
.NET DevOps
for Azure

A Developer’s Guide to DevOps
Architecture the Right Way
—
Jef frey Palermo

www.allitebooks.com

http://www.allitebooks.org

.NET DevOps for Azure
A Developer’s Guide to DevOps

Architecture the Right Way

Jeffrey Palermo

www.allitebooks.com

http://www.allitebooks.org

.NET DevOps for Azure: A Developer’s Guide to DevOps Architecture the Right Way

ISBN-13 (pbk): 978-1-4842-5342-7     ISBN-13 (electronic): 978-1-4842-5343-4 	
https://doi.org/10.1007/978-1-4842-5343-4

Copyright © 2019 by Jeffrey Palermo

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484253427. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jeffrey Palermo
Austin, TX, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5343-4
http://www.allitebooks.org

To my wonderful wife Liana.

Thank you for your help, your smile, and for keeping
the kids out of my office while I finished the last chapter.

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: Introduction��� 1

The Problem��� 1

The Challenge of Explosive Growth�� 2

No End-to-end Reference Implementation��� 4

The Solution��� 4

DevOps Architecture��� 5

DevOps Methodology�� 15

How to Get Started��� 17

Application Runtime Architectures��� 18

The Necessary Tools��� 19

The Sample Application�� 19

About the Book��� 22

Wrap Up��� 23

Bibliography��� 24

Chapter 2: Zero to Azure in 60 Minutes��� 25

Deploy an App to App Service�� 25

Download and Test the App�� 26

Create the Azure App Service Web App�� 28

Deployment with Visual Studio�� 30

Deployment Slots��� 33

Summary��� 38

Additional Reading��� 38

Table of Contents

About the Author�� xi

Acknowledgments�� xiii

Introduction��xvii

www.allitebooks.com

http://www.allitebooks.org

vi

Continuous Integration and Deployment�� 38

Publish the App’s Code to GitHub��� 39

Disconnect Local Git Deployment��� 40

Create an Azure DevOps Organization�� 41

Configure the Azure Pipelines Pipeline��� 42

Commit Changes to GitHub and Automatically Deploy to Azure��� 51

Examine the Azure Pipelines pipeline��� 53

Additional Reading��� 60

Monitor and Debug�� 60

Basic Monitoring and Troubleshooting��� 60

Advanced Monitoring�� 63

Profile with Application Insights��� 63

Logging��� 67

Log Streaming�� 68

Alerts�� 68

Live Debugging��� 69

Conclusion�� 69

Additional Reading��� 70

Wrap Up��� 70

Chapter 3: The Professional-Grade DevOps Environment�� 71

The State of DevOps�� 72

Removing the Ambiguity from DevOps��� 73

A Professional-Grade DevOps Vision�� 75

DevOps Architecture�� 76

Version Control��� 77

Private Build��� 78

Continuous Integration Build�� 78

Package Management�� 80

Test-Driven Development Environment (TDD Environment)��� 80

Manual Test Environment��� 81

Table of Contents

vii

Production Environment��� 82

Production Monitoring and Diagnostics��� 82

Tools of the Professional DevOps Environment�� 83

Azure DevOps Services�� 84

Azure Subscription��� 85

Visual Studio 2019�� 86

A DevOps-Centered Application��� 86

Using Onion Architecture to Enable DevOps��� 87

Implementing Onion Architecture in .NET Core�� 90

Integrating DevOps Assets�� 92

Wrap Up��� 94

Bibliography��� 94

Chapter 4: Tracking Work�� 95

Change your Process Template�� 96

Types of Work Items��� 100

Customizing your Process�� 102

Working with the Process�� 106

Linking Commits��� 106

Branching from Azure Boards��� 108

Merging Using Pull Requests�� 111

Wrap Up��� 113

Bibliography��� 115

Chapter 5: Tracking Code�� 117

How Many Repositories?��� 117

What Should be in Your Git Repository��� 120

The Structure of the Git Repository�� 122

Choosing a Branching Pattern��� 126

Useful Tips in Azure Repos Configuration�� 127

How does GitHub Fit in?��� 128

Table of Contents

viii

Wrap Up��� 128

Bibliography��� 128

Chapter 6: Building Code��� 131

Structure of a Build�� 131

Flow of a Build on a Feature Branch�� 132

Flow of a Build on the Master Branch�� 133

Steps of a Build�� 134

Using Builds with .NET Core and Azure Pipelines�� 137

Enabling Continuous Delivery’s Commit Stage��� 138

Wrap Up��� 146

Bibliography��� 152

Chapter 7: Validating the Code�� 153

Strategy for Defect Detection��� 153

Strategy and Execution of Defect Detection��� 156

Code Validation in the DevOps Pipeline�� 158

Static Analysis�� 160

Testing�� 161

Inspections��� 164

Implementing Defect Detection��� 166

Static Analysis�� 166

Testing�� 169

Inspections��� 179

Wrap Up��� 180

Bibliography��� 180

Chapter 8: Release Candidate Creation��� 183

Designing Your Release Candidate Architecture�� 183

Creating and Using Release Candidate Packages�� 185

Defining the Bounds of a Package��� 186

Table of Contents

ix

Azure Artifacts Workflow for Release Candidates�� 188

Specifying How Packages are Created��� 190

Use Release Candidate Packages in Deployment Configurations�� 194

Wrap Up��� 197

Bibliography��� 197

Chapter 9: Deploying the Release�� 199

Designing Your Deployment Pipeline��� 199

Determining Environments��� 200

Assigning Validation Steps to Environments�� 203

Deploying Data Changes Across Environments�� 205

Choosing Your Runtime Architecture�� 208

Implementing the Deployment in Azure Pipelines��� 212

Deploying an Application Component��� 219

Running Test Suites Using a Release Configuration��� 229

Differences in the UAT and Production Environments�� 240

Wrap Up��� 245

Bibliography��� 245

Chapter 10: Operating and Monitoring the Release��� 247

Principles��� 248

Architecture for Observability�� 250

Jumpstarting Observability�� 253

Wrap Up��� 264

Bibliography��� 264

Afterword��� 265

Index�� 269

Table of Contents

xi

About the Author

Jeffrey Palermo is currently the Chief Architect and CEO of Clear Measure, Inc., a

DevOps-centered software engineering company. He is also the founder of the Azure

DevOps Podcast and the Azure DevOps User Group. Previously he was a founding board

member of AgileAustin, the founder of AzureAustin, and a leader in the Austin .NET User

Group.

Jeffrey is a well-known author and international public speaker. He has received

13 Most Valuable Professional awards from Microsoft and has spoken at industry

conferences such as Microsoft TechEd, Microsoft Ignite, Microsoft Build, DevTeach,

VSLive, and various other regional conferences. Jeffrey has other books in the ASP.NET

MVC in Action series as well as two video books on ASP.NET MVC and nearly a dozen

magazine articles on various .NET development topics.

Jeffrey resides just outside of Austin, TX, with his wife, three children,

and various livestock.

xiii

Acknowledgments

First, I must thank God and his son, Jesus, for giving me the ability to think and

write. Next, I’d like to thank my beautiful wife, Liana, for being awesome at her job

and affording me the flexibility to go away and concentrate for long periods of time

while writing this text. With three kids in the household, she is an expert mother and

homemaker, and this book would not exist without her expert work. Thank you to my

kids, Gwyneth Rose, Xander Jeffrey-Boris, and Annika Noel. Thanks also to my parents,

Peter and Rosemary Palermo, for instilling in me a love of books and learning from

an early age. I also need to recognize my college professor at Texas A&M, Mike Hnatt,

who, through his programming courses, business coaching, and ongoing friendship,

has continued to mentor me. Additionally, I’d like to acknowledge Jack Welch, of whose

MBA program I am a graduate. From him, his books, and his curriculum, I learned to use

fewer words when presenting ideas and information.

To Steve Hickman, thank you for being my first and longest-tenured software mentor.

Steve was my first boss. He hired me for my first programming position 22 years ago. He

now mentors the software engineers and architects at Clear Measure, Inc. He has been

instrumental in forming the vision for how to simplify software engineering on the .NET

platform.

To Megan Beutler, thank you for your ongoing encouragement. Megan has

been a part of Clear Measure for over five years and has been a constant source of

encouragement and positivity. She brightens the day of anyone in her path.

To the engineers and architects at Clear Measure, Inc., who are blazing the trail of

better .NET software methods and the DevOps approach illustrated in this book. Without

the learning from the many client projects, the guidance of this book would not exist.

Thank you to Rayne Fulton, Tony Fauss, Nick Becker, Scott Wilson, Troy Vinson, Danny

Vandergriff, Vlad Serafimov, Eric Fleming, Colin Pear, Corey Keller, Kyle Nunery, Eric

Williams, Mike Alpert, Mike Sigsworth, Zeeshan Ansari, Joe Lockbaum, Valerie Gurka,

Haley Akchurin, Trish Polay, Eric Farr, Richard Hartness, Monica Pritchard, Jim Wallace,

Justin Basinger, and Chris Thomas.

To Scott Guthrie, whose leadership at Microsoft not only with .NET but also

with the Azure platform has made it the leading computing platform on the planet.

xiv

I’ve considered Scott a friend since 2006. In 2017, I met with Scott at his office for

almost an hour talking about the problem that is addressed in this book. That most

.NET developers have too many options, too many disconnected tools, and that the

DevOps environment for .NET and Azure isn’t defined in a cohesive, simple way. Scott

encouraged me to build the model that would show developers how to bring everything

together.

To Scott Hunter, who heads up the .NET platform at Microsoft. Scott and I discussed

this book in mid-2018 over lunch, mulling over the complexity of choices developers need

to make when choosing how to bring together the different elements of the Microsoft

platform in order to create an environment that causes the “pit of success” – where things

fall into place because everything is integrated properly. Thank you, Scott, for being the

sponsor of this book.

Finally, I’d like to mention some influential people who have taught me, knowingly

or not, some key skills and habits along my career. Each of these has had either a direct

or indirect impact on the synthesis of ideas and patterns in this book. First, Robbie

McDonald, who took a chance on a cold resume for an internship at Dell. Through

the chance he took on me, I was exposed very early in my career to very complex,

sophisticated, and high-scale computer systems. Next, Eric Brand was the first architect

I worked under. At that time, I didn’t understand the difference between a software

developer and a software architect. Eric was patient, encouraging, and always had

time for questions. Under his projects, I became deeply adept with the .NET runtime

and SQL Server, much more than I had been in the past. When the Iraq war started in

2003, my Army Reserve unit was called up for back-to-back tours in Iraq for 15 months.

I was paired with Brett Rogers as co-truck-commanders in our HET tank transport

company. Brett was also a .NET developer. Thanks, Brett, for the welcome .NET pair

programming out in the Iraq desert. Next, I’d like to acknowledge Steve Donie. Steve

taught me continuous integration and the mechanisms of build scripts. The build script

in this book is an adaptation of build scripts he authored many years ago in both Ant and

NAnt. Additionally, Jeremy Miller taught me dependency management and test-driven

development. As the author of StructureMap, Jeremy afforded me an opportunity to

contribute to that open source project as well as the deep learning applying it on some

complex software projects. Paul Leury also played a key role in some of the patterns in

this book. Paul hired me into my first management position. The team I managed under

Paul built a significant native Windows desktop application. During that project, my

thoughts on hub and spoke architecture and application buses solidified. The learning

Acknowledgments

xv

on that project made its way into the application bus pattern in the MvcContrib open

source library as well as some projects that contributed to Jimmy Bogard’s Mediatr

library. Code in this example application is adapted from both of those open source

projects. I next must thank Eric Hexter and Stephen Balkum for hiring me as an

independent consultant advising one of their team architects, Blake Caraway, who has

remained a good friend. Through that work, the guidance on team workflow and process

emerged. Additionally, Eric has been a thought leader on deployment automation and

production operations. I learned a great deal in those areas from him. He was a terrific

asset as a cofounder of the MvcContrib OSS project as well as a coauthor with me on

previous books in the “ASP.NET MVC in Action” series. Some of his work is cited in this

book. Additionally, I thank my previous coauthors of various books. In working with

them I became better at authoring larger bodies of work. Thanks to Ben Scheirman,

Jimmy Bogard, Jeremy Skinner, Matt Hinze, and Eric Hexter. Finally, thanks to all the

great people in the Microsoft MVP program. I’ve learned something from each of you

since my time in the program from 2006 until now. Specifically, thanks to Carl Franklin,

for helping me start the Azure DevOps Podcast and for your friendship.

My final acknowledgment goes to Kevin Hurwitz. We made the transition from

developer to architect at a similar time. Kevin was instrumental as a sounding board,

challenger, and coprofessional with me as we developed some of the ideas in this book

while working on mutual projects. Notably was when Kevin introduced me to the SQL

schema migration pattern that has now become industry standard and implemented

by multiple libraries and products. The pattern he taught me is now recognized across

the DevOps community and is in this book. Kevin has also contributed to many of the

other ideas that have made their way into this book. Thank you, Kevin, for your ideas,

innovation, and your friendship over the years.

Acknowledgments

xvii

Introduction

This book has been a culmination of long-time vision, some key leadership, and a

confluence of industry events. Almost 15 years ago, the author gained a passion for

helping developers succeed, for making the complex simple, and for finding rules of

thumb that would work for 80% of situations. With too many options in the software world

and too many answers of “it depends,” the industry has been starved for the ability to do

something “by the book.” This book seeks to provide that text where a .NET developer

can say “I’m doing DevOps with .NET and Azure by the book.” In this manner, one would

know what models and patterns were in play and what to expect from said environment.

This book is being released while .NET Core 3 is in preview status; therefore, the version

of the book should be considered preview as well. The examples largely use Visual Studio

2019 preview edition. The code itself and the Azure DevOps Services pipeline function

perfectly well with .NET Core 2.2, however, and can be used to implement applications

immediately. It is the intent of the author to release a .NET Core 3 edition aligning with

Microsoft’s release schedule. The example configuration used throughout this book

can be leveraged through a public project and source code repository online

at https://dev.azure.com/clearmeasurelabs/Onion-DevOps-Architecture.

https://dev.azure.com/clearmeasurelabs/Onion-DevOps-Architecture

1
© Jeffrey Palermo 2019
J. Palermo, .NET DevOps for Azure, https://doi.org/10.1007/978-1-4842-5343-4_1

CHAPTER 1

Introduction
You, dear reader, are starting down the path of excellence. By picking up this book, you

are showing your leadership and resolve to equip your development organization to be

world class, competing with any other development group on the planet. You are taking

initiative. You are a software leader. You are confronting the challenge head-on. This

book is for you. This book is a synthesis of practices, tools, and processes that, together,

can equip a software organization to move fast and deliver software of the highest

quality. In this chapter, we cover the relevant common problem our industry faces, the

solution to that problem, and how to implement it for your team. This text goes hand in

hand with a fully implemented example publicly available at https://dev.azure.com/

clearmeasurelabs/Onion-DevOps-Architecture.

�The Problem
Every day, millions of developers use .NET to build and operate mission-critical software

systems for organizations around the world. Visual Studio, .NET, and Windows Server,

whether on-premise or in Azure, provide astounding capabilities that enable any

kind of software. The marketplace has scores of books, online courses, and tutorials

teaching every technology framework and language feature. Microsoft’s own online

documentation is broad and comprehensive. The Microsoft platform, along with the

marketplaces, extensions, and packages, has a building block for everything you can

imagine. BUT, it is completely up to you to put it all the blocks together in just the right

way for YOUR environment. This book seeks to change that.

https://dev.azure.com/clearmeasurelabs/Onion-DevOps-Architecture
https://dev.azure.com/clearmeasurelabs/Onion-DevOps-Architecture

2

�The Challenge of Explosive Growth
By any measure, the number of professional developers has exploded over the last

decade, surpassing the growth rate of the previous decade. As found in Figure 1-1,

from Stack Overflow’s 2018 survey, we can see that over half of professional developers

entered the industry in the last five years.

Figure 1-1.  Over half of developers have five years of professional coding
experience or less – Stack Overflow

If you have surpassed 20 years of development experience, you qualify at the top

5.2% of experience in the industry. We can see the inflection point between the 6-8 years

and 3-5 years of experience. It’s unclear how the growth will continue or if business

demand will start to be saturated. Regardless of future growth, we have a challenge in

our industry created by this explosive growth in the workforce. Consider this analogy.

You are opening a new auto mechanic shop. Figure 1-2 is taken from Wikimedia

Commons SiteI

I�Wikimedia Commons, 2010

Chapter 1 Introduction

3

You purchase a fantastic location on a main road close to other centers of business.

You spare no expense building the shop. You contact a local mechanic trade school and

declare you wish to hire the top 7% of upcoming graduating class. You have budgeted for

whatever pay it takes to hire the best and the brightest who have just been trained as new

mechanics.

Along comes graduation day, and the next week, you are preparing to open for

business. You gather in front of the shop next to pallets of just-delivery tools and shop

equipment. You brief your new workforce expressing excitement saying, “Let’s get the

shop ready for opening. We start serving customers next week.” Your staff’s excitement

turns to fear with wide eyes. Your grand opening is a disaster, and you wonder what you

missed.

Figure 1-2.  An auto mechanic shop must be set up in a way conducive to
delivering quality and speed

Chapter 1 Introduction

4

This manager hired staff who had been trained in how to fix and service automobiles.

They were smart, skillful, and motivated. They were trained in an environment that

was expertly configured. Alas, the curriculum did not include how to set up a new

environment for themselves.

Unfortunately, more than a few team leaders and managers have experienced a

similar situation. These teams have developers who know how to apply their training

and practice. But in every trade that builds something, the jobsite, or environment, has

a profound effect on the effectiveness of the team. The common curriculum has some

gaps, and this is one of them. This book seeks to fill that gap in the curriculum. This book

will equip you to build a highly effective DevOps environment for your team.

�No End-to-end Reference Implementation
Along with documentation, open source projects, and samples, there does not exist any

available end-to-end demonstration of a complete DevOps environment. Many have

sought such a reference implementation. With a reference implementation, teams could

emulate the patterns demonstrated and perform configuration rather than research and

development in this area. And while tutorials and online videos exist, they demonstrate

part of the solution and don’t provide access to any functional implementation that can

be evaluated and copied. This book changes that.

�The Solution
This book provides the model for a world-class DevOps environment when working

with Microsoft technologies. And while variances in tools, language, or requirements

will change the needed implementation, the DevOps model shared in this text is the

architecture for the working environment for your team. Modify parts of it as you see fit,

but the architecture will enable all your teams and all your applications to accelerate in

performance and push forward through the next decade.

Over the past 13 years of a 22+ year career in software engineering, this author has

sought to synthesize research, patterns, methods, processes, and tools that would yield

the best environment for development teams. Through early Agile transformations

including Scrum, Extreme Programming, Kanban, Lean Software, and other

methodologies, we can see that methodology alone with not guarantee software success.

In addition, tools alone cannot remove all risk from a project. Only by combining the

Chapter 1 Introduction

5

best elements of everything available can we create an environment where it is harder

to fail than succeed. The DevOps environment described in this book seeks to pull good

ideas from all available prior art, combining them in a unique way that any team can

implement. It is this author’s belief that any team can be WORLD CLASS when equipped

with the right environment, tools, and process.

This book is written with a development leader in mind. Whether you are a

software architect, lead engineer, manager, executive, or a passionate leader within a

development team, this book is written so that you can take action to serve your team by

equipping them for success. Our target reader is one who works to enable others to be

productive in shipping great software that delights your customers. To start down this

path, let’s first cover the architecture of a DevOps environment.

�DevOps Architecture
When designing software, or anything for that matter, one must draw what is to be

built. In the software world, our best method for illustrating a software-related software

architecture is Philippe Kruchten’s 4+1 model. He writes about it in his IEEE paper,

“Architectural Blueprints—The ‘4+1’ View Model of Software Architecture.”II In this

model for emergent and iterative architecture, Mr. Kruchten defines four layers to

illustrate the architecture and one list of scenarios, which are select use cases the

architecture supports. The needed capabilities drive the architecture. Just like blueprints

for a house will have layers such as floorplan, electrical, and plumbing, the four layers in

this model for software architecture are

•	 Logical view

•	 Process view

•	 Physical view

•	 Development view

�Logical View

Let’s consider the very popular logo that has come to represent DevOps. Figure 1-3 is

taken from the Wikimedia Commons site.III

II�Kruchten
III�Wikimedia Commons, 2016

Chapter 1 Introduction

6

There are many versions of this same depiction of DevOps, but this author believes

it is fundamentally wrong. It fails to unify development and operations. It still maintains

that they are two. And if there are two that must work well together, then one would

question: “where is product management” or “where is QA.” And once these other

groups are depicted, we have an organization that still hangs onto the silos. No, a much

better logical view of DevOps is the following Figure 1-4.

Figure 1-3.  The common logo for DevOps still does not combine Dev and Ops

Chapter 1 Introduction

7

A more appropriate view of DevOps would untwist the sideways figure eight into

a unified cycle. The goal of the unified team is to complete a cycle in as short a time as

possible. The cycle includes

•	 Plan

•	 Code

•	 Integrate

•	 Package

•	 Release

Figure 1-4.  Logically, DevOps seeks to drive a fast cycle time with a unified
organization

Chapter 1 Introduction

8

•	 Operate

•	 Learn

In order to facilitate a constant acceleration of this cycle, we define a hub around

which this cycle can spin. That hub is the automated DevOps pipeline. Built on top of

that foundation, we also have several layers of capability to achieve in our team. Each

layer needs

•	 Strategy: Decisions on what is to be done and how

•	 Execution: Competent and faithful implementation of the strategy on

an ongoing basis

•	 Measurement: Inspecting and verifying that executing the strategy is

achieving the desired objectives

The six layers of capability for the team in this model are

•	 Automated DevOps Pipeline: An automated way to convert code into

production software

•	 Best Practices: Selection and appropriate implementation of the

practices that are deemed to be the best for the software and the

team’s situation

•	 Defect Removal: Choice of defect prevention and defect removal

techniques and the application thereof

•	 Team Workflow: Complete visibility into all the work the team is

doing with the ability to see bottlenecks quickly

•	 Architectural Blueprints: The definition, maintenance, and

inspection of clear blueprints for the software as is and as the

software is to be in the next increment

•	 Cloud Operations: How the software is being operated, monitored,

and customers supported in production

This is the logical model for a team’s DevOps environment. As you evaluate these

layers, you will not find a single cookie-cutter implementation that is right for every

team, but each of these layers of capability must be addressed for every team. As you

are analyzing this model for you team, don’t hesitate to add an additional layer if your

context deems that appropriate.

Chapter 1 Introduction

9

Remember that the most important element of this logical architecture is the cycle.

Everything is subordinate to the ability to continually accelerate the team’s ability to

cycle of planning an idea to learning that the intended outcome had been accomplished.

Only about 1/3 of ideas that are prioritized for a software system end up having the

positive affect that is intended. Sam Guckenheimer, product owner for the Azure DevOps

product line at Microsoft, has shared his analysis of relevant industry research in a 2018

podcast interview.IV At 15:43 of the interview, Mr. Guckenheimer relates the “rule of

thirds” whereby

•	 One-third of prioritized features have the positive, intended effect.

•	 One-third of prioritized features have a neutral effect.

•	 One-third of prioritized features have a negative effect and should be

reverted immediately.

If even the best, most sophisticated companies are still subject to this general rule,

it is imperative that a software organization be able to execute a software cycle very

quickly. Companies that can drive cycle time lower will have a sustained competitive

advantage in the marketplace.

�Process view

In 4+1 architecture, the process view follows the order in which things are done. This

view, and the structure thereof, will guide many other implementation decisions as

tools are integrated and methods chosen. As shown in Figure 1-5, that is an end-to-end

process view for the model of DevOps that will be illustrated throughout this book.

IV�Guckenheimer, 2018

Chapter 1 Introduction

10

The process for a DevOps environment contains more than just automated builds

and deployments. It starts by modeling the entire value chain from the time an idea

is being discussed to when that idea has been put into the hands of customers as a

new software capability. Before code is even touched, there are four distinct types of

design that must be performed on a feature so that developers know how it should be

implemented. Some small teams do not track their process to this level of granularity.

Instead, they rely on conversations with a product owner, as in Scrum, to have questions

answered. This can work fine at small scale, but a high-performing process enumerates

every distinct type of work that must be performed and separates them in sequence.

This allows for the measurement of work in process (WIP) and throughput of each

workstation. The modern DevOps books that will be cited in this book all credit

their thinking on the concept of flow to Eliyahu Goldratt, author of The Goal:

A Process of Ongoing Improvement.V This is the same author of the popular book

V�Goldratt, The Goal: A Process of Ongoing Improvement, 30th Anniversary Edition, 2014

Figure 1-5.  The DevOps’ architecture process view

Chapter 1 Introduction

11

Theory of Constraints.VI This concept of flow, as within a manufacturing plant, has us

design the process so that we can visualize the amount of work at any given phase of

work and make sure none of them become a bottleneck in the overall process. One step

will mathematically always be the bottleneck, so our continual process improvements

in search of an ever-quicker cycle time will be targeted at the phase of work that is the

currently holding up further rates of throughput.

�Physical View

The physical view of a software system is meant to represent the items that comprise

it at runtime. With virtual being the new physical, and cloud being the new virtual,

I’ll simplify this view as the components that own their own memory space. If you are

describing the physical view for an application in production, you might draw a single

virtual machine, but that wouldn’t be very descriptive for small applications. A better

approach would be to draw the VM as a container and illustrate the different processes

that might run on that VM and their dependency on one another. For the purposes of the

DevOps environment that we are describing, please consider Figure 1-6.

VI�Goldratt, Theory of Constraints, 1990

Chapter 1 Introduction

12

The physical view of our DevOps architecture shows the products that must be

online and connected with one another in order to enable our DevOps environment. As

you add products and other tools, this view of the architecture will grow.

This is a high-level physical view, as the three environments that we see depicted in

the local view are just represented by an Azure icon in this view. It would be appropriate

to split that out if we wanted to specify different regions for our environments. At the

highest level, this is our physical view.

Figure 1-6.  The physical view of a .NET DevOps Environment

Chapter 1 Introduction

13

�Development View

The development view, within your 4+1 architecture, depicts the structure of a

developer’s workstation and surrounding resources in order to implement the system

described by the architecture. This is shown in Figure 1-7.

Figure 1-7.  The development view for the DevOps environment described
in this book

In order for you to develop your own world-class DevOps environment for your

team, you will need the public Azure DevOps Services project provided with this book,

the Git repository for the sample application, and this book along with access to the

other books and text referenced in footnotes throughout this text. This book is not

meant to stand alone. It is a guide through the complete .NET DevOps implementation

provided with the book and delivered via Git and a public Azure DevOps Services

project.

This book is not meant to stand alone. It is a guide through the complete .NET
DevOps implementation provided with the book and delivered via Git and a public
Azure DevOps Services project.

Now that we’ve reviewed the four views of the architecture for our DevOps

environment, let’s look at some scenarios that will be supported by this architecture.

�Scenarios

The scenarios included with a 4+1 architecture are meant to illustrate the capabilities

of the architecture. In the simplest form, scenarios can be use cases or even a list of

capabilities the architecture provides. For complex scenarios, it can be useful to illustrate

Chapter 1 Introduction

14

through drawing how data would flow through the system as someone used a capability

of the system. For the purposes of our DevOps environment, being the system under

design, a list of capabilities will suffice:

•	 A team member can see which features are in varying states of design

by glancing at the project board.

•	 A developer can open a new feature branch from a feature work item

that is in development.

•	 A developer can run a private build locally, without outside

dependency, to validate readiness for a commit/push.

•	 A developer can execute unit tests and integration tests locally to

validate changes before pushing code to the team’s Git repository.

•	 A developer can see newly pushed code build in a continuous

integration build and know that the new changes worked well with

changes from other teammates.

•	 A developer receives notification of pass or fail of the full body of

automated full-system tests that run in a fully deployed environment.

•	 Any team member can access versioned release candidate packages

for any application components of any successful build.

•	 A developer can submit a pull request in order to have a teammate

inspect the set of changes linked to the work item of the branch.

•	 A pull request inspector can see the successful CI build, deployment,

and full-system test run along with static analysis results and test code

coverage metrics while executing the pull request inspection checklist.

•	 A stakeholder can request on demand for a new build to be deployed

automatically to an environment and see it deployed quickly,

database and all.

•	 A team member can query the centralized logs from any environment

in order to diagnose issues reported via configured alarms.

Every team’s DevOps environment should include these base capabilities.

Many teams will want even more capabilities. This book will enable you to design

and implement a DevOps environment with the preceding capabilities. At this, the

Chapter 1 Introduction

15

author hopes you are excited! If your team’s working environment contained all these

capabilities enumerated, would you produce faster or slower for your customers? Would

you produce better quality or more bugs with the preceding capabilities? Certainly, any

team would be better off with these capabilities.

�DevOps Methodology
Before we begin discussing how to implement the architecture of a DevOps

environment, let’s review the state of the DevOps methodology in the industry. In his

popular book, The Phoenix Project: A Novel About IT, DevOps, and Helping ...,VII Gene

Kim enumerates three guiding principles of DevOps. He names them “The Three Ways.”

They are

	 1.	 The First Way: Systems thinking

	 2.	 The Second Way: Amplify feedback loops

	 3.	 The Third Way: Culture of continual experimentation and learning

These are quite abstract but look out for them as we implement our DevOps

scenarios specified above. In our industry lies much confusion about DevOps. Having

only been named as such in 2010, DevOps has been commercialized and marketed.

You’ll see job openings for “DevOps Engineer.” This is akin to the “Senior Agile Engineer”

job postings around the 2005 time frame. DevOps is a way of thinking. It is a mindset.

There are practices that go very well with the DevOps way of thinking, just like test-

driven development goes very well with the Agile way of thinking. Let’s illustrate the

Three Ways of DevOps briefly.

�The First Way: Systems Thinking

The DevOps methodology is based on the principles known as The Three Ways. The first

way is systems thinking, as shown in Figure 1-8.

VII�Kim, Behr, & Spafford, 2013

Figure 1-8.  The first way is systems thinking

Chapter 1 Introduction

https://www.amazon.com/Phoenix-Project-DevOps-Helping-Business-ebook/dp/B00AZRBLHO

16

There is a lot of thought packed into this first principle of DevOps. It encompasses

the ability to create a smooth, predictable flow of working software from the imagination

of the developers to the active use of the customer. In our world, regardless of job

description or job title, if you are involved in building or changing the software, you

are on the side of Dev. If you are someone who uses or consumes or depends on the

software, then you are on the side of Ops. Other definitions of DevOps that don’t include

the user are at great risk.

�The Second Way: Amplify Feedback Loops

In this principle, we create an environment where those using our software – those

operating their business or departments with our software – provide continual feedback

to those operating, developing, and changing the software, as shown in Figure 1-9.

We can put ourselves in the right DevOps mindset by translating the keywords as

follows:

•	 Dev: Includes anyone who works to support, build, change, and

improve the software or system

•	 Ops: Includes anyone who relies on the software to operate their

business or department

If our company has a department known as IT Operations, or Support, or Data

Center Operations, it’s important not to confuse these groups as our customer. They

don’t use the software. They are merely part of our development capability – the

capability to deliver valuable software to our customer so that our customer can operate

the software in order to experience its value.

Figure 1-9.  Those operating their departments using our software provide
continual feedback to those changing the software

Chapter 1 Introduction

17

�The Third Way: Culture of Continual Experimentation and Learning

If the first two ways were about completing a software release cycle in a streamlined and

effective way. The third way is about making that cycle faster, as shown in Figure 1-10.

Companies such as Netflix showed us that software can be released not only daily

but many times per day with no downtime and no defects (or close to that ideal). The

third way causes us to think with that end in mind, solving any challenges that would

prevent us from this ability. Even if the customer doesn’t want software releases at that

cadence, this way of thinking causes us to gain this capability so that we are ready on a

moment’s notice to release the software as it stands, always stable, always working, and

always bug-free. This way of thinking also encourages us to stop thinking about software

releases as a big ceremony. We will see in the coming chapters how to equip our teams

with the ability to release changes big and small. We will see that the same process

needed for small changes is effective for large changes when every small change has

made a trip down the DevOps pipeline. Now that we have covered the architecture and

the thinking of DevOps, let’s see how to get started.

�How to Get Started
The example application, along with the Azure DevOps Services configuration, is

available online as a public project.

https://dev.azure.com/clearmeasurelabs/Onion-DevOps-Architecture

Keep the sample application and the Azure DevOps project handy as you move

through this book. This working sample serves to demonstrate all the capabilities

working together. No sample application will be sufficient to illustrate every scenario

in the development world, but for the purposes of a DevOps environment, we have

chosen the most common application type at the moment. Before we review the sample

application, let’s map common application components to their runtime components.

Figure 1-10.  The third way introduces smaller cycles within the cycle

Chapter 1 Introduction

https://dev.azure.com/clearmeasurelabs/Onion-DevOps-Architecture

18

�Application Runtime Architectures
You are building software with Visual Studio. Regardless of the libraries or frameworks

you might choose, you have a finite set of runtime architectures to choose from. Popular

today is a web architecture which consists of a ASP.NET web application and a SQL

Server database. Or you might have a desktop WPF application communicating to ASP.

NET Web API services that then use a SQL Server database. If you have an iPhone app,

that might connect to your Web API services. Regardless of the combination of runtimes

you take advantage of, the Microsoft platform has a finite set of choices, and the Azure

cloud has a handful of ways to run each that must be deployed into the cloud.

While this table is nowhere near being complete, we can see that through web

applications, off-line jobs, and a relational database, we cover a high percentage of

applications out in the wild. WPF, Winforms, and native iOS and Android applications

are also supported by a small number of options. With each of these application types,

we can choose a full range of runtime options from Infrastructure as a Service (IaaS) to

Platform as a Service (PaaS).

The architectural point to consider when designing a DevOps capability is to realize

that while implementing the first way, we need not support a unique configuration for

every team or application. Once we understand how to deliver a web application of some

form with a SQL database out to Azure, how many of our applications are now covered?

Figure 1-11.  A small illustration of Azure runtimes covering the breadth of
application architectures

Chapter 1 Introduction

19

Most. I would venture to guess for each of you, dear readers, that a high number of your

applications use those architectural components. We then add a capability for off-line

jobs such as Windows services and scheduled tasks, and we cover a good part of the gap.

Once we have these application types covered, you will see how much smaller of a leap it

is to then cover your native mobile apps, and Windows desktop apps as well.

�The Necessary Tools
In order to set up a professional DevOps environment targeting Azure, you’ll need to

have a few key tools to get started:

•	 An Azure subscription

•	 Visual Studio (2019 or VSCode)

•	 An Azure DevOps Services organization account

These tools are just the starting point, and throughout this book, we’ll integrate

more tools, libraries, frameworks from Microsoft, other vendors, as well as open source

repositories. Remember, DevOps is about a way of thinking that leads to an outcome of

shorter lead times, shorter cycle times, and fewer disruptions. Throughout this book,

we’ll put all these pieces together one by one.

If you are just getting started with Azure or Azure DevOps Services, don’t skip

Chapter 2. It will quickly introduce some basic capabilities in an interactive way without

requiring you to write any scripting. But don’t stop there. The steps shown in Chapter 2

are only to introduce first-time users of these tools. These techniques are not meant for

long-term maintainability. For the professional way to set up your DevOps environment,

move to Chapter 3 and beyond where we will go through each area in detail.

�The Sample Application
While samples tend to be too simplistic or unnecessarily complex, the book uses an

ASP.NET Core web application configured with a SQL Server database, using Entity

Framework Core for an object-relational mapper (ORM). This application is properly

factored into logical layers that control access to key dependencies. The application only

does one thing, which is expose a Web API that retrieves expense report records. Our

core object model has exactly one entity, ExpenseReport, and our SQL Server database

schema has exactly one table, ExpenseReport. Rather than clutter this book with general

Chapter 1 Introduction

20

coding practices, this sample provides some structural guidance with enough surface

area to demonstrate all the necessary DevOps techniques. It does not see to illuminate

coding patterns or frameworks.

Figure 1-12.  Solution structure of the sample application

The Visual Studio solution does conform to the Onion ArchitectureVIII dependency

management model, by isolating key dependencies inside their own assembly and

concentrating application and business logic in a dependency-free assembly called “Core.”

•	 AcceptanceTests: The full-system acceptance tests reside in this

project. They run as NUnit tests configured with Selenium and drive

the Chrome browser to execute tests against a fully deployed instance

of the application.

•	 Core: This project has no NuGet package dependencies as well as

no project dependencies. It is best implemented as a .NET Standard

library, and it should contain plain C# objects. The value of this

library is that any code it contains is verified to be portable to any

application type given that the assembly produced will have no other

dependencies that the base class library and C# language features.

VIII�Palermo, n.d.

Chapter 1 Introduction

21

•	 Core.AppStartup: This project exists to bootstrap the application,

initiate the Inversion of Control (IoC) container, and instantiate any

global resources or cache’s that may be needed by the application.

Some developers put this logic in the UI project because it is the

startup point for the application, but since IoC has nothing to do

with serving web pages, we have factored it out to its own very small

project.

•	 DataAccess: This project maintains the responsibility of configuring

and using the Entity Framework Core dependency. It contains logic

to map our class to the SQL Server schema. It also contains any logic

that requires using the EFCore APIs. No code outside of this project

knows that the EFCore package exists.

•	 Database: The database project contains our SQL Server schema

migration tooling and migration scripts necessary for incremental,

automated changes to the database schema and nonuser data.

•	 IntegrationTests: This project houses our L1 tests, or integration tests.

This is described more in Chapter 7.

•	 Job: This project houses a normal back-end job that runs on a

scheduled interval.

•	 UI: This project is an ASP.NET Core project and serves our

ValuesController, returning all ExpenseReport(s). It makes use of the

capabilities of the Core project.

•	 UnitTests: This project houses the L0 tests, or unit tests for our code.

This application is about as simple as it gets. The Visual Studio solution, however,

is factored in a manner that would be suitable for a larger application or service. The

hope is that this sample may be a starting point for your own applications, and it would

be unrealistic to provide a sample that contained only a single project with no logical

separation or dependency isolation.

Chapter 1 Introduction

22

�About the Book
Using the model described earlier for a complete DevOps environment, each of

the chapters in this book highlights in detail how to think about each area. The

relevant principles will be covered first along with how to implement that part of the

environment. While some specifics are highlighted in the chapter, this text makes

heavy references to other books, articles, and Microsoft documentation. Rather than

duplicate other works and documentation, which will be updated more rapidly than this

book, footnotes are used to direct you to the right resource. In addition, use the sample

application and public Azure DevOps Services (sometimes abbreviated hereafter as

“AzDO”) to follow along while digging in as deep as you like. The number of integrations

and settings required in order to establish a complete DevOps environment can be

daunting. That’s why this book needs to be published. While there is no practical way

to publish every setting and script file in the text, you may use the accompanying

video-recorded walkthrough of the public AzDO project in order to gain a detailed

understanding of all the settings that were changed from their defaults.

Until you have a complete DevOps environment, go “by the book.” Once everything
is online and functioning, feel free to customize, change, and improve.

Now that you understand the challenge our industry is facing and the model for

DevOps that will be implemented in this book, let’s review what will be covered as you

read through the chapters.

Chapter 2 is for those new to Azure DevOps and to Azure in general. It will cover

how to set up the basics so that you can follow along with the rest of the book. If you are

already a user of AzDO and Azure, feel free to quickly skim the chapter and move on.

Chapter 3 moves beyond the quick starts and online tutorials and describes the

professional-grade development environment and the tools you should be using.

Chapter 4 dives into the first phases of work in our DevOps process, which is tracking

work. You learn how to customize your own project board so that all work is visible.

Chapter 5 teaches how to track code using Azure Repos. More importantly, it teaches

the natural rules for segmenting applications into Git repositories in a fashion suitable

for the beginning of an automated DevOps pipeline.

Chapter 1 Introduction

23

Chapter 6 builds the code. The chapter covers the different types of builds and when

to use each. After covering the steps that each type of build should contain, the reader is

taken through the configuration of the continuous integration build in Azure Pipelines.

Chapter 7 is the quality control chapter, illustrating how to think about code

validation in your DevOps environment. This chapter relates relevant quality research

along with rules of thumb for implementing the three required defect removal methods

necessary in any DevOps environment.

Chapter 8 creates a versioned, deployable release candidate. This chapter shows how

to decide the boundaries of application packaging, how many packages you should have,

and how to create them in a deployable format and store them in Azure Artifacts.

Chapter 9 provisions, configures environments, and deploys our release candidates

across the environments in Azure. This chapter covers the three distinct types of

environments, the difference among them, and how to dynamically create each using

PowerShell, Azure Resource Manager (ARM) templates, and Azure Pipelines. It also

takes the reader through the deployment steps needed for the three environment types

and the configuration settings in Azure Pipelines that allow for total control of when and

how software is released.

Chapter 10 rounds out the book by covering how to monitor and support software

that has been deployed to a production environment. This chapter shows how to

implement and centralize logs and other diagnostics so that they are available for

analysis both for proactive alarms using Azure Monitor as well as for on-demand

investigation.

�Wrap Up
This is the beginning of a new era for your software team. Use the methods and examples

in this book to constantly accelerate your team’s cycle time. Analyze any part of the

process that causes delays or bottlenecks and squeeze those problems out. Now let’s get

on with the book!

Chapter 1 Introduction

24

�Bibliography
Goldratt, E. M. (1990). Theory of Constraints. North River Press. Retrieved from

www.amazon.com/Theory-Constraints-Eliyahu-M-Goldratt-ebook/dp/B00L7XYW2Q

Goldratt, E. M. (2014). The Goal: A Process of Ongoing Improvement, 30th

Anniversary Edition. North River Press. Retrieved from www.amazon.com/Goal-Process-

Ongoing-Improvement/dp/0884271951

Guckenheimer, S. (2018, 9 24). Sam Guckenheimer on Testing, Data Collection,

and the State of DevOps Report – Episode 003. (J. Palermo, Interviewer) Retrieved from

http://azuredevopspodcast.clear-measure.com/sam-guckenheimer-on-testing-

data-collection-and-the-state-of-devops-report-episode-003

Kim, G., Behr, K., & Spafford, G. (2013). The Phoenix Project: A Novel About IT,

DevOps, and Helping Your Business Win. Retrieved February 18, 2019, from

https://amazon.com/phoenix-project-devops-helping-business/dp/0988262592

Kruchten, P. (n.d.). Retrieved from Architectural Blueprints—The “4+1” View

Model of Software Architecture: www.cs.ubc.ca/~gregor/teaching/papers/4+1view-

architecture.pdf

Palermo, J. (n.d.). The Onion Architecture. Retrieved March 21, 2019, from

http://jeffreypalermo.com/blog/the-onion-architecture-part-1/

Wikimedia Commons (2010). ANT Berezhnyi [CC BY 3.0 https://creativecommons.

org/licenses/by/3.0)].File:https://commons.wikimedia.org/wiki/File:Chery_

A1_-_service_shop_in_Ukraine_(7).jpg Retrieved from https://commons.wikimedia.

org/wiki/File:Chery_A1_-_service_shop_in_Ukraine_(7).jpg

Wikimedia Commons (2016). Inedo (Karl Harnagy) File:Devops-toolchain.svg.

Retrieved from https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

Chapter 1 Introduction

http://www.amazon.com/Theory-Constraints-Eliyahu-M-Goldratt-ebook/dp/B00L7XYW2Q
http://www.amazon.com/Goal-Process-Ongoing-Improvement/dp/0884271951
http://www.amazon.com/Goal-Process-Ongoing-Improvement/dp/0884271951
http://azuredevopspodcast.clear-measure.com/sam-guckenheimer-on-testing-data-collection-and-the-state-of-devops-report-episode-003
http://azuredevopspodcast.clear-measure.com/sam-guckenheimer-on-testing-data-collection-and-the-state-of-devops-report-episode-003
https://amazon.com/phoenix-project-devops-helping-business/dp/0988262592
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://commons.wikimedia.org/wiki/File:Chery_A1_-_service_shop_in_Ukraine_
https://commons.wikimedia.org/wiki/File:Chery_A1_-_service_shop_in_Ukraine_
https://commons.wikimedia.org/wiki/File:Chery_A1_-_service_shop_in_Ukraine_
https://commons.wikimedia.org/wiki/File:Chery_A1_-_service_shop_in_Ukraine_
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

25
© Jeffrey Palermo 2019
J. Palermo, .NET DevOps for Azure, https://doi.org/10.1007/978-1-4842-5343-4_2

CHAPTER 2

Zero to Azure in 60 Minutes
—Contributed by Cam Soper and Scott Addie, © Microsoft

“I am very grateful for this chapter’s contribution to the book. If you, dear reader, are

new to the Microsoft platform, to Azure, or to Visual Studio, this chapter will help you

understand the building blocks we will be working with in this book. If you have never

used Azure DevOps Services in any way, this chapter will introduce you to that product

family. I thank Cam Soper and Scott Addie, members of the Microsoft documentation

team, for the contribution of this chapter to the book”—Jeffrey Palermo

To give you a hint of the capabilities available to ASP.NET Core developers on Azure,

let’s take a quick tour through Azure App Service and Azure DevOps.

�Deploy an App to App Service
Azure App Service is Azure’s web hosting platform. Deploying a web app to Azure App

Service can be done manually or by an automated process. This section of the guide

discusses deployment methods that can be triggered manually, by script using the

command line, or triggered manually using Visual Studio.

In this section, you’ll accomplish the following tasks:

•	 Download and build the sample app.

•	 Create an Azure App Service web app using the Azure Cloud Shell.

•	 Deploy the sample app to Azure using Git.

•	 Deploy a change to the app using Visual Studio.

•	 Add a staging slot to the web app.

•	 Deploy an update to the staging slot.

•	 Swap the staging and production slots.

https://docs.microsoft.com/azure/app-service/

26

�Download and Test the App
The app used in this guide is a pre-built ASP.NET Core app, Simple Feed Reader. It’s a

Razor Pages app that uses the Microsoft.SyndicationFeed.ReaderWriter API to retrieve

an RSS/Atom feed and display the news items in a list.

Feel free to review the code, but it’s important to understand that there’s nothing

special about this app. It’s just a simple ASP.NET Core app for illustrative purposes.

From a command shell, download the code, build the project, and run it, as shown

in Figure 2-1.

Note  Linux/macOS users should make appropriate changes for paths, for
example, using forward slash (/) rather than back slash (\).

	 1.	 Clone the code to a folder on your local machine.

git clone https://github.com/Azure-Samples/simple-feed-reader/

	 2.	 Change your working folder to the simple-feed-reader folder that

was created.

cd .\simple-feed-reader\SimpleFeedReader

	 3.	 Restore the packages and build the solution.

dotnet build

	 4.	 Run the app.

dotnet run

Figure 2-1.  Command Prompt- dotnet run

Chapter 2 Zero to Azure in 60 Minutes

https://github.com/Azure-Samples/simple-feed-reader/

27

	 5.	 The dotnet run command is successful.

	 6.	 Open a browser and navigate to http://localhost:5000. The app

allows you to type or paste a syndication feed URL and view a list

of news items. Refer to Figure 2-2.

	 7.	 The app displaying the contents of an RSS feed.

	 8.	 Once you’re satisfied the app is working correctly, shut it down by

pressing Ctrl+C in the command shell.

Figure 2-2.  Simple Feed Reader

Chapter 2 Zero to Azure in 60 Minutes

28

�Create the Azure App Service Web App
To deploy the app, you’ll need to create an App Service web app. After creation of the

web app, you’ll deploy to it from your local machine using Git.

	 1.	 Sign in to the Azure Cloud Shell. Note: When you sign in for the

first time, Cloud Shell prompts to create a storage account for

configuration files. Accept the defaults or provide a unique name.

	 2.	 Use the Cloud Shell for the following steps:

•	 Declare a variable to store your web app’s name. The name must

be unique to be used in the default URL. Using the $RANDOM

Bash function to construct the name guarantees uniqueness and

results in the format webappname99999.

webappname=mywebapp$RANDOM

•	 Create a resource group. Resource groups provide a means to

aggregate Azure resources to be managed as a group.

az group create --location centralus --name AzureTutorial

The az command invokes the Azure CLI. The CLI can be

run locally but using it in the Cloud Shell saves time and

configuration.

•	 Create an App Service plan in the S1 tier. An App Service plan is a

grouping of web apps that share the same pricing tier. The S1 tier

isn’t free, but it’s required for the staging slots feature.

�az appservice plan create --name $webappname --resource-group

AzureTutorial --sku S1

•	 Create the web app resource using the App Service plan in the

same resource group.

�az webapp create --name $webappname --resource-group

AzureTutorial --plan $webappname

Chapter 2 Zero to Azure in 60 Minutes

https://docs.microsoft.com/azure/app-service/app-service-web-overview
https://shell.azure.com/bash
https://docs.microsoft.com/cli/azure/

29

•	 Set the deployment credentials. These deployment credentials

apply to all the web apps in your subscription. Don’t use special

characters in the user name.

�az webapp deployment user set --user-name REPLACE_WITH_USER_

NAME --password REPLACE_WITH_PASSWORD

•	 Configure the web app to accept deployments from local Git and

display the Git deployment URL. Note this URL for reference later.

�echo Git deployment URL: $(az webapp deployment source

config-local-git --name $webappname --resource-group

AzureTutorial --query url --output tsv)

•	 Display the web app URL. Browse to this URL to see the blank

web app. Note this URL for reference later.

echo Web app URL: http://$webappname.azurewebsites.net

	 3.	 Using a command shell on your local machine, navigate to

the web app’s project folder (e.g., .\simple-feed-reader\
SimpleFeedReader). Execute the following commands to set up

Git to push to the deployment URL:

•	 Add the remote URL to the local repository.

git remote add azure-prod GIT_DEPLOYMENT_URL

•	 Push the local master branch to the azure-prod remote’s master

branch.

git push azure-prod master

You’ll be prompted for the deployment credentials you created

earlier. Observe the output in the command shell. Azure builds

the ASP.NET Core app remotely.

Chapter 2 Zero to Azure in 60 Minutes

30

	 4.	 In a browser, navigate to the web app URL, and note the app has

been built and deployed. Additional changes can be committed

to the local Git repository with git commit. These changes are

pushed to Azure with the preceding git push command.

�Deployment with Visual Studio

Note T his section applies to Windows only. Linux and macOS users should make
the change described in step 2 below. Save the file and commit the change to the
local repository with git commit. Finally, push the change with git push, as in
the first section.

The app has already been deployed from the command shell. Let’s use Visual Studio’s

integrated tools to deploy an update to the app. Behind the scenes, Visual Studio

accomplishes the same thing as the command-line tooling, but within Visual Studio’s

familiar UI.

	 1.	 Open SimpleFeedReader.sln in Visual Studio.

	 2.	 In Solution Explorer, open Pages.cshtml. Change <h2>Simple Feed

Reader</h2> to <h2>Simple Feed Reader - V2</h2>.

	 3.	 Press Ctrl+Shift+B to build the app.

	 4.	 In Solution Explorer, right-click the project, and click Publish, as

shown in Figure 2-3.

Chapter 2 Zero to Azure in 60 Minutes

31

Figure 2-3.  Right-click, Publish

	 5.	 Visual Studio can create a new App Service resource, but this

update will be published over the existing deployment. In the Pick
a publish target dialog, select App Service from the list on the

left, and then select Existing. Click Publish.

	 6.	 In the App Service dialog, confirm that the Microsoft or

organizational account used to create your Azure subscription is

displayed in the upper right. If it’s not, click the drop-down and

add it.

Chapter 2 Zero to Azure in 60 Minutes

32

	 7.	 Confirm that the correct Azure Subscription is selected. For View,

select Resource Group. Expand the AzureTutorial resource

group, and then select the existing web app. Click OK. Refer to

Figure 2-4.

Figure 2-4.  Publish App Service dialog

Visual Studio builds and deploys the app to Azure. Browse to the web app

URL. Validate that the <h2> element modification is live. Refer to Figure 2-5.

Chapter 2 Zero to Azure in 60 Minutes

33

�Deployment Slots
Deployment slots support the staging of changes without impacting the app running

in production. Once the staged version of the app is validated by a quality assurance

team, the production and staging slots can be swapped. The app in staging is promoted

to production in this manner. The following steps create a staging slot, deploy some

changes to it, and swap the staging slot with production after verification.

	 1.	 Sign in to the Azure Cloud Shell, if not already signed in.

	 2.	 Create the staging slot.

•	 Create a deployment slot with the name staging.

�az webapp deployment slot create --name $webappname --resource-

group AzureTutorial --slot staging

•	 Configure the staging slot to use deployment from local Git

and get the staging deployment URL. Note this URL for
reference later.

Figure 2-5.  The app with the changed title

Chapter 2 Zero to Azure in 60 Minutes

https://shell.azure.com/bash

34

�echo Git deployment URL for staging: $(az webapp deployment

source config-local-git --name $webappname --resource-group

AzureTutorial --slot staging --query url --output tsv)

•	 Display the staging slot’s URL. Browse to the URL to see the

empty staging slot. Note this URL for reference later.

echo Staging web app URL: http://$webappname-staging.

azurewebsites.net

	 3.	 In a text editor or Visual Studio, modify Pages/Index.cshtml again

so that the <h2> element reads <h2>Simple Feed Reader -

V3</h2> and save the file.

	 4.	 Commit the file to the local Git repository, using either the

Changes page in Visual Studio’s Team Explorer tab or by entering

the following using the local machine’s command shell:

git commit -a -m "upgraded to V3"

	 5.	 Using the local machine’s command shell, add the staging

deployment URL as a Git remote, and push the committed

changes:

•	 Add the remote URL for staging to the local Git repository.

git remote add azure-staging <Git_staging_deployment_URL>

•	 Push the local master branch to the azure-staging remote’s master

branch.

git push azure-staging master

Wait while Azure builds and deploys the app.

	 6.	 To verify that V3 has been deployed to the staging slot, open two

browser windows. In one window, navigate to the original web

app URL. In the other window, navigate to the staging web app

URL. The production URL serves V2 of the app. The staging URL

serves V3 of the app. Refer to Figure 2-6.

Chapter 2 Zero to Azure in 60 Minutes

35

Figure 2-6.  Comparing the browser windows

Chapter 2 Zero to Azure in 60 Minutes

36

	 7.	 In the Cloud Shell, swap the verified/warmed-up staging slot into

production.

�az webapp deployment slot swap --name $webappname --resource-group

AzureTutorial --slot staging

	 8.	 Verify that the swap occurred by refreshing the two browser

windows. Refer to Figure 2-7.

Chapter 2 Zero to Azure in 60 Minutes

37

Figure 2-7.  Comparing the browser windows after the swap

Chapter 2 Zero to Azure in 60 Minutes

38

�Summary
In this section, the following tasks were completed:

•	 Downloaded and built the sample app.

•	 Created an Azure App Service web app using the Azure Cloud Shell.

•	 Deployed the sample app to Azure using Git.

•	 Deployed a change to the app using Visual Studio.

•	 Added a staging slot to the web app.

•	 Deployed an update to the staging slot.

•	 Swapped the staging and production slots.

In the next section, you’ll learn how to build a DevOps pipeline with Azure Pipelines.

�Additional Reading
•	 Web Apps overview

•	 Build a .NET Core and SQL Database web app in Azure App Service

•	 Configure deployment credentials for Azure App Service

•	 Set up staging environments in Azure App Service

�Continuous Integration and Deployment
In the previous chapter, you created a local Git repository for the Simple Feed Reader

app. In this chapter, you’ll publish that code to a GitHub repository and construct an

Azure DevOps Services pipeline using Azure Pipelines. The pipeline enables continuous

builds and deployments of the app. Any commit to the GitHub repository triggers a build

and a deployment to the Azure Web App’s staging slot.

In this section, you’ll complete the following tasks:

•	 Publish the app’s code to GitHub.

•	 Disconnect local Git deployment.

Chapter 2 Zero to Azure in 60 Minutes

https://docs.microsoft.com/azure/app-service/app-service-web-overview
https://docs.microsoft.com/azure/app-service/app-service-web-tutorial-dotnetcore-sqldb
https://docs.microsoft.com/azure/app-service/app-service-deployment-credentials
https://docs.microsoft.com/azure/app-service/web-sites-staged-publishing

39

•	 Create an Azure DevOps organization.

•	 Create a team project in Azure DevOps Services.

•	 Create a build definition.

•	 Create a release pipeline.

•	 Commit changes to GitHub, and automatically deploy to Azure.

•	 Examine the Azure Pipelines pipeline.

�Publish the App’s Code to GitHub

	 1.	 Open a browser window and navigate to https://github.com.

	 2.	 Click the + drop-down in the header, and select New repository

(refer to Figure 2-8):

Figure 2-8.  GitHub New Repository option

	 3.	 Select your account in the Owner drop-down, and enter simple-

feed-reader in the Repository name text box.

	 4.	 Click the Create repository button.

	 5.	 Open your local machine’s command shell. Navigate to the

directory in which the simple-feed-reader Git repository is stored.

	 6.	 Rename the existing origin remote to upstream. Execute the

following command:

git remote rename origin upstream

Chapter 2 Zero to Azure in 60 Minutes

https://github.com

40

	 7.	 Add a new origin remote pointing to your copy of the repository

on GitHub. Execute the following command:

�git remote add origin https://github.com/<GitHub_username>/simple-

feed-reader/

	 8.	 Publish your local Git repository to the newly created GitHub

repository. Execute the following command:

git push -u origin master

	 9.	 Open a browser window and navigate to https://github.

com/<GitHub_username>/simple-feed-reader/. Validate that

your code appears in the GitHub repository.

�Disconnect Local Git Deployment
Remove the local Git deployment with the following steps. Azure Pipelines (an Azure

DevOps Service) both replaces and augments that functionality.

	 1.	 Open the Azure portal, and navigate to the staging

(mywebapp<unique_number>/staging) web app. The web app can

be quickly located by entering staging in the portal’s search box

(refer to Figure 2-9):

Figure 2-9.  Staging web app search term

	 2.	 Click Deployment options. A new panel appears. Click

Disconnect to remove the local Git source control configuration

that was added in the previous chapter. Confirm the removal

operation by clicking the Yes button.

	 3.	 Navigate to the mywebapp App Service. As a reminder, the portal’s

search box can be used to quickly locate the App Service.

	 4.	 Click Deployment options. A new panel appears. Click

Disconnect to remove the local Git source control configuration

that was added in the previous chapter. Confirm the removal

operation by clicking the Yes button.

Chapter 2 Zero to Azure in 60 Minutes

https://github.com/<GitHub_username>/simple-feed-reader/
https://github.com/<GitHub_username>/simple-feed-reader/
https://portal.azure.com/

41

�Create an Azure DevOps Organization

	 1.	 Open a browser, and navigate to the Azure DevOps organization

creation page.

	 2.	 Type a unique name into the Pick a memorable name text box to

form the URL for accessing your Azure DevOps organization.

	 3.	 Select the Git radio button, since the code is hosted in a GitHub

repository.

	 4.	 Click the Continue button. After a short wait, an account

and a team project, named MyFirstProject, are created. Refer to

Figure 2-10.

Figure 2-10.  Azure DevOps organization creation page

	 5.	 Open the confirmation email indicating that the Azure DevOps

organization and project are ready for use. Click the Start your
project button (refer to Figure 2-11):

Chapter 2 Zero to Azure in 60 Minutes

https://go.microsoft.com/fwlink/?LinkId=307137
https://go.microsoft.com/fwlink/?LinkId=307137

42

	 6.	 A browser opens to <account_name>.visualstudio.com. Click

the MyFirstProject link to begin configuring the project’s DevOps

pipeline.

�Configure the Azure Pipelines Pipeline
There are three distinct steps to complete. Completing the steps in the following three

sections results in an operational DevOps pipeline.

�Grant Azure DevOps Access to the GitHub Repository

	 1.	 Expand the or build code from an external repository

accordion. Click the Setup Build button (refer to Figure 2-12):

Figure 2-12.  Setup Build button

Figure 2-11.  Start your project button

	 2.	 Select the GitHub option from the Select a source section

(refer to Figure 2-13):

Chapter 2 Zero to Azure in 60 Minutes

http://visualstudio.com

43

	 3.	 Authorization is required before Azure DevOps can access your

GitHub repository. Enter GitHub connection in the Connection
name text box, as shown in Figure 2-14. For example:

Figure 2-13.  Select a source – GitHub

Figure 2-14.  GitHub connection name

	 4.	 If two-factor authentication is enabled on your GitHub account, a

personal access token is required. In that case, click the Authorize
with a GitHub personal access token link. See the official GitHub

personal access token creation instructions for help. Only the repo

scope of permissions is needed. Otherwise, click the Authorize
using OAuth button.

	 5.	 When prompted, sign in to your GitHub account. Then select

Authorize to grant access to your Azure DevOps organization.

If successful, a new service endpoint is created.

Chapter 2 Zero to Azure in 60 Minutes

https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/

44

	 6.	 Click the ellipsis button next to the Repository button. Select the /

simple-feed-reader repository from the list. Click the Select button.

	 7.	 Select the master branch from the Default branch for manual
and scheduled builds drop-down. Click the Continue button.

The template selection page appears.

�Create the Build Definition

	 1.	 From the template selection page, enter ASP.NET Core in the

search box, as shown in Figure 2-15:

Figure 2-15.  ASP.NET Core search on template page

	 2.	 The template search results appear. Hover over the ASP.NET Core

template, and click the Apply button.

	 3.	 The Tasks tab of the build definition appears. Click the Triggers

tab.

	 4.	 Check the Enable continuous integration box. Under the Branch
filters section, confirm that the Type drop-down is set to Include.

Set the Branch specification drop-down to master, as shown in

Figure 2-16.

Chapter 2 Zero to Azure in 60 Minutes

45

These settings cause a build to trigger when any change is pushed

to the master branch of the GitHub repository. Continuous

integration is tested in the Commit changes to GitHub and

automatically deploy to Azure section.

	 5.	 Click the Save & queue button, and select the Save option, as

shown in Figure 2-17:

Figure 2-16.  Enable continuous integration settings

Figure 2-17.  Save button

	 6.	 The following modal dialog appears, as shown in Figure 2-18:

Chapter 2 Zero to Azure in 60 Minutes

46

Use the default folder of \ and click the Save button.

�Create the Release Pipeline

	 1.	 Click the Releases tab of your team project. Click the New
pipeline button. Refer to Figure 2-19.

Figure 2-18.  Save build definition – modal dialog

Figure 2-19.  Releases tab – new definition button

Chapter 2 Zero to Azure in 60 Minutes

47

The template selection pane appears.

	 2.	 From the template selection page, enter App Service in the

search box, as shown in Figure 2-20:

	 3.	 The template search results appear. Hover over the Azure App
Service Deployment with Slot template, and click the Apply

button. The Pipeline tab of the release pipeline appears, as shown

in Figure 2-21.

Figure 2-20.  Release pipeline template search box

Figure 2-21.  Release pipeline tab

	 4.	 Click the Add button in the Artifacts box. The Add artifact panel

appears, as shown in Figure 2-22:

Chapter 2 Zero to Azure in 60 Minutes

48

	 5.	 Select the Build tile from the Source type section. This type allows

for the linking of the release pipeline to the build definition.

	 6.	 Select MyFirstProject from the Project drop-down.

	 7.	 Select the build definition name, MyFirstProject-ASP.NET Core-CI,

from the Source (Build definition) drop-down.

	 8.	 Select Latest from the Default version drop-down. This option

builds the artifacts produced by the latest run of the build

definition.

	 9.	 Replace the text in the Source alias text box with Drop.

	 10.	 Click the Add button. The Artifacts section updates to display the

changes.

	 11.	 Click the lightning bolt icon to enable continuous deployments, as

shown in Figure 2-23:

Figure 2-22.  Release pipeline –Add artifact panel

Chapter 2 Zero to Azure in 60 Minutes

49

With this option enabled, a deployment occurs each time a new build

is available.

	 12.	 A Continuous deployment trigger panel appears to the right. Click

the toggle button to enable the feature. It isn’t necessary to enable the

Pull request trigger.

	 13.	 Click the Add drop-down in the Build branch filters section. Choose the

Build Definition’s default branch option. This filter causes the release

to trigger only for a build from the GitHub repository’s master branch.

	 14.	 Click the Save button. Click the OK button in the resulting Save

modal dialog.

	 15.	 Click the Environment 1 box. An Environment panel appears to the

right. Change the Environment 1 text in the Environment name text

box to Production, as shown in Figure 2-24.

Figure 2-23.  Release pipeline artifacts – lightning bolt icon

Figure 2-24.  Release pipeline – Environment name text

Chapter 2 Zero to Azure in 60 Minutes

50

	 16.	 Click the 1 phase, 2 tasks link in the Production box, as shown in

Figure 2-25:

The Tasks tab of the environment appears.

	 17.	 Click the Deploy Azure App Service to Slot task. Its settings

appear in a panel to the right.

	 18.	 Select the Azure subscription associated with the App Service

from the Azure subscription drop-down. Once selected, click the

Authorize button.

	 19.	 Select web app from the App type drop-down.

	 20.	 Select mywebapp/ from the App service name drop-down.

	 21.	 Select AzureTutorial from the Resource group drop-down.

	 22.	 Select staging from the Slot drop-down.

	 23.	 Click the Save button.

	 24.	 Hover over the default release pipeline name. Click the pencil

icon to edit it. Use MyFirstProject-ASP.NET Core-CD as the name,

as shown in Figure 2-26.

Figure 2-25.  Release pipeline – production environment link.png

Chapter 2 Zero to Azure in 60 Minutes

51

	 25.	 Click the Save button.

�Commit Changes to GitHub and Automatically Deploy
to Azure

	 1.	 Open SimpleFeedReader.sln in Visual Studio.

	 2.	 In Solution Explorer, open Pages.cshtml. Change <h2>Simple Feed

Reader - V3</h2> to <h2>Simple Feed Reader - V4</h2>.

	 3.	 Press Ctrl+Shift+B to build the app.

	 4.	 Commit the file to the GitHub repository. Use either the Changes

page in Visual Studio’s Team Explorer tab, or execute the following

using the local machine’s command shell:

git commit -a -m "upgraded to V4"

	 5.	 Push the change in the master branch to the origin remote of your

GitHub repository:

git push origin master

The commit appears in the GitHub repository’s master branch,

as shown in Figure 2-27:

Figure 2-26.  Release pipeline name

Figure 2-27.  GitHub commit in master branch

Chapter 2 Zero to Azure in 60 Minutes

52

The build is triggered, since continuous integration is enabled in

the build definition’s Triggers tab, as shown in Figure 2-28:

	 6.	 Navigate to the Queued tab of the Azure Pipelines ➤ Builds page

in Azure DevOps Services. The queued build shows the branch

and commit that triggered the build, as shown in Figure 2-29:

	 7.	 Once the build succeeds, a deployment to Azure occurs. Navigate

to the app in the browser. Notice that the “V4” text appears in the

heading, as shown in Figure 2-30:

Figure 2-28.  Enable continuous integration

Figure 2-29.  Queued build

Figure 2-30.  Updated app

Chapter 2 Zero to Azure in 60 Minutes

53

�Examine the Azure Pipelines pipeline
�Build definition

A build definition was created with the name MyFirstProject-ASP.NET Core-CI. Upon

completion, the build produces a .zip file including the assets to be published. The

release pipeline deploys those assets to Azure.

The build definition’s Tasks tab lists the individual steps being used. There are five

build tasks, as shown in Figure 2-31.

Figure 2-31.  Build definition tasks

Chapter 2 Zero to Azure in 60 Minutes

54

	 1.	 Restore: Executes the dotnet restore command to restore the

app’s NuGet packages. The default package feed used is nuget.org.

	 2.	 Build: Executes the dotnet build --configuration release

command to compile the app’s code. This --configuration

option is used to produce an optimized version of the code,

which is suitable for deployment to a production environment.

Modify the BuildConfiguration variable on the build definition’s

Variables tab if, for example, a debug configuration is needed.

	 3.	 Test: Executes the dotnet test --configuration release

--logger trx --results-directory <local_path_on_build_

agent> command to run the app’s unit tests. Unit tests are

executed within any C## project matching the **/*Tests/*.

csproj glob pattern. Test results are saved in a .trx file at the

location specified by the --results-directory option. If any tests

fail, the build fails and isn’t deployed.

Note T o verify the unit tests work, modify SimpleFeedReader.Tests.cs to
purposefully break one of the tests. For example, change Assert.True(result.
Count > 0); to Assert.False(result.Count > 0); in the Returns_
News_Stories_Given_Valid_Uri method. Commit and push the change to
GitHub. The build is triggered and fails. The build pipeline status changes to failed.
Revert the change, commit, and push again. The build succeeds.

	 4.	 Publish: Executes the dotnet publish --configuration

release --output <local_path_on_build_agent> command to

produce a .zip file with the artifacts to be deployed. The --output

option specifies the publish location of the .zip file. That location

is specified by passing a predefined variable named $(build.

artifactstagingdirectory). That variable expands to a local

path, such as ∗c:_work, on the build agent.

Chapter 2 Zero to Azure in 60 Minutes

http://nuget.org
https://docs.microsoft.com/vsts/pipelines/build/variables

55

	 5.	 Publish Artifact: Publishes the .zip file produced by the Publish

task. The task accepts the .zip file location as a parameter, which

is the predefined variable $(build.artifactstagingdirectory).

The .zip file is published as a folder named drop.

Click the build definition’s Summary link to view a history of builds with the

definition, as shown in Figure 2-32:

Figure 2-32.  Build definition history

On the resulting page, click the link corresponding to the unique build number,

as shown in Figure 2-33:

Figure 2-33.  Build definition summary page

A summary of this specific build is displayed. Click the Artifacts tab, and notice the

drop folder produced by the build is listed, as shown in Figure 2-34:

Chapter 2 Zero to Azure in 60 Minutes

56

Use the Download and Explore links to inspect the published artifacts.

�Release Pipeline

A release pipeline was created with the name MyFirstProject-ASP.NET Core-CD,

as shown in Figure 2-35:

Figure 2-34.  Build definition artifacts – drop folder

Figure 2-35.  Release pipeline overview

Chapter 2 Zero to Azure in 60 Minutes

57

The two major components of the release pipeline are the Artifacts and the

Environments. Clicking the box in the Artifacts section reveals the following panel, as

shown in Figure 2-36:

Figure 2-36.  Release pipeline artifacts

The Source (Build definition) value represents the build definition to which this

release pipeline is linked. The .zip file produced by a successful run of the build definition

is provided to the Production environment for deployment to Azure. Click the 1 phase, 2

tasks link in the Production environment box to view the release pipeline tasks, as shown

in Figure 2-37:

Figure 2-37.  Release pipeline tasks

Chapter 2 Zero to Azure in 60 Minutes

58

The release pipeline consists of two tasks: Deploy Azure App Service to Slot and

Manage Azure App Service – Slot Swap. Clicking the first task reveals the following task

configuration, as shown in Figure 2-38:

The Azure subscription, service type, web app name, resource group, and

deployment slot are defined in the deployment task. The Package or folder text

box holds the .zip file path to be extracted and deployed to the staging slot of the

mywebapp<unique_number> web app.

Figure 2-38.  Release pipeline deploy task

Chapter 2 Zero to Azure in 60 Minutes

59

Clicking the slot swap task reveals the following task configuration, as shown in

Figure 2-39:

The subscription, resource group, service type, web app name, and deployment slot

details are provided. The Swap with Production check box is checked. Consequently,

the bits deployed to the staging slot are swapped into the production environment.

Figure 2-39.  Release pipeline slot swap task

Chapter 2 Zero to Azure in 60 Minutes

60

�Additional Reading
•	 Create your first pipeline with Azure Pipelines

•	 Build and .NET Core project

•	 Deploy a web app with Azure Pipelines

�Monitor and Debug
Having deployed the app and built a DevOps pipeline, it’s important to understand how

to monitor and troubleshoot the app.

In this section, you’ll complete the following tasks:

•	 Find basic monitoring and troubleshooting data in the Azure portal.

•	 Learn how Azure Monitor provides a deeper look at metrics across all

Azure services.

•	 Connect the web app with Application Insights for app profiling.

•	 Turn on logging and learn where to download logs.

•	 Stream logs in real time.

•	 Learn where to set up alerts.

•	 Learn about remote debugging Azure App Service web apps.

�Basic Monitoring and Troubleshooting
App Service web apps are easily monitored in real time. The Azure portal renders

metrics in easy-to-understand charts and graphs.

	 1.	 Open the Azure portal, and then navigate to the

mywebapp<unique_number> App Service.

	 2.	 The Overview tab displays useful ”at-a-glance” information,

including graphs displaying recent metrics, as shown in

Figure 2-40.

Chapter 2 Zero to Azure in 60 Minutes

https://portal.azure.com

61

–– Http 5xx: Count of server-side errors, usually exceptions in ASP.NET Core

code.

–– Data In: Data ingress coming into your web app.

–– Data Out: Data egress from your web app to clients.

–– Requests: Count of HTTP requests.

–– Average Response Time: Average time for the web app to respond to HTTP

requests.

Figure 2-40.  Overview panel

Chapter 2 Zero to Azure in 60 Minutes

62

Several self-service tools for troubleshooting and optimization are

also found on this page, as shown in Figure 2-41.

–– Diagnose and solve problems is a self-service troubleshooter.

–– Application Insights is for profiling performance and app behavior,

and is discussed later in this section.

–– App Service Advisor makes recommendations to tune your

app experience.

Figure 2-41.  Self-service tools

Chapter 2 Zero to Azure in 60 Minutes

63

�Advanced Monitoring
Azure Monitor is the centralized service for monitoring all metrics and setting alerts

across Azure services. Within Azure Monitor, administrators can granularly track

performance and identify trends. Each Azure service offers its own set of metrics to

Azure Monitor.

�Profile with Application Insights
Application Insights is an Azure service for analyzing the performance and stability of

web apps and how users use them. The data from Application Insights is broader and

deeper than that of Azure Monitor. The data can provide developers and administrators

with key information for improving apps. Application Insights can be added to an Azure

App Service resource without code changes.

	 1.	 Open the Azure portal, and then navigate to the

mywebapp<unique_number> App Service.

	 2.	 From the Overview tab, click the Application Insights tile, as

shown in Figure 2-42.

Figure 2-42.  Application Insights tile

	 3.	 Select the Create new resource radio button. Use the default

resource name and select the location for the Application Insights

resource. The location doesn’t need to match that of your

web app, as shown in Figure 2-43.

Chapter 2 Zero to Azure in 60 Minutes

https://docs.microsoft.com/azure/monitoring-and-diagnostics/
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://portal.azure.com

64

Figure 2-43.  Application Insights setup

Chapter 2 Zero to Azure in 60 Minutes

65

	 4.	 For Runtime/Framework, select ASP.NET Core. Accept the

default settings.

	 5.	 Select OK. If prompted to confirm, select Continue.

	 6.	 After the resource has been created, click the name of Application

Insights resource to navigate directly to the Application Insights

page, as shown in Figure 2-44.

As the app is used, data accumulates. Select Refresh to reload the blade with new data,

as shown in Figure 2-45.

Figure 2-44.  New Application Insights resource is ready

Chapter 2 Zero to Azure in 60 Minutes

66

Figure 2-45.  Application Insights overview tab

Chapter 2 Zero to Azure in 60 Minutes

67

Application Insights provides useful server-side information with no additional

configuration. To get the most value from Application Insights, instrument your app with

the Application Insights SDK. When properly configured, the service provides end-to-

end monitoring across the web server and browser, including client-side performance.

For more information, see the Application Insights documentation.

�Logging
Web server and app logs are disabled by default in Azure App Service. Enable the logs

with the following steps:

	 1.	 Open the Azure portal, and navigate to the mywebapp<unique_

number> App Service.

	 2.	 In the menu to the left, scroll down to the Monitoring section.

Select Diagnostics logs, as shown in Figure 2-46.

Figure 2-46.  Diagnostic logs link

	 3.	 Turn on Application Logging (Filesystem). If prompted, click the

box to install the extensions to enable app logging in the web app.

	 4.	 Set Web server logging to File System.

	 5.	 Enter the Retention Period in days. For example, 30.

	 6.	 Click Save.

ASP.NET Core and web server (App Service) logs are generated for the web app.

They can be downloaded using the FTP/FTPS information displayed. The password is

Chapter 2 Zero to Azure in 60 Minutes

https://docs.microsoft.com/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://portal.azure.com

68

the same as the deployment credentials created earlier in this guide. The logs can be

streamed directly to your local machine with PowerShell or Azure CLI. Logs can also be

viewed in Application Insights.

�Log Streaming
App and web server logs can be streamed in real time through the portal.

	 1.	 Open the Azure portal, and navigate to the mywebapp<unique_

number> App Service.

	 2.	 In the menu to the left, scroll down to the Monitoring section and

select Log stream, as shown in Figure 2-47.

Figure 2-47.  Log stream link

Logs can also be streamed via Azure CLI or Azure PowerShell, including through the

Cloud Shell.

�Alerts
Azure Monitor also provides real-time alerts based on metrics, administrative events,

and other criteria.

Note  Currently alerting on web app metrics is only available in the Alerts (classic)
service.

Chapter 2 Zero to Azure in 60 Minutes

https://portal.azure.com
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-alerts-portal

69

The Alerts (classic) service can be found in Azure Monitor or under the Monitoring

section of the App Service settings, as shown in Figure 2-48.

�Live Debugging
Azure App Service can be debugged remotely with Visual Studio when logs don’t provide

enough information. However, remote debugging requires the app to be compiled with

debug symbols. Debugging shouldn’t be done in production, except as a last resort.

�Conclusion
In this section, you completed the following tasks:

•	 Find basic monitoring and troubleshooting data in the Azure portal.

•	 Learn how Azure Monitor provides a deeper look at metrics across all

Azure services.

•	 Connect the web app with Application Insights for app profiling.

•	 Turn on logging and learn where to download logs.

•	 Stream logs in real time.

•	 Learn where to set up alerts.

•	 Learn about remote debugging Azure App Service web apps.

Figure 2-48.  Alerts (classic) link

Chapter 2 Zero to Azure in 60 Minutes

https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitor-quick-resource-metric-alert-portal

70

�Additional Reading
•	 Troubleshoot ASP.NET Core on Azure App Service

•	 Common errors reference for Azure App Service and IIS with ASP.

NET Core

•	 Monitor Azure web app performance with Application Insights

•	 Enable diagnostics logging for web apps in Azure App Service

•	 Troubleshoot a web app in Azure App Service using Visual Studio

•	 Create classic metric alerts in Azure Monitor for Azure

services – Azure portal

�Wrap Up
With Azure App Service and Azure DevOps, ASP.NET Core developers have powerful,

professional-grade tools to build business-critical application.

Chapter 2 Zero to Azure in 60 Minutes

https://docs.microsoft.com/aspnet/core/host-and-deploy/azure-apps/troubleshoot
https://docs.microsoft.com/aspnet/core/host-and-deploy/azure-iis-errors-reference
https://docs.microsoft.com/aspnet/core/host-and-deploy/azure-iis-errors-reference
https://docs.microsoft.com/azure/application-insights/app-insights-azure-web-apps
https://docs.microsoft.com/azure/app-service/web-sites-enable-diagnostic-log
https://docs.microsoft.com/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-alerts-portal
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-alerts-portal

71
© Jeffrey Palermo 2019
J. Palermo, .NET DevOps for Azure, https://doi.org/10.1007/978-1-4842-5343-4_3

CHAPTER 3

The Professional-Grade
DevOps Environment
As we equip our team with a professional-grade environment, we need a model by which

we can know what we are missing. This model is a depiction of a complete environment

set up for DevOps success. The name for this model is Onion DevOps Architecture, as

shown in Figure 3-1.

Figure 3-1.  The Onion DevOps Architecture model for a complete DevOps
environment

72

You can see that the automated DevOps pipeline is at the center of the onion – the

center of the model. The layers surrounding it are successive capabilities with which

the team is equipped. Each capability has a strategy, method of execution, and method

of measurement. Once equipped with all the capabilities, the process happens in very

short cycles, and is expected to accelerate with maturity. We will dive deeper into Onion

DevOps Architecture later in this book. To continue defining the professional-grade

DevOps environment, it’s interesting to reflect on the current state of DevOps in the

industry.

�The State of DevOps
Several organizations are performing ongoing research into the advancement of DevOps

methods across the industry. Puppet and DORA are two that stand out. Microsoft has

sponsored the DORA State of DevOps Report. Sam Guckenheimer is the product owner

for all Azure DevOps products at Microsoft and contributed to the report. He also spoke

about that on his recent interview with the Azure DevOps Podcast, which can be found

at http://azuredevopspodcast.clear-measure.com/sam-guckenheimer-on-testing-

data-collection-and-the-state-of-devops-report-episode-003.

A key finding of DORA’s State of DevOps Report was that elite performers take full

advantage of automation. From builds to testing to deployments and even security

configuration changes, elite performers have a seven times lower change failure rate and

over 2,000 times faster time to recover from incidents.

Other key texts that have led the industry’s definition of DevOps are a series of books,

all including Jez Humble. The progression in which you should read them is

•	 The Phoenix Project: A Novel about IT, DevOps, and Helping Your

Business Win, by Kim, Spafford, and BehrI

•	 Continuous Delivery: Reliable Software Releases through Build, Test,

and Deployment Automation, by Farley and HumbleII

I�Kim, Behr, & Spafford, The Phoenix Project: A Novel About IT, DevOps, and Helping Your
Business Win, 2013

II�Humble, 2010

Chapter 3 The Professional-Grade DevOps Environment

http://azuredevopspodcast.clear-measure.com/sam-guckenheimer-on-testing-data-collection-and-the-state-of-devops-report-episode-003
http://azuredevopspodcast.clear-measure.com/sam-guckenheimer-on-testing-data-collection-and-the-state-of-devops-report-episode-003

73

•	 The DevOps Handbook: How to Create World-Class Agility, Reliability,

and Security in Technology Organizations, by Kim, Humble, and

DeboisIII

If you are just getting into DevOps, don’t be discouraged. The industry is still figuring

out what it is too, but there are now plenty of success stories to learn from.

�Removing the Ambiguity from DevOps
In the community of large enterprise software organizations, many define DevOps as

development and operations coming together and working together from development

through operations. This is likely the case in many organizations, but I want to propose

what DevOps will likely be as you look back on this era 20 years from now from a time

when your worldview isn’t colored by the problems of today.

In the 1950s there were no operating systems. Therefore, there was no opportunity

for multiple programs to run at the same time on a computer. There was no opportunity

for one programmer to have a program that interfered with the program of another.

There was no need for this notion of operations. The human who wrote the program also

loaded the program. That person also ran the program and evaluated its output.

Fast-forward to the era of the terminal mainframe server. In this era, a programmer

could load a program, and it had the potential of causing problems for the other users

of the mainframe. In this era, it became someone’s job to keep the mainframe operating

for the growing pool of mainframe users. Even if you have never programmed for a

mainframe, you might remember using Pine for email. This was popular at universities

in the 1990s. If this predates you, you can see it in Figure 3-2.

III�Kim, Debois, Willis, & Humble, 2016

Chapter 3 The Professional-Grade DevOps Environment

74

I believe that the DevOps movement is the correction of a software culture problem

that began with the mainframe era. Because multiuser computers, soon to be called

servers, became relied upon by an increasing number of people, companies had to

ensure that they remained operational. This transformed data processing departments

into IT departments. All of the IT assets need to run smoothly. Groups that sought

to change what was running on them became known as developers, although I still

call myself a computer programmer. Those who’re responsible for stable operations

of the software in production environments are known as operations, filled with IT

professionals, systems engineers, etc.

I believe you’re going to look back at the DevOps era and see that it’s not a new thing

you’re creating but an undoing of a big, costly mistake over two or three decades. Instead

of bringing together two departments so that they work together, you’ll have eliminated

these two distinct departments and will have emerged with one type of persona: the

software engineer. Smaller companies, by the way, don’t identify with all the talk of

development and operations working together because they never made this split in

the first place. There are thousands upon thousands of software organizations that

have always been responsible for operating what they build. And with the Azure cloud,

any infrastructure operation becomes like electricity and telephone service, which

companies have always relied on outside parties to provide.

Figure 3-2.  Pine was a popular Unix mainframe email client in the 1990s (Photo
credit: Wikipedia https://upload.wikimedia.org/wikipedia/en/c/ce/
PineScreenShot.png)

Chapter 3 The Professional-Grade DevOps Environment

https://upload.wikimedia.org/wikipedia/en/c/ce/PineScreenShot.png
https://upload.wikimedia.org/wikipedia/en/c/ce/PineScreenShot.png

75

Microsoft has already reorganized their Azure DevOps department in this fashion.

There is no notion of two departments working together. They eliminated the divide by

making one department staffed with two roles:

•	 Program manager

•	 Engineer

I believe this type of consolidation will happen all across the industry. Although

there’s always room for specialists in very narrow disciplines, software organizations

will require the computer programmer to be able to perform all of the tasks necessary to

deliver something they envisioned as it’s built and operated.

�A Professional-Grade DevOps Vision
When you look at your own organization, you’re probably in the camp where you want

better quality and better speed. Your form of quality may be fewer bugs. It may be

fewer problems in production. It may be more uptime or better handling of user load

spikes. When you think of speed, you may be thinking about developing new features.

But business executives may be thinking about reducing the lead time between when

they fund a strategic initiative and when they’re able to launch the software to support

it. Regardless of the specific issues, it seems to always come down to quality and

speed. That’s when you need Capers Jones, your industry’s leading software research

statistician. In his recent book, Software Engineering Best Practices, he demonstrates

research that proves two points:

•	 Prioritizing speed causes shortcuts, which causes defects, which

causes rework, which depletes speed. Therefore, prioritizing speed

achieves neither speed nor quality.

•	 Prioritizing quality reduces defects, which reduces rework, which

directs all work capacity to the next feature. Therefore, prioritizing

quality achieves speed as well.

You want to design a DevOps environment that squeezes out defects all along the

way. You can do this by automating the repetitive tasks and taking them away from the

human. Humans are not good at repetitive tasks. Computers are much better at such

things. But humans are very good at solving problems. Computers are not good at

Chapter 3 The Professional-Grade DevOps Environment

76

“thinking outside the box.” The following capabilities are my vision for a professional-

grade DevOps environment:

•	 Private build

•	 Continuous integration build

•	 Static code analysis

•	 Release candidate versioning and packaging

•	 Environment provisioning and configuration

•	 Minimum of a three-tier deployment pipeline

•	 Production diagnostics managed by development team

•	 Insanely short cycle time through the previous steps

You don’t need an infrastructure like Netflix in order to accomplish this. In fact,

you can set this up with a skeleton architecture even before you’ve written your first

feature or screen for a new application. And you can retrofit your current software into

an environment like this as well. You want to keep in mind the 80/20 rule and gain these

new capabilities without adding to much scope or trying to “boil the ocean” in your first

iteration.

�DevOps Architecture
Let’s walk through the process that a DevOps environment manages. Figure 3-3 shows

the logical structure of a DevOps environment. The full-sized image can be downloaded

from https://jeffreypalermo.com/2018/08/applying-41-architecture-

blueprints-to-continuous-delivery/.

Chapter 3 The Professional-Grade DevOps Environment

https://jeffreypalermo.com/2018/08/applying-41-architecture-blueprints-to-continuous-delivery/
https://jeffreypalermo.com/2018/08/applying-41-architecture-blueprints-to-continuous-delivery/

77

As I walk through this, I’ll take the stages one at a time.

�Version Control
First, you must structure your version control system properly. In today’s world, you’re

using Git. Everything that belongs to the application should be stored in source control.

That’s the guiding principle. Database schema scripts should be there. PowerShell scripts

to configure environments should go there. Documents that outline how to get started

developing the application should go there. Once you embrace that principle, you’ll

step back and determine what exceptions might apply to your situation. For instance,

because Git doesn’t handle differences in binary files very well, you may elect not to store

lots and lots of versions of very big Visio files. And if you move to .NET core, where even

the framework has become NuGet packages, you may elect to not store your /packages

folder like you might have with .NET Framework applications. But the Git repository is

the unit of versioning, so if you have to go back in time to last month, you want to ensure

that everything from last month is correct when you pull it from the Git repository.

Everything that belongs to the application should be stored in source control. That’s
the guiding principle. Database schema scripts should be there.

Figure 3-3.  The logical architecture layer of a DevOps environment

Chapter 3 The Professional-Grade DevOps Environment

78

�Private Build
The next step to configure properly is the private build. This should run automated

unit tests and component-level integration tests on a local workstation. Only if this

private build works properly and passes should you commit and push your changes

to the Git server. This private build is the basis of the continuous integration build, so

you want it to run in as short a period of time as possible. No more than 10 minutes is

widely accepted industry guidance. For new applications that are just getting started,

45 seconds is normal and will show that you’re on the right track. This time should

include running two levels of automated test suites: your unit tests and component-level

integration tests.

�Continuous Integration Build
The continuous integration build is often abbreviated “CI Build.” This build runs all

the steps in the private build, for starters. It’s a separate server, away from the nuances

of configuration on your local developer workstation. It runs on a server that has the

team-determined configuration necessary for your software application. If it breaks at

this stage, a team member knows that they need to back out their change and try again.

Some teams have a standard to allow for “I forgot to commit a file” build breaks. In this

case, the developer has one shot to commit again and fix the build. If this isn’t achieved

immediately, the commit is reverted so that the build works again. There’s no downside

to this because in Git, you never actually lose a commit. The developer who broke

the build can check out the commit they were last working on and try again once the

problem is fixed.

The continuous integration build is the first centralized quality gate. Capers Jones’

research,IV referenced earlier, also concludes that three quality control techniques can

reliably elevate a team’s defect removal efficiency (DRE) up to 95%. The three quality

control techniques are testing, static code analysis, and inspections. Inspections are

covered later in a discussion of pull requests, but static code analysis should be included

in the continuous integration build. Plenty of options exist, and these options integrate

with Azure DevOps Services very easily.

IV�Jones, 2016

Chapter 3 The Professional-Grade DevOps Environment

79

STATIC CODE ANALYSIS

Static code analysis is the technique of running an automated analyzer across compiled

code or code in source form in order to find defects. These defects could be noncompliance

to established standards. These defects could be patterns known in the industry to result in

runtime errors. Security defects can also be found by analyzing known patterns of code or the

usage of the library versions with published vulnerabilities. Some of the more popular static

code analysis tools are

Visual Studio Code Analysis (https://docs.microsoft.com/en-us/visualstudio/

code-quality/code-analysis-for-managed-code-overview?view=vs-2017

ReSharper command-line tools (www.jetbrains.com/resharper/download/index.

html#section=resharper-clt)

Ndepend (https://marketplace.visualstudio.com/items?itemName=ndepend.

ndependextension)

SonarQube (https://marketplace.visualstudio.com/items?itemName=

SonarSyource.sonarqube)

The CI build also runs as many automated tests as possible in 10 minutes.

Frequently, all of the unit tests and component-level integration tests can be included.

These integration tests are not full-system tests but are tests and that validate the

functionality of one or two components of the application that require code that calls

outside of the .NET AppDomain. Examples are code that relies on round trips to the

database or code that pushes data onto a queue or file system. This code that crosses an

AppDomain or process boundary is orders of magnitude slower than code that keeps

only to the AppDomain memory space. This type of test organization heavily impacts CI

build times.

The CI build is also responsible for producing the versioned release candidate

package. Whether you package your application components in NuGet packages or zip

files, you need organized packaging. Each package needs to be named and numbered

with the build version. Because you’re only building this once, regardless of how many

environments you deploy to, it’s important that this package contains everything

necessary to provision, configure, and install the application component on downstream

environments. Note that this doesn’t include credentials or environment-specific

Chapter 3 The Professional-Grade DevOps Environment

https://docs.microsoft.com/en-us/visualstudio/code-quality/code-analysis-for-managed-code-overview?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-analysis-for-managed-code-overview?view=vs-2017
http://www.jetbrains.com/resharper/download/index.html#section=resharper-clt
http://www.jetbrains.com/resharper/download/index.html#section=resharper-clt
https://marketplace.visualstudio.com/items?itemName=ndepend.ndependextension
https://marketplace.visualstudio.com/items?itemName=ndepend.ndependextension
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube

80

settings. Every assembly inside this package must be stamped with the build number.

Make sure you use the right command-line arguments when you compile so that all

produced assemblies receive the build number. The following snippet shows an example

of this with parameters configured as PowerShell variables:

dotnet build $syource_dir\$projectName.sln -nologo

 --no-restore -v $verbosity -maxcpucount

 --configuration $projectConfig --no-incremental

 /p:Version=$version

�Package Management
Because you’re producing release candidate packages, you need a good place to store

them. You could use a file system or the simple artifacts capability of Azure DevOps, but

using the rock-solid package management infrastructure of NuGet is the best current

method for storing these. This method offers the API surface area for downstream

deployments and other tools, like Octopus Deploy.

Azure DevOps Services offers a built-in NuGet server as Azure Artifacts. With your

MSDN or Visual Studio Enterprise subscription, you already have the license configuration

for this service, and I recommend that you use it. It allows you to use the standard ∗.nupkg

(pronounced nup-keg) package format, which has a place for the name and a version that

can be read programmatically by other tools. It also retains release candidates, so they

are always available for deployment. And when you need to go back in time for a hotfix

deployment or reproduction of a customer issue, you always have every version.

�Test-Driven Development Environment (TDD Environment)
The first of the three types of environments in a DevOps pipeline is the TDD

environment. You might also call it the ATTD environment if you have adopted

acceptance test-driven development. This is the environment where no humans are

allowed. Once your pipeline deploys the latest release candidate, your suites of

automated full-systems tests are unleashed on this environment. Some examples of full-

system tests might be

•	 Web UI tests using Selenium

•	 Long-running full-system tests that rely on queues

•	 ADA accessibility tests

Chapter 3 The Professional-Grade DevOps Environment

81

•	 Load tests

•	 Endurance tests

•	 Security scanning tests

The TDD environment can be a single instance, or you can create parallel instances

in order to run multiple types of test suites at the same time. This is a distinct type of

environment, and builds are automatically deployed to this environment type. It’s

not meant for humans because it automatically destroys and recreates itself for every

successive build, including the SQL Server database and other data stores. This type

of environment gives us confidence that you can recreate an environment for your

application at any time you need to. That confidence is a big boost when performing

disaster recovery planning.

The TDD environment is a distinct type of environment, and builds are
automatically deployed to this environment type. It’s not meant for humans.

�Manual Test Environment
This is an environment type, not a single environment. Organizations typically have

many of these. QA, UAT, and staging are all common names for this environment type,

which exists for the manual verification of the release candidate. You provision and

deploy to this environment automatically, but you rely on a human to check something

and give a report that either the release candidate has issues or that it passed the

validations. This type of environment is the first environment available for human

testing, and if you need a Demo environment, it would be of this type. It uses a full-size

production-like set of data. Note that it should not use production data because doing

so likely increases the risk of data breach by exposing sensitive data to an increased

pool of personnel. The size and complexity of the data should be similar in scale to

production. During deployments of this environment type, data is not reloaded every

time, and automated database schema migrations run against the existing database and

preserve the data. This configuration ensures that the database deployment process

will work against production when deployed there. And because of the nature of this

environment’s configuration, it can be appropriate for running some nonfunctional test

suites in the background. For instance, it can be useful to run an ongoing set of load

tests on this environment as team members are doing their normal manual validation.

Chapter 3 The Professional-Grade DevOps Environment

82

This can create an anecdotal experience to give the humans involved a sense of

whether or not the system feels sluggish from a perception point of view. Finally,

this environment type should be configured with similar scale specs as production,

including monitoring and alerting. Especially in Azure, it’s not quite affordable to scale

up the environment just like production because environments can be turned off on a

moment’s notice. The computing resources account for the vast majority of Azure costs;

data sets can be preserved for pennies even while the rest of the environment is torn

down.

�Production Environment
Everyone is familiar with this environment type. It’s the one that’s received all the

attention in the past. This environment uses the exact same deployment steps as the

manual environment type. Obviously, you preserve all data sets and don’t create them

from scratch. The configuration of monitoring alert thresholds will have its own tuning,

and alerts from this environment will flow through all communication channels;

previous environments wouldn’t have sent out “wake-up call” alerts in the middle of

the night if an application component went down. And in this environment, you want

to make sure that you’re not doing any new. You don’t want to do anything for the first

time on a release candidate. If your software requires a zero-downtime deployment,

the previous environment should have also used this method so that nothing is tested

for the first time in production. If an off-line job is taken down and transactions need

to queue up for a while until that process is back up, a previous environment should

include that scenario so that your design for that process has been proven before it runs

on production. In short, the deployment to production should be completely boring if all

needed capabilities have been tested in upstream environments. That’s the goal.

Deployment to production should be completely boring if all needed capabilities
have been tested in upstream environments.

�Production Monitoring and Diagnostics
Production monitoring and diagnostics is not an independent state but is a topic that

needs to apply to all environments. Monitoring and operating your software in Azure

isn’t just a single topic. There is a taxonomy of methods that you need in order to prevent

Chapter 3 The Professional-Grade DevOps Environment

83

incidents. Recently, Eric Hexter made a presentation on this topic to the Azure DevOps

User Group,V and that video recording can be found at https://youtu.be/6O-17phQMJo.

Eric goes through the different types of diagnostics including metrics, centralized logs,

error conditions, alerts, and heartbeats.

�Tools of the Professional DevOps Environment
Now that you’ve covered the capabilities that need to be a part of a professional DevOps

environment, let’s discuss how to use what Microsoft and the marketplace have to offer.

Figure 3-4 shows the physical (runtime) environment view of this environment.

In Figure 3-4, you make a sample selection of marketplace tools that complement

Azure DevOps Services. The Visual Studio and Azure marketplaces offer a tremendous

array of capable products, and you’ll want to select and integrate the ones that fit your

software architecture. In this configuration, you see that Azure DevOps Services will

be what developers interact with by committing code from their workstations, making

changes to work items, and executing pull requests. You are specifying that you’ll

V�Hexter

Figure 3-4.  This view shows what runs where the pieces of DevOps infrastructure
run

Chapter 3 The Professional-Grade DevOps Environment

https://youtu.be/6O-17phQMJo

84

have your own virtual machines as build agents in order to provide more speed to the

build process. You’ll also use the Release Hub in Azure DevOps in conjunction with

Octopus Deploy as your deployment capability. Although Azure Pipeline is increasing

its breadth of support for all kinds of deployment architectures, Octopus Deploy was the

original deployment server for the .NET ecosystem, and its support is unparalleled in

the industry at the moment. You show that you have deployment agents at the servers

that represent each of your environments, and that they call back to the deployment

server rather than having the deployment server call through the firewall directly into

each server. Then you have specified Stackify as an APM tool collecting logs, telemetry,

and metrics from each environment. Your developers can then access this information.

Obviously, this architecture shows an environment very light on PaaS. Although new

applications can easily make heavy use of PaaS, and we encourage it, most of you readers

also have an existing system that would require a great deal of work in order to shift the

architecture to free itself from VM-based environments. Professional DevOps is not only

for greenfield applications. It can be applied to all applications.

�Azure DevOps Services
On September 10, 2018, Microsoft pulled the trigger on a major release that included the

segmentation of its popular product, Visual Studio Team Services (VSTS). It broke the

product into five products and has named this family of products Azure DevOps. The

new five products are

•	 Azure Pipelines: Supports continuous integration builds and

automated deployments

•	 Azure Repos: Provides source code hosting for a TFVC repository and

any number of Git repositories

•	 Azure Boards: Organizes work and project scope using a combination

of backlogs, Kanban boards, and dashboards

•	 Azure Test Plans: Integrates tightly with Azure Boards and Azure

Pipelines by providing support for automated and manual full-

system testing, along with some very interesting stakeholder

feedback tools

•	 Azure Artifacts: Provides the capability to provision your team’s own

package feeds using NuGet, Maven, or npm

Chapter 3 The Professional-Grade DevOps Environment

85

The independent services that has been receiving lightning-fast adoption since early

September is Azure Pipelines. Especially with the acquisition of GitHub, the experience

to set up a build for a code base stored in GitHub is simple and quick.

�Azure Subscription
In order to set up your DevOps environment, you need an Azure subscription. Even if

all your servers are in a local data center, Azure DevOps Services runs connected to your

Azure subscription, even if only for billing and Azure Active Directory. Using your Visual

Studio Enterprise subscription, you also have a monthly budget for trying out Azure

features, so you might as well use it.

The Azure subscription is a significant boundary. If you are putting your application

in Azure, you really want to think about the architecture of your subscriptions and your

resource groups. There will never be only one. In fact, even if you attempt to put all your

applications in a single subscription, you’ll quickly find out that the subscription wasn’t

designed to be used that way. The subscription is a strong boundary of security, billing,

and environment segmentation. Some rules of thumb when it comes to deciding on

when to create a new subscription or resource group are

•	 A subscription that houses the production environment of a system

should not also house an environment with lesser security controls.

The subscription will only be as secure as its least secure resource

group and access control list.

•	 Pre-production environments may be grouped together in a single

subscription but placed in separate resource groups.

•	 A single team may own and use many Azure subscriptions, but a

single subscription should not be used by multiple teams.

•	 Resource groups should be created and destroyed rather than

individual resources within a resource group.

•	 Just because you’re in the cloud doesn’t mean that you can’t

accidentally end up with “pet” resource groups; only create resources

through the Azure portal in your own personal subscription that you

use as a temporary playground. See Jeffrey Snover’s Pets vs. Cattle at

http://cloudscaling.com/blog/cloud-computing/the-history-

of-pets-vs-cattle/.

Chapter 3 The Professional-Grade DevOps Environment

http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/
http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/

86

•	 Resource groups are good for grouping resources that are created

and destroyed together. Resources should not be created through

handcrafting. The analogy of pets vs. cattle can be applied to Pet

Azure subscriptions where things are named and cared for by a

person rather by a process or automated system.

The Azure subscription is a significant boundary. If you are putting your application
in Azure, you really want to think about the architecture of your subscriptions
and your resource groups. There will never be only one subscription for all your
applications.

�Visual Studio 2019
You can certainly start with Visual Studio Community, but Visual Studio Enterprise will

be what you want to use in a professional DevOps environment. You will need to do

more than just write C# code. You’ll need to have a holistic tool set for managing your

software. As an example, the industry-leading database automation tool SQL Change

Automation from Redgate installs right into Visual Studio Enterprise. This makes it a

breeze to create automated database migration scripts. You’ll also want to equip your

IDE with some extensions from the Visual Studio marketplace. Of course, ReSharper

from JetBrains is a favorite.

�A DevOps-Centered Application
Once we have created the environment of tools and practices for our team, we must turn

our attention to our application. You likely have many existing applications that will

need to be modernized, but we will build up an application throughout this book so that

you can see how we apply all the concepts in the real world. We start with architecture

and how to structure any .NET application conceptually, regardless if the application is

to be the only application in the system or whether the application will be one of many in

a microservices-based system.

Chapter 3 The Professional-Grade DevOps Environment

87

�Using Onion Architecture to Enable DevOps
You’ve seen how the Azure DevOps family of products can enable a professional DevOps

environment. You have seen how to use Azure Repos to properly store the source for an

application. You’ve made all your work visible using Azure Boards, and you’ve modeled

your process for tracking work and building quality into each step by designing quality

control checks with every stage. You’ve created a quick cycle of automation using Azure

Pipelines so that you have a single build deployed to any number of environments,

deploying both application components as well as your database. You’ve packaged your

release candidates using Azure Artifacts. And you’ve enabled your stakeholders to test

the working software as well as providing exploratory feedback using Azure Test Plans.

Each of these areas has required new versioned artifacts that aren’t necessary if

DevOps automation isn’t part of the process. For example, you have a build script. You

have Azure ARM templates. You have new PowerShell scripts. Architecturally, you have

to determine where these live. What owns these new artifacts?

�What is Onion Architecture?

Onion Architecture is an architectural pattern I first wrote about in 2008. You can find the

original writing at https://jeffreypalermo.com/2008/07/the-onion-architecture-

part-1/. There are four key tenets of Onion Architecture:

•	 The application is built around an independent object model.

•	 Inner layers define interfaces. Outer layers implement interfaces.

•	 The direction of coupling is toward the center.

•	 All application core code can be compiled and run separately from

the infrastructure.

Figure 3-5 shows an extended model of Onion Architecture that represents the

pattern extended for the DevOps world.

Chapter 3 The Professional-Grade DevOps Environment

https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/

88

The core is familiar, with entities, value types, commands, queries, events, and

domain services. The core also defines interfaces that must be fulfilled by types of

infrastructure. The interfaces in the core are C# interfaces or abstract types. The parts of

this model are as follows:

•	 Domain model objects are at the very center. They represent

real things in the business world. They should be very rich and

sophisticated but should be void of any notions of outside layers.

•	 Commands, queries, and events can be defined around the core

domain model. These are often convenient to implement using CQRS

patterns.

Figure 3-5.  Onion Architecture can be extended for the DevOps world

Chapter 3 The Professional-Grade DevOps Environment

89

•	 Domain services and interfaces are often the edge of the core in

Onion Architecture. These services and interfaces are aware of all

objects and commands that the domain model supports, but they still

have no notion of interfacing with humans or storage infrastructure.

•	 The core is the notion that most of the application should exist

in a cohesive manner with no knowledge of external interfacing

technologies. In Visual Studio, this is represented by a projected

called “Core.” This project can grow to be quite large, but it remains

entirely manageable because no references to infrastructure are

allowed. Very strictly, no references to data access or user interface

technology is tolerated. The core of the Onion Architecture should

be perfectly usable in many different technology stacks and should

be mostly portable between technology such as web applications,

Windows applications, and even Xamarin mobile apps. Because the

project is free from most dependencies, it can be developed targeting

.NET Standard (netstandard2.x).

•	 Human interfaces reside in the layer outside the core. This includes

web technology and any UI. It’s a sibling layer to data access, and it

can know about the layers toward the center but not code that shares

its layer. That is, it can’t reference data access technology. That’s

a violation of the Onion Architecture. More specifically, an ASP.

NET MVC controller isn’t allowed to directly use a DbContext in a

controller action. This would require a direct reference, which is a

violation of Onion Architecture.

•	 Data interfaces implement abstract types in the core and be injected

via IoC (Inversion of Control) or a provider. Often, code in the data

interfacing layer has the capability to handle a query that’s defined in

the Core. This code depends on SQL Server or ORM types to fulfill the

needs of the query and return the appropriate objects.

•	 APIs are yet another interfacing technology that often require heavy

framework dependencies. They call types in the core and expose that

functionality to other applications that call.

Chapter 3 The Professional-Grade DevOps Environment

90

•	 Unit tests exercise all the capabilities of the core and do so without

allowing the call stack to venture out of the immediate AppDomain.

Because of the dependency-free nature of the core, unit tests in

Onion Architecture are very fast and cover a surprisingly high

percentage of application functionality.

•	 Integration tests and other full-system tests can integrate multiple

outer layers for the purpose of exercising the application with its

dependencies fully configured. This layer of tests effectively exercises

the complete application.

•	 DevOps automation. This code or sets of scripts knows about the

application as a whole, including its test suites, and orchestrates

the application code as well as routines in the test suites that are

used to set up configuration or data sets for specific purposes.

Code in this layer is responsible for the set up and execution of

full-system tests. Full-system tests, on the other hand, know

nothing of the environment in which they execute and, therefore,

have to be orchestrated in order to run and produce test reports.

The preceding is an update on Onion Architecture and how it has fared over the past

decade. The tenets have been proven, and teams all over the world have implemented it.

It works well for applications in professional DevOps environments, and the preceding

model demonstrates how DevOps assets are organized in relation to the rest of the code.

�Implementing Onion Architecture in .NET Core
The Visual Studio solution that implements Onion Architecture in .NET Core looks quite

similar to the structure used for .NET Framework applications. Figure 3-6 shows the

Solution Explorer within Visual Studio.

Chapter 3 The Professional-Grade DevOps Environment

91

The biggest project in the Visual Studio solution should be the Core project.

This project will have most of your classes and most of your business logic. By strictly

preventing extra framework dependencies from being referenced by this project, you

keep your code safe for the long run. You prevent your business logic and domain

model from becoming tangled in code specific to web frameworks, ORMs, or reading

and writing files or queue messages. All of the latter tend to change at a rapid clip. If

you let your code become coupled to them, your application will have a short shelf-

life. You, dear reader, have probably been exposed to an application where if they were

to remove all of the user interface and data access code, there would be no code left.

Figure 3-6.  Onion Architecture is centered around a Core project

Chapter 3 The Professional-Grade DevOps Environment

92

This is because of these dependencies are tangled together. This is called spaghetti

code—a tangled mess of logic and dependencies. In sharp contrast, Figure 3-7 shows the

direction of dependencies in your Onion Architecture implementation.

Figure 3-7.  The Core project references no others

Pay special attention to the DataAccess assembly. Notice that it depends on the

core assembly rather than the other way around. Too often, transitive dependencies

encourage spaghetti code when user access code references a domain model and the

domain model directly references data access code. With this structure, there are no

abstractions possible, and only the most disciplined superhuman software engineers

have a chance at keeping dependencies from invading the domain model.

�Integrating DevOps Assets
There are some new files that need to exist in order to facilitate automated builds and

deployments. These need to be versioned right along with the application. Let’s discuss

what they are and convenient places for them. You’ve already covered the build script,

build.ps1. Let’s go through each new DevOps asset and the path of each:

•	 /build.ps1: Contains your private build script

•	 /src/Database/DatabaseARM.json: Contains the ARM template to

create your SQL Server database in Azure

•	 /src/Database/UpdateAzureSQL.ps1: Contains your automated

database migrations command

Chapter 3 The Professional-Grade DevOps Environment

93

•	 /src/Database/scripts/Update/∗.sql: Contains a series of database

schema change scripts that run in order to produce the correct

database schema on any environment

•	 /src/UI/WebsiteARM.json: Contains the ARM template to create your

app service and web site in Azure

For the full source of any of these files, you can find them at the included code

link for this article. In a professional DevOps environment, each pre-production and

production environment must be created and updated from code. These DevOps assets

enable the build and environment automation necessary in a professional DevOps

environment.

NEED FOR DEVOPS

DevOps arose as a response to dysfunction ingrained within the software development

life cycle (SDLC), even within teams using agile methodologies. Since the first multiuser

mainframes with networked terminals, organizations have struggled with balancing keeping

systems running in a stable fashion with continually changing them to meet additional

business scenarios. Over the following decades, the industry formalized a division of roles

for people who held these responsibilities. The original computer programmers were split

into software developers and systems administrators. As an example of this divide, Microsoft

flagship technology conferences were (and sometimes still are) split into sessions designed

for “developers” and those designed for “IT professionals.” Today, separate job descriptions

and even departments exist for each role. Many large companies have consolidated their IT

professionals in order to maintain standards, consistency, and cost efficiency as they strive to

operate stable, reliable computing systems. They’ve learned along the way that this imperative

is inherently in conflict with the goals and objectives of the developers, whose job it is to move

fast, change the systems, and provide new capabilities to users. As modern companies use

custom software applications to connect directly with their customers, this makes software a

part of strategic revenue generation. Accordingly, speed is more important now than ever.

Chapter 3 The Professional-Grade DevOps Environment

94

�Wrap Up
Now that you are up to speed with the technology that will be leveraged in this book

along with the elements of a complete, professional DevOps environment, the next

chapter will dive into the beginning of the process in more detail, starting with tracking

work in a way that feeds a high performance DevOps cycle.

�Bibliography
Hexter, E. (n.d.). DevOps Diagnostics w/ Eric Hexter (Azure DevOps User Group).

Retrieved from www.youtube.com/watch?v=6O-17phQMJo

Humble, J. a. (2010). Continuous Delivery: Reliable Software Releases through Build,

Test, and Deployment Automation. Addison-Wesley.

Jones, C. (2016). Exceeding 99% in Defect Removal Efficiency (DRE) for Software.

Retrieved from www.ifpug.org/Documents/Toppin99percentDRE2016.pdf

Kim, G., Behr, K., & Spafford, G. (2013). The Phoenix Project: A Novel About IT,

DevOps, and Helping Your Business Win. Retrieved February 18, 2019, from

https://amazon.com/phoenix-project-devops-helping-business/dp/0988262592

Kim, G., Debois, P., Willis, J., & Humble, J. (2016). The DevOps Handbook: How

to Create World-Class Agility, Reliability, and Security in Technology Organizations.

Retrieved April 19, 2019, from https://amazon.com/devops-handbook-world-class-

reliability-organizations/dp/1942788002

Palermo, J. (n.d.). The Onion Architecture. Retrieved March 21, 2019, from http://

jeffreypalermo.com/blog/the-onion-architecture-part-1/

Chapter 3 The Professional-Grade DevOps Environment

http://www.youtube.com/watch?v=6O-17phQMJo
http://www.ifpug.org/Documents/Toppin99percentDRE2016.pdf
https://amazon.com/phoenix-project-devops-helping-business/dp/0988262592
https://amazon.com/devops-handbook-world-class-reliability-organizations/dp/1942788002
https://amazon.com/devops-handbook-world-class-reliability-organizations/dp/1942788002
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/

95
© Jeffrey Palermo 2019
J. Palermo, .NET DevOps for Azure, https://doi.org/10.1007/978-1-4842-5343-4_4

CHAPTER 4

Tracking Work
Now that you’ve looked at the capabilities of the professional DevOps environment and

a mix of tools that can be a part of it, we’ll drill down into each product within the Azure

DevOps family and set it up in the proper way. You’ll certainly want to customize the

configuration, but your suggested configuration works great in 80% of the cases. If you’ve

already read the book The Phoenix Project by Kim, Spafford, and Behr, you’ll recognize

the principles we implement in this chapter. You might want to create a new project so

that you can test different configurations as you read. Once you have your Azure DevOps

project created, take a glance at your project settings, and select the products that you’d

like enabled.

In Figure 4-1, you can see that I have all of the products enabled. For your team,

you’ll want to equip them with the Visual Studio Enterprise subscription (formerly called

MSDN Premium) so that they have licensing for all of the products. You’ll need them.

Packages is the first one you’ll miss if you are using a free or lower license. And as we

move through the book, you’ll make use of all the products in the Azure DevOps family.

96

�Change your Process Template
The title of this section is not “choose your process template.” You will do that, but your

organization has a workflow, and you must capture it and make the process template

faithfully model that workflow. Within the first way of DevOps is the principle of “make

work visible.” Azure Boards is the tool of choice for modeling the shape of your work.

Azure Boards uses work items to track a unit of work. A work item can be of any type

and has a status as well as any number of other fields you’d like. As you think about

your hierarchy of work, don’t immediately start creating work items using the built-in

sample hierarchy. Instead, think about the work that you already do and the parent-

child relationships between some of the types of work. For example, in a marketing

department, the structure in Figure 4-2 may be appropriate.

Figure 4-1.  You can enable or disable any of the products in the Azure DevOps
family

Chapter 4 Tracking Work

97

This marketing department has decided that they only need three levels of work.

A Campaign can have multiple Campaign Items or Product Backlog Items. A Campaign

Item and a Product Backlog Item can have multiple tasks. At the top level, they can track

at the Campaigns level or the Execution level. An individual iteration or sprint is tracked

with tasks. You can have any number of higher-level portfolio backlogs if you need

higher levels of groupings. Even while the built-in process template includes Epic ➤

Feature ➤ Product Backlog Item, you’ll quickly outgrow this because it won’t match your

organization. You need to disable most of the built-in work item types and create your

Figure 4-2.  A marketing department has Campaigns that are broken down into
individual items

Chapter 4 Tracking Work

98

own so that you can name them and put only the fields and the progression of statuses

that make sense in your teams’ environments.

You may think of the following work types to get the creative juices flowing in order

to capture the model of your organization’s world. Notice that I didn’t say “design the

model.” Your model already exists. You need to capture the nouns and the verbs of your

existing reality and make Azure Boards represent what’s already there. If you capture the

wrong model, it won’t fit, and your coworkers will have a hard time tracking their work

because it just won’t make sense. So, consider the following types:

•	 Business initiatives

•	 Marketable features

•	 Plannable work to budget, schedule, and fund

•	 Individual tasks to get done

This becomes the foundation of your usage of Azure Boards going forward. You’d

never think of starting a new application with the Northwind or AdventureWorks database

schema. Those tables were chosen by someone else. That model just doesn’t fit the nature

of the data you’re trying to store. In this same way, the schema of the built-in process

templates won’t fit your organization. You need to load your own model. Once you

have your model, you need to specify the process of each major entity (work item). For

example, if you were writing an article or a book, you might create a chapter work item

and specify the status progression on the Kanban board like that shown in Figure 4-3.

Chapter 4 Tracking Work

99

By determining ahead of time what the process is to take a certain level of work item

from creation to done, you organize your team. Each state, or board lane, should be

owned by a type of role. For example, if you have a stakeholder designated as the person

who’ll give the go ahead on the sketch of a screen before it’s developed, that stakeholder

should have a column where they own the work within it. Each work item is represented

by a visual card on the Kanban board, and the cards in their column are theirs to work.

If the stakeholder does nothing, cards pile up in that column, and nothing is developed

because of the bottleneck in that column. A dashboard report can bring this to light on a

daily basis so that no column has too much work in it. The stakeholder’s job would be to

Figure 4-3.  The columns all map to a state of a work item, and each can be
assigned a definition of Done

Chapter 4 Tracking Work

100

either approve the sketch of the screen or initiate a conversation to fix it. In no case would

you want a bad screen to be coded. That would be worse. By creating a good number of

columns, mapped to the states of the work item, you can move the work through a known

process where every column has a type of role responsible for performing a known set of

work and then forwarding the work in process WIP to the next column. From a quality

control perspective, every person starting on work has the obligation for inspecting the

WIP to see if the work is ready for them yet. If something is missing, you stop the line and

get it corrected before propagating the error further downstream.

For the purposes of software teams, the level of backlog that is prepopulated with

Product Backlog Items in the case of the Scrum process template, or User Stories in the

case of the Agile process template, is the appropriate level for doing branches and pull

requests as well as designed test cases, as you’ll see a bit later in the article. Iterations or

sprints can be planned with work items from this level. Then, tasks can be organically

created, completed, or destroyed day by day. It’s often good to make plans based on the

lowest backlog level and then break those down into tasks as needed on an ad hoc basis

during the sprint.

�Types of Work Items
Depending on the process template you choose when you create your project, you’ll start

with a predefined set of work item types, statuses, and swim lanes in your boards. You

should change these because there are only three process templates built in, and they

are all very basic. Don’t expect to use them without customization except for very simple

projects. You have three process templates to choose from when starting a project. If

you have already created a project, and you want to choose a different process template,

you are out of luck. Create a new project. If that ship sailed long ago, don’t fret. You can

morph any of the project templates into just about anything you want.

The choices for project template are CMMI, Agile, and Scrum. The Scrum template

is probably the most widely used at the writing of this book, and it is the template that

is maintained the most. But the Basic template is new, and has been simplified down to

just the basics. If you don’t know what process template to use, and you don’t know the

difference between these, choose the Basic template,I and modify it from there. It is the

least prespecified, and you’ll be able to add anything you like.

I�Pit of success: start new process templates inheriting from Basic

Chapter 4 Tracking Work

101

You will see some similarities and differences in the built-in process templates, but

they all share more than they differ. The table in Figure 4-4 illustrates the configurations

of the templates.

Figure 4-4.  Built-in process templates come with a set of work item types that are
meant to be customized

You can see how similar the process templates are, and you should examine each

one to gain some ideas because each work item is configured with a certain number

of fields, and the fields of each are likely not going to fit your needs. As with a database

schema if you go forward with tables and columns that are not used, your data set ends

up with many null values. This causes confusion with reporting. If you are not going to

use a field, customize your template and remove it or hide it from a work item. Simple

is better.

You may think that the preceding processes are so similar that it doesn’t matter

which one you start with, but the requirements level work item type will probably help

you make your decision. Here are the fields in this key work item type out of the box, as

shown in Figure 4-5.

Chapter 4 Tracking Work

102

As you can see, the process templates start to diverge at this point. You can hide

fields of the built-in work item types, but you can’t remove them. It’s a cleaner work

tracking data model to add custom fields rather than hide most of the built-in fields.

�Customizing your Process
With Azure DevOps, as with any project management tool, you can customize the states

of the work. The task before you here is to make sure to model all of the states the work

needs to go through in order to be finished. Many tools provide a board similar to this, as

shown in Figure 4-6.

Figure 4-5.  Structure of the main work item type per process template

Chapter 4 Tracking Work

103

This process is fine with a to-do list around the house, but it will not support any

kind of serious software development project. There is much more activity inherent in

the software development life cycle. Regardless if your team would like to use Scrum

or Kanban, or some other methodology, you will need to decide on the unique states

that work can be in at any given time. Here is a very common list of states you might

choose. Each of which would show up as a column on your board. Note that I use the

generic term “card” in place of Work Item, Issue, Product Backlog Item, User Story, and

so on. When modeling your board, each item of work will be manifested as a digital

index card on a digital board. We suggest the typical owner of the card while it is in the

corresponding state. Note that for the most part, the ownership cycles back and forth

between product management and engineering. We are not being any more specific

than that regarding roles. For teams who have adopted the DevOps ways as outlined

in The Phoenix Project,II there are only those who commission the work and those

who deliver the work. Any more organization beyond that is up to the team, which is

consistent with the Manifesto for Agile Software Development.III

II�Kim, Behr, & Spafford, 2013
III�Beck, et al., 2001

Figure 4-6.  Each board starts out with simple states

Chapter 4 Tracking Work

104

Figure 4-7.  Representative board structure for common states in a software
development project

Chapter 4 Tracking Work

105

The preceding Figure 4-7 might seem like too many states if you are working by

yourself, but by the time you have three or more developers on your team, you’ll be

glad you are able to see where the work is. Without this structure, you will forget what is

holding up each card of work. Let’s simplify these states so that we can see a different view:

Plan

•	 Idea/Backlog

•	 Definition

•	 Design

•	 Test Spec

Build

•	 Implement

Check

•	 Inspect

•	 Test

•	 Stabilize

•	 Release

Interestingly, we are sandwiching the state that represents building with four states

on either side. If you jump right into building without proper planning, there are four

categories of decisions that will trip you up:

	 1.	 Idea: Faulty concept of what to build

	 2.	 Definition: Analysis gaps or unclear scope of what to build

	 3.	 Design: Technology/architecture/pattern decisions needed in

order to build

	 4.	 Test Spec: How to know when you’ve build everything you need to

build

Again, if you are building the software as a team of one or two, you can simplify this

down because you communicate frequently and take care of these things as they come.

For teams larger than that, you need these concepts in some form, regardless of what you

decide to name the states or columns.

Chapter 4 Tracking Work

106

�Working with the Process
Now that you have determined for your organization how many stages, or swim lanes,

are appropriate, you’ll need to integrate your version control system with Azure Boards

in order to be able to track every code or asset change that is associated with a card (or

work item, within Azure Boards).

While organizing our version control system is covered later in the book, we will now

cover the basic things to do in order to integrate those changes. GitHub, acquired by

MicrosoftIV in 2018, is strategically meant to be the premium Git source control offering

for Microsoft going forward. The work is happening this year to enable that: Microsoft

AD sign-in, automatic pull request linking, and so on. If your code is already inside

GitHub, you can do some linking today at the time of writing. Inside your Azure DevOps

project settings, you can connect your GitHub account. Refer to Figure 4-8.

�Linking Commits
If you are not already a GitHub user, you can work with Git source control right within

Azure Repos. In Figure 4-9, we are performing a commit right from within Visual Studio

to our Azure Repos Git repository.

IV�Microsoft to acquire GitHub for $7.5 billion, n.d.

Figure 4-8.  Navigate to Project Settings ➤ Boards ➤ GitHub connections, in order
to begin the process

Chapter 4 Tracking Work

107

All it takes to link a commit with your work items in Azure Boards is to start the

commit message with the work item number. You should do this every time, even if you

are working by yourself. Along with better traceability on what changes a work item

required, it will encourage the team to control scope and stay on track by only making

changes for the work item in front of them.

STAYING IN FLOW

As a developer, it is easy to get distracted when browsing code because you will see
refactoring opportunities and you will want to make the code better. It is not uncommon to look
up after an hour of coding work to realize that you aren’t even working on the item you set out
to complete. By setting a team rule that you will always link commits with a work item, you
can keep yourself and your teammates on the most productive path every day.

Regardless of the Git tool you elect to use, starting your commit message with the

number of the current work item will cause Azure Boards to make the link.

Figure 4-9.  A commit from Visual Studio can auto-link with the work item by
including #{work item id}

Chapter 4 Tracking Work

108

In Figure 4-10, you can see that work item #412 has been linked with two git commits

and the two resulting builds that contained these commits. If you tag your commits but don’t

see this automatically, check in the Azure Repos settings that a teammate hasn’t turned this

off. It is on by default for new projects but may not be on by default for repositories that were

imported from outside sources. In that case, you’ll need to enable it for the new repository.

�Branching from Azure Boards
When working with work items of any type in Azure Boards. you’ll want to build them up

throughout the process. As you analyze the needed change and create screen mockups

or any other document, either attach the document or include it inside the Git repository

itself. When you are ready to begin coding, create a branch. If you know how to organize

your branches, then you are ahead of the game. If you are wondering what branching

strategy to choose, then keep it simple and use plain feature branches instead of a

“features” namespace. For more research on available branching strategies, see the

Branch Organization docs from Microsoft.V

When starting to code on a work item, let Azure Boards do the work for you. In

Figure 4-11, you can see that we can create our feature branch right from the board.

V�Adopt a Git branching strategy, n.d.

Figure 4-10.  Azure Boards automatically links work items with git commits and
builds that are related

Chapter 4 Tracking Work

109

Figure 4-11.  By clicking the menu icon, we can create a new branch for
development on the work item

Figure 4-12.  Place the work item number in the branch name to keep them
organized

From here, we’ll want to maintain our team’s branching convention.

Chapter 4 Tracking Work

110

You can create any branching scheme that you can imagine, so keep it simple. Place

the work item number at the beginning so that you’ll be able to find your branch. Then,

use all lower case with dashes. You can’t use spaces in a branch name. An added benefit

of including the work item number in your branch name is that it will be a constant
reminder to stay on track and only make changes that are needed for the current work

in front of you.

Now that you have a branch for your work item, go to Visual Studio and check out the

new branch from Team Explorer, as shown in Figure 4-13.

Figure 4-13.  View the branches using Team Explorer

Any commits you make with then stay on the new branch. If you break down features

into user stories and tasks, remember to tag the commit message to the most specific

work item you are working on. For record-keeping, you’ll have a branch that corresponds

to your feature (or issue, or user story), and then you’ll have individual commits tagged

to it or any of the children that you’ve worked on.

When you have completed the work and are ready to merge your branch back in, you

can create a pull request.

Chapter 4 Tracking Work

111

�Merging Using Pull Requests
Within Azure DevOps, there are a few places where you can create a pull request. And

while you can perform a Git merge without a pull request, using one allows your team to

integrate a formal inspection process, which is a proven way to find and prevent defects

from being shipped to your customers.

In Figure 4-14, we can see the branch that was created for the work item. When we

are finished building the feature that the work item represents, we can create a pull

request so that our team can bring in the changes back to the master branch.

Figure 4-14.  Within the work item screen, you can create a pull request

Chapter 4 Tracking Work

112

After you’ve created your pull request, your team will be notified. They will be able

to see and browse the changes you are bringing in. They will be able to comment on

the changes and even have a back and forth conversation if necessary. This provides an

opportunity to make any changes before the code is merged into master. If any changes

are needed, simply make the changes on the branch. The pull request will update itself

automatically. The pull request operates at the branch level, not the commit level.

Therefore, if you need to do more work and make more commits, your pull request will

not be invalidated. When approved, you can complete your pull request and monitor the

automated merge, as shown in Figure 4-16.

Figure 4-15.  You can choose individuals or groups to be pull request reviewers

Chapter 4 Tracking Work

113

�Wrap Up
When using Azure Boards to manage your software project, you benefit from the

automatic integration with the rest of the Azure DevOps family. This chapter, while

showing some fantastic capabilities, only scratches the surface on the power of Azure

Boards. The purpose of this book is not to be a comprehensive feature guide for Azure

DevOps. For more reading on Azure Boards, visit the official documentation.VI

We have taken you through a micro-workflow of customizing your board and

working with a software change through your customized process. Figure 4-17 shows the

level of details captured in just this small example. Your work items will be even richer

with information as you track your work through your board.

VI�Azure Boards Documentation, n.d.

Figure 4-16.  Complete the pull request after approvers have marked it as
approved

Chapter 4 Tracking Work

114

Figure 4-17.  Your work item will become rich with information just by tracking it
on Azure Boards

Armed with this tool, you have a world-class project tracking capability, enabling

you to focus on your code. In the next chapter, we’ll look at Azure Repos, but more

importantly, how to set up your Git repository for success.

Chapter 4 Tracking Work

115

�Bibliography
Adopt a Git branching strategy. (n.d.). Retrieved February 18, 2019, from https://

docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-

guidance?view=azure-devops

Azure Boards Documentation. (n.d.). Retrieved from https://docs.microsoft.com/

en-us/azure/devops/boards/?view=azure-devops

Beck, K., Grenning, J., Martin, R. C., Beedle, M., Highsmith, J., Mellor, S., . . . Marick,

B. (2001). Manifesto for Agile Software Development. Retrieved February 18, 2019, from

Agile Alliance: http://agilemanifesto.org/

Kim, G., Behr, K., & Spafford, G. (2013). The Phoenix Project: A Novel About IT,

DevOps, and Helping Your Business Win. Retrieved February 18, 2019, from https://

amazon.com/phoenix-project-devops-helping-business/dp/0988262592

Microsoft to acquire GitHub for $7.5 billion. (n.d.). Retrieved February 18, 2019, from

https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-

billion/

Chapter 4 Tracking Work

https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/?view=azure-devops
http://agilemanifesto.org/
https://amazon.com/phoenix-project-devops-helping-business/dp/0988262592
https://amazon.com/phoenix-project-devops-helping-business/dp/0988262592
https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/
https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/

117
© Jeffrey Palermo 2019
J. Palermo, .NET DevOps for Azure, https://doi.org/10.1007/978-1-4842-5343-4_5

CHAPTER 5

Tracking Code
Version control systems (VCS) have fully matured over the last 20 years, and the Git

version control system has become the de facto standard in the software world. In fact,

the largest active source control repository on the planet, the Microsoft Windows source

code, has been converted to Git. Centralized source control systems like Subversion and

Team Foundation Version Control (TFVC) have given way to Mercurial and Git. Of those

two, Git has become the version control tool of choice for developers on all the modern

platforms. Tracking your code in Git version control is part of a modern DevOps process.

Throughout the industry, practitioners use version control, source control, VCS, and

SCM interchangeably as synonyms.

Azure Repos is the version control system in the Azure DevOps family. It supports

the old TFVC format of source control as well as an unlimited number of private or

public Git repositories. There are import tools for migrating existing code repositories

into Azure Repos, so regardless of where your code is now, you can move it in. Azure

Repos not only works with Visual Studio, but it also works with any other Git client,

such as TortoiseGit, which is one of my favorites for Windows Explorer “right click”

integration. For the purposes of this chapter, and much of the book, we will equate Azure

Repos with Git version control. While TFVC will be supported for well over another

decade, any new investment you make should use the Git technology.

�How Many Repositories?
In setting up your Git repository in the professional way, there are some principles to

keep in mind. First, your team will likely have multiple repositories, unless you ship

only one product. The architecture of your software will have something to do with the

granularity of your repository design. For example, if you deploy your entire system

together and the architecture doesn’t support deploying only a subset of the system,

it’s likely that you will put the entire system into a single Git repository. As an

118

organization, you may have multiple software teams. Figure 5-1 is an entity relationship

diagram to help you understand how to factor your system into Git repositories.

Your team will own your Git repositories. A single Git repository cannot be owned or

developed by multiple teams. With centralized version control systems of years past, this

was possible only because these systems supported child-level branching. These systems

hosted a repository of a different type. The reuse of the term “repository” has led to some

confusion among users of TFVC and Subversion, which happily hosted multiple software

systems while allowing branching at the child level. While merging was difficult much of the

time, these tools did support it. Git’s repository design is different. Cloning and branching

are done at the top level only. Therefore, to manage multiple pieces of software, you create

multiple Git repositories. In Azure Repos, a single project can have an unlimited number of

Git repositories, so you do have a way to maintain groupings of related Git repositories.

Now that we understand that a team must have a dedicated Git repository, our

next relationship is the software application itself. Regardless of the size of the software

application, there should be only one. Your application can be a small microservice

with nothing more than an Azure Function, or it can be a very sizable application. If it

maintains independent versioning and can be deployed independently, it must reside in

its own Git repository, which owns the concept of versioning. If you are a Git and build

expert reading this, you may be able to invent a custom paradigm that can violate this

rule, but for the rest of us, this rule holds true. Let’s consider some examples of this:

Figure 5-1.  Relationship rules when designing Git repositories

Chapter 5 Tracking Code

119

	 1.	 You have a very large Visual Studio solution for a software

system that is over 10 years old. It has a few web applications,

some Windows services, some schedule jobs, and a SQL Server

database. The question to ask is “do any parts of it build or

version independently of the rest?” If the answer is no, then all

of it belongs in the same Git repository. Don’t fret if sometimes

you make changes to the web site and then decide not to deploy

the rest to production. That’s not the same as being versioned

independently.

	 2.	 You have designed a system with independent applications or

microservices. Each of these applications owns its own small

database, and the parts communicate asynchronously via queues.

Each can change and deploy at a completely different cadence.

In this scenario, you would segment each into its own Git

repository in order to preserve the ability to maintain version

independence.

There are some examples where you might have a system decomposed into mostly

independent applications but want to keep them in the same Git repositories. Azure

DevOps itself is a perfect example of this. The segmentation is to benefit the deployment

architecture rather than version independence. There are dozens of services that make

up the Azure DevOps product, but they all reside in a single Git repository, and a single

(but large) team develops the system in Git. The whole system is built together and

deployed together with a single version number. You can read more about how the Azure

DevOps team does DevOps online.I To drive to a rule of thumb: put your current Visual

Studio solution in its own Git repository.

I�DevOps at Microsoft, n.d.

Chapter 5 Tracking Code

120

�What Should be in Your Git Repository
There’s often a discussion about what to store in the application’s Git repository. The

short answer is “store everything you can.” Absolutes are never right. (Except for the

previous sentence.) However, you do store almost everything in your Git repository,

including

•	 Database schema migration scripts

•	 Azure Resource Manager (ARM) JSON files

•	 PowerShell scripts

•	 Tests

•	 Build scripts

•	 Images

•	 Content assets

•	 Visio architecture blueprints

•	 Documentation

•	 Dependencies, including libraries and tools that don’t come from a

package manager

Given that there are some exceptions that cannot be committed to VCS, I’ll go

through a few of the items required for developing software that you do not store in your

Git repository. You can see that the items on this list are already impractical to store.

Although it may be technically possible to store some of these items, the pain starts to

become a losing trade-off in risk.

•	 Windows, the obvious one.

•	 Visual Studio or VSCode, even if it’s possible to run it straight

from disk.

•	 Environment-specific data and configuration; this doesn’t belong to

the software, it belongs to the environment.

•	 Secrets; they are secret, so you shouldn’t know them anyway.

•	 Large binary files that change very frequently, such as files from

Autodesk products like AutoCAD and Revit.

Chapter 5 Tracking Code

121

I want to address .NET Core specifically because the architecture of the .NET

Framework has some fundamental differences here. With .NET Framework applications,

the framework versions are installed on the computer as a component of the operating

system itself. So, it’s obvious that you don’t check it in. You check in only your libraries

that your application depends on. If you need 7Zip or Log4Net, you obtain those

libraries and check them into your Git repository because you depend on a particular

version of them. With the advent of package managers, the debate has raged over

when to not check in packages from npm or NuGet. That argument isn’t settled, but for

.NET Framework applications, my advice has been to check in all your dependencies,

including packages.

This fundamentally changes with the architecture of .NET Core. With .NET Core,

the framework isn’t installed as a component of the operation system. The framework

is delivered by NuGet to the computer running the build process. Furthermore, .NET

Core libraries that are packaged as NuGet components have been elevated to framework

status and are delivered in the same way as .NET Core SDK components are. Therefore,

my advice for .NET Core applications is to leave the defaults in place and do not commit

the results of the dotnet.exe restore process into your Git repository. Under active

development, this mix of SDK components and other NuGet packages will change

quite a bit. Once the system reaches maturity and the rate of change slows, it may be

appropriate to move and commit the packages folder in order to lock in that mix of

dependencies given that package managers do not absolutely guarantee that the same

mix of dependencies will be restored next month or next year. If you want to evaluate

this for yourself and determine your risk tolerance, you can examine the packages

easily by application by adding a Nuget.config file to your solution with the following

configuration:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <config>

 <add key="globalPackagesFolder"

 value=".\packages" />

 </config>

</configuration>

Chapter 5 Tracking Code

122

�The Structure of the Git Repository
We have discussed how to determine how many Git repositories we need for our

system. Now we need to factor an individual application appropriately. Regardless of

the architecture of the application, our relationship with the VCS comes from the Visual

Studio solution. That solution can contain a large code base you call an application or

a tiny code base that you might call a microservice. For the purposes of this guidance,

these are the same.

If you are an experienced developer, you might be able to design a different structure

that works for laying out a Git repository; however, if you would like prescriptive

guidance in where everything should go within Git, consider the following advice. Shown

within Azure Repos, Figure 5-2 depicts the top level of a well-factored Git repository.

Figure 5-2.  The top level of a Git repository can be quite standard regardless of the
type of Visual Studio software you’re developing

Chapter 5 Tracking Code

123

You can see some directories and some script files at the top level. Notice that you

don’t see a Visual Studio solution at the top level. That’s intentional. Let’s take the

directories and files that you need in a properly organized Git repository:

•	 /src/: The application code is in this directory, beginning with the solution

file. This is a common convention in multiple programming platforms.

•	 /tools/: Any tools needed for the build process go in this directory.

Common needs are 7Zip, Octo.exe, and the like.

•	 /build.ps1: This is the private build script. Whether you name it this

or not, you need your private build script in the top-level directory.

•	 /click_to_build.bat: A mouse/keyboard-friendly helper that adds

an “& pause” to the build script so that the console window remains

open for examination of the build output.

•	 /open.bat: A mouse/keyboard-friendly helper that opens the Visual

Studio solution via a double-click or Enter.

•	 /build/: This directory is automatically created and destroyed by the

build script. It shouldn’t be committed to source control. This is the

destination for test/publish output that is temporary in nature.

The preceding implementation is our example application for this book. More

generally, the structure should be as shown to the left. This structure works for small

microservices as well as very large applications with hundreds of screens and functions.

Notice that this structure only goes down to the Visual Studio solution level and the

folders within that solution. The separation within Visual Studio projects will vary.

Here are the rules:

	 1.	 The top of the Git repository will contain your private build assets.

This includes the actual private build script, helper functions, and

any assets/shortcuts in order to very run a private build on a local

workstation.

	 2.	 The Git repository needs some basic documentation about what

it contains and how to build what it contains. This is where the

Readme.md comes in. You can use .txt or .docx, but Azure Repos,

GitHub, and many other tools work well with the markdown

format and can show this file as a dashboard page.

Chapter 5 Tracking Code

124

	 3.	 The “build” directory is a temporary directory that will contain

things generated by your build scripts. Call it what you like but this

folder does not get committed to Git. Make sure to add it to your

.gitignore file. Whether it is test output or artifacts created through

running a “publish” command, use this folder for generated

output both locally in the private build process and online in the

continuous integration build.

	 4.	 The “tools” directory can contain any tools needed by the build

process including a build framework if you choose to use one.

With .NET Core, the process for building has been simplified.

Many developers enjoy build tools like psake and others.

	 5.	 The “src” directory (source) contains the visual studio solution

and all the code of the application. The Visual Studio solution file

should be inside this folder

	 6.	 Each project/assembly within the Visual Studio solution will

have its own folder. Take care to keep these folders at the same

directory level as the Visual Studio solution.

Regardless of application type, nest your code in the /src folder. .NET Framework, .NET
Core, Xamarin, TypeScript, etc. Reserve the top level of the repository for build assets,
as shown in Figure 5-3.

Chapter 5 Tracking Code

125

Figure 5-3.

Chapter 5 Tracking Code

126

�Choosing a Branching Pattern
If you are reading these chapters out of order, we discussed branching and merging

while working on work items in Chapter 4. Since branching is a means by which related

code changes can be grouped, make sure to use branching for every change to the

application. This rule of thumb can raise additional questions. Google, Facebook, and

the Microsoft team responsible for the Azure DevOps family of products all use “trunk-

based development.”II You can also research other available branching strategies on

Microsoft’s branching documentation.III

Use trunk-based development. In trunk-based development, the main branch
(master) is build up like the trunk of a tree, thicker than branches and always
getting longer. Branches are very short-lived and small and exist to facilitate a
reviewed pull request process. Aim to merge branches every day.

The sound of “trunk-based development” may cause you to think that adopting it

means that you don’t branch. Not at all. Every branching strategy includes branches.

Branches are a very effective way to group commits that are destined for the main code

line (master in Git). As covered in Chapter 4, a pull request is your method for reviewing

with the team a group of changes to the product. When a pull request is approved,

the branch is merged into master and deleted. Until the pull request for the branch

is approved, these commits stay on the branch, guaranteed not to destabilize master.

Through this process of review, the team together keeps the master branch stable. Here

are some rules for working effectively with branches:

•	 Make them insanely short-lived: Don’t try to add large new

capabilities on a single branch. If your user stories are small and

discreet, you’ll be able to create/pull request/merge/delete a branch

in a 24-hour period. Branches living into their second day are a red

flag that should generate a team discussion.

•	 Tie them to a work item so that every change on the branch is related

to the work item.

II�Hammant
III�Adopt a Git branching strategy, n.d.

Chapter 5 Tracking Code

127

•	 Avoid large application refactorings while others have open

branches – expect painful merge conflicts if you break this rule.

•	 Configure your DevOps pipeline to operate on all branches in order

to get the benefit of the build and first deployment. If the first time

your changes are deployed is after a pull request, you will be passing

through more bugs onto master.

�Useful Tips in Azure Repos Configuration
Because Azure Repos is integrated within an Azure DevOps project, you need to be

aware of how names and URLs are built. A project is meant to house multiple Git

repositories. Because of this, the project name is included in the Git URL. Consider this

same project name.

My Clunky Project

Azure Repos will produce a URL for initial cloning like this:

https://clearmeasurelabs@dev.azure.com/clearmeasurelabs/My%20Clunky%20

Project/_git/My%20Clunky%20Project

Notice that the spaces in the project name are transformed into %20 in the

URL. While this can function just fine, there are some automation scenarios and tools

some have run into that don’t properly handle the %20 in the URLs. If it is within your

control when creating the project, simply avoid spaces in the project name. The public

Azure DevOps project used for this book is a good example of this technique:

https://dev.azure.com/clearmeasurelabs/Onion-DevOps-Architecture

This yields a GIT URL as follows:

https://clearmeasurelabs@dev.azure.com/clearmeasurelabs/Onion-DevOps-

Architecture/_git/Onion-DevOps-Architecture

When you create your second Git repository within the same project, take care to

avoid spaces so that you have a clean URL:

https://clearmeasurelabs@dev.azure.com/clearmeasurelabs/Onion-DevOps-

Architecture/_git/My-New-Repository

Chapter 5 Tracking Code

128

�How does GitHub Fit in?
Microsoft acquired GitHub in 2018.IV GitHub is intended to be the premiere offering

for Git VCS hosting within the Microsoft ecosystem. At the time of this writing, Azure

Repos is the fully integrated Git hosting offering. As such, it supports all the enterprise

scenarios needed across customers including seamless identity management and

logins with Office 365 and Active Directory accounts. GitHub has this integration on

the roadmap and will become just as seamlessly integrated as Azure Repos, but as of

this writing, that work has not been completed. If your code is already on GitHub, don’t

move it. Keep it where it is, and integrate the capabilities of the Azure DevOps family of

products. If your code is already in Azure Repos, don’t move it.

�Wrap Up
In this chapter we covered how to properly track your code when implementing a

proper DevOps environment. We covered how to determine the size and scope of a Git

repository and how many you should have. We discussed what should and should not

be committed to your VCS. We analyzed the structure within the repository as well as

how to think about and use branches. As you create or modernize source code, follow

this guidance, and you won’t go wrong. As you encounter complex scenarios, plan

adjustments while keeping the core principles in mind.

Now that we understand how to properly organize and track our code in our .NET

DevOps environment, continue with Chapter 6 where you will learn how to design and

configure your build process.

�Bibliography
(n.d.). Retrieved from DevOps at Microsoft: https://docs.microsoft.com/en-us/

azure/devops/learn/devops-at-microsoft/

Adopt a Git branching strategy. (n.d.). Retrieved February 18, 2019, from

https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-

guidance?view=azure-devops

IV�Microsoft to acquire GitHub for $7.5 billion, n.d.

Chapter 5 Tracking Code

https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops

129

Hammant, P. (n.d.). Retrieved from Trunk Based Development: https://

trunkbaseddevelopment.com/

Microsoft to acquire GitHub for $7.5 billion. (n.d.). Retrieved February 18, 2019, from

https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-

billion/

Chapter 5 Tracking Code

https://trunkbaseddevelopment.com/
https://trunkbaseddevelopment.com/
https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/
https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/

131
© Jeffrey Palermo 2019
J. Palermo, .NET DevOps for Azure, https://doi.org/10.1007/978-1-4842-5343-4_6

CHAPTER 6

Building Code
In Chapter 5, you learned how to properly organize your Git repository in preparation

of DevOps automation. In this chapter, you will learn how to build the code. You will

learn the difference in a private build and an integration build, often called a continuous

integration build or CI build. And you will learn how to configure your CI build in Azure

DevOps Services. If you are following along in the code, make sure you have cloned the

sample application.

https://clearmeasurelabs@dev.azure.com/clearmeasurelabs/

 Onion-DevOps-Architecture/_git/

 Onion-DevOps-Architecture

�Structure of a Build
In 2007, Paul Duvall, Steve Matyas, and Andrew Glover published a book called

Continuous Integration: Improving Software Quality and Reducing Risk.I At the time,

continuous integration was a new topic, and the industry was conducting a far-reaching

conversation. This book documented the proven structure for the practice of continuous

integration. In it, the two types of builds were clearly defined:

•	 Private build

•	 Integration build

The private build only runs on a single developer workstation, and it is a tool to

know that immediate changes did not destabilize the application. The integration build

runs on a shared server and belongs to the team. It builds code from many developers.

With the rise in popularity of branching models, the integration build has been adapted

I�Duvall, 2007

132

to run on feature branches as well as the master branch. Before we move on to how to

implement our builds, let’s review the structure and flow of a build process.

�Flow of a Build on a Feature Branch
Before we discuss the steps of a private build or a CI build, let’s look at it from a high

level. When you start work on a user story or software change, regardless of branching

strategy, you will create a branch. Remember in Chapter 4, you learned that even those

using trunk-based development still use short-lived branches. Figure 6-1 shows the flow

of build activities that happen when you are working on a feature branch.

When you change code, you will run your private build at every stopping point. This

keeps you safe. You will learn right away if you accidentally broke something. Because

you at working in Git, a decentralized version control system, you’ll make many, short

commits. This enables you to undo changes very easily. Based on your judgment, you’ll

run the private build locally. In our application, it is a PowerShell script and is described

in more detail later in this chapter. When you decide to push changes to your team’s

Git server, the CI build will detect those changes and run the integration build process

on the team’s build server. Upon success, the build will archive the built artifacts, most

likely in Azure Artifacts, a NuGet repository. Then an automated deployment script will

trigger and deploy those built artifacts to an environment dedicated to the continuous

integration process. The best name for this environment is the “TDD environment.” The

purpose of this environment is to validate that (1) the new version of the software can be

deployed and (2) the new version of the software still passes all its acceptance tests.

Figure 6-1.  The build process for code on a feature branch flows across three
environments

Chapter 6 Building Code

133

This does require that you have full-system acceptance tests in your code base. If you

don’t, they are easy to start developing. After the acceptance tests succeed and you

determine your changes are complete, you, as the developer, will create a pull request so

that your team knows that you believe the work on your branch is complete and that the

code is ready to be inspected for inclusion in the master branch.

�Flow of a Build on the Master Branch
Once a pull request has been approved, your branch is automatically merged into

master. This is true whether you are using GitHub or Azure Repos. The CI build, which

is monitoring for changes, will initiate. Upon success, the build artifacts will be stored

in Azure Artifacts as NuGet packages. Then the build will be deployed to the TDD

environment for validation of deployability and for the running of the automated full-

system acceptance tests. Once these acceptance tests complete successfully, the build

is considered a valid release candidate. That is, it is a numbered candidate for potential

release and can be validated further in manual testing environments (or even additional

automated testing environments) and deployed along the pipeline toward production.

Figure 6-2 shows the life cycle of a master branch build.

The deployable package for a software build can be as simple as a zip file, but in
.NET, the NuGet package is the standard, and these are meant to be archived in
Azure Artifacts.

Figure 6-2.  The build process for changes on master end with a new release
candidate

Chapter 6 Building Code

134

�Steps of a Build
Before we walk through how to configure a build on your own workstation and in Azure

Pipelines, let’s review the steps a private build and a CI build must have.

Figure 6-3.  The private and CI build have many steps in common

Chapter 6 Building Code

135

The private build runs on a developer workstation. The CI build runs on shared

team build infrastructure, whether a full server or in Azure Pipelines. Test-driven

developmentII (TDD) introduced the validation concept of Arrange, Act, Assert. Here is

the flow:

	 1.	 Arrange: In any validation, whether an automated test, a manual

test, a static analysis run, or a CI build, the validation process is

responsible for setting up an environment in which it can run.

	 2.	 Act: In this step, you execute a process, run some code, kick off a

procedure, and so on.

	 3.	 Assert: Finally, you see how things went. You check to make

sure that what did happen was in line with what you expected

to happen. If what happened met expectations, your validation

has succeeded. If it didn’t meet expectations, your validation has

failed.

Just like in TDD, a build process is a formal validation. You will need to add steps

to your build script to set up the environment for the build to run (Arrange), run the

transition from source files to executable form (Act), and check as many things as you

can (Assert). In Figure 6-3, you can see the types of activities that are in both our private

build and our CI build. Let’s go through them one by one:

•	 Start: The private build will be triggered on demand by a

developer. The CI build will be triggered by a watcher on the Git

repository – when a new commit occurs.

•	 Clean: Any temporary directories or files are deleted, and any

remnants of previous builds are expunged.

•	 Version: The build number is pushed into any areas of input needed

for the resulting executable software to be stamped with the version

number of the build. It’s common for a private build to have a

hard-coded version such as 0.0.0 or 9.9.9 so that anyone observing

can immediately tell that a build is from a private build. In Azure

Pipelines, the build number will come in from an environment

variable, and the build script should push this number into relevant

II�Beck, 2002

Chapter 6 Building Code

136

places, such as an AssemblyInfo.cs file for .NET Framework or the

dotnet.exe command line for .NET Core. If this step is omitted,

resulting .NET assemblies will not be properly labeled with the build

number.

•	 Migrate Database: This step represents anything environmental that

the application needs in order to function. Most applications store

data, so a database needs to be created and migrated to the current

schema in preparation for the subsequent build steps. In this book,

we show examples using a SQL Server relational database schema.

•	 Compile: This step transforms source files into assemblies, and

performs any encoding, transpiling,III minification, and so on to

turn source code into a form suitable for execution in the intended

runtime environment.

•	 Unit Tests: This is the first step that falls into the Assert category.

Now that we have a form of the software that can be validated,

presuming the compile step succeeded, we start with the fastest type

of validations. Unit tests execute classes and methods that do not call

out of process. In .NET, this is the AppDomain, which is the boundary

for a space of memory. Therefore, unit tests are blazing fast.

•	 Integration Tests: These tests ensure that various components of

the application can integrate with each other. The most common is

that our data access code can integrate with the SQL Server database

schema. These tests execute code that traverses across processes (.NET

AppDomain, through the networking stack, to the SQL Server process)

in order to validate functionality. These tests are important, but they

are orders of magnitude slower than unit tests. As an application grows,

expect about a 10:1 ratio of unit tests to integration tests.

•	 Private Build Success: After these steps, a private build is done.

Nothing further is necessary to run on a developer workstation.

•	 Static Code Analysis: Whether it be the FxCop family of analyzers,

products like Ndepend or SonarQube, or JavaScript linters, a CI build

III�TypeScript in Visual Studio Code, n.d.

Chapter 6 Building Code

137

should include static code analysis in its list of validations. They

are easy to run and find bugs that automated tests will not. Capers

Jones includes them in the top 3 defect detection methods from his

research.IV

•	 Publish Test Results: At this point, the CI build has succeeded

and needs to output the build artifacts. Each application type has

a process that outputs the artifacts in a way that is suitable for

packaging, which is the next step.

•	 Package: In .NET, this is the act of taking each deployable application

component and compressing it into a named and versioned NuGet

package, for example, UI (ASP.NET web site), database (SQL Server

schema migration assets), BatchJob (Windows service, Azure

Function, etc.), and acceptance tests (deployable tests to be run in

further down the DevOps pipeline). These NuGet packages are to be

pushed to Azure Artifacts. While it is possible to use zip files, NuGet is

the standard package format for .NET.

•	 Publish: Pushing the packaged NuGet files to Azure Artifacts so they

are available through the NuGet feed.

•	 CI Build Success: The continuous integration build has now

completed and can report success.

Your implementation of a private build and a CI build can vary from the examples

shown in this book but take care to include each of the preceding steps in a fashion that

is suitable for your application. Now that you know the structure of the builds, let’s cover

how to configure and run them in a .NET environment.

�Using Builds with .NET Core and Azure Pipelines
Azure Pipelines is gaining wide adoption because of the compatibility and ease with

which an automated continuous delivery pipeline can be set up with a software

application residing anywhere. Whether GitHub or Azure Repos, or your own Git

repository, Azure Pipelines can provide the build and deploy pipeline. There are four

IV�Jones, 2012

Chapter 6 Building Code

138

stages to continuous delivery, as described by the 2010 book Continuous Delivery:

Reliable Software Releases through Build, Test, and Deployment Automation.V These

stages are

•	 Commit

•	 Automated acceptance tests

•	 Manual validations

•	 Release

The commit stage includes the private build and continuous integration build. The

automated acceptance test stage includes your TDD environment with the test suites

that represent acceptance tests. The UAT environment, or whatever name you choose,

represents the deployed environment suitable for manual validations. Then, the final

release stage goes to production where your marketplace provides feedback on the

value you created for it. Let’s look at the configuration of the private build and of Azure

Pipelines and see how to enable the commit stage of continuous delivery.

�Enabling Continuous Delivery’s Commit Stage
Before you configure Azure Pipelines, you must have your private build. Attempting to

create a CI build without this foundation is a recipe for lost time and later rework. In the

source code that accompanies this book, you will find a PowerShell build script named

“./build.ps1”. The full listing for this file is at the end of this chapter. Feel free to use it as

a build script for your own .NET Core applications. It contains all the necessary steps

narrated earlier and will serve as a good jump start for your CI build. This build scripts

contains steps to restore, compile, create a local database, and run tests. The first time

you clone the repository, you’ll see quite a bit of NuGet restore activity that you won’t see

on subsequent builds because these packages are cached. Figure 6-4 shows the dotnet.

exe restore output that you’ll only see the first time after clicking click_to_build.bat.

V�Humble, 2010

Chapter 6 Building Code

139

Click_to_build.bat is a simple helper file that makes running a private build easy

and convenient by adding a “& pause” so that the command window remains open

when invoked by the keyboard or mouse from Windows Explorer. In the normal course

of development, you’ll run the private build repeatedly to make sure that every change

you’ve made is a solid, stable step forward. You’ll be using a local SQL Server instance,

and the build script will destroy and recreate your local database every time you run

the script. Unit tests will run against your code. Component-level integration tests will

ensure that the database schema and ORM configuration work in unison to persist and

hydrate objects in your domain model. Figure 6-5 shows the full build script executive

with “quiet” verbosity level enabled.

Figure 6-4.  The first time the private build runs, you’ll see more output than
normal from the Restore step

Chapter 6 Building Code

140

This is a simple private build script, but it scales with you no matter how much

code you add to the solution and how many tests you add to these test suites. In fact,

this build script doesn’t have to change even as you add table after table to your SQL

Server database. This build script pattern has been tested thoroughly over the last

13 years across multiple teams, hundreds of clients, and a build server journey from

CruiseControl.NET to Jenkins to Bamboo to TeamCity to VSTS to Azure Pipelines.

Although parts and bits might change a little, use this build script to model your own.

The structure is proven.

Figure 6-5.  The output from the private build can fit on one screen and run in less
than 1 minute

Chapter 6 Building Code

141

Now that you have your foundational build script, you’re ready to create your Azure

Pipeline CI build. As an overview, Figure 6-6 shows the steps you use, including pushing

your release candidate packages to Azure Artifacts.

Figure 6-6.  Azure Pipelines build configuration is quite simple when you start
with the foundation of a private build script

Chapter 6 Building Code

142

Many of the defaults are suitable for CI builds and don’t have to be customized. Let’s

go through the parts that are important. First, you’ll choose your agent pool. I’ve chosen

hosted agent for Visual Studio 2019. For the purposes of illustration, I’m using the build

designer rather than the YAML option. All the builds and release definitions in Azure

Pipelines are being converted to YAML. At the time of this writing, the YAML tooling,

editor, and marketplace integration were not yet deployed. Because of this, the designer

provides the full editing experience. Expect the YAML experience to enhanced quickly.

When it is fully complete, you’ll be able to save your CI build configuration as a YAML file

in your Git repository right next to your application. You will want to do this because any

logic not versioned with your code could break your pipeline since it is inherently not

compatible with branching given that only one version of the build configuration exists.

To continue down the CI build configuration, you need to set up the environment

for the execution of the PowerShell build script that contains the shared steps with our

private build. This means that I need a SQL Server database. Given that the hosted build

agents don’t have a SQL Server installed on them, I’ll need to go elsewhere for it. You

can use an ARM script to provision a database in your Azure subscription so that your

integration tests have the infrastructure with which to test the data access layer. The

ARM scripts for this are part of the sample application. After the creation of a database

that can be used by the integration tests, you want to ensure that your compilation steps

handle the versioning properly. After all, the purpose of this build is to create a release

candidate. The candidate for release must be versioned and packaged properly and then

run through a gauntlet of validations before you would ever trust it to run in production.

As you call your PowerShell build script, you call the command with the following

arguments:

./build.ps1 ; CIBuild

Even though there is only one explicit parameter in the preceding command, all the

build variables are available to any script as environment variables. Figure 6-7 shows the

variables that are configured for this build.

Chapter 6 Building Code

143

As variables are defined, make use of other variables in order to build up the

appropriate values. You will find that once you create a few CI build configurations and

variable sets, the patterns are very portable from one application to the next. Make sure

to vary values so that multiple builds can run in parallel. In the following you will see

how to configure the build to support parallel builds on feature branches. Another very

important configuration is the build number, which provides the version for our build. In

the build script shown at the end of the chapter, we have some PowerShell variables that

pull in variables from the CI build configuration. The build configuration and version are

captured here:

$projectConfig = $env:BuildConfiguration

$version = $env:Version

Figure 6-7.  The build variables are available to the build steps as environment
variables

Chapter 6 Building Code

144

In this way, you can call dotnet.exe so that every DLL is labeled properly. See the

command-line arguments used as you compile the solution:

Function Compile{

 exec {

 & dotnet build $syource_dir\$projectName.sln

 -nologo --no-restore -v $verbosity

 -maxcpucount --configuration $projectConfig

 --no-incremental /p:Version=$version

 /p:Authors="Clear Measure"

 /p:Product="Onion DevOps Architecture"

 }

}

The build script also runs tests that output ∗.trx files so that Azure Pipelines can

show and track the results of tests as they repeatedly run over time:

Function UnitTests{

 Push-Location -Path $unitTestProjectPath

 try {

 exec {

 & dotnet test -nologo -v $verbosity --logger:trx

 --results-directory $test_dir --no-build

 --no-restore --configuration $projectConfig

 }

 }

 finally {

 Pop-Location

 }

}

We are using NUnit as our automated testing framework for this application. Notice

that we hard-code very little in formulating our commands. This is to make our build

script more maintainable. It can also be standardized someone across our teams and

other applications given that the variances occur in the properties at the top of the file.

Pay special attention to the arguments –no-restore and –no-build. By default, any call to

dotnet.exe will recompile your code and perform a NuGet restore. You do not want to do

this, as it is precious time wasted and creates new assemblies just before they are tested.

Chapter 6 Building Code

145

After the build script finishes, we can run our static analysis tools and then push the

application with its various components to Azure Artifacts as ∗.nupkg files, which are

essentially ∗.zip files with some specific differences.

Besides the steps of the build configuration, there are a few other options that should

be changed from their defaults. The first is the build number. By default, you have the

date embedded as the version number. This can certainly be the default, but to use the

SemVer,VI or Semantic Versioning, pattern (https://semver.org/), you must change the

“Build number format” to the following:

1.0.$(Rev:r).0

Additionally, as you enable continuous integration, you’re asked what branches

should be watched. The default is the master branch, but you’ll want to change that to

any branch. As you create a branch to develop a backlog item or user story, you’ll want

commits on that branch to initiate the pipeline as well. A successful build, deployment,

and the full battery of automated tests will give you the confidence that it’s time to put

in your pull request. This setting is tricky and not obvious. As you click in the “Branch

specification,” you’ll type an asterisk (∗) and hit the Enter key. Figure 6-8 shows what you

should see.

VI�Preston-Werner, n.d.

Figure 6-8.  Configure the continuous integration build to trigger on commits to
every branch

Chapter 6 Building Code

https://semver.org/

146

Once your CI build is up and running, add the Build History widget shown in

Figure 6-9 to your project dashboard.

Notice that the build time is over 4 minutes. This is a simple application, but your

build time is already up to 4 minutes and 38 seconds. Yet, your private build runs in

about 1 minute locally. This is because of the hosted build agent architecture. As soon

as you have your build stable, you’ll want to start tuning it. One of the first performance

optimizations you can make is to attach your own build agent so that you can control the

processing power as well as the levels of caching you’d like your build environment to

use. Although hosted build agents will certainly improve over time, you must use private

build agents in order to achieve the short cycle time necessary to move quickly. And the

3 minutes overhead you incur at the time of this writing for hosted agents is not what you

want for short cycle times across your team.

At the time of this writing, internal Microsoft teams use private build agents in
order to achieve the performance and control necessary for complex projects. Use
the hosted agents to stabilize new build configurations. Then measure and tune
them to decide if you need to provision your own private agents.

�Wrap Up
In this chapter, you’ve learned how to build your code. You’ve learned the structure of

a build, the types, and how to set up each. You’ve seen the flow of a build on a feature

branch as well as on a master branch and how the steps differ. You’ve also seen how to

implement a build on Azure Pipelines for a .NET Core solution, as shown in Listing 6-1.

Figure 6-9.  Seeing the builds on the dashboard can alert you to increasing
build times

Chapter 6 Building Code

147

Listing 6-1.  ./build.ps1

. .\BuildFunctions.ps1

$startTime =

$projectName = "OnionDevOpsArchitecture"

$base_dir = resolve-path .\

$source_dir = "$base_dir\src"

$unitTestProjectPath = "$source_dir\UnitTests"

$integrationTestProjectPath = "$source_dir\IntegrationTests"

$acceptanceTestProjectPath = "$source_dir\AcceptanceTests"

$uiProjectPath = "$source_dir\UI"

$jobProjectPath = "$source_dir\Job"

$databaseProjectPath = "$source_dir\Database"

$projectConfig = $env:BuildConfiguration

$framework = "netcoreapp2.2"

$version = $env:Version

$verbosity = "m"

$build_dir = "$base_dir\build"

$test_dir = "$build_dir\test"

$aliaSql = "$source_dir\Database\scripts\AliaSql.exe"

$databaseAction = $env:DatabaseAction

if ([string]::IsNullOrEmpty($databaseAction)) { $databaseAction =

"Rebuild"}

$databaseName = $env:DatabaseName

if ([string]::IsNullOrEmpty($databaseName)) { $databaseName = $projectName}

$databaseServer = $env:DatabaseServer

if ([string]::IsNullOrEmpty($databaseServer)) { $databaseServer =

"localhost\SQL2017"}

$databaseScripts = "$source_dir\Database\scripts"

if ([string]::IsNullOrEmpty($version)) { $version = "9.9.9"}

if ([string]::IsNullOrEmpty($projectConfig)) {$projectConfig = "Release"}

Function Init {

 rd $build_dir -recurse -force -ErrorAction Ignore

 md $build_dir > $null

Chapter 6 Building Code

148

 exec {

 �& dotnet clean $source_dir\$projectName.sln -nologo -v

$verbosity

 }

 exec {

 �& dotnet restore $source_dir\$projectName.sln -nologo

--interactive

 -v $verbosity

 }

 Write-Host $projectConfig

 Write-Host $version

}

Function Compile{

 exec {

 �& dotnet build $source_dir\$projectName.sln -nologo --no-

restore

 -v $verbosity -maxcpucount --configuration $projectConfig

 --no-incremental /p:Version=$version

 �/p:Authors="Clear Measure" /p:Product="Onion DevOps

Architecture"

 }

}

Function UnitTests{

 Push-Location -Path $unitTestProjectPath

 try {

 exec {

 & dotnet test -nologo -v $verbosity --logger:trx `

 --results-directory $test_dir --no-build `

 --no-restore --configuration $projectConfig `

 --collect:"Code Coverage"

 }

 }

Chapter 6 Building Code

149

 finally {

 Pop-Location

 }

}

Function IntegrationTest{

 Push-Location -Path $integrationTestProjectPath

 try {

 exec {

 & dotnet test -nologo -v $verbosity --logger:trx `

 --results-directory $test_dir --no-build `

 --no-restore --configuration $projectConfig `

 --collect:"Code Coverage"

 }

 }

 finally {

 Pop-Location

 }

}

Function MigrateDatabaseLocal {

 exec{

 & $aliaSql $databaseAction $databaseServer $databaseName

 $databaseScripts

 }

}

Function MigrateDatabaseRemote{

 $appConfig = "$integrationTestProjectPath\app.config"

 $injectedConnectionString = "Server=tcp:$databaseServer,1433;Initial

 Catalog=$databaseName;Persist Security Info=False;

 User ID=$env:DatabaseUser;Password=$env:DatabasePassword;

 �MultipleActiveResultSets=False;Encrypt=True;TrustServerCertificate=

False;

 Connection Timeout=30;"

Chapter 6 Building Code

150

 write-host "Using connection string: $injectedConnectionString"

 if (Test-Path "$appConfig") {

 poke-xml $appConfig "//add[@key='ConnectionString']/@value"

 $injectedConnectionString

 }

 exec {

 �& $aliaSql $databaseAction $databaseServer $databaseName

$databaseScripts

 $env:DatabaseUser $env:DatabasePassword

 }

}

Function Pack{

 Write-Output "Packaging nuget packages"

 exec{

 �& dotnet publish $uiProjectPath -nologo --no-restore --no-build -v

$verbosity

 --configuration $projectConfig

 }

 exec{

 �& .\tools\octopack\Octo.exe pack --id "$projectName.UI" --version

$version

 --basePath $uiProjectPath\bin\$projectConfig\$framework\publish

 --outFolder $build_dir --overwrite

 }

 exec{

 & .\tools\octopack\Octo.exe pack --id "$projectName.Database"

 �--version $version --basePath $databaseProjectPath --outFolder

$build_dir

 --overwrite

 }

 exec{

 �& dotnet publish $jobProjectPath -nologo --no-restore --no-build -v

$verbosity

Chapter 6 Building Code

151

 --configuration $projectConfig

 }

 exec{

 �& .\tools\octopack\Octo.exe pack --id "$projectName.Job" --version

$version

 --basePath $jobProjectPath\bin\$projectConfig\$framework\publish

 --outFolder $build_dir --overwrite

 }

 exec{

 �& dotnet publish $acceptanceTestProjectPath -nologo --no-restore

--no-build

 -v $verbosity --configuration $projectConfig

 }

 exec{

 & .\tools\octopack\Octo.exe pack --id "$projectName.AcceptanceTests"

 --version $version

 �--basePath $acceptanceTestProjectPath\

bin\$projectConfig\$framework\publish

 --outFolder $build_dir --overwrite

 }

}

Function PrivateBuild{

 $sw = [Diagnostics.Stopwatch]::StartNew()

 Init

 Compile

 UnitTests

 MigrateDatabaseLocal

 IntegrationTest

 $sw.Stop()

 write-host "Build time: " $sw.Elapsed.ToString()

}

Function CIBuild{

 Init

 MigrateDatabaseRemote

Chapter 6 Building Code

152

 Compile

 UnitTests

 IntegrationTest

 Pack

}

�Bibliography
Beck, K. (2002). Test Driven Development: By Example. Addison-Wesley Professional.

Duvall, P. M. (2007). Continuous Integration: Improving Software Quality and

Reducing Risk. Addison Wesley.

Humble, J. a. (2010). Continuous Delivery: Reliable Software Releases through Build,

Test, and Deployment Automation. Addison-Wesley.

Jones, C. (2012). Retrieved from SOFTWARE DEFECT ORIGINS AND REMOVAL

METHODS: www.ifpug.org/Documents/Jones-SoftwareDefectOriginsAndRemovalMet

hodsDraft5.pdf

Preston-Werner, T. (n.d.). Retrieved from Semantic Versioning 2.0.0: https://

semver.org/

TypeScript in Visual Studio Code. (n.d.). Retrieved from https://code.

visualstudio.com/docs/languages/typescript

Chapter 6 Building Code

http://www.ifpug.org/Documents/Jones-SoftwareDefectOriginsAndRemovalMethodsDraft5.pdf
http://www.ifpug.org/Documents/Jones-SoftwareDefectOriginsAndRemovalMethodsDraft5.pdf
https://semver.org/
https://semver.org/
https://code.visualstudio.com/docs/languages/typescript
https://code.visualstudio.com/docs/languages/typescript

153
© Jeffrey Palermo 2019
J. Palermo, .NET DevOps for Azure, https://doi.org/10.1007/978-1-4842-5343-4_7

CHAPTER 7

Validating the Code
Now that you are working with code, tracking changes against work items, and building

the code, you need to squeeze out defects. In Chapter 4, we discussed how to configure

Azure Boards to shed light on every type of work that must be done for a work item to

make its way from an idea to the customer. In this way, you are baking defect detection

into every part of your process. You can certainly have code that performs perfectly while

doing the wrong thing because of poor design or poor analysis. But this chapter is about

ensuring that the code is working properly. Since the code is what the software is built

from, you want to ensure that your DevOps process and infrastructure are set up to be

able to validate it all comprehensively and quickly. You will likely accumulate a volume

of code that is impossible to keep in your head. Significant software systems have so

many code files that the only way the code can be validated in a manageable way is to

automate most of it and create a process for manual review of just the recent changes.

This chapter will span steps that will be automated through the continuous integration

build, the first deployed environment, and the pull request.

�Strategy for Defect Detection
From the research that our industry has available, and summarized by Capers Jones,

“the cost of finding and fixing bugs or defects is the largest single expense element in the

history of software.”I Mr. Jones goes on to report that for the expected 25-year life span

of a 500,000 line-of-code .NET system (estimated at 52 LOC C# to 1 Function PointII),

almost $0.50 of our of every dollar will be spent on finding and fixing bugs. A review of

the available quality research would be beneficial to anyone looking to put together a

high-performing DevOps environment.

I�Jones, SOFTWARE DEFECT ORIGINS AND REMOVAL METHODS, 2012
II�Jones, Software Economics and Function Point Metrics: Thirty years of IFPUG Progress, 2017

154

To summarize, defect removal efficiency (DRE) is a metric that has a basic in

industry research. Among all of the methods and techniques that are available for

maximizing DRE, three emerge as a good balance of investment while together having

a track record of achieving the range of 85%-95% DRE. This should be considered the

minimal starting point. Excluding any of these techniques will almost certainly yield

poor quality given that other techniques are not shown to make up for the lack of these.

Use these as an essential starting point and evaluate what your standard should be. The

three essential defect removal techniques are

•	 Static analysis

•	 Testing

•	 Inspections

Discussing 85% isn’t worthwhile without knowing how many defects we should

expect to be generated in a given software project. Only then would we know how

many defects would have to be caught and fixed in order to arrive at the 85% DRE

level. And after this, what number of defects are shipped to production if 15% of them

escape? Capers Jones summarizes this research as well in his 2016 article “Exceeding

99% in Defect Removal Efficiency (DRE) for Software.”III The table in Figure 7-1 shows

the average defects potentials by phase of work. These are the average rate of defects

generated by each type of work from software projects studies through 2016.

III�Jones, Exceeding 99% in Defect Removal Efficiency DRE for Software, 2016

Figure 7-1.  Defects that should be expected by phase of work per 100 lines of
resulting C# code

Chapter 7 Validating the Code

155

The research community uses Function Points to normalize projects and make

them comparable. We can convert averages into comparable lines of code by using a

technique called backfiring. This is where we take that the average function point of

software functionality can be implemented in 52 lines of C#. We use this conversation

ratio to determine what range of defect potentials might be relevant for our own

software system. If our system is 10,000 lines of C# (HTML, VB, SQL all have very similar

conversion ratios), we should expect a ballpark defect potential in the neighborhood of

800 defects, from all sources. At minimum quality bar, 85% DRE would catch 680 defects

before releasing to the customer and would release to production 120. Research shows

that around 25% of these released defects can be caught and fixed each year after release.

This is why for systems that have been in production usage for many years can become

quite stable – and why new changes tend to break things in a visible way, especially

when users have been used to stability.

If our system is much larger, say 500,000 lines of code, we should expect around

41,000 defects to be generated from all phases of work. These number can become quite

scary. If we achieve 95% DRE, we are still releasing over 6,000 defects to our customers.

99% DRE would bring the number of defects released to customers to around 400. These

numbers are sobering. It is tempting to think that even with industry averages like this,

certainly your team is above average. One would hope so, and one should be able to

articulate why. If you were to speculate to beat the averages by a factor of 2, feel free

to cut these numbers in half. Even there, we can see the importance of a clear defect

detection and defect removal strategy if we are to have any hope of producing a quality

software system. A highly automated DevOps environment is an enabler of quality and

speed, but it must be a rich pipeline, full of quality controls.

Consider the analogy of a water treatment system for a town. We can think of this as

a pipeline where water from available sources comes in to the pipeline. Through a series

of treatment steps, water that is prone to cause disease and sickness is cleaned, filtered,

and treated so that good drinking water is produced as an output. The drinking water is

not perfect, but it is good enough for the community. This series of treatments and filters

in this water pipeline is what we must create in our DevOps pipeline. The raw ideas that

come from business initiatives are not suitable for working software. We translate the

ideas into requirements (features), and then we break those down into units that can be

implemented (user stories). We translate these into code, then into a deployable release

candidate, then into a deployed environment, and then into a working production

system. Each step of the way, the work in process coming from the left, as visualized

by our swim lanes in Azure Boards, has more hidden defects that we want promoted

Chapter 7 Validating the Code

156

to stages to the right of our project board. It is up to us to ensure that every time the

work moves from one swim lane to the next that there is a filter or a “treatment” that

find the defects that are hiding at that point in time and removes them. For the rest of

this chapter, we’ll focus on the quality control techniques that are the minimum bar for

detecting and removing defects that are produced in the code that our teams write.

�Strategy and Execution of Defect Detection
While this chapter, or book, could not comprehensively cover all of the defect detection

techniques you may want to implement, it will cover the three essential techniques.

Omitting any of these could be considered malpractices given the documented

effectiveness and affordability of each of the three.

PAIR PROGRAMMING AS DEFECT DETECTION

Pair programming does have a good track record for defect detection. Read the texts cited in

this chapter in order to dive into the actual numbers. Pair programming is the act of having

two developers create and change the code together, each trading off at the keyboard

and swapping roles of coder and navigator. Those who partake in these exercises report

anecdotally what the research shows: for tough problems, it helps push through quicker, but

for normal to easy code, it creates overhead. The reason this technique isn’t one of the first

you should reach for is the high cost as a defect detection method. The rate of return is not as

high as static analysis, testing, and inspections because it does double the cost of labor for

the same scope of software created. The software is of very high quality, but the ROI does not

translate into an economic advantage. This technique is best used for the smaller number of

more risky or difficult software features.

Let’s briefly define each of three essential defect removal methods.

�Static Analysis

Static analysis is the automated examination of a source file in order to predict defects.

More broadly, static analysis can be used as a technique against documents and other

artifacts as well as source code. The spelling and grammar check in Microsoft Word is a

very valuable static analyzer, without which this book might sound very unprofessional,

indeed. While the copy editor performs testing on each chapter by reading every word,

Chapter 7 Validating the Code

157

and the chapter layout proofer inspects images, tables, and margins, the static analyzer

in Microsoft Word is run many times, often after every change to the document. Because

it is automated, it can be run essentially for free frequently. For our source code, we will

implement a number of static analysis tools. These will run automatically as part of our

DevOps pipeline. These tools will emit warnings and errors. We may choose to fail a step

in our pipeline when errors occur – or choose to fail on new warnings.

�Testing

Since the dawn of software, testing has been part of the workflow. A programmer has

always run the written code to see if it works as intended. In 2002, Kent Beck published a

very influential book that has shifted the testing methods of scores of teams. This book is

Test Driven Development: By Example.IV James Newkirk, coauthor of NUnit 2 and XUnit

testing frameworks, illustrated TDD for .NET in his 2004 book, Test-Driven Development

in Microsoft .NET.V The technique of test-driven development shifts the developer from

either manual desk checking or custom test harnesses to a standard pattern for creating

executable tests. This standard format, and the method of creation, allows for test suites

that continually grow as the software grows. In many cases, the best format for Scrum’s

acceptance criteria for a backlog item is a written down test scenario whose steps are

coded into an automated test that exercises the system in that fashion.

�Inspections

Anything that is built is inspected. We value home inspectors that can use a formal

checklist to inspect a house or apartment before purchase or move-in. These inspectors

are experts. They know what to look for, and they are equipped with a checklist to ensure

they don’t forget to inspect all of the necessary items. Laypeople cannot be inspectors.

They lack the training or knowledge of what to inspect. The author would likewise be

unqualified to inspect a house being purchased. In software, one can craft an inspection

at several stages in the value chain. The DevOps process includes more than just the

pipeline and begins once an idea has been crafted and placed on the project board. Take

care to evaluate what steps should include a formal inspection, who should perform it,

and what the checklist should be.

IV�Beck, 2002
V�Newkirk & Vorontsov, 2004

Chapter 7 Validating the Code

158

�Code Validation in the DevOps Pipeline
We have seen that work moves through our process according to our swim lane

progression, as shown in Figure 7-2.

For the purposes of this chapter, we will focus on just the following:

•	 Test design

•	 Development

•	 Functional validation

These three phases of work surround the code and produce a release candidate that

can be further evaluated. So our scope of focus is narrowed to just these three columns,

as shown in Figure 7-3.

Figure 7-2.  Standard swim lanes for a measurable DevOps process

Chapter 7 Validating the Code

159

For simplicity, here is the part of our automated DevOps pipeline that will be

impacted by the implemented of our defect removal methods.

Figure 7-4.  Validating the code starts a few steps before coding and includes some
critical steps after

Figure 7-3.  Validating the code focuses on these three swim lanes in our process

Chapter 7 Validating the Code

160

Figure 7-4 is a snapshot of the DevOps process surrounding making code changes. Static

analysis, testing, and inspections go in specific places in this process. Each method integrates

well into Azure DevOps Services, Visual Studio, and .NET. Let’s take them one at a time.

�Static Analysis
Once you have decided what static analysis tools you should use, you will configure them

in the continuous integration build. It is often unnecessary to have them run every time

as part of the private build, but developers may run them frequently on their own. Any

static analysis tool will be able to be run locally on demand, but you will want to make it

an automated part of your pipeline. Placing it before release candidate packaging is

important. If the revision doesn’t pass static analysis checks, there may be little point in

archiving the packages from the build given that the revision has no chance of ever

becoming a release candidate.

In Visual Studio, FxCop has long been an available static analysis tool for .NET. It

fully supports .NET Framework. With recent changes in the C# compiler, Roslyn-based

analyzers have been replacing FxCop and are the preferred method. These analyzers

become part of the Visual Studio solution and can run both in the IDE as well as

command line. This chapter will not duplicate the documentation, which can be found

online.VI Other popular static analysis tools include

•	 ReSharper Command Line: For code style conventions

•	 Ndepend: For code metrics, warnings, and high-level quality

gradings

•	 SonarQube: For code metrics, warnings, and high-level quality

gradings

•	 TSLint: For readability, maintainability, and functionality errors

•	 WAVE: Web Accessibility Evaluation Tool for statically analyzing web

pages for screen reader compatibility errors

This is not meant to be a comprehensive list of static analysis tools. There are many,

many more. Static analysis is a method for which there are many implementations.

Evaluate your software and include as many as you can.

VI�Microsoft, n.d.

Chapter 7 Validating the Code

161

�Testing
Manual testing will always occur. For some validation, only a human eye can uncover

a defect that may affect customers. Certainly if there was a defect in colors or a CSS

spreadsheet that made all text white on a white background, your software may function

just fine, but few customers would be able to use it. The majority of system functionality

can be covered by forms of automated testing, and this section will focus on that. By

applying levels of automated testing, we minimize the load needed on manual testers

and ensure that people performing usability testing do not encounter functional defects.

Further, those performing exploratory testing will be able to focus on that task rather

than using time to report functional defects preventable by automated testing.

When we consider automated testing, one can group them into four categories.

•	 Unit tests

•	 Integration tests

•	 Full-system tests

•	 Specialized tests

Rather than create an exhaustive listing, specialized tests include types of testing that

do not have a short enough cycle time to reliably include in an automated DevOps pipeline

in any comprehensive fashion. Load testing and security testing fall into this category.

While you may include some spot checks of these types of tests in your full-system tests,

these types of specialized test cases often require special environments and human

assistance in order to run. They are valuable, but they will be outside the scope of this

chapter. For the first three types of tests, Microsoft provides some documentationVII and

guidance on how they separate these test types within their Azure DevOps product team.

They correlate tests in four different categories, L0-L3, and match nicely the preceding list.

All of these tests can be run with popular testing frameworks like NUnit and XUnit.

�Unit Tests (L0)

These tests are very fast. The call stack stays in memory. The average execution time for

these tests should hover around 50-70ms. Because of these, code that includes out-of-

process dependencies is disqualified. Any of these would make the tests too slow.

VII�Microsoft/Azure, n.d.

Chapter 7 Validating the Code

162

These tests can test a single method or many classes together, but they should be testing

some logical unit of software logic. The watchwords for these tests are small and fast.

These tests should be able to be run on each developer’s workstation as well as on

the build server. These tests should be included in the Visual Studio solution with the

production code. Some antipatterns for unit tests are

•	 Use of global or threading resources like Mutexes, file I/O, registry,

and so on

•	 Any dependencies between a test and another

•	 High consumption of CPU or memory for a single test

•	 Including code that calls out of the current process

�Integration Tests (L1)

Microsoft’s guidance is that L1 tests should run under 2 seconds. The vast majority of

these tests should run within 1 second. Consider 2 seconds to be an upper bound. When

the code is covered with unit tests, we are left with a code base where the individual

classes do the right thing, but we have not yet proven that all of the modules or layers

work together. The best example of this is the database schema, the data layer, and the

domain model entities. Entity Framework Core is a very good choice for working with

relational data in .NET Core, but without executing tests that round-trip from the domain

model entities to the database and back, we cannot know that those components will

work when integrated together on a downstream environment. Unit tests will not test

this capability because any call to the database is an out-of-process call. Integration tests

are run with the continuous integration build as well as within the private build script on

the developers’ workstation. These tests should be included in the Visual Studio solution

with the production code. Some antipatterns for integration tests are

•	 Requirement for large amounts of data setup.

•	 Any functional dependency on any other test.

•	 Validating more than one logical behavior between layers (being too

large).

•	 Requiring external test state or data setup: Every test is responsible

for its own setup.

Chapter 7 Validating the Code

163

�Full-System Tests (L2)

These tests are a superset of the designed test scenarios for each developed feature and

defect fix proofs created when the root cause of a defect is identified. Full-system tests

require a fully deployed environment in order to execute. They often will execute through

the same interfaces as other interactors of the software. In a web page, Selenium may

be used to type in text boxes and push buttons. All layers of the application or service

are online as these tests execute. They are responsible for their own setup and are often

responsible for reliably running in any order even as other tests continually change the

state of the system. These tests should assume the context of an identity and execute the

full application just as a normal user would. These tests should be included in the Visual

Studio solution with the production code. Some antipatterns for integration tests are

•	 Unnecessarily Slow: While these tests will be a few orders of

magnitude slower than unit tests, the aggregate of them will

determine the cycle time of a release branch.

•	 Modify global state.

•	 The use of shared resources that prevent parallelization.

•	 Requirement of third-party services that are outside of the team’s

control, that is, Office 365 login, PayPal, and the like.

For these three types of automated testing, you will see a decline in the numbers

of each. Let’s consider a code base that is 300,000 lines of code. Some averages this

author has seen (not backed at all by research) is around a unit test for every 50 lines

of code. For covered code, the average should be lower, but some production code will

not be covered, especially code that is on the edge, hopelessly coupled to third-party

libraries and frameworks and wrapped in isolation layers. Beyond this, drop an order

of magnitude for your expectation of integration tests. This would be an integration test

for every 500 lines of code. Then for full-system tests, one of these for every 5000 lines

of code. Giving concrete numbers like these is fraught with peril because inadequate

research exists for one to give any numbers at all. Given the uselessness of the “it

depends” answer, anecdotal experience has seen ratios such as 100:10:1 when looking

at unit tests to integration tests to full-system tests. Don’t expect the drop in order of

magnitude to be exact, but do expect each smaller scope of tests to include a greater

number. Your ratio is certain to vary, but take alarm if you end up with more full-system

tests than integration tests and more integration tests than unit tests. Take alarm if the

Chapter 7 Validating the Code

164

numbers are similar. You should see a significant difference in numbers. For example,

full-system tests are testing user scenarios with the fully deployed system online. Each

branch of business logic can be tested as a unit test, and each branch of database or

queue behavior can be tested with an integration test. So take care that you pick the type

of test with the smallest scope when determining how to test an aspect of code behavior.

ACCEPTANCE TEST-DRIVEN DEVELOPMENT

Before coding, we have a swim lane called test design. In this column, test scenarios are to

be added to the work item definition. Scrum calls for clear acceptance criteria to be added

to backlog items. Scripted test scenarios are an implementation of Scrum’s acceptance test

concept that creates a test name and a set of test steps that can be programmed into an

executable full-system test. In this fashion, acceptance criteria are added to an executable

regression tests suite so that all accumulated acceptance criteria are validated with every

successive build of the software. This puts the product owner, or other leader, in control of this

aspect of verifiable quality.

�Inspections
Inspections are a manual process. But it is different than manual testing. An inspection

is a consistent process whereby a human checks some work product using the same

checklist and criteria as every other work product. In software, we can implement

inspections in several places across the broader process. For example, a good precode

inspection would be after all four elements of design are complete and before the feature

or user story is cleared for development. The checklist for this type of inspection might

have high-level items to verify completeness:

•	 Feature includes conceptual definition and vision description along

with objectives.

•	 Feature includes detailed user experience design such as wireframes,

screen mockups, and the like.

•	 Feature includes changes to architecture layers, new libraries

needed, and other key technology decisions.

•	 Feature includes written test scenarios complete with test steps

suitable for manual execution as well as test automation.

Chapter 7 Validating the Code

165

Without this inspection, it would likely be common for features to make it to

developers and lack a critical part of the design. Faced with an incomplete design,

developers will have to stop developing and backtrack with the right conversations in

order to complete the work that was left incomplete upstream in the process. Without

catching this design rework, it may appear that the development phase of work is

dropping in productivity (throughput) when the developers are actually finding

upstream design defects and working to fix them before continuing with coding.

For the purposes of finding coding defects, a good implementation of an inspection

would be integrated with the pull request process. If every feature/user story is

developed using a feature branch, a pull request can govern and document the process

of accepting the changes on the branch back into the master branch. In Azure Repos

or GitHub, the pull request experience is rich enough to accommodate a formal,

documented inspection. When the pull request fails inspection, which is not to be

feared given that this would indicate a defect being found, the branch can continue

to be worked in order to resolve the defect. Once the defect is fixed, the branch can be

inspected again, and upon passing inspection, the pull request can then be approved,

and the branch merged into master. In this example, we would use an expert inspector –

another member of the engineering team. For this type of inspection, a power user or

product owner would not be a qualified inspector because the target of the inspection

is source code. But a product owner/product manager would likely be very interested in

the results of the inspection, reports that they are happening, and the number of defects

that are found and fixed through executing inspections.

Along with other items, a pull request code inspection might have steps from the

following list:

•	 The application works after a Git pull and private build.

•	 The changes conform to the approved architecture of system.

•	 The changes implement the design decisions called out in the feature.

•	 The changes conform to existing norms of the code base.

•	 No unapproved packages or libraries were introduced to the

code base.

•	 The code is accompanied by right balance of tests.

•	 All test scenarios in acceptance criteria of the feature have been

implemented as full-system L2 tests.

Chapter 7 Validating the Code

166

•	 Logging is implemented properly and of sufficient detail.

•	 Performance Considerations: Application specific.

•	 Security Considerations: Application specific and conforming to

organizational standards.

•	 Readability Considerations: Code is scannable – factored and named

so that it is self-documenting and quickly reveals what it does.

When the inspector (pull request approver) approves the pull request, that individual

is affirming that they have faithfully inspected the changes on the branch according

to the inspection checklist and that in their professional opinion, the branch meets all

the demands of the inspection and does not contain any defects that can be seen or

suspected at this time. With this large responsibility, code reviews become a thing of the

past. Quick glances at the code and subjective comments in the pull request record cease.

In its place, we gain a rigorous and comprehensive inspection of each set of changes as

branches are created and merged back into master. Using trunk-based development,

branches are very short-lived, so inspections remain quick to perform. And because the

standards for passing inspection are well-known, developers understand exactly what is

expected and submit pull requests fully expecting to pass inspection.

�Implementing Defect Detection
Armed with these defect removal methods and where they should reside in the process,

let’s look at how each one of them looks in .NET and implementing them using Azure

DevOps Services.

�Static Analysis
Microsoft provides very good documentation on FxCop analyzers for Visual Studio, and

those instructions can be found in the footnotes.VIII After adding FxCop analyzers to a

.NET Framework application, we can customize the built-in Microsoft rulesets right from

within Visual Studio.

VIII�Install FxCop analyzers in Visual Studio, 2018

Chapter 7 Validating the Code

167

In your build script, you can add the following command-line arguments so that the

analyzers are run when you want them run. Make sure to fail the build on a rule failure:

msbuild.exe

/t:Clean`;Rebuild /v:m /maxcpucount:1 /nologo

/p:RunCodeAnalysis=true

/p:ActiveRulesets=MinimumRecommendedRules.ruleset

/p:Configuration=Release

src\MySolution.sln

Figure 7-5.  Visual Studio will save a project-specific ruleset file if you modify any
of the settings of the Microsoft ruleset

Chapter 7 Validating the Code

168

When you add the NuGet package

Microsoft.CodeAnalysis.FxCopAnalyzers

To your project in .NET Core, you’ll see the analyzers appear in your Solution

Explorer, and warnings will start to show when you build your code inside Visual Studio,

as shown in Figure 7-6.

Figure 7-6.  Code analyzers are added to a .NET Core project through NuGet

Chapter 7 Validating the Code

169

There is no need to add a command-line argument to your call to dotnet.exe in your

build script. When analyzers are added to your project, they will automatically run and

generate the appropriate warnings or errors.

Each static analysis product has its own instructions for integrating it with your code,

but in order to keep your Azure Pipelines build configuration simple, make sure to add

your static analysis tools to your build script so that the configuration is stored in your

Git repository. If you convert your Azure Pipelines build to YAML, you’ll be storing more

build logic in Git.

�Testing
Implementing automated tests could fill a volume of its own, and there are plenty of

books on the topic. If you are new to test automation, you would spend some time well

reading James Newkirk’s book mentioned earlier. For brevity, here are some examples of

the various types of tests that are mentioned in this chapter.

�Unit Tests

In our example application, we have an entity which serves as an aggregate root, in

domain-driven design terms. It has a number of properties and methods. The code for

this short class is as follows:

using System;

namespace ClearMeasure.OnionDevOpsArchitecture.Core.Model

{

 public class ExpenseReport

 {

 public Guid Id { get; set; }

 public string Title { get; set; }

 public string Description { get; set; }

 public ExpenseReportStatus Status { get; set; }

 public string Number { get; set; }

Chapter 7 Validating the Code

170

 public ExpenseReport()

 {

 Status = ExpenseReportStatus.Draft;

 Description = "";

 Title = "";

 }

 public string FriendlyStatus

 {

 get { return GetTextForStatus(); }

 }

 protected string GetTextForStatus()

 {

 return Status.ToString();

 }

 public override string ToString()

 {

 return "ExpenseReport " + Number;

 }

 protected bool Equals(ExpenseReport other)

 {

 return Id.Equals(other.Id);

 }

 public override bool Equals(object obj)

 {

 if (ReferenceEquals(null, obj)) return false;

 if (ReferenceEquals(this, obj)) return true;

 if (obj.GetType() != this.GetType()) return false;

 return Equals((ExpenseReport) obj);

 }

Chapter 7 Validating the Code

171

 public override int GetHashCode()

 {

 return Id.GetHashCode();

 }

 }

}

There is quite a bit of logic here that could fail. This logic can be tested inside a single

memory space without needed to call out of process to any application dependencies;

therefore, we can write some unit tests. In a code base where entities are placed into

collections, sorted, and compared, some methods are used by the base class library (BCL)

and show a diminished return on investment for explicit unit tests. These methods are

Equals() and GetHashCode(). Any entity in a domain model that doesn’t implement these

will force other logic to know what property represents its identity in order to see if two

objects represent the same record. Most of these objects have data that is pulled from a

database of some sort. Full coverage on Equals() and GetHashCode() normally happens

automatically as tests of business logic are written. And some tools such as JetBrains

ReSharper will generate these methods automatically, so the likelihood of defects is low

unless you handwrite them.

A unit test class for ExpenseReport is shown here:

using System;

using ClearMeasure.OnionDevOpsArchitecture.Core.Model;

using NUnit.Framework;

namespace ClearMeasure.OnionDevOpsArchitecture.UnitTests

{

 public class ExpenseReportTester

 {

 [Test]

 public void PropertiesShouldInitializeToProperDefaults()

 {

 var report = new ExpenseReport();

 Assert.That(report.Id, Is.EqualTo(Guid.Empty));

 Assert.That(report.Title, Is.EqualTo(string.Empty));

 Assert.That(report.Description, Is.EqualTo(string.Empty));

Chapter 7 Validating the Code

172

 �Assert.That(report.Status, Is.EqualTo(ExpenseReportStatus.

Draft));

 Assert.That(report.Number, Is.EqualTo(null));

 }

 [Test]

 public void ToStringShouldReturnNumber()

 {

 var report = new ExpenseReport();

 report.Number = "456";

 �Assert.That(report.ToString(), Is.EqualTo("ExpenseReport 456"));

 }

 [Test]

 public void PropertiesShouldGetAndSetValuesProperly()

 {

 var report = new ExpenseReport();

 Guid guid = Guid.NewGuid();

 report.Id = guid;

 report.Title = "Title";

 report.Description = "Description";

 report.Status = ExpenseReportStatus.Approved;

 report.Number = "Number";

 Assert.That(report.Id, Is.EqualTo(guid));

 Assert.That(report.Title, Is.EqualTo("Title"));

 Assert.That(report.Description, Is.EqualTo("Description"));

 Assert.That(report.Status,

 Is.EqualTo(ExpenseReportStatus.Approved));

 Assert.That(report.Number, Is.EqualTo("Number"));

 }

 [Test]

 public void ShouldShowFriendlyStatusValuesAsStrings()

 {

 var report = new ExpenseReport();

 report.Status = ExpenseReportStatus.Submitted;

Chapter 7 Validating the Code

173

 Assert.That(report.FriendlyStatus, Is.EqualTo("Submitted"));

 }

 }

}

As you read this code file, you see that each test validates that a piece of logic works

correctly while keeping all the executing code in process. Unit tests written in this

fashion run very fast, and thousands of them can execute in seconds.

�Integration Tests

Our ExpenseReport object is persisted, through Entity Framework Core, to a SQL Server

database. In order to validate that the expense report class can be hydrated from data in

SQL Server, we need a test that puts several layers together:

•	 The domain model itself, containing the expense report class

•	 The Entity Framework Core mapping configuration

•	 The data access logic, specifying the query to run

•	 The SQL Server schema, which contains the DDL (data definition

language) for the ExpenseReport table

In most cases, these tests are easy to write, but they are very important. Without

them, you will encounter defects, and you will spend valuable time debugging through

these four layers in order to find the problem. If all of your database-backed classes

are equipped with persistence-level integration tests, you will seldom find yourself in a

debugging session for a problem in this area.

We have seen the expense report class. The next class to examine is the Entity

Framework Core mapping configuration, which is comprised of the data context class

and a mapping class. The data context class is as follows:

using ClearMeasure.OnionDevOpsArchitecture.Core;

using Microsoft.EntityFrameworkCore;

using Microsoft.EntityFrameworkCore.Diagnostics;

Chapter 7 Validating the Code

174

namespace ClearMeasure.OnionDevOpsArchitecture.DataAccess.Mappings

{

 public class DataContext : DbContext

 {

 private readonly IDataConfiguration _config;

 public DataContext(IDataConfiguration config)

 {

 _config = config;

 }

 protected override void OnConfiguring(DbContextOptionsBuilder

 optionsBuilder)

 {

 optionsBuilder.EnableSensitiveDataLogging();

 var connectionString = _config.GetConnectionString();

 optionsBuilder

 .UseSqlServer(connectionString)

 .ConfigureWarnings(warnings =>

 warnings.

 Throw(RelationalEventId.QueryClientEvaluationWarning));

 base.OnConfiguring(optionsBuilder);

 }

 protected override void OnModelCreating(ModelBuilder modelBuilder)

 {

 new ExpenseReportMap().Map(modelBuilder);

 }

 }

}

In our example application, we have one aggregate root, so in our OnModelCreating

class, we include one “Map” class. We use this pattern so that as we accumulate

hundreds of mapped entities, each has it’s own class rather than bloating the single

DataContext class:

Chapter 7 Validating the Code

175

using System;

using ClearMeasure.OnionDevOpsArchitecture.Core.Model;

using Microsoft.EntityFrameworkCore;

using Microsoft.EntityFrameworkCore.Metadata.Builders;

using Microsoft.EntityFrameworkCore.ValueGeneration;

namespace ClearMeasure.OnionDevOpsArchitecture.DataAccess.Mappings

{

 public class ExpenseReportMap : IEntityFrameworkMapping

 {

 public EntityTypeBuilder Map(ModelBuilder modelBuilder)

 {

 var mapping = modelBuilder.Entity<ExpenseReport>();

 mapping.UsePropertyAccessMode(PropertyAccessMode.Field);

 mapping.HasKey(x => x.Id);

 mapping.Property(x => x.Id).IsRequired()

 .HasValueGenerator<SequentialGuidValueGenerator>()

 .ValueGeneratedOnAdd()

 .HasDefaultValue(Guid.Empty);

 mapping.Property(x => x.Number).IsRequired().HasMaxLength(10);

 mapping.Property(x => x.Title).HasMaxLength(200);

 mapping.Property(x => x.Description).HasMaxLength(4000);

 mapping.Property(x => x.Status).HasMaxLength(3)

 .HasConversion(status => status.Code

 , s => ExpenseReportStatus.FromCode(s));

 return mapping;

 }

 }

}

Rather than rely on defaults, which tend to change, our map class specifies how

to map each property. Choosing to be explicit in this fashion also lowers the bar for

developers understanding what is going on. Each developer will have a different level of

Chapter 7 Validating the Code

176

memorization for what Entity Framework Core’s default behavior is. Our ExpenseReport

table looks like the following:

CREATE TABLE [dbo].[ExpenseReport] (

 [Id] UNIQUEIDENTIFIER NOT NULL,

 [Number] NVARCHAR (10) NOT NULL,

 [Title] NVARCHAR (200) NULL,

 [Description] NVARCHAR (4000) NULL,

 [Status] NCHAR (3) NOT NULL

);

With four different layers of code running across two different processes, most of

the time across a network on different servers, you should see the importance of an

automated test ensuring the stability of the integration of these layers. Our integration

test to validate persistence logic is here:

using ClearMeasure.OnionDevOpsArchitecture.Core.Model;

using NUnit.Framework;

using Shouldly;

namespace ClearMeasure.OnionDevOpsArchitecture.IntegrationTests.DataAccess.

Mappings

{

 public class ExpenseReportMappingTester

 {

 [Test]

 public void ShouldPersist()

 {

 new DatabaseTester().Clean();

 var report = new ExpenseReport

 {

 Title = "TestExpense",

 Description = "This is an expense",

 Number = "123",

 Status = ExpenseReportStatus.Cancelled

 };

Chapter 7 Validating the Code

177

 �using (var context = new StubbedDataContextFactory().

GetContext())

 {

 context.Add(report);

 context.SaveChanges();

 }

 ExpenseReport rehydratedExpenseReport;

 �using (var context = new StubbedDataContextFactory().

GetContext())

 {

 rehydratedExpenseReport = context

 .Find<ExpenseReport>(report.Id);

 }

 rehydratedExpenseReport.Title.ShouldBe(report.Title);

 �rehydratedExpenseReport.Description.ShouldBe(report.

Description);

 rehydratedExpenseReport.Number.ShouldBe(report.Number);

 rehydratedExpenseReport.Status.ShouldBe(report.Status);

 }

 }

}

This pattern for an integration test can be repeated across all classes that must be

persisted to a database through an object-relational mapper. The base case is to send

an object through the ORM to the database, clear memory, and then query again to

build up the object. We have our first test helper illustrated in this case. The call to

DatabaseTester.Clean() represents a helper that can remove all records from all tables in

the database in the order of foreign key dependencies. It contains a bit too much code

than can be printed in this book. If you are interested in it, clone the Git repository that

accompanies this book. In integration tests involving a database, each test is responsible

for putting the database in a known state. In many cases, it can be appropriate to run a

test starting with no records in the database. Certainly, this case works that way. In other

cases, you may want a small known set of data to be loaded into the database before

the test suite executes. Maintaining a data test set for build purposes can become time-

consuming, so don’t make that your first solution.

Chapter 7 Validating the Code

178

�Full-System Tests

Full-system tests, implementing acceptance criteria should begin at external interfaces

of the application. If the feature in question is a web service, then the test should

perform setup and call the web service. If the interface is a user interface screen, the test

should navigate to the screen and use it. If the interface is file ingestion of a custom Excel

file for data import, the test should build up an Excel file and place it in the right file path

to be process. You get the pattern.

Since web applications are so popular, you will definitely have Selenium tests

running in your .NET DevOps pipeline. You can see how to implement Selenium tests

in Microsoft’s docs.IX For a simple form-based login screen, a Selenium test might look

similar to the following:

[Test]

public void ShouldLoginAndLogOut()

{

 Driver.Navigate().GoToUrl(AppUrl);

 var login = Driver.FindElement(

 By.XPath("//button[contains(text(), 'Log In')]"));

 login.Click();

 Driver.Title.ShouldStartWith("Home Page");

 var logout = Driver.FindElement(By.LinkText("Logout"));

 logout.Click();

 Driver.Title.ShouldStartWith("Login");

}

In this case, Driver is a property that is the Selenium Driver class that wraps a

model of the web page being viewed by the browser. These tests can execute from any

machine where the executing identity can actually start up and control an instance of a

web browser. And since full-system tests are run against a fully deployed environment,

it is important that the CI build process packages up the test suite and deploys it along

with the application components in the TDD environment. We will cover more about

packaging and deploying in later chapters.

IX�UI test with Selenium, n.d.

Chapter 7 Validating the Code

179

�Inspections
A pull request in Azure Repos or GitHub is the perfect place to facilitate a code inspection.

Here is a flow in Azure Repos. We start with a feature branch ready for merging. The

developer creates the pull request. By policy, the developer initializes the description

with a markdown task list that includes all the steps of the inspection. This can be pulled

from a wiki or markdown file stored with the application, as shown in Figure 7-7.

Figure 7-7.  Pull request that executes a multistep inspection

The approver can check off the items as they are inspected. When an item fails, the

comments can be used and the pull request rejected. More commits can be added to

the branch to fix the issue. Then, using the comments in the pull request, the submitter

can request that the inspector have another look. Once the branch meets all criteria

Chapter 7 Validating the Code

180

in the inspection, the inspector approves the pull request and merges the branch. The

checklist, and the complete dialog used to resolve any issues, is fully documented in

Azure Repos.

�Wrap Up
In this chapter, you’ve learned how to use some available research to predict how many

defects to expect for your application. You’ve also learned three of the critical defect

removal methods available in the industry. We’ve covered static analysis, multiple levels

of testing, and the concept and implementation of inspections. Armed with these defect

removal methods, your teams will quickly remove defects even within development

rather than promoting them to downstream phases.

�Bibliography
Beck, K. (2002). Test Driven Development: By Example. Addison-Wesley Professional.

Install FxCop analyzers in Visual Studio. (2018, 8 2). Retrieved from Visual Studio

Docs: https://docs.microsoft.com/en-us/visualstudio/code-quality/install-

fxcop-analyzers?view=vs-2017

Jones, C. (2012). Retrieved from SOFTWARE DEFECT ORIGINS AND REMOVAL

METHODS: www.ifpug.org/Documents/Jones-SoftwareDefectOriginsAndRemovalMet

hodsDraft5.pdf

Jones, C. (2016). Exceeding 99% in Defect Removal Efficiency (DRE) for Software.

Retrieved from www.ifpug.org/Documents/Toppin99percentDRE2016.pdf

Jones, C. (2017). Software Economics and Function Point Metrics: Thirty years

of IFPUG Progress. Retrieved from www.ifpug.org/wp-content/uploads/2017/04/

IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-

Capers-Jones.pdf

Microsoft. (n.d.). Get started with Roslyn analyzers. Retrieved from Visual Studio

Docs: https://docs.microsoft.com/en-us/visualstudio/extensibility/getting-

started-with-roslyn-analyzers?view=vs-2017

Chapter 7 Validating the Code

https://docs.microsoft.com/en-us/visualstudio/code-quality/install-fxcop-analyzers?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/code-quality/install-fxcop-analyzers?view=vs-2017
http://www.ifpug.org/Documents/Jones-SoftwareDefectOriginsAndRemovalMethodsDraft5.pdf
http://www.ifpug.org/Documents/Jones-SoftwareDefectOriginsAndRemovalMethodsDraft5.pdf
http://www.ifpug.org/Documents/Toppin99percentDRE2016.pdf
http://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf
http://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf
http://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf
https://docs.microsoft.com/en-us/visualstudio/extensibility/getting-started-with-roslyn-analyzers?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/extensibility/getting-started-with-roslyn-analyzers?view=vs-2017

181

Microsoft/Azure. (n.d.). Shift Left to Make Testing Fast and Reliable. Retrieved from

Azure DevOps Docs: https://docs.microsoft.com/en-us/azure/devops/learn/

devops-at-microsoft/shift-left-make-testing-fast-reliable#test-taxonomy

Newkirk, J. W., & Vorontsov, A. A. (2004). Test-Driven Development in Microsoft .NET.

Microsoft Press.

UI test with Selenium. (n.d.). Retrieved from https://docs.microsoft.com/en-us/

azure/devops/pipelines/test/continuous-test-selenium?view=azure-devops

Chapter 7 Validating the Code

https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/shift-left-make-testing-fast-reliable#test-taxonomy
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/shift-left-make-testing-fast-reliable#test-taxonomy
https://docs.microsoft.com/en-us/azure/devops/pipelines/test/continuous-test-selenium?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/test/continuous-test-selenium?view=azure-devops

183
© Jeffrey Palermo 2019
J. Palermo, .NET DevOps for Azure, https://doi.org/10.1007/978-1-4842-5343-4_8

CHAPTER 8

Release Candidate Creation
You have previously learned how to code, build, and validate a build of software. In order

for that build to become a release candidate, you must package the build in a format

that is suitable for a production release. In addition, in order to make our continuous

integration “Commit Stage”I more robust, you will have to package the build for release

to a TDD (test-driven development) environment. This environment was covered in

previous chapters as a deployed environment dedicated solely to the execution of

automated tests. The type of tests executed in this environment is acceptance tests.II

For a web application, you would commonly use SeleniumIII for tests through the user

interface. You can also create other test suites that would require a fully deployed

instance of the software system to be deployed. This chapter will focus on the essential

elements you will design and configure in order to convert a build to a versioned release

candidate suitable for deployment to downstream environments. The chapter will

cover the principles involved, the model and relationships of packages to the software

architecture, and the process for storing the packages and using them.

�Designing Your Release Candidate Architecture
In order to specify the architecture for your release candidate packages, you will need to

analyze the logical and physical layers of your 4+1 architectureIV and determine the unit

of deployment. Keep in mind these rules of thumb for release candidate packages:

I�Duvall, 2007
II�Wells, n.d.
III�Microsoft Docs: Testing with Selenium, n.d.
IV�Kruchten

184

•	 Build/package once, deploy many

�A continuous integration build that succeeds will package a set of release

candidate packages. These packages should be suitable for deployment to

any environment, including production. Do not configure branches or builds

so that each environment is built separately. We build and package once so

that every subsequent activity performed in our DevOps pipeline further

proves the suitability of the release candidate for release to our users of the

production environment. When a problem is found, the release candidate

is no longer qualified for release. When a release candidate makes its way

through our entire pipeline, we can be confident that it is ready for our users.

•	 One package per runtime component

�Generally, a release candidate is made up of a set of packages (NuGet

packages for our .NET applications). Each runtime component in our physical

architecture layer makes up a package. That is, our web site is packaged

entirely in a NuGet package. Our SQL Server database schema and migration

scripts are packaged in a separate NuGet package, and so on.

•	 Use the NuGet package format

�While anyone can invent a new package format, it’s best to use an industry

standard format that has tooling such as viewers. The .NET package format is

a ∗.nupkg file (pronounced NUPKEG). While you could technically put your

files in a ∗.zip file, you are better served using a more specific format for your

platform. Likewise, if you were developing a NodeJS application, you would

use the ∗.npm package format.

•	 Embed the build number as the release candidate version

�Build numbers are automatically assigned according to the format you

specify. Flow the build number all the way through to each package of your

release candidate. If you have build 3.4.352, then your NuGet packages for the

release candidate should all be marked 3.4.352. This ensures that regardless

of environment, you always know the release candidate being tested and the

build that created the release candidate.

Chapter 8 Release Candidate Creation

185

•	 Package only application artifacts

�Take care that you do not package up any environment-specific files or

configuration. What is put into each application component package should

be suitable for deployment to any environment. Global configuration is

appropriate, but any configuration that changes from environment to

environment should be pushed in at deploy time, not package time. Be wary of

any contents of packages that include reference to an environment name.

�Creating and Using Release Candidate Packages
Let’s first look at the part of the process where release candidates fit. Figure 8-1 illustrates

the sequence of events in our DevOps pipeline.

Figure 8-1.  Release candidate packages are the bridge between a build and
deployment

Chapter 8 Release Candidate Creation

186

The release candidate packages are created by the CI build and are used by the

deployment configuration. In Azure Pipelines, you will have a single continuous

integration build for your application, regardless of the number of runtime components.

For a single Git repository containing a Visual Studio solution, you will have one build.

That build, upon success of all its steps, should package your application for deployment

into a set of NuGet packages. We will cover how to determine the number of packages

shortly.

Once the release candidate (the results of the build that is about to succeed) is

packaged, the build configuration should push them into Azure Artifacts. Azure Artifacts

provides a built-in NuGet feed for your team. Unless you have a specific reason to use

something else, use this. Once the release candidate packages have been pushed, the CI

build finishes and reports success. If the release candidate cannot be packaged or stored,

then the build should fail.

While we have not yet covered release configurations or deployments (that will be

covered in a later chapter), let’s cover the process that packages are used for. Each of

the downstream environments (TDD, UAT, and Prod) will have a deployment process

starting with the retrieval of the NuGet packages for the release candidate. This process

will access the NuGet feed hosted in Azure Artifacts and retrieve the packages, extract

them, and use the contents to deploy your application. The same packages making up a

single release candidate should be used for deployment to every environment.

�Defining the Bounds of a Package
Most applications have more than one runtime component. Therefore, there should be

more than one NuGet package in the set of packages that make up a release candidate.

Each part of your application that is deployed a specific way should be packaged

separately, as shown in Figure 8-2. Let’s dig into how to determine the bounds of each

package.

Chapter 8 Release Candidate Creation

187

Let’s consider an application with three deployable components. The first part is a

web application using ASP.NET. It is deployed to a web server or to Azure AppService.

The second part is an off-line job. Perhaps a batch job or a handler service listening to

a queue. These are very common, and they are deployed as Windows services or Azure

Functions or WebJobs. The third is a SQL Server database. Whether on-premise or in

Azure SQL, we must deploy schema and global data changes.

Each of these three components of the application run in their own memory space,

in their own process, so they have differing deployment characteristics. The deployment

destination is different. Because of these, each should be packaged in its own NuGet

package. This allows each to be deployed to the appropriate destination while preserving

Figure 8-2.  Each runtime component of the application should have its own
package

Chapter 8 Release Candidate Creation

188

flexibility. While you potentially could deploy all three components to a single server,

you could also deploy each to completely different servers. In fact, you could deploy

the web application ASP.NET UI to many servers in a web farm or to multiple Azure

regions. The structure of your release candidate packages should map to the physical

architecture of the running components of the application with a disregard to the

topology of the server environment.

In addition to each application component, you will always have some additional

assets that go along with the release candidate. These assets are not production code and

only exist for validate of the release candidate. In Figure 8-2, you will see “Acceptance

Tests.” In Visual Studio, this is manifested as a project, probably NUnit or another testing

framework. If the application is a web application, the tests contained in the Visual Studio

project likely use Selenium in order to test the fully deployed application. Because of the

need for a fully deployed application, these tests are tied to the version of the application;

therefore, they belong to a certain release candidate and need to be packaged and deployed

along with the other components. In our process diagram earlier in the chapter, you saw

that the TDD environment is the first environment for deployments. After the application is

fully deployed, the acceptance test package will be retrieved and installed on a deployment

server. Then, the tests are run against the deployed release candidate running from the

TDD environment. In this way, we can package additional assets for the purpose of making

our DevOps pipeline more robust so that it can detect a higher percentage of defects before

promoting the release candidate to the next downstream environment.

�Azure Artifacts Workflow for Release Candidates
Now that you have seen how to determine the architecture for your release candidate

packaging, let’s see it in action. We will use this configuration for our sample application in

Azure DevOps Service. In your project configuration, you will want to make sure you have

Azure Artifacts as an enabled service for your pipeline.V Azure Artifacts is an independent

product, but it’s used in conjunction with Azure Pipelines. It’s the storage service for the

release candidate components produced by the continuous integration build.

The application we will be packaging has three deployable components that are built

and versioned together:

•	 Web site user interface (UI)

V�Dixon, n.d.

Chapter 8 Release Candidate Creation

189

•	 Off-line job

•	 Database

In addition to these application components, this application also has acceptance

tests that will be packaged and deployed. Refer back to Chapter 7 to see how a full-

system acceptance test can be structured when validating a web application. In order

to run these acceptance tests against our application in the TDD environment, we must

package and store the version of the acceptance tests that belong to this version of the

application. The version numbers must match.

Earlier, I stressed how important versioning is in a DevOps pipeline. In Figure 8-3,

inspect the release candidate packages in Azure Artifacts.

Figure 8-3.  The version of the release candidate is stamped on the NuGet packages
as well as every assembly inside

Chapter 8 Release Candidate Creation

190

Because the proper version number is now embedded into every assembly, your

code has access to it. Whether you display it at the bottom of the screen or include it with

diagnostics telemetry or logs, you’ll use the version number to know whether a problem

or bug was on an old version or the current one. Without the version number, you fly

blind. Do not try to use date and time stamps to decipher what build you’re working

with. Explicitly push the version number into every asset.

Don’t try to use date and time stamps to decipher what build you’re working with.
Explicitly push the version number into every assembly in every release candidate
NuGet package.

�Specifying How Packages are Created
To close the loop on how packages are made, refer back to our build script, which you

will want to keep at the top level of your Git repository. Refer to Figure 8-4.

Figure 8-4.  Our PowerShell build script is stored at the top of the Git repository
and is named build.ps1

Chapter 8 Release Candidate Creation

191

When running our private build on the local workstation, packaging is not necessary,

but when this script runs as part of the CI build, packaging is the last step before the

build should return success. This PowerShell function is responsible for packaging the

projects as NuGet packages.

Function Pack{

 Write-Output "Packaging nuget packages"

 exec{

 & dotnet publish $uiProjectPath -nologo --no-restore --no-build

 -v $verbosity --configuration $projectConfig

 }

 exec{

 & .\tools\octopack\Octo.exe pack --id "$projectName.UI"

 --version $version

 --basePath $uiProjectPath\bin\$projectConfig\$framework\publish

 --outFolder $build_dir --overwrite

 }

 exec{

 & .\tools\octopack\Octo.exe pack --id "$projectName.Database"

 --version $version --basePath $databaseProjectPath

 --outFolder $build_dir --overwrite

 }

 exec{

 & dotnet publish $jobProjectPath -nologo --no-restore --no-build

 -v $verbosity --configuration $projectConfig

 }

 exec{

 & .\tools\octopack\Octo.exe pack --id "$projectName.Job"

 --version $version

 --basePath $jobProjectPath\bin\$projectConfig\$framework\publish

 --outFolder $build_dir --overwrite

 }

Chapter 8 Release Candidate Creation

192

 exec{

 & dotnet publish $acceptanceTestProjectPath -nologo --no-restore

 --no-build

 -v $verbosity --configuration $projectConfig

 }

 exec{

 & .\tools\octopack\Octo.exe pack --id "$projectName.AcceptanceTests"

 --version $version --basePath

 $acceptanceTestProjectPath\bin\$projectConfig\$framework\publish

 --outFolder $build_dir --overwrite

 }

}

Since we have four components that must be deployed, we have four NuGet

packages. Notice that I am using the Octo.exe tool.VI OctoPack is the full name and is

an open source wrapper for NuGet, and you can find the source on GitHub. NuGet was

originally designed as a package format for library dependencies before it was adapted

for application packaging. You can certainly use NuPack directly, but OctoPack wraps

NuPack and overcomes some of the default conventions and assumptions that don’t

quite fit naturally when packaging an application component for deployment.

With the preceding PowerShell in our build script, we can configure Azure Pipelines

as shown in Figure 8-5.

VI�OctoPack GitHub Project, n.d.

Chapter 8 Release Candidate Creation

193

Notice that the “CIBuild” function is being called in the build.ps1 file. This function

is as follows:

Function CIBuild{

 Init

 MigrateDatabaseRemote

 Compile

 UnitTests

 IntegrationTest

 Pack

}

The Pack function is the last to be called. Then, with the NuGet packages properly

created, our “NuGet push” build step places them in the Azure Artifacts services, which

makes them available to any other process that accesses the NuGet feed. Refer to Figure 8-6.

Figure 8-5.  Azure Pipelines calls the build script stored in Git in order to minimize
the global step configuration

Chapter 8 Release Candidate Creation

194

Because we have the database migration tool and the full body of scripts, we are able to

run the database migration process from any server we choose. And including helper ∗.ps1

files in our packages will limit the steps that must be explicitly configured in Azure Pipelines.

While YAML will become the format for all builds and releases, the tooling for that
capability is not ready yet. Expect to move to YAML-based configurations at the
right time. YAML will enable you to store your entire pipeline configuration in your
Git repository.

�Use Release Candidate Packages in Deployment
Configurations
While we will go in depth on deploying in the next chapter, it is useful to know how a

build or release configuration can retrieve a NuGet package from Azure Artifacts on

demand, as shown in Figure 8-7.

Figure 8-6.  Our database component for release candidate 1.0.594 contains the
database migration scripts necessary to upgrade the schema

Chapter 8 Release Candidate Creation

195

Remember the order of our environments. In the case of the TDD environment, you

will need to deploy the full application and then pull and install the AcceptanceTests

package so that those tests can be run. The AcceptanceTests package lives no further

than the TDD environment. If you create other types of test suites that must be run on

a fully deployed environment, you would use the same pattern of packaging them as a

package, storing them in Azure Artifacts, and retrieving them during deploy.

Figure 8-7.  Review of how environment deployments call out to Azure Artifacts to
obtain packages

Chapter 8 Release Candidate Creation

196

The “Download Package” step allows for easy retrieval of our set of NuGet packages

for any release candidate, as shown in Figure 8-8. Because a NuGet package is essentially

a ∗.zip file with a manifest, this step retrieves and extracts the NuGet package on the

destination directory of the server that is used as the agent, whether it is a hosted

agent or your own private agent. You can see how important the build number is to the

pipeline. Everything ties back to the build number.

Figure 8-8.  A portion of the TDD environment release/deploy configuration

Chapter 8 Release Candidate Creation

197

WHAT ABOUT SHARING LIBRARIES?

If your Visual Studio solution contains a class library that you’d like to share with other teams or

other applications, treat it the same as an application component. Package it as part of the CI

build. Push it up to Azure Artifacts. Other developers with access of that NuGet feed will be able

to pull the library in just like they do with public NuGet packages. And when you have a new

build of the library, the feed will automatically receive the library as a result of the new build.

�Wrap Up
In this chapter you learned how to package your application as a release candidate,

consisting of a set of NuGet packages. Our rules of thumb are

•	 Build once, deploy many.

•	 Flow the build number through everything as the official

version number.

•	 Use NuGet for your package format.

•	 Archive your release candidates in Azure Artifacts.

•	 Package test suites that must execute in a deployed environment.

•	 Package and publish shared libraries through Azure Artifacts.

�Bibliography
(n.d.). Retrieved from OctoPack GitHub Project: https://github.com/OctopusDeploy/

OctoPack

(n.d.). Retrieved from Microsoft Docs: Testing with Selenium: https://docs.

microsoft.com/en-us/azure/devops/pipelines/test/continuous-test-

selenium?view=azure-devops

Dixon, H. (n.d.). Deep dive into Azure Artifacts. Retrieved from https://azure.

microsoft.com/en-us/blog/deep-dive-into-azure-artifacts/

Chapter 8 Release Candidate Creation

https://github.com/OctopusDeploy/OctoPack
https://github.com/OctopusDeploy/OctoPack
https://docs.microsoft.com/en-us/azure/devops/pipelines/test/continuous-test-selenium?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/test/continuous-test-selenium?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/test/continuous-test-selenium?view=azure-devops
https://azure.microsoft.com/en-us/blog/deep-dive-into-azure-artifacts/
https://azure.microsoft.com/en-us/blog/deep-dive-into-azure-artifacts/

198

Duvall, P. M. (2007). Continuous Integration: Improving Software Quality and

Reducing Risk. Addison Wesley.

Kruchten, P. (n.d.). Retrieved from Architectural Blueprints—The “4+1” View

Model of Software Architecture: www.cs.ubc.ca/~gregor/teaching/papers/4+1view-

architecture.pdf

Wells, D. (n.d.). Acceptance Tests. Retrieved April 3, 2019, from Extremeprogramming.

org: www.extremeprogramming.org/rules/functionaltests.html

Chapter 8 Release Candidate Creation

http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://extremeprogramming.org
http://extremeprogramming.org
http://www.extremeprogramming.org/rules/functionaltests.html

199
© Jeffrey Palermo 2019
J. Palermo, .NET DevOps for Azure, https://doi.org/10.1007/978-1-4842-5343-4_9

CHAPTER 9

Deploying the Release
Perhaps you have skipped ahead to this chapter rather than reading all previous

chapters. That’s ok, but the other topics were intentionally placed ahead of this one. It is

true that until we actually deploy bits to an environment, no one can use them. However,

the deployment pipeline is where all prior techniques provide their value of squeezing

out defects, so they are not promoted to our users. In this chapter, you will learn the

model for designing your deployment pipeline, the types of environment to configure

therein, and the types of activities necessary during deployment.

�Designing Your Deployment Pipeline
In order to determine the proper structure of your deployment pipeline, you will have to

decide how many environments to configure and the differences between them. Before

we dive in to that topic, let’s consider some principles that will guide those decisions:

•	 Build one, deploy many

Regardless how many environments you have, you will deploy

the same release candidate, produced from a single continuous

integration build many times, once (at least) per environment

type. Do not do anything that rebuilds or recompiles from

source once a version enters deployment activities. If there is a

problem anywhere, consider the release candidate dead, correct

the problem, and proceed with a different versioned release

candidate.

•	 Do nothing on production for the first time

Design the deployment pipeline so that every unique activity

necessary in your deployment be performed in at least one

pre-production environment before that activity is executed on

200

production. For example, if your production environment runs

on a web farm with several batch job servers and a large SQL

Server cluster, it would not be prudent to have single-server

configurations in all pre-production environments. Additionally,

no files destined for production should be created or changed

after the continuous integration build has packaged the release

candidate. Everything necessary for the production deployment

should be put into the release candidate packages at the end of

the CI build. If you find something is missing, stop the line, add

the missing piece to the code base, and let the CI build package up

another release candidate that includes all that is necessary.

•	 Shift left on pipeline capabilities

In deployment of application components as well as configuration

of settings and data, push logic into script files that are stored in

the application’s Git repository. While the CI build configuration

and the deployment steps will allow for running scripts that are

stored in arbitrary locations, you create global and temporal

dependencies through this tactic. Make sure that as many

commands, scripts, and logic as possible are sources from the Git

repository and the packages that make up the release candidate

that is being deployed.

�Determining Environments
Our industry has many terms for server environments. Everyone has production. Also

uses are the following:

•	 Local

•	 Sandbox

•	 Dev

•	 Integration

•	 Test

•	 User

Chapter 9 Deploying the Release

201

•	 UAT

•	 QA

•	 QC

•	 Acceptance

•	 Staging

While there is no standard, the pre-cloud set that seems to be commonly known are

development, testing, staging, and production. With the advent of easily creatable and

modifiable environments, any notion of standardized environment names and stages

has weakened. We will attempt to sidestep this confusion and talk about the purposes of

various environments.

In a DevOps environment, you will never have fewer than three (3) deployed

environments for the team. Consider the table in Figure 9-1.

Figure 9-1.  The three distinct types of environments in a DevOps pipeline

Chapter 9 Deploying the Release

202

This table shows the three types of environments you will need when designing

your deployment pipeline. You are free to have as many of each type as you like, but

you will never have fewer than one of each of these three types. Everyone understands

production. It exists for the people who derive value from using your software. The next

environment before production is for any type of manual testing. We will call that UAT

because it is focused more on the users than the engineering team. Finally, we have an

environment that is only for automated verification of all kinds. To remove ambiguity

from other environment names that have been used in the past, we call it the TDD

environment, short for test-driven development. In the TDD environment, no humans

are allowed. If a human were to attempt to use this environment, they would find it being

created and destroyed at a rate that precluded any valuable usage.

Let’s see some examples one could use when determining how many of each type to

select.

�Production

In the case of production, you could choose to provision a dedicated production

environment for each customer or have all of your customers use a single production

environment. You

�UAT

You can have a single manual verification environment if your organization is small.

Or, you might have several different user or stakeholder groups that might benefit

from having a dedicated environment of this type so that they can choose the cadence

by which to accept the next release candidate that is ready. You might also decide to

provision another environment of this type for exploratory testing of a particularly large

data set – looking to verify if the system provides a snappy user experience even with a

very large database.

�TDD

This type of environment is suitable for complete automated construction and

destruction. Every successful build should case a new deployment to this environment

type. Because you may have many feature branches in play at a time, your CI build

should be configured to be parallelizable – that is, multiple builds happening, one per

active branch. And because each build causes a deployment to this environment type,

Chapter 9 Deploying the Release

203

you can have multiple instances of this environment being created at one time.

For example, if you and a colleague each commit changes to your feature branch at the

same time, you want the build, packaging, and deployment to your TDD environment

to happen quickly without waiting on your colleague. You accomplish this by having

the naming of the environment parameterized by your build or branch and creating an

instance of the TDD environment dedicated to your build. Then, your acceptance tests

execute (pass or fail), and the environment is destroyed.

�Assigning Validation Steps to Environments
You are in control of how many actual environments to have in your DevOps pipeline.

You will never have fewer than three, but depending on how many of each type you

choose, you may have more. It’s also your choice which environments to place in

series and which to place in parallel. For example, if two stakeholder groups each need

a dedicated UAT (manual verification) environment, you may decide that each can

receive the new release candidate at the same time and work on validating it in parallel.

In this example, you would provision two environments (or keep the environment

around permanently) and deploy to each environment at the same time. From a process

perspective, you would wait until each group had validated the release candidate before

deploying to production. Here is a way to think about what types of activities might be

appropriate for performing in each environment type.

Chapter 9 Deploying the Release

204

The table in Figure 9-2 illustrates the deployment and validation steps that are

appropriate for each environment type. As we move from automated validation (TDD)

to manual validation (UAT) to production, we perform fewer steps. The design of the

progression through environments is intended to front-load as many validation checks

as possible in order to find problems. “Shift left”I is a statement of value that has grown in

popularity within the DevOps community. The purpose of the Shift Left type of thinking

is to design a process that finds as many defects as early in the process as possible.

Both preventative and removal methods are used to cause the software product to be

more defect-free the further down the process it progresses. In the previous table, the

TDD environment includes a full spectrum of activities, from creating the environment

from scratch to building the database from nothing to running the full acceptance test

suite. The UAT environment has some on-demand options for when you need to either

I�Shift Left to Make Testing Fast and Reliable, n.d.

Figure 9-2.  Each environment type is built for different deploy and validation
steps

Chapter 9 Deploying the Release

205

recreate the environment or reload test data, but we will always need to deploy the new

version of the application and migrate the database. This last point cannot be stressed

enough. Manual validation environments should always be deployed completely

automatically. This includes the database and data stores along with all the application

components. This is practice for an unattended production deployment. We do not want

to do anything in production for the first time. And we do not want any manual steps in

the production deployment process.

�Deploying Data Changes Across Environments
Let’s face it. The database has some unique challenges in DevOps. Application

components do not have any state. They can be destroyed and put back easily. Storage

components must preserve data for years. When we discuss “the database,” the same

thinking and principles will apply to any data store, whether it be a relational database

engine, blobs, tables, json collections, or merely a directory of files on a network

share. This data must be guarded and preserved through many, many deployments

of application components. The schema, or the structure within which the data is

organized, must be continually upgraded and modified while preserving the integrity of

the database. Early in this book, we covered in detail the process of database migration

tools. During deployment, you must think about the data needs of the different

environment types. To move through this topic, let’s review the different types of data to

be managed in our DevOps environment, as shown in Figure 9-3.

Chapter 9 Deploying the Release

206

In a software system, we can subdivide all data and data concerns into four distinct

types. These types are managed differently in our DevOps pipeline. Let’s review them:

•	 Schema

The schema, or the structure of the data, is owned by the software

system and should be exactly the same in every environment. This

includes SQL Server stored procedures, views, indexes, functions,

and the like. The schema should be versioned and stored with the

application code.

Figure 9-3.  Each of the four unique types of data is managed in different ways

Chapter 9 Deploying the Release

207

•	 Schema data

This data is architecturally part of your schema and should be

the same across environments. For example, standard lists are in

this category. These lists can populate drop-down boxes in your

application. Common name prefixes (Mr., Mrs., etc.) are a good

example. These are defined during development. This schema

data should be created and deployed with schema changes

while being stored in the version control system along with the

application code.

•	 Configuration data

Configuration data belongs to the environment itself. It should

not be stored with the application code because it is potentially

different from environment to environment. Some of it may be

sensitive in nature, such as passwords, tokens, and credentials.

Some of this configuration data might be in an XML or JSON

configuration file. Other configuration data might be stored in a

database table. The storage location does not change the nature

of the data or that it changes environment to environment.

Because of this, it should be deployed to the environment when

the application and database are deployed. The automated

deployment process should handle the process of retrieving the

configuration data meant for the environment and deploying

it properly, whether it be poking a string into an XML file or

inserting a record into a SQL Server database table.

•	 Administrative data

Administrative data is owned by the organization supporting

the environment. A common example of this is top-level user

accounts or customer header records. In many applications, if

not a single user account record exists, the software cannot do

anything. At a minimum, a global administrator record might

need to exist to enable functions to light up. Administrative data

can differ by environment, but it doesn’t have to. Because it is

determined by the organization supporting the environment,

it could be the same across two environments and then differ

Chapter 9 Deploying the Release

208

on another. This data should be deployed to the environment

automatically and should not be stored with the application code

because it likely contains credentials.

•	 User data

User data belongs to the users who create the data. It is different

from environment to environment. This is the type of data

you are most familiar with. It is constantly growing, constantly

changing as people use the system. It should be preserved across

deployments. All automated database migration processes and

tools are designed to preserve the integrity of user data.

In the previous figure, separate the ways to handle data into production and pre-

production. The user data in our two pre-production environments (TDD, UAT) are not

end user or customer data sets. In UAT, the set of user data has been built up or curated

by a stakeholder group (or perhaps transformed from a production backup with sensitive

information expunged). This set of data can be reloaded on demand from its source.

In our TDD environment, the user data might be nothing. Because each automated

acceptance test will be responsible for setting up the records needed to run the test,

there might be absolutely no user data to deploy. And that would be just find. After the

acceptance tests run, the database would contain quite a bit of user data because each

test scenario and application transaction that executes will create user data.

�Choosing Your Runtime Architecture
For any given application with many logical components, you will have several viable

runtime architectures. In the 4+1 architecture,II the physical layer is meant to depict

the structure of how the application is running in hardware. Therefore, if we have

decided that we are using Microsoft’s hardware, in Azure, in a particular region, we still

must decide and specify which Azure services to use to run each component of our

application. Consider our logical architecture in Figure 9-4.

II�Kruchten

Chapter 9 Deploying the Release

209

Our application has three logical components, at its highest level along with an

acceptance test suite that must be deployed somehow in order to execute against the

application in the TDD environment. With this application, we have a great number of

options when choosing how to design a suitable environment, as shown in Figure 9-5.

Figure 9-4.  The logical architecture of our application

Chapter 9 Deploying the Release

210

Consider the spectrum of options here. We could choose any number of options for

deploying our application. The options on the left give us more control but also more

responsibility and maintenance. The options toward the right constrain the scope of the

computing resources that we can control but also relieve us from more responsibility

and maintenance. Because we control less of the computing environment, we are

responsible for less maintenance. As the options move to the right, you have fewer APIs

and resources available to your application. As an example, if your web application uses

a custom font for rendering a screen, it will be incompatible with Azure App Services,

which do not provide the ability for installing fonts on the underlying servers. But if

your application only makes use of APIs available in that environment, it’s the most

maintenance-free way to run your web application and off-line job.

We have already established that we will not be mounting physical servers into a

cabinet in our own data center – but that option would run our application just fine. We

could contract with a regional hosting company and ask them to provision some virtual

servers for us. We would also provision some VMs in Azure. We would likely configure

a few web servers, one or more servers to run the off-line job, and then we would need

a SQL Server cluster for our database. We can likely use any server as a host for our

acceptance test suite while it executes.

If we do not want to manage a server operating system, we can reach for containers

or PaaS (Platform as a Service) in Azure. Windows containers are growing in maturity but

retain some challenges. Linux containers are more mature and are an option if you are

targeting Linux for your .NET Core applications. Progressing further than containers are

the PaaS services such as Azure App Services. These can host web applications,

off-line jobs, as well as a container image. If the Azure cloud had a personality, Azure App

Services might say, “Don’t ask too many questions. Just give me your code. I’ll run it for

you.” The industry is certainly moving from the left side of the spectrum to the right side.

Figure 9-5.  Each application can be deployed on a spectrum of environment types

Chapter 9 Deploying the Release

211

How far and how fast you and your team move are completely up to you and the

software you are currently operating. For this book, we will be deploying to the runtime

architecture shown in Figure 9-6.

Figure 9-6.  Physical architecture has been specified for our application

Chapter 9 Deploying the Release

212

For this book’s example application, we are choosing Azure App Services for the

ASP.NET UI, which is a web application. The off-line job will be deployed as an Azure

Function and hosted in App Services. The SQL Server database will be run in Azure’s

SQL database service. The acceptance tests will be deployed to the hosted agent

provided by Azure Pipelines. The tests can execute from there.

�Implementing the Deployment in Azure Pipelines
Now that we have decided our environments and the physical (or runtime) architecture

for our application, the next step is to extend our pipeline from our continuous

integration build and configure deployments across our three environments. Once it is

configured properly, the overview will look like the following in Figure 9-7.

Figure 9-7.  Our release configuration contains three environments and is
triggered from the CI build

Chapter 9 Deploying the Release

213

We see that there are four key parts to our pipeline’s release configuration. Let’s take

them one at a time:

•	 Artifacts

The release needs to know what artifacts are available to it. There

are several options in the tool, but this is where you will specify

the build configuration that represents the CI build for your

application. You will configure the release to automatically begin

upon success of that build.

•	 TDD stage

The release can have multiple stages in series, in parallel, or

both. This is the smallest, shortest pipeline you will have for

any of your applications. The TDD stage corresponds with the

TDD environment that is completely automated and where your

automated full-system acceptance tests run.

•	 UAT stage

The UAT stage represents the deployment of the application to the

UAT environment.

•	 Prod stage

The Prod stage represents the deployment of the application to

the Production environment.

Next, we will move through each of the screens that need to have some configuration

set for them.

Chapter 9 Deploying the Release

214

Figure 9-8.  Specify the CI build that will be triggering the release

Chapter 9 Deploying the Release

215

Figure 9-8 contains the settings needed to wire up a CI build with an auto-triggered

release. Use the “Latest” default version so that your release configuration works with

any build from any branch that might be active. In this way, you can maintain a single CI

build configuration and a single release configuration.

The property page of the build artifact contains two important settings. The first is

to enable creating a release every time a new build is available. The second important

setting is the Build branch filters. While this might appear as a drop-down, put the
mouse cursor in it and type an asterisk (∗). This will ensure that builds that come

from every branch will cause the release to trigger. You need this in order to deploy the

pipeline to the TDD environment and run acceptance tests. Each stage/environment

also includes branch filters so that you can exclude branch-based release candidates

from progressing any further down the pipeline, as shown in Figure 9-9.

Figure 9-9.  Enable continuous deployment to automatically trigger the release

Chapter 9 Deploying the Release

216

When you configure the TDD environment, as shown in Figure 9-11, you’ll have

three sections because our application has three components that are packaged. We

have the web site, the off-line job, and the SQL database. This portion retrieves the

For the TDD environment, leave all the settings at their defaults and make sure that

this environment automatically triggers after release, as shown in Figure 9-10. This is

the only setting you need. Azure Pipelines has filters and different logic points in several

places, so unless you are changing it for a reason, leave the defaults as they are.

Figure 9-10.  The pre-deployment conditions for the TDD environment

Chapter 9 Deploying the Release

217

Figure 9-11.  The TDD environment deployment process

NuGet package for the application component being installed. It extracts and installs

that component properly and moves on to the next component. At the end, you execute

the health check that calls the appropriate URL or API so that the application can run the

built-in routine that checks to see if everything has started and is online.

Chapter 9 Deploying the Release

218

Each stage (think environment) can have multiple “jobs” configured. The second

configured job is all about running some type of automated validated. Our application

has a full-system acceptance test suite that uses Selenium to drive a web browser, as

shown in Figure 9-12. The tests operate within the NUnit runtime and are executed

through the VsTest adapter. Since our tests are packaged in a NuGet package and

stamped with the same version number as the rest of the application, we use the same

method to retrieve the right test suite for execution. After the tests run, pass or fail, we

run an Azure Resource Manager deployment and destroy the resource group with the

TDD environment that was created at this stage in our DevOps pipeline. That last step is

important because you will be executing multiple build and release cycles per day per

developer. If you don’t remove the resources in Azure that are created, you will run up an

Azure bill; however, you are likely to hit Azure subscription limits, which will cause your

deployment to fail with an error that will take time to debug.

Figure 9-12.  The second major task for the TDD environment is to run the
acceptance tests

Chapter 9 Deploying the Release

219

CREATING THE TDD ENVIRONMENT WITH ARM

The example application that comes with this book contains ARM (Azure Resource Manager)

templates that will create the environments that are suitable for deployment. The TDD

environment does not need environments that are scaled to the level that production needs.

Because of this, it can often work just fine to provision a scaled down environment by

parameterizing the tier of resources to choose. For example, in our TDD environment, we

create an App Service resource using the Free tier. We can do this over and over, run our

acceptance tests, and validate that the new release candidate continues to function well.

But we need to take care that we destroy the environment when we are finished with it. If

we fail to do this, we won’t run up our bill because we are using the Free tier. But Azure has

a limit of how many Free tier resources can be active at any one time. These limits are not

guaranteed and can be changed at any time. Needless to say, if you are perpetually creating

new environments without destroying them, you will encounter the limit regardless of what

level it happens to be. Then your pipeline will begin to fail, and the error message may or may

not lead you to the root cause quickly. The best rule of thumb is to clean up after yourself. For

the TDD environment, this means destroying the environment and the end of the deployment

process, after you have run the appropriate test suites.

While this chapter cannot highlight every setting in the release configuration’s
steps, this book’s digital resources include full exports of the builds and release
configurations. In addition, you can refer to the Azure DevOps Services public
project at https://dev.azure.com/clearmeasurelabs/Onion-DevOps-
Architecture.

�Deploying an Application Component
Before we move on, let’s look in detail at the process of retrieving an application

component from Azure Artifacts and deploying it. For this section, we are going to select

the most complicated component of most applications. This is the SQL database. In

order to deploy the database, we will need to have all required assets available to us, and

we will need to create the database itself in the TDD environment.

Chapter 9 Deploying the Release

https://dev.azure.com/clearmeasurelabs/Onion-DevOps-Architecture
https://dev.azure.com/clearmeasurelabs/Onion-DevOps-Architecture

220

The four steps in Figure 9-13 are responsible for on-demand provisioning of a SQL

database and the creation of the schema. The following is the full YAML listing.

At the time of writing, YAML configuration is available for builds but not for release
configurations.

steps:

- task: DownloadPackage@0

 displayName: 'Obtain Database Package'

 inputs:

 feed: '<some guid>'

 definition: '<some guid>'

 version: '$(Build.BuildNumber)'

 downloadPath: '$(System.ArtifactsDirectory)/packages

/Database-$(Build.BuildNumber)'

variables:

 ResourceGroupName:

'$(System.TeamProject)-$(Release.EnvironmentName)-$(Release.ReleaseId)'

 DatabaseUser: 'dbuser'

 DatabaseName:

Figure 9-13.  The four steps that make up a provisioning and deployment of the
SQL database

Chapter 9 Deploying the Release

221

'db-$(Release.EnvironmentName)-$(Build.BuildNumber)-$(Release.ReleaseId)'

 DatabaseEdition: 'Basic'

 DatabasePerformanceLevel: 'Basic'

- task: AzureResourceGroupDeployment@2

 displayName: 'Create test database on $(ResourceGroupName)'

 inputs:

 azureSubscription: '<redacted>'

 resourceGroupName: '$(ResourceGroupName)'

 location: 'South Central US'

 csmFile: '$(System.ArtifactsDirectory)/packages

/Database-$(Build.BuildNumber)/DatabaseARM.json'

 overrideParameters: '-databaseLogin $(DatabaseUser)

-databaseLoginPassword $(DatabasePassword) -skuCapacity 1

-databaseName $(DatabaseName) -collation SQL_Latin1_General_CP1_CI_AS

-edition $(DatabaseEdition) -maxSizeBytes 1073741824

-requestedServiceObjectiveName $(DatabasePerformanceLevel)'

variables:

 ResourceGroupName:

'$(System.TeamProject)-$(Release.EnvironmentName)-$(Release.ReleaseId)'

- task: AzurePowerShell@3

 displayName: 'Capture created database variables'

 inputs:

 azureSubscription: '<redacted>'

 ScriptType: InlineScript

 Inline: |

 $azureRmResourceGroupDeployment = Get-AzureRmResourceGroupDeployment

-ResourceGroupName "$(ResourceGroupName)" | Sort-Object Timestamp

-Descending | Select-Object -First 1

 �$azureRmResourceGroupDeployment.Outputs.GetEnumerator() | ForEach-

Object {

 $variableName = $_.key

 $variableValue = $_.value.Value

 Write-Host

Chapter 9 Deploying the Release

222

 "##vso[task.setvariable variable=$variableName;]$variableValue"

 Write-Host "$variableName $variableValue"

 }

 azurePowerShellVersion: LatestVersion

- powershell: |

 $env:DatabasePassword="$(DatabasePassword)"

 & $(System.ArtifactsDirectory)\packages

\Database-$(Build.BuildNumber)\UpdateAzureSQL.ps1

 workingDirectory: '$(System.ArtifactsDirectory)\packages

\Database-$(Build.BuildNumber)'

 displayName: 'Create database schema'

Figure 9-14.  Download Package step configuration

Chapter 9 Deploying the Release

223

The preceding YAML configuration can be quite cryptic if you haven’t worked with it

much. Figure 9-14 represents the customized properties of the Download Package task.

This task downloads the specified NuGet package from Azure Artifacts and expands the

contents into the destination directory specified. Keep in mind that we will have multiple

releases happening at once on multiple branches, so we want to parameterize anything

that creates environments so that we don’t accidentally create any global dependencies.

In order to obtain the NuGet package for the release candidate we want, we specify the

full name of the package: OnionDevOpsArchitecture.Database. Then, we must specify

the version that we would like to retrieve. In this context, we have the current $(Build.

BuildNumber) available to us, so we specify that.

Because we configured our CI build as an artifact dependency, we have the
variables of that build available to us in the release configuration. The variable we
will use throughout the pipeline is $(Build.BuildNumber). Everything hinges on the
build number.

If you are someone who likes to know exactly what is happening at all times under

the covers, you may want to install the Azure Pipelines agent to your own workstation

so you can closely observe the directories used and where files are placed. For historical

reasons, the agent for most people will be downloaded in a file name “vsts-agent-win--

x64-#-#.#.zip” where # is the latest version number. If you are experimenting, you are free

to install as many instances of the running agent as you like. Make sure you extract and

run the zip file to separate locations in order to do that.

Chapter 9 Deploying the Release

224

The next step for our database deployment is to create the Azure SQL database

in our TDD environment, as shown in Figure 9-15. At the top, you will notice

$(ResourceGroupName). We haven’t covered variables yet, but this variable is set to the

value of

$(System.TeamProject)-$(Release.EnvironmentName)-$(Release.ReleaseId)

Figure 9-15.  Creating the SQL database in Azure uses an ARM template

Chapter 9 Deploying the Release

225

We do not want to hard-code these things. Many TDD environments may be

provisioned simultaneously since feature branches make use of environment creation

and acceptance test execution. We take enough other variables and construct a resource

group name that is guaranteed to be unique. Every Azure resource we create for this

versioned deployment in the TDD environment will go in this resource group. When

we are finished, we destroy the resource group, and we can be confident that we have

cleaned up appropriately. Notes that we embed three pieces of information in this

variable:

•	 Team project name (by convention, we never put spaces in a team

project name)

•	 Environment name

•	 Release ID (we don’t use BuildNumber since resource group names

can’t contain dots)

As we specify the other properties, we didn’t have enough space to show the basic

Azure settings, but you’ll specify your authenticated Azure subscription and the region

you are targeting. Then you will specify the path to the ARM template file. This file was

extracted by the OnionDevOpsArchitecture.Database NuGet package, so you have it

available to you. This ARM template is stored in the Git repository and is owned by the

“Database” Visual Studio project. You can reference the full file details by downloading

the code that accompanies the book. This ARM template has some variables that have

been externalized as parameters so that the deployment process can control the settings.

You can see the “Override template parameters” text area. We are specifying several of

these settings in order to make the ARM template generic and reusable across other

applications that need an Azure SQL database. Through these variables, we can control

the database edition, size, and so on.

The next step is to capture the variables that we need in order to create our database

schema, as shown in Figure 9-16. We have just created a new Azure SQL database, but

we don’t know how to access it. A new SQL Server database must be created to house

any databases, and those always have a unique hostname. From the execution of our

ARM deployment, we loop through the outputs of the resource group deployment and

capture them as variables that can be used in subsequent steps of our deployment.

Chapter 9 Deploying the Release

226

In this case, we will capture an output named “resourceGroupUniqueString”. Because of

this, we now have the server name that can be used to execution our schema migration

tool. We construct a variable $(DatabaseServer) by using the following value:

databaseserver$(resourceGroupUniqueString).database.windows.net

Figure 9-16.  We capture output variables after our SQL database is created

Chapter 9 Deploying the Release

227

Azure SQL uses this pattern for hostnames to the database server. With this variable

captured, we can proceed to access our newly created database server.

Figure 9-17.  The step of our database deployment that creates the full database
schema in the TDD environment

Chapter 9 Deploying the Release

228

This PowerShell task is another example of “shift left” as we take the logic that needs

to execute and push it into our Visual Studio solution. In order to run it, we need to make

available the sensitive credential stored in the $(DatabasePassword) variable. Variables

marked “secret” do not automatically become environment variables. Our PowerShell

snippet explicitly makes it available as an environment variable to the current process.

Other variables in plain text are automatically available as environment variables.

The UpdateAzureSQL.ps1 file is part of the code and comes from the database NuGet

package that was stored in Azure Artifacts with our release candidate. The contents of

this ∗.ps1 is as follows:

#

UpdateAzureSQL.ps1

#

$DatabaseServer = $env:DatabaseServer

$DatabaseName = $env:DatabaseName

$DatabaseAction = $env:DatabaseAction

$DatabaseUser = $env:DatabaseUser

$DatabasePassword = $env:DatabasePassword

Write-Host "Executing & .\scripts\AliaSQL.exe $DatabaseAction

$databaseServer

$databaseName .\scripts $databaseUser $databasePassword"

& .\scripts\AliaSQL.exe $DatabaseAction $DatabaseServer $DatabaseName

.\scripts $DatabaseUser $DatabasePassword

The PowerShell scripts is very straightforward. We pass in location and credentials

in order to access the SQL Server and create or update a particular database name. Our

database migration tool, AliaSQL,III accesses the script stored in the .\scripts\ folder and

executes them in order to build the database schema.

Several automated database migration tools exist at the time of writing. The best
commercial tool is Redgate’s SQL Change Automation (SCA). Other free OSS
options are DbUp and Roundhouse.

III�JeffreyPalermo.com, n.d.

Chapter 9 Deploying the Release

229

One more setting that is important to running PowerShell scripts that are bundled

in your release candidate’s NuGet package is the working directory. As you can see in

Figure 9-17, we set the working directory to be the directory where our NuGet package

has been extracted. By doing this, the authoring and maintenance of the PowerShell

script are simplified. It’s a normal assumption that the script would use relative paths

to the path where it exists. By doing this, our script can work well in all of the places

and environments where it may be executed. With the execution of this command, our

TDD environment now has a complete SQL Server database with the full schema and

schema data loaded. We have the full connection string, and it’s ready for use. The other

application components follow the same pattern:

•	 Retrieve NuGet package

•	 Extract NuGet package in a working directory

•	 Poke any configuration variables

•	 Provision server/cloud environment

•	 Install application component

•	 Start application component

Now that you know the pattern to install your application, let’s turn to automatic

validation in the TDD environment.

�Running Test Suites Using a Release Configuration
Now that our application is deployed, the value of the TDD environment is the automatic

execution of our acceptance tests. Our example application that comes with this

book contains a number of simple acceptance tests, validating that we can add new

expense reports and list them out on the screen. We use the NUnit test framework with

Selenium’s web driver through the Chrome browser. Here is a listing of our test code:

using System;

using System.IO;

using System.Reflection;

using ClearMeasure.OnionDevOpsArchitecture.Core.Model;

using ClearMeasure.OnionDevOpsArchitecture.IntegrationTests;

using NUnit.Framework;

Chapter 9 Deploying the Release

230

using OpenQA.Selenium;

using OpenQA.Selenium.Chrome;

using Shouldly;

namespace ClearMeasure.OnionDevOpsArchitecture.AcceptanceTests

{

 public class GetAllExpenseReportsTester

 {

 private string _appUrl;

 private IWebDriver _driver;

 [OneTimeSetUp]

 public void Setup()

 {

 _appUrl = new DataConfigurationStub().GetValue("AppUrl",

 Assembly.GetExecutingAssembly());

 _driver = new ChromeDriver(".");

 new ZDataLoader().LoadLocalData();

 }

 [OneTimeTearDown]

 public void Teardown()

 {

 _driver.Close();

 _driver.Quit();

 _driver.Dispose();

 }

 [TestCase("000001",

 TestName = "Should add new expense report numbered '000001'")]

 [TestCase("000010",

 TestName = "Should add new expense report numbered '000010'")]

 [TestCase("000100",

 TestName = "Should add new expense report numbered '000100'")]

 [TestCase("001000",

 TestName = "Should add new expense report numbered '001000'")]

 [TestCase("010000",

 TestName = "Should add new expense report numbered '010000'")]

Chapter 9 Deploying the Release

231

 [TestCase("100000",

 TestName = "Should add new expense report numbered '100000'")]

 �public void ShouldBeAbleToAddNewExpenseReport(string

expenseReportNumber)

 {

 void ClickLink(string linkText)

 {

 _driver.FindElement(By.LinkText(linkText)).Click();

 }

 void TypeText(string elementName, string text)

 {

 �var numberTextBox = _driver.FindElement(By.

Name(elementName));

 numberTextBox.SendKeys(text);

 }

 Console.WriteLine($"Navigating to {_appUrl}");

 _driver.Navigate().GoToUrl(_appUrl + "/");

 _driver.Manage().Window.Maximize();

 TakeScreenshot($"{expenseReportNumber}-Step1Arrange");

 ClickLink("Add New");

 TypeText(nameof(ExpenseReport.Number), expenseReportNumber);

 TypeText(nameof(ExpenseReport.Title), "some title");

 TypeText(nameof(ExpenseReport.Description), "some desc");

 TakeScreenshot($"{expenseReportNumber}-Step2Act");

 _driver.FindElement(By.TagName("form")).Submit();

 TakeScreenshot($"{expenseReportNumber}-Step3Assert");

 var numberCells = _driver.FindElements(

 By.CssSelector(

 �$"td[data-expensereport-property=\"{nameof(ExpenseReport.

Number)}\"]

 [data-value=\"{expenseReportNumber}\"]"));

Chapter 9 Deploying the Release

232

 numberCells.Count.ShouldBeGreaterThan(0);

 numberCells[0].Text.ShouldBe(expenseReportNumber);

 }

 private void TakeScreenshot(string fileName)

 {

 var chromeDriver = ((ChromeDriver) _driver);

 chromeDriver.GetScreenshot().SaveAsFile($"{fileName}.png");

 TestContext.AddTestAttachment($"{fileName}.png");

 }

 }

}

We use a DataConfigurationStub() in order to clear out the database in the TDD

environment and preload it with a few records. We use the same NUnit test to run six test

cases. The steps his test progresses through are

	 1.	 Navigate to the home page.

	 2.	 Find and click the “Add New” link.

	 3.	 Find the Number text box and type in a value.

	 4.	 Find the Title text box and type in a value.

	 5.	 Find the Description text box and type in a value.

	 6.	 Submit the form.

	 7.	 Find the row of the table and the Number column.

	 8.	 Make sure the value of the Number is the expected value.

This test follows the Arrange, Act, AssertIV convention that is a bedrock principle of

test-driven development. As this test executes, it will open the local Chrome browser on

the server and execute these steps. Let’s take a look at how this is configured in Azure

Pipelines.

IV�Beck, 2002

Chapter 9 Deploying the Release

233

Once we download the NuGet package, which contains our acceptance test suite,

perform a few key steps:

	 1.	 We extract the package onto a working path on our Azure DevOps

agent server.

	 2.	 ConnectionString and AppUrl config settings are poked into the

test suite’s configuration file.V

	 3.	 VSTest task is run against our ∗AcceptanceTests.dll assembly,

which contains our tests.

	 4.	 No fourth step – because we use VSTest, the test output is

automatically captured by Azure DevOps as a test run.

Before we proceed further, let’s examine the NuGet package for our acceptance tests,

as shown in Figure 9-19.

V�Build & Release Tools from Benjamin Day, n.d.

Figure 9-18.  Full-system acceptance tests are run just like any other NUnit/XUnit
test suite

Chapter 9 Deploying the Release

234

Notice that chromedriver.exe is contained in the package as well as the test

assemblies and the config files that go with them. There are more dependent assemblies

that don’t fit in the screenshot, but everything necessary for the tests to run is here.

Besides the NUnit test code and the VSTest Azure Pipelines task, we are also integrating

some of the built-in features of Azure Test Plans. Notice in the previous code the line:

 TestContext.AddTestAttachment($"{fileName}.png");

Azure Test Plans keep track of all test runs, the tests, and the results of each. And

each test that is run can archive any arbitrary file attachment. In the case of full-system

acceptance tests that run through a browser UI, one of the most useful attachments is a

screenshot of every screen the test sees as it runs. Our test scenario in C# is instrumented

Figure 9-19.  The acceptance test package contains the Selenium driver as well as
the test assemblies

Chapter 9 Deploying the Release

235

with calls to the ChromeDriver to take a screenshot, and then we save the file and attach

it to the TestContext. When VSTest runs these tests, it collects all the information and

archives it in Azure Test Plans. Let’s take a look at this one step at a time. First, we can see

the results of our CI build.

On this build summary page shown in Figure 9-20, we can see the successful

build and that the deployments to TDD and UAT are successful. We can also see that

the deployment to Prod is ready and waiting (but will not proceed without a manual

approval).

Figure 9-20.  The build summary page shows that this build has been deployed
across environments

Chapter 9 Deploying the Release

236

When we click over to our TDD deployment from the build page, as shown in

Figure 9-21, we can see information about the release and drill into each environment

to see details about what has happened.

Figure 9-21.  The TDD release view shows the top-level details of the TDD
deployment

Chapter 9 Deploying the Release

237

Beyond looking at the Logs of your deployment, which is critical in debugging it until

it works properly, the Tests tab is your access to the world of the acceptance tests, as

shown in Figure 9-22. In our example, we have six tests. In business-critical applications,

you will have over a hundred. A good rule of thumb is to ask yourself if every text box

and every button on every screen are being interacted with by your acceptance tests. You

don’t want basic functionality gaps. You don’t have to look for every edge case, but you

do want basic coverage. Next, let’s select and click the last test in the list, “Should add

new expense report numbered ‘100000’”.

Figure 9-22.  The Tests tab gives us access to the acceptance tests that have run

Chapter 9 Deploying the Release

238

While you can associate work items with tests and see the history of it, most of the

time you want to run tests and just know that they passed. The value comes when a new

commit breaks a test, and now you have to figure out why. This is where attachments

come in. Because we took screenshots while the Selenium tests were running, we can

refer back to them if something goes awry. You can see here in Figure 9-23 that we can

see a preview of what the screen looks like when we are running the asserts of the test.

Let’s look at that screenshot more closely.

With this capability, if the test fails, we can see what has changed on the screen, as

shown in Figure 9-24. Because you are finding elements with CSS selectors or names, you

may choose to store the full HTML page source as an attachment. It is completely up to you.

Figure 9-23.  Selecting a test gives us more information about that test and the
run of it

Chapter 9 Deploying the Release

239

With Selenium and ChromeDriver, you can capture a screenshot of the page as
your acceptance tests are running. Everything inside the window will be captured
and stored as an attachment to the test run.

Figure 9-24.  Expanding the attachment view shows a full preview with the ability
to link a work item to log a bug

Chapter 9 Deploying the Release

240

While Azure Test Plans is not in the scope of this book, the data on the test runs

themselves enables more dashboard and analytics inside the Azure Test Plans product.

As you accumulate more tests, you will likely start asking questions such as

•	 Why do some types of tests seem more brittle than others?

•	 Why are some tests slower than others?

•	 Why did some tests get removed?

•	 Why is our ratio of tests to code changing over time?

Without these metrics, you don’t have the ability to consider these questions.

Figure 9-25.  The complete pipeline looks like this when it is functioning properly

Once your TDD environment is being created, configured, deployed, and tested,

the other deployments in your pipeline follow suite. You can create and deploy as many

environments as you like depending on the audience of people who need to participate

in software validation and testing. You will see a 100% next to the beaker icon on the

TDD environment. This signifies that a test suite ran and that all tests passed. It would

show less than 100% if any tests were ignored.

�Differences in the UAT and Production Environments
While the deployment process for the TDD environment should be the same as UAT and

Prod, you will have some key differences in order to maintain all the branching capabilities

for trunk-based development. First, the UAT state deployment needs to be configured to

ignore release candidates generated by feature branches, as shown in Figure 9-26.

Chapter 9 Deploying the Release

241

Every environment depends on the release candidates generated by a particular

build. You can filter how a deployment is triggered by adding filters. In this case, we

want the UAT environment to be automatically deployed when the TDD stage succeeds

but only if the release candidate came from the master branch. Most of the time,

stakeholders outside the development team want very stable release candidates that are

fully integrated. It is your choice to modify this if it is appropriate for deploying some

of these feature branch release candidates. Other differences in the UAT stage are not

process differences but variable differences.

Figure 9-26.  The UAT environment should only deploy release candidates
generated by the master branch

Chapter 9 Deploying the Release

242

Figure 9-27 is a subset of the variables used to deploy and test the application along

our DevOps pipeline. Most of the variables tend to be the same in every stage because

the environment name is able to be used to construct variable values. For example,

take notice of the DatabaseName variable. No matter how many environments or how

many feature branches are active any one time, we generate unique database names to

prevent collisions. The environment name and even the branch name are embedded

in the DatabaseName so that we can provision as many environments as needed.

The DatabaseAction is different. The DatabaseAction variable has no default value

for the whole release. Instead, we specify different values so that our process runs our

database schema migration tool with the right command-line arguments. In the TDD

environment, we want a completely new database built from scratch. This proves that we

aren’t relying on anything in the environment in order to have a database that can pass

our acceptance tests. In the UAT environment, we do not rebuild the database. Rather,

we preserve the database and data and update it by running only the ∗.sql files that have

not yet been run on that environment. This is signified by the “Update” value. When

this completely successfully, we have a high degree of confidence that when we run the

same routine on production, the data will be preserved, and the schema will be updated

properly. Next, examine the different configuration for the Production deployment stage.

Because you’re going to be creating many releases, you need variable values that
are going to be resilient to the repetitive nature of DevOps.

Figure 9-27.  Variables can be different per stage or the same throughout the release

Chapter 9 Deploying the Release

243

The approver for a release stage can be an individual, multiple individuals, or a

group. You have several options. In addition, you can enable the Gates feature which

provides the ability to build in some business logic to determine if the deployment

should be allowed to proceed. The combination of configuration options provides

a robust method by which to restrict the ability to automatically or manually, with

approval, deploy to the production environment. Upon approval and the satisfaction of

any gates or filters, the deployment stage is queued. Refer to Figure 9-29.

Figure 9-28.  The production configuration specifies an approver

Chapter 9 Deploying the Release

244

If a previous release has been placed in the approval queue, the new release will

wait for it. If you see the preceding screen unexpectedly, look for a previous release that

has not been approved. Chances are that some other releases are in the queue for this

release stage.

Upon approval of the production deployment, you will see the progress auto-updating

on the screen, as shown in Figure 9-30. You can watch it as it executes or close the window

and come back later. Because you have placed a call to the built-in application health

check, you will know, if the deployment reports success, that all parts of the application

along with their dependencies have been deployed and that everything is online and

functioning properly.

Figure 9-29.  The production stage will queue the deployment as soon as manual
approval is given

Figure 9-30.  You can see the progress of the deployment when it is executing

Chapter 9 Deploying the Release

245

�Wrap Up
In this chapter, you learned how to design your deployment pipeline, and you saw the

experience of executing a properly configured release configuration. It’s important to

determine the correct number and type of environments. You also assigned validation

steps to each environment including a built-in application health check. You learned

about the different types of data that is deployed or provisioned with a deployment, and

you reviewed the different options you have within Azure for running code in Azure PaaS

services or others. Finally, you saw the various touch points in the release configuration,

including the impact of variables on the execution of the deployment steps. And you

learned how to integrate a full-system acceptance test suite into your TDD environment,

both for releases from feature branches as well as from master. Next, we’ll take a look

at how to properly operate, monitor, and support our applications as they run in

production and are used by our customers.

�Bibliography
Beck, K. (2002). Test Driven Development: By Example. Addison-Wesley Professional.

Build & Release Tools from Benjamin Day. (n.d.). Retrieved from https://

marketplace.visualstudio.com/items?itemName=bendayconsulting.build-task

JeffreyPalermo.com. (n.d.). Retrieved from AliaSQL – the new name in automated

database change management: https://jeffreypalermo.com/2014/01/aliasql-the-

new-name-in-automated-database-change-management/

Kruchten, P. (n.d.). Retrieved from Architectural Blueprints—The “4+1” View

Model of Software Architecture: www.cs.ubc.ca/~gregor/teaching/papers/4+1view-

architecture.pdf

Shift Left to Make Testing Fast and Reliable. (n.d.). Retrieved from Microsoft Docs:

https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/

shift-left-make-testing-fast-reliable

Chapter 9 Deploying the Release

https://marketplace.visualstudio.com/items?itemName=bendayconsulting.build-task
https://marketplace.visualstudio.com/items?itemName=bendayconsulting.build-task
https://jeffreypalermo.com/2014/01/aliasql-the-new-name-in-automated-database-change-management/
https://jeffreypalermo.com/2014/01/aliasql-the-new-name-in-automated-database-change-management/
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/shift-left-make-testing-fast-reliable
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/shift-left-make-testing-fast-reliable

247
© Jeffrey Palermo 2019
J. Palermo, .NET DevOps for Azure, https://doi.org/10.1007/978-1-4842-5343-4_10

CHAPTER 10

Operating and Monitoring
the Release
Once our software changes are deployed and running in production, we have just begun.

Consider our model for DevOps that was introduced at the beginning of this book in

Figure 10-1. We must have a strategy for operations. Then we must execute that strategy

consistently and measure to ensure what we expect is happening. Our DevOps cycle

around the outside calls out learning as a feedback into planning for future changes.

Through operating the software with real customers using it, we can

	 1.	 Verify that our customers can accomplish their goals

	 2.	 Learn what is the best change to make next

248

In the cycle around the outside of the onion, the release stage is just past the halfway

point of the cycle. After releasing software to our customers, we must operate it well,

learn how it’s performing, and then funnel that learning back into future plans. This

chapter will cover the fundamentals for operating our .NET software in Azure.

�Principles
In discussions around quality and testing, a desirable trait of a software system has

become known as testability. Software architects and engineers can have discussions

about the design of a system and the components therein and evaluate the testability

Figure 10-1.  Onion DevOps Architecture provides a model for a complete DevOps
environment

Chapter 10 Operating and Monitoring the Release

249

of the design. When operating a software system in Azure, or any environment for that

matter, a desirable trait for the system is observability. Here are the principles:

•	 Know what your software is doing at all times

It is not enough to know that a server is up, or that a web site is

online. If any function of the system no longer functions as needed,

then a customer is down. We should think in terms of our customers

and their goals. If customers cannot do work, then the customer

is down, even if the technical parts of our system are up. With that

lens, we can ask ourselves “what do we need to know so that we are

confident that our customers are up?”

•	 Listen to what your system is saying

Through the various types of telemetry, you can have your software

system emit, it speaks. Listen for what the system is asking for.

Eric Hexter, a visionary in DevOps Diagnostics, related, when he

presented to the Azure DevOps User Group,I that through telemetry,

the system can ask for nonfunctional features or for maintenance.

Through examining the logs and metrics, we can discover work that

needs to be done on the system. This work might not show up in

regular product backlogs.

Many teams discuss the level of logging that should be a part of the software. In

addition, many already have some type of alerting in place. If trouble tickets or problem

reports come in from customers, that is one sign that the observability sophistication

of the system is lacking. Consider the work in this area an insurance policy. It does take

investment of effort, time, and some money on products in order to achieve success in

this area. This insurance policy has a premium that must be paid for the return on risk

avoidance. If this is neglected and the insurance premium not paid, your organization

will pay the full losses of a business disruption. This is another instance of the “Shift Left”

way of thinking where we can design observability into the system that will yield better

service to our customers.

I�Hexter

Chapter 10 Operating and Monitoring the Release

250

Sam Guckenheimer has discussed observability and the importance of it on an
Azure DevOps Podcast interview.II

�Architecture for Observability
While this chapter cannot cover all techniques or forms that observability can take, we

will focus on the basics that are universally application to what this author believes if

>80% of .NET applications in the business world. Let’s start with the types of telemetry

that should be emitted from your software:

•	 Metrics/performance counters

�Many of these are built into the Azure platform, but if you are using queues,

you will want to capture queue length, for example. Another useful metric

is number of users by type currently using your system in the past hour/

day. These types of trends can be used to trigger alarms. For example, if your

normal usage drops off unexpectedly, you might be having a technical issue

that needs to be investigated.

•	 Log messages/log files

�While the most common type of telemetry, this is not consistently done. Every

operation or transaction a system executes should be logged. Further, log

files and log messages from various components should be aggregated and

centralized into a repository that can be queried as a whole in order to provide

a complete picture of what the system is doing.

•	 Heartbeats

�Is it alive? Heartbeats can come from the outside or be built directly into

application components themselves. These are signals and synthetic

transactions that are built-in health checks. For example, if a critical

integration is between the application and a payment processor, it is useful

to know that the connection with the payment processor is functional.

Integrations are notorious for breaking, and heartbeats that test these on a

constant basis can alert us before a customer, frustrated, notifies us that a

software feature is not working.

II�Guckenheimer, 2018

Chapter 10 Operating and Monitoring the Release

251

Figure 10-2 illustrates the architectural model for observability in Azure. While many

products exist in the marketplace that can collect, aggregate, and search telemetry, we

will focus on the capabilities built into Azure.

Application Insights has the capability to gather a wealth of information from every

running component of your application, including the DevOps pipeline itself, which

is part of your system. One of the ways we improve the observability of our software

is to collect all available information in the same place. Application Insights provides

that. If you have never used Application Insights before, referred to also as AppInsights,

Microsoft has a great overview in its documentation.III

Figure 10-2.  Each application should send telemetry and diagnostics information
to a single Application Insights service

III�Microsoft, n.d.

Chapter 10 Operating and Monitoring the Release

252

As you have seen in our DevOps pipeline, we have a stable production environment,

one or more UAT environments, and a whole host of TDD environments that are

constantly being created and destroyed. You will want the data in AppInsights to

be durable across changes to environments. Consider the following environment

architecture.

By providing each environment type with an AppInsights instance, we can tune

queries for each environment type to the audience. For example, our TDD environment

will have environments come and go as new builds are produced. By capturing

performance metrics while full-system acceptance tests execute, we might be able to

detect when runtimes of transactions change by more than a certain percent. This could be

indicative of a performance slowdown from version to version. In addition, our production

AppInsights repository should have alerts configured on it. Refer to Figure 10-3.

Figure 10-3.  Each environment benefits from an AppInsights instance, which can
then be aggregated to Log Analytics or other analytics sink

Chapter 10 Operating and Monitoring the Release

253

The intent of AppInsights is for there to be one AppInsights service per application.

While you can add custom tags to telemetry to facilitate filtering out environments in a

single AppInsights instance, the service was not designed with that in mind. The service

was designed to collect telemetry from a single application. That is, one versioned,

complete unit of software. If you have broken your software into multiple Git repositories

with multiple DevOps pipelines, you can still use a single AppInsights service for the

software system running in production. To make this decision, you must ask yourself

what kind of queries you will want to execute against the data and how you’d like the

data to be segments. For our example application, we have multiple components that

will send telemetry to a single AppInsights instance for each environment. In total, we

have three AppInsights services, one for each environment. Now that you can see the

relationship between application components and AppInsights, let’s begin enabling

observability in our software.

�Jumpstarting Observability
While we are destroying and recreating TDD environments – and UAT environments from

time to time – we want AppInsights to be durable. Because of this, we place the AppInsights

services in a separate resource group from the environments that might be destroyed.

Figure 10-4.  Resource Group

These services live in their own resource group “Onion-DevOps-Architecture-

diagnostic”. You can name this resource group whatever you like. This resource group

will live a long time, in contrast to your pre-production environments, as shown in

Figure 10-5. Once we have our AppInsights in place, it is time to prepare the application

for the sending of telemetry. First, you will add the AppInsights NuGet packages to

your projects in Visual Studio. ASP.NET projects have some quick start tooling to help

with this, but you can add these packages to any projects you like. In our Visual Studio

solution, we have kept the dependencies of the Core project very minimal – essentially

this library contains plain old C# objects (POCOs). Because of these, we will choose the

UI and Core.AppStartup projects to receive the AppInsights dependency, as shown in

Figure 10-6.

Chapter 10 Operating and Monitoring the Release

254

Figure 10-6.  The Core project is just POCOs without dependencies, so AppInsights
will be added to Core.AppStartup and UI

Figure 10-5.  Each environment type has a dedicated AppInsights instance in the
same region as the environment

Chapter 10 Operating and Monitoring the Release

255

The NuGet package to select is Microsoft.ApplicationInsights.AspNetCore. This

package is appropriate for code running in Azure AppServices, including WebJobs and

Azure Functions. There are other packages for software running on Windows VMs, but if

your application is .NET Core, you just need this one.

Once you have the AppInsights NuGet package available to you, you will want to

find an architecturally suitable place in your application to observe the transactions

happening so that the information can be emitted to AppInsights. In this application, we

already have an implementation of a bus patter whereby user intent is packaged as a C#

message (object). Command and query objects are sent “down” the bus for execution.

We can add some interception code in our TelemetrySink class here:

using Microsoft.ApplicationInsights;

using Microsoft.ApplicationInsights.DataContracts;

namespace ClearMeasure.OnionDevOpsArchitecture.Core.AppStartup

{

 public class TelemetrySink : ITelemetrySink

 {

 public void RecordCall<TResponse>(IRequest<TResponse> request,

 TResponse response)

 {

 var telemetryClient = new TelemetryClient();

 EventTelemetry telemetry = new EventTelemetry();

 telemetry.Name = request.GetType().Name;

 telemetryClient.TrackEvent(telemetry);

 telemetryClient.TrackTrace(request.GetType().Name +

 ":- " + request.ToString(), SeverityLevel.Information);

 }

 }

}

If you have not yet explored the source code of this book’s example application, the

following code is from the ExpenseReportController ASP.NET MVC controller action:

public IActionResult Index()

{

 var command = new ListExpenseReportsCommand();

 ExpenseReport[] reports = _bus.Send(command);

Chapter 10 Operating and Monitoring the Release

256

 var orderedReports = reports.OrderBy(report => report.Number);

 return View(orderedReports.ToArray());

}

//..//

public class ListExpenseReportsCommand : IRequest<ExpenseReport[]>

{

}

The code in the user interface takes the request from the user and sends that

down the bus. The request is to list the expense reports. This class implements the

IRequest<T> interface. Our TelemetrySink has access to every request that flows through

the application, and in a few lines of code, and records a trace for that request and a

custom event. In your application, you might extract even more information about what

the application is doing, the users performing the action, and other pertinent elements

for querying later. In addition to this code, take care to ensure that the appsettings.

json file does not send telemetry from a workstation to an environment’s AppInsight’s

instance. In fact, take care not to accidentally commit to Git any Instrumentation Key

from the AppInsights resource. The appsettings.json file might look like the following:

{

 "Logging": {

 "LogLevel": {

 "Default": "Debug"

 }

 },

 "AllowedHosts": "∗",
 "ApplicationInsights": {

 "InstrumentationKey": "bogus value"

 }

}

By putting a fake value in ApplicationInsights.InstrumentationKey, you will ensure

that no telemetry can be sent from local developer workstations. Instead, you can try out

and validate your telemetry by running the application in Debug (F5) mode.

The Application Insights Search window can be a bit hard to find, but it allows you

to develop your diagnostics capability locally without having to connect to Azure. You’ll

want to make sure you are exporting the telemetry that you think you are. When you

Chapter 10 Operating and Monitoring the Release

257

run the application in debug mode, you can examine not only the telemetry that you

add but also the phenomenal amount of data that is automatically captured for you.

Refer to Figure 10-7.

Figure 10-7.  The AppInsights window can be used to see telemetry on a local
workstation without connecting to Azure

Chapter 10 Operating and Monitoring the Release

258

You added the Custom Event at the top of Figure 10-8, but you did not add anything

in order to have the SQL statement that was run from the application to the SQL Server

database captured. This view allows you to search across any number of attributes to

learn more about your application. To dig into more data, you can run your full suite

of automated full-system acceptance tests from the command line while capturing the

telemetry in a debug session:

dotnet vstest .\ClearMeasure.OnionDevOpsArchitecture.AcceptanceTests.dll

(Refer to Figure 10-9).

Figure 10-8.  AppInsights captures common metrics and dependencies for you

Chapter 10 Operating and Monitoring the Release

259

If you run the preceding command from the folder of the acceptance tests

assemblies, you can amass quite a bit of telemetry to search. You will want to take a

break for a cup of tea or coffee as you wait for your browser window to stop flashing

across your screen as all the Selenium tests exercise your application as fast as it will go.

It’s interesting to note that Application Insights does not automatically capture

any data, parameters, or arguments. Therefore, you will have to add code to explicitly

do that. When you do, take care that you are exporting any sensitive data field to a

monitoring system that might have different data security controls that the production

database. Then, once you are satisfied that you have a useful iteration of telemetry for

your application, it’s time to link the application with the various environment specific

AppInsights services in your Azure subscription.

Figure 10-9.  After running the acceptance tests, you can see all the telemetry
captured in Application Insights

Chapter 10 Operating and Monitoring the Release

260

Application Insights does not automatically capture any user data or SQL
parameters. If you need parameters captured, you will add that directly, taking care
of sensitive data fields.

For the execution of our deployment, it’s important to know when new release

candidates were promoted from one environment to another. For this, you will add a

Release Annotation task to your deployment steps.

Figure 10-10.  The Release Annotation task marks in AppInsights the
deployment

You will want to place this as the first task so that even if the deployment fails,

Application Insights receives a marker that a deployment was started. In this way,

AppInsights records that a version started deploying even if the deployment fails in the

middle. At some later date when reviewing a period of exceptions and bad failures, you

Chapter 10 Operating and Monitoring the Release

261

won’t have to strain your memory to remember that a bad deployment was associated

with a period of elevated exceptions. Within the “UI Deploy” step, you will also add the

appsettings.json file to the JSON variable substitution text area so that your variables will

be evaluated for JSON substitution.

Figure 10-11.  The AppInsights Instrumentation Key resides in the
appsettings.json file

Figure 10-12.  Each of the environments needs its own InstrumentationKey

Once this is configured, and after adding a properly named variable with the

InstrumentationKey per environment, your release configuration is ready to deploy.

Refer to Figure 10-12.

When your next release runs, you’ll be able to see release markers and telemetry

from each of the environments. Beyond the production observability you gain, it can also

be useful to find nonfunctional defects like scalability issues. As your acceptance tests

run, your release candidate receives its first full-system exercise.

Chapter 10 Operating and Monitoring the Release

262

Our example application has only a handful of acceptance tests, so the data captured

is only from those; however, when you have multiple feature branches executing releases

in parallel, and you have multiple TDD environments created an operating at once,

you’ll see all that in Figure 10-13. The searches will be able to correlate versions.

Figure 10-13.  Our TDD environment’s AppInsights performance view now shows
our release marker that is correlated with the run of the acceptance tests

Stamping and embedding version numbers in every .NET assembly in your application
have downstream benefits and consequences. The telemetry in Application Insights
records version numbers. Make sure the version number is available.

Chapter 10 Operating and Monitoring the Release

263

Figure 10-14.  The release marker in AppInsights is recorded with a wealth of
information about the release that deployed the application

If you click the release marker within the Azure portal, you can see detailed

information about the release that deployed the application that is responsible for the

recorded telemetry.

The release marker includes hyperlinks back to the release and the Azure DevOps

project for the application that is emitting the telemetry, as shown in Figure 10-14. The

BuildNumber, which originated in the continuous integration build, is here with every

bit of telemetry recorded in Application Insights. You have now connected code in Visual

Studio, stored in Git with live captured usage data in Azure environments.

Chapter 10 Operating and Monitoring the Release

264

�Wrap Up
You did it! You’ve been through the entire DevOps process on .NET for Azure. The term

“DevOps Process” is discussed in some circles as if it is a simple thing. You can see from

this text that there are numerous concepts, decisions, and steps that all go together in

order to make the “DevOps Process” function. When put together properly, the team

moves fast, can make changes when needed, and is able to operate the software well.

You may wish to do some of the steps differently than the guidance in this book. If you

already have a fully operational DevOps environment with at least all the capabilities

illustrated in this book, then you are on your way to mastery. Implement your ideas.

If you do not yet have a fully functioning DevOps environment with at least these

capabilities, this author’s recommendation is to implement DevOps “by the book.”

Then, once you can operate in very short cycles of code changes to stable deployments

in a production environment, make your changes. Use the concept of ShuHaRiIV as you

progress down your DevOps journey. Refer back frequently to the online public project

that accompanies this book at https://dev.azure.com/clearmeasurelabs/Onion-

DevOps-Architecture.

�Bibliography
Fowler, M. (n.d.). ShuHaRi. Retrieved from MartinFowler.com: www.martinfowler.com/

bliki/ShuHaRi.html

Guckenheimer, S. (2018, 9 24). Sam Guckenheimer on Testing, Data Collection,

and the State of DevOps Report. (J. Palermo, Interviewer) Retrieved from http://

azuredevopspodcast.clear-measure.com/sam-guckenheimer-on-testing-data-

collection-and-the-state-of-devops-report-episode-003

Hexter, E. (n.d.). DevOps Diagnostics w/ Eric Hexter (Azure DevOps User Group).

Retrieved from www.youtube.com/watch?v=6O-17phQMJo

Microsoft. (n.d.). What is Application Insights? Retrieved from Microsoft Docs:

https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-

overview

IV�Fowler, n.d.

Chapter 10 Operating and Monitoring the Release

https://dev.azure.com/clearmeasurelabs/Onion-DevOps-Architecture
https://dev.azure.com/clearmeasurelabs/Onion-DevOps-Architecture
http://martinfowler.com
http://www.martinfowler.com/bliki/ShuHaRi.html
http://www.martinfowler.com/bliki/ShuHaRi.html
http://azuredevopspodcast.clear-measure.com/sam-guckenheimer-on-testing-data-collection-and-the-state-of-devops-report-episode-003
http://azuredevopspodcast.clear-measure.com/sam-guckenheimer-on-testing-data-collection-and-the-state-of-devops-report-episode-003
http://azuredevopspodcast.clear-measure.com/sam-guckenheimer-on-testing-data-collection-and-the-state-of-devops-report-episode-003
http://www.youtube.com/watch?v=6O-17phQMJo
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview

265
© Jeffrey Palermo 2019
J. Palermo, .NET DevOps for Azure, https://doi.org/10.1007/978-1-4842-5343-4

�Afterword
This text builds on a host of prior industry work. None of the ideas in this book are

inventions or completely original. This book represents a synthesis of ideas from all

corners of the software industry across multiple platforms. Coupled with experience,

success, and failure, this book provides the best rules of thumb that can be mustered at

this time.

The following is a short summary of the prior works and events that were highly

influential in the experience that led to this book.

In 2001, a group of software industry leaders met at a ski resort to mull over the

problems in their field that had been building throughout the 1990s and the infamous

dot-com bubble of the late 1990s. This group produced the Manifesto for Agile Software

Development (www.agilemanifesto.org). These principles have redefined the way the

industry organizes and executes software development work. A fundamental premise of

agile development is to organize and perform work in much smaller batches than had

previously been used in the late 1990s. Now, units of software delivery called “sprints” or

“iterations” are commonly discussed. Many organizations run in cadences of iterations

that are 1–3 weeks in length. The unit of software changes has likewise shrunk. Now

developers target changes that can be accomplished in the current iteration, and many

teams experiment with just how small software changes can be while keeping the

software stable and releasable at all times.

In 2004, Michael Feathers wrote Working Effectively with Legacy Code. The book

was released in the years following the Manifesto for Agile Software Development, and

it addressed a common situation that many organizations were faced with: How can I

change my software when every change generates at least two new defects? As teams

were attempting to make changes and restabilize their software, they realized that

previous engineering methods were insufficient when attempting to drive cycle times

down to less than a month. Feathers describes methods for breaking apart code bases

that were never intended to execute outside of a completely integrated production

environment. The author summarizes that without running the software within

automated test harnesses, any piece of software, however new, is destined to become

https://doi.org/10.1007/978-1-4842-5343-4
http://www.agilemanifesto.org

266

labeled as “legacy code;” unchangeable, brittle, and expensive to maintain. He described

techniques illustrating how to insert seams into existing code in order to retrofit tests.

Then, armed with tests that protected the functionality, the software could be changed

with less fear. Michael Feathers was also the author of some early unit testing framework

for C++, namely, CppUnit.

In 2006, Paul M. Duvall, Steve Matyas, and Andrew Glover wrote Continuous

Integration: Improving Software Quality and Reducing Risk. This influential work

illustrated a method that some in the industry had been perfecting called continuous

integration (CI). This method sought to run an automated build of the software

application every time any change was committed to the version control system. The

book illustrates some specific engineering methods that have to be adopted. A ground-

shaking inclusion was the premise that the continuous integration build must include

building and testing dependencies that an application owns, including relational

databases and other storage mechanisms. The authors dedicated an entire chapter

(Chapter 5) to continuous database integration.

Additionally, in 2006 Martin Fowler penned an article titled Continuous Integration

(www.martinfowler.com/articles/continuousIntegration.html). In this article, he

proposes some standards for a continuous integration build:

•	 Maintain a single source repository

•	 Automate the build

•	 Make your build self-testing

•	 Everyone commits to the mainline every day

•	 Every commit should build the mainline on an integration machine

•	 Fix broken builds immediately

•	 Keep the build fast

•	 Test in a clone of the production environment

•	 Make it easy for anyone to get the latest executable

•	 Everyone can see what’s happening

•	 Automate deployment

AFTERWORD

https://www.martinfowler.com/articles/continuousIntegration.html

267

While many in the industry were innovating new and better methods for shortening

cycle time, 2006 was the year when successful and proven methods were being

shared openly and published widely. Continuous integration included the automated

deployment of software releases. In the years that followed, continuous integration

became known as continuous delivery, expressly implying the inclusion of software

deployments all the way to end users in production environments. Some refer to the

method as CI/CD, illustrating the confusion that exists to this day about where CI

stopped and CD started. Both refer to the full process of integrating source code from

multiple developers and providing new working software to end users. However, in the

common lexicon, most refer to the “CI build” and then refer to a CD pipeline that deploys

across successive environments. Historically, however, continuous integration, as a

method, in 2006 included automated deployments to production.

The year 2009 saw another seminal work published. Jez Humble and David Farley

authored Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation. This book cited the 2006 book on continuous integration and

pulled the story forward by proposing methods by which to not only build continuously

but also to continuously deploy to downstream environments. More proven methods for

handling deployment scenarios were included. The stages proposed in this book are

•	 Version control

•	 Commit stage

•	 Automated acceptance tests

•	 Manual validations

•	 Release (production)

This process is much more high level, but the commit stage includes the private

build and the integration build, and the automated acceptance tests are prescribed to be

run against a fully deployed pre-production environment.

In 2009, the term DevOps was coined by Patrick Debois when he organized the first

DevOpsDays conference in Ghent, Belgium. The current body of DevOps-focused works

and events has grown substantially over the last 10 years.

Afterword

269
© Jeffrey Palermo 2019
J. Palermo, .NET DevOps for Azure, https://doi.org/10.1007/978-1-4842-5343-4

Index

A
az command, 28
Azure App Service

creating web app
az command, 28
using Cloud Shell, 28
using command shell, 29, 30

deployment slots
compare browser

windows, 36, 37
creating stage slot, 33, 34

test app, 26, 27
Visual Studio, 30–33

Azure pipeline, deployment
acceptance tests, 218, 229, 237
application component, 229

ARM template, 224
download package, 222, 223
NuGet package, 223
PowerShell scripts, 228
PowerShell task, 228
SQL database, 219, 220, 225
TDD environment, 227
UpdateAzureSQL.ps1 file, 230
variables, 225, 226
YAML configuration, 220–222

ARM, 218
attachment view, 239
build summary page, 235
business-critical applications, 237

CI build, 214, 215
continuous deployment trigger, 215
environments, 212
functioning, 240
key parts, 213
NuGet package, 233
NUnit test, 232
NUnit/XUnit test, 232, 233
pre-deployment conditions, 216
property page, 215
Selenium driver, 234
Selenium tests, 238
TDD environment, 216, 217, 236
UAT and production environment

database and data, 242
execution, 244
manual approval, 244
master branch, 241
production configuration, 243
variables, 242

Azure Pipelines, 40, 42, 137
Azure Repos, 84, 117, 127
Azure Resource Manager (ARM), 219
Azure Test Plans, 234

B
Building code

structure
build and CI build, 134–137
feature branch flows, 132

https://doi.org/10.1007/978-1-4842-5343-4

270

master branch flows, 133
types of build, 131

using Azure Pipelines
CI build configuration, 142, 145
command-line arguments, 144
dashboard, 146
.NET Core solution, 146–151
dotnet.exe restore output, 138
private build script, 139–141
stages, 138
tests, 144
variables defined, 142

C
CIBuild function, 193
Commit stage, 267
Continuous delivery, 267
Continuous integration (CI), 266
Continuous integration (CI) and

deployment
configure Azure Pipelines pipeline

access GitHub repository, 42–44
create build definition, 44–46
GitHub commit, 51, 52
release, add artifact panel, 48, 49
release, pipeline name, 51
release, production

environment, 50
release, template selection, 47

create Azure DevOps
organization, 41, 42

examine Azure Pipelines pipeline
build definition, 53–55
release pipeline, 56–59

GitHub repository option, 39, 40
remove local Git, 40

D, E
DataConfigurationStub(), 232
Defect removal efficiency (DRE)

implementation
full-system tests, 178
inspections, 179
integration test, 173–177
static analysis, 166, 167, 169
unit test, 169–172

inspections
high-level items, 164
pull request code, 165, 166

measurable DevOps
process, 158–160

static analysis, 160
techniques

inspections, 157
static analysis, 156
testing, 157

testing
full-system tests, 163
integration tests, 162
manual, 161
unit tests, 161

Deployment pipeline
Azure (see Azure pipeline, deployment)
data changes

administrative data, 207
configuration data, 207
schema data, 206, 207
types, 205
user data, 208

environment
production, 202
TDD, 202
types, 201
UAT, 202

Building code (cont.)

INDEX

271

principles, 199, 200
runtime architecture

logical, 208, 209
physical, 211
spectrum, 210
types, 210

validation steps, 203, 204
DevOps architecture

application runtime, 18
CI Build, 78, 79
development view, 13
logical structure, 76
logical view, 5–9
manual test environment, 81
methodology

amplify feedback loops, 16
continual experimentation, 17
system thinking, 15, 16

package management, 80
physical view, 11, 12
private build, 78
problems

explosive growth, 2, 4
reference implementation, 4

process view, 9, 10
production environment, 82
production monitoring, 82
scenarios, 13, 14
solution structure, 20, 21
TDD environment, 80
tools, 19
version control, 77

DevOps-centered application
Onion architecture, 87–90

integrating DevOps
assets, 92

implementing in .NET
core, 90–92

F, G, H
Full-system tests, 163, 178

I, J, K, L
Integration tests, 162

M
Monitor and debug

alerts, 68
Application Insights, 63, 65, 67
debugging, 69
logging, 67
log streaming, 68
overview panel, 61
self-service tools, 62

N
.NET software, in Azure

observability
Application Insights, 254, 256, 259
architectural model, 251–253
controller action, 255
Instrumentation Key, 261
JSON substitution, 261
principles, 249
release annotation task, 260
release marker, 262, 263
TelemetrySink class, 255
telemetry types, 250

testability, 248
NuGet, 80

O
Onion DevOps Architecture, 248

Index

272

P, Q
Pack function, 193
Professional DevOps environment

DORA State, 72
removing ambiguity, 73–75
tools

Azure subscription, 85, 86
runtime environment, 83
services, 84
Visual studio 2019, 86

R, S
Release candidate packages

Azure artifacts workflow
components, 188
deployment

configuration, 194–196
Git repository, 190
NuGet packages, CIBuild

function, 193
NuGet packages,

Pack function, 193, 194
NuGet packages, PowerShell

function, 190–192
bounds of, 186–188
rules, 183–185
sequence of

events, 185, 186

T
Team Foundation Version Control

(TFVC), 117
Test-driven development (TDD), 202
Tracking code

Azure Repos, 117
Azure Repos configuration, 127
choose branching pattern, 126, 127
GitHub, 128
Git repositories

applications, 120, 121
relationship rules, 118
structure, 122–124
versioning, 118, 119

Tracking work
Azure Boards, branch, 108–110
change process template, 96–100
creating pull request, 111–113
customize state, 102
GitHub connections, 106
integration, 114
linking commits, 106–108
states, in software development

project, 103–105
work item types, 100, 101

U, V, W, X, Y, Z
Unit tests, 161

INDEX

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	The Problem
	The Challenge of Explosive Growth
	No End-to-end Reference Implementation

	The Solution
	DevOps Architecture
	Logical View
	Process view
	Physical View
	Development View
	Scenarios

	DevOps Methodology
	The First Way: Systems Thinking
	The Second Way: Amplify Feedback Loops
	The Third Way: Culture of Continual Experimentation and Learning

	How to Get Started
	Application Runtime Architectures
	The Necessary Tools
	The Sample Application

	About the Book
	Wrap Up
	Bibliography

	Chapter 2: Zero to Azure in 60 Minutes
	Deploy an App to App Service
	Download and Test the App

	Create the Azure App Service Web App
	Deployment with Visual Studio
	Deployment Slots
	Summary
	Additional Reading
	Continuous Integration and Deployment
	Publish the App’s Code to GitHub
	Disconnect Local Git Deployment
	Create an Azure DevOps Organization
	Configure the Azure Pipelines Pipeline
	Grant Azure DevOps Access to the GitHub Repository
	Create the Build Definition
	Create the Release Pipeline

	Commit Changes to GitHub and Automatically Deploy to Azure
	Examine the Azure Pipelines pipeline
	Build definition
	Release Pipeline

	Additional Reading

	Monitor and Debug
	Basic Monitoring and Troubleshooting
	Advanced Monitoring
	Profile with Application Insights
	Logging
	Log Streaming
	Alerts
	Live Debugging
	Conclusion
	Additional Reading

	Wrap Up

	Chapter 3: The Professional-Grade DevOps Environment
	The State of DevOps
	Removing the Ambiguity from DevOps

	A Professional-Grade DevOps Vision
	DevOps Architecture
	Version Control
	Private Build
	Continuous Integration Build
	Package Management
	Test-Driven Development Environment (TDD Environment)
	Manual Test Environment
	Production Environment
	Production Monitoring and Diagnostics

	Tools of the Professional DevOps Environment
	Azure DevOps Services
	Azure Subscription
	Visual Studio 2019

	A DevOps-Centered Application
	Using Onion Architecture to Enable DevOps
	What is Onion Architecture?

	Implementing Onion Architecture in .NET Core
	Integrating DevOps Assets

	Wrap Up
	Bibliography

	Chapter 4: Tracking Work
	Change your Process Template
	Types of Work Items
	Customizing your Process
	Working with the Process
	Linking Commits
	Branching from Azure Boards
	Merging Using Pull Requests

	Wrap Up
	Bibliography

	Chapter 5: Tracking Code
	How Many Repositories?
	What Should be in Your Git Repository
	The Structure of the Git Repository
	Choosing a Branching Pattern
	Useful Tips in Azure Repos Configuration
	How does GitHub Fit in?
	Wrap Up
	Bibliography

	Chapter 6: Building Code
	Structure of a Build
	Flow of a Build on a Feature Branch
	Flow of a Build on the Master Branch
	Steps of a Build

	Using Builds with .NET Core and Azure Pipelines
	Enabling Continuous Delivery’s Commit Stage

	Wrap Up
	Bibliography

	Chapter 7: Validating the Code
	Strategy for Defect Detection
	Strategy and Execution of Defect Detection
	Static Analysis
	Testing
	Inspections

	Code Validation in the DevOps Pipeline
	Static Analysis
	Testing
	Unit Tests (L0)
	Integration Tests (L1)
	Full-System Tests (L2)

	Inspections

	Implementing Defect Detection
	Static Analysis
	Testing
	Unit Tests
	Integration Tests
	Full-System Tests

	Inspections

	Wrap Up
	Bibliography

	Chapter 8: Release Candidate Creation
	Designing Your Release Candidate Architecture
	Creating and Using Release Candidate Packages
	Defining the Bounds of a Package

	Azure Artifacts Workflow for Release Candidates
	Specifying How Packages are Created
	Use Release Candidate Packages in Deployment Configurations

	Wrap Up
	Bibliography

	Chapter 9: Deploying the Release
	Designing Your Deployment Pipeline
	Determining Environments
	Production
	UAT
	TDD

	Assigning Validation Steps to Environments
	Deploying Data Changes Across Environments
	Choosing Your Runtime Architecture

	Implementing the Deployment in Azure Pipelines
	Deploying an Application Component
	Running Test Suites Using a Release Configuration
	Differences in the UAT and Production Environments

	Wrap Up
	Bibliography

	Chapter 10: Operating and Monitoring the Release
	Principles
	Architecture for Observability
	Jumpstarting Observability
	Wrap Up
	Bibliography

	Afterword
	Index

