Rule 5: A record (including tuples and lists) matches an open record pattern
when the value has all the ields of the pattern (but can have more) and the
value of the common ields matches the pattern component-wise

• Rule 6: A value matches a pattern as x pattern when the value matches the
pattern, and additionally it binds x to the value

• Rule 7: A value matches an OR pattern if one of the values matches one of the
two subpatterns

• Rule 8: In all the other cases, the matching fails

The irst three and the last three rules (rule 1, 2, 3, 6, 7, 8) are easy to understand.
Let's take a look at them:

match(y){

case 0: //if y == 0, match [rule 3]

case 1 as x: //if y == 1, match and 1 is bound to x [rule 6]

case 2 | 3 : //if y is 2 or 3, match [rule 7]

case x: //any value will match and the value is bound

 //to x [rule 2]

case _: //match, we do not care about the value.

}

This code will not compile, we just used it to illustrate the rules.

Rule 4 and rule 5 are a little more complicated. A close record pattern is a record
with ixed ields. An open record pattern is a record that ends with … to indicate
that it may have other ields we do not care about. The following examples may
make that clearer:

x = {a:1, b:2, c:3}

match(x){

case {a:1,b:2}: //a close record pattern, but will not match
//cause they do not have the same fields [rule 4]

case {a:1,b:2,c:2}: //a close record pattern, still will not match
//cause c is not equal [rule 4]

case {a:1,b:2,...}: //An open record pattern, matches [rule 5]

}

Chapter 2

[21]

We can also match tuples and lists (since tuples and lists are special records, they are
not hard to understand). For example:

t = (1,"2",3.0)

match(t){ //matching a tuple

case (1,"2",3.1): //not match, 3.1 != 3.0

case (1,"2",_): //match, _ matches anything

case (1,"2",x): //match, now x = 3.0

case {f1:1 ...}: //match, remember tuples are just records

}

y = [1,2,3]

match(y){ //matching a list

case [1,2]: //not match

case [1,2,_]: //match, _ matches anything

case [1,2,x]: //match, now x = 3

case [2,|_]: //not match, '|_' means the rest of the list

case [1,|_]: //match

case [1,2,|_]: //match

case [1,x|_]: //match, now x = 2

}

Text parsers
Parsing is something that web apps need to do quite often. Opa features a built-in
syntax for building text parsers, which are irst class values just as functions. The
parser is based on parsing expression grammar (http://en.wikipedia.org/wiki/
Parsing_expression_grammar), which may look like regular expressions at irst,
but do not behave anything like them. One big advantage of text parsers over regular
expressions is that you can easily combine parsers. A good example is parsing URLs.
Let's start right away with our irst Opa parser:

first_parser = parser {

case "Opa" : 1

}

For first_parser, the expressions are just literal strings, which means this parser
will succeed only if fed with the string "Opa". Then how to use this parser? The
module Parser (http://doc.opalang.org/module/stdlib.core.parser/Parser)
has a bunch of functions to deal with parsers. The most important one is:

Parser.try_parse : Parser.general_parser('a), string -> option('a)

Basic Syntax

[22]

It takes a parser and a string as parameters and produces an optional value of some
type. Let's see how to use this function:

x = Parser.try_parse(parser1,"Opa") //x = {some: 1}

y = Parser.try_parse(parser1,"Java") //y = {none}

Now let's consider the following parsers:

digit1 = parser { case x=[0-9]+: x }

digit2 = parser { case x=([0-9]+): x }

Both digit1 and digit2 accept a number string like "5","100", and both will
assign the value to the identiier x. If we feed the parser digit1 with the string
"100", x will be the parsing result of the string: a list of characters ['1','0','0']. If
we feed the string "100" to parser digit2, x will be the input string: 100. So, if we
want to get hold of the input string, we need to put the expression in parentheses.

Let's move it a little further; consider the following parser:

abs_parser = parser{

 case x=("+"?[0-9]+): Int.of_string("{x}")

 case x=("-"[0-9]+) : 0 – Int.of_string("{x}")

}

x = Parser.try_parse(abs_parser,"-100") // x = {some: 100}

This parser accepts an integer string and returns the absolute value. You may igure
out how it works with the previous knowledge. Note that even if the expression of
PEG looks like a regular expression, they are different.

Summary
This chapter has introduced you to the basic syntax in Opa programming, including
datatypes, functions, records, tuples, lists, maps, patterns, and parsers. This is the basic
knowledge that we should know to make a good Opa program. With the previous
knowledge, we will see how to develop a web application in the next chapter.

Developing Web Applications
Opa is designed for rapid and secure web development. In this chapter, we will talk
about the fundamental knowledge about developing a web application in Opa.

Starting a web server
The irst thing we need for a web application is a web server. In this section we will
see how to start a web server using Opa.

A simple example
As a web application, resources such as web pages, images, and audios need to be
served to users; therefore, we need an HTTP server. Let's think for a moment about
how we would do that in PHP. The typical setup would be an Apache HTTP server
with mod_php5 installed.

With Opa, things are a bit different. We not only implement our application, but also
the whole HTTP server. In fact, our web application and its web server are basically
the same. Our code will be translated into Node.js script after compilation, and will
be run with Node.js. The beneit of integrating the server with a web application is
increased security. Let's just start with a simple example:

Server.start(Server.http, {text: "hello Opa"})

Save this code into a ile, 301.opa for example, then compile and run it. The two
concluding dashes are needed to launch the web application after it has completed
the compilation:

$ opa 301.opa –-

The output will be:

Http serving on http://localhost:8080

Developing Web Applications

[24]

Type this address in your browser and you will see something like this:

The server module
We have started a web server and run our irst Opa web application with the
function Server.start. Let's now take a detailed look at this function:

void start(Server.conf arg1, Server.handler handler)

The function starts a web server with two parameters, the irst is coniguration
information and the second is request handler. The Server.conf type is the
coniguration for the server. It is a record type with the following ields:

type Server.conf = {

 int port, //port server runs on

 ip netmask, //netmask

 Server.encryption encryption,//secure config if using https

 String name //server name

}

In most cases, we do not want to deine all the elements in this type. We can
extend from the static value Server.http. Server.http is a predeined default
coniguration with port equal to 8080 and the server protocol is http, and the default
coniguration for https is Server.https. In the following two lines, we are reusing
the Server.http coniguration, replacing port 8080 by port 8088 by using the
instruction with port: 8088.

conf = {Server.http with port: 8088}

Server.start(conf,{text: "Hello Opa!"})

You can also run your application with the –p option to change
the port, which will override this.

Chapter 3

[25]

Our web server will need to answer differently to different requests, depending
on which URL was being requested. Therefore, we will need Server.handler to
handle these requests. The Server.handler type is much more complicated than the
Server.conf type. It deines how our web server will handle the incoming requests.
It's a variant with eight cases:

type Server.handler =

 {string text} or

 {string title, (-> xhtml) page} or

 {stringmap(resource) resources} or

 {(Uri.relative -> resource) dispatch} or

 {Server.filter filter, (Uri.relative -> resource) dispatch} or

 {Server.registrable_resource register} or

 {Parser.general_parser(resource) custom} or

 list(Server.handler)

In the example at the beginning of this chapter, we used the simplest case—{string

text}. It accepts all the requests and just shows some text on the page. Let's see how
the second case, {string title, (-> xhtml) page}, works:

Server.start(Server.http, {

 title: "Opa world"

 page : function(){ <h1>Hello Opa!</h1> }

})

The second case also handles all the requests, but it servers a single page. The ield
page is a function with the type void -> xhtml, which indicates that the function
accepts no parameter and produces a value of the type xhtml. We will talk about
XHTML later; the result looks like this:

We can notice from this screenshot that, compared to the irst example, what has
changed is that the web page we sent to the browser includes HTML markup that
the web browser renders as a heading type.

Developing Web Applications

[26]

Dispatching requests
We have gone through the irst two cases of Server.handler. They are both simple
and accept all requests. But in real web applications, requests and responses are
much more complicated, and the web server should respond differently according to
different requests. This section we will cover the remaining cases of Server.handler
and will show how to handle different types of requests.

The resource handler
A resource handler is often used to serve static resources such as images and sounds.
The case {stringmap(resource) resources} performs on a non-decoded URI
(Uniform Resource Identiier), and returns a resource that the URI matches with the
resource's stringmap. To make it clear, let's suppose there are three images in the
directory res: opa1.png, opa2.png, and opa3.png.

If we create the resources stringmap manually, it should look like this:

"res/opa1.png" -> a resource of opa1.png
"res/opa2.png" -> a resource of opa2.png
"res/opa3.png" -> a resource of opa3.png

The relative URI is the key and the resource of the .png ile is the value, that is,
"res/opa1.png" is the key and opa1.png, as a resource, is the value. If the user
tries to access the URL http://localhost:8080/res/opa1.png, the non-decoded
relative URI will be res/opa1.png. The server will try to ind the corresponding
resource opa1.png and serve it back to the user.

So, how can we add these external iles? In Opa, we can use the following two
directives. These directives will be replaced by a proper value at compile time:

• @static_content("foo.png") is replaced by a function that returns the
content of compile-time foo.png.

• @static_resource("foo.png") is replaced by a value of the resource
type represents foo.png, with the last modiication time, MIME type,
among others.

The difference between these two directives is that @static_content is replaced by
a function, while @static_resource is replaced by a resource. Both directives have
a counterpart that, instead of processing and returning one ile, processes a directory
and returns it as a stringmap:

• @static_content_directory("foo/") is replaced by a stringmap from ile
name f in the directory foo/ to @static_content("f")

• @static_resource_directory("foo/") is replaced by a stringmap from
ile name f in the directory foo/ to @static_resource("f")

Chapter 3

[27]

Now, it is very clear that if we want to serve resources in the directory res, all we
need to do is write the code as follows:

Server.start(Server.http,{

 resources: @static_resource_directory("res")

})

We can get the resource at http://localhost:8080/res/opa1.png.

The dispatch handler
The resource handler is very useful for static resources. But frequently, the server
needs to respond to different requests. The case {(Uri.relative -> resource)
dispatch} is just for that. In this case, the request URL is decoded into an
Uri.relative record, which is deined as:

type Uri.relative ={

 list(string) path,

 list((string, string)) query,

 option(string) fragment,

 bool is_directory,

 bool is_from_root

}

Let's suppose the user request URL is http://localhost:8080/admin/
find?name=Li&age=28, the record will be:

{ path: [admin,find], //a list of path

 query: [(name,Li),(age,28)], //a list of tuple2

 ...} //we do not care about the fields here.

Having this record, we should return a corresponding resource. Most of the time,
pattern matching is used to dispatch requests. Here is an example:

function dispatch(uri){

 match(uri){

 case {path:[],...} ：Resource.page("Login",<h1>Login</h1>);

 case {path:["admin"|_],...}:
 Resource.page("Admin", <h1>Admin</h1>);

 case {path:["user",x|_],...}:
 Resource.page("User", <h1>User:{x}</h1>);

 }

}

Server.start(Server.http,{~dispatch})

Developing Web Applications

[28]

Remember what we discussed about pattern matching in the last chapter? It is not
hard to igure out what happens here. Note that pattern matching is not the only way
to dispatch requests. You can do almost anything you want to return a resource for a
given URI. Besides, we can also add a ilter with the case {Server.filter filter,
(Uri.relative->resource) dispatch}:

Server.start(Server.http,{
 filter: Server.Filter.path(["opa","packt"]),
 dispatch: function(_){
 Resource.page("opa packt",<h1> Hello Opa!</h1>)
 }
})

This code will only allow user to access http://localhost:8080/opa/packt.

The register handler
The case {Server.registrable_resource register} is an empty request handler,
which means it will not handle any request. But it is useful for registering external
resources such as js and css, so that we can use them in our application.

Server.start(Server.http,{
 register: [
 {doctype: {html5}},
 {js: ["/res/js/js1.js","/res/js/js2.js"]},
 {css: ["/res/css/style1.css","/res/css/style2.css"]}
]
});

In this example, we registered the doctype as html5, and some external JavaScript
and CSS. The JavaScript and CSS registered here is application-wide. It means we
can use codes from JavaScript and styles from CSS in any page that we create in
this application.

The customize handler
The case {Parser.general_parser(resource) custom} is the most conigurable
request handler. The custom parser takes the non-decoded URI from incoming
requests as input and computes the corresponding resource. Consider the
following example:

custom = parser{
 case ("/admin".*) : Resource.page("Admin",<h1>Admin</h1>);
 case ("/user".*) : Resource.page("User",<h1>User</h1>);
 case (.*) : Resource.page("default",<h1>default</h1>);
}
Server.start(Server.http, {~custom});

Chapter 3

[29]

This example will match all requests beginning with "/admin" to the admin page
created by the code Resource.page("Admin",<h1>Admin</h1>), all requests
beginning with "/user" to the user page, and all the other requests to a default page.
You can refer parser in Opa to get more information about how to deal with more
complex cases.

The handlers group
The case list (Server.handler) aggregates several request handlers as a group in
response to an incoming request. All handlers are tested in the order that they are
listed until one succeeds and returns a resource. For example:

Server.start(Server.http,[

{resources: @static_resource_directory("resources")},

 {~dispatch}, //we omitted the definition here

 {~custom}, //we omitted the definition here

 {title:"404", page:function(){ <h1>Page Not Found!<h1> }}

]);

As a single handler may not be suficient to deal with all the requests, handlers
group is a common solution for most web applications developed by Opa.

Preparing pages
We have discussed how to launch the server and dispatch users' requests. Now it
is time for the frontend issue, namely, the web page. Web pages are what users see
and interact with. There are numerous technologies that can be used for building
excellent web pages, such as PHP, Perl, and Python. But the basic way is using
HTML and CSS.

XHTML
In Opa, both HTML and CSS are irst class citizens, and are understood and checked
by the compiler without you having to wrap them as strings. Having XHTML as a
native type implies near-perfect XSS (cross-site scripting) protection. It also means
we can easily compose elements, that is, we can write <div>{foo()}</div>. HTML
values have a predeined xhtml type, and there is a built-in syntax for constructing
XHTML values. Here is an overview of the syntax for XHTML:

// XHTML is a data-type with built-in syntax
xhtml span = Hello Opa!
//named closing tag is optional,
// so are the quotes around literal attributes
another_span = Hello XHTML</>

www.allitebooks.com

http://www.allitebooks.org

Developing Web Applications

[30]

Inserts for both tags and attributes work in XHTML too:

function f(class, content){

 {content}

}

Creating a page
Usually, we need to serve our web page as a value of the resource type. The function
Resource.page, or its shortcut Resource.html, will help us convert XHTML to a
resource. Resource.page is deined as:

resource page(string title, xhtml body)

The irst argument is the title of the web page and the second argument is the content
written in XHTML. It will return a value of the resource type that we can return to
the user. Here is a simple example:

function dispatch(_){

 Resource.page("Opa Packt", <h1>Hello Opa!</h1>)

}

Server.start(Server.http,{~dispathc})

This code fragment serves all the requests to the web page. Resource.page is
suficient for developers in most cases. But if you need more controls, you can
refer to Resource.styled_page and Resource.full_page.

Adding styles
There are many ways to add styles. First, just like XHTML, CSS is a predeined
datatype in Opa and we can deine CSS in Opa code directly:

red_style = css { color: red }

span =

// one can use inserts inside css, i.e. height: {height}px;

function div(width, height, content) {

 <div style={ css { height: {height}px; width: {width}px }}>

 {content}

 </div>

}

Another way is using the register handler that we have talked about before:

Server.start(Server.http,

 [{register: {css: ["resources/css/style.css"]}} , ...]

)

Chapter 3

[31]

The stylesheets registered by the register handler are available application-wide,
which means that you can use them in any page. If you want to add some page
speciic stylesheets, the choice will be Resource.styled_page. Here is an example:

// save this as file: resources/hello.css

.hello1 { font-size: 20pt }

.hello2 { font-size: 12pt }

//save the following code as a file, compile and run it.

function dispatch(_){

 Resource.styled_page("Opa Packt", ["resources/hello.css"],

 <div class="hello1">Hello Opa!</div>

 <div class="hello2">Hello Opa!</div>

)

}

Server.start(Server.http,[

 {resources: @static_resource_directory("resources")},

 {~dispatch}

])

Compile and run this code; the result looks like this:

Handling events
An event handler is a function whose call is triggered by some activity in the user
interface. Typical event handlers react to user's clicking (the event is called click),
pressing enter (event newline), moving the mouse (event mousemove), or loading the
page (event ready).

In Opa, an event handler always has the type Dom.event -> void. Here is an
example:

function f1(_){ #test1 = "test1"}

function f2(_){ Dom.set_text(#test2,"clicked"}

function f3(_){ Dom.clear_value(#test3) }

function page(){

 <div id=#test1 onready={f1}></div>

Developing Web Applications

[32]

 <button id=#test2 onclick={f2}>click</button>

 <input id=#test3 onnewline={f3}></input>

 <div id=#test4 onclick={function(_){ jlog("clicked") }}></div>

}

Server.start(Server.http, {title:"Opa Packt", ~page})

This code gives an example of how to write event handlers in Opa.

Manipulating DOMs
The Document Object Model (DOM) is a platform and language neutral interface
that allows programs and scripts to dynamically access and update the content,
structure, and style of documents.

At times, we may want to change the content of a page dynamically. To accomplish
this, we will often need to interact with the DOM. Opa provides the module Dom for
the purpose of manipulating the contents of the page currently being displayed by
the browser. You can use it to add and remove elements to and from the page, to get
the contents of a form, or to apply styles or special effects.

DOM selection
The irst step that is necessary, in order to use DOMs, is to select the one that you
want to work with. Opa provides many ways of selecting elements. You can ind
all the available selection functions in the module Dom. The most commonly used
ones are:

Dom.select_id("id") //select element with a given id

Dom.select_document() //select the complete document

Dom.select_class("class") //select elements belongs to a class

Dom.select_children(parent) //select all children

//and much more, search online Opa API for entry Dom

As Dom.select_id is used everywhere and very frequently, Opa provides a shortcut
for it. You can simply write #id. For example:

#text //the same as: dom = Dom.select_id("text")

#{test} //insert can be used in this in combination with the
//shortcut notation.

Dom.select_children(#text)

Chapter 3

[33]

Reading values
Often we need to read values or get content from some element of a page. For
example, getting user's input or getting the width of an element. Opa provides many
get functions to get information of a given Dom item. Consider the following code:

<input id=#test type="text" value="test1">test2</input>

x1 = Dom.get_value(#test) // x1 = test1, x1 is a string

y1 = Dom.get_text(#test) // y1 = test2, y1 is a string

x2 = Dom.get_attribute(#test,"type") // x2 = {some: text}

y2 = Dom.get_property(#test,"type") // y2 = {some: text}

x3 = Dom.get_with(#test) //x3 is the width of #test

y3 = Dom.get_height(#test) //y3 is the height of #test

This example illustrates some commonly used functions on Dom, we can ind more
on online Opa API for the entry Dom. Please do not confuse Dom.get_value with
Dom.get_text. The irst one will return the content entered by the user (for example,
from an input, a menu, and so on), while the second one will return the content
inserted in Dom. We can igure that out from the second and third line of the example
we just saw.

Updating content
Opa offers three syntactical shortcuts that simplify some of the most common
transformations:

#identifier = content //replace the content

#identifier =+ content //prepend the content

#identifier += content //append the content

In addition, there are many other functions you can use to add, remove, and update
the content of the page:

Dom.add_class(#test,"style") //add a class "style" to #test

Dom.clear_value(#test) //clear the value of #test

Dom.put_after(#test,#item) //move #item after #test

Dom.put_before(#test,#item) //move #item before #test

Dom.put_replace(#test,#item) //replace #test with #item

Dom.remove(#test) //remove dom #test

Dom.remove_class(#test,"style") //remove class "style" in #test

Dom.remove_content(#test) //remove #test's content

//and for more, search online Opa API for entry Dom

Developing Web Applications

[34]

Binding an event handler
It is quite common to bind an event handler dynamically at runtime, especially
when you are creating controls programmatically. In Opa, we can do this with
Dom.bind,which is deined as:

Dom.event_handler bind(dom dom, Dom.event.kind event,

 (Dom.event -> void) handler)

The function returns a value of the type Dom.event_handler, which you can use to
unbind the event handler. Here is an example:

<input id=#test type="button" value="bind"></input>

//bind #test's click event with a function

handler = Dom.bind(#test,{click},function(_){ void })

Dom.unbind(#test, handler) //unbind the event handler

Animations
Opa provides several techniques for adding animations to a web page. These include
simple, standard animations that are frequently used such as fade-in, fade-out,
and hide. To apply an animation to a Dom item, you should use the function
Dom.transaction, which is deined as:

Dom.transaction transition(dom item, Dom.animation effect)

The irst parameter is a Dom item and the second parameter is the effect you want
to apply to this Dom item. You can ind a full list of effects supported by Opa in the
module Dom.Effect. Here is an example of animation:

function hide(_){

 _ = Dom.transition(#test,Dom.Effect.hide()); void

}

function page(){

 <div id=#test style="width:100px;height:100px;"></div>

 <button id=#btnanim onclick={hide}>Hide</button>

}

Server.start(Server.http,{title:"Opa Packt", ~page})

Summary
In this chapter, we irst introduced how to start a web server with the function
Server.start, which is the starting point of our web application. Then we discussed
in detail the different cases of Server.handler, and how to use them to dispatch
user requests. After that, we talked about preparing web pages. Finally, we learned
how to change the content of the page dynamically by interacting with DOM.

Using Bootstrap
Bootstrap (http://twitter.github.com/bootstrap) is a sleek, intuitive, and
powerful frontend framework for faster and easier web development. Opa gives you
a very easy way to use Bootstrap in your code. In this chapter we will discuss how to
use Bootstrap for rapid web development in Opa.

Importing Bootstrap
We have talked about how to import external iles (JavaScript, CSS, among others) in
the Resource handler section of Chapter 3, Developing Web Applications. We would have
to import all the necessary Bootstrap iles if we do that manually. To make it easy,
Opa provides some shortcuts for using Bootstrap. Let's get started with an example:

import stdlib.themes.bootstrap

function page(){

 <button class="btn btn-primary"
 style="margin:5px">Click</button>

}

Server.start(Server.http,{title:"Opa Packt",~page})

All we need is an import statement, and Opa will handle the rest. The result of the
above code looks as shown in the following screenshot. We can see that the Click
button is rendered using the btn and the btn-primary class, which are provided
by Bootstrap.

Using Bootstrap

[36]

Actually, we can control the importing in more detail. By doing this, we can prevent
loading unnecessary resources and only load what we need. Refer to the following
import statements to do this:

// import bootstrap css and icons without responsive

import stdlib.themes.bootstrap

// import bootstrap responsive part

import stdlib.themes.bootstrap.responsive

// import bootstrap css (no icons, no responsive)

import stdlib.themes.bootstrap.css

// import bootstrap glyphicons

import stdlib.themes.bootstrap.icons

// import font awesome icons

import stdlib.themes.bootstrap.font-awesome

Using classes
Once we have imported Bootstrap CSS, we can use Bootstrap classes and styles.
It is just the same as writing code in HTML, that is, <input class="btn btn-
primary"/>. You can ind the complete guide on Bootstrap's website (http://
twitter.github.com/bootstrap/base-css.html).

Let's take button for example:

import stdlib.themes.bootstrap

function page(){

 <div style="margin:5px">

 <button class="btn btn-large">Large Button</button>

 <button class="btn">Default Button</button>

 <button class="btn btn-primary">Primary Button</button>

 <button class="btn btn-small">Small Button</button>

 <button class="btn btn-mini">Mini Button</button>

 </div>

}

Server.start(Server.http,{title:"Opa Packt",~page})

And that's it; it is quite simple to use Bootstrap's classes in Opa, the result looks
as follows:

Chapter 4

[37]

Using icons
Bootstrap includes a set of icons provided by Glyphicons (http://glyphicons.
com/). It has icons that are available in both dark gray and white. Besides, Opa also
includes Font Awesome (http://fortawesome.github.com/Font-Awesome/) icons.

Bootstrap icons
It's very easy to use icons. All icons require <i> with a unique class preixed with
icon-. To use them, place the following code just about anywhere:

<i class="icon-search"></i>

The default color is dark gray. If you need to use a white icon, add icon-white
to class. Consider the following example:

import stdlib.themes.bootstrap

function page(){

 <div style="margin:5px">

 <button class="btn">

 <i class="icon-search"></i> Search

 </button>

 <button class="btn btn-inverse">

 <i class="icon-search icon-white"></i> Search

 </button>

 <div class="btn-group">

 <i class="icon-align-left"></i>

 <i class="icon-align-center"></i>

 <i class="icon-align-right"></i>

 <i class="icon-align-justify"></i>

 </div>

 </div>

}

Server.start(Server.http,{title:"Opa Packt",~page})

The result looks like the following screenshot. We made buttons and a button group
using Bootstrap icons.

Using Bootstrap

[38]

Font Awesome icons
Font Awesome is the iconic font designed for use with Twitter Bootstrap. It's
designed to be fully backwards compatible with Bootstrap 2.0. The icons in Font
Awesome are scalable vector graphics, which means they look awesome at any size.
Moreover, you can control icon color, size, shadow, and anything that's possible with
CSS. Opa provides the support for Font Awesome in language, so it's very easy for
Opa developers to use Font Awesome. Here is an example:

import stdlib.themes.bootstrap.css

import stdlib.themes.bootstrap.font-awesome

function page(){

 <div style="margin:5px">

 <button class="btn">

 <i class="icon-search"></i> Search

 </button>

 <button class="btn btn-inverse">

 <i class="icon-search"></i> Search

 </button>

 <button class="btn btn-large">

 <i class="icon-search"></i> Search

 </button>

 </div>

 <div style="margin:5px;font-size:24px">

 <i class="icon-search"></i> Search

 </div>

}

Server.start(Server.http,{title:"Opa Packt",~page})

As we can see from the following screenshot, the Search icon scales automatically
according to the font size:

Chapter 4

[39]

Using widgets
There are some components that are commonly used in web application, such as
alert information, drop-down buttons, button groups, and modal dialogs. Bootstrap
has a great support for that, and you can create those widgets in Opa. Let's irst take
a look at how we create a drop-down button in Opa:

import stdlib.themes.bootstrap.css

function page(){

 <div class="btn-group" style="margin:10px">

 <a class="btn dropdown-toggle" data-toggle="dropdown"
 href="#">

 Action

 <ul class="dropdown-menu">

 action1

 action2

 action3

 </div>

}

Server.start(Server.http,[

 {resources: @static_resource_directory("resources")},

 {register: [{js: ["resources/bootstrap.min.js"]}] },

 {title:"Opa Packt", ~page}

])

Note that we use bootstrap.min.js as an external JavaScript to enable the effect
provided by Bootstrap. You can download this ile from the Bootstrap website.

The Action drop-down button looks as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Using Bootstrap

[40]

Let's take a look at another example—the modal dialog. Here, we have only shown
a code fragment of function page(). We omitted the rest of the code because it is
identical to the drop-down button code:

function page(){

 <div class="modal hide" id=#mymodal>

 <div class="modal-header">

 <button class="close" data-dismiss="modal">x</button>

 <h3>Modal header</h3>

 </div>

 <div class="modal-body"> <p>One fine Body...</p> </div>

 <div class="modal-footer">

 Cancel

 </div>

 </div>

 Show

}

Compile and run the code; the result looks like this:

There are some other widgets that are not shown here. You can refer to the Bootstrap
home page (http://twitter.github.com/bootstrap) for more information.

Summary
As we can see from this chapter, working with Bootstrap in Opa is quite easy. You
only need to import the proper resources that you want, and the rest is almost the
same as developing in pure HTML. Bootstrap's home page (http://twitter.
github.com/bootstrap) is a good place to get more information.

Communicating between

Client and Server
An important difference between Opa and most other web development languages
is that other technologies typically require the use of multiple languages in order to
write client-side and server-side code, whereas in Opa we can do both using a single
language. This gives us the ability to invoke a remote procedure just like a local
function. We do not need to send Ajax requests and parse response data ourselves.
In this chapter, we will irst talk about how to slice server and client code using Opa
and what we can do to help the slicer when automatic slicing is not enough. Then,
we will introduce three primitives for communication between clients and the server:
session, cell, and network.

Client and server slicing
Opa allows developers to write the server and client code both in the same language
within the same module. And even better, the Opa slicer automates the calls between
the client and the server. No more manually written Ajax calls or value serialization
is needed!

Communicating between Client and Server

[42]

A simple example
Let's get started with a simple example. Suppose we want to send our name to
the server and request the server to respond with the words "Say hello to [name]
from server":

This is quite simple and can be accomplished with almost any language that we are
familiar with. Typically, you would send an Ajax request to the server with name as
request data, and the server will respond with a JSON object containing the string we
want. The following code fragment demonstrates how we can do this using jQuery
for the client-side code and ASP as server-side code:

//code fragment on server side: ajax.aspx

Response.ContentType = "application/json";

Response.Write("{result: 'Say hello to "

+ Request["Name"] + "from server.'}");

//request code fragment on client side

$.post("ajax.aspx", //request url

{Name:"Li"}, //request data

function (data, textStatus){}, //call back

"json"); //data type

With Opa, things become even easier. We can skip the step of sending an Ajax
request, and we also don't need to parse the JSON response data ourselves. We only
need to write a normal function with a server tag and invoke the function from the
client. Here is the complete code:

server function sayhello(name){

 "Say hello to " + name + " from server."

}

function page(){

 <input id=#name type="text"/>

 <input type="button" value="hello" onclick={function(_){

Chapter 5

[43]

 #text = sayhello(Dom.get_value(#name))

 }}/>

 <h3 id=#text></h3>

}

Server.start(Server.http,{title:"Opa Packt",~page})

In the preceding code, we add a server tag before the sayhello function to indicate
that it is a function on the server side, and we invoke this function on the client as
a normal client-side function. If the server tag is removed, the sayhello function
will be a client-side function in this example, and there will be no communication
between the client and the server.

Slicing annotations
The server tag tells the Opa complier to put the sayhello function on the server
side. Opa is a language that can be executed both on a client and a server, but at
some point during the compilation process, it must be decided on which side does
the code actually end up, and whether there are any remote calls.

If the developer does not provide the slicing information by adding the slicing
annotations (server, client, and both) before a function or a module, then Opa will
perform the slicing job automatically. The rules for slicing that Opa follows by
default are quite simple. Opa will implement the function on both the server as well
as the client if possible. If it is not possible to implement the function both on the
server and the client, then Opa will implement the function either on the server or on
the client, depending on where it is possible to implement the function. For instance,
if we remove the server tag from the sayhello function in the previous example,
then Opa's slicer will implement the function twice, once on the server and once on
the client. As a result, the invocation is no longer a remote call but a local call.

When automatic slicing is not enough, for example, if we want a function to only
be available on the server side or client side, we can add slicing annotations before
the function keyword to tell the slicer where a declaration should end up. There are
three slicing annotations: server, client and both.

• server: Opa will implement the function on the server (but it does not mean
that it will not be visible for the code running on the client)

• client: Opa will implement the code on the client (but it does not mean that it
will not be visible for the code running on the server)

• both: The function is implemented both on the server as well as the client

Communicating between Client and Server

[44]

It is easy to understand what the server and client mean, but the both keyword is
less intuitive. The problem is that a deinition can have arbitrary side effects.

Side effect: In computer science, a function or expression is said
to have a side effect if, in addition to returning a value, it also
modiies some state or has an observable interaction with calling
functions or the outside world.

Therefore, there are two possible meanings: either the side effect is executed on
both sides or the side effect is executed once on the server and the resulting value is
shared between the two sides. By default, the slicer duplicates some side effects such
as printing and avoids duplicating the allocation of mutable structures.

Consider the following example:

println("Hello Opa!")

counter = Mutable.make(0)

function page(){ <h1>...</h1> }

Server.start(Server.http,{title:"Opa Packt", ~page})

If we compile and run the preceding code, it will print "Hello Opa!" on the server
and the client both, but will create only one unique mutable variable called counter
that is shared between the client and the server.

But, we sometimes do want to duplicate the declaration on both sides. In that case,
we can use the @both_implem directive. For example:

@both_implem counter = Mutable.make(100)

This will create a mutable variable counter at the startup of the server and in
each client.

Module slicing
When a slicing annotation refers to a module, it becomes the default slicing
annotation for its components, but can be overridden by annotating the component
with another annotation. Consider the following example:

server module Logic{

 function f1() { println("function 1") }

 client function f2(){ println("function 2") }

}

function page(){

 <div onready={function(_){ Logic.f1(); Logic.f2() }}></div>

}

Server.start(Server.http,{title:"Opa Packt", ~page})

Chapter 5

[45]

Because we put server before the Logic module, function f1 will end up on the
server side. But we override the slicing annotation of function f2 with client, so
function f2 will be on the client side. We invoke both f1 and f2 when the page is
ready, f1 will print function1 on the server side while f2 will print function2 on
the client side. The following screenshot shows the result as expected:

Expression slicing
Sometimes, we want to have a different behavior on the server and on the client. We
can use the @sliced_expr directive to do this. Consider the following example:

side = @sliced_expr({server: "server", client:"client"})

println(side) //will print "server" on server side and "client"

 // on client side.

function page(){ <h1>Test Page</h1> }

Server.start(Server.http, {title:"Opa Packt", ~page});

The preceding code will print "server" on the server side and "client" on the
client side.

Client and server communication
Opa provides three primitives for communicating between clients and the server:
session, cell, and network. We can use these three primitives to exchange messages
between clients and servers.

Communicating between Client and Server

[46]

Session
A session is a one-way asynchronous communication between the client and
the server. A session can be created on a server or on a client, and can be shared
between several servers.

To create a session, use either Session.make or Session.NonBlocking.make.
The Session.make function creates a session that handles all messages in the
background, but only one message at a time. This ensures absolute consistency
on the state of the session, but may not be appropriate for all applications.

In contrast, the Session.NonBlocking.make function creates a session that
can handle any number of messages simultaneously. This ensures maximal
responsiveness, but the message handler cannot be certain that it is holding the
latest value of the state. Let's have a look at how Session.make is declared:

channel(`message) make(`state state,

(`state, `message -> Session.instruction(`state) on_message)

The irst parameter state is the initial state of the session. The second parameter
is a message handler for this session. The message handler will be invoked when
messages are sent to this session. The return value of this function is a channel,
which we can use to send messages to the session by using the Session.send
function.

Consider the following example: suppose we want to send a string to the server
through a session such that if the state of this session is an odd number, then
whatever we send to the server is printed in uppercase. In contrast, if the state
of this session is even then we print in lowercase. The code is as follows:

channel(string) s = Session.make(0,function(state,msg){

 if(mod(state,2) == 0) println(String.to_upper(msg))

 else println(String.to_lower(msg))

 {set:state+1} //update the state of this session

})

function page(){

 <input type="text" id=#text/>

 <input type="button" value="send" onclick={function(_){

 Session.send(s, Dom.get_value(#text))

 }}/>

}

Server.start(Server.http,{title:"Opa Packt", ~page})

Chapter 5

[47]

If we compile and run the preceding code, then we will see the following result on
the server:

Cell
A cell is a session in which sending messages produces return values. It's a two-way
synchronous communication between the client and the server. We can create a cell
with Cell.make and call it with Cell.call. In the following example, the cell does
almost the same thing as we had described in the previous example, but it returns
the string to the client instead of printing it on the server. Here is the code fragment:

s = Cell.make(0,function(state,msg){

 text = if(mod(state,2) == 0) String.to_upper(msg)

 else String.to_lower(msg)

 {return: text, instruction: {set: state+1}}

});

function page(){

 <input type="text" id=#text/>

 <input type="button" value="send" onclick={function(_){

 #result = Cell.call(s, Dom.get_value(#text))

 }}/>

 <h2 id=#result></h2>

}

Server.start(Server.http, {title:"Opa Packt", ~page})

Network
A network is an infrastructure for broadcasting information to observers. Observers
may be sessions or functions located on the same machine or on any client or server.

We can create a network with the Network.empty() function or construct a network
that is automatically shared between servers with the Network.cloud(key) function.

Communicating between Client and Server

[48]

We can observe a network with the Network.observe(cb,network) function,
where cb is a callback function that is executed when a message is received on
the network. To send a message to all observers of a network, use Network.
broadcast(msg,network).

The following example is a very simple chat application; the client will observe the
network when its page is ready, and it will broadcast a message when the send
button is triggered. We will learn to build a more sophisticated web chat application
in Chapter 9, Building a Chat Application.

Network.network(string) n = Network.empty();

function ready(_){

 _ = Network.observe(function(msg){ println("{msg}") },n)

 void

}

function page(){

 <div onready={ready}>

 <input type="text" id=#text/>

 <input type="button" value="send" onclick={function(_){

 Network.broadcast(Dom.get_value(#text),n)

 }}/>

 </div>

}

Server.start(Server.http,{title:"Opa Packt", ~page})

Compile and run the preceding code, then open the web application in several
browsers. We can communicate between browsers by sending the messages that
we input. Here is a screenshot:

Chapter 5

[49]

Summary
In this chapter, we irst talked about the Opa slicer. If we do not provide slicing
information, the slicer will try to put the code on both sides whenever it is possible
and will put the code on only one side when there is no way to put the code on both
sides. When this automatic slicing is not enough, we can add slicing annotations
(server, client, and both) before functions and modules to tell the slicer on which
side we want our code to end. Then, we talked about the three primitives for
communicating between clients and servers. Session is a one-way asynchronous
communication, cell is a two-way synchronous communication, and network is for
broadcasting messages to any number of observers.

www.allitebooks.com

http://www.allitebooks.org

Binding with Other

Languages
As mentioned in the Register handler section of Chapter 3, Developing Web Applications,
we can register external JavaScript code by utilizing the Resource.register_
external_js function. But, this is not how we call external JavaScript functions from
Opa. This is only true when we wish to invoke Node.js functions. In such cases, we
instead bind external functions with Opa's binding ability. In this chapter, we will
explain how to bind external JavaScript or Node.js functions.

Binding JavaScript
Opa allows binding of the external functions through its Binding System Library
(BSL). If we surf the source code of Opa, we will ind in many places that Opa binds
JavaScript in its source code. Actually, Opa provides three forms of binding syntax:
classic , jsdoc, and new. The jsdoc syntax is now (Opa 1.1.0) the default.

The irst example
Let's get started with a binding example of JavaScript. Suppose we have inished
a test function in the test.js JavaScript ile, and then we want to use it in the
601.opa Opa ile.

Binding with Other Languages

[52]

The content of the test.js ile is as follows:

/**

* A test function of Opa binding

* @register {string -> void}

*/

function test(str){

 alert(str);

}

We registered the test function using the annotation @register {string ->
void}. This indicates that the function being registered has the string -> void
type. To invoke the test function in Opa code, we designate the function as an
external JavaScript function by surrounding the name of the function with the special
designator %%. In the following example, we call the JavaScript test function located
in test.js from within the 601.opa ile:

function page(){

 <input type="button" value="click" onclick={function(_){

 %%test.test%%("Hello Opa!")

 }}/>

}

Server.start(Server.http,{title:"Opa Packt", ~page})

We call the function using %%test.test%%("Hello Opa!"). The word "test" appears
in this example twice, once preceding the dot and once after the dot. The irst "test" is
the name of the plugin module; in this case it is the ilename of test.js. The second
"test" is the name of the function that we deine in this ile. We can compile the
JavaScript code and Opa code together by using the following command line:

opa test.js 601.opa --

By default, the registered function name is identical to the original function name
that we deined in the JavaScript ile. However, we can modify the name as follows:

/**

* @register {string -> void} test2

*/

function test(str){

 alert(str);

}

Note that we added test2 to the end of the line that we used to register the function.
Now, we can invoke it using %%test.test2%%("Hello Opa!").

Chapter 6

[53]

Using external types
Sometimes, we may want to handle the Opa types such as list (`a), option ('a), or
Opa external types that we deined in Opa in JavaScript. In the following example,
we deine a type Student and its variable stu; variable lst is the Opa type
list(string), which we may not use in JavaScript directly; and the variable arr is
an external type.

/** 602.opa */

type Student = {string name, bool sex, int age} //Type we defined

Student stu = {name:"Li", sex: {true}, age: 28}

list(string) lst = ["I ","Like ","Opa ","!"]; //Opa's types

llarray(int) arr = @llarray(1,2,3,4); //Extern types

function page(){

 <input type="button" value="func1()" onclick={function(_){

 %%test2.func1%%(stu)

 }}/>

 <input type="button" value="func2()" onclick={function(_){

 %%test2.func2%%(lst)

 }}/>

 <input type="button" value="func3()" onclick={function(_){

 %%test2.func3%%(arr)

 }}/>

}

Server.start(Server.http, {title:"Opa Packt", ~page});

In our JavaScript ile, we deine three functions: func1, func2, and func3. func1
accepts type Student, func2 accepts type list(string), and func3 accepts type
llarray(int). All these three functions do nothing but print the content of their
respective arguments to the console. The irst thing we should do is declare Opa types
and external types with the directives @opaType and @externType respectively.

The content of the ile test2.js is as follows:

/** test2.js */

/** @opaType list('a) */

/** @opaType Student */

/** @externType llarray('a) */

/** @register {opa[Student] -> void} */

function func1(stu){

 console.log("func1: "+ stu.name +" , "+stu.sex+", "+stu.age);

}

/** @register {opa[list(string)] -> void} */

function func2(lst){

Binding with Other Languages

[54]

 //use list2js to convert Opa list to js list.

 var lst2 = list2js(lst);

 for(var i=0; i<lst2.length; i++)

 console.log("func2: " + lst2[i]);

}

/** @register {llarray(int) -> void} */

function func3(arr){

 for(var i=0; i<arr.length; i++)

 console.log("func3: " + arr[i]);

}

Compile and run opa test2.js 602.opa --

Press F12 in your Chrome browser to open the developer tool and you will see the
output we printed in the console.

Binding Node.js
Binding Node.js code is just as easy as binding JavaScript. Let's see an example:
suppose we have written a function called calcMD5 in a Node.js ile called
test.nodejs. The function accepts a string and returns its MD5 hash value.
The test.nodejs ile contains the following code:

/** test.nodejs */

var crypto = require('crypto');

Chapter 6

[55]

/**

 * Calculates the MD5 hash value of a string.

 * @register {string -> string}

 */

var calcMD5 = function(str){

 return crypto.createHash('md5').update(str).digest('hex');

}

As we can see from the preceding code, we bind Node.js in the same manner that
we previously used to bind the client-side JavaScript code. We also invoke it in the
same way:

/** 603.opa */

md5 = %%test.calcMD5%%("Hello Opa!");

println("MD5 value: {md5}");

And inally, we compile and run the application:

opa test.nodejs 603.opa --

The result is as shown in the following screenshot:

Binding external functions using the
classic syntax
We can also bind external functions with the classic syntax. The classic syntax
is a little different from the jsdoc syntax. It uses ## to register functions. A typical
registration body is as follows:

##register function_name: function_type

##args(argment_list)

{

 //function body

}

Binding with Other Languages

[56]

In classic syntax, test2.js will contain the following code:

##opa-type Student

##opa-type list('a)

##extern-type llarray('a)

##register func1: opa[Student] -> void

##args(stu)

{

 console.log("func1: "+ stu.name +" , "+stu.sex+", "+stu.age);

}

##register func2: opa[list(string)] -> void

##args(lst)

{

 var lst2 = list2js(lst);

 for(var i=0; i<lst2.length; i++)

 console.log("func2: " + lst2[i]);

}

##register func3: llarray(int) -> void

##args(arr)

{

 for(var i=0; i<arr.length; i++)

 console.log("func3: " + arr[i]);

}

We can now compile the rewritten ile using the following command:

opa test2.js 601.opa --js-bypass-syntax classic

Summary
In this chapter, we talked about how to bind client-side JavaScript and server-side
Node.js into our Opa code. We described two syntax variations: classic syntax
and jsdoc syntax. The examples used in this chapter demonstrated that binding
JavaScript and Node.js is quite trivial in Opa.

Working with Databases
Database queries are also written directly with Opa. Opa currently (Opa 1.1.1)
supports the NoSQL databases MongoDB and CouchDB as well as the SQL database
Postgres. Postgres is still a work in progress and more databases are planned for
future releases. Opa provides many unique advanced operators and automates the
database queries for maximal productivity. In this chapter, we will talk briely about
how to work with MongoDB.

A quick start to MongoDB
First, we need to download (http://www.mongodb.org/downloads), install, and run
(http://docs.mongodb.org/manual/installation/) the MongoDB server. After
MongoDB has been installed properly, let's get started with a simple example:

database int /counter = 0;

function page(){

 <h1 id="text">Hello {/counter}</h1>

 <input type="button" value="click" onclick={function(_){

 /counter++

 #text = "Hello {/counter}"

 }}/>}

Server.start(Server.http, {title:"Opa Packt", ~page})

In the irst line of the preceding code, we deine a /counter database path that holds
an integer. A database path describes a position in the database, and we can read,
write, update, and delete the data through a database path. Note that the data type of
the path cannot be omitted.

Working with Databases

[58]

The preceding database is unnamed; we can give a name to the database,
for example:

database testdb {

 int /counter = 0;

}

In this way, we should read data from the path /testdb/counter. Now, let's
compile and run the code:

$ opa 701.opa --

When the application starts, it will try to launch the MongoDB server if the server
is not already running, and it will store data on the default location ~/.opa/mongo/
data. If the server is already running, the application will try to connect to the server.
However, we can also use the options --db-local and --db-remote to let the
program connect to speciic databases as we want:

• --db-local:dbname [/path/to/db]: This uses a local database stored at
the speciied location in the ile-system

• --db-remote:dbname [username:password@]hostname[:port]: This uses
a remote database accessible at a given remote location

For example:

$./701.js --db-local:testdb

$./701.js --db-local:testdb ~/data/mongo

$./701.js --db-remote:testdb localhost:27017

$./701.js --db-remote:testdb admin:admin@localhost:27017

Database manipulation
We can manipulate data through database paths. The following piece of code
declares a testdb database and deines several paths:

type Student = {int id, string name, int age}

database testdb {

 int /basic/i //Basic type int

 float /basic/f //Basic type float

 string /basic/s //Basic type string

 Student /stu //Record

 list(string) /lst //List

 intmap(Student) /stumap //Map

 Student /stuset[{id}] //Set

}

Chapter 7

[59]

Type student that we deined ourselves. In addition to this type, our example covers
the datatypes that are most frequently used in databases.

Each database path has a default value. Whenever we attempt to read a value that
does not exist (either because it was never initialized or it has been removed),
the default value is returned. The following list shows the default values for
different types:

• The default value for an integer (int) is 0

• The default value for a loating-point number (loat) is 0.0
• The default value for a string is ""

• The default value for a record is the record of default values

• The default value for a sum type is the value that best resembles the empty
case (for example, {none} for option, {nil} for list, and so on)

We can deine an application-speciic default value by assigning a value when we
declare a path, for example:

 database testdb {

 int /basic/i = 10

 string /basic/s = "default"

 Student /stu = {id: 0, name: "unknown", age: 25}

 }

To read data from the database, just use a database path, for example:

int i = /testdb/basic/i

Student stu = /testdb/stu

We can preix the path with a question mark (?) then give the path a value that is
one of two options, whereby {some: x} indicates that the value of that path is x,
and {none} indicates that the path has not been written to yet, for instance:

match (?/testdb/basic/i) {

case {none}: println("unknown");

case {some: x}: println("{x}");

}

The preceding example prints unknown if the path /testdb/basic/i has not been
written to yet or has been removed, otherwise it prints the value of the path.

www.allitebooks.com

http://www.allitebooks.org

Working with Databases

[60]

To write or update the database path, use a operator =. We can also use <- to assign
the value, it's the same as =. For example:

/testdb/basic/i = 10

/testdb/basic/i <- 10 //the same as above

/testdb/basic/s = "my new string"

/testdb/stu = {id: 1, name: "Li", age: 28}In addition, you can also
use the following shortcuts to update integers in database:

/testdb/basic/i++; //add the integer i by 1

/testdb/basic/i += 5; //add the integer i by 5

/testdb/basic/i -= 10; //minus the integer i by 10

To delete data held at a path, use the Db.remove(@path) function, where @path is a
reference to a path. We can get a path reference by adding an @ sign before the path,
for example:

Db.remove(@/testdb/basic/i)

Db.remove(@/testdb/stu)

Records
With records, we can do complete reads and updates in the same manner as for
basic types:

stu = /testdb/stu; //read record

/testdb/stu = {id: 1, name: "Li", age: 28} //update record

Sometimes, we need to enforce that the record should be modiied only as a whole.
This is known as full modiication. If a record is declared as being subject to full
modiication, we must update all ields at once when performing modiications.
We add the full keyword after a database path in order to indicate that this
path is subject to full modiication. If a given path has not been declared for full
modiication, we can cross record boundaries and access or update only chosen
ields by including them in the path. Consider the following example:

type Student = {int id, string name, int age}

database testdb {

 Student /stu1

 Student /stu2

 /stu2 full //declare /stu2 as full modification

}

/testdb/stu1/name = "Li" //OK

/testdb/stu2 = {id:1, name: "Li", age: 28} //OK

/testdb/stu2/name = "Li" //error: will not compile

Chapter 7

[61]

We declared /stu2 for full modiication by adding the /stu2 full statement.
Therefore, the compiler reported an error for the last line (/testdb/stu2/name =
"Li") of the preceding code, in which we tried modifying a single ield of the
record, namely the name ield.

Lists
As mentioned in the Lists section of Chapter 2, Basic Syntax, lists in Opa are just
recursive records. We can manipulate lists in the same manner as records. However,
as the datatype list is used frequently, Opa provides shortcuts that are speciic
to lists:

/testdb/lst = ["I", "Love", "Opa", "!"] //Update an entire list

/testdb/lst pop // Removes first element of a list

/testdb/lst shift // Removes last element of a list

/testdb/lst <+ "element" // Append an element

/testdb/lst <++ ["How", "about", "you"] // Append several elements

/testdb/lst <--* "element" // Remove an element

/testdb/lst <-- ["How", "about", "you"] // Remove several elements

Sets and maps
We can update sets and maps in the same way as lists, however, the way we access
the elements is different. We can fetch a single value from a given set or map by
referencing it by its primary key, for example:

stu = /testdb/stuimap[1] //find element whose key is 1

stu = /testdb/stuset[1] //find element whose primary key is 1

stu = /testdb/stuset[{id:1}] //the same as above

/testdb/stuset[{id:1}] = {name: "Li"} //update the chosen item

Furthermore, we can query a set of values by adding the query condition inside the
square bracket, for example:

/testdb/stuset[id < 10] <- {age: 25}

/testdb/stuset[age >= 25] <- {age++}

We will look at queries in more detail in the following section.

Working with Databases

[62]

Querying data
As we mentioned in the previous section, database sets and maps are two types of
collections that allows the organization of multiple instances of data in the database.
We can query a set of values using the following operators:

== expr: equals expr

!= expr: not equals expr

< expr: lesser than expr

<= expr: lesser than or equals expr

> expr: greater than expr

>= expr: greater than or equals expr

in expr: "belongs to" expr, where expr is a list

q1 or q2: satisfy query q1 or q2

q1 and q2: satisfy both queries, q1 and q2

not q: does not satisfy q

{f1 q1, f2 q2, ...}: the database field f1 satisfies q1, field f2
satisfies q2 etc.

Furthermore, we can specify some querying options as follows:

• skip n: Here expr should be an expression of type int and it skip the irst n
results.

• limit n: Here expr should be an expression of type int, returns a maximum
of n results.

• order fld (, fld)+: Here fld speciies an order. fld can be a single
identiier or a list of identiiers specifying the ields on which the ordering
should be based. Identiiers can optionally be preixed with + or - to specify
the ascending or descending order. Finally, it is possible to choose the order
dynamically with <ident>=<expr>, where <expr> should be of type {up} or
{down}.

The following piece of code gets the next 50 results for students whose age is above
20 and below 45, and they will be ordered by age (ascending) irst and then ordered
by id (descending):

dbset(Student, _) stus = /testdb/stuset[age >= 20 and age <= 45; skip
50; limit 50; order +age, -id]

Chapter 7

[63]

We can create even more complicated query conditions by combining query
expressions together. The query operation returns a dbset. A dbset is a collection
that holds the query result. Therefore, we can iterate over the dbset. Consider
the following code fragment. It queries all students whose name is Li and prints
them out:

dbset(Student,_) lis = /testdb/stuset[name == "Li"]

iter it = DbSet.iterator(lis)

Iter.iter(function(li){

println("{li}")

},it)

Summary
In this chapter, we toured the basic techniques of working with databases. We irst
gave a very simple example. Then, we discussed how to manipulate data, including
retrieving data from databases, writing or updating data, and removing data. We
covered both basic types and complex types such as record, list, map, and set.
Finally, we talked about how to query data from sets and maps.

Internationalization
In this chapter, we will talk about internationalization (i18n). It is abbreviated
as i18n because there are 18 letters between the initial i and the inal n. Opa now
provides two approaches for i18n: the internal approach and the external approach.
To utilize the internal approach, we include translation functions directly inside
our Opa code. If, however, we wish to separate the translation from our main code,
then we can do so by using the external approach. To make it clear, we will discuss
a very simple application that displays the word "hello" in three different languages:
English, French, and Chinese.

Internal approach
Opa now provides support for translation by means of the @i18n directive. We can
put a translation function inside the @i18n directive, and it will be replaced by a
proper value according to different languages. An example is worth a thousand
words, so let's get started with a simple example:

import stdlib.web.client

hello = function {

 case "en": "Hello"

 case "fr": "Bonjour"

 case "zh": "你好"

 default: "Hi"

}

function page(){

 <h1> {@i18n(hello)} </h1>

 <input type="button" value="English" onclick={set_lang("en")}/>

 <input type="button" value="French" onclick={set_lang("fr")}/>

 <input type="button" value="Chinese" onclick={set_lang("zh")}/>

}

function set_lang(lang)(_){

Internationalization

[66]

 I18n.set_lang(lang)

 Client.reload()

}

Server.start(Server.http, {title:"Opa Packt", ~page})

Save this code into a ile, 801.opa, then compile and run it with the following
command:

opa 801.opa --

The result looks as shown in the following screenshot:

The page shows Hello in three different languages: English, French, and Chinese,
and we can change the language by clicking on the language buttons.

As we can see from the code, we internationalize the page by enclosing a translation
function, hello, in the @i18n directive—@i18n(hello).

The function hello maps from the language code (for example, "en", "fr", and "zh",
of the type I18n.language) to a string. Note that the function hello is written in
a convenient way, in that …. This notation is permitted if the initial lines of code in
a function consist of matching its parameter against some values, as we do in the
hello function. The corresponding long notation would be:

hello = function(lang){

 match(lang){

 case "en": "Hello"

 ...

 }

}

Chapter 8

[67]

Also note that the return type of a translation function is not restricted to the type
String; an XHTML fragment can also be returned from the function:

hello = function{

 case "en": Hello

 case "fr": Bonjour

 case "zh": 你好

 default: Hi

}

Now that we have reviewed how to write a translation function, we now need to
clarify how users control the language of the website they are seeing. The module
I18n, the internationalization module, contains the answer. The I18n.lang()
function returns the currently selected language. Note that this is not the language
of the browser, it is the language that the user selected. We can change the selected
language programmatically by invoking the function I18n.set_lang(lang). This
is just what we did after clicking on the three language buttons English, French, and
Chinese in the example we just saw. This function allows us to change the language
for a speciic client. The language our program deines is then stored in a cookie.
Since the changes our program makes will only take effect during the next page
request, to make them effective right away our program must refresh the page by
calling the function Client.reload.

External approach
The internal approach suffers from one important problem, that is, it mixes the
source code and the translations. The remedy for this problem is the external
approach. Using it, we can separate the program code and the translations.

To use external translations, we use the same @i18n directive, but we provide it with
a key string instead of a function. Thus, @i18n(hello) can be replaced by:

@i18n("hello")

Here is an example of an external approach:

//802.opa

function page(){

 <div onready={function(_) { I18n.set_lang("fr") }}>

 <h1>{@i18n("hello")}</h1>

 </div>

}

Server.start(Server.http, {title:"Opa Packt", ~page})

Internationalization

[68]

Save the ile as 802.opa. If we do not provide any translation, @i18n("hello") will
be replaced by the string "hello". How do we add the translation? The solution is to
compile our source code with the translation switch --i18n-template-opa:

opa 802.opa --i18n-template-opa --i18n-pkg trans --i18n-dir langs

Make a directory named langs and execute this line. This will create a ile named
trans.opa in the langs directory. The option --i18n-pkg speciies the package
name of the translation code. If it is not provided, the default name will be linking.
translation. The option --i18n-dir speciies the directory of translation code. If it
is not provided, the current directory will be used. The content of trans.opa looks
as follows:

package trans

import stdlib.core.i18n

// Template for 801.opa

// "hello"

// string, 15

__i18n_5d41402abc4b2a76b9719d911017c592()= match I18n.lang()

 _ -> "hello"

The ile contains all the messages that require translation in all the source code iles
of a given package. The long sequence 5d41402abc4b2a76b9719d911017c592 is an
automatically generated identiier.

Next, we must edit the translation ile that Opa generated, adding our translation
messages to the ile. In our example case, for instance, we could add the following
translation instructions:

package trans

import stdlib.core.i18n

// Template for 801.opa

// "hello"

// string, 15

__i18n_5d41402abc4b2a76b9719d911017c592()= match I18n.lang()

 "en" -> "Hello"

 "fr" -> "Bonjour"

 "zh" -> "你好"

 _ -> "hello"

Chapter 8

[69]

The translation ile is a normal Opa ile, and its contents can be intuitively
comprehended. Such a notation is called classic syntax. We must tell the compiler
that we are utilizing classic Opa source code when we compile the translation:

opa --parser classic langs/trans.opa

And inally, compile our source code with the translation:

opa 801.opa --i18n-dir langs --i18n-pkg trans

Summary
In this chapter, we discussed how to internationalize a web page in Opa. We can
either use the internal approach of writing a translate function in our code, or the
external approach of utilizing an external ile that is translated separately from
our code.

Building a Chat Application
We have gone through the basic concepts of Opa and now it's time to build a real
web application. In this chapter we will build a chat application. The application
offers one chat room. The users who connect to the application will join the chat
room automatically and can start discussing immediately. For simplicity, we supply
a random username when a user joins. The source code for this application can be
found at https://github.com/winbomb/opapackt.

The following is a screenshot of our chat application:

Building a Chat Application

[72]

Creating a project
To begin developing our chat application, we need to create an Opa project using the
following Opa command:

opa create chat

This command will create an empty Opa project. Also, it will generate the
required directories and iles automatically with the structure as shown in the
following screenshot:

Let's have a brief look at what these source code iles do:

• controller.opa: This ile serves as the entry point of the chat application;
we start the web server in controller.opa

• view.opa: This ile serves as an user interface

• model.opa: This is the model of the chat application; it deines the message,
network, and the chat room

• style.css: This is an external stylesheet ile
• Makefile: This ile is used to build an application

As we do not need database support in the chat application, we can remove
--import-package stdlib.database.mongo from the FLAG option in Makefile.
Type make and make run to run the empty application.

Chapter 9

[73]

Launching the web server
Let's begin with controller.opa, the entry point of our chat application where
we launch the web server. We have already discussed the function Server.start
in the Server module section of Chapter 3, Developing Web Applications. In our chat
application, we will use a handlers group to handle users requests.

Server.start(Server.http, [

 {resources: @static_resource_directory("resources")},

 {register: [{css:["/resources/css/style.css"]}]},

 {title:"Opa Chat", page: View.page }

])

So, what exactly are the arguments that we are passing to the Server.start function?

The line {resources: @static_resource_direcotry("resources")} registers a
resource handler and will serve resource iles in the resources directory.

Next, the line {register: [{css:["/resources/css/style.css"]}]} registers
an external CSS ile—style.css. This permits us to use styles in the style.css
application scope.

Finally, the line {title:"Opa Chat", page: View.page} registers a single page
handler that will dispatch all other requests to the function View.page.

The server uses the default coniguration Server.http and will run on port 8080.

Designing user interface
When the application starts, all the requests (except requests for resources) will be
distributed to the function View.page, which displays the chat page on the browser.
Let's take a look at the view part; we deine a module named View in view.opa.

import stdlib.themes.bootstrap.css

module View {

 function page(){

 user = Random.string(8)

 <div id=#title class="navbar navbar-inverse navbar-fixed-top">

 <div class=navbar-inner>

 <div id=#logo />

 </div>

 </div>

 <div id=#conversation class=container-fluid

 onready={function(_){Model.join(updatemsg)}} />

Building a Chat Application

[74]

 <div id=#footer class="navbar navbar-fixed-bottom">

 <div class=input-append>

 <input type=text id=#entry class=input-xxlarge

 onnewline={broadcast(user)}/>

 <button class="btn btn-primary"

 onclick={broadcast(user)}>Post</button>

 </div>

 </div>

 }

 ...

}

The module View contains functions to display the page on the browser. In the irst
line, import stdlib.themes.bootstrap.css, we import Bootstrap styles.

This permits us to use Bootstrap markup in our code, such as navbar, navbar-fix-
top, and btn-primary. We also registered an external style.css ile so we can use
styles in style.css such as conversation and footer.

As we can see, this code in the function page follows almost the same syntax as
HTML. As discussed in the XHTML section of Chapter 3, Developing Web Applications,
we can use HTML freely in the Opa code, the HTML values having a predeined
type xhtml in Opa.

Building application logic
A chat application is all about exchanging messages between users, so we need to
deine a message type. We can ind its deinition in the irst line of model.opa:

type message = {string user, string text}

It's a very simple type with two ields. The user ield represents the author of the
message, and the text ield represents the content of the message.

Now that we have the deinition of a message, we need a way to pass the messages
between different clients. As mentioned in Chapter 5, Communicating between Client
and Server, Opa provides three ways for communicating between clients and servers:
session, cell, and network. Session is for one-way asynchronous communication;
cell is a special case of session and is for two-way synchronous communication; and
network is for broadcasting messages to all observers. Network is the right choice for
our purpose:

server private Network.network(message) room = Network.empty();

Chapter 9

[75]

This code fragment deines an empty network named room. The type of the network
is Network.network(message), which means it is a network used to transmit data
of the type message. The keyword private indicates that it cannot be accessed from
other modules and the keyword server instructs Opa to implement this network on
the server and not on the client.

We could also have used Network.cloud(key) to create a clouded network.
This type of network will be automatically shared between multiple servers if the
application is executed with the cloud option (for example, ./chat.js --cloud).
When one or several servers invoke Network.cloud(key) with the same value key,
only one network is actually created on one of the participating servers (chosen
arbitrarily), and the network will be shared between servers.

Now that we have our network, the next step is to add the clients to our network and
broadcast messages to the clients. Therefore, we need two new functions:

 function register(callback) {
 Network.add_callback(callback,room);
 }
 @async function broadcast(message) {
 Network.broadcast(message, room);
 }

The function register registers a callback function to a given network. This
registered function will be invoked whenever a new message arrives.

The function broadcast broadcasts messages to all the clients belonging to a given
network. Note that the order in which clients receive the message is unspeciied.

The complete code of model.opa is as follows:

type message = {string user, string text}
module Model {
 server private Network.network(message) room = Network.empty();
 @async function broadcast(message) {
 Network.broadcast(message, room);
 }
 function register(callback) {
 Network.add_callback(callback,room);
 }
}

Broadcasting and receiving messages
What is left for us to do is to connect the model and the view. There are two distinct
functions that we need to accomplish.

Building a Chat Application

[76]

We must broadcast the current user's message when the Post button is clicked on
or when Enter is pressed in the text ield. We must also display new messages as
they arrive.

Let's irst have a look at how we broadcast the user's message when they press Enter:

<button class="btn btn-primary"

onclick={broadcast(user)}>Post</button>

...

function broadcast(user)(_){

 text = Dom.get_value(#entry);

 Model.broadcast(~{user, text});

 Dom.clear_value(#entry);

}

When the user presses Enter, the broadcast function will be invoked. In this
function, we irst get the user's input using Dom.get_value, and then we broadcast
the message in the second line by calling the broadcast method in the module
Model. Finally, we clear the content of the input ield. That's all it takes to broadcast
the message to all the connected clients. Now let's review how we process new
message arrivals. We have already mentioned the function Model.register in
model.opa. Recall that it registers a callback function to the network. Consider the
following code found in view.opa:

<div id=#conversation class=container-fluid

 onready={function(_){Model.register(updatemsg)}} />

When the div #conversation is ready, it invokes Model.register to register the
callback function updatemsg, which will be called whenever a new message arrives:

function updatemsg(msg){

 line = <div class="row-fluid line">

 <div class="span1 userpic" />

 <div class="span2 user">{msg.user}:</>

 <div class="span9 message">{msg.text}</>

 </div>;

 #conversation =+ line;

 Dom.scroll_to_bottom(#conversation);

}

In the function updatemsg, we irst construct an HTML fragment representing the
message we have received. Then, we append a line to the end of the Dom element
with the id conversation. Note that we are using the shortcut syntax =+. Finally,
we use the function Dom.scroll_to_bottom to scroll the content to the bottom.

Chapter 9

[77]

Summary
In this chapter, we have built a real web application in Opa. The application uses
concepts and methods we have discussed in the previous chapters. First, we
reviewed how to create an Opa project and how to start the web server. Then, we
used the Bootstrap markup and customized styles to build the chat page in the
module View.

Subsequently, we deined the chat message and the chat room in the module Model.
Finally, we put them together to create the chat application.

Building a Game – Pacman
In this chapter, we will build the game called Pacman. We will learn how to program
with the help of HTML5 Canvas in Opa, including drawing shapes, texts, and images
on the canvas. We will also discuss how to use an external JavaScript library. The
complete source code can be found at https://github.com/winbomb/opapackt/
tree/master/opacman. Following is a screenshot of our Pacman game:

Building a Game – Pacman

[80]

The project structure
Create an empty Opa project with the opa create opacman command. We need to
modify the project structure. Let's irst have a look at the modiied project structure
of our Pacman game:

The following is a brief description of the project iles:

• src: The source code, ghost.opa and pacman.opa deine the type of ghost
and Pacman, render.opa takes charge of drawing on the canvas, and
game.opa contains the game logic

• resources: This folder contains the required resources, including images,
sounds, and styles

• resources/js: Preloadjs.min.js and soundjs.min.js are two open
source JavaScript libraries and are used to preload game resources and to
play sounds

Chapter 10

[81]

• plugins: Preloader.js is a plugin that we write to load game resources.

• We need to rewrite the opa.conf ile to include the source code in the
src directory:

opacman.game has the following iles:
 ° src/game.opa

 ° src/ghost.opa

 ° src/pacman.opa

 ° src/render.opa

We need to modify Makefile to remove database support as we do not need
the database in this application. We also need to tell the compiler to compile the
plugins with source code. These two jobs can be done by changing FLAG with the
following line:

FLAG = --opx-dir _build $(PCKDIR)Preloader.js

The HTML5 Canvas
First of all, we need a canvas element on which to draw our graphics. The HTML5
Canvas element is an HTML tag similar to the <div>, <a>, and <table> tags, with
the exception that its contents are rendered with JavaScript. In Opa, we create a
canvas element the exact same way in which we create other HTML elements:

function page(){

 <canvas id=#gamecanvas width="520" height="620"

onready={Game.gamestart}>

</canvas>

}

This code creates a canvas with the gamecanvas ID. When the canvas element is
ready, the Game.gamestart function will be invoked to start the game.

Next we must get the canvas context. It is important for us to understand the
difference between the canvas element and the canvas context. The canvas element is
a DOM node embedded in the HTML page, whereas the canvas context is an object
with properties and methods that you can use to render graphics inside the canvas
element. The context can be 2D or 3D (WebGL). In our Pacman game, we are using
the 2D context. To get the canvas 2D context, we use the Canvas.get_context_2d
function. The following code fragment demonstrates how to get the canvas context
for a given ID:

ctx = match(Canvas.get(#gamecanvas)){

case {none}: {none}

Building a Game – Pacman

[82]

case ~{some}: Canvas.get_context_2d(some)
}

Note that each canvas element can only have one context. If we use the
Canvas.get_context_2d method multiple times for the same element, it
will return the same context.

Drawing a shape
Now that we have the context of our canvas element, we can draw graphics on it.
Opa and JavaScript use similar code to draw the graphics. The primary difference
between them is that the drawing functions in Opa are static. All drawing methods
can be found in the Canvas module.

Using the ill and stroke properties
Whenever we wish to draw shapes on a canvas, there are two properties that we
need to set: Stroke and Fill. Stroke and fill determine how the shape is drawn.
The stroke property is used for the outline of a shape; the fill property is used
for the inside of a shape. In the following example, the irst two lines ill a rectangle,
whereas the last three lines stroke a rectangle:

Canvas.save(ctx)

Canvas.set_fill_style(ctx,{color: Color.red})

Canvas.fill_rect(ctx,10,10,100,50)

Canvas.set_stroke_style(ctx,{color: Color.black})

Canvas.set_line_width(ctx,5.0)

Canvas.stroke_rect(ctx,120,10,100,50)

Canvas.restore(ctx)

Following is the result of the preceding code fragment:

Note that we used Canvas.save and Canvas.restore in the preceding code.
Each canvas context maintains a stack of drawing states such as fillStyle and
strokeStyel. Since a canvas can only have one 2D context, Canvas.save and
Canvas.restore are used to save and restore canvas states in short.

Chapter 10

[83]

Drawing a curve
In our game, we create our Pacman by drawing an arc on the canvas. When the
Pacman's mouth is open, we draw a pie, and when it's closed, we draw a circle.

We can draw the pie and the circle both with the Canvas.arc function. Arcs are
deined by a center point, a radius, a starting angle, an ending angle, and the
drawing direction (either clockwise or counterclockwise). The following diagram
shows how we should draw the Pacman when he is facing left:

starting angle 3PI /2

0P I

PI /2
ending angle

PI

First, we move to the center point and begin drawing from the starting angle 5*PI/4.
We then draw an arc to the ending angle 3*PI/4 moving clockwise. Finally, we ill
and stroke the shape. Here is the code:

Canvas.set_stroke_style(ctx,{color:Color.black})
Canvas.set_fill_style(ctx,{color:Color.yellow})
Canvas.begin_path(ctx)
Canvas.move_to(ctx,100,100)
Canvas.arc(ctx,100,100,50,5.0*Math.PI/4.0,3.0*Math.PI/4.0,{false})
Canvas.close_path(ctx)
Canvas.fill(ctx)
Canvas.stroke(ctx)

Drawing an image
To display an image on HTML5 Canvas in Opa, we can use the Canvas.draw_image
function that requires an image object and a destination point. Since the draw_image
method requires an image object, we must irst create an image and wait for it to load
before we can draw it on the canvas. In our game, we will preload all images and
sounds at the beginning of the game as you will see later. The Canvas.draw_image
function is declared as follows:

void draw_image(Canvas.context ctx, Canvas.image img, int x, int y)

Building a Game – Pacman

[84]

The irst argument that we pass to draw_image is the canvas context that we
retrieved. The second argument is the image object of type Canvas.image. The
Canvas.image type is declared as:

type Canvas.image = {Image.image image}

 or {Canvas.canvas canvas}

 or {Video.video video}

Image.image is an external type. It is identical to the image type that we created in
JavaScript with the new Image() code.

We preload the images when the game starts. When needed, we will obtain an image
object by calling the plugin function as follows:

function IMAGE(key){

 {image: %%Preloader.get%%(key)}

}

In addition to the draw_image function, there are two more functions that we can
use to draw images on canvas:

Canvas.draw_image_with_dimensions(ctx, img, x, y, w, h)

Canvas.draw_image_full(ctx, img, sx, sy, sw, sh, dx, dy, dw, dh)

To set the size of an image, we can use draw_image_with_dimensions. This will
scale the image to the target size. The draw_image_full function is even more
powerful, as we can use it to crop the image.

Drawing the text
To display texts on a canvas in Opa, we can use the Canvas.fill_text or
Canvas.stroke_text method. We can change the ill style or stroke style by
invoking Canvas.set_fill_style or Canvas.set_stroke_style respectively.

To set the font of the text, use the Canvas.set_font function. We should pass
the font information to the method; the font information is a string matching the
following pattern:

 [font-style] [font-weight] [font-size] [font-family]

The following code draws the word "start" twice, one is illed and the other is
stroked, both with font information italic bold 40px verdana:

Canvas.set_fill_style(ctx,{color:Color.red})

Canvas.set_font(ctx,"italic bold 40px verdana")

Canvas.fill_text(ctx,"Start",5,50)

Chapter 10

[85]

Canvas.set_stroke_style(ctx,{color:Color.red})

Canvas.set_line_width(ctx,2.0)

Canvas.stroke_text(ctx,"Start",200,50)

The result of the preceding code fragment is as follows:

Binding the external JavaScript library
In our Pacman game, we need to preload game resources such as images and
sounds. We need to play sounds and music as well. Of course, we could write our
own code to accomplish these tasks. However, why reinvent the wheel? There are
numerous JavaScript libraries that make our job easier. The following section shows
how to bind an existing JavaScript library into our game.

Preloading the resources
When a program requires multiple images and sounds, as is the case with our
Pacman game, it's usually a good idea to load all of the resources before displaying
or playing them. There are many excellent JavaScript libraries available. For our
purposes, the Preload JS 0.3.0 (for resource) and SoundJS 0.4.0 (for sounds) libraries
are a good it. You can download Preload JS 0.3.0 from https://github.com/
CreateJS/PreloadJS and the SoundJS 0.4.0 library is available at https://github.
com/CreateJS/SoundJS.

To bind the JavaScript library, we must register those functions that we plan to call
from within our Opa code. We have discussed how to bind JavaScript in Chapter 6,
Binding with Other Languages. In our Pacman game, we register a preload function:

/** @register {(-> void) -> void} */
function preload(callback) {
 //use LoadQueue to preload resources, invoke callback when finish.
 queue = new createjs.LoadQueue();
 queue.installPlugin(createjs.Sound);
 queue.addEventListener("complete", callback);
 queue.loadManifest([...])
}

Building a Game – Pacman

[86]

The preload function uses PreloadJS to preload resources, and will invoke
a callback when it is inished. We can call the preload function in Opa in the
following way:

%%Preloader.preload%%(function(){
 //start our game after resources have been loaded.
})

The complete code can be found in plugins/preloader.js and /src/game.opa.

Playing sounds
We bind the SoundJS library and play sounds by registering a function in the
preloader.js plugin ile. The function invokes methods from SoundJS to build a
sound instance and then play it. The SoundJS library is entirely out of the scope of this
book. For more details regarding the use of this library visit the SoundJS homepage.

Summary
In this chapter, we built a game called Pacman. First, we discussed how to declare
an HTML5 Canvas element and how to get canvas context. Then, we reviewed how
to draw shapes, images, and texts on a canvas. Finally, we showed how to write a
plugin and embed external JavaScript libraries in the application.

Developing a Social Mobile

Application – LiveRoom
In this chapter, we will build a social mobile web application that we call LiveRoom.
LiveRoom offers functionality similar to a forum. Users can login and post
discussions and messages; they can also sign in with their Facebook account. The
application will be able to support both mobile devices and desktop browsers.
The following is a screenshot of LiveRoom and the source code is available at
https://github.com/winbomb/opapackt/tree/master/liveroom

Developing a Social Mobile Application – LiveRoom

[88]

Project structure
First, let's have a look at the project structure. It's a classical Opa project structure; we
can create a similar structure with the following command line:

opa create liveroom

• liveroom.opa: The entry point of the application. It declares the database,
dispatches the requests, and starts the web server.

• login.opa: The login module. It shows the login page, handles the
UserContext when the user logs in and logs out, and connects to Facebook
when the user tries to sign in with Facebook.

• model.opa: The data model of the application. It deines data models and
deals with database reading and writing.

• view.opa: The UI (user interface). It shows the pages, maps what we fetch
from the database into XHTML, and then shows them on the page. And
moreover, it gets the user's input and tries to insert data into the database
through the Model module.

• style.css: The external style sheet. It's registered when the web server
starts, so we can use styles in this ile application scope.

To compile and run the application, type make run.

Chapter 11

[89]

Authorizing a user
In this section, we will discuss how to make a simple sign in and sign out system
that is an essential part of this forum and a subset of functionality that is frequently
needed for other types of websites as well.

Signing in and signing out
For simplicity, we do not provide a sign up process for the application. Users who
input a non-blank username and password can log in to the system. Model.auth
returns {none} if authorization fails, otherwise it returns {user}, where user is a
value of type User.t containing information about the current user. Only signed
in users will be able to create topics and post messages. This section will show you
what you should do when users sign in. The following code fragment demonstrates
the sign in, the code can be found in the login.opa ile:

type Login.user = {unlogged} or {User.t user}

state = UserContext.make(Login.user {unlogged})

function login(_) {

username = Dom.get_value(#username)

 password = Dom.get_value(#password)

 match(Model.auth(username,password)){

 case {none}: Client.reload()

 case {some:user}: {

 UserContext.change(function(_){~{user}},state)

 Client.goto("/")

 }}

}

The type Login.user is a sum type: {unlogged} means the current user has
not signed in; {Usert.t user} means the current user has signed in and
user information is stored in this record. As we can see from the second line,
UserContext is used to manage the login state. UserContext is a high-level
mechanism based on cookies. It is used to associate values with each client. The
user's data stored in UserContext can only be accessed and modiied by the user
who owns this data. For most of our needs, we only need to use the following
functions supplied by UserContext.

Use the UserContext.make function to create a UserContext with a default value;
this is what we do in the second line.

Use the UserContext.change function to change the current state of the
UserContext for this user. Note that in line nine of the previous code, we
changed the state to ~{user} after a successful authorization.

Developing a Social Mobile Application – LiveRoom

[90]

Use the UserContext.remove function to remove the current value. The following
code removes the value when a user signs out:

function logout(_){

UserContext.remove(state)

 Client.reload()

}

Use the UserContext.get function to get the current value of the UserContext. The
following code uses this function to get the name of the current signed in user:

function get_user() {

 match(UserContext.get(state)){

 case {unlogged}: "anonymous"

 case ~{user}: user.nickname

 }

}

This is how we can implement a default user login. However, we can also allow the
user to inish signing in with his or her Facebook or Twitter account.

Signing in with Facebook
Opa provides the modules FbAuth and Twitter to connect with Facebook and Twitter
respectively. In the login page of LiveRoom, there is a link button that allows the user
to sign in with Facebook. There are some additional steps required to authenticate
with Facebook, and it is beyond the scope of this book to go into all the details of
authenticating with Facebook, since we instead want to focus on the Opa language.
Those who would like to know more about Facebook authentication should review the
following excellent tutorial: https://github.com/akoprow/opa-devcamp-facebook.

Note that you should replace the x's in login.opa with your real data:

config = {

app_id: "xxxxxxxxxxxxxxx",

api_key: "xxxxxxxxxxxxxxx",

app_secret: "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

}

App_id and app_key are identical, and app_secret should not be shared with anyone.

Chapter 11

[91]

The application
LiveRoom is all about posting topics and messages. When users sign in, they can
start discussions by creating new topics. The newly created topics will be shown in
the list of most recent discussions, namely the latest discussions list. If a user clicks
on a topic, he/she will enter the discussion and get a list of messages related to the
topic. If he/she has signed in, he/she will be able to post a message related to the
topic that he/she selected, or comment on an existing message. The following igure
shows the data model of topic, message, and comment:

Topic. t Message. t Comment. t

0..* 0..*

-id

-title

-author

-posttime

-lastupdate

-lastposter

-reply

-messages

-author

-content

-posttime

-comments

1

1

-author

-content

-posttime

And here are the type deinitions in Opa:

type Topic.t = {

 int id, //id, the primary key

 string title, //title of the topic

 string author, //the author

 int posttime, //post time

 int lastupdate, //last update time,

 string lastposter, //last poster

 int reply, //number of replies

 stringmap(Message.t) messages

}

type Message.t = {

string author, string content, int posttime,

 list(Comment.t) comments

}

type Comment.t = { string author, string content, int posttime }

Developing a Social Mobile Application – LiveRoom

[92]

With these data model deinitions in place, we can declare our database liveroom:

database liveroom {

 int /next_id

 Topic.t /topics[{id}]

}

The database path next_id is an integer holding the max topic id; this is a solution
to simulate an auto-increment key that MongoDB does not natively support. The
topics path stores the topics that the users users create. The primary key is the
topic's id.

Listing topics
On the main page of LiveRoom, we will display recently discussed topics that were
fetched from the database. In Opa this is an easy task. The following function
query retrieves a speciied page of topics:

function query(page){

 topics = /liveroom/topics[skip page*50;limit 50;order -lastupdate]

 DbSet.iterator(topics)

}

Really simple, isn't it? As we have discussed in Chapter 7, Working with Databases,
we can read data from the database by using a database path such as /liveroom/
topics. The statements in square brackets are querying conditions. The query result
topics is a dbset, we convert it into iteration in the next line, so we can loop the
result in the following way:

Iter.map(function(t){

... //map a topic to an xhtml showing on the page

}, query(0))

This is exactly what we do in the user interface code. Please refer to list_topics in
the module View for details. To list messages and comments, you will also need to
use similar code. First, we fetch a topic from the database for a given id:

function get(id) {

/liveroom/topics[~{id}]

}

Chapter 11

[93]

We then iterate on messages and comments in the module View to convert them into
XHTML and display them on the page. The code is as follows:

topic = Model.get(id)

Map.iter(function(key, msg){

 ...

 List.map(function(comment){

 ...

 }, msg.comments)

}, topic.messages)

Check the function show_messages in the module View for the complete code.

Creating a topic
One of the most important use cases of LiveRoom is creating a topic. When users
have signed in, they will be able to create a topic by clicking on new topic on the
main page. This will navigate users to a topic creating page where they can input the
title and content. When users click on the create button, the function add_topic will
be invoked:

function add_topic(_){L

 topic = ... //create a topic record from user's input

match(Model.insert(topic)){ //insert the record into database

 case {success: _}: Client.goto("/") //go back to main page

 case {failure: f}: show_alert("{f}") //show alert info

 }

}

The add_topic function irst creates a record of type Topic.t from the user's input.
It then tries to insert the topic into the database by calling the Model.insert function
deined as follows:

function insert(topic){

 match(next_id()){

 case {none}: {failure: "Failed to generate next id!"}

 case {some:id}:{

 /liveroom/topics[~{id}] <- {topic with ~id}

 {success: id}

 }}

}

Developing a Social Mobile Application – LiveRoom

[94]

Because there is no auto-increment id in MongoDB, we use the next_id function to
get a unique identiier. The function returns {none} if it fails, otherwise it returns
some(id), where id is the next identiier. In the next_id function, we use the Mongo
API MongoCommands.findAndUpdateOpa to perform an atomic operation:

my_db = MongoConnection.openfatal("default")

function next_id(){

 if(?/liveroom/next_id == none) { /liveroom/next_id <- 0 }

 r = MongoCommands.findAndUpdateOpa(

 my_db, "liveroom", "_default",

 Bson.opa2doc({_id : "/liveroom/next_id"}),

 Bson.opa2doc({`$inc` : { value : 1}}),

{some : true}, {none}

);

 match (r) {

 case { success : {string _id, int value} v }: some(v.value)

 case { failure : e }: {none}

}

}

Posting messages and comments
As we can tell from the data type Topic.t that we use to store messages in a string
map inside a topic, we need a string key to access or update a message. In LiveRoom,
we use {topic id}_{system time}_{random string} as a key. After inserting
a message, some other ields, such as reply, need to be updated too.

function post_message(id, message){

 now = get_now() //current time in milliseconds

 key = "{id}_{now}_{Random.string(5)}"

 /liveroom/topics[~{id}]/messages[key] <- message

 /liveroom/topics[~{id}]/reply++

 /liveroom/topics[~{id}]/lastupdate = now

 /liveroom/topics[~{id}]/lastposter = message.author

}

To post a comment, just append a new item to the list of comments for a given topic
id and the message key:

function post_comment(id, key, comment){

 /liveroom/topics[~{id}]/messages[key]/comments <+ comment

}

Chapter 11

[95]

Designing for mobile devices
To make sure whether our LiveRoom application is supported on mobile devices, we
have to do a little more work. A viewport metatag needs to be put into the <head>
tag of the page:

header = <><meta name="viewport" content="width=device-width,
initial-scale=1.0, user-scalable=no"></>

xhtml = <>...</> //the body of the page

Resource.full_page("Live Room", xhtml, header, {success}, [])

Here we use Resource.full_page to embed the viewport meta tag into our page. A
detailed description of this function can be found online (http://doc.opalang.org).

Next, we need to import bootstrap.responsive to help our application to be more
responsive.

import stdlib.themes.{bootstrap, bootstrap.responsive}

You can ind more information about responsive Bootstrap classes on the
Bootstrap home page: http://twitter.github.io/bootstrap/scaffolding.
html#responsive

In our LiveRoom application, we use the responsive Bootstrap class hide-phone to
hide the column last poster on mobile phones when listing the topics as there may
not be enough width. The following code shows how we can do that:

 <td align="center" class="hidden-phone">{t.lastposter}</td>

 …

 <th align="center" class="hidden-phone">Last Poster</th>

We can ind the code in the function main of view.opa.

Summary
In this chapter, we described how to write a social mobile web application in Opa.
First, we talked about the user authorization procedure; we used UserContext to
maintain the login state for a given client. We also mentioned how to connect with
Facebook in Opa. In the next section, we discussed in detail how to implement
LiveRoom, this included reading data from the database and displaying it in the
webpage, and inserting user submitted topics, messages, and comments into the
database. Please refer to the source code to review the complete code.

Index

Symbols

@both_implem directive 44
@i18n directive 65
@static_content 26
@static_resource 26

A

add_topic function 93

B
basic syntax

about 11
data structures 15
datatypes 11
functions 14
pattern matching 19
text parsers 21

Binding System Library (BSL) 51
Bootstrap

about 35
classes, using 36
icons, using 37
importing 35, 36
URL 35
widgets, using 39, 40

Bootstrap icons
using 37

broadcast function 75
btn-primary class 35

C

Canvas.arc function 83
Canvas.draw_image function 83

Canvas.get_context_2d function 81, 82
Canvas.set_font function 84
Canvas.stroke_text method 84
Cell.call 47
cell, client-server communication 47
Cell.make 47
chat application

building 71
developing 72
source code iles 72
user interface 73, 74
web server, launching 73
working 74-76

client-server communication
about 45
cell 47
network 47, 48
session 46

client-server slicing
about 41
example 42
expression slicing 45
module slicing 44, 45
slicing annotations 43, 44

controller.opa ile 72
CouchDB 57
custom handler 28

D

database manipulation, MongoDB
lists 61
performing 58, 59
records 60, 61
sets and maps 61

[98]

data, MongoDB
manipulating 58-60
querying 62

data structures
about 15
lists 16
maps 18
records 15

datatypes
about 11
loats 12
integers 11
strings 12
sum 13

dispatch handler 27, 28
Document Object Model (DOM)

about 32
animations 34
content, updating 33
event handler, binding 34
manipulating 32
selecting 32
values, reading 33

Dom.bind 34
Dom.Effect 34
Dom.get_text 33
Dom.get_value 33
Dom.transaction 34
draw_image_full function 84
draw_image method 83
draw_image_with_dimensions 84

E

editors
Emacs 8
setting up 7
Sublime Text 7
Vim 8

Emacs 8
event handler 31
experimental plugin

URL 9
expression slicing 45
external approach, internationalization

using 67, 68

external functions
binding, jsdoc syntax used 55, 56

external JavaScript library, Pacman game
binding 85
resources, preloading 85
sounds, playing 86

F

FbAuth 90
ill property 82
Float module

URL 12
loats 12
Font Awesome icons 38
full modiication 60
function page() 40
functions

about 14
last expression return 14
modules 14

G

Game.gamestart function 81

H

handlers group 29
HTML5 Canvas, for Pacman game

about 81
image, drawing 83
shape, drawing 82
text, drawing 84

I

image, Packman game
drawing 83, 84

installation
Node.js 5
Opa 5
Opa compiler 6

integers 11
Integrated Development Environment (IDE)

7
internal approach, internationalization

using 65-67

[99]

internationalization (i18n)
about 65
external approach 67
internal approach 65

intmap 18
Int module

URL 12

J
JavaScript binding

about 51
example 51, 52
external types, using 53, 54

jsdoc syntax
used, for binding external functions 55, 56

L

last expression return 14
Linux

Opa compiler, installing 7
List.ilter 18
List.ind 17
List.fold 17
List.foldi 17
List.index 17
List.index_p 17
List.map 18
List module

URL 16
lists

about 16
building 16
elements, inding 17
interating through 17
sorting 18
transforming 18

List.sort 18
List.sort_by 18
List.sort_with 18
LiveRoom application

about 87, 91
comment, posting 94
design, for mobile devices 95
developing 87
message, posting 94
project structure 88

topics, creating 93
topics, listing 92
user authorization 89
working 91, 92

M

Mac OS
Node.js, installing 5
Opa compiler, installing 6

Makeile 72
maps

about 18
intmap 18
stringmap 18

model.opa ile 72
modules 14
module slicing 44, 45
MongoDB

about 57
database manipulation 58-60
data, querying 62
downloading 57
installing 57

N
Network.broadcast(msg,network) 48
network, client-server communication 47,

48
Network.empty() function 47
Network.observe(cb,network) function 48
next_id function 94
Node.js

binding 54, 55
installing 5
installing, on Mac OS 5
installing, on Ubuntu and Debian Linux 5
installing, on Windows 6
URL 5

N-tuple 16

O

Opa
basic syntax 11
building, from source 5
chat application, building 71

[100]

client-server communication 41
client-server slicing 41
databases, working with 57
external functions binding, jsdoc syntax

used 55, 56
installing 5
internationalization (i18n) 65
JavaScript binding 51
Node.js binding 54
Pacman game, building 79
URL 6
web applications, developing 23

Opa application 9
Opa compiler

installing 6
installing, on Linux 7
installing, on Mac OS X 6
installing, on Ubuntu and Debian Linux 6
installing, on Windows 7

opa create opacman command 80
Opa installation

about 5
modules, installing 6
Node.js, installing 5
Opa compiler, installing 6
testing 7

Opa plugin
installing 7

Opa Slicer 41

P

Packman game
external JavaScript library, binding 85

Pacman game
building 79
HTML5 Canvas, used 81
project structure 80, 81
source code, reference link 79

parsing 21
pattern matching

about 19
rules 19, 20

Perl 29
PHP 29
Postgres 57
preload function 86

project structure, LiveRoom
ABOUT 88
liveroom.opa 88
login.opa 88
model.opa 88
style.css 88
view.opa 88

project structure, Pacman game
project iles 80

Python 29

R

records
about 15
building 15
tuples 16

register function 75
register handler 28
request handling

about 26
custom handler 28
dispatch handler 27
handlers group 29
register handler 28
resource handler 26

resource handler 26
Resource.page function 30

S

sayhello function 43
Server.conf 24
Server.handler 25
Server.https 24
server module, web server

about 24
Server.conf 24

Server.start function 24
session, client-server communication

about 46
creating 46

Session.make function 46
Session.NonBlocking.make function 46
Session.send function 46
shape, Packman game

curve, drawing 83
drawing 82

[101]

drawing, ill property used 82
drawing, stroke property used 82

side effect 44
slicing annotations

about 43
both 43
client 43
server 43

SoundJS library 86
source code iles, chat application

controller.opa 72
Makeile 72
model.opa 72
style.css 72
view.opa 72

stringmap 18
String module

URL 13
strings 12, 13
stroke property 82
style.css ile 72
Sublime Text

about 7
downloading 7
URL 7

sum
about 13
example 13

T

text, Packman game
drawing 84, 85

text parsers
about 21, 22
building 21

Twitter 90

U

Ubuntu and Debian Linux
Node.js, installing 5
Opa compiler, installing 6

URI (Uniform Resource Identiier) 26

user authorization, LiveRoom
about 89
sign in 89
sign in, with Facebook 90
sign out 90

UserContext.change function 89
UserContext.get function 90
UserContext.make function 89
UserContext.remove function 90
user interface, chat application 73, 74

V

view.opa ile 72
viewport meta tag 95
Vim

about 8
URL 8

W

web application development
about 23
DOMs, manipulating 32
pages, preparing 29
requests, dispatching 26
web server 23

web pages
about 29
building 29
creating 30
events, handling 31, 32
styles, adding 30, 31

web server
example 23
server module 24, 25
starting, Opa used 23

Windows
Node.js, installing 6
Opa compiler, installing 7

X

XHTML
about 29
constructing 29

Thank you for buying

Opa Application Development

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it irst before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Ext JS 4 First Look
ISBN: 978-1-84951-666-2 Paperback: 340 pages

A practical guide including examples of the new
features in Ext JS 4 and tips to migrate from Ext JS 3

1. Migrate your Ext JS 3 applications easily to Ext
JS 4 based on the examples presented in this
guide

2. Full of diagrams, illustrations, and step-by-step
instructions to develop real word applications

3. Driven by examples and explanations of how
things work

Sencha Touch Mobile JavaScript
Framework
ISBN: 978-1-84951-510-8 Paperback: 316 pages

Build web applications for Apple iOS and Google
Android touchscreen devices with this irst HTML5
mobile framework

1. Learn to develop web applications that look
and feel native on Apple iOS and Google
Android touchscreen devices using Sencha
Touch through examples

2. Design resolution-independent and graphical
representations like buttons, icons, and tabs of
unparalleled lexibility

3. Add custom events like tap, double tap, swipe,
tap and hold, pinch, and rotate

Please check www.PacktPub.com for information on our titles

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced application design using
Sencha's Ext JS

1. Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style

2. From creating forms to theming your
interface, you will learn the building blocks
for developing the perfect web application

3. Easy to follow recipes step through practical
and detailed examples which are all fully
backed up with code, illustrations, and tips

Appcelerator Titanium

Smartphone App Development

Cookbook
ISBN: 978-1-84951-396-8 Paperback: 308 pages

Over 80 recipes for creating native mobile
applications speciically for iPhone and Android
smartphones — no Objective-C or Java required

1. Leverage your JavaScript skills to write mobile
applications using Titanium Studio tools with
the native advantage!

2. Extend the Titanium platform with your own
native modules

3. A practical guide for packaging and submitting
your apps to both the iTunes store and Android
Marketplace

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Opa
	Installing Opa
	Installing Node.js
	Installing the required modules
	Installing the Opa compiler
	Testing the installation

	Setting up editors
	Sublime Text
	Vim
	Emacs

	Your first Opa application
	Summary

	Chapter 2: Basic Syntax
	Basic datatypes
	Integers
	Floats
	Strings
	Sum

	Functions
	Last expression return
	Modules

	Data structures
	Records
	Tuples

	Lists
	Iterating through a list
	Finding elements
	Transforming lists
	Sorting a list

	Maps

	Pattern matching
	Text parsers
	Summary

	Chapter 3: Developing Web Applications
	Starting a web server
	A simple example
	Server module

	Dispatching requests
	Resource handler
	Dispatch handler
	Register handler
	Customize handler
	Handlers group

	Preparing pages
	XHTML
	Creating a page
	Adding styles
	Handling events

	Manipulating DOMs
	DOM selection
	Reading values
	Update content
	Binding an event handler
	Animations

	Summary

	Chapter 4: Using Bootstrap
	Importing Bootstrap
	Using classes
	Using icons
	Bootstrap icons
	Font Awesome icons

	Using widgets
	Summary

	Chapter 5: Communicating between Client and Server
	Client and server slicing
	A simple example
	Slicing annotations
	Module slicing
	Expression slicing

	Client and server communication
	Session
	Cell
	Network

	Summary

	Chapter 6: Binding with Other Languages
	Binding JavaScript
	The first example
	Using external types

	Binding Node.js
	Binding external functions using the classic syntax
	Summary

	Chapter 7: Working with Databases
	A quick start to MongoDB
	Database manipulation
	Records
	Lists
	Sets and maps

	Querying data
	Summary

	Chapter 8: Internationalization
	Internal approach
	External approach
	Summary

	Chapter 9: Building a Chat Application
	Creating a project
	Launching the web server
	Designing user interface
	Building application logic
	Broadcasting and receiving messages
	Summary

	Chapter 10: Building a Game – Pacman
	The project structure
	The HTML5 Canvas
	Drawing a shape
	Using the fill and stroke properties
	Drawing a curve

	Drawing an image
	Drawing the text
	Binding the external JavaScript library
	Preloading the resources
	Playing sounds

	Summary

	Chapter 11: Developing a Social Mobile Application – LiveRoom
	Project structure
	Authorizing a user
	Signing in and signing out
	Signing in with Facebook

	The application
	Listing topics
	Creating a topic
	Posting messages and comments
	Designing for mobile devices

	Summary

	Index

